AC – 24-05-2024 Item No. – 6.9

As Per NEP 2020

University of Mumbai

(As per NEP 2020)

Sr. No.	Heading		Particulars				
1	Title of program O:A	A	U.G. Certificate in Biochemistry				
	O:B	В	U.G. Diploma in Biochemistry				
	0:C	C	B.Sc. (Biochemistry)				
	O:D	D	B.Sc. (Hons.) in Biochemistry				
	O:E	E	B.Sc. (Hons. with Research) in Biochemistry				
2	Eligibility O:A	Α	A candidate for being eligible to the degree course of Bachelor of Science should have passed XII standard examination of the Maharashtra Board of Higher Secondary Education or its equivalent in Science with Biology as one of the subjects. OR Passed Equivalent Academic Level 4.0				
	O:B	В	Under Graduate Certificate in Biochemistry Academic Level 4.5				
	0:C	C	Under Graduate Diploma in Biochemistry Academic Level 5.0				
	O:D	D	Bachelors of Biochemistry with minimum CGPA of 7.5 Academic Level 5.5				
	O:E	E	Bachelors of Biochemistry with minimum CGPA of 7.5 Academic Level 5.5				
3	Duration of program R:	Α	One Year				
		В	Two Years				
		C	Three Years				
		D	Four Years				

		Ε	Four Years
4	Intake Capacity R:		

5	Scheme of Examination	NEP	
		40%	Internal
	R:	60%	External, Semester End Examination
		Indivi	idual Passing in Internal and External
		Exam	nination
6	D. Standards of Dessing		
U	K:Standards of Fassing	40% i	in each component.
_	Credit Structure	Attac	hed herewith
7	Sem. I - R:A		
	Sem. II - R:B		
	Credit Structure		
	Sem. III - R:C		
	Sem. IV - R:D		
	Credit Structure		
	Sem. V - R:E		
	Sem. VI - R:F		
0		А	Sem I & II
8	Semesters	В	Sem III & IV
		С	Sem V & VI
		D	Sem VII & VIII
		E	Sem VII & VIII
•		Α	4.5
9	Program Academic Level	В	5.0
		C	5.5
		D	6.0
		E	6.0
		Seme	ster
10	Pattern		5001
11	Status	New	
12	To be implemented from Academic Year Progressively	From	Academic Year: 2024-25

Passastar

Sign of the BOS Chairman Prof. Dr.Samidha M Pawaskar Biochemistry

Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology

Preamble

1) Introduction

Biochemistry is central to all areas of the "biological" and "life" science. It aims to provide an understanding of every aspect of the structure and function of living things at cellular level.

Being an interdisciplinary subject it is spanning a wide range of areas from microbiology to plant and animal sciences to pathology of diseases and nutrition. The impact of studies in biochemistry on modern life is enormous. Therefore, the syllabus is structured to touch upon broad base at the beginning. Unique physical and chemical characteristics of water enable it to function in ways essential to human and other life processes due to its structure and composition. Life on Earth began more than 3 billion years ago, evolving from the most basic of microbes into a dazzling array of complexity over time, which makes it necessary to study the origin of life and evolution of a modern species over span of years. After an indepth understanding of how the first cells originated, students are introduced to detailed structural organization of basic unit of a living system "The Cell". Biomolecules are the basic and important constituents of a living system. Hence, it is mandatory to study structure, occurrence and functions of large biomolecules like carbohydrates, lipids and proteins along with nucleic acids. In order to prepare the students for detailed course in Applied Nutrition in the higher education, the syllabus is made to understand human nutrition and its significance. In order to understand the biological processes occurring in the living body, processes as digestion, absorption, respiration and excretion are necessary to be studied. As stated earlier, life evolved from a small microbe, it is our aim to study living microscopic size organisms which include bacteria, fungi, protozoa and special type of microorganisms called extremophiles

2) Aims and Objectives

- Develop an adequate background to enable the first year students to study more advanced biochemistry topics.
- Acquaint the learners with the unique properties of the universal solvent water, essential for life processes.
- Understand the life constituting bio molecules: proteins, carbohydrates, lipids, nucleic acids.
- Familiarize the learners about the origin of life and take them through the process of evolution.
- Focus on Cell as the basic unit of life which is the center for all biochemical processes.
- Familiarize the learners to the world of microorganisms which exist as independent cellular units.
- Appreciate the importance of the broad spectrum of biochemistry.
- Provide familiarity with basic biochemistry laboratory techniques.
- Develop the practical skills of students to enhance their observational skills and to
- use these skills for problem solving.

