#  <br> T.Y.B.A.F. SEMESTER - V (CBCS) 

## COST ACCOUNTING - III

## © UNIVERSITY OF MUMBAI

## Prof. Ravindra Kulkarni

Vice Chancellor
University of Mumbai, Mumbai

Prin. (Dr.) Ajay Bhamare
Pro Vice-Chancellor, University of Mumbai

Prof. (Dr.) Santosh Rathod
In charge Director,
IDOL, University of Mumbai

## Programme Co-ordinator

Course Co-ordinator \& Editor

## Course Writers

: Ms. Rajashri Pandit
Assistant Professor (Economics) Head of Commerce \& Management Faculty IDOL, Univeristy of Mumbai - 400098
: Prof. Ganesh Akaram Ghadigaonkar Assistant Professor, IDOL, University of Mumbai - 400098
: Mrs. Samina Jameer Shaikh PGDFM and BMS Coordinator, SIDOL, University of Mumbai - 400098
: CA Anthony T. D'souza
Assistant Professor, Guru Nanak Khalsa College of Arts, Commerce \& Science, Matunga, Mumbai
: Dr. P. K. Bandgar
Principal,
Sanpada College of Commerce, Navi Mumbai - 400705
: Dr. Paulraj Arunachandan
Guru Nanak College, GTB Nagar, Mumbai - 400037
: Dr. V. S. Kannan
Vice Principal
K.E.S. Shroff College of Commerce, Kandivali (E), Mumbai -400101

November 2023, Print - 1

Published by : Director,
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari,Mumbai - 400098.

## DTP composed and Printed by: Mumbai University Press

## CONTENTS

Chapter No. Title Page No.

1. Uniform Costing and Inter Firm Comparison ..... 01
2. Integrated system of Accounts ..... 07
3. Non-Integrated system of Accounts ..... 18
4. Operating Costing - I. ..... 45
5. Operating Costing - II ..... 61
6. Process Costing ..... 85
7. Activity Based Costing ..... 131

T.Y.B.A.F.<br>SEMESTER - V (CBCS)

## COST ACCOUNTING - III

## SYLLABUS

## Revised Syllabus of Courses of B.Com. (Accounting and Finance) Programme at Semester V with effect from the Academic Year 2018-2019

## 1. Elective Courses (EC)

## 1. Cost Accounting - III

Modules at a Glance

| Sr. <br> No. | Modules | No. of <br> Lectures |
| :---: | :--- | :---: |
| 01 | Uniform Costing and Inter-Firm Comparison | 05 |
| 02 | Integrated System and Non Integrated System of Accounts | 15 |
| 03 | Operating Costing | 10 |
| 04 | Process Costing- Equivalent Units of Production and Inter- <br> process Profit | 15 |
| 05 | Activity Based Costing System | 15 |


| Sr. No. | Modules / Units |
| :---: | :--- |
| $\mathbf{1}$ | Uniform Costing and Inter -Firm Comparison |
|  | $\begin{array}{l}\text { Uniform costing } \\ \text { Meaning of and need for Uniform costing } \\ \text { Essentials for success of Uniform costing } \\ \text { Advantages and limitations of Uniform costing } \\ \text { Areas of Uniformity, Uniform cost manual } \\ \text { Inter Firm Comparison } \\ \text { Pre-requisites of inter firm comparison; Advantages and limitations } \\ \text { Practical problems }\end{array}$ |
| $\mathbf{2}$ | $\begin{array}{l}\text { Integrated System and Non- integrated System of Accounts }\end{array}$ |
|  | $\begin{array}{l}\text { Integrated System } \\ \text { Meaning; Features, Advantages and Disadvantages } \\ \text { Journal Entries and Preparing Integrated Ledgers. } \\ \text { Practical problems } \\ \text { Non-Integrated system } \\ \text { Meaning; Features, Advantages and disadvantages } \\ \text { Journal entries and Preparing Cost Control Accounts } \\ \text { Practical problems }\end{array}$ |
| $\mathbf{3}$ | $\begin{array}{l}\text { Operating Costing }\end{array}$ |
| $\mathbf{5}$ | $\begin{array}{l}\text { Meaning of operating costing; Determination of per unit cost; Pricing of services } \\ \text { Collection of costing data } \\ \text { Note-Practical problems based on costing of hospitals, hotels, goods and } \\ \text { passengers transport service }\end{array}$ |
| Process Costing - Equivalent units of Production and Inter Process Profit |  |
| $\mathbf{5}$ | $\begin{array}{l}\text { Valuation of Work in progress and Equivalent production (FIFO Method and } \\ \text { Weighted Average Method)) } \\ \text { Inter Process transfer at Profit } \\ \text { Practical problems }\end{array}$ |
| Activity Based Costing System |  |
| cost drivers, Practical Problems on Traditional V/s Activity Based Costing System. |  |$\}$

## UNIFORM COSTING AND INTER FIRM COMPARISON

## Unit Structure

1.1 Uniform costing meaning
1.2 Objectives of Uniform Costing
1.3 Advantages of Uniform Costing
1.4 Limitations of Uniform Costing
1.5 INTER-FIRM COMPARISON Meaning
1.6 Requisites of inter-firm comparison system
1.7 Advantages of Inter-firm comparison
1.8 Limitations of inter-firm comparison

### 1.1 UNIFORM COSTING MEANING

Uniform Costing is not a distinct method of costing. In fact, when several undertakings start using the same costing principles and/or practices they are said to be following uniform costing. The basic idea behind uniform costing is that the different concerns in an industry should adopt a common method of costing and apply uniformly the same principles and techniques for better cost comparison and common good. The principles and methods of compilation, analysis, apportionment and absorption of overheads differ from one concern to the other in the same industry; but if a common or uniform pattern is adopted by all, it helps mutually in cost control and cost reduction. Therefore, it is necessary that a uniform method of costing should be adopted by the member unit of an industry.

### 1.2 OBJECTIVES OF UNIFORM COSTING

The main objectives of Uniform Costing are as follows: -

1. Facilitates Comparison: To facilitate the comparison of costs and performances of different units in the same industry; it provides objective basis.
2. Eliminates Unhealthy Competition: To eliminate unhealthy competition among the different units of an industry.
3. Improves Efficiency: To improve production capacity level and labour efficiency by comparing the production costs of different units with each other.
4. Provides Relevant Data: To provide relevant cost information/data to the Government for fixing and regulating prices of the products.
5. Ensures Standardisation: To bring standardisation and uniformity in the operation of participating units.
6. Reduces Cost: To reduce production, administration, selling and distribution costs, and to exercise control on fixed costs.

## Advanced Management Account

Essential requisites for the installation of Uniform Costing System : A successful system of uniform costing has the following requirements :-

1. The firms in the industry should be willing to share/furnish relevant data/information.
2. A spirit of cooperation and mutual trust should prevail among the participating firms.
3. Mutual exchange of ideas, methods used, special achievements made, research and know how etc. should be frequent.
4. Bigger firms should take the lead towards sharing their experience and know-how with the smaller firms to enable the latter to improve their performance.
5. Uniformity must be established with regard to several points before the introduction of uniform costing in an industry. In fact, uniformity should be with regard to following points:
(a) Size of the various units covered by uniform costing.
(b) Production methods.
(c) Accounting methods, principles and procedures used.

### 1.3 ADVANTAGES OF UNIFORM COSTING

The advantages accruing from the use of uniform costing system are as follows: -

1. The management of each firm will be saved from the exercise of developing and introducing a costing system of its own.
2. A costing system devised by mutual consultation and after considering the difficulties and circumstances prevailing in different firms is readily adopted and successfully implemented.
3. It facilitates comparison of cost figures of various firms to enable the firms to identify their weak and strong points besides controlling costs.
4. Optimum achievement of efficiency is attempted by all the firms by utilising the experience of other concerns in the industry.
5. Standing in the industry of each firm will be known by making a comparison of its cost data with others.
6. Services of cost consultants or experts may be available jointly to each firm in the industry by sharing their experiences and expenses.
7. Research and development benefits of bigger firms may be made available to smaller firms.
8. It helps in the reduction of labour turnover, as a uniform wage system is the pre-condition of a uniform costing system.
9. It helps Trade Associations in negotiating with the Government for any assistance or concession in the matters of taxation, exports, subsidies, duties and prices determination etc.
10. Unhealthy competition is avoided among the firms in the same industry in framing pricing policies and submitting tenders.
11. Prices fixed on the basis of uniform costing are representative of the whole industry and thus are reliable.
12. Uniform costing provide a basis for the comparative assessment of the performance of two firms in the same industry but in different sectors.
13. It helps the Government in regulating the prices of essential commodities such as bread, sugar, cement, steel etc.

### 1.4 LIMITATIONS OF UNIFORM COSTING

1. Sometimes it is not possible to adopt uniform standards, methods and procedures of costing in different firms due to differing circumstances in which they operate. Hence, the adoption of uniform costing becomes difficult in such firms.
2. Disclosure of cost information and other data is an essential requirement of a uniform costing system. Many firms do not wish to share such information with their competitors in the same industry.
3. Small firms in an industry believe that uniform costing system is only meant for big and medium size firms, because they cannot afford it.
4. It induces monopolistic trend in the business, due to which prices may be increased artificially and supplies withheld.

### 1.5 INTER-FIRM COMPARISON MEANING

It is technique of evaluating the performance, efficiency, costs and profits of firms in an industry. It consists of voluntary exchange of information/data concerning costs, prices, profits, productivity and overall efficiency among firms engaged in similar type of operations for the purpose of bringing improvement in efficiency and indicating the weaknesses. Such a comparison will be possible where uniform costing is in operation.

An inter-firm comparison indicates the efficiency of production and selling, adequacy of profits, weak spots in the organisation, etc. and thus demands
from the firm's management an immediate suitable action. Inter-firm comparison may enable the management to challenge the standards which it has set for itself and to improve upon them in the light of the current information gathered from more efficient units. Such a comparison may be carried out in electrical industry, printing firms, cotton spinning firms, pharmaceuticals, cycle manufacturing, etc.

### 1.6 REQUISITES OF INTER-FIRM COMPARISON SYSTEM

The following requisites should be considered while installing a system of inter-firm comparison :-

1. Centre for Inter-Comparison: For collection and analysing data received from member units, for doing a comparative study and for dissemination of the results of study a Central body is necessary. The functions of such a body may be :-
(a) Collection of data and information from its members;
(b) Dissemination of results to its members;
(c) Undertaking research and development for common and individual benefit of its members;
(d) Organising training programmes and publishing magazines.
2. Membership: Another requirement for the success of inter-firm comparison is that the firms of different sizes should become members of the Centre entrusted with the task of carrying out interfirm comparison.
3. Nature of information to be collected: Although there is no limit to information, yet the following information useful to the management is in general collected by the Centre for inter-firm comparison.
a. Information regarding costs and cost structures.
b. Raw material consumption.
c. Stock of raw material, wastage of materials, etc.
d. Labour efficiency and labour utilisation.
$e$. Machine utilisation and machine efficiency.
f. Capital employed and Return on capital.
g. Liquidity of the organisation.
h. Reserve and appropriation of profit.
i. Creditors and debtors.
$j$. Methods of production and technical aspects.
4. Method of Collection and presentation of information: The Centre collects information at fixed intervals in a prescribed form from its
members. Sometimes a questionnaire is sent to each member ; the replies of the questionnaire received by the Centre constitute the information/data. The information supplied by firms is generally in the form of ratios and not in absolute figures. The information collected as above is stored and presented to its members in the form of a report. Such reports are not made available to non-members.

### 1.7 ADVANTAGES OF INTER-FIRM COMPARISON

The main advantages of inter-firm comparison are :-

1. Such a comparison gives an overall view of the industry as a whole to its members- the present position of the industry, progress made during the past and the future of the industry
2. It helps a concern in knowing its strengths or weaknesses in relation to others so that remedial measures may be taken.
3. It ensures an unbiased specialized reporting on particular problems of the concern.
4. It develops cost consciousness among members of the industry.
5. It helps Government in effecting price regulation.
6. It helps to improve the quality of products manufactured and to reduce the cost of production. It is thus advantageous to the industry as well as to the society.

### 1.8 LIMITATIONS OF INTER-FIRM COMPARISON

The following are the limitations in the implementation of a scheme of interfirm comparison :

1. Top management feels that secrecy will be lost.
2. Middle management is usually not convinced with the utility of such a comparison.
3. In the absence of a suitable Cost Accounting System, the figures supplied may not be reliable for the purpose of comparison.
4. Suitable basis for comparison may not be available.

## SUMMARY

- When several undertakings start using the same costing principles and/or practices they are said to be following uniform costing.
- The main objectives of Uniform Costing are as follows :


## $\checkmark$ Facilitates Comparison

## $\checkmark$ Eliminates Unhealthy Competition

$\checkmark$ Improves Efficiency
$\checkmark$ Provides Relevant Data
$\checkmark$ Ensures Standardisation
$\checkmark$ Reduces Cost

- It is technique of evaluating the performance, efficiency, costs and profits of firms in an industry

An inter-firm comparison indicates the efficiency of production and selling, adequacy of proof- its, weak spots in the organisation, etc. and thus demands from the firm's management an immediate suitable action

- Requisites of inter-firm comparison system are as follows:
$\checkmark$ Centre for Inter-Comparison
$\checkmark$ Membership
$\checkmark \quad$ Nature of information to be collected
$\checkmark$ Method of Collection and presentation of information


## MULTIPLE CHOICE QUESTIONS

1. The use by several undertakings of the same costing principles and/or practices. $\qquad$ ,
(a) Unit costing
(b) Uniform costing
(c) Standard costing
(d) Differential costing.
2. Uniform Costing helps an individual firm in $\qquad$ ,
(a) Ascertainment of cost
(b) Cost control and cost reduction
(c) Allocation of costs
(d) apportionment of costs
3. Inter-firm comparison is one of the aims of $\qquad$ ,
(a) Unit costing
(b) Uniform costing
(c) Standard costing
(d) Marginal costing
4. Inter-firm comparison is $\qquad$ ,
(a) A method of costing
(b) A method of allocation of overheads
(c) A technique of evaluating the performance of firms in an industry
(d) Related to marginal costing

## SELF-EXAMINATION QUESTIONS

1. Define Uniform costing. Explain its objectives.
2. What are the requisites for the installation of a Uniform Costing System?
3. What are the advantages of Uniform Costing ? State its limitations.
4. Enumerate the points on which uniformity is essential before introducing Uniform costing system.
5. What to you mean by inter-firm comparison ? Give its advantages and limitations.
6. Describe the requisites to be considered while installing a system of inter-firm comparison by an industry.

## INTEGRATED SYSTEM OF ACCOUNTS

## Unit Structure

2.0 Objectives
2.1 Introduction
2.2 Meaning
2.3 Features
2.4 Advantages and Disadvantages
2.5 Journal entries and preparing integrated ledgers
2.6 Difference between Integrated and non-integrated system of accounts
2.7 Practical problems
2.8 Summary
2.9 Questions

### 2.0 OBJECTIVES

After studying this unit, the learner will be able to -

- Understand the concept of Integrated system of accounts, its features, Advantages \& Disadvantages.
- Able to solve the practical problems.
- Identify ledgers maintained under integrated system
- Able to understand the journal entries for accounting purpose.


### 2.1 INTRODUCTION

Under integral accounting system, only one set of books of accounts is prepared and the accounts are written in such a manner that due justice is done to all the Cost Accounting and financial Accounting principles. The accounts to be opened would depend on ultimate outcome expected and ultimate outcome of integral accounting system is the cost sheet for cost accountant and profit and loss $\mathrm{A} / \mathrm{c}$ and balance sheet for financial accountant.

### 2.2 MEANING

Integrated accounting is a type of software that combines major financial accounting functions into one application.

Business activities such as payroll, HR paperwork, business operations, and even meeting deliverables can often incur significant expenses.

Comprehensive information on such costs is accessible in the integrated accounting format.

However, this method may not suit businesses that manage data related to cost transactions or expenses and financial data separately. With this method, records for control accounts, including work carried out or in progress, completed tasks, etc., are maintained in a general ledger book.

### 2.3 FEATURES

An integrated accounting system can include the following Basic features:

1. There is no need for cost ledger because all control accounts are maintained in the financial ledger
2. Maintenance of a single set of books for recording expenses, orders, or other operational and financial purposes
3. Reduce the chance of errors
4. Complete analysis of cost and sales are kept.
5. Complete details of all payments in cash are kept
6. Complete details of all assets and liabilities are kept and this system doesnot use a notional account to represent all impersonal accounts
7. Generate accurate profitability reports.
8. Recover more reimbursable expenses.
9. Accounting for expenses is carried out during the cost period rather than the final account period.

### 2.4 ADVANTAGES AND DISADVANTAGES

## Advantages

1. There is no need for reconciliation because there will be only one figure of profit or loss as there is only one set of books.
2. This system is economical because it avoids duplication of recording the transactions in two separate set of books.
3. Accounting information is readily available and the correctness of the data is automatically checked.
4. It enables the introduction of mechanized accounting
5. It is economical also as it is based on the concept of "Centralization of Accounting function".
6. No delay is caused in obtaining information as it isprovided from books of original entry.
7. Due to use of one set of books, there is a significant saving in efforts made.
8. A better understanding among the staff

## Disadvantages

1. The accounting system is sophisticated and requires efficient and trained staff.
2. Not suitable if cost and financial data are required to be separately presented
3. This accounting system is complicated and costly.

### 2.5 JOURNAL ENTRIES AND PREPARING

INTEGRATED LEDGERS

| Subsidiary ledger | Control accounts |
| :---: | :---: |
| - Salesledger <br> - Purchase ledger <br> - Store ledger <br> - Stockledger <br> - Jobledger <br> - Expensesledger | - Sales ledger control account <br> - Purchase ledger control account <br> - Store ledgercontrolaccount <br> - Stock ledger control account <br> - WIP control account <br> - Overhead control account |

### 2.6 DIFFERENCE BETWEEN NON-INTEGRATED ACCOUNTING AND INTEGRATED ACCOUNTING

| Bases of difference | Non-integrated accounting | Integrated accounting |
| :---: | :--- | :--- |
| accounts | Under it, separate accounts are <br> maintained for cost and financial <br> transactions. | Under it, separate accounts are not <br> maintained for cost and financial <br> transactions. |
| Cost account | The recording of various costs are <br> maintained difference cost ledgers. | lifference subsidiary ledgers are <br> prepared for maintaining the records <br> of the transactions. |
| dependency | It tis independent system of accounting. | Under this, the cost and financial <br> accounts are dependent to each <br> other. |
| reconciliation | Under it, it is necessary to prepare a <br> reconciliation statement to reconcile the <br> profit between the cost and financial <br> accounting. | Under it, it is not necessary to prepare <br> a reconciliation statement to reconcile <br> the profit between the cost and <br> financial accounting. |
| Internal check | Under it, the cross checking is not possible <br> since they are independent to each other. | Under it, the cross checking is possible <br> since they are dependent to each <br> other. |

### 2.7 PRACTICAL PROBLEMS

Illustration 1:
Journalise the following transactions assuming that cost and financial accounts are integrated:

| Particulars | Rs. |
| :--- | ---: |
| Raw materials purchased | $1,50,000$ |
| Direct material issued to production | $1,12,500$ |
| Wages paid (30\% indirect) | 90,000 |
| Manufacturing expenses incurred | 63,000 |
| Manufacturing overheads charged to production | 69,000 |
| Selling and distribution cost | 15,000 |
| Finished product at cost | $1,50,000$ |
| Sales | $2,25,000$ |
| Receipts form customer | 52,500 |
| Paid to creditors | 82,500 |
| Closing stock | Nil |

Solution:

## Journal

|  | Particulars | Debit Amount (Rs.) | Credit Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| 1 | Stores ledger control a/c <br> To bought ledger control a/c (being raw material bought) | 1,50,000 | 1,50,000 |
| 2 | Work-in-progress ledger control a/c <br> To Stores ledger control a/c (being materials issued for production) | 1,12,500 | 1,12,500 |
| 3 | Wages control a/c Factory overhead control a/c <br> To Bank a/c <br> (being wages paid) | $\begin{aligned} & \hline 63,000 \\ & 27,000 \end{aligned}$ | 90,000 |
| 4 | Work-in-progress ledger control a/c <br> To Wages control a/c <br> (Being the allocation of wages to production) | 63,000 | 63,000 |
| 5 | Factory overhead control a/c <br> To Bank a/c <br> (Being the manufacturing expenses incurred) | 63,000 | 63,000 |
| 6 | Work-in-progress ledger control a/c <br> To Factory overhead control a/c (Being overhead charged to production) | 69,000 | 69,000 |


|  | Particulars | Debit Amount (Rs.) | Credit Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| 7 | Selling \& distribution overhead control a/c <br> To Bank a/c <br> (Being selling and distribution cost incurred) | 15,000 | 15,000 |
| 8 | Finished stores ledger control a/c <br> To Work in progress ledger control a/c (Being cost of production of completed jobs) | 1,50,000 | 1,50,000 |
| 9 | Cost of sales a/c <br> To Finished stock ledger control a/c <br> To Selling \& distribution overhead control a/c <br> (Being the cost of products sold) | 1,65,000 | $\begin{array}{r} 1,50,000 \\ 15,000 \end{array}$ |
| 10 | Sales ledger control a/c <br> To Sales a/c <br> (being the amount of sales) | 2,25,000 | 2,25,000 |
| 11 | Bank a/c <br> To Sales ledger control a/c (being amount received from customers) | 52,500 | 52,500 |
| 12 | Bought ledger control a/c <br> To Bank a/c <br> (being amount paid to credirors) | 82,500 | 82,500 |

Illustration 2:
From the following information you are requested to pass journal entries and prepare necessary accounts under the system of integrated accounts

| Material purchased on credit | $1,48,000$ |
| :--- | ---: |
| Wages paid | $1,68,000$ |
| Wages productive | 148,000 |
| Wages unproductive | 20,000 |
| Material issued to production | 128,000 |
| Works expenses incurred | 65,000 |
| Works expenses charged to production | 86,000 |
| Office and administration expenses paid | 44,000 |
| Office and administration expenses charged to production | 43,500 |
| Cost of Goods sold | 300,000 |
| Selling overheads expenses paid | 45,000 |
| Selling overheads charged to sales | 45,000 |
| Sales credit | 390,000 |

Journal

|  | Particulars | Debit Amount (Rs.) | Credit Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| 1 | Stores ledger control a/c <br> To Creditors a/c <br> (being the stores purchased on credit) Dr. | 148,000 | 148,000 |
| 2 | Wages control $\mathrm{a} / \mathrm{c}$ <br> To Cash a/c <br> (being wages paid) Dr. <br>   | 168,000 | 168,000 |
| 3 | Work-in-Progress control a/c <br> To Wages Control a/c <br> (being the wages charged to production) Dr. | 148,000 | 148,000 |
| 4 | Work Expenses Control A/c Dr. To Wages Control A/c (Being the wages charged to work expenses since these are indirect payments) | 20,000 | 20,000 |
| 5 | Work-in-Progress Control a/c <br> To Stores Ledger Control A/c <br> (Being materials issued to Production) Dr. <br> Wr.  | 128,000 | 128,000 |
| 6 | Work Expenses Control a/c Dr. <br> To Cash <br> (being the works expenses paid during the year) | 65,000 | 65,000 |
| 7 | Work-in-Progress Control a/c <br> To Work Expenses Control A/c <br> (being the works expenses charged to production) <br> Drice | 86,000 | 86,000 |
| 8 | Office and Administration Expenses Control A/c Dr. <br> To Cash <br> (Being amount paid to office expenses) | 44,000 | 44,000 |
| 9 | Work-in-Progress Control A/c Dr. <br> To Office and Administration Expenses <br> Control A/c  <br> (Being office and administration  <br> charged to production )  | 43,500 | 43,500 |
| 10 | Cost of Sales A/c <br> To Work-in-Progress Control A/c <br> (Being the finished product transferred) Dr. | 300,000 | 300,000 |
| 11 | Selling Expenses Control A/c <br> To Cash <br> (Being the selling expenses incurred)$\quad$ Dr. | 45,000 | 45,000 |
| 12 | Cost of Sales A/c <br> To Selling Expenses Control A/c <br> (Being selling expenses charged to sales) Dr. | 45,000 | 45,000 |
| 13 | Debtors A/c Dr. <br> To Sales A/c  <br> (Being sales made on credit)  | 390,000 | 390,000 |

Stores ledger control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | ---: |
| To creditors | $\mathbf{1 4 8 , 0 0 0}$ | By Work-in-process <br> control A/c | $\mathbf{1 2 8 , 0 0 0}$ |
|  |  | By balance c/d | $\mathbf{2 0 , 0 0 0}$ |
|  | $\mathbf{1 4 8 , 0 0 0}$ |  | $\mathbf{1 4 8 , 0 0 0}$ |

Wages ledger control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | ---: |
| To cash | $\mathbf{1 6 8 , 0 0 0}$ | By Work-in-process <br> control A/c | $\mathbf{1 4 8 , 0 0 0}$ |
|  |  | By works expenses <br> control a/c | $\mathbf{2 0 , 0 0 0}$ |
|  | $\mathbf{1 6 8 , 0 0 0}$ |  | $\mathbf{1 6 8 , 0 0 0}$ |

Works expenses control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | ---: | :--- | ---: |
| To wages control a/c | $\mathbf{2 0 , 0 0 0}$ | By Work-in-process <br> control A/c | $\mathbf{8 6 , 0 0 0}$ |
| To cash | $\mathbf{6 5 , 0 0 0}$ |  |  |
| To balance c/d | $\mathbf{1 , 0 0 0}$ |  |  |
|  | $\mathbf{8 6 , 0 0 0}$ |  | $\mathbf{8 6 , 0 0 0}$ |
|  |  | By balance b/d | $\mathbf{1 , 0 0 0}$ |

Office and administrative expenses control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | ---: |
| To cash | $\mathbf{4 4 , 0 0 0}$ | By Work-in-process <br> control A/c | $\mathbf{4 3 , 5 0 0}$ |
|  |  | By balance c/d | $\mathbf{5 0 0}$ |
|  | $\mathbf{4 4 , 0 0 0}$ |  | $\mathbf{4 4 , 0 0 0}$ |

Selling expenses control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | ---: |
| To cash | $\mathbf{4 5 , 0 0 0}$ | By Cost of sales A/c | $\mathbf{4 5 , 0 0 0}$ |
|  |  | $\mathbf{4 5 , 0 0 0}$ |  |
| $\mathbf{4 5 , 0 0 0}$ |  |  |  |

Work-in-progress control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | ---: | :--- | ---: |
| To wages control a/c | $\mathbf{1 4 8 , 0 0 0}$ | By cost of sales | $\mathbf{3 0 0 , 0 0 0}$ |
| To stores ledger | $\mathbf{1 2 8 , 0 0 0}$ | By balance c/d | $\mathbf{1 0 5 , 5 0 0}$ |
| To works expenses | $\mathbf{8 6 , 0 0 0}$ |  |  |
| To office and <br> administration exp. | $\mathbf{4 3 , 5 0 0}$ |  |  |
|  | $\mathbf{4 0 5 , 5 0 0}$ |  | $\mathbf{4 0 5 , 5 0 0}$ |

## Illustration 3:

Journalise the following transactions under integral accounting system

| Direct wages paid in cash | 60,000 |
| :--- | ---: |
| Indirect wages paid in cash | 30,000 |
| Purchases made in cash | 15,000 |
| Purchases (credit) | 290,000 |
| Stores issued against production order | 275,000 |
| Works expenses incurred and paid in cash | 55,000 |
| Works expenses allocated to jobs | 80,000 |
| Administration expenses paid in cash | 40,000 |
| Administration expenses allocated to jobs | 48,000 |
| Finished goods transferred to warehouse | 450,000 |

I.C.W.A Inter adapted

Solution:
Journal entries under integrated accounting system

|  | Particulars | Debit Amount (Rs.) | Credit Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| 1 | Wages control a/c Dr. To Cash a/c (being direct and indirect wages paid in cash) | 90,000 | 90,000 |
|  | Work-in-progress control a/c Dr. <br> Production overhead control a/c Dr. <br> To wages control a/c  <br> (being direct wages transferred to WIP control  <br> a/c and indirect wages to production overhead  <br> control a/c)  | $\begin{aligned} & 60,000 \\ & 30,000 \end{aligned}$ | 90,000 |
|  | Stores ledger control a/c Dr. To Cash a/c To sundry creditors a/c (being purchases made in cash and on credit) | 305,000 | $\begin{array}{r} 15,000 \\ 290,000 \end{array}$ |
|  | Work in progress ledger control a/c Dr. <br> To stores ledger control a/c  | 275,000 | 275,000 |
|  | Production overhead control a/c <br> To Cash a/c <br> (works expenses paid in cash) | 55,000 | 55,000 |
|  | Work in progress ledger control a/c <br> To Production overhead control a/c <br> (works expenses charged to production) | 80,000 | 80,000 |
|  | Administration overhead control a/c <br> To Cash a/c Dr. <br> (Administration expenses paid in cash)  | 40,000 | 40,000 |
|  | Finished goods control a/c Dr. <br> To Administration overhead control a/c <br> (Administration overhead charged to finished goods) | 48,000 | 48,000 |
|  | Finished goods control a/c <br> To work in progress ledger control a/c <br> (Transfer to finished goods to warehouse) | 450,000 | 450,000 |

## Illustration 4:

Journalise the following transactions in the integrated books of accounts

| 1 | Credit purchased | 1200,000 |
| :--- | :--- | ---: |
| 2 | Production wages paid | 700,000 |
| 3 | Stock issued to production orders | 800,000 |
| 4 | Works expenses charged to production | 450,000 |
| 5 | Finished goods transferred from production orders | 1800,000 |
| 6 | Administration expenses charged to production | 150,000 |
| 7 | Works expenses outstanding | 120,000 |
| 8 | Works expenses paid | 460,000 |

I.C.W.A INTER ADAPTED

Solution:
Journal entries under integrated accounting system

|  | Particulars | Debit Amount (Rs.) | Credit Amount (Rs.) |
| :---: | :---: | :---: | :---: |
| 1 | Stores ledger control a/c <br> To sundry creditors a/c <br> (being purchase of material on credit) Dr. | 1200,000 | 1200,000 |
| 2 | Wages control a/c <br> To cash or bank a/c <br> (wages paid to workers in cash/cheque)$\quad$ Dr. | 700,000 | 700,000 |
| 3 | Work in progress ledger control a/c <br> To stores ledger control a/c <br> (stores issued against production orders) | 800,000 | 800,000 |
| 4 | Work in progress ledger control a/c <br> To production overhead control a/c (works expenses charged to production) | 450,000 | 450,000 |
| 5 | Finished goods ledger control a/c Dr. <br> To Work in progress ledger control a/c <br> (Goods finished during the year transferred) | 1800,000 | 1800,000 |
| 6 | Work in progress ledger control a/c Dr. <br> To Administration overhead control a/c <br> (Admin overhead charged to production) | 150,000 | 150,000 |
| 7 | Production overhead control a/c <br> To outstanding works overhead a/c (works overhead incurred during the period but still unpaid) | 120,000 | 120,000 |
| 8 | Production overhead control a/c <br> To cash /bank a/c <br> (works expenses paid in cash /cheque during the period) | 120,000 | 120,000 |

### 2.8 SUMMARY

In this chapter we will able to understand the concept of integrated system of accounting and we will understand how to journalise the entries for the integrated accounting system

### 2.9 QUESTIONS

1. An integrated system of accounts are maintained
a) in separate books of accounts for costing and financial accounting purposes
b) In the same books of accounts
c) both (a)\&(b)
d) None of the above

Answer: b
2. What will be the accounting entry in integrated accounts for absorption of works overhead?
a) Factory overhead A/c Dr.

To Work-in-Progress A/c
b) Factory overhead A/c Dr.

To Factory overhead control A/c
c) Work-in-Progress control A/c Dr.

To Factory overhead control A/c
d) no entry required

Answer: c
3. $\qquad$ Accounts is the name given to a system whereby cost and financial accounts are kept in the same set of books.
a) Non-integrated
b) Finalize
c) $\operatorname{Cost}$
d) Integrated

Answer: d
4. In entry under the integrated system for credit purchases of material for stock, stores ledger control is $\qquad$
a) Non impacted
b) increased
c) debited
d) credited

Answer: c
5. In entry under the integrated system for cash purchases of special materials for direct use in a job $\qquad$ account is debited.
a) general ledger adjustment
b) stores ledger control
c) cost ledger control account
d) work-in-progress
answer: D

## SHORT NOTES

1) Explain the Features of an integrated system of accounts
2) Explain the difference between an integrated system and non integrated system
3) Explain the advantages and disadvantages of an integrated system of accounts
4) Explain the important journal entries in this system
5) What are the impact of this system in accounting?


## NON-INTEGRATED SYSTEM OF ACCOUNTS

## Unit Structure

### 3.0 Objectives

3.1 Introduction
3.2 Meaning
3.3 Features
3.4 Advantages and disadvantages
3.5 Journal entries and preparing cost control accounts
3.6 Practical problems
3.7 Summary
3.8 Questions

### 3.0 OBJECTIVES

After studying this unit, the learner will be able to -

- Understand the concept of Non-Integrated system of accounts, its features, Advantages \& Disadvantages.
- Able to solve the practical problems.
- Identify ledgers maintained under non-integrated accounts
- Able to understand the journal entries for accounting purposes.


### 3.1 INTRODUCTION

Non integrated system of accounting is a system under which two separate sets of accounts are maintained in which one is for cost accounting and another is for finance accounting, in other words cost accounts are maintained separately from financial accounts.

