
 S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

ANDROID DEVELOPER
FUNDAMENTALS

SUBJECT CODE: USCS407

© UNIVERSITY OF MUMBAI

				

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

June 2023, Print - 1 			

DTP composed and Printed by: Mumbai University Press

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		 Head, Faculty of Science and Technology IDOL,
			 Univeristy of Mumbai – 400098

Course Co-ordinator		 : Ms. Mitali Vijay Shewale			
		 Doctoral Researcher,
		 Veermata Jijabai Technological Institute
		 HR Mahajani road, Matunga, Mumbai

Editor	 :	 Palash Ingle					
		 Research Assistant,
		 Sejong University, Korea.

Course Writers	 :	 Ansari Mohd Shahid				
		 Assistant Professor,
		 Maharashtra College of Arts, Science and 		
		 Commerce Nagpada, Mumbai 400008

		 :	 Shraddha Bhushan Sable			
		 Assistant Professor,
		 S. K. College of Science & Commerce
		 Nerul, Navi Mumbai 400706

		 :	 Ifrah Kampoo
		 Assistant Professor,
 		 D.G. Ruparel College of Arts, Science and 		
		 Comerce, Matunga West, Mumbai 400016

			

Assistant Professor,

.

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor

University of Mumbai, Mumbai
Prof. Prakash Mahanwar

Director,
IDOL, University of Mumbai

Prin. Dr. Ajay Bhamare
Offg. Pro Vice-Chancellor,

University of Mumbai

CONTENTS

Unit No.	 Title	 Page No.

1.		 Introduction to Android Structure..1

2.		 User Input Controls..39

3. 		 Data Transfer and Management...55

4. 		 Data-Saving, Retrieving and Loading..66

5		 Database...78

 S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

ANDROID DEVELOPER FUNDAMENTALS

SYLLABUS

Handling Theme Conflicts, Simple Master Page and Content Page, Connecting

Master pages and Content Pages, Master Page with Multiple Content Regions,

Master Pages and Relative Paths

Website Navigation: Site Maps, URL Mapping and Routing, SiteMapPath

Control, TreeView Control, Menu Control

Unit III

ADO.NET: Data Provider Model, Direct Data Access - Creating a Connection,

Select Command, DataReader, Disconnected Data Access

Data Binding: Introduction, Single-Value Data Binding, Repeated-Value Data

Binding, Data Source Controls – SqlDataSource

Data Controls: GridView, DetailsView, FormView

Working with XML: XML Classes – XMLTextWriter, XMLTextReader

Caching: When to Use Caching, Output Caching, Data Caching

LINQ: Understanding LINQ, LINQ Basics,

ASP.NET AJAX: ScriptManager, Partial Refreshes, Progress Notification,

Timed Refreshes

15L

Textbook(s):

1) Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)

Additional Reference(s):
1) The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill

2) Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

Course:

USCS407

TOPICS (Credits : 02 Lectures/Week: 03)

Android Developer Fundamentals

Objectives:

 To provide the comprehensive insight into developing applications running on smart mobile

devices and demonstrate programming skills for managing task on mobile. To provide systematic

approach for studying definition, methods and its applications for Mobile-App development.

Expected Learning Outcomes:

1) Understand the requirements of Mobile programming environment.

2) Learn about basic methods, tools and techniques for developing Apps

3) Explore and practice App development on Android Platform

4) Develop working prototypes of working systems for various uses in daily lives.

Unit I

What is Android? Obtaining the required tools, creating first android app,

understanding the components of screen, adapting display orientation, action

bar, Activities and Intents, Activity Lifecycle and Saving State, Basic Views:

TextView, Button, ImageButton, EditText, CheckBox, ToggleButton,

RadioButton, and RadioGroup Views, ProgressBar View,

AutoCompleteTextView, TimePicker View, DatePicker View, ListView View,

Spinner View

15L

Unit II

User Input Controls, Menus, Screen Navigation, RecyclerView, Drawables,

Themes and Styles, Material design, Providing resources for adaptive layouts,

AsyncTask and AsyncTaskLoader, Connecting to the Internet, Broadcast

receivers, Services, Notifications, Alarm managers, Transferring data efficiently

15L

Unit III

Data - saving, retrieving, and loading: Overview to storing data, Shared

preferences, SQLite primer, store data using SQLite database, ContentProviders,

loaders to load and display data, Permissions, performance and security,

Firebase and AdMob, Publish your app

15L

Textbook(s):

1) “Beginning Android 4 Application Development”, Wei-Meng Lee, March 2012, WROX.

Additional Reference(s):

1) https://developers.google.com/training/courses/android-fundamentals

2) https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-c

ourse-practicals/details

Expected Learning Outcomes:

1) Understand the requirements of Mobile programming environment.

2) Learn about basic methods, tools and techniques for developing Apps

3) Explore and practice App development on Android Platform

4) Develop working prototypes of working systems for various uses in daily lives.

Unit I

What is Android? Obtaining the required tools, creating first android app,

understanding the components of screen, adapting display orientation, action

bar, Activities and Intents, Activity Lifecycle and Saving State, Basic Views:

TextView, Button, ImageButton, EditText, CheckBox, ToggleButton,

RadioButton, and RadioGroup Views, ProgressBar View,

AutoCompleteTextView, TimePicker View, DatePicker View, ListView View,

Spinner View

15L

Unit II

User Input Controls, Menus, Screen Navigation, RecyclerView, Drawables,

Themes and Styles, Material design, Providing resources for adaptive layouts,

AsyncTask and AsyncTaskLoader, Connecting to the Internet, Broadcast

receivers, Services, Notifications, Alarm managers, Transferring data efficiently

15L

Unit III

Data - saving, retrieving, and loading: Overview to storing data, Shared

preferences, SQLite primer, store data using SQLite database, ContentProviders,

loaders to load and display data, Permissions, performance and security,

Firebase and AdMob, Publish your app

15L

Textbook(s):

1) “Beginning Android 4 Application Development”, Wei-Meng Lee, March 2012, WROX.

Additional Reference(s):

1) https://developers.google.com/training/courses/android-fundamentals

2) https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-c

ourse-practicals/details

1

1

INTRODUCTION TO ANDROID

STRUCTURE

Unit Structure :

1.0 Learning Objective

1.1 Introduction

1.2 Why Android

 1.2.1 Features of Android

 1.2.2 Steps to Install Android Studio

 1.2.3 Creating A Project in Android

 1.2.4 Creating AVD in Android Studio

1.3 Android Run Time(ART)

 1.3.1 Dalvik Virtual Machine(DVM)

1.4 Android Studio

1.5 Introduction to Gradle

 1.5.1 Fundamentals of Gradle

 1.5.1.1 The code editor

 1.5.1.2 The design editor

1.6 Basic Building Blocks

 1.6.1 Activity and View

 1.6.2 Intent

 1.6.3 Service

 1.6.4 Android Virtual Device (AVD)

 1.6.5 Android Activities and Its life Cycle

 1.6.6 Android Services

 1.6.7 Broadcast Receiver and Content Provider

1.7 UI Components

 1.7.1 TextView

 1.7.2 Notification

1.8 Components for Communication

 1.8.1 Intent Filters

1.9 Android API Level

1.10 Summary

1.11 Keywords

1.12 Learning Activity

1.13 Unit End Questions

1.14 References

2

Android Development

Fundamental
1.0 LEARNING OBJECTIVES

• By studying this unit students are be able to install the android studio
and able to create the android application in Android Studio.

• Also Students are able to run the applications using Android Virtual
Device(AVD) .

• At the end of this unit students can make simple mobile applications.

1.1 INTRODUCTION

• Android is a mobile operating system developed by Google. It is used
by several smart phones and tablets.

• The Android operating system (OS) is based on the Linux kernel.

• Unlike Apple's IOS, Android is open source, meaning developers can
modify and customize the OS for each phone.

An install of Android Studio includes:

• Android SDK the latest version of the Android SDK

• Android SDK tools and platform tools for debugging and testing your
apps A system image for the Android emulator lets you create and test
your apps on different virtual devices

• Downloading and Installing Android Studio

• Android Studio is available from Android’s developer site at

• If you do not already have it installed, you will need to install the Java
Development Kit (JDK8), which you can download from

1.2 WHY ANDROID

Zero/negligible development cost

• The development tools like Android SDK, JDK, and Eclipse IDE etc.
are free to download for the android mobile application development.
Also Google charge a small fee $25, to distribute your mobile app on
the Android Market.

Open Source

• The Android OS is an open-source platform based on the Linux kernel
and multiple open-source libraries. In this way developers are free to
contribute or extend the platform as necessary for building mobile
apps which run on Android devices.

 developer.android.com/ sdk/

www.oracle.com

3

Introduction to Android

Structure

Multi-Platform Support

• In market, there are a wide range of hardware devices powered by the

Android OS, including many different phones and tablet. Even

development of android mobile apps can occur on Windows, Mac OS

or Linux.

Multi-Carrier Support

• Worldwide a large number of telecom carriers like Airtel, Vodafone,

Idea Cellular, AT&T Mobility, BSNL etc. are supporting Android-

powered phones.

Open Distribution Model

• Android Market place (Google Play store) has very few restrictions

on the content or functionality of an android app. So the developer

can distribute theirs app through the Google Play store and as well

other distribution channels like Amazon’s app store.

1.2.1 FEATURES OF ANDROID

There are numerous features of android. Some of them are listed below:

Feature Description

Connectivity Android supports multiple connectivity

technologies including GSM/EDGE, IDEN,

CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE,

NFC and WiMAX

Storage SQLite, a lightweight relational database, is used

for data storage purposes

Media support Android supports various type of audio/video/still

media formats like: H.263, H.264, MPEG-4 SP,

AMR, AMR-WB, AAC, HE-AAC, AAC 5.1,

MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF,

BMP and WebP

Web browser The web browser available in Android is based on

the open-source Blink (previously WebKit) layout

engine, coupled with Chrome's V8 JavaScript

engine supporting HTML5 and CSS3

Messaging SMS and MMS are available forms of messaging,

it also include threaded text messaging and

Android Cloud To Device Messaging (C2DM) and

now support the enhanced version of C2DM,

Android Google Cloud Messaging (GCM) is also a

part of Android Push Messaging services

Multi-tasking Multitasking of applications, with unique handling

of memory allocation, is available, using this user

can jump from one task to another and at the same

time various application can run simultaneously

4

Android Development

Fundamental
Feature Description

Resizable widgets Widgets are re-sizable, so users can expand them

to show more content or shrink them to save space

Multi-touch Android has native support for multi-touch which

was initially made available in handsets such as the

HTC Hero

Wi-Fi A technology that lets apps discover and pair

directly, over a high-bandwidth peer-to-peer

connection.

Screen capture Android supports capturing a screenshot by

pressing the power and home-screen buttons at the

same time. This features supports after Android 4.0

Multi-Language Android supports multiple languages, also

supports single direction and bi-directional text

The Android Studio

• Android Studio provides a unified environment where you can build

apps for Android phones, tablets, Android Wear, Android TV, and

Android Auto. Structured code modules allow you to divide your

project into units of functionality that you can independently build,

test, and debug

1.4 STEPS TO INSTALL ANDROID STUDIO

Step – 1:

Head over to bellow link to get the Android Studio executable or zip file .

https://developer.android.com/studio/#downloads

Step – 2:

Click on the download android studio button .

Click on the “I have read and agree with the above terms and conditions”

checkbox followed by the download button.

https://developer.android.com/studio/#downloads
https://developer.android.com/studio/#downloads

5

Introduction to Android

Structure

Click on save file button in the appeared prompt box and the file will start

downloading.

Step – 3:

After the downloading has finished, open the file from downloads and run

it . It will prompt the following dialogue box

6

Android Development

Fundamental
Click on next.

In the next prompt it’ll ask for a path for installation. Choose a path and hit

next.

Step – 4:

It will start the installation, and once it is completed, it will be like the image

shown below

Click on next

7

Introduction to Android

Structure

Step – 5 :

Once “Finish” is clicked, it will ask whether the previous settings needs to

be imported [if android studio had been installed earlier], or not.

It is better to choose the ‘Don’t import Settings option’ .

Step – 6 :

This will start the Android Studio.

Meanwhile it will be finding the available SDK components .

Step – 7:

After it has found the SDK components, it will redirect to the Welcome

dialog box .

8

Android Development

Fundamental

Click on next .

Choose Standard and click on Next.

Now choose the theme, whether Light theme or the Dark one .

