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PSMT 203/PAMT 203: ANALYSIS II

Course Outcome:

1. In this course students are expected to understand the basic concepts of measure
on an arbitrary measure space X as well as on R".

2. They are also expected to study Lebesgue outer measure of sets and measurable
sets, measurable functions.

3. Students will be able to understand the concepts of integrals of measurable functions
in an arbitrary measure space (X, A, u). Lebesgue integration of complex valued
functions and basic concepts of signed measures.

Unit-I: Measures and Measurable Sets (15 Lectures)

Additive set functions, og-algebra countable additivity, Outer measure, constructing mea-
sures, pu* measurable sets (Definitions due to Carathéodory), u* measurable subsets of
X forms a o algebra, measure space (X, , ). Lebesgue outer measure in R?, proper-
ties of exterior measure, monotonicity property and countable sub-additivity property of
Lebesgue measure, translation invariance of exterior measure, example of set of measure
zero. Measurable sets and Lebesgue measure, properties of measurable sets. Existence
of a subset of R which is not Lebesgue measurable.

[Reference for unit I: 1. Andrew Browder, Mathematical Analysis, An Introduction,
Springer Undergraduate Texts in Mathematics.

2. Elias M. Stein and Rami Shakarchi, Real Analysis, Measure Theory, Integration and
Hilbert Spaces, New Age International Limited, India]

Unit-II: Measurable functions and their Integration (15 Lectures)

Measurable functions on (X, >, 1), simple functions, properties of measurable functions.
If f > 0is a measurable function, then there exists a monotone increasing sequence (s,,)
of non-negative simple measurable functions converging to point wise to the function f.
Egorov’s theorem, Lusin’s theorem. Integral of nonnegative simple measurable functions
defined on the measure space (X, >, 1) and their properties. Integral of a non-negative
measurable function.

[Reference for unit II: 1. Andrew Browder, Mathematical Analysis, An Introduction,
Springer Undergraduate Texts in Mathematics.

2. Elias M. Stein and Rami Shakarchi, Real Analysis, Measure Theory, Integration and
Hilbert Spaces, New Age International Limited, India]

Unit-III: Convergence Theorems on Measure space (15 Lectures)

Monotone convergence theorem. If f > 0 and g > 0 are measurable functions, then [(f+
g)dp = [ fdu+ [ gdp, Fatou’s lemma, summable functions, vector space of summable
functions, Lebesgue’s dominated convergence theorem. Lebesgue integral of bounded
functions over a set of finite measure, Bounded convergence theorem. Lebesgue and



Riemann integrals: A bounded real valued function on [a, b] is Riemann integrable if and
only if it is continuous at almost every point of [a, b]; in this case, its Riemann integral
and Lebesgue integral coincide.

[Reference for unit III: 1. Andrew Browder, Mathematical Analysis, An Introduction,
Springer Undergraduate Texts in Mathematics.

2. Royden H. L. Real Analysis, PHI|

Unit-IV: Space of Integrable functions (15 Lectures)

Borel set, Borel algebra of R?. Any closed subset and any open subset of R? is Lebesgue
measurable. Every Borel set in R? is Lebesgue measurable. For any bounded Lebesgue
measurable subset E of R?, given any e > 0 there exist a compact set K and open set U
in R? such that K C E C U and m(U \ K) < e. For any Lebesgue measurable subset
E of RY, there exist Borel sets F, G in R? such that F C E C G and m(E\ F) =0 =
m(G \ E). Signed Measures, positive set, negative set and null set. Hahn decomposition
theorem. Complex valued Lebesgue measurable functions on R?. Lebesgue integral of
complex valued measurable functions, Approximation of Lebesgue integrable functions by
continuous functions. The space L!(u) of integrable functions, properties of L' integrable
functions, Riesz-Fischer theorem.

[Reference for unit IV: 1. Elias M. Stein and Rami Shakarchi, Real Analysis, Measure
Theory, Integration and Hilbert Spaces, New Age International Limited, India

2. Royden H. L. Real Analysis, PHI

3. Andrew Browder, Mathematical Analysis, An Introduction, Springer Undergraduate
Texts in Mathematics.]

Recommended Text Books

1. Andrew Browder, Mathematical Analysis, An Introduction, Springer Undergraduate
Texts in Mathematics.

2. Elias M. Stein and Rami Shakarchi, Real Analysis, Measure Theory, Integration and
Hilbert Spaces, New Age International Limited, India

3. Royden H. L. Real Analysis, PHI.

4. Terence Tao, Analysis II, Hindustan Book Agency (Second Edition).



LEBESGUE OUTER MEASURE
Unit Structure :
1.0 Objective
1.1 Introduction
1.2 o—Algebra
1.3 Extension Measure
1.4 Lebesgue outer measure
1.5 Properties of outer measure

1.6 Summary

1.7 Unit End Exercise

1.0 OBJECTIVE

After going through this chapter you can able to know that
e Concept of o — Algebra, Measurable set.

e Extension measure in R”

e Lebesgue measureable set

e Lebesgue outer measure & its properties.

1.1 INTRODUCTION

In this chapter we shall fist study such a verified theory function d-
dimensional value based on the notation of a measure, and then we
shall use this theory to build a stronger and more flexible theory.

Now if we want to partition the range of a function, we need same
way of measuring how much of the domain is sent to a particular
region of the partition, To set a feeling function what we are aiming
function let us assume that we want to measure the volume of
subsets 4,CR’and that are denote the volume of A by p(4).
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Then function we have

i) p(A4)should be non-negative number as oco.

ii) p(2)=0 it will be convenient to assign a volume to the empty

set.

i) If 4,4,,....., A, are non overlapping disjoint sets then

This means that the volume the whole is equal to the sum of the
volume of the parts. This problems leads us to the theory of
measures where we try to give a notation of measure to subsets of an
Euclidean space.

Defenition :

2

The Euclidean norm on R” is |x|= <x12 oot X

The distance between x,y = R" is |x— y|

1.2 0 — ALGEBRA

Definition :

Let X be a set. A collection A of subsets of X is called a o — algebra
of the following hold.

1) €4

i) Ac A= X/Ac 4

iil) 4,,4,,...e A=|J4 €4
i=l1

Note :

The pair (X, A4) is called measurable space and elements of A are

called measurable sets.
Example 1 :

Let X={1,2,3} and b ={{1}.{1.2,3},X,2}, b,={1,2,3,{3},x,2}.
Check whether b, and b, are both algebras or not.



Solution : Lebesgue outer measure

I) Let X ={1,2,3}and b is not o — Algebra.
Since it does not contain {1}°.
IT) b, is o — Algebra since it satisfies all condition of o — Algebra
Le. X =5,
F=b,
(1,2} eb, & {1,2}  €b,
.b, 1s 0 — Algebra.

Example 2 :

A measure on a topological space X whose domain is the Borel
algebra is called a Borel measure.

Example : For every xc X, the Dirac measure is given by
lif xe 4

5.(4)=1'">
0if x¢ A4

Definition :

Let pbe a set function whose domain in a class A of subsets of a set
X and whose values are non-negative extended reals, we say that

OAk]:iu(Ak) whenever, (4,) is a
k=1 k=1

sequence of painoise disjoint set in A whose union is also in A.

wis contably additive if pu

Theorem :

Let p be a finitely additive set function, defined on the o — Algebra
A. Then p is countably additive iff it has the following property : if
A, €4 and 4,CA,, Anti for each positive integer n, and if

Gq:mm%y

n—o0
n=1

OAH € A then p

n=1

Proof :
Suppose pis countable additive Let {4, } be a sequence of elements

inAst 4C4,C,...A=|J4¢c4
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Y s.t.

s

Define B, = 4,
B, =A4,/A4,  for K>2
Examples 3:
Let {4;icl} be collection of o— Algebra. Show tha (4, is a
o — Algebra, but UAI. is not in general. -
ict

Solution :

Let 4i=()4

el
To show that A is a o — Algebra
a) If e 4
A 1s o — Algebra, Viel
Sged Viel

=>oe()4 =04

iel
b) Let A A

= A=4

iel
A 1s o —Algebra Viel

For Ae A = A€ AViel

~Ae4
iel

= A€ A

c) Let 4, € A,Vk=12....

then 4, e(4i Viei



= U A €4 Vi Lebesgue outer measure
k=1

4.€ N4
1

icl

=

=

Ce T

A€ 4

-
[

A=()4, isa o — Algebra

iel
Now, we have to show that | 4, is not a o — Algebra.
Let X ={1,2,3}

Let 4 ={¢, X,{1}.{2,3}}

4 ={6.%.{3}.{1.2})

then 4 & A, are o—Algebra but 4 U4, is not o— Algebra.
{1}e 4 UA4,but {1,3}¢ 4, UA4,.

Clearly Bi€ A Vi and Bi's are pairwise disjoint we first show that
k

4, =JBi
i=l

By induction on ‘k’

The result is trivial when £ =1

Assume the result is true for £ —1

k—1
ie. 4., =|JBi
i=1

Now OBi:UBi Us.
i=1 i=l
=4, U(Ak/AkA)

— 4,
.. The result is true for k.

..by introduction is true for all £

k
4 =JBi Vik=>1
i=l1



Analysis II Note that 4 = 0 4, = O[CJ Bi]

*.- i 1s countably additive, we have

()= U =3 (e
k=1 K=1
= lim>n(5,)
i u{Us
k=1
= Jim i (4,)
Conversely,

Suppose whenever if 4, C 4, C 4,...,di€ BA,| Jdic 4

()i

i=1

Then p = lim 11(4,)

n—o0o

T.S.T. 1 is countably additive

Let (4,) be a pairwise disjoint sets in A.

k
Define B, =| J4ithen B, €4 and B CB, C......

i=1

..By hypothesis, we have



Theorem :

Let 4 be a o — Algebra, If (u,v) are measures on A, teR,#>0 and
A€ A hen the following are measures on A.

a) pu+9 defined by (u+9)(E)=pu(E)+9(E)E€ 4
b) tu,defined by (tp)(€)=1p(E),E€ 4

Proof :

a) p-+9 defined by (u+9)(E)=pu(E)+9(E),E€ A is a measure
on A.

. & ¥ are measure on A.
.. They are countably additive non-negative set function.

- (u+9)(E) is also countably additive non-negative set function
whose domain is A.

.+ 1s a measure on A.

b) (tu)(E)=1tp(E)
.4 18 a measure on A

o.p 18 countable additive non negative set function whose
domain in A.

~for E€ 4

(tp)(E)=tu(E) and tp is also countably additive non-negative set

of function whose domain is A

.ty 18 measure on A.

Lebesgue outer measure
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1.3 EXTENSION MEASURE

Definition :

Let X be a set, 4, Exterior measure or outer measure on X is a non-

negative, extended real valued function p whose domain consist of
all subsets of X and which satisfies :

a) ' (6)=0
b) (Monotonicity) if AC B then u"(4)C i (B)
c) (Countable sub-additivity)

For any sequence (4, ) of subsets of X, we have

Theorem :

Let C be a collection of closed rectangle of R”, For R€ C, let J(R)
denote the volume of R. If ;" is defined by

—1nf{219 ;C, €C, U }

For ACR", 4= ¢then u'is exterior measure on R”.

Proof :

T.S.T. i defined by ' (4)=inf {Zﬁ }1s closed rectangle

where 4 C R" is on exterior Measure on R”.

We first shows that
{ZV C is closed set AC C } [0
Where 4 CR”

Let R, = rectangle with side length ‘k’ and centre origin.

Then CJRk =R"

k=1



c.forany ACR" = URk
k=1

= {R, } covers A

Cz

{Zﬂ(Ck );C, closed rectangle 4 C | JC, } =¢
k=1

>~
Il

1
We now show ' (¢)=0

Let e>0

Let R:[O,ey"]x ..... x[O,e)’"] be a rectangle in R”

~.{R} covers ¢
. By definition of 4", 4" (¢) <€

This is true for any €>0

Let ACBCR"

%

T.S.T.u (A) <pu (B)

If {C,} Covers B, then {C,} covers A

Let {4,} be a sequence of subsets of R" we show that

o\ )
n=l1 n=1

Let €> 0 by the definition of x°

3 a cover {R }ml of A, such that

) i—

with

Lebesgue outer measure



Analysis II

10

iﬂ(Rni)<u*(An)+€/2”

Then | ORni COVers OAn
n=1

J=! =

S

From (1) (2) & (3)
(& is an exterior measure on R”

Note :

By above lemma, the exterior measure lemma attempts to describe
the volume of a set £ CR" by approximating it from outside. The
set E covered by rectangle and if the covering gets finer, with fewer
rectangles overlapping the volume of E should be close to the sum of
the volumes of the rectangles.

1.4 LEBESGUE OUTER MEASURE

Definition :

' is called the Lebesgue exterior (or outer) measure on R” and is
denoted by m".

Now the consequences of the definition of exterior measure on R".
1) If {R,} are countably many rectangles and EcC|JR, then

m (E)<) V(R

2) For a given €> 0 there exist countable many rectangle {R, } with
EC|JR, suchthat m"(E) <) 9(R,)<m' (E)+E.



Example 4:

Show that exterior (or outer) measure of a closed rectangle is its

volume i.e. m (R)=V(R) where R is a rectangle or a b, xinR" .

Solution :
Let R be a closed rectangle in R”
tstm (R)=V(R)

Note that {R} covers R

Let >0

By definition m"(R),3a countable cover {R} of closed rectangles

of R.

S 0(R)<m (R)+5

For each i choose an open rectangle S, such that R C S, and

S
2i+1

V()< (R)+

Then R C S

l

—

Il
R

s

Il
R

R C

1 l

~.{8,}", is an open cover of R

** R is compact this open cover has a finite sub cover say

RC|JS, (after renaming)
i=l1
We have

V(R ¥ (5)<3v(s)

i=1

Lebesgue outer measure

11
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<3 (v (r)+]

(R)+€/2+¢/2
(R)+e€
This is true for any €>0
v (R) < (R)
From (1) & (2)
V(R)=m'(R)
Example 5:

Show that exterior (or outer) measure of an open rectangle in R” is
volume.

Solution :

Let S, be an open rectangle them R CS, where S, is closed

rectangle = {S,} is a cover of R.
by definition m" (R)<V (S,)=V(R)...cceeren.e (1)
Let €>0 be {R} be a countable cover of closed rectangle of R such
that f:V(RI.) <m (R)+% for each i choose an open rectangle S,
P

such that R CS, & V(R)+ €2i+1

Then R QORi CGSi

i=l i=1
o0 .
~.{S,}", is an open cover of R
i=1

** R is compact. This open cover has a sub cover say

RC| S, (after renaming)
i=l



We have

VRISV (S)<

i=1

IN

I
4

7

A AN
3, 3 1M

7 (s)

i

V(R

(V(Ri)-l-e

)+€/2

This is true for any €>0

From (1) & (2)

V(R)=m (R)

Example 6:

Show that exterior measure of a point in R" is zero.

Solution :

Let a=(a,a,,......,a,) ER"

To show that m" {0} =0

2i+1)

(R)+€/24+€/2
(R)+¢€

Let €> 0 then the closed rectangle.

n
R= al—e—,al-l—
2
1
o
RN

Covers {a}

.. By definition of m’ ({a}) , we have m’ ({a}) <V(R)=e

This is true for any €>0

m({O}) =0

Lebesgue outer measure

13
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1.5 PROPERTIES OF OUTER MEASURE

Exterior measure has the following properties.

i) (Empty set) The empty set ¢ has exterior measure m (¢)=0.
ii) (Positivity) we have 0 <m" (A4)<+oc for every subset A of R".
iii) (Monotonicity) If 4C B<R", then m (4)<m (B).

1v) (Finite sub-additivity) If {A/}- ,area finite collection of subset
7l Jje

U4, SZ””*<AJ)

jeJ jeJ

of R” then m"

v) (Countable sub-additivity) if {Aj} jarea countable collection of

je
U4, |<>om'(4))
jeJ

jeJ

subsets of R”then m"

vi) (Translation invariance) If E is a subset of R" and x€R" then
m (x+ 6) =m (6) .