Since both the books prepared by separately hence, the cost accountant is responsible for cost records and financial accountant is responsible for financial transactions.

Non- -integrated system of accounting is also known as a non-integrated system or inter-locking system or cost ledger accounting system

### 3.2 MEANING

It is a system where separate ledgers are maintained for cost and financial accounting by the accountant. Under such a system of accounting the cost

## Non- integrated accounts

## - Types of accounts maintained in cost accounts



### 3.3 FEATURES

1. Separate account books are maintained to record financial and cost transactions.
2. Financial and cost accountant both are responsible to record transactions in the book separately.
3. The double entry system is adapted for recording the transactions in both accounts books. Personal and real accounts are not opened in cost account books.
4. General and cost ledger adjustment account is opened in cost books to complete the double entry system
5. Reconciliation statement is prepared to reconcile profits as revealed by cost account books and financial account books

### 3.4 ADVANTAGES AND DISADVANTAGES

## Advantages

1. This system tends to coordinate the functions of different selection of the accounts department since all efforts are integrated and directed towards achievement of one aim that is providing a high level of efficiency,
2. The accounting procedures can be simplified and the system can be centralized with the object of achieving a greater control over the organization.
3. The system creates conditions which are eminently suitable for the introduction of mechanized accounting
4. There is no possibility of overlooking any expense under the system.
5. As cost accounts are posted straight from the books of original entry, there is no delay in obtaining the data
6. Integrated accounting widens the outlook if the accountant.
7. It can be maintained according to convenience as it need not be statutorily maintained

## Disadvantages

1. The Financial transactions other than cost incurred are not recorded in the system.
2. Transactions involving payment other than that of cost are not included in the system e.g. loss on fixed assets
3. There is always a difference between the profits reported as per the cost accounting system and the financial accounting system.

### 3.5 NECESSERY ACCOUNTS REQUIRED TO BE PREPARE

## 1. General Ledger Adjustment A/c or Cost Ledger Control A/c:

This is practically a dummy account and is to be used where one of the two parts of the journal is recorded. One is a cost sheet item and the other is a Balance Sheet item. Since Balance Sheet items have no place in our system, the Balance Sheet part of the Journal, whether debit or credit, is to be replaced by this account. If both the parts of the journal are balance sheet items or both the parts are cost sheet items, then naturally this account has no use.

| Dr. | General ledger adjustment account |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Particulars | Rs | Date | Particular | Rs |
|  | To cost ledger control a/c. To profit and loss a/c (sales). To balance $\mathrm{c} / \mathrm{d}$. | $X_{x x}$ <br> $X_{x x}$ <br> xxx |  | By balance sheet $\mathrm{b} / \mathrm{d}$. $\qquad$ <br> By stores ledger. $\qquad$ <br> Control a/c (purchase) $\qquad$ <br> By W-I-P control a/c. $\qquad$ <br> (special purchase) <br> By wages control a/c $\qquad$ <br> By production overhead $a / c$. $\qquad$ <br> By adm. Overhead a/c. $\qquad$ <br> By selling overhead $a / c$. $\qquad$ <br> By costing P/L a/c. $\qquad$ | Xxx <br> Xxx |
|  |  | XXX |  |  | XXX |

This is in respect of raw material when raw material is purchased, this account is debited and when raw material is issued to the production department, it is credited to this $\mathrm{a} / \mathrm{c}$ and debited to Work in-progress $\mathrm{a} / \mathrm{c}$. The material issued for repairs and maintenance is also credited to this account and debited to factory overheads account. Likewise, abnormal loss of material is credited to this account and debited to costing profit and loss A/c.

| Dr. | Stores ledger control account |  |  |  | Cr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | particulars | Rs | Date | Particulars | Rs. |
|  | To balance b/d.................... To general ledger adj. a/c...... | Xxx <br> xxx |  | By W-I-P control a/c............. <br> By production overhead a/c. $\qquad$ <br> By general ledger adjustment a/c <br> By balance c/d. $\qquad$ | $X_{x x}$ $X_{x x}$ xxx $X_{x x}$ |
|  |  | XXX |  |  | XXX |

## 3. Work -In -progress ledger control a/c :

On the debit side of this $\mathrm{A} / \mathrm{c}$, we write opening balance and factory cost incurred. On the credit side, factory cost of production completed is transferred to finished goods ledger control a/c and balance is closing stock. Also, if there is some abnormal loss, the factory cost of abnormal loss (Prime Cost and Factory Overheads) is credited to this A/c and debited to abnormal loss A/c and similarly, abnormal gain is debited to this a/c and credited to abnormal gain a/c.

| Dr. | Work-in-progress ledger control account |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Particulars | Rs | Date | Particulars | Rs |
|  | To balance b/d............................. | Xxx |  | By finished goods ledger a/c.... | Xxx |
|  | To general ledger adj. a/c............ | $\chi_{x x}$ |  | By balance c/d......................... | xxx |
|  | To stores ledger control $\mathrm{a} / \mathrm{c}$......... | Xxx |  |  |  |
|  | To wages control a/c................ | $X_{x x}$ |  |  |  |
|  | To production overhead a/c.... | $x x x$ |  |  |  |
|  |  | XXX |  |  | XXX |

## 4. Finished Goods Ledger Control A/C :

On the debit side of this $\mathrm{A} / \mathrm{c}$, we write opening stock of finished goods, factory cost of production completed and transferred to warehouse and administration overheads. On the credit side, the production cost of goods sold is transferred to cost of sales $\mathrm{a} / \mathrm{c}$ and the balance is closing stock of finished goods.
Finished goods ledger control account

| Cr. | Cr. |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Date Particulars Rs Date Particulars | Rs |  |  |  |  |
|  | To S \& D overhead a/c................................ | $X_{x x}$ |  | By profit and loss a/c.............. | xxx |
|  | To finished goods ledger control a/c | $X x x$ |  |  |  |
|  |  |  | $X x X$ |  |  |

## 5. Wage Control A/C :

On the debit side of this a/c, we write the wages incurred, whether direct or indirect. On the credit side, the indirect wages could be factory, administration or Selling \& Distribution overheads and depending on that, we transfer them to Factory overheads Control A/c, administration Overheads Control A/c or S \& D overheads Control A/c. direct wages are transferred to Work-in-progress account. It is also possible (in fact, better) to transfer to this account, only direct wages and to transfer indirect wages directly from GLA A/c to respective overheads accounts.

| Dr. | Wages control account |  |  |  | Cr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Particulars | Rs | Date | Particulars | Rs |
|  | To general ledger adj. a/c...... | Xxx |  | By W-I-P control a/c $\qquad$ <br> By production overhead $a / c$.... <br> By adm. Overhead a/c. $\qquad$ <br> By s \& o overhead a/c......... | Xxx <br> Xxx <br> Xxx <br> Xxx |
|  |  | XXX |  |  | XXX |

## 6. Factory overheads Control A/c, Administrative Overheads Control A/c, Selling and Distribution overheads control a/c:

On the Debit side of each of these accounts, we write the amount actually spent. The factory overheads, to the extent recovered, are transferred to Work-in-progress Ledger Control A/c. The administrative overheads are similarly transferred to Finished Goods Ledger Control A/c and Selling \& Distribution Overheads are transferred to Cost of Sales a/c.

As regards the difference between the amount spent and recovered, if there is some instruction, direct or indirect, it should be followed. In the absence thereof, there are two alternatives. One is to transfer the difference to Costing Profit \& Loss A/c and the other is to carry it forward by showing the difference as closing balance. It is also possible to follow supplementary rate system.

If opening trail balance is given and such items do appear in it then that means the company follows the policy of carrying forward the difference to the next period. If they do not appear in the opening trial balance then, in the absence of information to the contrary, these A/c's should be closed by transferring the difference to Costing Profit \& Loss A/c. If the supplementary system is to be followed, then, the difference should be transferred to the same account to which absorption is transferred.
Dr. General ledger adjustment account

| Cr. |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Date | Particulars | Rs | Date | Particulars | Rs |  |
|  | To general ledger a/c............. | Xxx |  | By W-I-P control a/c.................. | Xxx |  |
|  | To stores ledger control a/c..... | Xxx |  |  |  |  |
|  | To wages control a/c.......... | Xxx |  |  |  |  |
|  | To costing P/L a/c............ | Xxx |  |  | XXX |  |
|  |  | XXX |  |  |  |  |

## 7. Cost of Sales A/C :

On the debit side of this A/c we write production cost of goods sold (which is transferred from finished goods ledger control a/c) and Selling and Distribution Overheads. The total being cost of sales, we transfer it to

| Dr. | Cost of sales account |  |  |  | Cr |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Particulars | Rs | Date | Particulars | Rs |
|  | To S \& D overhead a/c $\qquad$ To Fixed goods ledger control a/c | Xxx <br> xxx |  | By profit and loss a/c................. | Xxx |
|  |  | XXX |  |  | XXX |

## 8. Sales A/C :

On the credit side of this $\mathrm{a} / \mathrm{c}$, we write the amount of sales by debiting General ledger Adjustment A/c and we close this A/c by transferring sales to costing Profit and Loss A/c.

## 9. Abnormal Loss / Gain A/C:

These are the $\mathrm{a} / \mathrm{c}$ 's for recording the transactions of abnormal nature and we close these $\mathrm{a} / \mathrm{c}$ 's by transferring the balance to profit and Loss $\mathrm{A} / \mathrm{c}$.

## 10. Costing Profit and Loss A/C :

On the debit side of this $\mathrm{A} / \mathrm{c}$, we write the cost of sales and abnormal losses and on the credit side sales and abnormal gain. Based on the policy as regards overheads, the under / over absorption may also be written on the debit side or as the case may be on credit side. We close this a/c by transferring the profit (loss) to General Ledger adjustment A/c.

| Dr. | Costing profit and loss account |  |  |  | Cr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | particulars | Rs | Date | Particulars | Rs |
|  | To cost of sales $a / c$. $\qquad$ <br> To adm. Overhead a/c. $\qquad$ <br> To S \& D overhead a/c. $\qquad$ <br> To general ledger adjust. a/c. $\qquad$ <br> To net profit. $\qquad$ | $\begin{aligned} & X_{x x} \\ & X_{x x} \\ & X_{x x} \\ & X_{x x} \\ & X_{x x} \end{aligned}$ |  | By sales. $\qquad$ <br> By production overhead a/c. $\qquad$ | $\begin{aligned} & X_{x x} \\ & X_{x x} \end{aligned}$ |
|  |  | XXX |  |  | XXX |

## 11. Trial Balance :

Whether asked for or not, it is always advisable to prepare the trial balance. Obviously, the closing balances would be inventory accounts, General Ledger Adjustment accounts and Overhead A/c's (If the policy is to carry forwards the difference).

Non integrated accounting system flow chart


### 3.5 JOURNAL ENTRIES AND PREPARING COST CONROL ACCOUNTS

| transactions | Entry |
| :---: | :---: |
| 1. Materials purchased: <br> (a) For stock | Stares ledger contract a/c $\qquad$ dr To general ledger adjustment a/c. |
| (b) For special jobs | Work-in-progress control a/c. $\qquad$ dr To general ledger adjustment $a / c$. |
| 2. Materials issued <br> (a) Direct materials | W-i-p control $a / c$ $\qquad$ de To stores ledger control a/c |
| (b) Indirect materials | Work-in-progress control a/c. To stores ledger control a/c |
| (c) Return to suppliers | General ledger adjustment a/c. To stores ledgers control a/c |
| 3. Materials returned from shap floar: | Stores ledger control a/c. $\qquad$ Dr To work-in-progress control a/c |
| 4. Materials transferred from job to job (no entry in control $a / c$ ) | Transferee job. $\qquad$ To transferor job a/c |


| 5. Labour <br> (a) Total wages pald: | Wages control a/c............................................................................. <br> To general ledger adjustment a/c |
| :---: | :---: |
| (b) Allocation: <br> For direct labour <br> For indirect labour | W-I-P a/c. $\qquad$ Dr <br> To wages control a/c <br> To respective cwerhead control a/c |
| 6. Direct expenses | W-4-P control a/c. $\qquad$ To general ledger adjustment a/c |
| 7. (a) overhead Incurred and accrused | Respective overhead overhead $a / c$. $\qquad$ Dr To general ledger adjustment a/c |
| (c) Overhead incurred and accrued: | W-1-P a/c [for works overhead] $\qquad$ Dr <br> Finished goods ledger control a/c. $\qquad$ Dr <br> (for administration overheads) <br> To respective overhead control a/c |
| (d) Work-in pragress: | W-1-P a/c $\qquad$ To respective cwerhead control $a / c$. |
| 8. Finished stock (a) produced: | Firished goods ledger control $a / c$. $\qquad$ Dr To W-1-P a/c |
| B. Finished stack (a) produced: | Finished goods ledger control $a / c$. $\qquad$ To W-I-Pa/c |
| (c) Sold (at cost) | Cost of sales $a / c$ $\qquad$ <br> To finished goods ledger control a/c $\qquad$ <br> To respective overherad control a/c |
| (d) Sales return | General ledger adjustment $8 / \mathrm{c}$. $\qquad$ Dr <br> Cost of sales a/c credit $\qquad$ <br> To general ledger adjustment $a / c$ |
| 9. Capital work (on completion) | General ledger adjustment a/c $\qquad$ .Dr To capital order a/c |
| 10. Repairs work (on completion) | Respective overhead control a/c $\qquad$ Dr To repair order a/c |
| 11. Special order completion and sold immediately at factor cost | Coat of sales $a / c$. $\qquad$ To W-I-P control a/c |
| Special order completion and sold immediately at total cost | General ledger adjustment $\mathrm{a} / \mathrm{c}$ $\qquad$ Dr To cost of sales $\mathrm{a} / \mathrm{c}$. |

## COST CONTROL ACCOUNTS

## Meaning:-

Cost Accounting means the process of accounting for cost from the point at which the expenditure is incurred to the establishment of its ultimate relationship with cost center and cost units.

The scope of cost accounting extends to preparation of statistical data or cost control accounts. There are two types of cost accounting integrated and Non-integrated.

## Integrated System :-

It is a system in which the Financial and Cost Account are integrated to insure that all relevant expenditure is absorb into the cost account.

## Non - Integrated System :-

It is a system in which the cost account are different from the Financial account, the two sets of accounts being kept continuously in agreement by the use of cost control. Under this system the separate account are prepared called as Cost Journal and Cost Ledger.

## Journal Entries

## Financial Account

## Cost Account

1) Credit Purchase of Material for Stock

Purchases A/c - Dr To Sundry Creditors To Cost ledger control A/c
2) Cash Purchase of Material for Stock

Purchase A/c - Dr Stock ledger control A/c - Dr To cash A/c To Cost ledger Control A/c
3) Purchase of Special Material for Direct Use in a Process or Job Purchase A/c - Dr WIP Control A/c - Dr
To Sundry Creditors / Cash A/c To Cost Ledger Control A/c
4) Purchase of Material for Immediate Repair Work

Factory O.H. Control A/c - Dr
To Cost Ledger Control A/c
5) Material Return of Supplier From Stock

Sundry Creditors A/c - Dr Cost Ledger Control A/c - Dr To Purchase Return A/c To Store Ledger Control A/c
6) Payment to Creditors or Supplier

Sundry Creditors A/c - Dr No Entry
To Cash / Bank A/c
7) Issue of Direct Material for Production to Factory Job

WIP Control A/c - Dr
To Store Ledger Control A/c
8) Issue of Indirect Material

Factory O.H. Control A/c - Dr
To Store ledger Control A/c
9) Return of Direct Material to Store Store Ledger Control A/c - Dr To WIP Control A/c
10) Return of Indirect Material

Store Ledger Control A/c - Dr To factory O.H. Control A/c
11) Adjustment of normal loss in Material Stock

Factory O.H. Control A/c - Dr To Store Ledger Control A/c
12) Adjustment of Normal Surplus in material stock

Store Ledger Control A/c - Dr
To Factory O.H. Control
13) Payment of Wages Wages A/c - Dr
To Insurance A/c
Wages Control A/c - Dr
To Tax A/c
To PF A/c
To Cash A/c
14 Analysis and Distribution of Wages
WIP Control A/c (Direct Wage) -
Dr
Factory O.H. Control (Indirect
Wages) - Dr
Admin O.H. Control (Office
Salary) - Dr
Selling \& Dis O.H. Control (Sale
Staff Salary) - Dr
To Wages Control A/c
15) Payment for Expenses

Expenses A/c - Dr
To Cash/Bank A/c
Factory O.H. Control A/c - Dr
Admin O. H. Control A/c - Dr
Selling \& Distribution O. H.
Control A/c
To Cost Ledger Control
16) Recording Depreciation on Fixed Asst

Depreciation A/c - Dr Factory / Admin / Selling Control A/c
17) Recording of Manufacturing O.H. applying at departmental Rate

WIP Control A/c - Dr
To Factory O.H. Control A/c
18 Abnormal Loss Due to Wastage
Costing P \& L A/c - Dr
To WIP Control A/c
19) Scrap Taken on Stock Charge

Store Control A/c - Dr
To WIP Control A/c
20) Recording Cost of Goods Transfer to Finished Goods

Finished Goods Control A/c -Dr
To WIP Control A/c
21) Recording Sales

Debtors / Cash A/c - Dr Cost Ledger Control A/c - Dr
To Sales A/c
To Sales (S. P.) A/c
To Casting P \& L A/c (Profit)
22) Absorption of Admin O.H.

Finished Goods Control A/c - Dr
To Admin O.H. Control A/c
23) Absorption of Selling \& Distribution O.H.

Cost of Sales A/c - Dr
To Sell \& Dist O.H. Control A/c
24) Under absorb Factory, Admin \& Selling O.H.

Costing P \& L A/c - Dr
Finished Goods / WIP / Cost of
Sales - Dr
OR
Overheads Suspense A/c - Dr
To Factory / Admin / Sell \& Dis Control A/c
25) Over absorb Factory, Admin \& Selling O.H.

Factory / Admin / Sell \& dis.
O.H. Control - Dr

To Costing P \& L A/c
OR
To WIP / Finished Goods /Cost of Sales
OR
Overhead Suspense A/c
26) Recording Cost of Goods Gold

> 1) Cost of Sales A/c - Dr To Finished goods A/c
> 2) Costing P \& L A/c - Dr To Cost of Sale Cost

## Closing of the Ledger accounts:

After Completing the Journal Entries then Ledger A/c areclosed in the following manner.

1) Factory O.H. Controls A/c:

Difference in A/c Transfer to WIP or If the problem said transfer to next month (Closing Bal) by bal. c/d.
2) Admin O.H. Control A/c:

Difference in A/c Transfer to Costing P \& L or O.H. Adjustment A/c.
3) Selling \& Distribution O.H. :

Difference in A/c Transfer to Costing P \& L A/c or O.H. Adjustment A/c.
4) O.H. Adjustment A/c:

Difference in O.H. Adjustment A/c either transfer to costing P\&L A/c or if the problem said transfer in trial balance.
5) Cost of Sales:

Transfer the difference in this $\mathrm{A} / \mathrm{c}$ to Costing $\mathrm{P} \& \mathrm{~L} \mathrm{~A} / \mathrm{c}$.
6) Costing P \& L A/c:

Difference in this A/c Transfer to Cost Ledger Control A/c.
7) Cost Ledger Control A/c / WIP Control A/c / Store Ledger Control A/c / FCI Control A/c:

Difference in resection Account Transfer to The Trial Balance (Closing Balance)

### 3.6 PRACTICAL PROBLEMS

## Illustration 1:

From the following details prepare the necessary accounts in the cost ledger.

|  | Materials (Rs) | Work-in- <br> process (Rs) | Finished stock <br> (Rs) |
| :--- | :---: | :---: | :---: |
| Op Balance | 8,000 | 5,000 | 10,000 |
| Cl balance | 11,000 | 9,000 | 12,000 |


| Transactions during the period: | Rs. |
| :--- | :---: |
| Materials purchased | 25,000 |
| Wages paid (including Rs. 2,000 indirect) | 10,000 |
| Overheads incurred | 8,000 |
| Overheads absorbed | 9,000 |
| Sales | 50,000 |

Adapted from CA Inter
Solution:

## Cost ledgers

## Cost ledger control accounts

| Particulars | Rs. | Particulars | Rs. |  |
| :--- | ---: | :--- | ---: | :---: |
| To Cost of Sales A/c | 50,000 | By Balance b/d <br> $(8000+5000+10000)$ | 23,000 |  |
|  |  | By stores ledger control <br> a/c | 25,000 |  |
|  | By wages control a/c | 10,000 |  |  |
|  | By overheads control a/c | 8000 |  |  |
| To balance c/d <br> $(11000+9000+12000)$ | 32,000 | To costing profit and loss <br> a/c (profit) | 16,000 |  |
|  | 82000 |  |  |  |

Stores ledger control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :---: | :--- | :---: |
| To Balance b/d | 8,000 | By Work-in-process A/c <br> (balancing figure | 22,000 |
| To cost ledger control <br> a/c | 25,000 | By balance c/d | 11,000 |
|  | 33,000 |  | 33,000 |

Work-in-process control A/c

| Particulars | Rs. | Particulars | Rs. |
| :--- | ---: | :--- | :---: |
| To Balance b/d | 5,000 | By Finished stock <br> (balancing figure) | 35,000 |
| To stores ledger <br> control a/c | 22,000 | By balance c/d | 9,000 |
| To wages control a/c | 8,000 |  |  |
| To overhead control <br> a/c | 9,000 |  | 44,000 |
|  | 44,000 |  |  |

Finished stock account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | ---: |
| To Balance b/d | 10,000 | By Cost of Sales A/c <br> (balancing figure) | 33,000 |
| To work-in-process <br> control a/c | 35,000 | By balance c/d | 12,000 |
|  | 45,000 |  | 45,000 |

Wages control a/c

| Particulars | Rs. | Particulars | Rs. |
| :--- | :---: | :--- | :---: |
| To Cost Ledger <br> Control A/c | 10,000 | By Work-in-process <br> Control A/c | 8,000 |
|  |  | By overheads a/c | 2,000 |
|  | 10,000 |  | 10,000 |

Overheads control account

| Particulars | Rs. | Particulars | Rs. |
| :--- | ---: | :--- | ---: |
| To Cost Ledger <br> Control A/c | 8,000 | By Work-in-process <br> control a/c | 9,000 |
| To wages control a/c | 2,000 | By costing P\& L A/c * | 1,000 |
|  | 10,000 |  | 10,000 |

*[(overhead incurred + indirect wages)-overhead absorbed] $[(8000+2000)-9000]=1000$ (under absorption)

Cost of Sales Account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :---: | :--- | :---: |
| To Finished stock <br> A/c | 33,000 | By costing p\& l a/c | 33,000 |
|  | 33,000 |  | 33,000 |

Costing P\&L Account

| Particulars | Rs. | Particulars | Rs. |
| :--- | :---: | :--- | :---: |
| To Cost of sales A/c | 33,000 | By cost ledger control <br> a/c(sales) | 50,000 |
| To overheads control <br> (under absorption) | 1,000 |  |  |
| To cost control ledger <br> a/c (profit) (bal fig) | 16,000 |  | 50,000 |
|  | 50,000 |  |  |

## Illustration 2:

From the following figures ascertained from costing records and financial books of a factory, you are required to pass necessary entries in the cost journal (assume that a system of maintaining control accounts prevails in the organization.)

| Particulars | Rs. |
| :--- | ---: |
| Purchases | $3,90,000$ |
| Carriage inward | 5,850 |
| Stores issued | $3,58,800$ |
| Productive wages | $3,46,320$ |
| Unproductive labour | $1,21,680$ |
| Works on cost | $3,48,400$ |
| Material used in repairs | 3,120 |
| Cost of completed jobs | $12,80,630$ |

CA Final

## Solution:

## Cost Journal

|  | Particulars | Debit <br> Amount <br> (Rs.) | Credit <br> Amount <br> (Rs.) |
| :--- | :--- | :---: | :---: |
| 1 | Stores ledger control a/c Dr. <br> To Financial ledger control a/c <br> (being the total amount of purchases as <br> appeared in financial books) | $3,90,000$ | $3,90,000$ |
| 2 | Stores ledger control a/c Dr. <br> To Financial ledger control a/c <br> (being the total amount of carriage inwards <br> as per financial books) | 5,850 | 5,850 |
| 3 | Work-in-progress ledger a/c Dr. <br> To Stores ledger control a/c <br> (being the amount of stores issued as per <br> material abstract) | $3,58,800$ | $3,58,800$ |


|  | Particulars | Debit <br> Amount <br> (Rs.) | Credit <br> Amount <br> (Rs.) |
| :--- | :--- | :---: | :---: |
| 4 | Wages control a/c Dr. <br> To Financial ledger control a/c <br> (being the amount of direct wages expended) | $3,46,320$ | $3,46,320$ |
| 5 | Work-in-progress ledger a/c Dr. <br> To Wages control a/c <br> (Being the amount of direct wages allocated <br> to jobs) | $1,21,680$ | $1,21,680$ |
| 6 | Works overheads a/c Dr. <br> To Financial ledger control a/c <br> (Being the amount of indirect labour <br> allocated to works overhead) | $3,48,400$ | $3,48,400$ |
| 7 | Works overheads a/c Dr. <br> To Financial ledger control a/c <br> (Being the amount of works expenses other <br> than indirect wages as per financial books ) | 3,120 | 3,120 |
| 8 | Works overheads a/c Dr. <br> To stores ledger control a/c <br> (Being the cost of materials used in repairs) | $12,80,630$ | $12,80,630$ |
| 9 | Finished Goods Ledger control a/c Dr. <br> To Worl-in-progress ledger a/c <br> (Being the cost of completed jobs transferred <br> from work-in progress a/c) |  |  |

## Illustration 3:

C Ltd. Maintain a Separate Set of books for financial accounts andcost accounts. The following information is provided for the year 2014.

| Particulars | Amount |
| :--- | ---: |
| Material Control A/c | 60,000 |
| WIP Control A/c | 90,000 |
| Finished Goods Control A/c | $1,40,000$ |
| Cost Ledger Control A/c | $2,90,000$ |
| Transaction for the year |  |
| Material Purchase | $6,60,000$ |
| Material Issue as Direct Material | $4,50,000$ |
| Indirect Material | $1,20,000$ |
| Wages Paid Allocated as |  |
| Direct Cost | $2,70,000$ |
| Indirect Cost | 90,000 |
| Production Expenses | $2,40,000$ |
| Value of Finished Goods Produce | $10,80,000$ |


| Closing Stock of F.G. | $1,20,000$ |
| :--- | ---: |
| Administration expenses | $2,40,000$ |
| Selling expenses | $1,80,000$ |
| Sales | $18,00,000$ |

Prepare the Necessary Control $\mathrm{A} / \mathrm{c}$ in the books of CostingRecords.
Journal Entries

| Date | Particulars | L/F | Debit ₹ | Credit ₹ |
| :---: | :---: | :---: | :---: | :---: |
| 1. | Material Control A/c - Dr To Cost Ledger Control A/c |  | 6,60,000 | 6,60,000 |
| 2. | WIP Control A/c - Dr To material Control A/c |  | 4,50,000 | 4,50,000 |
| 3. | Factory O.H. Control A/c - Dr To Material Control A/c |  | 1,20,000 | 1,20,000 |
| 4. | WIP Control A/c - Dr To Wages Control A/c |  | 2,70,000 | 2,70,000 |
| 5. | Factory O.H. Control A/c - Dr To Wages Control A/c |  | 90,000 | 90,000 |
| 6. | Factory O.H. Control A/c - Dr To Cost Ledger Control A/c |  | 2,40,000 | 2,40,000 |
| 7. | Finished Goods Control A/c - Dr To WIP Control A/c |  | 1,08,000 | 1,08,000 |
| 8. | Office \& admin O.H. Control A/c -Dr <br> To Cost Ledge Control A/c |  | 2,40,000 | 2,40,000 |
| 9. | Selling distribution O.H. Control A/c - Dr |  | 1,80,000 |  |


|  | To Cost Ledger Control A/c |  | 1,80,000 |
| :---: | :---: | :---: | :---: |
| 10. | Cost Ledger Control A/c - Dr To Costing P \& L A/c (sales) | 18,00,000 | 18,00,000 |

Cost Ledger Control A/c


Material Control A/c

| Particulars | $₹$ | Particulars | ₹ |
| :--- | ---: | :--- | :---: |
| To Bal. b/d | 60,000 | By WIP Control A/c | $4,50,000$ |
| To Cost Ledger | $6,60,000$ | By Factory O.H. Control | $1,20,000$ |
| Control a/c |  | a/c |  |
|  |  | By Bal. c/d | $1,50,000$ |
|  | $7,20,000$ |  | $7,20,000$ |

WIP Control A/c

| Particulars | $₹$ | Particulars | $₹$ |
| :--- | ---: | :--- | ---: |
| To Bal. b/d | 90,000 | By Finished Goods | $10,80,000$ |
| To Wages Control A/c | $2,70,000$ | By Bal c/d | $1,80,000$ |
| To Material Control a/c | $4,50,000$ |  |  |
| To Factory O.H. | $4,50,000$ |  |  |
| Control A/c |  |  | $12,60,000$ |
|  | $12,60,000$ |  |  |

Finished Goods Control A/c

| Particulars | ₹ | Particulars | $₹$ |
| :--- | :---: | :--- | ---: |
| To Bal. b/d | $1,40,000$ | By Costing A/c (Cost <br> of Sales) | $11,00,000$ |
|  | $10,80,000$ | By Bal c/d | $1,20,000$ |
|  | $12,20,000$ |  | $12,20,000$ |

Factory O.H. Control A/c

| Particulars | $\mathbf{₹}$ | Particulars | ₹ |
| :--- | ---: | :---: | :---: |
| To Material Control A/c | $1,20,000$ | By WIP Control A/c | $4,50,000$ |
| To Wages Control A/c | 90,000 |  |  |
| To Cost ledger Control | $2,40,000$ |  |  |
| A/c |  |  |  |
|  | $4,50,000$ |  | $4,50,000$ |

Office \& Admin Control A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To Cost Ledger A/c | $2,40,000$ | By Costing P \& L A/c | $2,40,000$ |
|  | $2,40,000$ |  | $2,40,000$ |

Selling \& Distribution A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To Cost Ledger A/c | $1,80,000$ | By Costing P \& L A/c | $1,80,000$ |
|  | $1,80,000$ |  | $1,80,000$ |

Salary \& Wages A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To Cost Ledger A/c | $3,60,000$ | By WIP Control A/c | $2,70,000$ |
|  |  | By Factory O.H. | 90,000 |
|  | $3,60,000$ |  | $3,60,000$ |

Costing P \& L A/c

| Particulars | $₹$ | Particulars | ₹ |
| :--- | ---: | :--- | :---: |
| To Finished Goods | $4,00,000$ | By Cost Ledger A/c | $18,00,000$ |
| Control a/c |  |  |  |
| To Admin O.H. <br> Control A/c | $2,40,000$ |  |  |
| To Selling A/c | $1,80,000$ |  |  |
| To Cost Ledger | $2,80,000$ |  |  |
| Control a/c |  |  | $18,00,000$ |
|  | $18,00,000$ |  |  |

Trial Balance

| Particulars | Debit | Credit |
| :--- | :---: | :---: |
| Cost Ledger Control A/cMaterial | $1,50,000$ | $4,50,000$ |
| Control A/c WIP Control A/c Finished | $1,80,000$ |  |
| Goods | $1,20,000$ |  |
|  | $4,50,000$ | $4,50,000$ |

From $31^{\text {st }}$ March 2013 the following balances extracted fromthe book of the co.

Trial Balance

| Particulars | ₹ | ₹ |
| :--- | :---: | :---: |
| Store Ledger Control a/cWIP | $3,50,000$ |  |
| FCT | $3,80,000$ | $9,80,000$ |
| Cost Ledger Control A/c | $2,50,000$ |  |
|  | $9,80,000$ | $9,80,000$ |

Illustration 4:
Following Transaction took place in March 2013

| Particulars | $₹$ |
| :--- | ---: |
| Raw Material Purchases | $9,50,000$ |
| Return to Supplier | 30,000 |
| Issue to Production | $9,80,000$ |
| Return to Store | 30,000 |
| Production Wages | $4,00,000$ |
| Indirect Labour | $2,50,000$ |
| Factory O.H. | $5,00,000$ |
| Selling Distribution O.H. | $7,00,000$ |
| Cost of Finished Goods Transfer To Warehouse | $21,30,000$ |
| Cost of Goods Sold | $21,00,000$ |
| Sales | $30,00,000$ |

Factory O.H. are apply to production at $150 \%$ of on, any under or our absorbed overheads being carry forward for adjustments in the subsequent month. All selling \& distribution O.H. are created as a period cost and charge to the Profit \& Loan A/c of the month in which they are incurred.

Show the necessary control $\mathrm{A} / \mathrm{cs}$, Costing P \& L A/c and trial balance.