The light one is called the IntelliJ theme whereas the dark theme is called

Darcula . Choose as required.

9

Introduction to Android

Structure

Click on the Next button

Step – 8 :

Now it is time to download the SDK components.

Click on Finish .

10

Android Development

Fundamental
It has started downloading the components

The Android Studio has been successfully configured. Now it’s time to

launch and build app.

To create your new Android project, follow these steps:

• Install the latest version of Android Studio.

• In the Welcome to Android Studio window, click Start a new Android

Studio project.

https://developer.android.com/studio/

11

Introduction to Android

Structure

1.2.3 Creating A Project in Android

• If you have a project already opened, select File > New > New Project.

• In the Choose your project window, select Empty Activity and click

Next.

• In the Configure your project window, complete the following:

1. Enter "My First App" in the Name field.

2. Enter "com.example.myfirstapp" in the Package name field.

3. If you'd like to place the project in a different folder, change its

Save location.

4. Select either Java or Kotlin from the Language drop-down

menu.

• Select the checkbox next to Use androidx.* artifacts.

• Leave the other options as they are.

• Click Finish.

• After some processing time, the Android Studio main window

appears.

1.2.4 Creating AVD in Android Studio

1. After the project is created, there are 2 files, MainActivity.java and

activity_main.xml

To Open Project Window

select View > Tool Windows > Project To Open MainActivity.java file

app > java > PackageName > MainActivity.java To Open Layout

activity_main.xml file

app > res > layout > activity_main.xml

12

Android Development

Fundamental
2. Go to activity_main.xml and select Design View

3. In Design View, change the layout to LinearLayout(Vertical) select

Add TextView, and change the text to “Hello World!”

4. Click on Run and select the AVD already created(if not created, first

create the AVD)

5. Output screen should show “Hello World”

To create a new AVD:

1. Open the AVD Manager by clicking Tools > AVD Manager.

2. Click Create Virtual Device, at the bottom of the AVD Manager

dialog....

3. Select a hardware profile, and then click Next.

4. Select the system image for a particular API level, and then click Next.

5. Change AVD properties as needed, and then click Finish.

13

Introduction to Android

Structure

14

Android Development

Fundamental
1.3 ANDROID RUNTIME (ART)

• Dalvik Virtual Machine or DVM is a Register-Based virtual machine

that was designed and written by Dan Bornstein.

• Dalvik is a discontinued process virtual machine (VM) in the Android

OS that executes applications written for Android.

1.4 THE ANDROID STUDIO

• Android Studio provides the SDK and the emulator system image

from the latest platform.

• However, you may want to test your apps on earlier versions of

Android.

• You can get components for each platform using the Android SDK

Manager.

• In Android Studio, select Tools → Android → SDK Manager.

• Under the Quick Start section,

• select Configure → SDK Manager.)

• The SDK Manager is shown in Figure .

15

Introduction to Android

Structure

1.5 INTRODUCTION TO GRADLE

• In Android Studio, Gradle is used for building our android application

projects, hence playing the role of a build system.

• Gradle is a build system, which is responsible for code compilation,

testing, deployment and conversion of the code into . dex files and

hence running the app on the device.

• As Android Studio comes with Gradle system pre-installed, there is

no need to install additional runtime softwares to build our project.

• Whenever you click on Run button in android studio, a gradle task

automatically triggers and starts building the project and after gradle

completes its task, app starts running in AVD or in the connected

device.

• A build system like Gradle is not a compiler, linker etc, but it controls

and supervises the operation of compilation, linking of files, running

test cases, and eventually bundling the code into an apk file for your

Android Application.

There are two build.gradle files for every android studio project of which,

one is for application and other is for project level(module level) build files.

build.gradle (project level)

The Top level (module) build.gradle file is project level build file, which

defines build configurations at project level. This file applies configurations

to all the modules in android application project.

16

Android Development

Fundamental
build.gradle (application level)

The Application level build.gradle file is located in each module of the

android project. This file includes your package name as applicationID,

version name(apk version), version code, minimum and target sdk for a

specific application module. When you are including external libraries(not

the jar files) then you need to mention it in the app level gradle file to include

them in your project as dependencies of the application.

1.5.1 FUNDAMENTALS OF GRADLE

• An Android app is really just a bunch of valid files in a particular

folder structure, and Android Studio sets all of this up for you when

you create a new app.

• The easiest way of looking at this folder structure is with the explorer

in the leftmost column of Android Studio.

17

Introduction to Android

Structure

The folder structure

includes different

types of files

If you browse through

the folder structure,

you’ll see that the

wizard has created

various types of files

and folders for you:

Java and XML

source files

These are the activity

and layout files the

wizard created for

you.

Resource files

These include default

image files for icons,

styles your app might

use, and any common

String values your

app might want to

look up.

Android libraries

In the wizard, you

specified the

minimum SDK

version you want your

app to be compatible

with. Android Studio

makes sure it includes

the relevant Android

libraries for this

version.

Configuration files

The configuration

files tell Android

what’s actually in the

app and how it should

run.

18

Android Development

Fundamental
• Android Studio projects use the gradle build system to compile and

deploy your apps. Gradle projects have a standard layout. Here are

some of the key files and folders you’ll be working with:

1.5.1.1 The code editor

Most files get displayed in the code editor. The code editor is just like a text

editor, but with extra features such as color coding and code checking.

19

Introduction to Android

Structure

1.5.1.2 The Design Editor

• If you’re editing a layout, you have an extra option. Rather than edit

the XML, you can use the design editor.

• The design editor allows you to drag GUI components onto your

layout, and arrange them how you want.

• The code editor and design editor give different views of the same

file, so you can switch back and forth between the two.

activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingLeft="16dp"

android:paddingRight="16dp"

android:paddingTop="16dp"

android:paddingBottom="16dp"

tools:context=".MainActivity">

20

Android Development

Fundamental

1.6 BASIC BUILDING BLOCKS

• An android component is simply a piece of code that has a well

defined life cycle e.g. Activity, Receiver, Service etc.

• The core building blocks or fundamental components of android are

activities, views, intents, services, content providers, fragments and

AndroidManifest.xml.

21

Introduction to Android

Structure

1.6.1 Activity and View

• An activity is a class that represents a single screen. It is like a Frame

in AWT.

• A view is the UI element such as button, label, text field etc. Anything

that you see is a view.

1.6.2 Intent

• Intent is used to invoke components. It is mainly used to:

Start the service

Launch an activity

Display a web page

Display a list of contacts

Broadcast a message

Dial a phone call etc.

1. Intent intent=new Intent(Intent.ACTION_VIEW);

2. intent.setData(Uri.parse("http://www.javatpoint.com"));

3. startActivity(intent);

1.4 SERVICE

• Service is a background process that can run for a long time.

• There are two types of services local and remote.

• Local service is accessed from within the application whereas remote

service is accessed remotely from other applications running on the

same device.

Content Provider

• Content Providers are used to share data between the applications.

Fragment

• Fragments are like parts of activity. An activity can display one or

more fragments on the screen at the same time.

AndroidManifest.xml

• It contains informations about activities, content providers,

permissions etc. It is like the web.xml file in Java EE.

22

Android Development

Fundamental
1.6.4 Android Virtual Device (AVD)

• It is used to test the android application without the need for mobile

or tablet etc. It can be created in different configurations to emulate

different types of real devices.

• The Android emulator allows you to run your app on an Android

virtual device (AVD). The AVD behaves just like a physical Android

device.

• You can set up numerous AVDs, each emulating a different type of

device.

Compile, package, deploy and run

• The Java source files get compiled to bytecode.

• An Android application package, or APK file, gets created.

• The APK file includes the compiled Java files, along with any

libraries and resources needed by your app.

• Assuming there’s not one already running, the emulator gets launched

with the AVD.

• Once the emulator has been launched and the AVD is active, the APK

file is uploaded to the AVD and installed.

• The AVD starts the main activity associated with the app.

• Your app gets displayed on the AVD screen, and it’s all ready for you

to test out.

activity_main.xml has two elements

Here’s the code from activity_main.xml that Android Studio generated for

us.

23

Introduction to Android

Structure

The code contains two elements.

• The first element is the <RelativeLayout> element. This element tells

Android to display items on the layout in relative positions. You can

use <RelativeLayout>, for instance, to center items in the middle of

the layout, align them to the bottom of the screen on your Android

device, or position them relative to other items.

• The second element is the <TextView> element. This element is used

to display text to the user. It’s nested within the <RelativeLayout>,

and in our case it’s being used to display the sample text “Hello

world!”.

Strings.xml

• strings.xml is the default resource file used to hold name/value pairs

of strings so that they can be referenced throughout your app.

• Android Studio created a string resource file for us called strings.xml,

so let’s see if it contains a hello_world resource. Use the explorer to

find it in the app/src/main/res/values folder, and open it by double-

clicking on it.

• Here’s what our code in the strings.xml file looks like:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">My First App</string>

<string name="hello_world">Hello world!</string>

<string name="action_settings">Settings</string>

</resources>

• strings.xml includes a string with a name of hello_world, and a value

of “Hello world!”.

• As you can see, there’s a line of code that looks just like what we are

looking for. It describes a string resource with a name of hello_ world,

and a value of “Hello world!”:

<string name="hello_world">Hello world!</string>

• There are two things that allow Android to recognize strings.xml as

being a string resource file:

• The file is held in the folder app/src/main/res/values.

• XML files held in this folder contain simple values, such as strings

and colors.

• The file has a <resources> element, which contains one or more

<string> elements.

24

Android Development

Fundamental
Activities

• An activity provides the window in which the app draws its UI. This

window typically fills the screen, but may be smaller than the screen

and float on top of other windows. ... Typically, one activity in an app

is specified as the main activity, which is the first screen to appear

when the user launches the app.

• Android Activity Lifecycle is controlled by 7 methods of

android.app.Activity class. The android Activity is the subclass of

ContextThemeWrapper class.

• An activity is the single screen in android. It is like window or frame

of Java.

• By the help of activity, you can place all your UI components or

widgets in a single screen.

• The 7 lifecycle method of Activity describes how activity will behave

at different states.

Method Description

onCreate called when activity is first created.

onStart called when activity is becoming visible to the user.

onResume called when activity will start interacting with the

user.

onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.

onRestart called after your activity is stopped, prior to start.

onDestroy called before the activity is destroyed.

25

Introduction to Android

Structure

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://sch

emas.androi.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="example.javatpoint.com.activitylifecycle.MainActivit

y">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

26

Android Development

Fundamental
import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Log.d("lifecycle","onCreate invoked");

 }

 @Override

 protected void onStart() {

 super.onStart();

 Log.d("lifecycle","onStart invoked");

 }

 @Override

 protected void onResume() {

 super.onResume();

 Log.d("lifecycle","onResume invoked");

 }

 @Override

 protected void onPause() {

 super.onPause();

 Log.d("lifecycle","onPause invoked");

 }

 @Override

 protected void onStop() {

 super.onStop();

 Log.d("lifecycle","onStop invoked");

 }

 @Override

 protected void onRestart() {

 super.onRestart();

 Log.d("lifecycle","onRestart invoked");

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 Log.d("lifecycle","onDestroy invoked");

 }

}

27

Introduction to Android

Structure

1.6.6 Android Services

• A service is a component that runs in the background to perform long-

running operations without needing to interact with the user and it

works even if application is destroyed.

• A service can essentially take two states −

Sr.No. State & Description

1 Started

A service is started when an application component, such

as an activity, starts it by calling startService(). Once

started, a service can run in the background indefinitely,

even if the component that started it is destroyed.

2 Bound

A service is bound when an application component binds

to it by calling bindService(). A bound service offers a

client-server interface that allows components to interact

with the service, send requests, get results, and even do so

across processes with interprocess communication (IPC).

28

Android Development

Fundamental
1.6.7 Broadcast Receiver and Content Provider

• Broadcast receiver is an Android component which allows you to

send or receive Android system or application events. All the

registered application are notified by the Android runtime once event

happens.

• It works similar to the publish subscribe design pattern and used for

asynchronous inter-process communication.

• For example, applications can register for various system events like

boot complete or battery low, and Android system sends broadcast

when specific event occur. Any application can also create its own

custom broadcasts.

Register Broadcast

• There are two ways to register broadcast receiver-

• Manifest-declared (Statically) : By this receiver can be registered via

the AndroidManifest.xml file.

• Context-registered (Dynamically) : By this register a receiver

dynamically via the Context.registerReceiver() method.

