AC – 07/07/2023 Item No. –6.21 (N)

As Per NEP 2020

Preamble

1) Introduction

The subject of Biophysics is one of the important interdisciplinary areas in teaching, training and learning, which is considered to be important in terms of human resource development and national development. Biophysics is the physics of life phenomenon studied at all level, from molecules and cell to the biosphere as whole. It is the branch of knowledge that applies the principles of physics and chemistry and the methods of mathematical analysis and computer modeling to understand how biological systems work.

2) Aims and Objectives

The main emphasis of biophysics is on the quantitative analysis of the physical and chemical aspects of the functions of biological molecules, organisms and entities. The techniques and methodologies that biophysics relies on are closer to physics and chemistry, but areas of application are in the biological, medical and related sciences.Biophysicists mainly use analytical tools that includes UV visible spectroscopy, Gel electrophoresis, X-ray crystallography, macrocalorimetry, Atomic Force Microscopy, FTIR, Raman, SPR, NMR, Fluorescence spectroscopy, Fluorescence Microscopy & spectroscopy, hydrodynamics techniques etc., to address problems in exciting areas in biophysics ranging from structure aided drug design to cell signalling and transcriptional silencing etc.

3) Learning Outcomes

The programme endeavours to provide students a broad based training in Biophysics with strong background of basic concepts as well as exposing them to recent advances in the field. The programme is focussed on recent developments in the areas of biophysics. In addition to theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the frontier areas of Biophysics. A multidisciplinary approach has been employed to provide best leverage to students to enable them to move into advanced and frontier areas of biological research in future. Another important feature of course is that a sufficient number of elective papers have been introduced. This will enable the addition of new dimension in learning and research skill of students. Biophysicist's are employed in Universities, R & D industry, Medical centres/Colleges, Research Institutes and Government Organisation etc.

4) Program Outcomes

The knowledge of this program will provide an intellectually enlarging experience to students. The course attempts to teach critical thinking, problem solving, and communication skills that can be used throughout a life of learning. The program helps to prepare students and make them competitive to enter in the workforce or further their studies in research (Ph.D.) at professional colleges, pharmaceutical / biomedical industries, medical schools, Universities etc. After completing the M.Sc. in Biophysics Program at University department of Biophysics, the students will be able to acquire the following skills:

1. Students will demonstrate proficiency in principles of physics, chemistry and

mathematical concepts that are needed for a proper understanding of biological process.

2. Students will be able to Integrate knowledge and skills of the physics, chemistry &mathematics with biology and to address research questions.

3. Students will demonstrate knowledge of cell &molecular biology, methods in biophysics, radiation & medical biophysics, physiological biophysics, structure – functions of biological macromolecules, biomathematics and biostatistics, biochemistry & protein

engineering, molecular modelling & drug design etc.

4. Students will gain laboratory skills, enabling them to purify and characterize biological samples using various spectroscopic and microscopic tools. They will be able to collect, evaluate and interpret scientific data, and employ critical thinking to solve problems in biology and supporting fields.

5. Students will demonstrate knowledge of various spectroscopy, microscopy and other analytical tools that are used in biology.

6. Students will communicate scientific information in a clear and concise manner both orally and in writing.

7. Student will identify and describe the impact of biophysics on society.

5) Scheme of Examination: (THEORY AND PRACTICALS) :

a.	Summative assessments (THEORY):	
	For 2 credit courses (45min)	25M
	Q1. Answer any three questions out of six (covering unit I and II)	15M
	Q2. MCQ/Match the following/Ture Or False (covering unit I and II)	05M
	For 4 credit courses	50M (1.5h)

Q1. Answer any 2 questions out of 3	(based on unit I)	10M
Q2. Answer any 2 questions out of 3	(based on unit II)	10M
Q3. Answer any 2 questions out of 3	(based on unit III)	10M
Q4. Answer any 2 questions out of 3 Q5. Write one Essay type answer ou	(based on unit IV) ut of 3 (based on units I-IV)	10M 10M

b. **Formative assessments** (informal and formal tests administered during the learning process).

For 2 credit courses	25M
Group tasks/ Assignments/ Quizzes at the time of completion of each unit	15 M
Spoken/oral examination after completion of each unit	10M

For 4 credit courses

50M

Open book test/assignments/presentation/quiz/role play/MCQ/problem solving to be designed for each unit

c. Summative assessments (Practical):

For 4 credit courses

50M (3 h)

- Major (20M)
- Minor (20M)
- Journal (5M)Viva. (5M)
- d. **Formative assessments** (informal & formal tests administered during the learning process).

Submission of two Assignments poster/presentation (15M each) based on history/discovery/application/ problems based on techniques/experimentsperformed

30M

Viva and/ field visit report

20

Sign of HOD Prof. Varsha Kelkar-Mane: Department of Biophysics Sign of Dean, Prof. S.S. Garje Science

6) Credit Structure of the Program (Sem I, II, III & IV) (Table as per Parishisht 1 with sign of HOD and Dean)

