
T.Y. B.Sc.
(Computer Science)

SEMESTER - V (CBCS)

SOFTWARE TESTING AND

QUALITY ASSURANCE

SUBJECT CODE - USCS503

© UNIVERSITY OF MUMBAI

ipin Enterprises

Tantia Jogani Industrial Estate, Unit No. 2,

Ground Floor, Sitaram Mill Compound,

J.R. Boricha Marg, Mumbai - 400 011

June 2024, Print - I

 Programme Co-ordinator : Shri. Mandar Bhanushe
Head, Faculty of Science and Technology
CDOE, University of Mumbai, Mumbai

Course Co-ordinator : Ms. Mitali Vijay Shewale
Doctoral Researcher,

Veermata Jijabai Technological Institute

Mumbai

 Editor : Mr. Anish Raut

Manager,

Dahua Technology India Pvt. Ltd.

Course Writers : Ms. Mitali Vijay Shewale
Doctoral Researcher,
Veermata Jijabai Technological Institute

Mumbai

: Mr. Palash Ingle

Research Assistant,

Sejong University, South Korea

DTP Composed : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400 098

Prof. Ravindra Kulkarni
Vice-Chancellor,
University of Mumbai,

Prin. Dr. Ajay Bhamare Prof. Santosh Rathod
Pro Vice-Chancellor, I/c Director,
University of Mumbai, CDOE, University of Mumbai,

Published by : I/c Director,
Centre for Distance and Online Education,

 University of Mumbai,
Vidyanagari, Mumbai - 400 098.

CONTENTS

Unit No. Title Page No.

1. Introduction to Software Testing 01

2. Software Quality Assurance 34

3. Software Testing Strategies 61

4. Software Metrics 78

Course:

USCS503

TOPICS (Credits : 03 Lectures/Week:03)

Software Testing and Quality Assurance

Objectives:

To provide learner with knowledge in Software Testing techniques. To understand how testing

methods can be used as an effective tools in providing quality assurance concerning for software.

To provide skills to design test case plan for testing software

Expected Learning Outcomes:

Understand various software testing methods and strategies. Understand a variety of software

metrics, and identify defects and managing those defects for improvement in quality for given

software. Design SQA activities, SQA strategy, formal technical review report for software

quality control and assurance.

Unit I

Software Testing and Introduction to quality : Introduction, Nature of errors,

an example for Testing, Definition of Quality , QA, QC, QM and SQA , Software

Development Life Cycle, Software Quality Factors

Verification and Validation : Definition of V &V , Different types of V & V

Mechanisms, Concepts of Software Reviews, Inspection and Walkthrough

Software Testing Techniques : Testing Fundamentals, Test Case Design, White

Box Testing and its types, Black Box Testing and its types

15L

Unit II

Software Testing Strategies : Strategic Approach to Software Testing, Unit

Testing, Integration Testing, Validation Testing, System Testing

Software Metrics : Concept and Developing Metrics, Different types of Metrics,

Complexity metrics

Defect Management: Definition of Defects, Defect Management Process,

Defect Reporting, Metrics Related to Defects, Using Defects for Process

Improvement.

15L

Unit III

Software Quality Assurance : Quality Concepts, Quality Movement,

Background Issues, SQA activities, Software Reviews, Formal Technical

Reviews, Formal approaches to SQA, Statistical Quality Assurance, Software

Reliability, The ISO 9000 Quality Standards, , SQA Plan , Six sigma, Informal

Reviews

15L

Quality Improvement : Introduction, Pareto Diagrams, Cause-effect Diagrams,

Scatter Diagrams, Run charts

Quality Costs : Defining Quality Costs, Types of Quality Costs, Quality Cost

Measurement, Utilizing Quality Costs for Decision-Making

Textbook(s):

1. Software Engineering for Students, A Programming Approach, Douglas Bell, 4
th

Edition,, Pearson Education, 2005

2. Software Engineering – A Practitioners Approach, Roger S. Pressman, 5
th

 Edition, Tata

McGraw Hill, 2001

3. Quality Management, Donna C. S. Summers, 5
th

 Edition, Prentice-Hall, 2010.

4. Total Quality Management, Dale H. Besterfield, 3
rd

 Edition, Prentice Hall, 2003.

Additional Reference(s):

1. Software engineering: An Engineering approach, J.F. Peters, W. Pedrycz , John

Wiley,2004

2. Software Testing and Quality Assurance Theory and Practice, Kshirsagar Naik,

Priyadarshi Tripathy , John Wiley & Sons, Inc. , Publication, 2008

3. Software Engineering and Testing, B. B. Agarwal, S. P. Tayal, M. Gupta, Jones and

Bartlett Publishers, 2010

 1

1
INTRODUCTION TO SOFTWARE

TESTING

Unit Structure :

1.0 Objectives

1.1 Introduction

1.2 Software Testing

 1.2.1 What is Software?

 1.2.2 Need for Software Testing

 1.2.3 Who should test the software?

 1.2.4 Qualities of a good tester.

1.3 Software Quality

 1.3.1 Quality Revolution

 1.3.2 Software Quality models

1.4 Error

 1.4.1 Types of Errors

1.5 Test Case

 1.5.1 Guidelines for designing a Test Case

 1.5.2 A simple Test Case

1.6 Quality Management (QM)

 1.6.1 Implementing QM

 1.6.2 Importance of QM

1.7 Software Quality Assurance (SQA)

1.8 Quality Control (QC)

 1.8.1 Key Components of Quality Control

 1.8.2 Types of Quality Control

 1.8.3 Benefits of Quality Control

Software Testing and
Quality Assurance

2

1.9 Software Development Life Cycle

1.10 Verification and Validation

 1.10.1 Difference between verification and validation

 1.10.2 Software Verification methods

1.11 Black box Testing

1.12 White box Testing

1.13 Comparison of Black box testing with White box testing

1.14 Let’s sum it up.

1.15 List of References

1.16 Bibliography

1.17 Unit End Exercises

1.0 OBJECTIVES

After completion of this module, you will learn:

 Definition of software testing

 Types of quality control models.

 Software Development Lifecycle.

 Verification and validation, verification methods.

 Black box testing, white box testing

1.1 INTRODUCTION

In this chapter, we are going to explore the intriguing area of software
testing, which is a key component in terms of developing software.
Everyone might have questions such as what is a software and why it is so
important to test a software? How should we test it and who should test it?
There are enormous questions, and this section answers the questions.

We are going to see a simple test case, errors associated with software and
how they can be minimized. The main purpose of software testing can be
understood when a programmer develops a code, and nobody likes it when
it gives errors. Such situations are implied on using software testing and
make us think that is software reliable? A competent software tester must
project credibility and possess the qualities of curiosity, persistence,
creativity, diplomacy, and persuasion.

In this section, we will go over the fundamentals of software testing,
demonstrate how a test case is written, investigate different types of errors,

Introduction to Software
Testing

3

and the importance of quality. This chapter builds a strong foundation for
comprehending the topic of software testing.

1.2 SOFTWARE TESTING

This is the main topic of the chapter. From the name itself it is evident
that we are talking about testing software. Some people might confuse it
with debugging. However, debugging means just removing errors from
your programs whereas testing helps to discover undiscovered errors.

The act of testing involves running software with the goal of identifying
errors. In this text,

The very crucial questions of who should conduct the testing and when it
should begin are addressed.

1.2.1 What is Software?

Software, often known as a program, is a set of instructions for a
computer to carry out anexplicit task. Software is a generic term used to
refer to applications, scripts and programs that run on a device. It is
divided into application software and system software. Any software
designed to perform only specific tasks is known as application software
(word, PowerPoint, etc.) and system software is responsible for running a
computer’s hardware, manage the resources and make the applications
run on it (operating systems, game engines, etc.).

In older times, software was developed for certain machines and sold
alongside the hardware it operated on. Afterwards, software started being
marketed on floppy disks in the 1980s, and then CDs and DVDs.
Nowadays, most software is bought and downloaded simply from the
internet.

1.2.2 Need for Software Testing

Machines and humans rely on software for achieving their goals related to
a task. We use software on daily basis and some software which are
available free on internet can be a major source of threat to computer
systems.90% of people use software in their daily lives, making it a
product that is widely accessible.Only after a software product has
undergone a proper process of development, testing, and bug repair it
should be released.

We should look for errors in the preliminary stages of software
development. In comparison to problems that we might discover in the
later stages of software development, the expense of fixing such errors
will be quite affordable. According to Figure 1, the cost of fixing errors
spikes from the specification phase to the test phase to the maintenance
phase. The relative cost of fixing a fault depends on what stage of the
software development life cycle it occurs at.

The longer you wait to address a defect, the more money it will cost to
remedy it.

Software Testing and
Quality Assurance

4

Software has a high failure rate due to the lack of importance given to
quality and testing.Smaller businesses with little resources run the risk of
failing if they don't pay enough attention to software quality and undertake
adequate testing.This is precisely why testing is required for every
software.It is important to keep in mind that software is primarily tested to
make sure it complies with standards and fulfills consumer expectations.

Figure 1.Statistics of cost of fixing errors

1.2.3 Who should test the software?

Software testing is not the responsibility of a single person, it is
teamwork. It should come naturally to every member of a team to test the
software. However, there is a specific group of people designated to
undergo software testing known as ‘Software Testers’. The issue here is
that because the developers are so closely involved in the software's
development, it is exceedingly challenging for them to identify mistakes
in their own work.

The testers must be circumspect, inquisitive, critical but not judgmental,
and effective communicators. They should have the courage to suspect
any error and hand over the errors to the development team so that they
can rework on it.

1.2.4 Qualities of a good tester

Testing is a crucial step in the software development process, and a good
tester can reveal whether a product will succeed or fail. The tester must
have the following qualities:

1. Honest and Intuitive:

A good tester should be honest about his work and should poses the
expertise in testing process. He should be intuitive and proactive in
situations which are unwelcomed. A good tester knows how to save time
and identify which errors are to be solved first and which require less
attention.

Introduction to Software
Testing

5

2. Explorer:

The testers can delve into unfamiliar environments and uncover bugs that
would otherwise go unnoticed.Thanks to a little imagination and a
willingness to take risks.

3. Good communicative skills:

Good software testers are gentle and skilled at telling the
developers undesirable news.They approach the developers
diplomatically, persuade them when necessary, and have their bugs
repaired.

4. Learns from past mistakes:

Each error gives a source of improvement to the software, and this helps
the tester to learn from it and apply the learning in future. A good tester
takes the opportunity to learn and improve and always double checks
their findings.

5. Organized:

Good testers are always very well organized. They prepare test cases
step-by-step and use checklists, files, and statistics to support their
conclusions. They always make sure to double-check their findings.

1.3 SOFTWARE QUALITY

Software quality means different to different people as it is highly
context driven. An end-user always demands high-quality software. It
covers several aspects such as good performance, proper specifications,
meeting all the operational requirements, and efficiency. Good quality
software helps save both time and money as it is less likely to have bugs
which will free up time during testing and maintenance phases.

1.3.1 Quality Revolution

The roots of quality revolution can be traced back to 1950’s, when there
was a mass movement of people resulting in globalization. The global
manufacturing quality was poor back then and William Edwards Deming
who was an American engineer, statistician, professor, author, lecturer,
and management consultant came up with the theory of constantly
improving quality. His ideas first gained attraction with the Japanese
manufacturing industry, which is why Japanese cars have been known
for so long for superior qualityand reliability.He worked with various
Japanese researchers on statistical quality control (SQC) methods.
Measurements and statistics are the foundation of the field of statistical
quality control. Instead of relying on intuition and experience, decisions
and strategies are established based on the gathering and assessment of
real data in the form of metrics.He described the plan-do-check-act
(PDCA) cycle, also known as the Shewhart cycle (Figure 2). Setting
goals, tying them to measurable milestones, and monitoring progress
toward those milestones are the activities that make up the Shewhart
cycle.

Software Testing and
Quality Assurance

6

The idea to extend quality control beyond the manufacturing units and
into the entire company was first forth by an American Joseph M. Juran
in 1954. He emphasized the value of systems thinking, which starts with
the requirements for the product, the design, the testing of the prototype,
the appropriate use of the equipment, and the accurate process feedback.
Juran encouraged Japan to transition from SQC to TQC (Total Quality
Control). This includes quality control (QC), audits, the quality circle,
and the promotion of quality management principles throughout the
entire organization.

Figure 2.Shewhart cycle

Plan: Decide on the goal and the method for delivering the results.

Do: Put the strategy into action and evaluate its success.

Check: Measurements should be evaluated, and decision-makers should
be informed of the findings.

Act:Make the necessary improvements to the procedure.

Quality became more and more valued as time went on.In 1968, Kaoru
Ishikawa, developed a cause-and-effect diagram famously known as
Ishikawa (Figure 3) based on TQC. He found that quality is affected by
four common factors, materials, machines, methods, and measurements.
Many Japanese companies maintain a detailed documentation of their
quality efforts which led to widespread top-quality movement.

Figure 3. Ishikawa model

Introduction to Software
Testing

7

1.3.2 Software Quality models

Various software quality models have been proposed to define quality
and its related attributes. There are many standards developed by a group
of experts called the International Organization for Standardization
(ISO). ISO 9126 is the most important standard which includes six
characteristics of quality, functionality, reliability, usability, efficiency,
maintainability, and portability.Carnegie Mellon University's Software
Engineering Institute (SEI) developed the Capability Maturity
Model(CMM). The CMM framework rates development processes on a
scale of 1 to 5, which is commonly referred to as level 1 through level 5.
Level 1 is the beginning point, whereas level 5, optimizedis the highest
level of process maturity.The McCall's quality factors notion of software
quality was put forth by McCall, Richards, and Walters in 1977. A
system's behavioral feature is represented by the quality factor. The 11
quality factors are: correctness, reliability, efficiency, integrity, usability,
maintainability, testability, flexibility, portability, reusability, and
interoperability.

1. Characteristics of ISO 9126

Figure 4. Characteristics of ISO 9126

Functionality:a group of characteristics that affect the presence of a
group of functions and the details of their qualities. The activities are
those that meet explicit or implicit needs.

Reliability: a group of characteristics that affect whether software can
continue to work at a given level under given circumstances for a given
amount of time.

Usability: a group of characteristics that affect how much work is
required to use something and how each user evaluates it on their own.

Software Testing and
Quality Assurance

8

Efficiency: a group of characteristics that affect how well the program
performs in relation to how many resources is used when certain
conditions are met.

Maintainability: a group of characteristics that affect how much work is
required to accomplish a given adjustment (which might be anything
from software fixes to environmental changes to functional and
requirement changes).

Portability:a group of characteristics (including the business, hardware,
or software environments) that affect how easily software can be
transferred between environments.

2. McCall’s Quality Factors

Figure 5. McCall’s Quality factors

Correctness: the extent to which a software complies with its
requirements and carries out the user's goal objectives.

Reliability: a program's ability to carry out its specified purpose with the
necessary accuracy.

Efficiency: computational power and amount of code needed
by software to carry out a function.

Integrity: It relates to the security of the software system and preventing
access by unauthorized individuals.

Usability: effort needed to understand, use, prepare input, and decipher a
program's output.

Maintainability: the time and effort needed to find and correct a flaw in
a working software.

Testability: the time and effort needed to check software to make sure it
complies with the requirements.

Introduction to Software
Testing

9

Flexibility: the time and effort required to enhance a working software
product.

Portability: effort involved in moving a program between different
hardware and/or software environments.

Reusability: Whether or whether a software system's components can be
utilized again in other contexts

Interoperability: It means checking whether one software can operate
on different platforms.

3. Levels of CMM model:

Figure 6. Levels of CMM model

There are five levels in CMM model. They are as follows:

Level 1:the first stages of a new process. Software is created at this level
without the use of a processmodels. There is hardly much preparation
needed. Even if a plan is made, it might not be carried out. People base
their selections on their own qualifications and abilities. At this level,
there is a lack of consistency in project management.

Level 2:The process is controlled in accordance with the metrics
mentioned in the preceding level at this level. The objectives of software
development are repeated.

Studying a setting where good practices are intended to be repeated
makes sense.

In the organization, the methods might not be followed again or the
same.

To reduce costs and schedule, the company can employ some basic
project management techniques.

Software Testing and
Quality Assurance

10

Level 3: Documentation is crucial at this level. Project management and
software development procedures are recorded, examined, standardized,
and integrated with organizational processes. In other words,
conventional procedures are accepted throughout the entire organization.
Software development is done by adhering to a set procedure.
Functionalities and the corresponding attributes are monitored.