3) Learning Outcomes

After the successful completion of modules in different courses of B.Sc. Biochemistry, the learner

will be able to:

PLO I: Strengthen the base in fundamental aspects of Biochemistry viz. Bio-organic and Biophysical Chemistry, Metabolism, Nutrition and Advanced Biochemical concepts viz., Genetics and Genetic engineering, Immunology, etc.

PLO II: sharpen practical skills in performing experiments involving latest protocols.

PLO III: gain competence for gainful employment in industry, research-oriented career and qualifying examinations.

PLO IV: To develop scientific temper and interest by exposure through Internet, computers, various databases, industrial visits and study/educational tours.

PLO V: To develop independent approach to design and implement a scientific study in the field PLO VI: apply this knowledge to the greater benefit of the society at large; through public engagement via presentations and outreach activities.

4) Credit Structure of the Program (Sem I, II, III, IV, V & VI)

5) Under Graduate Certificate in Biochemistry

Credit Structure (Sem. I & II)

Level	Semester	Majo Mandatory	r Electives	Minor	OE	VSC, SEC (VSEC)	AEC, VEC, IKS	OJT, FP, CEP, CC,RP	Cum. Cr. / Sem.	Degree/ Cum. Cr.
	I	2 Basic molecules of Life				VSC:2, Microscopy and Colorimetry	AEC:2, VEC:2,I KS:2		22	
		Practical 1 based on Core course				SEC:2 Instrumentati on techniques				UG Certificate
4.5	R:	B								
	II	2 Introduction to Lipids and Nucleic acids 2 Practical 2 based on Core course I			2 Blood and blood disorder s	VSC:2, Microscopy and Colorimetry SEC:2 Instrumentati	AEC:2,	CC:2	22	
	Cum Cr.	and II 8	-		2	techniques 4+4	4+2+2	2	44	
Exit opt	tion: Award	of UG Certific	ate in Major OR	with 40-44 Continue	credits a with Maj	and an addit jorand Mino	ional 4 cred or	its core NS	QF cou	rse/ Internsh

Under Graduate Diploma in Biochemistry

Credit Structure (Sem. III & IV)

	R:		_C							
Level	Semester	Majo Mandatory	or Electives	Minor	OE	VSC, SEC (VSEC)	AEC, VEC, IKS	OJT, FP, CEP, CC,RP Related to core	Cum. Cr. / Sem.	Degree/ Cum. Cr.
5.0	III R:	2 Enzymology 2 Origin of Life and Basic Concepts of Cell ultrastructure 2 Practical 3 based on Core course I & II	D	2 Enzymolo gy 2 Practical based on minor	2 + 2 Basics of food and nutrition Heart Health	SEC:2, Centrifugatio n and Electrophores is	AEC:2	CC:2 CEP/FP: 2	22	UG Diploma 88
	IV	2 Genetics 2 Cell biology and Mendelian Genetics 2 Practical 4: based on Core course I		2 Genetics 2 Practical based on minor	2 + 2 Liver health Understa nding Diabetes Mellitus	VSC:2 Purification techniques	VEC:2	CC:2 CEP/FP: 2	22	
Exit	Cum Cr.	20 20 ard of UG Diplo	ma in Major Interns	and Mino hip OR Co	10 r with 80 ntinuewi	6+6 -88 credits a th Major an	6+4+2 nd an addi d Minor	6+4 tional 4 cree	88 dits core	NSQF course/

B.Sc. (Biochemistry)

Credit Structure (Sem. V & VI)

	R:	E								
Level	Semester	Major	r	Minor	OE	VSC, SEC	AEC, VEC,	OJT, FP, CEP,	Cum. Cr. /	Degree/ Cum. Cr.
		Mandatory	Electives			(VSEC)	IKS	CC,RP Related to core	Sem.	
5.5	V	2 Macro and Micro nutrients of diet 2 Food calorimetry and other nutritional concepts 2 Biophysical chemistry 2 Human Physiology 2 Metabolism (Carbohydrates and Energetics) 2 Practical 5 2 Practical 6		2 Introductio n to metabolis m		VSC: 2 Chromatogra phy & Radioactivity		CC:2 CEP/FP: 2	22	UG Degree 132
	R:	F								
	VI	2 Plant Biochemistry 2 Lipid and Protein metabolism 2 Endocrinology 2 Genetic engineering and RDT 2 Immunology						OJT :4	22	