R_____ Post Graduate Programs in University

Parishishta - 1

Year (2	Level	Sem.	Ma	jor	RM	OJT / FP	RP	Cum. Cr.	Degree
YrP		(2Yr)		[
G)			Mandatory*	ElectivesAny one					
			Course 1:	Credits4				22	PG
		SemI	General Physico-	a 1	4	-	-		Diploma(
т	6.0		chemical	Course 1: Biomologular					alters y ea
I	0.0		principles Credits	hvdrodvnamic					(Degree)
			4	methods					
			Course 2: Basic	Theory 2 credits +					
			analytical tools in	Practical 2 credits					
			Biophysics Credits	OB					
			4	OK					
			Course 2	Course 2:					
			Course 3: Dractical lab	Recombinant					
			work	DNA technology					
			Credits 4	and protein					
				Theory 2 credits +					
			Course 4:	Practical 2 credits					
			Molecular and						
			cellular BiophygiogCradita	OR					
			2	MOOC					
			2 Course 1:	MOOUS Credits4				22	
		SemII	Membrane	Creans		4		22	
			Biophysics and	Course 1					
			Ion	Biocrystallograph					
			channelsCredits4	y and magnetic					
				resonance					
			Course 2:	Credits 4					
			Radiation	Creatts +					
			BiophysicsCredits	OR					
			4	Course 2					
			Course 3:	Proteomics					
			Practical- lab	Theory 2 credits +					
			work	Practical 2 credits					
			Credits 4	OR					
				MOOCs					
			Course 4: BiochemistryCred						
			its2						
Cum. PGDip	Cr. For oloma		28	8	4	4	-	44	

	Exitoption:PGDiploma (44Credits)afterThreeYearUGDegree								
п	6.5	SemI II	Course 1: Advanced Biophysical Techniques Credits 4 Course 2: Nanobiophys ics Credits 4	Credits4 Course 1: Structural Biophysics Theory 2 credits + Practical 2 credits			4	22	PG DegreeA fter3- YrUG
			Course 3: Practical- lab work Credits 4 Course 4: Environment al BiophysicsCr	OR Course 2: Medical Biophysics Credits 4 OR MOOCs					
		SemI V	Course 1: Physiological Biophysics Credits4 Course 2: Biomathema tics & Biostatistics Credits4 Course 3: Elements of Bioinformati cs Credits4	Credits4 Course 1: Nanomedicine Or Course 2: Advanced microscopy and single molecule biophysics Or MOOCs			6	22	
Cum PG D Cum PG D	.Cr. for Degree .Cr. for Degree	1 Yr 2 Yr	26 54	8	4	4	10 10	44 88	

HOD Sign Prof. Varsha Kelkar-Mane Department of Biophysics Sign of Dean, Prof. S.S. Garje Science

Syllabus M.Sc. (Biophysics) (Sem. I & II)

SEMESTER I

Course 1

GENERAL PHYSICO-CHEMICAL PRINCIPLES

Credits 04

(15L)

Course outcome: On the completion of the course the student will be to understand 1. The basic concept of atomic structure, bonding, sub-atomic particles and the forces that stabilize molecules.

2. The fundamental chemical and physical principles that govern biological systems.

3. The significance of buffers and biological solutions.

4. The basics of radioactivity, units of measurement, their detection modes and biological applications.

Unit I: General principles of physical chemistry

The electronic structure of atom, Ionic bond, Covalent bonds, Hydrogen bonds Van der Waals forces, Electric dipoles, Polarization and induced Dipoles, Casimir interactions. General understanding of Quantum mechanics, wave-particle duality, atomic and molecular orbital, hybridization. Pauli Exclusion Principle, Ionization energy, Electron affinity and Chemical bonding, Electronegativity and strong bond, Secondary bonds. Interatomic potentials for strong bonds, Interatomic potential for weak bonds, Noncentral forces, Bond energies, Spring constants.

Unit II: Thermodynamics & Principles of chemical kinetics and biomolecular properties (15L)

Thermodynamic equilibrium, laws of thermodynamics and living system, Entropy, Enthalpy and free energy, Internal energy, Carnot cycle, Chemical potential, Oxidation reduction potential. 0th, 1^{st,} 2nd, and 3rd order reaction, Activation energy and Rate constant, Diffusion, Osmosis, Osmotic pressure, Osmoregulation, Surface tension, Adsorption, Dialysis.

Unit III: Solvent, Solute & Solution in Biological System

(15L)

Liquids, Solvents, Solubility, Saturated and unsaturated Solutions, Super saturated solutions, Dilute and concentrated solution, types of solutions, Methods of expression of concentration of solution, Molality, Mole fraction.

Hydrogen ion concentration, Dissociation of water, (water as electrolyte), concentration of equilibrium, Mechanisms of Ionization and Characterization, Acid & Basic solutions, pH and its biological importance, pH meter and its working. General concept of acid, bases and their dissociation constant, Bronsted-Lowry theory, Inductive effect of groups on acid strength, (Carboxyl group, Carbonyl group). Salts & their characteristics & importance in biological system.

Biological Importance of Acids & Bases, Biological & buffering system, Buffer solution, mechanism of buffer action, Factors influencing buffer capacity and pH, Henderson and Hasselbach equation, Buffer systems in the body. (Bicarbonate, Phosphate, Protein buffer, Ammonia buffer, etc.)

Unit IV: Radioactivity

(15L)

Energy of Radiation, Radioactive emission, α -ray, β -ray, Υ -ray, and their properties, Radioactive decay, (α , β decay), Half-life, Units of measurement of radioactivity, types of radioactivity, Isotopes, Isobar, Isotones and their characteristics. Detection of nuclear radiation, Geiger-Muller counter, Proportional counter, Solid and liquid scintillation counter. Radioactive equilibrium, Radioactive isotopes, Nuclear reaction and production of artificial radioactivity, Autoradiography.