Create a new instance of the LocalBroadcastManager

LocalBroadcastManager localBroadcastManager =

LocalBroadcastManager.getInstance(context);

Content Provider

• A content provider component supplies data from one application to

others on request. Such requests are handled by the methods of the

ContentResolver class.

29

Introduction to Android

Structure
• A content provider can use different ways to store its data and the data

can be stored in a database, in files, or even over a network.

Sometimes it is required to share data across applications. This is where

content providers become very useful.

public class My Application extends ContentProvider {

}

1.7 UI COMPONENTS

• Android UI Controls are those components of Android that are used

to design the UI in a more interactive way.

• It helps us to develop an application that makes user interaction better

with the view components.

• Android provides us a huge range of UI controls of many types such

as buttons,

• text views, etc.

• A View is an object that draws something on the screen that the user

can interact with and a ViewGroup is an object that holds other View

(and ViewGroup) objects in order to define the layout of the user

interface.

30

Android Development

Fundamental
1.7.1 TextView

• TextView is a UI Component that displays the text to the user on their

Display Screen.

• We can create it in two ways:

• XML file:

• For this, we declare it in the layout tag as follows:

<Linear Layout xmls:android=

"http://schemas.android.com/apk/res/android"

 <TextView

 //attributes to describe it

 />

</LinearLayout>

Activity file:

In this, we declare it using the setText() method as follows:

setContentView(R.layout.activity_main);

LinearLayout linearlayout_name =

(LinearLayout)findViewById(R.id.LinearLayout);

TextView textview_name = new TextView(this);

textveiw_name.setText(“Hello I am Text View”);

linearLayout.addView(textView);

Sr.No. UI Control & Description

1 TextView

This control is used to display text to the user.

2 EditText

EditText is a predefined subclass of TextView that includes rich

editing capabilities.

3 AutoCompleteTextView

The AutoCompleteTextView is a view that is similar to

EditText, except that it shows a list of completion suggestions

automatically while the user is typing.

4 Button

A push-button that can be pressed, or clicked, by the user to

perform an action.

5 ImageButton

An ImageButton is an AbsoluteLayout which enables you to

specify the exact location of its children. This shows a button

with an image (instead of text) that can be pressed or clicked by

the user.

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_imagebutton_control.htm

31

Introduction to Android

Structure
Sr.No. UI Control & Description

6 CheckBox

An on/off switch that can be toggled by the user. You should use

check box when presenting users with a group of selectable

options that are not mutually exclusive.

7 ToggleButton

An on/off button with a light indicator.

8 RadioButton

The RadioButton has two states: either checked or unchecked.

9 RadioGroup

A RadioGroup is used to group together one or more

RadioButtons.

10 ProgressBar

The ProgressBar view provides visual feedback about some

ongoing tasks, such as when you are performing a task in the

background.

11 Spinner

A drop-down list that allows users to select one value from a set.

12 TimePicker

The TimePicker view enables users to select a time of the day,

in either 24-hour mode or AM/PM mode.

13 DatePicker

The DatePicker view enables users to select a date of the day.

1.7.2 Notification

• A notification is a message you can display to the user outside of your

application's normal UI.

• When you tell the system to issue a notification, it first appears as an

icon in the notification area.

• To see the details of the notification, the user opens the notification

drawer. Both the notification area and the notification drawer are

system-controlled areas that the user can view at any time

• Android Toast class provides a handy way to show users alerts but

problem is that these alerts are not persistent which means alert

flashes on the screen for a few seconds and then disappears

https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_togglebutton_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm
https://www.tutorialspoint.com/android/android_progressbar.htm
https://www.tutorialspoint.com/android/android_spinner_control.htm
https://www.tutorialspoint.com/android/android_timepicker_control.htm
https://www.tutorialspoint.com/android/android_datepicker_control.htm

32

Android Development

Fundamental

1.8 COMPONENTS FOR COMMUNICATION –INTENTS

• An intent is to perform an action on the screen. It is mostly used to

start activity, send broadcast receiver,start services and send message

between two activities.

• There are two intents available in android as Implicit Intents and

Explicit Intents.

• An Intent is a messaging object you can use to request an action from

another app component. Although intents facilitate communication

between components in several ways, there are three fundamental use

cases:

Starting an activity

• An Activity represents a single screen in an app. You can start a new

instance of an Activity by passing an Intent to startActivity(). The

Intent describes the activity to start and carries any necessary data.

• If you want to receive a result from the activity when it finishes, call

startActivityForResult(). Your activity receives the result as a

separate Intent object in your activity's onActivityResult() callback.

For more information, see the Activities guide.

33

Introduction to Android

Structure

Starting a service

• A Service is a component that performs operations in the background

without a user interface. With Android 5.0 (API level 21) and later,

you can start a service with JobScheduler. For more information about

JobScheduler, see its API-reference documentation.

• For versions earlier than Android 5.0 (API level 21), you can start a

service by using methods of the Service class. You can start a service

to perform a one-time operation (such as downloading a file) by

passing an Intent to startService(). The Intent describes the service to

start and carries any necessary data.

• If the service is designed with a client-server interface, you can bind

to the service from another component by passing an Intent to

bindService(). For more information, see the Services guide.

Delivering a broadcast

• A broadcast is a message that any app can receive. The system

delivers various broadcasts for system events, such as when the

system boots up or the device starts charging. You can deliver a

broadcast to other apps by passing an Intent to sendBroadcast() or

sendOrderedBroadcast().

Intent types

• There are two types of intents:

• Explicit intents specify which application will satisfy the intent, by

supplying either the target app's package name or a fully-qualified

component class name.

• You will typically use an explicit intent to start a component in your

own app, because you know the class name of the activity or service

you want to start.

• For example, you might start a new activity within your app in

response to a user action, or start a service to download a file in the

background.

• Implicit intents do not name a specific component, but instead declare

a general action to perform, which allows a component from another

app to handle it.

• For example, if you want to show the user a location on a map, you

can use an implicit intent to request that another capable app show a

specified location on a map.

Implicit Intent Syntax

Intent intent=new Intent(Intent.ACTION_VIEW);

intent.setData(Uri.parse("http://www.javatpoint.com"));

startActivity(intent);

34

Android Development

Fundamental
Explicit Intent Syntax:

Intent i = new Intent(getApplicationContext(), ActivityTwo.class);

startActivity(i);

1.8.1 Intent Filters

• You have seen how an Intent has been used to call an another activity.

• Android OS uses filters to pinpoint the set of Activities, Services, and

Broadcast receivers that can handle the Intent with help of specified

set of action, categories, data scheme associated with an Intent. You

will use <intent-filter> element in the manifest file to list down

actions, categories and data types associated with any activity,

service, or broadcast receiver.

• Following is an example of a part of AndroidManifest.xml file to

specify an activity com.example.My Application.CustomActivity

which can be invoked by either of the two mentioned actions, one

category, and one data −

<activity android:name=".CustomActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <action android:name="com.example.My Application.LAUNCH" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:scheme="http" />

 </intent-filter>

</activity>

1.9 ANDROID VERSIONS, NAME, AND API LEVEL

• The development of the Android operating system was started in 2003

by Android, Inc. Later on, it was purchased by Google in 2005. The

beta version of Android OS was released on November 5, 2007, while

the software development kit (SDK) was released on November 12,

2007.

• The first Android mobile was publicly released with Android 1.0 of

the T-Mobile G1 (aka HTC Dream) in October 2008.

35

Introduction to Android

Structure
Code name Version

numbers

API

level

Release date

No codename 1.0 1 September 23, 2008

No codename 1.1 2 February 9, 2009

Cupcake 1.5 3 April 27, 2009

Donut 1.6 4 September 15, 2009

Eclair 2.0 - 2.1 5 - 7 October 26, 2009

Froyo 2.2 - 2.2.3 8 May 20, 2010

Gingerbread 2.3 - 2.3.7 9 - 10 December 6, 2010

Honeycomb 3.0 - 3.2.6 11 - 13 February 22, 2011

Ice Cream Sandwich 4.0 - 4.0.4 14 - 15 October 18, 2011

Jelly Bean 4.1 - 4.3.1 16 - 18 July 9, 2012

KitKat 4.4 - 4.4.4 19 - 20 October 31, 2013

Lollipop 5.0 - 5.1.1 21- 22 November 12, 2014

Marshmallow 6.0 - 6.0.1 23 October 5, 2015

Nougat 7.0 24 August 22, 2016

Nougat 7.1.0 - 7.1.2 25 October 4, 2016

Oreo 8.0 26 August 21, 2017

Oreo 8.1 27 December 5, 2017

Pie 9.0 28 August 6, 2018

Android 10 10.0 29 September 3, 2019

Android 11 11 30 September 8, 2020

1.10 SUMMARY

• This unit has provided a brief overview of Android, and highlighted

some of its capabilities.

• If you have followed the sections on downloading the tools and the

Android SDK, you should now have a working system — one that is

capable of developing more interesting Android applications other

than the Hello World application.

• In the next unit, you will learn about the concepts of activities and

intents, and the very important roles they play in Android

1.11 KEYWORD

• SDK : Software development kit use to deploy android application.

• AVD : Android Virtual Device creates virtual environment for

android application.

• Android Studio : is used to develop android application.

• Kernel : Kernel is linux based in android.

• Intent : It is used to connect activities.

36

Android Development

Fundamental
1.12 LEARNING ACTIVITY

1. Define TextView?

__

__

__

__

2. Define Layout?

__

__

__

__

1.13 UNIT END QUESTIONS

A. Descriptive Questions

Short Answer

1. What is an AVD?

2. What is the difference between the android:versionCode and

android:versionName attributes in the AndroidManifest.xml file?

3. What is the use of the strings.xml file?

4. What is Activity ? Draw and Explain Activity Life Cycle?

Long Answer

1. Write down the steps to download and install android studio.

2. Explain any TWO UI components?

3. What is intent? Why it is used?

4. Explain the concept of notifications in Android.

B. Multiple Choice Questions

1) How many sizes are supported by Android?

a) Android supported all sizes

b) Android does not support all sizes

c) Android supports small,normal, large and extra-large sizes

d) Size is undefined in android

37

Introduction to Android

Structure

2) How many broadcast receivers are available in android?

a) sendIntent()

b) onRecieve()

c) implicitBroadcast()

d) sendBroadcast(),sendOrderBroadcast(),and sendStickyBroadcast().

3) What is LastKnownLocation in android?

a) To find the last location of a phone

b) To find known location of a phone

c) To find the last known location of a phone.

d) To find the last known location of user

4) How to find the JSON element length in android JSON?

a) count()

b) sum()

c) add()

d) length()

5) What is off-line synchronization in android?

a) Synchronization with internet

b) Background synchronization

c) Synchronization without internet

d) Foreground synchronization

Answers

1-c, 2-d, 3-c. 4-d, 5-c

1.14 REFERENCES

References book

1) “Professional Android 4 Application Development” by Reto Meier

2) “Programming Android Java Programming for the New Generation

of Mobile Devices” by Zigurd Mennieks

3) “Android Cookbook” by Ian F Darwin

4) “Android Programming: The Big Nerd Ranch Guide” by Bill Phillips

and Chris Stewart

Textbook references

1) “Professional Android 4 Application Development” by Reto Meier

38

Android Development

Fundamental
2) “Programming Android Java Programming for the New Generation

of Mobile Devices” by Zigurd Mennieks

3) “Android Cookbook” by Ian F Darwin

4) “Android Programming: The Big Nerd Ranch Guide” by Bill Phillips

and Chris Stewart

Website

Introduction to Android: http://developer.android.com/guide/index.html.

Android API: http://developer.android.com/reference/packages.html

Java 6 API: http://docs.oracle.com/javase/6/docs/api/

Android Fundamentals:

http://developer.android.com/guide/components/fundamentals.html



39

2

USER INPUT CONTROLS

Unit Structure :

2.0 Objectives

2.1 User Input Controls

2.2 Menus

2.3 Screen Navigation

2.4 RecyclerView

2.5 Drawables

2.6 Themes and Styles

2.7 Material Design

2.8 Providing Resources for Adaptive Layouts

2.9 Summary

2.10 Exercise

2.11 Reference

2.0 OBJECTIVES

After going through this chapter you will be able to

1. Know the various user controls that can be used while app development

2. Know various types of menus and drawables in Android

3. Know the difference between themes and styles

4. Know how adaptive layout work while using screen

2.1 USER INPUT CONTROLS

Designing Android UI

An Android Operating System (OS) interacts with users through different

devices. It also communicates via an intermediary called the User Interface

(UI). Through the user interface, the end user is able to see and interact with

it. UI is used to navigate and utilize various components of Android OS on

an Android application.