	2 Introduction to Biostatistics and Bioinformatics								
	2 Principles of Pharmacology 2 Practical 7 2 Practical 8								
Cum Cr.	52		18	10	6+6+2	6+4+2	8+6+4	132	
Exit o	option: Award of	UG Degree i	n Major w	rith 132 c	redits OR C	Continue wit	th Major an	d Minor	

[Abbreviation - OE – Open Electives, VSC – Vocation Skill Course, SEC – Skill Enhancement Course, (VSEC), AEC – Ability Enhancement Course, VEC – Value Education Course, IKS – Indian Knowledge System, OJT – on Job Training, FP – Field Project, CEP – Continuing Education Program, CC – Co-Curricular, RP – Research Project]

Va	Sam	T/D	Major Courses	Credita	Houma	Total
ĨĽ	Sem	1/P	Course Thie	Credits	Hours	Total
						Credits
Ι		Т	Basic molecules of Life	2	30	4
1		Р	Practical 1 based on Core course I and II	2	60	
1	п	Т	Introduction to Lipids and Nucleic acids	2	30	4
		Р	Practical 2 based on Core course I and II	2	60	
		Т	Enzymology	2	30	
	III	Т	Origin of Life and Basic Concepts of Cell ultrastructure	2	30	6
2		Р	Practical 3 based on Core course I,II & III	2	60	
		Т	Genetics	2	30	
	IV	Т	Cell biology and Mendelian Genetics	2	30	6
		Р	Practical 4: based on Core course I,II & III	2	60	
		Т	Macro and Micro nutrients of diet (Carbohydrate +Bioenergetics)	2	30	
		Т	Food calorimetry and other nutritional concepts	2	30	_
	V	Т	Biophysical chemistry	2		14
		Т	Endocrinology	2	30	-
		Т	Human Physiology	2		-
		Р	Practical 5	2	60	_
		Р	Practical 6	2	60	
3		Т	Plant Biochemistry	2	30	
		Т	Lipid and Protein metabolism	2	30	
		Т	Endocrinology	2	30	
		Т	Genetic engineering and RDT	2	30	1
	VI	Т	Immunology	2	30	18
	••	Т	Introduction to Biostatistics and Bioinformatics	2	30	-
		Т	Principles of Pharmacology	2	30	1
		Р	Practical 7	2	60	1
		Р	Practical 8	2	60	-

	SEMESTER - I					
Course – I: Basic molecules of life						
Course I	Module	Topics	Credits			
	Ι	Water and Carbohydrates				
	II	Amino acids and Proteins	2			

Course Practical	Practical 1 based on Course I and Course II	Credits 2
---------------------	---	-----------

SEMESTER - II

Course – I: Introduction to Lipids and Nucleic acids					
Course I	Module	Topics	Credits		
	Ι	Lipids			
	II	Nucleic acids	2		

Course	Practical 2 based on Course I and Course II	Credits
Practical	Fractical 2 Dased on Course I and Course II	2

Vocational Skill Course: Microscopy and Colorimetry			
Course	Module	Topics	Credits
VSC	Ι	Microscopy and Colorimetry	2

Skill Enhancement Course: Instrumentation techniques			
Course	Module	Topics	Credits
SEC	Ι	Applications of Microscopy and Colorimetry	2

Sem. - I

Syllabus

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER I COURSE TITLES: Course 1: Basic molecules of life [2 Credits]

Sr.No.	Heading	Particulars	
1	Description the course :	This course describes	
	Including but not limited to:	the importance of the	
		basic molecules of	
		life.	
2	Vertical :	Major	
3	Type :	Theory	
4	Credits :	2 credits (1 credit =	
		15 Hours Theory in a	
		semester)	
5	Hours Allotted :	30 Hours	
6	Marks Allotted:	50 Marks	
	Course – I Basic molecules of I	life	
Course Learn	ning Objective and Outcome		
Learning Ob	iective:		
1) This c	ourse is intended to provide students with a bas	sic understanding of the	chemical
nature	and properties of biomolecules. i.e Water, Carbohy	drates, Amino acids and	proteins
Learning Out	tcomes:		1
2) The le	arner will be able to describe properties of wa	ter and its interaction	with other
biomol	lecules.		
3) The lea	arner will be able to describe the classification, rea	ctions and biochemical i	mportance
of bior	nolecules like carbohydrates, amino acids and prot	eins	
4) The le	arner will be able to explain the classification, s	tructures of proteins inc	luding the
forces	stabilizing the protein structures		
Module	Topics	Credits	Lectures
	Module I : Water and Carbohydrates	2	15
			15
	Water		
	• Effect of water on Biomolecules		
	• Structure and properties of water		
	(hydrogen bonding)		
-	• Entropy and dissolution of solute		
1	• Effect of non-polar compounds on the		
	structure of water		
	• Weak interactions of biomolecules in		
	aqueous solutions		
	• Concepts of mole, molar, molar		
	equivalent and normal,		
	• Dissociation and Ionic product of water		