References

- 1. Physical Chemistry for Life Sciences, Peter Atkins and Julio de Paula, 2006, Oxford Press
- 2. Introduction to Biophysics by Cortell
- 3. Molecular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge
- 4. Text Book of Biophysics , R N Roy, New Central Agency (P) Ltd, Calcutta
- 5. Physical Chemistry for the Biosciences, Raymond Chang,(2004), University book Science
- 6.Biological Thermodyanamics, Donald, T Hayine, (2007), Cambridge

~ •							
Course 2	BASIC ANALYTI	CAL TOOLS IN BIOPHYSICS	Credits:				
a			04				
Course outcome	Course outcome : On the completion of the course the student will be able to						
1. Achieve a h	iolistic understanding of th	ne interaction of electromagnetic radiat	ion with				
biomolecules							
and the applicatio	n of the spectroscopy tools to	decode biomolecule structure and function	.•				
2. Gain understan	ding of the basics of various t	ypes of microscopies and their application	to				
biological system	S.						
3. Explain variou	s physiochemical techniques t	hat can be employed to study physical prop	perties of				
biomolecules.							
Unit I: Spectroso	copy I		(15L)				
Interaction of I	Light and Matter. Principle	e, instruments and application of spec	ctroscopic				
instruments: UV	Visible: absorption of light,	radiation sources, sample holders, monoch	romators,				
radiation detector	s, single and double beam ins	truments, colorimeter.					
Fluorescence: Flu	uorescence and phosphoresce	ence, fluorimeter, fluorophores, quenchin	g, energy				
transfer, and app	lications. Luminometry: biol	uminescence and chemiluminescence phe	nomenon,				
Atomic absorptio	n spectroscopy: Principle and	instrumentations.					
Unit		Spectroscopy	II				
(15L)							
IR spectroscopy:	Rotational and vibration sr	pectra, Instrumental features, applications.	Raman				
effect, stokes and	anti-stokes lines, advantages	, applications. CD ORD principles and app	olications.				
Basics of NMR a	nd ESR spectroscopy.						
Unit III: Micros			(15L)				
Principle, instru	mentation and application	of microscopy, image formation, magi	nification.				
resolving power.	optimum resolution, image	defects, different types of Microscopy: D	ark field.				
Phase contrast.	polarization microscopy. In	terference microscopy. Fluorescence mi	croscopy.				
Electron microsco	opy: Electron guns, Electron 1	ens. electrostatic focusing, magnetic focusi	ng. SEM.				
STEM. Atomic fo	pree microscopy.	•••••••••••••••••••••••••••••••••••••••					
Unit IV: Physioc	hemical techniques in Bioch	emistry	(15L)				
Antigen-Antibody	v interaction. Principle and a	application of Immunologicaltechniques in	1 Biology				
and medicine. EI	ISA RIA Chromatography	paper, TLC, adsorption, partition, ion exch	ange gel				
filtration affinity	and FPI C GLC HPI C mol	pile phase systems modes of operations ar	nlication				
Flow cytometry	Surface plasmon resonance fo	r binding interaction studies	prication.				
References:	Surface plusifion resonance ro	i binding interaction studies.					
1 Methods in Mo	lecular Biophysics Igor N S	N Zaccai & I Zaccai (2007)					
Cambridge	lecular biophysics, igor N 5,	N Zaccal & J Zaccal, (2007)					
2 Biophysical Ch	pemistry Dagmar (2017) 1 st e	dition CPC press					
2. Diophysical Cl.	emistry David Sheehen 2 nd	adition Wiley					
1 Econtials of D	ionhysics Narayanan 2 rd adit	ion New age international publishers					
5 Biophysical Ch	iophysics, marayallall, 5 Cull comistry Unodbyoy & Unodby	you (2016) Umployo Dybliching					
J. Diophysical Cf.	iennsury, Opaunyay & Opaun	yay (2010) minialaya Publishing					

Course 3	PRACTICAL – LAB WORK	Credit 04		
Course outco	me: Students will acquire the skill to prepare solutions, buffers, chara	acterize		
biological cell	ls, biomolecules such as proteins and nucleic acids using microscop	by and		
spectroscopy to	pols.			
1. pH Meter: S	tandardization of pH meter, Preparation of Buffers			
2. pH titration	curve of acid-base			
3. Determination	on values of Iso-electric point: Amino acids, proteins, phosphoric acids.			
4. Study of diff	fusion of biomolecules/ions (Fick's Law)			
5. Effect of hyp	pertonic/ hypotonic/isotonic conditions on RBC membrane.			
6. Purification	of substances by dialysis			
7.Colorimeter:	determination of absorption maxima of coloured compounds,			
8. Verification	of Beer's-Lambert law, determination of molar extinction coefficient.			
9. Absorption s	spectra of Hb, DNA, RNA			
10. Protein tryp	otophan fluorescence measurement.			
11. Microscopy	y: Familiarization with bright field, phase contrast, fluorescent, polarization			
microscopes.				
12. Study of bacterial cell growth/ survival by spectrophotometry				
13. Observe cell division and determine mitotic index				
14. RBC, WBC counting and Differential leukocyte count				
15. Paper chroi	natography/TLC: Amino acids/ sugars/ fruit juice/oil			

Course 4 MOLECULAR AND CELLULAR BIOPHYSICS Credits 02 Course outcome: On the completion of the course the student will be able to understand 1.The various types of biomacromolecules, their building blocks, and their three-dimensional conformation 2. The detailed structural organization of proteins and their biophysical properties. 3. The structure of nucleic acids and their interaction with proteins.