Cost and schedule are kept in check by monitoring them.

Level 4: Metrics are crucial at this stage. Metrics pertaining to
procedures and goods are gathered and examined. These measurements
are employed to get quantitative knowledge of both process and product
attributes. Corrective measures are initiated when metrics reveal that
limits are being breached. For instance, it is helpful to begin a process of
root cause analysis if too many test cases fail during system testing in
order to comprehend why so many tests are failing.

Level 5: Process management at this level comprises intentional process
optimization and enhancement. At this stage, the emphasis is on
continuously improving process performance through innovative and
gradual technical advancements.

Key practices include Defect prevention, Technology change
management, Process change management.

1.4 ERROR

An error results in an incorrect output and generally occurs when there are
lot of bugs present inside a program. The words error can be treated as a
mistake inside the code. Developers mostly use this word. Incorrect logic,
grammar, or loops can result in errors that have an adverse effect on the
end-user experience.It arises for several causes, such as application
challenges brought on by design, code, or system specification problems.

1.4.1 Types of Errors

Most common types of errors while developing a software are as
follows:

1. Syntactic Error:

These errors include mistakes commonly done while writing a code
according to the syntax of a language (Java, Python). It can be due to
missing parenthesis, error in structure(indentation), or missing operators.

Example 1:

int a = 7 //semicolon is missing

Error message:

ab.java:20: ‘;’ expected

2. Calculation Error:

These errors are due to bad logic, incorrect conversion from one data to
another, incorrect formula, incorrect approximation.

Introduction to Software
Testing

11

3. Hardware Error:

A hardware error occurs when a computer system's hardware component
crashes. Examples:

I/O device errors, unavailable device, incorrect device selection, etc.

4. User Interface Error:

Inability to compile/execute a program as user expects and the reply
from the system is very slow. Misleading or confusing information in the
help section, unsuitable keyboard usage.

5. Control flow Error:

The errors include datatype error, errors due to exception handling,
blocking or unblocking interruptions.

6. Error Handling Error:

Responding to and recovering from erroneous circumstances in your
software is the process of error handling.

1.5 TEST CASE

Organizations have several ways of presenting a test case. Nevertheless,
a lot of test case templates take the shape of a table. As a tester, creating
efficient test cases that thoroughly test a unit is the best approach to
ascertain whether the software complies with requirements. The testers
can create effective test cases using a variety of test case design
methodologies.

When testing, we choose desired preconditions, by giving certain
program inputs, and record any observable outputs. When comparing the
observed and expected outputs, we determine whether they match,
indicating that the test case is successful. If they differ, that indicates a
failure condition with the chosen input, and this needs to be carefully
recorded in order to identify the problem.

A successful test case has a high likelihood of demonstrating a failure
state. Therefore, when creating test cases, test case designers should
consider the program's weak points.

1.5.1 Guidelines for designing a Test Case

Every tester should be aware of the following general principles for
designing a Test Case.

1. Concentrate on the main purpose of the test case. Include the tests in a
concrete manner which should give desirable outputs and cover the
whole scenario of the test.

2. Make sure the test case is simple to comprehend and easily
understandable by peer testers. Do not make it complex and include
what the software is only intended to do.

3. Always create a unique Test ID for each test case so it is easily
separable and identified when needed.

4. Include correct test data and recheck the data.

Software Testing and
Quality Assurance

12

5. Specify the correct expected results.

6. Before continuing, get your test plan reviewed by others.

7. Test cases should be created to handle issues like performance, safety
standards, and security requirements as necessary.

1.5.2 A simple Test Case

A test case template offers a versatile yet fundamental structure that you
can change as necessary. It can also be used as a checklist to make sure
all necessary components are present. Spreadsheets, which have one test
per row and the test components in columns, are frequently used by
testers.

The following components can be included in the test case:

1. Test Case ID

2. Name of the tester:

3. Test Case description

4. Test Steps

5. Test data

6. Expected Results

7. Actual Results

8. Comments

This test case includes the set of inputs, expected output and actual
result. Other information such as name of the tester, environment, test
ID, screen is also included in it.

Introduction to Software
Testing

13

1.6 QUALITY MANAGEMENT (QM)

Quality management is the practice of monitoring the activities, tasks,
and processes (inputs) that are utilized to create a product or service
(outputs). Quality planning, quality assurance, quality control, and
quality improvement are the four primary parts of quality management.
Quality Management is the practice of putting all four elements into
practice inside a company.

Quality Management places equal emphasis on the tasks and procedures
that went into producing the outputs (products and services) as it does on
the quality of the outputs themselves. A product's and/or service's quality
should ideally improve not only as it is produced, but also as the process
itself improves, leading to more reliable, higher-quality goods and
services.

1.6.1 Implementing QM

A company must recognize and oversee numerous interconnected,
multifunctional activities before implementing a quality management
system to help guarantee client satisfaction. The many aims, needs, and
goods and services offered by the organization should be taken into
consideration when designing the QM. This framework, which is mostly
based on the PDCA cycle, enables continual improvement of both the
product and the QM. The following are the fundamental actions in
putting in place a quality management system:

1. Design

2. Build

3. Deploy

4. Control

5. Measure

6. Review

7. Improve

1.6.2 Importance of QM

The only effective approach to ensure constant, measurable improvement
to the firm's operations is by putting in place a comprehensive and
standardized quality management system. A quality management system
helps with compliance, transparency,and improves customer happiness
through documentation and planning.With the aid of the appropriate
technology, quality management systems also make sure that
opportunities don't go missed.

Software Testing and
Quality Assurance

14

The benefits of QM are as follows:

1. Improved consistency

2. Increased Profits

3. Continuous Improvement

4. Evidence-based decisions

5. Customer Satisfaction

1.7 SOFTWARE QUALITY ASSURANCE (SQA)

The IEEE Glossary (IEEE, 1991), which is quoted below, provides one
of the most widely used definitions of software quality assurance (SQA).

SQA shouldn't be kept to just the development stage. Instead, it should
be expanded to include the lengthy years of service that follow the
delivery of the product. Incorporating quality concerns that are
specifically relevant to the software product expands the concept of SQA
by incorporating software maintenance activities.

SQA operations should cover more than just the technical components of
the functional requirements; they should also address scheduling and
spending issues. This increase in scope is justified by the strong
connection between satisfying functional technical requirements and
meeting budget or schedule constraints. Professionally "dangerous"
adjustments to the project schedule are frequently made when projects
are under severe time limitations, which can substantially affect the
chances of reaching the functional requirements. Projects that are under
financial pressure and unable to manage the insufficient resources
assigned to the project and its upkeep might be predicted to have similar
unfavorable outcomes.

The new expanded definition of SQA can be given by combining the
ISO 9000-3, 1997 with main outlines of the Capacity Maturity Model
(CMM). It is as follows:

Introduction to Software
Testing

15

The phrase "software quality assurance" may not be entirely accurate.
Since "assurance" refers to "grounds for justified confidence that a claim
has been or will be achieved," the application of software engineering
techniques can only "assure" the quality of a project. In truth, QA is used
to lessen the risks associated with creating software that does not satisfy
stakeholders' wants, needs, and expectations while staying on schedule
and within budget.

SQA might concentrate on software operations, infrastructure, and
maintenance in addition to software development. All software
processes, from the most fundamental (like governance) to the most
complex (like data replication), should be covered by a conventional
quality system.

1.8 QUALITY CONTROL (QC)

Quality control refers to the monitoring methods and practices required to
meet quality standards.This process entails keeping an eye on and
inspecting goods at various points during production or delivery to make
sure the intended standard of quality is met. By putting controls in place to
regulate and enhance the production or service delivery processes, QC is
also concerned with avoiding errors or faults from occurring in the first
place.To ensure that products are as uniform as possible and to reduce
errors and inconsistencies within them are the two main objectives of
quality control.

1.8.1 Key Components of Quality Control

1. Maintaing records:

Keeping meticulous records of inspections, tests, and remedial actions is
necessary for maintaining accountability and traceability.

2. Testing:

Executing numerous tests and measurements to evaluate the functioning,
performance, or features of goods or services.

3. Inspection:

The frequent examination of goods, materials, or services to spot flaws,
violations, or departures from quality standards.

4. Corrective Action:

Putting suitable steps in place to deal with any discovered quality
problems and stop them from happening again.

5. Training:

Giving staff the abilities and information required to sustain quality
standards successfully.

Software Testing and
Quality Assurance

16

6. Statistical Process Control (SPC):

You can observe process behaviour, identify problems with internal
systems, and resolve production-related problems with the use of SPC
tools and methods.

7. Continuous Improvement:

Continually reviewing data and input to spot problem areas and improve
the system's overall quality.

1.8.2 Types of Quality Control

Quality control is crucial because it ensures that goods and services are of
a high standard, dependable, and satisfy client needs.There are numerous
different kinds of quality control techniques, each with a distinct goal and
set of procedures. Below is a brief review of the most widely used types of
quality control:

1. Process Control:

This kind of quality control focuses on keeping an eye on and
controlling the production processes. It is an ability to adjust the process to
give desired outputs.To assure quality and boost performance, processes
are monitored and modified. To attain consistency, this is often a technical
procedure leveraging feedback loops, controls at the industrial level.

2. Control Charts:

For quality control, control charts function as a dashboard. They let
you rapidly spot any trends or patterns that might hint at a problem since
they demonstrate how a process is doing over time. You can spot
problems beforehand and adjust keep your process running smoothly by
routinely reviewing control charts.

3. Acceptance Sampling:

Acceptance sampling is like inspecting a random sample of goods from a
production batch. This kind of quality control is employed to ascertain
whether the batch complies with the necessary requirements. The entire
batch is rejected if the sample does not match the standards but is accepted
if it does.

4. Product Quality Control:

This kind of quality assurance concentrates on the finished product itself.
It entails testing and inspecting the product to make sure it complies with
the necessary requirements and standards. Before a product is made
available to clients, product quality control helps find any flaws or
problems, guaranteeing that they will receive a high-quality product.

Introduction to Software
Testing

17

1.8.3 Benefits of Quality Control

To guarantee customer satisfaction and establish a solid reputation for a
company, quality control is crucial. It can also increase efficiency by
streamlining operations and identifying areas for improvement. Costs can
be decreased by discovering and fixing flaws early in the production
process. Any organization should prioritize quality control because it
helps toachieve the following:

1. Increase Customer Satisfaction: QC makes ensuring that goods and
services meet or beyond consumer expectations, which raises customer
happiness and loyalty.

2. Efficiency: The production process can be streamlined and made more
efficient with the aid of a well-designed and implemented Quality
Control method. As a result, productivity rises, waste declines, and
profitability rises.

3. Reduction in Cost: By finding and repairing errors early in the
production process, quality control can assist in cost reduction. As a
result, there is less chance of needing to repair faulty items and less
need for material waste and rework.

4. Compliance: Businesses can lower their risk of facing legal or
financial repercussions by putting quality control procedures in place
to make sure that their goods or services adhere to the appropriate
standards and laws.

5. Risk Improvement: QC assists in identifying potential risks and
hazards through thorough testing and inspections, allowing
organizations to take preventative action.

6. Constant Improvement: QC promotes an environment in which
businesses constantly work to improve their offerings in terms of
goods, services, and procedures.

7. Innovation: The identification of chances for innovation and
improvement in the production process through quality control
procedures results in the creation of fresh, enhanced goods or services.
Businesses may stay ahead of their rivals and fulfill the changing
needs of their customers by consistently aiming for quality.

8. Better service quality: Services can also be subject to quality control
procedures to make sure they adhere to the necessary standards.
Businesses may enhance the quality of their services and boost
customer happiness and loyalty by detecting and resolving issues with
service delivery.

1.9 SOFTWARE DEVELOPMENT LIFECYCLE

Most, if not all, technology-based companies have largely adopted the
Software Development Life Cycle (SDLC). Learning and comprehending
the complexity of the SDLC is becoming more and more crucial due to the

Software Testing and
Quality Assurance

18

development of technology and the rise in the number of businesses that
rely on their own custom apps. There are many famous SDLC models
such as Waterfall model, incremental model, Vmodel, iterative model,
RAD model, Agile model, Spiral model, Prototype model etc.)

The phases of the software cycle and the order in which they are carried
out are described by software life cycle models. Each stage of the life
cycle results in deliverables needed by the following stage. Design is
translated from requirements. The production of code is done in
accordance with the design phase, often known as development. After
coding and development, testing compares the implementation phase
deliverable to the requirements.

Figure 7. Phases of SDLC

1. Requirement Analysis:

The analysis step involves assembling all the relevant information
needed for a new system and coming up with the initial prototype
concepts.The project managers and stakeholders are primarily focused on
this phase. Developers are free to specify any prototype system
requirements, carry out research and analysis to ascertain end-user
demands, and analyze alternate solutions to current prototypes. Finally, a
Software Requirement Specification document (SRS) is produced as a
reference for the model's subsequent phase.

2. Feasibility Study:

If management accepts the system proposal, the next stage is to examine
the system's practicality. The primary goal of a feasibility study is to
assess the feasibility, user requirements, resource efficiency, and, of
course, cost-effectiveness of a proposed system. These are classified into
technical, operational, economic, scheduling, and social feasibility
categories. The primary goal of a feasibility study is to achieve the scope
rather than to solve the problem. During the feasibility study phase, cost
and benefit estimations are more precisely made to assess the Return on
Investment (ROI). This section lists the resources needed to do a
thorough investigation.

Introduction to Software
Testing

19

3. Design:

The design stage is a prerequisite for the primary developer stage.

Developers will first outline the general application's characteristics, as
well as specific components such as its: user interfaces, system
interfaces, and network needs. They will usually convert the SRS
document they developed into a more logical form that may be later
implemented in a programming language. The system's system design
can be described using a variety of tools and methodologies: Flowchart,
Data flow diagram (DFD), Data dictionary, Structured English, Decision
table, and Decision tree are all examples of diagrams.

4. Implementation or coding:

During this phase, programmers actually write code and create the
application in accordance with the specifications and design papers from
previousstage. The process of turning the program specifications into
computer instructions, or programs, is known as the programming phase
during this time. Developers will use various tools, including compilers,
debuggers, and interpreters, and adhere to any coding standards
established by the business. Depending on their requirements, they will
select a programming language (C, C++, Java, Python, or C#).

5. Testing:

Software development is not the end. Testing is now required to ensure
that there are no defects, and that the end-user experience won't suffer at
any time. A test run of the system is completed to remove any bugs
before the new system is really put into use. It is a crucial stage in a
system's success.

6. Deployment:

The deployment phase starts once the new system has received user
approval. After testing, the software's overall design will be completed,
and all of the system's programs will be loaded onto the user's computer.
The user training process begins when the system has been loaded. After
passing this stage, the program is technically ready for market and may
be made available to any end users.

7. Maintenance:

Maintenance is required to fix problems that arise with the system while
it is in operation and to adjust the system to any changes in the
surroundings in which it operates. Developers are also in charge of
making any modifications that the software may require after it has been
deployed. It has been observed that some flaws are constantly discovered
in the systems, which must be noted and fixed. It also refers to
periodically reviewing the system. In comparison to smaller systems,
larger systems could need more extensive maintenance phases.

Software Testing and
Quality Assurance

20

1.10 VERIFICATION AND VALIDATION

Verification and validation are two related ideas in software testing that
practitioners regularly utilize.

Testing is a combination of both verification and validation.

Software Testing = Verification + Validation

These two are complementary and necessary to one another. Each offers a
unique set of error filters and a unique method for identifying software
bugs.

1. Verification:

Verification means the process of deciding if the results of a particular
phase of the software development process meet the requirements
established in the preceding phase.Verification typically requires
knowledge of the specific software artifacts, requirements, and
specifications. Static testing, which is done manually, relates to
verification. We only look over and evaluate the document. Checklists,
issue lists, walkthroughs, and inspection meetings can all be used to verify
that the product is designed to give all functionality to the client.
Verification often comprises reviews and meetings to examine documents,
plans, codes, requirements, and specifications.

Definition as per IEEE [IEEE01]:

We use verification techniques learned during the early stages of software
development, and we check and evaluate the documents produced at the
end of each phase.It is therefore the process of reviewing the project's
requirement paper, design document, source code, and other associated
documents. This manual testing only entails glancing at the documents to
make sure the output matches what was anticipated.

