Paper / Subject Code: 82173 / Mathematics. : Algebra IV (R-2021)

M.Sc (Maths)(Sem-IV) July-2023

Mathematics : Algebra IV (R-2021)

[Time:3:00 Hrs.] [Marks: 80]

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Scientific calculator can be used.
- **Q.1** a) Let L/F and F/K are field extensions. Prove that [L:K] is finite if and only if [L:F] and [F:K] are finite
 - b) Attempt any Two of the following:
 - i) Prove that if F is a field of characteristic 0 and a, b are algebraic over F then there is an element c in F(a, b) such that F(a, b) = F(c)
 - ii) Show that the characteristic of a field is either zero or a prime integer. 5
 - iii) Let E be an extension field of the field F. Show that the set of all elements of E that are algebraic over F is a subfield of E.
- Q.2 a) Define a splitting field of a polynomial f(x) over a field K. If f(x) is a monic polynomial over a field K, prove that there exists a splitting field of f(x) over K.
 - b) Attempt any Two of the following:
 - i) Determine the splitting field and its degree over \mathbb{Q} for the polynomial $x^{11} 1$.
 - ii) Let F be a field of characteristic p > 0. If K is a finite extension of F such that [K: F] is relatively prime to p, then show that K is separable over F.
 - iii) Find the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over Q.

 Also find $[Q(\sqrt{3} + \sqrt{5}): Q]$

34487

Q.3	a) Let K/F be a Galois extension and let $G = G(K/F)$. Show that there is a bijection between the set of subfields E of K containing F and set of subgroups H of G .	10
	b) Attempt any Two of the following:	10
	i) Find the fixed fields of Aut($\mathbb{Q}(\sqrt{2})$) and Aut($\mathbb{Q}(\sqrt[3]{2})$)	5 5
	ii) Let <i>E</i> be the splitting field of the polynomial $f(x) \in F[x]$ over <i>F</i> . Then show that $ \operatorname{Aut}(E/F) \leq [E:F]$. Equality hold if $f(x)$ is separable over <i>F</i> .	5
	iii) Prove that $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not a Galois extension, but $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ and $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ are Galois extensions.	5
Q.4	a) Let F be a field of characteristic 0 , and let $a \in F$. If K is the splitting field of $x^n - a$ over F , then K/F is a Galois extension and $G(K/F)$ is a solvable group.	10
	b) Attempt any Two of the following:	10
	i) Find Aut($\mathbb{Q}(\sqrt{2})/\mathbb{Q}$)	5
	ii) Let F be a field of characteristic zero. Let $f(x) \in F[x]$ be an irreducible cubic degree polynomial and K be its splitting field. Then $G(K/F)$ is either isomorphic to A_3 or S_3 .	5
	iii) Let $\zeta \in \mathbb{C}$ and let $n \geq 1$. Then prove that ζ is an n^{th} root of unity if and only if $o(\zeta) \mid n$, where $o(\zeta)$ is the order of ζ in \mathbb{C}^* .	5