4. The complete organization of prokaryotic and eukaryotic cells, their mechanism of growth and cell division.

Unit I: Biomacromolecules and their biophysical properties

Amino acids and their properties. Primary structure of proteins, Secondary structure: alpha and beta conformation, collagen structure, stability of alpha helix, Ramchandran plot, Tertiary structure, structure of myoglobin and hemoglobin, Quaternary structure, symmetry consideration, Analysis of subunits and chain arrangement of subunits, stability of globular quaternary structure. Nucleic acid composition, structure of DNA and RNA. A, B & Z DNA structure. Primary and secondary structure of nucleic acids. Protein-DNA interactions. Carbohydrates: classification and types, biological significance.

Unit II: General organization of cells

Origin and evolution of cell, shape and size of cell; General organization of prokaryotic and eukaryotic organisms basic concepts and their detailed structure and functions, Prokaryotic cell wall, Eukaryotic cell wall, their functions, ribosomes, physical and biological properties of protoplasm. Cytoskeleton – basic components, properties and functions in prokaryotic and eukaryotic cells. Bacterial growth and cell division. Cell cycle in higher organisms. Basics of cell signallingeg. G protein and GPCRs.

(15L)

References

- 1. Molecular Biology of the Cell, Bruce Albert, Alexander Johnson et al (2002), Taylor & Francis Group.
- 2. Principles of Biochemistry, Lehninger, 8th edition, W H Freeman & Co
- 3. Biochemistry by Stryer, 9th edition, W H Freeman & Co
- 4. Molecular Cell Biology, Harvey Lodish, 9th edition, W H Freeman & Co
- 5. Fundamentals of Biochemistry Voet and Voet, 6th Edition Wiley

ELECTIVE	BIOMOLECULAR HYDRODYNAMIC METHODS	Credits		
Course 1		02		
Course outcome. On the completion of the course the student will be able to understand				

- **Course outcome**: On the completion of the course the student will be able to understand 1. The detailed working of the electrophoresis method, the practical set up involved and
- 1. The detailed working of the electrophoresis method, the pracharacterization of nucleic acids and proteins.
- 2. The principle of centrifugation, their types and important practical considerations.
- 3. The flow properties in biological fluids and its significance in functioning of organisms.

Unit I: Biomolecular analytical techniques I

Electrokinetics methods: electrophoresis, electrophoretic mobility (EPM), factors affecting EPM, Paper, PAGE, SDS-PAGE, Disc gel, gradient gel, electrophoresis of nucleic acid and its application, Pulse field electrophoresis, single cell gel electrophoresis, Isolectrophoresis, preparative electrophoresis, 2-D gel electrophoresis, Capillary, Iso-Electric focusing, applications in biology and medicine.

Unit II:Biomolecular analytical techniques II

Centrifugation: principle, preparative centrifuge, analytical, ultracentrifuge, Ultracentrifugation and their applications in molecular weight, size determination.

Sedimentation filtration of biological fluid, Precipitation, Biological significance of precipitation, Colloids & their types, Kinetic & electrical properties of colloids, Stability of colloids, Gibbs Donnan Equilibrium in living systems. Liquids and flow in biological systems: Viscosity and its application, blood flow, cytoplasmic streaming in plants, bacterial motion in water. Static and dynamic light scattering, small angle scattering.

References

1.Methods in Molecular Biophysics, Igor N S, N Zaccai & J Zaccai, (2007) Cambridge

2. Biophysical Chemistry, Dagmar (2017) 1st edition CRC press

3. Physical Biochemistry, David Sheehan 2nd edition, Wiley

4. Essentials of Biophysics, Narayanan 3rd edition, New age international publishers

5. Biophysical Chemistry, Upadhyay & Upadhyay (2016) Himalaya Publishing

6. Principles and techniques of Biochemistry and Molecular Biology, Wilson & Walker

ELECTIVE Course 2 RECOMBINANT ENGINEERING DNA TECHNOLOGY TECHNOLOGY AND PROTEIN Credit 02 Course outcome: On the completion of the course the student will be able to understand 1. The steps involved in isolation and analysis of genomic DNA from various sources. 2 2. The tools involved in genetic manipulation and protein engineering.

(15L)

Unit I: Isolation, synthesis of nucleic acids & enzymatic manipulation

Genomic DNA from bacteria, plant and mammalian tissue. Recovery of large and small fragments of DNA. Chemical synthesis of oligonucleotides, genes and their uses. Analysis of DNA sequences by blotting and hybridization. Restriction endonuclease and mapping enzymes for modification. Radioactive labelling of nucleic acids, construction of hybrid DNA molecules. Polymerase chain reaction (PCR). Preparation and analysis of RNA.

Unit II: Protein engineering

(15L)

Cloning and expression vectors, gene expression in bacteria, yeast and mammalian cells. Preparation of Genomic and c-DNA libraries. Screening of Recombinant DNA Libraries: Screening by DNA hybridization, Immunological assay and protein activity. Transformation of DNA using calcium Phosphate, DEAE, Dextrin and Electroporation and its optimization and uses. Site-directed mutagenesis, Production of recombinant proteins and purification using protein fusion tags. Hybridoma technology. Development and use of transgenic animals.

