University of Mumbai

वेबसाईट - mu.ac.in इमिल - आमडी - dr.aams a fort.mu.ac.in aams3@mu.ac.in

विद्याविषयक प्राधिकरणे सभा आणि सेवा विभाग(ए.ए.एम.एस) रूम नं. १२८ एम.जी.रोड, फोर्ट, मुंबई - ४०० ०३२ टेलिफोन न - ०२२ - ६८३२००३३

(नॅक पुनमूॅल्यांकनाद्वारे ३.६५ (सी.जी.पी.ए.) सह अ++ श्रेणी विद्यापीठ अनुदान आयोगातारे श्रेणी १ विद्यापीठ वर्जा)

क.वि.प्रा.स.से./आयसीडी/२०२५-२६/३७

दिनांक : २७ मे. २०२५

परिपत्रक:-

सर्व प्राचार्य/संचालक, संलग्नित महाविद्यालये/संस्था, विद्यापीठ श्रैक्षणिक विभागांचे संचालक/ विभाग प्रमुख यांना कळविण्यात येते की, राष्ट्रीय भैक्षणिक धोरण २०२० च्या अमंलबजावणीच्या अनुषंगाने शैक्षणिक वर्ष २०२५-२६ पासून पदवी व पदव्युत्तर अभ्यासकम विद्यापरिषदेच्या दिनांक २८ मार्च २०२५ व २० मे, २०२५ च्या बैठकीमध्ये मंजूर झालेले सर्व अभ्यासकम मुंबई विद्यापीठाच्या www.mu.ac.in या संकेत स्थळावर NEP २०२० या टॅब वर उपलब्ध करण्यात आलेले आहेत.

(डॉ. प्रसीद कारडे)

मुंबई - ४०० ०३२ २७ मे, २०२५

क.वि.प्रा.स.से.वि/आयसीडी/२०२५-२६/३७ विनांक : २७ मे, २०२५ Desktop/ Pritam Loke/Marathi Circular/NEP Tab Circular

Сор	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), <u>dr@eligi.mu.ac.in</u>
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari <u>cap.exam@mu.ac.in</u>
6	The Deputy Registrar, College Affiliations & Development Department (CAD), <u>deputyregistrar.uni@gmail.com</u>
7	The Deputy Registrar, PRO, Fort, (Publication Section), <u>Pro@mu.ac.in</u>
8	The Deputy Registrar, Executive Authorities Section (EA) <u>eau120@fort.mu.ac.in</u>
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), <u>rapc@mu.ac.in</u>
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, <u>thanesubcampus@mu.ac.in</u>
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentar@gmail.com
17	The Director, Centre for Distance and Online Education (CDOE), Vidyanagari, <u>director@idol.mu.ac.in</u>
18	Director, Innovation, Incubation and Linkages, Dr. Sachin Laddha pinkumanno@gmail.com
19	Director, Department of Lifelong Learning and Extension (DLLE), dlleuniversityofmumbai@gmail.com

Сор	Copy for information :-				
1	P.A to Hon'ble Vice-Chancellor,				
	vice-chancellor@mu.ac.in				
2	P.A to Pro-Vice-Chancellor				
	pvc@fort.mu.ac.in				
3	P.A to Registrar,				
	registrar@fort.mu.ac.in				
4	P.A to all Deans of all Faculties				
5	P.A to Finance & Account Officers, (F & A.O),				
	camu@accounts.mu.ac.in				

To,

1	The Chairman, Board of Deans
	<u>pvc@fort.mu.ac.in</u>
2	Faculty of Humanities,
	Offg. Dean
	1. Prof.Anil Singh
	Dranilsingh129@gmail.com
	Offg. Associate Dean
	2. Prof.Manisha Karne
	mkarne@economics.mu.ac.in
	3. Dr.Suchitra Naik
	Naiksuchitra27@gmail.com
	Faculty of Commerce & Management,
	Offg. Dean,
	1 Prin.Ravindra Bambardekar
	principal@model-college.edu.in
	Offg. Associate Dean
	2. Dr.Kavita Laghate
	kavitalaghate@jbims.mu.ac.in
	3. Dr.Ravikant Balkrishna Sangurde
	Ravikant.s.@somaiya.edu
	4. Prin.Kishori Bhagat
	kishoribhagat@rediffmail.com

	Faculty of Science & Technology
	Offg. Dean
	1. Prof. Shivram Garje ssgarje@chem.mu.ac.in
	Offg. Associate Dean
	2. Dr. Madhav R. Rajwade <u>Madhavr64@gmail.com</u>
	3. Prin. Deven Shah <u>sir.deven@gmail.com</u>
	Faculty of Inter-Disciplinary Studies, Offg. Dean
	1.Dr. Anil K. Singh aksingh@trcl.org.in
	Offg. Associate Dean
	2.Prin.Chadrashekhar Ashok Chakradeo
	<u>cachakradeo@gmail.com</u> 3. Dr. Kunal Ingle
	drkunalingle@gmail.com
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation, <u>dboee@exam.mu.ac.in</u>
5	The Director, Board of Students Development, dsd@mu.ac.in DSW direcotr@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology, director.dict@mu.ac.in

AC – 20/05/2025 Item No. – 6.15 (N)

As Per NEP 2020

Aniversity		lumbai
Vertie	us for N cal – 1 & neme –	& 4
Name of the Programme – B.Sc.		•
Faculty of Science		
Board of Studies in Chemistry		
U.G. Second Year Programme	Exit Degree	U.G. Diploma in Chemistry
Semester	1	III & IV
	2025-26	

University of Mumbai

(As per NEP 2020)

Sr.	Heading	Particulars
No.		
1	Title of program	B.Sc. (Chemistry)
	O:	
2	Exit Degree	U.G. Diploma in Chemistry
3	Scheme of Examination R:	NEP 40% Internal 60% External, Semester End Examination Individual Passing in Internal and External Examination
4	Standards of Passing R:	40%
5	Credit Structure R: SU - 525 C R: SU - 525 D	Attached herewith
6	Semesters	Sem. III & IV
7	Program Academic Level	5.00
8	Pattern	Semester
9	Status	New
10	To be implemented from Academic Year	2025-26

Sd/-Sign of Dr. Sunil Patil Coordinator, Board of Studies in Chemistry Sd/-

Sign of Prin. (Dr.) Madhav Rajwade Offg. Associate Dean, Faculty of Science and Technology Sd/-Sign of Prof. (Dr.) Shivram Garje Offg. Dean, Faculty of Science and Technology

Under Graduate Diploma in Chemistry

Credit Structure (Sem. III & IV)

	R:		C							
Level	Semester	Maje Mandatory		Minor	OE	VSC, SEC (VSEC)	AEC, VEC, IKS	OJT, FP, CEP, CC,RP	Cum. Cr. / Sem.	Degree/ Cum. Cr
5.0		8 Paper I: S1MJ5: Progressive Physical and Analytical Chemistry I Paper II: Theory S1MJ6: Progressive Inorganic and Organic Chemistry I Practical I: S1MJCHP3: Chemistry Practical II: S1MJCHP4: Chemistry		4	2	VSC:2, VSC 3: Soil Analysis	AEC:2	FP: 2 CC:2	22	UG Diploma \$
	R:	Practical 4	D							
	IV	8 S1MJ7: Progressive Physical and Analytical Chemistry II		4	2	SEC:2 Business Skills in Chemistry	AEC:2	CEP: 2 CC:2	22	
		Paper II: Theory S1MJ8: Progressive Inorganic and Organic Chemistry II				Synthesis of Nanoparti cles				
		Practical I: S1MJCHP5 : Chemistry Practical 5								

	S1MJCHP6: Chemistry							
Cum Cr.	Practical 6 28	10	12	6+6	8+4+2	8+4	88	-

[Abbreviation - OE – Open Electives, VSC – Vocation Skill Course, SEC – Skill Enhancement Course, (VSEC), AEC – Ability Enhancement Course, VEC – Value Education Course, IKS – Indian Knowledge System, OJT – on Job Training, FP – Field Project, CEP – Community Engagement Project, CC – Co-Curricular, RP – Research Project]

Sem. - III

Vertical – 1 Major

Syllabus B.Sc. Chemistry (Sem.- III)