	Carbohydrates:		
	• Monosaccharides –Definition and		
	classification of carbohydrates (mono, oligo		
	and poly), classification of monosaccharides		
	in terms of $-A$ aldoses and ketoses. B)		
	Number of carbon atoms.		
	• Reactions of monosaccharides –		
	1) Oxidation to produce aldonic, aldaric and		
	Uronic acid (only w.r.t glucose).		
	2) Osazone (only wrt glucose and fructose)		
	3) Reducing action of sugar in boiling alkaline		
	medium (enediol formation) -only w.r.t		
	glucose and fructose		
	Disaccharides - Occurrence and structure of		
	maltose, lactose, sucrose.		
	• Polysaccharides- Classification based on		
	function (storage and structural), composition		
	(homo and hetero) giving examples Storage		
	polysaccharides (Starch and Glycogen)		
	action of anylases on starch		
	• Structural polysaccharides – Cellulose Chitin		
	(Structure and biochemical importance)		
	Module II : Amino acids and Proteins	-	
	Amino acids:		
	• Classification of amino acids based on the		
	polarity of R-groups (structure of 20 amino		
	acids).		
	• Chemical reactions of amino acids with		
	following reagents –Ninhvdrin, Sanger's,		
	Edman's, Dansyl chloride.		
	• Cleavage of polypeptide - Trypsin		
	Chymotrypsin, Pepsin, Aminopeptidase,		
п	Carbox vpeptidase		15
	Proteins:		
	• ASBC-APS classification on the basis of		
	shape and function.		
	• Formation and characteristics of peptide		
	bond.		
	• Primary structure. Secondary structure-alpha		
	• Primary structure, Secondary structure-alpha helix and beta sheet. Tertiary and Ouaternary		
	• Primary structure, Secondary structure-alpha helix and beta sheet, Tertiary and Quaternary structure		
	 Primary structure, Secondary structure-alpha helix and beta sheet, Tertiary and Quaternary structure Forces stabilizing protein structure 		

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER I COURSE TITLE: Practicals based on Course I and Course II [CREDITS - 02]

	Practicals based on Course I and Course II				
Course	Lear	rning	Objective and Outcome		
Learni	ng O	bjecti	ve:		
1)	This of	course	e is intended to provide students with a basic understanding o	f the sever	al
	conce	epts as	ssociated with practical Biochemistry		
Learni	ng O	utcom	nes:		
1)	The l	earnei	will be able to understand and explain the use of various lab	oratory gla	assware
	and in	nstrun	nents		
2)	The l	earnei	will be able to calculate and makes solutions/reagents of dif	ferent	
	conce	entrati	ons		
3)	The l	earnei	will be able to demonstrate the detection of the carbohydrate	es using	
	qualit	tative	methods		
4)	The l	earnei	will be able to explain about different cellular	~	
Practic	al		Topics	Credits	Hours
		1.	Good laboratory practices: Lab safety and introduction to		
	common laboratory glassware and instruments				
		2.	Use of digital analytical weighing balance		
		3.	Validation of glass and micropipettes		
		4.	Preparation of solutions of different concentrations		
			a. Concepts of w/v, v/v, percentage,ppm, ppb,		
_			moles/L, molarity, molality, normality		
Ι			b. Preparation and verification of solutions of desired	2	60
		_	strengths		
	5. Qualitative Analysis: Carbohydrates - Glucose, Fructose,				
	Maltose, Lactose,				
			Sucrose, Starch, Dextrin.		
		6.	Use of low power lenses and high power objectives to		
			observe plant and animal cells and		
			Use of oil immersion lens to observe bacteria		