References

- 1. Molecular cloning a laboratory manual, Russell and Sambrook, 2001, Cold Spring Harbor
- 2. iGenetics, Russell, 3rd edition Pearson
- 3. Principles of gene manipulation and genomics, Primrose, 7th edition, John Wiley & Sons
- 4. Gene cloning and DNA analysis, T A Brown, 7th edition, Wiley

PRACTICAL ELECTIVE COURSE 1	Credit
	02
1.Viscosity: Determination of viscosity of biofluids and chemicals	
2.To study of conformational changes in biomolecules using Ostwald viscometer	
3. Fractionation of proteins using: PAGE	
4. Differential centrifugation of cellular components	
5. Agarose gel electrophoresis	
6. Isolation of casein protein from milk	
PRACTICAL ELECTIVE COURSE 2	Credit
	02
1. Isolation of genomic DNA from bacteria	
2. Isolation of DNA from onion	
3. Restriction endonuclease digestion and separation of fragments by gel	
Electrophoresis	
4. Amplification of DNA by PCR	
5. Low protein concentration detection by silver staining	
6. Gel filtration chromatography	
7. Detection of DNA modification	
8. DEAE cellulose chromatography of DNA	

		RESEARCH METHODOLOGY	Credits 04	
Course outcome: On the completion of the course the student will be able to				
1. Gain insights into the research methodologies, research ethics and research design.				
2. Acquire scientific writing skills.				
3. Achieve sc	ientific	presentation skills.		

Unit I: Introduction to research methodology (15L)						
Meaning of research, Objectives of Research, Motivation in Research, Types of Research,						
Research Approaches, Significance of Research, Research and Scientific Method, Research						
Process, Criteria of Good Research, Formulating a research problem, selecting, defining and						
designing a research problem, quantitative and qualitative research designs, identifying variables,						
constructing hypothesis. Reviewing the literature, Writing a research proposal, Challenges						
Encountered by Researchers in India						
Unit II: Data collection, processing and analysis (15L)						
Methods of Data collection, ethical issues in data collection. Statistics in Research, Measures of						
Central Tendency, Measures of Dispersion, Type I and Type II errors levels of significance, one-						
tailed and two tailedtest. Correlation and regression for ungrouped data, scatter diagram,						
calculation						
and interpretation of correlation coefficient linear regression coefficients and equation of the						
Lines of regression nonlinear relationship transformable to linear form. Chi-square test for						
independent attributes in $\mathbf{r} \times \mathbf{c}$ table special case of 2 x 2 tables. Students test for significance of						
correlation coefficient v for $n=0$ (small sample test)						
Unit III. Decumentation and scientific writing						
(151)						
(15L) Descention of monuporint for Dublication of Descenth nonen Dresenting a nonen in scientific						
Preparation of manuscript forPublication of Research paper, Presenting a paper in scientific						
seminar, Thesis writing. Structureand Components of Research Report, Types of Report: research						
papers, thesis, Research ProjectReports, Pictures and Graphs, citation styles, writing a review of						
paper, Bibliography						
Unit IV: IPR & Copyrights						
(15L)						
IPR& Copyrights: Historical prospective of IPR, Invention & creativity, invention v/s						
innovation, importance and need for protection of IPR, Patents, concept of patents, type of						
minovation, importance and need for protection of it K, I atents, concept of patents, type of						
patents, benefit of patents, procedure of application, preparation of documents, process of patent						
patents, benefit of patents, procedure of application, preparation of documents, process of patent examination of patent application, patent database and information system, recent development						
patents, benefit of patents, procedure of application, preparation of documents, process of patent examination of patent application, patent database and information system, recent development in patent, patents in science. Copyright in scientific work, scientific misconduct, falsification,						

	SEMESTER II	
Course 1	MEMBRANE BIOPHYSICS & ION CHANNELS	Credits 04
Course outco 1.The archited 2. Their physi 3. Various cru 4. The electri impulses. 5. The design	ome: On the completion of the course the student will be able to understand cture of biological membranes. Ical properties that aid in functioning of cellular membranes. Ical transport mechanism in plasmamembranes. Tophysiological properties of membranes and their role in transmission ing of membrane mimics for research.	of nerve
Unit I: Mem Lipids: types bilayer and ea Membrane p Membrane flu fusion, viral f	brane structure and Models of lipids, classification and biological significance. Membrane architectu arly models, Fluids mosaic model, Evidence from model system and biome permeability, transmembrane helices, hydropathy plot, Membrane as aidity, Functional reconstitution of membranes. Models of membrane fusio usion, cellular fusion, SNAREs, cell-cell fusion, fusion in mitochondria,	(15L) ure, Lipid embranes. ymmetry, n: bilayer
Unit II: Men Membrane ch with non-elec secondary act by flux coup Ionophores, e	annels and carriers, voltage gated channels, ligand gated channels. Transport carolytes and electrolytes. Transport with chemical reaction system: Princive transport. Transports of molecules bysimple and facilitated diffusion, bling. Transport by phosphotransferase system, Transport by vesicle for pithelialtransport.	(15L) ort system mary and Transport ormation,
Unit III: Phy Membrane d membranes, 1 Hysteresis of Membrane m of action pote equation, Hoo membrane in electrochemic	sics of membrane eformations: bending, shearing shape fluctuation etc. Differential geo Elastic properties, Elastic constants, Charge-induced microstructures and domains formation, Lateral phase separation, selective lipid protein int elting.Cell surface charge, Resting membrane potential, Action potential, p ential, Nernst equation, Goldman equation, Nernst-Planck equation, Hodgki lking-Kartz experiment, Voltage clamp, Na ⁺ , K ⁺ conductance, channel con mpedance and capacitance, Transmembrane potential, Zeta, stern a cal potential, Chemical synapse, post synaptic potential.	(15L) metry of l domain. eractions, properties in-Huxely ductance, and total
Unit IV: Mit Electron Tran redox reaction coupling, pro Cytosolic NA Historical pe unilamellar a Application o	ochondrial membrane and membrane mimics asport & oxidative phosphorylation: Reduction potential and free energy ch n, organization of electron transport chain in mitochondrial membrane, chen ton gradient drive and synthesis of ATP, P/O ratio for oxidative phosph DH electron feeding into electron transfer. rspective of lipid model systems lipid monolayer. Liposomes: small a nd multilamellar vesicles, planar lipid bilayer, synthesis and purification f liposomes in biology and medicine	(15L) hanges in niosmotic orylation, and large methods.
References 1. Cell b 2. Bioph 3. Memb	iology, Karp, Global edition, Wiley ysics, Hoppe and Lohman, 2 nd edition Springer Verlag brane Structural Biology, Mary Luckey, 2014, 2 nd edition, Cambridge U	Jniversity