Let xeR",ECR"
tst m (x—l— G) =m (E)
Let €>0, by definition of m"(€)

3 a countable cover (R,) of closed rectangles in R" for s.t.

i=1
We now show that x+ £ C| J(x+R,)
i=1
Letacx+E=a=x+y
:>a—x:yEEQURl.
i=1

= a—x € R for some i

= a€—x+ R for some i



=ac O (x+R) Lebesgue outer measure
i=l

.-.x+E§®(x+R,.)

i=1

..By definition of m", we have
M (X+HE)SY V(XFR) v (2)
i=1

We now show that V' (x+R,)=V (R,

1

),

l

Let R =|a,.b,|X....x[a,.b,

i’ iu

| then

x+Ri=[x1+ai1,xl+bi1]>< ...... X[ainxxn,bm—i-xn]

n

~V (x4 R)=T](b;+x)—(a;+x)

J=1

. By 1,2,3 we get

o0

w (v +E) <DV (v R) =YV (R) < (E)+-

P P
m (x+E)<m (E)+¢€
This is true for any €>0
M (x+E)<m (E)+ € ovviiiiiiiiiiiiiiiiiiii e (4)
Let E'=x+E&y=—x
Then by (4)
m (y+E)<m ()
=m (—x+x+E)<m (x+E)
=m (E)<m (X+E) coooiiiiiiiiiiiiiiiiie (5)
By (4) & (5)

,',m*(x—f—E):m* (E)

15
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Theorem :

Show that there are uncountable subset of R whose exterior
measure 1S zero.

Proof :

Define canter set as follows
Let C,=[0,1]

trisect C, and remove the middle open interval to get C, .
. 1
ie. C :lo,glu[zﬁ,l]

=10,1]\[1/3,2/3]
repeat this procedure for each interval in C, we get C,

C, =1[0,1]\(1/3,2/3)\(1/9,2/9)\(7/9,8/9)
~[0. 410|243 U357

repeating this procedure at each stage we get a sequence of subsets
C, of [0,1]for i=0,1,2

Note that each C, is a compact subset of R and C, 2 C,DC,

The Cantor set ‘C’ is defined as C = ﬂCi

i=0

C=¢ because all end points of each C. is inc and also C is
uncountable

We now compute

. \ 2
m (C0>:1,m (Cl)zgz —5
* * 2
m <C2>:m (C1>_§
12
3 3
. . 2? 1
m (C;)=m (Cz)—3—3—1——
12 2
3 33



in general,

- CCC,Vk
— ' (C)<m’ (C,)Vk

e

letting k — oo, we get

=m (

0

0Cm (C)<0
=m (C)=0

Theorem :

Show that exterior measure of R” is infinite.

Proof :

Let M >0 and R be a rectangle s.t. V(R)=M

note that R C R”

.~.By monotonicity of m"
m'(R)<m'(R")

But m (R)=V(R)=M
om <R”) >M

This is true for any M >0
oom (R") =00

Lebesgue outer measure

17
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Theorem :

If E and FCR" such that d(E,F)>0 then show that
m (EUF)=m" (E)+m’(F).

Proof :

Let E,F CR" be s.t. d(E,F)>0tst m (EUF)=m" (E)+m (F). By
countable subodditivity property m (EUF)<m (E)+m (F).. (1)
Let €>0

By the definition of m",3 countable {Ri} of closed rectangles in R
for EUF suchthat Y V(Ri)<m (EUF)+€............o..... (2)

We categorize the collection {Ri} into 3 types :

1) Those intersecting only E
2) Those interescting only F
3) Those intersecting both E & F

Note that if a rectangle R intersect both E & F, then
d(R)>d(E,F)>0 subdivide such the rectangles into rectangles

whose diameter is less than d (E,F).

This subrectanlges intersect either E or F not both.

. We can have a contable collection {R,} of rectangles which
intersects either E or F but not both.

Let [, ={i;R NE = ¢}
L={i;RNF = ¢}
=I1NL=¢

~{R} _,, covers E, we have
iel

m (E)<2_V(R)

i€l



Similarly, m" (F) < Z V(R) Lebesgue outer measure

icl,

m'(E)+m"(F)< 3V (R)+)_V(R)

<>V (r)
<m' (EUF)+¢€ (by (2)
This is true for any €>0
=m' (E)+m' (F)<m (EUF) ........... (3)
From (1) & (3)
m (E)+m (F)=m (EUF)
Theorem :

If a subset ECR" is a countable unit of almost disjoint closed
rectangle .

ie E= GRi then show that m"(E)=> V(R).

i=1 i=1

Proof :

Let E=| JR, where R s are almost disjoint closed rectangles.
i=l

tpt m*(E):Zi:ﬁ(Ri)

By countably subadditivity proposition of

m (E)=m’ [ng] = Z;m (R)= Z;V(Rl.)

(.".R isrectangle = m (R)=V(R))

Lete>0, by definition of m’,3 a countable cover {R} of closed
rectangle R” for E s.t.

iV(RI.)<m*(E)+€

i=1

19
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For each i, choose open rectangle S st S CR &

V(R)<V(S)+—

1

Note that d(Sl.,Sj)>O fori=j

s (SUS ) =m'(8,)+m'(S,) fori=j ... (1)
k k

Using (1) finite no. of times, we get m’ [U Sl.] =>"m'(S))
1 i=l

S, CRCE Vi

:>OSZ.QE

i=1

..By monotonicity

Let k£ —

i=l

— €

m (E)zijV(S,.): i(V(R[)—ezi)
> ¥ (R)

This is true for any €>0

=m’ (e)ziV(Ri) .................................................. (2)

Theorem :

Show that
1) If m (4)=0 then m (AUB)=m (B)
2) If m" (AAB)=0 then show that m" (4)=m (B)

*

3) m (A\B)>=m (A)—m"(B)



Proof :
1) As BCAUB
By monotonicity

m (B)<m (AUB) ..ccooviiiiiiiiiiiiiiiiiiii (D

Also by countable subadditive of m"

m' (AUB) <m’ (4)+m’ (B)

From (1) & (2)
m' (AUB)=m (B)
2) If m (AAB)=0 tst m" (4)=m’(B)

wk > AAB=(A4\B)U(B\ A4)
=m (AAB)<m" (A\B)+m (B\ A)

given that m (4AB)=0
=m (A4/B)+m (B/4)=0
but 0<m’ (4/B)<m (AAB)=0
=m (4/B)=0
c.m (AAB)<0+m’" (B/A)
WKT m"(4)>m" (AN B)
m' (A)=m (ANB)
similarly we show that
m'(B)=m"(4NB)

com' (4)=m'(B)

Lebesgue outer measure

21
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3) m" (A\B)=m" (B)—m’(A)
Proof :

Since A and B are measurable sets

. A is also measurable and we have
B=A4U(B/A4) - ACB

B/ A= BN A" is measurable.

. B& A“is measurable

-.B=AU(B\ 4) union of disjoint measurable sets

som (AUB\A)=m"(A)+m (B\A4)=m’(B)

sm’ (B\A)=m"(B)—m"(4)

Theorem :

Let ECR" show that m (E)=inf {m (Q):;QDE&Q open}
Proof :

Let ECR"

tst m (E)=inf {m" (n);7 > E and 7 openin R"}

Let 2 be openin R" s.t. ECQ

Then by monotonicity of m™, m" (E)<m’ ()

-.m (E) is lower bound of {m (2);22€,0Q open}

~om’ (E)<inf{m"(Q):QD E,mopen} ....................... (1)

Let €> 0, then by definition of m’

3 an countable cover {R } of closed rectangle of E s.t.

S(R)<m (E)+%

1

For each im let S, be open rectangles containing R, s.t.

V(R)<V(S)+Si+1



Let W:DSi then Q is open & EQGR,- QOSi =Q
1 1 1

<i(V(R,.)+€2M)

‘V(Rl.)Jr%
m' (E)+S5+%,
“(E)+¢€

m'(E)

A\
_Mg

<
<
This is true for any €> 0.

o ()< ()
inf{m* (Q),Q De,(is open}

<m (Q)<m (E)
Theorem :

For every subset E of R",3 a G.

Subset G of R"s.t. G>E & m' (G)=m’ (E)

Proof :
Let ECR"

we first show that

m" (E)=inf {m (2)iQ2D E and Qis open subset of R”}

Let €>0,

Then for each £ €N,3(), openin R" & 7, > E s.t.

m () <m’ (E)—i—%k

Lebesgue outer measure
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Analysis II let G — ka
k=1

=G is Gy-setand G > E

.".By monotonicity

Note that G<Q, V,

= m'(G)<m' (%) <m' (E)+ ),

This is true for any €>0

o1 (G) S (E) e, @)
By (1) & (2)

' (G)=m' (E)

Thoerem :

There exist a countable collection {Aj} ; of disjoint subset of R

U4 izm*(/l.f)

jeJ jeJ

such that m"

Solution :

Consider rational 6 and realy R

R/6 ={x=0;xeR}

We known that any two cosets are either identified or disjoint.
We now show that if 4€ R/6 then 4N[0,1)= ¢

Let A=x+0

Let ¢ be rational number in [—x, —x +1]

then x+ g €[0,1]

Also, x+gex+0=4

S x+qeAN[0,1]= AN[0,1]=¢

For each 4€R\0 choose
24



x, €40 [O: 1] Lebesgue outer measure
Let £E={x,;A€R/6}
By construction E C|0,1]

Let X= (] q+E

q€0n[-1.1]
We now show that
[0,]]C X C[-1,2]
Let g €[-1,1]N6 Note that £ C|[0,1]
o forany x€ E, g+xe[-1,2]
This is true for any g €[—1,1]N6
Theorem :

There exist a finite collection {Aj} . of disjoint subset of R such
J

U4, izm*(Af)

jeJ jeJ

that m"

Proof :

Consider § & R
R/§={x+6/xeR}
We known that any two cosets are either identical or disjoint.

We now show that if 4€R/¢ then 4N[0,1]=¢

Let A=x+0

Let ¢ be a rational number in [—x,—x+1] then x+¢ €[0,1]
Also, x+gex+0=4

sx+qedN01]= 4N[0,1]=¢

For each 4€R\6 choose x, € 4N[0,1]

Let £E={x,/ A€ R/}

25
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By construction E C|0,1]

Let X= (] q+E

geon-1,1]
We now show that [0,1]C X C[-1,2]
Let g€[-11]N0
Note that £ C[0,1]
- forany x€ E, g+xe[-1,2]
This is true for any g €[—1,1]N6

There exist a finite collection {Aj}A of disjoint subset of ; such

that m" (UA]} > m' (Aj)

jes =
Consider O{;

‘ |Q:{x+Q|xe i }

We know that any two cosets one either identical or disjoint.
We know show that if 4’|, then 41 [0,1]=0Q

Let A=x+0

Let q be a rational number in [-x,—x+1] then x+¢ [0,1].
Also x+gex+Q=4

Sx+qe Al [0,1] = Al [0,1] eX0)

For each A €' |, choose x, € A1 [0,1].

i |Q
Let E:{xA |A e |Q}
By construction E < [0,1]

Let X= [J g+e
qe01 [-1,1]



We show that [0.1]< x<[1.2] Lehesgue uter e
Let ge[-L1]T 0

Note that £ <[0,1]

sxeE,q+xe[-1,2]

= q+Ec[-12]

This is true for any g e[-1,1]I O

Let y€[0,1]

Then yey+0€y+60=4 (say) but x, € 4

Sy—x,=y€0

conx €[01]= y—x, €[-1]]
:>q€[—1,1]/\9

SYEqt+x,€q+E

SLyex

~[01]Cx =0,1]C X C[-1,2]

.. By monotonicity of m"

m [0,]] <M (X)<m [-1,2]

1CM (X)) <3 i (1)
X = g+E by countable subadditive and translation
qe[—11]A0
invariance of m , we get.
m (X ) < Z q + E m
q€[-1,1]N0 q€[-1,1N0

By (1)=m (X)=0
=m (E) =0
.. By Aritimedian property

IneN s.t. m' (E)>l
n
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Let I be a finite subset of [—1,1]N6 with cardinality 3n.

Then Zm (E)>3nl:3

qel n

by (1) m (x)zZm*(q+E)

e
Theorem :

Let ECR" & A€ R(A>0) show that m" (AE)=\"m" (E)

Proof :

To show that m (AE)=X\"m" (E),A >0

Let €>0,

. by definition of m"(E),3 a countable cover of {R} of closed
rectangle in R, for Es.t. Y V(R )<m'(E)+¢€

T EC ORi = \EC O)\RZ.
i=l i=l

Let R =[a,.,b,|x....X|a,.b,]

in®~in

= [)\al.l,)\b”]x ..... X [)\a.

ind )\b[n ]
= AR, is a closed rectangle

~V(AR)=NV(R)

SAEC U)\Rl. by monotoricity & countable additive property we get

i=1

m (AE) Sim* (AR,)= iV(ARi):i)\”V(RZ.)

<A V(AR)<A'm' (E)+€



This is true for any €>0

let Elz)\E&,uzi

- by (1)
o () <46 )

=m’ [lAE] <Ly (AE)
A A"

o N (EY S (AE) v @)
From (1) & (2)

m' (AE) = \'m’ (E)

1.6 SUMMARY

In this chapter we have learned about.

e definition of o -Algebra, bored algebra
e measure on a set.

e The extension Measure

e Lebesgue outer Measure (,u) on R”

Properties of lebesgue outer measgure.

1.7 UNIT END EXERCISE

) Let X={ab,c,d} and 4 ={X,¢,{d}} and 4,={X,¢,{d}},
{a,b,c} check whether 4, & 4, are both algebra or not. Also
check wheter 4,4, is an algebra or not.

2) Show that exterior measure at any countable subset of R" is
zero. Justify the converse?

3) Show that the outer mesuration interval is its length.

4)  Show that if (F,)a€! is a collection of o -Algebra on X then
n,F, 1s also a o -Algebra on X.

Lebesgue outer measure
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5)

6)

7)

8)

9

10)

11)

12)

If a subset ECR" is a countable union of almost disjoint

closed rectangle then show that m" (E) = iU(RI.) :
i=1

If 4 and A4, are measurable subsets of the closed interval [a,b]
then 4-4, 1s measurable and if A4 C4,then
m( A4 —A4,)=mA —mA,.

Show that for any set A, mA=m (A4+x) where
A-I—x:{y—i-x;yeA}

Show that for any set A and any €> 0, there exist an open set
O suchthat AC0 and m 0<m A+ €.

Compute the Lebesgue outer measure of B =[1—2|U{3}

Prove that if the boundary of 7 C R* has outer measure zero
than 7 is measureable.

Let Qbe an arbitary collection of subsets of a set. Show that for
a given 4€0(C) there exists a countable sub-collection C, of

C depdending on A such that AC o (C,).
Check that 4" is an outer measure on R. Not
i) Let X be any seet and 4 : P(X)— [0,00]be given by
i) u'(4)=0 if A is countable
=1 otherwise

w (A) =0if A finite

Lif otherwise

then X be on infinite set

ii)
iii) p'(4)=0if 4=¢

= | otherwise

O O 0 L0
0‘0 0‘0 0‘0 0‘0



LEBESGUE MEASURE

Unit Structure :
2.1 Objective
2.2 Introduction
2.3 Lebesgue Measure

2.3.1 Properties of measurable sets
2.4 Outer Approximation by open sets
2.5 Inner approximation by closed sets
2.6 Continuity from above
2.7 Borel Cantelli Lemma
2.8  Summary
2.9 Unit End Exerises

2.1 OBJECTIVE

After going through this chapter you can able to know that

e Construction of Lebesgue measure in R”.

Lebesgue Measurable set in R”.

Properties of measurable sets.

Existance of non-measurable sets.

2.2 INTRODUCTION

In the previous chapter we have studied about Lebesgue outer
measure m  is not countability additive and it cannot be measure. So
that we have to cover with subset of R”for which m"is countably
additive this subclass a collection at Measurable sets. Now we shall
define lebesgue measure of a set using the lebsgue outer measure
and discuss properties of lebesgue measure set.

2.3 LEBESGUE MEASURE

Definition - (Lebesgue measurability)

Let E be a subset of R" we say that E is Lebesgue measurable, or
measurable if we have the identity
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w ()= (ANE)+m (4E)

2.3.1 Properties of measurable sets :

Following are the properties of measurable sets :

a) IfE is measurable, then E =R"/E is also measurable.

b) Any set E of exterior (or outer) measure zero is measurable. In
particular, any countable set is measurable.

c) If E &E, are measurable, then E (E, and EUE, are
measurable.

d) (Boolean algebra property) If E_,E,,..E are measurable then
|JE, & (E, are measurable.
1 1

¢) (Translation in variance) If E is measurable & x€R" then x+ E
is also measurable, and m(x+ E)=m(E).