2. Validation:

The actual testing of the product takes place after the procedure of
verification. This stage involves finding defects that result from
differences infunctionality and specifications.

It provides a response to the query, "Are we developing the right
product?". The process of figuring out whether the software development
process's outputs from a specific phase satisfy the specifications set during
the phase before is called validation.

These kinds of activities enable us to verify that a product is suitable for
the intended application. Activities aimed at validating a product's

Introduction to Software
Testing

21

compliance with client expectations. In other words, validation activities
concentrate on the finished product, which has undergone rigorous
customer testing. Validation determines whether the product lives up to
users' overall expectations.

Definition as per IEEE [IEEE01]:

It needs the software to be run in its entirety. It is dynamic testing, and
running the application requires a computer. Here, we encounter failures
and pinpoint their root causes.

Effective verification can reduce the requirement for validation and
increase the number of faults found in the early stages of software
development.

1.10.1 Difference between Verification and Validation:

Verification Validation

1. The process of document, design,
and code verification is static.

1. The process of document, design,
and code verification is dynamic.

2. It does not entail running the code. 2. Code is executed

3. It is a manual check of
documents/files.

3. Computer based checking.

4. The requirements specifications,
application architecture, high-
level and detailed design, and
database design are the main
targets.

4.The ultimate product, as well as
individual units, modules, and sets
of linked modules, is the target.

5. It employs techniques such as desk
checks, walkthroughs, and
inspections.

5. It makes use of techniques
including white-box, gray-box, and
black-box testing.

6. It comes before validation 6. It comes after verification

7. It responds to the query, "Are we
building the product correctly?"

7. It responds to the query, "Are we

creating the right product?"

1.10.2 SoftwareVerification Methods:

Any type of verification method seeks to identify errors by carefully going
over the documents. Numerous techniques, including walkthroughs,
inspections, and peer reviews, are frequently employed in practice.
Verification aids in preventing potential flaws that could result in program
failure.

Software Testing and
Quality Assurance

22

Figure 8. Verification methods

1. Peer Reviews:

The peer-review approach is the simplest and most casual way to examine
papers, programs, or software with the aim of identifying flaws throughout
the verification process. In this strategy, we hand out the document or
software programs to others and ask them to review them. We do this to
get their opinions on the quality of our work as well as to get them to point
out any flaws. This approach may involve tasks like software verification,
SDD verification, and SRS document verification. With this approach, the
reviewers may also write a brief report on their findings, observations,
etc.Due to the effectiveness and significance of peer review, numerous
studies have demonstrated its usefulness. The reviewer has two options for
reporting their findings: they can either write a report or just speak up
during talks. Peers will engage in this informal activity, which has the
potential to be quite productive if reviewers have the necessary topic
expertise, programming prowess, and involvement.

Advantages of Peer Reviews:

Without investing a lot of resources, you can anticipate some positive
outcomes.

Its structure is significant and quite effective.

Disadvantages of Peer Reviews:

If the reviewer is inexperienced, it could have negative outcomes.

2. Walkthroughs:

Walkthroughs are more formal and systematic than peer reviews. A small
group of two to seven people are given a tour of the document by its
author. There is no requirement that participants bring anything. The
author of the presentation is the only one who prepares for the meeting.
All participants have received the document(s). The author introduces the
content to familiarize them with it during the meeting. Everyone is
welcome to ask questions. For everyone to observe and express their

Introduction to Software
Testing

23

opinions, each participant may write their observations on any type of
display mechanism, including boards, sheets, projection systems, etc.
Following the review, the author drafts a report detailing the conclusions
and any issues raised during the discussion.

Advantages of Walkthroughs:

It might aid us in identifying potential flaws.

It can also be used to distribute documents to other people.

Disadvantages of Walkthroughs:

The author could omit important details and overly highlight some of his
or her interests.

It's possible that the participants won't have many insightful questions to
ask.

3. Inspections:

The most formal and organized type of verification approach is an
inspection. These are distinct from walkthroughs and peer reviews. The
person giving the presentationrather than the document's author—has
prepared and read it. This makes them read and understand the text in
advance of the meeting. A team of three to six people is assembled, and
the team is headed by an objective moderator. Everyone in the group
engages honestly, energetically, and in accordance with the guidelines of
how such a review should be handled. Everyone may get a chance to voice
their opinions, potential flaws, and problematic regions. After the meeting,
the moderator's essential suggestions are incorporated into the final report.

Advantages of Inspections:

Finding potential errors or issues in documents like SRS, SDD, etc. may
be done extremely effectively using this method.

The critical inspections might also assist in identifying errors and
strengthening these documents, which might help in stopping the spread of
errors throughout the software development life cycle process.

Disadvantages of Inspections:

They take effort and discipline.

It costs more and calls for qualified testers.

1.11 BLACK BOX TESTING

We are aware that the Testing Technique outlines a method for selecting
input test cases for testing and analyzing test outcomes. Structural and
functional testing reveals a variety of testing-related aspects. Functional
testing or black box testing can be used when the features and operational
behavior of the product need to be tested. The benefit of this type of

Software Testing and
Quality Assurance

24

testing is that the system's internal operations are completely disregarded.

Figure 9. Black-box testing

As you can see in Figure.9, a black-box test excludes the program's
internal code and just considers the input and output of the software.The
goal of black box testing, also known as functional testing and behavioral
testing, is to ascertain whether a software fulfills its functional
requirements.During black box testing, creating effective test scenarios is
crucial. The tester must entirely rely on the analysis of the transformation
of the inputs to the outputs based on which they uncover software faults
because they are unaware of how the software functions within. This test
enables the tester to determine whether the software performs as intended.
Information on the functionalities of the program can be found in the
functional specifications or requirements.

Utilizing test monitoring tools is crucial for black box testing strategies.

This is required to keep track of previously run tests, prevent repetition,
and help with program maintenance.

1.11.1 Strategies for Black Box Testing

We want to identify as many flaws as we can in the fewest number of test
instances. We employ a few tactics, some of which will be covered in this
subsectionto achieve this goal.

1. Boundary Value Analysis:

It is the often employed "black-box" testing, which also serves as the
foundation for "equivalence testing." Boundary value analysis uses test
scenarios that have extreme values for the test data to evaluate the
software. It is used to find the defects or errors brought on by the
limitations of the input data. Errors frequently happen at boundary points.
Therefore, testing becomes more effective and the likelihood of
discovering problems also rises if test cases are created for boundary
values of the input domain.

Example: The data should be between 1 to 100, the valid boundary points
foe checking will be -1,1,100 and 101.

Introduction to Software
Testing

25

2. Equivalence partitioning:

We don't want to create multiple test cases that examine the same
component of our application in order to reduce testing expenditures. A
good test case reveals a new class of faults than previous test cases have.

A technique for minimizing the amount of test cases that must be created
is equivalence partitioning. The goal is to divide the input domain of the
system into a number of equivalence classes, each of which functions
similarly, so that if a test case in one class encounters an error, other test
cases in that class would likewise encounter that error.

3. Decision Table Testing:

This method generates test cases based on numerous potential outcomes.
In order to pass the test and deliver accurate output, it takes into account a
number of test cases in a decision table structure. When there are
numerous input options and choices, it is desirable. Decision tables are
used to store complex business rules that must be tested before being
implemented in a program.Each column in the table represents a particular
arrangement of input criteria and is referred to as a rule. Every rule should
be turned into a test case.

4. Acceptance Testing:

The customer creates the acceptance test cases. Contracts between the
client and the development company for custom software frequently
indicate that if the customer's acceptance test cases are not passed, they
may refuse to accept delivery of the product.The team occasionally
receives the customer's acceptance test cases, which offers them a clear
objective to work toward together. Other instances, the client runs the
acceptance test cases after obtaining the code but concealing them from
the developers.Working openly and together to create the acceptance test
cases is something which is far more beneficial for the customer and the
development team. The development team and the customer then share a
common understanding of what the software must look like for the
customer to be satisfied.

5. Graph-Based Testing:

His method creates a connection between logical input known as causes
and related actions known as the result. With the use of Boolean graphs,
the causes and consequences are displayed. The actions listed below are
carried out:

Software Testing and
Quality Assurance

26

Identify the causes (inputs) and effects (outputs).

Create a cause-and-effect diagram.

Create a decision table from the graph.

Create test cases from decision table rules.

1.11.2 Advantages of Black Box Testing:

The advantages of Black Box testing are as follows:

1. It is simple to write test cases from the viewpoint of an end user, and
testers are not required to understand how the software functions
within.

2. Black box testing, which is done from the viewpoint of the user, helps
to highlight any ambiguities or contradictions in the requirements.

3. The test cases can be created as soon as the product specification is
finished.

4. The testers spend little time examining the internal interfaces because
they are primarily concerned with the Graphic User Interfaces (GUI)
for output. As a result, creating test cases is simple and rapid.

1.11.3 Disadvantages of Black Box Testing:

The disadvantages of Black Box testing are as follows:

1. Bugs may go unnoticed since this form of testing cannot be
concentrated on particular functional areas that may be quite
complicated.

2. Only a tiny subset of potential inputs can be tested by a tester, and it is
very impossible to test every potential input stream.

3. If specifications are not precise and unambiguous, it is quite
challenging to create test cases.

4. If the tester is unaware of the test cases the programmer has already
tested, things like needless repeating of test inputs may happen.

1.11.4 Key practices while performing Black Box Testing:

This chapter provided several useful pointers for black box testing. The
essential elements of effective black box testing are outlined below.

1. Always test frequently and promptly.

2. When creating your test cases, follow the four-item test case template:
ID, Description, Expected Results, Actual Results.

3. Instead of testing for what the programmer intended, you should test
for what the customer expects the program to perform. It is

Introduction to Software
Testing

27

recommended to perform black box testing by someone who has a
recent, unbiased understanding of the client's requirements.

4. Give specific instructions for how the tester should produce the desired
input conditions and how the software should react in the test case.

5. Be clear in this documentation so that other testers besides you can use
the test case's instructions to execute the exact same test case. These
instructions will be crucial, particularly if a programmer has to
recreate a failure.

6. Encourage the consumer to participate in acceptance testing in a
collaborative manner.

7. To control the quantity of test cases performed, use equivalence class
partitioning. The same flaw will be visible in all test cases belonging
to the same equivalence class.

8. Find the very frequent bugs that hide in crevices and gather at
boundaries using boundary value analysis.

9. Black box test scenarios only expose the signs of flaws when they
uncover failures. You must employ your investigative abilities to
identify the flaw in the code that resulted in the failure.

10. Use decision tables to keep track of the intricate business rules that the
system must implement and test.

This chapter taught us that comprehensive testing is not practical.
However, there are effective software engineering techniques for building
test cases that can optimize your likelihood of finding as many flaws as
possible with a fair amount of testing, such as equivalence class
partitioning and boundary value analysis. It's also advantageous to test the
integrated code and integrate code as frequently as feasible. We can isolate
bugs in the new code in this way, detect them quickly, and effectively fix
them. The advantages of working together with a customer to create the
acceptance test cases and automate their execution to create compile-able
and executable documentation for the system were the final lesson we
learned.

1.12 WHITE BOX TESTING

Glass box testing is another name for white box testing. The tester
concentrates on the software code's structure throughout this exam. To
verify the software code's logical operation, the tester creates test
cases.Software engineers can create test cases that exercise independent
paths inside of modules or units, logical decisions on both their true and
false sides, loops at their boundaries and within their operational bounds,
and internal data structures to test their validity using the white-box testing
techniques

Software Testing and
Quality Assurance

28

Figure 10. White Box Model

Each software module is individually tested in white box testing. In
addition to testing each software module individually, the tester must
create test cases that precisely simulate how the modules will interact with
one another when the product is run. At the source code level, all tests are
executed. The tester examines every aspect of the code, including its
effectiveness, branching statements, internal logic, interfaces with external
hardware, memory management, code readability, and other factors.
Therefore, in order to cover the internal workings of the program, the test
cases must be carefully designed.

1.12.1 Strategies for White Box Testing

1. Statement coverage:

The goal of this method is to visit each sentence at least once. Each line of
code is therefore tested. Every node in a flowchart needs to be traveled
through at least once. It is easier to identify problematic code because
every line of code is covered.Using this method, we can determine what
the source code should and shouldn't be doing. It can also be used to
examine the consistency of the program's various pathways and the quality
of the code. This technique's primary flaw is that we are unable to test the
false condition in it.

Statement Coverage can be calculated as follows:

Examples:

Consider the following code. What will be the Statement coverage for the
below cases.

Case 1: a = 5, b=2

Case 2: Let a=2, b=5

Introduction to Software
Testing

29

Case 1: Let a = 5, b=2

No. of statements executed: 5

Total statements in the code: 7

Statement coverage: 71%

Case 2: Let a=2, b=5

No. of statements executed: 6

Total statements in the code: 7

Statement coverage: 85.20%

2. Branch Coverage:

This method involves creating test cases that traverse every branch from
every decision point at least once. Every edge in a flowchart needs to be
traveled along at least once.

In order to make sure that the program is reliable and that all potential
routes through the application have been adequately tested, branch
coverage testing is crucial. We will examine branch coverage testing in
more detail in this post, including what it is, how it operates, and its
significance.

Branch coverage can be calculated as follows:

Software Testing and
Quality Assurance

30

Examples:

Consider the following code. What will be the Branch coverage?

Let’s draw a flowchart.

Consider the following code. What will be the Statement coverage for the
below cases.

The smallest number of pathways necessary to cover all the edges must be
identified in order to determine branch coverage.

Case 1: traversing through “Yes “decision, the path is 1-2-4-5-6-8 but
edges 3 and 7 are not covered in this path.

Case 2: To cover the edges 3 & 7 as these are not covered in the first step,
we have to traverse through “No” decision. In the case of “No” decision
the path is 1-3-5-7.

Introduction to Software
Testing

31

So by traveling through these two paths, all branches have been covered.

Branch Coverage is 2.

3. Condition Coverage:

Condition coverage is a proportion of the program's Boolean sub-
expressions that have been evaluated in test cases as having either a true or
false result. The results of each of these sub-expressions are measured
separately by condition coverage. You may be sure that each of these
subexpressions has been separately verified as true and false by using
condition coverage.

1.12.2 Advantages of White Box Testing:

The advantages of white box testing are as follows:

1. Code lines that are excessive or unnecessary and may cause
undiscovered bugs can be cut out.

2. Testing is done at the code level, hence it aids in code optimization.

3. Since the tester is familiar with internal coding, creating test cases to
adequately test the product is fairly simple.

1.12.3 Disadvantages of White Box Testing:

The disadvantages of white box testing are as follows:

1. It is virtually impossible to inspect every line of code for hidden faults
or errors that could cause the software to malfunction.

2. This test takes a long time to complete for applications that are
complicated.

3. Because skilled testers are needed to do this test, the expense goes up.

1.12.4 Key practices while performing Black Box Testing:

This chapter provided several useful pointers for white box testing. The
essential elements of effective black box testing are outlined below.

1. Write enough white box test cases to at the very least cover all of your
statements.

2. Get the highest level of decision/branch and condition coverage
possible.

3. Draw the flow diagram for a section of code until you are more
comfortable calculating cyclomatic complexity.

4. The study of control flow-based unit testing should be done using an
automated coverage monitor.

Software Testing and
Quality Assurance

32

1.13 COMPARISON OF BLACK BOX TESTING WITH
WHITE BOX TESTING

1.14 LET US SUM UP

We discussed software testing and quality management in this chapter. All
software engineers today need to be familiar with the principles and
practices of software testing. The ideas in this chapter will likely be
applied frequently while testing software. The activities of a test engineer
are described in this chapter, along with several critical phases of a SDLC
(Software Development Lifecycle). The two steps of verification and
validation provide more detailed insights into testing process. The
fundamental concept of black box and white box testing is also explained
in the later part of this unit. Testing takes up roughly 70% of development
time. In this chapter, we examine this, and many more intriguing concepts
related to testing and quality.

1.15 LIST OF REFERENCES

1. Myers, G.J., Badgett, T., Thomas, T.M. and Sandler, C., 2004. The art
of software testing (Vol. 2). Chichester: John Wiley & Sons.

2. Kaur, Manpreet. "Software Testing and Quality Assurance." (2012).

3. Ammann, Paul, and Jeff Offutt. Introduction to software testing.
Cambridge University Press, 2016.

4. Jorgensen, Paul C. Software testing: a craftsman's approach. Auerbach
Publications, 2013.

Black Box Testing White Box Testing

1. It is also called as Functional
testing

1. It is also called as Structural
Testing

2. It uncovers different classes of
errors.

2. It mainly focuses on errors
related to internal logic

3. It is mostly applied in later
stages of testing

3. It is mostly applied in earlier
stages of testing

4. Control structure of a program
is not considered.

4. Control structure of a program

is considered.