Paper I: S1MJ5: Progressive Physical and Analytical Chemistry I And

Paper II: S1MJ6: Progressive Inorganic and Organic Chemistry I

Sr. No.	Heading	Particulars
1	Description the course: Including but Not limited to:	This program is meticulously designed to furnish a fundamental understanding of Chemistry. Through a comprehensive academic curriculum encompassing both theoretical and practical courses, we aspire to not only impart knowledge but also to cultivate interest in the discipline. The Bachelor of Science (B.Sc.) in Chemistry course is structured to equip students with a solid theoretical foundation, practical skills, and critical thinking abilities that are essential to navigate the challenges and opportunities within the diverse fields of the subject. Continuous evaluation of students is conducted through quizzes, class tests, and assignments. Emphasis is placed on conceptual understanding of theoretical frameworks, which is subsequently integrated into practical applications. The B.Sc. (Chemistry) program offers two major subjects, one minor subject, and various elective courses including VSCs, SECs, IKS, AECs, OEs, VEC, and CC. Upon successful completion of the first year of the B.Sc. program, learners will be conferred with a Undergraduate Certificate in Chemistry.
2	Vertical:	Major
3	Туре :	Theory / Practical
4	Credit:	2 credits / 4 credits (1 credit = 15 Hours for Theory or 30 Hours of Practical work in a semester)
5	Hours Allotted:	30 Hours / 60 Hours
6	Marks Allotted:	50 Marks /100 Marks

	Objectives: and Analytical Chamistry					
CO 1	and Analytical Chemistry					
	To understand and apply the basic concept of Free energy, Chemical potential					
CO 2	To understand and apply the principles of electrolyte conductance, transference number.					
CO 3	To understand and apply the concept of ideal solutions, partially miscible and immiscible liquid pairs					
CO 4	To introduce the scope of Analytical Chemistry and the statistical treatment of data in					
04	chemical analysis.					
CO 5	To Learn and identify the concepts of standard solutions, primary and secondary standards					
	Type of titrations and indicators used. Facilitate the learner to make solutions of various					
	concentrations.					
CO 6	To introduce instrumental analysis, like the spectrometric technique and the law applie					
	to it.					
-	c and Organic Chemistry					
•	d of this course, students will:					
	erstand types of bonding, valance bond theory and MOT and their applications					
	bed the basic concept of chemistry of boron and silicon compound					
	erstand the mechanisms of nucleophilic substitution reactions in haloalkanes and					
	arenes.					
-	ore the influence of structural and environmental factors on reactivity and					
	ochemistry.					
5. Examine the structure, nomenclature, and preparation methods of aldehydes and ketones.						
6. Analyze nucleophilic addition reactions and their applications in organic synthesis.						
7. Learn key name reactions and transformations.						
	Dutcomes:					
	and Analytical Chemistry					
-	eting the course, the learner will be able to:					
OC 1	Explain and apply concept of Free energy, Chemical potential					
OC 2	understand the principle of electrolyte conductance, terms associated and					
00.2	experimental technique to determine transport no. of ions					
OC 3	Explain the difference of ideal and non-ideal solution, partially and immiscible					
OC 4	liquid pairs Understand the importance of Analytical Chemistry and apply statistical tests to the given					
UC 4	data or the data generated in the laboratory to comment on error and minimize it.					
OC 5						
003	Explain the various terms involved in titrimetric analysis, choose a suitable indicator, standardization and Preparation of standard solutions					
OC 6						
	Describe the function of the different components of a colorimeter and spectrophotometer					
-	c and Organic Chemistry					
	cessful completion, students will be able to:					
1. Elucidate the types of bonding and enable them to write the VBT and MOT with respect to						
exan	-					
exan 2. Expl	ain compounds of boron and silicon					
exan 2. Expl 3. Diffe	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with					
exan 2. Expl 3. Diffe stere	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with ochemical implications.					
exan 2. Expl 3. Diffe stere 4. Pred	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with ochemical implications. ict the reactivity of haloalkanes and haloarenes in various nucleophilic substitution					
exan 2. Expl 3. Diffe stere 4. Pred cont	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with ochemical implications. ict the reactivity of haloalkanes and haloarenes in various nucleophilic substitution exts.					
exan 2. Expl 3. Diffe stere 4. Pred cont 5. Iden	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with ochemical implications. ict the reactivity of haloalkanes and haloarenes in various nucleophilic substitution exts. tify and describe methods of preparing aldehydes and ketones different precursors.					
 exan 2. Expl 3. Diffestere 4. Pred cont 5. Iden 6. Expl 	ain compounds of boron and silicon erentiate between SN ¹ , SN ² , SN ⁱ , and aromatic substitution mechanisms with ochemical implications. ict the reactivity of haloalkanes and haloarenes in various nucleophilic substitution exts.					

7. Describe and illustrate the mechanisms of selected name reactions

Semester	Paper	Unit	Description	Credits
III	Paper I: S1MJ5: Progressive Physical and Analytical Chemistry I	I	Description Physical Chemistry 1.1. Chemical Thermodynamics II 1.2. Electrochemistry 1.3. Solution Analytical Chemistry 2.1 Scope of Analytical Chemistry and Errors in Analysis with their types 2.2 Classical Methods: Titrimetric Methods of Analysis 2.3 Instrumental Methods-I (Spectrometry)	02
	Paper II: S1MJ6: Progressive Inorganic and Organic Chemistry I	I	Inorganic Chemistry 1.1 Chemical Bonding 1.2 Basic Chemistry of Boron and Silicon Organic Chemistry 2.1 Reactions and Reactivity of Halo Alkanes and Halo Arenes 2.2 Chemistry of Carbonyl Compounds 2.3 Name Reactions (Mechanism and Applications) – I	02
	S1MJCHP3: Chemistry Practical 3		Practical Component	02
	S1MJCHP4: Chemistry Practical 4		Practical Component	02

Paper I: S1MJ5: Progressive Physical and Analytical Chemistry I

Unit I	Physic	cal Chemistry
1.1	Chem	ical Thermodynamics-II (5L)
	1.1.1	Free Energy Functions: Helmholtz Free Energy, Gibbs Free Energy, Variation of
		Gibbs Free Energy with Pressure and Temperature.
	1.1.2	Gibbs-Helmholtz equation, Concept of fugacity and activity (Numericals
		expected).
	1.1.3	Thermodynamics of Open System: Partial Molal Properties, Chemical Potential
		and its variation with Pressure and Temperature. Gibbs Duhem equation.
1.2	Electr	rochemistry (5L)
	1.2.1	Electrolytes: Definition, Strong and Weak electrolytes and their conductance
		measurement, ions and electrical conductivity by ions.
	1.2.2	Kohlrausch law of independent migration of ions.
	1.2.3	Applications of conductance measurements: determination of degree of ionization
		and ionization constant of weak electrolyte, solubility and solubility product of
		sparingly soluble salts. (Numerical expected).
	1.2.4	Transference number and its experimental determination using Moving boundary
		method. (Numerical expected). Factors affecting transference number.
1.3	Soluti	ions (5L)
	1.3.1	Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations
		from Raoult's law-non-ideal solutions. Vapour pressure-composition and
		temperature-composition curves of ideal and non-ideal solutions.
	1.3.2	Partial miscibility of liquids: Definition, Effect of Temperature, effect of impurity
		and intermolecular interactions on partial miscibility, Critical solution
		temperature; Phenol-Water, Triethanolamine - Water and Nicotine - Water
		systems
	1.3.3	Immiscibility of liquids- Nernst distribution law and its applications, solvent
1		

Unit II	Analy	vtical Chemistry			
2.1	Scope of Analytical Chemistry and Errors in Analysis with their types (5L)				
	2.1.1	Important terms and their significance in Analytical Chemistry. Classical and			
		Non-Classical Methods of Analysis; their types and Importance. Applications in			
		various fields- Organic, Pharmaceuticals, Electronics & Environmental analysis.			
	2.1.2	Errors in Chemical Analysis and their types: i) Determinate Errors ii)			
		Indeterminate Errors.			
	2.1.3	Classification of determinate errors: i) instrumental errors ii) methodic errors iii)			
		operational errors iv) personal			
	2.1.4	Methods of minimisation of determinate errors in chemical analysis: Calibration,			
		running of blanks, control determination, independent method of analysis, parallel			
		determination.			
	2.1.5	Constant and proportionate errors with examples			
2.2	Class	ical methods: Titrimetric Methods of Analysis (5L)			
	2.2.1	Terms involved in Titrimetric analysis. i) Titrant ii) Titrand iii) Equivalence Point			
		iv) Indicator v) End point vi) Titration Error			
	2.2.2	Types of volumetric analysis with example and indicators			
		i) Neutralisation (Acidimetry, alkalimetry) ii) Redox (Iodometry, Iodimetry)			
		iii) Precipitation iv) Complexometric titrations			
	2.2.3	Standard solutions and standardisation in Titrimetry (primary and secondary			
		standards) Calculations based on preparation of standard solutions and their			
	-	dilutions.			
2.3		umental Methods-I (Spectrometry) (5L)			
	2.3.1	Basic Terms: Radiant Power, Absorbance, Transmittance, Monochromatic Light,			
		Polychromatic Light, Wavelength of Maximum Absorbance, Absorptivity and			
	222	Molar Absorptivity.			
	2.3.2	Statement and derivation of Beer's Law and Lambert's Law, Combined Mathematical Expression of Beer-Lambert's Law (Numerical based on Beer-			
		Lambert's Law)			
	2.3.3	Block Diagram for Single Beam Colorimeter (Principle, Construction and			
	2.3.3	Working (Details of Components Expected, i.e. source, Sample Holder, Filter,			
		Detector). Comparison between single Beam Colorimeter and double beam			
		colorimeter. Single beam spectrophotometer (Principle, Construction and			
		Working)			