Sem. – II

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER II COURSE TITLES: Course 1: Introduction to Lipids and Nucleic acids [2 Credits]

	Phosphosphingolipids (Ceramide,
	Sphingomyelin), Glycolipids or
	Cerebrocides (Galacto and
	Glucocerebrocides).
	• Steroids and Lipoproteins
	Module II: Nucleic acids Nucleic Acids:
Π	 Structure of purine and pyrimidine bases, ribose, deoxyribose, nucleosides and nucleotides. c AMP and formation of polynucleotide strand with its shorthand representation. RNAs- (various type in pro and eukaryotes) rRNA, t- RNA (Clover – leaf model), m-RNA (general account) and action of alkali on RNA. DNA-X-ray diffraction pattern (Physical evidence), Chargaff's rules (Chemical evidence), Watson –Crick model of DNA and its characteristic features. Physical properties of DNA - Ionisation, Viscosity, Buoyant density, UV absorption and Hypochromism, Hyperchromism, Denaturation of DNA, Tm.

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER II **COURSE TITLE:** Practicals based on Course I and Course II [CREDITS - 02] Practicals based on Course Land Course II

Сошт

Г

Practicals based on Course I and Course II					
Course Lea	rning Objective and Outcome				
Learning C	Dejective:				
1) This	course is intended to provide students with a basic understanding	of the seve	ral		
conc	epts associated with practical Biochemistry				
Learning C	outcomes:				
1) The	learner will be able to demonstrate the detection of the proteins us	ing qualitat	ive		
meth	nods				
2) The	learner will be able to differentiate between different stages of cel	l division			
Practical	Topics Credits Hours				
	1. Qualitative Analysis: Proteins - Albumin, Casein,				
	Gelatine, Peptone.				
	2. Cytoplasmic streaming in Hydrilla				
	3. Observation of different stages of mitosis in onion root				
Ι	tip.	2	60		
	4. Localization of Nucleic acids (DNA and RNA) from				
	onion peel using iodine				
	5. Demonstration experiment: RNA by Orcinol method				

Vocational Skill Course

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER I and II Vocational Skill Course (VSC) COURSE TITLE: Microscopy and Colorimetry [CREDITS - 02]

Sr. No.	Heading	Particulars	
1	Description the course :	This course describes the	
	Including but not limited to:	importance of microscopy and	
		colorimetry in observation and	
		analysis.	
2	Vertical :	Vocational Skill Course	
3	Туре:	Theory	
4	Credits :	2 credits ($1 credit = 15 Hours$	
		Theory in a semester)	
5	Hours Allotted :	30 Hours	
6	Marks Allotted:	50 Marks	
	Vocational Skill Course: Microscopy and Colorimetry		

Course Learning Objective and Outcome

Learning Objective:

1. This course aims to introduce learners to the principles, applications and skills of using Ultraviolet- Visible light spectrophotometer and light microscopy.

Learning Outcomes:

- 1) The learner will be able to demonstrate an understanding of the interaction of Electromagnetic radiation with Matter and its application in detection and estimating concentrations of biomolecules
- 2) The learner will be able to Demonstrate an understanding of Beer-Lambert's law and its applications.
- 3) The learner will be able to use a colorimeter and UV Visible spectrophotometer for different applications in the laboratory.
- 4) Identify and describe the functions of different parts of a compound light microscope.

Module	Topics	Credits	Lectures
I	Module I: Colorimetry, Spectrophotometry • Ultraviolet and Visible light Spectrophotometry, Electromagnetic radiation (EMR) and interaction of EMR with matter, types of molecular transitions. • Beer Lambert's Law- derivation and applications	2	15
	Coefficient, Numerical problems.		

	 Colorimeter and UV-Visible spectrophotometer: 	
	 Types, components and basic setup Light sources Monochromators Sample holders Detectors. 	
	Module II: Microscopy	
II	Lenses and refraction of light, Aberration in lenses and corrections • Compound light microscope: I. Magnification, resolution and numerical aperture II. Components: Objective lenses, Eye pieces, Condenser • Methods of enhancing contrast:	15
	I. Examples of stains II. Phase contrast III. Dark field microscopy	

Skill Enhancement Course

F.Y. B. Sc. (BIOCHEMISTRY) SEMESTER I and II Skill Enhancement Course (SEC) COURSE TITLE: Instrumentation techniques [CREDITS - 02]