5. It is called as “testing in the
large”.

5. It is called as “testing in the
small”.

6. It consists of the testing carried
out at the software interface.

6. The intricacies of the procedure

are carefully examined.

7. It finds errors such as
performance errors, interface
errors, incorrect or missing
functions

7. It finds errors related to

 internal logic and status of

 the program.

Introduction to Software
Testing

33

1.16 BIBLIOGRAPHY

1. Naik, Kshirasagar, and Priyadarshi Tripathy. Software testing and
quality assurance: theory and practice. John Wiley & Sons, 2011.

2. Froberg, Scott. "Software Testing by Yogesh Singh." ACM SIGSOFT
Software Engineering Notes 37.3 (2012): 36-36.

3. Mauch, Peter D. Quality management: theory and application. CRC
press, 2009.

4. William (Informático) Perry. Effective methods for software testing.
John Wiley & Sons, 1995.

5. Chopra, Rajiv. Software testing: a self-teaching introduction. Mercury
Learning and Information, 2018.

6. Chopra, Rajiv. Software testing: a self-teaching introduction. Mercury
Learning and Information, 2018.

1.17 UNIT END EXERCISES

1. What are the qualities of a good tester?

2. Give a brief history on Quality Revolution.

3. Explain the 5 levels of CMM model.

4. Explain Shewhart cycle.

5. What are the guidelines for designing a test case?

6. Explain SDLC.

7. Briefly explain strategies of white box testing.

8. Calculate the statement coverage if the number of statements
executedis 10 and total statements in the code are 15.

9. State the advantages and disadvantages of black box testing.

10. Compare black box testing and white box testing.

34

2
SOFTWARE QUALITY ASSURANCE

Unit Structure :

2.0 Objectives

2.1 Introduction

2.2 Quality Concepts

2.2.1 What Is Software Quality?

2.2.2 Defect In Software

2.2.3 Software Quality Views

2.2.4 Software Quality Requirements

2.3 SQA Activities

2.4 Software Reviews

2.4.1 Formal Technical Reviews

2.4.2 Peer Reviews:

2.5 Statistical Quality Assurance

2.6 Software Reliability

2.7 The ISO 9000 Quality Standards

 2.7.1. Principles of ISO 9000

2.7.2. Advantages Of ISO 9000

2.8 Six Sigma

2.8.1 Characteristics If Six Sigma

2.8.2 Six Sigma Methodologies

2.9 Quality Improvement

2.9.1. Pareto Chart

2.9.2 Scatter Diagram

2.9.3 Cause-and-Effect Diagram

2.9.4 Run Chart

Software Quality Assurance

35

2.10 Quality Costs

2.10.1 Types of Quality Costs

2.10.2 Quality Cost Measurement

2.10.3 Quality Cost in Decision Making

2.11 Let Us Sum Up

2.12 List Of References

2.13 Bibliography

2.14 Unit End Exercises

2.0 OBJECTIVES

After completion of this module, you will learn:

 What is Software Quality Assurance and why it is needed?

 What procedures, techniques, and activities are involved in software
quality assurance?

 The current SQA practices and standards.

 Pareto diagrams, cause-effect diagrams, scatter diagrams, run charts.

 Quality costs, types of quality costs

2.1 INTRODUCTION

In this unit, we are going to study Software Quality Assurance (SQA).
Software quality assurance (SQA) is a tough accomplishment. While
standards clarify how to maximize performance, Quality Assurance
Engineers are largely allowed to make practical decisions about how to
achieve the SQA. The purpose of this study is to understand SQA’s
importance in delivery of a Software.

Individuals create, maintain, and use software in a wide range of
circumstances. Software is created by students in their classrooms,
enthusiasts join open-source development teams, and professionals
produce software for a variety of industries, from aerospace to banking.
Each of these distinct groups will need to address quality issues that
develop in the software they are using. This chapter will state the SQA
terms, highlight the source of errors in software and discuss software
engineering practices to be followed depending on the kind of working
sector.

Each profession has a set of guiding principles which are to be followed
by the professional. To be a professional individuals should be aware of
these principles or have work experience for the same.To achieve Quality
Assurance for a software, individual should have a good understanding of,

Software Testing and
Quality Assurance

36

1. Software quality fundamentals

2. Software Quality Management Processes

3. Practical considerations

4. Software Quality tools

2.2 QUALITY CONCEPTS

Software quality does not have a single, all-encompassing definition.
This is due to the complexity brought on by the three or more parties –
the customer, developer, and stakeholders – who are impacted by the
quality of software.

Some people think software quality evaluations should focus on client
happiness, but it is not necessary that the quality that the client wants
meets the other standards.

2.2.1 What is Software Quality?

Let's say that either individually or as a group, we create a product.
Because this product is being created to address a problem that exists in
nature, there are consumers that are interested in buying our product as
they are having similar issues. Our product is fixing the issue; however,
it is enough to sell the product to the user. We must guarantee the quality
of your product to the consumers. We do that by informing the consumer
about tests we performed against the factors that assure us the product
being fault free.

Similarly, when software is built to solve a problem, we need to assure
its quality to end-users. Software that solves the end-user’s problem but
ends up giving error or vulnerable to attackers or crashing the user’s
system, etc. We call it bad quality software. Therefore, good quality
software is tested against the SQA standards to ensure its quality. The
standards are declared by ISO (International Organization for
Standardization) and other organizations which certify that our software
follows the standard by clearing the tests and it is good quality software.
These are the officially certified software the consumers prefer to use as
they make the least compromise to their systems as compared to the non-
certified ones.

The software quality is defined as healthy software which gives almost
no error, least vulnerable to attackers, tested and certified under the SQA
standards and solves the problem efficiently with maximum accuracy.

To sustain the software quality, the software should not cause incidents
like,

1. The system crashed during production.

2. The developer made an error.

Software Quality Assurance

37

3. We examined the test plan and discovered a flaw.

4. We discovered a bug in a program.

5. The system failed.

6. The client expressed concern over a computation error in the
payment report.

7. The monitoring subsystem was said to be experiencing a problem.

2.2.2 Defect in Software

Software defect that degrades the software quality are caused by different
factors. They can be causeddue to ignored use cases or exceptional cases
occurring.

Figure 1. Software Defects

Figure 1 shows the software defects caused by humans, errors during
development, and new environment defects. Firstly, the software defects
are inserted by humans which we state as the development errors which
can be observed and fixed before delivering to the consumer by
following SQA standard tests. Secondly, the defects are undetected
before deployment as they are caused by ignorance testing through
different use cases. Lastly, the defects caused when running the software
in a different client environment. Example: if the client tries running the
software with low RAM the system crashes. Therefore, different
environments have different factors that cause software failure.
However, the Errors can be tackled before deployment, defects can be
fixed after testing it on production environment and the failures are
exceptional factors occurring can be solved with next software upgrade.

Every stage of the software development life cycle has the potential to
introduce errors, including those in the requirements, code,
documentation, data, and tests.

Human error on the part of users, clients, analysts, designers, software
developers, testers, or testers is nearly always the root of the problem.
Everybody involved in the software engineering process will need to be
able to use a classification of the sources of software error by category
that is created by SQA.

Software Testing and
Quality Assurance

38

Here are eight common error-cause categories as an illustration:

1) issues with defining requirements

2) maintaining effective client-developer communication

3) deviations from specifications

4) errors in architecture and design

5) errors in coding (including test code)

6) non-compliance with current processes/procedures

7) insufficient reviews and tests

8) errors in documentation.

2.2.3 Software Quality Views

Development and purchase of software products are influenced by a
variety of factors.These considerations include user wants and
expectations, manufacturer considerations, a product's intrinsic qualities,
and perceived worth. It's crucial to look at quality from a wider angle to
fully understand it. This is since the idea of quality predates the creation
of software.

Figure.2 displays the Software Quality Views. They are as follows:

Figure 2. Software Quality Views

1. Transcendental Viewpoint: According to the transcendental
perspective, quality is something that can be identified via personal
experience but is not formally defined. It is believed that quality is an
ideal that cannot be clearly defined since it is an ideal that is too
complex. A high-quality item, however, is noticeable and distinct. No
attempt is made to convey the transcendental view using concrete
examples due to its philosophical nature.

2. User Viewpoint: The degree to which a product satisfies a user's
needs and expectations is considered by the user perspective. The
service clauses in the sales contract have an impact on quality in
addition to how well a product will perform. In this viewpoint, a user
is worried about a product's suitability for use. This view has a unique
character. A product is deemed to be of good quality if it meets the

Software Quality Assurance

39

needs of a sizable number of clients due to the personalized nature of
the product’s view. Finding out which product features customers
value highly is useful.

3. Manufacturing Viewpoint: The manufacturing view originated in
manufacturing-related industries, such as the electronics and
automotive industries. This perspective sees quality as meeting
standards. Any deviance from the established standards is considered
as lowering the product's quality. The manufacturing perspective
places a lot of importance on the idea of process. Manufacturing
should be done "right the first time" to trim down on development
and maintenance costs. Nevertheless, there is no assurance that
adhering to process norms would result in high-quality products.
Some challenge this theory with the claim that conforming to a
process can only result in uniformity in the product and that it is
therefore possible to create poor products consistently. But product
quality can be recursively enhanced.

4. Product Viewpoint: If a product is made with good internal
properties, it will also have good outward attributes, according to the
main principle of the product view. The product view is appealing
because it creates a chance to investigate causal linkages between a
product's internal attributes and exterior qualities. According to this
perspective, a product's current quality level reveals whether it has
measurable product attributes. It is possible to evaluate product quality
objectively.

5. Value-Based Viewpoint: The value-based perspective represents a
combination of two concepts: excellence and worth. Quality is a
state’s excellence, and value states its worth. The central idea in the
value-based view is how much a consumer will pay for a certain level
of quality. The reality is that quality is meaningless if the product does
not give out financial profits to the organization. Essentially, the value-
based view represents a trade-off between finance and quality.

2.2.4 Software Quality Requirements

The software quality can be assured, if it follows software requirements
management, elicitation,analysis, specification, and validation. Figure 3
states the types of requirements a software should satisfy.

Figure 3. Software Requirements

Software Testing and
Quality Assurance

40

The Functional requirement is a possible use case for software to achieve.
The constraint requirements are the obligations the software needs to
prove wrong. And the Non-functional requirements quality are the
requirements from which we can prioritize the important ones and rest can
be satisfied in later versions.The requirements should be properly
documented and communicated to all shareholders of the software.

A good quality software requirement satisfies the following criteria:

1. It should be correct, complete, and clear for each stakeholder group,
including the client, the system architect, testers, and those responsible
for system maintenance

2. it is said to be of high quality.

3. clear, meaning that all parties involved are giving the same
interpretation of the requirement

4. It should be precise, consistent, and feasible to achieve.

5. independent of the design

6. independent of the implementation technique

7. verifiable and testable

8. may be traced back to a business need

9. unique.

2.3 SQA ACTIVITIES

A Quality Management System (QMS), which is made up of numerous
components and is a part of the larger system of software development
that includes project, process, and product management systems, ensures
SQA.

The Software Engineering Institute (SEI) suggests a series of actions
that, when successfully carried out, guarantee the quality of the design.
These actions consist of:

1. Quality assurance planning

2. Data gathering on key quality defining parameters.

3. Data analysis and reporting

4. Quality control mechanisms

The most important criterion for SQA is that it be a separate group in
charge of quality within the company. They establish the objectives,
benchmarks, and systems (mechanisms) for SQA. The SQA team's
responsibility is to help the software development team manage the
software's quality requirements. Every piece of software has quality

Software Quality Assurance

41

objectives that the customer has set. The development team must meet
these quality objectives by implementing a series of procedures or
making sure that the consumer receives quality.

SQA operations follow the standard procedures of quality management.
These tasks serve as monitoring, tracking, evaluations, audits, and
reviews to make sure the organization's quality policy is followed.
Independently completing these tasks and providing the development
team with feedback.The development team oversees providing the
customer with the necessary quality. The development team is
responsible for implementing quality policy in terms of goals, objectives,
practices, checks, controls, documentation, and management input. For
instance, the quality policy mandates the creation of a test plan for both
the early stages of development and the final stages. SQA can apply this
policy using several tools such as auditing and inspection.

Verify adherence to the standards and procedures outlined in the QA
policy; discrepancies are corrected. Ascertain that deviations are
recorded, documented, and entered the QA database for reference. To
make sure that standards are met, and consumer quality is guaranteed,
design and architecture are examined. Activate change management.
Gather information on numerous observations made during the auditing,
inspection, and review processes to create a QA database and improve
various standards.

2.4 SOFTWARE REVIEWS

A process or meeting during which a software product is examined by a
project staff, managers, users, customers, user representatives, or other
interested parties for comment or approval," according to the definition
of a software review.

The term "software product" here refers to "any technical document or
partial document, produced as a deliverable of a software development
activity" and can refer to contracts, project plans and budgets,
requirements documents, specifications, designs, source code, user
documentation, support and maintenance documentation, test plans, test
specifications, standards, and any other kind of specialized work product.

Reviews of software can be categorized into three groups:

 Software peer reviews are conducted by one or more engineers, to
evaluate the technical content and/or quality of the work.

 Software management reviews are carried out by management
representatives to assess the state of the job completed and to make
choices about subsequent actions.

 Software audit reviews are carried out by individuals who are not
involved with the software project, and they assess how well the
project complies with the requirements, standards, contracts, and
other criteria.

Software Testing and
Quality Assurance

42

 Peer Review Types:

 Code review is systematic analysis of computer source code,
frequently done as peer review.

 Pair programming is a form of code review in which two developers
work on the same piece of code at the same time.

 Inspection is a peer review that is conducted in a very rigorous
manner, with each reviewer using a specific process to look for
errors.

 Walkthrough is a author guides members of the development team
and other interested parties through a software product in a sort of
peer review in which the participants comment on flaws and offer
questions.

 Technical review is a form of peer review in which a group of
knowledgeable individuals assesses the software product's ability for
its intended purpose and identifies deviations from requirements and
standards.

2.4.1 Formal Technical Reviews

A software quality assurance task carried out by software engineers is
formal technical review (FTR).

FTR's formal technical review (FTR) goals are: These include:

 For any representation of the software, it might be useful to find
errors in logic, function, and implementation.

 FTR checks that the software satisfies predetermined requirements.

 To make certain that software is represented in accordance with
established standards.

 Reviewing the consistency of software that is being developed in a
uniform way is helpful.

 To improve project management.

Additionally, the goal of FTR is to give junior engineers a better
opportunity to watch the analysis, design, coding, and testing process.
Additionally, FTR promotes backup and continuity so that users can
become familiar with software components they might not have
otherwise encountered. In reality, FTR is a class of reviews that also
includes small-group technical evaluations of software during
walkthroughs, inspections, and round-robin reviews. Each FTR is run as
a meeting, and it can only be called successful if it is well-organized,
managed, and attended.

Software Quality Assurance

43

Everyone who attended FTR must make a decision after the review.

Accept the product exactly as it is.

Reject the project because of a significant error (after it has been fixed, a
different app has to be approved), or

Accept the product provisionally (there are some minor problems that
should be fixed, but no more review is necessary).

2.4.2 Peer reviews:

A team of three to five people works best for peer reviews. The addition
of one to three more participants is permitted in some circumstances.

All of the attendees ought to be the software system creator and author's
peers.A recommended peer review team includes:

 A review leader

 The author

 Specialized professionals.

1. The review leader:

The role of review leader (“moderator” in inspections, “coordinator’ in
walkthroughs) differs only slightly by peer review type. Candidates for
this position must:

 Be knowledgeable about how projects of this type are developed, as
well as their technologies. It is not necessary to have prior knowledge
of the project under consideration.

 come from a different project team.

 Keep in touch with the author and the development team in a positive
manner.

 Show that you have experience planning and running business
meetings.

2. The author:

Each method of peer review requires participation from the author.

3. Specialized professional:

The specialized professionals participating in the two peer review
methods differ by review. For inspections, the recommended
professionals are:

 Designer: A designer is the systems analyst who oversaw the
software system under review's study and design.