Paper II: S1MJ6: Progressive Inorganic and Organic Chemistry I

Unit I	Inorganic Chemistry
1.1	Chemical Bonding (12L)
	1.1.1 Non directional Bonding (3L)
	• Ionic Bond: Conditions for the Formation of Ionic Bond and properties
	Types of Ionic Crystals
	Radius Ratio Rules
	 Born-Haber Cycle and its Applications
	1.1.2 Directional bonding (4L)
	VBT, introduction and basic tenets
	• Concept of homo nuclear diatomic molecule from He_2 to Ne_2
	• Bonding in Polyatomic Species: The Role of Hybridization. And types of
	hybrid orbitals-sp, sp^2 , sp^3 , sp^3d , sp^3d^2 , d^2sp^3 , Sp^3d^3 with examples.
	1.1.3 Molecular Orbital Theory (5L)
	Comparing Atomic Orbitals and Molecular Orbitals.
	• Linear combination of atomic orbitals to give molecular orbitals LCAO-MO
	approach fordiatomic homonuclear molecules).
	• Molecular orbital Theory and Bond Order and magnetic property: with
1.0	reference to O_2 , O^+ , O_2^- , O_2^{2-}
1.2	Basic chemistry of Boron and Silicon (3L)
	1.2.1 Basic chemistry of boron and silicon – electronic configuration, oxidation state
	and inert pair effect.
	1.2.2 Preparation, bonding and applications of diborane, silicon dioxide and silicon
	tetra chloride.
Unit II	Organic Chemistry
Unit II 2.1	Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L)
	Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L)
	Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L)2.1.1 Alkyl halides: (2 L)Nucleophilic substitution reactions: SN ¹ , SN ² and SN ⁱ mechanisms with stereo
	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected)
-	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature
-	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group.
	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature
	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr),
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution
	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L)
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone.
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones.
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone.
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones reagent (CrO₃ in sulfuric acid), Sarett oxidation (CrO₃ in pyridine, selective
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones reagent (CrO₃ in sulfuric acid), Sarett oxidation (CrO₃ in pyridine, selective oxidation of OH group in presence of double bond. (Preparation of
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones reagent (CrO₃ in sulfuric acid), Sarett oxidation (CrO₃ in pyridine, selective oxidation of OH group in presence of double bond. (Preparation of cinnamaldehyde is expected)
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones reagent (CrO₃ in sulfuric acid), Sarett oxidation (CrO₃ in pyridine, selective oxidation of OH group in presence of double bond. (Preparation of cinnamaldehyde is expected) 2.2.3 Nucleophilic Addition Reactions: (2 L)
2.1	 Reactions And Reactivity of Halo Alkanes and Halo Arenes: (4L) 2.1.1 Alkyl halides: (2 L) Nucleophilic substitution reactions: SN¹, SN² and SNⁱ mechanisms with stereo chemical aspects (examples of chiral carbon are expected) Factors affecting nucleophilic substitution reactions: Nature of substrate, nature of solvent, nature of nucleophilic reagent, nature of leaving group. 2.1.2 Aryl halides: (2 L) Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution: addition-elimination mechanism (SNAr), elimination- addition mechanism (benzyne mechanism) and Cine substitution Chemistry of Carbonyl Compounds: (8 L) 2.2.1 Recapitulation: (1 L) Introduction to classes of compounds containing carbonyl group Bonding, structure and reactivity of carbonyl group in aldehyde and ketone. IUPAC nomenclature of aldehydes and ketones. 2.2.2 Methods of Preparation (Mechanisms not expected): (1 L) Oxidation of primary and secondary alcohol using PCC, K₂Cr₂O₇, Wacker process (Using PdCl₂), Swern oxidation (oxylyl chloride / DMSO and Et₃N), Jones reagent (CrO₃ in sulfuric acid), Sarett oxidation (CrO₃ in pyridine, selective oxidation of OH group in presence of double bond. (Preparation of cinnamaldehyde is expected)

	2.2.4 Oxidation and Reduction (Mechanisms not expected): (1 L)			
	Reduction to alcohol: Reduction using LiAlH ₄ , NaBH ₄ , MPV reduction,			
	Reduction to hydrocarbon: Clemmensen reduction, Wolff – Kishner reduction			
	Oxidation: Oppenauer oxidation, Baeyer – Villiger oxidation			
	2.2.5 Active methylene compounds: (3 L)			
	Introduction and reactivity of active methylene compound and enolate formation,			
	Examples: ethyl acetoacetate, acetyl acetone, malonic ester.			
	Some characteristic reactions of these compounds like salt formation, alkylation.			
	Application of active methylene compounds in name reactions viz: 1) Michael			
	addition 2) Knoevenagel condensation			
2.3	Name Reactions (Mechanism and Applications) – I: (3 L)			
	2.3.1 Simmons-Smith reaction			
	2.3.2 Reformatsky reaction			
	2.3.3 Reimer-Tiemann reaction			
	2.3.4 Beckmann rearrangement			

S1MJCHP3: Chemistry Practical 3

Physical Chemistry

- 1 To verify Ostwald's dilution law for weak acid conductometrically.
- 2 To determine the amount of HCl in the given sample potentiometrically.
- 3 To determine the critical solution temperature (CST) of phenol -Water system
- 4 To investigate the reaction between K2S2O8 and KI with equal initial concentrations of the reactants
- 5 To determine solubility of sparingly soluble salts (any two) conductometrically.
- 6 To determine λ max and molar extinction coefficient for potassium permanganate solution using a photometer and hence to determine the concentration of potassium permanganate in a given solution.
- 7 To determine the amount of strong acid present in a given solution by titration with a strong base using a pH meter.
- 8 To determine the standard reduction potential of Ag|Ag +using Nernst Equation

Analytical Chemistry

- 1 Tools of Analytical Chemistry-I
 - a) Analytical glass wares like burettes, pipettes, Standard flasks, and separating funnels.
 - b) Weighing tools such as two pan balance and monopan balance, digital balances:
 - c) Incineration devices: Burners, Electrical Incinerators, Muffle Furnace,
 - d) Drying Devices: Hot Air Oven, Microwave Oven, Desiccators, Vacuum desiccators
 - e) Monochromators, Filters, Sample holders, Prisms, Diffraction Gratings, Photo emissive cells, Photomultiplier tubes
- 2 Colorimetry: Determination of copper ion in the given solution by calibration curve method
- 3 pH metry: Determination of buffer capacity of acid buffer and basic buffer.
- 4 Conductometry: Estimation of given weak acid with strong base by conductometric titration.
- 5 Estimation of drugs Estimation of aspirin.
- 6 Estimation of chloride content in the given saline sample by using silver nitrate.
- 7 Estimation of Mg content in talcum powder by using standard EDTA solution.
- 8 Determination of COD of given water sample.

S1MJCHP4: Chemistry Practical 4

Inorganic Chemistry

Inorganic preparation (4):

- 1) Tri (thiourea) cuprous (I) chloride
- 2) Tris ethylene diamine Ni (II) thiosulphate
- 3) Sodium hexa nitro cobaltate (III)
- 4) Tetraamine copper (II) sulphate

Complexometric titration (2)

- 1) Estimation of total hardness of water
- 2) Investigation of the reaction between copper sulphate and sodium hydroxide.

