Paper / Subject Code: 82139 / Mathematics.: Analysis II (Rev 2021)

M.Sc.(Maths) (Sem-II)

July-2023

Mathematics: Analysis II (Rev 2021)

[Time: 3:00 Hrs.]

[Marks: 80

Please check whether you have got the right question paper.

N.B: 1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Scientific calculator can be used.
- **Q.1** a) Let C be a collection of closed rectangles of \mathbb{R}^n , For $R \in C$, let $\mathcal{G}(R)$ denote the volume of R. If for $A \subset \mathbb{R}^n$, $A \neq \emptyset$, μ^* is defined by

 $\mu^*(A) = \inf\{\sum_{n=1}^{\infty} \mathcal{G}(C_k) : C_k \in C \text{ and } A \subset \bigcup_{n=1}^{\infty} C_k\}$ then show that μ^* is an exterior measure on \mathbb{R}^n .

- b) Attempt any Two of the following:
- i) Construct a non-measurable subset of \mathbb{R} .
- ii) Show that Lebesgue outer measure of a Cantor set is zero.
- iii) Show that open subsets of \mathbb{R}^d is measurable.
- Q.2 a) State and prove Egoroff's theorem.
 - b) Attempt any Two of the following:
 - i) Show that χ_A is Measurable if and only if the set A is measurable. 5
 - ii) Let $f, g: \mathbb{R}^d \to \mathbb{R}$ are Lebesgue integrable function then prove that f + g is Lebesgue integrable and $\int_{\mathbb{R}^d} (f + g) dm = \int_{\mathbb{R}^d} f dm + \int_{\mathbb{R}^d} g dm$.
 - iii) Show that Lebesgue outer measure is invariant under translation.
- Q.3 a) Define norm on the vector space $L^1(\mathbb{R})$ of Lebesgue integrable functions. 10 Show that $L^1(\mathbb{R})$ is complete under the suitable norm.

	b) Attempt any Two of the following:	10
	i) State and prove Monotone convergence Theorem.	5
	ii) Use the dominated, convergence theorem to prove that $\lim_{n\to\infty} n \int_0^1 \sqrt{n} e^{n^2 x^2} dx =$	5
	iii) If $f: \mathbb{R} \to [-\infty, \infty]$ is Lebesgue measurable, and $\int_{\mathbb{R}} f dm = 0$ then	5
	prove that $f(x) = 0$ for almost everywhere.	
Q.4	a) State and prove the Riesz-Fischer theorem.	10
	b) Attempt any Two of the following:	10
	i) State and prove Chebychev's Inequality for non-negative measurable function.	5
	ii) Let E be a measurable set such that $0 < \nu(E) < \infty$. Then prove that there exists a positive set $A \subset E$ such that $\nu(A) > 0$.	5
	iii) If $f \in L^1(\mathbb{R}^n)$, then show that $ \int f \le \int f $.	5