Cost Ledger Control A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To Store Ledger | 30,000 | By Bal. b/d | $9,80,000$ |
| Control A/c | $30,00,000$ | By Store Ledger <br> To Costing P \& L <br> A/c | $9,50,000$ |
| To Bal C/d | $9,50,000$ | Control A/c |  |


|  |  | By Factory O.H. <br> Control A/c <br> By Selling Distribution <br> A/c | $5,00,000$ |
| :--- | :--- | :--- | ---: |
| By Wages Control A/c | $6,00,000$ |  |  |
|  | By Costing P \& L A/c | $5,00,000$ |  |
|  |  | $39,80,000$ |  |

Store Ledger Control A/c

| Particulars |  | ₹ | Particulars |  | ₹ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| To Bal. b/d <br> To Cost <br> Control A/c <br> To WIP A/c | Ledger | 3,50,000 | By Cost Control A/c By WIP A/c By Bal c/d | Ledger | 30,000 |
|  |  |  |  |  |  |
|  |  | 9,50,000 |  |  | 9,80,000 |
|  |  |  |  |  |  |
|  |  | 30,000 |  |  | 3,20,000 |
|  |  | 13,30,000 |  |  | 13,30,000 |

WIP

| Particulars | ₹ | Particulars | ₹ |
| :---: | :---: | :---: | :---: |
| To Bal. b/d | 3,80,000 | By Store Ledger | 30,000 |
| To Store Ledger | 9,80,000 | By Finished Goods | 21,30,000 |
| Control A/c |  | Control a/c |  |
| To Wages Control | 4,00,000 | By Bal. c/d | 2,00,000 |
| A/c |  |  |  |
| To Factory O.H. | 6,00,000 |  |  |
| A/c |  |  |  |
|  | 23,60,000 |  | 23,60,000 |

Finished Goods

| Particulars | $₹$ | Particulars | $₹$ |
| :--- | :---: | :--- | ---: |
| To Bal. b/d | $2,50,000$ | By Cost of SalesBy | $21,00,000$ |
| To WIP Control A/c | $21,30,000$ | Bal. c/d | $2,80,000$ |
|  |  |  | $23,80,000$ |
|  |  |  | 2000 |

Wages Control A/c

| Particulars | $₹$ | Particulars | ₹ |  |
| :--- | :---: | :--- | :--- | :---: |
| Cost LedgerControl | $6,50,000$ | By WIP | $4,00,000$ |  |
| A/c |  | By Factory | O.H. | $2,50,000$ |
|  | $6,50,000$ | Control A/c | $6,50,000$ |  |


| Particulars | $₹$ | Particulars |
| :--- | :---: | :---: |
| To Wages Control A/cTo | $2,50,000 \mathrm{By}$ WIP | ₹ |
| Cost Ledger A/c | $5,00,000$ | $\mathrm{By} \mathrm{Bal} . \mathrm{c} / \mathrm{d}$ |
|  | $7,50,000$ |  |
|  |  | $7,50,000$ |

## Selling \& Distribution Control A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To Cost Ledger A/c | $4,00,000$ |  <br> L A/c | $4,00,000$ |
|  | $4,00,000$ |  | $4,00,000$ |

Costing P \& L A/c

| Particulars | $₹$ | Particulars | $₹$ |
| :--- | ---: | :--- | :---: |
| To Selling \& | $4,00,000$ | By Cost Ledger A/c | $30,00,000$ |
| Distribution |  |  |  |
| To Cost of sales | $21,00,000$ |  |  |
| To Cost Ledger A/c | $5,00,000$ |  |  |
| (Profit) (Bal.) |  |  |  |
|  | $30,00,000$ |  | $30,00,000$ |

Cost of Sales A/c

| Particulars | ₹ | Particulars | ₹ |
| :--- | :---: | :--- | :---: |
| To F. G. A/c | $21,00,000$ | By Costing P \& L (Bal.) | $21,00,000$ |
|  | $21,00,000$ |  | $21,00,000$ |

Trial Balance

| Particulars | Dr. ₹ | Cr. ₹ |
| :--- | :---: | :---: |
| Cost Ledger Control A/c Store |  | $9,50,000$ |
| Ledger Control A/cWIP | $3,20,000$ |  |
| F. G | $2,00,000$ |  |
| Factory O.H. Control A/c | $2,80,000$ |  |
|  | $1,50,000$ |  |
|  |  |  |
|  | $9,50,000$ | $9,50,000$ |

### 3.7 SUMMARY

With this we are ending up our discussion on non-integral system of cost accounting. Where we have learned in detail various journal entries to be
reflected into the books of accounts and we have also learned about the treatment of the production overheads, when they are being under recovered and over recovered. Both in the case of seasonal factory and non-seasonal factory.

### 3.8 QUESTIONS

## A. Fill in the blanks:

1. Under accounting system, only one set of books of accounts is prepared (integral)
2. Under accounting system, two sets of books of accounts are prepared (non-integral)
3. In integral accounting system the transaction having both the parts of the journal are balance sheet items then this transactionis not recorded in------------adjustment a/c. (General ledger or Cost Ledger )
4. It both the parts of the journal entry are cost sheet items, then there is no entry in --.(General ledger or Cost Ledger )
5. Cost and financial accounts are required to be reconciled under---------------------accounting system (non-integral)

## Short notes

1) Advantages and disadvantages of non integrated system of accounting
2) Features of Non-integrated system of accountings
3) Explain the ledger accounts to be maintained in cost control accounting

## B. Practical problems

Q. 1 The financial and cost accounts of XYZ ManufacturingCompany for the year ended 31 March, 2007 have been reconciled as below:

| Particulars |  | ₹ | Particulars | $₹$ |
| :---: | :---: | :---: | :---: | :---: |
| Raw Materials: |  |  |  |  |
| Opening Stock | 56,450 |  | Cost of Goods | 8,10,000 |
| Purchase | 3,24,560 |  |  |  |
|  | 3,81,010 |  |  |  |
| Less: Closing | 58,060 | 3,22,950 |  |  |
| Production |  | 2,39,370 |  |  |
| Overheads |  |  |  |  |
| Direct Wages |  | 2,47,320 |  |  |



Financial Profit and Loss A/c. for The Year Ended 31 ${ }^{\text {st }}$ March, 2007.
Reconciliation means they are foil non-interned $\mathrm{A} / \mathrm{c}$ system of financial and cost accounts for the year ending on $31^{\text {st }}$ March, 2007.

|  | ₹ |  | ₹ |
| :---: | :---: | :---: | :---: |
| Profit as per Financial A/c | 80,000 | Profit as per Cost A/c | 84,550 |
| Discount Allowed | 1,240 | Discount Received | 1,600 |
| Debenture Interest | 6,360 | Difference in Stock valuation: |  |
| Difference in Stock Valuation: |  | Raw Material: Opening | 700 |
| Workin progress: | 480 | Raw Materials | 750 |
| Closing |  | Closing |  |
| Finished Goods: | 720 | Workin Progress: | 620 |
| Opening |  | Opening |  |
|  |  | Finished Goods: | 580 |
|  |  |  |  |
|  | 88,800 |  | 88,800 |


| Data in The Cost Accounts Include: | ₹ |  |
| :--- | ---: | :--- |
| Direct Material Price Variance | 3,120 | Adverse |
| Direct Material Usage Variance | 1,280 | Adverse |
| Direct Labour Rate Variance | 4,160 | Favourable |
| Direct Labour Efficiency Variance | 4,470 | Favourable |
| Production Overhead Expenditure Variance | 4,880 | Favourable |
| Production Overhead Volume Variance | 1,680 | Adverse |
| Administration Overheads Cost Variance | 620 | Adverse |
| Selling and Distribution Cost Variance | 620 | Adverse |
| Selling Price Variance | 5,000 | Favourable |
| Sales Volume Variance | 1,500 | Adverse |

You are required from the above data to show the necessary accounts as they should appear in the cost ledger under :
a) Partial Plan
b) Single Plan
Q. 2 Upto Date Ltd. which keeps cost control accounts in additionto the normal financial books of accounts is in the habit of preparing half - yearly accounts for ascertaining its performance.

From the information supplied hereunder, you are required to write up the cost ledger and prepare a costing profit and loss account showing the appropriate variances for the first half of the current year. Also ascertain the profit of the same periodas given by the financial accounts, reconciling this with the profit shown in the cost accounts. In the cost accounts, the balance at the end of the previous year were:

|  | At Standard Cost ₹ (000) |  |
| :--- | ---: | ---: |
| General Ledger Control A/c.Raw Materials |  | 3,450 |
| Work in ProgressFinished Goods | 1,025 |  |
|  | 1,840 |  |
|  | 585 |  |

The Summary of Transactions During the first half of the current year is :

|  | $₹ .(\mathbf{0 0 0})$ |  |
| :--- | ---: | :--- |
| Purchase of raw material on credit | 4,045 |  |
| Material Price Variance | 95 | Adverse |
| Material usage Variance | 75 | Adverse |
| Direct Wages Actual (6,50,000 hrs.) | 3,390 |  |
| Standard Wages at ₹2.50 per hour | 3,275 |  |
| Indirect Wages | 1,155 |  |
| Indirect Materials and Expenses | 965 |  |
| Depreciation | 525 |  |


|  | $₹ .(\mathbf{0 0 0})$ |  |
| :--- | ---: | ---: |
| Administration, Selling and Distribution Expenses | 2,925 |  |
| Material Issued to Production at Standard Price | 4,000 |  |
| Factory Overheads absorbed to production at | 2,620 |  |
| ₹2.00 per standard direct labour hour |  |  |
| Sales on Credit | 15,735 |  |
| Items of Purely Financial Nature: |  |  |
| Debenture Interest Paid | 180 |  |
| Interest Received on Investments | 35 |  |
| Donations and Charities | 135 |  |


|  | Costing Booksat <br> Standard | Financial Books at <br> Actual |
| :--- | ---: | ---: |
|  | $₹$ | $₹$ |
| Opening Stock: | 1,025 |  |
| Raw Materials | 1,840 | 1,050 |
| Work in Progress | 585 | 1,825 |
| Finished Goods |  | 625 |
| Closing Stock: | $?$ | 895 |
| Raw Materials | 1,725 | 1,755 |
| Work in Progress | 595 | 600 |
| Finished Goods |  |  |

Please take not that the administration, selling and distribution expenses will be charged to Costing Profit and Loss Account.
Q. 3 Chem-Tech is a firm belonging to chemical industry. It has a system of budgetary control and standard costing in operation. For accounting purposes, in follows integral system. As far as accounting for standard cost goes, it follows single plan.

The following trial balance was developed as on $30^{\text {th }}$ April, 2007.

| L. F. No. | Account Head | $₹(\mathbf{0 0 0})$ |  |
| :---: | :--- | ---: | ---: |
|  |  | Debit | Credit |
| 101 | Raw Material | 12 |  |
| 102 | Fixed Assets | 85 |  |
| 103 | Share Capital |  | 200 |
| 104 | Work in Progress | 80 |  |
| 105 | Finished Goods | 40 |  |
| 106 | Creditors Control |  | 23 |
| 107 | Debtors Control | 59 |  |


| 108 | Cash and Bank | 19 |  |
| :--- | :--- | ---: | ---: |
| 109 | Depreciation Provision |  | 12 |
| 110 | Reserves | 4 | 40 |
| 111 | Material Price Variance | 8 |  |
| 112 | Labour Cost Variance |  | 2 |
| 113 | Factory Overhead Variance |  | 500 |
| 114 | Sales | 470 |  |
| 115 | Standard Factory Cost of Sales | 777 | 777 |
|  |  |  |  |


| Following Transactions Took Place in May, 2007 | ₹.(000) |
| :--- | ---: |
| Purchases on Credit | 50 |
| Payment to Sundry Creditors | 80 |
| Labour Cost Incurred | 22 |
| Indirect factory Expenses | 13 |
| Standard Cost of Material Purchased | 47 |
| Collection from Customers | 65 |
| Stock of Raw Material as on 31-5-2007 | 14 |
| Work in Progress as on 31-5-2007 |  |
| Direct Wages | 13 |
| Factory Overheads | 8 |
| Factory cost of Production: |  |
| Material | 60 |
| Labour | 22 |
| Overheads | 12 |

Sales in May ₹ 40,000 . Opening Balance in WIP A/c. was developed with the help of a statement of equivalent production. This balance included labour cost of ₹ 15,000 and overheads cost of ₹ 10,000 . Factory cost of sales 33,000 . You are required to give effect to the above transactions and prepare the resultant trial balance as on $31^{\text {st }}$ May, 2007.

Ignore Taxation.

## OPERATING COSTING - I

## Unit Structure

4.0 Learning objectives
4.1 Introduction
4.2 Meaning of Operating Costing
4.3 Transport Costing
4.4 Solved Problems of Operating Costing
4.5 Hospital Costing
4.6 Solved Problems on Hospital Costing
4.7 Hotel Costing
4.8 Solved Problems on Hotel Costing
4.9 Exercise
4.10 Questions

### 4.0 LEARNING OBJECTIVES

After studying this chapter one should able to understand:

- The meaning of operating costing.
- Process to select cost limit in operating costing.
- Procedure in operating costing according to the procedure of a transporter
- Accounting procedure of a Hotel
- Accounting procedure of a Hospital


### 4.1 INTRODUCTION

Operating Costing method is normally used in service sector. When the service is not completely standardized, it is the cost of producing and monitoring a service. It is a method of costing applied to undertakings which provide service rather than production of commodities. Service may be performed internally and externally. Services are termed as internal when they have to be performed on inter-departmental basis in factory itself e.g. Power house services, canteen service etc.

Services are termed as external when they are to be rendered to outside parties. Public utility services like transport, water supply, electricity supply, hospitals are the best example for the service costing. Thus operating costing is a method of cost accumulation which is designed to determine the cost of services.

Operating costing is just a variant of unit or output costing. Operating costs are collected periodically like process cost. The cost of rendering the service for particular period is related to quantum of services rendered during the particular period to arrive at cost per unit of service rendered. So the principal of unit costing is used in operating costing.

### 4.2 MEANING OF OPERATING COSTING

Operating costing is a method of ascertaining the cost of providing or operating a service. It is also known as service costing CIMA London, defines Operating Costing as "that form of operation costing which applies where standardized services are rendered either by an undertaking or by a service cost renter with in an undertaking".

### 4.2.1 Cost Unit:

Determining the suitable cost unit to be used for cost ascertainment is a major problem in service costing. Selection of a proper cost unit is a difficult task. A proper unit of cost must be related with reference to nature of world and the cost objectives. The cost unit related must be simple i.e. per bed in a hospital, per cup of tea sold in a canteen and per child in a school. In a certain cases a composite unit is used i.e. Passenger - Kilometer in a transport company. The following are some of example of cost units used in different organizations

## Enterprises

Passenger transport
Goods transport
Hotel
Hospital
Canteen
Water supply
Electricity

## Cost per unit

Kilometer
Ton - Kilometer
Per room per day
Per bed per day
Per item, per meal
Per 1000 liters
Per kilowatt

### 4.2.2 Collection of costing data:

After determining the cost unit, the cost relating to the service is collected. The collected cost is a presented under the heads suitable for control purpose i.e. fixed expenditure and variable expenditure. The presentation of cost data under difficult categories helps to improve managerial control over cost.

### 4.3 TRANSPORT COSTING

### 4.3.1 Meaning

Transport costing is method of ascertaining the cost of providing service by a transport undertaking. This includes air, water, road and railways; motor
transport includes private cars, carriers for owners, buses, taxies, carrier Lorries etc. The objective of motor transport costing may be summarized as follows:

- to ascertain the operation cost of running a vehicle
- to provide and accurate basis for quotation and fixing of rates
- to provide cost companion between own transport and alternative e.g. hiring
- to compare the cost of monitoring one group of vehicle with another group
- to determine the cost to be changed against departments using the service
- to ensure the cost of maintenance and repairs is not excessive


### 4.3.2 Classification of costs:

## Costs are classified into the following three heads:

1) Standing or Fixed Charges: These charges are includes whether vehicle is operating or not. Insurance, tax, depreciation and part of driver wages. Interest on capital, general supervision, and salary of operating managers is items come under the category of fixed or standing charges.
2) Maintenance charges: There are semi variable expenses in nature and include wear on tires, repairs and overheads painting etc.
3) Operating and running charges: Running costs are the cost of operations. These charges vary more or less in direct proportion to kilometers etc. These expenses are variable in nature because they are dependent on distance covered and trips made.

Though the above three classification is done, in practical it is difficult to distribute. It depends basically on the circumstances of each case e.g. if the salary paid to driver is on monthly basis then it is a fixed charged but if the same is limited to kilometer run then it is a running cost.

### 4.3.3 Collection of Cost Data:

Each vehicle is given a separate unique number and all the basic documents will contain the assigned number of the respective vehicles. A separate daily $\log$ sheet for each vehicle is maintains to record the details of trips, running time, capacity, distance cover, cost of petrol / diesel, lubricants, loading and unloading time etc on daily basis. A specimen of log sheet is given below:

## Daily log sheet Table

Vehicle No.: ........................... Route No.: .....................
Date of Purchase: ................. Driver:
Make and Specification:
Time of Leaving:
$\qquad$

| Trip | From | To | Packages |  | Kilometers | Time |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  |  | Out | Collected |  | Out | In | Hrs |  |
|  |  |  |  |  |  |  |  |  |  |

Supplies Worker's time abnormal delays
Petrol / diesel $\qquad$ Driver $\qquad$ Loading / unloading $\qquad$
Oil .conductor .Accident $\qquad$
Grease $\qquad$ Cleaner $\qquad$ Traffic Delays $\qquad$ Others

## Format of transport operating cost sheet:

Operating cost sheet
Vehicle No. : $\qquad$ Period $\qquad$
Cost Unit: No. of Cost units

| Particulars | Rs. | Total Rs. | $\begin{gathered} \hline \text { Per Km } \\ \text { Rs. } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| A. Fixed Cost (or Standing charges) |  |  |  |  |
| 1. Road Tax | xx |  | xx |  |
| 2. Insurance | xx |  | xx |  |
| 3. Driver's Salary | xx |  | xx |  |
| 4. Conductor's Salary | xx |  | xx |  |
| 5. Depreciation | xx |  | xx |  |
| 6. Interest on Capital | xx |  | xx |  |
| 7. Garage Rent | xx |  | xx |  |
| 8. Office \& Administration | xx | xx | xx | xx |
| Overheads |  |  |  |  |
| B. Variable (Running) costs |  |  |  |  |
| Depreciation | xx |  | xx |  |
| Petrol Diesel | xx |  | x x |  |
| Oil \& Grease | xx |  | xx |  |
| Repairs and maintenance | xx |  | xx |  |
| Tyres and tubes | XX | xx | XX | xx |
| Total operating cost |  | xxx |  | xxx |

Note: Maintenance expenses can be shown separately also depends on cases.

## Check Your Progress:

1) Give the format of Transport Operating cost-sheet
$\qquad$
$\qquad$
$\qquad$
2) Give the specimen of $\log$ sheet
$\qquad$
$\qquad$
$\qquad$
$\qquad$
3) Give the Cost Unit of the following
a) Passenger Transport
b) Good Transport
c) Electricity
d) Hospital
e) Hotel
4) Explain the following terms
a) Standing or Fixed Charges
b) Maintenance charges
c) Operating and running charges
d) Transport costing
e) Operating costing

### 4.4 SOLVED PROBLEMS OF TRANSPORT COSTING

## Illustration 1:

From the following information calculate fare for passenger KM.

| The cost of the Bus | Rs. 450000 |
| :--- | :--- |
| Insurance charges | $3 \%$ p.a. |
| Annual tax | Rs. 4500 |
| Garage rent | Rs. 500 p.m. |
| Annual repairs | Rs. 4800 |
| Expected life of the bus | 5 yrs |
| Value of scrap at the end of 5 years | Rs. 3000 |
| Route distance | 20 km long |
| Driver's salary | Rs. 550 p.m. |
| Conductor's Salary | R. 500 p.m. |
| Commission to Driver \& conductor (shared equally) | $10 \%$ of the takings |
| Stationary | Rs. 250 p.m. |
| Manager-cum-accountant's Salary | Rs. 1750 p.m. |
| Diesel and Oil (for 100 kms ) | 125 |

The bus will make 3 rounds trips for carrying on the average 40 passenger's in each trip. Assume $15 \%$ profit on takings. The bus will work on the average 25 days in a month.

## Solution

## Operating Cost Statement

## Bus No.

## Capacity : 40 persons

| Particulars | Per Annum Rs. | Per Annum Rs. | Per Annum Rs. |
| :---: | :---: | :---: | :---: |
| A. Standing Charges |  |  |  |
| Depreciation | 84,000 |  |  |
| Tax | 4,500 |  |  |
| Insurance | 13,500 |  |  |
| Stationery | 3,000 |  |  |
| Manager's Salary | 21,000 | 1,26,000 | 00.08750 |
| B. Maintenance Charges |  |  |  |
| Garage Rent | 6,000 |  |  |
| Repairs | 4,800 | 10,800 | 00.00750 |
| C. Operating (or) Running Charges |  |  |  |
| Diesel \& Oil | 3,750 |  |  |
| Driver' Salary | 6,600 |  |  |
| Conductor's Salary | 6,000 | 16,350 | 00.01135 |
| Total |  | 1,53,150 | 00.10635 |
| Add : Commission and Profit 25/75 |  |  | 00.03545 |
| Fare per passenger km. |  |  | 00.14180 |

## Working Note:

1) No. of Km run in a month $: 3 \times 2 \times 20 \times 25=3000 \mathrm{~km}$
2) No. of passenger km per annum : $3000 \times 40 \times 12=14,40,000$
3) Diesel and oil: $3000 \times 125 / 100=$ Rs. 3750
4) Commission \& Profits: Commission $10 \%$ of taking + profit $15 \%$ of Taking total $=25 \%$ of taking so the cost

Cost is only 75 \%

## Illustration 2 :

From the following data relating to two different vehicles A and B, compute cost per running mile.

|  | Vehicle A | Vehicle B |
| :--- | ---: | ---: |
| Milage run (annual) | 15000 | 6000 |
| Cost of vehicles | Rs. 25000 | Rs. 15000 |
| Road License (Annual) | 750 | 750 |
| Immune (Annual) | 700 | 400 |
| Garage rent (Annual) | 600 | 500 |
| Supervision and Salaries (Annual) | 1200 | 1200 |
| Driver's wage per hour | 3 | 3 |
| Cost of fuel per gallon | 3 | 3 |
| Miles runs per gallon | 20 | 15 |
| Repairs and maintenance per mile (Rs.) | 1.65 | 2.00 |
| Tire allocation per mile | 0.80 | 0.60 |
| Estimated life of vehicle (miles) | $1,00,000$ | 75,000 |

Charge interest @ $5 \%$ p.a. on cost of vehicles. The vehicles run 20 miles per hour on an average

> [M. Com. Madurai Kamraj]

## Solution :

Operating cost sheet (cost per mile)

| Particulars |  |  | VehicleA | Vehicle- <br> B |
| :---: | :---: | :---: | :---: | :---: |
| A. Operating and Maintenance Charges <br> Depreciation A - 25000 / 100000 $\text { B - } 15000 / 75000$ <br> Repairs and maintenance <br> Tire allocation <br> Fuel (3 / 20 miles) <br> Driver's wages $(A-3 / 20)(3-3 / 15)$ |  |  |  |  |
|  |  |  | 0.25 | -- |
|  |  |  | -- | 0.20 |
|  |  |  | 1.65 | 0.20 |
|  |  |  | 0.80 | 2.00 |
|  |  |  | 0.15 | 0.60 |
|  |  |  | 0.15 | 0.15 |
|  |  |  | 3.00 | 3.15 |
| B. Standing Charges |  |  |  |  |
|  |  | B |  |  |
| Road license |  |  |  |  |
| Insurance | 700 | 400 |  |  |
| Charges | 600 | 500 |  |  |
| Supervision | 1200 | 1200 |  |  |
| Interest @ 5 \% p.a. | 1250 | 750 |  |  |
|  | 4500 | 3600 |  |  |
| Mileage run per annum | 15000 | 6000 |  |  |
| Fixed standing charge per mile | 0.30 | 0.60 | 0.30 | 0.60 |
| Operating cost per mile |  |  | 3.30 | 3.75 |

## Note :

1) Depreciation is linked with mileage so operating cost.
2) Driver wage is taken as operating since it is paid per hour.

### 4.5 HOSPITAL COSTING

Hospitals comes under service sector, big companies also maintain hospitals. For costing purpose the hospital service can be divided in two following categories.

1) Outpatient department
2) Wards
3) Medical service departments such as radio therapy ' $X$ ' ray etc.
4) General Services such as heating, lighting, catering laundry etc.
5) Other services such as transport, dispensary, cleaning etc.

### 4.5.1 Cost Statement:

The expenses of hospital can be broadly divided into two categories i.e. (1) Capital Expenditure and (2) Maintenance Expenditure - this includes salaries and wages, provision, staff uniforms clothing, medical and surgical appliances and equipments, fuel light and power, laundry, water etc.

### 4.5.2 Format of a cost Sheet of a Hospital:

| Particulars | Rs. | Rs. |
| :---: | :---: | :---: |
| A) Fixed standing charges <br> Rent <br> Repairs and maintenance <br> General administrative expenses <br> Depreciation <br> Salaries to staff <br> Cost of Oxygen, X ray etc. | XX <br> xx <br> xx <br> xx <br> xx <br> xx | xX |
| B) Running or maintenance costs <br> Doctor's fees <br> Food <br> Medicines <br> Laundry <br> Hire charges | $\begin{aligned} & \mathrm{xx} \\ & \mathrm{xx} \\ & \mathrm{xx} \\ & \mathrm{xx} \\ & \mathrm{xx} \end{aligned}$ | XX |
| Total operating cost |  | xx |
| $\text { Cost per patient day }=\frac{\text { Total Operating cost }}{\text { No of Patient Days }}$ |  |  |

## Illustration 3:

The following information is available from a intensive care unit. Rent (including repairs) Rs. 10000 p.m.

The unit cost consists of 25 beds and 5 more beds can be accommodate when the occasion demands. The permanent staff attached to the unit is as follows:

2 supervisors each at a salary or Rs. 2000 per month.
4 nurse each at a salary of Rs. 1500 per month.
2 ward boys each at a salary of Rs. 1000 per month.
Though the unit was open for the patients all the 365 days in a year, security of accounts of 2008 revealed that only 150 days in a year the unit had the full capacity of 25 patients per day and for another 80 days it had on an average 20 beds only occupied per day. But there were occasions when the beds were full, extra beds were hired from outside at a charge of Rs. 10 per bed per day and this did not come to more than 5 beds extra above the normal capacity any one day. The total hire charges for the whole year were Rs. 4000.

The unit engaged expert doctor from outside to attend on the patients and the fees were paid on the basis of number of patients attended at time spent by them on an average worked out to Rs. 2000 per month in 2008. The other expenses for the year were as under.

|  | Rs. |
| :--- | ---: |
| Repairs and maintenance | 8,000 |
| Food supplied to patients | $1,00,000$ |
| Janitor and other services for patients | 25,000 |
| Laundry charges for bed linens | 40,000 |
| Medicines supplied | 70,000 |
| Cost of oxygen, x ray etc other than directly born for |  |
| treatment of patients (Fixed) | 90,000 |
| General administration charges allocated to the unit | $1,00,000$ |

1) If the unit recovered an overall amount of Rs. 200 per day on an average from each patient what is the profit per patient day made by the unit in 2008.
2) The unit wants to work out a budget for 2009 , since the number of patients is very uncertain, annuity the same revenue and expenses prevail in 2009, work out the number of patient days required breakeven.

Statement of cost and profit

| Particulars |  | Rs. | Rs. |
| :---: | :---: | :---: | :---: |
| A) | Income received (Rs. $200 \times 6150$ ) |  | 1,23,000 |
|  | Variable cost (per annum) |  |  |
|  | Food | 1,00,000 |  |
|  | Janitor and other services | 25,000 |  |
|  | Laundry charges | 40,000 |  |
|  | Medicines | 70,000 |  |
|  | Doctors fees (20,000 $\times 12$ ) | 2,40,000 |  |
|  | Hire charges for extra bed | 4,000 |  |
|  | (B) | 4,79,000 |  |
| C) | Fixed Costs |  |  |
|  | Salaries |  |  |
|  | Supervisor | 4,800 |  |
|  | Nurses | 72,000 |  |
|  | Ward boys | 24,000 |  |
|  | Rent (10000 x 12) | 1,20,000 |  |
|  | Repairs \& Maintenance | 8,000 |  |
|  | General administration | 1,00,000 |  |
|  | Cost of oxygen, X ray etc. | 90,000 |  |
|  | (C) | 4,62,000 |  |
|  | Total cost ( $\mathrm{B}+\mathrm{C}$ ) |  | 9,41,000 |
|  | Profit |  | 2,89,000 |

Profit per patient day $=\underline{28900}=46.91$ loss Rs. 47/6150

Working Note: Calculation of No. of patient days in 2008 25 beds $\times 150$ days $=3750$ 20 beds $\times 80$ days $=1600$
Extra beds $4000 \div 5=\underline{800}$
6150

$$
\begin{aligned}
\text { Breakeven point } & =\frac{\text { Fixed Cost } \times \text { income }=\frac{46200}{\text { Income }- \text { Variable cost }} 751000}{\times 1230000} \\
& =\text { Rs. } 756671 \text { (or) } \frac{756671}{200}=3783.25 \text { patient days }
\end{aligned}
$$

### 4.7 HOTEL COSTING

Hotel industry is a service industry and covers various activities such as provision for food and accommodation. It also provides other comforts like recreations, business facilities, shopping areas etc. The expenses incurred in a hotel are fixed or variable. Fixed expenses comprises of staff salaries, repairs, interior decoration, laundry contract cost, sundries and depreciation on fixed assets. The variable expenses incurred are lighting, attendants' salaries, power etc. To find out room rent to be charged from customers a notional profit is added with the cost and divided by the number of rooms
available. The number of rooms available is calculated after for considering availability of suits and occupancy.

Rooms rent may be different from season to season. Sometime besides accommodation they also provide food. Then the cost of meals, other direct and indirect costs are considered to work out the costs to be charged from customers.

Operating cost sheet of a Hotel:

| Particulars | Rs. | Rs. |
| :---: | :---: | :---: |
| A) Fixed Charge |  | xx |
| Salaries to Staff | xx |  |
| Repairs and Renovation | xx |  |
| Depreciation | xx |  |
| Interior decoration | xx |  |
| Sundries | xx |  |
| Laundry contract cost | xx |  |
| Rent | xx |  |
| B) Running charges (Variable cost) |  |  |
| Power | xx |  |
| Attendant salaries | xx | xx |
| Total Operating Cost |  | XX |
|  |  | xx |
| Cost per Room Days |  | xx |

## Check Your Progress

1) Give the formats of the following:
a) Operating Cost Sheet of a Hospital
b) Operating cost sheet of a Hotel
2) Enlist the categories of Hospital services.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
3) Find out if the following expenses are Fixed expenses or variable expenses in case of Hotel costing:.
a) Staff salaries
b) Repairs
c) Interior decoration
d) Laundry contract cost
e) Sundries
f) Depreciation on fixed assets
g) Lighting
h) Attendants' salaries
i) Power

### 4.8 SOLVED PROBLEMS ON HOTEL COSTING

## Illustration 4:

A company runs a holiday home for this purpose it hired a building at a rent of Rs. 10,000 per month along with $5 \%$ of total takings. It has three types of suites for its customer's viz. single room, double room and triple rooms.

## Following information is given:

## Types of suite <br> Number <br> Occupancy percentage

Single rooms 100

100 \%
Double rooms 50

80 \%
Triple rooms
30
60 \%
The rent of double room's suite is to be fixed at 2.5 times of the single room and that of triple rooms at twice of the double room suite.

The other expenses for the year 2009 are as follows:

## Rs.

Staff salaries
14,25,000
Room attendants wages
4,50,000
Lighting heating and powers
2,15,000
Repairs and renovations 1,23,500
Laundry charges
80,500
Interior decoration 74,000
Sundries

Provide profit @ $20 \%$ on total takings and assume 360 days in a year. You are required to calculate the rent to be charged for each type of suite
[C. A. PE II]

## Solution:

Calculation of room occupancy

| Type of suite | Number | Occupancy <br> $\%$ | No. of <br> days in a <br> year | Room <br> occupancy <br> days |
| :--- | :---: | :---: | :---: | :---: |
| Single Room | 100 | 100 | 360 | 36000 |
| Double Room | 50 | 80 | 360 | 14400 |
| Triple Room | 30 | 60 | 360 | 6480 |

Calculation of equalant single room suits occupancy
$36,000 \times 1+14400 \times 2.5+6480 \times 5=104400$

## Calculation of Total Cost :

|  | Rs. |
| :---: | :---: |
| Staff salaries | 14,25,000 |
| Room attendant wages | 4,50,000 |
| Lighting heating and power | 2,15,000 |
| Repair and renovation | 1,23,500 |
| Laundry charges | 80,500 |
| Interior decoration | 74,000 |
| Sundries | 1,53,000 |
| Total cost excluding building rent | 25,21,000 |
| Building rent $=10000 \times 12+5 \%$ of taking | 2,96,066 |
| Total cost | 28,17,066 |
| Profit 20 \% of takings | 7,04,267 |
| Total takings | 35,21,333 |

Rent for a single room $=3521333 \div 104400=$ Rs. 33.73
Rent for a double room $=33.73 \times 2.5=$ Rs. 84.325
Rent for a triple room $=84.325 \times 2=$ Rs. 168.65

### 4.9 EXERCISE

## Objective Type

## Choose the correct answer for the multiple choice questions

1) Classification and accumulation of costs by fixed and variable costs is a distinctive feature of
a) Process costing
b) Unit costing
c) Operating costing
d) Batch costing
2) Composite unit is distinctive feature of
a) Single or output costing
b) Process costing
c) Job costing
d) Operating costing
3) Electricity generating company should employ
a) Unit costing
b) Process costing
c) Operating costing
d) Multiple costing
4) Cinema houses must adopt
a) Operating costing
b) Job costing
c) Batch costing
d) Contract costing
5) For a library the best method of costing suitable is
a) Output costing
b) Operating costing
c) Process costing
d) Multiple costing
6) For an educational institutes the right method of costing is
a) Output costing
b) Job costing
c) Operating costing
d) Process costing
7) Hospitals must make use of
a) Operating costing
b) Batch costing
c) Process costing
d) Multiple costing
8) For hotels the best method of costing is
a) Single or output
b) Contract costing
c) Process costing
d) Operating costing
9) Air India Co. must make use of
a) Job costing
b) Operating costing
c) Batch costing
d) Process costing
10) Indian Railways must adopt
a) Operating costing
b) Unit costing
c) Batch costing
d) Multiple costing
11) Public utility undertakings must invariably adopt
a) Operating costing
b) Output costing
c) Contract costing
d) Multiple costing
12) Karnataka Electricity Board must make use of
a) Single or output costing
b) Job costing
c) Process costing
d) Operating cost
13) The method of costing used in case of a gas company is termed as
a) Job costing
b) Process costing
c) Operating costing
14) Mines ' A ' and ' B ' are at a distance of 10 kms and 15 kms from the factory. The cost per tone-km in case of mine A is Rs. 3 while it is R. 2.5 in case of mine B. The factory should procure coal from
a) Mine A only
b) Mine B only
c) Both from mines $A$ and $B$ in the ration of $3: 2$
15) In case of steam company, the cost per unit is calculated on the basis of
a) Total quantity of lbs. produced
b) Total quantity of kwh. generated
c) Total quantity of tones produced.