Lemma : (Finite additivity)

If (Ei)],{_1 = (E j> _,area finite collection of disjoint measurable sets
= J

and any set A, we have

:Zm*<AﬂEj)

jeJ

ANUJE,

jeJ

*
m

Further more we have

UE :Zm<Ej)

jeJ jeJ

m

Proof :

We prove by induction on K
The result is trivial when K=1
Assume result is true for k-1

We prove result for K

Let £= LkJEl.

i=1



tpt m (ANE) Zm (ANE,)

Now E, is measurable we have for ANE CR".
m' (ANE)=m'"((ANE)NE)+m" ((ANE)NES)
But (ANE)NE,=ANE,

(- E, CE)
(ANE)NES = AN(ENES)

Am[LjE,]

i=

m (ANE)=m' (ANE,)+m" (AN(JE))
' (ANE)+> m' (ANE)

:Zm*(AﬂEi)

*. The result is true for K
By introduction, it is true for ‘n’.
ii) Put A=R"
Theorem :
If ACB are two measurable sets then B/A4 is also measurable &
m(B/4)=m(B)—m(4)
Proof :
tst B/A is measurable.
Suppose A & B are measurable

" intersection of two measurable set is measurable & complement
of a measurable set is measurable.

= B/ A= B(1 A is measurable
Note that B=AU(B/A)

which is a disjoint union.

Lebesgue Measure
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-~ mis finitely additive
m(B)=m(A)+m(B—A)
= m(B/A)=m(B)—m(A)
Example 1 :

Let A be a measurable set of finite outer measure that is contained in
B show that m" (B/A)=m" (B)—m’(A)

= " A is measurable

By definition for this B

' (B)=m (BN A)+mr (5/4)
' (B)=m’ (4) ' (8/4)
m (4)<oo we get

' (5] 4) = ()= (4)
Example 2 :

Suppose ACECB where A & B are measurable sets of finite
measure show that if m(4)=m(B) then E is measurable.

= .- A & B are measurable = B/4=- B(1 A° is measurable.
Note that B=AU(B/4) (. ACB).

which is a disjoint union.

-~ m 1s finitely additive, we get

m(B)=m(A)+m(B/A)

m(B/A)=0 (. m(B)=m(4))

wACECB=E/ACB|A

m (E/A)Cm (B/A)=m(B/4)=0

=m (E/4)=0

= E/A is measurable

= E = AU(E/A) is measurable



Example 3 :

Lebesgue Measure

Show that if E, & E, are measurable then
m(E,\UE,)+m(E NE,)=m(E,)+m(E,)

Solution :

Suppose E, & E, are measurable not that

E,UE, =E,U(E,/E,) which is a disjoint union.

By finite additie property of ‘m’
m(EUE,)=m(E)4+m(E,JE) «.ccoviiiiiiiiiiiinnii (1)
also E, =(E,NE,)U(E,/E,)

which is a disjoint union.

By finite additivity of ‘m’

m(E)=m(E,NE,)+m(E,[E) «.coovvoiiiaiiiiiiinnaenian, (1)
m(E,/E,)=m(E,)—m(ENE,)

subs in 1

m(E,UE,)=m(E,)+m(E,)—m(E NE,)
m(E,UE,)+m(E,NE,)=m(E)+m(E,)

Theorem :
Let {E,} " be a countable disjoint collection of measurable sets

prove that for any set A, m’ [Aﬂ@Ek] = im (ANE,).
1 k=1

Proof :

Let {E,} " be countable collection of disjoint measurable sets.

Let ACR"

o

AﬂUEk]:ki::m*(AﬂEk).

1

tpt m’
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By countable subadditivity property of m" we get,

0] g

AN

¥
m

<SS M (ANE) oo (1)

k=1

Also by finite additive property of m, we get

>m

m*[Aﬂ[OEk AﬂGEk]

This is true for all ‘m’

m [A ﬂ[o E,
k=1

from (1) & (2)

.

>3 (ANE) oo )

:im*(AﬂEk)

Theorem :

Show that the union of a countable collection of measurable set is
measurable.

Proof :

Let {4}, , be a countable collection of measurable sets and
E=]J4,.
k=1

tst E is measurable.

Define B, = 4, & for k>2

k—1
alJa
1

B,



Since finite union of complement m-set are measurable Lebesgue Measure

= B, is measurable.

Clearly B, ’s are pairwise disjoint

|

s

UBk -

k=1

k—1
‘gU4]

1

.
[

I
C8
?:‘
A”

.
I

I
(@
N

D
-CI
N

-
i

I
0N

U(4,N(N49))U[ 4, N 45 N 45 |U....

I
(@

A4, =E

o~
I

Example 4 :

Show that the intersections of a countable collection of measurable
set 1s measurable.

= Let A be a subset of R” and for ne N

Define F, =| JB, CE
k=1

.B,'S are measurable
= F is measurable
*. By definition

m'(4)= %AHF)+mXAmFﬂ
" F CE=F DE‘= ANF‘ D ANE®
m(AﬂEﬂCm(AmFﬂ

m'(A)=m" (ANFE,)+m (ANES) ..o (1)

37



Analysis 1T Now

K=

. By (1)

m*(A)zi:m*(AﬂBk)-i—m*(AﬂEc)

- LHS is independent of n, we have

m*(A)Zi:m*(AﬂBk)+m*<AﬂEc)

But

' (ANE)=n AH[QBk]]
s
Sim*(AﬂBk)

m'(A)>m" (ANE)+m" (ANE)

As A4=(ANE)U(ANES) by countable subadditivity proposition of
m* .

m*(A)Sm*(AﬂE)-I—m*(AﬂEC) ............................ 3)

By (2) & (3)

m'(4)=m" (ANE)+m (ANE)

.~.By definition E is measurable.

38



Example 5 : Countable additive

If {E ,.}, ,area countable collection of disjoint measurable sets then
RVAS

UE :Zm<Ej)

JjeJ jeJ

U E, is measurable and m
jeJ

=  Without loss of generality we may assume J =N suppose
{E,}_, be a countable collection of disjoint measurable set we first
show that £ =UE, measurable let F, =UE, .

then by previous exercise we get E is measurable.

We now show that

m(E)=2_ m(E,)

1

By subadditivity proposition of m’
,Mm:mwm:mfﬁg]
1
<> m(E,)

1

— m(Ek) .............................. (*)

k=1

By finite additivity property and monotonicity of m"
we haveas F, D E
mmzmgpm[@]

k=1

=S m(E,)

k=1

.LHS is independent of n, we get

IES DL PR (%)

..By countable additivity

m(E)=Y m(E,)

k=1

Lebesgue Measure
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Example 6 :

Show that every closed and open rectangles in R" are measurable.
= Let R be a closed rectangle

tst R is measurable
Let €>0,Let ACR"

by definition of m" (4)

3 a countable collection of closed rectangle {R }~ such that

ACUJR and SV (R)<m' (A)4€ oot (1)

we decompose each R, into finite union of almost disjoint rectangle

k
Us; |

J=1

{RZ,SZ ,. ,Sk} such that R, = R' U

=RNRCR and §; CRC
J

.-.By finite additive property of M.

n(R)=m(R)+ Y05, |

j=1

;»V(Rl.):V(R;)+ijV[Sij]

DS

Z V(R)=>V(R)+Y
Note That {R }" lover AAR

i=l1 i=l1

AﬂRc

]ﬂRz@(RiﬂR):DR;

i=1

{S }z j covers ANRC
'j

00

Y V(R)=m' [DR;

1

gmﬂAmRﬂ

Zm*<AﬂR)C and m’ [USU
i




This is true for any €>0
m'(4)>m" (ANR)+m’ (ANRC)
..By definition R is measurable.

Example 7 :

Show that every open and closed subsets of R" are measurable.

= Let K =max{K,}

Let G be an open subset of R” consider the grid of rectangle in R”
of side length one and whose vertices have integer co-ordinates.

TST G is measurable.

.. Number of rectangle in grid is countable and one almost disjoint
we ignore all these rectangle contained in G°.

Now we have two types of rectangle (1) Those rectangle contained
in G (2) Those rectangle intersect with G & G°.

Let C = set of all rectangle contained in G.

We bisect type (2) rectangle into two rectangle each of its side

length is Y%.

Repeat the process iterating this process for arbitrarily many times
we get a constable collections ¢ of almost disjoint rectangle

contained in G.

By construction | JRC G

ReC

Lebesgue Measure
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Let xeG
.G 1is open

We can choose sufficiently small rectangle in the bisection
procedure that contains x is entirely contained in G.

.'.xGUR

ReC

gGgUR

ReC

LG=JR

ReC

.G is countable union of closed rectangle and hence G is
measurable.

2.4 OUTER APPROXIMATION BY OPEN SETS

Let £ECR" such that E is measurable iff for €> 0, there is an open
set 2 containing E for which m” (Q/E) <€.

= Suppose E is measurable
Let €>0
Suppose m" (E) < oo
~.By the definition of m" (E)

3 a countable collection of open rectangles {R,} such that £ C| R

and > V(R)<m' (E)+€.

Let Q= URI, which is countable union of opensets.
i=l1

. isopenin R" and ECQ

..§ 1s open, it is measurable

-.Q/E is measurable

Q= EU(/E) which is a countably disjoint union

(@)= (B} (/B
w' ()= () (E)



Suppose m (E)= oo

For each k

E, = E(\R, where

R, =rectangle with centre origin and side length K
For each k

Then m" (E,)<m (R)=V(R)=K> <oo

.. by first case for each K, 3 2, open in R" such that

* E
E, CQm (Qk/Ek)<2—k.

Let Q= UQk which is countable union of open set.
k=1

. isopenand ECQ

m' (YE)=m'(QNE°)

m (Q,/E)

kaEC]

Ce ICs

(/%)

~
Il
4

VAN
NgE

=~
Il
4

VAN
[M]e

m (Q,/E,)

=~
Il
4

€
Hk

AN
NgE
()

=c

>
I
R

Conversely suppose for a given €>0 3 open set 2> E such that

m (QYE)<e.

Lebesgue Measure
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Analysis I Tst E is measurable
Let ACR"
. is open
= () is measurable
m® (A)=m" (ANQ)+m’ (4/Q)
Note that 4/E =(4/Q)U((4NQ/E)) which is a disjoint union.
som’ (4/E)=m"(4/Q)+m ((4NQ)/E)
o (ANE) o (4/E) = (ANE)+m (4/)+m’ ((4NQ)/E)

<m (ANE)+m (4/Q)+m (4NQ)
<m' (A)+¢€

This is true for any €>0

com (ANE)+m (A/E)<m’(A4)

. E 1s measurable.

Exercise 8 :

Let ECR"S.T., E is measurable iff for each €> 0 there is G, set G
conlaining E for which m" (G/E)=0.

Proof : suppose E is measurable

.-.By outer approximation by an open set.

For each neN, 3 an open set Q, D F s.t.
m*(Qk/E)<%

Let G=( ,thenGisa G, setant ECG

k=1

44
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This is true for all k

m (G/E)=0

Conversely, suppose 3 G, set GD E

s.t. m (G/E)=0

tst E is measurable

Let ACR"

.G 1s countable int of measurable

Set = G is measurable.

.".By definition

m' (A)=m"(ANG)+m’ (4NG")

Note that

4/E =(4/G)U((4UG)/E)

Which is a disjoint union

o (4E) = (416) 4 (ANG)/E)

com (ANE)+m (A/E)=+m" (ANE)+(4/G)+m (ANG/E)
<m (ANG)+m"(4/G)+m" (G/E)

<m (4)+0
< (4)
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2.5 INNER APPROXIMATION BY CLOSED SETS

Theorem :

Let £ECR" S.T. E is measurable iff for each €> 0, there is a closed
set F C E for which m" (E/F)<E.

Proof :

Suppose E is measurable

= E“is measurable

Let €>0

..By outer approximative by open seet 3 an open set 2D E€ s.t.
m' (Q/E°) <€

Let E=Q° = Fisclosed & FCE.

Now m' (E/F)=m"(ENF)=m"(ENQ)

i (onE)=m(on(z))
=m' (Q/E) <€

Conversely suppose for €>0,3 closed set FCE such that
m' (E/F)<E

Tst E is measurable

Let ACR"

~.-F 1s measurable

By definition

m (A)=m (ANF)+m (4/F)

Note that

ANE = ((ADF)/F) +U(4NF) which is disjoint union.



=m (ANF)+m ((ANE)/F)

m’(4/E)
+m" ((ANE)/F)+m’ (4/E)

*

)
ANF)+1 (E[F)+ (4]F)

Example 9 :

Let E be a set of finite outer measure show that there 1s an Fo set F

* *

&aGysetGst. FCECG & m (F)=m (E)=m (G).
[Ans] .. E 1s measurable for given each k 3 open set G, and closed
set F, such that F, CE C G, and m*(Gk/Fk)<%.

Let G:ﬁGk & Fz[ij :
k=1 k=1

Then Gis G, setand Fis Fo setand FCECG.

We now show that m" (G)=m (E)=m (F) G=EU(G/E) which is

disjoint union.
m' (G)=m"(E)+m" (G/E)

Now G/E =GNE®

kaEC]

=~
Il

Il
D)

1

(G,NEC)

I
DX

?T

N(G/F)< G
G/ F,

m'(G/E)<m’(G,[F,)<
This is true for all k

m' (G/E)=0

Iﬁ

Lebesgue Measure
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E=FU(E/F)
m (E)=m"(F)+m (E/F)

]

:Eﬂ[gﬂc]zﬂ(Eﬂﬂc>

E/F=ENF=EN

=((E/R)
CE/F,
CG,/F,
m' (E[F)<m’ (G [F)< ¥,

This is true for all k
~.m (E[F)=0
Example 10 :

Let E be a set of finite outer measure show that if E is not measure,
then there is an open set ) containing E that has finite outer
measure and for which m" (Q/E)>m" (Q)—m (E).

Solution :

= Since E is not measurable

= J¢€,>0 for any open set 2 containing E.

. E has finite outer measure.

By definition Ja countable collection of open rectangles {R}"

such that E QGRI. and iV(RI.) <m (E)+€,.
i=1

i=1
Let Q, = ORI,
i=l1

= ECQ, & €, open.

SBy (1) m (QYE)>€y e (2)



By countable subadditivity of m"

Qo)gim* . ZV E)+€,
i=1

som (Qy)—m" (E)<€,<m’ (Q,/E)

*

m' (Q/E)>m" (Q))—m’ (E)

Lebesgue Measure

2.6 CONTINUITY FROM ABOVE

Theorem :

If {B}, , is a descending collection of measurable set and

o]

Mz,

k=1

m(B,)<oo then m = lim m(B,)

k—o00

Proof :

= B, > B, > .... Be collection of measurable sets and m (B, )< oo

N5

k=1

tst m

= lim m(B,)

k—o00

Let 4, =B//B,Vk>1then 4 C4,C...... and 4,’s are measurable
(.. B,’s are measurable)

C8

4, = GB/B D(BHBC>

k

=
Il

KR
KR
=
I

=B GBf]

_ BN GBk]

Let B:OBk

k=1

U4, =BNB =B/B

k=1

.. By continuity from below
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Analysis 11 .B and B, are measurable
m(B,/B)=m(B,)—m(B) and
n(4)=m(5/5,)

~m(8)-m(5,
~By (*)

m(Bl)—m(B) lim< (B1

k—o0

)-
=m(B,)—limm(B,)

k—o0

m(By))

c.m(B)=limm(B e[ﬁBk]—llmm )

k k
—00 =l —00

Example 11 :

Show by an example that for continuity from aboe the assumption
m(E,)<oo is necessary.

= Let B, =(k,00) then B DB, D... and m(B,) =00V, we now show

that ﬁBk =¢.
k=1

Let xEﬁBk = x € B, = (k,00)Vk

k=1

=x>kVk

= N is bounded by x, which is not possible.

o0

B, =9

~.0=m(¢)=m(NB,)= oo =limm(B,)

k—o0

Example 12 :

Show that the continuity of measure together with finite additivity of
measure implies countable additivity of measure.