They are represented to the user in the following different forms:

• Graphical User Interface (GUI) allows users to interact with visual

representations on digital devices or smartphones.

• Voice-controlled interfaces help users to interact via voice

commands such as Alexa.

40

Android Development

Fundamental
• Gesture-based interface lets users interact with the interface through

body motions.

Sometimes, the implementation of a weakly designed UI results in facing

difficulties while interacting with the Android OS. So, the UI layout needs

to be professional with effective navigation designed for users.

Android UI design

Android UI design includes the use of prebuilt Android UI components,

such as UI controls, to create an efficient GUI for our applications. A UI

screen of an Android App consists of four parts, which are as follows:

• Status bar

• App bar

• Content area

• Bottom navigation bar

The Android UI components comprise different types of layouts and special

interfaces such as menus, notifications, and dialogs.

Android UI Controls

Various types of UI controls are available in android to implement the user

interface for any android application.

TextView: It displays the text to the user on the display screen. It entered

text can be edited. Although text editing is allowed, the basic class does not

allow editing.

EditText: It allows users to enter some text. It also contains certain features

through which confidential data can be kept hidden.

Button: It allows users to perform some action as soon as some events such

as user click, double click takes place.

ImageButton: ImageButton is the same as a button but it carries an image

on it to perform an action. In this, we need to give the source of the image

so that the system can load it.

ToggleButton: It displays ON/OFF state of a button with a light indicator.

RadioButton: It has two states, checked or unchecked. Users can select

only one radiobutton at a time from a group.

RadioGroup: A group of Radio buttons that are of similar type where only

one of all the radiobuttons can be chosen.

CheckBox: It has two states, checked or unchecked. Users can select

multiple checkboxes at a time.

ProgressBar: It shows the progress of certain action that is proceeding like

copying a file from one location to other or downloading a file.

41

User Input Controls Two modes of progressbar:

• Determinate Mode: The progress is shown in terms of percentage of

action completed and estimated time to complete the action is also

shown.

• Indeterminate Mode: It does not show process completion time on

screen and therefore it goes continuously.

Spinner: It is a dropdown menu and used to select a particular choice from

a list of given options. When the down arrow is clicked, a list of values are

displayed on screen and it allows us a faster selection of any choice from

those options.

TimePicker: It helps us to select a time of the day in 12 hrs or 24 hrs format.

It gives a virtual Clock or a watch to select it.

DatePicker: In gives a virtual calendar or dropdown to select the day or

date and a time.

SeekBar: It is considered as an extension of a Progress bar. SeekBar has a

draggable pointer to drag on the left or right which helps to set the progress

or to choose a particular range of values.

RatingBar: It is considered as an extended version of a seekbar. It allows

us to give a rating by touching it. A user can rate on a scale of 5 with a

difference of 0.5 and rating is done in stars.

AlertDialog: It is a dialogbox that gives alert or warning to the users. Once

it appears on the screen, the user needs to choose an option shown on the

screen. For example, when you enter the wrong password for email id or

memory full message or wrong name identified for opening a file or folder.

Switch: A switch holds either an ON or OFF state. ON means Yes and OFF

means No. A user can alter its state multiple times.

AutoCompleteTextView: It is an extension of EditText where the user is

given with a few suggestions of some values/texts and any value can be

selected by the user while filling AutoCompleteTextView.

42

Android Development

Fundamental
2.2 MENU

In android, Menu is an essential component of the User Interface that helps

us in providing common functionalities around the application. Menu

enhances rich user interaction experience throughout the application. To

create and use a menu it needs to be define in a separate XML file and use

the same in the android application. Also menu APIs can be used to

represent user actions and several other options during android application

activities.

Types of Menus

Android provides three types of Menus to define a set of options and actions

in the android applications.

Android Options Menu : It is a primary collection of menu items and is

useful for actions used for searching in application. The options menu is

usually present on the action bar where you can see several options listed in

the options menu from which you can make a selection.

Android Context Menu: It is a floating menu that appears only when the

user long press over an element. Context menu is useful for components

that affect the selected content or context frame. It is floating menu that

means its position is not fixed and usually appears just beside the element

you click for a long time on an element.

43

User Input Controls Android Popup Menu : A Popup menu is a list of items displayed

vertically and is used to provide actions on the screen specific to related

content. It presents the view that invokes the menu. Popup Menu always

appears over the view and covers your view.

Menu designing in XML

In android studio, Menu needs to be defined in standard XML format. This

XML menu resource can be loaded as a menu object in any activity or

fragment used in android application.

• Right click on the res folder to create menu directory.

• Navigate to New and select Android Resource Directory.

• Give the name to resource directory as menu

• Select Resource type as menu

• One directory will be created under the res folder.

• Right click on menu folder

• Navigate to New and select menu resource file

• Give the name to resource file as menu_example.

• One menu_example.xml file will be created under menu folder.

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http:// schemas.android.com/apk/res/android">

 <item android:id="@+id/coffee"

 android:icon="@drawable/ic_coffee"

 android:title="@string/coffee" />

 <item android:id="@+id/tea"

 android:icon="@drawable/ic_tea"

https://techvidvan.com/tutorials/wp-content/uploads/sites/2/2021/08/02_PopUp_Menu.jpg

44

Android Development

Fundamental
 android:title="@string/tea"

 <item android:id="@+id/soda"

 android:icon="@drawable/soda"

 android:title="@string/soda" />

</menu>

Description

<menu> - This root element helps to define Menu in an XML file that

contains multiple elements.

<item> - It contains nested <menu> elements to create a submenu and helps

in creating a single item in the menu.

<group> - It is optional and invisible. It is used for <item> elements to

categorize the menu items so that they can share properties like active state,

and visibility.

2.3 SCREEN NAVIGATION

In Android, any activity represents a single screen. But the most of the

applications have multiple activities to represent various screens, for

example, one activity presents a list of the application settings, and other

might displays the application status.

The up navigation allows any application to move to one level up i.e. to the

previous activity. To implement it, we need to first find out which activity

is the appropriate parent for every activity. It can done by specifying

parentActivityName attribute in an activity.

android:parentActivityName = "com.example.test.MainActivity"

Then, we need to call setDisplayHomeAsUpEnabled method of

getActionBar() in the onCreate method of the activity which enables the

back button in the top action bar.

getActionBar().setDisplayHomeAsUpEnabled(true);

And finally, we need to override onOptionsItemSelected method. When the

user press it, activity receives a call to onOptionsItemSelected(). The ID for

the action is android.R.id.home.

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case android.R.id.home:

 NavUtils.navigateUpFromSameTask(this);

 return true;

 }

}

45

User Input Controls 2.4 RECYCLERVIEW

The RecyclerView is a more flexible widget and an enhanced version of

GridView and ListView. It is a container for big datasets that can be easily

scrolled by restricting on a limited number of views. Also, this widget can

be used while using dynamic data collections means collections where

elements change runtime depending on network events or user actions.

Implementation of RecyclerView

1. Plan how the list or grid is going to appear

2. We can use any of the RecyclerView library's standard layout

managers.

3. Design the appearance of each element of the list according to how it

is going to look and behave.

4. Based on this design, extend the ViewHolder class.

5. This ViewHolder class will provide the functionalities for list items.

6. ViewHolder is a wrapper around a View that is managed

by RecyclerView.

7. Adapter is defined to associate data with the ViewHolder views.

8. Three sub parts need to be constructed to implement a basic

RecyclerView. Following are these sub parts that offers users the

degree of control they require while making various designs of their

choice.

The Card Layout: It is an XML layout treated as an item for the list created

by RecyclerView.

The ViewHolder: This class holds the reference to the card layout view

that have to be modified dynamically during the program execution by a list

of data obtained through either online databases or any other way.

The Data Class: This class acts as a structure for storing the information

for every item of the RecyclerView.

2.5 DRAWABLES

A Drawable resource is a concept in android used for a graphic that can be

drawn on the screen. It can retrieved with APIs like getDrawable() or apply

to another XML resource with attributes such as android:drawable and

android:icon. Example :- Graphical file can be represented via a

BitmapDrawable class. Each Drawable is kept as individual files in

res/drawable folders. Bitmaps can be stored in the form of following

resolutions :- -mdpi, -hdpi, -xhdpi, -xxhdpi. These are subfolders of

res/drawable and created by default while creating a project in android

studio.

46

Android Development

Fundamental
Android system selects the correct bitmap automatically even if these

bitmaps are provided in various folders based on the device configuration.

In case bitmaps are not provided for all supported resolutions, an Android

system balances the closest fit up or down that is typically undesired as the

bitmap might get blurred.

There are several types of drawable resource files as follows:

1. Shape Drawables

 Shape Drawables are XML files that allow us to define a geometric

object with borders, colors, and gradients which can be assigned to

Views. The advantage of using it is that they automatically adjust to

the correct size.

 <?xml version="1.0" encoding="UTF-8"?>

 <shape

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="rectangle">

 <stroke

 android:width="4dp"

 android:color="#FFFFFFFF" />

 <gradient

 android:endColor="#DDBBBCCC"

 android:startColor="#DD777888"

 android:angle="90" />

 <corners

 android:bottomRightRadius="7dp"

 android:bottomLeftRadius="5dp"

 android:topLeftRadius="7dp"

 android:topRightRadius="5dp" />

 </shape>

2. State Drawables

 State drawables allow us to define various states. For each state, a

drawable can be assigned to the View. The following example defines

an assigned drawable for a button depending on its state.

 <?xml version="1.0" encoding="utf-8"?>

 <selector

xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:drawable="@drawable/button_pressed"

 android:state_pressed="true" />

 <item android:drawable="@drawable/button_checked"

 android:state_checked="true" />

 </selector>

47

User Input Controls 3. Transition Drawables

 Transition Drawables define transitions that can be triggered in the

coding.

 <?xml version="1.0" encoding="utf-8"?>

 <transition

xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:drawable="@drawable/one_image" />

 <item android:drawable="@drawable/two_image" />

 </transition>

5. Vector drawables

 Vector drawables are similar to svg files but it has a limited scope.

Vector drawables automatically fit to the density of any device.

Android supports animated vector drawables by using the

AnimatedVectorDrawable class. It allows users to combine vector

drawables and animations. Vector drawables create and morph

various images. We can start and stop this morphing via code but

controlling or halting the animation at a particular frame is not

possible.

 <vector

xmlns:android="http://schemas.android.com/apk/res/android"

 android:height="32dp"

 android:width="32dp"

 android:viewportHeight="500"

 android:viewportWidth="500" >

 <group

 android:name="rotationGroup"

 android:pivotX="300.0"

 android:pivotY="300.0"

 android:rotation="60.0" >

 <path

 android:name="v"

 android:fillColor="#0000FF"

 android:pathData="M300,70 l 0,-70 70,70 0,0 -70,70z" />

 </group>

 </vector>

6. Animation Drawables

 Users can also define animation drawables and assign it to a View via

the setBackgroundResource() method.

 <animation-list android:id="@+id/selected"

android:oneshot="false">

48

Android Development

Fundamental
 <item android:drawable="@drawable/phase1" android:duration="400"

/>

 <item android:drawable="@drawable/phase2" android:duration="400"

/>

 </animation-list>

7. 9 Patch Drawables

 9 Patch drawables have a one-pixel additional border. From the top

and left we can define the area which can be scaled if the Drawable is

very small for the view. It is the stretch area. On the right and bottom

sides also we can define the area where a text could be placed.

8. Custom Drawables

 Users can also create custom Drawable, which can use the Canvas

API for their display to design them as per the user’s need.

2.6 THEMES AND STYLES

Style is a set of attributes in android that can be applied to view elements.

Styles has various parameters like font, color, background, margin, text

size, text style, etc. Using these properties, we can define our own style and

apply it to a UI component or to the entire layout.

Themes are a standardized type of style followed throughout the

application. View, non-view elements or layout follows the same theme

throughout. When the theme is applied, every view applies each of the

theme's attributes that it supports.

Defining Styles

A style is defined in an XML resource under res/values/directory of your

project and will have <resources> as the root node which is mandatory for

the style file. We can define as many styles as we want using <style> tag

but each style should have unique name that identifies the style.

49

User Input Controls Using Styles

Style inheritance

Styles can be inherited in android as similar as cascading style sheets in

html. You can inherit properties from an existing style and then define only

the properties that we want to change or add.

