Paper / Subject Code: 82180 / Mathematics. : Calculus on Manifolds (R-2021)

M.Sc.(Maths) (Sem-IV) July-2023

Mathematics: Calculus on Manifolds (R-2021)

[Duration: 3 Hours] [Marks: 80]

- N.B. 1) All questions are compulsory and carry equal marks.
 - 2) Figures to the right indicates full marks.
 - 3) Use of scientific non programmable calculator is allowed.
 - 4) Standard notations have their usual meaning.
- 1. (a) If $\omega \in \Lambda^k(V)$, $\eta \in \Lambda^l(V)$ and $\theta \in \Lambda^m(V)$ then show that $Alt(Alt(\omega \otimes \eta) \otimes \theta) = Alt(\omega \otimes \eta \otimes \theta)$. (10)
 - (b) Attempt any two of the following
 - (i) Let $S \in \Lambda^k(V)$ and $T \in \Lambda^l(V)$ and Alt(T) = 0 then compute $T \wedge S$.
 - (ii) If $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^l(V)$ then show that $f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$. (5)
 - (iii) Let $\omega \in \Lambda^1(V)$, $\eta \in \Lambda^2(V)$ and $\theta \in \Lambda^3(V)$. Find the wedge product $(\omega \wedge \eta) \wedge \theta$ in terms of alternating tensor of tensor product of ω , η and θ .
- 2. (a) Define closed and exact forms. Show that every exact form open set A is closed. State and prove the condition on open set A so that every closed form is exact.
 - (b) Attempt any two of the following
 - (i) In \mathbb{R}^2 , let $\omega = uv^3 du \wedge dv$ and $\alpha : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be given by $\alpha(x, y, z) = (x^2 + yz, e^{xyz})$. (5) Calculate $\alpha^*\omega$.
 - (ii) Calculate exterior derivatives of the 2- forms $z^2 dx \wedge dy + (z^2 + 2y) dx \wedge dz$ in \mathbb{R}^3 . (5)
 - (iii) If ω is a k-form on \mathbb{R}^m and $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable show that $f^*(d\omega) = d(f^*\omega)$. (5)
- 3. (a) State coordinate conditions and show that a subset M of \mathbb{R}^n is a k-dimensional manifold if and only if for each point $x \in M$ satisfies coordinate condition.
 - (b) Attempt any two of the following
 - (i) Is the n-Sphere S^n defined by $\{x \in \mathbb{R}^{n+1} : |x| = 1\}$ a n-dimensional manifold? (5) Justify your answer.
 - (ii) Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be given by $\gamma(t) = (\sin 2t)(|\cos t|, \sin t)$ for $0 < t < \pi$. Let M be image set of γ . Is M 1—manifold without boundary in \mathbb{R}^3 ? Justify your answer.
 - (iii) The parametric equation of Möbius band is given by

$$\sigma(t,\theta) = ((1 - t\sin\frac{\theta}{2})\cos\theta, (1 - t\sin\frac{\theta}{2})\sin\theta, t\cos\frac{\theta}{2}), \quad \frac{-1}{2} < t < \frac{1}{2}, \quad 0 < \theta < 2\pi.$$

Prove or disprove: The Möbius strip is a orientable manifold.

[TURN OVER

(5)

Paper / Subject Code: 82180 / Mathematics. : Calculus on Manifolds (R-2021)

4. (a) If M is a compact oriented k-dimensional manifold with boundary and ω is a (k-1)-form on M then show that

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

- (b) Attempt any two of the following
 - (i) Let M be an oriented two-dimensional manifold with boundary in R^3 and let n be the unit outward normal then show that $n^1 dA = dy \wedge dz$.
 - (ii) Consider vector field $\vec{F} = (y+z)i + (z+x)j + (x+y)k$. Is vector field \vec{F} solenoidal and irrotational? Justify your answer.
 - (iii) Evaluate $\iint_S \vec{A} \cdot \hat{n} \, ds$ where $\vec{A} = 18z\hat{i} 12\hat{j} + 3y\hat{k}$ and S is the part of the plane 2x + 3y + 6z = 12 included in the first octant. (5)