Answers: 131(c), 2(d), 3(c), 4(a), 5(b), 6 (b), 7(a), 8(d), 9(b), 10(a), 11(d), 12(a) (c), 14 (a), 15(a)

### 4.10 QUESTIONS

## Simple Questions

1. Define operating cost
2. Define operating costing
3. Distinguish between operating cost and operating costing
4. What do you mean by a composite unit?
5. List out any eight undertakings which makes use of operating costing.
6. Give the composite unit of the following undertakings :
a) Roadways carrying passenger
b) Railways carrying goods
c) Hospital and
d) College.
7. Mention the basis of classifying the cost under operating costing.
8. Mention the basis of classifying the costs under transport costing.
9. What is a $\log$ sheet?
10. What do you mean by cost summary performance statement?
11. What do you mean by absolute tone-kilometer?
12. What do you mean by a commercial tone-kilometer?
13. Distinguish between absolute tone-kilometer and commercial tone kilometer.
14. What do you mean by "kilometer run"?
15. What do you mean by "cost per hour" under operating costing?

## State whether each of the following statement is 'True' or `False'

1. Operating costing is used in case of service undertaking.
2. Log sheet is prepared in case of power house costing.
3. The unit of cost for production of steam may be per lb.
4. Per man show cost is calculated in case of Canteen costing. 5. Fare in case of taxis is generally based on cost per passenger, km

Answer : (1) True (2) False (3) True (4) False (5) False

## Long answer type

1. What is service costing? Mention the types of business in which the system would be suitable. Describe briefly a system of service costing which you would recommend for use by a passenger taxi service.
2. What are the main objects of motor transport costing? A company owns a fleet of vans and wishes to examine the cost of (a) each van, (b) the fleet as a whole. Prepare a report on the accounting arrangements that are needed and draft specimen of the forms that you recommend for presentation to the directors. Show separate rates for fixed and variable expenditure and state how these should be used.
3. Draw up a proforma cost statement for a canteen serving 1,000 workers in a factory. The canteen is subsidized by the factory.
4. What is "Operating Costing"? State the industries where it is to be used?
5. What is a "Log sheet"? Give its proforma.
6. Your client running a canteen tends to introduce costing system in his organization. How should he classify his costs for the purpose of preparing an Operating Cost Statement?

## OPERATING COSTING - II

## Unit Structure

### 5.0 Objectives

### 5.1 Problems and Solution

### 5.2 Exercise

### 5.0 OBJECTIVES

After studying the unit the students will be able to solve the problems on transport costing, Hospital costing and Hotel costing.

### 5.1 PROBLEMS AND SOLUTION

## Illustration 1:

SAITRAVELS owns a bus and operates a tourist service on daily basis. The bus starts from New City to Rest village and returns back to New City the same day. Distance between New city and Rest village is 250 kms . This trip operates for 10 days in a month. The bus also plies for another 10 days between New city and Shivapur and returns back to New city the same day, distance between these two places is 200 kms . The bus makes local sightseeing trips for 5 days in a month, earning a total distance of 60 kms per day.

The following data are given.

Cost of bus
Depreciation
Driver's salary
Conductor's Salary
Part time clerk's salary
Insurance
Diesel consumption 4 kms per
litre @
Token tax
Permit fee
Lubricant oil
Repairs and maintenance
Normal capacity

Rs. 3,50,000
255
Rs. 1,200 p.m.
Rs. 1,000 p.m.
Rs. 400 p.m.
Rs. 1,800
Rs. 8 per litre

Rs. 2,400 p.m.
Rs. 1,000 p.m.
Rs. 100 for every 200 kms
Rs. 1,500 p.m.
Rs. 50 persons

While playing to and for Rest village, the bus occupies $90 \%$ of the capacity and $80 \%$ when it plies between New city to Shivapur (both ways). In the city the bus runs full capacity passenger tax is $20 \%$ of net takings of the "Travels" firm.

Calculate the rate to be charged to Rest village and Shivaupr from New city, per passenger, if the profit required to be earned is $33 \%$ of net taking of firm.
[I.C.W.A., Intermediate]

## Solution:

Operating cost statement for the month

| Rs. | Total Rs. <br> Rs. | Per passenger km (total cost + 4,00,000) passenger km Rs. |
| :---: | :---: | :---: |
| Fixed charges |  |  |
| Driver's salary 1 1,200 |  |  |
| Conductor's salary 1,000 |  |  |
| Clerk's salary 400 |  |  |
| Insurance (1,800 $\div 12)$ |  |  |
| Token Tax $(2,400 \div 12)$ |  |  |
| Permit fees 1,000 |  |  |
| Depreciation (25\% of 3.5lakhs $\div 12$ ) 7,292 |  |  |
| Repairs and Maintenance 1,500 | 12,742 | 0.03185 |
| Running charges |  |  |
| Diesel cost 9,300 km $\div 4=2,325$ liters @ Rs. 8 | 18,600 | 0.04650 |
| Lubricant oil $9,300 \mathrm{~km} \div 200=45.5$ liters@ Rs. 100 | 4,650 | 0.01163 |
| Total | 35,992 | 0.08998 |
| Add : 33 \% profit on net taking or 49.25\% on cost | 17,726 | 0.04432 |
| Net takings | 53,718 | 0.13430 |
| Add : 20 \% for passenger tax | 10,744 | 0.02686 |
| Total | 64,462 | 0.16116 |
|  | or say | 0.161 |

Charges per passenger:
a) to Rest village from New city :
$250 \times 0.161$ i.e. Rs. 40.25
b) to Shivapur from New city :
200 x 0.161 i.e. Rs. 32.20

* total kms covered p.m.
$\begin{array}{lr}\text { Rest village and back } 2 \times 250 \times 10 \text { days } & 5,000 \\ \text { Shivapur and back } 2 \times 200 \times 10 \text { days } & 4,000 \\ \text { Local trips @ } 60 \mathrm{kms} \text { for } 5 \text { days } & 300 \\ & 9,300\end{array}$
** Total effective passenger -km per month :
Rest village $2 \times 250 \times 90 \%$ of $50 \times 10$ days $=2,25,000$ passenger km
Shivapur $2 \times 200 \times 80 \%$ of $50 \times 10$ days $=1,60,000$
Local Trips $5 \times 60 \times 50=15,000$ 4,00,000


## Illustration: 2:

(Service costing - use own / company cars or hire cars)
A company is considering three alternative proposals for conveyance facilities for its sales personal who have to do considerable travelling, approximately 20,000 kilometers every year. The proposals are as follows :

1) Purchase and maintain its own fleet of cars. The average cost of car is Rs. 1,00,000.
2) Allow the executive use his own car and reimburse expenses at the rate of Rs. 1.60 paise per kilometer and also bear insurance costs.
3) Hire cars from an agency at Rs. 20,000 per year per car. The company will have to bear costs of petrol, taxes and tyres.

The following further details are available :
Petrol Re. 0.60 per km.
Repairs and maintenance Re. 0.20 per km
Tyre Re. 0.12 per km
Insurance Rs. 1,200 per car annum;
Taxes Rs. 800 per car per annum
Life of a car : 5 years with Annual milage of $20,000 \mathrm{kms}$. Resale value: Rs. 20,000 at the end of the fifth year.
Work out the relative costs of three proposals and rank them
[C.A., Inter]

## Solution :

## Alternative proposals



Decision II alternating i.e., use of own car will be the best alternative from company's point of view. III alternative i.e. hiring the card is 2 nd best alternative. I alternative i.e. maintaining the fleet will be costliest alternative.

Rs. $1,200 \sim 20,000 \mathrm{kms}=$ Re. 0.06 ; (Rs. $800 \sim 20,000 \mathrm{kms})=$ Re. $0.04 @$ Rs. 20,000 ~ 20,000 kms = Re. 1/-

## Illustration 3:

The Union Transport Company has been given a twenty kilometer long route to ply a bus. The bus costs the company Rs. $1,00,000$. It has been insured at $3 \%$ per annum. The annual road tax amounts to Rs. 2,000. Garage rent is Rs. 400 per month. Annual repair is estimated to cost Rs. 2,360 and the bus is likely to last for five years.

The salary of the driver and conductor is Rs. 600 and Rs. 200 per month respectively in addition to $10 \%$ of the taking as commission to be shared equally by them. The managers salary is Rs. 1,400 per month and stationery will cost Rs. 100 per month. Petrol and oil will cost Rs. 50 per 100 kilometers. The bus will make three round trips per day carrying on an average 40 passengers in each trip. Assuming $15 \%$ profit on takings and that the bus will ply on an average 25 days in a month.

Prepare operating cost statement on a full year basis and also calculate the bus fare to be charged from each passenger per kilometer
[C.A., Inter]

## Solution:

## Union Transport Company

Statement showing operating cost of the bus per annum

| A. standing charges |  |  |
| :---: | :---: | :---: |
| Managers salary (Rs. 1,400 $\times 12$ ) | $=\mathrm{Rs}$. | 16,800 |
| Driver's salary (Rs. $600 \times 12$ ) | Rs. | 7,200 |
| Conductor's Salary (Rs. $200 \times 12$ ) | Rs. | 2,400 |
| Road Tax | Rs. | 2,000 |
| Insurance (3\% of Rs. 1,00,000) | Rs. | 3,000 |
| Garage rent (Rs. $400 \times 12$ ) | Rs. | 4,800 |
| Stationery (Rs. $100 \times 12$ ) | $=\mathrm{Rs}$. | 1,200 |
| Depreciation (Rs. 1,00,000 $\div 5$ years) | $=\mathrm{Rs}$. | $\underline{20,000}$ |
|  |  | 57,400 |
| B. Maintenance Cost - Repairs | $=\mathrm{Rs}$. | 2,360 |
| C. Running charges |  |  |
| Petrol and oil ( $36,000 \mathrm{~km} \times$ Rs. 500 ) $\div 100$ | $=\mathrm{Rs}$. | 18,000 |
| Total costs ( $\mathrm{A}+\mathrm{B}+\mathrm{C}$ ) | Rs. | 77,760 |
| Add : $10 \%$ of takings for commission of driver \& conductor | $=\mathrm{Rs}$. |  |
| $15 \%$ profit - desired on takings | $=\mathrm{Rs}$. | 25,920 |
| $25 \%$ on total takings $=33-1 / 30$ of cost | $=\mathrm{Rs}$. | 1,03,680 |

Effective passenger kilometers:
( $2 \times 20 \mathrm{~km} \times 3$ trips $\times 40$ passengers $\times 25$ days $\times 12$ months ) $=14,40,000$
Rate to be charged per km from each passenger
Rs. 1, 03,680 ~ 14,40,000 = Re. 0.072
Calculation of total distance covered
$(20 \mathrm{~km} 2 \times 3 \times 25 \times 12)=36,000 \mathrm{~km}$ per annum

## Illustration 4: (Transport Costing)

Prakash Automobiles distributes its goods to a regional dealer using a single lorry. The dealers' premises are 40 kilometers away by road. The lorry has a capacity of 10 tons and makes the journey twice a day fully loaded on the outward journeys and empty on return journey. The following information is available for a four weekly period during the year 1990.

Petrol consumption
Petrol Cost
Oil
Driver's wages
Repairs
Garage Rent
Cost of Lorry (excluding tyres)
Life of Lorry
Insurance
Cost of tyres
Life of tyres
Estimated sale value of lorry at end of its life
Vehicle license cost
The lorry operates on five day week

8 km per liter
Rs. 13 per liter
Rs. 100 per week
Rs. 400 per week
Rs. 100 per week
Rs. 150 per week
Rs. 4,50,000
80,000 kilometers
Rs. 6,500 per annum
Rs. 6,250
25,000 kilometers
Rs. 50,000
Rs. 1,300 per annum
Rs. 41,600 per annum

## Required:

a) A statement to show the total cost of operating the vehicle for fourweekly period analyzed into running costs and fixed costs.
b) Calculate the vehicle cost per kilometer and per ton kilometer
[C.A., Inter]

## Solution:

a) Before computing the total cost, it is necessary to find out the basic data s under:

1) Distance travelled in 4 week period; 40 km one way x 2 (return) x 2 trips $x 5$ days $x 4$ weeks $=3200 \mathrm{~km}$
2) For tone km working = empty on return and as such for tone km

$$
=3200 \div 2=1,600
$$

3) Total consumption in weeks $=3,200 \mathrm{~km} \div 8 \mathrm{~km}=400 \mathrm{lt}$
4) Tyre cost $=($ Rs. $6,250 \div 25,000 \mathrm{~km}) \times 3,200 \mathrm{~km}=$ Rs. 800
5) Depreciation of lorry in 4 weeks

$$
=(\text { Rs. } 4,50,000-\text { Rs. } 50,000 \mathrm{~km}) \div 80,000 \times 3,200=\text { Rs. } 16,000
$$

Operating cost statement f a lorry of $\mathrm{M} / \mathrm{s}$. Prakash Automobiles (for the 4 week period)

| Running costs | Rs. |
| :--- | ---: |
| Cost of petrol (400 liters $\times$ Rs. 13) | 5,200 |
| Oil (Rs. 100 per week $\times 4$ ) | 400 |
| Drivers wages (Rs. 400 per week $\times 4$ ) | 1,600 |
| Repairs (Rs. $100 \times 4$ ) | 400 |
| Cost of tyers (as at 4 above) | 800 |
| Depreciation (as at 5 above) | 16,000 |
|  | 24,400 |
| Fixed costs | Rs. |
| Garage ret (Rs. $150 \times 4)$ | 600 |
| Insurance (Rs. $6,500 \div 52) \times 4$ | 500 |
| License cost (Rs. $1,300 \div 52) \times 4$ | 100 |
| Other overheads (Rs. $41,600 \div 52) \times 4$ | 3,200 |
| Total fixed cost - (ii) | 4,400 |
| Total (i) + (ii) | 28,000 |

(b) Cost per tone $-\mathrm{km}=$ Rs. $28,800 \sim(1600 \times 10$ tons $)$ Rs. 1.80

## Illustration 5 :

A company presently brings coal to its factory from a nearby yard and the rate paid for transportation of coal from the yard located 6 kms . Away to factory is Rs. 50 per ton. The total coal to be handled in a month is 24,000 tones.

The company is considering proposal to buy its own trucks and has the option of buying either a 10 ton capacity or a 8 ton capacity trucks.

The following information is available:

|  | 10 Ton Truck | 8 Ton Truck |
| :--- | ---: | ---: |
| Purchase Price Rs. | $10,00,000$ | $8,50,000$ |
| Life (Years) | 5 | 5 |
| Scrap value at the end f 5 |  |  |

Each truck will daily make 5 trips (to and fro) on an average for 24 days in a month. Cost of diesel Rs. 15/- per liter. Salary of driver Rs. 3,000/-, p.a. month. Two drivers will be required per truck. Other staff expenses Rs. 1,08,000 p.a.

Present a comparative cost sheet on the basis of above data showing transport cost per ton of operating 10 ton and 8 ton Truck at full capacity utilization.
[C.A. Final]

## Solution :

Comparative statement of operating cost sheet :

|  | 10 Ton Truck Rs. | 8 Ton Truck Rs. |
| :---: | :---: | :---: |
| Fixed Charges (p.m.) |  |  |
| Driver's Salary (working no. 1) | 12,000 | 15,000 |
| Staff expenses | 9,000 | 9,000 |
| Other fixed expenses | 5,000 | 3,000 |
| Operating \& Maintenance Charges (p.m.) |  |  |
| Depreciation (Note No. 2) | 3,33,333 | 3,54,167 |
| Diesel Cost (Note No. 3) | 1,44,000 | 1,35,000 |
| Lubricants \& Sundries(Note No. 3) | 5,760 | 7,200 |
| Repairs \& Maintenance | 1,00,000 | 1,00,000 |
| Total Cost (A) | 7,17,093 | 7,58,367 |
| Tons Carried (B) | 24,000 | 24,000 |
| Cost per ton (A/B) | 29.87 | 31.59 |

Conclusion : A comparison of cost per ton by using 10 ton trucks is more economical. The cost paid for bringing coal per ton presently viz. Rs. 50/is the highest.

## Working Note :

|  | 10 ton | 8 ton |
| :---: | :---: | :---: |
| 1 Total number o trucks and drivers required <br> Coal brought to the factory per month $(5 \times 24 \times 10)$ $(5 \times 24 \times 8)$ <br> No. of truck required to bring 24,000 tons is <br> Total number of drivers required | $\begin{aligned} & 1200 \\ & 24000 / 1200=20 \\ & 20 \times 2=40 \end{aligned}$ | $\begin{aligned} & 960 \\ & 24000 / 960=25 \\ & 25 \times 2=50 \end{aligned}$ |
| 2 Total monthly depreciation Depreciation per truck per annum Depreciation per truck per month Total depreciation <br> 3 Diesel requires <br> Total Km run per truck p.m. <br> ( $6 \mathrm{~km} \times 10$ trips $\times 24$ days) <br> Total KM run by all trucks <br> Km per liter of diesel <br> Diesel required liters | $\begin{array}{r} 2,00,000 \\ 1,666.66 \\ 16666.66 \times 20 \\ =3,33,333 \\ \\ 1440 \\ 28800 \\ 3 \\ 9600 \\ (28800 / 3) \end{array}$ | $\begin{array}{r} 1,70,000 \\ 14,166.66 \\ 14166.66 \times 25 \\ =3,54,167 \\ \\ 1440 \\ 36000 \\ 4 \\ 9000 \\ (36000 / 4) \end{array}$ |

## Illustration.6:

You are required to calculate a suggested fare per passenger - km from the following information for a mini bus.
i) Length of route 30 km
ii) Purchase price Rs. $4,00,000$.
iii) Part of above cost meet by loan, annual interest Rs. 10,000 p.a.
iv) Other annual charges : Insurance Rs. 15,000, Garage Rent Rs. 9,000, Road Taxes Rs. 3,000, Repairs and Maintenance Rs. 5,000. Administrative charges Rs. 5000.
v) Running expenses : Driver \& Conductor Rs. 5000 p.m., Repairs / Replacement of tyre tube Rs. 3600 p.a. Diesel and Oil cost per Km Rs. 5/-
vi) Effective life of vehicle is estimated at 5 years at the end of which it will have a scrap value of Rs. 10,000.
vii) Mini Bus has 20 seats and is planned to make six two way trips for 25 days / p.m.
viii) Provide profit @ $20 \%$ of total revenue.
[C.A., Final]

## Solution :

| Particulars | Cost per Annum Rs. | Cost Per Month Rs. |
| :---: | :---: | :---: |
| Fixed Expenses : <br> Insurance <br> Garage Rent <br> Road Tax <br> Administrative charges <br> Depreciation (4,00,000-10,000 <br> $\div 5$ years) <br> Interest on Loan | $\begin{array}{r} 15,000 \\ 9,000 \\ 3,000 \\ 5,000 \\ 78,000 \\ \\ 10,000 \\ \hline 1,20,000 \end{array}$ | 10,000 |
| Running Expenses: <br> Repairs \& Maintenance <br> Replacement of tyre tube <br> Diesel and oil cost ( $9000 \mathrm{~km} \times$ Rs. 5/-) <br> Driver \& Conductor's Salary <br> Total Cost per month <br> Add : Profit 20 \% of total Revenue 25 \% Total cost | $\begin{array}{r} 15,000 \\ 3,600 \end{array}$ | 1,250 <br> 300 <br> 45,000 <br> 5,000 <br> 61,550 <br>  <br> $15,387.50$ |
| Total Revenue |  | 76,937.50 |

Rs. $36937.50 / 1,80,000$ passenger $\mathrm{km}=0.4274305$ or 0.43 paise

## Workings:

Total distance travelled by mini bus in 25 days $=60 \mathrm{~km} \times 6$ trips x 25 days $=9000 \mathrm{~km}$

Total passenger $\mathrm{km}=9000 \mathrm{~km} \times 20$ seats $=1,80,000$ passengers km

## Illustration 7 :

Krishna Transport Ltd. Charges Rs. 150 per ton for its 10 ton lorry load from city A to city B. the charges for the return journey are Rs. 140 per ton. No concession is made for any delivery of goods at intermediate station 'C' in January 2008. The truck made 10 outward journeys for city B with full load of which 2 ton were unloaded twice at city ' C '. The truck carried a load of 12 ton in its return journey for 4 times but once caught by police and Rs. 1500 was paid as fine. For the remaining trips it carried full load out of which all the goods on load were unloaded once at city ' C '. The distance from city A to city A and city 'B' are 150 km and 250 km respectively. Annual fixed cost are Rs. 1,20,000 and maintenance cost is Rs. 15,000. Running charges spent during January 2008 are Rs. 3500.

Calculate the cost per tone-kilometer and the profit for January 2008.

## Solution :

Operating Cost and Profit Statement of Krishna Transport Ltd.

| Particulars | Rs. |  |
| :--- | :--- | :--- |
| 1. | Fixed cost $(12000 / 12)$ |  |
| 2. | Maintenance charges $15000 / 12$ |  |
| 3. | Running charges |  |
|  | Total operating cost |  |
|  | Cost per ton km |  |
|  | Net revenue received (working note) |  |
|  | Less : Total operating cost |  |
|  | Profit |  |

(1) Tone km on outward journeys

From city A to C-10 journeys $\times 10$ ton $\times 150 \mathrm{~km}=15,000$
From city C to B-8 journeys $\times 10$ ton $\times 100 \mathrm{~km}=8,000$ 2 journey $\times 8$ ton $\times 100 \mathrm{~km} \quad$ Total $=\frac{1,600}{24,600}$

Tone - km

## (2) Tone km on return journey

From city B to A -4 journeys $\times 250 \mathrm{~km} \times 12$ ton $=12,000$
From city B to A -5 journeys $\times 250 \mathrm{~km} \times 10$ ton

Total tone $\mathrm{km}=24,600+25,500=50,100$ ton -km

| From city A to B-10 journeys $\times 10$ ton X Rs. 150 | = | 15,000 |  |
| :---: | :---: | :---: | :---: |
| From city B to A-4 journeys $\times 12$ ton X Rs. 140 | = | 6,720 |  |
| From city B to A -5 journeys $\times 10$ ton X Rs. 140 | = | 7,000 |  |
| From city B to C-1 journeys $\times 10$ ton X Rs. 140 |  | 1,000 |  |
| Total |  | 29,720 | Tone - km |
| Less: Fine Paid |  | 1,500 |  |
| Net revenue received |  | 28,220 |  |

## Illustration 8 :

Mr. Sampath owns a fleet of taxies and the following information is available from the records maintained by him.

1) Number of Taxis - 10
2) Cost of each Taxi - Rs. 2,00,000
3) Salary of manager Rs. 6000 p.m.
4) Salary of Accountant Rs. 5000 p.m
5) Salary of cleaner Rs. 3000 p.m.
6) Salary of Mechanic Rs. 4000 p.m.
7) Garage Rent Rs 7000 p.m.
8) Insurance premium $5 \%$
9) Annual Tax Rs. 6000 per taxi
10) Drivers Salary Rs. 4000 p.m.
11) Annual Repairs Rs. 15,000 per taxi

Total life of a taxi is about $2,00,000 \mathrm{kms}$. A taxi runs in all 3000 kms . in a month of which $25 \%$ its runs empty. Petrol consumption is one liter for 10 kms @ Rs. 40 per liter. Oil and other sundries are Rs. 10 per 100 kms .
Calculate the cost of running a taxi per km.

## Solution:

Operating cost sheet

| Particulars | Amount per month Rs. | Cost per Km Rs. |
| :---: | :---: | :---: |
| Fixed Expenses (for the whole fleet) <br> Salary of manager <br> Salary of accountant <br> Salary of Cleaner <br> Salary of mechanic | $\begin{aligned} & 6000 \\ & 5000 \\ & 3000 \\ & 4000 \end{aligned}$ |  |
| Garage Rent <br> Insurance premium $5 \%$ on <br> Rs. $2,00000 \times 10$ <br> Tax $6000 \times 10 / 12$ <br> Total Fixed Expenses <br> Effective kilometer $3000 \times 10 \times 75 \%=$ 22,500 <br> Fixed expenses per km <br> Running expenses (per taxi) <br> Depreciation $(2,00,000 \div 200000 \times 10 \times$ 3000) <br> Repairs $(15,000 \times 10 \div 12)$ <br> Petrol $(3000 \times 40) \div(10 \times 22500)$ <br> Oil and other sundries $(10 \times 3000) \div$ (100(22500) | 7000 8333 40000 5000 | $\begin{gathered} 3.48147 \\ 1.33333 \\ 0.55555 \\ 0.53333 \\ 0.13333 \end{gathered}$ |

## Illustration 9:

A lodging home is being run in a small hill station with 50 single rooms. The home offers concessional rate during six off season months in a year. During this period, half of the full room rent is charged. The management profit margin is targeted at $20 \%$ of the room rent. The following are the cost estimates and other details for the year ending 31st March, 1996 (assume a month to be of 30 days)
a) Occupancy during the season is $80 \%$, while in the off season is $40 \%$ only.
(b) Expenses:
(i) Staff Salary (excluding room attendants) Rs. 2,75,000
(ii) Repairs to buildings

Rs. 1,30,000
(iii) Laundry and linen

Rs. 40,000
(iv) Interior and tapestry

Rs. 87,500
(v) Sundry expenses

Rs. 95,400
c) Annual depreciation is to be provided for building at 5\% and on furniture and equipments at $15 \%$ on straight line basis.
d) Room attendants are paid Rs. 5/- per room-day on the basis of occupancy of the rooms in a month.
e) Monthly lighting charges are Rs. 120 per room, expect in four months of winter when it is Rs. 30 per room and this cost is on the basis of full occupancy for a month and
f) Total investments in the home are Rs. 100 lakhs of which Rs. 80 lakhs relate to buildings and balance for furniture and equipments.

You are required to work out the room rent chargeable per day both during the season and the off-season months, on the basis of the foregoing information.
[I.C.W.A., Intermediate

## Solution:

Total estimated costs for the year ending 31.03.1996

| Particulars | Total Rs. | Per room day (Rs.) |
| :---: | :---: | :---: |
| Salary | 2,75,000 |  |
| Repairs | 1,30,000 |  |
| Laundry and linen | 40,000 |  |
| Interior decoration | 87,500 |  |
| Depreciation: Rs. |  |  |
| Building 5\% on 80 lakhs $=4,00,000$ |  |  |
| Furniture $15 \%$ on 20 lakhs = 3,00,000 | 7,00,000 |  |
| Miscellaneous expenses | 95,400 |  |
| Attendant's salary | 54,000* |  |
| Lighting charges | 36,000** |  |
| Total cost | $14,18,400 / 9000$ <br> *** full room days | 157.60 |
| Add : Profit margin at $20 \%$ on rent or $25 \%$ of cost |  | 197.00 |

During season room rent is Rs. 197 and during off-season room rent is Rs. 98.50

* Attendant' salary

For 10,800 room days @ Rs. 5 per day = Rs. 54,000
** Total light bill
Light bill during 8 months at Rs. 120 per month or $120 \div 30=$ Rs. 4 Per room day.
Light bill during 4 months of winter at Rs. 30 per month or $30 \div 30=$ Re. 1 per Room day.

## Total light bill for full one year

Rs.
During season @ Rs. 4 for 7,200 days 28,800
During 2 months of off-season
@ Rs. 4 for 1,200 days $(2 \div 6 \times 3,600) \quad 4,800$
During 4 months of winter at Re. 1
For 2,400 days $(4 \div 6 \times 3,600) \quad 2,400$
Total 36,000
*** Number of room days in a year :
Seasons occupancy for 6 months @ $80 \%$ ( $50 \times 0.8 \times 6 \times 30$ ) $=7,200$ room days Off season's occupancy for 6 months @ $40 \%(50 \times 0.4 \times 6 \times 30)=$ 3,600 room days

Total room days during the Year
10,800
Total full room days in terms of rate
Season
7,200
Off Season (in terms of $50 \%$ rate on 3,600 days) 1,800
Total Full room days
9,000 per annum

## Illustration 10:

Elegant Hotel has a capacity of 100 single rooms and 20 double rooms. It has a sports centre with a swimming pool which is also used by persons other than residents of the hotel. The hotel has a shopping arcade at the basement and a specialty restaurant at the roof top. The following information is available:

1) Average occupancy: $75 \%$ for 365 days of the year
2) Current costs are :

|  | Variable cost | Fixed cost |
| :--- | :--- | :--- |
| Single room | 400 | 200 |
| Double room | 500 | 250 |

3) Average sales per day of restaurant Rs. 1, 00,000; contribution is at
4) The sports centre / swimming pool is likely to be used by 50 non residents daily; average contribution per day per nonresident is estimated at Rs. 50; fixed cost is Rs. 5,00,000 per annum.
5) Average contribution per month from the shopping arcade is Rs. 50,000; fixed cost is Rs. 6, 00,000 per annum.

## You are required to find out:

a) Rent chargeable for single and double room per day, so that there is a margin of safety of $20 \%$ on hire of rooms and that the rent for a double room should be kept at $120 \%$ of a single room.
b) Evaluate the profitability of restaurant, sports centre and shopping arcade separately.

[C. A. Final]

## Solution:

(a) Statement for calculating the rent chargeable for single and double room per day.

|  | Occupancy days in a year Refer to working note (1) | Variable cost Rs/ Days (2) | Fixed cost Rs / Days (3) | $\begin{gathered} \hline \text { Total } \\ \text { variable } \\ \text { cost } \\ 4=(1) \times(2) \end{gathered}$ | Total fixed cost (Rs.) $5=(1) \times(3)$ | $\begin{gathered} \hline \text { Total cost } \\ \text { (Rs.) } \\ 6= \\ (4) \times(5) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single room | 27,375 | 400 | 200 | 1,09,50,000 | 54,75,000 | 1,64,25,000 |
| Double room | 5,475 | 500 | 250 | 27,37,500 | 13,68,750 | 41,06,250 |
| Add : 20 \% margin of safety on hire of room or $25 \%$ of total cost Total amount of room rent to be received |  |  |  |  |  | 51,32,812 |
|  |  |  |  |  |  | 2,56,64,062 |

Rent per day of single room 9in Rs.) 756 (approx)
(Refer to working note 2)
(Rs. 2, 56,64,062 / 33,945)
Rent per day of double room (in Rs.) 907 (approx)
(Rs. $756 \times 1.2$ times)

|  | Profitability of restaurant | Rs. |
| :---: | :---: | :---: |
|  | Total sales per annum 365 days $\times$ Rs. 1,00,000 | 3,65,00,000 |
|  | Contribution per annum |  |
|  | (30\% of Total Sales) : (A) | 1,09,50,000 |
|  | Fixed cost per annum : (B) | 10,00,000 |
|  | Profit [ (A) - (B)] | 99,50,000 |
|  | Profitability of sports centre : | Rs. |
|  | Contribution of sports centre per day : ( 50 persons $\times$ Rs. 50) | 2,500 |
|  | Total contribution per annum (Rs. $2,500 \times 365$ days) : (A) | 9,12,500 |
|  | Fixed cost per annum : $(B)$ | 5,00,000 |
|  | Profit : [(A) - (B)] | 4,12,500 |
|  | Profitability of shopping arcade: | Rs. |
|  | Contribution per annum (Rs. 50,000 $\times 12$ months) | 6,00,000 |
|  | Less: Fixed Cost | 6,00,000 |
|  | Profit | Nil |

## Working Note :

1) Single room occupancy days in a year $=100$ room $\times 365$ days $\times 75 \%$ $=27,375$

Double room occupancy days in a year $=20$ rooms x 365 days $\times 75 \%$ $=5,475$
2) In terms of single room total room occupancy days in a year $=27,375+1.20 \% \times 5,475=27,375+6,570$
= 33,945

## Illustration 11:

Following are the information given by an owner of a hotel. You are requested to advice him that what rent should be charge from his customers per day so that he is able to earn $25 \%$ on cost other than interest.