Software Testing and
Quality Assurance

44

 Coder: A professional who is well-versed in coding activities,
preferably the team leader for the specified coding team, is referred
to as a programmer or implementer.

 Tester: A tester is a skilled professional—ideally the team leader—
who concentrates on identifying design flaws that are typically found
during the testing stage.

2.5 STATISTICAL QUALITY ASSURANCE

Software quality can be attained through competent analysis, design,
coding, and testing, as well as by using formal technical reviews, a
testing strategy, better control of software work products and the changes
made to them, and the use of accepted software engineering standards.
Additionally, a wide range of quality criteria can be used to define
quality, and quality can be (indirectly) quantified using a number of
different indices and metrics.

Every programming language has a syntax and semantics that can be
defined, and attempts are being made to create a similarly rigorous
method for describing software requirements. Applying mathematical
proof of correctness to show that a program responds perfectly to its
specifications should be possible if the requirements model
(specification) and the programming language can be described in a
rigorous way.

1. The first step in statistical SQA is the collection and classification of
data on software problems.

2. Attempts are made to identify the root cause of each issue, such as
non-conformance with specifications, a design flaw, a standard
violation, or poor customer communication.

3. Isolate the 20% (the "vital few") using the Pareto principle, which
states that 80% of faults may be attributed to 20% of all potential
causes.

4. Once the essential few reasons have been found, address the issues
that led to the faults.

An important step towards the development of an adaptive software
engineering process, in which changes are made to strengthen the
process's error-introducing components, is represented by this very
straightforward idea.

Software statistical quality assurance strategies have been found to
significantly increase quality. In certain instances, software organisations
have used these strategies to reduce faults by 50% annually.

Software Quality Assurance

45

2.6 SOFTWARE RELIABILITY

Reliability is a very broad notion that can be used whenever someone
anticipates something or someone else to "behave" in a specific manner.
One of the measures used to assess the quality of a software system is
reliability. It is conceivably the most crucial aspect of a product's quality
to consider. In terms of system operation, reliability is a user-focused
quality factor that considers how frequently systems fail. Intuitively, a
system is thought to be more reliable than one that fails more frequently
if users only sometimes experience system failure.

The perception of a system's reliability decreases when they notice more
and more system failures. In an ideal world, users of software systems
would never experience a system failure, deeming the system to be
extremely reliable. Considering that real-life systems are intrinsically
complicated, creating a "correct" system—that is, a fault-free system—is
a challenging endeavourin and of itself. When real-world conditions are
taken into account, the task of developing a fault-free system becomes
increasingly challenging.

In the case of software system development, for instance, businesses may
not always have the resources necessary to create a highly reliable
system, even in the best-case scenario when they have a team of highly
qualified and experienced employees. A corporation may not be able to
make an effort to create a "correct" system if they use the market
window concept. A market window is seen as the window of opportunity
for the launch of a product before it is surpassed in terms of capabilities
or price by a different offering from a rival vendor. Companies may
compromise on reliability in order to reduce costs and achieve delivery
deadlines due to economic factors.

Users can tolerate certain failures and there are an unknown amount of
defects in a delivered system, hence it is ideal to describe system
reliability as a continuous variable rather than a Boolean variable. Higher
levels of reliability are typically the result of more work put into the
development process. Conversely, less work results in less reliable
systems. As a result, reliability can be used to determine the significance
of trends, define objectives, and forecast when those objectives will be
met. Developers might be curious about how a particular development
method, the duration of system testing, or a design review technique
affects software reliability, for instance. Developers may be curious
about the frequency of system failure in a particular operational
environment.

Software maintenance entails modifying the system in a variety of ways,
including by changing the requirements, the design, the source code, and
the test cases. The software experiences a period of instability while
performing those modifications. The system's decreased reliability is the
result of the instability. When a system is maintained, its reliability level
declines since new problems could be created as a result of all those
modifications. It makes intuitive sense that less changes made to a

Software Testing and
Quality Assurance

46

system would result in less degradation of its present reliability level. On
the other hand, if too many changes are made to the system at once, the
level of reliability may be dramatically reduced. As a result, the degree
of change how much reliability one is willing to give up for the time
being determines what changes should be made to a product at a given
time.

2.7 THE ISO 9000 QUALITY STANDARDS

The ISO has created a number of standards known as the ISO 9000
collectively. With its headquarters in Geneva, Switzerland, the ISO was
established in 1946. In the areas of quality assurance and quality
management, it creates and advances worldwide standards. The ISO
9000 standards are typically applicable to all tangible goods produced by
human labour, such as spices and software. Some brands of rice and
spices that are used in everyday cooking even claim to be ISO 9000
certified. Every 5-8 years, or so, the ISO 9000 standards are reviewed
and updated. The ISO 9000:2000 designation refers to the most recent
ISO 9000 standards, which were published in 2000. The ISO 9000:2000
standard has three parts, which are as follows:

ISO 9000 : Fundamentals and vocabulary

ISO 9001 : Requirements

SO 9004 : Guidelines for performance improvements

Now that ISO 9002 and ISO 9003 are no longer included in ISO
9000:2000, we would like to remind the reader that they were once a part
of ISO 9000:1994. The quality system model for quality assurance in
manufacturing and installation was covered by ISO 9002, whilst final
inspection and testing were covered by ISO 9003.

2.7.1 Principles of ISO 9000

1. Customer satisfaction is the key to an organization's success. An
organization needs to consistently comprehend its clients' wants.
Understanding the needs of the consumer is essential for doing so. The
mere satisfaction of client demands is insufficient. Instead, businesses
must strive to exceed client expectations. One can better grasp
consumers' implicit expectations and unmet requirements by getting to
know them. It is important for individuals working in many
departments of an organization, such as marketing, software
development, testing, and customer service, to have a common
understanding of the consumers and their needs.

2. Leadership: Leaders determine the course that their organisation

should take, and they are responsible for clearly communicating this
course of action to every party involved. A cohesive understanding of
the organisational direction is necessary for every individual inside a
company. Employees will struggle to know where they are going if

Software Quality Assurance

47

they do not have a clear sense of the organisational direction. Setting
ambitious yet doable goals and objectives is a leadership requirement.
Leadership should recognize employee contributions. Leaders foster a
supportive environment so that the team members can work together to
achieve the organization's objective.

3. Participation of People: Organisations depend on people in general.
People are involved in decision-making at all levels and are informed
of the organisational orientation. People are given the chance to hone
their strength and put their skills to work. People are urged to use
creativity when carrying out their duties.

4. Process Approach: The concept of process can be used to complete
important activities in a number of ways that are advantageous. A
process is a set of steps that converts inputs into outputs. By making
the process clear, repeatable, and quantifiable, organisations may
create a plan that includes allocating resources and scheduling
activities. As a result, the organisation improves in efficiency and
effectiveness. Processes that are continually improved are more
effective and efficient.

5. Management with a systemic approach: A system is a collection of
interconnected processes. A system of interconnected processes can be
used to conceptualise a whole organisation. In the context of software
development, there are numerous processes that can be named. For
instance, obtaining customer requirements is a unique process
requiring specialised knowledge. Another unique technique is creating
a functional specification using the requirements as input. In an
organisation, processes are run sequentially and concurrently. People
are constantly engaged in one or more processes.

6. Continuous Improvement: Continuous improvement refers to the
periodic reviews of the processes involved in creating, for example,
software products to determine where and how they might be further
improved. Since no process can ever be perfect from the start,
continuous improvement is crucial to an organization's success. It is
normal to examine the procedures and look for improvements given
the independent changes occurring in many sectors, such as customer
perceptions and technologies. Lower maintenance and manufacturing
costs are the outcome of ongoing process advancements. Additionally,
ongoing advancements result in less discrepancies between expected
and actual behaviour

Organisations must establish their own guidelines for when to launch a
process review and specify the review's objectives.

7. Factual Approach to Decision Making: Facts, experience, and
intuition can all be used to inform decisions. Through the use of a
reliable measurement technique, facts can be acquired. The core of
measurement is the identification and quantification of parameters. It
is simpler to establish techniques to measure elements once they have
been quantified. Methods are required to verify the measured data and

Software Testing and
Quality Assurance

48

make the data accessible to those who require it. The measured data
must to be precise and trustworthy. Organisations can determine the
extent of process improvement by using a quantitative measurement
programme.

8. Relationships with suppliers that are mutually advantageous:
Companies rarely manufacture all the parts that go into their products.
Organisations frequently purchase parts and supporting systems from
outside vendors. The providers must be carefully chosen by the
organisation, and needs and expectations must be communicated to
them. The performance of the externally purchased goods should be
assessed, and the suppliers should be informed of the need to enhance
their goods and procedures. It is important to have a cooperative,
mutually beneficial relationship with the suppliers.

2.7.2. Advantages of ISO 9000:
It is generally accepted that effective quality management enhances
operations, frequently favorably affecting investment, market share, sales
growth, sales margins, competitive advantage, and litigation avoidance.
Wade and Barnes agree that the quality standards in ISO 9000: 2000 are
sound and that the standards "provide a comprehensive model for quality
management systems that can make any company competitive." Barnes
also cites studies by Lloyd's Register Quality Assurance and Deloitte
Touche that found ISO 9000 boosted net profit and that the expenses of
registration were recouped in three years, respectively. Implementing ISO
frequently results in the following benefits, according to the Providence
Business News:
1. Create a more efficient , effective operation
2. Increase customer satisfaction and retention
3. Reduce audits
4. Enhance marketing
5. Improve employee motivation, awareness, and morale
6. Promote international trade
7. Increase profit
8. Reduce waste and increases productivity

However, a large statistical analysis of 800 Spanish companies indicated
that simply registering for ISO 9000 makes little difference because most
interested organizations had already committed to quality management in
some way and were operating at par before registration.

More and more businesses are embracing ISO 9000 as a business tool in
today's economy, which is dominated by the service sector. Companies are
employing IO 9000 procedures to boost their productivity and profitability
through the use of clearly specified quality objectives, customer
satisfaction surveys, and a well-defined continuous improvement program.

2.8 SIX SIGMA

One of the most well-liked quality techniques currently is Six Sigma.
With only 3.4 faults per million units or operations (DPMO), it is the

Software Quality Assurance

49

mark that denotes "best in class." When properly used, this approach
yields impressive and noticeable increases in quality. Six Sigma methods
are currently being used in a huge range of organizations and in a huge
range of roles.

The technique is proven to be more than just a quality program, as seen
by its effectiveness at major corporations including Motorola, General
Electric, Sony, and Allied Signal. Why is Six Sigma being adopted by
these big businesses? What distinguishes this methodology from others?

The objective of Six Sigma is to increase profitability, not to reach six
sigma levels of quality. Prior to Six Sigma, enhancements made possible
by quality initiatives like Total Quality Management (TOM) and ISO
9000 frequently had no discernible effect on a company's net profits. In
general, these high-quality programs came into being gradually as a
result of unseen influence and intangible progress.

Six Sigma was created as a collection of procedures to enhance
manufacturing procedures and get rid of flaws, but its use was later
expanded to other kinds of corporate procedures as well. Any issue that
results in customer unhappiness is referred to as a defect in Six Sigma.

 Six Sigma stands for six standard deviation from mean (sigma is thee
Greek letter used to represent standard deviation in statistics).

 Six Sigma methodologies provide the techniques and tools to
improve the capability and reduce the defects in any process.

 Six Sigma strives for perfection. It allows for only 3.4 defects per
million opportunities (or 99.999666 percent accuracy)

 Six Sigma maintains consistent output quality while reducing
variation and enhancing process performance. As a result, there are
fewer defects, higher revenues, higher-quality products, and happier
customers.

 The fundamental concepts and methods used in business, statistics,
and engineering are all incorporated into Six Sigma.

 The Six Sigma principle's goal is to produce goods and processes
with zero faults.

 The Six Sigma principle's goal is to produce goods and processes
with zero faults.

 It permits 4.4 mistakes for every million possibilities.

Software Testing and
Quality Assurance

50

Figure 4. Six Sigma Curve

2.8.1 Characteristics if Six Sigma:

Figure 5. Characteristics of Six Sigma

1. Statistical Quality Control: Six Sigma is taken from the Greek letter
?, which in statistics stands for standard deviation. The output quality
is evaluated using the standard deviation.

2. Methodical Approach: A systematic application method for DMAIC
and DMADV called Six Sigma can be used to raise manufacturing
quality. Design-Measure-Analyze-Improve-Control, or DMAIC, is an
acronym. Design-Measure-Analyze-Design-Verify is also known as
DMADV.

3. Fact and Data-Based Approach: The statistical and methodical
method shows the scientific basis of the technique.

4. Project and Objective-Based Focus: The Six Sigma technique is
used to concentrate on the circumstances and requirements.

Software Quality Assurance

51

5. Customer Focus: The core of the Six Sigma methodology is the
customer focus. The standards for quality improvement and control are
based on particular customer demands.

6. Teamwork Approach to Quality Management: In order to improve
quality, firms must organize using the Six Sigma approach.

2.8.2 Six Sigma Methodologies

The methodologies used in Six Sigma projects are as follows:

1. DMAIC:

DMAIC is used to enhance an existing business process and contains
five phases:

Define

Measure

Analyze

Improve

Control

2. DMADV:

DMADV is used to create new product designs or process designs and
also contains five phases:

Define

Measure

Analyze

Design

Verify

Figure 6. Six Sigma Methodologies

Software Testing and
Quality Assurance

52

2.9 QUALITY IMPROVEMENT

The strategy for methodically raising the standard of care is quality
improvement. To eliminate variance, generate predictable results, and
enhance outcomes for patients, healthcare systems, and companies, quality
improvement aims to standardize processes and structure.

2.9.1. Pareto Chart

The Pareto chart aids in prioritizing the most important issues for remedial
action or in focusing on specific problem areas.Based on the Pareto 80-20
rule, the Pareto chart. It suggests that 20% of the few significant causes or
factors—often referred to as the Vital Few—are responsible for 80% of
the issues or failures.And the remaining 20% of issues are the result of
80% of numerous trivial causes, also known as trivial many. As a result, it
provides us with data about the Vital Few from the Trivial Many.One of
the crucial basic 7 QC Tools, this tool is widely utilized in problem-
solving methodologies like 8D, PDCA, and Six Sigma.

Steps to make a Pareto Chart:

1. Record the data – Refer Check Sheet.

2. Order the data.

3. Label the vertical axis.

4. Label the Horizontal axis.

5. Plot the Bars.

6. Add up the counts.

7. Add a cumulative line.

8. Add title and Legends.

9. Analyze the Chart.

10. Interpret the results.

Software Quality Assurance

53

Benefits of Pareto Chart:

1. It is simple to create.

2. Helps understand a problem.

3. Helps to analyze Weighted cost of problem.

2.9.2 Scatter Diagram

In addition to Scatter Diagram, other names for it include Scatter Plot,
Scatter Chart, and Scatter Graph. To determine the link between the two
variables, a scatter graph is employed. Data with independent variables are
often represented along the horizontal X-axis, while data with dependent
variables are typically plotted along the vertical Y-axis. Controlled
parameters are another name for an independent variable. A positive or
negative correlation between the two variables is displayed. A positive
correlation exists if the distribution of the plotted dots is from lower-left to
upper-right. It is a negative correlation if the plotted dots are dispersed
from the upper left to the bottom right.

Because a scatter graph has two parameters that represent Cause and
Effect, it is comparable to a fishbone diagram. These two, though, are
utterly dissimilar.The cause-and-effect link is examined using the fishbone
diagram; however this relationship is not shown. In contrast, a scatter plot
makes it easier to see how the two variables are related.

Scatter plot correlation types:

There are five categories of scatter chart representation:

1. Scatter chart with Strong or High Positive Correlation.

2. Scatter chart with Strong or High Negative Correlation.

3. Scatter chart with Week or Low Positive Correlation.

4. Scatter chart with Week or Low Negative Correlation.

5. Scatter chart with Weakest or No Correlation.

1. Scatter chart with Strong or High Positive Correlation: The X
values increases and so the Y value also increases.

Software Testing and
Quality Assurance

54

2. Scatter chart with Strong or High Negative Correlation: The X
values decreases and so the Y value also decreases.

3. Scatter chart with Week or Low Positive Correlation: Value of x
increases, the value of y slightly increases but not in straight line.

4. Scatter chart with Week or Low Negative Correlation: Value of x
increases, the value of y slightly decreases but not in straight line.