= Let {E,} be a countable collection of disjoint measure sets.

Let 4, = LkJEl.

i=1

50



Then 4, ’s are measurable and 4, C 4, C......

so (4~ - U,

k=1 k=1\i=1

Lebesgue Measure

..By continvity from below, m [U Ak} = limm(4,).

P k—o00

But by the finite additive property

Definition :

For a measurable set E, we say that a property holds atmost
everywhere on E, or it holds for almost all x € E, provided there is a
subset E, of E for which m(E,)=0 and the property holds for all

x€EJE,.

2.7 BOREL CANTELLI LEMMA

Let {E,},  be a countable collection of measurable sets for which
f:m(Ek)<oo. Then almost all x€R” belong to Atmost finitely
r:ainy of the E, 's.

Proof :

Let E, be the subset of R" such that Eoz{xeR”:erk for
infinitely many}

e

k

E,
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We sow that m(E,)=0
Let F, = JE,
k=i
Then FOF,>....... and (\F, =E,

Note that im(El) <00

i=l

Example 13 :

Show that there is a non-measurable subset in R .
Solution : R| 0 ={x+Q|x R}

WKT any two cosets are either identical or disjoint.

We now show that

If A€ R|Q then AN[0,1]=¢

Let A=x+0Q



Let q be a rational number in [—x,—x+1] thenx+ g €[0,1]
Also x+gexeQ=4

~.x+q€AN[0,1]
= AN|[0,1]= ¢

For each 4 € R/Q choose x, € 4N[0,1]
Let £E={x,/A€R/0}
By construction E C[0,1]

Let X= [J q+E

q€[-11]N0
. Forany x€ E,q+x€[—1,2]
=g+ EC[-1,2]
This is true for any g €[—1,1]NQO
Let ye[-11] then ye y+0€ y+ 0= 4 (say)
but x, € 4
cy—x,=q€0(.x,E€A4=x,€y+0 forsome q€Q}

y.x, €]0,]]

=>y—x, E[—l,l]

=q€[-L1NQO

SYE=q+x,€Eq+E

S yEX=]0,1]CX=0,1]CXC[-12]

.~.By monotonicity of m"
(0] £ m () S (-12)

lgm*(x)§3

If E is measurable then ¢+ E is measurable and m(E)=m(q+E)

m

= Z m(q-l—E)

q€[-11NQ

U £

q€l-11N0

Lebesgue Measure

53



Analysis II

54

q€[-1L1N0

S 1<m(X)<3

=1 > m(E)<3

g€[-11NQ

If m(E)=0then » m(E)=0

q€[-11]N0

~1<0<3 andif m(E)=0then » m(E)=o00

g€[-11NQ0

Which is contradictin to (1)

. E 1s not measurable.

2.8 SUMMARY

In this chapter we have learned about.

Lebesgue measureable sets.

Construction of Lebesgue measurable sets in R”

Properties of Lebesgue measurable sets

Non-measurable sets

2.9 UNIT END EXERISES

1.

Show that the intersection of a countable collection of
measurable sets 1s measurable.

Show tht every open and closed subset of R" are measurable.

3. Show that a set E is measurable if and only if for each €>0,

there is a closed set F and open set Q for which F CECQ and
m' (QYF)<e

Let E be a measurable set in R” and m(E) < coshow that for any

€> 0 there exist a compact set k C E such that m (E/K)<E.

. If {4,},_, is an ascending collection of measurable sets then

M[GAk]zlimm(Ak)

k=1 k=00

6. The outer measure of «, the set of all rational number is ‘0°.

Prove that the outer measure of countable set is zero.

8. Show that the outer Measure of an interval is its length.

o O O 0
0.0 0.0 0.0 0.0



MEASURABLE FUNCTION
Unit Structure :
3.0 Objective
3.1 Introduction
3.2 Measurable Function
3.3 Properties of Measurable Function
3.4 Egoroff’s Theorem
3.5 Lusin’s Theorem

3.6 Summary

3.7 Unit End Exercise

3.0 OBJECTIVE

After going through this chaper youcan able to know that
e Measurable function
e Properties of measurable function.

e Concept of simple function

3.1 INTRODUCTION

In the previous chapter we have studied about Lebesgue measure of
sets of finite and infinite measures. Now we can discuss Lebesgue
Measurability of functions. The definition of measurability of
function applies to both bounded and unbounded functions. We also
discuss simple function and its Approximation.

3.2 MEASURABLE FUNCTIONS

Definition : We say a function /" on R" is extended real valued if it
take value on R.

Definition : A property is said to hold almost everywhere on a
measurable set E provided it holds on E/E,, where E, is a subset of

E for which m(E,)=0
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Example 1 : Let f'be a function defined on a measurable subset £ of
R". Then the following are equivalent.

1. For each real number C, the set {x €E: f(x)> C} is measurable.
2. For each real number C, the set {x €E; f(x)> C} is measurable.
3. For each real number C, the set {x €E; f(x)< C} 1s measurable.
4. For each real number C, the set {x €E; f(x)< C} is measurable.
Solution :

= (1)=(2)

Suppose for any C € R

{x€R, f(x)>C}is measurable .......... (*)

Let CeR

tst {x €R; f(x)>C} is measurable

Note that {er f(x >C} ﬂ{erf )>C—l} which is a
n

measurable as countable intersection of measurable set is measurable

(by (*))
~{x€E: f(x)>C} is measurable
(2)=()

Suppose {x€E: f(x)>C} is measurable

{xEE f <C} {nEE f >C} which 1s measurable as

complement of measurable set is measurable.

- {x € E; f(x)<C} is measurable.
(3)=(4)
Suppose {x € E; f(x) < C}is measurable.

Let CeR

tst{x € E; f (x) < C}is measurable.



Note that

1 . )

{x €E; f(x)< C} ﬂ {xe E f(x)< C-l——} which is measurable as
n

countable 1ntersect10n of measurable set is measurable set.

= {x €EE; f(x)< C} is measurable.

(4)=(5)

Suppose {x € E; f(x) < C}is measurable.
tst{x €E;f(x)> C} is measurable.

Note that

{xeEf(x)>C}={xeE;f(x)< C} which is measurable as
complement of measurable set is measurable.

= {x €EE; f(x)> C} is measurable.

Definition : An extended real-valued function ¥ defined £ C R" is
said to be Lebesgue measurable or measurable, if its domain E is
measurable and it satisfies one of the above four statement i.e. For
each real number C, the set {x €E; f(x)< C} is measurable.

Example 2 : Show that a real vaued function that is continuous on
its measurable domain is measurable.

Solution :
Let /” be a continuous function
tst /" is measurable

Let CeR

Note that, {xEE f(x >C} /(C,00) but (C,00) is open subset
of R and f/:E — R is continuous.

- f'(C,00) is openin E

- f'(C,00)=GNE for some G is open subset of R" but any open-

subset of R" is measurable and E is given as measurable.

- f'(C,00)=GNE is measurable

Measurable Function
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~{x€E; f(x)>C} = f'(C,00)is measurable
.. By definition
f is measurable.

Example 3 : Let f'be an extended real valued function on E. Sho that

1) F is measurable on E and f =g a.e. on E then g is measurable
on E.

2) For a measurable subset D of E, f is measurable on E iff the
restriction of F to D and % are measurable.

Solution : Suppose fis measurable and f =g a.e.
Let A={x€E: f(x)=g(x)}

Then as f = ga.e. we have m(A4)=0

tst g is measurable.

Let CeR {xeE;g(x)>C}

:{xEA;g(x)>C}U{x€%;g(x)>C}
:{xeA;g(x)>C}U{xe%;f(x)>c}('-'f:g)
(/=g

={re4;g(x)>CU{xcE: f(x)>C}N(E/A4)}
But {x€ 4;g(x)>C}C 4 and m(4)=0

.. any subset of measure zero set is measurable

= {x €4;g(x)> C} is measurable
*+ f is measurable = {x €EE; f(x)> C} is measurable
- E & A are measurable (- m(4)=0)
= E/A is measurable
{xeA g(x >C}U[{xEEf >C}ﬂ (E/A) ] is measurable
= {x €E;g(x)> C} is measurable

= g 1s measurable.



2) {xEE;f‘D(x) } {xEDf >C}

={xeE f(x)>C}ND

f|q
For E[er;fD (x)>C’
E

= {xelpif(x)>C}
={xeE; f(x)>C}N*,

Converse
= {xEG;f<x)>C}:{xED;f<x)>C}U{xE%;f(x)>c}

:>{x€Df >C} is measurable and {xeﬁ) >C} 1S

measurable.
As union of measurable set is measurable

= f is measurable.

3.3 PROPERTIES OF MEASURABLE FUNCTION

Let f and g be measurable function on E that are finite a.e. on E
show that

1) (Linearity) for any 'a' and '3', aF + Sg is measurable on F.

2) (Product) fg is measurable on E.

Solution :

Let E, :{xEE:f(x):ioo} and g(x)=zoo then as f and g are

finite a.e. on E we have m(E,)=0

is measurable.

. the restriction *¥|,

-, any extension of '/ +g' as an extended real valued function to all
of E is also measurable.

Without loss by generality, we may assume that ‘f” and ‘g’ are finite
all over E.

Measurable Function
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Now we first show that 'a /"' is measurable for some a € R.

If « =0 then «f is a zero function then for any C€R.

{xeE:(aF)(x)>C}={x€E:af(x)>C}

e ifCc=0
|Eifc<o

.¢ and E are measurable = (x € E;(aF)(x)> C) is measurable

= oF 1s measurable.

Suppose a =0

{xeE:(aF)(x)>C}={x€E:af(x)>C}
{er;f(x)>%}a>0
{er;f(x)<%}a<0

*» f is measurable and C & « are red numbers.

~.(*) is measurable

= {x€E (af)(x)>C} is measurable

= (af)(x) is measurable

=« f ismeasurable ............................ (1)

We now show that (f +g) is measurable.

Let CeR

If (f+g)(x)<C

= f(x)+g(x)<C
:>f(x)<C—g(x)

"~ Q isdense in R, thenis an r € O such that f(x)<r<C—g(x)

.-,{xGE;(f—i—g <C} rLg{xEEf <r}ﬂ{xEE g(x )<C—r}

Q@ 1s countable and {x €E: f(x)< r} is measurable &
{x €E:g(x)<C— r} is measurable



.-. countable union of measurable set is measurable Measurable Function

={x€E:(f+g)(x)<C} is measurable
= f+g ismeasurable ......................l (2)
From (1) & (2)

(af + Bg) is measurable.

2) tpt (fg) is measurable

1
Note that fg p— 5[(f+g)2 _fz _gz}
.+ f,g are measurable = f+g,af is measurable it is enough tst
square of measurable function is measurable.
Let C>0
Then
{xeE;fz(x)>C}:{xEE;f(x)>\/E}U{x€E;f(x)<C—\/E}
Which is union of two measurable set.
..by definition, f* is measurable,
IfCc<o

{x €E; [ (x)> C} = E which is measurable.

= In both the case £ is measurable
= ( fg)is measurable.
* Composition function ( fog)

Example 3:

Let g be measurable real valued function defined on E and f a
continuous real valued function defined on all of R show that the
composition fog is a measurable function on E.

Solution :

Given; Let ‘g’ be measurable function and ‘f” be continuous function
on R.

Let g;E — R be measurable and f/:R — R be a continuous
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Let CeR

tst ;fog is measurable

Note that {x € E;( fog)(x)> C}

~(fog) ((C.o0) =g () (Co0))

(C,00) is open subset and f is continuous = /' (C,00) is open in
R.

- f71(C,00)=0 for some open subset O of R.

-0 is open in R, we can write

:D({erg >a}ﬂ{x€Eg >b}>

i=1

é{er:g(x)>al}is measurable and {xEEg >b} is

measurable.

= countable union of measurable set is measurable set.
{x:(fog)(x)> C}is measurable
.. fog 1is measurable function on E.

Check your Progress :

If f is measurable, then show that
1) f* is measurable for all integer K >1
2) f 4+ is measurable for a given constant A\ € R

3) Af is measurable for a given constant A € R

4) |f] is measurable

5) sup f, (n),inf £, (n),limsup, £, (n)liminf f, (n) are measurable.



Definition : Measurable Function

For a sequence {f,} of functions with common domain E,a function
fon E and a subset A of E, we say that

1) The sequence {f,}converges to ‘f* point wise E, on A provided
lim{f,}(n)= f(x) forall xe 4

2) The sequence {f,} converges to ‘f” point wise a.e. on A provided

it converges to F pointwise on 4/B where m(B)=0

3) The sequence {f,} converges to ‘f* uniformly on A provided for

each €>0,3N €N such that |/ — f,|<conaforall n>N.

Theorem :

Let {/,} be a sequence of measurable function on E that converges

point-wise a.e. on E to the function f, show that f is measurable.

Proof :

Let E, be a subset of E with m(E,)=0 and f, — f on E/E,.

~.m(E,)=0 & we have ‘f’ is measurable on E iff f|E7E0 is
measurable.

~.By replacing E by E — E, we may assume that the {f,} converges
tofonE

tst f is measurable
Let CeR

tst {x €E; f(x)< C} is measurable

{xEE;f(x)<C}:{er;limf(x)<C} but

n—oo

lim f(x)<C iff there are natural nos. n and k for which

n—o0

fj(x)<C—l Vi >k
n

ﬂ{er;fj(x)<C—lH

n

.'.{xEE;f(x)<C}:U

1<k,n<oo
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note that ﬂ {x €E; f (x)< C—l} is measurable.
n

=k
Countable union of measurable set is measurable

= {x €E f(x)< C} is measurable.

Simple Functions :
Definitions :

A real-valued functions ¢ defined on a measurable set E is said to be
simple if it is measurable and takes only a finite number of values.

If ¢1s simple, has domain E and takes the distinct values C,....,C,

then ¢:§:CkXEk on E, where E, :{er;(b(x): Ck}.

k=1

This particular expression of ¢is a linear combination of

characteristic functions is called the canonical representation of the
simple function ¢ .

Theorem : The simple Approximation Lemma

Let ‘f" be a measurable real valued function on E. Assume ‘f* is
bound on E. Then for each €> 0, there are simple function ¢_ and

U, defined on E which have the following approximation
properties:

¢, <f<V¥,and 0<V, —¢, <E onE.

Proof :

Suppose f:E — R is bounded measurable f,
.. fis bounded, 3M > O such that ‘f(x)‘ <M Vx€E
Let (c,d) be an open interval s.t. f(E)<(c,d) (... fis bounded)

Let >0

Consider the partition

C=y, <, <<y, of [c,d|with y, —y, <€ 1<k <n

Define ¢, = v, Xz, ¥V, =y x; Where E, = [~ ([ykfl,yk])
k=1 k=1



Note that £, = f' ([yk,l,yk]) Measurable Function

={xeE f(x)ely 0]}
:{er;yH Sf(x)<yk}
={xeE:f(x) 2y, JN{reE:f(x) <)

which is measurable. (.. f'is measurable)

.. Xz, are measurable, 1 <k <n

= ¢_ & ¥, are measurable and takes only finite number of values
- .¢. & U, are simple functions.

Let xEE:>f<x)€<c,d)

3k sty < f(x)<y,

() =y <)<y =T (X) e (1)

= ¢, (¥) < (x) < W, (x)

Also by (1) 0< U, (x)— ¢ (x) =y, — ¥, <€

Theorem : The Simple Approximation Theorem

An extended real valued function ‘t” on a measurable set E is
measurable if and only if there is a sequence {¢,} of simple
functions on E which converges point-wise on E to f and has the
property that |¢,| <|f| on E for all ‘n’.

If ‘f* is non negative, we way choose {¢,} to be increasing.

Proof :
Suppose f is measurable

Case (1) Assume >0
Let n€N, Define E, ={x € E; f (x) < n}

Then /| £ 18 a bounded function.

.By simple Approximation Lemma for e:l,ﬂ simple functions
n

6. & W, suchthat ¢ </|, <V, and 0< ¥, —¢, < /.
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Analysis II We extend ¢, on E defining ¢, (x)=n if f(x)>n construct the

sequences {¢, }.