- Press
- Biochemistry, Stryer, 9th edition, W H Freeman & Co
 Molecular Biology of the Cell, Bruce Albert, Alexander Johnson et al (2002), Taylor & Francis Group.
- Principles of Biochemistry, Lehninger, 8th edition, W H Freeman & Co

Course 2	RADIATION BIOPHYSICS	Credits		
		04		
Course outco	Course outcome: On the completion of the course the student will be able to			
1. Understand	d the basic properties of radiation, their types and modes of interaction of	radiation		
with matter.				
2. Evaluate th	neir implications on cells and organs.			
3. Assess the	effect of radiation on the genome.			
4. Gain insight	nts into the permissible radiation exposure levels.			
Unit I: Inter	action of Radiation with Matter	(15L)		
Ionization an	nd Excitation of matter by charged particles, Specific ionization, Linea	r Energy		
Transfer (LE	T), Bragg's law, Range Energy Relations, Bremsstrahlung, Interaction, or	f Gamma		
rays with M	latter, Photoelectric effect, Compton effect, pair production, Attenua	tion and		
Absorption (Coefficients, Radiation Units-Unit of Exposure, KERMA, Absorbed I	Dose and		
Derived Unit	s- Equivalent Dose and Effective Dose.			
Unit II: Inte	raction of radiation with living cells I	(15L)		
Kinetics of	induction of damage in irradiated cells-physical stage, physicochemic	al stage,		
chemical stag	ge, biochemical stage, induction of cellular level damage. Mechanism of c	lirect and		
indirect action	n of radiation, radiolytic products of water, radical reactions in the biologica	ıl system.		
Critical targe	t in the living cells evidences for DNA to be the primary target, Nature of	the DNA		
damage Indu	ced by Radiation. Relationship between DNA content and radiosensitiv	vity. Cell		
lethality, mite	otic death, interphase death and apoptosis, Models of Cell survival, Targe	t Theory,		
its modificat	ions multi target- single hit and single target- multi hit hypothesis, ta	ırget size		
calculation, s	urvival curve parameters-Dq, D0, n, slope etc and limitations of target theor	y, Linear		
Quadratic Mo	odel of cell survival and the mechanistic support to LQ model , α/β values for	or normal		
and tumour c	ells.			
Unit 3: Inter	action of radiation with living cells II	(15L)		
Factors modi	fying cellular radiation response: Physical factors modifying cell survival: d	ose, dose		
Rate, dose f	ractionation, LET, hyperthermia. Biological factors: Cell cycle stage, re	epair and		
recovery, Ell	kind and Sutton type (SLD repair), Repair of potentially lethal damage	(PLDR).		
Mammalian o	cell sensitivity protocol, Law of Bergonie and Tribondeau, classification of	cells into		
different sens	sitivity groups. Chemical modifiers: Oxygen, Chemical radioprotectors, se	ensitizers,		
repair inhibi	tors, Radiation induced Division delay, biochemical and biophysical	changes.		
Induction of	Mutations and Chromosomal Aberrations (CA), factors modifying chro	mosomal		
damage, App	damage, Application of CA analysis in biodosimetry of absorbed radiation.			
Unit IV: Bio	logical Effects of Radiation	(15L)		
Introduction,	Historical Data Base, Somatic and Genetic Effects, Immediate and Late	e Effects.		
Stochastic and Deterministic Effects. Damage to Individual Organs. Skin, Eye Lens, Reproductive				
System, Lungs, Endocrine Glands, Threshold Doses, Radiation Sickness, Radiation Syndromes:				
Haemopoietic Syndrome, G.I. Syndrome, CNS Syndrome LD50 (60) Dose, Late Damage in Skin,				
Lung and Other Organs. Prenatal Radiation Effects, Radiation Carcinogenesis, Human Data, Risk				
Evaluation by A-Bomb Survivor Data, Genetic Risk Evaluation, Radiobiological Basis for				
Radiation Protection Standards, Maximum Permissible Limits For Radiation Exposure				