Software Quality Assurance

55

5. Scatter chart with Weakest or No Correlation has no pattern or unclear
relations.

2.9.3 Cause-and-effect diagram:

It was designed by Kaoru Ishikawa. It resembles a skeleton of fish hence it
is also known as fishbone diagram. They are used to pinpoint the
numerous causes (factors) that contribute to a problem (effect). In the end,
it aids in identifying the problem's underlying cause, enabling you to
successfully identify the right remedy.

How to use it?

1. Identify the problem area that needs to be studied and note it at th
head.

2. Determine the primary causes of the issue. The labels for the fishbone
diagram's principal branches are as follows. Methods, materials,
equipment, personnel, policies, and procedures are a few examples of
these broad categories.

3. Determine logical alternatives to the primary reasons and add them as
branches to the main branches.

4. Investigate the major and minor causes more thoroughly using the
diagram you produced as a guide.

5. Make an action plan outlining your approach to solving the issue once
you have determined the core cause.

Software Testing and
Quality Assurance

56

Benefits of Fishbone diagram:

1. The emphasis is on causes rather than symptoms or presumptions.

2. Break problems down into little parts to identify the true core cause.

3. Involve more individuals and encourage teamwork.

4. Enhances the efficiency and performance of the team.

5. boosts understanding of the process.

2.9.4 Run Chart

A line graph of data plotted over time is called a run chart. You can
uncover trends or patterns by gathering data over time and charting it. Run
charts are unable to determine whether a process is stable since they do
not employ control limits. They can, however, demonstrate the procedure
in action. The run chart can be a useful tool early on in a project since it
shows crucial information about a process before you've gathered enough
information to establish trustworthy control limits.

Run charts show individual data points in chronological order. Run chart
use median value and apply rules for detecting special charts variation.

Creating a run chart:

1. Pick the data to track.

2. Gather data, 20-25 datapoints to check meaningful patterns over time.

3. Make a graph on which you can display your data as a function of time
(x axis, or horizontal line), using the y axis as the vertical axis.

4. Plot the data.

5. Interpret the chart.

Software Quality Assurance

57

2.10 QUALITY COSTS

The costs incurred to ensure that your product is of a high caliber are
referred to as quality costs. It entails guarding against, spotting, and
resolving any product problems. It's essential to make sure that your
product lives up to the customer's expectations, which goes beyond
simply improving its appearance. For instance, if someone buys a car for
very little money, they won't anticipate luxury seats or air conditioning.
But they'll be looking for the automobile to perform well. Here, quality is
defined as a functional vehicle as opposed to one that has opulent
amenities.

Companies must carefully measure and manage their quality costs since
they can have a big influence on their bottom line.Analysis of software
quality costs can focus SQA efforts on improving activities that
frequently fail and have high failure costs, depending on the specific
SQA technique being used, or, alternatively, on improving expensive
control activities. This analysis helps others learn from them and
replicate their success by focusing on the teams whose efforts keep their
quality expenses much below the average. At the same time, quality cost
analysis can assist in identifying teams whose ineffective quality
assurance efforts result in higher-than-average quality costs. The
outcomes can then be used to aid in team development.

2.10.1 Types of quality costs.

There are 6 types of quality costs.

1. Costs of prevention: Costs associated with preventing errors, such as
those associated with instructing and training the maintenance
personnel as well as with taking preventative and corrective measures.

2. Costs of appraisal: Costs associated with mistake detection, including
those associated with external teams, SQA teams, and customer
satisfaction surveys' reviews of maintenance services.

3. Costs of managerial preparation and control: Costs associated with
administrative actions taken to prevent errors, such as those associated
with creating maintenance plans, hiring a maintenance crew, and
monitoring maintenance performance.

4. Costs of internal failure: Costs associated with software failure fixes
that the maintenance staff started (before hearing from customers).

5. Costs of external failure: Costs associated with fixing software errors
brought on by consumer complaints.

6. Costs of managerial failure: Expenses of software failures brought
on by managerial decisions or inactivity, i.e., expenses of damages
brought on by a lack of maintenance staff and/or an improper division
of maintenance tasks.

Software Testing and
Quality Assurance

58

2.10.2 Quality Cost Measurement

Each business calculates its cost of quality differently. Organizations
frequently calculate the entire warranty costs as a proportion of sales to
measure the cost of quality. The Cost of Quality is examined externally
rather than internally by this method. A more thorough breakdown of all
quality costs is necessary for comprehension.

Cost of Quality (COQ) is calculated by adding COGQ and COPQ,

COGQ = Cost of Good quality

COPQ= Cost of Poor quality

Cost of Quality is categorized by Prevention, Appraisal, Internal Failure,
and External Failure.

The Cost of Good Quality is the total of Prevention Cost and Appraisal
Cost (COGQ = PC + AC).

The Cost of Poor Quality is the addition of Internal and External Failure
Costs (COPQ = IFC + EFC)

Hence, COQ can also be given by:

2.10.3 Quality Cost in decision making.

The organization should achieve financial success through all its
endeavours. Costs associated with quality can be used to support
improvements made to a good or service. Typically, the sponsor must
decide which initiatives will provide the maximum return on investment
before making investments in new machinery, supplies, or facilities. The
capacity to produce a wider variety of higher-quality items as well as
labour and manufacturing time savings are virtually usually considered in
these calculations. When analysing quality costs, especially those
connected to faults, the "higher quality" factor can be put into numbers. It
is crucial to calculate the costs associated with inspecting materials from
the time they are received through processing, organization, repair, and
trash, as well as the intangible expenses related to the delivery of non-
compliant goods or services to the client.

It's crucial to calculate the expenses of inspecting materials from the time
of their reception through their processing, organization, repair, and
disposal, as well as the intangible costs related to the delivery of non-
compliant goods or services to the client. Determining the true
profitability of a product or service requires making judgments based on
more thorough quality information, such as costs associated with product
evaluation.

Software Quality Assurance

59

Project reviewers can decide whether project funds represent a worthwhile
expenditure that will aid in the company's expansion once the quality
expenses have been established. It is advantageous to first identify
quality expenses and then quantify them since both quality and possible
cost savings are revealed. The quality costs of a corporation are improved
by maximizing its quality performance. Regardless of the kind of quality
measurement or quality improvement system used, all subsequent activity
must be informed by the knowledge and improved.

The Plan-Do-Study-Act circle proposed by Edward Deming is crucial in
this context. The organization should take action once the enhancements
have been designed and put into place to guarantee that future operations
will continue to operate at the new level of performance and at the same
level of lower quality costs. Managers can evaluate improvement
investments and their contributions to profits by determining quality costs.
The value of quality programs is directly correlated with how well they
can increase customer satisfaction and, eventually, the bottom line for the
business.

2.11 LET US SUM UP

In this unit we saw the importance of software quality. SQA shouldn't be
kept to just the development stage. Instead, it should be expanded to
include the lengthy years of service that follow the delivery of the
product. Incorporating quality concerns that are specifically relevant to
the software product expands the concept of SQA by incorporating
software maintenance activities.

We saw different charts and diagrams to improve the quality. The
software quality cost is also an important concept and it is not different
from other costs. Quality costs appear in each of the stages of the product
life cycle, as well as at all the operational levels of the company

2.12 LIST OF REFERENCES

1. Galin, D., 2004. Software quality assurance: from theory to
implementation. Pearson education.

2. Horch, J.W., 2003. Practical guide to software quality management.
Artech House.

3. Laporte, C.Y. and April, A., 2018. Software quality assurance. John
Wiley & Sons.

2.13 BIBLIOGRAPHY

1. Duncan, S., 2005. Software Quality Assurance: From Theory to
Implementation. Software Quality Professional, 7(3), p.42.

2. Naik, K. and Tripathy, P., 2011. Software testing and quality
assurance: theory and practice. John Wiley & Sons.

Software Testing and
Quality Assurance

60

2.14 UNIT END EXERCISES

1. Explain Software Quality Assurance (SQA) in brief?

2. What are the characteristics of the Six Sigma rule?

3. Calculate the cost of quality (COQ) if appraisal cost is $10,000, repair
cost $15,000.

4. Explain different categories of scatter diagram.

5. What are different types of quality costs? Explain.

6. Explain in brief about ISO 9000.

61

3
SOFTWARE TESTING STRATEGIES

Unit Structure

3.0 Objectives

3.1 Introduction: Strategic Approach to Software Testing

3.2 Unit Testing

3.2.1 Why Unit testing?

3.2.2 Unit testing tools

3.2.3 Unit testing techniques

3.2.4 How to achieve best results using Unit testing

3.2.5 Advantages of Unit testing

3.2.6 Disadvantages of Unit testing

3.3 Integration Testing

3.3.1 Guidelines for Integration Testing

3.3.2 Reason behind Integration Testing

3.3.3 Integration Testing Techniques

3.3.4 Types of Integration Testing

3.4 Validation testing

3.5 System testing

3.5.1 Types of System testing

3.5.2 Why is System testing important

3.6 Summary

3.7 List of References

3.8 Unit End Exercises

3.0 OBJECTIVES

 To get familiar with different strategies involved in software testing
 To get acquaint with the different types of testing involved in software

testing approach

Software Testing and
Quality Assurance

62

3.1 INTRODUCTION: STRATEGIC APPROACH TO
SOFTWARE TESTING

Software testing involves assessing a software application to see if it
complies with requirements and to spot any flaws. These are typical
testing techniques:

1. Black box testing - Tests the software's functionality without
examining the internal code layout.

2. White box testing - Examines the software's internal logic and code
structure.

3. Unit testing verifies that individual software modules or components
are operating as intended.

4. Integration testing verifies that various software components are
integrated and function as a system.

5. Functional testing - Verifies that the functional specifications of the
software are satisfied.

6. System testing verifies that the entire software system satisfies the
required specifications.

7. Acceptance testing verifies that the software satisfies the requirements
of the client or end user.

8. Regression testing verifies that the programme has not developed new
flaws after updates or adjustments have been done.

9. Performance testing - This checks the software's speed, scalability, and
stability to see how it performs.

10. Software is put through security testing to check for flaws and make
sure it complies with security standards.

Software testing is a form of investigation to determine if there are any
flaws or defects in the software so that they can be fixed to improve the
software's quality and determine whether or not it satisfies the criteria.

Glen Myers claims that the following goals of software testing:

 Testing is the process of looking at and examining a programme to
determine whether there is an error or not and whether it satisfies the
requirements or not.

 A good test case and successful testing are both indicated by a large
number of errors that were discovered throughout the test.

 A successful test case will reveal an undiscovered error that hasn't
been found yet.

The fundamental goal of software testing is to create the tests in such a
way that they quickly and efficiently identify all types of mistakes,

Software Testing Strategies

63

reducing the amount of time needed for software development. The
overall plan for software testing entails:

Figure 1: Overall strategy for software testing

1. Prior to testing, it's important to recognise and precisely define the
product requirements in terms of numbers: There are various
qualities of software, such as maintainability, which refers to the
capacity to update and alter, likelihood, which refers to the capacity to
identify and quantify any risk, and usability, which refers to the ease
with which customers or end-users may use it. To ensure accurate test
results, all these distinguishing characteristics should be listed in a
specific order.

2. Clearly and specifically stating the testing objectives: The efficacy
of the software's capacity to reach the target, any failure to meet
criteria and carry out functions, and the cost of defects or errors, which
refers to the expense involved in correcting the error, are a few
examples of testing objectives. The test strategy needs to explicitly
state each of these objectives.

3. Classifying users and creating individual user profiles for the
software: Use cases outline how various user classes interact with the
system and one another to accomplish a goal. to determine the users'
genuine needs, followed by a test of the product's actual use.

4. Setting value in test planning and concentrating on rapid-cycle
testing: Rapid Cycle Testing is a sort of test that enhances quality by
discovering and evaluating any modifications needed to enhance the
software development process. Consequently, a test plan is a crucial
and useful document that aids the tester in carrying out quick cycle
testing.

Software Testing and
Quality Assurance

64

5. Is it possible to create reliable software that can test itself:
Different sorts of errors should be able to be found or identified by the
software. Additionally, software design should permit automated and
regression testing, which examines the software to determine whether
any negative or unintended consequences of changes to the code or
programme have an impact on its functionality.

6. Employing efficient formal reviews as a filter before testing:
Formal technical reviews are a method to find errors that haven't yet
been found. Effective technical reviews conducted before to testing
significantly cut down on the testing workload and testing time, hence
speeding up the total software development process.

7. To assess the nature, suitability, or capability of the test strategy and
test cases, conduct formal technical reviews. The thorough technical
review aids in identifying any gaps in the testing strategy that need to
be filled. Therefore, in order to raise the calibre of software, technical
reviewers must assess the effectiveness and quality of the test plan and
test cases.

8. Creating a continuous development strategy for the testing
process: To assess and control the quality of software development, a
test method that has already been measured as part of a statistical
process control approach should be utilised.

 Advantages of software testing:

1. Enhances software quality and dependability - Testing aids in the
early detection and correction of flaws, lowering the possibility of
failure or unexpected behaviour in the finished product.

2. Improves user experience - Testing aids in detecting usability
problems and enhancing the user experience as a whole.

3. Builds trust - By testing the programme, stakeholders and developers
can feel more certain that it satisfies specifications and performs as
intended.

4. Makes maintenance easier - Testing makes it simpler to maintain and
update the product by locating and fixing bugs early.

5. Lowers costs - Finding and resolving flaws early in the development
phase saves money over the course of the product's lifespan.

 Disadvantages of software testing:

1. Testing helps in the early detection and rectification of defects,
minimising the likelihood of failure or unexpected behaviour in the
finished product.

2. Enhances user experience - Testing helps identify usability issues and
improves the overall user experience.

Software Testing Strategies

65

3. Promotes trust - By putting the programme through testing,
stakeholders and developers can be more confident that it meets
requirements and works as intended.

4. Makes maintenance simpler - By identifying and resolving defects
early on, testing makes it easier to maintain and update the product.

5. Reduces costs - Fixing problems quickly during the development stage
reduces costs over the duration of the product's life.

3.2 UNIT TESTING

Each unit or individual component of the software application is tested as
part of the unit testing process. It represents the initial stage of functional
testing. The purpose of unit testing is to confirm the functionality of
individual unit components.

A unit is a single testable component that may be tested as part of the
application software development process.

Unit testing is used to ensure that isolated code is correct. A specific
application function or piece of code is referred to as a unit component.
Unit testing is typically conducted using the white box testing
methodology by developers.

When the application is finished and submitted to the test engineer, the
test engineer will begin independently or one-by-one testing each
component of the module or module of the application. This procedure is
referred to as unit testing or components testing.

3.2.1 Why Unit testing?

Unit testing is the first level of testing carried out before integration and
further levels of testing in a testing level hierarchy. It employs modules for
testing, reducing the reliance on waiting for Unit testing is aided by the
usage of stubs, drivers, dummy objects, and unit testing frameworks.

Figure 2: Testing Hierarchies

Software Testing and
Quality Assurance

66

The software is typically tested at four levels: unit testing, integration
testing, system testing, and acceptance testing. However, due to time
constraints, software testers occasionally skip unit testing, which can
result in higher defects during integration testing, system testing,
acceptance testing, or even beta testing, which happens after a software
application is finished.

Here are a few essential justifications:

 Unit testing enables developers and testers to swiftly update code that
is producing defects by assisting them in understanding the
fundamentals of the program.

 It helps to have unit tests for documentation.

 There is a chance that there will be fewer flaws in subsequent testing
levels because unit testing catches errors relatively early in the
development process.

 By relocating code and test cases, it promotes code reuse.

3.2.2 Unit testing tools

We have various types of unit testing tools available in the market, which
are as follows:

 NUnit
 JUnit
 PHPunit
 ParasoftJtest
 EMMA

4.2.3 Unit testing techniques

Unit testing uses all white box testing techniques as it uses the code of
software application:

 Data flow Testing
 Control Flow Testing
 Branch Coverage Testing
 Statement Coverage Testing
 Decision Coverage Testing

3.2.4 How to achieve best results using Unit testing

By taking the actions outlined below, unit testing can produce the best
results without creating confusion or adding complexity:

 As the test cases won't be impacted by requirement changes or
enhancements, test cases must be independent.

 Unit test cases must have clear and consistent naming conventions.

Software Testing Strategies

67

 Before moving on to the next stage of the SDLC, the defects found
during unit testing must be rectified.

 One code should only ever be tested at once.

 Adopt test cases as you write the code; otherwise, the number of
possible execution pathways would rise.