1) Staff salaries Rs. 80,000 per annum
2) Room attendant's salary Rs. 2 per day. The salary is paid on daily basis and services of room attendant are needed only when the room is occupied. There is one room attendant for one room.
3) Lighting, heating and power. The normal lighting expenses for a room if it is occupied for the whole month is Rs. 50. Power is used only in winter and normal charge per month if occupied for a room is Rs. 20.
4) Repairs to building Rs. 10,000 per annum
5) Linen etc. Rs. 4,800 per annum
6) Sundries Rs. 6,600 per annum
7) Interior decoration and furnishing Rs. 10,000 annually
8) Cost of building Rs. 4,00,000; rate of depreciation $5 \%$
9) Other equipments Rs. $1,00,000$; rate of depreciation $10 \%$
10) Interest @ 5\% may be charged on its investment of Rs. 5,00,000 in the building and equipment
11) There are 100 rooms in the hotel and $80 \%$ of the rooms are normally occupied in summer and $30 \%$ of the rooms are busy in winter. You may assume that period of summer and winter is six month each. Normal days in a month may be assumed to be 30 .

## Operating cost sheet

Rent per day

|  | Rs. | $\begin{gathered} \text { Per annum } \\ \text { Rs. } \end{gathered}$ |
| :---: | :---: | :---: |
| 1. Staff salaries |  | 80,000 |
| Room attendant's salaries |  |  |
| Summer $2 \times(100 \times 80 \div 100) \times 30 \times 6$ | 28,800 |  |
| Winter $2 \times(100 \times 30 \div 100) \times 30 \times 6$ | 10,800 | 39,600 |
| Lighting, heating and power |  |  |
| Summer $50 \times 6 \times(100 \times 80 \div 100)$ | 24,000 |  |
| Winter $50 \times 6 \times 100 \times(30 \div 100)$ | 9,000 |  |
| Power $20 \times 6 \times 100 \times(30 \div 100)$ | 3,600 | 36,600 |
| Repairs to building |  | 10,000 |
| Linen etc. |  | 4,800 |
| Sundries |  | 6,600 |
| Interior decoration and furnishing |  | 10,000 |
| Depreciation : Building | 20,000 |  |
| Other equipments | 10,000 | 30,000 |
| Interest on investment (5\% on Rs. 5,00,000) |  | 25,000 |
|  |  | 2,42,600 |
| Add : 25 \% profit on cost other than interest |  |  |
| Rs. $2,42,600-$ Rs. 25,000 interest $=$ Rs. |  |  |
| 2,17,600 |  |  |
| Rs. $2,17,600 \times 25 \div 100$ |  | 54,400 |
| Total cost |  | 2,97,000 |

Rent per room for one day $=$ Total Cost $\div$ No. of room days

$$
\begin{aligned}
& =2,97,000 \div 19,800 \\
& =\text { Rs. } 15 \text { per day }
\end{aligned}
$$

Working Notes: Calculation of room days
No. of Rooms $x$ Percentage $x$ days in a month $x$ no. of months
Summer: $\quad 100 \times(80 \div 100) \times 30 \times 6$ $80 \times 30 \times 6=14,400$
Winter: $\quad 100 \times(30 \div 100) \times 30 \times 6$
$30 \times 300 \times 6=5,400$
Total room days $=\underline{19,800}$

### 5.2 EXERCISE

## Practical problems

## Illustration 1 :

A Mineral is transported from two mines - "A" and "B" and unloaded at plots in a Railway Station. Mine A is at a distance of 10 kms . And B is at a distance of 15 kms . from the mines. Records reveal that the lorries average a speed of 30 kms . per hour, when running and regularly take 10 minutes to unload at the railhead. At mine "A" loading time averages 30 minutes per load while at mine " B " loading time averages 20 minutes per load.

Drivers' wages, depreciation, insurance and taxes are found to cost 9 per hour operated. Fuel, oil, tyres, repairs and maintenance cost 1.20 per km.

Draw up a statement, showing the cost per tonne-kilometer of carrying mineral from each mine.
(M.Com. Oct. 01)
(Ans.: Cost per tonne Km. Mine A: Rs. 0.72, Mine B: Rs.0.66)

## Illustration 2 :

A transport company maintains a fleet of bus as follows :

| Number of Buses | Carrying Capacity |
| :--- | :--- |
| 20 | 50 passengers each |
| 10 | 40 passengers each |

Each bus makes 5 trips a day, covering a distance of 10 Km . in each trip. On an average $80 \%$ of the seats are occupied in each trip and 5 buses are under repair every day. Assuming that the company operates its fleet daily, ascertain the operating cost per passenger-Km. from the following :

| Wages of 30 Drivers | ₹ 3,000 each per month |
| :--- | :--- |
| Wages of 30 Cleaners | ₹ 1,000 each per month |
| Petrol | ₹ 20,000 per month |
| Oil, Grease etc. | ₹ 5,000 per month |
| Tyres, Tubes etc. | ₹ 2,000 per month |
| Repairs | ₹ 30,000 per year |
| Garage Rent | ₹ 40,000 per year |
| Road Licences | ₹ 20,000 per year |
| Taxes | ₹ 5,000 per half year |
| Permit Fee | ₹ 25,000 per year |

Salary of Operating Manager ₹ 5,000 per month
Office Overheads ₹ 10,000 per year
(M.Com, Oct 2000)

Ans: (Total Operating Cost: Rs. 19,59,000, Cost per passenger Km.: Rs.0.1 15)

## Illustration 3 :

A company presently brings coal to its factory from a nearby yard which is located 6 kms . away to factory and the rate paid ₹ 50 per ton for transportation. The total coal to be handled in month in 24,000 tons.

The company is considering proposal to buy its own trucks and has the option of buying either a 10 ton or a 8 ton capacity trucks.

The flowing information is available :

| Particulars |  | $\begin{aligned} & 10 \text { Ton } \\ & \text { Truck } \end{aligned}$ | $\begin{aligned} & 8 \text { ton } \\ & \text { Truck } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Purchase Price (') | $\ldots$ | 10,00,000 | 8,00,000 |
| Life (Years) | ...... | 5 | 5 |
| Scrap value at end of $5^{\text {th }}$ year | ...... | Nil | Nil |
| Kms. per litre of diesel | $\ldots$ | 3 | 4 |
| Rep/Maint p.a. per Truck (') | ...... | 60,000 | 48,000 |
| Other Expenses fixed p.a. (') | $\ldots$ | 60,000 | 36,000 |
| Lubricants and Sundries per 100 km . (') |  | 20 | 20 |

Each Truck will daily make 5 trips (to and fro) on an average for 24 days in a month.

Cost of Diesel ₹16 per litre.
Salary of Drivers ₹ 3,000 per month and two drivers will be required for a Truck.

Other staff expenses $₹ 1,08,000$ p.a.
Present a Comparative Cost Sheet on the basis of above data showing transport cost per ton of operating 10 ton and 8 ton Truck at full capacity utilization.
(M.Com. Mar. 02, adapted)

Ans: (Total Operating Cost: 10 Ton Truck: Rs. 49,6358 Ton Truck Rs.41,381, Cost per Ton: 10 Ton Truck: Rs. 41.36, 8 Ton Truck: Rs.43.1 1)

## Illustration 4 :

The following were the expenses incurred by CALL and MALL Company in operating two lorries (for the conveyance of Raw Materials) and a bus (for the conveyance of Staff) during the month of February, 2006 :

|  |  |  | Monthly Cost |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  |  | Lorry C |  |  |
| Lorry M | Bus |  |  |  |  |
| Driver's Salaries | $\ldots \ldots \ldots \ldots \ldots$ | 110 | 115 | 120 |  |
| Cleaner's Wages | $\ldots \ldots \ldots \ldots$ | 120 | 120 | 60 |  |
| Diesel | $\ldots \ldots \ldots \ldots$ | 170 | 240 | 110 |  |
| Oil | $\ldots \ldots \ldots \ldots \ldots$ | 18 | 25 | 20 |  |
| Repairs | $\ldots \ldots \ldots \ldots \ldots$ | 150 | 150 | 100 |  |
| Depreciation | $\ldots \ldots \ldots \ldots$ | 330 | 220 | 350 |  |
| Office Overheads | $\ldots \ldots \ldots \ldots \ldots$ | 70 | 70 | 70 |  |
| Servicing Charges | $\ldots \ldots \ldots \ldots \ldots$ | 130 | 110 | 75 |  |
| Road and Wheel Tax | $\ldots \ldots \ldots \ldots$ | 45 | 45 | 30 |  |
| Sundry Expenses | $\ldots \ldots \ldots \ldots \ldots$ | 35 | 40 | 20 |  |

The above vehicles carried the following Raw materials and Passengers during the month :

Lorry C 100 Tonnes of Raw Material
Lorry M 120 Tonnes daily for 25 days
Respective mileage of the vehicles during the month :
Lorry C 3,000
Lorry M $\quad 4,500$
Bus 2,000
From the above statistics prepare an Operating Cost Sheet in summary for the three vehicles. Also explain the unit of costing selected.
(M.Com., April 06, adapted)

Ans: (Total Operating Cost: Lorry C: Rs. 1,178, Lorry M: Rs. 1,135, Bus: Rs. 955,Total Tonnes or Passenger Miles: Lorry C: 12,000, Lorry M: 21,600, Bus: 50,000)

## Illustration 5:

An entrepreneur owns a bus which runs from Mumbai to Pune and back for 25 days in a month. The distance from Mumbai to Pune is 170 kms . The bus completes the trip from Mumbai to Pune and back on the same day. Calculate the fare to be charged to the following further information is available:

| Particulars |  | Rs. |
| :---: | :---: | :---: |
| Cost of Bus | ... ... ... ... ... | 3,00,000 |
| Salary of Driver per month | ... ... ... ... ... | 1,050 |
| Salary of Conductor | ... ... ... ... ... | 700 |
| Fixed Office Overheads | ... ... ... ... ... | 480 |
| Insurance p.a. |  | 6,720 |
| Diesel consumption 16 kms . per litre costing | ... ... ... ... ... | 25 per litre |
| Local Taxes p.a. |  | 1.200 |
| Oil and Lubricants per 100 kms . | .... ... ... ... ... | 20 |
| Repairs and Maintenance p.a. | ... ... ... ... ... | 1.000 |
| Licence Fees p.a. | ... ... ... ... ... | 2.840 |
| Normal Seating Capacity | ... ... ... ... ... | 50 passengers |
| Depreciation Rate | ... ... ... ... ... | 20\% p.a. |

The bus usually runs full upto $90 \%$ of its capacity both ways. Permit fee is payable on the cost of bus at $10 \%$ p.a.
(M.Com. April 05)

Ans: (Total Operating Cost: Rs. 3,08,295, Total passenger Km.: 45,90,000)

## Illustration 6 :

KKK Automobiles distributes its goods to a regional trader using a single lorry. The trader's premises are 40 kms away by road. The lorry has a capacity of 10 tonnes and makes the journey twice a day fully loaded on the outward journeys and empty on return journeys.

Your are given data for 4 weekly periods during the year 2003.
Petrol consumption 8 kms per litre
Petrol cost Rs. 13 per litre
Oil Rs. 100 per week
Driver's wages Rs. 400 per week
Repairs Rs. 100 per week
Garage rent Rs. 150 per week
Cost of lorry Rs. 4,50,000 (excluding tyres)
Life of lorry $\quad 80,000 \mathrm{kms}$.
Insurance Rs. 6,500 p.a.
Cost of tyres Rs. 6,250
Life of tyres $\quad 2,500 \mathrm{kms}$
Estimated Scrap value of lorry at the end of its life ₹50,000 Vehicle licence cost Rs. 1,300 p.a.

Other overhead cost Rs. 41,600 p.a.
The lorry operates on a Five-day week

## Required :

a) A statement to show the total cost of operating the vehicle for the 4 weekly periods analysed into running costs and fixed costs.
b) Calculate vehicle cost per km . and per tonne km .
(M. Com, Oct. 04, adapted)

Ans: (Total Operating Cost: Rs. 28,800, Effective Km- Tonne .:16,000 Effective Km. 1600)

## Illustration 7 :

A person owns a bus which runs between Delhi and Chandigarh and back for 10 days in a month. The distance between Delhi and Chandigarh is 150 kms. The bus completes the trip from Delhi and Chandigarh and back on the same day.

The bus goes to Agra for another 10 days. The distance between Delhi and Agra is 120 kms . The trip is also completed on the same day. For the rest 4 days of its operation, it runs in Delhi. The daily distance covered is 40 kms .

Calculate the charges to be made if a profit of $33(1 / 3) \%$ is to be earned on his takings.

The other available information given to you is :
Cost of the bus Rs. 60,000.
Depreciation $20 \%$ p.a.
Salary of Driver Rs. 350 p.m.
Salary of Conductor Rs. 350 p.m.
Salary of Cleaner Rs. 160 p.m.
Insurance Rs. 1,680 p.a.
Diesel consumption is 4 kms per litre. Diesel costs Rs. one per litre. The token tax is Rs. 600 p.a.

Lubricants Rs. 10 per 100 kms ; repairs and maintenance Rs. 300 p.m.; permit fee Rs. 284 p.m. and the normal capacity is 50 persons.

The bus generally has $90 \%$ of its capacity occupied when it goes to Chandigarh, $80 \%$ when it goes to Agra. It is always full when it runs within the city. Passenger tax is $20 \%$ of his net takings.
(M. Com, Oct. 04, adapted)

Ans: (Total Operating Cost per month: Rs. 4,580, Cost per passenger Km.

## Illustration 8 :

A person owns a bus that runs between Mumbai and Lonavala and back, for 10 days in a month. The distance from Mumbai to Lonavala is 150 kms . The bus completes the trip from Mumbai to Lonavala and return in the same day. The bus goes another 10 days in a month towards Alibagh. The distance from Mumbai to Alibagh is 120 kms . The trip is also completed on the same day. For the rest 4 days of its operation in a month it runs locally in Mumbai, covering daily distance of 40 kms . Calculate the rate that the person should charge from passenger when he wants to earn the profit of $25 \%$ on his takings and also calculate the charge per passenger for both the out-station trips. The other information is given as follows :

Cost of the bus (Depreciation @ 20\% p.a.; Normal Capacity : 50 persons) 6,00,000

Salary: Driver
Salary: Conductor
Fixed Office Overheads
Insurance
Fuel (Consumed @ 4 kms/litre)
R.T.O. tax

Lubricant Oil 10 per 100 kms
Repairs and Maintenance
Permit Fee

5,000 per month
5,000 per month
2,000 per month
7,200 per month
35 per litre
600 per annum

500 per month 300 per month

Passenger tax is $20 \%$ of the net takings. The bus is occupied $90 \%$ of its capacity while on Lonavala trip and $80 \%$ of its capacity while on Alibagh trip, but is fully occupied in its local journey.
(M. Com, April 08, adapted)

Ans: (Total Operating Cost: Rs. 72,656, Total Passenger Km. 2,39.000, Cost per passenger Km.: Rs.48.64)

## Illustration 9

A transport company supplies the following details in respect of a truck of 5 tonne capacity which carries goods to an from the city covering a distance of 50 kms each way.

Cost of truck
Diesel, oil, grease (per trip each way) 30
Repairs and maintenance (per month) $\quad 1,500$
Driver's (monthly) wages 1,500
Cleaner-cum-attendant's wages (monthly) 750
Insurance (per year) 9,000
Road license (per year) 3,000
General Supervision charges (per year) 6,000
Estimated life (years) 10
While going to the city, freight is available for a full load of the truck and on its return journey it can fetch freight only upto 20 percent of its capacity.

On the assumption that the trucks runs on an average 25 days a month, you are required to determine the following :
i) Operating cost per tone- km ,
ii) Rate per tone per trip that the company should charge if profit if 50 percent on cost is to be earned, and
iii) What freight should the company charge if one wants to engage the truck for one day for a trip to the city and back?
(M.Com , April 09, adapted)

Ans: (Total Operating Cost: Rs. 8,250, Cost per Tonne Km.: Rs.1.100)

## Illustration 10 :

From the following information relating to a Hotel, calculate the room rent to be charged to give a profit of $25 \%$ on cost excluding interest charged on Loan for the year ended 31st March, 2008 :

1) Salaries of office staff Rs. 50,000 per month.
2) Wages of the room attendant: Rs. 20 per day per room when the room is occupied.
3) lighting, Heating and Power :
a) The normal lighting expenses for a room for the full month is Rs. 500, when occupied.
b) Power is used only in winter and the charges are 200 for a room, when occupied.
4) Repairs to Beds and other furniture: Rs. 30,000 per annum.
5) Repairs to Hotel building: Rs. 50,000 per annum.
6) Licence fees: Rs. 12,400 per annum.
7) Sundries: ₹ 10,000 per month.
8) Interior decoration and furnishing: Rs. 1,00,000 per annum.
9) Depreciation @ 5\% p.a. is to be charged on Building costing 20,00,000/- and @ $10 \%$ p.a. on Equipments.
10) There are 200 rooms in the Hotel, $80 \%$ of the rooms are generally occupied in summer, $60 \%$ in winter and $30 \%$ in rainy season.

The period of summer, winter and rainy season may be considered to be of 4 months in each case. A month may be assumed of 30 days of an average
(M. Com. Oct. 08, adapted)

Ans: (Total Earnings: Rs. 33,18,000, Total Room Days: 40,800.Cost per Day: Rs. 81 .32)

## Illustration 11:

Relax Hotel has a capacity of 100 single rooms and 20 double rooms. The average occupancy of both single and double rooms is expected to be $80 \%$ throughout the year of 365 days. The rent for the double room has been fixed at $125 \%$ of the rent of the single room. The costs are as under:

Variable Costs : Single rooms Rs. 220 each per day
Double rooms Rs. 350 each per day
Fixed Costs : Single rooms Rs. 120 each per day
Double rooms Rs. 250 each per day
Calculate the rent chargeable for single and double rooms per day in such a way that the hotel earns on overall profit of $20 \%$ on hire charges of rooms.
(M. Com. April 09, adapted)

Ans: (Total Earnings: Rs. 1,67,90,000, Total Room Days: Single room: 29,200 Double room : 5,840.)

## Illustration 12:

A hospital is run by a Company. For this purpose it has hired a building at a rent of Rs. 5,000 per month plus it would bear the repair charges also.

The hospital is having 25 beds and 5 more beds can be accommodated when the need arises.

The staff of the hospital is as follows :
2 Supervisors each at a salary of Rs. 500 per month
4 Nurses each at a salary of Rs. 300 per month
2 Ward boys, each at a salary of Rs. 150 per month

Although the hospital is open for patients all the 365 days in a year, records for the year 2004 disclose that only for 120 days in the year, the unit had the full capacity of 25 patients per day and when the beds were full, extra beds were hired at a charge of ₹ 5 per bed per day and this did not come to more than 5 beds extra above the normal capacity on any one day. The total hire charges for the extra beds incurred for the whole year were Rs. 2,000.

The Unit engaged expert doctors from outside to attend on the patients and the fees was paid on the basis of the number of patients attended and time spent by them which on an average worked out to Rs. 10,000 per month in 2004.

The other expenses for the year were as under:
Repair and Maintenance Rs. 3,600
Food supplied to patients Rs. 44,000
Sanitary and Other services for patients Rs. 12,500
Laundry Charges Rs. 28,000
Medicines supplied Rs. 35,000
Cost of oxygen, X-ray, etc. other than directly borne for treatment of patients Rs. 54,000.

General Administration Charges allocated to hospital Rs. 49,550.
If the hospital recovered an amount of Rs. 100 per day on an average from each patient, compute the profit per patient - day made by the hospital as per operating cost sheet for the year 2004.

> (M. Com. Oct.06, adapted)

Ans: (Total Earnings: Rs. 61 ,350, Total Number of Patient days: 5000.)

## PROCESS COSTING

## Unit Structure

6.0 Learning Objectives
6.1 Introduction
6.2 Meaning of process costing
6.3 Distinction between job costing and process costing
6.4 Costing Procedure
6.5 Solved illustrations
6.6 Valuation of Work-in-progress
6.7 Questions
6.8 Exercise

### 6.0 LEARNING OBJECTIVES

After studying this chapter you should able to understand
$>$ the meaning of Process Costing and its importance
$>$ the distinction between job costing and process costing
$>$ the accounting procedure of process costing including normalloss abnormal loss (or) gain
$>$ the valuation of work-in-progress, using FIFO, LIFO averageand weighted average methods
$>$ the steps involved in inter process transfer

### 6.1 INTRODUCTION

Process costing is a form of operations costing which is used where standardized homogeneous goods are produced. This costing method is used in industries like chemicals, textiles, steel, rubber, sugar, shoes, petrol etc. Process costing is also used in the assembly type of industries also. It is assumed in process costing that the average cost presents the cost per unit. Cost of production during a particular period is divided by the number of units produced during that period to arrive at the cost per unit.

### 6.2 MEANING OF PROCESS COSTING

Process costing is a method of costing under which all costs are accumulated for each stage of production or process, and the cost per unit of product is ascertained at each stage of production by dividing the cost of each process by the normal output of that process.

### 6.2.1 Definition:

CIMA London defines process costing as "that form of operation costing which applies where standardize goods are produced"

### 6.2.2 Features of Process Costing:

(a) The production is continuous
(b) The product is homogeneous
(c) The process is standardized
(d) Output of one process become raw material of another process
(e) The output of the last process is transferred to finished stock
(f) Costs are collected process-wise
(g) Both direct and indirect costs are accumulated in each process
(h) If there is a stock of semi-finished goods, it is expressed interms of equivalent units
(i) The total cost of each process is divided by the normal output ofthat process to find out cost per unit of that process.

### 6.2.3 Advantages of process costing:

1. Costs are be computed periodically at the end of a particularperiod
2. It is simple and involves less clerical work that job costing
3. It is easy to allocate the expenses to processes in order to have accurate costs.
4. Use of standard costing systems in very effective in process costing situations.
5. Process costing helps in preparation of tender, quotations
6. Since cost data is available for each process, operation and department, good managerial control is possible.

### 6.2.4 Limitations:

1. Cost obtained at each process is only historical cost and are notvery useful for effective control.
2. Process costing is based on average cost method, which is not that suitable for performance analysis, evaluation and managerial control.
3. Work-in-progress is generally done on estimated basis which leads to inaccuracy in total cost calculations.
4. The computation of average cost is more difficult in those cases where
more than one type of products is manufactured and a division of the cost element is necessary.
5. Where different products arise in the same process and common costs are prorated to various costs units. Such individual products costs may be taken as only approximation and hence not reliable.

### 6.3 DISTINCTION BETWEEN JOB COSTING AND PROCESS COSTING

Job order costing and process costing are two different systems. Both the systems are used for cost calculation and attachment of cost to each unit completed, but both the systemsare suitable in different situations. The basic difference between jobcosting and process costing are

|  | Basis of <br> Distinction | Job order costing | Process costing |
| :--- | :--- | :--- | :--- |
| 1. | Specific order | Performed against <br> specific orders | Production iscontentious |
| 2. | Nature | Each job many be <br> different. | Product is Homogeneous <br> andstandardized. |
| 3. | Cost <br> determination | Cost is determined for <br> each job separately. | Costs are compiled for <br> each process for <br> department on timebasis <br> i.e. for a given <br> accounting period. |
| 4. | Cost <br> calculations | Cost is compiled whena <br> job is completed. | Cost is calculated at the <br> end of the cost period. |
| 5. | Control | Proper control is <br> comparatively difficult <br> as each product unit is <br> different and the <br> production is not <br> continuous. | Proper control is <br> comparatively easier as <br> the production is <br> standardized and is more <br> suitable. |
| 6. | Transfer | There is usually not <br> transfer from one job to <br> another unless there is <br> some surplus work. | The output of oneprocess <br> is transferred to another <br> process as input. |
| 7. | Work-in- <br> Progress | There may or may notbe <br> work-in-progress. | There is always some <br> work-in-progress <br> because of continuous <br> production. |
| 8. | Suitability | Suitable to industries <br> where production is <br> intermittentand <br> customer orders can be <br> identified in thevalue of <br> production. | Suitable, where goods <br> are made for stock and <br> productionsiscontinuous. |

### 6.4 COSTING PROCEDURE

For each process an individual process account is prepared.
Each process of production is treated as a distinct cost center.

### 6.4.1 Items on the Debit side of Process A/c.

Each process account is debited with -
a) Cost of materials used in that process.
b) Cost of labour incurred in that process.
c) Direct expenses incurred in that process.
d) Overheads charged to that process on some pre-determined.
e) Cost of ratification of normal defectives.
f) Cost of abnormal gain (if any arises in that process)

### 6.4.2 Items on the Credit side:

Each process account is credited with
a) Scrap value of Normal Loss (if any) occurs in that process.
b) Cost of Abnormal Loss (if any occurs in that process)

### 6.4.3 Cost of Process:

The cost of the output of the process (Total Cost less Sales valueof scrap) is transferred to the next process. The cost of each process is thus made up to cost brought forward from the previous process and net cost of material, labour and overhead added in thatprocess after reducing the sales value of scrap. The net cost of the finished process is transferred to the finished goods account. The net cost is divided by the number of units produced to determinethe average cost per unit in that process. Specimen of Process Account when there are normal loss and abnormal losses.
Dr.
Process I A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Basic Material | Xxx | xx | By Normal Loss | xx | xx |
| To Direct Material |  | xx | By Abnormal Loss | xx | xx |
| To Direct Wages |  | xx | By Process II A/c. | xx | xx |
| To Direct Expenses |  | xx | (output transferred to |  |  |
| To Production <br> Overheads |  | xx | Next process) |  |  |
| To Cost of <br> Rectification of <br> Normal Defects |  | xx | By Process I <br> Stock A/c. | xx | xx |
|  |  |  |  | xx |  |
| To Abnormal Gains | Xx | $\mathbf{x x x}$ |  | xx | xx |

### 6.4.4 Process Losses:

In many process, some loss is inevitable. Certain production techniques are of such a nature that some loss is inherent to the production. Wastages of material, evaporation of material is unavoidable in some process. But sometimes the Losses are also occurring due to negligence of Labourer, poor quality raw material, poor technology etc. These are normally called as avoidable losses. Basically process losses are classified into two categories
(a) Normal Loss (b) Abnormal Loss

## 1. Normal Loss:

Normal loss is an unavoidable loss which occurs due to the inherent nature of the materials and production process under normal conditions. It is normally estimated on the basis of past experience of the industry. It may be in the form of normal wastage, normal scrap, normal spoilage, and normal defectiveness. It may occur at any time of the process.

No of units of normal loss: Input x Expected percentage of Normal Loss.

The cost of normal loss is a process. If the normal loss units can be sold as a crap then the sale value is credited with process account. If some rectification is required before the sale of the normal loss, then debit that cost in the process account. Afteradjusting the normal loss the cost per unit is calculates with the help of the following formula:

## Cost of good unit:

Total cost increased - Sale Value of ScrapInput - Normal Loss units

## 2. Abnormal Loss:

Any loss caused by unexpected abnormal conditions suchas plant breakdown, substandard material, carelessness, accident etc. such losses are in excess of pre-determined normal losses. This loss is basically avoidable. Thus abnormal losses arrive when actual losses are more than expected losses. The units of abnormal losses in calculated as under:

Abnormal Losses $=$ Actual Loss - Normal Loss
The value of abnormal loss is done with the help of following formula:

## Value of Abnormal Loss:

Total Cost increase - Scrap Value of normal Loss x Units of abnormal lossInput units - Normal Loss Units

Abnormal Process loss should not be allowed to affect the cost of production as it is caused by abnormal (or) unexpected conditions.

Such loss representing the cost of materials, labour and overhead charges called abnormal loss account. The sales value ofthe abnormal loss is credited to Abnormal Loss Account and the balance is written off to costing P \& L A/c.

Dr.
Abnormal Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process A/c. | xx | xx | By Bank | xx | xx |
|  |  |  | By Costing P \& L <br> A/c. | xx | xx |
|  | xx | $\mathbf{x x x}$ |  | xx | xx |

## 3. Abnormal Gains:

The margin allowed for normal loss is an estimate (i.e. onthe basis of expectation in process industries in normal conditions) and slight differences are bound to occur between the actual outputof a process and that anticipates. This difference may be positive ornegative. If it is negative it is called ad abnormal Loss and if it is positive it is Abnormal gain i.e. if the actual loss is less than the normal loss then it is called as abnormal gain. The value of the abnormal gain calculated in the similar manner of abnormal loss. The formula used for abnormal gain is:

## Abnormal Gain

Total Cost incurred - Scrap Value of Normal Loss x Abnormal Gain UnitesInput units - Normal Loss Units

The sales values of abnormal gain units are transferred to Normal Loss Account since it arrive out of the savings of Normal Loss. The difference is transferred to Costing P \& L A/c. as a Real Gain.

$$
\text { Dr. Abnormal Gain A/c. } \quad \text { Cr. }
$$

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Normal <br> LossA/c. | xx | xx | By Process A/c. | xx | xx |
| To Costing <br> \& LA/c. | P | xx | xx |  |  |
|  | xx | xxx |  | xx | $\mathbf{x x}$ |

## Check Your Progress:

1. Define the following terms
a. Process costing
b. Normal Loss
c. Abnormal Loss
2. Give the formulas of following
a) Cost of good / normal unit
b) Value of Abnormal Loss

### 6.5 SOLVED ILLUSTRATIONS

Illustration 1: (Normal / Abnormal Loss)
Prepare a Process Account, Abnormal Loss Account andNormal Loss Account from the following information.

| Input of Raw material | 1000 units @ Rs. 20 perunit |
| :--- | :--- |
|  | Rs. 4,200/- Rs. |
| Direct | $6,000 /-\quad$ Rs. |
| Material | $6,000 /-$ |
| Direct | 900 units |
| Wages | $5 \%$ |
| Production Overheads | Rs. 8/- |
| Actual output transferred to process |  |

## Solution :

Dr. Process - I A/c. Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Raw material@ <br> 20 | 1000 | 20000 | By Normal Loss |  |  |
| To Direct <br> Material |  | 4200 | (5\% on <br> $1000)$ | 50 | 400 |
| To Direct Wages | 6000 | By Abnormal <br> Loss A/c. | 50 |  |  |
| To Production |  | BY Process - II <br> A/c. |  |  |  |
| Overheads | 6000 | (output |  |  |  |
|  | 1000 | 36200 | transferred) | 900 | 1000 |
|  |  |  | 36200 |  |  |

Dr. Abnormal Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process - I <br> A/c. | 50 |  | By Bank A/c. | 50 | 400 |
|  |  |  | By Costing P \& L <br> A/c. |  |  |
|  | 50 |  |  | 50 | 400 |

Dr. Normal Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process - I <br> A/c. | 50 | 400 | BY Bank | 50 | 400 |
|  |  |  |  |  |  |

## Working Notes:

(1) Cost of abnormal Loss :
$=\quad$ Total Cost increased - Sales value of Scrap x abnormal units Input units - Normal Loss Units

$$
=\frac{36200-400}{1000-50} \quad \times 50
$$

(2) It has been assumed that units of abnormal loss have alsobeen sold at the same rate i.e. of Normal Scrap

Illustration 2: (Normal / Abnormal Loss and Abnormal Gain)
The product of a company passes through 3 distinct process. The following information is obtained from the accounts forthe month ending January 31, 2008.

| Particulars | Process - A | Process - B | Process - C |
| :--- | :--- | :--- | :--- |
| Direct Material | 7800 | 5940 | 8886 |
| Direct Wages | 6000 | 9000 | 12000 |
| Production Overheads | 6000 | 9000 | 12000 |

3000 units @ Rs. 3 each were introduced to process - I. There wasno stock of materials or work in progress. The output of eachprocess passes directly to the next process and finally to finished stock A/c.

The following additional data is obtained :

| Process | Output | Percentage of Normal <br> Loss toInput | Value of Scrap <br> perunit (Rs.) |
| :--- | :---: | :---: | :---: |
| Process - I | 2850 | $5 \%$ | 2 |
| Process - II | 2520 | $10 \%$ | 4 |
| Process - III | 2250 | $15 \%$ | 5 |

Prepare Process Cost Account, Normal Cost Account andAbnormal Gain or Loss Account.