We now show that ¢, — f pointwise on E
(1) If “f* is finite

-.3N €N such that f(x)<N

=x€ck)

oy (X) < f(x) <Py (x)
:>f(x>_¢1\’<x)S\IIN<X)_¢N(X><%

:>f(x)—¢N(x)<an2N
n

:>q5n(x)—>f(x) as n— oo
Q) If f=c
f(x)>N forany NeN

:>¢n(x):n
:>1imq5n(x):oo:f

n—oo

Case (2) ‘" is any measurable function

Define f(;)l = max{f(x),O}

£ (x)=min{f(x),0}

= [ (x)= /" (x)+(/' (%)

» fT and —f~ are non-negative measurable function.

. By Case (1), 3 a sequence of simple functions {¢,}&{v,} s.t.

¢, — f pointwise and ¥, — f~ pointwise.
o0, —¥, — f pointwise
-.¢, and U are simple function V n

= ¢, — ¥ a’salso asimple function Vn.
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3.4 EGOROFF’S THEOREM

Theorem Statement (Assume E has finite measure)

Let {f,} be a sequence of measurable functions one that converges

pointwise on E to the real valued function f. Then for each €>0
there is a closed set F contained in E for which {f,} — f uniformly

onF and m(E/F)<e€.

Proof :

Since f, — f pointwise on E, for €>0, and x€ E,3K € N such that

()= f ()| <EVIZK oo, (1)

Since we want to get a region of uniform convergence, we
accumulate all x € E for which the same N holds for a fixed E.

For any pair k & n define
n 1.
E; :{xGE:‘fj(x)—f(x)‘<;, V]EK}
Not all E; are empty otherwise it will contradict pointwise
converges of {f,} Vx€E.

~.* f, and f are measurable = £} is measurable.

Note that from fixed n
E/CE/ and | JE! =E
k=1

.. By the confinuity of measure.

m(E)= lim m(E,f)

K—o0

~m(E) is finite, i.e. m(E)<oc, for the above, €>0, such that
€

m(E)—M (E}) <
=m (E / E; ) < % by countable additivity).

By construction for each x € £/

Measurable Function
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Analysis II Let |4 = ﬂ E]

We show that f, — f uniformly on A

n

1
Let €> 0 choose n, e N—<e
1

By (2)

1 n,
\fj (x)—f(n)\ <— ¥, >k, on E

0

... A g EK(;IO

=1/, (0)=f(n)] <<€ ¥, 2k, on A

n,
. f, — f uniformly on A.

Now m(E/A)=m(ENA)
—n(En(U(EL) )
m [O(E (g ) )}

n=

—_

<> m(E/E})
n=1
< Z 2n6+1 :g

Il
iR

n

" E; are measurable and countable intersection of measurable set is

measurable.

= A4 1s measurable.

.3 aclosed subset F of A s.t. m(4/F)< %

~om(E[F)=m((E/A)U(4/F))
=m(E/A)+m(A/F)

S e/ _
<S4 +5h=¢
- f, — f uniformlyon A & FC 4

= f. — f uniformly on F.
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Examples 4 : Let f be a simple function defined on E. Then for each
€>0, there is a continuous function g on R and a closed set F
contained in E for which /=g onF & m(E/F)<e€.

Solution:
Let f be a simple function defined on £ CR

Let f takes the values a,,.....,a, be the distance values taken by ‘f”.

=) ax
i=1
Where E, :{xEE:F(x):ai}
Note that E = UEI.
i=l

" a,'s are distinct = E, 's are disjoint
"+ f is measurable = F, ' are measurable

Let e>0

For each k,1<k<n, E, is measurable = 3 closed subset F, of E,

such that m(E, /F, )< £
n

Let F:UF/

=1
= F 1is closed
m(E/F)=m(ENF°)

oo

k=1

—n|(ENF)

Measurable Function
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<€
Define g: F — R by g(x)=a, if x€F,

" E's are disjoint = F,'s are disjoint gis well defined and f=g¢
on F we now show that ‘g’ is continuous on f then
F'=\JF,F'NF,=¢ and xeF,.

i=k
~.~3 an open interval I C F, containing 'x' INF' =¢
c.g(y)=a,Wel
~le(y)—g(x)=la, —a,|=0<e V eI

.. g 1s continuous at x.
This is true for any x € F
.. g 1s continuous on F.

We can extend this continuous function ‘g’ on the closed set F to a
continuous function on R.

Let the new function be ‘g’ then ‘g’ is continuous on R and g=F
onfand m(E/F)<e.

3.5 LUSIN’S THEOREM

Statement :

Let f be a real valued measurable function defined on E then for each
€>0, there is a continuous function g on R and a closed set F

contained in E for which /=g onfand m(E| f)<€.

Proof :

Let f be a real valued measurable function defined on E.
1) m(E) is finite

. by simple Approximation theorem 3 a sequence {¢,} of simple
function on E such that ¢, — f and |¢,|<|f| on E V,.
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-.for each ne€N there is a continous function 'g,' on R and a
closed set ff conained in E for which ¢ =g on f &

S
2n+1 .

m(E/F,)<
¢, — f pointwise on E
By Egoroff’s theorem

3 a closed set f, contained in E such that {¢,} — F uniformly on
F, and m(E[F,) <.

Let F = ﬁFn
h=0

F is closed as countable intersection of closed sets.
Each ¢, is uniformly on F (- F CF,)
" ¢, 1s continuous

= f is continuous on F

1.€. % 1S continous.

We can extend % to a continuous function ‘g’ on R.

Then f=gonF

and m(E/F)=m(ENFY)

Measurable Function
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3.6 SUMMARY

In this chapter we have learned about

Concept of measurable functions.
Properties of measurable functions
Simple functions & ith Approximation Theorem

Egoroffs Theorem and LUSIN Theorem of Measurable function.

3.7 UNIT END EXERCISE

1. Pure that “every continuous function is measurable”.

2. Show that the sum and Product of two simple function are simple
function

3. Show that if f,[0,00]—R is differentiable, than f' is
measurable.

4. Prove that if f is a measurable function X, than the set
7 (o0)= {x € X‘f(x) = oo} is measurable.

5. Prove that if /:[0,1] — R is continous atmost everywhere than f
is measurable.

6. State and prove Egoroff’s Theorem of measurable function.

7. State and Prove Lusin’s Theorem of real valued measurable
function.

8. If ‘f* is measurable then show that f'(C)is measurable, C € R.

. Va
9. If fis measurable then show that =) is measurable.

10.Show that y, is Measurable if and only if the set A is

measurable.

O O 0 L0
0‘0 0‘0 0‘0 0‘0



LEBESGUE INTEGRAL
Unit Structure :
4.0 Objectives
4.1 Introduction
4.2 Lebesgue Integral of Simple function
4.3 Definition
4.4 The General Lebesgue Integral
4.5 Summary
4.6 Unit End Exercise

4.0 OBJECTIVES

After going through this chapter you can able to know that
e Lebesgue integral

e Lebesgue integral of a simple function

e Lebesgue integral of a bounded measurable function

e The general Lebesgue integral

4.1 INTRODUCTION

We have already learned simple functions, measurable functions.
Now here we are going to discuss. Lebesgue integral on this
function. Lebesgue integral over come on the class of all
Riemannintegrable functions & the limitation of operations. So now
we defined the general notation of the Lebesgue integral on R" step
by step.

4.2 LEBESGUE INTEGRAL OF SIMPLE FUNCTION

Definition :
For a simple function ¢ with canonical representation

¢(x)=>_a,X, defined on a set of finite measure E, we define the

i=l1

integral of ¢ over E by fqb = Zn:alm(El.) :
E i=l
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Example1: Let {E}  be a finite disjoint collection of
measurable subset of a set of finite measure E. For 1<i<n,Let
a, €R.

Ifqﬁ:zn:aixﬂ on E, than fgb:zn:aim(Ei).
i=l E i=l

Solution :

Let ¢ = ZaiXEi s.t. E,'s are pairwise disjoint which may not be in
i=1
canonical form.

Let {bj }I;:l be distinct elements of {a,,.....q,}.
Define F, = J E, where I, :{i:ai :aj}.
i,
Note that F,'s are disjoint.
sm(F) =3 om(E)
k

SO = ijxF_ is a canonical representation of ¢ .
= J

.. By definition fgb = Zk:bjm(Fj)
E J=1

4.2.1 Theorem (Properties of integral simple function)

Let ¢ and W be simple functions defined on a set of finite measure.

Then

1) Linearity : For any 'a'and '3’

[(as+pv)=a o+ [w

E



Proof : Lebesgue Integral

Let =Y ax, and ¥=> b x, be canonival representation of ¢

i=1 j=1
and W respectively.

Cy:AiﬂBj,lgign,lgjgm

then ¢:izm:aix and ¥ = ZZbXC ............... (1)

i=1 j=1 i=1 j=1

.. By definition f¢ ZZam ;) and f\l/ Eme( )

i=1 j=1 i=1 j=I

By (1)

agb—i—ﬁ\lf:i:i:(aai +ﬂbj)xC

i=l j=1

.. By definition

fo@—i—ﬁ‘l/ iZ(aa —l—ﬁb) ( )

i=l j=1

:ii% m(czj)"'iiﬁbj m(Clj)

i=l j=1 i=1 j=1

>3 am(C,)|+8|5-> bm(C,)

i=1 j=I i=l j=l1
=afo+p[w
E E

2) Monotonicity

+0

=

If < ¥ on E then fqbgf\ll
E

E
Proof :

Suppose ¢ <WonE
tst [o< [ W@
fo<f

Let f=0—$>0

..By linearity property
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Analysis 11 f\llgfgb:f(\lf—gb):ffzo

E E E E

3) Additivity :

For any two disjoint subset A4,BCE with finite measure,

fcbzfcb[cb

AUB A

Solution :

[ o= [ oxus

AUB E
= f¢(XA + XB)
= [oxi+ [ ox,

=[¢+[¢

4) Triangle inequality : If ¢ is a simple |¢| and f )

E

< [l4l.

Solution : Let ¢ be a simple function and ¢ => a,x,, be canonical
i=1

representation of ¢ .

Then |¢|= Zn:|ai [, which is a simple function.
i=1

By Definition

f o= Zn:alm (4i)

E i=1

1K

E

< Zn:‘aim (4i )‘ (by triangle inequality)
i=1

Ii;alm(Ai)
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< i|a[|‘m(/1i)‘ Lebesgue Integral
i=1
Sz_;|ai”m(/li)‘
§f|al.|
E
5) f p=Va.e.onE, then [ ¢p= |V
o

Solution : Suppose ¢ =V a.e.on F
Let E, = {x EE;¢(a)= \If(x)}

Then m(E,)=0 and on E/E,;¢p =T

Let ¢=> ax, and ¥=> b, be canonical representation of ¢
P =

and ¥ representation.

.".By definition

f(b = lz::alm(Ai)

:En:al-m(A,- NE,)U(4 UE|E,)
= am(4NE)+ S am(4N(E)E,)

:O+Zn:aim(Aiﬂ(E/E0))
Jo= ]
E E|E,

Similarly

el

E/E,

¢=Von E/E,

;[¢=[¢
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* Lebesgue integral of a bounded measurable function on a set of
finite measure.

We now extend the notion of integral of simple function to a
bounded measurable function on a set of finite measure.

Let ‘f” be a bounded real -valued function defined on a set of finite
measure E. We define the lower and upper Lebesgue integral

respectively, of ‘f* over E to be sup { f ¢ ¢ simpleand ¢ < fon E
E
and inf f\I!:\Ifsimpleande\IfonE}.
E

Since ‘f” is bounded by the monotonicity property of the integral for
simple functions, the lower and upper integral are finite and the
lower integral <the upper integral.

4.3 DEFINITION

A bounded function ‘f” on a domain E of finite measure is said to be
Lebesgue integrable over E if its upper and lower Lebesgue integrals
over E are equal. The common value of the upper and lower
integrals is called the Lebesgue integrals or simply the integral, of ‘f’

over E and is denoted by f f.
E

Example 2 : Show that a non negative bounded measurable function
on a set E of finite measure is integrable E of finite measure is
integrable over E.

Solution : Let ‘f” be a bounded measurable function defined on E.
where m(E) < oo.

..By simple Approximation Lemma
For ne N,3simple function ¢, and ¥, such that ¢, <f<W¥ and

0<w —¢ <.
n

.'.f‘lfn—f(bn:fllfn—(bn<f%:%m(E)
But, sup{ [ 636 simple, s < f}z [, and

inf { [ v w simple, f < \11} <



0< inf{ [ v simple, v > f} _ sup{ [ 616 simple, s < f} Lebesgue Integral
E E

< [v,~ [o,<2m(E)

This is true for any n€ N and m(E) < oo

,',inf{f\lf;\llsimple,‘llzfj
E

:sup{fqb;(bsimple,(ﬁﬁf}

= f1s Lebesgue integrable over E.

Example :

Let ‘f be a bounded measurable function on a set E of finite
measure. Show that if f f =0 then /=0 a.e.
E

Solution : Suppose f f=0and />0

E

tst f=0a.e.
Let £, — {xe E; f(x)>l} then L, (x)< £ (x).
n n

By monotonicity,

f%XEn(x)<ff:0

= L(E)<0
n
=m(E,)=0

But Eoz{xEE;f(x)>0}:GEn

= f =0 a.e. over E.
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4.3.1 Properties of integral of bounded function :

Theorem : Let ‘t” and ‘g’ be bounded measurable functions defined
on a set of finite measure E then

1) Linearity : for any '«' and 3

[(ar+8g)=a[r+8[¢

E

Proof : Let f,g be bounded functions, o,3 € R

tstfaf—l—ﬂg:aff-l-ﬁfg

It is enough tst faf:aff and ff+g=ff+fg

E

If a=0then af =0
= laf=0=a f
Jor=o=e]

Suppose a =0

. f 1s bounded = «af is bounded = «of is lebesgue integrable.
Let a>0

f af = upper lebesgue integrable of 'a f"
E
:inf{f\lf:\lfissimple&\lfza—f}
:inf{af(%):\llsimple&%Zf}
E
:ainf<f(%):%simple,%2f}

E

:ainﬂf(p:qbsimple,(ﬁZf}

E
Let a<0

Similarly for lower Lebesgue integral of a f



.‘.foéf=oéff Lebesgue Integral
E E

We now show that ff+g=ff+fg
E E E

Let ¥, and ¥, be simple functions on E such that, f <V, and
g <V, then ¥, + U, is a simple functionand f+g <V + 7,

.. f and g are bounded = f + g is bounded.
= f+ g is Lebesgue integrable

..By definition
ff—i—g:inf{f\ll;f—i—gS\I/,\Ifissimple}
E
<[o+0,=[v+]0,
E E E
This is true for any ¥,, ¥, simple with f <W¥,and g<V,

= f f + gis lower bound of
1f\111 +f1112;\1/1 > f,¥,>g,¥,0, simple}
E E

= [f+¢g ginf{f\lll + [0, > 0, > 4,00, simpleJ»
E E E
<inf { [wsv,> 1w, simple}—l—inf { [v,0,>¢0, simple}
Sff+fg
E E
.'.ff+g§ff+fg
E E E
For the reverse inequality

Let ¢, and ¢, be simple function for which ¢, < f & ¢, < g on E then

&, +¢, < f+g and ¢, +¢, 1s simple
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[ r+g=sup [6:1+g> 6.6 simple
E E
> [6+4,
E
> [o+ [0,
E E
This is true for any ¢,, ¢, simple with f>¢ & g> ¢,

= ff+g is upper bound of
E

if@ +f¢2; | §f,¢2 §g9¢1’¢2 Simple}
:iff+g2w4fﬁ+1@ﬁﬁiﬂ%ﬁ&@@ﬁ%ﬂ%

Zsup{f¢ﬁﬂfo#ZﬂMPk}+SupL[¢ﬁ¢2Sgu%ﬂmpkj
<[r+]e E
;}f+;2ff+fg

ng+g=Zf+Zg

2) Monotonicity : If f <g onE, then f f< f g
E

E
Proof

Suppose f and g are bounded mesurable function on a set E of finite
measurable function and f<g

st [1< g
E E
Leth=f—-g>0

= h 1s non-negative bounded function.

..By linearity

Jer]r=femr=p



. h isbounded & 7>0 Lebesgue Integral

= h> V¥ where W =0 simple function

But fh = sup{f U; simple, U < h}
E E

= [h> [w=0%m(E)=0
.'.fg—ff:fhzo
Afngf

3) Additivity : For any two disjoint subsets, 4,BC E with finite
measure.