References

- 1. Fundamental and Radiobiology (1966) 2nd Edition Bacq Z.H.Alexander P., Pergammon Press, New York.
- 2. Radiation Biophysics (1990) Alpen E.L.Printice hall, Engel Wood.
- 3.Radiation Chemistry (1973) Hughes G. Clarendon Press
- 4. Radiation Biology, Alison P. Casserette
- 5. Radiation Biophysics by J.Kiefer

Couse 3	PRACTICAL-LAB WORK	Credit	
		04	
Course outcome: On the completion of the course the student will be able to demonstrate th			
working o	f radiation detectors, perform dosimetry and evaluate the effect of radiation o	n cells.	
They will	be able to probe cells/cellular growth/membrane effects microscopical	ly and	
biochemic	ally.		
1. Pre	paration of liposome's / artificial membrane: Lipid mixture/ BSA		
/Ov	valbumin		
2. Est	imation of cell viability by dye exclusion assay.		
3. Stu	dy of volume regulation of erythrocyte and osmotic fragility.		
4. Cla	ssification of gram –ve& +ve organisms		
5. Ob	serve cell death by physical and chemical agents		
6. To	determine melting temperature (T _m) of proteins		
7. Stu	7. Study of phase transition of membrane phospholipids		
8. To study the membrane potential using fluorescence spectroscopy			
9. Ionophore effect on erythrocyte			
10. Osmolarity: Determination of osmotic pressure of salts.			
11. To study the characteristics of GM tube and determination of its operating			
vol	voltage.		
12. To verify inverse square law of gamma/ alpha/beta/UV rays			
13. To study the nuclear counting statistics			
14. To alu	14. To determine linear and mass attenuation co-efficient using gamma source for aluminium, lead and copper.		
15. Est	15. Estimation of efficacy of the GM detector for gamma and beta source		
16. To study Beta particle range and maximum energy			
17. To measure short half-life of radiation source			
18. To measurement of UV radiation dose by chemical and physical methods			
19. To	19. To determine gamma radiation dose using Fricke Dosimeter.		
20. Eff	ect of UV/gamma radiation on bacterial /mammalian cell survival.		

Course 4	BIOCHEMISTRY	Credit 02		
Course outcome: On the completion of the course the student will be able to				
2. Quantify enzyme activity, and understand the effect of inhibitors on enzymes.				
3. Gain insights into the central dogma of molecular biology i.e transcription and transcription.				

Unit I: Enzyme structure & mechanisms

Enzymes, classification & structure, active site and its identification, mechanisms of enzyme action with special reference to chymotrypsin, carboxypeptidase and lysozyme, Enzyme kinetics, Michaelis-Menten equation, Inhibitors, kinetics of competitive, non-competitive and uncompetitive inhibitors, Allosteric cooperative behaviour, ligand protein interaction, Hill equation, Metalloenzymes. Determination of V_{max} , K_m , various graphical plots.

Unit II: Molecular and cellular biology

(15L)

Various modes of DNA replication, semi-conservative mechanism of replication, DNA polymerases, role of various proteins/enzymes in DNA synthesis in prokaryotes and eukaryotes. Molecular basis of mutations, DNA repair mechanisms. RNA polymerases, transcription in prokaryotes and eukaryotes.

Messenger RNA, transfer RNA, attachment of amino acids to tRNA, the ribosome - initiation, elongation and termination of translation. Comparison of prokaryotic and eukaryotic protein synthesis. Regulation of Gene expression in prokaryotes Operator-operon concept: Lac and Trp operon

References

1. Principles of Biochemistry, Lehninger, 8th edition, W H Freeman & Co

- 2. Biochemistry by Stryer, 9th edition, W H Freeman & Co
- 3. Fundamentals of Biochemistry Voet and Voet, , 6th Edition Wiley
- 4. iGenetics, Russell, 3rd edition Pearson

ELECTIVE	Biocrystallography & Magnetic resonance techniques	Credits
Course 1		04

Course outcome: On the completion of the course the student will be able to understand the 1. Principle of NMR, ESR spectroscopy and its role in elucidation of three-dimensional structure of proteins.

2. Physical principle of X-ray diffraction, experimental approaches to form crystals and solve the three-dimensional structures of biomolecules.

Unit I: NMR Spectroscopy

(15L)Modern techniques for structure elucidation FT and FFT. Nuclear over Hauser effect. Basic 2D Spectroscopy benefits of 2D experiments (COSY NOESY). Assignment problem in biopolymers, Ligand binding to macromolecules, Chemical exchange, ¹HNMR spectroscopy, monitoring of cellular pH, gradient in tumour cells etc. Fluidity gradient in lipids, chemical shift, anisotropy of P resonance in membranes.

Unit II: ESR Spectroscopy

(15L) Spin labeling: a reporter group technique requirement of such a group, Nitro-oxide spin label probes and their molecular structures, anisotropy of the order parameters, dynamics information obtained from ESR, molecular polarity from biochemical data, orientation Intra-molecular distances. Applications of these concepts to study the structure and function of enzyme i.e. lysozyme etc. conformational change in trypsin, spin labelled ligands as probe for binding sites, lipid spin label in the biological membranes

Unit III: X-ray diffraction of the macromolecules

Brags law, Parameters governing crystallization of protein and nucleic acids; Analysis of diffraction data, evaluation of unit cell dimension and space group, phase determinations; Calculation and interpretation of electron density map crystal structure; Analysis of structures of proteins, nucleic acids, DNA-RNA and triple helical complexes.