## Solution:

Dr.
Process - A A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Units <br> introduced | 3000 | 9000 | By Normal Loss <br> A/c. | 150 | 300 |
| To Direct <br> Material |  | 7800 | By Process - B <br> A/c. | 2850 | 28500 |
| To Direct Wages |  | 6000 | (Units transferred |  |  |
| To Production |  |  | @ Rs. 10/-) |  |  |
| Overheads |  | 6000 |  |  |  |
|  | $\mathbf{3 0 0 0}$ | $\mathbf{2 8 8 0 0}$ |  | $\mathbf{3 0 0 0}$ | $\mathbf{2 8 8 0 0}$ |

Dr.
Process - B A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process - IA/c. | 2850 | 28500 | By Normal Loss <br> A/c. | 285 | 1140 |
| To Direct <br> Material |  | 5940 | By Abnormal <br> Loss A/c. | 45 | 9000 |
| To Direct Wages | 9000 | By Process - C <br> A/c. | 2520 | 50400 |  |
| To Production |  |  |  |  |  |
| Overheads |  | 9000 |  | $\mathbf{2 8 5 0}$ | $\mathbf{5 2 4 4 0}$ |
|  | $\mathbf{2 8 5 0}$ | $\mathbf{5 2 4 4 0}$ |  |  |  |

Dr.
Process - C A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process - II <br> A/c. | 2520 | 50400 | By Normal Loss <br> A/c. | 378 | 1890 |
| To Direct <br> Material A/c |  | 8886 | By Finished <br> Stock A/c. | 2250 | 85500 |
| To Direct Wages | 12000 |  |  |  |  |
| To Production |  | 12000 |  |  |  |
| Overheads | 108 | 4104 |  |  |  |
| To Abnormal <br> Gain A/c. | $\mathbf{2 6 2 8}$ | $\mathbf{8 7 3 9 0}$ |  | $\mathbf{2 6 2 8}$ | $\mathbf{8 7 3 9 0}$ |

Dr. Abnormal Gain A/c.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Normal Loss <br> A/c. | 108 | 540 | By Process <br> A/c. C | 108 | 4104 |
| To Costing P\&L <br> A/c. |  | 3564 |  |  |  |
|  | $\mathbf{1 0 8}$ | $\mathbf{4 1 0 4}$ |  | $\mathbf{1 0 8}$ | $\mathbf{4 1 0 4}$ |

Dr.
Normal Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process - A <br> A/c. | 150 | 300 | By Bank A/c. <br> (Sales) |  |  |
| To Process - B <br> A/c. | 285 | 1140 | Process - AA/c. | 150 | 300 |
| To Process - C <br> A/c. | 378 | 1890 | Process - B A/c. | 285 | 1140 |
|  |  | Process - CA/c. | 270 | 1350 |  |
|  | $\mathbf{8 1 3}$ | $\mathbf{3 3 3 0}$ | By Abnormal <br> Gain A/c. | 108 | 540 |
|  |  | $\mathbf{8 1 3}$ | $\mathbf{3 3 3 0}$ |  |  |

### 6.6 INTER PROCESS PROFITS

Normally the output of one process is transferred to another process at cost but sometimes at a price showing a profit to the transfer process. The transfer price may be made at a price corresponding to current wholesale market price or at cost plus an agreed percentage. The advantage of the method is to find out

Whether the particular process is making profit (or) loss. This will help the management whether to process the product or to buy the product from the market. If the transfer price is higher than the cost price then the process account will show a profit. The complexity brought into the accounting arises from the fact that the interprocess profits introduced remain a part of the prices of process stocks, finished stocks and work-in-progress. The balance cannot show the stock with profit. To avoid the complication a provision must be created to reduce the stock at actual cost prices. This problem arises only in respect of stock on hand at the end of the period because goods sold must have realized the internal profits. The unrealized profit in the closing stock is eliminated by creating a stock reserve. The amount of stock reserve is calculated by the following formula.

Stock Reserve $=$ Transfer Value of stock x Profit included in transfer price Transfer Price

## Illustration 3 :

A product passes through three processes before its completion. The output of each process s charged to the nextprocess at a price calculated to give a profit of $20 \%$ on transfer price. The output of Process III is transferred to finished stockaccount on a similar basis. There was no work-in-progress at the beginning of the years. Stock in each process has been valued at prime cost of the process. The following data is available at the endof $31^{\text {st }}$ March, 2009.

|  | ProcessI | Process <br> II | Process <br> III | Finished <br> Stock Rs. |
| :--- | :--- | :--- | :--- | :--- |
| Direct Material | 20000 | 30000 | 10000 | -- |
| Direct Wages | 30000 | 20000 | 40000 | -- |
| Stock on 31 <br> st <br> 2009 | 10000 | 20000 | 30000 | 15000 |
| Sale during the year | -- | -- | -- | 180000 |

From above information prepare:

1. Process Cost Account showing the profit at each stage.
2. Actual realized profit and
3. Stock Valuation as would appear in the balance sheet

## Solution:

Dr. Process - I A/c. Cr.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Particulars } & \begin{array}{l}\text { Total } \\ \text { Rs. }\end{array} & \begin{array}{l}\text { Cost } \\ \text { Rs. }\end{array} & \begin{array}{l}\text { Profit } \\ \text { Rs. }\end{array} & \text { Particulars } & \begin{array}{l}\text { Total } \\ \text { Rs. }\end{array} & \begin{array}{l}\text { Cost } \\ \text { Rs. }\end{array} & \begin{array}{l}\text { Profit } \\ \text { Rs. }\end{array} \\ \hline \text { To Materials } & 20000 & 20000 & -- & \begin{array}{l}\text { By Process } \\ \text { II A/c. }\end{array} & 50000 & 40000 & 10000 \\ \text { (Transfer) }\end{array}\right]$

| Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. | Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| To Wages | 30000 | 30000 | -- |  |  |  |  |
| Total | 50000 | 50000 | -- |  |  |  |  |
| Les Closing |  |  |  |  |  |  |  |
| Stock c/d | 10000 | 10000 | -- |  |  |  |  |
| Prime Cost | 40000 | 40000 | -- |  |  |  |  |
| To Gross |  |  |  |  |  |  |  |
| Profit | 10000 | -- | 10000 |  |  |  |  |
| (20\% on |  |  |  |  |  |  |  |
| TransferPrice) |  |  |  |  |  |  |  |
|  | 50000 | 40000 | 10000 |  | 50000 | 40000 | 10000 |
| To Stock B/d. | 10000 | 10000 | -- |  |  |  |  |

Dr. Process - II A/c. Cr.

| Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. | Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| To Process <br> I A/c. | 50000 | 40000 | 10000 | By Process- <br> III |  |  |  |
|  |  |  | A/c. | 100000 | 72000 | 28000 |  |
| To Material | 30000 | 30000 | -- | (Transfer) |  |  |  |
| To Wages | 20000 | 20000 | -- |  |  |  |  |
| 100000 | 90000 | 10000 |  |  |  |  |  |
| Less : <br> Closing |  |  |  |  |  |  |  |
| Stock C/d. | 20000 | 18000 | 2000 |  |  |  |  |
| Prime Cost | 80000 | 72000 | 8000 |  |  |  |  |
| To Gross <br> Profit |  |  |  |  |  |  |  |
| (20\% on |  |  |  |  |  |  |  |
| Transfer <br> Price) | 20000 | -- | 20000 |  |  |  |  |
|  | 100000 | 72000 | 28000 |  | 100000 | 72000 | 28000 |
| To Stock <br> B/d. | 20000 | 18000 | 2000 |  |  |  |  |

Process III A/c

| Particulars | Total Rs. | $\begin{array}{\|l} \hline \text { Cost } \\ \text { Rs. } \\ \hline \end{array}$ | Profit Rs. | Particulars | Total Rs. | Cost <br> Rs. | Profit Rs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ToprocessII | 100000 | 72000 | 28000 | By Finished | 150000 | 97600 | 52400 |
| A/c |  |  |  | stock A/c |  |  |  |
| To Material | 10000 | 10000 |  |  |  |  |  |
| To Wages | 40000 | 40000 | ------- |  |  |  |  |
| TOTAL <br> Less.Closing | 150000 | 122000 | 28000 |  |  |  |  |
| stock | 30000 | 24400 | 5600 |  |  |  |  |
| To Gross profit | 120000 | 97600 | 22400 |  |  |  |  |
| (20\%of transfer price) | 30000 | -- | 30000 |  |  |  |  |
|  | 150000 | 97600 | 52400 |  | 150000 | 97600 | 52400 |
| To Stock b/d | 30000 | 24000 | 5600 |  |  |  |  |

Finished stock A/c

| Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. | Particulars | Total <br> Rs. | Cost <br> Rs. | Profit <br> Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| To process | 115000 | 97600 | 52400 | By Sales | 180000 | 87840 | 92160 |
| III A/c |  |  |  |  |  |  |  |
| (-)Stock | 15000 | 9760 | 5240 |  |  |  |  |
|  |  |  |  |  |  |  |  |
| To gross <br> profit | 135000 | 87840 | 92160 |  |  |  |  |
|  |  |  |  |  |  |  |  |

Calculation of profit on closing stock
Profit included in stock $=\underline{\text { Profit included in transfer price }} \mathrm{x}$ Value of stock
Transfer price
Process I = No profit
Process II $=\frac{10000}{100000} \times 20000=2000$
Process III $=\underline{28000} \times 30000=5600$
150000
Finished stock $=\underline{52400} \times 15000=5240$

## Illustration 4 :

A product process through three process A, B and C. The details of expenses incurred on the three process during the year 2008 were as under :

|  | Process A | Process B | Process C |
| :--- | :--- | :--- | :--- |
| Units introduced | 10000 |  |  |
| Cost per unit is Rs. 50/- |  |  |  |
|  | Rs. | Rs. | Rs. |
| Sundry Material | 6000 | 9000 | 3233 |
| Labour | 18000 | 48000 | 39000 |
| Direct Expenses | 3000 | 11000 | 18000 |
| Selling price per unit of output | 70 | 100 | 200 |

Management expenses during the year were Rs. 80000 and selling were Rs. 5000. There are not allocable to the processes. Actual output of the three process were A - 9300 units, B -5400 units and C 2100 units. Two-thirds of the output of process A and one half of the output of process B was passed on to the next process A and one-half of the output of process B was passed onto the next process and the balance was sold. The entire output of process C was sold.

The normal losses of the three process, calculated on the input of every process was : Process A $-5 \%, \mathrm{~B}-15 \%$ and $\mathrm{C}-20 \%$. The loss of process A was sold @ Rs. 3 per unit, that of B @ Rs. 5 per unit and of process C @ Rs. 10 per unit.

Prepare process A, B and C account and the Profit and LossAccount.

## Solution :

Dr.
Process A A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ToUnits <br> Introduced <br> @RS.50 | 10000 | $5,00,000$ | By Normal <br> Loss | 500 | 1,500 |
|  |  | 6,000 | By Abnormal <br> loss | 200 | 11063 |
| ToSundry <br> Materials |  | 18,000 | By output sold | 3,100 | 171479 |
| To Labour | 3,000 |  | 6,200 | 342958 |  |
| ToDirect <br> Expenses | 10000 | $5,27,000$ |  | 10000 | $5,27,000$ |
|  |  |  |  |  |  |

Dr.
Process B A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process A <br> A/c. | 6200 | 342958 | By Normal Loss | 930 | 4650 |
| ToSundry <br> Materials |  | 9000 | By Process C <br> A/c. | 2700 | $2,08,165$ |
| To Labour |  | 48000 | By output sold | 2700 | $2,08,165$ |
| To Direct <br> Expenses |  | 11000 |  |  |  |
| ToAbnormal <br> Gains |  | 100221 |  |  |  |
| A/c. (@ 77.19) |  |  |  | $\mathbf{6 , 3 3 0}$ | $\mathbf{4 , 2 0 , 9 8 0}$ |

Dr.
Process C A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Process B <br> A/c. | 2700 | 208165 | By Normal Loss | 540 | 5400 |
| ToSundry <br> Materials |  | 3233 | By Abnormal <br> Loss | 60 | 7305 |
| To Labour |  | 39000 | By output sold | 2100 | 255693 |
| To Direct <br> Expenses |  | 18000 | (@ 12.76) |  |  |
|  | $\mathbf{2 7 0 0}$ | $\mathbf{2 6 8 3 9 8}$ |  | $\mathbf{2 7 0 0}$ | $\mathbf{2 6 8 3 9 8}$ |

Dr.
Profit \& Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process A <br> A/c. | 3100 | 171479 | By Sales(@ Rs. 70) | 3100 | 217000 |
| To Process B <br> A/c. | 2700 | 208165 | By Sales(@Rs. 100) | 2700 | 270000 |
| To Process C <br> A/c. | 2700 | 265693 | BySales(@ Rs.2000) | 2700 | 420000 |
| To <br> Management <br> Expenses A/c. | 80000 | BY Abnormal Gain <br> A/c. |  | 9372 |  |
| To Selling <br> Expenses | 50000 |  |  |  |  |
| To Abnormal <br> Loss A/c. | 17168 |  |  |  |  |
| To Net Profit | 133867 | $\mathbf{9 1 6 3 7 2}$ |  | $\mathbf{9 1 6 3 7 2}$ |  |

Abnormal Loss A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process A A/c. | 200 | 11063 | By Bank Sales |  |  |
| To Process B A/c. | 60 | 7305 | (@ Rs. 30) | 200 | 600 |
|  |  |  | By Bank |  |  |
|  |  |  | (@ Rs. 10) | 60 | 600 |
|  |  |  | By P \& L A/c. |  | 17168 |
|  | $\mathbf{2 6 0}$ | $\mathbf{1 8 3 6 8}$ |  | $\mathbf{2 6 0}$ | $\mathbf{1 8 3 6 8}$ |

Dr.
Abnormal Gain A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Normal Loss <br> A/c. | 130 | 650 | By Process B /c. | 130 | 10022 |
| To Costing P \& L <br> A/c. | 9372 |  |  |  |  |
|  | $\mathbf{1 3 0}$ | $\mathbf{1 0 0 2 2}$ |  | $\mathbf{1 3 0}$ | $\mathbf{1 0 0 2 2}$ |

## Illustration 5

Mahesh Ltd process a material which passes through three processes. Figures relating to production for the first 6 months of 2009 are as follows.

|  | Process A | Process B | Process C |
| :--- | :--- | :--- | :--- |
| Raw material used | 1000 tones <br> @ Rs. 200 |  |  |
| Manufacturing Wages | Rs. 40000 | Rs. 30000 | Rs. 7000 |
| Expenses | Rs. 32500 | Rs. 10800 | Rs. 3710 |
| Scrap sold @ Rs. 50 per tone | 50 tones | 30 tones | 51 tones |
| Selling price per tone | Rs. 320 | Rs. 450 | Rs. 800 |
| Weight Loss | $5 \%$ | $10 \%$ | $20 \%$ |

Management expenses were Rs. 10500, selling expenses Rs. 8000 and interest on borrowed capital Rs. 2000. Two third of process I and one half of process 2 are passed on to the next process and the balance are sold.

Prepare Process Account, Process Stock Account and Costing Profit \& Loss A/c.

## Solution

Dr.
Process No. 1 A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Material @ <br> Rs. 200 | 1000 | 200000 | By Normal Loss <br> (sale of Scrap) | 50 | 2500 |
| To Wages |  | 40000 | By Weight Loss | 50 | -- |
| To Expenses |  | 32500 | By Process I Stock <br> A/c.(@300per tone) | 900 | 270000 |
|  | $\mathbf{1 0 0 0}$ | $\mathbf{2 7 2 5 0 0}$ |  | $\mathbf{1 0 0 0}$ | $\mathbf{2 7 2 5 0 0}$ |

Dr.
Process No. 1 Stock A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process I A/c. | 900 | 270000 | By Bank (@ 320) | 300 | 96000 |
| To Costing Profit <br> \& Loss A/c. |  | 6000 | ByProcessNo.2 <br> A/c. | 600 | 180000 |
|  |  |  |  |  |  |
|  | $\mathbf{9 0 0}$ | $\mathbf{2 7 6 0 0 0}$ |  | $\mathbf{9 0 0}$ | $\mathbf{2 7 6 0 0 0}$ |

Dr.
Process No. 2 A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process <br> Stock A/c. | 600 | 180000 | By Normal Loss <br> (@ Rs. 50) | 30 | 1500 |
| To wages |  | 30000 |  |  |  |
| To Expenses |  | 10800 | By Weight Loss | 60 | -- |
|  |  |  | By Process 2 <br> Stock |  |  |
|  |  | A/c(@ Rs. 430) | 510 | 219300 |  |
|  | $\mathbf{6 0 0}$ | $\mathbf{2 2 0 8 0 0}$ |  | $\mathbf{6 0 0}$ | $\mathbf{2 2 0 8 0 0}$ |

Dr.
Process No. 2 Stock A/c. Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process 2 A/c. | 510 | 219300 | By Bank |  |  |
| To Costing P\&L <br> A/c. |  | 5100 | (sale @ 450) | 255 | 114750 |
|  |  |  | By Process 3 A/c. | 255 | 109650 |
|  |  |  |  |  |  |
|  | $\mathbf{5 1 0}$ | $\mathbf{2 4 4 4 0 0}$ |  | $\mathbf{5 1 0}$ | $\mathbf{2 4 4 4 0 0}$ |

Dr. Process No. 3 A/c. Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process <br> Stock A/c. | 255 | 109650 | By scrap | 51 | 2550 |
| To wages |  | 7000 | By Weight Loss | 51 | -- |
| To Expenses |  | 3710 | By Process <br> stock A/c | 153 | 117810 |
|  | $\mathbf{2 5 5}$ | $\mathbf{1 2 0 3 6 0}$ |  | $\mathbf{2 5 5}$ | $\mathbf{1 2 0 3 6 0}$ |

Dr.
Process No. 3 Stock A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Process 3 A/c. | 153 | 117810 | By Bank |  |  |
| To Costing P \& L <br> A/c. | 4590 | (sale @ 800) | 153 | 122400 |  |
|  | $\mathbf{1 5 3}$ | $\mathbf{1 2 2 4 0 0}$ |  | $\mathbf{1 5 3}$ | $\mathbf{1 2 2 4 0 0}$ |


| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | :--- |
| To Management Expenses | 10500 | By Process 1 Stock A/c. | 6000 |
| To Selling Expenses | 8000 | By Process 2 Stock A/c. | 5100 |
| To Interest on Capital | 2000 | By Process 3 Stock A/c. | 4590 |
|  |  | By Net Loss | 4810 |
|  | $\mathbf{2 0 5 0 0}$ |  | $\mathbf{2 0 5 0 0}$ |

### 6.7 VALUATION OF WORK-IN-PROGRESS

### 6.7.1 Meaning of Work-in-Progress:

Since production is a continuous activity, there may be someincomplete production at the end of an accounting period.Incomplete units mean those units on which percentage of completion with regular to all elements of cost (i.e. material, labour and overhead) is not $100 \%$. Such incomplete production units are known as Work-in-Progress. Such Work-in-Progress is valued in terms of equivalent or effective production units.

### 6.7.2 Meaning of equivalent production units :

This represents the production of a process in terms of complete units. In other words, it means converting the incomplete production into its equivalent of complete units. The term equivalentunit means a notional quantity of completed units substituted for an actual quantity of incomplete physical units in progress, when the aggregate work content of the incomplete units is deemed to be equivalent to that of the substituted quantity. The principle applies when operation costs are apportioned between work in progress and completed units.

Equivalent units of work in progress $=$ Actual no. of units in progress x Percentage of work completed

Equivalent unit should be calculated separately for each element of cost (viz. material, labour and overheads) because the percentage of completion of the different cost component may be different.

### 6.7.3 Accounting Procedure:

The following procedure is followed when there is Work-inProgress
6.7.3.1 Find out equivalent production after taking into account of the process losses, degree of completion of opening and / orclosing stock.
6.7.3.2 Find out net process cost according to elements of costs i.e. material, labour and overheads.
6.7.3.3 Ascertain cost per unit of equivalent production of each element of cost separately by dividing each element of costs by respective equivalent production units.

The total cost per unit of equivalent units will be equal to thetotal cost divided by effective units and cost of work-in-progress will be equal to the equivalent units of work-in-progress multiply by the cost per unit of effective production. In short the following from steps an involved.

Step 1 - prepare statement of Equivalent production
Step 2 - Prepare statement of cost per Equivalent unit
Step 3 - Prepare of Evaluation
Step 4 - Prepare process account
The problem on equivalent production may be divided into fourgroups.
6.7.3.4.1 when there is only closing work-in-progress but withoutprocess losses
6.7.3.4.2 when there is only closing work-in-progress but withprocess losses
6.7.3.4.3 when there is only opening as well as closing work-in-progress without process losses
6.7.3.4.4 when there is opening as well as closing work-in-progress with process losses

## Situation I :

## Only closing work-in-progress without process losses :

In this case, the existence of process loss is ignored. Closing work-inprogress is converted into equivalent units on the basis of estimates on degree of completion of materials, labour and production overhead. Afterwards, the cost pr equivalent unit is calculated and the same is used to value the finished output transferred and the closing work-in-progress

## Situation II:

When there is closing work-in-progress with process loss orgain.
If there are process losses the treatment is same as already discussed in this chapter. In case of normal loss nothing should be added to equivalent production. If abnormal loss is there, it should be considered as good units completed during the period. If units scrapped (normal loss) have any reliable value, the amount should be deducted from the cost of materials in the cost statement before dividing by equivalent production units. Abnormal gain will be deducted to obtain equivalent production.

## Situation III:

## Opening and closing work-in-progress without processlosses.

Since the production is a continuous activity there is possibility of opening
as well as closing work-in-progress. The procedure of conversion of opening work-in-progress will vary depending on the method of apportionment of cost followed viz, FIFO, Average cost Method and LIFO.

Let us discuss the methods of valuation of work-in-progress one byone.
(a) FIFO Method: The FIFO method of costing is based on the assumption of that the opening work-in-progress units arethe first to be completed. Equivalent production of opening work-in-progress can be calculated as follows:

Equivalent Production $=$ Units of Opening WIP x Percentage of work needed to finish the units
(b) Average Cost Method: This method is useful when price fluctuate from period to period. The closing valuation of work-in-progress in the old period is added to the cost of new period and an average rate obtained. In calculating the equivalent production opening units will not be shown separately as units of work-in-progress but included in the units completed and transferred.
(c) Weighted Average Cost Method: In this method no distinction is made between completed units from opening inventory and completed units from new production. All units finished during the current accounting period are treated as if they were started and finished during that period. The weighted average cost per unit is determined by dividing the total cost (opening work-in-progress cost + current cost) by equivalent production.
(d) LIFO Method: In LIFO method the assumption is that the units entering into the process is the last one first to be completed. The cost of opening work-in-progress is charged to the closing work-inprogress and thus the closing work-in- progress appears cost of opening work-in-progress. The completed units are at their current cost.
(1) Format of statement of Equivalent Production :

| Input |  | Output |  | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Units | Particulars | Units | Material |  | Labour |  | Overheads |  |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Opening Stock | XX | Units completed | XX | xX | XX | XX | XX |  |  |
| Units <br> Introduced | XX | Normal Loss | XX | -- | -- | -- | -- |  |  |
|  |  | Abnormal Loss | XX | XX | XX | XX | XX |  |  |
|  | XX | Equivalent Units | XX |

(2) Statement of cost per Equivalent Units:

| Element of costing | Cost Rs. | Equivalent <br> Units | Cost per <br> EquivalentUnits <br> Rs |
| :--- | :---: | :---: | :---: |
| Material Cost (Net) | Xx | Xx | Xx |
| Labour Cost | Xx | Xx | Xx |
| Overheads Cost | Xx | xx | Xx |
|  | xx |  | Xx |

(3) Statement of Evaluation

| Particulars | Element ofcost | Equivalent <br> Units | Cost per <br> equivalent <br> units <br> Rs. | Cost <br> Rs. | Total <br> Cost <br> Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Units completed | Material | xx | xx | xx |  |
|  | Labour | xx | xx | xx |  |
|  | Overheads | xx | xx | xx | Xx |
| Closing WIP | Material | xx | xx | xx |  |
|  | Labour | xx | xx | xx |  |
|  | Overheads | xx | xx | xx | Xx |
| Abnormal Loss | Material | xx | xx | xx |  |
|  | Labour | xx | xx | xx |  |
|  | Overheads | xx | xx | xx | Xx |

## Illustration 6: (Average Costing)

Prepare a statement of equivalent production, statement of cost, process account from the following information using average costing method.

| Opening Stock | 50000 Units |
| :--- | :--- |
| Material | Rs. 25000 |
| Labour | Rs. 10000 |
| Overheads | Rs. 25000 |
| Units Introduced | 2000000 Units |
| Material | Rs. 100000 |
| Wages | Rs. 75000 |
| Overheads | Rs. 70000 |

During the period 1,50,000 units were completed and transferred to Process II.

Closing stock 1,00,000 units. Degree of completion.
Material 100 \%
Labour $50 \%$
Overheads 40 \%

## Solution :

| Input |  | Output |  | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Units | Particulars | Units | Material |  | Labour |  | Overheads |  |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Opening |  | Units |  |  |  |  |  |  |  |
| Stock | 50,000 | Produced | 150000 | 100 | 150000 | 100 | 150000 | 100 | 150000 |
| Introduced | 200,000 | Closing |  |  |  |  |  |  |  |
|  |  | Stock | 100000 | 100 | 100000 | 50 | 50000 | 40 | 40000 |
|  |  |  |  |  |  |  |  |  |  |
|  | 250000 |  | 250000 |  | 250000 |  | 200000 |  | 190000 |

Statement of Cost :

| Element | Opening <br> cost Rs. | Current <br> cost Rs. | Total <br> Cost Rs. | Equivalent <br> units | Cost <br> per <br> unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Material | 25,000 | $1,00,000$ | $1,25,000$ | $2,50,000$ | 0.500 |
| Labour | 10,000 | 75,000 | 85,000 | $2,00,000$ | 0.425 |
| Overheads | 25,000 | 70,000 | 95,000 | $1,90,000$ | 0.500 |
|  | 60,000 | $2,45,000$ | $3,05,000$ |  | 1.425 |

Statement of Apportionment of Cost

| Particulars | Units | Cost per <br> unit | Cost | Totalcost |
| :--- | :--- | :--- | :--- | :--- |
|  <br> transferred | $1,50,000$ | 1.425 |  | 213750 |
| 2. Closing work-in-progress |  |  |  |  |
| Material | $1,00,000$ | 0.500 | 50,000 |  |
| Labour | 50,000 | 0.425 | 21,250 |  |
| Overheads | 40,000 | 0.500 | 20,000 | 91,250 |
|  |  |  |  | $3,05,000$ |

Dr. Process I A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Opening <br> Stock | 50,000 | 60,000 | By Units <br> completed |  |  |
| To Materials | $2,00,000$ | $1,00,000$ | $\&$ transfer | 50,000 | $2,13,750$ |
| To Labour |  | 75,000 | By Closing Stock | 50,000 | 91,250 |
| To <br> Overheads |  | 70,000 |  |  |  |
|  | $2,50,000$ | $3,05,000$ |  | $2,50,000$ | $3,05,000$ |

## Illustration 7: (FIFO Method)

From the following information relating to KKN Company Ltd.
Prepare Process Cost Account for Process III for the year 2008.

| Opening Stock IN Process III | 5000 |
| :--- | :--- |
| units of | Rs. 36,000 |
| Transfer from Process II | $2,13,000$ |
| units of | Rs. $8,27,000$ |
| Direct Material added in Process III <br> Direct Wages | Rs. $4,01,800$ |
| Production Overhead | Rs. $1,98,100$ |
| Units Scrap | Rs. 99,050 |
| Transferred to Process IV units | 11,000 units |
| Closing Stock | $1,89,000$ |
|  | 18,000 units |


| Degree of Completion : |  |  |
| :--- | :--- | :--- |
| Opening Stock | Closing Stock | Scrap |
| Material $70 \%$ | $80 \%$ | $100 \%$ |
| Labour $50 \%$ | $60 \%$ | $80 \%$ |
| Overhead $50 \%$ | $60 \%$ | $80 \%$ |

There was a normal loss of $5 \%$ production and unit scrapedwere sold at Rs. 1.50

## Solution :

| Input |  | Output |  | Equivalent Production |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Particulars | Units | Particulars | Units | Material |  | Labour |  | Overheads |  |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Opening |  | Normal |  |  |  |  |  |  |  |
| Stock | 5,000 | Loss | 10000 |  |  |  |  |  |  |
| Process II |  | Op. Stock |  |  |  |  |  |  |  |
| Transfer | 213,000 | Processed | 5000 | - | - | 30 | 1500 | 50 | 2500 |
|  |  | Introduces <br>  <br> Completed | 184000 | 100 | 184000 | 100 | 184000 | 100 | 184000 |
|  |  | Abnormal |  |  |  |  |  |  |  |
|  |  | Loss | 1000 | 100 | 1000 | 100 | 1000 | 80 | 800 |
|  |  | Closing |  |  |  |  |  |  |  |
|  |  | Stock | 18000 | 100 | 18000 | 80 | 14400 | 60 | 10800 |
|  | 218000 |  | 218000 |  | 203000 |  | 200900 |  | 198100 |

Note : Units Produced: Opening stock + units introduced - closing stock

$$
: 5000+213000-18000=200000
$$

Normal Loss $: 5 \%$ of $200000=10000$ units

| Particulars |  | CostRs. | Equivalent <br> Units Rs. | Cost <br> Per <br> Unit <br> Rs. |
| :--- | :--- | ---: | ---: | :--- |
| Material - I |  |  |  |  |
| Transfer process <br> From Previous | $8,27,000$ |  |  |  |
| Less - (normal) Value of <br> scrap | 15,000 | $8,12,000$ | $2,03,000$ | 4.00 |
| Material - II |  |  |  |  |
| Added+ in the process |  | $4,01,800$ | $2,00,900$ | 2.00 |
| Direct Wages |  | $1,98,100$ | $1,98,100$ | 1.00 |
| Overheads |  | 99,050 | $1,98,100$ | 0.50 |
|  |  |  |  | 7.50 |

Statement of Apportionment of Cost

| Particulars | Elements | Equivalent <br> Units | Cost <br> Per <br> Unit <br> Rs. | CostRs. | Total <br> costRs. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Op. Stock <br> Processed | Material I | -- |  | -- |  |
|  | Material II | 1,500 | 2.00 | 3,000 |  |
|  | Wages | 2,500 | 1.00 | 2,500 |  |
|  | Overheads | 2,500 | 0.50 | 1,250 | 6,750 |
| Units introduced <br> and | Material I | $1,84,000$ | 4.00 | $7,36,000$ |  |
| Completed | Material II | $1,84,000$ | 2.00 | $3,68,000$ |  |
|  | Wages | $1,84,000$ | 1.00 | $1,84,000$ |  |
|  | Overheads | $1,84,000$ | 0.50 | 92,000 | $13,80,000$ |
| Closing stock | Material I | 18,000 | 4.00 | 72,000 | $13,86,750$ |
|  | Material II | 14,400 | 2.00 | 28,800 |  |
|  | Wages | 10,800 | 1.00 | 10,800 |  |
|  | Overheads | 10,800 | 0.50 | 5,400 | $1,17,000$ |
| Abnormal loss | Material I | 1,000 | 4.00 | 4,000 |  |
|  | Material II | 1,000 | 2.00 | 2,000 |  |
|  | Wages | 800 | 1.00 | 800 |  |
|  | Overheads | 800 | 0.50 | 400 | 7,200 |
| TOTAL |  |  |  |  | $\mathbf{1 5 , 1 0 , 9 5 0}$ |

Dr. Process III A/c. Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Balance <br> b/d. | 5,000 | 36,000 | By Normal <br> Loss | 10,000 | 15,000 |
| To Process II <br> A/c. | $2,13,000$ | $8,27,000$ | By Process <br> IV A/c. | $1,89,000$ | $14,22,750$ |
| To Materials | $4,01,800$ | By <br> Abnormal <br> Loss | 1,000 | 7,200 |  |
| To Wages | $1,98,100$ | By Closing <br> Stock | 18,000 | $1,17,000$ |  |
| To <br> Overheads | 99,050 |  | $\mathbf{2 , 1 8 , 0 0 0}$ | $\mathbf{1 5 , 6 1 , 9 5 0}$ |  |
|  | $\mathbf{2 , 1 8 , 0 0 0}$ | $\mathbf{1 5 , 6 1 , 9 5 0}$ |  |  |  |

Note :
Cost of goods transferred to Process IV :

| Value of Opening Stock | 36,000 |
| :--- | :--- |
| Cost incurred in this process for Opening Stock | 6,750 |
| Cost incurred for the units introduced \& Processed | $\mathbf{1 3 , 8 0 , 0 0 0}$ |
| Total | $\underline{\mathbf{4 4 , 2 2 , 7 5 0}}$ |

## Illustration 8

The following information is given in respect of Processcosting $10: 3$ for the month of January 2009.
Opening stock $-2,000$ units made up of

## Rs.

Direct Material - I
12,350
Direct Material - II
13,200
Direct Labour
17,500
Overheads
11,000
Transferred from Process $2-20,000$ units @ Rs. 6 per unit.Transferred to Process $4-17,000$ units

Expenditure incurred in process - 3

|  | Rs. |
| :--- | :--- |
| Direct Material | 30,000 |
| Direct Labour | 60,000 |
| Overheads | 60,000 |

Scrap:1,000 units-Direct Materials 100\%,Direct Labour 60\%,Overheads $40 \%$.

Normal Loss $10 \%$ of Production. Scrapped units realized Rs. 4/- per unit Closing stock : 4,000 units - Degree of completion. DirectMaterials $80 \%$, Direct Labour $60 \%$ and Overheads $40 \%$.