[r= ff+ff

AUB

Proof :

Let ‘f* be bounded measurable function on a set E of finite measure
and A,B disjoint subsets of E.

st [ f= ff+ff

AUB
*. f 1s bounded measure.

= fXaus>Sf X4 X5 are bounded measurable functions.

ff foUB ff X4+ X5)

AUB
foxA+fxB

—ffo+ffxB
[r= ff+ff

AUB
4) Triangle inequality : Let f be a bounded measurable function on a

[

set of finite measure E, Then
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Proof :

Let f be bounded measurable function on a set E of finite measurable

= | /] is measurable and bounded on E.
Note that
sl <A

.. By monotonicity and linearity

—[Ms[fs[m
[fS[m

Example :

=

Let {f,} be a sequence of bounded measurable functions on a set of

finite measure E. Show that if f — funiformly on E, then
lim [ £ =[f
1]

Solution : Let {/,} be a sequence of bounded measurable function

on a set E of finite and f, — f uniformly on E

st fim [, = [ f
E

ie. [f,=]r

" f, — f uniformly on E

= foragiven €>0, 3, €N

VXGE,fn<x)—f<x)‘<%1(E)‘v’n2no
ie. f—f|<iVn>n on E

n m(E) (]
For n>n,



Now [ o f |- -1
<
St

1=

By definition
Sdim | f =] f.
|

n—oQo

Example S :

Show by an example that the pointwise convergence alone is not
sufficient to the passage of the limit under the integral sign.

Solution : Example

Let /=0, function on £ =|0,1]
1
Let ¢, :leo,zl—m as k— oo
. ¢, — f pointwise

4]

=1

fqbk:K.m

=K
[r=

Jo AL

Example 6 :

1
k

Let f'be a bounded measurable function on a set of finite measure E.
Assume g is bounded and /' —g a.e. onE,

SMwmmff:fg
E E

Lebesgue Integral
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For an extended real-valued function ‘f” on E, the positive part f*
and the negative part /= of f defined by

T (x)=max{f(x),0}and

[ (x)=max{-f(x),0}vxCE

Then f* and f~ are non-negative functions on f
f=f"—f onEand |f|=f"+f onE

Thus f is measurable iff /" and /= are measurable.

Example 7 :

Let f be a measurable function on E, show that /" and f  are
integrable over E iff |f] is integrable over E.

Ans. Suppose f* and f~ are integrable
:>ff+<oo&ff7<oo
E E
But |f|=/"+ /"
= [=[r+r=[r+[r<c
E E E E
.| f| is integrable

Conversely, suppose |/]| is integrable
= f | /] < o0
E

But /" <|f| & f~ <|/f]

:>ff+ §f|f|<oo:>f+ is integrable
E E

Similarly /= is integrable.
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Definition :

A measurable function f on E is said to be integrable over E if | f | is

integrable over E i.e. f | /] <oo.If f* is integrable over E, then we
E
define the integral of ‘f” over Eby | f=| f"— | f~
g f

Example :

Let ‘" be integrable over E. Show that f is finite a.e. on E and
ff:ff where E, CE and m(E,)=0

E[E,
Solution :

‘f” is integrable on E

= | /] is integrable
:>f|f|<oo
E

Note that | /| is non negative integrable function.

We now show that | /] is finite a.e. on E.

()] =oc}

=N{x€E; f(x)>x}

Note that {

={

But by chebychev’s Lemma ............................ (*)

m({

.| f| is integrable, f|f| is finite
E

f(x)‘: } {xGEf >n}‘v’n

>n‘)

i.e. f|f|<oo
:>m({x€E; (n)‘<n}):0
:>m({xEE; (n)‘zoo})zo

Lebesgue Integral
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Analysis II = ‘f(x)‘ is finite a.c. on E

LS

, we get
f is finite a.e. on E
Let E,CE s.t. m(E,)=0

..By definition
Jr=lr-]r

= f AR f f~ (. f"&f are non-negative integrable

£IE, £E,
functions)

=[(r=r)=[r

EJE, EJE,
Example 9:
Define f(x):% 0<x<l
=0 x=0

Show that f is Lebesgue integrable on [0,1] and ]‘%dx: 3. Find
also f(x,2) 0
Solution :

W—)OO as x—0

So f'is unbounded in [0,1] its Lebesgue integrability define

I .. 1
x,n)=—= 1f —<x<I1
f( ) IR R

3/2

=nif O<x<l/n

=01fx=0

152

Now Jf(x,n)dx: ff(x,n)dx—i—]f(x,n)dx

1 52
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by definition of the Lebesgue integral of on bounded functions
1 1
[ f(x)dx=tim [ f(x.n)dx

n—oo

0 0
2
=lim|3——
n—»oo[ ‘/n]
=3

Lebesgue integrable define for n =2

f(nz):—l—if—Ls<x<1

2/3 2/3 — 7 —
X/ Z/

=2 if0<x<%
z

=0 1fx=0

4.5 SUMMARY

In this chapter we have learned about

Introduction concept of Lebesgue integral.

Lebesgue integral of complex valued Measurable functions

Lebesgue integral at a simple function.

Lebesgue integral on bounded Measurable function general
Lebesgue integral

4.6 UNIT END EXERCISE

1. Show that for a finite family {f,} = of measurable functions

n=1
with common domain E, the functions Max{f,...f,} and
Min{f,....f,} also are measurable.

2. Show that the sum and product of two simple functions are
simple.

Lebesgue Integral
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10.

1.

12.

1
1 .
. If fer'[0,1]find }L%[Klog

. For every non-negative and measurable function f on [0,1] then

show that ffdm:inffgbdm.

[0,1] [0.1]

Prove that a measurable function f(x)L'[0,1] if and only if

i2”m{x€[0,l];

n=1

f(x)‘22n}<oo

/()
KZ

1+ dx

Let f be a Lebesgue integrable function on X use the positive and
[ £ax< [|f]ax.

Let f be a non-negative measurable function on X and suppose
that f < M for some constant M prove that f fdx < f | f|dx for
E X

negative part of f to prove that

Calculate Lebesgue integral for the function

()]

1 where x is rational

2 where x is irrational
5

Evaluate f f(x)dx if
0

00<x<«l1
f(x)=1{1 {1<x<2}U{3<x<4}
2 {2<x<3}U{4<x<5}
by using Riemann and Lebesgue definition of the integral.

Show that if f is a non-negative measurable function then
f=0a.e. onasetAiffffdxzo
A

If f(x)=1/xif0<x<1

=9 then f is not Lebesgue integrable in [0,1]

Let F be a non-negative measurable function on yand suppose
that f < M for some constant M. Prove that f fdu<mp(E)for
E

any measurable E C y.

O O 0 0
0‘0 0‘0 0‘0 0‘0



CONVERGENCE THEOREMS

Unit Structure :

5.1 Introduction

5.2 Measurable Functions

5.3 Lebesgue Theorem on Bounded Convergence
5.4 Limits of Measurable Functions

6.5 Fatou’s Lemma

5.6 Lebesgue integral of non-negative measurable function
5.7 The Monotone Convergence Theorem

5.8 Dominated Convergence Theorem

5.9 Lebesgue integral of complex valued functions
5.10 Review

5.11 Unit End Exercise

5.1 INTRODUCTION

In this section we analyze the dynamics of integrability in the case
when sequences of measurable functions are considered. Roughly
speaking a “convergence theorem” states that integrability is
preserved under taking limits. In other words, if one has a sequence

(f,)", of integrable functions, and if ‘f* is some kind of a limit of

the f 's then we would like to conclude that ‘f* itself is integrable,
as well as the equality f f=lim f f, such results are employed in

two instances.

i) When we want to prove that some function ‘f” is integrable. In

this case we would look for a sequence (f,)” , of integrable

n=1"

approximation for f.

i1) When we want to construct and integrable function in this case,
we will produce first the approximates and then we will examine
the existence of the limit.

The first convergence result, which is some how primote, but very
useful in the following.

91



Analysis II

92

5.2 MEASURABLE FUNCTIONS

Theorem :

Let (X,4,1) be a finite measure space, let G(C—(o,oo)) and let

f,: X —[0,9],n>1 be a sequence of measurable functions satisfying.

) fi>f>..20

2) lim f, (x)=,Vx € X Then one has the equality }g[fn dx=0.

Proof :

Let for each >0 and each integer n>1, the set
Ag ={x€ X,; f,(x) >€} obviously, we have 45 c4,Ve>0,n>1we
are going to use the following case.

Claim1:

For every €> 0, one has the equality lim u(Af) =0.

n—o00

Fix €>0, Let us first observe that (a) we have the inclusion

Second using (b) we clearly have the equality ﬂA,f =¢. Since pis

k=1
finite using continuity property we have

lim u(Af)zu[ﬁA,?]:uw):o

n—oo

Claim I1 :

For every €>0, and every integer n>1, one has the inequality
ngfnduga,u(Af)%—eu(x).
X

Fix € and n and let us consider the elementary functions.

where B = X/ A" obviously, since u(x)<oo the

€ _
h, —axA%—i—ExA;E

function %5 is elementary integrable. By construction we clearly
have 0< f, <h®

n >

so using the properties of integration, we get



0< [ frav< [hide=apn(4;)+ e p(5°)
Sau(Ae)+Eu(X)

Using claim I & 111 it follows immediately that

n—oQ

0<liminf [ f,du<limsup [ fdu<ep(X)
X X

Since the last inequality hold for arbitary €>0, we get
lim | fdu=0

n—oo

X

5.3 LEBESGUE THEOREM ON BOUNDED
CONVERGENCE

Statement :

Let {f,}be a sequence of functions measurable on a measurable
subset A C[a,b]such that lim f,(x)= f(x)then if there exists a

constant M such that ‘ a (x)‘ < M for all ‘n’ and for all ‘x’, we have

}Lr?o ﬁl(x)dx:ff(x)dx.

Proof :

- lim £, (x)= f(x) and

n—oo

L)< m

= ‘ f (x)‘ <M
The function ‘f” is bounded and measurable

Hence Lebesgue integrable.

Now we shall show that

lim
n—o0

A

fn(x)—f(x)‘dxzo
For a given €>0, we define a partition A into disjoint measurable

sets A, 's as follows :

A ={x:|fi, - f]Zelf, - f]<eV, =k} K =1,23,...

Convergence Theorem
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Analysis 11 In particular,

4 ={x:|f, - fl<en=123,..}
A2:{x:|f1—f|2€;fn—fn<€;n:2,3,4, ..... }
Clearly,
AzOAk:[OAk]U[ D Ak]
:IJnUQn
m,=m(P,UQ,)=mP, +mQ,
Now [|f, = fldx= [1f,~ flax+ [1f, = flde ccooovrrnne. (1)
A B, O,

For each ‘n’, we have

f,— f]|<€ on P, and |f, — f|<|f,|+|f|<2m on Q,

Thus, f

A

f, = fldx <€ mP,+2M mQ,

As n— o0, limmP, =mA and limmQ, =0

n—oo n—o0o

Thus, [/, ~ f|dx <€ ma
A

€ being an arbitrary value

.‘.}Lngofﬂ(x)dx:ff(x)dx

Example 1 :

Verify Bounded Convergence.

Theorem for the sequence of functions
f = ! ;0<x<lneN.

2]

( 1/)n <1Vn and Vx
1+

Each f, being bounded and measurable, the limit function.

1, (x) =
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It 1s also bounded and measurable. Now

JR o 7
0

1

=n

AN
n 1+
= Yz

1+ 1)

(n+1)
= lim 1— n
n%oo(n_ ) [n+1]n
n
=1-1
e
_e-l
e
Similarly,
1 1 1 1
li =|—dx=|e"
lim xndx fexdx fe dx
0 1+ 0 0
)
—[-e7] = 1_1]26_—1
0 e e

Hence Bounded convergence theorem is verified.

5.4 LIMITS OF MEASURABLE FUNCTIONS

If f,:R—[—00,00](n;1,2,....) is an finite sequence of functions then
we say that f:R—[—oc,00] is the pointwise limit of the sequence
(f,), if wehave f(x)=lim f, (x) for each xeR.

Convergence Theorem
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For any sequence f,:R —[—o0,00| we can define limsup f, as the

n—oo

function with value at ‘x’ given by

sup f, (x)

k>n

limsup f, (x)= lim

Something that always makes sense because sup f, (x) decreases n
k>n

increases or atleast does not get any bigger as n increase. Suppose

that {/,} is a sequence of real number. Let A be the set of numbers

such that f, — f for some subsequence f, of f,.

. f 1s called a limit point of f,, so A is the set of all limit points of
{f,}. Then supremum and infimum of A are denoted by the
following liminf f, =inf 4, limsup f, =sup 4.

n—oo

5.5 FATOU’S LEMMA

Statement :

If {/,} is a sequence of non-negative measurable functions, then for

any measurable set E.
timinf [ f, dxzf(liminffn)dx
E E

Proof : We write f(x)= liminf f (x)

n—o0

We recall that for any x, liminf /, (x)=infinf f, where Ex is the set
of all limit points of £, (x).

. /. — f pointwise convergence on E
= f. — f pointwise on %,m(El)zo
. f,Af pointwise on E,

""E,CE and m(E,)=0

We may assume f, — f pointwise on E

f,'s are non-negative measurable and f, — f

= f 1s non-negative and measurable.



Now to show that [ /< liminf [ /,
E

n—oo

E

Let h be a bounded measurable function of finite support such that
O<h<f

= m(E,)<oo where E, {xEEh 10}

-~ h 1s bounded choose M such that h(x) <M onE for neN Define
h, =min {h, f,}.

Clearly 4, >0 is measurable bounded function and 4, <M . We can
now show that 4, — a pointwise on E,.

For x € E, h(x)< f(x)
Casel :

h(x)< f(x)
= f(x)—h(x)>0
- f, — f pointwise on E for 0 <e< f(x)—h(x)
In, €N such that |, (x)— f(x)| <€ V, >n,
= f(x)—e<f, (x)<flx

)+€
()< f(x)-e< £, (1), =n,
1y (x) = min (b, )= h(x) ¥ >,
= h, — h pointwise on E,
Casell :

h(x)=f(x)
Then h, (x)= f,(x) on f(x)Vn
" f, — f pointwise on E,
= h, — f = h pointwise E,
By bounded convergence Theorem

For the bounded sequence {A, } restricted to E,

Convergence Theorem
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We have lim | 74, f h

n—oo

< lim [, = lim h_fh fh
E
[ h,=0,0n E/EO ,h = Oon E/E,)

[h=1im [, =timint [, <liminf [ ,
E T £ £

This is true for any bounded measurable function with finite support
such that 0 <A< f

*. By definition of f f

fretma [

5.6 LEBESGUE INTEGRAL OF NON-NEGATIVE
MEASURABLE FUNCTION

Definition :

Let f be a measurable function defined on E. The support of ‘f” is
defined as sup( f {x €E; f(x)= 0}

Definition :

A measurable function f on E is said to vanish outside a set of finite
measure if 3 a subset E, of E for which m(E)<co & f=0 on

E/E,. It is convenient to say that a function that vanishes outside a
set of finite measure has finite support.

..We have defined the integral of a bounded measurable function ‘f’
over a set of finite measure E. But m(E)=ococand f is bounded and

measurable on E with finite. Support we can define its integral over
E by ff ff where m(E,)<ooand f=0on E/E,.

Definition :
For a non-negative measurable function f on E we define integral of

‘f* over E by f =sup f h:h bounded; measurable of finite support
E E

and 0§h<f0nE}.