Sr. No.	Heading	Particulars	
1	Description the course :	This course describes the	
	Including but not limited to:	important applications and	
		skills of microscopy and	
		colorimetry in observation and	
		analysis.	
2	Vertical :	Skill Enhancement Course	
3	Type :	Practical/Skill development	
4	Credits :	2 credits	
5	Hours Allotted ·	60 Hours	
3	Hours Anoticu .		
6	Marks Allotted:	50 Marks	
Skill Enhancement Course: Instrumentation techniques			

Course Learning Objective and Outcome

Learning Objective:

1. This course aims to introduce learners to the applications and skills of using Ultraviolet- Visible light spectrophotometer and light microscopy.

Learning Outcomes:

- The learner will be able to understand and demonstrate the interaction of Electromagnetic radiation with Matter and its application in detection and estimating concentrations of biomolecules
- 2) The learner will be able to demonstrate an understanding of Beer-Lambert's law and its applications.
- 3) The learner will be able to use a colorimeter and UV Visible spectrophotometer for different applications in the laboratory.
- 4) Identify and describe the functions of different parts of a compound light microscope.

Practical	Topics	Credits	Hours
Ι	 Introduction to the types, parts and working of colorimeters and spectrophotometers. Determination of lambda max and validation of Beer's law. Study of Limitation of Beer's law. Group project (Colorimetry). Demonstration of UV - visible spectrophotometer. Absorption spectrum of plant pigments. Introduction to the parts and working of a 	2	60

compound light		
microscope.		
8. Care and		
maintenance of a		
compound light		
Microscope.		
9. Use of low power lenses and high-		
power objectives to observe plant and		
animal cells.		
10. Group project		
(Microscopy)		
(Microscopy).		

Suggested Reading

- 1. Principles of Biochemistry by Lehninger, Albert L., Nelson David and Cox, Michael M.; CBS publishers.
- 2. Biochemistry by Voet, Donald and Voet, Judith G.; John Wiley & sons publishers.
- 3. Biochemistry by Zubay, Geoffrey L.; Wm.C. Brown publishers
- 4. Biochemistry by Stryer, Lubert; W.H. Freeman publishers.
- 5. Principles of biochemistry by White, Abraham; Handler, Philip and Smith, Emil L.; Mc Graw and Hill publishers.
- 6. Harpers illustrated biochemistry by Murray, Robert K. etal.; Mc Graw Hill.
- 7. A biologist's guide to principles and techniques in practical biochemistry by William, B.L. and Wilson, K; Universities press publishers.
- 8. Principles and techniques of practical biochemistry by Wilson, Keith and Walker, John ; Cambridge University Press publishers
- 9. Tools of biochemistry by Cooper, Terence G.; Wiley & Sons publishers.
- 10. Outlines of Biochemistry by Conn, E.E. and Stumpf, P.K.; Wiley publication.
- 11. Introduction to practical biochemistry by Plummer, David T.; Tata Mc. Graw and Hill publishers.
- 12. Modern experimental biochemistry by Boyer, Rodney F.
- 13. Introductory practical biochemistry by Sawhney, S.K. and Singh, Randhir; Narosa Publishing House.
- 14. Biochemical calculation by Segel, Irwin H.; John Wiley & Sons publishers.
- 15. Text book of medical physiology by Guyton, Arthur C. and Hall, John E.; Harcourt Brace & Company Asia Pvt Ltd.
- 16. Human biochemistry by Orten, J.M. and Neuhaus, O.W.; Mosby publishers.
- Molecular Biology of the Cell (2008) 5th Edition, Alberts, B.A., Johnson, A., Lewis, J., Roberts, M.R.K., Walters, P. Garland Science Publication
- 18. Molecular Cell Biology (2008) 6th Edition, Lodish, H., Berk, A., Kaiser, A.C. Krieger, M., Scott, M.P., Bretscher, A., Ploegh, A., Mortsudira, P. W.H. Freeman and Company, N.Y.
- 19. Cell and Molecular Biology-concepts and experiments (2005) 4th Edition, Karp, G.John Wiley and Sons Inc.
- 20. The World of Cell (2003) 5th Edition, Becker, W.M., Kleinsmith, L.J., Hardin, J. Pearson Education (Singapore)
- 21. The Cell A molecular approach (2007) 4th Edition, Cooper, G.M., Hausman, R.E.ASM Press Washington, D.C.s
- 22. Prescott's Microbiology (2020) 11th edition, Willey, J. M., Sherwood, L Woolverton J. C. McGraw-Hill Education.
- Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology (2018) 8th edition, Wilson K., Hofmann A., Walker, J.M., Clokie S. Cambridge University Press
- Experiments in biochemistry: a hands-on approach: a manual for the undergraduate laboratory. (2006). Taylor, L. E., Farrell, S. O., Ranallo, R. T. Cengage Learning. 5. Laboratory Manual in Biochemistry (2004) 2nd edition. Jayaraman, J. New Age International (P) Limited Publishers.
- 25. Introduction to Practical Biochemistry. (2001) 3rd edition. Plummer, D. T., Tata McGraw Hill Publishing Company.
- 26. SrilakshmiB. (2018). Nutrition Science, 6th ed. New Delhi: New Age International Publishers
- 27. Subalakshmi, G and Udipi, S.A.(2021), "Food processing and preservation", 2nd Edition, New Age International Publishers, New Delhi.