Prepare Process 3 Account using average price method along with necessary supporting statements.
[C. A. - Inter, May 2001]

## Solution :

Statement of Equivalent Production (weighted Average costMaterial)

| Particulars | Total Units | $\begin{gathered} \text { Material - } \\ \text { I } \end{gathered}$ |  | $\begin{array}{c\|} \hline \text { Material - } \\ \text { II } \\ \hline \end{array}$ |  | Labour |  | Overheads |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \% | Units | \% | Units | \% | Units |
| Units Completely |  |  |  |  |  |  |  |  |  |
| Processed | 17000 | 100 | 17000 | 100 | 17000 | 100 | 17000 | 100 | 17000 |
| Normal Loss | 1800 | -- |  |  |  |  |  |  |  |
| $\begin{aligned} & 10 \% \text { of }(2000 \\ & +20000- \\ & 4000) \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| Abnormal Gain | 800 | 100 | 800 | 100 | 800 | 100 | 800 | 100 | 800 |
| Closing Stock | 4000 | 100 | 4000 | 80 | 3200 | 60 | 2400 | 40 | 1600 |
|  | 22000 |  | 20200 |  | 19400 |  | 18600 |  | 17800 |

## Statement of Cost

| Particulars | CostRs. | Equivalent <br> Units | Rate / <br> Equivalent <br> Units Rs. |
| :--- | :---: | :---: | :---: |
| Material - I : |  |  |  |
| Opening balance 2000 units | 12,350 |  |  |
| Cost of 20000 units @ Rs. 6 |  |  |  |
| Per unit | $1,20,000$ |  |  |
|  | $1,25,150$ | 20,200 | 6.1955 |
| Material - II : |  |  |  |
| Opening Stock | 13,200 |  |  |
| In Process II | 30,000 |  |  |
|  | 43,200 | 19,400 | 2.2268 |
| Labour : | 17,500 |  |  |
| Opening Labour | 60,000 |  |  |
| In Process II | 77,500 | 18,600 | 4.1667 |
|  |  |  |  |
| Overheads : | 11,000 |  |  |
| Opening Stocks | 60,000 |  |  |
| In Process II | 71,000 | 17,800 | 3.9888 |
|  |  |  | $\mathbf{1 6 . 5 7 7 8}$ |
| Total cost per unit |  |  |  |

Valuation of Equivalent Unit

|  |  |  | Rs. |
| :--- | :--- | :---: | :---: |
| Finished goods | $(17000$ units x Rs. 16.5778) |  | $2,81,822$ |
| Abnormal Units | (800 units x Rs. 16.5778) |  | 13,262 |
| Workinprogress |  | 24,782 |  |
| Material I | $(4000$ units x Rs. 6.1955) | 7,126 |  |
| Material II | (3200 units x Rs. 2.2268) | 10,000 |  |
| Labour | $(2400$ units x Rs. 4.1667$)$ | 6,382 | 48,290 |
| Overheads | (1600 units x Rs. 3.9888) |  |  |

Dr. Process III A/c. Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Opening <br> WIP | 2,000 | 57,050 | By Normal Loss | 1,800 | 7,200 |
| To Process 2 | 20,000 | $1,20,000$ | By Finished Goods |  |  |
| To Direct |  |  | Units | 17,000 | $2,81,822$ |
| Material II |  | 30,000 | By Closing Balance | 4,000 | 48,290 |
| To Direct <br> Labour |  | 60,000 |  |  |  |
| To Overheads | 60,000 |  |  |  |  |
| To Abnormal <br> Gain | 800 | 13,262 |  |  |  |
|  | $\mathbf{2 2 , 8 0 0}$ | $\mathbf{3 , 3 7 , 3 1 2}$ |  | $\mathbf{2 2 , 8 0 0}$ | $\mathbf{3 , 3 7 , 3 1 2}$ |

## Illustration. 9

The finished product of a factory pass through two processes. The entire material being placed in process at the beginning of the first process. From the following production andlast data relating to the first process, work out the value of the closing inventory and the value of the materials transferred to the second process.

## Process I

Opening inventory
Material
Labour
Manufacturing Overheads
Opening inventory ( 25 percent complete)
Put into Process
Transferred to II Process
Closing inventory ( 20 percent completed)
Spoilage during process

## Rs.

10,000
27,500
50,000
40,000
4,000
12,000
10,000
5,000
1,000
[I.C.W.A., Final]

Solution :
Process I A/c

| Particulars | Kg. | Amount <br> Rs. | Particulars | Kg. | Amount <br> Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Opening <br> Inventory | 4,000 | 10,000 | Transferred to <br> Process II | 10,000 | $1,15,750$ |
| Material | 12,000 | 27,500 | Normal Loss | 1,000 | -- |
| Labour |  | 50,000 | Closing <br> Inventory | 5,000 | 11,750 |
| Manufacturing |  |  |  |  |  |
| Overheads |  | 40,000 |  |  |  |
|  | $\mathbf{1 6 , 0 0 0}$ | $\mathbf{1 , 2 7 , 5 0 0}$ |  | $\mathbf{1 6 , 0 0 0}$ | $\mathbf{1 , 2 7 , 5 0 0}$ |

## Working Note :

Statement of Equivalent Production Units

| Particulars | Output <br> Kg. |  | Material |  | Labour |  | Overheads |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  | Qty. | \% | Qty. | \% | Qty. | \% |  |  |
| Opening <br> Processed | 4,000 | 3,000 | 75 | 3,000 | 75 | 3,000 | 75 |  |
| Completely <br> Processed | 6,000 | 6,000 | 100 | 6,000 | 100 | 6,000 | 100 |  |
| Normal Loss | 1,000 | -- | -- | -- | -- | -- | -- |  |
| Closing <br> Inventory | 5,000 | 1,000 | 20 | 1,000 | 20 | 1,000 | 20 |  |
|  | $\mathbf{1 6 , 0 0 0}$ | $\mathbf{1 0 , 0 0 0}$ |  | $\mathbf{1 0 , 0 0 0}$ |  | $\mathbf{1 0 , 0 0 0}$ |  |  |

Statement of Element of Cost on the basis of EquivalentProduction

| Particulars | Cost Rs. | Equivalent <br> Units | Cost per Unit <br> Rs. |
| :--- | :---: | :---: | :---: |
| Material | 27,500 | 10,000 | 2.75 |
| Labour | 50,000 | 10,000 | 5.00 |
| Overheads | 40,000 | 10,000 | 4.00 |
| Total |  |  | 11.75 |

Statement of Apportionment of Cost

| Particulars | Elements | Equivalent <br> Units | Cost <br> Per <br> Unit <br> Rs. | Cost Rs. | Totalcost <br> Rs. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Op. Stock <br> Processed | Material | 3,000 | 2.75 | 8,250 |  |
|  | Labour | 3,000 | 5.00 | 15,000 |  |
|  | Overheads | 3,000 | 4.00 | 12,000 | 35,250 |
| Completely <br> Processed | Material | 6,000 | 2.75 | 16,500 |  |


| Particulars | Elements | Equivalent <br> Units | Cost <br> Per <br> Unit <br> Rs. | Cost Rs. | Totalcost <br> Rs. |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | Labour | 6,000 | 5.00 | 30,000 |  |
|  | Overheads | 6,000 | 4.00 | 24,000 | 70,500 |
| Closing <br> Inventory | Material | 1,000 | 2.75 | 2,750 |  |
|  | Labour | 1,000 | 5.00 | 5,000 |  |
|  | Overheads | 1,000 | 4.00 | 4,000 | 11,750 |
| TOTAL |  |  |  |  | $\mathbf{1 , 1 7 , 5 0 0}$ |

Value of goods transferred to next process

|  | Rs. | Units |
| :--- | :---: | :---: |
| Value of opening stock (given) | 10,000 |  |
| Additional cost on opening stock | 35,250 | 4,000 |
| Value of completely processed units | 70,500 | 6,000 |
|  | $1,15,750$ | 10,000 |

## Illustration 10

ABC Limited manufactures a product ' 2 X ' by using the process normally R. T. for the month of May 2009, the following data is available.

Process R. T.
Material Introduced 16,000 units
Transfer to next process 14,000 units
Work-in-Process 4,000 units
At the beginning of the month ( $4 / 5$ completed) 3,000 unitsAt the end of the month ( $2 / 3$ completed)

## Cost records:

Work-n-Process at the beginning of the month
Material
Rs. 30,000
Conversioncost
Rs. 29,200
Cost during the month Materials
Rs. 1,20,000
Conversion cost
Rs. $1,60,800$

Normal spoiled units are $10 \%$ of goods finished outputtransferred to next process.

Defects in these units are identified in their finished state.
Materials for the product is put in the process at the beginning ofthe cycle of operation, whereas labour and other indirect cost flow evenly over the year. It has no realizable value for spoiled units.

Required :
(1) Statement of equivalent production (average cost method)
(2) Statement of cost and distribution of cost
(3) Process accounts
[C.A. PCE. Nov. 2007]

## Solution :

Statement of Equivalent Production (average cost method)

| Input | Particulars | Output | Equivalent Production |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Units | Materials |  | Conversion cost |  |
|  |  |  | Equivalent <br> Units | \% <br> Complet <br> ed | Equivalent <br> Units |  |
| 4000 | Opening WIP | -- | -- |  |  |  |
| 16000 | Introduced <br> and | 14,400 | 100 | 14,400 | 100 | 14,400 |
|  | Completed to <br> next |  | 1,440 | 100 | 1,440 | 100 |
|  | Normal <br> spoilage | 1,160 | 100 | 1,160 | 100 | 1,160 |
|  | Abnormal <br> spoilage | 3,000 | 100 | 3,000 | 66.67 | 2,000 |
|  | Closing WIP | 3000 |  | 20000 |  | 19000 |
| 20000 |  |  |  |  |  |  |

Statement showing cost of each element

| Particulars | Materials | Conversion cost |  |
| :--- | :--- | :---: | :---: |
| Opening | 30,000 | 29,200 |  |
| Cost in process | $1,20,000$ | $1,60,800$ |  |
| Total | (a) | $1,50,000$ | $1,90,000$ |
| Equivalent Units | (b) | 20,000 | 19,000 |
| Cost per unit | (a $\div \mathrm{b})$ | 7.50 | 10.00 |

Statement showing distribution of cost

| Particulars | Equivalent <br> Units | Cost per <br> unit | (Rs.) |  |
| :--- | :---: | :---: | :---: | :---: |
| Units completed |  |  |  |  |
| Materials | 14,400 | 7.50 | $1,08,000$ |  |
| Conversion cost | 14,400 | 10.00 | $1,44,000$ | $2,52,000$ |
| Normal spoilage | 1,440 | 17.50 |  | 25,200 |
| $(10 \%)$ |  |  |  |  |


| Particulars | Equivalent <br> Units | Cost per <br> unit | (Rs.) |  |
| :--- | :---: | :---: | :---: | :---: |
| Closing stock : |  |  |  |  |
| Material | 3,000 | 7.50 | 22,500 |  |
| Conversion cost | 2,000 | 10.00 | 20,000 | 42,500 |
| Abnormal Stock: |  |  |  |  |
| Material | 1,160 | 7.50 | 8,700 |  |
| Conversion Stock | 1,160 | 10.00 | 11,600 | 20,300 |

Dr. Process A/c. Cr.

| Particulars | Rs. | Particulars | Rs. |
| :--- | :--- | :--- | :--- |
| To Opening WIP | 59,200 | By Profit and Loss |  |
|  |  | A/c. |  |
| To Material | $1,20,000$ | (abnormal) | 20,300 |
| Introduced |  |  |  |
| To Conversion cost | $1,60,800$ | By Transfer to Next | $2,77,200$ |
| Incurred |  | Process |  |
|  |  | By Closing WIP | 42,500 |
|  | $\mathbf{3 4 0 0 0 0}$ |  | $\mathbf{3 , 4 0 , 0 0 0}$ |

## Illustration. 11

GH \& Co. manufactures a product. The process costing is followed and work-in-progress stocks at the end of each month are valued at FIFO basis.

At the beginning of the month of June, the inventory of work-in-progress showed 400 units, $40 \%$ complete, valued as follows:

|  | Rs. |
| :--- | :--- |
| Material | 3,600 |
| Labour | 3,400 |
| Overheads | 1,000 |
| Total | 8,000 |

In the month of June, materials were purchased for Rs. 75,000 . Wages and overheads in the month amounted to Rs. 79,800 and Rs. 21,280 respectively. Actual issue of material to production was Rs. 68,500. Finished stock in the month was 2500 units. There was no loss in process.

All the end of the month, the work-in-process inventory was 500 units, 60 percent complete as to labour and overheads and $80 \%$ complete as to materials.

Prepare a Process Account for recording the month's transactions and prepare a Process Cost Sheet showing total and units costs [I.C.W.A., Final]

## Solution:

Dr.
Process A/c.
Cr.

| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To Opening | 400 | 8,000 | BY Transfer to |  |  |
| Stock |  |  |  |  |  |
| To Material | 2,600 | 68,500 | Finished stock | 2,500 | $1,56,094$ |
| To Labour |  | 79,800 | By Work-in- |  |  |
| To Overheads |  | 21,280 | Progress | 500 | 21,486 |
|  | $\mathbf{3 0 0 0}$ | $\mathbf{1 , 7 7 , 5 8 0}$ |  | $\mathbf{3 0 0 0}$ | $\mathbf{1 , 7 7 , 5 8 0}$ |

## Working Note :

Statement of Equivalent Production (Units)

| Input | Particulars | Outp <br> ut | Material |  | Labour |  | Overhead |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\%$ | Qty. | $\%$ | Qty. | $\%$ |  |
| 400 | Opening | 400 | 240 | 60 | 240 | 60 | 240 | 60 |
|  | Stock <br> Completely <br> Processed | 2,100 | 2,100 | 100 | 2,100 | 100 | 2,100 | 100 |
|  | Pork-in- <br> Wor <br> Progress | 500 | 400 | 80 | 300 | 60 | 300 | 60 |

## Working Note :

(1) For opening stock also equivalent production has been calculated as it was partly complete and it has to be converted into finished product in this period. They werecompleted $60 \%$ in this period.
(2) Total units produced in a month are 2,50 units. Out of this 400 units of opening stock has been deducted because they have been partly processed in this particular month and we have already calculated equivalent units of opening stock. Only, 2,100 units have been introduced and completed in theparticular period.
(3) For closing stock also equivalent production in terms of total units completed has been calculated.

Statement of Element of cost on the basis of Equivalent Units

|  | Cost Rs. | Equivalent <br> Units | Cost per unit <br> Rs. |
| :--- | :--- | :--- | :--- |
| Material | 68,500 | 2.740 | 25.000 |
| Labour | 79,800 | 2.640 | 30.2273 |
| Overheads | 21,280 | 2.640 | 8.0606 |


| Particulars |  | Equivalent <br> Units | Cost <br> Per Unit <br> Rs. | Details <br> Rs. | TotalRs. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Op. Stock | Material | 240 | 25.0000 | 6,000 |  |
| Processed |  |  |  |  |  |
|  | Labour | 240 | 30.2273 | 7,255 |  |
|  | Overheads | 240 | 8.0606 | 1,935 | 15,190 |
| Completely | Material | 2,100 | 25.0000 | 52,500 |  |
| Processed |  |  |  |  |  |
|  | Labour | 2,100 | 30.2273 | 63,477 |  |
|  | Overheads | 2,100 | 8.0606 | 16,927 | $1,32,904$ |
| Work-in- | Material | 400 | 25.0000 | 10,000 |  |
| Process |  |  |  |  |  |
|  | Labour | 300 | 30.2273 | 9,068 |  |
|  | Overheads | 300 | 8.0606 | 2,418 | 21,486 |
|  |  |  |  | TOTAL | $\mathbf{1 , 6 9 , 5 8 0}$ |

Total Cost of 2500 units

|  | Rs. |
| :--- | :--- |
| Cost of opening stock | 8,000 |
| Additional cost of opening stock processed | 15,190 |
| Cost of completely processed | $1,32,904$ |
|  | $\mathbf{1 , 5 6 , 0 9 4}$ |

## Illustration 12

The following data is available in respect of Process I forFebruary 1990.
(1) Opening stock of work-in-process 800 units at atotal cost of Rs. 4,000.
(2) Degree of completion of opening work inprocess

Materials 100 \%
Labour 60 \%
Overheads 60 \%
(3) Input of materials at a total cost of Rs. 36,800for 9,200 units
(4) Direct wages incurred Rs. 16,7540
(5) Production overheads Rs. 8,370
(6) Units scrapped 1,200 units. The stage ofcompletion of these units was

Materials 100 \%
Labour $80 \%$
Overheads 80 \%
(7) Closing work-in-process : 900 units. The stageof completion of these units was :

Materials 100 \%
Labour $\quad 70 \%$
Overheads 70 \%
(8) 7,900 units were completed and transferred tothe next process.
(9) Normal Loss is $80 \%$ of the total input (opening stock plus units put in)
(10) Scrap value is Rs. 4 per unit

You are required to :
(a) Compute equivalent production
(b) Calculate the cost per equivalent unit for each element
(c) Calculate the cost of abnormal loss (or gain), closing work in process and the units transferred to the next process using the FIFO method.
(d) Show the Process Account for February 1990
[C.A., Inter]
(a) Statement of Equivalent Production (FIFO Method)

| input <br> Particulars | Units | Output <br> Particulars | Units | Equivalent <br> Material |  | Labour \& Overheads |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  |  | Units | \% | Units | \% |
| Op. Stock |  | Units |  |  |  |  |  |
| of |  | completed |  |  |  |  |  |
| W.I.P. | 800 | Work on Op. | 800 | -- |  | 320 | 40 |
|  |  | stock |  |  |  |  |  |
| Units |  | New units | 7100 | 7100 | 100 | 7,100 | 100 |
|  | 9,200 | Closing stock | 900 | 900 | 100 | 630 | 70 |
| Introduced |  |  |  |  |  |  |  |
|  |  | Normal Loss | 800 | -- |  | -- |  |
|  |  | Abnormal | 400 | 400 | 100 | 320 | 100 |
|  |  | Loss |  |  |  |  |  |
|  | 10,000 |  | 10,000 | 8,400 |  | 8,370 |  |

(b) Statement of cost per equivalent units for each element

| Particulars | CostRs. | Equivalent <br> Unit | Cost <br> Unit | Per |
| :--- | :--- | :--- | :--- | :--- |
| Material 36,800 |  |  |  |  |
| Less : Scraprealization | 3,200 | 33,600 | 8,400 | 4.00 |
| (800 units @ Rs. 4) $\quad 16,740$ | 8,370 | 2.00 |  |  |
| Labour | 8,370 | 8,370 | 1.00 |  |
| Overheads |  |  |  |  |

I Statement showing cost of abnormal loss, closing WIP and units transferred to the next process :

| Particulars | Cost per <br> unit Rs. | Equivalent <br> unit | Total cost <br> Rs. |
| :--- | :---: | :---: | :---: |
| Abnormal Loss | 4.00 | 400 | 1,600 |
| Materials | 2.00 | 320 | 640 |
| Labour | 1.00 | 320 | 320 |
| Overheads |  |  | 2,560 |
|  |  |  |  |
| Closing WIP | 4.00 | 900 | 3,600 |
| Material | 2.00 | 630 | 1,260 |
| Labour | 1.00 | 630 | 630 |
| Overheads |  |  | 5,490 |
| 7900 units transferred to next |  |  |  |
| Process | -- |  | 4,000 |
| (i) Cost of opening WIP (80 units) |  |  |  |
| (ii) Cost incurred on opening WIP |  | 320 | 640 |
| Material | 2.00 | 320 | 320 |
| Labour | 1.00 |  | 960 |
| Overheads |  |  |  |
| (iii) Cost of completing 7100 units |  |  | 28400 |
| Material | 4.00 | 7100 | 14200 |
| Labour | 2.00 | 7100 | 100 |
| Overheads | 1.00 | 7100 | 7100 |
| Total |  |  | 49700 |
|  |  |  | $\mathbf{5 4 6 0 0}$ |


| Particulars | Units | Rs. | Particulars | Units | Rs. |
| :--- | :---: | :---: | :--- | :---: | :---: |
| To Opening | 800 | 4000 | By Finished | 7900 | 54660 |
| WIP |  |  | Goods |  |  |
| To Materials | 9200 | 36800 | By Closing WIP | 900 | 5490 |
| To Labour | -- | 16740 | By Normal Loss | 800 | 3200 |
| To Overheads | -- | 8370 | By Abnormal | 400 | 2560 |
|  |  |  | Loss |  |  |
|  | 10000 | 65910 |  | $\mathbf{1 0 0 0 0}$ | $\mathbf{6 5 9 1 0}$ |

### 6.8 EXERCISE

### 6.8.1 Objective type

## Answer in Brief

6.8.1.1 State any four features of process costing.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.2 Define process costing,
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.3 What do you mean by normal loss? How is it treated inprocess cost accounts?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.4 What do you mean by abnormal loss? How is it treated inprocess cost accounts?
6.8.1.5 Distinguish between normal loss and abnormal loss.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.6 What do you mean by abnormal effective? How is it treatedin process cost accounts?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.7 What do you mean by inter process profit? What purposedoes it serve?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.8 What do you mean be equivalent production?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.9 Name any four industries in which process costing isapplicable?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.11 Enumerate any two disadvantages of process costing.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6.8.1.12 What do you meant by equivalent units?
$\qquad$
$\qquad$
$\qquad$

### 6.8.2 Multiple Choice Questions

1. The type of spoilage that should not affect the cost ofinventories is
(a) Abnormal spoilage
(c) Seasonal spoilage
(b) Normal spoilage
(d) Indirect spoilage
2. Materials may not be put into process
(a) At the beginning of an operation
(b) Continuously
(c) At the end of the operation
(d) In the shipping department.
3. Process cost method is especially suitable for
(a) Custom production
(c) FIFO
(b) Standard costs
(d) LIFO
4. In process costing, costs follow
(a) Price rise
(c) Product flow
(b) Price declines
(d) Finished goods
5. When average costing is used, the opening inventory costsare
(a) Kept separate from the costs for the new period
(b) Added to the costs of the new period
(c) Subtracted from the new costs
(d) Averaged with other costs to arrive at total cost.
6. A disadvantage of FIFO costing is that
(a) The first units produced cannot be distinguished fromlater production.
(b) Several units costs are used at the same time.
(c) The units have to be kept separate
(d) The shipping costs are higher
7. Which of the following method of costing can be used in alarge oil refinery?
(a) Process costing
(c) Unit costing
(b) Operating costing
(d) Job costing
8. Which of the following paid is odd :
(a) Construction-Contract costing
(b) Ship-building-Job costing
(c) Brick manufacturing - Process costing
(d) Transport undertaking - Operating costing
9. A product which has practically no sales or utility value is
(a) Waste
(c) Spoilage
(b) Scrap
(d) Defectives
10. Trimmings in timber industry should be treated as a :
(a) Waste
(c) Spoilage
(b) Scrap
(d) Defectives
11. The type of process loss that should not affect the cost ofinventory is
(a) Abnormal loss
(c) Seasonal loss
(b) normal loss
(d) standard loss
12. The stage where joint products are separated from eachother is known as
(a) break-even point (b) angle of incidence
(c) split-off point
13. Fifty units are put in a process at a total cost of Rs. 90 . Wastage is normally $10 \%$ without any scrap value. If output is 40 units the amount of abnormal loss would be
(a) Rs. 80
(c) Rs. 10
(b) Rs. 8
(d) Rs. 9
14. Abnormal loss is charged to
(a) process account
(b) costing profit and loss account
(c) Normal loss account
(Answers: 1(a), 2 (d), 3 (b), 4(c), 5(a), 6(b), 7(a), 8(c), 9(a),10(b).)11 (a), 12(c), 13 (c), 14(b) )

### 6.8.3 Short notes

6.8.3.1 Write a short note-Inter process profits.(Apr-08)
6.8.3.2 Write a Short Note-Treatment of losses in Process.(Apr 07)
6.8.3.3 Write a short Note-Equivalent Production. (Apr-07)
6.8.3.4 Describe the main features of process costing.
6.8.3.5 Explain the features of process costing
6.8.3.6 How would you treat abnormal gain?

### 6.8.4. Long questions

1. What do you mean by inter-process profits in process cost accounts.
2. Explain the methods to be adopted in the treatment of joint products and by-products in process account.
3. What do you understand by 'Normal' and `Abnormal' Wastageduring the process of manufacture?
4. Describe briefly the method known as Process Costing, statingfour types of manufactures which would be suitable for its application. A description of the method of dealing with by-products is not required.
5. Explain the concept of Equivalent Production. Discuss the two methods of its valuation.

## Practical Problems

## Illustration 1:

During a particular period 2,000 units at a cost of ` 60,000 were introduced into Process 'A' (at the beginning). The normal loss was estimated at $5 \%$ of the input. At the end, 1,400 units were producedand transferred to the Process ' $\mathrm{B}^{\prime}, 460$ units being partially completed and 140 units scrapped. The partially completed units had reached the following state of production:

Materials $100 \%$ complete
Labour 50\% complete
Overheads 50\% complete
Additional costs incurred during the process were:Materials
Rs. 17,000
Labour Rs.33, 400
Overheads Rs. 16,700
The units scrapped realised Rs. 10 per unit. Prepare Process 'A' A/c with all relevant statements.
(Ans.: Equivalent Units, Material: 1,900, Labour: 1670, Overheads: 1,670
Transfer to Process B 1,400 units @Rs. 70 p.u.)
(M.Com. Mar. 2002)

## Illustration 2 :

XYZ Ltd. is engaged in process industry. During the month August 2000, 2000 Units were introduced in process ' X '. The normal loss was estimated at $5 \%$ of input. At the end of the month 1,400 units had been produced and transferred to process ' Y '. 460 units were incomplete and 140 units, after passing through fully the entire process had to be scrapped. The incomplete units had reached the following state of completion:

Materials 75\% Completed
Labour 50\% Completed
Overheads 50\% Completed
Following are the further information on the process ' X ' :
Cost of the 2000 units Rs. 58,000Additional Direct materials
Rs. 14,400 Direct Labour Rs. 33,400
Direct OverheadsRs. 16,700
Units scrapped realised Rs. 10 each
Prepare statement of equivalent production, statement of cost, statement of evaluation and process ' X ' account.
(M.Com. Mar. 2005)

Ans. (Equivalent Units, Material: 1,785, Labour: 1,670, Overheads: 1,670)

## Illustration 3 : (FIFO)

The following information is available for Process IV of Swastik Fabrications Ltd. for the month of March 2005.

## Labour 60\%

Overheads 60\% Transfer from Process III: 30,600 units @ Rs. 30,600 Transfer to Process V: 27,600 units

Direct Material introduced in Process IV: Rs. 13,440 Direct Labour introduced in Process IV: Rs. 39,420 Production overheads incurred Rs. 52,560

Units scrapped: 2,400
Degree of completion: Material 100\%
Labour 70\%
Overheads 70\%
Closing stock 5400 units
Degree of completion: Material 60\%
Labour 40\%
Overheads 40\%
There was a normal loss of $10 \%$ of production in the process.Unites scrapped were realised at Re. 1 per unit. From the above information prepare:
6.8.3.7 Statement of equivalent production
6.8.3.8 Cost of equivalent unit for each element of the cost, theloss, the work-in-process, etc.
6.8.3.9 Process account using FIFO method.
(M.Com. Oct. 2005)

Ans. (Equivalent Units, Material I: 27,600, Material II: 26,880, Labour: 26,460,Overheads: 26,460)

## Illustration 4 : (FIFO)

The following data pertains to Process I for March 2003 of Beta Limited:

| Particulars |  | $\ldots \ldots \ldots \ldots$. | Units | Rs. |
| :--- | :--- | :--- | :---: | :---: |
| Opening Work-in-Progress |  | 1,500 | 15,000 |  |
| Degree of completion : |  |  |  |  |
| Materials $100 \%$; Labour | and |  |  |  |
| overheads $331 / 3 \%$ |  |  |  |  |
| Input of Materials |  | $\ldots \ldots . . . .$. | 18,500 | 52,000 |
| Direct Labour |  | $\ldots \ldots . . . .$. |  | 14,000 |
| Overheads |  | $\ldots \ldots . . .$. |  | 28,000 |
| Closing Work-in-Progress |  | $\ldots \ldots . . .$. | 5,000 |  |

Degree of Completion Materials 90\% and Labour and Overheads 30\%.
Normal Process Loss is $10 \%$ of total input (opening work inprogress units + units put in).

Scrap value 2.00 per unit.
Units transferred to the next process 15,000 units. You are required to:

1) Compute equivalent units of production.
2) Compute cost per equivalent unit for each cost element i.e., materials, labour and overheads.
3) Compute the cost of finished output and closing work-in-progress.
4) Prepare the process and other Account.

## Assume:

i) FIFO Method is used by the Company.
ii) The cost of opening work-in-progress is fully transferred to thenext process.
(M.Com. Mar.2006)

Ans. (Equivalent Units, Material: 16000, Labour:14,000, Overheads: 14,000)

## Illustration 5: (Weighted Average)

From the following details prepare Statement at Equivalent Production, statement of Cost and find the value of: (a) Output transferred and (b) Closing work in progress

Opening work in progress (units) 2,000
Materials ( $100 \%$ Complete) 7,500
Labour (60 \% Complete) 3,000
Overheads (60\% Complete) 1,500
Units introduced into this process 8,000
There are 2,000 units in process at the end and the stage ofcompletion is estimated to be :

Materials 100\%
Labour 50\%
Overheads $50 \%$
8,000 units are transferred to next process. The process costs for the period are:
Materials Rs. 1, 00,000
Labour Rs.78,000
Overheads Rs. 39,000
(M.Com. Oct. 2006)

Ans. (Equivalent Units, Material:10,000, Labour: 9,000, Overheads: 9,000)

## Illustration 6 : (Average)

Shete and Shete Pvt. Ltd. gives the following particulars relating toprocess ' $P$ ' in its plants for the month of January 2007 :

| Particulars |  | Rs. | Rs. |
| :---: | :---: | :---: | :---: |
| Work-in-Progress (500 units) on |  |  |  |
| 01-01-2007 |  |  |  |
| Material (100\%) | ............. | 12,000 | - |
| Degree of Completion Labour (50\%) | ... ... .... ... | 7,200 | - |
| Overheads (50\%) | ... | 16,000 | 35,200 |
| Units introduced during the Month |  |  |  |
| January, 2007 - Units - 19,500 | ......... | - | - |
| Processing Cost incurred during the |  |  |  |
| Month |  |  |  |
| January, 2007 Materials | ... ....... | 4,65,500 | - |
| Labour | ... ... .... ... | 1,80,000 | - |
| Overheads | ... ... ....... | 2,64,800 | 9,10,300 |


| Particulars | Units |
| :--- | :---: |
| Output transferred to Process Q ... ... ...... | 18,200 |
| Units Scrapped (Degree of Completion Material 100\%, | 1,400 |
| Labour $80 \%$ and Overheads $80 \%$ ) ........... | 400 |
| Work-in-Progress (Closing Balance) .......... <br> (Degree of Completion-Materials $100 \%$, Labour and <br> Overheads <br> $50 \%)$ |  |

Normal loss in processing is 5\% of total input and scrapped units fetch 2.50 each. Prepare the following statements for Process 'P'for January, 2007 :
a) Statement of Equivalent Production
b) Statement of Cost and Statement of Evaluation
c) Process ' P ' $\mathrm{A} / \mathrm{c}$
d) Abnormal Loss A/cUse Average Method
(Mar. 07, adapted)
Ans. (Equivalent Units, Material: 19,000, Labour: 18,720, Overheads: 18,720)

## Illustration 26 : (FIFO - No Losses)

Avdoot Ltd., a manufacturer of a specialized product, is havea process costing system. The stock of work-in-progress at the end of each month is valued on First in First Out (FIFO) basis. At the beginning of January 2008 the stock of work-in-progress was 2000 units ( $40 \%$ completed) which was valued as :

Material Rs. 18,000
Labour Rs. 17,000
Overheads Rs. 5,300
During the month of January 2008, actual issue of materials for the production purpose was Rs. 3,42,500. wages and overheads in the month of January, 2008 amounted to Rs. 4,02,600 and Rs. 1, 12,200 respectively. Finished production taken into the stock in the month was 12,500 units. There was no loss in the process. At the end of the month of January, 2008 the stock of Work-in-Progress was 2500 units ( $60 \%$ complete as to Labour and Overheads and $80 \%$ complete as to materials). Prepare the following statements for January, 2008.
a) No. of units introduced in the process
b) Statement of Equivalent Production
c) Statement of Cost
d) Statement of Evaluation
e) Process Account.
(Apr. 08, adapted)(Equivalent Units, Material: 13,700, Labour: 13,200, Overheads:13,200)

## Illustration 27 : (FIFO - Process A/c with Abnormal Loss)

From the following information prepare Process account as perFIFO assumption:
Opening stock Degree of completion
80 units @ Rs. 6 per unit Rs. 4,800
Material 60\%
Labour 40\%
Overheads 40\%
Transfer from previous process : 12,000 units costing Rs. 16,350Transfer to next process : 9,700; Units scrapped 1,300 units Normal loss 10\%; Closing stock : 1,800 units

Degree of completion

| For units scrapped : |  | For closing stock : |  |
| :--- | :--- | :--- | :--- |
| Material | $100 \%$ | Material | $60 \%$ |
| Labour | $50 \%$ | Labour | $50 \%$ |
| Overheads | $50 \%$ | Overheads | $50 \%$ |


| Scrap realised Re. 1.00 per unit |  |
| :--- | :--- |
| Other information | Rs. |
| Material | 10,500 |
| Labour | 20,760 |
| Overheads | 16,470 |

(M.Com, Oct. 2008, adapted)(Ans. Equivalent Units, Material I: 10,900, Material II: 10,500, Labour: 10,380, Overheads: 10,380)

## ACTIVITY BASED COSTING

## Unit Structure

7.0 Introduction
7.1 Types of cost
7.2 Cost driver
7.3 Methods of allocation of cost
7.4 Step Down Method
7.5 Reciprocal Method of cost allocation
7.6 Activity Based costing
7.7 Difference between Traditional Cost System and ABC system
7.8 Illustrations

### 7.0 INTRODUCTION

Cost Allocation or cost assignment is the process of identifying and assigning costs to the various cost objects. These cost objects could be those for which the company needs to find out the cost separately. A few examples of cost objects can be a product, customer, project, department, and so on. The need for cost allocation arises because some costs are not directly attributable to the particular cost object. In other words, these costs are incurred for various objects, and then the sum is split and allocated to multiple cost objects. These costs are generally indirect. Since these costs are not directly traceable, an accountant uses their due diligence to allocate these costs in the best possible way. It results in an allocation that could be partially arbitrary, and thus, many refer cost allocation exercise as the spreading of a cost. Cost allocation is the process of identifying, accumulating, and assigning costs to costs objects such as departments, products, programs, or a branch of a company. It involves identifying the cost objects in a company, identifying the costs incurred by the cost objects, and then assigning the costs to the cost objects based on specific criteria.