Chebychev’s Inequality : Convergence Theorem
Statement :

Let f be a non-negative measurable function on £ CR then for any
A>0.

m{xEE;f(x>2A}§§[f

Proof :
LetE, ={xcE: f(x)> )}
Casel:

m(},)=oo for each neN define E = E, N[—n,n]|. Then ¥ =Xy, .
Then ¥, is bounded measurable function

A (B)=[w, and w, < f
E

Note that EY <E\"' and | JE} = E,

n=1
..By continuity of measure.

o=\, (E,)=lim ), (E})

n—oo

=1lim [,
n—oo

E

V¥, isboundedon E and ¥, < f

.".by definition f S, we get
E

929



Analysis II

100

CaseIl: m(E,)<oo

Define 2=y, then h is bounded measurable function 4 < f

.. by definition of f /. weget Am(E f h< f f

1
lef

'.'m{er;f(x)z)\}SijE‘f

5.7 THE MONOTONE CONVERGENCE THEOREM

Statement : Let {/,} be an increasing sequence on non-negative

measurable functions on A. If lim f, (x)= f(x) then lim f 1= f f.
OO A A

Proof :

Let{f,} be an increasing sequence of non-negative measurable

functions and lim f, = f(x) ie. it is convergent at pointwise to

fon A.

n—o0

Now to show that lim | f, = f f.
A

. f,— f pointwiseon Aand f, < f  VneN

= f <fV,onA

:>ffn§ff0nA
=ﬂwfﬁ§ff

gy@fﬁgff .................................. )

By the Fatou’s lemma

f < lim inf f .................................. (D)

n—oo



From I & II we get

[ f=timint [ f,=limsup [ ,
A A A

n—o0

lim [ h= )1

5.8 DOMINATED CONVERGENCE THEOREM

(Generalisation of Bounded Convergence Theorem)

Statement : Let {/,} be a sequence of measurable function on E.

Suppose there is a function ‘g’ that is integrable over E and
dominates {/,} on E in the sense that |f,|<g on E for all n. If

f, — f pointwise almost everywhere on E,then f is integrable over
Eand lim | £, = | f.

5]
Proof :

g

<gV,onEand f, — f pointwise on E.

=|f|<g<|g]

= [171< [lel <o

= f is measurable

I

<gand |f|[<g=g—f,>0 and g— f, > g— [ pointwise
..By Fatou’s lemma
fg—fgliminffg—fn
<liminf [ 6— | f,
=]
< | 6—limsup | f,
o tman ]

Similarly g+ f, >0 & g+ f, — g+ f pointwise on E.

.. By Fatou’s lemma,

fg—i—fgliminffg—i—fn
E E

Convergence Theorem
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fg+ff§fg+liminfffn

From I & II we get
liminf [ f, =limsup [ 1,~ [ f
E E E
i [f=[r
1=

Example 2 :

Check the convergence of

£ (x)= ln;x
=0 ;|x|>n
Solution : Let fn(x):% dxl<m

=0

Then f, (x) — Ouniformly on R but f fdx=2; n=1,2,3,

lim f, (x)= hml—O where |x|<n

n—oQo n—oo n

=0 when |x|>n

. lim £, (x)=0 uniformly on the whole real time.

n—o0

2mm

Now,

Whenever M > —
2¢€

Now ff dx_f()dx+f/dx+f0dx—

This emplies that uniform converges of { f, (x)} i1s not enough for

lim [ £ = [ limf,

n—oQ n—o0o



This equality is Lebesgue integration.

In general, is only due to dominated convergence of the sequence

{£, ()}

..However on the set of finite measure uniformly convergent
sequence of bounded function are bounded convergent.

5.9 LEBESGUE INTEGRAL OF COMPLEX VALUED
FUNCTIONS

If fis a complex valued function on ECR"we may write as
f(x)=u(x)+id(x) where u & vare real functions called the real and

imaginary part of f.

A complex valued measurable function, f:u+iv on E is said to be
integrable if f‘f(x)‘ :f,/u(x2>+v(x2) <oo and the integral of ‘f’
E E
is given by ff:fu—l—ifv
E E E
Theorem :

Show that a complex valued function is integrable if and only if both
of its real and imaginary parts are integrable.

Proof :

Suppose f:u-+iv is integrable

:>f|f|<oo
ifm<oo
u<|u|=i? <N +v?
= [lu]< [V +v* <o
= u is integrable
Similarly vis integrable

Conversely

Suppose u & v are integrable

:>f|u|<oo and f|V|<oo

Convergence Theorem
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By Minkowski’s inequality

= 407 <N+ =]+
:>f|f|§f|u|+f|v|<oo

.. f 1s integrable.

Definition :

A measurable function f:E — C,E CR” is said to be an L' function

if | f | < 0.
/
Note : L' (R”) = {set of all complex valued function on R"}

Definition : A family G of integrable function is dense in L' (R”) if
forany f €U and €>03g € G so that f|f—g|<€
E

Example 3:

Show that the continuous function of compact support is dense in
L'(R").

Solution :

To show that : The continuous function of compact support is dense
in I (R”).

i.e. tst forany f €L and €>0.

3 a continuous function ‘g’ on R" with compact support such that

|/ —gf.<€ ie. f|f—g|<€_

Let feL(R")

We may assume ‘f* is real valued becaue we may approximate its
real and imaginary part independently.

In this can we write = f"— /.
Where />0 and /= >0
.. It is enough to show the result f >0.

.. f >0 can be approximated by integrable simple functions.



It is enough to show that the result for an integrable simple
functions.

.4, integrable simple functions is a Linear combination of
characteristic function.

It is enough to show for f =y, where E is a measurable set of finite
measurable.

Let e>0

..E is measurable 3 a compact set k and an open set 2 of R"” such
that K CECQ and m(Q|k) <€

By Urysohn’s Lemma

3 a continuous function g:Q — & such that g=0on Q|k & g=1
on K

.".g 1s continuous function with compact support

~|lge=f]=lg—x:|=1 Elkand |g—x,|=0 on outside E|k

.'.j:|g—f|:flzm(E|k)§m(Q|k)<€

E/k

..3 continuous function of compact support such that | g—f | <e€.
-, Continuous function of compact support is dense in L (R”) .
Example 4 :

Let feLl(]R")showthat Uf‘éfm

Solution : Let f € L' to show that ‘ff‘ §f|f|

Let z= f f

If z=0 then clearly f|f|20:z:|z|:Uf‘

o= f1r

Ifz=0

| vl

Define a =
&

Convergence Theorem
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.‘.|a| =1 and az = |Z|

.'.‘ff‘:|z|:a22aff:faf
Let af =u+iv

By definition

u <lu| <|af|=|allf|=]/]

By (I) and (II)

U‘f‘ﬁj‘m proved

Example S :

Show that L'(R") is complete in its metric.

Solution :

Let {/,} be a Cauchy sequence in L (]R") for €>0,3n, €N such
that | £, — f,
.. foreach keN

 <EVn,n=n,

We can choose n, such that for m,n>n, ||/, — f,

L and
1<? an nk<nk+1

then the sequence f, has the property that

1
f""kﬂ _'f;"k <2_k

Construct the series
f(n)= 1, (X)+ 1, (x)= 1, (x)+ 1, (x)= 1, (x)+-...
= ()2, (5) £, ()



and g(x

(20

_ )‘ Convergence Theorem
”k

”k+l

Let S, (g) denote the k" partial sum of the series g then.

k+1

W+

Sk(g)_

o )= 1, ()

Then {Sk (g)} is a sequence of non-negative function converges
pointwise to g.

S, (8)< S (g)Vn

.. By Monotone Convergence Theorem g 1is integrable and
fim ['5.(s)= [ =

Note that |f|< g

:>f(f)§fg<oo (" gis integrable)

= [ is integrable

= [ is L'(R")

Let S, (/) denote the k" partial sum of the series of f, then

K-1

S (f)=1, (X)X (o, (¥)= 1, (x))

i=1

=/, (%)
8, (f)— f pointwise
= f,, — f pointwise
Now we show that = f, — f in L (]R")

Note that

By Dominated convergence Theorem

;}g?ofuf_f”k 1:

o f, = f in L'(R")
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. f, 1s Cauchy and has convergent subsequence f, converges of f.
We get f, — f
.. Every Cauchy sequence in L' is convergent.

.. L' is complete in its metric. Proved

5.10 REVIEW

In this chapter we have learnt following points.

e Limits of Measurable function

e Bounded convergence theorem of measurable function
e Monotone convergence theorem of measurable function.
e Fatou’s lemma of measurable function

e Dominated convergence Theorem

e Complex valued measurable function

e Compactness of L (R”)

5.11 UNIT END EXERCISE

1. show by an example that the inequality in Fatou’s lemma may be
a strict inequality.

Example : Consider a sequence of function (f,) . defined on [0,1]

nx
by f, (x)= - x€(0,1].

i) Show that (/) is uniformly bounded on [0,1] and evaluate
. nx
lim | ———dx

— 00 2,2
n MH—n X

ii) Show that (f,) doesnot converge uniformly on [0,1]

Solution :
1) For all neN for all x€[0,1] we have 1+n°x’>2nx>0 and
1+n*x>>0

Hence 0< f, (x)= 1+n:2x2 S%




Thus f(x) is uniformly bounded on [0,1] Convergence Theorem
Since each f, is continuous on [0,1]

. f is Riemann integrable on [0,1]

In this case Lebesgue integral and Riemann integral on [0,1].

Consider
nx I nx
——dx= | ———dx
f1+n2x2 0 14+ n’x?

o

Put 1+ n°x* =¢

1 1+n?

= — 1/t dt
2xJo /

10g(1—|—n2)

1
dex:Elog(l—i—nz): o

2.2
[O’I]H—n X

Using L' Hospitalrule we get

log (1+ n?
log —g< ) =0
n—o0 27’1
Hence lim de =0

S 2.2
n ml—kn X

ii) For each x€[0,1]= lim %:
'HOO[OJ]H—n X
Hence f, — f pointwise on [0,1]
Now to show that f does not converges to f =0 uniformly on
[0,1].

We find a sequence (x,) in [0,1].

Such that x, -0 and f,(x,)4f(0)=0 as n— oo, taking x, _1
n

then f, (x):%.

Thus limfn(xn)zézf(O)zo

n—oo
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Evaluate lim [l-l—x] e Zdx

n—oQ n

Solution : We know that

lim [1—}-1] =e¢" and
n

n—o00

n n+l
1+1] [1+ ] .
n n+1

Also we have

1+£] <e'
n
.'.[l-l—f] e <e™

n

. by Dominated convergence then to the function

1+E] ¢ with
n

—X

the dominating function e

n

L lim [H—f e P dx

n—0o0 n

=Ilim | | ,x 1+£ e dx
) [0.1] n

0

hml x[ ] e dx

2) Show by an example that monotone convergence theorem does
not hold for a decreasing sequence of functions.

3) Letfn(x)::iz;0<x<n
n
=0 ;otherwise

Evaluate lim f f,(x)dx and f lim f, (x)dx are these equal?

n—0o0

4) g(x):O 0<x<l

110



S)

6)

7)

8)

9)

10)

11)

fzk() (x) <x<l1
f2k+1<) g(l )OS <l

To show that limin f dx> lim inf £, ( )

n—00 n—00
0

If f;X—[0,00] is measurable for n=12,.. and
an )(x € X) then show that ffdr—fo dr .
n=1 pur

Use the dominated convergence theorem to find

lim f( )dx where f,(x)= Vx

n—00 1+ nx’

If a, <b, for all n, then show that liminfa, <liminfb,.

n—oo n—o0

State and prove bounded convergence theorem of measurable
function.

Use convergence theorem to show that
f(t)= f e cos(mt)d u(x) is continuous.
[0,00]

Use the dominated, convergence theorem to prove that

limnf Jxe™dx =0

n—o0

Use the dominated convergence theorem to show that

| eyl e
’}Lrglo [l-l——2 dx:fe 2dx
R h R

o O O 0
0.0 0.0 0.0 0.0

Convergence Theorem
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SPACE OF INTEGRABLE FUNCTIONS

Unit Structure

6.0 Objective

6.1 Introduction

6.2 Signed Measures

6.3 Hahn decomposition theorem

6.4 Complex valued Lebesgue measurable functions
6.5 The space L' () of integrable functions

6.6 Let’s sum up

6.7 Unit end exercise

6.8 List of References

6.0 OBJECTIVE

After going through this chapter you will able to know:

Signed measures is to generalize the concept of a traditional measure
in measure theory to allow for negative values.

The Hahn decomposition theorem is to provide a fundamental result in
the theory of signed measures.

Studying complex-valued Lebesgue measurable functions is to extend
the notion of measurability and integration to functions whose range is
the set of complex numbers.

Studying the space L* (1) of integrable functionsplays a central role in

measure theory, functional analysis, and various fields of mathematics
and applied sciences.

6.1 INTRODUCTION

Till now our measures have always assumed values that were greater than
or equal to 0. In this chapter we will extend our definition to allow for both
positive and negative values. signed measures extend the concept of
measures by allowing them to take both positive and negative values.

This decomposition provides a clear separation of the positive and
negative components of the signed measure, enabling a deeper
understanding of the measure's behaviour on different subsets of the space.
The sets 4 and B are unique up to null sets, meaning that any measurable



subsets of 4 and B with measure zero can be added to or removed from A4
and B without affecting the positivity/negativity of the measure.

The space L' (n) of integrable functions is a fundamental concept in
measure theory and functional analysis. It provides a rich framework to
study functions that are Lebesgue integrable with respect to a given
measure | on a measurable space. The integration theory based on the
Lebesgue integral allows for a broader and more flexible class of functions
compared to the traditional Riemann integral.

6.2 SIGNED MEASURES

A signed measure is a mathematical concept used in measure theory,
which is a branch of mathematics that deals with the study of measures.
Measures are used to assign a notion of size or volume to subsets of a
given set. In traditional measure theory, measures are non-negative,
meaning they take values in the real numbers and are non-negative for all
sets. However, in certain applications and contexts, it becomes useful to
work with more general measures that can take positive or negative
values, and these are referred to as signed measures.

Definition: Le (X, A)beameasurablespace.Asignedmeasureon (X, A)is a
function z: A — R such that

i)  p takes on atmostone of the values — o or oo.
i)  w(@)=0.

iii) If {E,}”=1cAis the sequence of pairwise disjoint set, then
w|UE, =3 uc,)
n= n=1
Additionally, a signed measure can be decomposed into its positive and
negative variations:

i)  u" =Max{u(E),0}is positive variation.
i) 4" = Max{-u(E),0}is negative variation.

With these variations, the signed measure can be written as the difference
of two non-negative measures:

HE)=p" +

It's important to note that a signed measure can take the value of positive
infinity, negative infinity, or be finite.

6.3 HAHN DECOMPOSITION THEOREM

The Hahn decomposition theorem plays a significant role in understanding
signed measures and provides a powerful tool for analysing their
properties and behaviour. It highlights the duality between positive and
negative parts of a signed measure, enabling deeper insights into the

Space of Integrable
Functions
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structure of measures and their applications in various mathematical
contexts.

The Hahn decomposition theorem is valuable in several ways:

1. It allows us to analyze the positive and negative parts of a signed
measure separately, which can be beneficial in various applications.

2. It is a key step in proving other important results in measure theory,
like the Jordan decomposition theorem.

3. It is used to establish the Radon-Nikodym theorem, which is a
fundamental result connecting measures and integrals in a more
general setting.

To prove the Jordan decomposition of a signed measure, we first show
that a measure space can be decomposed into disjoint subsets on which a
signed measure is positive or negative, respectively. This is called the
Hahn decomposition.

Definition:Let x4 be a signed measure on (X, A). A pair {P, N} of
elements in A for which P is positive N is negative, PUN = Xand PN N
= ¢is called a Hahn decomposition of X with respect to u.

Radon-Nikodym theorem for signed measures:

Let (X,M, 1) be a o- finite measure space and v a finite signed measure
on measurable space (X,M) that is absolute continuous with respect to x .
Then there is a function f that is integrable over X with respect to x and

WE)=], fdu forall EeM .
Function f is unique upto a set of z measure zero.

Definition:Two measures g and v on measurable space (X,M)are

Mutually Singular if there are disjoint 4 and B in M. For which
X=AUB and u(A)=v(B)=0

Definition: The decomposition of signed measure v on measure space
(X,M) into the difference of two (nonnegative) measures given in the

Jordan Decomposition Theorem is called the Jordan decomposition of v

Lemma: Suppose that v is a signed measure on a measurable
space (X, A4). If A €A and 0 <v(4)< oo, then there exists a positive subset

P c A4 such that v(P)> 0.

Proof:First, we show that if A €A is a measurable set with |v(4)| < o,
then |v(B)| < « for every measurable subset B € 4. This is because v takes
at most one infinite value, so there is no possibility of cancelling an
infinite signed measure to give a finite measure. In more detail, we may
suppose without loss of generality that v : 4 — [—o0, 0) does not take the



value o. (Otherwise, consider —v.) Then v(B)# oo; and if BCA4, then the
additivity of v implies that

v(B) =v(A) — v(A\B)# —o

since v(4) is finite and v(4 | B# .

