Algebra II (Rev 2021)

[Time 3:00Hrs] [Marks: 80]

Please Check whether you have got the right question paper

N	.B	1.	411	and	estions	are	comi	oulsory
T 4		1 . 1	711	qu	CHUIIS	ait	CUIII	Juisui y

- 2. Figures to the right indicate full marks.
- 3. Scientific calculator can be used.

Q-1	a)	If a group G is the internal direct product of subgroups $H_1, \dots H_n$ then prove that $G = H_1 \oplus H_2 \dots \oplus H_n$					
	b)	Attempt any Two of the following:	10				
	i)	Prove that A_n is a normal subgroup of S_n . Prove that $O(A_n) = \frac{1}{2} O(S_n)$.	5				
	ii)	List down 4 non-isomorphic abelian groups of order 360.	5				
	iii)	Let $\phi: \mu(30) \to \mu(30)$ be a group homomorphism and	5				
		$\ker(\phi) = \{\overline{1}, \overline{11}\}\$. If $\phi(7) = 7$, then find all elements of $\mu(30)$ that are mapped to $\overline{7}$.					
Q-2	a)	Let G be a group acting on a set S. Then, the relation ∽ on S defined by	10				
	,	for $a, b \in S$, $a \sim b$ if $f(a) = gb$ for some $g \in G$ is an equivalence relation. Prove that for each $a \in S$, the number of elements in the					
	1.	equivalence containing a is $[G:G_a]$, the index of the stabilizer of a.	10				
	b) i)	Attempt any Two of the following: Prove that for a prime $'p'$, a group of order p^2 is abelian.	10 5				
	ii)	Show that a Sylow -p- subgroup of a group which is normal is unique.	5				
	iii)	Let $ G = \mathbb{Z}_p$ where p is an odd prime. Then prove that $G \approx \mathbb{Z}_{\{2p\}}$ or $G = D_p$	5				
Q-3	a)	Prove that in a ring every Maximal ideal is prime ideal.	10				
	b)	Attempt any Two of the following:	10				
	i)	Let R=Z[i] and $I = <2 - i >$. Find the number of elements in $\frac{R}{I}$.	5				
	ii)	Let R be commutative ring of prime characteristic P. Define $\phi: R \to R$	5				
	:::/	as $\phi(x) = x^p$. Show that ϕ is ring homomorphism.	5				
	iii)	Prove that every field contains Z_p or Q .	3				
Q-4	a)	Prove that in a Principal ideal domain every irreducible is a prime.	10				
	b)	Attempt any Two of the following:	10				
	i)	Let R Principal ideal domain. Then for any $a, b \in R$, greatest common divisor of a and b exists.	5				
	ii)	Prove that the product of two primitive polynomials is primitive.	5				
	iii)	Prove that $\mathbb{Z}[x]$ is not a PID.	5				