Gravimetric estimation (2)

- 1) Nickel (II) as Ni(dmg)
- 2) Barium as BaCrO₄

Organic Chemistry

Organic Qualitative Analysis (Minimum 8 compounds to be analysed)

Qualitative analysis of bi-functional organic compounds on the basis of

- 1. Preliminary examination
- 2. Solubility / miscibility profile
- 3. Detection of elements C, H, (O), N, S, X.
- 4. Detection of functional groups
- 5. Determination of physical constants (M.P/B. P)

Solid or liquid compounds containing not more than two functional groups from among the following classes may be given for analysis

<u>Suggested Compounds</u>

Carboxylic Acids: Salicylic acid, Acetyl aalicylic acid, o-chloro benzoic acid, o or m or p -nitro benzoic acid, anthranilic Acid

Phenols: o or m or p -nitro Phenol

Amines: o or m or p -nitro aniline or p-toluidine

Mono-functional Compound List:

Aldehydes: Benzaldehyde

Ketones: Benzophenone, acetophenone

Esters: Methyl acetate, Ethyl acetate, Ethyl benzoate

Alcohols: Propanol, butanol, benzyl alcohol

Ethers: Anisole

Amides & anilides: Urea, thiourea, benzamide, acetanilide, benzanilide

Vertical - 4 VSC

Syllabus B.Sc. (Chemistry) (Sem.- III)

Title of Paper: Soil Analysis (S1VSCCH31)

Sr. No.	Heading	Particulars
1	Description of the course:	This vocational skill course furnishes students with extensive training in soil analysis techniques that are vital for assessing soil fertility, quality, and suitability for agricultural applications. The syllabus encompasses a broad array of practical experiments, integrating traditional chemical methodologies with contemporary instrumental techniques, thereby ensuring that students acquire both theoretical knowledge and practical proficiency.
		The course seeks to equip students for careers in agricultural services, environmental management, and laboratory-based soil testing by instructing them on how to evaluate soil parameters that are crucial for sustainable farming and land management.
2	Vertical :	Vocational Skill Course (VSC)
3	Туре :	Practical
4	Credit:	2 credits (1 credit = 15 Hours for Theory or 30
		Hours of Practical work in a semester)
5	Hours Allotted :	60 Hours
6	Marks Allotted:	50 Marks
7	Course Objectives:	
	1. To develop a basic understanding	ng of soil qualities
	2. To enhance the ability to use pr	inciples of soil chemistry for soil treatment
	3. To understand soil quality contr	rol in the natural systems
	4. To train the students to acquire	various practical skills required for soil analysis.
	5. To prepare the health card of so	bil
L	1	

8	Course Outcomes:
	After completing the course, students will be able to-
	1. Identify the quality of soil of the surroundings.
	2. Develop the soil quality plan for better crop yield
	3. Classify the various samples of soil according to their overall health.
	4. Discover the important parameters of soil.
	5. Raise awareness within the peoples002E
9	Modules:-
•	Perform the following practical's (Any Ten) 1. To measure organic matter and moisture content of soil using redox titration.
	2. To find Alkalinity of different types of soil sample by acid-base titration.
	3. Estimation of water holding capacity of soil by gravimetry.
	4 Measurement of electrical conductivity of the soil sample by using Electrical conductivity
	meter.
	5. Evaluate the Nitrogen content from the soil sample by Kjeldal' method.
	6. To estimate bulk density and particle density of the soil sample using specific gravity bottle.
	7. Analysis of Sodium content in the given soil sample by flame photometric method
	8. Find out the Potassium content in the given soil sample by flame photometric method
	9. Find the content of available phosphorous from the soil sample by spectrophotometry
	10. Estimation of Calcium and Magnesium by Complexometric titration.
	11. Determination of chlorides in the given soil sample by Argentometric titration
	12. Measurement of sulphates in the given soil sample by turbidimetry.
	13. Measurement of pH of the given soil using calibrated pH meter.
	14. Preparation of soil health card and demonstration of soil Analysis Kit
10	Reference Books:
	 Soil and air analysis by S.K. Maiti. A comprehensive laboratory manual for Environmental Sciences and Engineering By P.R. Sreemahadevan Pillai. New Age International Publishers. Maiti, S.K. (2002): Chemical analysis of soil, Handbook of methods in Environmental
	studies A.B.D. Publishers
	4. Introduction to soil laboratory manual-J.J.Harset stipes.
	 Introduction to soil science laboratory manual, Palmer and troch-Lowa state. Sarkar, D.; Haldar, A. Physical and Chemical Methods in Soil Analysis, 2nd Ed., New

	 Age International (2010). 7. Saha, A. K. Methods of Physical and Cher (2008). 	nical Analysis of Soil, Kalyani Publishers
11	Internal Continuous Assessment: 40%	External, Semester End Examination 60% Individual Passing in Internal and External Examination
12	Continuous Evaluation through: Quizzes, Class Tests, presentation, project, role play, creative writing, assignment etc.(at least 3)	

Sem. - IV

Vertical – 1 Major

Syllabus B.Sc. Chemistry (Sem.- IV)

Paper I: S1MJ7: Progressive Physical and Analytical Chemistry II And

Paper II: S1MJ8: Progressive Inorganic and Organic Chemistry II

Sr. No.		Heading	Particulars
1	Descripti	ion of the course:	This course provides an integrated study of the principles and applications of physical and analytical chemistry. It
	Including	y but Not limited to:	is designed to build a concrete foundation in the
		,	theoretical concepts of chemical systems as well as
			practical techniques used to analyse them.
2	Vertical	:	Major
3	Type :		Theory / Practical
4	Credit:		2 credits / 4 credits (1 credit = 15 Hours for Theory or
			30 Hours of Practical work in a semester)
5	Hours Allotted :		30 Hours / 60 Hours
6	Marks A	llotted [.]	50 Marks/100 Marks
Ŭ		notiou.	
7	Course C	Dbjectives:	
•		and Analytical Chem	histry
	CO:1	-	basic concepts, reaction mechanism and type of
	CO:2	To understand the c	hemical cell and types of electrodes and apply emf data ium constant and pH of the solution.
	CO:3		Phase Rule and apply it to one and two-component
	CO: 4	systems.	raphy and Solvent Extraction as a tool for Separation.
	CO: 4 CO: 5	-	asic concepts of some instrumental method of analysis.
			tatistical treatment of analytical data.

- 2.Imbibed the basic concepts of coordination theory, rules and applications
- 3.Explore the types of oxides of nitrogen, sulphur and their impact on environment
- 4.Understand the basic structure, classification, and nomenclature of common heterocyclic compounds.
- 5.Study the synthesis, reactivity, and substitution patterns of five- and six-membered heterocycles.

	alyze conformational behavior and stereochemistry of mono- and disubstituted
•	lohexanes.
	olore symmetry elements and their role in determining stereochemical outcomes.
	lerstand and apply mechanisms of selected name reactions relevant to synthesis and rangements.
	e Outcomes:
-	cal and Analytical Chemistry
	se Outcomes (OC): On completing the course, the learner will be able to:
OC 2	0
-	mechanism and complex chemical reaction.
OC 2	
	of electrode, use of emf data to calculate equilibrium constant and pH of
	solution.
OC3	Develop a clear understanding of the criteria for phase equilibrium and
	apply Gibbs Phase Rule to different systems
OC 4	Develop a clear understanding of the principle, technique and application of PC and
	TLC , Solvent extraction.
OC: 5	Understand the details of working and application of potentiometer, Conductometer
	and pH-meter
-	anic and Organic Chemistry
	successful completion, students will be able to:
1. Di	scern the position of transition elements, properties and qualitative analysis
2. De	termine the rules, theories of coordination compounds and their application
3. Ex	pound the types of oxides of nitrogen, Sulphur and their impact on environment
	assify and name five- and six-membered heterocyclic compounds containing one
	teroatom.
-	scribe and compare synthesis methods and electrophilic substitution reactivity of fura
	rrole, thiophene, and pyridine.
	edict conformational preferences and stereochemical behavior of mono- and
	ubstituted cyclohexanes.
	entify symmetry elements in organic molecules and relate them to optical activity.
1 10	THE VIEW AND THE OPPONDENCE TO A COMPANY AND THE OPPONDENCE OF A COMPANY

7. Identify symmetry elements in organic molecules and relate them to optical activity.8. Explain mechanisms and applications of selected named reactions.