 Verify whether the matching unit test is accessible or not for any
module whose code has changed.

3.2.5 Advantages of Unit testing

 Unit testing employs a modular approach because any component can
be tested without holding up the testing of other components.

 To comprehend the unit API, the developing team focuses on the
functionality that is offered by the unit and how functionality should
appear in unit test cases.

 After a few days, unit testing enables the developer to modify code
and verify that the module is still operating faultlessly.

3.2.6 Disadvantages of Unit testing

 As it only examines individual code units, it cannot detect integration
or high-level errors.

 Since it is impossible to evaluate every execution route during unit
testing, errors in programs cannot be found in every instance.

 It works best when combined with other diagnostic procedures.

3.3 INTEGRATION TESTING

After unit testing, the software testing process moves on to integration
testing. Units or individual software components are tested collectively
during this testing. The goal of the integration testing level is to identify
flaws when integrated components or units interact.

Modules are used in unit testing for testing purposes, and integration
testing combines and tests these modules. The Software is created using a
variety of software modules that were created by various programmers or
coders. Integrity testing is done to ensure that all of the modules are
communicating properly.

Software Testing and
Quality Assurance

68

Figure 3: Integration Testing

Integration testing is the process of verifying the data flow between
dependent modules when each component or module is functioning
independently.

3.3.1 Guidelines for Integration Testing

 After each application module has undergone functional testing, we
only go on to integration testing.

 In order to ensure that a suitable sequence is followed and that we
don't miss any integration cases, we always perform integration testing
by selecting modules one at a time.

 Determine the test case strategy first, which will help you create
executable test cases based on the test data.

 Examine the application's structure and architecture to determine the
most important modules to test first and to discover all potential
situations.

 Create test cases to thoroughly verify each interface.

 Select input data before running the test case. Testing heavily relies on
the input data.

 If we discover any bugs, we should notify the developers, who will
subsequently repair the issues and retest.

 Test integration both positively and negatively.

If the entire balance is Rs. 15,000 and we are sending Rs. 1500, then this
positive testing means that the amount transfer should be successful. The
test would be considered successful if it did.

Software Testing Strategies

69

Negative testing, on the other hand, means that if the total balance is Rs.
15,000 and Rs. 20,000 is being transferred, the test will pass if neither
event occurs. If it does, there is a code bug, and we will communicate it to
the development team so they can repair it.

3.3.2 Reason behind Integration Testing

Even though unit testing was performed on every module of the software
application, errors still exist for the following reasons:

1. Integration testing is crucial to determining how well software
modules function because each module is created by a different
software developer, whose programming logic may differ from that of
developers of other modules.

2. to determine whether or not the software modules' interactions with
the database are accurate.

3. At the time a module is being developed, requirements can be
modified or improved. Integration testing is now required because it's
possible that these additional requirements won't be tested at the unit
testing level.

4. Errors may be caused by software module incompatibility.

5. to check whether hardware and software are compatible.

6. Inadequate exception handling between modules can lead to issues.

3.3.3 Integration Testing Techniques

Any testing technique (Blackbox, Whitebox, and Greybox) can be used for
Integration Testing; some are listed below:

Black Box Testing

 State Transition technique
 Decision Table Technique
 Boundary Value Analysis
 All-pairs Testing
 Cause and Effect Graph
 Equivalence Partitioning
 Error Guessing

White Box Testing

 Data flow testing
 Control Flow Testing
 Branch Coverage Testing
 Decision Coverage Testing

Software Testing and
Quality Assurance

70

3.3.4 Types of Integration Testing

Integration testing are categorized into two types: Incremental and Non-
Incremental

Figure 4: Types of Integration testing

In the incremental approach, modules are added one at a time in ascending
sequence or as needed. The modules you choose must make sense
together. Usually, two or more modules are added and tested to see if the
functionalities are correct. Up until all of the modules have undergone
successful testing, the procedure continues.

OR

The dependent modules in this kind of testing have a close link with one
another. Let's say we test the proper operation of the data flow between
two or more modules. If so, try again after adding more modules.

Incremental integration testing is carried out by further methods:

 Top-Down approach
 Bottom-Up approach

Top-Down approach

The top-down testing technique focuses on the process in which lower-
level modules are tested alongside higher-level modules until all of the
modules have been successfully tested. Critical modules are tested first,
allowing for the early detection and correction of significant design
problems. With this approach, the modules will be added gradually or one
at a time, and the data flow will be examined in the same sequence.

Software Testing Strategies

71

In the top-down approach, we will be ensuring that the module we are
adding is the child of the previous one like Child C is a child of Child
B and so on as we can see in the below image:

Advantages:

o Identification of defect is difficult.

o An early prototype is possible.

Disadvantages:

o Due to the high number of stubs, it gets quite complicated.

o Lower level modules are tested inadequately.

o Critical Modules are tested first so that fewer chances of defects.

Bottom-Up approach

The technique of testing lower level modules with higher level modules
until all of the modules have been successfully tested is known as the
"bottom to up" testing strategy. Since top-level critical modules are tested
last, a defect may result. Another option is to indicate that we will install
the modules in order, starting at the bottom, and then examine the data
flow.

Software Testing and
Quality Assurance

72

In the bottom-up method, we will ensure that the modules we are
adding are theparent of the previous one as we can see in the below image:

Advantages

o Identification of defect is easy.

o Do not need to wait for the development of all the modules as it saves
time.

Disadvantages

o Critical modules are tested last due to which the defects can occur.

o There is no possibility of an early prototype.

Non-Incremental Integration testing:

When the data flow is exceedingly complicated and it is challenging to
determine who is a parent and who is a child, we will use this method.
And in this situation, we will generate the data in any module and then
check to see if it is present in all other existing modules. Consequently, the
Big Bang approach is another name for it.

Software Testing Strategies

73

Big bang Method:

This method integrates all components at once and then conducts testing.
While it is practical for small software systems, it makes it challenging to
identify flaws in large software systems.

Since the testing team has less time to execute this process because this
testing might be done after all modules have been completed, internal
connected interfaces and high-risk important modules are more likely to
be overlooked.

Advantages:

 It is practical for compact software systems.

Disadvantages:

 Defect identification is challenging since we are unable to determine
the source of the error, making it impossible to determine where the
fault originated.

 Small modules are readily missed.

 There is extremely little time allotted for testing.

 There's a chance we won't test all of the interfaces.

3.4 VALIDATION TESTING

The procedure of assessing software to see if it satisfies stated business
requirements either during development or at the end of development.

Validation testing makes ensuring that the product really does meet the
needs of the customer. It is also possible to describe it as proving that a
product works as intended when used in the right setting.

It answers to the question, are we building the right product?

Software Testing and
Quality Assurance

74

Workflow of Validation Testing:

Validation testing can be best demonstrated using V-Model. The
Software/product under test is evaluated during this type of testing.

Activities:

 Unit Testing

 Integration Testing

 System Testing

 User Acceptance Testing

3.5 SYSTEM TESTING

Testing a fully integrated software system is part of system testing.
Typically, software is integrated into computer systems (software itself is
just one component of a computer system). To create a comprehensive
computer system, the software is developed in modules and then
interfaced with hardware and other applications. To put it another way, a
computer system consists of a collection of software that can carry out a
variety of functions, but only software can do so since it needs to
communicate with appropriate hardware. System testing is a collection of
several types of tests designed to put an integrated software computer
system through its paces and check it against requirements.

System testing is the process of examining an application's or piece of
software's overall usability. We test the product as a whole system and
travel (go through) all the required modules of an application to see if the
final features or the final business function as intended.

Software Testing Strategies

75

End-to-end testing is done in an environment that is comparable to the one
used in production.

Black box testing, which includes testing the software's external
functionality, includes system testing. To find little flaws, testing mimics
the user's perspective.

The following actions are a part of system testing.

 Verification of the application's input features to see if it is generating
the desired results.

 Integrated software is tested with external devices to see how different
parts interact with one another.

 System-wide testing for end-to-end testing.
 Using auser's expertise, test the application's behaviour

3.5.1 Types of System testing

There are more than 50 different forms of system testing, but software
testing businesses typically use a few of them. Here are some of them:

1] Regression Testing

Regression testing is carried out as part of system testing to check and
pinpoint any defects that may have arisen as a result of changes made to
any other system component. It ensures that any modifications made
throughout the development process did not produce a new flaw and
ensures that no existing defects will be present as new software is added
over time.

Software Testing and
Quality Assurance

76

2] Load Testing

To determine whether the system can function under real-time loads, load
testing is conducted alongside system testing.

3] Functional Testing

A system is put through functional testing to see whether there are any
missing functions. The tester compiles a list of crucial features that should
be included in the system, can be introduced during functional testing, and
should raise the system's quality.

4] Recovery testing:

System testing includes recovery testing of a system, which verifies the
system's dependability, credibility, accountability, and ability to recover. It
ought to be able to successfully recover from all potential system
failures.In this testing, we will evaluate the application's ability to bounce
back from errors or natural calamities.

5] Migration Testing

Migration testing is performed to ensure that if the system needs to be
modified in new infrastructure so it should be modified without any issue.

6] Usability Testing

The purpose of this testing to make sure that the system is well familiar
with the user and it meets its objective for what it supposed to do.

7] Software and Hardware Testing

The system will be tested to see if the hardware and software are
compatible. To operate the software without any problems, the hardware
setup must be compatible. Because it allows for interactions between
hardware and software, compatibility promotes flexibility.

3.5.2 Why is System testing important

 System testing, which examines the entire system's functionality,
provides total assurance of system performance.

 It comprises testing of the business requirements as well as the system
software architecture.

 Even after production is complete, it aids in bug and live issue
mitigation.

 System testing feeds the same data into both an old and a new system,
comparing the functional changes between the two so that the user
may appreciate the advantages of the system's newly added features.

3.6 SUMMARY

Software testing involves assessing a software application to see if it
complies with requirements and to spot any flaws. We have covered seven

Software Testing Strategies

77

different steps involved in software testing strategies. We have also
focused on different types of testing along with their fundamentals. We
have dwelled into integration testing, unit testing and system testing along
with the concepts associated with them.Each unit or individual component
of the software application is tested as part of the unit testing process. In
integration testingunits or individual software components are tested
collectively.Validation testing makes ensuring that the product really does
meet the needs of the customer

3.7 LIST OF REFERENCES

1. Software Engineering for Students, A Programming Approach,
Douglas Bell, 4th Edition, Pearson Education, 2005

2. Software Engineering – A Practitioners Approach, Roger S. Pressman,
5th Edition, Tata McGraw Hill, 2001

3. Quality Management, Donna C. S. Summers, 5th Edition, Prentice-
Hall, 2010. 3. Total Quality Management, Dale H. Besterfield, 3rd
Edition, Prentice Hall, 2003.

3.8 UNIT END EXERCISES

1. Explain the concept of Unit Testing.

2. State the unit testing tools and techniques.

3. Illustrate the Advantages, Disadvantages and the way to achieve best
results using Unit testing.

4. Write a detailed note on Integration Testing.

5. State different Reason behind Integration Testing

6. Explain Integration Testing Techniques.

7. Explain the Types of Integration Testing.

8. Write a note on Validation testing.

9. Explain the concept of SystemTesting.

10. Write a note on thetypes of System testing.

11. Explainwhy is System testing important.

78

4
SOFTWARE METRICS

Unit Structure :

4.0 Objectives

4.1 Introduction: Concept and Developing Metrics

4.2 Different types of Metrics

4.3 Complexity metrics

4.4 Defect Management: Definition of Defects

4.5 Defect Management Process

4.5.1 Objective ofDefect Management Process

4.5.2 Various stages of Defect Management Process

4.5.3 Defect workflow and states

4.5.4 Advantages of Defect Management Process

4.5.5 Disadvantages of Defect Management Process

4.6 Defect Reporting

4.7 Metrics Related to Defects

4.8 Using Defects for Process Improvement

4.9 Summary

4.10 List of References

4.11 Unit End Exercises

4.0 OBJECTIVES

 To get familiar with the concepts and development metrics
 To understand the concept of defects and factors associated with defect

management

4.1 INTRODUCTION: CONCEPT AND DEVELOPING
METRICS

Software testing metrics are quantitative measures used to assess the
effectiveness, efficiency, and advancement of the software testing process.
This helps us increase the effectiveness of the software testing process and

Software Metrics

79

gather trustworthy data about it. Developers will then be able to plan
ahead and make accurate decisions for upcoming testing procedures.

Metric in software testing: A system's or its constituent parts' retention of
a specific attribute is measured by a metric. A metric is not defined by
testers merely for the purpose of documentation. In software testing, it has
many benefits. Developers can use a measure, for instance, to estimate
how long it takes to develop software. It may also be used to count the
number of new features, improvements, etc., that have been made to the
software.

4.2 DIFFERENT TYPES OF METRICS

Software testing metrics come in three different forms:

1. Process Metrics: Project features and execution are described by
process metrics. These qualities are crucial for the ongoing
maintenance and process improvement of the SDLC (Software
Development Life Cycle).

2. Product Metrics: A product's size, design, performance, quality, and
complexity are all determined by its product metrics. Developers can
improve the caliber of their software development by utilizing these
traits.

3. Project Metrics: A project's overall quality is determined by its
project metrics. It is used to estimate a project's resources and
deliverables as well as costs, productivity, and problems.

Finding the proper testing metrics for the process is of utmost importance.
A few things to think about are:

 Prior to creating the metrics, carefully select your target audiences.

 Describe the rationale for creating the measurements.

 Prepare metrics by taking into account the unique project requirements
Assess the financial benefit associated with each metric

 Match the measurements to the project lifestyle phase that yields the
best results.

4.3 COMPLEXITY METRICS

Cyclomatic complexity is a software metric used to measure
the complexity of a program.

A software metric called cyclomatic complexity offers a numerical
assessment of the logical difficulty of a programme. The value computed
for cyclomatic complexity defines the number of independent paths in the
basis set of a programme when used in the context of the basis path testing
method. It also gives you an upper bound on how many tests must be run
to guarantee that each statement has been executed at least once.

Software Testing and
Quality Assurance

80

Graph theory serves as the basis for cyclomatic complexity, which offers
you a very helpful software metric. One of three methods is used to
compute complexity:

1] The number of regions of the flow graphs corresponds to cyclomatic
complexity

2]Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) = E – N + 2

Where,

E: Number of flow graph edges

N: Number of flow graph nodes

3]Cyclomatic complexity V(G) for a flow graph G is also defined as

V(G) = P + 1

Where,

P: number of predicate nodes contained in the flow graph G

For example: Consider the flow graph as shown in the following figure

For this figure the cyclomatic complexity can be computed using each of
the algorithms just noted

1] The flow graph consists of 4 regions

2]V(G) = 11 edges - 9 nodes + 2 = 4

3]V(G) = 3 predicate nodes + 1 = 4

Therefore, the flow graph in Figure has a cyclomatic complexity of 4.

More importantly, the value for V(G) gives you an upper constraint on the
number of independent routes that make up the basis set, and thus, an

Software Metrics

81

upper bound on the number of tests that must be created and run to ensure
that every program statement is covered.

4.4 DEFECT MANAGEMENT: DEFINITION OF
DEFECTS

When the predicted outcome differs from the actual result, a software error
occurs. Additionally, it could be a bug, weakness, failure, or fault in a
computer program. Most defects are the result of faults and blunders made
by architects and developers.

The following strategies are used to stop programmers from adding
defects during development:

 Adopted programming techniques

 Methodologies for Software Development

 a peer review

 Code Examination

Common Types of Defects

Following are the common types of defects that occur during
development:

 Arithmetic Defects

 Logical Defects

 Syntax Defects

 Multithreading Defects

 Interface Defects

 Performance Defects

4.5 DEFECT MANAGEMENT PROCESS

The cornerstone of software testing is the defect management procedure.
The most important task for any organization to do when faults have been
found is to manage them. This applies to the testing team as well as to
everyone else participating in the software development or project
management process.

As well-known, reducing the number of defects is best accomplished by
defect prevention. Defect prevention is a very economical method for
correcting flaws found in earlier phases of software development.The
majority of organizations handle Defect Discovery, Defect Removal, and
then Process Improvement through the Defect Management Process.The

Software Testing and
Quality Assurance

82

Defect Management Process (DMP), as the name implies, controls defects
by only identifying and correcting the errors.

While it is hard to completely eliminate errors or flaws from software,
many problems can be reduced by correcting or resolving them.

The primary goals of the defect management process are to prevent
defects, identify defects at the earliest stages, and moderate the impact of
defects.