Now suppose that 0 < v(4) < .

Leto,=inf {v(E) : E €A and E C 4}.

Then —o0 < 6, <0, since gc 4. Choose A C A such that 6, <v(A)) < 6,/2

if o, is finite, or u(A;) < —1 if 6, = —oo. Define a disjoint sequence of
subsets { AjCA :i EN} inductively by setting

8= inf {v(E) : E €A4and E c 4 \U, 4,)
and choosing 4;,c 4\U'| 4, such that

5 <A <1726

if —0 <5, <0, or v(Aj) <—1if §=—o.

Let B=U”, 4, P=A\B.

Then, since the 4; are disjoint, we have
W(B)= D v(4,)
i=1

As proved above, v(B) is finite, so this negative sum must converge. It
follows that v(4,) < —1 for only finitely many i, and therefore o, is
infinite for at most finitely many i. For the remaining i, we have

D w(A4)<1/2).6,<0.
So Z o, converges and therefore 6,— 0 as i — oo.

If ECP, then by construction v(E) > ¢, for every sufficiently large i € N.

Hence, taking the limit as i — oo, we see that v(E) > 0, which implies that
P is positive. The proof also shows that,

since v(B) <0, we have v(P) = v(4) — v(B) >v(4) > 0,

which proves that P has strictly positive signed measure.

Space of Integrable
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Hahn decomposition theorem:

Statement:If v is a signed measure on a measurable space (X, 4), then

there is a positive set P and a negative set N for v such that P U N = X and
P N N = 7. These sets are unique up to v-null sets.

Proof: Suppose, without loss of generality, that v(4) < o for every A € 4.
(Otherwise, consider —v.)

Let m = sup{v(4): A€ A such that 4 is positive for v},

and choose a sequence { 4, : iEN} of positive sets such that v( 4,) — m as
i — . Then, since the union of positive sets is positive,

P= U -, A 1s a positive set.

Moreover, by the monotonicity of v, we have v(P) = m. Since v(P) # oo, it
follows that

m >0 is finite.
Let N= X |P. Then we claim that N is negative for v.

If not, there is a subset A'CN such that (4" ) > 0, so by above Lemma,
there is a positive set P 'Cc4’ with v(P ") > 0. But then P UP ' is a positive
set with v(PUP ") > m, which contradicts the definition of m.

Finally, if P ', N'is another such pair of positive and negative sets, then P |
P'cPNN/,

soP | P ' is both positive and negative for v and therefore null, and
similarly for P '\ P.

Thus, the decomposition is unique up to v-null sets.

Remark: It is generally the case that the Hahn decomposition is not
unique.

In fact, let X = [0, 1] and let A= P(X). If My, is the point mass at 1/2, then
if P={1/2} and N= [0, 1]\ {1/2}, then {P, N} is a Hahn decomposition
of [0, 1] with respect to u. However, £, = [0, 1/2 ] and N, = ( 1/2, 1] is
also a Hahn decomposition.

In fact, if {P, N} is a Hahn decomposition of X with respect to u and if

ME€A is null, then {PUM, N\M} is a Hahn decomposition of X with
respect to u.

Furthermore, if { B, N, } and { P, N, } are Hahn decompositions of X with
respect to u, then

M= PlAPQ = (P]ﬂ Nz) V) (Nlﬂ P2) = NlANQ is a null set.



Furthermore, since £ N Py \ P2, € Py A Pyand £ N P,\ P1 € Py A Py, it
follows that

u(E NPy =pn(E NPy NPy)=pnE N Py) for each EEA.
Similarly, ©(E N N;) = u(E N N; N Ny) = u(E N Ny) for each EEA.

What is true however, as we shall see, is that every Hahn decomposition
induced a decomposition of # into the difference of two positive measures
and that any two Hahn decompositions induce the same decomposition
of u.

Theorem (Jordan decomposition): If v is a signed measure on a
measurable space (X,A), then there exist unique measures v',v : 4 —
[0, 0], one of which is finite, such that

v=v' —vand v' Lv .
Proof:Let X = P U N where P, N are positive, negative sets for v.
Then v (4) = v(ANP), v (4) = —v(4 N N) is the required decomposition.

The values of v* are independent of the choice of P, N up to a v-null set,
so thedecomposition is unique.

We call v" and v~ the positive and negative parts of v, respectively.

The total variation |v| of v is the measure [v| = v' +v . We say that the
signed measure v is o-finite if |v| is o-finite.

6.4 COMPLEX VALUED LEBESGUE MEASURABLE
FUNCTIONS ON R¢

Complex valued Lebesgue measurable functions on R are an essential
concept in measure theory and functional analysis.

Complex valued measurable functions: A function f:R?—>C is

complex -valued measurable if both its real and imaginary parts,
Re(f)and /m(f) are measurable functions.

We then say that f is Lebesgue integrable if the function
|/ (o) = Ju(x)* +v(x)?

(which is non-negative) is Lebesgue integrable in the sense defined
previously.

It is clear that
u(x)| <] £ (x)| and [v(x)| <[ £ (x)|
Also, if a,b>0 ithas (a+b)” <a” +b” so that

| £ ()| < Ju(x)|+ ().
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We can deduce from these straightforward inequalities that a complex-
valued function is only integrable if its real and imaginary parts are
integrable. Then, the Lebesgue integral of fis defined by

| £(x)dx = [u(x)dx +i[v(x)dx

Finally, if E is a measurable subset of R?,and f is a complex-valued
measurable function on E, we say that fis Lebesgue integrable on E if f,,

is integrable on R“, and we define [, £ =] f,,.

The collection of all complex-valued integrable functions on a measurable
subset EC R?forms a vector space over C. Indeed, if f and g are
integrable, then so is f + g, since the triangle inequality gives |(f + g)(x)| <
f(x)| + |g(x)|, and monotonicity of the integral Then, at that point, the
Lebesgue necessary offis characterized by

IE|f+g|du£fE|f|d,u+fE|g|d,u<oo

Also, it is clear that if a € C and if f is integrable, then so is af. Finally, the
integral continues to be linear over C.

Approximation of Lebesgue integrable functions by continuous
functions:

The main concept of the approximation is to demonstrate that a sequence
of continuous functions may roughly approach any Lebesgue integrable
function, both in terms of pointwise and integral convergence. Because
continuous functions are easier to deal with and have a lot of attractive
qualities that make them conducive to analysis, this finding is very
relevant.

Formally, let / be a Lebesgue integrable function on a measurable set
EC R". Then, the approximation theorem states that for any € > 0, there

exists a continuous function g on R" such that the Lebesgue measure of
the set where f and g differ (i.e., {x € E: [f(x) - g(x)| > €}) is arbitrarily
small. In mathematical terms, we can find a sequence (gn) of continuous

functions converging to f almost everywhere on E:
lim [| £ (x) - g, ()] du =0

where u is the Lebesgue measure.

6.5 THE SPACE L*(n) OF INTEGRABLE FUNCTIONS

An important observation about the algebraic properties of integrable
functions is their formation of a vector space. The fact that this vector
space is complete within the appropriate norm is an essential analytic fact.

Definition: If (X, A, u) is a measure space, then the space L'(X) consists
of the integrable functions /:X — R with norm



I f H,} = ”f| dp<oo Space of Integrable
Functions
where we identify functions that are equal a.e. A sequence of functions

{f, e L(X)}
converges in L' , or in mean, to f e L'(X)if

L =fl=1r-,

du—>0 asn— o

We also denote the space of integrable complex-valued functions fi.X— C
by L'(X). For definiteness, we consider real-valued functions unless stated
otherwise; in most cases, the results generalize in an obvious way to
complex-valued functions.

Let us consider the particular case of L'(R?). As an application of the
Borel regularity of Lebesgue measure, we prove that integrable functions

on RY may be approximated by continuous functions with compact
support. This result means that L'(R?) is a concrete realization of the
completion of C.(R?)with respect to the L'(R)-norm, where

C.(R?)denotes the space of continuous functions f :RY — R with
compact support. The support of fis defined by

Suppfz{xeRd:f(x);tO}

Thus, f has compact support if and only if it vanishes outside a bounded
set.

Properties of L' integrable functions:

i)  Measurability: L' integrable functions are required to be
measurable. This means that the set {x: |fix)] >M} must be
measurable for all A> 0.

ii)  Linearity: If x) and g(x) are both L' integrable functions, then any
linear combination of these functions, such as af(x) + bg(x), where a
and b are constants, is also L' integrable.

iii) Triangle Inequality: The integral of the absolute value of the sum
of two L' integrable functions is less than or equal to the sum of their
individual integrals:

[Ift0) + g()| dx <[|fix)| dx +]|g(x)| dx

iv) Dominating Function: If |[f{x)| < g(x) almost everywhere on the
measurable set E, and g(x) is L' integrable, then f(x) is also L'
integrable.

v) Convergence in Measure: If a sequence of measurable functions
{ /., (x)} converges to f(x) in measure, and each function f, (x) is L'

integrable, then the limit function f{x) is also L' integrable:

£,(x) = f(X)|dx =0= [| £ (x)|dx < o0

lim |
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vi) Product of L* Functions: If f{x) is an L' integrable function and

g(x) is a bounded measurable function, then the product f(x)g(x) is
also L' integrable.

vii) Change of Measure: If f{x) is an L! integrable function over a
measurable set £, and there exists a measurable function /4(x) such
that 4(x) > 0 and [A(x) dx < oo, then the integral of f(x) with respect to
the measure defined by /4(x) is also finite.

viii) Approximation: L' integrable functions can be approximated by
simple functions (finite linear combinations of indicator functions).

ix) Density in L': Under appropriate conditions, continuous functions
with compact support are dense in L' space.

Proposition: The space L' (R) is linear (overC) and if fE L' (R) the
real and imaginary parts, Re f, Im f are Lebesgue integrable as are there
positive parts and as is also the absolute value, | f | .

Proof: We first consider the real part of a function f€ L' (R). Suppose
/., €Ec. (R) is an approximating sequence. Then consider g, = Re f,.

This is absolutely summable,

since f|gn|£f|fn| and
2S00 =1,=2.8 =Re f(x)

Since the left identity holds a.e., so does the right and hence Re fEL1 (R).

The same argument with the imaginary parts shows that /m f€ L' (R).
This also shows that a real element has a real approximating sequence and
taking positive parts that a positive function has a positive approximating
sequence.

Indeed, if £ ¢ € L' (R) have approximating series f, and g then h =

f, + g, is absolutely summable,
PAIAEDRIVAEDN]
And

L=, g, =gx)= D h(x)=f(x)+g(x).

&

The first two conditions hold outside (probably different) sets of measure
zero, E and F, so the conclusion holds outside E U F which is of measure
zero. Thus / + g€L' (R). The case of ¢f for c€ C is more obvious.

The proof that |fj €L' (R) if feL' (R) is similar but perhaps a little
trickier. Again, let { f, } be a sequence as in the definition showing that

fEL1 (R). To make a series for |f| we can try the ‘obvious’ thing. Namely
we know that



iﬁ'(x)—)f(x)if Z‘fj(x)‘ <

so certainly, it follows that

if,(x) =] if Y@ <o

So set

g ) =]f)]; g, (x)= ‘Z ﬁzlfi(x)‘ - ‘z ﬁ;}fj(x)‘ vxeR.
Then, for sure,

2. &) =2 1) > i 2|f (0 <o

So equality holds off a set of measure zero and we only need to check that
{g;} 1s an absolutely summable series.

The triangle inequality in the ‘reverse’ form ||v| — |[w|| < |v —w| shows that,
fork>1,

|gk(x)| = S|fk(x)|

Zf_,-(X)

PIWAC

Thus,
PNIEAEDNIVARLS

so the g, ’s do indeed form an absolutely summable series and holds almost
everywhere, so |f] EL' (R).

Riesz-Fischer theorem:

The Riesz-Fischer theorem, also known as the Riesz representation
theorem, is a fundamental result in functional analysis that establishes the
connection between certain types of continuous linear functionals and
elements of a Hilbert space. This theorem is named after the Hungarian

mathematician Frigyes Riesz and the German mathematician Ernst
Fischer, who both made significant contributions to its development.

Theorem: The vector space L' is complete in its metric.

Proof: Suppose { f, } is a Cauchy sequence in the norm, so that || £, — f, ||

— Qasn, m— oo.

The plan of the proof'is to extract a subsequence of { f, } that converges to
£, both pointwise almost everywhere and in the norm.

Under ideal circumstances we would have that the sequence {f, }

converges almost everywhere to a limit f, and we would then prove that
the sequence converges to f also in the norm.
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Unfortunately, almost everywhere convergence does not hold for general
Cauchy sequences. The main point, however, is that if the convergence in
the norm is rapid enough, then almost everywhere convergence is a
consequence, and this can be achieved by dealing with an appropriate
subsequence of the original sequence.

Indeed, consider a subsequence { f ) }:_1
property:
| £ = f. <27, forall k>1

e+l

of {f } with the following

The existence of such a subsequence is guaranteed by the fact that
| £, = ful€ € whenever n, m > N(e), so that it suffices to take

ng = N(2'k). We now consider the series whose convergence will be seen
below,

F@= fu+ 2 (fo, D= £ )

And

g =[S+ 20 £ )= £k ()]
k=1

And note that

f

S

an (X)f s (x)‘ <J

S,

+.:§:j +—j§:27k <00,
k=1 k=1

So the monotone convergence theorem implies that g is integrable, and
since |f| < g, hence so is f. In particular, the series defining f converges
almost everywhere, and since the partial sums of this series are precisely
the f,. (by construction of the telescopic series), we find that

fi(x)=> f(x) aex

To prove that f,, — fin L'as well, we simply observe that |f — S |<gfor

all k&, and apply the dominated convergence theorem to get
[ Sk =S Nl =0 as . k=0

Finally, the last step of the proof consists in recalling that { f, } 1s Cauchy.
Given e, there exists NV such that for all n, m>N we have || f, — f, |<€/2.
If n, is chosen so that n,>N, and || f,, — f|<€/2, then the triangle
inequality implies

1= NI A = L I+ S = i<
whenever n>N. Thus { £, } has the limit finL'.

Hence proved.



6.6 LETS SUM UP

In this chapter we have learn:

e Signed measures are particularly useful when dealing with functions
and distributions that have both positive and negative components or
values. They find applications in various areas, such as the study of
integration with respect to signed measures, Lebesgue-Stieltjes
integration, complex analysis, and the study of distributions in
functional analysis.

e The Hahn Decomposition Theorem addresses the decomposition of a
measurable space into two disjoint sets, where the positive and
negative components of a signed measure are concentrated separately.

e The space L' (n) mathematicians and scientists gain access to a
versatile class of functions that are essential for understanding the
behaviour and properties of integrable functions with respect to a
given measure U.

6.7 UNIT END EXERCISES

1) A function f: R — Ris an element of L' (R) if and only if it is
measurable and there exists FEL' (R) such that | < F almost
everywhere.

2) Show that there arefeL' (RY) and a sequence { f,+ with fn

€L (R?) such that
| f=f. |, — 0,but f (x) — fix) for no x.

3) Show that f * g is integrable whenever f'and g are integrable, and that
H f *g ||L1(Rd)SH f ||L'(]Rd)H g ||L1(Rd) '

with equality if fand g are non-negative.

4) State and prove Riesz-Fischer theorem.

5) Prove that if fand g are integrable functions on X, and |g(x)| < |f(x)| for
all x in X, then f'and g are both in L'(p) if and only if fis in L'(p).

6) Let v be a finite signed measure and let 4 be a measure on (X, M).
Then v < p if and only if for any € > 0 there exists 6 > 0 such that

W(E)| < & when u(E) <.

7) Show that if D is a Lebesgue measurable subset of R then
L,={Eel,:EcD}.

8) Prove that “The space Cc(R") is dense in L'(R"). Explicitly, if
feL'(R?), then for any > 0 there exists a function g€Cc(R") such
that [| /- g ||, <e".
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9) If (X, A, ) is a measure space and v',v : A — [0, o] are measures,
one of which is finite, then show thatv = v" —v™ : is a signed measure.
10) Suppose that v is a signed measure on a measurable space (X, A). I[f A

€A and 0 <v(4)< oo, then there exists a positive subset P € 4 such that
v(P)> 0.
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