Themes vs Styles

In Android, styles and themes allow us to separate the details of the app

design from UI behaviour and structure. Styles and themes are defined in a

style resource file in res/values/ named styles.xml.

Though themes and styles have many similarities, they are used for different

purposes. Themes and styles have the similar basic structure—a key-value

pair that maps attributes to resources.

50

Android Development

Fundamental
A style states attributes for a particular type of view. For an example, style

might be stated as any button's attributes. Every specified attribute of button

is an attribute that need to be set in the layout file. Extracting all the

attributes of a style makes it easier to use and maintain them across multiple

widgets.

A theme defines a collection of named resources referenced by styles,

layouts, widgets, and so on. Themes can assign semantic names,

like colorPrimary, to Android resources.

Styles and themes can work together. For example, a style that specifies one

part of a button - colorPrimary, and another part - colorSecondary and the

actual definitions of those colors can be defined in the theme. When the

device goes into night mode, app can switch from "light" theme to "dark"

theme. There is no need to change the styles as styles uses semantic names

and not specific color definitions. For example, a style can be defined to

specify a certain text size and color, then apply it to instances of a certain

type of View element. A theme is a set of one or more formatting attributes

that can be applied as a unit to all activities in an application. For example,

a theme can be defined that sets specific colors for the window frame,

foreground and background of the panel, text sizes and colors for menus

and then apply it to the activities of the application.

Defining themes

51

User Input Controls 2.7 MATERIAL DESIGN

In android, Material Design Components (MDC) helps developers to

implement Material Design in their Android application. MDC is a special

type of design that are guided by UX designers and a team of engineers at

Google. These components allow reliable development workflow to

develop functional Android applications. Material design is the key feature

that attracts and connects the customer to the application.

The following are the basic things that need to be considered before material

designing:

1. Colors and Theming

 Choosing the right type of color combination signifies the

application’s brand and style. For example, if main or primary color

of an application is the Red, then throughout the application, the red

color will be frequently shown.

 There are three types of colors to be chosen for developing the android

application:-

 Primary Color: Primary color needs to be chosen very carefully

because this color is frequently visible in the application components

like high emphasis buttons and also on the top and bottom navigation

bar.

 Secondary Color: Secondary color needs to be chosen only when

there is a low complexity level of the application. This color will be

applied to the elements where it needs a little color accent like the

background color for the sliders, Floating Action Buttons, toggle

buttons, progress bars, etc.

 Light and Dark variants: These are the variations of the primary

color. The dark variant of the primary color is set for the status bar

and the light variant of the primary color is set for the Floating action

button, outline for the edit texts.

52

Android Development

Fundamental
2. Typography (Choosing the Right Font)

 In android, Roboto font meets all the requirements. But the developer

has choice to customize the application with the different font, the

font needs to be chosen where it has all its variants like light face,

regular face, medium face, and sometimes the dark face. Google

offers a variety of font families with all the variants so choosing the

font from Google font is suggested. Some guidelines need to be

followed for choosing the font. The various contexts of the font are

captions, Body, Subtitles, Button, captions, etc.

3. Material Design Components

 Material design components are the components that allow a lot of

features for the users and easy implementation for the developers.

These components are noticeable in as compare to normal UI

components with respect to style, customization and look. Even these

components can adapt dark theme and change styles when it is toggled

by the user.

53

User Input Controls

4. Shaping the Components

 In material design, there are three types of shaping methods :- Cut

corner, Rounded corner and Triangle edge.

 These methods can be applied for the material design buttons, text

fields, floating action buttons, navigation bars, etc. We need to add

the dependency and start implementing styling for material design

components.

2.8 PROVIDING RESOURCES FOR ADAPTIVE

LAYOUTS

A layout that keeps changing automatically well with different screen sizes

and orientations, different devices, different languages, and different

versions of Android is called as an adaptive layout.

Externalizing resources

When we externalize resources, we keep them separate from the application

code. For example, we can name the string and add it to the

res/values/strings.xml file.

Grouping resources

Grouping resources means storing and organizing resources in the res/

folder by type by using standardized names for these folders. For example

54

Android Development

Fundamental
Android studio Project contains various folders named as -

drawable, layout, menu, mipmap, values.

Alternative resources

Many applications provide alternative resources for supporting specific

device configurations. For example, app should include alternative

drawable resources for various screen densities, and different languages. At

runtime, Android identifies the current device configuration and the

appropriate resources are loaded.

Providing default resources

Default resources identify default designs and content for an application.

For example, when the app executes in a locale, Android loads default

strings from res/values/strings.xml. If this file is missing some string, then

app shows an error while executing.

2.9 SUMMARY

Chapter I focuses on various types and uses of user input controls, menus,

and drawable. Also, it briefs about the need for resources for adapting

numerous layouts on Android screens. It also focuses on the importance of

screen navigation, RecyclerView, and Material Design for enhancing app

performance. It also explains how the use of style and theme helps to

improve the app interface.

2.10 EXERCISE

1. Explain various types of Android UI Controls.

2. Discuss types of menus used in Android.

3. Write a note on RecyclerView.

4. What is Drawable and explain various types of it?

5. Differentiate between styles and themes.

6. What are the basic things to be considered before material design?

2.11 REFERENCES

1. “Beginning Android 4 Application Development”, Wei-Meng Lee,

March 2012, WROX.

2. https://developers.google.com/training/courses/android-

fundamentals

3. https://www.gitbook.com/book/google-developer-training/android-

developer-fundamentals-course-practicals/details



55

3

DATA TRANSFER AND MANAGEMENT

Unit Structure :

3.0 Objectives

3.1 AsyncTask and AsyncTaskLoader

3.2 Connecting to the Internet

3.3 BroadcastReceivers

3.4 Services

3.5 Notifications

3.6 Alarm Managers

3.7 Transferring Data Efficiently

3.8 Summary

3.9 Exercise

3.10 Reference

3.0 OBJECTIVES

After going through this chapter you will be able to

1. Know the functioning of AsyncTaskLoader

2. Know the functions of broadcast receiver, services, notifications and

alarm managers

3. Know efficient data transfer

4. Know getting connected with internet

3.1 ASYNCTASK AND ASYNCTASKLOADER

In android, there are various ways to perform background processing. Two

of those ways are:

Using AsyncTask, background processing can be done directly. Using

AsyncTaskLoader, background processing can be done indirectly.

AsyncTaskLoader performs an asynchronous task in the background of any

application, so that the user can interact with that application while

processing. Once the process is completed, the result will be updated to the

interface.

When the configuration of the device changes, AsyncTask and

AsyncTaskLoader behaves differently. For example, when the user rotates

the screen, activity is destroyed and recreated. AsyncTask reexecutes and a

new Thread gets created, however the old Thread becomes separated and

uncontrolled. AsyncTaskLoader is reused depending on the Loader ID that

56

Android Development

Fundamental
is already registered with the LoaderManager class and that avoids

duplication of background tasks, and prevents creation of useless tasks.

Android AsyncTask performs background operation on background thread

and updates in main thread. AsyncTask allows communication between

background thread and main thread.

While executing AsyncTask follows these four steps:

onPreExecute() − Before executing background operations screen should

show something on screen like progressbar or animation. It is invoked on

UI thread before execution of any task.

doInBackground(Params) – It is executed immediately once

onPreExecute() finishes. Background operations are performed on

background thread but these operations should not include any main thread

activities.

onProgressUpdate(Progress…) – It is used when updating some

information on UI while doing some background operations. It is used to

inform the progress of UI thread while background process is executing.

onPostExecute(Result) – This method executes on UI thread once the

background process is finished.

Limitations of AsyncTask

Changes to device configuration cause problems – While an AsyncTask

is running if device configuration changes, the activity that created the

AsyncTask is destroyed and re-created. AsyncTask can not access newly

generated activity, and the results cannot be published too. Old AsyncTask

objects stay around, and your app may run out of memory or crash.

AsyncTask can not be destroyed even if the activity that created it is

destroyed.

When can we use AsyncTask?

• Short or interruptible tasks.

• Tasks that don't need to report back to UI or user.

• Low-priority tasks that can be left unfinished.

3.2 CONNECTING TO THE INTERNET

Android allows any application to connect to the internet or any other local

network to perform network operations. Any device can have numerous

types of network connections.

To check for network connection or internet android provides

ConnectivityManager class. An object of this class need to be instantiated

by calling getSystemService() method.

ConnectivityManager check = (ConnectivityManager)

57

Data Transfer and

Management

this.context.getSystemService(Context.CONNECTIVITY_SERVICE);

After instantiating the object, to gather the information of all the networks

getAllNetworkInfo() method can be used. This method provides an array

of NetworkInfo.

NetworkInfo[] info = check.getAllNetworkInfo();

Now we need to check Connected State of the network.

for (int i = 0; i<info.length; i++){

 if (info[i].getState() == NetworkInfo.State.CONNECTED){

 Toast.makeText(context, "Internet is connected

 Toast.LENGTH_SHORT).show();

 }

}

States of a network

1 Connecting

2 Disconnected

3 Disconnecting

4 Suspended

5 Unknown

3.3 BROADCAST RECEIVERS

In android, Broadcast means occurrence of system generated events such as

starting of device, recieving of a message or incoming calls, or when

airplane mode is on for a device, etc. Broadcast Receivers are used to

respond for such system generated events. We can register system and

application generated events. When these events take place register

receivers get notified.

Types of Broadcast Receivers:

Static Broadcast Receivers: They are declared in the manifest file and

works even if the app is closed.

Dynamic Broadcast Receivers: They work only if the app is active or

minimized.

System-wide generated intents

android.intent.action.BATTERY_LOW - Indicates low battery

condition on the device.

android.intent.action.BOOT_COMPLETED - This is broadcast once

after the system has finished booting

58

Android Development

Fundamental
android.intent.action.CALL - To perform a call to someone specified by

the data

android.intent.action.DATE_CHANGED - Indicates that the date has

changed

android.intent.action.REBOOT - Indicates that the device has been a

reboot

android.net.conn.CONNECTIVITY_CHANGE - The mobile network

or wifi connection is changed

android.intent.ACTION_AIRPLANE_MODE_CHANGED - This

indicates that airplane mode has been switched on or off.

android.intent.action.POWER_CONNECTED – It indicates that the

power is connected to the device.

Creating the Broadcast Receiver:

class AirplaneModeChangeReceiver:BroadcastReceiver() {

 override fun onReceive(context: Context?, intent: Intent?) {

 }

}

Registering a BroadcastReceiver:

IntentFilter(Intent.ACTION_AIRPLANE_MODE_CHANGED).also {

 registerReceiver(receiver,it)

 }

Broadcast Receiver in Android is a component used to broadcast the

messages to the system or any applications. Broadcast receivers have no

user interface. It’s used for Asynchronous Inter-Process communication.

Examples of Broadcast receiver – low battery notification, notification

when something downloads.

59

Data Transfer and

Management

Types of broadcast receivers

1. Ordered Broadcasts

 Ordered Broadcasts are also known as synchronous broadcasts, and

are done in proper order and the priority is decided by android:priority

attribute. The broadcast with the highest priority would execute first

and broadcasts with the same priority would not follow any order. In

ordered broadcast, one broadcast is delivered only to one receiver at

a time. When receiver receives a broadcast it is up to the receiver to

pass or abort the broadcast. If receiver wants, it passes the broadcast

to the next receiver or else the broadcast does not reach the next

receiver.

2. Normal Broadcasts

 Normal broadcasts are known as asynchronous or unordered

broadcasts. It executes unorderly or all at a time. They are efficient,

but lack full utilization of the results. Normal broadcasts are sent

using Context:sendBroadcast. In normal broadcast, it is possible for

the system to send only one broadcast at a time to avoid overhead.

3.4 SERVICES

In android, services are a special component that enables an application to

execute in the background to perform lengthy operational tasks. The main

aim of a service is to ensure that the application remains active in the

background to operate multiple applications at the same time. A user

interaction is not needed as it is designed to operate lengthy processes

without user intervention. A service can be executed continuously in

background even if the application is closed or user switches to another

application. Application components can be connected to itself or other

components to perform inter-process communication(IPC).

Types of Android Services

1. Foreground Services

 Foreground Services are services that notify the user about ongoing

operations. These services are visible to the users. Users interact with

the service easily by providing notifications about ongoing task and

try what is happening. These services continue to run even when users

are using other applications. While downloading a file, the user can

keep track of the progress and can also pause and resume the

downloading. Another example is a music player.