(15L)

Unit IV: Fiber Structure Determination

Diffraction by poly crystalline system; Diffraction by a helical chain and a discontinuous helix; X-ray scattering of helix; Analysis of the structure of fibrous proteins; Effect of intermolecular packing; X-ray scattering from nucleic acid fibers

References

- 1. Principles of Physical Biochemistry, van Holde, 2008 Prentice Hall
- 2. Physical Biochemistry, David Sheehan, 2nd edition, Wiley
- 3. NMR in biological systems, KVR Chary, Girjesh Govil, 2008 Springer
- 4. Understanding NMR spectroscopy, James Keeler, 2nd edition, Wiley
- 5. Protein NMR spectroscopy, John Cavanagh, 2nd edition, Elsevier

ELECTIVE	PROTEOMICS	Credit
Course 2		02
Course outcome: On the completion of the course the student will be able to		
1. Learn advanced tools of protein analysis and detection.		
2. Understand the detailed principle and working of mass spectrometry.		
3. Gain insights into the use of mass spectrometry in proteomics.		
Unit I: Introdu	ction to proteomics	(15L)

Protein sequencing strategies: Edman degradation, DABITC/ PITC methods. Solid phase microsequencing; Fast atom Bombardment (FAB) mass spectra in protein sequencing. The genome, transcriptome and proteome. Need for proteomics, scope, challenges and applications in proteomics. Tools of proteomics, protein digestion techniques, protein identification and analysis by 2D-gel electrophoresis. Multidimensional liquid chromatography strategies in proteomics. Protein microarrays: analytical, functional and reverse phase. Detection methods of proteins on microarrays. Cell microarrays.

Unit II: Mass spectrometry for proteomics

(15L)

(15L)

Mass spectrometry: Basic principle and instrumentation, Ionization techniques, mechanism of ionization, mass analyzers and ion detectors, Tandem mass spectrometry, peptide and protein analysis by FAB, MALDI, Electrospray. Peptide Mass Fingerprinting, Peptide Sequence Analysis by Tandem Mass Spectrometry. Protein enrichment strategies, Quantitative protein expression mapping by metabolic labeling of proteins with radioactive amino acids, stable isotopes, In vitro labeling of proteins using isotope-coded affinity tags. Mass spectrometry for posttranslational modifications: phosphoproteomics, glycoproteomics and ubiquitinomics.

References

- 1. Principles of proteomics, Richard Twyman, 2014, 2nd edition, Taylor and Francis group
- 2. Introduction to proteomics: Principles and applications, Nawin C. Mishra, 2010 Wiley
- 3. Introduction to proteomics, Daniel Liebler, 2002 Humana Press
- 4. Proteomics Protocols Handbook, John Walker, Springer

ELECTIVE PRACTICAL COURSE 2	Credit
	02
1. Enzyme Assays (beta galactosidase, acid phosphatase, Succinic De -	
hydrogenase): Substrate concentration, Time, Temperature, Ph, enzyme concentration cofactors. Determination of Km& Vmm	
2 Estimation of Protoin by Lowery/Piyrot/Prodford mathods	
2. Estimation of Protein by Lowery/Bluret/Bradiord methods	
3. Isolation of casein protein from milk	
4. Enzymatic digestion of proteins	
5. Fractionation of proteins using PAGE	
6. Column chromatography for protein/pigment	
7. 2-D gel electrophoresis of protein & Isoelectric focusing (Demonstration)	

Letter Grades and Grade Points:

Semester	% of Marks	Alpha-Sign/ Letter
GPA/ Programme CGPA		Grade Result
Semester/ Programme		
9.00 - 10.00	90.0 -100	O (Outstanding)
8.00 - < 9.00	80.0 < 90.0	A+ (Excellent)
7.00 - < 8.00	70.0 < 80.0	A (Very Good)
6.00 - < 7.00	60.0 < 70.0	B+ (Good)
5.50 - < 6.00	55.0 < 60.0	B (Above Average)
5.00 - < 5.50	50.0 < 55.0	C (Average)
4.00 - < 5.00	40.0 < 50.0	P (Pass)
Below 4.00	Below 40.0	F (Fail)
Ab (Absent)	-	Absent

Sign of HOD Prof. Varsha Kelkar-Mane: Department of Biophysics

Team for Creation of Syllabus

Name	College Name	Sign
Prof Varsha Kelkar Mane	I/c Head, Department of Biophysics, University of Mumbai	
Prof (Dr.) P M Dongre	Principal, PRES ACS Senior College, Satral, Ta. RahuriDistAhmadnagar	Dongsupm
	Director, Research, Pravara Rural Education Society, Pravaranagar	
Dr Jessy John	Ad-hoc Assistant Professor, Department of Biophysics, University of Mumbai	
Dr A V Chitre	Visiting faculty, Department of Biophysics, University of Mumbai	
Prof S Sivakami	Visiting faculty, Department of Biophysics, University of Mumbai	
Prof B S Rao	Visiting faculty, Department of Biophysics, University of Mumbai	

Sign of HOD Name of the Head of the Department: Prof. Varsha Kelkar-Mane Name of the Department: Department of Biophysics

Sign of Dean,

Name of the Dean: **Prof. S.S. Garje** Name of the Faculty: **Science**