4.5.1 Objective ofDefect Management Process

The following is an overview of the defect management method' primary
objective:

 DMP's main goal is to reveal flaws at an early stage of the software
development process.

 The execution of the defect management method will assist us in
improving the procedure and software implementation.

 The impact or effects of software problems are lessened via the defect
management method.

 The DMP, or defect management process, aids in defect prevention.

 Resolving or correcting problems is the primary objective of the defect
management process.

The following are the critical objectives of the defect management process
for various organizations or projects:

 We are able to contribute to status and progress reports on the defect
through the defect management procedure.

 to identify the root cause of the fault and determine the best course of
action.

 to offer suggestions and information about the disclosure of the flaw.

4.5.2 Various stages of Defect Management Process

Various stages of Defect Management Process are as depicted in the figure
1 below

Figure 1:Stages of Defect Management Process

Software Metrics

83

1. Defect Prevention: Defect prevention is the first step in the defect
management process. The danger of defects is reduced in this stage by
following processes, methodology, and accepted practices. The best
method for minimizing the impact of a defect is to remove it within the
original development stage.Because it is less expensive and the impact
can be lessened in the initial stages of addressing or resolving
faults.But for later stages, finding flaws and then resolving them can
be expensive, and the impacts of a problem might even be
exacerbated.

The defect prevention stage includes

 Estimate Predictable Impact: In this step, if the risk is encountered,
then we can calculate the estimated financial impact for every critical
occasion

 Minimize expected impact: When all the critical risk has been
discovered, we can take the topmost risks that may be dangerous to the
system if encountered and try to diminish or eliminate it.Those risks
that cannot be removed will decrease the possibility of existence and
its financial impact.

 Identify Critical Risk: In defect prevention, we can quickly identify
the system's critical risks that will affect more if they happened
throughout the testing or in the future stage.

2. Deliverable baseline: The Deliverable baseline is the second step in
the defect management process. Here, the system, documentation, or
product are defined by the delivery.When a deliverable hit its
predetermined milestone, we can state that it is a baseline. The
deliverable is transported from one step to the next during this phase,
and any existing system flaws advance to the subsequent step or
milestone. In other words, we may claim that any further changes are
controlled once a deliverable is baselined.

3. Defect discovery: Defect discovery is the following step in the defect
management process. Defect finding is crucial at this early stage of the
defect management procedure. Additionally, it could result in longer-
term harm.Only a flaw is regarded as detected if developers have
acknowledged or recorded it as a valid one.We now know that it is
virtually difficult to remove every flaw from a system and make it
defect-free. However, we can find the flaws before they cost the
project money.

Identifying a defect, reporting a defect and acknowledging a defect are
the phases involved in defect discovery stage.

4. Defect resolution: We proceed to the following level of the defect
management process, Defect Resolution, when the defect detection
stage has been successfully completed.The Defect Resolution method
is helpful in identifying and tracking flaws since it outlines a step-by-
step process for repairing defects.Giving the development team the

Software Testing and
Quality Assurance

84

flaws is the first step in this approach. The developers must go forward
with the defect's resolution and prioritize fixing it.The developer
notifies the testing team of the defect's selection and resolution by
sending a defect report.The communication of the test engineer once
the issue has been fixed is another step in the defect resolution process.

We need to follow the below steps in order to accomplish the defect
resolution stage.

o Prioritize the risk

o Fix the defect

o Report the Resolution

5. Process improvement: The previous stage (defect resolution)
involved organizing and fixing the defects.We will now examine the
lower priority issues because they are still crucial and have an impact
on the system during the process improvement phase.From the
standpoint of the process improvement phase, all acknowledged faults
are equivalent to significant defects and must be corrected.

The individuals participating in this stage must remember and confirm
the source of the defect.Depending on that, we can alter the validation
process, base-lining document, and review process to potentially
uncover faults early on and reduce the cost of the procedure.These tiny
flaws help us figure out how to improve the procedure and get rid of
any flaws that could lead to system or product failure in the future.

6. Management reporting: The process of defect management ends
with management reporting. It is a crucial and important step in the
defect management procedure. In order to increase the defect
management process and ensure that the generated reports have an
aim, management reporting is necessary.

The evaluation and reporting of defect information, put simply,
supports project management, process improvement, and organisation
and risk management.The project teams' information gathering on
individual problems is the foundation of the management reporting. As
a result, each organisation must take into account the data obtained
throughout the defect management process and the classification of
individual problems.

4.5.3 Defect workflow and states

Many organizations use a technology to perform software testing that
records defects throughout the bug/defect lifecycle and also includes
defect reports.

At each stage of the defect lifecycle, there is typically one owner who is in
charge of completing the necessary tasks to advance the defect report to
the next stage.

Software Metrics

85

If we encounter the following circumstance, a defect report may
occasionally not have an owner in the latter stages of the defect lifecycle:

 The defect report is cancelled if the defect is invalid.

 If the problem won't be rectified as part of the project, the defect report
is regarded as delayed.

 If the fault can no longer be found, the defect report is deemed to be
non-reproducible.

 If the issue has been resolved and tested, the defect report is deemed to
be closed.

Defect states: If defects are identified throughout the testing, the testing
team must manage them in the following three states:

1. Initial state: It is the initial defect state, also referred to as the open
state.The task of gathering all the information needed to correct the
flaws in this stage falls to one or more test engineers.

2. Returned state: Return state is the second defect state. In this case,
the individual receiving the test report rejects it and requests more
details from the report's author.In a returned state, the test engineers
have the option of adding more details or accepting the report's
rejection.The test manager should check for errors in the initial
information collection process itself if several reports are denied.The
rejection state or clarification state are other names for the returned
state.

3. Confirmation state: The test engineer conducted a confirmation test
to ensure that the defect had been repaired before reaching the last
state of defect, known as the confirmation state.It is accomplished by
doing the same actions that revealed the flaw during testing.The report
is finished if the flaw is fixed.And if the problem was not fixed, the
complaint was reopened and sent back to the owner who had originally
saved the defect report for correction.A resolved or verified state is
another name for a confirmation state.

4.5.4 Advantages of Defect Management Process

1. Confirm resolution: We can ensure that faults are resolved while still
being tracked with the use of the defect management process.

2. Accessibility of automation tools: The defect or bug tracking process
is one of the most important steps in the defect management
process.We have a variety of automated technologies for defect
monitoring on the market that can assist us in tracking the fault in its
early phases.These days, a wide range of tools are available to track
various defect kinds. Example:

 Software tools: These tools are used to locate or monitor non-
technical issues.

Software Testing and
Quality Assurance

86

 User-facing Tools: These kinds of tools will assist us in finding
production-related flaws.

3. Offer valuable metrics: Along with useful defect metrics, the defect
management process also provides us with automation
tools.Additionally, these useful defect data support us in reporting and
ongoing improvements.

4.5.5 Disadvantages of Defect Management Process

1. If the defect management process is not carried out properly, we risk
losing consumers, losing money, and damaging the reputations of our
brands.

2. If the defect management process is not handled correctly, there will
be a significant amplified cost in the form of a creeping increase in the
product's price.

3. Defects may later result in greater harm, and the expense of fixing
them will also rise, if they are not handled correctly at an early stage.

4.6 DEFECT REPORTING

A defect report is a document that provides concise information about the
faults found, the activities that cause the defects to manifest, and the
expected outcomes in place of the application manifesting a defect (error)
when doing the specified actions step by step.

Both the Quality Assurance team and the end-users (customers) typically
produce defect reports. Since most users test out every element of a
program out of curiosity, consumers frequently find more flaws and report
them to the software development team. You are now aware of what a
defect and a defect report are.

Purpose of creating a report and what to do with them:

Defect reports are made in order to facilitate developers' ability to quickly
identify and correct faults. A developer is often given a defect report by
QA, reads it, and uses the action steps in the report to replicate the flaws
on the software product. The developer then corrects the errors to get the
desired result outlined in the report.

Defect reports are crucial and carefully crafted because of this. Defect
reports should be concise, well-organized, and to the point. They should
also include all the information a developer needs to reproduce the
reported faults, as well as the steps taken to identify them. It is usual for
QA teams to get defect reports from the clients that are either too short to
reproduce and rectify or too long to understand what actually went
wrong.

Software Metrics

87

For example,

Defect Description: The application doesn’t work as expected.

Now, how in the world does a developer or QA know what went wrong
which doesn’t meet the client expectation?

In such a case, the developer report to the QA that he couldn’t find any
problem or he may have fixed any other error but not the actual one
client detected. So that’s why it’s really important to create a concise
defect report to get bugs fixed.

A typical defect report contains the information in an xls Sheet as
follows.

1. Defect ID: A serial number of defects in the report.

2. Defect Description:A short and clear description of the defect
detected.

3. Action Steps:What the client or QA did in an application that results
in the defect. Step by step actions they took.

4. Expected Result:What results are expected as per the requirements
when performing the action steps mentioned.

5. Actual Result:What results are actually showing up when
performing the action steps.

6. Severity:Trivial (A small bug that doesn’t affect the software
product usage).

1. Low: A small bug that needs to be fixed and again it’s not going to
affect the performance of the software.

2. Medium: This bug does affect the performance. Such as being an
obstacle to do a certain action. Yet there is another way to do the
same thing.

3. High: It highly impacts the software though there is a way around to
successfully do what the bug cease to do.

4. Critical: These bugs heavily impacts the performance of the
application. Like crashing the system, freezes the system or requires
the system to restart for working properly.

4.7 METRICS RELATED TO DEFECTS

1. Derivative Metrics: The team can use derivative metrics to discover
the various software testing process problems and to take action that
will improve testing accuracy.

2. Defect Density: Another crucial software testing measure, defect
density aids the team in counting all the flaws discovered in a piece of

Software Testing and
Quality Assurance

88

software during the course of its operation or development. The team
can then determine whether the program is ready for release or
whether additional testing is necessary by dividing the results by the
size of that particular module. Software defect density is measured in
terms of defects per thousand lines of code, or KLOC. The calculation
is as follows: Defect Density = Defect Count/Size of the
Release/Module

3. Defect Leakage: A crucial statistic that the testing team must track is
defect leakage. Software testers utilize defect leakage to assess the
effectiveness of the testing process prior to user acceptability testing
(UAT) for the final product. Defect or bug leakage occurs when any
flaws go unnoticed by the team and are discovered by the user. Defect
Leakage is calculated as (total number of flaws discovered in UAT /
total number of defects discovered prior to UAT) × 100.

4. Defect Removal Efficiency (DRE): The ability of the development
team to eliminate various software problems prior to its release or
implementation is measured by the DRE. DRE is calculated
throughout and between test phases and is measured for each test type.
It shows the effectiveness of the various defect removal techniques
used by the test team. Additionally, it is a tacit evaluation of the
software's performance and quality. As a result, the following is the
formula for determining Defect Removal Efficiency: DRE = Number
of defects resolved by the development team/ (Total number of defects
at the moment of measurement)

5. Defect Category: During the software development life cycle
(SDLC), this is a significant sort of metric that is assessed. The defect
category metric provides information about the software's usability,
performance, functionality, stability, reliability, and other quality
characteristics. In short, the defect category is an attribute of the
defects in relation to the quality attributes of the software product and
is measured with the assistance of the following formula: Defect
Category = Defects belonging to a particular category/ Total number
of defects.

6. Defect severity index: The severity of a flaw as it relates to the
operation or component of a software program under test is called the
defect severity index. The defect severity index (DSI) provides
information on the caliber of the product being tested and aids in
evaluating the caliber of the testing team's efforts. The team can assess
the degree of a negative impact on the software's performance and
quality with the aid of this statistic as well. In order to calculate the
defect severity index, apply the formula: Defect Severity Index (DSI)
= Sum of (Defect * Severity Level) / Total number of defects

7. Review Efficiency: Reducing the number of software problems before
delivery uses the review efficiency statistic. papers themselves as well
as papers themselves may contain review errors. By using this statistic,
one can cut down on the expense and labor involved in fixing or

Software Metrics

89

resolving problems. Additionally, it confirms the effectiveness of the
test case and lowers the likelihood of flaw leaks in later testing phases.
The following formula is used to determine review efficiency: Total
number of review defects / (Total number of review flaws plus Total
number of testing defects) x 100 is the formula for review efficiency
(RE).

4.8 USING DEFECTS FOR PROCESS IMPROVEMENT

Process improvement in Defect Management Process (DMP):

The Defect Management Process (DMP) prioritises discovered defects
based on their severity before moving on to solve them. However, this
does not imply that less serious flaws are not still present. Whether little or
serious, a defect affects the system. procedure improvement is a procedure
in which all flaws are viewed as severe and critical, necessitating their
repair or resolution in all cases. Any kind of flaw that is fixed results in
improved DMP processes. By preventing the occurrence of any kind of
flaw that could have an impact on the system and lead to failure in the
future, it also aids in reducing the number of defects.

Whether a fault affects the system more or less, it is still a serious problem
when it occurs. However, occasionally developers and testers believe that
defects with a low impact or severity are unimportant. Anything that
leaves clients unsatisfied is a defect. This discontent may be the result of a
flaw in the process, requirement, design, coding, testing, etc. The testing
team must exert all of its efforts to assess and examine the procedure in
order to determine the source of the defect. Further techniques and actions
should be adopted to prevent similar flaws after root cause analysis.
Organisations will be able to create high quality software products if they
view defect as a process step rather than taking it for granted.

Goals of DMP:

 Senior Management must comprehend the severity of the fault and
how it may affect the system in order to help the team and participate
in the DMP.

 DMP should be carried out at each step and throughout the Software
Development Life Cycle (SDLC) in order to improve the process.

 Each team should employ the DMP method because it greatly
enhances workflow.

 Project objectives should be taken into consideration when choosing a
development strategy and integrating it into the software development
process because various projects have different aims.

 Processes should be evaluated frequently to spot errors early on, which
will save money.

Software Testing and
Quality Assurance

90

 The following actions should be taken to limit the likelihood of defect:
 Review test cases and test scenarios.
 Analyse and combine functional and non-functional requirements.
 Review technical specifications
 Baselines of the environment

 Using an automated project script, faults can be found at an early
stage.

4.9 SUMMARY

You can evaluate quality before the product is produced thanks to
software metrics, which offer a quantifiable technique to evaluate the
quality of internal product attributes. Metrics give you the knowledge you
need to produce effective requirements and design models, reliable code,
and exhaustive tests. A software measure needs to be straightforward,
calculable, compelling, consistent, and objective in order to be helpful in
real-world settings. It should be independent of the programming language
you're using and give you useful feedback.

Function, data, and behavior: the model's three component are the main
metrics for the requirements model. Design metrics take into account
concerns with architecture, component-level design, and interface design.
Metrics for architectural design take into account the model's structural
elements. By creating proximate measures for cohesion, coupling, and
complexity, component-level design metrics give an indicator of module
quality.

Software testing flaws, the defect management process, advantages, and
disadvantages have all been observed.The Defect Management Process is
crucial to software testing because, as we all know, faults must be tested in
all software created code.Software flaws can be found and fixed as part of
the defect management process. The entire defect management procedure
will assist us in identifying the issue as early as possible and ensuring that
a high-quality product is delivered.

Metrics and KPIs for software testing are significantly enhancing the
software testing process. These play a significant part in the software
development lifecycle, from validating the product's quality to
guaranteeing the accuracy of the numerous tests carried out by the testers.
Therefore, you can improve the efficiency and accuracy of your testing
efforts and obtain superior quality by applying and putting these software
testing metrics and performance indicators into practice.

4.10 LIST OF REFERENCES

1. Software Engineering for Students, A Programming Approach,
Douglas Bell, 4th Edition, Pearson Education, 2005

2. Software Engineering – A Practitioners Approach, Roger S. Pressman,
5th Edition, Tata McGraw Hill, 2001

Software Metrics

91

3. Quality Management, Donna C. S. Summers, 5th Edition, Prentice-
Hall, 2010. 4. Total Quality Management, Dale H. Besterfield, 3rd
Edition, Prentice Hall, 2003.

4.11 UNIT END EXERCISES

1. Explain the different types of Metrics.

2. Write a note on Complexity metrics.

3. Describe defect management.

4. Explain the Defect Management Process.

5. State the objectives, advantages and disadvantages of Defect
Management Process.

6. State and explain various stages of Defect Management Process.

7. Describe and explain the metrics Related to Defects.

8. Write a note on Defect workflow and states