2. Background Services

 Background services execute in the background that doesn’t require

any user intervention. Users can’t see or access these services. These

services don’t notify the user about ongoing background tasks and

even users cannot access them. Processes such as schedule syncing of

data or storing of data are examples of background services. An

example is syncing and Storing data.

60

Android Development

Fundamental
3. Bound Services:

 The services that allow components of an application like activity to

bound themselves with it are called as bound services. These services

perform its task as long as any application component is bound to it.

Multiple components are allowed to bind themselves with a service at

a time. bindService() method is used to bind an application

component with a service

The Life Cycle of Android Services

1. Started Service (Unbounded Service):

 A service is said to be started when startservice() method is called by

an application component. A single operation is performed and none

of the results are returned. Once service starts, it executes in the

background even if a component is destroyed created the service.

 Service can be stopped only in one of the following cases:

• By using the stopService() method.

• By stopping itself using the stopSelf() method.

2. Bounded Service:

 Android application components send requests to the service and

fetches results. Bound service executes till some application

component is bound to it. Many components can bind to one service

at a time, but when they all unbind, the service is destroyed

automatically. A Service is said to be bound only when an application

component binds itself to a service by using bindService() method. It

helps in creating a client-server relation that allows components to

interact with any service. These services executes in the background

as long as other applications bound to it. To stop execution of these

services, we can use unbindService() method to unbind all

components themselvs from the service.

61

Data Transfer and

Management

Methods of Android Services

Following methods are used to carry out service operations on an

application :-

onStartCommand() - This method is called when component requests for

starting a service using startService() method and once it is started, it can

be stopped explicitly using stopService() method.

onBind() - This is mandatory and it implements services. It is invoked when

an application component calls bindService() method. We need to provide

an interface for clients to communicate with the service.

onUnbind() - This method is called when all clients get disconnected from

a particular service interface provided by the service.

onRebind() - This method is called once the clients are disconnected from

the particular service interface and it is needed to connect the service with

new clients. This method is called after onBind() method.

onCreate() - This method is called whenr a service is created using

onStartCommand() or onBind() method. This method is needed for a one-

time set up.

onDestroy() - This method is called when a service is no longer in use. This

method is invoked before the service destroys as a final clean up call like

clean up of resources like threads, receivers, registered listeners, etc.

Example of Android Services

A common example of services is playing of music in the background.

Music plays continuously in the background as soon as the user starts the

service and it continues even though the user switches to other application.

To pause or stop the music the user needs to stop the service explicitly.

3.5 NOTIFICATIONS

In android, notification gives short and timely information about the action

that has happened in the application even if that particular app is not

exeuting. The notification displays the title, icon, and some content text.

Notification is a kind of alert for an application that is visible in any of the

Android’s UI elements. This application might be running in the

background but may not be used by the user. It notifies to the user about a

process that was initiated by any application or by the user or by the system.

Create and Send Notifications

Step 1 - Create Notification Builder

We can create notifications using NotificationCompat.Builder.build().

NotificationCompat.Builder mBuilder = new

NotificationCompat.Builder(this)

62

Android Development

Fundamental
Step 2 - Setting Notification Properties

By using Notification Builder we can set various notification properties like

small and large icons, title, priority etc.

Notification Properties

The properties of Android notification are set using

NotificationCompat.Builder object.

setSmallIcon(): It sets the icon of notification.

setContentTitle(): It is used to set the title of notification.

setContentText(): It is used to set the text message.

setAutoCancel(): It sets the cancelable property of notification.

setPriority(): It sets the priority of notification.

mBuilder.setSmallIcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Alert!");

mBuilder.setContentText("Memory Full!!!");

Step 3 - Attach Actions

It is optional. An action allows users to move directly from the notification

to any Activity in the application, where they could check for the events or

do any further work. If we want to attach any action with any notification,

we can define PendingIntent that contains an Intent initiating an Activity

for that application and to associate this PendingIntent with gesture, any of

the method of NotificationCompat.Builder can be used.

Step 4 - Issue the notification

Finally, we can call NotificationManager.notify() and pass Notification

object to the system. We have to make sure that any method of

NotificationCompat.Builder.build() to be called before notifying it.

NotificationManager mNotificationManager = (NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE);

mNotificationManager.notify(notificationID, mBuilder.build());

3.6 ALARM MANAGERS

AlarmManager class provides access to the alarm services of your system.

AlarmManager helps us to schedule an alarm for a particular time. Also, we

can schedule execution of an application at a particular time. The moment

the alarm goes off, the system broadcasts the intent registered for it.

AlarmManager holds wake lock of the CPU till onReceive() method is in

execution so that the device does not sleep until the broadcast is handled.

Alarms provides a way to perform time-based operations.

63

Data Transfer and

Management

Characteristics of an alarm:

• Alarms sets off intents at a particular time or at certain time intervals.

• Alarms can be executed outside the application also, it allows the

alarm to trigger even when the application is not executing.

• Alarms can be used with broadcast receivers to perform a particular

action or to start a service

• Alarms minimize resource requirements.

• Alarms execute till they are force stopped.

How to set an alarm?

We first need to create object of AlarmManager class and then pass it to

pending intents

AlarmManager am = (AlarmManager) getSystemService(

Context.ALARM_SERVICE);

Intent ai = new Intent(context, alarmreceiver.class);

PendingIntent pi = PendingIntent.getBroadcast(context, 0 , ai, 0);

Int interval = 8000;

manager. setInexactRepeating(AlarmManager/RTC_WAKEUP,

System.currentTimeMillis(), interval, pendingIntent);

How to invoke AlarmManager

setInExactAndRepeating: It does not trigger the alarm at the exact time.

setExact: It ensures that system triggers alarm on exact time.

setExactAndAllowWhileIdle: It is allowed to be executed, even in low

power modes of devices.

3.7 TRANSFERRING DATA EFFICIENTLY

Data transferring is an essential part of android applications and sometimes

it affects battery life and rises data usage costs. One of the app's most

significant sources of battery drain is using the wireless radio to transfer

data. A fully active wireless radio consumes more power. For a 3G network

the radio has the following three energy states:

Full power: It is used when a connection is active and allows devices to

transfer data at the highest possible rate.

Low power: An intermediate state that uses about 50% less battery.

Standby: The minimal energy state where no active network connection is

required.

64

Android Development

Fundamental
Android uses a state machine to determine how to transition between

various states. To reduce the latency, a state machine waits for a shorter

time before it transits to the lower energy states. The radio state machine on

each device is associated with transition delay and startup latency, based on

the wireless radio technology (2G, 3G, LTE, etc.). It is defined and

configured by the carrier network where the device is operating.

Best practices to keep in mind while developing an app.

Bundling network transfers

Every time a new network connection is created, the radio transitions to the

full power state. In case of 3G radio state machine, it takes full power for

the transfer duration. For a typical 3G device, every data transfer session

produces the radio to fetch power for almost 20 seconds. It is important to

bundle and queue up data transfers. We can bundle transfers that can occur

within a certain time and make it all execute simultaneously. It ensures radio

draws power for minimum time.

Prefetching

Prefetching means applications guess the content or data the user wants

next, and fetch it before time. For example, when the user is watching a

video he can fetch the next part of the video. Data prefetching is an effective

way to minimize the number of independent data transfers. Prefetching

allows us to download data we might need for a given time period in a single

burst within a single connection with full capacity. It minimizes the number

of radio activations that are required for data downloading. So, we can

conserve battery life as well as enhance latency for the user, minimize the

required bandwidth, and decrease download time.

Devices can network using different types of hardware:

Wireless radios use certain amounts of battery depending on technology use

and higher bandwidth consumes high energy. Here, higher bandwidth

means we can prefetch more data during the same amount of time. WiFi

radio uses less battery than wireless and provides greater bandwidth.

Monitor battery state

To reduce battery consumption, we need to monitor the state of a battery

and wait for certain conditions before initiating battery-specific operations.

BatteryManager broadcasts details of battery and charging to the Intent that

includes the charging status.

JobScheduler

Keeping track of the connectivity and battery status regularly can be a

challenge, and it requires use of components like broadcast receivers, which

consumes system resources even when application is stopped. JobScheduler

is a class provided by android SDK which allows us to transfer data

efficiently.

65

Data Transfer and

Management
3.8 SUMMARY

Chapter II focuses on various types of broadcast receivers and services.

Also, it briefs about the benefits of AsyncTaskLoader in android. It also

focuses on how to create notifications and how to use alarm manager for

enhancing app performance. It also explains how to transfer data efficiently

and connecting to internet.

3.9 EXERCISE

1. Explain the role of broadcast receiver in android.

2. Discuss the types of broadcast receivers.

3. Write a note on AsyncTaskLoader.

4. What is services in android and explain the various types of it?

5. State and explain the life cycle of android services with a neat

diagram.

6. What do you mean by notification in android and describe steps to

create and send notifications?

7. Write a note on alarm manager.

8. Explain the best practices to keep in mind while developing an app

for efficient data transfer.

3.10 REFERENCES

1. “Beginning Android 4 Application Development”, Wei-Meng Lee,

March 2012, WROX.

2. https://developers.google.com/training/courses/android-

fundamentals

3. https://www.gitbook.com/book/google-developer-training/android-

developer-fundamentals-course-practicals/details



66

Android Development

Fundamental 4

DATA - SAVING, RETRIEVING

AND LOADING

Unit Structure :

4.0 Objectives

4.1 Introduction

4.2 Saving and Loading User Preferences

4.3 Saving to External Storage (Sd Card)

4.4 File and Data Storage

4.5 How Much Space Does Your Data Require?

4.6 Categories of Storage Locations

4.7 Permissions and Access To External Storage

4.8 Scoped Storage

4.9 Summary

4.10 References

4.11 Unit End Question

4.0 OBJECTIVES

This chapter will help us to understand how data can be saved, retrieved and

loaded using various databases in Android.

4.1 INTRODUCTION

Android provides variety of SharedPreferences object to help you save

simple application data. For example, your application may have an option

to allow users to specify the font size of the text displayed in your

application. In this case, your application needs to remember the size set by

the user so that the next time he or she uses the application again, your

application can set the size appropriately. In order to do so, you have several

options. You can save the data to a file, but you must perform some file

management routines, such as writing the data to the file, indicating how

many characters to read from it, and so on.

An alternative to writing to a text file is to use a database, but saving simple

data to a database is over- kill, both from a developer’s point of view and in

terms of the application’s run-time performance.

67

Data-Saving,

Retrieving and Loading
4.2 SAVING AND LOADING USER PREFERENCES

Using the SharedPreferences object, however, you save the data you want

through the use of key/value pairs — specify a key for the data you want to

save, and then both it and its value will be saved automatically to an XML

file for you.

Method:

 getSharedPreferences()

 For creating shared preferences follow the following steps

1.Using Eclipse, create an Android project

2.Add the following in main.xml file:

<LinearLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”

android:layout_width=”fill_parent”

android:layout_height=”fill_parent” >

68

Android Development

Fundamental
<SeekBar

android:id=”@+id/SeekBar01”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<TextView

android:id=”@+id/TextView01”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content”

android:text=”@string/hello” />

<EditText

android:id=”@+id/EditText01”

android:layout_width=”fill_parent”

android:layout_height=”wrap_content” />

<Button

android:id=”@+id/btnSave”

android:text=”Save”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content” />

</LinearLayout>

3. In the MainActivity.java file, add the following statements

import android.app.Activity;

import android.view.View;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import android.os.Bundle;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity {

private EditText textBox;

69

Data-Saving,

Retrieving and Loading

private static final int READ_BLOCK_SIZE = 100;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

textBox = (EditText) findViewById(R.id.txtText1);

Button saveBtn = (Button) findViewById(R.id.btnSave);

Button loadBtn = (Button) findViewById(R.id.btnLoad);

saveBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

String str = textBox.getText().toString();

try

{

FileOutputStream fOut =

openFileOutput(“textfile.txt”,

MODE_WORLD_READABLE);

OutputStreamWriter osw = new

OutputStreamWriter(fOut);

//---write the string to the file---

osw.write(str);

osw.flush();

osw.close();

//---display file saved message---

Toast.makeText(getBaseContext(),

“File saved successfully!”,

Toast.LENGTH_SHORT).show();

//---clears the EditText---

textBox.setText(“”);

}

catch (IOException ioe)

{

ioe.printStackTrace();

}

}

70

Android Development

Fundamental
});

loadBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

try

{

FileInputStream fIn =

openFileInput(“textfile.txt”);

InputStreamReader isr = new

InputStreamReader(fIn);

char[] inputBuffer = new char[READ_BLOCK_SIZE];

String s = “”;

int charRead;

while ((charRead = isr.read(inputBuffer))>0)

{

//---convert the chars to a String---

String readString =

String.copyValueOf(inputBuffer, 0,

charRead);

s += readString;

inputBuffer = new char[READ_BLOCK_SIZE];

}

//---set the EditText to the text that has been

// read---

textBox.setText(s);

Toast.makeText(getBaseContext(),

“File loaded successfully!”,

Toast.LENGTH_SHORT).show();

}

catch (IOException ioe) {

ioe.printStackTrace();

}

}

});

}

}

4.Press F11 to debug the application on the Android Emulator.