When costs are allocated in the right way, the business is able to trace the specific cost objects that are making profits or losses for the company. If costs are allocated to the wrong cost objects, the company may be assigning resources to cost objects that do not yield as much profits as expected.

### 7.1 TYPES OF COSTS

There are several types of costs that an organization must define before allocating costs to their specific cost objects. These costs include:

## 1. Direct cost

Direct costs are costs that can be attributed to a specific product or service, and they do not need to be allocated to the specific cost object.

It is because the organization knows what expenses go to the specific departments that generate profits and the costs incurred in producing specific products or services. For example, the salaries paid to factory workers assigned to a specific division is known than does not need to be allocated again to that division.

## 2. Indirect Cost

Indirect costs are costs that are not directly related to a specific cost object like a function, product, or department. They are costs that are needed for the sake of the company's operations and health. Some common examples of indirect costs include security costs, administration costs, etc. The costs are first identified, pooled, and then allocated to specific cost objects within the organization.

Indirect costs can be divided into fixed and variable costs. Fixed costs are costs that are fixed for a specific product or department. An example of a fixed cost is the remuneration of a project supervisor assigned to a specific division. The other category of indirect cost is variable costs, which vary with the level of output. Indirect costs increase or decrease with changes in the level of output.

## 3. Overhead costs

Overhead costs are indirect costs that are not part of manufacturing costs. They are not related to the labor or material costs that are incurred in the production of goods or services. They support the production or selling processes of the goods or services. Overhead costs are charged to the expense account, and they must be continually paid regardless of whether the company is selling goods or not .Some common examples of overhead costs are rental expenses, utilities, insurance, postage and printing, administrative and legal expenses and research and development costs.

### 7.2 COST DRIVER

A cost driver triggers a change in the cost of an activity. The concept is most commonly used to assign overhead costs to the number of produced units. It can also be used in activity-based costing analysis to determine the causes of overhead, which can be used to minimize overhead costs. A large number of cost drivers may be used within an activity-based costing system. If a business is only concerned with following the minimum accounting requirements to allocate overhead to produced goods, then just a single cost driver should be used. It is an activity that is the root cause of why a cost occurs. It must be applicable and relevant to the event that is incurring a cost. A cost driver assists with allocation expensesin a systematic manner that results in more accurate calculations of the true costs of producingspecific products.

Cost pool: It is an aggregate of all the costs associated with performing a particular business activity.

An activity cost driver refers to actions that cause variable cost to increase or decrease for a business. Therefore, identifying what product/service is causing particular costs can help the business to become more profitable by better understanding the specific activities that are driving the costs. Allocating cost drivers appropriately is important in accurately determining the cost of producing a good or service, as well as making financial projections.

Activity cost drivers are specific activities that cause variable expenses to be incurred. One variable expense can comprise more than a single activity cost driver. For example, machine hours and labor hours can be activity cost drivers in the manufacturing of a product.

All variable expenses can be broken down and looked at by one or several activity cost drivers, which can also be influenced by several factors. For example, if the minimum wage increases, it can cause the cost of producing a product to also increase.

## Examples of Activity Cost Drivers

- Direct labour hours
- Machine setups required
- Number of customer contacts
- Number of customer change orders


## Examples of Activity and its Cost Drivers

- Machine Set-up
- Purchase Materials
- Warehousing
- Material Handling
- Inspection
- Quality Testing
- Receiving Material
- Packing
- Store Delivery
- Line Item Ordering
- No. of Production Runs
- No. of orders Placed
- Items in Stock
- No. of Parts
- Inspection per Item
- Hours of Test Time
- No. of Receiving Orders
- No. of Packing Orders
- No. of Store Delivers
- No. of Line Items


### 7.3 METHODS OF ALLOCATING COST

## Direct method of cost allocation

The direct method is considered the most simple method of allocating the cost of service departments to operating departments. In the direct method, interactions between service departments are ignored and costs are allocated just to operating departments. Under this method, the costs incurred by
service departments are not allocated to each other; rather, they are directly allocated to operating departments using some appropriate allocation base. In other words, we can say that the direct method of departmental cost allocation ignores the service provided by a service department to itself and to other service departments.

A firm generates various expenses that can be assigned to a specific "cost item" - such as a commodity, program, function, or service. These costs include anything from mop floors to functional equipment. You should, however, generate enough income to pay such corporation overhead expenditures. This means that revenue must surpass total costs. The direct allocation technique is one of numerous cost allocation strategies used to allocate indirect costs to activities. It is one of the most often used techniqueThe direct technique is the easiest in terms of cost allocation, even though it has several shortcomings. Nevertheless, because of its simplicity of using it, it became one of the most widely applied cost allocation techniques in recent years. In a nutshell, it assumes that service departments do not give facilities or services to each other, and it merely distributes the service departments' costs in the company's manufacturing departments.

The direct approach of transferring service department costs to the operational department is the simplest way of allocating costs between divisions. As a result of this technique, the expenses involved by service departments are not assigned to one another. Still, they are instead allotted straight to operational departments using a suitable rate of allocation.

The direct approach assigns the expenses of all the support departments to every other manufacturing unit calculated based on the rates of each operational department rates. Services that other support departments receive are not considered in this method of cost allocation. With the help of this approach, it is possible to completely charge operational departments with the overhead expenditures for which they are accountable. Firms that use the direct method completely transfer excess costs from service departments to inventories, even though there may be cross-costs across service departments, because of the nature of the business.

For instance, the cleaning crew offers services to sanitize all business buildings. In contrast, the maintenance department oversees the firm's machinery, and the information technology department oversees maintaining the organization's computer networks. Assume that a service Department 1 utilizes a few of the facilities provided by Service Department 2. Such services will be excluded from consideration throughout the cost allocation procedure. Because such services are not assigned to certain other service divisions, many cost auditors think that the direct approach is not as precise as other methods.

## Advantages and disadvantages

Many organizations use direct method for allocating departmental costs because it is very simple and easy to employ.

The major disadvantage of direct method is that it ignores interdepartmental services and can therefore lead to distorted products and services cost. Moreover, it is commonly considered a less accurate method when compared with other methods available for departmental cost allocation.

There is, however, a disadvantage to using this approach. Direct allocation does not enable companies to shift expenditures from one support department to another support department and vice versa. Depending on the nature of your company, this is a possibility. Assume that there is an HR and maintenance department. Allowing for the possibility that almost all the HR and maintenance department support expenditures are assigned to an operational unit through direct allocation. As a result, HR and maintenance department expenses are completely depleted.
Q.1) The Murphy Company has two service departments and two operating departments as shown below:

|  | SERVICE <br> DEPARTMENTS |  |  |  |  |  |  | OPERATING <br> DEPARTMENTS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
|  | Dept. A | Dept. B | Dept. X | Dept. Y | Total |  |  |  |  |
| Departmental costs before |  |  |  |  |  |  |  |  |  |
| allocation | $\$ 180,000$ | $\$ 45,000$ | $\$ 130,500$ | $\$ 344,500$ | $\$ 700,000$ |  |  |  |  |
| Employee hours | 6,000 | 3,000 | 9,000 | 15,000 | 33,000 |  |  |  |  |
| Space occupied - square feet | 5,000 | 100 | 3,000 | 22,000 | 30,100 |  |  |  |  |

The two service departments provide service to each other as well as to operating departments. The department A's cost is allocated on the basis of employee hours and department B's cost is allocated on the basis of square feet occupied.

Required: Allocate the cost of service departments to operating departments using direct method of cost allocation.

Solution

| Departmental costs before allocation | $\begin{gathered} \text { SERVICE } \\ \text { DEPARTMENTS } \end{gathered}$ |  | OPERATING DEPARTMENTS |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dept. A | Dept. B | Dept. X | Dept. Y |  |
|  | \$180,000 | \$45,000 | \$130,500 | \$344,500 | \$700,000 |
| Allocation: |  |  |  |  |  |
| Department A cost (9/24,15/24)* | $(180,000)$ |  | 67,500 | 112,500 |  |
| Department B cost ( $3 / 25,22 / 25)^{* *}$ |  | $(45,000)$ | 5,400 | 39,600 |  |
|  | \$ 0 | \$ 0 | \$203,400 | \$496,600 | \$700,000 |

## Department A's cost has been allocated on the basis of employee hours:

9,000 hours $+15,000$ hours $=24,000$ hours.

Allocated to department $\mathrm{X}: \$ 180,000 \times(9 / 24)=\$ 67,500$ Allocated to department Y: $\$ 180,000 \times(15 / 24)=\$ 112,500$

## Department B's cost has been allocated on the basis of spaces occupied:

3,000 square feet $+22,000$ square feet $=25,000$ square feet.
Allocated to department $\mathrm{X}: \$ 45,000 \times(3 / 25)=\$ 5,400$ Allocated to department Y: $\$ 45,000 \times(22 / 25)=\$ 39,600$

On the other hand, the human resources department assists the maintenance department throughout the same time frame. It goes without saying that the maintenance department should bear a portion of the costs of human resources. However, the expenditures of the maintenance department have already been transferred in whole to another operating unit.

### 7.4 STEP DOWN METHOD

In the step down method, one service department's costs are allocated to another service department as well as operating departments that use it. Any amount of the allocation base attributable to the service department whose cost has already been allocated is ignored. Each service department assigns its own costs to operating departments plus the costs that have been allocated to it from other service departments.

The step technique of distributing service department expenses is the second way of allocating costs. As part of a sequential process, service expenses are allocated to operational departments and other service departments by using this approach. The following are the critical phases in the allocation process:

1. Service departments that offer services to the greatest number of other service departments or that have the greatest proportion of their expenses used by the other service departments receive priority in allocating their expenses to certain other service departments. It also distributes the remainder of its expenses across the operational divisions.
2. The service department that offers services to the secondhighest number of other services departments or has the secondhighest proportion of its expenses absorbed by other service departments, oversees allocating its expenses towards the other service departments. At this point, all the company's other expenses have been assigned to the operational divisions.
3. Till the service department offering services to the fewest amount of other service departments or having the lowest proportion of its expenses absorbed by the other service departments is assigned its expenses, the procedure is repeated. The procedure comes to an end when all the allotment has been accomplished.

This technique is easy and uncomplicated to execute and can be finished quickly. Due to the higher level of convenience, supervisors willing and eager to reduce the time spent on record keeping and forming accounting reports are far more likely to select it, even though the precision offered is not the highest in this cost allocation.
Q.1) The TCS Company uses the step method for allocating the costs of its service departments to operating departments. The company has two service departments and two operating departments. The selected information for the four departments is given below:

| Departmental costs before | SERVICE <br> DEPARTMENTS |  | OPERATING DEPARTMENTS |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dept. A | Dept. B | Dept. X | Dept. Y |  |
|  | \$180,000 | \$45,000 | \$130,500 | \$344,500 | \$700,000 |
| Employee hours | 6,000 | 3,000 | 9,000 | 15,000 | 33,000 |
| Space occupied - square feet | 5,000 | 100 | 3,000 | 22,000 | 30,100 |

The company uses employee hours as the base for allocating the cost of department A and space occupied for allocating the cost of department B.

Required: Allocate the cost of service departments to operating departments using step down method.

## Solution

|  | SERVICE <br> DEPARTMENTS |  | OPERATING DEPARTMENTS |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dept. A | Dept. B | Dept. X | Dept. Y |  |
| Departmental costs before allocation | \$180,000 | \$45,000 | \$130,500 | \$344,500 | \$700,000 |
| Allocation: |  |  |  |  |  |
| Department A cost $(3 / 27,9 / 27,15 / 27)^{*}$ | $(180,000)$ | 20,000 | 60,000 | 100,000 |  |
| Department B cost $(3 / 25,22 / 25)^{* *}$ |  | $(65,000)$ | 7,800 | 57,200 |  |
| Total costs after allocation | \$ 0 | \$ 0 | \$198,300 | \$501,700 | \$700,000 |

## Allocation of department A's cost:

## Allocation ratio:

Department B: $3,000 /(3000+9000+15,000)=3,000 / 27000$ or $3 / 27$
Department X: $9,000 /(3000+9000+15,000)=9,000 / 27000$ or $9 / 27$
Department Y: $15,000 /(3000+9000+15,000)=15,000 / 27000$ or $15 / 27$
Allocated to department B: $\$ 180,000 \times(3 / 27)=\$ 20,000$
Allocated to department X: $\$ 180,000 \times(9 / 27)=\$ 60,000$
Allocated to department Y: $\$ 180,000 \times(15 / 27)=\$ 100,000$

Allocation
ratio:
Department X: 3,000/(3,000 $+22,000)=3,000 / 25,000$ or $3 / 25$
Department Y: 22,000/(3,000 + 22,000) $=22,000 / 25,000$ or $22 / 25$
Total cost of department B: $\$ 45,000+\$ 20,000=\$ 65,000$
Allocated to department $\mathrm{X}: \$ 65,000 \times(3 / 25)=\$ 7,800$ Allocated to department Y: $\$ 65,000 \times(22 / 25)=\$ 57,200$
Q.2) The Religare Company provides the following selected data about its three service and two operating departments:

|  | SERVICE DEPARTMENTS |  |  | OPERATING DEPARTMENTS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dept A | Dept B | Dept C | Dept X | Dept Y | Total |
| Overhead costs | \$180,000 | \$105,000 | \$48,000 | \$200,000 | \$267,000 | \$800,000 |
| Number of employees | 60 | 35 | 140 | 315 | 210 | 760 |
| Square feet of space occupied | 5,000 | 10,000 | 20,000 | 40,000 | 100,000 | 175,000 |
| Hours of press time | -- | -- | -- | 15,000 | 30,000 | 45,000 |

The order and bases for allocating service department costs is given below:

1. Department A; allocation base is "number of employees".
2. Department B; allocation base is "space occupied".
3. Department C; allocation base is "hours of time".

Required: Allocate the cost of service departments to operating departments using step down method of cost allocation.

## Solution



Reciprocal method is a method of allocating service department costs to other departments that gives full recognition to interdepartmental services .Although it is the most accurate, it is also the most complicated. In the reciprocal method, the relationship between the service departments is recognized. This means service department costs are allocated to and from the other service departments. The reciprocal method gives full recognition to interdepartmental services. Under the step method, only partial recognition of interdepartmental services is possible. The step method always allocates costs forward never backward. The reciprocal method, by contrast, allocates service department costs in both directions. The reciprocal allocation requires the use of simultaneous equations.Other names for the reciprocal method are simultaneous solution method, cross allocation method, matrix allocation method and double distribution method.

Under this method the true cost of the service departments are computed first with the help of simultaneous equations and these are then distributed to producing departments on the basis of given percentage or ratio. Remember that true cost of the service department means the cost of the service department which includes original cost of the department plus the share of the other service department. The main advantage of this method is to have an accurate distribution in a single step in the distribution summary.

## Use of Reciprocal Method

This method is rarely used in practice for two reasons. First, the computations are relatively complex. Although the complexity issue could be overcome by use of computers, there is no evidence that computers have made the reciprocal method more popular. Second, the step method usually provides results that are a reasonable approximation of the results that the reciprocal method would provide. Thus, companies have little motivation to use the more complex reciprocal method.
Q.1) A company has two service and two producing departments. The two service departments serve not only to producing departments but also to each other. The departmental estimates for the next year are as follows.

| Producing | departments: |  |
| :--- | :--- | :--- |
| A |  |  |
| B |  | 50,000 |
| Service | departments: | 40,000 |
|  |  |  |
| X |  | 10,000 |
| Y |  | 8,800 |

The service departments costs are to be distributed as under:
Cost of X : $50 \%$ to A, $40 \%$ to B, and $10 \%$ to Y
Cost of Y : $40 \%$ to A, $40 \%$ to B, and $20 \%$ to X

## Required:

Transfer the service departments costs to each other and to producing departments.

## Solution:

Now we solve the given illustration first using the simultaneous equation method as follows:Original costs of service departments:
$X=$ Rs. 10,000
$\mathrm{Y}=$ Rs. 8,800
After getting the share from distribution of service departments:
$X=$ Rs. $10,000+20 \% Y$
$\mathrm{Y}=$ Rs. $8,800+10 \% \mathrm{X}$
By putting the value of $Y$ in equation (1)
$X=$ Rs. $10,000+20 \%$ (Rs. $8,800+10 \% \mathrm{X}$ )
$\mathrm{X}=$ Rs. $10,000+1760+0.2 \mathrm{X}$
X - 0.02X = Rs. 10,000 + Rs. 1,760
$0.98 \mathrm{X}=$ Rs. 11,760
$\mathrm{X}=11760 / 0.98$
=Rs. 12,000
By putting the value of $X$ in equation (2)
$Y=$ Rs. $8,800+10 \%$ (Rs. 12000)
$\mathrm{Y}=$ Rs. $8,800+$ Rs. Rs. 1,200
=Rs. 10,000

## Distribution Summary

Department Producing Service

| Original costs <br> Distribution <br> of service | A | $\mathbf{B}$ | $\mathbf{X}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| department | Rs | Rs | Rs | $\mathbf{Y}$ |
| costs: | 50,000 | 40,000 | 10,000 | Rs |
| X | 6,000 | 4,800 | $(12,000)$ | $8,8001,200$ |
| Y | 4,000 | 4,000 | 2,000 | $(10,000)$ |
| Total | - | - | - | - |
| departmental | 60,000 | 48,800 | Nil | Nil |
| overheads | $=====$ | ==== | ===== | $====$ |

Activity based costing (ABC) assigns manufacturing overhead costs to products in a more logical manner than the traditional approach of simply allocating costs on the basis of machine hours. Activity based costing first assigns costs to the activities that are the real cause of the overhead. It then assigns the cost of those activities only to the products that are actually demanding the activities. ABC works best in complex environments, where there are many machines and products, and tangled processes that are not easy to sort out. Conversely, it is of less use in a streamlined environment where production processes are abbreviated, so that costs are easy to assign.

Activity based costing is basically a change in accent. People perform activities and activities use resources. Thus, by controlling activities the manager is making sure that costs are controlled at their source. A wise manager will not focus on how to estimate product costs, but will focus more on why the costs were there in the first place. When intending an activity based costing system this should be utilized as a departure point.

## Advantages of Activity Based Costing System

- The first and most significant benefit is the accuracy in the procedure of costing with regards to the product line, the consumers of the product, the stock-keeping units employed by the administration and the channel and group which streamline the flow of the product from the maker to the consumer.
- This system better helps in the procedure of understanding the concept of overhead costs i.e. the distribution of common business resources as they are utilized by particular product lines and their association to particular cost driver.
- The system is simple to interpret and understand is it is available, useable and specifically implement capable across all norms of business set-ups.
- This procedure consumes unitary cost, or marginal cost as the calculation base in comparison to the conventional cost accounting techniques which employ total cost.
- This system is specifically useful in recognizing and ear-marking some of the matters business activities which are a stress or burden on the business i.e. wasteful or non value adding services..
- This procedure permits firms to implement costing policies across another diagonal of the company as business procedures, supply chains and value addition channels are capably and optimally analyzed in this procedure.
- This system mimics the actual business procedure as the appropriation of common pool resources takes place in the same way as common resources are utilized in the business.
- Disadvantages of Activity Based Costing System
- Data collection procedure for this system is very time consuming.
- The capital expense on the activity based system and its subsequent running costs can be a road block for companies.
- The system is very apparent which some managers would not authorize of as they would like to keep some things out of the view of the owners of the firm.
- ABC Costing System is very costly to implement and maintain in a manufacturing and serving departments. Data concerning numerous activity measures must be collected, checked, and entered into the system.
- ABC costing systems produces the reports that are different from the profit and loss reports produced through traditional costing systems.
- As most of the companies are using, traditional costing systems, so because of the difference in the costing basis the costing and financial reports of the two companies of the same industry could not be compared for performance evaluation purposes.
- Adaptability of ABC Costing System is not suitable for all kind of companies because small companies have not many resources to ad
- Data Produced through ABC Costing System can easily misinterpret and can lead towards wrong decisions. So manager should use the data produced through ABC Costing System with extreme care and should assign the costs that are relevant to the products, customers and should not consider the other cost objects that are irrelevant.
- ABC costing system does not comply with the GAAP and a company has to produce its reports for internal and external purposes by using traditional and ABC costing system both at a time.
- In ABC costing system costs are allocated on the base of cost drivers and activities undertaken to manufacture the product, definitely, it provides the accurate and proper allocation of the costs to the products but there is a danger of over or under costing of the products when irrelevant cost drivers or activities are assigned to the products or services produced.


## Steps in $A B C$

- Identify which activities are necessary to create a product
- Separate each activity into its own cost pool
- Assign activity cost drivers to each cost pool
- Divide the total overhead in each cost pool by the total cost drivers to get your costdriver rate
- Compute how many hours, parts, units, etc. that the activity used and multiply it by thecost driver rate to find total cost
- Calculate Cost per Unit by dividing the Total Cost by Total Units produced.


## $\underline{\text { Uses of } A B C}$

- Identification of necessary activities: The ABC system shows how overhead is used, which helps to determine whether certain activities are necessary for production.
- Focus on Value adding activities: The Activity Based Costing helps the management on focusing the forces on value adding activities and eliminate non-value adding activities.
- Ensuring profit margin: The specific allocation of costs also helps to set prices that produce a healthy small business profit margin.
- Product pricing: With an ABC system, the business can assign costs to each activity in the production process, allowing it to more accurately set a price that accounts for howmuch it costs to create a product.
- Measures to improve productivity: The accurate cost information helps themanagement to adopt productivity improvement approaches like Total Quality Management (TQM), Business Process Reengineering (BPR) etc.
- Help in deciding Make or Buy: The management can take make or buy decisions by considering the cost of manufacture of a product or sub contract the same with an outside agency through Activity Based Costing analysis.
7.7 DIFFERENCE BETWEEN TRADITIONAL COST SYSTEM AND ABC SYSTEM

| Basis | Traditional | ABC |
| :--- | :--- | :--- |
| 1. Cost pools | One or limited number | Many |
| 2. Applied Rate | Volume based | Activity Based |
| 3. Applied for | Labour Intensive | Capital Intensive |
| 4. Benefits | Simple, Inexpensive | Accurate product <br> costing, identification <br> of necessary activities <br> etc |


| Basis | Traditional | ABC |
| :--- | :--- | :--- |
| 5. Cost assignments | Primary and secondary <br> distribution ofOverhead <br> and then allocation of <br> Overhead as per the <br> suitable rate | Allocation of cost pool <br> based on cost drivers <br> then allocation of costs <br> to product or service <br> based on the drivers <br> used by the particular <br> product or service |
| 6. Focus | Departments or <br> responsibility centres | Processes and activities |

### 7.8 PRACTICAL SUM

Problems involving calculations of Total cost and CPU under both Traditional and ABCmethods.

## Question:

Amrit Company produces 3 products A, B and C. The company follows Activity Based Costingsystem. Information related to various costs of these products for the last year:

| Particulars | A | B | C |
| :--- | :--- | :--- | :--- |
| Production and Sales (Units) | 15000 | 12000 | 18000 |
| Selling Price p.u. (Rs.) | 7.5 | 12 | 13 |
| Raw Material Usage (kg) p.u. | 2 | 3 | 4 |
| Direct labour hours p.u. | 0.1 | 0.15 | 0.2 |
| Machine Hours p.u. | 0.5 | 0.7 | 0.9 |
| No. of Production runs p.a. | 16 | 12 | 8 |
| No. of purchase orders p.a. | 24 | 28 | 42 |
| No. of deliveries to retailers p.a. | 48 | 60 | 32 |

The price of Raw materials remained constant through out the year at Rs.1.2 per kg and the labour cost was Rs. 14.8 per hour. The annual Overhead costs are as follows:

| Overheads | Rs |
| :--- | :--- |
| Machine set up costs | 26550 |
| Machine running costs | 66400 |
| Procurement Costs | 48000 |
| Delivery costs | 54320 |

Solution: Traditional Method
a) Calculation of Total Overhead

| Overheads | Rs |
| :--- | :--- |
| Machine set up costs | 26550 |
| Machine running costs | 66400 |
| Procurement Costs | 48000 |
| Delivery costs | 54320 |
| Total | 195270 |

b) Calculation of Overhead Absorption rate

| Particulars | A | B | C | Total |
| :--- | :---: | :---: | :---: | :---: |
| Production Volumes | 15000 | 12000 | 18000 |  |
| Labour hours p.u. | 0.1 | 0.15 | 0.2 |  |
| Total Labour hours | 1500 | 1800 | 3600 | 6900 |

Overhead absorption rate $=195270 / 6900=$ Rs. 28.30 per hour.
c) Calculation of Cost p.u.

| Particulars | A | B | C |
| :--- | :---: | :---: | :---: |
| Raw material cost (Usage * Rs.1.20) | 2.4 | 3.6 | 4.8 |
| Direct Labour Cost (Labour hours * Rs.14.80) | 1.48 | 2.22 | 2.96 |
| Overhead (Labour hours * Rs.28.30) | 2.83 | 4.25 | 5.66 |
| CPU | 6.71 | 10.07 | 13.42 |

## ABC Method

a) Calculation of Overhead Absorption rate

| Cost Pool | Rs. | Cost <br> Driver |  | Rate of OH per <br> activity (Rs.) |
| :--- | :--- | :--- | :--- | :--- |
| Machine <br> costs setup | 26550 | No. of <br> Production <br> runs p.a. | $(16+12+8)=36$ runs | $26550 / 36=$ <br> 737.50 per run |
| Machine <br> costs <br> running | 66400 | No. of <br> Machine <br> Hours p.a. | $(7500+8400+16200) \#$ <br> $=32100$ hours | $66400 / 32100=$ <br> 2.0685 per hour |
| Procurement <br> Costs | 48000 | No. of <br> purchase <br> orders p.a. | $(24+28+42)=94$ <br> orders | $48000 / 94=$ <br> 510.6383 per <br> order |
| Delivery <br> costs | 54320 | No. of <br> deliveries <br> to retailers <br> p.a. | $(48+30+62)=140$ <br> deliveries | $54320 / 140=$ <br> 388 per <br> delivery |

\# Total Machine hours p.a. = Machine hours p.u. * Total units producedA $=0.5 * 15000=7500$

$$
\mathrm{B}=0.7 * 12000=8400 \mathrm{C}=0.9 * 18000=16200
$$

b) Calculation of Cost p.u.

| Particulars | $\mathbf{A}$ | B | C |
| :--- | :---: | :---: | :---: |
| Material <br> Cost | 2.4 | 3.6 | 4.8 |
| Labour Cost | 1.48 | 2.22 | 1.96 |
| Overhead:\#\# |  |  |  |
| Machine | $(737.50 * 16) /$ | $(737.50 * 12) /$ | $(737.5 * 8) /=18000$ |
| Setup Costs | $=15000$ | $=12000$ | 0.3278 |
|  | 0.7867 | 0.7375 |  |
| Machine | $(2.0685 * 7500) /=$ | $(2.0685 * 8400) /$ | $(2.0685 * 16200) /$ |
| running | 15000 | $=12000$ | $=18000$ |
| Costs | 1.034 | 1.4479 | 1.8616 |
| Procurement | $(510.6383 * 24) /$ | $(510.6383 * 28) /$ | $(510.6383 * 42) /=$ |
| Costs | $=15000$ | $=12000$ | 18000 |
|  | 0.817 | 1.1915 | 1.1915 |
| Delivery | $(388 * 48) /=$ | $(388 * 30) /=$ | $(388 * 62) /=18000$ |
| costs | 15000 | 12000 | 1.3364 |
|  | 1.2416 | 0.97 |  |
| Total CPU | 7.7593 | 10.1669 | 11.4773 |

\#\# Overheads p.u. for products A, B and C
$=($ Overhead absorption rate* No. of cost drivers used by the individual products p.a.)/ No. of units produced

## Multiple Choice Question

1. Activity-based costing:
a) Uses a plant-wide overhead rate to assign overhead
b) Is not expensive to implement
c) Typically applies overhead costs using direct labor-hours
d) Uses multiple activity rates
2. Assigning overhead using ABC often:
a) Shifts overhead costs from high-volume products to lowvolume products
b) Shifts overhead costs from low-volume products to highvolume products
c) Provides the same results as traditional costing
d) Requires one predetermined overhead rate
3. Painting the product would be an example of which activity level groups
a) Facility-level activity
b) Product-level activity
c) Unit-level activity
d) Batch-level activity
4. X Company uses activity-based costing for Product B and Product D. The total estimated overhead cost for the parts administration activity pool was Rs.550,000 and the expected activity was 2000 part types. If Product D requires 1200 part types, the amount of overhead allocated to product D for parts administration would be:
a) Rs.275,000
b) Rs.300,000
c) Rs. 330,000
d) Rs.345,000
5. Plant depreciation is an example of which activity-level group?
a) Unit-level activity
b) Facility-level activity
c) Batch-level activity
d) Product-level activity
6. B Company uses activity-based costing and has the following activity cost pools and estimated overhead cost for each pool:
Machine related Rs.350,000
Handling material Rs.240,000
Processing purchase orders Rs.720,000
General factory Rs.500,000
The amount of total estimated overhead is:
a) Rs. $13,10,000$
b) Rs. 10,90,000
c) Rs. 850,000
d) Rs. $18,10,000$
7. Product design is an example of which activity-level group?
a) Product-level activity
b) Facility-level activity
c) Batch-level activity
d) Unit-level activity
8. One of T Company's cost pools is parts administration. The expected overhead cost for that cost pool was Rs. 380,000 and the expected activity was 5,000 part types. The actual overhead cost for the cost pool was Rs. 420,000 at an actual activity of 6,000 part types. The activity rate for that cost pool was:
a) Rs. 63 per part type
b) Rs. 76 per part type
c) Rs. 70 per part type
d) Rs. 84 per part type
9. P Company produces three types of products- product A , product B and product C. Product A requires 200 machine setups and machine hours used on it were 1,000 . Product $B$ requires 400 machine setups and machine hours used on it were 500 . Product $C$ requires 620 machine setups and machine hours used on it were 1,500 . The company has defined an activity cost pool machine setups for which the cost driver is number of machine setups. The total overhead cost assigned to that cost pool was Rs.183,000. The machine setups overhead assigned to each of the products was:
a) Rs.61,000 for A; Rs.61,000 for B; Rs.61,000 for C
b) Rs.61,000 for A; Rs.30,500 for B; Rs.91,500 for C
c) Rs. $\mathbf{3 0 , 0 0 0}$ for A; Rs. $\mathbf{6 0 , 0 0 0}$ for B; Rs. 93,000 for $\mathbf{C}$
d) Rs.30,000 for A; Rs.63,000 for B; Rs.90,000 for C
10. L Company produces two products- calculators and games. The company planned to produce 4,000 calculators and 8,000 games. The company uses ABC costing, and one of the activity cost pools was assembly, which had a cost driver of total parts. The total amount of estimated overhead for the assembly cost pool was Rs.748,000. The calculator required 16 parts, and the games required 52 parts. What would the overhead cost per unit be as it relates to the assembly cost pool for games?
a) Rs. 44.00
b) Rs. 62.33
c) Rs. 71.50
d) Rs.82.00

## Theoretical Questions:

1. Define the following terms
a. Cost Driver
b. Activity cost pool
2. What is Activity Based Costing? How are product costs determined in ABC
3. What are the benefits of ABC
4. What are the limitations of ABC
5. Describe various level of activities under $A B C$

## Self Examination Question

Q. 1 A Company manufactures three products namely $A, B, C$ in a factory. The following cost data for the month of March,2023 are as under

| Activity | A | B | C |
| :--- | :--- | :--- | :--- |
| Unit Produced | 10,000 | 15,000 | 20,000 |
| Direct labour hrs <br> per unit | 3 | 4.5 | 4 |
| Machine hrs per <br> unit | 6 | 4 | 5 |
| Set-up <br> machines | 20 | 25 | 30 |
| Number of <br> Orders | 15 | 12 | 10 |
| Machine operating cost (Rs.) | $34,50,000$ |  |  |
| Machine set-up cost (Rs.) | $4,36,000$ |  |  |
| Oreder Processing Cost (Rs.) |  | $2,56,000$ |  |

## Required:

i) Identify cost pool, cost drivers
ii) Calculate cost driver rate
iii) Calculate overheads rate per unit using ABC
Q. 2 XYZ pens Ltd. Manufactures two products- "Gel Pen" and "Ball Pen". It furnishes the following data for the year 2023

| Product | Annual <br> Output | Total <br> Machine <br> Hrs | Total No. of <br> Purchase <br> Order | Total No. <br> of Set-ups |
| :--- | :---: | :---: | :---: | :---: |
| Gel Pen | 5,500 | 24,000 | 240 | 30 |
| Ball Pen | 24,000 | 54,000 | 448 | 56 |
|  |  |  |  |  |


| Particulars | Amount (Rs.) |
| :--- | :--- |
| Volume related activity costs | $4,75,020$ |
| Set up related cost | $5,79,988$ |
| Purchase related cost | $5,04,992$ |

Calculate the overhead cost per unit of each product on the basis of :
i) Traditional method of charging overheads
ii) Activity Based Cosing Method
iii) Find out difference in cost per unit between both the method.