9 Modules

Semester	Paper	Unit	Description	Credits
IV	Paper I: S1MJ7: Progressive Physical and Analytical Chemistry II	I	Description Physical Chemistry 1.1. Chemical Kinetics II 1.2. Electrochemistry II 1.3. Phase Equilibria Analytical Chemistry 2.1 Methods of Separation 2.2 Instrumental Methods-II	02
	Paper II: S1MJ8: Progressive Physical and Analytical Chemistry II	I	 2.3 Statistical Treatment of Analytical Data Inorganic Chemistry 1.1 Comparative chemistry of transition metals 1.2 Coordination chemistry 1.3 Study of oxides, volatile oxides and oxo acids 	02

	II	Organic Chemistry	
		2.1 Heterocyclic Compounds	
		2.2 Stereochemistry of mono and disubstituted	
		cyclohexanes	
		2.3 Name Reactions (Mechanism and	
		Applications) – II	
S1MJCHP5:		Practical Component	02
Chemistry		-	
Practical 5			
S1MJCHP6:		Practical Component	02
Chemistry		-	
Practical 6			

Paper I: S1MJ7: Progressive Physical and Analytical Chemistry II

Unit I	Physic	cal Chemistry
1.1	Chem	ical Kinetics-II (5L)
	1.1.1	Introduction to reaction mechanism (concept of elementary steps, intermediates,
		and the overall reaction mechanism with an example of Thermal chain reactions: H_2
		and Br ₂ reaction.
	1.1.2	Types of Complex Chemical reactions: Reversible or opposing, consecutive and
		parallel reactions (No derivations, only examples expected)
1.2	Electr	rochemistry-II (5L)
	1.2.1	Electrochemical cells, Nernst equation and its importance in generating electricity
		through chemical reactions. Types of electrochemical cells - Reversible and
		irreversible cells (Definition, example, characteristics)
	1.2.2	Types of electrodes, Standard electrode potential, Electrochemical series.
	1.2.3	Calculation of equilibrium constant and pH measurement using quinhydrone
		electrode, from EMF data.
		(Numericals to be solved wherever necessary)
1.3	Phase	Equilibria (5L)
	1.3.1	Introduction to Phase equilibria, Phases, components and degrees of freedom of a
		system, criteria of phase equilibrium. Gibbs Phase Rule.
	1.3.2	Phase diagrams of one-component systems (water and sulphur).
	1.3.3	Two-component systems involving eutectics – Condensed Phase rule, Definition of
		eutectic Phase diagram of Lead-Silver system.
Unit II	Analy	tical Chemistry
2.1		ods of Separation (5L)
	2.1.1.	
		example) Based on electrical effects - Electrophoresis (definition, principle and
		applications)
	2.1.2.	Chromatography - General idea of paper chromatography and thin layer
		chromatography (principle, technique and applications)
	2.1.3.	, , , , , , , , , , , , , , , , , , , ,
		Single-step and multistep extraction, Percentage extraction for single-step and
		multistep extraction. Batch Extraction (Simple separating technique -diagram and
		process) (Numerical problems expected on 2.1.3)
2.2		imental Methods-II (6L)
2.2	Instru 2.2.1	Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical
2.2	2.2.1	Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods)
2.2	2.2.1 2.2.2	Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods) pH metry – Principle, construction and working of the glass electrode.
2.2	2.2.1	Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods) pH metry – Principle, construction and working of the glass electrode. Conductometry – Conductivity cell: Construction. Principle, application in
2.2	2.2.1 2.2.2	 Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods) pH metry – Principle, construction and working of the glass electrode. Conductometry – Conductivity cell: Construction. Principle, application in neutralization titration with respect to strong acid–strong base, strong acid – weak
	2.2.1 2.2.2 2.2.3	 Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods) pH metry – Principle, construction and working of the glass electrode. Conductometry – Conductivity cell: Construction. Principle, application in neutralization titration with respect to strong acid–strong base, strong acid – weak base, strong base – weak acid.
2.2	2.2.1 2.2.2 2.2.3	 Imental Methods-II (6L) Potentiometry – Principle, role of reference and indicator electrodes, Graphical Methods of detection of end points. (first derivative and second derivative methods) pH metry – Principle, construction and working of the glass electrode. Conductometry – Conductivity cell: Construction. Principle, application in neutralization titration with respect to strong acid–strong base, strong acid – weak

2.3.2	of Gaussian distribution curve. Gaussian error curve and precision and accuracy. Linear Regression analysis between two variables: Obtaining equation of the best fitting line for line passing through origin and for line not passing through origin using: i) method of averages ii) method of least squares [Numerical problems
	expected on 2.3.2]

Paper II: S1MJ8: Progressive Inorganic and Organic Chemistry II

Unit I	Inorganic Chemistry				
1.1	Comparative chemistry of transition metals (4L)				
	1.1.1 Position of transition elements in periodic table, occurrence (ores and minerals),				
	oxidation state and transition elements				
	1.1.2 Magnetic properties of transition metal compounds. Origin of magnetism (Spin &				
	Spin-Orbital)				
	1.1.3 Qualitative tests for transition metal ions (Cr, Mn, Fe, Co, Ni, and Cu)				
1.2	Coordination chemistry (7L)				
	1.2.1 Introduction to coordination compounds, basic terms and nomenclature, types of				
	ligands				
	1.2.2 Isomerism (stereoisomerism of coordination compounds no. 6)				
	1.2.3 Theories of coordination compounds (Werner's Theory), Effective atomic number				
	rule, Eighteen electron rule.				
	1.2.4 VBT for sp^3d^2 and d^2sp^3 hybridization , inner and outer orbital , Complexes,				
	limitation of VBT				
	1.2.5 Applications of coordination compounds				
1.3	Study of oxides, volatile oxides and oxo acids (4L)				
	1.3.1 Oxides of nitrogen with respect to preparation and structure of NO, NO ₂ , N ₂ O and				
	N_2O_4				
	1.3.2 Volatile oxides and oxo acids of sulphuric acid and nitric acid				
	1.3.3 Uses and environment aspects of sulphuric acid and nitric acid with respect to acid				
	rain and photochemical smog respectively.				
Unit II	Organic Chemistry				
2.1	Heterocyclic Compounds: (6 L)				
	2.1.1 Introduction: (1 L)				
	Introduction, classification, nomenclature of 5 and 6-membered heterocycles				
	containing one heteroatom				
	2.1.2 Five membered heterocycles (Furan, Pyrrole and Thiophene): (3 L)				
	Synthesis of furan, pyrrole and thiophene (Paal-Knorr synthesis, Knorr pyrrole				
	synthesis, and Hantzsch synthesis), thiophene (Hantzsch synthesis), Reactivity of furan, pyrrole and thiophene towards electrophilic substitution on the				
	basis of stability of intermediate.				
	Reactions of furan, pyrrole and thiophene: halogenation, nitration, sulphonation,				
	Vilsmeier- Haack reaction, Friedel-Crafts reaction.				
	Furan: Diels-Alder reaction, ring opening reaction.				
	Pyrrole: Acidity and basicity of pyrrole, comparison of basicity of pyrrole,				
	pyrrolidine and pyridine.				
	2.1.3 Six membered heterocycles (Pyridine): (2 L)				
	Hantzsch synthesis pyridine.				
	Reactivity of pyridine towards electrophilic and nucleophilic substitution on the				
	basis of electron distribution.				
	Pyridine: Basicity, sulphonation of pyridine (with and without catalyst),				
	(Chichibabin reaction)				

2.2	Stereochemistry of mono and disubstituted cyclohexanes (6L)				
	2.2.1 Conformational analysis (2 L)				
	Monosubstituted cyclohexanes: methyl cyclohexane, tert-butylcyclohexane.				
	Disubstituted cyclohexanes: 1,2-dimethylcyclohexane, 1-tert-butyl-4- methylcyclohexane,				
	2.2.2 Cis-trans isomerism in disubstituted cyclohexanes: (1 L)				
	1-chloro-2-methylcyclohexane, 1,3-dimethylcyclohexane				
	 2.2.3 Elements of Symmetry: (1L) Mirror plane symmetry, inversion center, rotation -reflection (alternating) axis 2.2.4 Stereochemical Consequences: (2L) Cis-1,2-dimethylcyclohexane, cis-1,3-dimethylcyclohexane-optically inactive (presence of plane of symmetry), trans-1,2-dimethylcyclohexane-optically active. Note: 				
	Gauche-butane interaction to be discussed.				
2.3	Name Reactions (Mechanism and Applications) – II: (3 L)				
	2.3.1 Darzens reaction				
	2.3.2 Wittig reaction				
	2.3.3 McMurry reaction				
	2.3.4 Wagner-Meerwein rearrangement				

Semester IV Practical S1MJCHP5: Chemistry Practical 5

Physical Chemistry

- 1) To determine standard EMF and the standard free energy change of Daniel cell potentiometrically.
- 2) To determine the amount of HCl and CH3COOH in a mixture by conductometric titration with sodium hydroxide solution.
- 3) Determination of energy of activation of acid-catalyzed hydrolysis of methyl acetate.
- 4) To determine the amount of Fe (III) present in the given solution by using Salicylic acid by colorimetric titration (Static Method) { $\lambda = 525 \text{ nm}$ }
- 5) To determine acidic and basic dissociation constants of amino acid hence to calculate isoelectric point.
- 6) Determination of partition coefficient of I2 between organic solvent and H_2O .
- 7) To determine $\Delta G^{\bar{0}}$ and equilibrium constant for cell reaction in the cell set up with copper and silver electrodes.
- 8) To determine the Solubility product and solubility of AgCl potentiometrically using chemical cell.