71

Data-Saving,

Retrieving and Loading

5. Type some text into the EditText view and then click the Save button.

6. If the file is saved successfully, you will see the Toast class displaying

the “File saved successfully!” message. The text in the EditText view

should disappear.

7. Click the Load button and you should see the string appearing in the

EditText view again. This confirms that the text is saved correctly.

4.3 SAVING TO EXTERNAL STORAGE (SD CARD)

The previous section showed how you can save files to the internal storage

of your Android device. Sometimes, it would be useful to save them to

external storage because of its larger capacity, as well as the capability to

share the files easily with other users

Using the project created in the previous section as the example, to save the

text entered by the user in the SD card, modify the onClick() method of the

Save button as shown in bold here:

saveBtn.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

String str = textBox.getText().toString();

try

{

//---SD Card Storage---

File sdCard = Environment.getExternalStorageDirectory();

72

Android Development

Fundamental
File directory = new File (sdCard.getAbsolutePath() +

“/MyFiles”);

directory.mkdirs();

File file = new File(directory, “textfile.txt”);

FileOutputStream fOut = new FileOutputStream(file);

OutputStreamWriter osw = new

OutputStreamWriter(fOut);

//---write the string to the file---

osw.write(str);

osw.flush();

osw.close();

//---display file saved message---

Toast.makeText(getBaseContext(),

“File saved successfully!”,

Toast.LENGTH_SHORT).show();

//---clears the EditText---

textBox.setText(“”);

}

catch (IOException ioe)

{

ioe.printStackTrace();

}

}

});

4.4 FILE AND DATA STORAGE

Android uses file system that is much similar to disk-based file systems on

other platforms. There are different options available.

Android is an open-source operating system for mobile devices developed

by Google. It is designed to run on smartphones, tablets, and many other

mobile devices. Android provides several options for file and data storage,

including internal storage, external storage, and cloud-based storage

solutions.

73

Data-Saving,

Retrieving and Loading

Internal Storage:

Android devices typically have a built-in storage space, called internal

storage, where the system stores apps, data, and other files. The amount of

internal storage varies depending on the device size, but it is usually in the

range of 16 to 256 GB. Internal storage is non-removable.

External Storage:

Many Android devices also have a slot for a microSD card, that helps to

provide additional storage space for data and files. External storage is

removable, which means that users can insert or remove the microSD card.

However, not all devices support external storage, and the amount of storage

capacity depends on the type of microSD card used.

Cloud-based Storage:

Cloud-based storage solutions, such as Google Drive and Dropbox, are also

available on Android devices. These services allow users to store a number

of files and data in the cloud, which means that they can access their files

from any device with an internet connection. Cloud-based storage also

provides an additional layer for backup of files, which can help prevent data

loss in the event of a device failure or loss.

4.5 HOW MUCH SPACE DOES YOUR DATA REQUIRE?

Internal storage has limited space for app-specific data. Use other types of

storage if you need to save a minimum amount of data.

How reliable does data access need to be?

App's basic functionality requires certain data, such as when your app is

starting up, place the data within internal storage directory or a database.

App-specific files that are stored in external storage aren't always accessible

because some devices allow users to remove a physical device that

corresponds to external storage.

What kind of data do you need to store?

If you have data that's only meaningful for your app, use app-specific

storage. For shareable media content, use shared storage so that other apps

can access the content. For structured data, use either preferences (for key-

value data) or a database (for data that contains more than 2 columns).

Should the data be private to your app?

When storing sensitive data—data that should not be accessible from any

other app—use internal storage, preferences, or a database. Internal storage

has the added benefit of the data being hidden from users.

74

Android Development

Fundamental
4.6 CATEGORIES OF STORAGE LOCATIONS

In Android, there are several categories of storage locations where apps can

store data. Each category has its own unique characteristics and is intended

for different types of data. The main categories of storage locations in

Android are:

Internal storage: This is the primary storage location for an app's private

data. All apps have access to their own internal storage, which is not

accessible to other apps. Internal storage is used for storing app-specific

data, such as databases, preferences, and cache files. Apps can also store

media files, such as images and videos, in their internal storage.

External storage: This refers to any storage location that can be accessed

by the user and other apps, such as a microSD card or USB drive. Prior to

Android 10, apps could access external storage without any restrictions.

However, with the introduction of scoped storage in Android 10, apps must

now request permission to access external storage. Scoped storage allows

apps to only access their own "scoped" storage area, which is isolated from

other apps and the system.

Network storage: This refers to data that is stored on remote servers and

accessed over the internet. Apps can use network storage to store and

retrieve data, such as user profiles, media files, and other content.

Shared preferences: This is a lightweight storage mechanism used for

storing small amounts of app-specific data, such as user preferences and

settings. Shared preferences are stored in XML files and are accessible to

all components of an app.

SQLite databases: This is a local database storage mechanism used for

storing structured data. Apps can use SQLite databases to store and retrieve

data, such as user profiles, messages, and other app-specific data.

Content providers: This is a mechanism used for sharing data between

apps. Content providers are used to manage access to a shared set of app-

specific data, such as contacts, calendar events, and other data that can be

accessed by multiple apps.

Overall, the different categories of storage locations in Android provide

developers with a variety of options for storing and accessing data,

depending on the type of data and the app's specific requirements.

 On most devices, internal storage is smaller than external storage.

However, internal storage is always available on all devices, making it a

more reliable place to put data on which your app depends.

75

Data-Saving,

Retrieving and Loading
4.7 PERMISSIONS AND ACCESS TO EXTERNAL

STORAGE

Android defines the following storage-related permissions:

1.Read

2.Write

3.Manage

In Android, external storage refers to any storage that can be accessed by

the user and other apps, such as a microSD card or USB drive. Prior to

Android 10 (API level 29), apps could access external storage without any

restrictions. However, with the introduction of scoped storage in Android

10, apps must now request permission to access external storage.

There are two types of permissions that an app can request to access external

storage: READ_EXTERNAL_STORAGE and

WRITE_EXTERNAL_STORAGE. READ_EXTERNAL_STORAGE

allows an app to read files from external storage, while

WRITE_EXTERNAL_STORAGE allows an app to write files to external

storage. Both of these permissions are considered "dangerous" permissions,

which means that apps must request them at runtime and users must grant

them explicitly.

To request permission to access external storage, an app must include the

necessary permission(s) in its manifest file and request permission(s) at

runtime using the Android permission system. If the user grants permission,

the app can access external storage using the standard Java I/O APIs.

However, with scoped storage, apps can no longer access all files on

external storage without restrictions. Instead, apps can only access files in

their own "scoped" storage area, which is isolated from other apps and the

system. This means that apps cannot access files in other app's storage areas

or in the root of external storage. Scoped storage also introduces a new

permission called ACCESS_MEDIA_LOCATION, which grants an app

access to the location of media files.

Scoped storage provides better security and privacy for users, but it can also

introduce some challenges for app developers. Developers must update their

apps to comply with the new mechanism and use new APIs to access files

in external storage. They must also consider how scoped storage affects

their app's file management and data sharing capabilities.

In summary, permission and access to external storage in Android has

evolved with the introduction of scoped storage. While it improves security

and privacy, it also requires developers to update their apps to comply with

the new mechanism.

76

Android Development

Fundamental
4.8 SCOPED STORAGE

Scoped storage is a new mechanism introduced in Android 10 (API level

29) to improve user privacy and app security by limiting an app's access to

external storage. In the past, Android allowed apps to access external

storage without any restrictions, which could potentially lead to security

issues.

With scoped storage, an app can only access files in its own "scoped"

storage area, which is isolated from other apps and the system. This means

that apps cannot access files in other app's storage areas or in the root of

external storage. Scoped storage also introduces a new permission called

READ_EXTERNAL_STORAGE, which grants an app access to a specific

file or directory in external storage.

In addition to enhancing security and privacy, scoped storage also provides

better organization and management of files. Each app's scoped storage area

is unique, which makes it easier for users to find and manage files related

to a specific app. Scoped storage also enforces file metadata updates, which

ensures that the system is aware of any changes made to files by apps.

However, scoped storage can also introduce some challenges for app

developers, as they need to update their apps to comply with the new

mechanism. For example, apps may need to use new APIs to access files in

external storage, or request new permissions from users. Developers also

need to consider how scoped storage affects their app's file management and

data sharing capabilities.

4.9 SUMMARY

In this chapter, you learned the different ways to save persistent data to your

Android device. For simple unstructured data, using the SharedPreferences

object is the ideal solution. If you need to store bulk data, then consider

using the traditional file system. Finally, for structured data, it is more

efficient to store it in a relational database management system. For this,

Android provides the SQLite database, which you can access easily using

the APIs exposed.

Note that for the SharedPreferences object and the SQLite database, the data

is accessible only by the application that creates it. In other words, it is not

shareable. If you need to share data among different applications, you need

to create a content provider.

77

Data-Saving,

Retrieving and Loading

4.10 REFERENCES

1.Wrox. beginning android application development reference book

2.android developers

3.github for codes

4.11 UNIT END QUESTION

1. What is the difference between the getSharedPreferences() and

getPreferences() methods?

2. Name the method that enables you to obtain the path of the external

storage of an Android device.

3. What is the permission you need to declare when writing files to

external storage?



78

Android Development

Fundamental 5

DATABASE

Unit Structure :

5.0 Objectives

5.1 Introduction

5.2 Content Provider

5.3 Loaders

5.4 SQLite Databases-Key functionalities

5.5 Advantages and Disadvantages

5.6 Fire Base Databases

5.7 Advantages and Disadvantages

5.8 Performance and Security

5.9 Publishing App on play store

5.10 Summary

5.11 References

5.12 Unit End Question

5.0 OBJECTIVES

This chapter will help you to connect your android application to database

i.e SQLite or Firebases, where create, update, insert delete operations can

be performed

5.1 INTRODUCTION

SQL stores data in tables of rows and columns (spreadsheet…).In database

field is intersection of a row and column. Fields contain data, references to

other fields, or references to other tables. Rows are identified by unique

IDs. Column names are unique per table

5.2.CONTENTPROVIDER

In Android, using a content provider is the recommended way to share

data across packages. Think of a content provider as a data store. How it

stores its data is not relevant to the application using it; what is important

is how packages can access the data stored in it using a consistent

programming interface. A content provider behaves very much like a

database — you can query it, edit its content, as well as add or delete its

content. However, unlike a database, a content provider can use different

ways to store its data. The data can be stored in a database, in files, or

even over a network.

79

Database Android ships with many useful content providers, including the

following:

1. Browser — Stores data such as browser bookmarks, browser history,

and so on

2. CallLog — Stores data such as missed calls, call details, and so on

3. Contacts — Stores contact details

4. MediaStore — Stores media files such as audio, video, and images

5. Settings — Stores the device’s settings and preferences

5.3 LOADERS

Loaders provide asynchronous loading of data. It helps to reconnect to

Activity after configuration change .It can monitor changes in a data

source and deliver new data. It is usually callbacks implemented in

Activity. Different types of loaders are available

1.AsyncTaskLoader

2.CursorLoader

Loaders can be used to execute tasks of the UI thread.

LoaderManager handles configuration changes for the device. It is

efficiently implemented by the framework of Android. Users don't

have to wait for the loading of data.