Examination and Standard of Passing:

A. Evaluation of the <u>Major Theory courses</u>: Course 1 – 50 marks Course 2 - 50 marks.

The evaluation of these courses would include continuous evaluation (internal assessment) and Semester end examinations (External assessment). The evaluation pattern would be as follows:

Internal assessment of each course: 20 marks (total of 40 marks).

- a. Class test 1: 10 marks
- b. Quizzes, presentation, project, role play, creative writing, assignment etc. 5 marks
- c. Attendance and active participation in academic and co-curricular activities: 5 marks.

External assessment of each course: – 30 Marks (total of 60 marks)

- Duration: 1 **Hour per course**
- Theory question paper pattern:

Question	Based on	Options	Marks
Q.1	Unit I	Any 5 out of 7 / Any 2 out of 3	10
Q.2	Unit II	Any 5 out of 7 / Any 2 out of 3	10
Q3.	Unit I and II	Any 5 out of 7 / Any 2 out of 3	10
		Total	30

B. Evaluation for Major Practical Courses (2 Credits): 50 marks.

The evaluation of these courses would include continuous evaluation (internal assessment) and Semester end examinations (External assessment). The evaluation pattern would be as follows:

• Each practical course carries a **total of 25 Marks**, distributed as follows:

No.	Criterion	Marks
1	Journal	05
2	Viva / Spots / Application based questions	05 10
3	Experiments during exams	15 20
	Total Marks	25

- The duration of each practical course evaluation is **2 hours**.
- To be eligible for evaluation, students must complete a minimum of 80% of the practical work assigned in each core subject.
- It is mandatory for students to submit a certified journal at the time of the practical examination. The journal serves as a record of their practical work and is an essential component of the evaluation process.

C. Evaluation for <u>Vocational Skill Course</u>: 50 Marks

The evaluation of these courses would include continuous evaluation (internal assessment) and Semester end examinations (External assessment). The evaluation pattern would be as follows:

Internal Assessment: 20 marks.

Quizzes, class test, presentation, project, role play, creative writing, assignments etc.

External Assessment: 30 marks.

Theory Component: 30 marks.

- Duration: **1 Hour**
- Theory question paper pattern:

Question	Based on	Options	Marks
Q.1	Unit I	Any 5 out of 7 / Any 2 out of 3	10
Q.2	Unit II	Any 5 out of 7 / Any 2 out of 3	10
Q3.	Unit I and II	Any 5 out of 7 / Any 2 out of 3	10
		Total	30

D. Evaluation for Skill Enhancement Course: 50 Marks

The evaluation of these courses would include continuous evaluation (internal assessment, 20 marks) and Semester end examinations (External assessment, 30 marks).

Internal assessment will be evaluated on the basis of

- 1. Completion of 80% practical work assigned
- 2. Continuous monitoring of lab performance
- 3. Submission of certified journal

External assessment

• Practical course carries a **total of 30 Marks**, distributed as follows:

No.	Criterion	Marks
1	Viva / Spots / Application based questions	10
2	Experiments during exams	20
	Total Marks	30

- The duration of each practical course evaluation is **2 hours**.
- To be eligible for evaluation, students must complete a minimum of 80% of the practical work assigned in each core subject.
- It is mandatory for students to submit a certified journal at the time of the practical examination. The journal serves as a record of their practical work and is an essential component of the evaluation process.