Analytical Chemistry

- 1) Tools in analytical chemistry-II
 - a. Filtration Flasks, Funnels, Separating Funnels, Distillation apparatus, Vacuum Distillation assembly, Centrifuge machine, Electrophoresis apparatus.
 - b. Development chamber for chromatography
 - c. Electrodes like Reference Electrodes and Indicator Electrodes (with respect to care and maintenance).
 - d. Conductivity cell (with respect to care and maintenance).
 - e. Combined Glass electrode (with respect to care and maintenance).
 - f. Types of Salt Bridges and preparation of any one or use of salt bridge, its effect on the potential of a given electrode/cell.
- 2) Paper Chromatography: Separation of Cation Fe (III), Ni (II) and Cu (II) in a sample
- 3) Solvent Extraction: Separation of a solute between two immiscible solvents to determine the distribution ratio and/or extraction efficiency. (Solutes could be as their aqueous solutions and the organic solvent ethyl acetate) Suggested solute for the distribution study: Fe (III) in aqueous solutions. (The learner is expected to learn the technique of solvent extraction by using a separating funnel, method to estimate the concentrations of the solute distributed in the two immiscible phases, determination of the extraction efficiency)
- 4) Spectrophotometry: To determine the concentration of chromium (VI) in the given solution as dichromate by the least squares method spectrophotometrically.
- 5) Potentiometry: Estimation of Fe (II) in the given solution by titration against K2Cr2O7.
- 6) Estimation of copper by EDTA method using fast sulphone black F indicator.
- 7) Determination of hydrogen peroxide in terms of i) volume strength ii) grams per litre.
- 8) Titration of sodium thiosulphate with potassium dichromate (to study transfer of electrons)

Semester IV Practical

S1MJCHP6

Inorganic Chemistry

1. Identification of cations – (minimum 5)

Identification of cations in a given mixture and analytical separation of mixture [from a mixture containing not more than two of the following; Pb(II), Ba(II), Ca(II), Sr(II), Cu(II), Cd(II), Mg(II), Zn(II), Fe(II), Fe(III), Ni(II), Co(II), Al(III), Cr(III)]

- Volumetric Analysis / Redox titration
 Estimation of the amount of Iron present in the given ferric alum solution
- **3. Iodometric titration** Estimation of Cu(II) by using sodium thiosulphate
- **4.** Determine the amount of sodium carbonate and sodium hydroxide present together in the given solution.

Organic Chemistry

Short organic preparation and their purification: (Minimum 8 compounds to be prepared)

Use 0.5-1.0g of the organic compound. Purify the product by recrystallization. Report 1) Theoretical yield, 2) Percentage yield and 3) Melting point of the purified product

Preparation of:

- 1. Cyclohexanone oxime from cyclohexanone.
- 2. Glucosazone from dextrose or fructose
- 3. Tribromoaniline from aniline.
- 4. β -Naphthylbenzoate from β -naphthol
- 5. m-Dinitrobenzene from nitrobenzene
- 6. Acetanilide from aniline
- 7. p-Bromoacetanilide from acetanilide
- 8. Iodoform from acetone
- 9. Phthalic anhydride from phthalic acid by sublimation

10. Reference Books: Physical Chemistry

- 1. Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014).
- 2. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).
- 3. Keith J. Laidler & John H. Meiser, Physical Chemistry, 2nd Ed. (2004)
- 4. Puri B. R., Sharma L. R. & Pathania M. S. Principles of Physical Chemistry, Vishal Publishing Company, 2008
- 5. Ball, D. W. Physical Chemistry Thomson Press, India (2007).
- 6. Mortimer, R. G. Physical Chemistry 3rd Ed. Elsevier: NOIDA, UP (2009).
- 7. Engel, T. & Reid, P. Physical Chemistry 3rd Ed., Prentice-Hall (2012).
- 8. McQuarrie, D. A. & Simon, J. D. Molecular Thermodynamics Viva Books Pvt. Ltd.: New Delhi (2004).
- 9. Levine, I.N. Physical Chemistry 6th Ed., Tata Mc Graw Hill (2010).
- 10. Laboratory Experiments in Chemistry I & II, University Practical Book of Chemistry, University of Mumbai.
- 11. Athawale, V. D. & Mathur, P. Experimental Physical Chemistry New Age International: New Delhi (2001).
- 12. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011).
- 13. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical Chemistry 8th Ed.; McGraw-Hill: New York (2003).
- Halpern, A. M. & McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H. Freeman & Co.: New York (2003)

Analytical Chemistry

- 1. Analytical Chemistry, Gary D. Christan, Purnendu Dasgupta, 7th Edition, Wiley.
- 2. Fundamental of Analytical Chemistry by Douglas A. Skoog, West, F. James Holler, S. R. Crouch, 10th edition.
- Principles of Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R.Crouch, 7th edition.
- 4. Basic Concepts of Analytical Chemistry, S.M. Khopkar, 3rd Edition, New academic sciences.
- 5. Modern Analytical Chemistry, David Harvey, 2nd edition, 2009.

Inorganic Chemistry

Transition Metal and Coordination Chemistry

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- 2. W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.
- 3. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.
- 4. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2nd Edition 2005.
- 5. J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.
- 6. R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin Cummings Publishing Company, 1989.
- 7. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.
- 8. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.
- 9. C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 1985.
- 10. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997.
- 11. D. Banerjea ,Coordination Chemistry Tata McGraw Hill,1993.

Study of oxides, volatile oxides and oxo acids

1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014

- 2. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.
- 3. Andrew Barron, Chemistry of the Main Group Elements, Middas Green Innovations, 2020.
- 4. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.

Inorganic Practical

- 1. Practical Inorganic Chemistry by G. Marr and B. W. Rockett van Nostrand Reinhold Company (1972)
- 2. A. I. Vogel, Quantitative Inorganic Analysis, 5th Edn Longman Scientific and Technical, 1989.
- 3. J. D. Woolins, Inorganic Experiments. Hohn Wiley and Sons, 2010
- 4. G. Raj, Advanced Practical Inorganic Chemistry. Goel Publication, 2010
- 5. J. E. House, Inorganic chemistry, Academic press, 2nd edition, 2013.
- 6. G. N. Mukherjee, Advanced Experiments in Inorganic Chemistry., U. N. Dhur & Sons Pvt. Ltd. 2010.
- 7. G. Christian, Analytical Chemistry, John Wiley, New York 4th edition 1986.

Organic Chemistry

- 1. Acheson, R. H. (**1976**). *An Introduction to the Chemistry of Heterocyclic Compounds* (3rd ed.). John Wiley & Sons.
- 2. Gilchrist, T. L. (**1997**). *Heterocyclic Chemistry* (3rd ed.). Pearson Education.
- 3. Joule, J. A., & Mills, K. (2010). *Heterocyclic Chemistry* (5th ed.). Wiley-Blackwell.
- 4. Parashar, R. K. (**2010**). *Heterocyclic Chemistry*. Ane Books India.
- 5. Bansal, R. K. (**2022**). *Heterocyclic Chemistry* (7th ed.). New Age International Private Limited.
- 6. Organic Chemistry, Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers- Oxford University Press
- 7. Stereochemistry of Organic Compounds, Ernest Eliel, Samual Wilen, A Wiley-Inter-science Publication
- 8. Organic Chemistry, G. Marc Loudon (4th Edition) Oxford University Press
- Stereochemistry of Organic Compounds, Principles and Applications, D. Nasipuri, 4th Edition, New Academic Science
- 10. Heterocyclic Cyclic, Shrikrishna Tupare, String Production

Vertical - 4 SEC

Syllabus B.Sc. (Chemistry) (Sem.- IV) Title of Paper : Business Skills in Chemistry (S1SECCH41)

Sr.		Heading	Particulars	
No. 1	Description of the course :		To equip chemistry students with the prestical knowledge	
	Including but Not limited to :		To equip chemistry students with the practical knowledge for the preparation of personal hygiene and cosmetic products. The course is useful for the students to learn laboratory skills for preparation of thee products, survey and general analysis of such products.	
2	Vertica	al :	Skill Enhancement Course (SEC)	
3	Туре :		Practical	
4	Credit		2 credits (1 credit = 15 Hours for Theory or 30 Hours of Practical work in a semester)	
5	Hours	Allotted :	60 Hours	
6	Marks	Allotted:	50 Marks	
7	Course Objectives:			
	1.	To introduce students to the cosmetic and personal care p	fundamental techniques of formulating everyday	
	2.	<u> </u>	ory skills in the preparation of various cosmetic	
	3.		lity assessment techniques such as solubility testing, oH measurement, and foaming ability.	
	4.		e the physicochemical properties of cosmetic products	
	5.		erpreting cosmetic product labels, ingredient	
	6.	To foster comparative and critical thinking skills by analyzing and benchmarking various commercial cosmetic brands.		
8	Course	Outcomes:		
	CO 1.	Formulate various cosmetic products using standard laboratory protocols.		
	CO 2.	Perform chemical and physical analyses of cosmetic products.		
	CO 3.	Compare foaming abilities of	shampoo brands using experimental methods.	
	CO 4.	Determine active ingredient co	oncentrations and interpret efficacy.	
	CO 5.	Conduct surveys on product la	bels and ingredient lists.	
	CO 6.	Evaluate and compare product	t performance across brands.	

9	Modules:				
	Semester	Module	Description	Hours	Credits
		Unit I	Preparation	6 (Sessions) * 4 (hours) = 24	02
	IV	Unit II	Analysis	6 (Sessions) * 4 (hours) = 24	
		Unit III	Surveys	3 (Sessions) * 4 (hours) = 12	
			5	Total = 60 Hours	
				· · ·	
	Unit	Description			Hours
	I]	Preparations	(Any 6)		4Hours each practical
	-	1.1. To prepa	re the Talcum Pov	wder.	6 * 4 = 24
		1.2. To prepa	re the Bath Soap.		
		1.3. To prepa	re the Shampoo.		
	-	1.4. To prepa	re the Nail Polish		
	-	1.5. To prepa	re the Nail Polish	Remover.	
			re Hand Wash.		
		1 1	re Hand Sanitizer		
			re Hand Cream.		
			re Body Lotion		
			re after Shave Lot	ion.	
	II	Analysis			4 Hours
		2.1. To determ	ine the amount o	f matter insoluble in boiling water	each practical
		of the given material. 2.2. To determine the moisture, volatility and to test the solubility			
			the given materia		
		2.3. To study	the comparative	e foaming ability of the various	
		Shampoo bran	ds using Cylinder	Shake Method.	
		2.4. To measur	the pH of the sa	ample of a cosmetic products using	
	1	pH meter.			
		2.5. To determ	nine the relative v	viscosity of a given liquid product	
	1	using Ostwald	Viscometer.		
		2.6. To deter given Depilato		tration of Thioglycolic acid in a	
		Surveys	1105.		4 Hours
		·	ut the survey of a	iven cosmetic product's label.	each
		•		of ingredients in given cosmetic	practical $3 * 4 = 12$
		products.	out the study v	si ingredients in given cosinetie	$3 \cdot 4 = 12$
	-		vine and compare	the melting points of the Lipstick	
			-	ting point method.	
0	Reference		tus using shp me.	ting point method.	
5			M.: Maibach J	H. I. (2014), Handbook of Cosmet	ic Science and
		ology, CRC P			Selence un
				, N. (2012), Text Book of Cost	metics. Pragat
		ashan.	, 1 · 11., Ouruo	, (2012), Text Book of Cost	
			a. S. K. (2011). Pl	narmaceutics and Cosmetics, Pragat	i Prakashan
	-	-		es, Cosmetics and Soap, Springer	
	5) Kumari, R. (2018), Chemistry of Cosmetics, Prestige Publisher.6) Formulation Guide for cosmetics; The Nisshin Oillio Group, Ltd.				

	7) US Patent, 4,735,798 Apr. 5, 1988.		
12	Internal Continuous Assessment: 40%	External, Semester End Examination 60% Individual Passing in Internal and External Examination	
13	Continuous Evaluation through: Quizzes, Class Tests, presentation, project, role play, creative writing, assignment etc.(at least 3)		

Syllabus B.Sc. (Chemistry) (Sem.- IV)

(Sem.- IV) Title of Paper: Synthesis of Nanoparticles (S1SECCH42)

Sr No	Heading	Particulars		
1	Description of the Course Vertical	This course aims to provide chemistry students with practical knowledge and laboratory skills in the preparation and analysis of nanoparticles (NPs). This course provides hands-on experience in the preparation, analysis, and application of nanoparticles (NPs) for various practical purposes. The course also covers the survey and general analysis of such products, equipping students with the essential techniques for understanding and creating innovative products in the industry. Skill Enhancement Course		
3	Туре	Practical based		
4	Credits	2 Credits		
5	Hours Allotted	60 Hours (15 Practical of 4 Hours duration)		
6	Marks Allotted	50 Marks		
7	Course Objectives			
	1.materials, properties,2.Explore chemical, ph3.Highlight eco-friendly using plant extracts,4.Introduce students to Scattering (DLS), X- (SEM) for analyzing5.Discuss real-world ap6.Encourage students to characterizing nanop	hysical, and biological methods for nanoparticle synthesis. ly and sustainable methods for synthesizing nanoparticles microorganisms, and biomaterials. techniques such as UV-Vis spectroscopy, Dynamic Light ray Diffraction (XRD), and Scanning Electron Microscopy nanoparticles. pplications such as water purification and catalysis. o develop laboratory skills for synthesizing and		
8	Course Outcomes (CO):			
	importance of nanopar	tal principles of nanoscience, the nanoscale effect, and the ticles in various domains.		
	importance of nanopar	tal principles of nanoscience, the nanoscale effect, and the ticles in various domains.		
	Scattering (DLS), X-ra	n tools such as UV-Vis spectroscopy, Dynamic Light ay Diffraction (XRD), and Scanning Electron Microscopy properties of synthesized nanoparticles.		
	CO 4. Follow laboratory safe	ety protocols for nanoparticle synthesis and handling.		
	enhancing laboratory a	-		
	CO 6. Integrate knowledge free trends in nanotechnologies.	rom chemistry, physics, and biology to explore emerging ogy.		

9. Modules

Semester	Module	Description	Hours	Credits
IV	Unit I	Preparation	6 (Sessions) * 4 (hours) = 24	02
1,	Unit II	Analysis	6 (Sessions) * 4 (hours) = 24	
	Unit III	Surveys	3 (Sessions) * 4 (hours) = 12	
			Total = 60 Hours	

Unit	Description	Hours
Ι	 Preparations (Any 6) 1.1. To prepare ZnO nanoparticles using sol gel method. 1.2. To remove methylene blue dye using ZnO nanoparticles. 1.3. To study the effect of particle size on optical properties of ZnO NPs. 1.4. To study the photocatalytic degradation of methylene blue dye using TiO₂ nanoparticles under UV light. 1.5. To encapsulate TiO₂ nanoparticles within a chitosan biopolymer matrix and study their stability. 	4 Hour each practical 6 * 4 = 24
II	 Analysis 2.1. To analyze the weight loss of ZnO nanoparticles as a function of temperature and determine their thermal stability using TGA data. 2.2. To determine the size of ZnO NPs using Debye-Scherrer formula using XRD data. 2.3. To identify the ZnO crystal structures of materials using X-ray diffraction (XRD) spectra. 1.4. To compare the UV absorption of regular sunscreen and nanobased sunscreen using a UV lamp. 	4 Hour each practical 6 * 4 = 24
III	 Surveys 3.1. To study different synthesis methods for nanoparticles and compare their efficiency and applications. 3.2. To find the toxicity, environmental impact, and safe handling practices for ZnO and TiO₂ nanoparticles. 3.3. To explore the use of nanoparticles in drug delivery and evaluate their advantages in medicine. 3.4. To investigate how nanoparticles are used in improving the efficiency of solar cells. 3.5. To explore the role of ZnO & TiO₂ nanoparticles in cosmetics and personal care products. 	4 Hour each practical 3 * 4 = 12

- 1) Gleiter, H. (2007). *Nanomaterials: An Introduction to Synthesis, Properties, and Applications*. Wiley-VCH.
- 2) *Pundlik Ware, Mujahid Khan, Navinchandra Shimpi,* Synthesis of ZnO nanoparticles using peels of *Passiflora foetida* and study of its activity as an efficient catalyst for the degradation of hazardous organic dye, SN Applied Sciences, 2021.
- 3) Xu, J., Zhang, W., & Li, X. (2018). *Synthesis of ZnO nanoparticles by sol-gel method and their photocatalytic properties.* Journal of Nanomaterials, 2018, 2837264.

- **4)** Zhang, X., Yang, C., & Ma, X. (2013). *Efficient removal of methylene blue from aqueous solutions using ZnO nanoparticles as photocatalysts*. Journal of Hazardous Materials, 260, 134-141.
- 5) Zhao, J., & Huo, Z. (2011). *Size-dependent optical properties of ZnO nanoparticles and their applications in photocatalysis.* Journal of Nanomaterials, 2011, 853727.
- Karthik, R., & Gopal, K. (2014). Photocatalytic degradation of methylene blue using TiO₂ nanoparticles under UV light. Environmental Progress & Sustainable Energy, 33(3), 687-694.
- Venkatesan, J., & Manivasagan, P. (2015). Fabrication and characterization of TiO₂ nanoparticle-loaded chitosan-based nanocomposites for biomedical applications. Marine Drugs, 13(3), 1136-1154.
- 8) Zhang, H., & Lee, S. (2016). Encapsulation of TiO₂ nanoparticles within biopolymers: Stability and applications in biomedical and environmental fields. Journal of Applied Polymer Science, 133(33), 43947.
- **9)** M.A. Green, & M. J. Keevers. (2005). *Nanostructured Materials for Solar Energy Applications*. Elsevier.
- **10) Bohm, A.**, & **Smith, D.** (2014). *Thermogravimetric Analysis of Nanoparticles and Composite Materials*. Elsevier.
- **11) M. J. Seitz, & M. S. Shoham**. (2011). *Characterization of Nanomaterials Using X-ray Diffraction Techniques*. Elsevier.
- 12) R. V. Patel, & K. N. Patel. (2016). *Determination of Particle Size of ZnO Nanoparticles Using X-ray Diffraction (XRD) and Debye-Scherrer Formula*. Journal of Nanomaterials, 2016, 8236984.
- **13) Stokes, A.R., & Wilson, A.J.C.** (2018). *X-ray Diffraction and the Analysis of Materials.* Springer.
- 14) M. D. Mahajan, & P. R. Joshi. (2014). XRD Analysis of ZnO Nanoparticles: Crystal Structure and Size Determination. Journal of Nanomaterials, 2014, 519045.
- **15) K. R. P. Sundararajan**, & V. S. Kumar. (2019). *Nanotechnology in Cosmetics and Sunscreens: Materials and Applications*. Wiley.
- 16) J. M. Gonzalez, & P. R. Mercado. (2017). Comparing UV Absorption in Regular vs. Nanobased Sunscreens under UV Light. Journal of Photochemistry and Photobiology, 187(3), 467-474.
- **17**) Gleiter, H. (2007). Nanomaterials: An Introduction to Synthesis, Properties, and Applications. Wiley-VCH.
- **18**) Zhang, L., & Wang, M. (2016). A Survey on Different Methods of Nanoparticle Synthesis and Their Applications. Journal of Nanoscience and Nanotechnology, 16(4), 429-437.
- 19) Colvin, V.L., & Schmid, K. (2012). *Environmental and Health Impacts of Nanomaterials*. Wiley-VCH.
- **20**) Zhang, Q., & Liu, Q. (2018). Toxicological Effects of ZnO and TiO₂ Nanoparticles: Mechanisms, Applications, and Environmental Impacts. Nanotoxicology, 12(3), 147-157.
- **21**) G. A. Patil, & D. Patil. (2015). Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Drug Delivery, 22(2), 105-117.
- **22)** Mukherjee, P., & L. Mohan (2015). *Nanotechnology in Cosmetics: Applications and Innovations*. Wiley-VCH.
- **23**) A. R. Kummari, & G. D. Patel. (2016). Nanoparticles in Cosmetics: Role of TiO₂ and ZnO in Skin Protection. Cosmetics and Toiletries, 31(7), 12-19.

QUESTION PAPER PATTERN (External and Internal)

Evaluation Pattern for Major Theory Course

MAJOR: 8 Credits

Semester III

Theory/Practical	Credits	No. of Hours	Marks
Theory: Paper I:	2	30	50
S1MJ5: Progressive			
Physical and Analytical			
Chemistry I			
Theory: Paper II:	2	30	50
S1MJ6: Progressive			
Inorganic and Organic			
Chemistry			
Practical: S1MJCHP3:	2	60	50
Chemistry Practical 3			
Practical: S1MJCHP4:	2	60	50
Chemistry Practical 4			

Semester IV

Theory/Practical	Credits	No. of Hours	Marks
Theory: Paper I:	2	30	50
S1MJ7: Progressive			
Physical and Analytical			
Chemistry I			
Theory: Paper II:	2	30	50
S1MJ7: Progressive			
Inorganic and Organic			
Chemistry			
Practical: S1MJCHP5:	2	60	50
Chemistry Practical 5			
Practical: S1MJCHP6:	2	60	50
Chemistry Practical 6			

Evaluation Pattern for Semester III and IV:

Theory Paper

Internal Continuous Assessment: 40% (20 Marks)	Semester End Examination: 60% (30 Marks)	Duration for End semester examination
Continuous Evaluation through: Quizzes, Class Tests, presentation,	As per paper pattern	1 h
project, role play, creative writing, assignment etc.		

Paper Pattern for 30 marks :

30 Marks per paper Semester End Theory Examination:

- 1. Duration These examinations shall be of **one hour** duration.
- 2. Theory question paper pattern:
 - a. There shall be **02** questions each of **15 marks** on each unit
 - b. All questions shall be compulsory with internal choice within the questions.

Question	Particulars	Marks	Questions Based on
Q.1	A) Objective Questions 06 out of 10	06	Unit I
	B) Subjective Questions 03 out of 05	09	-
Q.2	A) Objective Questions 06 out of 10	06	Unit II
	B) Subjective Questions 03 out of 05	09	-
	Total	30	

Evaluation Pattern for Major Practical Course

Internal Continuous Assessment: 40% (20 Marks)	Semester End Examination: 60% (30 Marks)	Duration for End semester examination
Viva/ assignment/ objective question test (15 Marks), Overall performance (5 Marks) = 20 Marks	One experiment (25 marks for experiment and 5 Marks for Journal = 30 Marks)	3 h 30 minutes

PRACTICAL BOOK/JOURNAL

The students are required to perform 75% of the Practical for the journal to be duly certified. The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

Examination Pattern for Vocational Skill Courses (VSC) and

Skill Enhancement Courses (SEC)

Practical —	Credit	Credit No. of Hours	Marks
Practical	02	60	50
Internal Continuous Ass (20 Marks)	essment: 40%	Practical Examination:	60% (30 Marks)
Continuous Evaluation through: Presentation, project, creative writing, Industrial Visit report submission (at least 1) (10 Marks) and Survey Reports (any two) (10 Marks)		Practical Journal: 05 Marks Practical on Unit I or Unit II: 25 Marks	

Individual Passing in Internal and External Examination

Letter Grades and Grade Points:

Semester GPA/ Programme CGPA Semester/ Programme	% of Marks	Alpha-Sign/ Letter Grade Result	Grading Point
9.00 - 10.00	90.0 - 100	O (Outstanding)	10
8.00 - < 9.00	80.0 - < 90.0	A+ (Excellent)	9
7.00 - < 8.00	70.0 - < 80.0	A (Very Good)	8
6.00 - < 7.00	60.0 - < 70.0	B+ (Good)	7
5.50 - < 6.00	55.0 - < 60.0	B (Above Average)	6
5.00 - < 5.50	50.0 - < 55.0	C (Average)	5
4.00 - < 5.00	40.0 - < 50.0	P (Pass)	4
Below 4.00	Below 40.0	F (Fail)	0
Ab (Absent)	-	Ab (Absent)	0

Sd/-Sign of Dr. Sunil Patil Coordinator, Board of Studies in Chemistry Sd/-

Sign of Prin. (Dr.) Madhav Rajwade Offg. Associate Dean, Faculty of Science and Technology Sd/-Sign of Prof. (Dr.) Shivram Garje Offg. Dean, Faculty of Science and Technology