5.4 SQLITE DATABASES

 activity_main.xml

• MainActivity.kt

• DatabaseHelper.kt

Step 1: activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

80

Android Development

Fundamental
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"

tools:context=".MainActivity">

<EditText

android:id="@+id/editID"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Enter Unique ID"

android:textSize="25sp" />

<EditText

android:id="@+id/editName"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Enter Your Name"

android:textSize="25sp" />

<EditText

android:id="@+id/editEmail"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Enter Email Address"

android:textSize="25sp" />

<EditText

android:id="@+id/editCourse"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Enter Course Name"

android:textSize="25sp" />

<Button

android:id="@+id/btnInsert"

81

Database android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Insert Data" />

<Button

android:id="@+id/btnUpdate"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Update Data" />

<Button

android:id="@+id/btnDelete"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Delete Data" />

<Button

android:id="@+id/btnViewAll"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="View Data" />

</LinearLayout>

Step 2: MainActvity.kt

package com.example.db

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import android.widget.Toast

import androidx.appcompat.app.AlertDialog

import com.example.db.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

private lateinit var binding: ActivityMainBinding

private var dbHelper = DatabaseHelper(this)

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

binding = ActivityMainBinding.inflate(layoutInflater)

82

Android Development

Fundamental
setContentView(binding.root)

handleInserts()

handleUpdates()

handleDeletes()

handleViewing()

}

private fun showToast(text: String) {

Toast.makeText(this, text, Toast.LENGTH_LONG).show()

}

private fun showDialog(title: String, Message: String) {

val builder = AlertDialog.Builder(this)

builder.setCancelable(true)

builder.setTitle(title)

builder.setMessage(Message)

builder.show()

}

private fun clearEditTexts() {

binding.editID.setText("")

binding.editName.setText("")

binding.editEmail.setText("")

binding.editCourse.setText("")

}

private fun handleInserts() {

binding.btnInsert.setOnClickListener {

try {

dbHelper.insertData(

binding.editName.text.toString(),

binding.editEmail.text.toString(),

binding.editCourse.text.toString()

)

clearEditTexts()

showToast("Data Inserted Successfully")

} catch (e: Exception) {

e.printStackTrace()

83

Database showToast(e.message.toString())

}

}

}

private fun handleUpdates() {

binding.btnUpdate.setOnClickListener {

try {

dbHelper.updateData(

binding.editID.text.toString(),

binding.editName.text.toString(),

binding.editEmail.text.toString(),

binding.editCourse.text.toString()

)

clearEditTexts()

showToast("Data Updated Successfully")

} catch (e: Exception) {

e.printStackTrace()

showToast(e.message.toString())

}

}

}

private fun handleDeletes() {

binding.btnDelete.setOnClickListener {

try {

dbHelper.deleteData(binding.editID.text.toString())

clearEditTexts()

showToast("Data Deleted Successfully")

} catch (e: Exception) {

e.printStackTrace()

showToast(e.message.toString())

}

}

}

private fun handleViewing() {

binding.btnViewAll.setOnClickListener(

84

Android Development

Fundamental

View.OnClickListener {

val res = dbHelper.allData

if (res.count == 0) {

showDialog("Error", "No Data Found")

return@OnClickListener

}

val buffer = StringBuffer()

while (res.moveToNext()) {

buffer.append("ID: " + res.getString(0) + "\n")

buffer.append("NAME: " + res.getString(1) + "\n")

buffer.append("EMAIL: " + res.getString(2) + "\n")

buffer.append("COURSE: " + res.getString(3) + "\n\n")

}

showDialog("Data", buffer.toString())

})

}

}

Step3: DatabaseHelper.kt

package com.example.db

import android.content.ContentValues

import android.content.Context

import android.database.Cursor

import android.database.sqlite.SQLiteDatabase

import android.database.sqlite.SQLiteOpenHelper

class DatabaseHelper(context: Context) : SQLiteOpenHelper(context,

DATABASE_NAME, null, 1) {

override fun onCreate(db: SQLiteDatabase?) {

db?.execSQL("CREATE TABLE $TABLE_NAME (ID INTEGER

PRIMARY

KEY AUTOINCREMENT,NAME TEXT,EMAIL TEXT,COURSE

TEXT)")

85

Database }

override fun onUpgrade(

db: SQLiteDatabase, oldVersion: Int, newVersion: Int

) {

db.execSQL("DROP TABLE IF EXISTS $TABLE_NAME")

onCreate(db)

}

fun insertData(name: String, email: String, course: String) {

val db = this.writableDatabase

val contentValues = ContentValues()

contentValues.put(COL_1, name)

contentValues.put(COL_2, email)

contentValues.put(COL_3, course)

db.insert(TABLE_NAME, null, contentValues)

}

fun updateData(

id: String, name: String, email: String, course: String

): Boolean {

val db = this.writableDatabase

val contentValues = ContentValues()

contentValues.put(COL_0, id)

contentValues.put(COL_1, name)

contentValues.put(COL_2, email)

contentValues.put(COL_3, course)

db.update(TABLE_NAME, contentValues, "ID = ?", arrayOf(id))

return true

}

fun deleteData(id: String): Int {

val db = this.writableDatabase

86

Android Development

Fundamental
return db.delete(TABLE_NAME, "ID = ?", arrayOf(id))

}

val allData: Cursor

get() {

val db = this.writableDatabase

return db.rawQuery("SELECT * FROM $TABLE_NAME", null)

}

companion object {

const val DATABASE_NAME = "student.db"

const val TABLE_NAME = "student_table"

const val COL_0 = "ID"

const val COL_1 = "NAME"

const val COL_2 = "EMAIL"

const val COL_3 = "COURSE"

}

}

Step 5:

build.gradle (Module: app)

Insert the following after kotlinOptions

buildFeatures {

viewBinding = true

}

Inserting Data

Data can be inserted into the database using the INSERT DATA button,

the Unique

ID does not need to be entered as it is auto-incremented

87

Database

Viewing Data

The data present in the database can be viewed by clicking the VIEW

DATA button,

the stored data is displayed in a dialog box.

Updating Data

The data stored in the database can be updated using the UPDATE DATA

button, all

the fields must be filled in order to update a database record

88

Android Development

Fundamental

Toast Messages

A toast message is displayed when any operation is carried out on the

database, a

toast message is displayed when inserting, updating or deleting records

Deleting Data

The records stored in the database can be deleted using the DELETE

DATA button,

only the Unique ID is required to delete a record.

89

Database

Empty Database

When no records have been stored in the database or if all the records

from it were

deleted, an error message is displayed in a dialog box.

5.5 ADVANTAGES AND DISADVANTAGES

SQLite is a very popular database that has been successfully used with an

on-disk file format for desktop applications like version control systems,

financial analysis tools, media cataloging and editing suites, CAD

packages, record-keeping programs, etc.

There are a lot of advantages to using SQLite as an application file format:

1) Lightweight

 SQLite is a very light weighted database so, it is easy to use it as an

embedded software with devices like televisions, Mobile phones,

cameras, home electronic devices, etc.

2) Better Performance

 Reading and writing operations are very fast for SQLite databases. It

is almost 35% faster than a File system.

 It only loads the data which is needed, rather than reading the entire

file and holding it in memory.

90

Android Development

Fundamental
 If you edit small parts, it only overwrites the parts of the file which

was changed.

3) No Installation is Needed

 SQLite is very easy to learn. You don't need to install and configure

it. Just download SQLite libraries on your computer and it is ready

for creating the database.

4) Reliable

 It updates your content continuously so, and little or no work is lost

in case of power failure or crash.

 SQLite is fewer bugs prone rather than custom-written file I/O

codes.

 SQLite queries are smaller than equivalent procedural codes so, the

chances of bugs are minimal.

5) Portable

 SQLite is portable across all 32-bit and 64-bit operating systems and

big- and little-endian architectures.

 Multiple processes can be attached to the same application file and

can read and write without interfering with each other.

 It can be used with all programming languages without any

compatibility issues.

6) Accessible

 SQLite database is accessible through a wide variety of third-party

tools.

 SQLite database's content is more likely to be recoverable if it has

been lost. Data lives longer than code.

7) Reduce Cost and Complexity

 It reduces application costs because content can be accessed and

updated using concise SQL queries instead of lengthy and error-

prone procedural queries.

 SQLite can be easily extended in future releases just by adding new

tables and/or columns. It also preserves backward compatibility.

SQLite Disadvantages

 SQLite is used to handle low to medium-traffic HTTP requests.

 Database size is restricted to 2GB in most cases.

91

Database 5.6 FIRE BASE DATABASES

Firebase Realtime Database is a cloud-hosted NoSQL database that allows

you to store and sync data in real time between multiple clients. It is a

popular backend-as-a-service (BaaS) solution provided by Google, which

can be used for developing web and mobile applications.Firebase Realtime

Database is a cloud-hosted NoSQL database that allows you to store and

sync data in real time between multiple clients. It is a popular backend-as-

a-service (BaaS) solution provided by Google, which can be used for

developing web and mobile applications.

5.5 ADVANTAGES AND DISADVANTAGES

Some of the advantages of Firebase include:

Syncing simultaneously from multiple clients: Firebase's real-time

database allows multiple clients to sync data simultaneously. This means

that any changes made to the database are reflected on all connected devices

in real time, without the need for manual synchronization.

NoSQL cloud database: Firebase's database is a NoSQL database hosted

on the cloud. This means that developers do not have to worry about setting

up and managing their servers or databases.

Realtime: Firebase's real-time database is designed to provide real-time

data synchronization between clients. This means that data is immediately

available to all connected clients as soon as it is updated.

JSON: Firebase's real-time database uses JSON (JavaScript Object

Notation) to store and exchange data. JSON is a lightweight data format that

is easy to read and write, making it ideal for use in web and mobile

applications.

Security: Firebase Realtime Database provides security features such as

authentication, authorization, and data validation to protect your data.

Easy to use: Firebase Realtime Database is easy to use and provides a

simple API for interacting with the database. Integration with other Firebase

services: Firebase Realtime Database integrates well with other Firebase

services such as authentication, cloud messaging, and analytics. Firebase

provides a range of advantages for developers, including real-time data

synchronization, a NoSQL cloud database, real-time data exchange, and the

use of JSON for storing and exchanging data. These features make Firebase

an ideal choice for developers looking to build scalable, real-time

applications

5.7 PERFORMANCE,SECURITY AND TRANSACTIONS

Android performance is excellent as it does multitasking. When it comes

to security it follows confidentiality, authentication, integrity .Operation

92

Android Development

Fundamental
performed on single unit of work is called transcation.A logical unit of

work must have four properties

• Atomicity—All or no modifications are performed

• Consistency—When transaction has completed, all data is in a

consistent state

• Isolation—Modifications made by concurrent transactions must be

isolated from the modifications made by any other concurrent

transactions

• Durability—After a transaction has completed, its effects are

permanently in place in the system

5.8 PUBLISHING APP ON PLAY STORE

Step 1: Make a Developer Account

A developer account is must be needed to upload an app on the Google

Play Store, and the process is very simple. Just go through Google Play

Store and do as instruct.

Step 2: After you completed step 1 you will be redirected to this page

where you have to click on the CREATE APPLICATION button.

Once you click on it a pop up will be shown like this where you must

choose your Default language and Title of your app. Then click on the

CREATE button.

Step 3: Store listing

After you completed step 2 you will be redirected to this page where you

have to provide the Short description and Full description of your App.

Step 4: App release

After completing step 3 go to App releases then scroll down to Production

track and click on MANAGE button.

Step 5: Content rating

Now after completing step 4 go to Content rating and click on

CONTINUE button.

After that fill your email address as well as confirm the email address.

And then Select your app category.

 And after answering them correctly don’t forget to click on SAVE

QUESTIONNAIRE button.

Once you saved all those things then click on CALCULATE RATING

button.

93

Database Step 6: Pricing & distribution

Then go to the Pricing & distribution section. Then select the country in

which you want to available your app.

Step 7: App content

Then come to the App content section. And in the Privacy policy section

click on the Start button.

Step 8: App releases

Again go back to the App releases section. And in the Production track

click on the EDIT RELEASE button.

After usually 4 to 5 days they will review your app and let you know to

either approve or reject your app.

5.10 SUMMARY

Database is a place where large amount of data can be stored efficiently in

structured format. As when real time data needs to be captured firebase

can be used as a database t o connect with android

5.11 REFERENCES

1.android.developers

2. Wrox. beginning android application development reference book

5.12 UNIT END QUESTION

1.Define SQLite Database. List its advantages and disadvantages

2. Define Firebase Database. List its advantages and disadvantages

3.Explain Content Providers.

4.Explain Loaders

5.Write different steps to publish app on google play store



	192-2 TY BSC CS SEM V Android Programming Starting pages
	1 Android Programming SYCS - 7skills
	2 Android Programming SYCS - 7skills
	3 Android Programming SYCS - 7skills
	4 Android Programming SYCS - 7skills
	5 Android Programming SYCS - 7skills