Regulations regarding the scheme of exams, number of credits and standard of passing will be as prescribed by the University of Mumbai.

A student is said to have passed if he/she secures 40% of marks allotted in each head of passing. External evaluation of 30 marks and Internal evaluation of 20 marks are treated as separate heads of passing.

The Ten Point Grading System prescribed by the University of Mumbai will be as follows:

Letter Grades and Grade Points:

Semester GPA/Programme CGPA Semester/ Programme	% of Marks	Alpha-Sign/ Letter Grade Result	Grading Point
9.00 - 10.00	90.0 - 100	O (Outstanding)	10
8.00 - < 9.00	80.0 - < 90.0	A+ (Excellent)	9
7.00 - < 8.00	70.0 - < 80.0	A (Very Good)	8
6.00 - < 7.00	60.0 - < 70.0	B+ (Good)	7
5.50 - < 6.00	55.0 - < 60.0	B (Above	6
		Average)	
5.00 - < 5.50	50.0 - < 55.0	C (Average)	5
4.00 - < 5.00	40.0 - < 50.0	P (Pass)	4
Below 4.00	Below 40.0	F (Fail)	0
Ab (Absent)	-	Ab (Absent)	0

This syllabus is applicable to IDOL students as well, w.e.f. from 2025-26

Team for creation of Syllabus:

Name	College Name	Signature
Prof. Dr. Samidha M. Pawaskar	K. J Somaiya College of Science and Commerce	Pawastar
Dr. Prashant S.	St. Xavier's College,	
Ratnaparkhi	Mumbai	q.
Dr. Deepali Kothekar	S. I. E. S. College, Mumbai	Bothekar.
Dr. Nupur Mehrotra	Mithibai College	
		Nonrahat

Dr. Sara Khan	Mithibai College	Johan
Dr. Ketan Ranade	K. J Somaiya College of Science and Commerce	Barrege
Dr. Vainav Patel	N. I. R. R. C. H, Mumbai	V.V. Patil

1.	Necessity for starting the course:	Biochemistry is the branch of the life sciences devoted to understanding the mechanisms by which living organisms carry out their many functions in complete, molecular detail. It is inherently interdisciplinary in nature and fundamental to every other branch of the life and biomedical sciences. It is chemistry of life. It explores the chemical processes within and related to living organisms. With this knowledge, biochemists attempt to investigate and solve biological problems pertaining to the understanding of physiological processes and the diseases associated with their malfunctioning. Prevention and diagnosis is also an important component of this subject. Bachelor's degree in Biochemistry helps students to create knowledge pool and skilled manpower to take on the challenges that modern biological sciences poses in understanding the emerging dynamics of life processes.
2.	Whether the UGC has recommended the	Yes
2	Whather all the courses have common and	The course has already commenced in the
5.	from the academic year 2023-24	university and in the academic year 2024- 2025 it is restructured under NEP 2020
4.	The courses started by the University are self-financed, whether adequate number of eligible permanent faculties are available?	The self-financed courses would be run by permanent faculty and supported by visiting or guest faculty.
5.	To give details regarding the duration of the Course and is it possible to compress the course?	The course would be of four years for B.Sc.(Honours) and Three years for B.Sc. without honours It would not be possible to compress the course.
6.	The intake capacity of each course and no. of admissions given in the current academic year:	The intake capacity is variable from college to college based on sanctions received from the University

Justification for B.Sc. (Biochemistry)

7.	Opportunities of Employability /	Graduates of this department are expected to
	Employment available after undertaking	exhibit the extensive knowledge of various
	Employment available after undertaking	concepts of Biochemistry and their
	these courses:	applications thus contribute in research,
		development, teaching, government and
		public sectors. This programme will
		establish a foundation for student to further
		pursue higher studies in Biochemistry. The
		list below provides an overview of possible
		employment areas provided by an
		undergraduate training in Biochemistry.
		The list below provides a synoptic overview
		of possible career paths provided by an
		undergraduate training in Biochemistry:
		1. Research and Academics
		2. Clinical diagnostic industry
		3. Quality control and Quality
		assurance
		4. Food industry
		5. Pharmaceutical industry
		7 Forensia science
		7. FOIEIISIC SCIEIICE 8. A grachomical industry
		o. Agrochennicai nidusu y

Pawastar

Sign of the BOS Chairman Prof. Dr. Samidha M. Pawaskar Biochemistry Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology