
DISTRIBUTED SYSTEM AND
CLOUD COMPUTING

S.Y.M.C.A
(TWO YEARS PATTERN)

SEMESTER - III (CBCS)

SUBJECT CODE : MCA32

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

Programe Co-ordinator : Mr. Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Ms. Reshma Kurkute
Assistant Professor B.Sc.IT, IDOL,
IDOL, University of Mumbai- 400098.

Course Writers : Mrs. Anjali Gaikwad Lakhamade
Bsc. IT Co-ordinator,
JES college of comm, sci and IT Jogeshwari (E) Mumbai 400060.

: Mrs Vandana Maurya
Assistant Professor,
B. K. Birla College (Autonomous), Kalyan.

: Mrs Kavita Chouk
Assistant Professor,
Satish Pradhan Dnyasadhana College.

: Dr. Krishna Sudha M
Assistant Professor Sri vasavi college, Erode.

: Mrs. Shraddha Kokate
Assistant Professor,
Ghanshyamdas Saraf College of Arts and Commerce.

: Mr Sandeep Kamble
Assistant Professor,
Cosmopolitan's Valia College.

Published by
Director

Institute of Distance and Open Learning, University of Mumbai,Vidyanagari, Mumbai - 400 098.

DTP COMPOSEDAND PRINTED BY
Mumbai University Press,

Vidyanagari, Santacruz (E), Mumbai - 400098.

June 2022, Print I

CONTENTS
Chapter No. Title Page No.

Unit I

1. Introduction To Distributed Computing Concepts 1

2. Introduction To Distributed Computing Concepts 15

Unit II

3. Clock Synchronization 33

4. Election Algorithms 47

Unit III

5. Distributed Shared Memory 59

Unit IV

6. Distributed System Management 73

7. Distributed System Management 97

8. Distributed System Management 118

Unit V

9. Introduction To Cloud Computing 138

Unit VI

10. Cloud Computing 152

11. Cloud Platforms 167

12. Cloud Issues And Challenges 180

SYLLABUS

Course Code Course Name

MCA32 Distributed System and Cloud Computing

Module Detailed Contents Hrs

1 Module: Introduction to Distributed

Computing Concepts:

Basic concepts of distributed systems, distributed

computing models, issues in designing distributed

systems

Inter Process Communication

Fundamental concepts related to inter process

communication including message passing

mechanism, Concepts of group communication

Remote Communication

Remote Procedural Call (RPC), Remote Method

Invocation (RMI)

 Self Learning Topics: Case study on Java RMI

09

2 Module: Clock synchronization:

Introduction of clock synchronization, Global

state, Mutual Exclusion Algorithms, Election

algorithms.

 Self Learning Topics: Synchronization in

Wireless Networks

04

3 Module: Distributed Shared Memory:

Fundamental concepts of DSM, types of DSM,

various hardware DSM systems, Consistency

models, issues in designing and implementing

DSM systems.

 Self Learning Topics: MemNet Architecture

05

4 Module: Distributed System Management:

Resource ManagementScheduling Algorithms,

Task Assignment, Load balancing approach, Load

sharing approach

Process Management

Process Migration Mechanism, Thread models

Distributed File System

Concepts of a Distributed File System (DFS), file

models

 Self Learning Topics: Case Study of anyone

distributed system

06

5 Module: Introduction to Cloud Computing:

Cloud Computing history and evolution, benefits

of cloud computing.

Cloud Computing Architecture

Cloud Architecture model, Types of Clouds:

Public Private & Hybrid Clouds, Cloud based

services: Platform as a service (PaaS), Software

as a service (SaaS), Infrastructure as a service

(IaaS)

 Self Learning Topics: Cluster computing, Grid

computing, Fog computing

06

6 Module: Classification of Cloud

Implementations:

Amazon Web Services, Microsoft Azure &

Google Cloud-- Compute Services, Storage

Services, Network Services, Database services,

Additional Services.

Google AppEngine (GAE), Aneka,

Comparativestudy of various Cloud Computing

Platforms.

Cloud Issues and Challenges

Cloud computing issues and challenges like

Security, Elasticity, Resource

 management and scheduling, QoS (Quality of

Service) and Resource Allocation, Identity and

Access Management

10

1

UNIT I

1
INTRODUCTION TO DISTRIBUTED

COMPUTING CONCEPTS

Unit Structure

1.0 Objective

1.1 Introduction

1.2 Types of distributed system

1.2.1 Client Server distributed system

1.2.2 Peer to Peer distributed system

1.3 Distributed system Overview

 1.3.1 Advantages of distributed system

 1.3.2 Disadvantages of distributed system

 1.3.3 Challenges of distributed system

1.4 Designing issues of distributed system

1.5 Distributed system Architecture

1.6 Categories of distributed system

1.7 Distinguish between token base and non-token base algorithm

1.8 Summary

1.9 Unit End Exercise

1.0 OBJECTIVE

This chapter will able you to understand the following concept:

 Bezier curve and surface

 properties of Bezier curve

 Design techniques using Bezier curve

 Cubic Bezier curve

 Bezier surface

1.1 INTRODUCTION

1.1.1 What Is a Distributed System?

The definition of distributed system is consisting of many components

together, it can also have multiple geographic boundaries and it can also

communicate and coordinate with many components for message passing

among the actor outside this system.

2

Distributed System and

Cloud Computing

2

Now we will talk about the Decentralized system in which the distributed

systems are not having specific components to take the decision but every

component own their part of decision, none of them have complete

information. Hence, the resulted decision is depending upon some sort of

consensus between all components.

Distributed system is also called as parallel system as it is very close to

parallel computing. In both the terms it is been refer to scaling-up the

computational capability, but they achieve this in different way. In

parallel computing, we use multiple processors on a single machine to

perform multiple tasks simultaneously, possibly with shared memory.

Whereas in distributed computing, multiple autonomous machines with no

shared memory and communicating with message passing is used for

message passing.

1.1.2 Distributed system concepts:

1. Availability:

This term is defining the percentage of time the service is operational is

called as high availability. This is one of the most important feature of

right software.

100% availability is the feature given by best developer, achieving this

feature is the dream of every developer, it can be very challenging and

expensive.

Distributed software systems can be made up of machines with a lower

level of availability. To develop an application with 99.99% availability

you can use machines/nodes that have the four nines availability.

2. Consistency:

In this type of feature the same information can be share all nodes

simultaneously and, all nodes see and return the same information. Hence

they should work in synchronization to get all nodes to exchange

messages and work.

There some minor problem can be there like some difficulties while

passing message through the network between the nodes. Other example

of problem is in passing some message the delivery of message may fail

3

Introduction to Distributed

Computing Concepts

during communication or may it get lost or some nodes may be

unavailable at some point.

We can conclude that, if the function having weaker level of consistency,

the system cannot run faster – but at the same time the higher chances that

it won’t return the latest dataset.

3. Idempotency:

Idempotency means in specific request is executed when the actual event

execution will occur only one time regardless the number of times. As

long as the level of idempotency, develop by manager is try to avoid bad

consequences then it can have dropped connections, request errors, and

more.

For example, after shopping if the customer tries to make a payment but

nothing happens, he/she tries for many times, when the system is

idempotent, the payment will be charged only one time, while not using

idempotent systems one cannot give guarantee the lack of double charges

and users returning their money back.

4. Data durability:

The term durability means that once data is added to the data storage it is

one of the key concerns of distributed systems, it works even if some

system’s nodes are offline or have their data corrupted.

Level of durability is depending on different distributed databases used.

Some of them are support data durability at the machine/node level, where

as in some cases it maintains the cluster level, and in few cases it doesn’t

offer this functionality out of the box.

While developing high-scalable applications data durability takes an

important role in which it is able to process millions of events per day.

In organization world sometime the companies or the owners do not allow

the data loss as it is very crucial data. In some special cases when it deals

with critical operations and transactions. Hence the developers aim should

be providing a high level of data durability and strong connection data.

Nowadays, most distributed data storage services, e.g.

Cassandra, MongoDB, and Dynamodb, offer durability support at

different levels and can be all configured to ensure data durability at the

cluster level.

5. Message Persistence:

In message passing the many of the time it happens that while processing

a message the nodes through which a message passed goes offline or

sometime it may occur failure, then there is a risk of message loss or some

part of message loss. Message persistence assures that the message is

saved and will be processed after the issue is solved.

https://www.mongodb.com/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

4

Distributed System and

Cloud Computing

4

When we talk about quality application message persistence is one of the

most important characteristics.

When we need to protect the system from losses, we can take an example

of a messaging app of Uber where billions of users are there with millions

of payments per day, it seems very difficult and requires proven

technologies and developers’ expertise.

The solution to this challenge can be a creation of a messaging system that

delivers a message at least one time and it should implement at least once.

In speaking of distributed systems, messaging is generally ensured by

some distributed messaging service like RabbitMQ or Kafka, supporting

various levels of reliability in delivering messages and allowing to build

successful app architectures.

1.2 TYPES OF DISTRIBUTED SYSTEMS

The arrangement of nodes in the distributed system is like client/server

systems or peer to peer systems.

1.2.1 Client/Server Distributed Systems:

In this type of relation, the client requests a resource to server and the

server provides that resource back to the client. Multiple clients can be

handled by the server at the same time while a client is in contact with

only one server. The computer network is must be there to communicate

with client and server in distributed system.

1.2.2 Peer to Peer Distributed Systems:

In this type of system nodes are having equal participants in data sharing

through the computer network. Every task is equally divided between all

the nodes. To complete the task nodes are interacting with each other as

required as share resources. With using the network this can be done.

1.3 DISTRIBUTED SYSTEMS OVERVIEW

1.3.1 Advantages of a Distributed System:

While distributed systems are definitely more complex to design and

build, it pays off the benefits they bring along.

● Scalability is one of the most important constraint of hardware

limitation.

● In distributed system the multiple components are used to message

passing with multiple machines hence the data can be replicate on

multiple nodes hence the Reliability is more important factor of the

distributed system as it should pass the message with reduced

capacity.

https://smartym.pro/blog/mobile-messaging-app-development-developing-architecture-for-a-chat-application/

5

Introduction to Distributed

Computing Concepts

● The large problem is divided into smaller part so that the task can be

perform at multiple machines at the same time is the typical

applications of distributed computing. Hence, this will result into

increase in performance of many complex workloads, like matrix

multiplications.

● Transfer of data from one node to another node can be easily done as

all the nodes are connected to each other in distributed system.

● Addition of nodes at any point of time can be easily done in

distributed system i.e. it can be scaled as required.

● In the entire distributed system if one node fails the other remaining

nodes can still communicate with each other. The entire system will

not break down.

● Printers and scanner can be shared with multiple nodes rather than

being restricted to just one.

1.3.2 Disadvantages of Distributed Systems:

● The nodes and connection used in distributed system need to secured

hence it’s not provide adequate security.

● While transferring data from one node to another node messages may

have lost due to network failure.

● Single user system is much easier to handle as compare to distributed

system as the database connection is quite complicated and difficult.

● If all nodes want to send data at same time the load is on the

distributed system hence the Overloading may occur in the network.

1.3.3 Challenges in a Distributed System:

While using benefits of distributed system there are some challenges

which are discussed here.

● Consistency vs. Availability: Because of partition tolerance a

distributed system can provide either consistence or availability. It

provides by definition partition tolerance, as constrained by the CAP

theorem.

● Data Distribution: data distribution is the main challenge in network

as it uses multiple nodes to data transfer hence it need the complex

algorithm to solve the issue of distribution with effective partition.

● Coordination: the data replication can be there in distributed system

as it goes on multiple nodes hence the workload in a distributed

system is the main problem in which it is very tricky to find the

solution of the issue. To resolve the issue, it need a complex protocol

for participated nodes which can take a decision.

6

Distributed System and

Cloud Computing

6

Often in enterprise applications, under a transaction we require multiple

operations to happen at same time. For example, in a single unit of data we

may need to make several updates. While this has become quite complex

when we distribute data over a cluster of nodes. Many systems do provide

transactions like semantics in a distributed environment using complex

protocols like Paxos and Raft.

1.4 DESIGNING ISSUES OF DISTRIBUTED SYSTEM

1. Heterogeneity: In the computer network, computer hardware,

operating system and implementation of different developers is

Heterogeneity used. Client-server environment is middleware is a key

component of the heterogeneous distributed system. To communicate

with end to end customer Middleware is a set of services to interact

with the application.

2. Openness: new resources can be share and made available to the

users at any time can be known as openness of the distributed system.

Fact that their key interfaces are the main characteristics of the open

system. A uniform communication mechanism can be helpful for

access to shared resources in distributed commuting. The construction

can be done through heterogeneous hardware and software.

3. Scalability: The term Scalability can be achieved through a

significant increase in the number of users and resources connected

and its efficient use.

4. Security: The main challenge of distributed system is the security of

information. Hence the problem can be resolve with three components

Confidentially, integrity and availability and with Encryption we can

protects shared resources.

5. Failure Handling: while using system there may be some case where

some faults occur in hardware and the software program, it may

produce false results or sometime it may hold the activity before they

have finished the intended computation. bust handling failure is more

complex in distributed systems because the failure is the failure can

be in some components fail while others continue to function.

6. Concurrency: the resources can be shared at the same time by client

can lead the issue of concurrency as multiple users require the same

resources at the same time and they have the access of read, write, and

update. Every resource should be safe in a concurrent environment.

7. Transparency: Transparency ensures that the distributes system

should be perceived as a single entity by the users or the application

programmers rather than the collection of autonomous systems, which

is cooperating. The user should be unaware of where the services are

located and the transferring from a local machine to a remote one

should be transparent.

https://www.baeldung.com/transactions-intro
https://www.baeldung.com/transactions-intro

7

Introduction to Distributed

Computing Concepts

1.5 DISTRIBUTED SYSTEM ARCHITECTURE

The architecture of a distributed system depends on the use-case which

can be used anywhere in the management .it shows the flow of the data.

However, with some general patterns we can explore more cases.

The following diagram can represent the fact, about the core distribution

models which the architecture used

● Master-slave: In this model, there is one node who is master node of

the distributed system and it plays the role of king. Hence he is having

all the necessary information about the system and its control and

based on these it can also take the decision whenever is needed. The

other node can act as salves and they can be responsible for the task

given by the master and they should report to the master only. The

changes in any architecture can be done by master node.

● Peer-to-peer: in peer to peer distributed system there is no master

slave relationship. The master node is not present in this system. All

nodes are master nodes in peer to peer distributed system in this

model. All the nodes equally share the responsibility of the master.

Most of the distributed system can be combination of both the architecture

i.e. Peer to peer and master slaves. One can also choose one of the

architecture for models.

Data distribution is advantage of peer-to-peer model, whereas data

replication in the same architecture can be advantage of master-slave

model.

1.6 CATEGORIES OF DISTRIBUTED SYSTEM

To design a distributed system there can be several rationales. For

example, we need to perform computations like matrix multiplications at a

massive scale in machine learning models. These are impossible to

accommodate on a single machine.

Similarly, on a single machine it is impossible to store all large files and

handling huge files and processing at least highly inefficient.

8

Distributed System and

Cloud Computing

8

So, categorization of distributed system can be depending upon the use-

case, the following categories are.

● Data stores

● Messaging

● Computing

● Ledgers

● File-systems

● Applications

Traditionally, we can store the data in relational databases were the default

choice of data store for quite simple some time. However, the data can be

growth in terms of volume, velocity of data and variety, in this

database is not sufficient for the data process hence it started to fall short

of the expectation. The solution for this problem we introduced NoSQL

databases with their distributed architecture which is more useful.

Similarly, the distributed system provides the features like durability,

performance, scalability, usability over the traditional messaging systems

which could not remain insulated to the challenges of the modern scale of

data. in this area today there are several options that can provide multiple

semantics like publish-subscribe and point-to-point.

The 5 categories of various models that are used for building distributed

computing systems

1. Minicomputer Model:

● The extension of the centralized time-sharing system is called as

minicomputer model.

● Few minicomputers interconnected by a communication network in

the distributed computing system based. multiple users can

simultaneously have logged on to each minicomputer.

9

Introduction to Distributed

Computing Concepts

● Each minicomputer is connected to Several interactive terminals.

With every user login they get remote access to other minicomputers

while using minicomputer.

● Every user will get an access of remote resources on network which

are available on some machine other than the one on to which the user

is currently logged. maybe when one need to share resource sharing

with remote users is desired The minicomputer model is used.

● One of the best example of distributed computing system based on the

minicomputer model is the early ARPA net.

2. Workstation Model:

● A several workstations interconnected by a communication network

in distributed computing system based on the workstation model.

● Throughout an infrastructure several workstations were located in an

organization. every workstation has its well equipped with its own

disk & serves as a single-user computer.

● In such type of environment, at any one time out of total workstations

some of the workstations are idle which results in the waste of large

amounts of CPU time.

● Therefore, the idea of the workstation model is to interconnect all

these workstations by a high-speed LAN so that idle workstations

may be used to process jobs of users who are logged onto other

workstations & do not have sufficient processing power at their own

workstations to get their jobs processed efficiently.

● Example: Sprite system & Xerox PARC.

10

Distributed System and

Cloud Computing

10

3. Workstation–Server Model:

● A network of personal workstations having its own hard disk and

local files can be together called as server workstation model.

● Diskful workstation can be referred as a workstation with its own

local disk & a workstation without a local disk can be referred as a

diskless workstation. in network environments these workstations

have become more popular than diskful workstations.

● A few minicomputers & several workstations interconnected by a

communication in network are together come under distributed

computing system based on the workstation-server model.

● In this model, a user logs onto a workstation with the help of his or

her home workstation. Normal algorithmic or numeric activities

required by the user's processes are performed at the user's home

workstation, but server process the requests coming from special

servers. Out of which some are sent to a server which provided by

user's requested activity & returns the result of request processing to

the user's workstation.

● Therefore, in this model, the user's processes need not migrated to the

server machines for getting the work done by those machines.

● Example: The V-System.

11

Introduction to Distributed

Computing Concepts

4. Processor–Pool Model:

● Some time there are some cases in which the user does not need any

computing power but once in a while the user may need a very large

amount of computing power for a short time this computation can

consider under the processor-pool model. It works on the observation

of the utilization of resources.

● As we know that the workstation-server model uses a processor is

allocated to each user for the task, but in processor-pool model the

processors are used for the task to pooled together and the resources

are shared by the users as and when needed.

● a large number of microcomputers & minicomputers attached to the

network in the pool of processors.

● In this model every workstation in the pool has its own memory to

load the data & run a system program or an application program of

the distributed computing system.

● No home machine is present & the user does not log onto any

machine in this model.

● Better utilization of processing power & greater flexibility is the

highlighting advantage of the model.

● Example: Amoeba & the Cambridge Distributed Computing System.

5. Hybrid Model:

● The workstation-server model has a large number of computer users

only performing simple interactive tasks &-executing small programs.

● The processor-pool model is more attractive & suitable for the users

or the group of users who need to do massive computation for job

performing.

12

Distributed System and

Cloud Computing

12

● The feature of Workstation-server & processor-pool models can

combine together is called as hybrid model which can be used to build

a distributed system.

● The allocation of processor can be done dynamically for computations

that are too large or require several computers for execution.

● This model assures that the interactive jobs can be processed in local

workstation of the user account in the hybrid mode.

A distributed system is a system in which components are situated in

distinct places, these distinct places refer to networked computers which

can easily communicate and coordinate their tasks by just exchanging

messages to each other. These components can communicate with each

other to conquer one common goal as a task.

There are many algorithms are used to achieve Distributed Computing and

these are broadly divided into 2 categories: Token-Based Algorithms and

Non-Token Based Algorithms.

1.7 DISTINGUISH BETWEEN TOKEN BASED AND

NON-TOKEN BASED ALGORITHMS IN DISTRIBUTED

SYSTEM

Sr. No. Token Based Algorithms Non-Token Based Algorithms

1. In the distributed computing

system, a unique token is

shared among all the sites in

Token-based algorithm.

Where as in this algorithm the

token is not present and even it is

not sharing any token for

accessing the data.

2. When the token is processes

the site is allowed to enter

the into the Computer

System.

Here, two or more successive

rounds of messages are

exchanged between sites to

determine which site is to enter

the Computer System next.

3. The request sequence order

can be used to allocate the

token in token based

algorithm for request for the

Computer Systems and to

resolve the conflict for the

simultaneous requests for

the System.

The use of timestamp in

processing the request for the

Computer Systems and to resolve

the conflict for the simultaneous

requests for the System in non-

token based algorithm.

4. The token-based algorithm

produces less message

traffic as compared to Non-

Token based Algorithm.

As compared to the Token-based

Algorithm Non-Token based

Algorithm produces more

message traffic.

5. They are free from deadlock

(i.e. here there are no two or

more processes are in the

queue in order to wait for

messages that will actually

They are not free from the

deadlock problem as they are

based on timestamp only.

https://www.geeksforgeeks.org/design-issues-of-distributed-system/

13

Introduction to Distributed

Computing Concepts

can’t come) because of the

existence of unique token in

the distributed system.

6. Here, it is follow the

sequence of request

executed as the order they

are made in.

Here there is no such type of

execution order hence.

7. Token-based algorithms are

more scalable as they can

free your server from having

to store session state and

also they contain all the

necessary information

which they need for

authentication.

Non-Token based algorithms are

less scalable than the Token-

based algorithms because here

server is not free from its tasks.

8. Here the access control is

quite Fine-grained because

here inside the token roles,

permissions and resources

can be easily specifying for

the user.

Here the access control is not so

fine as there is no token which

can specify roles, permission, and

resources for the user.

9. Token-based algorithms

make authentication quite

easy.

Non-Token based algorithms

can’t make authentication easy.

10. Examples of Token-Based

Algorithms are:

(i) Singhal’s Heuristic

Algorithm

(ii) Raymonds Tree Based

 Algorithm

(iii) Suzuki - Kasami

Algorithm

Examples of Non-Token Based

Algorithms are:

(i) Lamport’s Algorithm

(ii) Ricart-Agarwala Algorithm

(iii) Maekawa’s Algorithm

1.8 SUMMARY

The definition of distributed system is consisting of many components

together, it can also have multiple geographic boundaries and it can also

communicate and coordinate with many components for message passing

among the actor outside this system. Distributed software systems can be

made up of machines with a lower level of availability. To develop an

application with 99.99% availability you can use machines/nodes that

have the four nines availability. The architecture of a distributed system

depends on the use-case which can be used anywhere in the management

.it shows the flow of the data. However, with some general patterns we

can explore more cases. A distributed system is a system in which

components are situated in distinct places, these distinct places refer to

networked computers which can easily communicate and coordinate their

https://www.geeksforgeeks.org/raymonds-tree-based-algorithm/
https://www.geeksforgeeks.org/raymonds-tree-based-algorithm/
https://www.geeksforgeeks.org/suzuki-kasami-algorithm-for-mutual-exclusion-in-distributed-system/
https://www.geeksforgeeks.org/suzuki-kasami-algorithm-for-mutual-exclusion-in-distributed-system/
https://www.geeksforgeeks.org/lamports-algorithm-for-mutual-exclusion-in-distributed-system/
https://www.geeksforgeeks.org/ricart-agrawala-algorithm-in-mutual-exclusion-in-distributed-system/
https://www.geeksforgeeks.org/maekawas-algorithm-for-mutual-exclusion-in-distributed-system/
https://www.geeksforgeeks.org/design-issues-of-distributed-system/

14

Distributed System and

Cloud Computing

14

tasks by just exchanging messages to each other. These components can

communicate with each other to conquer one common goal as a task.

1.9 UNIT AND EXCERCISE

1. What is distributed system?

2. List and explain types of distributed system.

3. Explain advantages of distributed system

4. Explain challenges of distributed system

5. Explain issues while designing of distributed system

6. Explain categories of distributed system

7. Write distinguishes between token base and non-token base

algorithm.

8. Write a note on

1. Hybrid model

2. Processor pool model

3. Workstation server model

 15

2
INTRODUCTION TO DISTRIBUTED

COMPUTING CONCEPTS

Unit Structure

2.0 Objective

2.1 Introduction

2.2 Modes of Interprocess Communication

2.2.1 Shared memory

2.2.2 Message Passing

2.2.3 Synchronization in interprocess communication

2.3 Approaches to Interprocess communication

2.4 Group Communication in distributed system

2.5 RPC in Distributed system

 2.5.1 Characteristics of RPC

 2.5.2 Features of RPC

2.6 Types of RPC

2.7 Architecture of RPC

2.8 Advantages & Disadvantages of RPC

2.9 Remote Method Invocation

2.10 Summary

2.11 Unit End Exercise

2.0 OBJECTIVE

This chapter will able you to understand the following concept:

● What is IPC (Inter-Process Communication) and its need

● Different modes of IPC

● Different approaches of IPC

● Group communication overview with its types

● RPC and its working

● Remote Method Invocation

2.1 INTRODUCTION

What Is IPC?

To exchange the data, the cooperating processes, need to communicate

with each this transaction of process can be called as Inter-process

communication. It is the mechanism of communicating among processes.

16

Distributed System and

Cloud Computing

16

To share data or resources the process can be used this process refers inter

- process communication or interprocess communication (IPC) and it

is specially used in operating system in computer science. This

mechanism of an operating system provides to allow the processes to

manage shared data. Typically, applications of an IPC can be client server

relationship in which client ask for resources from server and server will

reply on the client request.

In designing of microkernels and nano-kernels IPC is very important

factor, which reduce the number of functionalities provided by the kernel.

Those functionalities are then obtained by communicating with servers via

IPC, leading to a large increase in communication when compared to a

regular monolithic kernel. Variable analytic framework structures are used

in IPC. The IPC model relies on multi vector protocols which can ensure

the compatibility between them. An IPC mechanism is either synchronous

or asynchronous.

Need for IPC:

● Information Sharing: the resources sharing is the main component

as many users could demand for same information at the same time.

Thus, if there would be easiest path in resource sharing it will

available all the time.

● Computation Speedup: many of the task could perform at same time

hence the big task needs to split into several sub task for its fast

execution. This also requires related processes to exchange

information related to the task

● Modularity: Most of the time applications are built in a modular

fashion and divided into separate processes. For instance, the Google

Chrome web browser spawns a separate process for each new tab.

2.2 MODES OF INTER-PROCESS COMMUNICATION

Shared memory and message passing are the two modes through which

processes can communicate with each other. The process is divided into

several sections.

2.2.1. Shared Memory:

To established a shared memory region, require communicating process

which can run through the shared memory model. Every process has its

own memory region as well as they have its own address space to

communicate with each other, the other process which want to

communicate with them, they need to attach their address space to this

shared memory segment

17

Introduction to Distributed

Computing Concepts

The above diagram explains the shared memory model of IPC. Message

sharing or information exchanging done between Process A and process B

with the help of a shared memory segment through the shared memory

region.

By default, the operating system prevents processes from accessing other

process memory. The shared memory model requires processes to agree to

remove this restriction. Besides, as shared memory is established based on

the agreement between processes, the processes are also responsible to

ensure synchronization so that both processes are not writing to the same

location at the same time.

2.2.2 Message Passing:

The shared memory model is very useful model for transferring the data,

but it is not giving the suitable outcome for some processes. some process

we can’t achieve through this for example if the data is at various system

and the process needs to exchange the data through different computer

systems in distributed computing they don’t have straightforward way to

communicate with each other in a shared memory region.

The message passing mechanism provides an alternative means processes

for communication. In this mode, processes interact with each other

through messages with assistance from the underlying operating system:

18

Distributed System and

Cloud Computing

18

In the above diagram two processes A, and B are communicating with

each other through message passing. Process A sends a message M to the

operating system (kernel). This message is then read by process B.

In order to successfully exchange messages, there needs to be a

communication link between the processes. There are several techniques

through which these communication links are established. Following

points discussed the mechanisms:

● Direct Communication: In this type the direct sender and receiver is

including in the process, every process has explicit the recipient or the

sender. For example, if process A needs to send a message to process

B, it can use the primitive

● Indirect Communication: In this type the messages can be

transferred indirectly with the help of, mailbox. A container that holds

the messages is called mailbox. For example, if X is a mailbox, then

process A can send a message to mailbox using the

primitive

● Synchronization: in this type the additional option of

synchronization is there which can have extension to direct and

indirect communication. There is block to send and receive message

19

Introduction to Distributed

Computing Concepts

which can be based on the need of a process can choose to block

while sending or receiving messages Besides, it can communicate

without any blocking is called asynchronous.

● Buffering: The temporary queue for exchanged messages is called as

buffering. These queues can be of zero, bounded, and unbounded

capacity

We can explain the things with help of producer-consumer problem of

IPC. where a process is producer or we can see application is also

producers who can store data. Whereas the consumer can consume data

which ultimately an application / process by which the data is produced.

To communicate with each other the producer and consumer processes

mechanism is used.

An operating system provides mechanism of Interprocess communication

that allows processes to communicate with each other. In this

communication one process can let know to the another process that some

event is occurred or the transferring of data from one process to another.

2.2.3 Synchronization in Interprocess Communication:

Synchronization is a most important part of interprocess communication.

It can be assured by either the interprocess control mechanism or handled

by the communicating processes. Following are some of the methods to

provide synchronization −

● Semaphore:

A multiple process demands common resources at same time which is

sometime called as a semaphore with a variable that controls the access of

the resources. The Min categories of semaphores are binary semaphores

and counting semaphores.

● Mutual Exclusion:

There are some cases where the only one thread enter into critical section

that situation is called as Mutual. This technique is useful for preventing

race condition and it also can help in synchronization.

● Barrier:

As name implies barrier will not allow any individual processes to proceed

until all the processes reach it. Many parallel languages and collective

routines impose barriers.

20

Distributed System and

Cloud Computing

20

● Spinlock:

This is one type of lock. The checking process of lock availability is called

as spinlock where the processes trying to acquire this lock wait in a loop.

This is known as busy waiting because the process is not doing any useful

operation even though it is active.

2.3 APPROACHES TO INTER PROCESS

COMMUNICATION

● Pipe:

A unidirectional channel of data transfer is called as pipe. In this one pipe

is used for one-way data channel if both the way data transfer then we

have to use two pipes for two processes. standard input and output

methods can be used in this. Pipes are used in all POSIX systems as well

as Windows operating systems.

● Socket:

The end point for sending or receiving data in a network is called as

socket. This is true for data sent between processes on the same computer

or data sent between different computers on the same network. Most of the

operating systems use sockets for interprocess communication.

● File:

A set of data record is called as file it is stored on a disk or acquired on

demand by a file server. As per the requirement multiple processes can

access a file. Files can be used for data storage in all operating systems.

● Signal:

In a limited way of interprocess communication the signals are used. The

messages are sent from one process to another. Normally, signals are not

used to transfer data but are used for remote commands between

processes.

● Shared Memory:

Multiple process at the same time shares the resources with the help of

Shared memory. Due to this all process can communicate with one another

in easiest way All POSIX systems, as well as Windows operating systems

use shared memory.

● Message Queue:

Without being connected to each other multiple processes can read and

write data to the message queue. Until their recipient retrieves, messages

are stored in the queue. In interprocess communication Message queues

are quite useful and are used by most operating systems.

21

Introduction to Distributed

Computing Concepts

2.4 GROUP COMMUNICATION OVERVIEW

Group Communication:

In group communication all the servers are connected together with each

other hence the message is sent to a group and then this message is

delivered to all server of the group.

There are so many members of group who can join or leave the group at

any time. This can be done through multicast communication. There are

three communication modes:

1. Unicast: Process to process communication

2. Broadcast: all the process can communicate with each other

3. Multicast: only a member of group or object of a class can

communicate with each other

Object Group: Same set of invocations concurrently applied on a set of

object which is together called as an Object group.

Client Group: operations on a single, local object, which acts as a proxy

for the group is called as Client objects.

The proxy uses a group communication system to send the invocations to

the members of the object group.

Various type of data (files, code, source file) can be exchanged over a

network and this is between two processes in a distributed system.

Sometime group communication concept is existing as there could be a

situation where one source process tries to communicate with multiple

processes at once. Abstraction of process or a group is a collection of

interconnected processes. In abstraction it is hiding the message passing

wo look the procedure in normal procedure. Different host works together

22

Distributed System and

Cloud Computing

22

while communicating in Group communication and they also perform

operations in a synchronized manner, so that the improvement of

performance of the system can take place.

Types of group communication:

Closed and open groups:

only a group member can send the message in group and multicast the

message in group. In the closed group a process can deliver message to

itself.

Overlapping and non-overlapping groups:

In overlapping groups, entities may be members of multiple groups, and

non-overlapping groups imply that membership does not overlap to at

most one.

Types of Group Communication in a Distributed System:

Broadcast Communication:

In distributed computing every process is connects with the host process

and if the host process wants to communicate with the other process at

same time it is called as broadcast communication. When one common

information is sent over a trusted network Broadcast communication is

used as the information is delivered to each and every process in most

efficient manner possible. It does not require any extra processing thing

the communication is very fast in comparison to other modes of

communication. It is not suitable for large number of processes and cannot

treat a specific process individually.

23

Introduction to Distributed

Computing Concepts

A broadcast Communication: P1 process communicating with every

process in the system

Multicast Communication:

A group of process needs to controlled by a specific host process in a

distributed system at the same time is called as multicast communication.

The implementation is done in finding a way to address problem of a high

workload on host system and redundant information from process in

system. It mostly decreases the time taken for message handling.

A multicast Communication: P1 process communicating with only a

group of the process in the system

Unicast Communication:

When a single process wants to communicate with the host process in a

distributed system at the same time is called as Unicast communication.

As the name imply it deals with single process. The same information can

be pass to multiple processes. The specific process will be treating in best

way hence this is the best for two processes for communication. It will

lead to overheads as it has to find exact process and then exchange

information/data.

24

Distributed System and

Cloud Computing

24

Synchronous and asynchronous systems:

Group communication can be possible in both the environments. It is

reliable and ordered in multicast message processing.

In group communication, it guarantees the copy of same message should

deliver to the all members of a group.

Reliable multicast operation is based on two things:

Integrity: delivering the message correctly only once

Validity: assuring that a message sent will be delivered.

The following are the types of message ordering:

FIFO ordering: first process sends the message to first server and so on it

will be delivered in this order for all the processes in the group.

Causal ordering: If a message happens before another message in the

distributed system this so-called causal relationship will be preserved in

the delivery of the associated messages at all processes.

Total ordering: during the entire process, if a message is delivered before

another message at one process, then the same order will be preserved for

all processes is called as total ordering process.

Following are the four main task of Group membership management

Providing an interface for group membership changes: the changes

related to membership is done at this stage. The operations like addition of

process, or destroy a process from a group or crating a process can have

done through the membership service.

Failure detection: In case of crash and unreachability the service

monitors the group members. Suspected or Unsuspected processes can be

detecting by detector. If the process is unreachable or crashed the process

is excluded from membership.

25

Introduction to Distributed

Computing Concepts

Notifying members of group membership changes: if the process is

added to the group or excluded from the group then the service will

indicate that to the other group members.

Performing group address expansion: When a process multicast a

message, it supplies the group identifier rather than a list of processes in

the group.

2.5 WHAT IS RPC?

Remote Procedure Call (RPC) is an interprocess communication

technique. The extended form of RPC is Remote Procedure Call. The use

of RPC is in used for client-server applications. RPC mechanisms are used

when a computer program causes a procedure or subroutine to execute in a

different address space, which is coded as a normal procedure call without

the programmer specifically coding the details for the remote interaction.

RMI (Remote Method Invocation) is a way that a programmer, using

the Java programming language and development environment, can

write object-oriented programming in which objects on different

computers can interact in a distributed network. RMI is the Java version of

what is generally known as a remote procedure call (RPC), but with the

ability to pass one or more objects along with the request. The object can

include information that will change the service that is performed in the

remote computer. Sun Microsystems, the inventors of Java, calls this

"moving behaviour.

This procedure call also manages low-level transport protocol, such as

User Datagram Protocol, Transmission Control Protocol/Internet Protocol

etc. It is used for carrying the message data between programs.

2.5.1 Characteristics of RPC:

Here are the essential characteristics of RPC:

● The called procedure is in another process, which is likely to reside in

another machine.

https://www.theserverside.com/definition/Java
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object
https://www.techtarget.com/searchapparchitecture/definition/object

26

Distributed System and

Cloud Computing

26

● The processes do not share address space.

● Parameters are passed only by values.

● RPC executes within the environment of the server process.

● It doesn’t offer access to the calling procedure’s environment.

2.5.2 Features of RPC:

Here are the important features of RPC:

● Simple call syntax

● Offers known semantics

● Provide a well-defined interface

● It can communicate between processes on the same or different

machines

2.6 TYPES OF RPC

There are three types of RPC:

1. Callback RPC

2. Broadcast RPC

3. Batch-mode RPC

1. Callback RPC:

P2P paradigm between participating processes can enables RPC. With this

client and server both can be work as service.

Functions of Callback RPC:

● Interactive application problems can be remotely processed

● It offers server with clients handle system

● Callback will allow the client process wait

● Will help in managing callback deadlocks

● It allows a peer-to-Peer paradigm among participating processes.

2. Broadcast RPC:

The client’s request is called as Broadcast RPC; the processing request

method can be processed by all servers on broadcast network.

Functions of Broadcast RPC:

● It allows you to specify that the client’s request message has to be

broadcasted.

27

Introduction to Distributed

Computing Concepts

● You can declare broadcast ports.

● Physical network can be reducing with the broadcast RPC

3. Batch-mode RPC:

Batch-mode RPC helps to queue, on the client-side, separate RPC

requests, in a transmission buffer and then send them on a network in one

batch to the server.

Functions of Batch-mode RPC:

● When request is sent over the network will minimizes overhead

involved them over the network in one batch to the server.

● Only lower call rates applications are efficient for the type of RPC

protocol.

● It needs a reliable transmission protocol.

2.7 RPC ARCHITECTURE

RPC architecture has mainly five components of the program:

1. Client

2. Client Stub

3. RPC Runtime

4. Server Stub

5. Server

RPC Architecture

28

Distributed System and

Cloud Computing

28

How RPC Works?:

Step 1) On the run time client execute, client stub, and one instance of

RPC client machine.

Step 2) A client starts a client stub process by passing parameters.

Client’s own address space stores within the client stub. It

acknowledges the server stub by local RPC Runtime.

Step 3) RPC called by the user by accessing regular Local Procedural

Call. RPC Runtime manages broadcast the messages between

the network across client and server. It also does

acknowledgment, routing, performs the job of retransmission,

and encryption.

Step 4) After getting over the server procedure, it gets back to the server

stub, in which the message values are returned. In the transport

layer the layer gets back the message by server stub.

Step 5) During the step, the client sends message result to the transport

layer, which returns back a message to the client stub.

Step 6) In this stage, the return parameters called by the client stub, in

the resulting packet, and the execution process returns to the

caller.

2.8 ADVANTAGES & DISADVANTAGES OF RPC

Advantages of RPC:

● In high-level languages RPC method helps in transmission of message

between clients and servers using the conventional procedure calls.

● on the local procedure call RPC method is modeled, but the called

procedure is most likely to be executed in a different process and

usually a different computer.

● Process and thread-oriented models can be used in RPC.

● RPC provides the feature of abstraction. The internal message passing

mechanism hidden from the user in RPC.

● The effort needs to re-write and re-develop the code is minimum.

● To improve performance, it commits many of the protocol layers.

● In a distributed environment RPC allows the usage of the

applications.

29

Introduction to Distributed

Computing Concepts

Disadvantages of RPC:

● In Remote Procedure the parameter is call by values and pointer

which is not allowed in RPC.

● The time required for Remote procedure call is significantly lower

than that for a local procedure.

● The probability of failure occurs is high as it involves a

communication system, another machine, and another process.

● There are many different ways of RPC implementation, hence it is not

standard.

● Flexibility is not offered in RPC for hardware architecture as It is

mostly interaction-based.

● In remote procedure call, the cost of the process is increased.

2.9 RMI (REMOTE METHOD INVOCATION)

Remote Method Invocation:

The extended form of RMI is Remote Method Invocation. In this it

allows an object residing in one system (JVM) to gain access /invoke an

object running on another JVM.

In distributed application RMI is used. It is responsible for remote

communication between Java programs. It is provided in the

package java.rmi.

2.9.1 Goals of RMI:

● To minimize the complexity of the application.

● To preserve type safety.

● Distributed garbage collection.

● Minimize the difference between working with local and remote

objects.

2.9.2 Architecture of an RMI Application:

Server program and client program is the main feature of an RMI

application, one has to write two individual programs for each.

● In the server program it is remote object which is created and

reference of that object which can give access to the client.

● Whereas on the sever, the client program requests the remote objects

and tries to invoke its methods.

30

Distributed System and

Cloud Computing

30

The following diagram shows the architecture of an RMI application.

● Transport Layer: This layer is responsible for the connection

between the client and the server. It also responsible to manage the

existing connection and also sets up new connections.

● Stub: A representation (proxy) of the remote object at client is called

as Stub. We will find it in the client system; it acts as a gateway for

the client program.

● Skeleton: on the server side this object is residing.

stub communicates with this skeleton to pass request to the remote

object.

● RRL (Remote Reference Layer): in this layer it manages the

references made by the client to the remote object.

Working of an RMI Application:

● When the remote object gets call from the client object, it is first

received by the stub and after that it eventually passes this request to

the RRL.

● After getting request from the remote object to the client-side RRL, it

invokes a method called invoke () of the object remoteRef. RRL gets

request form the server side.

● After passing the request on the server side it passes the request to the

Skeleton (proxy on the server) which finally invokes the required

object on the server.

● The result is passed all the way back to the client.

2.9.3 Marshalling and Unmarshalling:

Whenever a client invokes a method that accepts parameters on a remote

object, the parameters are bundled into a message before being sent over

the network. These parameters may be of primitive type or objects. In case

31

Introduction to Distributed

Computing Concepts

of primitive type, the parameters are put together and a header is attached

to it. In case the parameters are objects, then they are serialized. This

process is known as marshalling.

At the server side, the packed parameters are unbundled and then the

required method is invoked. This process is known as unmarshalling.

RMI Registry:

RMI registry is a namespace on which all server objects are placed. Each

time the server creates an object, it registers this object with the

RMIregistry (using bind() or reBind() methods). These are registered

using a unique name known as bind name.

To invoke a remote object, the client needs a reference of that object. At

that time, the client fetches the object from the registry using its bind name

(using lookup() method).

The following illustration explains the entire process:

2.10 SUMMARY

To exchange the data, the cooperating processes, need to communicate

with each this transaction of process can be called as Inter-process

communication. it is the mechanism of communicating among processes.

To established a shared memory region, require communicating process

which can run through the shared memory model. The message passing

mechanism provides an alternative means processes for communication.

In this mode, processes interact with each other through messages with

assistance from the underlying operating system. In group communication

all the servers are connected together with each other hence the message is

32

Distributed System and

Cloud Computing

32

sent to a group and then this message is delivered to all server of the

group. Group communication can be possible in both the environments. It

is reliable and ordered in multicast message processing. The extended

form of RMI is Remote Method Invocation. In this it allows an object

residing in one system (JVM) to gain access /invoke an object running on

another JVM. In case of primitive type, the parameters are put together

and a header is attached to it. In case the parameters are objects, then they

are serialized. This process is known as marshalling. At the server side,

the packed parameters are unbundled and then the required method is

invoked. This process is known as unmarshalling.

2.11 UNIT AND EXCERCISE

1. What is IPC? Explain Working of IPC.

2. Explain different modes of IPC

3. Explain different approaches of IPC

4. Explain RPC with its characteristics and features.

5. Explain RPC architecture with diagram.

6. List down advantages & disadvantages of RPC

7. What is RMI explain its working.

8. Explain concept of marshalling and unmarshalling

9. Write a note on RMI registry

10. Explain the concept of Group communication.

 33

UNIT II

3
CLOCK SYNCHRONIZATION

Unit Structure

3.1 Introduction

3.2 Clock Synchronization

 3.2.1 How Computer Clocks Are Implemented

 3.2.2 Drifting or Clocks

 3.2.3 Clock Synchronization Issues

 3.2.4 Clock Synchronization Algorithms

3.3 Mutual Exclusion

 3.3.1 Centralized Approach

 3.3.2 Distributed Approach

 3.3.3 Token-Passing Approach

3.4 Reference

3.1 INTRODUCTION

A distributed system is a collection of distinct processes that are spatially

separated and run concurrently. In systems with multiple concurrent

processes, it is economical to share the hardware or software resources

among the concurrently executing processes. In such situation, sharing

may be cooperative or competitive. Since the number of available

resources in a computing system is restricted, one process must

necessarily influence the action of other concurrently executing processes

as it competes for resources. For example, a resource such as a tape drive

that cannot be used simultaneously by multiple processes, a process

willing to use it must wait if it is in use by another process. This chapter

presents synchronization mechanisms that are suitable for distributed

systems.

3.2 CLOCK SYNCHRONIZATION

Every computer needs a timer mechanism called a computer clock to keep

track of current time, calculation of the time spent by a process in CPU

utilization, disk I/O etc. so that the corresponding user can be charged

properly. In a distributed system, an application may have processes that

concurrently run on multiple nodes of the system. For correct results, such

distributed applications require that the clocks of the nodes are

synchronized with each other. For example, for a distributed on-line

reservation system to be fair, seat booked (remaining) almost

simultaneously from two different nodes should be offered to the client

who booked first, even if the time difference between the two bookings is

34

Distributed System and

Cloud Computing

34

very small. It may not be possible to guarantee this if the clocks of the

nodes of the system are not synchronized.

In a distributed system, synchronized clocks also enable one to measure

the duration of distributed activities that start on one node and terminate

on another node, for instance, calculating the time taken to transmit a

message from one node to another at any arbitrary time. It is difficult to

get the correct result in case if the clocks of the sender and receiver nodes

are not synchronized.

The discussion above shows that it is the job of a distributed operating

system designer to devise and use suitable algorithms for properly

synchronizing the clocks of a distributed system. In this section we will

describe such algorithms. However, for a better understanding of these

algorithms, we will first discuss how computer clocks are implemented

and what are the main issues in synchronizing the clocks of a distributed

system.

3.2.1 How Computer Clocks Are Implemented:

A computer clock usually consists of three components- a quartz crystal

that oscillates at a well-defined frequency, a counter register, and a

constant register. The constant register is used to store a constant value

that is decided based on the frequency of oscillation of the quartz crystal.

The counter register is used to keep track of the oscillations of the quartz

crystal. That is, the value in the counter register is decremented by 1 for

each oscillation of the quartz crystal. When the value of the counter

register becomes zero, an interrupt is generated, and its value is

reinitialized to the value in the constant register. Each interrupt is called a

clock tick.

Figure 3.1

To make the computer clock function as an ordinary clock used by us in

our day-to day life, the following things are done:

 35

Clock Synchronization

1. The value in the constant register is chosen so that 60 clock ticks

occur in a second.

2. The computer clock is synchronized with real time (external clock).

For this, two more values are stored in the system-a fixed starting date

and time and the number of ticks. For example, in UNIX, time begins

at 0000 on January 1, 1970. At the time of initial booting, the system

asks the operator to enter the current date and time. The system

converts the entered value to the number of ticks after the fixed

starting date and time. At every clock tick, the interrupt service

routine increments the value of the number of ticks to keep the clock

running.

3.2.2 Drifting or Clocks:

A clock always runs at a constant rate because its quartz crystal oscillates

at a well-defined frequency. However, the rates at which two clocks run

are normally different from each other due to differences in the crystals.

The difference in the oscillation period between two clocks might be

extremely small, but the difference accumulated over many oscillations

leads to an observable difference in the times of the two clocks, no matter

how accurately they were initialized to the same value.

Therefore, as time passes, a computer clock drifts from the real-time clock

that was used for its initial setting. For clocks based on a quartz crystal,

the drift rate is approximately 10
-6

, giving a difference of 1 second every

1,000,000 seconds, or 11.6 days [Coulouris et al. 1994]. Hence there is a

need to resynchronize computer clock periodically with the real-time

clock to keep it nonfaulty. Even nonfaulty clocks do not always maintain

perfect time. A clock is considered nonfaulty if there is a bound on the

amount of drift from real time for any given finite time interval.

Suppose that when the real time is t, the time value of a clock p is Cp(t). If

all clocks in the world were perfectly synchronized, we would have Cp(t)

= t for all p and all t. That is, if C denotes the time value of a clock, in the

ideal case dC/dt should be 1. Therefore, if the maximum drift rate

allowable is p, a clock is said to be nonfaulty if the following condition

holds for it:

As shown in Figure 3.2, after synchronization with a perfect clock, slow

and fast clocks drift in opposite directions from the perfect clock. This is

because for slow clocks dC/dt < 1 and for fast clocks dC/dt > 1.

36

Distributed System and

Cloud Computing

36

Figure 3.2 Slow, perfect, and fast clocks

A distributed system consists of several nodes, each with its own clock,

running at its own speed. Because of the nonzero drift rates of all clocks,

the set of clocks of a distributed system do not remain well synchronized

without some periodic resynchronization. This means that the nodes of a

distributed system must periodically resynchronize their local clocks to

maintain a global time base across the entire system. Recall from Figure

3.2 that slow and fast clocks drift in opposite directions from the perfect

clock.

Therefore, out of two clocks, if one is slow and one is fast, at a time

after they were synchronized, the maximum deviation between the

time value of the two clocks will be . Hence, to guarantee that no two

clocks in a set of clocks ever differ by more than , the clocks in the set

must be resynchronized periodically, with the time interval between two

synchronizations being less than or equal to . Therefore, unlike a

centralized system in which only the computer clock must be

synchronized with the real-time clock, a distributed system requires the

following types of clock synchronization:

1. Synchronization of the computer clocks with real-time (or external)

clocks:

This type of synchronization is mainly required for real-time applications.

That is, external clock synchronization allows the system to exchange

information about the timing of events with other systems and users.

An external time source UTC (Coordinated Universal Time) is often used

as a reference for synchronizing computer clocks with real time. The UTC

is an international standard and many standard bodies disseminate UTC

signals by radio, telephone, and satellite. For instance, the WWV radio

station in the United States and the Geostationary Operational

Environmental Satellites (GEOS) are two such standard bodies.

Commercial devices (called time providers) are available to receive and

interpret these signals. Computers equipped with time provider devices

can synchronize their clocks with these timing signals.

 37

Clock Synchronization

2. Mutual (or internal) synchronization of the clocks of different

nodes of the system:

This synchronization is mainly required for those applications that require

a consistent view of time across all nodes of a distributed system as well

as for the measurement of the duration of distributed activities that

terminate on a node different from the one on which they start.

Note that externally synchronized clocks are also internally synchronized.

However, the converse is not true because with the passage of time

internally synchronized clocks may drift arbitrarily far from external time.

3.2.3 Clock Synchronization Issues:

We have seen that no two clocks can be perfectly synchronized.

Therefore, in practice, two clocks are said to be synchronized at a instance

of time if the difference in time values of the two clocks is less than some

specified constant . The difference in time values of two clocks is called

clock skew.

Clock synchronization requires each node to read the other nodes clock

values. The actual mechanism used by a node to read other clocks differs

from one algorithm to another. However, regardless of the actual reading

mechanism, a node can obtain only an approximate view of its clock skew

with respect to other nodes' clocks in the system. Errors occur mainly

because of unpredictable communication delays during message passing

used to deliver a clock signal or a clock message from one node to

another. A minimum value of the unpredictable communication delays

between two nodes can be computed by counting the time needed to

prepare, transmit, and receive an empty message in the absence of

transmission errors and any other system load. However, in general, it is

rather impossible to calculate the upper bound of this value because it

depends on the amount of communication and computation going on in

parallel in the system, on the possibility that transmission errors will cause

messages to be transmitted several times, and on other random events,

such as page faults, process switches, or the establishment of new

communication routes.

An important issue in clock synchronization is that time must never run

backward because this could cause serious problems, such as the repetition

of certain operations that may be hazardous in certain cases. Notice that

during synchronization a fast clock has to be slowed down. However, if

the time of a fast clock is readjusted to the actual time all at once, it may

lead to running the time backward for that clock.

Therefore, clock synchronization algorithms are normally designed to

gradually introduce such a change in the fast running clock instead of

readjusting it to the correct time all at once. One way to do this is to make

the interrupt routine more intelligent. When an intelligent interrupt routine

is instructed by the clock synchronization algorithm to slow down its

clock, it readjusts the amount of time to be added to the clock time for

38

Distributed System and

Cloud Computing

38

each interrupt. For example, suppose that if 8 msec is added to the clock

time on each interrupt in the normal situation, when slowing down, the

interrupt routine only adds 7 msec on each interrupt until the correction

has been made. Although not necessary, for smooth readjustment, the

intelligent interrupt routine may also advance its clock forward, if it is

found to be slow, by adding 9 msec on each interrupt, instead of

readjusting it to the correct time all at once.

3.2.4 Clock Synchronization Algorithms:

Clock synchronization algorithms may be broadly classified as centralized

and distributed.

Centralized Algorithms:

In centralized clock synchronization algorithms one node has a real-time

receiver usually called the time server node, and the clock time of this

node is regarded as correct and used as the reference time. The goal of

the algorithm is to keep the clocks of all other nodes synchronized with

the clock time of the time server node. Examples of centralized algorithms

are- Berkeley Algorithm, Passive Time Server, Active Time Server etc.

Distributed Algorithms:

Distributed is the one in which there is no centralized time server present.

Instead the nodes adjust their time by using their local time and then,

taking the average of the differences of time with other nodes.

Distributed algorithms overcome the issue of centralized algorithms like

the scalability and single point failure. Examples of Distributed algorithms

are – Global Averaging Algorithm, Localized Averaging Algorithm, NTP

(Network time protocol) etc.

3.3 MUTUAL EXCLUSION

There are many resources in a system that need not be used

simultaneously by multiple processes if program operation is to be correct.

For example, a file cannot be simultaneously updated by multiple

processes. Similarly, use of tape drives or printers must be restricted to a

single process at a time. Therefore, exclusive access to such shared

resource by a process must be ensured. This exclusiveness of access is

called mutual exclusion between processes. The sections of a program that

need exclusive access to shared resources are called as critical sections.

An algorithm for implementing mutual exclusion must satisfy the

following requirements:

 39

Clock Synchronization

1. Mutual exclusion:

At any time only one process should access the shared resource. That is, a

process that has been granted the resource must release it before it can be

granted to another process.

2. No starvation:

If every process that is granted the resource eventually releases it, every

request must be eventually granted.

Three basic approaches used by different algorithms for implementing

mutual exclusion in distributed systems are described below. To simplify

our description, we assume that each process resides at a different node.

3.3.1 Centralized Approach:

In this approach, one of the processes in the system is elected as the

coordinator and coordinates the entry to the critical sections. Each process

that wishes to enter a critical section must first seek permission from the

coordinator. If no other process is currently in that critical section, the

coordinator can immediately grant permission to the requesting process.

However, if two or more processes concurrently ask for permission to

enter same critical section, the coordinator grants permission to only one

process at a time in accordance with some scheduling algorithm. After

executing a critical section, when a process exits the critical section, it

must notify the coordinator process so that the coordinator can grant

permission to another process (if any) that has also asked for permission to

enter the same critical section.

An algorithm for mutual exclusion using centralized approach is described

here with the help of an example. As shown in Figure 3.3, assume that

there is a coordinator process Pc and three other processes P1, P2 and P3 in

the system. Also assume that the requests are granted in the first-come,

first-served manner for which the coordinator maintains a request queue.

Suppose P1 wants to enter a critical section for which it sends a request

message to Pc. On receiving the request message, Pc checks to see whether

some other process is currently in that critical section. Since no other

process is in the critical section, Pc immediately sends back a reply

message granting permission to Pl. When reply arrives, P1 enters critical

section.

40

Distributed System and

Cloud Computing

40

Figure 3.3 Example illustration centralize approach for mutual

exclusion

Now suppose that while P1 is in the critical section and at same time P2

asks for permission to enter the same critical section by sending a request

message to Pc. Since P1 is already in the critical section, permission cannot

be granted to P2. The exact method used to deny permission varies from

one algorithm to another. For our algorithm, let us assume that the

coordinator does not return any reply and the process that made the

request remains blocked until it receives the reply from the coordinator.

Therefore, Pc does not send a reply to P2 immediately and enters its

request in the request queue.

Again, assume that while P1 is still in the critical section and at same time

P3 also sends a request message to Pc asking for permission to enter same

critical section. Obviously, P3 cannot be granted permission, so no reply is

sent immediately to P3 by Pc; and its request is queued in the request

queue.

Now suppose P1 exits the critical section and sends a release message to

Pc releasing its exclusive access to the critical section. On receiving the

release message, Pc takes the first request from the queue of deferred

requests and sends a reply message to the corresponding process, granting

it permission to enter the critical section. Therefore, in this case, Pc sends a

reply message to P2.

After receiving the reply message, P2 enters the critical section, and when

it exits the critical section, it sends a release message to Pc. Again Pc takes

the first request from the request queue (in this case request of P3) and

sends a reply message to the corresponding process (P3) On receiving the

 41

Clock Synchronization

reply message, P3 enters the critical section, it sends a release message to

Pc, when it exits the critical section. Now since there are no more requests,

Pc keeps waiting for the next request message.

This algorithm ensures mutual exclusion because, at a time, the

coordinator allows only one process to enter a critical section. Use of first-

come, first-served scheduling policy ensures that no starvation will occur.

This algorithm is simple to implement and requires only three messages

per critical section entry: a request, a reply, and a release.

However, it suffers from the usual drawbacks of centralized schemes. That

is, a single coordinator is subject to a single point of failure and can

become a performance bottleneck in a large system. Furthermore, for

handling failure, mechanism must be provided to detect a failure of the

coordinator, to elect a unique new coordinator, and to reconstruct its

request queue before the computation can be resumed.

3.3.2 Distributed Approach:

In the distributed approach, the decision making for mutual exclusion is

distributed across the entire system. All processes that want to enter the

same critical section cooperate with each other before reaching to a

decision on which process will enter the critical section next. The first

such algorithm was presented by Lamport [1978] based on his event-

ordering scheme. Later, Ricart and Agrawala [1981] proposed a more

efficient algorithm which also requires that there should be a total ordering

of all events in the system. As an example of a distributed algorithm for

mutual exclusion, Ricart and Agrawala's algorithm is described below. In

the following description we assume that Lamport's event ordering scheme

is used to generate a unique timestamp for each event in the system.

When a process wants to enter a critical section, it sends a request message

to all other processes. The message contains the following information:

1. The process identifier of the process.

2. The name of the critical section that the process wants to enter.

3. A unique timestamp generated by the process for the request message.

On receiving a request message, a process either immediately sends back a

reply message to the sender or defers sending a reply based on the

following rules:

1. If the receiver process is currently executing in the critical section, it

simply queues the request message and defers sending a reply.

2. If the receiver process is currently not executing in the critical section

but is waiting for its turn to enter the critical section, it compares the

timestamp in the received request message with the timestamp in its

own request message that it has sent to other processes. If the

timestamp of the received request message is lower, it means that the

sender process made a request before the receiver process to enter the

42

Distributed System and

Cloud Computing

42

critical section. Therefore, the receiver process immediately sends

back a reply message to the sender. On the other hand, if the receiver

process's own request message has a lower timestamp, the receiver

queues the received request message and defers sending a reply

message.

3. If the receiver process neither is in the critical section nor is waiting

for its turn to enter the critical section, it immediately sends back a

reply message.

A process that sends out a request message keeps waiting for reply

messages from other processes. It enters the critical section as soon as it

has received reply messages from all processes. After finishing execution

in the critical section, it sends reply messages to all processes in its queue

and deletes them from its queue.

Let us consider the example of Figure 3.4, to illustrate how the algorithm

works. There are four processes P1, P2, P3 and P4. While process P4 is in a

critical section, processes P1 and P2 want to enter the same critical section.

To get permission from other processes, processes P1 and P2 send request

messages with timestamps 6 and 4 respectively to other processes (Figure

3. 4(a)).

Figure 3.4 Example illustrating the distributed algorithm for mutual

exclusion

(a) status when processes P1 and P2 send request messages to other

processes while process P4 is already in the critical section;

 43

Clock Synchronization

(b) status while process P4 is still in critical section;

(c) status after process P4 exits critical section;

(d) status after process P2 exits critical section.

Now let us consider the situation in Figure 3.4(b). Since process P4 is

already in the critical section, it defers sending a reply message to P1 and

P2 and enters them in its queue. Process P3 is currently not interested in the

critical section, so it sends a reply message to both P1 and P2.

Process P2 defers sending a reply message to P1 and enters P1 in its queue,

because the timestamp (4) in its own request message is less than the

timestamp (6) in P1'S request message. On the other hand, P1 immediately

replies to P2 because the timestamp (6) in its request message is found to

be greater than the timestamp (4) of P2'S request message.

Next consider the situation in Figure 3.4(c). When process P4 exits the

critical section, it sends a reply message to all processes in its queue (in

this case to processes P1 and P2) and deletes them from its queue. Now

since process P2 has received a reply message from all other processes (P1,

P3 and P4), it enters the critical section. However, process P1 continues to

wait since it has not yet received a reply message from process P2.

Finally, when process P2 exits the critical section, it sends a reply message

to P1 (Fig. 3.4(d). Since process P1 has received a reply message from all

other processes, it enters the critical section.

This algorithm guarantees mutual exclusion because a process can enter its

critical section only after getting permission from all other processes, and

in the case of a conflict, only one of the conflicting processes can get

permission from all other processes. Algorithm also ensures freedom from

starvation since entry to the critical section is scheduled according to the

timestamp ordering.

It has also been proved by Ricart and Agrawala [1981] that the algorithm

is free from deadlock. Furthermore, if there are n processes, the algorithm

requires n-1 request messages and n-1 reply messages, giving a total of

2(n-1) messages per critical section entry.

This algorithm suffers from the following drawbacks because of the

requirement that all processes must participate in a critical section entry

request by any process:

1. In a system having n processes, the algorithm is liable to n points of

failure because if process fails, the entire scheme collapses. This is

because the failed process will not reply to request messages that will

be falsely interpreted as denial of permission by the requesting

processes, causing all the requesting processes to wait indefinitely.

To solve this problem Tanenbaum [1995] proposed a small

modification to the algorithm. In the modified algorithm, instead of

remaining silent by deferring the sending of the reply message in

44

Distributed System and

Cloud Computing

44

cases when permission cannot be granted immediately, the receiver

sends a "permission denied" reply message to the requesting process

and then later sends an OK message when the permission can be

granted. Therefore, a reply message (either "permission denied" or

OK) is immediately sent to the requesting process in any case. If the

requesting process does not receive a reply from a process within a

fixed time period, it either keeps trying until the process replies or

concludes that the process has crashed. When the requesting process

receives a "permission denied" reply message from one or more of

the processes, it blocks until OK message is received from all of

them.

2. The algorithm requires that each process knows the identity of all the

processes participating in the mutual-exclusion algorithm. This

requirement makes implementation of the algorithm complex because

each process of a group needs to dynamically keep track of the

processes entering or leaving the group. That is, when a process joins

a group, it must receive the names of all the other processes in the

group, and the name of the new process must be distributed to all the

other processes in the group. Similarly, when a process leaves the

group or crashes, all members of that group must be informed so that

they can delete it from their membership list. Updating of the

membership list is little bit difficult when request and reply messages

are already being exchanged among the processes of the group.

Therefore, the algorithm is suitable only for groups whose member

processes are fixed and do not change dynamically.

3. In this algorithm, a process can enter a critical section only after

communicating with all other processes and getting permission from

them. Therefore, assuming that the network can handle only one

message at a time, the waiting time from the moment the process

makes a request to enter a critical section until it actually enters the

critical section is the time for exchanging 2(n-1) messages in a system

having n processes. This waiting time may be large if there are too

many processes in the system. Therefore, the algorithm is suitable

only for a small group of cooperating processes.

3.3.3 Token-Passing Approach:

In this approach, mutual exclusion is achieved by using a single token that

is circulated among the processes in the system. A token is a special type

of message that entitles its holder to enter a critical section. For fairness,

the processes in the system are logically organized in a ring structure, and

the token is circulated from one process to another around the ring always

in the same direction (clockwise or anticlockwise).

When a process receives the token, it checks if it wants to enter a critical

section and acts as follows:

 If it wants to enter a critical section, it keeps the token with it, enters

the critical section, and exits from the critical section after finishing

its work. It then passes the token along the ring to its neighbor

 45

Clock Synchronization

process. Note that the process can enter only one critical section when

it receives the token. If it wants to enter another critical section, it

must wait until it gets the token again.

 If it does not want to enter a critical section, it just passes the token

along the ring to its neighbor processes. Therefore, if no process is

interested in entering a critical section, the token simply keeps on

circulating around the ring.

Mutual exclusion is guaranteed by this algorithm because at any instance

of time only one process can be in a critical section, since there is only a

single token. Furthermore, since the ring is unidirectional and a process is

permitted to enter only one critical section each time it gets the token,

starvation cannot occur.

In this algorithm the number of messages per critical section entry may

vary from 1 (when every process always wants to enter a critical section)

to an unbounded value (when no process wants to enter a critical section).

Moreover, for a total of n processes in the system, the waiting time from

the moment a process wants to enter a critical section until its actual entry

may vary from the time needed to exchange 0 to n-1 token-passing

messages. Zero token-passing messages are needed when the process

receives the token just when it wants to enter the critical section, whereas

n-1 messages are needed when the process wants to enter a critical section

just after it has passed the token to its neighbor process.

The algorithm requires the handling of the following types of failures:

1. Process failure:

A process failure in the system causes the logical ring to break. In such

situation, a new logical ring must be established to ensure the continued

circulation of the token among other processes. This requires detection of

a failed process and dynamic reconfiguration of the logical ring when a

failed process is detected or when a failed process recovers after failure.

Failed process can be easily detected by making it a rule that a process

receiving the token from its neighbor always sends an acknowledgment

message to its neighbor. With this rule, a process detects that its neighbor

has failed when it sends the token to it but does not receive the

acknowledgment message within a fixed time period.

On the other hand, dynamic reconfiguration of the logical ring can be done

by maintaining the current ring configuration with each process. When a

process detects that its neighbor has failed, it removes the failed process

from the group by skipping it and passing the token to the next alive

process in the sequence. When a process becomes alive after recovery, it

simply informs its previous neighbor in the ring so that it gets the token

during the next round of circulation.

46

Distributed System and

Cloud Computing

46

2. Lost token:

If the token is lost, a new token must be generated. The algorithm must

have mechanisms to detect and regenerate a lost token. One method to

solve this problem is to designate one of the processes on the ring as a

"monitor" process. The monitor process periodically circulates a "who

has the token?" message on the ring. This message rotates around the

ring from one process to another.

All processes simply pass this message to their neighbor process, except

the process that has the token when it receives this message. This process

writes its identifier in a special field of the message before passing it to its

neighbor. After one complete round, when the message returns to the

monitor process it checks the special field of the message. If there is no

entry in this field, it concludes that the token has been lost, generates a

new token, and circulates it around the ring.

There are two problems associated with this method- the monitor process

may itself fail and the "who has the token?" message may itself get

lost. Both problems may be solved by using more than one monitor

processes. Each monitor process independently checks the availability of

the token on the ring. However, when a monitor process detects that the

token is lost, it holds an election with other monitor processes to decide

which monitor process will generate and circulate a new token. An

election is required to prevent the generation of multiple tokens that may

happen when each monitor process independently detects that the token is

lost, and each one generates a new token.

3.4 REFERENCE

 Pradeep K. Sinha, Distributed Operating System: Concepts and

Design, PHI Learning.

 47

4
ELECTION ALGORITHMS

Unit Structure

4.1 Deadlock Introduction

 4.1.1 Necessary Conditions for Deadlock

 4.1.2 Deadlock Modeling

 4.1.3 Deadlock Prevention

4.2 Election Algorithms

 4.2.1 The Bully Algorithm

 4.2.2 A Ring Algorithm

 4.2.3 Discussion of the Election Algorithms

4.3 Summary

4.4 Reference

4.1 DEADLOCK

In the previous section we saw that there are several resources in a system

for which the resource allocation policy must ensure exclusive access by a

process. A system consists of a finite number of units of each resource

type for example, three printers, six tape drives, four disk drives, two

CPUs, etc. When multiple concurrent processes have to compete to use

resource, the sequence of events required to use a resource by a process is

as follows:

1. Request:

The process first makes a request for the resource. If the requested

resource is not available, possibly because it is being used by another

process, the requesting process must wait until the requested resource is

allocated to it by the system.

Note that if the system has multiple units of the requested resource type,

the allocation of any unit of the type will satisfy the request. Process may

request as many units of a resource as it requires with the restriction that

the number of units requested may not exceed the total number of

available units of the resource.

2. Allocate:

The system allocates the resource to the requesting process as soon as

possible. It maintains a table in which it keeps records of each resource

whether it is free or allocated and, if it is allocated, to which process its

allocated. If the requested resource is currently allocated to another

process, the requesting process is added to a queue of processes waiting

for this resource. Once the system allocates the resource to the requesting

process, that process can exclusively use the resource by operating on it.

48

Distributed System

and Cloud Computing

48

3. Release:

Once the process has finished using the allocated resource, it releases the

resource to the system. The system table records are updated at the time of

allocation and release to reflect the current status of availability of

resources.

The request and release of resources are called system calls, such as

request and release for devices, open and close for files, and allocate and

free for memory space. Notice that of the three operations, allocate is the

only operation that the system can control. The other two operations are

initiated by a process. If the total request made by multiple concurrent

processes for resources of a certain type exceeds the available amount,

some way is required to order the assignment of resources in time. Extra

care must be taken that the strategy applied cannot cause a deadlock, that

is, a situation where a set of processes are blocked because each process is

holding a resource and waiting for another resource acquired by some

other process.

It may happen that some processes that have entered the waiting state

(because the requested resources were not available at the time of request)

will never again change state, because the resources they have requested

are held by other waiting processes. This situation is called deadlock, and

the processes involved are said to be deadlocked. Hence, deadlock is the

state of permanent blocking of a set of processes each of which is waiting

for an event that only another process in the set can cause.

A deadlock situation can be explained with the help of an example given

below. Suppose that a system has two processes P1 and P2 & two tape

drives T1 and T2; resource allocation strategy is such that a requested

resource is immediately allocated to the requester if the resource is free.

Suppose that two concurrent processes P1 and P2 make requests for the

tape drives in the following order:

1. P1 requests for one tape drive and the system allocates tape drive T1 to

it.

2. P2 requests for one tape drive and the system allocates tape drive T2 to

it.

3. Now P1 requests for one more tape drive and enters a waiting state

because no tape drive is currently available.

4. Now P2 requests for one more tape drive and it also enters a waiting

state because no tape drive is currently available.

Now onwards, P1 and P2 will wait for each other indefinitely, since P1

will not release T1 until it gets T2 to carry out its designated task, that is,

not until P2 has released T2, whereas P2 will not release T2 until it gets

T1. Therefore, the two processes are in a state of deadlock. Note that the

requests made by the two processes are totally legal because each is

requesting for only two tape drives, which is the total number of tapes

 49

Election Algorithms

drives available in the system. However, the deadlock problem occurs

because the total requests of both processes exceed the total number of

units for the tape drive and the resource allocation policy is such that it

immediately allocates a resource on request if the resource is free.

In the context of deadlocks, the term "resource" applies not only to

physical objects such as tape and disk drives, printers, CPU cycles, and

memory space but also to logical objects such as a locked record in a

database, files, tables, semaphores, and monitors. However, these

resources should permit only exclusive use by a single process at a time

and should be nonpreemptable. A nonpreemptable resource is one that

cannot be taken away from a process to which it was allocated until the

process voluntarily releases it. If taken away, it has ill effects on the

computation already performed by the process. For example, a printer is a

nonpreemptable resource because taking the printer away from a process

that has started printing but has not yet completed its printing job and

giving it to another process may produce printed output that contains a

mixture of the output of the two processes. This is certainly unacceptable.

4.1.1 Necessary Conditions for Deadlock:

Coffman et al. [1971] stated that the following conditions are necessary

for a deadlock situation to occur in a system:

1. Mutual-exclusion:

If a resource is held by a process, any other process requesting for that

resource must wait until the resource has been released.

2. Hold-and-wait:

Processes can request for new resources without releasing the resources

that they are currently holding.

3. No-preemption:

A resource that has been allocated to a process becomes available for

allocation to another process only after it has been voluntarily released by

the process holding it.

4. Circular-wait:

Two or more processes must form a circular chain in which each process

is waiting for a resource that is held by another process.

A set of processes are waiting for each other in a circular fashion. For

example, let’s say there are a set of processes {P0, P1, P2, P3} such

that P0 depends on P1, P1 depends on P2, P2 depends on P3 and P3

depends on P0. This creates a circular relation between all these processes,

and they have to wait forever to be executed.

All four conditions must hold simultaneously in a system for a deadlock to

occur. If anyone of them is absent, no deadlock can occur. Notice that the

four conditions are not completely independent because the circular-wait

50

Distributed System

and Cloud Computing

50

condition implies the hold-and-wait condition. Although these four

conditions are somewhat interrelated, it is quite useful to consider them

separately to devise methods for deadlock prevention.

Example:

Figure 4.1 Deadlock example

In the above figure, there are two processes and two resources. Process 1

holds "Resource 1" and needs "Resource 2" while Process 2 holds

"Resource 2" and requires "Resource 1". This creates a situation of

deadlock because none of the two processes can be executed. Since the

resources are non-shareable, they can only be used by one process at a

time (Mutual Exclusion). Each process is holding a resource and waiting

for the other process to release the resource it requires. None of the two

processes releases their resources before their execution and this creates a

circular wait. Therefore, all four conditions are satisfied.

4.1.2 Deadlock Modeling:

Deadlocks can be modeled using directed graphs. Before presenting a

graphical model for deadlocks, some terminology from graph theory is

needed:

1. Directed graph:

A directed graph is a pair (N, E), where N is a nonempty set of nodes and

E is a set of directed edges. A directed edge is an ordered pair (a, b),

where a and b are nodes in N.

2. Path:

A path is a sequence of nodes (a, b, c,i, j) of a directed graph such that

(a, b), (b, c), ... , (i, j) are directed edges. Obviously, a path contains at

least two nodes.

3. Cycle:

A cycle is a path whose first and last nodes are the same.

 51

Election Algorithms

4. Reachable set:

The reachable set of a node a is the set of all nodes b such that a path

exists from a to b.

5. Knot:

A knot. is a nonempty set K of nodes such that the reachable set of each

node in K is exactly the set K. A knot always contains one or more cycles.

An example of a directed graph is shown in Figure 4.2.

The graph has a set of nodes {a, b, c, d, e, f} and a set of directed edges

{(a, b), (b, c), (c, d), (d, e), (e, f) (f, a), (e, b)}. It has two cycles (a, b, c, d,

e, f, a) and (b, c, d, e, b). It also has a knot {a, b, c, d, e, f} that contains

the two cycles of the graph.

Figure 4.2 A directed graph

For deadlock modeling, a directed graph, called a resource allocation

graph, is used in which both the set of nodes and the set of edges are

partitioned into two types, resulting in the following graph elements:

1. Process nodes:

A process node represents a process of the system. In a resource allocation

graph, it is normally shown as a circle, with the name of the process

written inside the circle (nodes P1, P2, and P3 of Fig. 4.3)

2. Resource nodes:

A resource node represents a resource of the system. In a resource

allocation graph, it is normally shown as a rectangle with the name of the

resource written inside the rectangle. Since a resource type R, may have

more than one unit in the system, each such unit is represented as a bullet

within the rectangle. For instance, in the resource allocation graph of

52

Distributed System

and Cloud Computing

52

Figure 4.3, there are two units of resource R1, one unit of R2, and three

units of R3.

3. Assignment edges:

An assignment edge is a directed edge from a resource node to a process

node. It signifies that the resource is currently held by the process. In

multiple units of a resource type, the tail of an assignment edge touches

one of the bullets in the rectangle to indicate that only one unit of the

resource is held by that process. Edges (R1, P1), (R1, P3), and (R2, P2)

are the three assignment edges in the resource allocation graph of Figure

4.3.

4. Request edges:

A request edge is a directed edge from a process node to a resource node.

It signifies that the process made a request for a unit of the resource type

and is currently waiting for that resource. Edges (P1, R2) and (P2, R1) are

the two request edges in the resource allocation graph of Figure 4.3.

Figure 4.3 Resource allocation graph

A resource allocation graph provides an overall view of the processes

holding or waiting for the various resources in the system. Therefore, the

graph changes dynamically as the processes in the system request for or

release resources or the system allocates a resource to a process. That is,

when a process Pi requests for a unit of resource type Rj , a request edge

 53

Election Algorithms

(Pi, Rj) is inserted in the resource allocation graph. When this request can

be fulfilled, a unit of resource Rj is allocated to Pi and the request edge

(Pi, Rj) is instantaneously transformed to an assignment edge (Rj , Pi).

Later, when Pi releases Rj , the assignment edge (Rj , Pi) is deleted from

the graph.

4.1.3 Deadlock Prevention:

We can prevent Deadlock by eliminating any of the below four conditions.

1. Mutual-exclusion

2. Hold-and-wait

3. No-preemption

4. Circular-wait

1. Eliminate Mutual Exclusion:

It is not possible to dis-satisfy the mutual exclusion because some

resources, such as the tape drive and printer, are inherently non-shareable.

Let’s take a practical example to understand this issue. Jack and Jones

share a bowl of soup. Both wants to drink the soup from the same bowl

and use a single spoon simultaneously, which is not feasible.

2. Eliminate Hold and wait:

1. Allocate all required resources to the process at the start of its

execution, this way hold and wait condition is eliminated but it will

lead to low device utilization. For example, if a process requires

printer later and we have allocated printer before the start of its

execution printer will remain blocked till it has completed its

execution.

2. The process will make a new request for resources after releasing the

current set of resources. This solution may lead to starvation.

Figure 4.4

54

Distributed System

and Cloud Computing

54

3. Eliminate No Preemption:

Preempt resources from the process when resources are required by other

high priority processes.

4. Eliminate Circular Wait:

Each resource will be assigned a numerical value, and a process has to

access the resource in increasing or decreasing order. For Example, if

process P1 is allocated resource R5, now next time if P1 ask for R4 or R3

which is lesser than R5; this request will not be granted, only request for

resources greater than R5 will be granted.

Distributed system:

Distributed system is a collection of independent computers that do not

share their memory. Each processor has its own memory and they

communicate via communication networks. Communication in networks

is implemented in a process on one machine communicating with a

process on another machine.

Distributed Algorithm is an algorithm that runs on a distributed system.

Several distributed algorithms require that there be a coordinator process

in the entire system that performs some type of coordination activity

needed for the smooth running of other processes in the system. Since all

other processes in the system must interact with the coordinator, they all

must unanimously agree on who the coordinator is. Furthermore, if the

coordinator process fails due to the failure of the site on which it is

located, a new coordinator process must be elected to take up the job of

the failed coordinator.

4.2 ELECTION ALGORITHMS

Election algorithms are meant for electing a coordinator process from the

currently running processes in such a manner that at any instance of time

there is a single coordinator for all processes in the system.

Election algorithms are based on the following assumptions:

1. Each process in the system has a unique priority number.

2. Whenever an election is held, the process having the highest priority

number among the currently active processes is elected as the

coordinator.

3. On recovery, a failed process can take appropriate actions to rejoin the

set of active processes.

Therefore, whenever initiated, an election algorithm finds out which of the

currently active processes has the highest priority number and then it

informs this to all other active processes. Different election algorithms

differ in the way they do this. Two such election algorithms are described

 55

Election Algorithms

below. In the description of both algorithms we will assume that there is

only one process on each node of the distributed system.

4.2.1 The Bully Algorithm:

This algorithm was proposed by Garcia-Molina in 1982. In this algorithm

it is assumed that every process knows the priority number of every other

process in the system. The algorithm works as follows.

When any process (say Pi) sends a request message to the coordinator and

does not receive a reply within a fixed time period, it assumes that the

coordinator has failed. It then initiates an election by sending an election

message to every process with a higher priority number than itself. If Pi

does not receive any response to its election message within a fixed time

period, it assumes that it has the highest priority number among the

currently active processes.

Therefore, it takes up the job of the coordinator and sends a message (let

us call it a coordinator message) to all processes having lower priority

numbers than itself, informing that it is elected as their new coordinator.

On the other hand, if Pi receives a response for its election message, this

means that some other process having higher priority number is alive.

Therefore, Pi does not take any further action and just waits to receive the

result (a coordinator message from the new coordinator) of the election it

initiated.

When a process (say Pj) receives an election message (obviously from a

process having a lower priority number than itself), it sends -a response

message (let us call it alive message) to the sender informing that it is

alive and will take over the election activity. Now Pj holds an election if it

is not already holding one. In this way, the election activity gradually

moves on to the process that has the highest priority number among the

currently active processes and eventually wins the election and becomes

the new coordinator.

As part of the recovery action, this method requires that a failed process

(say Pk) must initiate an election on recovery. If the current coordinator's

priority number is higher than that of Pk, then the current coordinator will

win the election initiated by Pk and will continue to be the coordinator. On

the other hand, if Pk's priority number is higher than that of the current

coordinator, it will not receive any response for its election message. So, it

wins the election and takes over the coordinator's job from the currently

active coordinator. Therefore, the active process having the highest

priority number always wins the election.

Hence the algorithm is called the "bully" algorithm. If the process having

the highest priority number recovers after a failure, it does not initiate an

election because it knows from its list of priority numbers that all other

processes in the system have lower priority numbers than that of its own.

Therefore, on recovery, it simply sends a coordinator message to all other

processes and bullies the current coordinator into submission.

56

Distributed System

and Cloud Computing

56

Now we will see working of this algorithm with the help of an example.

Suppose the system consists of five processes P1, P2, P3, P4 and P5 and

their priority numbers are 1, 2, 3, 4, and 5 respectively. Also assume that

at an instance of time the system is in a state in which P2 is crashed, and

P1, P3, P4 and P5 are active. Starting from this state, the functioning of the

bully algorithm with the changing system states is illustrated below.

1. P5 is the coordinator in the starting state. Suppose P5 crashes.

2. Process P3 sends a request message to P5 and does not receive a reply

within the fixed time period.

3. Process P3 assumes that P5 has crashed and it initiates an election by

sending an election message to P4 and P5. An election message is sent

only to processes with higher priority numbers.

4. When P4 receives P3's election message, it sends an alive message to

P3, informing that it is alive and will take over the election activity.

Process P5 cannot respond to P3's election message because it is down.

5. Now P4 holds an election by sending an election message to P5.

6. Process P5 does not respond to P4's election message because it is

down, and therefore, P4 wins the election and sends a coordinator

message to P1, P2 and P3 informing them that from now onwards it is

new coordinator. Obviously, this message is not received by P2

because it is currently down.

7. Now suppose P2 recovers from failure and initiates an election by

sending an election message to P3, P4 and P5. Since P2's priority

number is lower than that of P4 (current coordinator), P4 will win the

election initiated by P2 and will continue to be the coordinator.

8. Finally, suppose P5 recovers from failure. Since P5 is the process with

the highest priority number, it simply sends a coordinator message to

P1, P2, P3 and P4 and becomes the new coordinator.

4.2.2 A Ring Algorithm:

The following algorithm is based on the ring-based election algorithms

presented in [Tanenbaum 1995, Silberschatz and Galvin 1994]. In this

algorithm it is assumed that all the processes in the system are organized

in a logical ring. The ring is unidirectional means all messages related to

the election algorithm are always passed only in one direction

(clockwise/anticlockwise).

Every process in the system knows the .structure of the ring, so while

circulating a message over the ring, if the successor of the sender process

is down, the sender can skip over the successor, or the one after that, until

an active member is found. The algorithm works as follows.

When a process (say Pi) sends a request message to the current coordinator

and does not receive a reply within a fixed time period, it assumes that the

 57

Election Algorithms

coordinator has crashed. Therefore, it initiates an election by sending an

election message to its successor (to the first successor that is currently

active). This message contains the priority number of process Pi. On

receiving the election message, the successor appends its own priority

number to the message and passes it on to the next active member in the

ring. This member appends its own priority number to the message and

forwards it to its own successor.

In this manner, the election message circulates over the ring from one

active process to another and eventually returns to process Pi. Process Pi

recognizes the message as its own election message by seeing that in the

list of priority numbers held within the message. The first priority number

is its own priority number.

Note that when process Pi receives its own election message, the message

contains the list of priority numbers of all processes that are currently

active. Therefore, of the available processes in this list, it elects the

process having the highest priority number as the new coordinator. It then

circulates a coordinator message over the ring to inform all the other

active processes who the new coordinator is. When the coordinator

message comes back to process Pi after completing its one round along the

ring, it is removed by process Pi. At this point all the active processes

know who the current coordinator is.

When a process (say Pj) recovers after failure, it creates an inquiry

message and sends it to its successor. The message contains the identity of

process Pj. If the successor is not the current coordinator, it simply

forwards the enquiry message to its own successor. Hence the inquiry

message moves forward along the ring until it reaches the current

coordinator. On receiving an inquiry message, the current coordinator

sends a reply to process Pj informing that it is the current coordinator.

In this algorithm two or more processes may almost simultaneously

discover that the coordinator has crashed and then each one may circulate

an election message over the ring. Although this results in a little waste of

network bandwidth, it does not cause any problem because every process

that initiated an election will receive the same list of active processes, and

all of them will choose the same process as the new coordinator.

4.2.3 Discussion of the Election Algorithms:

In the bully algorithm, in a system having total n processes, when the

process having the lowest priority number detects the coordinator's failure

and initiates an election, altogether n-2 elections are performed one after

another for the initiated one. That is, all the processes, except the active

process with the highest priority number and the coordinator process that

has just failed, perform elections by sending messages to all processes

with higher priority numbers. Hence, in the worst case, the bully algorithm

requires O(n
2
) messages. However, when the process having the priority

number just below the failed coordinator detects that the coordinator has

failed, it immediately elects itself as the coordinator and sends n-2

58

Distributed System

and Cloud Computing

58

coordinator messages. Hence, in the best case, the bully algorithm requires

only n-2 messages.

On the other hand, in the ring algorithm, irrespective of which process

detects the failure of the coordinator and initiates an election, an election

always requires 2(n-l) messages (assuming that only the coordinator

process has failed); n-l messages are needed for one round rotation of the

election message, and another n-l messages are needed for one round

rotation of the coordinator message.

Next let us consider the complexity involved in the recovery of a process.

In the bully algorithm, a failed process must initiate an election on

recovery. Therefore, once again depending on the priority number of the

process that initiates the recovery action, the bully algorithm requires

O(n
2
) messages in the worst case, and n-l messages in the best case.

On the other hand, in the ring algorithm, a failed process does not initiate

an election on recovery but simply searches for the current coordinator.

Hence, the ring algorithm requires only n/2 messages on an average for

recovery action.

In conclusion, as compared to the bully algorithm, the ring algorithm is

more efficient and easier to implement.

4.3 SUMMARY

Several distributed algorithms require that there should be a coordinator

process in the entire system. Election algorithms are meant for electing a

coordinator process from among the currently running processes. We

discussed two election algorithms in this chapter i.e the bully algorithm

and the ring algorithm.

4.4 REFERENCE

 Pradeep K. Sinha, Distributed Operating System: Concepts and

Design, PHI Learning.

 60

UNIT III

5
DISTRIBUTED SHARED MEMORY

Unit Structure

5.1 Introduction of Distributed Shared Memory

5.2 Fundamentals concept of DSM

 5.2.1 Architecture of DSM

 5.2.2 Advantages of DSM

 5.2.3 Disadvantages of DSM

 5.2.4 Types of Distributed Shared Memory (DSM)

 5.2.5 Various hardware DSM systems

 5.2.6 Consistency Models

 5.2.7 Issues in designing and implementing DSM systems

5.3 Summery

5.4 Reference for further reading

5.5 Bibliography

5.6 Further Reading topics

5.7 Question

5.1 INTRODUCTION

DSM stands Distributed Shared Memory. It is form of memory

architecture where shared means the address space of memory shared.

DSM is a mechanism of allowing user processes to access shared data

without using inter-process communications. DSM refers to shared

memory paradigm applied to loosely coupled distributed memory systems.

Shared memory exists virtual only which is similar virtual memory so

sometimes it’s also called DSVM-Distributed Shared Virtual Memory. It

provides a virtual address space shared among processes on loosely

coupled processors.

It is basically an abstraction that integrates the local memory of different

machine into a single logical entity shared by cooperating processes.

In DSM, every implement shared node has its own memory and provides

memory read and write services and it provide consistency protocols. The

distributed shared memory (DSM) implements shared memory model in

distributed system but doesn’t have physical shared memory. All the

nodes share the virtual address space provided by the shared memory

model.

61

Distributed Shared Memory

Distributed Shared memory:

1) Message Passing Paradigm:

Send (recipient, data)

Receive(data)

2) Shared Memory Paradigm-

 Data=Read(address)

 Write (address, data)

DSM can be achieved via software as well as hardware. DSM Provide

service memory reads and write from any node’s consistency protocols.

5.2 FUNDAMENTAL CONCEPTS OF DSM

Definition: Distributed Shared Memory is mechanism allowing end user

processes to access shared data without using inter process

communications. DSM system is to make inter process communication

transparent to end user. By using DSM variables can shared directly and

cost of communication is invisible.

.

62

Distributed System

and Cloud Computing

62

Disturbed shared memory comparison with Message passing

Message passing Distributed shared memory

Variables must be marshalled. Variables are shared directly

Cost of communication is visible Cost of communication is invisible

Processes are protected by having

private address space

Process could cause error by altering

data.

Process executes at same time. Process executing may happen with

non-overlapping lifetimes.

5.2.1 Architecture of DSM:

Each node of the system consists of one or more CPU’s and memory unit.

Nodes are connected by high-speed communication network. Simple

message passing system for nodes to exchange information. Main memory

of individual nodes is used to cache pieces of shared memory space. Main

memory of individual nodes is used to cache pieces of shared memory

space.

Memory Mapping Manger Unit:

Memory mapping manager routine maps local memory to shared virtual

memory. For mapping operation, the shared memory house is divided into

blocks. DMA uses information caching to scale back network latency.

Memory mapping manager of every node reads its native memory as

enormous cache of the shared memory house for its native process.

Communication Network Unit:

Once method access information within shared address house mapping

maps the shared memory address to the physical memory. Physical

memory on every node holds pages of shared virtual address house native

pages area in some node’s memory.

63

Distributed Shared Memory

In simple language we can say nodes can communicate through managing

application. Refers the following diagram of distributed shared memory

communication among nodes.

5.2.2 Advantages of DSM:

1) DSM system is scalable. Scales are good with many nodes.

2) It hides the message passing.

3) DSM can handle large and complex data bases without replication or

sending them processes.

4) It provides large virtual memory space.

5) It provides portable as they use common DSM programming

interface.

6) DSM can improve performance by speeding up data access.

7) DSM provides on demand data movement means data will eliminate

the data exchange phase.

8) DSM is less expensive when compared to using a multiprocessor

system.

9) No memory access bottleneck as no single bus.

5.2.3 Disadvantages of DSM:

1) It could cause a performance penalty.

2) It should provide for protection against simultaneous access to shared

data such as lock.

3) Its performance of irregular problems could be difficult.

64

Distributed System

and Cloud Computing

64

5.2.4 Types of Distributed Shared Memory (DSM)

1) On- Chip Memory

2) Bus-Based Multiprocessors

3) Ring-Based Multiprocessors

4) Switched Multiprocessors

1) On- Chip Memory:

The data is present in the CPU portion of the chips.

Address lines are connected to memory.

On-chip memory DSM is complex and expensive.

On-chip Memory chips are widely used in appliances cars and even toys.

2) Bus-Based Multiprocessors:

A set of parallel wires called bus acts as a connection between CPU and

memory.

Network traffic is reduced by using caches with each CPU.

Some Algorithms are used to prevent two CPU trying to access same

memory simultaneously.

As uses single bus makes it overloaded.

65

Distributed Shared Memory

3) Ring-Based Multiprocessors:

A single address line is partitioned into a private area and shared area.

All nodes are connected via a token passing ring.

Shared area is divided into 32 bytes.

There is no global centralized memory present in ring-based

multiprocessors.

4) Switched Multiprocessors:

Two approaches can be taken to attack the problem of not enough

bandwidth.

Reduce the amount of communication Ex. Caching

Increase the communication capacity Ex. Changing topology.

To build the system as a hierarchy build the system as multiple clusters.

66

Distributed System

and Cloud Computing

66

5.2.5 Various hardware DSM systems:

Distributed shared memory (DSM) can be implemented in software or

hardware.

Software implementation of distributed shared memory is easy, and which

is used by software. Message passing on same cluster, so it is easy. When

we apply software distributed shared memory there is no need to change

hardware.

Software layer can be:

1) Page Based

2) Shared Variable Based

3) Object Based

Whenever we talk about hardware it relies on interconnects physically.

● For hardware distributed shared memory network interfaces and cache

coherence circuits are used.

● Special interfaces are used that supports shared memory operations.

● It gives higher performance.

● Hardware distributed shared memory is expensive.

Operating System Manges physical memory. Operating system running on

node that is physical one which access physical memory which allows us

to make connection between virtual to physical address of other nodes.

Network interface card (NIC) used to translate remote message access to

messages. NIC manages memory management, consistency, and atomics.

In this diagram,

CPU-Central Processing Unit

Mm-Memory Management

NIC-Network Interface Card

67

Distributed Shared Memory

5.2.6 Consistency Models:

Consistency Model nothing but the degree of consistency that must be

maintained for shared memory data. Memory (states) accordingly by

access ordering and propagation or visibility of updated.

Classification of consistency model

Notations:

R-m1(X)= X was read from memory location m1

W-m1(Y)=Y was written to memory location m1

Consistency Model types:

1) Strict Consistency Model

2) Sequential Consistency Model

3) Causal Consistency Model

4) Weak Consistency Model

5) Pipelined Random Access Consistency Model (PRAM)

6) Processor Consistency Model

7) Release Consistency Model

1) Strict Consistency Model:

This type of model has strong type of memory integration with a strong

need for consistency. The amount returned for the performance learned at

the memory address remains the same as the value written for the most

transaction at that address. For writes its visible to all the process.

68

Distributed System

and Cloud Computing

68

Let’s us consider the transaction example for strict consistency model

2) Sequential Consistency Mode:

The shared memory system is said to support sequential compatibility

model when all processes detect the same order. If three functions are read

(r1), write (w1), read (r2) are done in the memory field for that program

any orders

(r1,w1,r2),(r1,r2,w1),(w1,r1,r2),(w1,r2,r1),(r2,r1,w1),(r2,w1,r1) these all

processes are in same orders.

3) Causal Consistency Model:

All processes detect only those memory reference functions in their

sequence that may be related memory reference functions may be

identified by various process in different sequences. The function of the

memory reference is said to be related to other memory reference function

if one may be influenced by the other.

4) Weak Consistency Model:

If any process caused an error or any process in critical phase, there is no

restriction to show the change in the memory caused by an activity in

other process. The DSM system that supports a weak static model uses a

special alternative called synchronization variable.

5) Pipelined Random Access Consistency Model (PRAM):

It provides a simplistic semantics that is weaker than the symmetry model

described ensure that all writing process performed in one process are

recognized by all other process in sequence. All single process writing

tasks are on track.

69

Distributed Shared Memory

6) Processor Consistency Model:

This is like Pipelined Random Access Consistency Model (PRAM).

Memory consistency means that in memory location all process agrees on

the same sequence of all writing activities performed in same memory

space. If two processes w1, w2 writing in same memory location with

sequence w1, w2 or w2, w1.

7) Release Consistency Model:

To enhance weak consistency, model this model is used. acquire used to

tell the system it is entering release used to tell the system just excited

Results are release by process of another node.

Let’s consider the transaction for release consistency model

5.2.7 Issues in designing and implementing DSM systems:

 1) Granularity

 2) Structure of shared memory

 3) Memory Coherence and access synchronization

 4) Data Location and access

 5) Replacement Strategy

 6) Thrashing

 7) Heterogeneity

1) Granularity:

Granularity means block size of shared memory. When data sharing and

transfer across the network that time block faults occurs may be word or

page faults. A chunk of memory contains the word and issue is size of the

chunk.

70

Distributed System

and Cloud Computing

70

2) Structure of shared memory:

It is layout of shared data in the memory. This structure of shared memory

depends on different application which is supported by Distributed Shared

Memory (DSM).

3) Memory Coherence and access synchronization:

Distributed Shared Memory (DSM) system allows duplicate of shared data

items, copied of shared data items available in main memories of number

of nodes. To deal with this issue the consistency of a piece of shared data

lying in the main memories of two or more nodes.

4) Data Location and access:

As shared memory required shared data, to shared data in a Distributed

Shared Memory (DSM) to locate and retrieve the data accessed by a user

process.

5) Replacement Strategy:

In this strategy the data block must be replaced by new data block. When

the local memory of the node is full, a cache misses at that node from

fetched of access of data block from remote node and replacement also.

6) Thrashing:

Data block of memory migrate between nodes on demands. Different

technique used to less thrashing.

Application Controlled Lock

Algorithm to shared date used pattern a

 b

71

Distributed Shared Memory

 page access by using

 two variables with same page

Suppose we must access pages by using different variables we can use

same pages. consider two variables respectively and b.

6) Heterogeneity:

 It is applied on operating system, computer hardware, networks on system

with implementation of developers. Heterogeneity provides environment

like client-server .it treats as middleware which is set of services which

interacts to end users. Basically, Heterogeneity works on

1) Networks: Internet protocols is used in network for communication

purpose.

2) Computer Hardware: Internal representation of different processor.

3) Programming Language: Data structured are represented for data

using different programming languages.

4) Operating System:To communicate different operating system used

to send message.

5) Implementation of different Developers: Follows different

standards for communication.

5.3 SUMMARY

DSM means Distributed Shared Memory which is not physical memory it

is virtual memory. It is a form of memory architecture where shared

means the address space of memory shared. DSM is a mechanism of

allowing user processes to access shared data without using inter-process

communications. DSM refers to the shared memory paradigm applied to

loosely coupled distributed memory systems. We learned what is

Distributed shared memory with its architecture that what is the role of

memory mapping manager and communication network unit. What is the

difference between message passing and distributed shared memory?

There are different types of distributed shared memory likes On- Chip

Memory, Bus-Based Multiprocessors, Ring-Based Multiprocessors and

Switched Multiprocessors.

As Distributed shared memory can be implemented in software as well as

in hardware. In software there are three layers Page Based, Shared

Variable Base, Object Based. In Hardware CPU (Central Processing Unit),

MU (Memory Unit) and NIC (Network Interface Card) required. We

learned different Consistency Models of distributed shared memory.

We discussed different issues of distributed shared memory.

72

Distributed System

and Cloud Computing

72

5.4 BIBLIOGRAPHY

1)

https://www.cc.gatech.edu/classes/AY2010/cs4210_fall/papers/DS

M_protic.pdf

2) https://www.geeksforgeeks.org/what-is-distributed-shared-memory-

and-its-advantages/

3) https://vedveethi.co.in/eNote/DistSys/CS-702%20U-2.htm

4) https://en.wikipedia.org/wiki/Distributed_shared_memory

5) https://www.slideserve.com/dianne/distributed-computing

6) https://slideplayer.com/slide/6897641/

7) https://nptel.ac.in/courses/106102114/

8) Pradeep K. Sinha, Distributed Operating System: Concepts and

Design, PHI Learning, ISBN No. 978-81-203-1380-4

9) Andrew S. Tanenbaum, Distributed Operating Systems, Pearson

Education, ISBN No. 978-81-317-0147-8

5.6 REFERENCE FURTHER READING TOPICS

MemNet Architecture We learned in types of distributed shared memory

in this one of the types is ring based multiprocessor that is MemNet. You

can learn in details studies of Memnet with its architecture.

5.7 QUESTIONS

1) Explain Architecture of Distributed Shared Memory.

2) What is Distributed shared memory? Explain its architecture.

3) Explain various consistency model in details.

4) Explain Different types of Distributed Shared Memory.

5) What is the issue of design and implementation of distributed shared

memory?

6) Explain advantages and disadvantages of distributed shared memory.

7) Explain Distributed shared memory with its architecture?

https://slideplayer.com/slide/6897641/
https://nptel.ac.in/courses/106102114/

 73

UNIT IV

6
DISTRIBUTED SYSTEM MANAGEMENT

Unit Structure

6.1 Introduction to distributed system

6.1.1 Types of Distributed Systems

6.1.2 Advantages of Distributed Systems

6.1.3 Disadvantages of Distributed Systems

6.1.4 How does a distributed system work?

6.2 Introduction to resource management

6.2.1 Architecture of resource Management in distributed

Environment

6.3 Scheduling algorithms

6.3.1 Features of scheduling algorithms

6.3.2 Local Scheduling

6.3.3 Stride Scheduling

6.3.3.1 Extension to Stride Scheduling

6.3.4 Predictive Scheduling

6.3.5 Coscheduling

6.3.6 Gang Scheduling

6.3.7 Implicit Coscheduling

6.3.8 Dynamic Coscheduling

6.4 Task assignment Approach

 6.4.1 Resource Management

6.4.2 Working of Task Assignment Approach

6.4.3 Goals of Task Assignment Algorithms

6.4.4 Need for Task Assignment in a Distributed System

6.4.5 Example of Task Assignment Approach

6.5 Load balancing approach

6.5.1 Classification of Load Balancing Algorithms

6.5.2 Issues in Load Balancing Algorithms

6.6 Load sharing approach

6.6.1 Basic idea

6.6.2 Load Estimation Policies

6.6.3 Process Transfer Policies

6.6.4 Differences between Load Balancing and Load Sharing

6.7 Summary

6.8 Reference for further reading

6.9 Model Questions

74

Distributed System and

Cloud Computing

74

6.1 INTRODUCTION TO DISTRIBUTED SYSTEM

A distributed system contains multiple nodes that are physically separate

but linked together using the network. All the nodes in this system

communicate with each other and handle processes in tandem. Each of

these nodes contains a small part of the distributed operating system

software.

6.1.1 Types of Distributed Systems:

The nodes in the distributed systems can be arranged in the form of

client/server systems or peer to peer systems. Details about these are as

follows −

Client/Server Systems: In client server systems, the client requests a

resource and the server provides that resource. A server may serve

multiple clients at the same time while a client is in contact with only one

server. Both the client and server usually communicate via a computer

network and so they are a part of distributed systems.

Peer to Peer Systems: The peer to peer systems contains nodes that are

equal participants in data sharing. All the tasks are equally divided

between all the nodes. The nodes interact with each other as required as

share resources. This is done with the help of a network.

6.1.2 Advantages of Distributed Systems:

● All the nodes in the distributed system are connected to each other. So

nodes can easily share data with other nodes.

● More nodes can easily be added to the distributed system i.e. it can be

scaled as required.

● Failure of one node does not lead to the failure of the entire

distributed system. Other nodes can still communicate with each

other.

● Resources like printers can be shared with multiple nodes rather than

being restricted to just one.

6.1.3 Disadvantages of Distributed Systems:

● It is difficult to provide adequate security in distributed systems

because the nodes as well as the connections need to be secured.

● Some messages and data can be lost in the network while moving

from one node to another.

● The database connected to the distributed systems is quite

complicated and difficult to handle as compared to a single user

system.

● Overloading may occur in the network if all the nodes of the

distributed system try to send data at once.

 75

Distributed System

Management

6.1.4 How does a distributed system work?:

Distributed systems have evolved over time, but today’s most common

implementations are largely designed to operate via the internet and, more

specifically, the cloud. A distributed system begins with a task, such as

rendering a video to create a finished product ready for release. The web

application, or distributed applications, managing this task — like a video

editor on a client computer — splits the job into pieces. In this simple

example, the algorithm that gives one frame of the video to each of a

dozen different computers (or nodes) to complete the rendering. Once the

frame is complete, the managing application gives the node a new frame

to work on. This process continues until the video is finished and all the

pieces are put back together. A system like this doesn’t have to stop at just

12 nodes — the job may be distributed among hundreds or even thousands

of nodes, turning a task that might have taken days for a single computer

to complete into one that is finished in a matter of minutes.

There are many models and architectures of distributed systems in use

today. Client-server systems, the most traditional and simple type of

distributed system, involve a multitude of networked computers that

interact with a central server for data storage, processing or other common

goal. Cell phone networks are an advanced type of distributed system that

share workloads among handsets, switching systems and internet-based

devices. Peer-to-peer networks, in which workloads are distributed among

hundreds or thousands of computers all running the same software, are

another example of a distributed system architecture. The most common

forms of distributed systems in the enterprise today are those that operate

over the web, handing off workloads to dozens of cloud-based virtual

server instances that are created as needed, then terminated when the task

is complete.

6.2 INTRODUCTION TO RESOURCE MANAGEMENT

Distributed systems contain a set of resources interconnected by a

network. Processes are migrated to fulfill their resource requirements. The

Resource manager is responsible to control the assignment of resources to

processes. The resources can be logical (shared file) or physical (CPU)

resource. Scheduling is the way in which processors are assigned to run

on the available resources. In a distributed computing system, the

scheduling of various modules on particular processing nodes may be

preceded by appropriate allocation of modules of the different tasks to

various processing nodes and then only the appropriate execution

characteristic can be obtained. The task allocation becomes the important

most and major activity in the task scheduling within the operating system

of a DCS.

6.2.1 Architecture of Resource Management In Distributed

Environment:

In this architecture all the processes involved in a task like resource

management play similar roles interacting co-operatively as peers without

76

Distributed System and

Cloud Computing

76

any distinction between client and server processes or the computers they

run . The aim of peer to peer architecture is to exploit the resources in a

large number of participating computers for the fulfilment of a given task.

In this architecture applications are composed of large numbers of peer

processes running on separate computers and the pattern of

communication between them depends entirely on application

requirements. A large number of data objects like files are shared. Each

object or file is replicated in several computers to further distribute the

load and to provide compensation in the event of disconnection or network

failure.

The user interface for distributed resource environment needs several

kinds of transparency for resources which are distributed on many systems

connected to the network of the distributed system. Access transparency

and location transparency are general concept for distributed resources.

The advantage of the distributed environment is the replication of the

resources in any site. Besides the two transparencies, there is semantics

transparency in which a user can access resource by semantic name rather

than by physical name for the resource.

Besides the distributed architecture of Resource Management, Scheduling

is done to make resources available to an application whenever they are

needed. Processes need to have resources assigned to them according to

priority. A resource Scheduler determines the priority of processes based

on certain criteria. Scheduling methods need to be applied to all resources

that affect the performance of an application.

There are two kinds of scheduling. Fair Scheduling and Real-Time

Scheduling. The scheduling also depends upon the types of resources. A

resource is any object that a process can request and wait for. A resource

can consist of any number of identical units and a process can request any

number of units of a resource. The types of resources can be given as:

● Reusable Resources: A reusable resource does not vanish as a result

of its use but can be used over again and again. In a system, a reusable

resource has a fixed number of units and these units can neither be

created nor destroyed.

● Consumable Resources: A consumable resource vanishes as a result

of its use. When a unit of consumable resource is allocated to a

process it as consumed and ceases to exist. There is no fixed number

of units of a consumable resource in a system since the resource units

can be created and consumed.

In a distributed resource management system, resources can be stored at

any machine and the computation can be performed at any machine. When

a machine needs to access a file stored on remote machine, the remote

machine performs the necessary file access operations and returns the data

if a read operation is performed. The two most important services present

in a distributed resource management system are the name server and

cache manager. A name server is a process that maps names specified by

clients to stored objects such as files and directories. A cache manager is a

 77

Distributed System

Management

process that implements file caching. In file caching, a copy of data stored

at file server is brought to the client’s machine when referenced by the

client. Subsequent accesses to data are performed locally at the client,

there by reducing the access delays due to network latency. Cache

managers can be present at both clients and file servers. Cache managers

at the server caches files in the main memory to reduce the delays due to

disk latency.

Typcally, accessing remote resources is more expensive than accessing

local resources because of the communication delay that occur in the

network and the CPU overhead incurred to process communication

protocols. The impetus behind the development of Distributed Computing

was the availability of powerful processors at low cost and also advances

in communication technology. The availability of powerful yet cheap

processors led to the development of powerful workstations that satisfy a

single user’s needs. These powerful standalone workstations satisfy user

need by providing such things as bit-mapped displays and visual

interfaces, which traditional time-sharing systems do not support. When a

group of people work together, there is generally a need to communicate

with each other, to share data, and to share expensive resources such as

printers, disk drives etc. This requires interconnecting computers and

resources.

Technically, a completely pure peer-topeer application must implement

only peering protocols that do not recognize the concepts of server‖ and

―client‖. Such pure peer applications are rare. Most networks and

application described as peer-to-peer actually contain or rely on some non-

peer.

6.3 SCHEDULING ALGORITHMS

Scheduling is a decision-making process that is used on a regular basis in

many manufacturing and services industries. It deals with the allocation of

resources to tasks over given time periods and its goal is to optimize one

or more objectives

6.3.1 Features of Scheduling algorithms:

General purpose:

● A scheduling approach should make few assumptions about and have

few restrictions to the types of applications that can be executed.

● Interactive jobs, distributed and parallel applications, as wellas non-

interactive batch jobs, should all be supported with good performance.

● This property is a straightforward one, but to some extent difficult to

achieve.

● Because different kinds of jobs have different attributes, their

requirements to the scheduler may contradict.

● To achieve the general purpose, a tradeoff may have to be made.

78

Distributed System and

Cloud Computing

78

Efficiency:

● It has two meanings: one is that it should improve the performance of

scheduled jobs as much as possible; the other is that the scheduling

should incur reasonably low overhead so that it would not counter

attack the benefits.

Fairness:

● Sharing resources among users raises new challenges in guaranteeing

that each user obtains his/her fair share when demand is heavy is

fairness.

● In a distributed system, this problem could be exacerbated such that

one user consumes the entire system.

● There are many mature strategies to achieve fairness on a single node.

Dynamic:

● The algorithms employed to decide where to process a task should

respond to load changes, and exploit the full extent of the resources

available.

Transparency:

● The behavior and result of a task’s execution should not be affected

by the host(s) on which it executes.

● In particular, there should be no difference between local and remote

execution.

● No user effort should be required in deciding where to execute a task

or in initiating remote execution; a user should not even be aware of

remote processing.

● Further, the applications should not be changed greatly.

● It is undesirable to have to modify the application programs in order

to execute them in the system.

Scalability:

● A scheduling algorithm should scale well as the number of nodes

increases.

● An algorithm that makes scheduling decisions by first inquiring the

workload from all the nodes and then selecting the most lightly loaded

node has poor scalability.

● This will work fine only when there are few nodes in the system.

● This is because the inquirer receives a flood of replies almost

simultaneously, and the time required to process the reply messages

 79

Distributed System

Management

for making a node selection is too long as the number of nodes (N)

increase.

● Also the network traffic quickly consumes network bandwidth.

● A simple approach is to probe only m of N nodes for selecting a node.

Fault tolerance:

● A good scheduling algorithm should not be disabled by the crash of

one or more nodes of the system.

● Also, if the nodes are partitioned into two or more groups due to link

failures, the algorithm should be capable of functioning properly for

the nodes within a group.

● Algorithms that have decentralized decision making capability and

consider only available nodes in their decision making have better

fault tolerance capability.

Quick decision making capability:

● Heuristic methods requiring less computational efforts (and hence less

time) while providing near-optimal results are preferable to

exhaustive (optimal) solution methods.

Balanced system performance and scheduling overhead:

● Algorithms that provide near-optimal system performance with a

minimum of global state information (such as CPU load) gathering

overhead are desirable.

● This is because the overhead increases as the amount of global state

information collected increases.

● This is because the usefulness of that information is decreased due to

both the aging of the information being gathered and the low

scheduling frequency as a result of the cost of gathering and

processing the extra information.

Stability:

● Fruitless migration of processes, known as processor thrashing, must

be prevented.

E.g. if nodes n1 and n2 observe that node n3 is idle and then offload a

portion of their work to n3 without being aware of the offloading

decision made by the other node.

● Now if n3 becomes overloaded due to this it may again start

transferring its processes to other nodes.

● This is caused by scheduling decisions being made at each node

independently of decisions made by other nodes.

80

Distributed System and

Cloud Computing

80

6.3.2 Local Scheduling

In a distributed system, local scheduling means how an individual

workstation should schedule those processes assigned to it in order to

maximize the overall performance. It seems that local scheduling is the

same as the scheduling approach on a stand-alone workstation. However,

they are different in many aspects. In a distributed system, the local

scheduler may need global information from other workstations to achieve

the optimal overall performance of the entire system. For example, in the

extended stride scheduling of clusters, the local schedulers need global

ticket information in order to achieve fairness across all the processes in

the system.

In recent years, there have been many scheduling techniques developed in

different models. Here, we introduce two of them: one is a proportional-

sharing scheduling approach, in which the resource consumption rights of

each active process are proportional to the relative shares that it is

allocated. The other is predictive scheduling, which is adaptive to the CPU

load and resource distribution of the distributed system.

The traditional priority-based schedulers are difficult to understand and

give more processing time to users with many jobs, which leads to

unfairness among users. Numerous researches have been trying to find a

scheduler that is easy to implement and can solve the problem of

allocating resources to users fairly over time. In this environment,

proportional-share scheduling was brought out to effectively solve this

problem. With proportional-share scheduling, the resource consumption

rights of each active process are proportional to the relative shares that it is

allocated.

6.3.3 Stride Scheduling:

As a kind of proportional-share scheduling strategies, stride scheduling

allocates resources to competing users in proportion to the number of

tickets they hold. Each user has a time interval, or stride, inversely

proportional to his/her ticket allocation, which determines how frequently

it is used. A pass is associated with each user. The user with a minimum

pass is scheduled at each interval; a pass is then incremented by the job's

stride.

6.3.3.1 Extension to Stride Scheduling:

The original stride scheduling only deals with CPU-bound jobs. If the

proportional-share schedulers are to handle the interactive and I/O

intensive job workloads, they must be extended to improve the responsive

time and I/O throughput, while not penalizing competing users. Here we

discuss two extensions to stride scheduling that give credits to jobs not

competing for resources. In this way, jobs are given incentive to relinquish

the processor when not in use and will receive their share of resources

over a longer time-interval. Thus, because interactive jobs are scheduled

more frequently when they awaken, they can receive better response time.

The first approach is loan & borrow, and the second approach is system

 81

Distributed System

Management

credit. Both approaches are built upon exhaustible tickets, which are

simple tickets with expiration time.

Loan & Borrow: In this approach, exhausted tickets are traded among

competing clients. When a user temporarily exits the system, other users

can borrow these otherwise inactive tickets. The borrowed tickets expire

when the user rejoins the system. When the sleeping user wakes up, it

stops loaning tickets and is paid back in exhaustible tickets by the

borrowing users. In general, the lifetime of the exhaustible tickets is equal

to the length the original tickets were borrowed. This policy can keep the

total number of tickets in the system constant over time; thus, users can

accurately determine the amount of resources they receive. However, it

also introduces an excessive amount of computation into the scheduler on

every sleep and wake-up event, which we don’t expect.

System Credit: This second approach is an approximation of the first one.

With system credits, clients are given exhaustible tickets from the system

when they awaken. The idea behind this policy is that after a client sleeps

and awakens, the scheduler calculates the number of exhaustible tickets

for the clients to receive its proportional share over some longer interval.

The system credit policy is easy to implement and does not add significant

overhead to the scheduler on sleep and wakeup events.

Proportional-share of resources can be allocated to clients running

sequential jobs in a cluster. In the cluster, users are guaranteed a

proportional-share of resources if each local stride-scheduler is aware of

the number of tickets issued in its currency across the cluster and if the

total number of base tickets allocated on each workstation is balanced. The

solution for the first assumption is simple: each local scheduler is

informed of the number of tickets issued in each currency, and then

correctly calculates the base funding of each local job. The solution for

distributing tickets to the stride-schedulers is to run a user-level tickets-

sever on each of the nodes in the cluster. Each stride-scheduler

periodically contacts the local ticket server to update and determine the

value of currencies.

Further, for parallel jobs in a distributed cluster, proportional-share

resources can be provided through a combination of stride-scheduling and

implicit coscheduling. Preliminary simulations of implicit coscheduling

for a range of a communication patterns and computation granularity

indicate that the stride-scheduler with system credit performs similarly to

the Solaris time-sharing scheduler which is used in the Berkeley NOW

environment

6.3.4 Predictive Scheduling:

Predictive scheduling differs from other scheduling approaches in that it

provides intelligence, adaptivity and proactivity so that the system

implementing predictive scheduling can adapt to new architectures and/or

algorithms and/or environmental changes automatically. Predictive

scheduling can learn new architectures, algorithms and methods that are

embedded into the system. They provide some guarantees of service.

82

Distributed System and

Cloud Computing

82

Furthermore, they are able to anticipate significant changes to its

environment and avoid those changes to become the system performance

bottleneck.

Predictive scheduling can be roughly decomposed into three components:

H-cell, S-cell and allocator. The H-cell receives information of hardware

resource changes such as disk traffic, CPU usage, memory availability,

etc., and provides near-real-time control. Meanwhile, S-cell provides long-

term control of computational demands--such as what the deadline of a

task is and what its real-time requirement is--by interrogating the parallel

program code. H-cell and S-cell respectively collect information about

computational supply and computational demand, and provide to the

allocator the raw data or some intelligent recommendations. The allocator

reconciles the recommendations sent by the H-cells and S-cells and

schedules jobs according to their deadline, while guaranteeing constraints

and enforcing the deadline.

In the allocator, the previous inputs, in the form of a vector of

performance information (such as memory, CPU, disk usage etc.), are

aggregated into sets. Each set corresponds to a scheduling decision. The

allocator re-organizes the sets dynamically to keep a limited memory

demand by splitting or merging sets. If a new input matches one of the

pattern categories, a decision will be made due to the corresponding

decision of that pattern set, otherwise a new pattern category is built to

associate this new input pattern with corresponding scheduling decision.

Most of the scheduling policies are used either when a process blocks or at

the end of a time slice, which may reduce the performance because there

can be a considerable lapse of time before scheduling is done. Predictive

scheduling solves this problem by predicting when a scheduling decision

is necessary, or predicting the parameters needed by the scheduling

decision when not known in advance. Based on the collected static

information (machine type, CPU power, etc.) and dynamic information

(memory free space, CPU load, etc.), predictive scheduling tries to make

an educated guess about the future behavior, such as CPU idle time slot,

which can be used to make scheduling decisions in advance. Predicting the

future performance based on past information is a common strategy, and it

can achieve a satisfactory performance in practical work.

Predictive scheduling is very effective in performance and reliability

enhancement, even with the simplest methods, but at the cost of design

complexity and management overhead. Furthermore, it is observed that

the more complicated method is used, the more design complexity and

management overhead, and the less performance and reliability

enhancement.

6.3.5 Coscheduling:

In 1982, Outsterhout introduced the idea of coscheduling , which

schedules the interacting activities (i. e., processes) in a job so that all the

activities execute simultaneously on distinct workstations. It can produce

benefits in both system and individual job efficiency. Without coordinated

 83

Distributed System

Management

scheduling, the processor thrashing may lead to high communication

latencies and consequently degraded overall performance. With systems

connected by highperformance networks that already achieve latencies

within tens microseconds, the success of coscheduling becomes a more

important factor in deciding the performance.

6.3.6 Gang Scheduling:

Gang scheduling is a typical coscheduling approach, which has already

been introduced for a long time but still plays a fundamental role.

Moreover, there are still many research projects in progress to improve

gang scheduling. The approach identifies a job as a gang and its

components as gang members. Further, each job is assigned to a class that

has the minimum number of workstations that meet the requirement of its

gang members based on a oneprocess- one-workstation policy. The class

has a local scheduler, which can have its own scheduling policy. When a

job is scheduled, each of its gang members is allocated to a distinct

workstation, and thus, the job executes in parallel. When a time-slice

finishes, all running gang members are preempted simultaneously, and all

processes from a second job are scheduled for the next time-slice. When a

job is rescheduled, effort is also made to run the same processes on the

same processors.

The strategy bypasses the busy-waiting problem by scheduling all

processes at the same time. According to the experience, it works well for

parallel jobs that have a lot of inter-process communications. However, it

also has several disadvantages. First, it is a centralized scheduling

strategy, with a single scheduler making decisions for all jobs and all

workstations. This centralized nature can easily become the bottleneck

when the load is heavy. Second, although this scheduler can achieve high

system efficiency on regular parallel applications, it has difficulty in

selecting alternate jobs run when processes block, requiring simultaneous

multi-context switches across the nodes. Third, to achieve good

performance requires long scheduling quanta, which can interfere with

interactive response, making them a less attractive choice for use in a

distributed system. These limitations motivate the integrated approaches.

The requirement of centralized control and the poor timesharing response

of previous scheduling approaches have motivated new, integrated

coscheduling approaches. Such approaches extend local timesharing

schedulers, preserving their interactive response and autonomy. Further,

such approaches do not need explicitly identified sets of processes to be

coscheduled, but rather integrate the detection of a coscheduling

requirement with actions to produce effective coscheduling.

6.3.7 Implicit Coscheduling:

Implicit coscheduling is a distributed algorithm for time-sharing

communicating processes in a cluster of workstations. By observing and

reacting to implicit information, local schedulers in the system make

independent decisions that dynamically coordinate the scheduling of

communicating processes. The principal mechanism involved is two-phase

84

Distributed System and

Cloud Computing

84

spin-blocking: a process waiting for a message response spins for some

amount of time, and then relinquishes the processor if the response does

not arrive.

The spin time before a process relinquishes the processor at each

communication event consists of three components. First, a process should

spin for the baseline time for the communication operation to complete;

this component keeps coordinated jobs in synchrony. Second, the process

should increase the spin time according to a local cost-benefit analysis of

spinning versus blocking. Third, the pairwise cost-benefit, i.e., the process,

should spin longer when receiving messages from other processes, thus

considering the impact of this process on others in the parallel job.

● The baseline time comprises the round-trip time of the network, the

overhead of sending and receiving messages, and the time to awake

the destination process when the request arrives.

● The local cost-benefit is the point at which the expected benefit of

relinquishing the processor exceeds the cost of being scheduled again.

For example, if the destination process will be scheduled later, it may

be beneficial to spin longer and avoid the cost of losing coordination

and being rescheduled later. On the other hand, when a large load

imbalance exists across processes in the parallel job, it may be

wasteful to spin for the entire load-imbalance even when all the

processes are coscheduled.

● The pairwise spin-time only occurs when other processes are sending

to the currently spinning process, and is therefore conditional.

Consider a pair of processes: the receiver who is performing a two-

phase spin-block while waiting for a communication operation to

complete, and a sender who is sending a request to the receiver. When

waiting for a remote operation, the process spins for the base and

local amount, while recording the number of incoming messages. If

the average interval between requests is sufficiently small, the process

assumes that it will remain beneficial in the future to be scheduled and

continues to spins for an additional spin time. The process continues

conditionally spinning for intervals of spin time until no messages are

received in an interval.

6.3.8 Dynamic Coscheduling:

Dynamic coscheduling makes scheduling decisions driven directly by the

message arrivals. When an arriving message is directed to a process that

isn’t running, a schedule decision is made. The idea derives from the

observation that only those communicating processes need to be

coscheduled. Therefore, it doesn’t require explicit identification to specify

the processes need coscheduling.

 85

Distributed System

Management

The implementation consists three parts:

Monitoring Communication/Thread Activity:

A firmware, which is on the network interface card, monitors the thread

activities by periodically reading the host's kernel memory. If the

incoming message is sent to the process currently running, the scheduler

should do nothing.

Causing Scheduling Decisions:

If a message received is not sent to the process currently running, an

interrupt will be produced and invoke the interrupt routine. When the

routine finds that it would be fair to preempt the process currently running,

the process receiving the message has its priority raised to the maximum

allowable priority for user mode timesharing processes, and is placed at

the front of the dispatcher queue. Flags are set to cause a scheduling

decision based on the new priorities. This will cause the process receiving

the message to be scheduled unless the process currently running has a

higher priority than the maximum allowable priority for user mode.

Making a Decision Whether to Preempt:

In dynamic coscheduling, the process receiving the message is scheduled

only if doing so would not cause unfair CPU allocation. The fairness is

implemented by limiting the frequency of priority boosts that therefore

limits the frequency of preemption. In jobs with fine-grained

communication, the sender and receiver are scheduled together and run

until one of them blocks or is preempted. Larger collections of

communicating processes are coscheduled by transitivity. The experiments

taken in HPVM project indicate that dynamic coscheduling can provide

good performance for a parallel process running on a cluster of

workstations in competition with serial processes. Performance was able

to close to ideal: CPU times were nearly the same as for batch processing,

and reduced job response times by up to 20% over implicit scheduling

while maintaining near-perfect fairness. Further, it claims that dynamic-

coscheduling-like approaches can be used to implement coordinated

resource management in a much broader range of cases, although most of

which are still to be explored.

6.4 TASK ASSIGNMENT APPROACH

Each process is viewed as a collection of tasks. These tasks are scheduled

to suitable processor to improve performance. This is not a widely used

approach because:

● It requires characteristics of all the processes to be known in advance.

● This approach does not take into consideration the dynamically

changing state of the system.

In this approach, a process is considered to be composed of multiple tasks

and the goal is to find an optimal assignment policy for the tasks of an

86

Distributed System and

Cloud Computing

86

individual process. The following are typical assumptions for the task

assignment approach:

● Minimize IPC cost (this problem can be modeled using network flow

model)

● Efficient resource utilization

● Quick turnaround time

● A high degree of parallelism

A Distributed System is a Network of Machines that can exchange

information with each other through Message-passing. It can be very

useful as it helps in resource sharing. In this article, we will see the

concept of the Task Assignment Approach in Distributed systems.

6.4.1 Resource Management:

One of the functions of system management in distributed systems is

Resource Management. When a user requests the execution of the process,

the resource manager performs the allocation of resources to the process

submitted by the user for execution. In addition, the resource manager

routes process to appropriate nodes (processors) based on assignments.

Multiple resources are available in the distributed system so there is a need

for system transparency for the user. There can be a logical or a physical

resource in the system. For example, data files in sharing mode, Central

Processing Unit (CPU), etc.

As the name implies, the task assignment approach is based on the

division of the process into multiple tasks. These tasks are assigned to

appropriate processors to improve performance and efficiency. This

approach has a major setback in that it needs prior knowledge about the

features of all the participating processes. Furthermore, it does not take

into account the dynamically changing state of the system. This

approach’s major objective is to allocate tasks of a single process in the

best possible manner as it is based on the division of tasks in a system. For

that, there is a need to identify the optimal policy for its implementation.

6.4.2 Working of Task Assignment Approach:

In the working of the Task Assignment Approach, the following are the

assumptions:

● The division of an individual process into tasks.

● Each task’s computing requirements and the performance in terms of

the speed of each processor are known.

● The cost incurred in the processing of each task performed on every

node of the system is known.

 87

Distributed System

Management

● The IPC (Inter-Process Communication) cost is known for every pair

of tasks performed between nodes.

● Other limitations are also familiar, such as job resource requirements

and available resources at each node, task priority connections, and so

on.

6.4.3 Goals of Task Assignment Algorithms:

● Reducing Inter-Process Communication (IPC) Cost

● Quick Turnaround Time or Response Time for the whole process

● A high degree of Parallelism

● Utilization of System Resources in an effective manner

The above-mentioned goals time and again conflict. To exemplify, let us

consider the goal-1 using which all the tasks of a process need to be

allocated to a single node for reducing the Inter-Process Communication

(IPC) Cost. If we consider goal-4 which is based on the efficient

utilization of system resources that implies all the tasks of a process to be

divided and processed by appropriate nodes in a system.

Note: The possible number of assignments of tasks to nodes:

For m tasks and n nodes= m x n

But in practice, the possible number of assignments of tasks to nodes < m

x n because of the constraint for allocation of tasks to the appropriate

nodes in a system due to their particular requirements like memory space,

etc.

6.4.4 Need for Task Assignment in a Distributed System:

The need for task management in distributed systems was raised for

achieving the set performance goals. For that optimal assignments should

be carried out concerning cost and time functions such as task assignment

to minimize the total execution and communication costs, completion task

time, total cost of 3 (execution, communication, and interference), total

execution and communication costs with the limit imposed on the number

of tasks assigned to each processor, and a weighted product of cost

functions of total execution and communication costs and completion task

time. All these factors are countable in task allocation and turn, resulting

in the best outcome of the system.

6.4.5 Example of Task Assignment Approach:

Let us suppose, there are two nodes namely n1 and n2, and six tasks

namely t1, t2, t3, t4, t5, and t6. The two task assignment parameters are:

● execution cost: xab refers to the cost of executing a task an on node b.

88

Distributed System and

Cloud Computing

88

● inter-task communication cost: cij refers to inter-task

communication cost between tasks i and j.

Task

s t1 t2 t3 t4 t5 t6

t1 0 6 4 0 0 12

t2 6 0 8 12 3 0

t3 4 8 0 0 11 0

t4 0 12 0 0 5 0

t5 0 3 11 5 0 0

t6 12 0 0 0 0 0

Execution Cost

Task

s

Nodes

n1 n2

t1 5 10

t2 2 infinity

t3 4 4

t4 6 3

t5 5 2

t6 infinity 4

 89

Distributed System

Management

Note: The execution of the task (t2) on the node (n2) and the execution of

the task (t6) on the node (n1) is not possible as it can be seen from the

above table of Execution costs that resources are not available.

Case1: Serial Assignment

Task

Nod

e

t1 n1

t2 n1

t3 n1

t4 n2

t5 n2

t6 n2

Cost of Execution in Serial Assignment:

 t11 + t21 + t31 + t42 + t52 + t62 = 5 + 2+ 4 + 3 + 2 + 4

 = 20 (Refer Execution Cost table)

Cost of Communication in Serial Assignment:

= c14 + c15 + c16 + c24 + c25 + c26 + c34 + c35 + c36

= 0 + 0+ 12 + 12 + 3 + 0 + 0 + 11 + 0

= 38 (Refer Inter-task Communication Cost table)

Hence, Total Cost in Serial Assignment

= 20 + 38

= 58

90

Distributed System and

Cloud Computing

90

Case2: Optimal Assignment

Task Node

t1 n1

t2 n1

t3 n1

t4 n1

t5 n1

t6 n2

Cost of Execution in Optimal Assignment:

= t11 + t21 + t31 + t41 + t51 + t62

= 5 + 2+ 4 + 6 + 5 + 4

= 26 (Refer Execution Cost table)

Cost of Communication in Optimal Assignment:

= c16 + c26 + c36 + c46 + c56

= 12 + 0+ 0 + 0 + 0

= 12 (Refer Inter-task Communication Cost table)

Hence, Total Cost in Optimal Assignment

= 26 + 12

= 38

6.5 Load balancing approach

 91

Distributed System

Management

6.5.1 Classification of Load Balancing Algorithms

Fig 5.11: Classification of Load Balancing Algorithms

Static versus Dynamic:

Static Algorithms Dynamic Algorithms

Static algorithms use only

information about the average

behavior of the system

Dynamic algorithms collect state

information and react to system state

if it changed.

Static algorithms ignore the

current state or load of the

nodes in the system.

Dynamic algorithms are able to give

significantly better performance

Static algorithms are much

simpler

They are complex

Deterministic versus Probabilistic:

Deterministic Algorithms Probabilistic Algorithms

Deterministic algorithms use

the information about the

properties of the nodes and the

characteristic of processes to be

scheduled.

Probabilistic algorithms use

information of static attributes of

the system (e.g. number of nodes,

processing capability, topology) to

formulate simple process placement

rules

Deterministic approach is

difficult to optimize.

Probabilistic approach has poor

performance

Centralized versus Distributed:

Centralized Algorithms Distributed Algorithms

Centralized approach collects

information to server node and

makes assignment decision

Distributed approach contains

entities to make decisions on a

predefined set of nodes

Centralized algorithms can make

efficient decisions, have lower

fault-tolerance

Distributed algorithms avoid the

bottleneck of collecting state

information and react faster

92

Distributed System and

Cloud Computing

92

Cooperative versus Non-cooperative:

Cooperative Algorithms Non-cooperative Algorithms

In Co-operative algorithms

distributed entities cooperate

with each other.

In Non-cooperative algorithms

entities act as autonomous ones

and make scheduling decisions

independently from other entities.

Cooperative algorithms are

more

complex and involve larger

overhead

They are simpler.

Stability of Cooperative

algorithms are better.

Stability is comparatively poor.

6.5.2 Issues in Load Balancing Algorithms:

● Load estimation policy: determines how to estimate the workload of

a node.

● Process transfer policy: determines whether to execute a process

locally or remote.

● State information exchange policy: determines how to exchange

load information among nodes.

● Location policy: determines to which node the transferable process

should be sent.

● Priority assignment policy: determines the priority of execution of

local and remote processes.

● Migration limiting policy: determines the total number of times a

process can migrate.

6.6 LOAD-SHARING APPROACH

The following problems in load balancing approach led to load sharing

approach:

● Load balancing technique with attempting equalizing the workload on

all the nodes is not an appropriate object since big overhead is

generated by gathering exact state information.

● Load balancing is not achievable since number of processes in a node

is always fluctuating and temporal unbalance among the nodes exists

every moment

6.6.1 Basic idea:

It is necessary and sufficient to prevent nodes from being idle while some

other nodes have more than two processes.

 93

Distributed System

Management

● Load-sharing is much simpler than load-balancing since it only

attempts to ensure that no node is idle when heavily node exists.

● Priority assignment policy and migration limiting policy are the same

as that for the load-balancing algorithms.

6.6.2 Load Estimation Policies:

Since load-sharing algorithms simply attempt to avoid idle nodes, it is

sufficient to know whether a node is busy or idle.

● Thus these algorithms normally employ the simplest load estimation

policy of counting the total number of processes.

● In modern systems where permanent existence of several processes on

an idle node is possible, algorithms measure CPU utilization to

estimate the load of a node

6.6.3 Process Transfer Policies:

● The load sharing algorithms normally use all-or-nothing strategy.

● This strategy uses the threshold value of all the nodes fixed to 1.

● Nodes become receiver node when it has no process, and become

sender node when it has more than 1 process.

To avoid processing power on nodes having zero process load-sharing

algorithms uses a threshold value of 2 instead of 1. When CPU utilization

is used as the load estimation policy, the double-threshold policy should

be used as the process transfer policy

Policies:

The location policy decides whether the sender node or the receiver node

of the process takes the initiative to search for suitable node in the system,

and this policy can one of the following:

Sender-initiated location policy: Sender node decides where to send the

process. Heavily loaded nodes search for lightly loaded nodes

Receiver-initiated location policy: Receiver node decides from where to

get the process. Lightly loaded nodes search for heavily loaded nodes

initiated location policy: Node becomes overloaded, it either broadcasts

or randomly probes the other nodes one by one to find a node that is able

to receive remote processes. When broadcasting, suitable node is known

as soon as reply arrives

initiated location policy: Nodes becomes underloaded, it either broadcast

or randomly probes the other nodes one by one to indicate its willingness

to receive remote processes. Receiver-initiated policy require preemptive

process migration facility since scheduling decisions are usually made at

process departure epochs

94

Distributed System and

Cloud Computing

94

● Both policies gives substantial performance advantages over the

situation in which no load-sharing is attempted.

● Sender-initiated policy is preferable at light to moderate system loads.

● Receiver-initiated policy is preferable at high system loads.

● Sender-initiated policy provide better performance for the case when

process transfer cost significantly more at receiver-initiated than at

sender-initiated policy due to the pre-emptive transfer of processes.

information exchange policies:

In load-sharing algorithms it is not necessary for the nodes to periodically

exchange state information, but needs to know the state of other nodes

when it is either underloaded or overloaded. The following are the two

approaches followed when there is state change:

Broadcast when state changes:

● In sender-initiated/receiver-initiated location policy a node broadcasts

State Information Request when it becomes overloaded/ underloaded.

● It is called broadcast-when-idle policy when receiver-initiated policy

is used with fixed threshold value of 1

Poll when state changes:

● In large networks polling mechanism is used.

● Polling mechanism randomly asks different nodes for state

information until find an appropriate one or probe limit is reached.

● It is called poll-when-idle policy when receiver-initiated policy is

used with fixed threshold value value of 1.

6.6.4 Differences between Load Balancing and Load Sharing:

 Load Balancing Load Sharing

1. Load balancing equally

distributes network traffic or

load across different channels

and can be achieved using both

static and dynamic load

balancing techniques.

Load sharing delivers a portion of

the traffic or load to one

connection in the network while

the remainder is routed through

other channels.

2. Focuses on the notion of traffic

dispersion across connections.

Works with the notion of traffic

splitting across connections.

3. The creation of Ratios, Least

connections, Fastest, Round

robin, and observed approaches

are used in load balancing.

Load Sharing is based on the

notion of sharing traffic or network

load among connections based on

destination IP or MAC address

selections.

4. It is Uni-Directional. It is Uni-Directional

 95

Distributed System

Management

5. No instance is load sharing. All instances are load sharing.

6. Accurate Load Balancing is not

an easy task.

Load sharing is easy compared

with load balancing.

6.7 SUMMARY

A distributed file system (DFS) is a network file system wherein the file

system is distributed across multiple servers. DFS enables location

transparency and file directory replication as well as tolerance to faults.

Some implementations may also cache recently accessed disk blocks for

improved performance. Though distribution of file content increases

performance considerably, efficient management of metadata is crucial for

overall file system performance. It has been shown that 75% of all file

system calls access file metadata [15] and distributing metadata load is

important for scalability. Scaling metadata performance is more complex

than scaling raw I/O performance since even a small inconsistency in

metadata can lead to data corruption.

Resource management is the process by which businesses manage their

various resources effectively. Those resources can be intangible – people

and time – and tangible – equipment, materials, and finances.

It involves planning so that the right resources are assigned to the right

tasks. Managing resources involves schedules and budgets for people,

projects, equipment, and supplies. While it is often used in reference to

project management, it applies to many other areas of business

management. A small business, in particular, will pay attention to resource

management in a number of areas

6.8 REFERENCE FOR FURTHER READING

1. https://www.shopify.in/encyclopedia/resource-management

2. https://www.wrike.com/blog/what-is-resource-

management/#:~:text=Resource%20management%20is%20the%20pr

ocess,or%20the%20adoption%20of%20software.

3. https://www.scality.com/topics/what-is-a-distributed-file-system

4. https://www.geeksforgeeks.org/what-is-dfsdistributed-file-system/

5. https://www.weka.io/learn/distributed-file-system/

6. https://www.techopedia.com/definition/1825/distributed-file-system-

dfs

6.9 MODEL QUESTIONS

1. Discuss on Types of Distributed Systems

2 Explain Advantages and disadvantages of Distributed Systems

https://www.shopify.in/encyclopedia/resource-management
https://www.wrike.com/blog/what-is-resource-management/#:~:text=Resource%20management%20is%20the%20process,or%20the%20adoption%20of%20software
https://www.wrike.com/blog/what-is-resource-management/#:~:text=Resource%20management%20is%20the%20process,or%20the%20adoption%20of%20software
https://www.wrike.com/blog/what-is-resource-management/#:~:text=Resource%20management%20is%20the%20process,or%20the%20adoption%20of%20software
https://www.scality.com/topics/what-is-a-distributed-file-system
https://www.geeksforgeeks.org/what-is-dfsdistributed-file-system/
https://www.weka.io/learn/distributed-file-system/
https://www.techopedia.com/definition/1825/distributed-file-system-dfs
https://www.techopedia.com/definition/1825/distributed-file-system-dfs

96

Distributed System and

Cloud Computing

96

3. How does a distributed system work?

4. Explain the Architecture of resource Management in distributed

Environment

5. Write a short note on Features of scheduling algorithms

6. Explain any two scheduling algorithms in detail

7. Explain Resource Management

8. Discuss on Working of Task Assignment Approach

9. Explain the Goals of Task Assignment Algorithms

10. Discuss the Need for Task Assignment in a Distributed System

11. Explain with example the Task Assignment Approach

12. Explain the concept of Classification of Load Balancing Algorithms

13. What are the Issues in Load Balancing Algorithms

14. Explain the Basic idea of load sharing

15. Differentiate between Load Balancing and Load Sharing

 97

7
DISTRIBUTED SYSTEM MANAGEMENT

Unit Structure

7.1 Process Management

7.1.1 Introduction

7.1.2 What is Process Management?

7.1.3 The Importance of Process Management

 7.1.4 Realtime Process Management Examples

7.1.5 How does BPM differ from workflow management?

7.1.6 Distinction between Digital Process Automation (DPA) and

Process Management

7.1.7 Examples of Business Process Management (BPM) phases

7.1.8 Digital process management: Application examples

7.1.9 How can process management be implemented?

7.1.10 Selection criteria for good BPM software

7.1.11 Benefits of Process Management

7.2 Process Migration in Distributed System

7.2.1 Why use Process Migration?

7.2.2 What are the steps involved in Process Migration?

7.2.3 Methods of Process Migration

7.3 Threads

7.4 Summary

7.5 Reference for further reading

7.6 Model questions

7.1 PROCESS MANAGEMENT

7.1.1 Introduction:

All business organizations involve processes. It can be as simple as buying

ingredients, baking bread, selling bread, and receiving payment for a

bakery. It can also be more complex, like a multistep purchasing process

for vendor management. In either case, without an efficient system,

unorganized processes can lead to problems that can adversely affect a

business. Thus, it is important to implement process management

regardless of the size of the company. To understand its importance,

here’s a quick run-through of how process management

benefits business organizations.

7.1.2 What is Process Management?:

Process management is a systematic approach to ensure that effective and

efficient business processes are in place. It is a methodology used to align

98

Distributed System and

Cloud Computing

98

business processes with strategic goals. In contrast to project management,

which is focused on a single project, process management addresses

repetitive processes carried out on a regular basis. It looks at

every business process, individually and as a whole, to create a more

efficient organization. It analyzes current systems, spots bottlenecks, and

identifies areas of improvement. Process management is a long-term

strategy that constantly monitors business processes so they maintain

optimal efficiency. Implemented properly, it significantly helps boost

business growth.

7.1.3 The Importance of Process Management:

When managing any organization, it is imperative to understand why

process management is important. More than creating seamless

workflows, it enables all aspects of business operations to run at an

optimal pace. With business processes systematically implemented, you

reduce time wasted on repetitive tasks and minimize errors due to human

inefficiency. It also prevents the loss of data and missed steps within a

process. Moreover, it ensures that resources are used properly so your

business becomes more cost-efficient. Aside from improving business

operations, process management also aligns your processes with the needs

of your customers. This increases customer satisfaction and leads to higher

revenues.

7.1.4 Realtime Process Management Examples:

Process management encompasses all aspects of business. Some business

organizations use process management software to automate their systems,

while others still use traditional methods of flowcharts and manuals. If you

have been running your own company, you are most likely using some

form of business process management (BPM).

Here are some real-world examples of how BPM is used in various

industries.

Onboarding New Employees | Human Resource Department:

Without a proper system, the onboarding process can be chaotic and time-

consuming. With BPM, forms and documents can be filled up and

submitted electronically. Software is used to automatically filter data, find

the best matches for a position, send messages, schedule interviews, and

facilitate employee onboarding.

Managing Logistics | Shipping Company:

Logistics for a shipping company entails a long chain of complex

processes while dealing with potentially thousands of people in various

locations. BPM standardizes and optimizes routines involved to streamline

the entire process and deliver quality service. It integrates production,

finance, quality control, HR, customer service, and other departments. It

centralizes data to facilitate easy retrieval of information in every phase of

the business operations.

 99

Distributed System

Management

Loan Processing | Banking Firms:

With BPM, processing loans can be done in a much shorter time. It creates

an efficient flow from document submission to credit and risk checks to

loan approval. It also enables tracking of applications through the entire

loan processing system.

Compliance Management| Insurance Companies:

BPM improves the overall regulatory compliance of insurance companies.

It reduces human error and prevents data loss through proper

documentation management. It also ensures that the company is able to

comply with the latest state and federal regulations.

Customer Service | Retail Business:

BPM enables customer-centric operations. It unifies all systems and

departments for a smooth workflow that ensures all customer needs are

met. It also identifies bottlenecks in the buyer’s journey so the entire

purchasing process can be improved.

7.1.5 How does BPM differ from workflow management?:

Workflow management is another term that is often mentioned in

connection with process management. While workflow management is

about coordinating and organizing processes, process management is

about integrating these individual business processes into a larger whole.

Workflow management is therefore a subfield, but by no means a

synonym of process management. However, the aim of efficient processes

is the same in both approaches.

7.1.6 Distinction between Digital Process Automation (DPA) and

Process Management:

Digital Process Automation (DPA) is the next evolution in process

management and supports companies in their efforts towards end-to-end

digital transformation. In contrast to DPA, process management initially

has nothing to do with digital transformation. However, in order to

achieve the desired improvements, digital transformation usually involves

companies digitizing and ultimately automating processes. In the case of

DPA, company-wide business processes with external participants come

more into focus. DPA is a technology that ensures that processes and

systems are not only digitized, but that tasks and sequences that would

normally require manual intervention are automated.

100

Distributed System and

Cloud Computing

100

Examples of Business Process Management (BPM) phases

Analysis:

In the analysis phase, processes are first identified and then analyzed

(people, activities, individual steps, points in time, etc.).

Modeling:

The modeling phase essentially involves selecting and adapting processes

that are to be implemented.

Execution:

Once processes are defined, the execution phase begins, including efforts

to automate business processes.

Monitoring:

The monitoring phase is the prerequisite for subsequent optimization and

is used for targeted process control.

Optimization:

The optimization phase begins following monitoring. The knowledge

gained during monitoring makes it possible to improve the processes. It is

possible, for example, that there are subtasks that have not been

automated, that unnecessary steps are still being carried out, or that the

data structure in general may require readjustment.

7.1.8 Digital process management: Application examples:

Throughout a company or in individual departments, there are various

workflows that contain individual steps, as well as instructions for actions

and responsibilities. These processes can be both internal and external.

Examples of internal processes are the hiring of new employees or the

 101

Distributed System

Management

ordering of office supplies. Invoicing processes (processing accounts

payable invoices or creating invoices), on the other hand, are external

processes because outsiders (customers, partners or suppliers) are

involved.

Use cases that affect the entire company are, for example:

● Accounting and finance

● Purchasing decisions

● Administrative activities

● Customer services

● Facility management

● Personnel management

● Order processing

● Performance measurement

● Warehousing, logistics

● Standard operating procedures

● Employee performance and training

● Supplier and customer portal

In addition, there are processes whose origin can be assigned to a specific

department. All these workflows can be mapped digitally. Even if the

actual process management is detached from digital solutions, it can be

implemented much more easily. Digital and automated business processes

improve performance in all departments - this reduces overhead and

enables flexibility in the company.

Human Resources:

With the advancement of organization-wide digital strategies, the HR

department is also changing - and gaining in importance. In addition to

administrative tasks such as approving vacation requests or checking

applications, the HR department also has a strategic role to play in the

"war for talent". In the future, fewer administrative tasks will be on the

agenda than creative, intelligent activities in the corporate environment.

This, in turn, requires companies to digitize and automate HR processes

that used to be time-consuming and to connect them with the relevant data

and departments. More flexible work structures, further developing

corporate culture and supporting employees in digital transformation and

change management are today's new priorities. To free up time for

strategic and value-creating activities, HR employees must be relieved of

their administrative tasks. This is done through digital business processes.

Here are some workflows that can be digitized and automated in HR:

102

Distributed System and

Cloud Computing

102

● Vacation request

● Digital personnel file

● Travel expense report

● Application management

● Employee onboarding

● Expense report

● Business trip application

And here are the reasons why digital automaton is particularly worthwhile

in the HR sector:

● Promotion of new and agile ways of working and mobile working

● Increased employee satisfaction through fast processing

● Transparency in employee responsibilities

● Simplified change management

● Information exchange without interruption or integration problems

Administration:

Who hasn't had to handle a contract or obtain a permit? These tasks are

often time-consuming when performed in analog (manual) form.

Digitizing administrative processes is therefore an essential part of any

digitization strategy. In addition, workflows can only be accelerated

effectively when all systems, applications and company departments are

connected locally and across decentralized locations. To achieve this,

companies have to rethink their analog processes, sometimes redesigning

and streamlining them. As a result, the heterogeneous IT landscape

becomes interconnected, the company remains agile, and decision-makers

can focus on management tasks. This frees up employees to use their time

more effectively - and allows the company to maintain control over all

physical and electronic records at all times. Additionally, the newly

created visibility helps identify operational bottlenecks and continuously

improve processes. Here are a few workflows that can be digitized and

automated in administration:

● Contract management

● Training management

● Approval processes

● Digital construction file / digital project file

● Maintenance order / Production order

● Fleet management

 103

Distributed System

Management

And these are the reasons why digital automation in administration is

worthwhile:

● Enormous time savings across all departments

● Faster and more up-to-date accounting

● Faster, more secure access to all documents and data

● Efficient workflows thanks to end-to-end processes

● Optimized service thanks to prompt, proactive contact

● Real-time daily accounting and payroll reports

● Reduced overall process costs

● Well-founded decisions thanks to increased transparency

● Strict security standards for documents and data exchange

Finance:

The finance department is undergoing a transformation. Administrative

tasks still fill the business day, but according to McKinsey Research, as

much as 75-79 percent of general accounting operations, cash

dispurement, and revenue management tasks in finance can be fully

automated in the future. Experts are convinced that with digitization,

employees in finance departments are developing into business partners,

answering trend-setting questions, interpreting data and contributing

increasing value to their organization. The problem arises when the

number of cross-departmental, control-relevant data continues to increase

- but beneficial processes for management are not implemented. As real-

time and ad-hoc analysis grows in importance along the entire value chain,

it will become a priority to set up an interconnected value-creation system.

Here are some workflows that can be digitized and automated in finance:

● Treasury Management

● Risk Assessment

● Purchase-to-Pay

o Invoice Receipt Verification

o Outgoing invoice processing

o Payment processing

● Expenditure planning

● bank report

● data controlling

● Accounts Payable / Accounts Receivable

104

Distributed System and

Cloud Computing

104

And these are the reasons why digital automation in finance is worthwhile:

● More performance through integrated data exchange

● Creation of electronic invoices with information linking

● Establishment of a paperless filing system as a central reference for

all documents

● Ability to exchange, match and archive documents without material

costs

● Optimized cost control

Purchasing:

It is no secret that digital procurement processes can now be fully

automated. Companies also rely on operational and in-house digital

processes such as requirements gathering and pricing, with data from

various sources being integrated. However, it is the comprehensive

exchange of information that brings the full advantage of digital

procurement to light. Sustainable processes require more than strategic

data management. The degree of interconnection between employees,

departments and systems determines how digital and efficient purchasing

can be. In day-to-day business, this can be seen by optimizing the supply

chain and maximizing response time. With digital processes, the modern

buyer maintains full control and transparency over processes, tasks and

figures at all times, and can make decisions in real time, despite the large

number of purchasing processes involved.

Here are some workflows that can be digitized and automated in

purchasing:

● Investment request

● Goods receipt process

● Order processing

● Inventory process

● Delivery release

And these are the reasons why digital automation in purchasing is

worthwhile:

● Contract, supplier and procurement management with seamless

system and data integration

● Optimized supply chains

● Maximized reaction speed

● Automated routine processes (article dispositions, creation of order

proposals or price inquiries)

 105

Distributed System

Management

● Transparent bookings and stock levels

● New savings potential

● Reduced processing time

Sales:

Today, more than 50 percent of new employees already belong to the

"digital native" generation. They have has grown up with digital tools and

different ways of working and are transferring this experience to their

everyday working lives. They don't think much of mountains of

documents and Excel lists with manually prepared data or paperwork.

Customers have also opened up new information channels. By the time the

first contact with sales is made, the decision has often already been made,

so advance work must be done - on all channels. After all, the customer

should have the choice of how to get in touch and the employee should be

able to switch seamlessly between channels to qualify a lead efficiently.

Information overload and attention deficits among prospects demand that

companies streamline all sales processes and optimize them digitally.

Information must be quick and easy to find, and data must be efficient to

use. Here are some workflows that can be digitized and automated

in sales:

● Order processing

● Information download

● Quotation approval

● Compilation of product sheets

● B2B sales process

And these are the reasons why digital automation in sales is worthwhile:

● Simplification of processes, communication and advice

● Increased reach and sales

● Optimized sales productivity

● Build trust and prevent mistrust

● Reduced costs for administration and organization

● Increased effectiveness and reduced susceptibility to errors

● Simplified contact, data maintenance & collaboration

● Sustainable competitive advantage

HR, finance and accounting are high on the digital agenda:

Recent surveys show that companies reported they are gaining momentum

digitally, especially in HR, finance and accounting, but are still far from

https://www.jobrouter.com/en/sales-marketing/

106

Distributed System and

Cloud Computing

106

exploiting all the possibilities. Companies that want to introduce process

management should pursue a holistic strategy while taking small steps

forward in practice. Time will tell if other areas should wait until later in

the journey and therefore lag behind digitally.

In particular, HR, finance, and accounts payable topics are digitized:

In which of the following areas does your company already use or plan to

use digital solutions for planning and controlling company resources?

7.1.9 How can process management be implemented?:

How process management works can be explained in theory with the BPM

lifecycle. But theory and practice are often only comparable to a limited

extent. In practice, you should be aware that process management is not a

rigid process of working through to-do lists, but has a lot to do with

communication and teamwork. Pilot projects for digital automation in

companies often start in isolation from one another. This silo approach can

result in projects that become stalled, terminate unsuccessfully, or create

islands of information that impede information flow to other teams across

the organization. Surveys by Accenture and McKinsey indicate that when

companies approach digital process management holistically from the

outset with the necessary communication, failure can be prevented. It is

also important to have the backing of all stakeholders, including

management, in order to introduce and successfully drive digital process

management forward to its full potential.

Learn about three essential steps to implement process management here.

1. Organization-wide business process structure:

Once you have gained support in the company for this topic, the first step

is to get an overview of the external and internal processes in your

company. Talk to colleagues from other departments and outline all

workflows. Ideally, you should already record all the processes that take

place in the company. Alternatively, you can take a department-specific

approach and, for example, first analyze business processes in human

resources or administration. It is useful to know that there are different

types of processes that fulfill different tasks and purposes and ultimately

help you to structure business processes. As a rule, value creation, support

and management processes are distinguished from one another.

https://www.mckinsey.com/business-functions/operations/our-insights/the-imperatives-for-automation-success

 107

Distributed System

Management

Value creation processes:

Value-adding processes are essential for the creation of a product or the

provision of a service. They describe all corporate activities that are

geared to customer needs. The value-adding processes a company has

depend to a large extent on its industry focus or its core competencies.

Typically, sales and marketing processes are almost always part of the

value creation processes. It is also characteristic that different departments

of a company are integrated into the value creation processes.

Support processes:

Support processes, also known as supporting processes, are not customer-

oriented at first, but are necessary in order to carry out, control and

optimize value creation and management processes. These include, for

example, personnel selection and qualification as well as purchasing or the

payment of invoices. In contrast to value-added processes, support

processes can often be assigned to a single department.

Management processes:

Management processes relate to the company as a whole, contribute to the

planning and control of core and support processes, and serve to

strategically manage a company. Similar to support processes, this type of

process is not directly related to the value creation of a company.

Examples of management processes would include, but are not limited to:

Aligning the company strategically, defining the corporate mission

statement or formulating corporate goals.

2. Create process map:

The second step emerges from the discussions with internal and external

stakeholders. The process map graphically depicts all processes in the

company. Division into core, support and management processes is

supplemented by the interactions/dependencies of business processes with

each other. Figuratively speaking, the process map is your compass to

keep focus on the path to process management. In addition, the process

map can be consulted to explain the process management projects to

employees. This clear representation helps to ensure understanding of the

(change) project. In addition, a graphical representation makes it

particularly easy to identify optimization potential. You can create a

process map by enriching your core, support and management processes

with additional information (e.g., responsible department/employee) and

further subdividing them into sub-processes (if appropriate) and adding

required third-party systems, documents and key figures.

3. Implement and optimize processes:

Once an overview has been created, you can work through the business

processes from your map step-by-step, digitizing and even automating

them. With subsequent process optimization, the BPM lifecycle then

begins again.

108

Distributed System and

Cloud Computing

108

Before you start with the implementation, however, you should have

completed important tasks:

● Involve employees early on and offer training.

● Record process steps, responsibilities and other important information

in documentation.

● Identify and contact all stakeholders in a timely manner. Also

consider those who have no direct contact with the process but must

approve it - for example, the works council or data protection officers.

It is also advisable to set regular coordination and review dates even

before the introduction. In this way, you can ensure from the outset that

processes are constantly scrutinized and, if necessary, adapted or even

eliminated. We have also compiled five additional tips to help you

successfully implement your project management.

Five tips for successful process management

1. Understand the current process:

Let's take an ordering process as an example. Do you know who orders

what in your company and what approvals need to be obtained? No? Then

you are in the same situation as many others. That is why you should get

rid of the idea that you, or even company management, can have detailed

knowledge of all processes. From a practical point of view, the best people

to talk to are still those who work with the process on a regular basis.

Don't get too hung up on theory. Talking to colleagues will tell you about

individual process steps and everything else you need to know to get

started.

2. Start small:

"It's hard to get started" - a saying that couldn't be more apt for process

management. So don't make things unnecessarily difficult for yourself and

start small. Choose simple processes that address the current situation and

avoid being overwhelmed. Especially if process management is new. You

should aim for small stages that can be implemented quickly and easily.

Success will inspire you to do more - so you can gradually tackle other, as

yet untried processes in your company.

3. Create a schedule:

You will probably realize pretty quickly that many things will take much

longer than initially anticipated. Nevertheless, it makes sense to create a

schedule that includes generous milestones and that you can regularly

review and adjust. Process management is not something you can just do

on the side. It is important to give all involved employees sufficient time

to deal with the topic in detail and successfully implement their tasks.

 109

Distributed System

Management

4. Enable the exchange of information, ideas:

As with any new big project, sooner or later challenges crop up.

Restructuring, new service providers and much more can mean that you

have to throw your well-thought-out plan out the window and start over

again. Regular meetings are a good way to learn about changes early on

and to support each other. Bring yourself up to date, discuss problems and

inspire each other. The intervals at which you schedule meetings depend

on how much you need to discuss. It is advisable to choose shorter

intervals, especially during critical phases, such as at the beginning. Once

everything has settled in, weekly or monthly meetings are also advisable.

5. Use tools:

With your process map, you already have a powerful tool at hand. It is the

basis for analysis, meetings and further developments and should always

be included in the regular coordination meetings. But the choice of a

suitable means of communication is also crucial. E-mails often lead to

misunderstandings and ultimately cause more confusion than they help the

process. Therefore, only write e-mails if your request can be explained

succinctly and be sure to file any important documents in an agreed-upon

location. This is where project management tools have proven to be the

tool of choice, as they bundle all communication including documents,

schedules, and to-do lists, etc. There are a number of software products

available, some of which can even be used free of charge - for example,

Asana or Trello.

7.1.10 Selection criteria for good BPM software:

With the help of BPM software, companies can design, implement,

optimize and, above all, automate business processes. All tasks are

performed in one platform. Accordingly, a BPM tool helps to approach

process management holistically and to view and improve processes from

start to finish. As a result, processes can not only be made more efficient,

but resources can be adjusted according to need, errors can be reduced,

time can be saved, and ultimately the entire value creation of a company

can be increased.

In order to take full advantage of this, it is important to choose a suitable

software. We have collected some criteria that experience has shown to

play an important role in the search for and selection of good BPM

software.

Monitoring:

Make sure that you can use the BPM software to monitor key business

indicators in real time, if possible. Ideally, you should be able to visualize

the data in a dashboard.

Scalability:

Every company has its own special features and unique requirements.

Therefore, make sure that the selected process management software can

https://www.jobrouter.com/en/low-code-process-design/

110

Distributed System and

Cloud Computing

110

handle them. This includes integration to third-party systems as well as

preferred data types or archiving and search functions for documents. A

scalable solution is also necessary for companies with growth and

expansion plan. This enables them to handle not just current requirements,

but also future changes as well.

Security:

Recent surveys across many industries shows that data privacy and

security have become top priorities driving digital transformation

initiatives. Security is therefore one of the most important criteria when it

comes to selecting a suitable BPM tool. Particularly in the case of cloud

solutions where the question of data residency, where data is stored, is at

the forefront. In many countries and states, government regulations can be

particularly strict. It is therefore advisable to choose a software provider

that offers cloud options that meet data residency requirements. In

addition, process management software should meet the requirements of

data protection regulations such as GDPR.

Analysis and simulation:

You should make sure that the software provides an analysis and

simulation function. With a heat map, for example, it is possible to

analyze weak points within a process. The simulation function allows you

to test the process from the end user's point of view. This allows you to

check the functionality of subsequent steps, system activities, control

conditions or scripts and to detect errors in advance.

Usability:

For process designers, a flexible and user-friendly interface is essential.

This enables them to model and adapt even complicated process forms

quickly and easily. Of course, end users also benefit from user-friendly

BPM software that makes it particularly easy to start and control

processes.

7.1.11 Benefits of Process Management:

Streamlined Processes: BPM restructures tangled operations into smooth

workflows, simplifying operations and improving business agility.

Increased Productivity: BPM makes sure that resources and capital are

utilized properly. It also improves business processes and working

conditions to increase overall productivity.

Minimized Risks: By clearly defining responsibilities, BPM demands

higher accountability. This minimizes risks due to human error and

reduces inefficiencies.

Reduced Costs: BPM helps spot inefficiencies so they can be corrected. It

also tracks the usage of resources. With fewer inefficiencies and proper

utilization of resources, BPM can reduce costs and expenditures.

https://www.jobrouter.com/en/integrations/
https://www.jobrouter.com/en/jobrouter-cloud/
https://www.jobrouter.com/en/jobrouter-cloud/
https://www.jobrouter.com/en/jobrouter-cloud/
https://www.jobrouter.com/en/low-code-process-design/#c6432
https://www.jobrouter.com/en/low-code-process-design/#c6432
https://www.jobrouter.com/en/low-code-process-design/#c6432
https://www.jobrouter.com/en/download/detail/10-golden-rules-for-process-design/

 111

Distributed System

Management

Business Process Management (BPM) is a method for analyzing,

designing, controlling and ultimately improving business processes.

Ideally, all of a company's business processes are included in the analysis.

These can include, for example, processes with other companies, systems,

customers, suppliers or partners. The goal is to improve business processes

in such a way that they contribute optimally to achieving the company's

goals. Process management or business process management are the terms

for BPM and are used synonymously. Generally speaking, process

management includes both analog and digital processes.

In summary, process management ensures

● transparent costs and responsibilities,

● efficient cross-departmental processes,

Information and knowledge exchange between different departments.

Depending on the circumstances, the individual phases vary, but they

usually include a modeling, execution and monitoring phase

7.2 PROCESS MIGRATION IN DISTRIBUTED SYSTEM

A process is essentially a program in execution. The execution of a

process should advance in a sequential design. A process is characterized

as an entity that addresses the essential unit of work to be executed in the

system. A process is characterized as an entity that addresses the essential

unit of work to be executed in the system.

Process migration is a particular type of process management by which

processes are moved starting with one computing environment then onto

the next.

There are two types of Process Migration:

● Non-preemptive process: If a process is moved before it begins

execution on its source node which is known as a non-preemptive

process.

● Preemptive process: If a process is moved at the time of its

execution that is known as preemptive process migration. Preemptive

112

Distributed System and

Cloud Computing

112

process migration is all the more expensive in comparison to the non-

preemptive on the grounds that the process environment should go

with the process to its new node.

7.2.1 Why use Process Migration?:

The reason to use process migration are:

● Dynamic Load Balancing: It permits processes to exploit less

stacked nodes by relocating from overloaded ones.

● Accessibility: Processes that inhibit defective nodes can be moved to

other perfect nodes.

● System Administration: Processes that inhabit a node if it is going

through system maintenance can be moved to different nodes.

● The locality of data: Processes can exploit the region of information

or other extraordinary abilities of a specific node.

● Mobility: Processes can be relocated from a hand-operated device or

computer to an automatic server-based computer before the device

gets detached from the network.

● Recovery of faults: The component to stop, transport and resume a

process is actually valuable to support in recovering the fault in

applications that are based on transactions.

7.2.2 What are the steps involved in Process Migration?

The steps which are involved in migrating the process are:

● The process is chosen for migration.

● Choose the destination node for the process to be relocated.

● Move the chosen process to the destination node.

The subcategories to migrate a process are:

● The process is halted on its source node and is restarted on its

destination node.

● The address space of the process is transferred from its source node to

its destination node.

● Message forwarding is implied for the transferred process.

● Managing the communication between collaborating processes that

have been isolated because of process migration.

 113

Distributed System

Management

7.2.3 Methods of Process Migration:

The methods of Process Migration are:

1. Homogeneous Process Migration: Homogeneous process migration

implies relocating a process in a homogeneous environment where all

systems have a similar operating system as well as architecture. There are

two unique strategies for performing process migration. These are i) User-

level process migration ii) Kernel level process migration.

● User-level process migration: In this procedure, process migration is

managed without converting the operating system kernel. User-level

migration executions are more simple to create and handle but have

usually two issues: i) Kernel state is not accessible by them. ii) They

should cross the kernel limit utilizing kernel demands which are slow

and expensive.

● Kernel level process migration: In this procedure, process migration

is finished by adjusting the operating system kernel. Accordingly,

process migration will become more simple and more proficient. This

facility permits the migration process to be done faster and relocate

more types of processes.

Homogeneous Process Migration Algorithms:

There are five fundamental calculations for homogeneous process

migration:

● Total Copy Algorithm

● Pre-Copy Algorithm

● Demand Page Algorithm

● File Server Algorithm

● Freeze Free Algorithm

2. Heterogeneous Process Migration:

Heterogeneous process migration is the relocation of the process across

machine architectures and operating systems. Clearly, it is more complex

than the homogeneous case since it should review the machine and

operating designs and attributes, as well as send similar data as

homogeneous process migration including process state, address space,

file, and correspondence data. Heterogeneous process migration is

particularly appropriate in the portable environment where is almost

certain that the portable unit and the base help station will be different

machine types. It would be attractive to relocate a process from the

versatile unit to the base station as well as the other way around during

calculation. In most cases, this couldn’t be accomplished by homogeneous

migration. There are four essential types of heterogeneous migration:

● Passive object: The information is moved and should be translated

114

Distributed System and

Cloud Computing

114

● Active object, move when inactive: The process is relocated at the

point when it isn’t executing. The code exists in the two areas, and

just the information is moved and translated.

● Active object, interpreted code: The process is executing through an

interpreter so just information and interpreter state need be moved.

● Active object, native code: Both code and information should be

translated as they are accumulated for a particular architecture.

7.3 THREADS

A thread is a light weight process which is similar to a process where

every process can have one or more threads. Each thread contains a Stack

and a Thread Control Block. There are four basic thread models :

1. User Level Single Thread Model:

● Each process contains a single thread.

● Single process is itself a single thread.

● process table contains an entry for every process by maintaining its

PCB.

2. User Level Multi Thread Model:

● Each process contains multiple threads.

● All threads of the process are scheduled by a thread library at user

level.

● Thread switching can be done faster than process switching.

● Thread switching is independent of operating system which can be

done within a process.

● Blocking one thread makes blocking of entire process.

● Thread table maintains Thread Control Block of each thread of a

process.

● Thread scheduling happens within a process and not known to Kernel.

 115

Distributed System

Management

3. Kernel Level Single Thread Model:

● Each process contains a single thread.

● Thread used here is kernel level thread.

● Process table works as thread table.

4. Kernel Level Multi Thread Model:

● Thread scheduling is done at kernel level.

● Fine grain scheduling is done on a thread basis.

● If a thread blocks, another thread can be scheduled without blocking

the whole process.

● Thread scheduling at Kernel process is slower compared to user level

thread scheduling.

● Thread switching involves switch.

116

Distributed System and

Cloud Computing

116

7.4 SUMMARY

A thread is also known as lightweight process. The idea is to achieve

parallelism by dividing a process into multiple threads. For example, in a

browser, multiple tabs can be different threads. MS Word uses multiple

threads: one thread to format the text, another thread to process inputs, etc.

The primary difference is that threads within the same process run in a

shared memory space, while processes run in separate memory spaces.

Threads are not independent of one another like processes are, and as a

result threads share with other threads their code section, data section, and

OS resources (like open files and signals). But, like process, a thread has

its own program counter (PC), register set, and stack space

7.5 REFERENCE FOR FURTHER READING

1. https://www.geeksforgeeks.org/thread-in-operating-system/

2. https://www.geeksforgeeks.org/threads-and-its-types-in-operating-

system/

3. https://www.javatpoint.com/threads-in-operating-system

4.

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Thre

ads.html

5. https://en.wikipedia.org/wiki/Thread_(computing)

6. https://padakuu.com/threads-summary-184-article

7.

https://www.tutorialspoint.com/operating_system/os_multi_threading.

htm

8. https://www.studytonight.com/operating-system/multithreading

https://www.geeksforgeeks.org/thread-in-operating-system/
https://www.geeksforgeeks.org/threads-and-its-types-in-operating-system/
https://www.geeksforgeeks.org/threads-and-its-types-in-operating-system/
https://www.javatpoint.com/threads-in-operating-system
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://en.wikipedia.org/wiki/Thread_(computing)
https://padakuu.com/threads-summary-184-article
https://www.tutorialspoint.com/operating_system/os_multi_threading.htm
https://www.tutorialspoint.com/operating_system/os_multi_threading.htm
https://www.studytonight.com/operating-system/multithreading

 117

Distributed System

Management

7.6 MODEL QUESTIONS

1. What is Process Management?

2. Explain the Importance of Process Management?

3. Explain Realtime Process Management with Examples

4. How does BPM differ from workflow management?

5. Give the distinction between Digital Process Automation (DPA) and

Process Management ?

7. Explain Business Process Management (BPM) phases with

examples?

8. Explain application of Digital process management with examples?

9. How can process management be implemented?

10. What are Selection criteria for good BPM software?

11. Discuss the Benefits of Process Management ?

12. Why use Process Migration?

13. What are the steps involved in Process Migration?

14. Discuss the methods of Process Migration?

15. Explain Threads?

 118

8
DISTRIBUTED SYSTEM MANAGEMENT

Unit Structure

8.1 Data file system

8.1 .1 What is DFS (Distributed File System)?

8.1.2 Features of DFS

8.1.3 History

8.1.4 Applications

8.1.5 Working of DFS

8.1.6 Advantages

8.1.7 Disadvantages

8.1.8 Benefits of DFS Models

8.1.9 DFS and Backup

8.1.10 The challenges associated with DFS

8.1.11 Components

8.2 File Models in Distributed System

8.3 Summary

8.4 Reference for further reading

8.5 Model questions

8.1 DATA FILE SYSTEM

A Distributed File System (DFS) is a file system that is distributed on

multiple file servers or multiple locations. It makes the programs to access

or to store isolated files with the local ones, allowing programmers to

access files from any network or computer. It manages files and folders on

different computers. It is mainly designed to provide file storage and

access controlled to files over LAN and WAN.

A DFS is also called a client-server architecture based application, which

allows the user or clients to access the data from the server as it is stored

in their own computer. It provides location transparency and redundancy

help to improve the data availability. And also use data replication strategy

on multiple servers to prevent data access failure.

8.1.1 What is DFS (Distributed File System)?:

A Distributed File System (DFS) as the name suggests, is a file system

that is distributed on multiple file servers or multiple locations. It allows

programs to access or store isolated files as they do with the local ones,

allowing programmers to access files from any network or computer.

The main purpose of the Distributed File System (DFS) is to allows users

of physically distributed systems to share their data and resources by using

 119

Distributed System

Management

a Common File System. A collection of workstations and mainframes

connected by a Local Area Network (LAN) is a configuration on

Distributed File System. A DFS is executed as a part of the operating

system. In DFS, a namespace is created and this process is transparent for

the clients.

DFS has two components:

Location Transparency:

Location Transparency achieves through the namespace component.

Redundancy:

Redundancy is done through a file replication component.

In the case of failure and heavy load, these components together improve

data availability by allowing the sharing of data in different locations to be

logically grouped under one folder, which is known as the ―DFS root‖.

It is not necessary to use both the two components of DFS together, it is

possible to use the namespace component without using the file replication

component and it is perfectly possible to use the file replication

component without using the namespace component between servers.

8.1.2 Features of DFS:

Transparency:

Structure transparency:

There is no need for the client to know about the number or locations of

file servers and the storage devices. Multiple file servers should be

provided for performance, adaptability, and dependability.

Access transparency:

Both local and remote files should be accessible in the same manner. The

file system should be automatically located on the accessed file and send it

to the client’s side.

Naming transparency:

There should not be any hint in the name of the file to the location of the

file. Once a name is given to the file, it should not be changed during

transferring from one node to another.

Replication transparency:

If a file is copied on multiple nodes, both the copies of the file and their

locations should be hidden from one node to another.

120

Distributed System and

Cloud Computing

120

User mobility:

It will automatically bring the user’s home directory to the node where the

user logs in.

Performance:

Performance is based on the average amount of time needed to convince

the client requests. This time covers the CPU time + time taken to access

secondary storage + network access time. It is advisable that the

performance of the Distributed File System be similar to that of a

centralized file system.

Simplicity and ease of use:

The user interface of a file system should be simple and the number of

commands in the file should be small.

High availability:

A Distributed File System should be able to continue in case of any partial

failures like a link failure, a node failure, or a storage drive crash.

A high authentic and adaptable distributed file system should have

different and independent file servers for controlling different and

independent storage devices.

Scalability:

Since growing the network by adding new machines or joining two

networks together is routine, the distributed system will inevitably grow

over time. As a result, a good distributed file system should be built to

scale quickly as the number of nodes and users in the system grows.

Service should not be substantially disrupted as the number of nodes and

users grows.

High reliability:

The likelihood of data loss should be minimized as much as feasible in a

suitable distributed file system. That is, because of the system’s

unreliability, users should not feel forced to make backup copies of their

files. Rather, a file system should create backup copies of key files that

can be used if the originals are lost. Many file systems employ stable

storage as a high-reliability strategy.

Data integrity:

Multiple users frequently share a file system. The integrity of data saved

in a shared file must be guaranteed by the file system. That is, concurrent

access requests from many users who are competing for access to the same

file must be correctly synchronized using a concurrency control method.

Atomic transactions are a high-level concurrency management mechanism

for data integrity that is frequently offered to users by a file system.

 121

Distributed System

Management

Security:

A distributed file system should be secure so that its users may trust that

their data will be kept private. To safeguard the information contained in

the file system from unwanted & unauthorized access, security

mechanisms must be implemented.

Heterogeneity:

Heterogeneity in distributed systems is unavoidable as a result of huge

scale. Users of heterogeneous distributed systems have the option of using

multiple computer platforms for different purposes.

8.1.3 History:

The server component of the Distributed File System was initially

introduced as an add-on feature. It was added to Windows NT 4.0 Server

and was known as ―DFS 4.1‖. Then later on it was included as a standard

component for all editions of Windows 2000 Server. Client-side support

has been included in Windows NT 4.0 and also in later on version of

Windows. Linux kernels 2.6.14 and versions after it come with an SMB

client VFS known as ―cifs‖ which supports DFS. Mac OS X 10.7 (lion)

and onwards supports Mac OS X DFS.

8.1.4 Applications:

NFS:

NFS stands for Network File System. It is a client-server architecture that

allows a computer user to view, store, and update files remotely. The

protocol of NFS is one of the several distributed file system standards for

Network-Attached Storage (NAS).

CIFS:

CIFS stands for Common Internet File System. CIFS is an accent of SMB.

That is, CIFS is an application of SIMB protocol, designed by Microsoft.

SMB:

SMB stands for Server Message Block. It is a protocol for sharing a file

and was invented by IMB. The SMB protocol was created to allow

computers to perform read and write operations on files to a remote host

over a Local Area Network (LAN). The directories present in the remote

host can be accessed via SMB and are called as ―shares‖.

Hadoop:

Hadoop is a group of open-source software services. It gives a software

framework for distributed storage and operating of big data using the

MapReduce programming model. The core of Hadoop contains a storage

part, known as Hadoop Distributed File System (HDFS), and an operating

part which is a MapReduce programming model.

122

Distributed System and

Cloud Computing

122

NetWare:

NetWare is an abandon computer network operating system developed by

Novell, Inc. It primarily used combined multitasking to run different

services on a personal computer, using the IPX network protocol.

8.1.5 Working of DFS:

There are two ways in which DFS can be implemented:

Standalone DFS namespace:

It allows only for those DFS roots that exist on the local computer and are

not using Active Directory. A Standalone DFS can only be acquired on

those computers on which it is created. It does not provide any fault

liberation and cannot be linked to any other DFS. Standalone DFS roots

are rarely come across because of their limited advantage.

Domain-based DFS namespace:

It stores the configuration of DFS in Active Directory, creating the DFS

namespace root accessible

at \\<domainname>\<dfsroot> or \\<FQDN>\<dfsroot>

A file system is a set of data structures, interfaces, abstractions, and APIs

that work together to manage any type of file on any type of storage

device, in a consistent manner. Each operating system uses a particular file

system to manage the files.

In the early days, Microsoft used FAT (FAT12, FAT16, and FAT32) in

the MS-DOS and Windows 9x family. Starting from Windows NT 3.1,

Microsoft developed New Technology File System (NTFS), which had

many advantages over FAT32, such as supporting bigger files, allowing

longer filenames, data encryption, access management, journaling, and a

lot more.

 123

Distributed System

Management

NTFS has been the default file system of the Window NT family (2000,

XP, Vista, 7, 10, etc.) ever since. NTFS isn’t suitable for non-Windows

environments.

For instance, you can only read the content of an NTFS-formatted

storage device (like flash memory) on a Mac OS, but you won’t be able to

write anything to it - unless you install an NTFS driver with write support.

Or you can just use the exFat file system. Extended File Allocation

Table (exFAT) is a lighter version of NTFS created by Microsoft in

2006. exFAT was designed for high-capacity removable devices, such as

external hard disks, USB drives, and memory cards. exFAT is the default

file system used by SDXC cards.

Unlike NTFS, exFAT has read and write support on Non-Windows

environments as well, including Mac OS — making it the best cross-

platform file system for high-capacity removable storage devices. So

basically, if you have a removable disk you want to use on Windows,

Mac, and Linux, you need to format it to exFAT. Apple has also

developed and used various file systems over the years, including

Hierarchical File System (HFS), HFS+, and recently Apple File

System (APFS). Just like NTFS, APFS is a journaling file system and has

been in use since the launch of OS X High Sierra in 2017. But how

about file systems in Linux distributions?

The Extended File System (ext) family of file systems was created for

the Linux kernel - the core of the Linux operating system. The first version

of ext was released in 1991, but soon after, it was replaced by the

 second extended file system (ext2) in 1993. In the 2000s, the third

extended filesystem (ext3) and fourth extended filesystem

(ext4) were developed for Linux with journaling capability. ext4 is now

the default file system in many distributions of Linux, including

 Debian and Ubuntu. You can use the findmnt command on Linux to list

your ext4-formatted partitions:

findmnt -lo source,target,fstype,used -t ext4

The output would be something like:

SOURCE TARGET FSTYPE USED

/dev/vda1 / ext4 3.6G

Architecture of file systems:

A file system installed on an operating system consists of three layers:

● Physical file system

● Virtual file system

● Logical file system

These layers can be implemented as independent or tightly coupled

abstractions. When people talk about file systems, they refer to one of

https://www.howtogeek.com/236055/how-to-write-to-ntfs-drives-on-a-mac/
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Ubuntu

124

Distributed System and

Cloud Computing

124

these layers or all three as one unit. Although these layers are different

across operating systems, the concept is the same. The physical layer is the

concrete implementation of a file system; It's responsible for data storage

and retrieval and space management on the storage device (or precisely:

partitions).

The physical file system interacts with the storage hardware via device

drivers. The next layer is the virtual file system or VFS. The virtual file

system provides a consistent view of various file systems mounted on

the same operating system. So does this mean an operating system can use

multiple file systems at the same time? The answer is yes!

It's common for a removable storage medium to have a different file

system than that of a computer.

For instance, on Windows (which uses NTFS as the primary file system),

a flash memory might have been formatted to exFAT or FAT32. That said,

the operating system should provide a unified interface between

computer programs (file explorers and other apps that work with files) and

the different mounted file systems (such as NTFS, APFS, ext4, FAT32,

exFAT, and UDF).

For instance, when you open up your file explorer program, you can copy

an image from an ext4 file system and paste it over to your exFAT-

formatted flash memory - without having to know that files are managed

differently under the hood. This convenient layer between the user (you)

and the underlying file systems is provided by the VFS. A VFS defines a

 contract that all physical file systems must implement to be supported by

that operating system.

However, this compliance isn't built into the file system core, meaning the

source code of a file system doesn't include support for every operating

system's VFS. Instead, it uses a file system driver to adhere to the VFS

rules of every file system. A driver is a program that enables software to

communicate with another software or hardware.

Although VFS is responsible for providing a standard interface between

programs and various file systems, computer programs don't interact with

VFS directly. Instead, they use a unified API between programs and the

VFS. Can you guess what it is? Yes, we're talking about the logical file

system.

The logical file system is the user-facing part of a file system, which

provides an API to enable user programs to perform various file

operations, such as OPEN, READ, and WRITE, without having to deal

with any storage hardware. On the other hand, VFS provides a bridge

between the logical layer (which programs interact with) and a set of the

physical layer of various file systems.

https://www.decodingweb.dev/books/processing-fundamentals/how-a-computer-program-works#device-drivers
https://www.decodingweb.dev/books/processing-fundamentals/how-a-computer-program-works#device-drivers

 125

Distributed System

Management

A high-level architecture of the file system layers

What does it mean to mount a file system?:

On Unix-like systems, the VFS assigns a device ID (for instance,

 dev/disk1s1) to each partition or removable storage device. Then, it

creates a virtual directory tree and puts the content of each device

under that directory tree as separate directories. The act of assigning a

directory to a storage device (under the root directory tree) is called

 mounting, and the assigned directory is called a mount point. That said,

on a Unix-like operating system, all partitions and removable storage

devices appear as if they are directories under the root directory.

For instance, on Linux, the mounting points for a removable device (such

as a memory card), are usually under the /media directory. That said, once

a flash memory is attached to the system, and consequently, auto

mounted at the default mounting point (/media in this case), its content

would be available under the /media directory. However, there are times

you need to mount a file system manually.

On Linux, it’s done like so:

mount /dev/disk1s1 /media/usb

In the above command, the first parameter is the device ID (/dev/disk1s1),

and the second parameter (/media/usb) is the mount point. Please note that

the mount point should already exist as a directory. If it doesn’t, it has to

be created first:

mkdir -p /media/usb

mount /dev/disk1s1 /media/usb

If the mount-point directory already contains files, those files will be

hidden for as long as the device is mounted.

126

Distributed System and

Cloud Computing

126

Files metadata:

File metadata is a data structure that contains data about a file, such as:

● File size

● Timestamps, like creation date, last accessed date, and modification

date

● The file's owner

● The file's mode (who can do what with the file)

● What blocks on the partition are allocated to the file

● and a lot more

Metadata isn’t stored with the file content, though. Instead, it’s stored in a

different place on the disk - but associated with the file.

In Unix-like systems, the metadata is in the form of data structures, called

inode. Inodes are identified by a unique number called the inode number.

Inodes are associated with files in a table called inode tables. Each file on

the storage device has an inode, which contains information about it such

as the time it was created, modified, etc.The inode also includes the

address of the blocks allocated to the file; On the other hand, where

exactly it's located on the storage device In an ext4 inode, the address of

the allocated blocks is stored as a set of data structures called

 extents (within the inode). Each extent contains the address of the first

data block allocated to the file and the number of the continuous

blocks that the file has occupied.

Whenever you open a file on Linux, its name is first resolved to an inode

number.

Having the inode number, the file system fetches the respective inode

from the inode table. Once the inode is fetched, the file system starts to

compose the file from the data blocks registered in the inode. You can use

the df command with the -i parameter on Linux to see the inodes (total,

used, and free) in your partitions:

df -i

The output would look like this:

udev 4116100 378 4115722 1% /dev

tmpfs 4118422 528 4117894 1% /run

/dev/vda1 6451200 175101 6276099 3% /

As you can see, the partition /dev/vda1 has a total number of 6,451,200

inodes, of which 3% have been used (175,101 inodes). To see the inodes

associated with files in a directory, you can use the ls command with -

il parameters.

 127

Distributed System

Management

ls -li

And the output would be:

1303834 -rw-r--r-- 1 root www-data 2502 Jul 8 2019 wp-links-

opml.php

1303835 -rw-r--r-- 1 root www-data 3306 Jul 8 2019 wp-load.php

1303836 -rw-r--r-- 1 root www-data 39551 Jul 8 2019 wp-login.php

1303837 -rw-r--r-- 1 root www-data 8403 Jul 8 2019 wp-mail.php

1303838 -rw-r--r-- 1 root www-data 18962 Jul 8 2019 wp-settings.php

The first column is the inode number associated with each file.

The number of inodes on a partition is decided when you format a

partition. That said, as long as you have free space and unused inodes, you

can store files on your storage device.

It's unlikely that a personal Linux OS would run out of inodes. However,

enterprise services that deal with a large number of files (like mail servers)

have to manage their inode quota smartly.

On NTFS, the metadata is stored differently, though.

NTFS keeps file information in a data structure called the Master File

Table (MFT). Every file has at least one entry in MFT, which contains

everything about it, including its location on the storage device - similar to

the inodes table. On most operating systems, you can grab metadata via

the graphical user interface. For instance, when you right-click on a file on

Mac OS, and select Get Info (Properties in Windows), a window appears

with information about the file. This information is fetched from the

respective file’s metadata.

Space Management:

Storage devices are divided into fixed-sized blocks called sectors. A

sector is the minimum storage unit on a storage device and is between

512 bytes and 4096 bytes (Advanced Format). However, file systems use a

high-level concept as the storage unit, called blocks. Blocks are an

abstraction over physical sectors; Each block usually consists of multiple

sectors. Depending on the file size, the file system allocates one or more

blocks to each file. Speaking of space management, the file system is

aware of every used and unused block on the partitions, so it’ll be able to

allocate space to new files or fetch the existing ones when requested.

The most basic storage unit in ext4-formatted partitions is the block.

However, the contiguous blocks are grouped into block groups for easier

management.

https://docs.microsoft.com/en-us/windows/win32/fileio/master-file-table
https://docs.microsoft.com/en-us/windows/win32/fileio/master-file-table

128

Distributed System and

Cloud Computing

128

The layout of a block group within an ext4 partition

Each block group has its own data structures and data blocks.

Here are the data structures a block group can contain:

● Super Block: a metadata repository, which contains metadata about

the entire file system, such as the total number of blocks in the file

system, total blocks in block groups, inodes, and more. Not all block

groups contain the superblock, though. A certain number of block

groups store a copy of the super as a backup.

● Group Descriptors: Group descriptors also contain bookkeeping

information for each block group

● Inode Bitmap: Each block group has its own inode quota for storing

files. A block bitmap is a data structure used to identify used and

 unused inodes within the block group. 1 denotes used and

 0 denotes unused inode objects.

● Block Bitmap: a data structure used to identify used & unused data

blocks within the block group. 1 denotes used and 0 denotes unused

data blocks

● Inode Table: a data structure that defines the relation of files and

their inodes. The number of inodes stored in this area is related to the

block size used by the file system.

● Data Blocks: This is the zone within the block group where file

contents are stored. Ext4 file system even takes one step further

(comparing to ext3), and organizes block groups into a bigger group

called flex block groups.

The data structures of each block group, including the block bitmap, inode

bitmap, and inode table, are concatenated and stored in the first block

group within each flex block group. Having all the data structures

concatenated in one block group (the first one) frees up more contiguous

data blocks on other block groups within each flex block group. These

concepts might be confusing, but you don't have to master every bit of

them. It's just to depict the depth of file systems. The layout of the first

block group looks like this:

 129

Distributed System

Management

The layout of the first block in an ext4 flex block group

When a file is being written to a disk, it is written to one or more blocks

within a block group.

Managing files at the block group level improves the performance of the

file system significantly, as opposed to organizing files as one unit.

Size vs size on disk

Have you ever noticed that your file explorer displays two different sizes

for each file: size, and size on disk.

Size and Size on disk:

Why are size and size on disk slightly different?

We already know depending on the file size, one or more blocks are

allocated to a file. One block is the minimum space that can be allocated

to a file. This means the remaining space of a partially-filled block cannot

be used by another file. This is the rule!

Since the size of the file isn’t an integer multiple of blocks, the last block

might be partially used, and the remaining space would remain unused - or

would be filled with zeros.

So "size" is basically the actual file size, while "size on disk" is the space

it has occupied, even though it’s not using it all.

130

Distributed System and

Cloud Computing

130

You can use the du command on Linux to see it yourself.

du -b "some-file.txt"

The output would be something like this:

623 icon-link.svg

And to check the size on disk:

du -B 1 "icon-link.svg"

Which will result in:

4096 icon-link.svg

Based on the output, the allocated block is about 4kb, while the actual file

size is 623 bytes. This means each block size on this operating system is

4kb.

8.1.6 Advantages:

● DFS allows multiple user to access or store the data.

● It allows the data to be share remotely.

● It improved the availability of file, access time, and network

efficiency.

● Improved the capacity to change the size of the data and also

improves the ability to exchange the data.

● Distributed File System provides transparency of data even if server

or disk fails.

8.1.7 Disadvantages:

● In Distributed File System nodes and connections needs to be secured

therefore we can say that security is at stake.

● There is a possibility of lose of messages and data in the network

while movement from one node to another.

● Database connection in case of Distributed File System is

complicated.

● Also handling of the database is not easy in Distributed File System as

compared to a single user system.

● There are chances that overloading will take place if all nodes tries to

send data at once.

 131

Distributed System

Management

8.1.8 Benefits of DFS Models:

The distributed file system brings with it some common benefits.

A DFS makes it possible to restrict access to the file system, depending on

access lists or capabilities on both the servers and the clients, depending

on how the protocol is designed. Also, since the server also provides a

single central point of access for data requests, it is thought to be fault-

tolerant (as mentioned above) in that it will still function well if some of

the nodes are taken offline. This dovetails with some of the reasons that

DFS was developed in the first place – the system can still have that

integrity if a few workstations get moved around.

8.1.9 DFS and Backup:

Ironically enough, even though a DFS server is prized for being a single

central point of access, another server may also be in play. However, that

doesn't mean that there won't be that single central access point. The

second server will be for backup.

Because businesses invest in having one central DFS server, they will

worry that the server could be compromised somehow. Backing all of the

data up at a separate location ensures the right kind of redundancy to make

the system fully fault-tolerant, even if the king itself (the primary server)

is toppled by something like a DDoS attack or something else. DFS

systems, like other systems, continue to innovate. With new kinds of net

 8.1.10 The challenges associated with DFS:

● Data redundancy and inconsistency.

● Difficulty in accessing data.

● Data isolation

● Integrity problems

● Unauthorized access is not restricted.

● It coordinates only physical access.

8.1.11 Components:

The components of DFS are as follows:

● Block Storage provider

● Client Driver

● Security provider

● Meta- Data Service

● Object service.

132

Distributed System and

Cloud Computing

132

These components are pictorially represented below:

Features:

The features of DFS are as follows:

● User mobility

● Easy to use

● High availability

● Performance

● Coherent access

● Location independence

● File locking

● Multi-networking access

● Local gateways

● Multi-protocol access

Example:

Given below is an example of DFS Structure:

 133

Distributed System

Management

8.2 FILE MODELS IN DISTRIBUTED SYSTEM

Several machines are utilized in Distributed File Systems (DFS) to

supply the file system's facility. Various file systems frequently use

various conceptual models. Models based on structure and mobility is

frequently used for file modeling. In this article, you will learn about the

file models in the distributed operating system.

Types of Files models in the distributed operating systems

134

Distributed System and

Cloud Computing

134

There are mainly two types of file models in the distributed operating

system.

1. Structure Criteria

2. Modifiability Criteria

Structure Criteria

There are two types of file models in structure criteria. These are as

follows:

1. Structured Files

2. Unstructured Files

Structured Files

The Structured file model is presently a rarely used file model. In the

structured file model, a file is seen as a collection of records by the file

system. Files come in various shapes and sizes and with a variety of

features. It is also possible that records from various files in the same file

system have varying sizes. Despite belonging to the same file system, files

have various attributes. A record is the smallest unit of data from which

data may be accessed. The read/write actions are executed on a set of

records. Different "File Attributes" are provided in a hierarchical file

system to characterize the file. Each attribute consists of two parts: a name

and a value. The file system used determines the file attributes. It provides

information on files, file sizes, file owners, the date of last modification,

the date of file creation, access permission, and the date of last access.

Because of the varied access rights, the Directory Service function is

utilized to manage file attributes.

The structured files are also divided into two types:

1. Files with Non-Indexed records

2. Files with Indexed records

1. Files with Non-Indexed records:

Records in non-indexed files are retrieved based on their placement inside

the file. For instance, the second record from the starting and the second

from the end of the record.

2. Files with Indexed records:

Each record contains a single or many key fields in a file containing

indexed records, each of which may be accessed by specifying its value. A

file is stored as a B-tree or similar data structure or hash table to find

records quickly.

 135

Distributed System

Management

Unstructured Files:

It is the most important and widely used file model. A file is a group of

unstructured data sequences in the unstructured model. Any substructure

does not support it. The data and structure of each file available in the file

system is an uninterrupted sequence of bytes such as UNIX or DOS. Most

latest OS prefer the unstructured file model instead of the structured file

model due to sharing of files by multiple apps. It has no structure;

therefore, it can be interpreted in various ways by different applications.

Modifiability Criteria:

There are two files model in the Modifiability Criteria. These are as

follows:

1. Mutable Files

2. Immutable Files

1. Mutable Files:

The existing operating system employs the mutable file model. A file is

described as a single series of records because the same file is updated

repeatedly once new material is added. After a file is updated, the existing

contents are changed by the new contents.

2. Immutable Files:

The Immutable file model is used by Cedar File System (CFS). The file

may not be modified once created in the immutable file model. Only after

the file has been created can it be deleted. Several versions of the same file

are created to implement file updates. When a file is changed, a new file

version is created. There is consistent sharing because only immutable

files are shared in this file paradigm. Distributed systems allow caching

and replication strategies, overcoming the limitation of many copies and

maintaining consistency. The disadvantages of employing the immutable

file model include increased space use and disc allocation activity. CFS

uses the "Keep" parameter to keep track of the file's current version

number. When the parameter value is 1, it results in the production of a

new file version. The previous version is erased, and the disk space is

reused for a new one. When the parameter value is greater than 1, it

indicates the existence of several versions of a file. If the version number

is not specified, CFS utilizes the lowest version number for actions such

as "delete" and the highest version number for other activities such

as "open".

The specific client's request for accessing a particular file is serviced on

the basis of the file accessing model used by the distributed file system.

The file accessing model basically depends on 1) the unit of data access

and 2) the method used for accessing remote files.

On the basis of the unit of data access, following file access models might

be used in order to access the specific file.

136

Distributed System and

Cloud Computing

136

1. File-level transfer model

2. Block-level transfer model

3. Byte-level transfer model

4. Record-level transfer model

1. File-level transfer model: In file-level transfer model, the complete

file is moved while a particular operation necessitates the file data to

be transmitted all the way through the distributed computing network

amongst client and server. This model has better scalability and is

efficient.

2. Block-level transfer model: In block-level transfer model, file data

transfers through the network amongst client and a server is

accomplished in units of file blocks. In short, the unit of data transfer

in block-level transfer model is file blocks. The block-level transfer

model might be used in distributed computing environment

comprising several diskless workstations.

3. Byte-level transfer model: In byte-level transfer model, file data

transfers the network amongst client and a server is accomplished in

units of bytes. In short, the unit of data transfer in byte-level transfer

model is bytes. The byte-level transfer model offers more flexibility

in comparison to the other file transfer models since, it allows

retrieval and storage of an arbitrary sequential subrange of a file. The

major disadvantage of byte-level transfer model is the trouble in cache

management because of the variable-length data for different access

requests.

4. Record-level transfer model: The record-level file transfer model

might be used in the file models where the file contents are structured

in the form of records. In record-level transfer model, file data

transfers through the network amongst client and a server is

accomplished in units of records. The unit of data transfer in record-

level transfer model is record.

8.3 SUMMARY

DFS allows multiple user to access or store the data. It allows the data

to be share remotely. It improved the availability of file, access time, and

network efficiency. Improved the capacity to change the size of the data

and also improves the ability to exchange the data.

The main purpose of the Distributed File System (DFS) is to allows users

of physically distributed systems to share their data and resources by using

a Common File System.

A collection of workstations and mainframes connected by a Local Area

Network (LAN) is a configuration on Distributed File System. A DFS is

executed as a part of the operating system. In DFS, a namespace is created

and this process is transparent for the clients.

 137

Distributed System

Management

8.4 REFERENCE FOR FURTHER READING

1. https://www.unf.edu/~sahuja/cis6302/filesystems.html

2. https://www.geeksforgeeks.org/what-is-dfsdistributed-file-system/

3. https://www.ques10.com/p/2247/what-are-the-good-features-of-a-

distributed-file-1/

4. https://www.javatpoint.com/distributed-file-system

5. https://en.wikipedia.org/wiki/Distributed_File_System_(Microsoft)

6. https://erandipraboda.medium.com/characteristics-of-distributed-file-

systems-bf5988f85d3

8.5 MODEL QUESTIONS

1. What is DFS (Distributed File System)?

2. What are the Features of DFS

3. Discuss on the History of DFS?

4. What are the Applications of DFS?

5. Explain the Working of DFS?

6. What are the Advantages of DFS?

7. What are the Disadvantages of DFS?

8. Explain the Benefits of DFS Models?

9. Discuss on DFS and Backup?

10. Discuss The challenges associated with DFS?

11. What are the Components of DFS?

12. Explain the concept of File Models in Distributed System?

https://www.unf.edu/~sahuja/cis6302/filesystems.html
https://www.geeksforgeeks.org/what-is-dfsdistributed-file-system/
https://www.ques10.com/p/2247/what-are-the-good-features-of-a-distributed-file-1/
https://www.ques10.com/p/2247/what-are-the-good-features-of-a-distributed-file-1/
https://www.javatpoint.com/distributed-file-system
https://en.wikipedia.org/wiki/Distributed_File_System_(Microsoft)
https://erandipraboda.medium.com/characteristics-of-distributed-file-systems-bf5988f85d3
https://erandipraboda.medium.com/characteristics-of-distributed-file-systems-bf5988f85d3

 138

UNIT V

9
INTRODUCTION TO CLOUD

COMPUTING

Unit Structure

9.0 Objective

9.1 Introduction

9.1.1 History and evolution

9.2 Characteristics of cloud computing

9.3 Cloud Computing example

9.4 Benefits of Cloud Computing

9.5 Risks of Cloud Computing

9.6 Cloud Computing Architecture

 9.6.1 Cloud Architecture model

 9.6.2 Types of Cloud

 9.6.3 Cloud based Services

 9.6.3.1 Software as a service (SaaS)

 9.6.3.2 Platform as a service (PaaS)

 9.6.3.3 Infrastructure as a service (IaaS)

9.7 Summary

9.8 Referances

9.0 OBJECTIVE

After studying this module, you will be able to understand

● Cloud Computing and its characteristics

● Benefits of Cloud Computing

● Cloud Computing Architecture

● Cloud based Services

9.1 INTRODUCTION

● Cloud Computing is a model for enabling convenient, on-demand

network access to a shared pool of resources that can be rapidly

provided and released with minimum management efforts.

● Cloud Computing intends to realize the concept of Computing as a

utility like water, gas, electricity etc.

 139

Introduction to Cloud

Computing

● Cloud Computing referred as the accessing and storing of data and

provide services related to computing over the internet.

● It simply referred as it remote services on the internet manage and

access data online rather than any local drives.

● The data can be anything like images, videos, audios, documents, files

etc.

● The potential of cloud computing has been recognized by industry.

● Cloud computing is in huge demand so, big organization providing

the service like Amazon AWS, Microsoft Azure, Google

Cloud, Alibaba cloud etc. are some Cloud Computing service Provide

9.1.1 History and evolution:

● In early days before Cloud Computing was come into existence, client

Server Architecture was used.

● In this all the data and control of client resides in Server side, so if

user wants to access data it has to take the permission. It is having

many disadvantages.

● So, After Client Server computing, Distributed Computing was come

into existence.

● In this all the computers are in network so user can share resources as

and when required. This also having certain limitations.

● So to remove limitations faced in distributed system, cloud computing

was emerged.

● During 1961, John MacCharty delivered his speech at MIT that

“Computing Can be sold as a Utility.

● This concept of computing was not appreciated so after few years this

is implemented by Salesforce.com in 1999.

● This company started delivering an enterprise application over the

internet and in this way Cloud Computing was started.

● In 2002, Amazon started Amazon Web Services (AWS), Amazon will

provide storage, computation over the internet.

● In 2006 Amazon will launch Elastic Compute Cloud Commercial

Service which is open for Everybody to use.

● In 2009, Google Play also started providing Cloud Computing

Enterprise Application.

● In 2009, Microsoft launch Microsoft Azure and after that other

companies like Alibaba, IBM, Oracle, HP also introduces their Cloud

Services.

https://www.geeksforgeeks.org/introduction-to-amazon-web-services/
https://www.geeksforgeeks.org/introduction-microsoft-azure-cloud-computing-service/
https://www.geeksforgeeks.org/what-is-google-cloud-platform-gcp/
https://www.geeksforgeeks.org/what-is-google-cloud-platform-gcp/
https://www.geeksforgeeks.org/difference-between-alibaba-cloud-tsdb-and-amazon-documentdb/

140

Distributed System and

Cloud Computing

140

9.2 CHARACTERISTICS OF CLOUD COMPUTING

1. On demand self-service Here the user is able to use web services

and resources on demand. User can

logon to the website any time and use

them.

2. Ubiquitous Access- As Cloud Computing is completely web

based user can have accessed it from

anywhere and anytime.

3. Resource Pooling- Resource pooling allows cloud

providers to pool large-scale IT

resources to serve multiple cloud

consumers. Different physical and

virtual IT resources are dynamically

assigned and reassigned according to

cloud consumer demand, typically

followed by execution through statistical

multiple xing.

4. Rapid Elasticity Elasticity is the automated ability of

acloud to transparent scale IT

resources, as required in response to

runtime conditions or as pre-determined

by the cloud consumer or cloud provider.

5. Measured Usage The measured usage characteristic

represents the ability of a Cloud

platform to keep track of the usage of its

IT resources, primarily by cloud

consumers. Based on what is measured,

the cloud provider can charge a cloud

consumer only for the IT resources used

and/or for the time frame during which

access to the IT resources was granted.

6. Resiliency Resilient computing is a form of failover

that distributes redundant

Implementations of IT resources across

physical locations.

9.3 CLOUD COMPUTING EXAMPLES

Here we are discussing about two popular cloud computing facilities:

1. Amazon Elastic Computing Cloud (EC2):

 It is a part of set of standalone services which includes object storage

service, for hosting and simple database.

 141

Introduction to Cloud

Computing

 With EC2 user may rent virtual machine instances to run their own

software and also can monitor number of VMs as demand changes.

 If user wants to use Amazon EC2 then he has to create Amazon

Machine Image(AMI), then upload AMI to Amazon S3, select OS and

start instances, then monitor and control via web interface or API.

2. Google App Engine:

 It is an end –to-end service.

 It allows developer to run their web application on Googles

infrastructure for that

 Download App engine SDK

 Develop an application as a set of python programs

 Register for an application ID

 Submit the application to Google

9.4 BENEFITS OF CLOUD COMPUTING

Various advantages are provided by Cloud Computing

1. On-demand access to pay-as-you-go computing resources on a short-

term basis (such as processors by the hour), and the ability to release

these computing resources when they are no longer needed.

2. The perception of having unlimited computing resources that are

available on demand, Thereby reducing the need to prepare for

provisioning.

3. The ability to add or remove IT resources at a fine-grained level,

such as modifying Available storage disk space by single gigabyte

increments.

4. Abstraction of the infrastructure so applications are not locked into

devices or location And can be easily moved if needed

5. An IT resource with increased availability is accessible for longer

periods of time (for example, 22 hours out of a 24-hour day).

Cloud providers generally offer “resilient” IT resources for which

they are able to guarantee high levels of availability.

6. An IT resource with increased reliability is able to better avoid &

recover from exception conditions. The modular architecture of cloud

environments provides extensive fail over support that increases

reliability.

142

Distributed System and

Cloud Computing

142

9.5 RISKS OF CLOUD COMPUTING

Some downsides of Cloud Computing are discussed below:

1. Security and privacy:

It is always a risk to handover the sensitive information since data

management and infrastructure management in cloud computing by third

party.

2. Lock in:

To switch from one Cloud Service provider(CSP) to another is very

difficult. It results in dependency on particular CSP.

3. Isolation Failure:

It involves the failure of isolation mechanism which will separate storage,

memory, routing between different tenants.

4. Management Interface compromise:

In case of public cloud provider, customer management interface is

accessible through the internet.

5. Insecure data deletion:

Sometime data requested for deletion may not get deleted. This can

happen because extra copies of data are stored but not available on disk or

disk may destroyed.

9.6 CLOUD COMPUTING ARCHITECTURE

In current time Cloud Computing is giving a new shape to every

organization by providing on demand virtualized services/resources.

Starting from small to medium and medium to large, every organization

use cloud computing services in storing information and accessing that

from anywhere and anytime only with the help of internet. Transparency,

scalability, security and intelligent monitoring are some of the most

important constraints which every cloud infrastructure should experience.

9.6.1 Cloud Computing Architecture:

Cloud Computing Architecture:

The cloud architecture is divided into 2 parts i.e.

1. Frontend

2. Backend

 143

Introduction to Cloud

Computing

Figure - Internal Architectural view of Cloud Computing

1. Frontend:

Frontend of the cloud architecture refers to the client side of cloud

computing system. Means it contains all the user interfaces and

applications which are used by the client to access the cloud computing

services/resources.

For example, use of a web browser to access the cloud plat form.

Client Infrastructure:

Client Infrastructure refers to the frontend components. It contains the

applications and user interfaces which are required to access the cloud

platform.

2. Backend:

Backend refers to the cloud itself which is used by the service provider. It

contains the resources as well as manages the resources and provides

security mechanisms. Along with this it includes huge storage, virtual

applications, virtual machines, traffic control mechanisms, deployment

models etc.

1. Application:

Application in backend refers to a software or platform to which client

accesses. Means it provides the service in backend as per the client

requirement.

2. Service:

Service in backend refers to the major three types of cloud based services

like SaaS, PaaS and IaaS. Also manages which type of service the user

accesses.

https://www.geeksforgeeks.org/cloud-based-services/

144

Distributed System and

Cloud Computing

144

3. Cloud Runtime:

Runtime cloud in backend refers to provide of execution and runtime

platform/environment to the virtual machine.

4. Storage:

Storage in backend refers to provide flexible and scalable storage service

and management of stored data.

5. Infrastructure:

Cloud Infrastructure in backend refers to hardware and software

components of cloud like it includes servers, storage, network devices,

virtualization software etc.

6. Management:

Management in backend refers to management of backend components

like application, service, runtime cloud, storage, infrastructure, and other

security mechanisms etc.

7. Security:

Security in backend refers to implementation of different security

mechanisms in the backend for secure cloud resources, systems, files, and

infrastructure to end-users.

8. Internet:

Internet connection acts as the medium or a bridge between frontend and

backend and establishes the interaction and communication between

frontend and backend.

Benefits of Cloud Computing Architecture:

● Makes overall cloud computing system simpler.

● Improves data processing requirements.

● Helps in providing high security.

● Makes it more modularized.

● Results better disaster recovery.

● Gives good user accessibility.

● Reduces IT operating costs.

9.6.2 Types of Cloud:

A cloud deployment model represents a specific type of cloud

environment, primarily distinguished by ownership, size, and access.

There are four common cloud deployment models:

 145

Introduction to Cloud

Computing

• Public cloud

• Community cloud

• Private cloud

 • Hybrid cloud

Public Cloud:

 A public cloud is a publicly accessible cloud environment owned by a

third-party cloud provider

 The IT resources on public clouds are usually provisioned via cloud

delivery models and are generally offered to cloud consumers at a

cost or are commercialized via other avenues (such as

advertisement).

 The cloud provider is responsible for the creation and on-going

maintenance of the public cloud and its IT resources.

 Example-Google, Oracle, Microsoft

Community Clouds:

 A community cloud is similar to a public cloud except that its

access is limited to a specific community of cloud consumers.

 The community cloud may be jointly owned by the community

members or by third-party cloud provider that provisions a public

cloud with limited access.

 The member cloud consumers of the community typically share the

responsibility for defining and evolving the community Cloud.

 Example- Government agency

Private Clouds:

 A private cloud is owned by a single organization.

 Private clouds enable an organization to use cloud computing

technology as a means of centralizing access to IT resources by

different parts, locations, or departments the organization.

 The use of a private cloud can change how organizational and trust

boundaries defined and applied

 The actual administration of a private cloud environment may be

carried out by internal or outsourced staff.

 Example-HP data centre, Ubuntu

146

Distributed System and

Cloud Computing

146

Hybrid Clouds:

 A hybrid cloud is a cloud environment comprised of two or more

different cloud deployment models.

 The service of a hybrid cloud can be distributed in multiple cloud

types.

 Example-Amazon Web service

9.6.3 Cloud based Services:

A cloud delivery model represent a specific, pre-packaged combination of

IT resources offered by a cloud provider. Three common cloud delivery

models have become widely established and formalized:

• Software-as-a-Service (SaaS)

• Platform-as-a-Service (PaaS)

• Infrastructure-as-a-Service (IaaS)

9.6.3.1 Software as a service (SaaS):

 A software program positioned as a shared cloud service and made

available as a “product” or generic utility represents the typical profile

of a SaaS offering.

 The SaaS delivery model is typically used to make a reusable cloud

service widely available (often commercially) to a range of cloud

consumers.

 SaaS application includes billing and invoice system, CRM, Help

desk application, HR solutions.

 SaaS provides Application programming Interface(API), which

allows the developer to develop a customized application.

Figure 1: The cloud service consumer is given access the cloud

service contract, but not to any underlying IT resources or

implementation details

 147

Introduction to Cloud

Computing

Benefits:

1. It is beneficial in terms of scalability, efficiency, performance.

2. Modest software tools

3. Efficient use of software licence

4. Centralized management and data

5. Platform responsibility managed by provider

6. Multitenant solution

9.6.3.2 Platform as a service (PaaS):

 The PaaS delivery model represents a pre-defined “ready-to-use”

environment typically comprised of already deployed and configured

IT resources.

 PaaS relies on (and is primarily defined by) the usage of a readymade

environment that establishes a set of pre-packaged products and tools

used to support the entire delivery lifecycle of custom applications.

 Common reasons a cloud consumer would use and invest in a PaaS

environment include:

 The cloud consumer wants to extend on premise environments in

to the cloud for scalability and economic purposes.

 The cloud consumer uses the ready-made environment to entirely

substitute an on premise environment.

 The cloud consumer wants to become a cloud provider and deploys

its own cloud services to be made available to other external cloud

consumers.

148

Distributed System and

Cloud Computing

148

Figure 2: A cloud consumer is accessing a ready-made PaaS

environment. The question mark indicates that the cloud consumer is

intentionally shielded from the implementation details of the

platform.

Benefits:

1. Lower administrative overhead:

Consumer need not to bother much about the administrative because its

responsibility of cloud provider.

2. Lower total cost of ownership:

Consumer need not purchase expensive hardware, servers, power and data

storage.

3. Scalable Solution:

It is easy to scale up and down automatically based upon application

resources

Issues:

1. Lack of portability between PaaS clouds

2. Event based processor scheduling

3. Security engineering of PaaS application

9.6.3.3 Infrastructure as a service (IaaS)

 The IaaS delivery model represents a self-contained IT environment

comprised of infrastructure-centric IT resources that can be accessed

and managed via cloud service-based interfaces and tools.

 This environment can include hardware, network, connectivity,

operating systems And other “raw” IT resources.

 The general purpose of an IaaS environment is to provide cloud

consumer with high level of control and responsibility over its

configuration and utilization.

 The IT resources provided by IaaS are generally not pre-configured,

placing administrative responsibility directly upon the cloud

consumer

 This model is therefore used by cloud consumers that require a high

level of control over the cloud-based environment they intend to

create.

 149

Introduction to Cloud

Computing

Figure 3: A cloud consumer is using a virtual server within an

IaaS environment. Cloud consumers are provided with a range of

contractual guarantees by The cloud provider, pertaining to

characteristics such as capacity, performance, and availability.

Benefits:

Some of the key benefits of IaaS are listed below:

1. Full control of computing resources through administrative access

to VMs:

 It allows the consumer to access computing resources through

administrative access to virtual machine in the following manner

 Consumer issues administrative command to cloud provide to run the

virtual machine or to save data on cloud server.

▪ Consumer issues administrative command to virtual machines they

owned to start web or installing new application.

2. Flexible and efficient renting of computer hardware

▪ IaaS resources such as virtual machine, storage, bandwidth, IP

address, monitoring services, firewall all are made available to the

consumer on rent.

3. Portability, interoperability with legacy application

▪ It is possible to maintain legacy between application and workloads

between IaaS cloud.

Issues:

1. Compatibility with legacy security vulnerability

2. Virtual machine Sprawl

3. Robustness of VM level isolation

4. Data erase practices

Comparing Cloud Delivery Models:

A comparison of typical cloud delivery model control levels

150

Distributed System and

Cloud Computing

150

Typical activities carried out by cloud consumers and cloud providers in

relation to the cloud delivery models.

9.7 SUMMARY

 Cloud environments are comprised of highly extensive infrastructure

that Offers pools of IT resources that can be leased using a pay-for-

use model whereby Only the actual usage of the IT resources is

billable.

 Cloud environments can introduce distinct security challenges, some

of which pertain to overlapping trust boundaries imposed by a cloud

provider sharing IT resources with multiple cloud consumers.

 A cloud consumer’s operational governance can be limited within

cloud environments due to the control exercised by a cloud provider

over its platforms.

 The portability of cloud-based IT resources can be inhibited by

dependencies upon proprietary characteristics imposed by a

cloud.

 The geographical location of data and IT resources can be out of a

cloud consumer’s control when hosted by a third-party cloud

 151

Introduction to Cloud

Computing

provider. This can introduce various legal and regulatory

compliance concerns.

 The IaaS cloud delivery model offers cloud consumers a high level of

administrative control over “raw” infrastructure-based IT resources.

 The PaaS cloud delivery model enables a cloud provider to offer a

preconfigured environment that cloud consumers can use to build and

deploy cloud services and solutions, albeit with decreased

administrative control.

 SaaS is a cloud delivery model for shared cloud services that can be

positioned as commercialized products hosted by clouds.

 Different combinations of IaaS, PaaS, and SaaS are possible,

depending on how cloud consumers and cloud providers choose to

leverage the natural hierarchy established by these base cloud delivery

models.

 A public cloud is owned by a third party and generally offers

commercialized cloud services and IT resources to cloud consumer

organizations.

 A private cloud is owned by an individual organization and resides

within the organization’s premises.

 A community cloud is normally limited for access by a group of cloud

consumers that may also share responsibility in its ownership.

 A hybrid cloud is a combination of two or more other cloud

deployment models.

Self-Learning Topics: Cluster computing, Grid computing, Fog

computing

9.8 REFERENCES-

 Cloud Computing Concepts, Technology & Architecture by Thomas

Erl, Zaigham Mahmood, and Ricardo Puttini

 James Broberg and Andrzej M. Goscinski, Cloud Computing:

Principles and Paradigms Wiley, First edition, ISBN No. 978-04-708-

8799-8

 Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, Mastering

Cloud Computing, Tata Mcgraw Hill, ISBN No. 978-12-590-2995-0

 152

UNIT VI

10
CLOUD COMPUTING

Unit Structure

10.0 Objective

10.1 Introduction

10.2 Amazon Web Services

10.3 Microsoft Azure and Google Cloud

10.3.1 Compute services

10.3.2 Storage services

10.3.3 Database services

10.3.4 Additional services

10.0 OBJECTIVE

The main motivation behind cloud computing is to enable businesses to

get access to data centres and manage tasks from a remote location. Cloud

computing works on the pay-as-you-go pricing model, which helps

businesses lower their operating cost and run infrastructure more

efficiently.

What is cloud computing?:

Cloud computing is a general term for anything that involves delivering

hosted services over the internet. These services are divided into three

main categories or types of cloud computing: infrastructure as a service

(IaaS), platform as a service (PaaS) and software as a service (SaaS).

A cloud can be private or public. A public cloud sells services to anyone

on the internet. A private cloud is a proprietary network or a data center

that supplies hosted services to a limited number of people, with certain

access and permissions settings. Private or public, the goal of cloud

computing is to provide easy, scalable access to computing resources and

IT services.

Cloud infrastructure involves the hardware and software components

required for proper implementation of a cloud computing model. Cloud

computing can also be thought of as utility computing or on-demand

computing.

The name cloud computing was inspired by the cloud symbol that's often

used to represent the internet in flowcharts and diagrams.

https://www.techtarget.com/searchcloudcomputing/definition/Infrastructure-as-a-Service-IaaS
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://www.techtarget.com/searchcloudcomputing/definition/Software-as-a-Service
https://www.techtarget.com/searchdatacenter/definition/utility-computing
https://www.techtarget.com/searchitoperations/definition/on-demand-computing
https://www.techtarget.com/searchitoperations/definition/on-demand-computing

 153

Cloud Computing

How does cloud computing work?:

Cloud computing works by enabling client devices to access data and

cloud applications over the internet from remote physical servers,

databases and computers.

10.1 INTRODUCTION

Cloud Computing is the delivery of computing services such as servers,

storage, databases, networking, software, analytics, intelligence, and more,

over the Cloud (Internet).

Cloud Computing provides an alternative to the on-premises datacentre.

With an on-premises datacentre, we have to manage everything, such as

purchasing and installing hardware, virtualization, installing the operating

system, and any other required applications, setting up the network,

configuring the firewall, and setting up storage for data. After doing all the

set-up, we become responsible for maintaining it through its entire

lifecycle.

But if we choose Cloud Computing, a cloud vendor is responsible for the

hardware purchase and maintenance. They also provide a wide variety of

software and platform as a service. We can take any required services on

rent. The cloud computing services will be charged based on usage.

154

Distributed System and

Cloud Computing

154

The cloud environment provides an easily accessible online portal that

makes handy for the user to manage the compute, storage, network, and

application resources. Some cloud service providers are in the following

figure.

Advantages of cloud computing:

 Cost: It reduces the huge capital costs of buying hardware and

software.

 Speed: Resources can be accessed in minutes, typically within a few

clicks.

 155

Cloud Computing

 Scalability: We can increase or decrease the requirement of resources

according to the business requirements.

 Productivity: While using cloud computing, we put less operational

effort. We do not need to apply patching, as well as no need to

maintain hardware and software. So, in this way, the IT team can be

more productive and focus on achieving business goals.

 Reliability: Backup and recovery of data are less expensive and very

fast for business continuity.

 Security: Many cloud vendors offer a broad set of policies,

technologies, and controls that strengthen our data security.

Types of Cloud Computing:

 Public Cloud: The cloud resources that are owned and operated by a

third-party cloud service provider are termed as public clouds. It

delivers computing resources such as servers, software, and storage

over the internet

 Private Cloud: The cloud computing resources that are exclusively

used inside a single business or organization are termed as a private

cloud. A private cloud may physically be located on the company’s

on-site datacentre or hosted by a third-party service provider.

 Hybrid Cloud: It is the combination of public and private clouds,

which is bounded together by technology that allows data applications

to be shared between them. Hybrid cloud provides flexibility and

more deployment options to the business.

Types of Cloud Services:

156

Distributed System and

Cloud Computing

156

1. Infrastructure as a Service (IaaS):

In IaaS, we can rent IT infrastructures like servers and virtual machines

(VMs), storage, networks, operating systems from a cloud service vendor.

We can create VM running Windows or Linux and install anything we

want on it. Using IaaS, we don’t need to care about the hardware or

virtualization software, but other than that, we do have to manage

everything else. Using IaaS, we get maximum flexibility, but still, we need

to put more effort into maintenance.

2. Platform as a Service (PaaS):

This service provides an on-demand environment for developing, testing,

delivering, and managing software applications. The developer is

responsible for the application, and the PaaS vendor provides the ability to

deploy and run it. Using PaaS, the flexibility gets reduce, but the

management of the environment is taken care of by the cloud vendors.

3. Software as a Service (SaaS):

 It provides a centrally hosted and managed software services to the end-

users. It delivers software over the internet, on-demand, and typically on a

subscription basis. E.g., Microsoft One Drive, Dropbox, WordPress,

Office 365, and Amazon Kindle. SaaS is used to minimize the operational

cost to the maximum extent.

 157

Cloud Computing

10.2 AMAZON WEB SERVICES

AWS stands for Amazon Web Services which uses distributed IT

infrastructure to provide different IT resources on demand.

Our AWS tutorial includes all the topics such as introduction, history of

aws, global infrastructure, features of AWS, IAM, Storage services,

Database services, etc.

What are AWS?:

o AWS stands for Amazon Web Services.

o The AWS service is provided by the Amazon that uses distributed IT

infrastructure to provide different IT resources available on demand.

It provides different services such as infrastructure as a service (IaaS),

platform as a service (PaaS) and packaged software as a service

(SaaS).

o Amazon launched AWS, a cloud computing platform to allow the

different organizations to take advantage of reliable IT infrastructure.

Uses of AWS:

o A small manufacturing organization uses their expertise to expand

their business by leaving their IT management to the AWS.

o A large enterprise spread across the globe can utilize the AWS to

deliver the training to the distributed workforce.

o An architecture consulting company can use AWS to get the high-

compute rendering of construction prototype.

158

Distributed System and

Cloud Computing

158

o A media company can use the AWS to provide different types of

content such as ebox or audio files to the worldwide files.

Pay-As-You-Go:

Based on the concept of Pay-As-You-Go, AWS provides the services to

the customers.

AWS provides services to customers when required without any prior

commitment or upfront investment. Pay-As-You-Go enables the

customers to procure services from AWS.

o Computing

o Programming models

o Database storage

o Networking

Advantages of AWS:

1) Flexibility:

o We can get more time for core business tasks due to the instant

availability of new features and services in AWS.

o It provides effortless hosting of legacy applications. AWS does not

require learning new technologies and migration of applications to the

AWS provides the advanced computing and efficient storage.

o AWS also offers a choice that whether we want to run the applications

and services together or not. We can also choose to run a part of the

IT infrastructure in AWS and the remaining part in data centres.

2) Cost-effectiveness:

AWS requires no upfront investment, long-term commitment, and

minimum expense when compared to traditional IT infrastructure that

requires a huge investment.

3) Scalability/Elasticity:

Through AWS, autoscaling and elastic load balancing techniques are

automatically scaled up or down, when demand increases or decreases

respectively. AWS techniques are ideal for handling unpredictable or very

high loads. Due to this reason, organizations enjoy the benefits of reduced

cost and increased user satisfaction.

4) Security:

 AWS provides end-to-end security and privacy to customers.

 AWS has a virtual infrastructure that offers optimum availability

while managing full privacy and isolation of their operations.

 159

Cloud Computing

 Customers can expect high-level of physical security because of

Amazon's several years of experience in designing, developing and

maintaining large-scale IT operation centers.

 AWS ensures the three aspects of security, i.e., Confidentiality,

integrity, and availability of user's data.

10.3 MICROSOFT AZURE AND GOOGLE CLOUD

What is Azure:

Microsoft Azure is a growing set of cloud computing services created by

Microsoft that hosts your existing applications, streamline the

development of a new application, and also enhances our on-premises

applications. It helps the organizations in building, testing, deploying, and

managing applications and services through Microsoft-managed data

centers.

Azure Services:

 Compute services: It includes the Microsoft Azure Cloud Services,

Azure Virtual Machines, Azure Website, and Azure Mobile Services,

which processes the data on the cloud with the help of powerful

processors.

 Data services: This service is used to store data over the cloud that

can be scaled according to the requirements. It includes Microsoft

Azure Storage (Blob, Queue Table, and Azure File services), Azure

SQL Database, and the Redis Cache.

 Application services: It includes services, which help us to build and

operate our application, like the Azure Active Directory, Service Bus

for connecting distributed systems, HDInsight for processing big data,

the Azure Scheduler, and the Azure Media Services.

 Network services: It helps you to connect with the cloud and on-

premises infrastructure, which includes Virtual Networks, Azure

Content Delivery Network, and the Azure Traffic Manager.

Why Should You Choose Microsoft Azure Services?:

While every business can have their individual reasons to choose

Microsoft Azure services, there are several unbeatable advantages that all

can leverage upon, like:

● Microsoft Azure is capable of providing an enticing combination of

Infrastructure as a platform (IaaS) and Platform as a service (PaaS)

that helps enterprises create and deploy their own web apps without

hustling over the groundwork.

● Microsoft Azure has designed Security Development Lifecycle, an

industry-standard security process that considers all security features

160

Distributed System and

Cloud Computing

160

including getting licenses and ensuring the best safety in all

operations.

● There is a vast user base already on Microsoft Azure, but the

infrastructure is constantly scaling up, by using more processes for

applications and selling storage through the cloud. It can run without

any additional coding.

● A hybrid cloud computing ecosystem is still a unique feature of

Microsoft Azure. It can improve the performance by utilizing Virtual

Private Networks (VPNs), ExpressRoute connections, caches, CDNs,

etc.

● As most enterprises rely on MS office tools, it is wise to invest in a

cloud platform that integrates well with all Microsoft products.

Additionally, knowing C++, C, and Visual Basic can help you steer

your career in Microsoft Azure. If you require further validation, then

you can try out the Azure certification courses for Windows

certificates.

● Microsoft Azure has intelligence and analytics capacities to improve

the business process with the help of machine learning bots, cognitive

APIs, and Blockchain as a Service (BaaS).

● Microsoft Azure also has SQL and noSQL data processing facilities to

get deeper and actionable insights from the available data.

● One of the major reasons to choose Azure services is the affordability,

as the virtual infrastructure maintenance is extremely cost-efficient.

Curated List of Top Azure Services:

While there is no long list of competitors in cloud servicing, the top

runners like Google and AWS continue to give a tough fight to Microsoft

Azure in the race of being the most used cloud service. Despite intense

competition, Microsoft Azure continues growing and evolving over the

years, especially through the phase of remote working due to a pandemic

in 2020 and 2021. Offering top Azure services, the platform has

maintained its integrity and popularity. Now let’s delve deeper into

understanding more about the top 10 most popular Azure services.

How Azure works:

It is essential to understand the internal workings of Azure so that we can

design our applications on Azure effectively with high availability, data

residency, resilience, etc.

https://www.whizlabs.com/blog/azure-certifications-path/

 161

Cloud Computing

Microsoft Azure is completely based on the concept of virtualization. So,

similar to other virtualized data center, it also contains racks. Each rack

has a separate power unit and network switch, and also each rack is

integrated with a software called Fabric-Controller. This Fabric-

controller is a distributed application, which is responsible for managing

and monitoring servers within the rack. In case of any server failure, the

Fabric-controller recognizes it and recovers it. And Each of these Fabric-

Controller is, in turn, connected to a piece of software called Orchestrator.

This Orchestrator includes web-services, Rest API to create, update, and

delete resources.

When a request is made by the user either using PowerShell or Azure

portal. First, it will go to the Orchestrator, where it will fundamentally do

three things:

1. Authenticate the User

2. It will Authorize the user, i.e., it will check whether the user is

allowed to do the requested task.

3. It will look into the database for the availability of space based on the

resources and pass the request to an appropriate Azure Fabric

controller to execute the request.

Combinations of racks form a cluster. We have multiple clusters within a

data center, and we can have multiple Data Centers within an Availability

zone, multiple Availability zones within a Region, and multiple Regions

within a Geography.

 Geographies: It is a discrete market, typically contains two or more

regions, that preserves data residency and compliance boundaries.

 Azure regions: A region is a collection of data centers deployed

within a defined perimeter and interconnected through a dedicated

regional low-latency network.

162

Distributed System and

Cloud Computing

162

Azure covers more global regions than any other cloud provider, which

offers the scalability needed to bring applications and users closer around

the world. It is globally available in 50 regions around the world. Due to

its availability over many regions, it helps in preserving data residency and

offers comprehensive compliance and flexible options to the customers.

10.3.1 Compute services:

Azure compute services are the hosting services responsible for hosting

and running the application workloads. These include Azure Virtual

Machines (VMs), Azure Container Service, Azure App Services, Azure

Batch, and Azure ServiceFabric.

Azure Compute Services: Azure Virtual Machines (VMs) and Azure

Container Service:

Azure Virtual Machines (VMs):

A Microsoft Azure Virtual Machine (VM) is an on-demand, scalable

computing resource. You don’t need to buy any physical hardware and

bear its maintenance cost; you have the flexibility of virtualization. Your

cloud administrators only need to select the operating system, configure

the required resources, and create the web server – all this gets done

within a few minutes.

Azure Container Service:

Azure helps you leverage the modern container-based development

practices and microservices architecture. You can migrate your .NET

applications to microservices using Windows Server containers with

Azure Service Fabric. Further, you can use Azure Kubernetes Service to

scale and orchestrate Linux Containers.

You can choose between Docker Hub and Azure Container Registry to

store your images and deploy to any preferred target. Moreover, it

simplifies the configuration process and optimizes it for the cloud. The

major advantage is that it consumes less space as compared to VMs and

starts instantly; hence speeding up the processes.

10.3.2 Storage services:

The Azure Storage platform is Microsoft's cloud storage solution for

modern data storage scenarios. Azure Storage offers highly available,

massively scalable, durable, and secure storage for a variety of data

objects in the cloud. Azure Storage data objects are accessible from

anywhere in the world over HTTP or HTTPS via a REST API. Azure

Storage also offers client libraries for developers building applications or

services with .NET, Java, Python, JavaScript, C++, and Go. Developers

and IT professionals can use Azure PowerShell and Azure CLI to write

scripts for data management or configuration tasks. The Azure portal and

Azure Storage Explorer provide user-interface tools for interacting with

Azure Storage.

https://azure.microsoft.com/en-in/services/virtual-machines/
https://azure.microsoft.com/en-in/services/virtual-machines/
https://azure.microsoft.com/en-in/overview/containers/
https://azure.microsoft.com/en-in/services/app-service/
https://azure.microsoft.com/en-in/services/batch/
https://azure.microsoft.com/en-in/services/batch/
https://azure.microsoft.com/en-in/services/service-fabric/
https://azure.microsoft.com/en-us/services/kubernetes-service/

 163

Cloud Computing

Benefits of Azure Storage:

Azure Storage services offer the following benefits for application

developers and IT professionals:

● Durable and highly available: Redundancy ensures that your data is

safe in the event of transient hardware failures. You can also opt to

replicate data across data centers or geographical regions for

additional protection from local catastrophe or natural disaster. Data

replicated in this way remains highly available in the event of an

unexpected outage.

● Secure: All data written to an Azure storage account is encrypted by

the service. Azure Storage provides you with fine-grained control

over who has access to your data.

● Scalable: Azure Storage is designed to be massively scalable to meet

the data storage and performance needs of today's applications.

● Managed: Azure handles hardware maintenance, updates, and critical

issues for you.

● Accessible: Data in Azure Storage is accessible from anywhere in the

world over HTTP or HTTPS. Microsoft provides client libraries for

Azure Storage in a variety of languages, including .NET, Java,

Node.js, Python, PHP, Ruby, Go, and others, as well as a mature

REST API. Azure Storage supports scripting in Azure PowerShell or

Azure CLI. And the Azure portal and Azure Storage Explorer offer

easy visual solutions for working with your data.

Azure Storage data services:

The Azure Storage platform includes the following data services:

● Azure Blobs: A massively scalable object store for text and binary

data. Also includes support for big data analytics through Data Lake

Storage Gen2.

● Azure Files: Managed file shares for cloud or on-premises

deployments.

● Azure Queues: A messaging store for reliable messaging between

application components.

● Azure Tables: A NoSQL store for schema-less storage of structured

data.

● Azure Disks: Block-level storage volumes for Azure VMs.

10.3.3 Database services:

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview

164

Distributed System and

Cloud Computing

164

The basic fundamental building block that is available in Azure is the SQL

database. Microsoft offers this SQL server and SQL database on Azure in

many ways. We can deploy a single database, or we can deploy multiple

databases as part of a shared elastic pool.

Azure Database Service Architecture:

Microsoft introduced a managed instance that is targeted towards on-

premises customers. So, if we have some SQL databases within our on-

premises datacentre and we want to migrate that database into Azure

without any complex configuration, or ambiguity, then we can use

managed instance. Because this is mainly targeted towards on-premises

customers who want to lift and share their on-premises database into

Azure with the least effort and optimized cost. We can also take advantage

of licensing we have within our on-premises data center.

Microsoft will be responsible for maintenance patching and related

services. But, in case if we want to go for the IaaS service for the SQL

server, then we can deploy SQL Server on the Azure Virtual machine. If

the data have a dependency on the underlying platform and we want to log

into the SQL Server, in that case, we can use the SQL server on a virtual

machine.

We can deploy a SQL data warehouse on the cloud. Azure offers many

other database services for different types of databases such as MySQL,

Maria DB, and also PostgreSQL. Once we deployed a database into

Azure, we need to migrate the data into it or replicate the data into it.

Azure Database Services for Data Migration:

The services that are available in Azure, which we can use to migrate the

data from our on-premises SQL Server into Azure.

Azure Data Migration Service: It is used to migrate the data from our

existing SQL server and database within the on-premises data center into

Azure.

 165

Cloud Computing

Azure SQL data sync: If we want to replicate the data from our on-

premises database into Azure, then we can use Azure SQL data sync.

SQL Stretch Database: It is used to migrate cold data into Azure. SQL

stretch database is a bit different from other database offerings. It works as

a hybrid database because it divides the data into different types - hot and

cold. A hot data will be kept in the on-premises data center and cold data

in the Azure.

Data Factory:

It is used for ETL transformation, extraction loading, etc. Using the data

factory, we can even extract the data from our on-premises data center.

We can do some conversion and load it into the Azure SQL database. Data

Factory is an ETL tool that is offered on the cloud, which we can use to

connect to different databases, extract the data, transform it, and load into

a destination.

Security:

All the databases that are existing in Azure need to be secured, and also

we need to accept connections from known origins. For this purpose, all

these database services come with firewall rules where we can configure

from which particular IP address we want to allow connections. We can

define those firewall rules to limit the number of connections and also

reduce the surface attack area.

Cosmos DB:

Cosmos DB is a NoSQL data store that is available in Azure, and it is

designed to be globally scalable and also very highly available with

extremely low latency. Microsoft guarantees latency in terms of reading

and writes with Cosmos DB. For example - if we have any applications

such as IoT, gaming where we get a lot of data from different users spread

across globally, then we will go for Cosmos DB. Because Cosmos DB is

designed to be globally scalable and highly available due to which our

users will experience low latency.

Finally, there are two things, and one is we need to secure all the services.

For that purpose, we can integrate all these services with Azure Active

Directory and manage the users from Azure Active Directory also. To

monitor all these services, we can use the security center. There is an

individual monitoring tool too, but Azure security center will keep on

monitoring all these services and provide recommendations if something

is wrong.

Cosmos DB:

Cosmos DB is a NoSQL data store that is available in Azure, and it is

designed to be globally scalable and also very highly available with

extremely low latency. Microsoft guarantees latency in terms of reading

and writes with Cosmos DB. For example - if we have any applications

such as IoT, gaming where we get a lot of data from different users spread

166

Distributed System and

Cloud Computing

166

across globally, then we will go for Cosmos DB. Because Cosmos DB is

designed to be globally scalable and highly available due to which our

users will experience low latency.

Finally, there are two things, and one is we need to secure all the services.

For that purpose, we can integrate all these services with Azure Active

Directory and manage the users from Azure Active Directory also. To

monitor all these services, we can use the security center. There is an

individual monitoring tool too, but Azure security center will keep on

monitoring all these services and provide recommendations if something

is wrong.

10.3.4 Additional services:

Azure data services store and manage data on cloud. Microsoft Azure

comes with a range of data services: Azure Storage, Azure SQL Database,

Azure Document DB, Azure StorSimple, and Azure Redis Cache.

Below is an overview of some most popular Microsoft Azure services,

specifically the top 10 azure services and the way you can use them across

the entire architecture:

● Azure DevOps

● Azure Blob Storage

● Azure Virtual Machines

● Azure Backup

● Azure Cosmos DB

● Azure Logic Apps

● Azure Active Directory

● API management

● Azure Content Delivery Network

● Azure Site Recovery

● Azure Bots

167

11
CLOUD PLATFORMS

Unit Structure

11.0 Objective

11.1 Introduction

11.2 Google App Engine (GAE)

11.3 Aneka

11.4 Comparative study of various Cloud

11.5 Computing Platforms

11.0 OBJECTIVE

A computer platform is a system that consists of a hardware device and

an operating system that an application, program or process runs upon. An

example of a computer platform is a desktop computer with Microsoft

Windows installed on it. A desktop is a hardware device and Windows is

an operating system.

The operating system acts as an interface between the computer and the

user and also between the computer and the application. So, in order to

have a functional device, you need hardware and an operating system

together to make a usable computer platform for a program to run on.

The hardware portion of a computer platform consists of a processor,

memory, and storage. The processor is a bit like your brain and memory is

like a scratchpad for your brain to use while you're working out a problem.

It used to be that people referred to different computer platforms by their

physical size, from smallest to largest - microcomputers (smallest),

minicomputers (mid-size), and mainframes (largest). The term

microcomputer has fallen somewhat out of favor - now most people just

refer to these machines as computers or personal computers.

11.1 INTRODUCTION

Cloud computing is the delivery of computing services—including

servers, storage, databases, networking, software, analytics, and

intelligence—over the Internet ("the cloud") to offer faster innovation,

flexible resources, and economies of scale.

How does cloud computing work?:

Rather than owning their own computing infrastructure or data centres,

companies can rent access to anything from applications to storage from a

cloud service provider.

168

Distributed System and

Cloud Computing

168

One benefit of using cloud-computing services is that firms can avoid the

upfront cost and complexity of owning and maintaining their own IT

infrastructure, and instead simply pay for what they use, when they use it.

In turn, providers of cloud-computing services can benefit from significant

economies of scale by delivering the same services to a wide range of

customers.

What cloud-computing services are available?:

Cloud-computing services cover a vast range of options now, from the

basics of storage, networking and processing power, through to natural

language processing and artificial intelligence as well as standard office

applications. Pretty much any service that doesn't require you to be

physically close to the computer hardware that you are using can now be

delivered via the cloud – even quantum computing.

What are examples of cloud computing?:

Cloud computing underpins a vast number of services. That includes

consumer services like Gmail or the cloud backup of the photos on your

smartphone, though to the services that allow large enterprises to host all

their data and run all of their applications in the cloud. For example,

Netflix relies on cloud-computing services to run its its video-streaming

service and its other business systems, too.

Cloud computing is becoming the default option for many apps: software

vendors are increasingly offering their applications as services over the

internet rather than standalone products as they try to switch to a

subscription model. However, there are potential downsides to cloud

computing, in that it can also introduce new costs and new risks for

companies using it.

Why is it called cloud computing?:

A fundamental concept behind cloud computing is that the location of the

service, and many of the details such as the hardware or operating system

on which it is running, are largely irrelevant to the user. It's with this in

mind that the metaphor of the cloud was borrowed from old telecoms

network schematics, in which the public telephone network (and later the

internet) was often represented as a cloud to denote that the location didn't

matter – it was just a cloud of stuff. This is an over-simplification of

course; for many customers, location of their services and data remains a

key issue.

What is the history of cloud computing?:

Cloud computing as a term has been around since the early 2000s, but the

concept of computing as a service has been around for much, much longer

– as far back as the 1960s, when computer bureaus would allow

companies to rent time on a mainframe, rather than have to buy one

themselves.

https://www.zdnet.com/article/microsofts-quantum-cloud-computing-plans-take-another-big-step-forward/
https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration

169

Cloud Platforms

These 'time-sharing' services were largely overtaken by the rise of the PC,

which made owning a computer much more affordable, and then in turn

by the rise of corporate data centres where companies would store vast

amounts of data.

But the concept of renting access to computing power has resurfaced again

and again – in the application service providers, utility computing, and

grid computing of the late 1990s and early 2000s. This was followed by

cloud computing, which really took hold with the emergence of software

as a service and hyperscale cloud-computing providers such as Amazon

Web Services.

How important is the cloud?:

Building the infrastructure to support cloud computing now accounts for a

significant chunk of all IT spending, while spending on traditional, in-

house IT slides as computing workloads continue to move to the cloud,

whether that is public cloud services offered by vendors or private clouds

built by enterprises themselves.

Indeed, it's increasingly clear that when it comes to enterprise computing

platforms, like it or not, the cloud has won.

Tech analyst Gartner predicts that as much as half of spending across

application software, infrastructure software, business process services

and system infrastructure markets will have shifted to the cloud by 2025,

up from 41% in 2022. It estimates that almost two-thirds of spending on

application software will be via cloud computing, up from 57.7% in 2022.

11.2 GOOGLE APP ENGINE (GAE)

Google App Engine lets you run (host) your own Web applications on

Google’s infrastructure. However, by no means is this a ―rent a piece of a

server‖ hosting service. With App Engine, your application is not hosted

on a single server. There are no servers to maintain: You just upload your

application, and it’s ready to serve your users. Just as servicing a Google

search request may involve dozens, or even hundreds of Google servers,

https://www.zdnet.com/article/cloud-computing-has-won-but-we-still-dont-know-what-that-means/

170

Distributed System and

Cloud Computing

170

all totally hidden and satisfied in a fraction of a second, Google App

Engine applications run the same way, on the same infrastructure. This is

the unique aspect of Google’s approach. Yes, you cede some control to

Google, but you are rewarded by being totally free of the infrastructure,

capacity management, and load balancing tasks that enterprise typically

have to manage, irrespective of whether they are self-hosting or hosting on

someone else’s PaaS or IaaS.

You can choose to share your application with the world, or limit access to

members of your organization. Google App Engine supports apps written

in several programming languages:

With App Engine’s Java runtime environment, you can build your app

using standard Java technologies, including the JVM, Java servlets, and

the Java programming language—or any other language using a JVM-

based interpreter or compiler, such as JavaScript or Ruby. App Engine

also features a dedicated Python runtime environment, which includes a

fast Python interpreter and the Python standard library. The Java and

Python runtime environments are built to ensure that your application runs

quickly, securely, and without interference from other apps on the system.

As with most cloud-hosting services, with App Engine, you only pay for

what you use. Google levies no set-up costs and no recurring fees. Similar

to Amazon’s AWS, resources such as storage and bandwidth are measured

by the gigabyte.

App Engine costs nothing to get started. All applications can use up to 500

MB of storage and enough CPU and bandwidth to support an efficient app

serving around 5 million page views a month, absolutely free. When you

enable billing for your application, your free limits are raised, and you

only pay for resources you use above the free levels.

Application developers have access to persistent storage technologies such

as the Google File System (GFS) and Bigtable, a distributed storage

system for unstructured data. The Java version supports asynchronous

nonblocking queries using the Twig Object Datastore interface. This offers

an alternative to using threads for parallel data processing.

―With Google App Engine, developers can write Web applications based

on the same building blocks that Google uses,‖ Kevin Gibbs, Google’s

technical lead for the project, wrote in The Official Google Blog―Google.

Twig is an object persistence interface built on Google App Engine’s low-

level datastore which overcomes many of JDO-GAEs limitations,

including full support for inheritance, polymorphism, and generic types.

You can easily configure, modify or extend Twig’s behavior by

implementing your own strategies or overriding extension points in pure

Java code. App Engine packages those building blocks and provides

access to scalable infrastructure that we hope will make it easier for

developers to scale their applications automatically as they grow.‖

Google App Engine has appeared at a time when an increasing number of

tech companies are moving their operations to the cloud; it places Google

171

Cloud Platforms

squarely in competition with Amazon’s Elastic Cloud Computing (EC2)

and Simple Storage Service (S3) offerings.

Google says its vision with Google App Engine is to offer developers a

more holistic, end-to-end solution for building and scaling applications

online. Its servers are configured to balance the load of traffic to

developers’ applications, scaling to meet the demand of an influx of

traffic. App Engine also includes APIs for user authentication to allow

developers to sign on for services, and for e-mail, to manage

Google Cloud Platform provides a wide range of computing services that

target broad categories of user needs.

The Google Cloud Platform provides mainly 6 types of compute options:

1. App Engine

2. Compute Engine

3. Kubernetes Engine

4. Cloud Functions

5. Cloud Run

6. VMware Engine

172

Distributed System and

Cloud Computing

172

Now let’s talk about some of these services in brief.

Compute Engine:

The Compute Engine service is Google’s unmanaged compute service. We

can think of Compute Engine as an Infrastructure as a Service (IaaS)

offering by Google Cloud. As the service is unmanaged, it is our

responsibility to configure, administer, and monitor the system. On

Google’s side, they will ensure that resources are available, reliable, and

ready for you to use. The main benefit in using compute engine is that you

have complete control of the systems.

You can do the following when you build on Compute Engine:

● Create Virtual Instances, which is the smallest unit in the GCP

project.

● Create instance groups to easily manage multiple instances together.

● Create virtual machine images.

The virtual machine instances running in zones assigned to them. Zones

are data center-like resources. They are located within regions which is a

geographical location. The zones are within a region are linked with low-

latency and high bandwidth network connections.

Pros of Compute Engine:

● It offers the users complete control over the Virtual Machine

instances.

● It is easy to set up, you can spin up a server within few minutes.

● The use of preemptive VM’s can reduce the cost by up to 80%.

● Set of predefined VM configurations and VM images are available

ready to be used according to needs.

Cons of Compute Engine:

● Requires high expertise level, since everything needs to be installed

and configured by yourself.

● Autoscaling is slower than App Engine.

● To enable monitoring, you need to install packages into the VM

instances. No direct Stackdriver monitoring is possible.

App Engine:

The App Engine is Google’s Platform as a Service(PaaS) offering. It is a

compute service that provides a managed platform for running

applications. As this is a managed service, your focus should be on the

application only and Google will manage the resources needed to run the

application. Thus App Engine users have less to manage, but you will

have less control over the compute resources. The applications hosted on

App Engine are highly scalable and run reliably even under heavy load.

173

Cloud Platforms

The App Engine supports the following languages:

● Python

● Go

● Ruby

● PHP

● Node.js

● Java

● .NET

The App Engine provides two types of runtime environments: standard

and flexible.

1. The Standard environment provides a secured and sandboxed

environment for running applications and distributes requests across

multiple servers to meet the demand. The applications run

independently of the hardware, OS, and physical location of the

server.

2. The Flexible environment provides more options and control to the

developers who want to use App Engine, but without the language

constraints of the standard environment. It uses Docker containers as

the basic building blocks. These containers can be auto-scaled

according to load.

Pros of App Engine:

● You need to focus only on the application code, the rest of everything

is managed by Google. Thus reducing management complexities.

● As it provides version management, thus it is easy to maintain and roll

out versions of applications.

● It has faster autoscaling as the size of instances is smaller.

● Easy to deploy and monitor.

Cons of App Engine:

● It is more constrained as the instances are smaller, thus enabling fast

autoscaling, but there can be cases when large applications require

larger instances.

● As it is a fully managed service, the user has no control over the

underlying infrastructure that may be required for some complex

applications.

● It is expensive in the long run as the cost adds up quickly.

174

Distributed System and

Cloud Computing

174

Difference between Compute Engine and App Engine:

 Compute Engine App Engine

Service model IaaS offering PaaS offering

Type of Service Unmanaged Service Managed Service

Control over

resources

More control and

flexibility

Less control over

computing resources

Costs Costs less than App

Engine over resources

Costs more than

Compute Engine

Running Instances When running

application, at least one

instance should be

running

Can scale down to zero

instances when no

requests are coming

Use cases Best for general

computing workloads

Best for web-facing

and mobile

applications

Autoscaling Slower autoscaling Faster autoscaling

Security Less secure than App

Engine

Comparatively more

secure than Compute

Engine

11.3 ANEKA

Aneka includes an extensible set of APIs associated with programming

models like MapReduce.

These APIs support different cloud models like a private, public, hybrid

Cloud.

Manjrasoft focuses on creating innovative software technologies to

simplify the development and deployment of private or public cloud

applications. Our product plays the role of an application platform as a

service for multiple cloud computing.

Multiple Structures:

Aneka is a software platform for developing cloud computing

applications.

In Aneka, cloud applications are executed.

Aneka is a pure PaaS solution for cloud computing.

Aneka is a cloud middleware product.

Manya can be deployed over a network of computers, a multicore server, a

data center, a virtual cloud infrastructure, or a combination thereof.

175

Cloud Platforms

Multiple containers can be classified into three major categories:

1. Textile services

2. Foundation Services

3.Application Services

1. Textile Services:

Fabric Services defines the lowest level of the software stack that

represents multiple containers. They provide access to resource-

provisioning subsystems and monitoring features implemented in many.

2. Foundation Services:

Fabric Services are the core services of Manya Cloud and define the

infrastructure management features of the system. Foundation services are

concerned with the logical management of a distributed system built on

top of the infrastructure and provide ancillary services for delivering

applications.

3. Application Services:

Application services manage the execution of applications and constitute a

layer that varies according to the specific programming model used to

develop distributed applications on top of Aneka.

There are mainly two major components in multiple technologies:

The SDK (Software Development Kit) includes the Application

Programming Interface (API) and tools needed for the rapid development

of applications. The Anka API supports three popular cloud programming

models: Tasks, Threads and MapReduce;

And:

176

Distributed System and

Cloud Computing

176

A runtime engine and platform for managing the deployment and

execution of applications on a private or public cloud.

One of the notable features of Aneka Pass is to support the provision of

private cloud resources from desktop, cluster to a virtual data center

using VMware, Citrix Zen Server, and public cloud resources such

as Windows Azure, Amazon EC2, and GoGrid cloud service.

Aneka's potential as a Platform as a Service has been successfully

harnessed by its users and customers in three different areas,

including engineering, life sciences, education, and business

intelligence.

Architecture of Aneka:

Aneka is a platform and framework for developing distributed applications

on the Cloud. It uses desktop PCs on-demand and CPU cycles in addition

to a heterogeneous network of servers or datacenters. Aneka provides a

rich set of APIs for developers to transparently exploit such resources and

express the business logic of applications using preferred programming

abstractions.

System administrators can leverage a collection of tools to monitor and

control the deployed infrastructure. It can be a public cloud available to

anyone via the Internet or a private cloud formed by nodes with restricted

access.

177

Cloud Platforms

A multiplex-based computing cloud is a collection of physical and

virtualized resources connected via a network, either the Internet or a

private intranet. Each resource hosts an instance of multiple containers

that represent the runtime environment where distributed applications are

executed. The container provides the basic management features of a

single node and takes advantage of all the other functions of its hosting

services.

Services are divided into clothing, foundation, and execution services.

Foundation services identify the core system of Aneka middleware, which

provides a set of infrastructure features to enable Anka containers to

perform specific and specific tasks. Fabric services interact directly with

nodes through the Platform Abstraction Layer (PAL) and perform

hardware profiling and dynamic resource provisioning. Execution services

deal directly with scheduling and executing applications in the Cloud.

One of the key features of Aneka is its ability to provide a variety of ways

to express distributed applications by offering different programming

models; Execution services are mostly concerned with providing

middleware with the implementation of these models. Additional services

such as persistence and security are inverse to the whole stack of services

hosted by the container.

At the application level, a set of different components and tools are

provided to

 Simplify the development of applications (SDKs),

 Port existing applications to the Cloud, and

 Monitor and manage multiple clouds.

An Aneka-based cloud is formed by interconnected resources that are

dynamically modified according to user needs using resource

virtualization or additional CPU cycles for desktop machines. A common

deployment of Aneka is presented on the side. If the deployment identifies

a private cloud, all resources are in-house, for example, within the

enterprise.

This deployment is enhanced by connecting publicly available on-demand

resources or by interacting with several other public clouds that provide

computing resources connected over the Internet.

178

Distributed System and

Cloud Computing

178

11.4 COMPARATIVE STUDY OF VARIOUS CLOUD

Below table shows the comparitive study of various cloud:

11.5 COMPUTING PLATFORMS

What Does Platform Mean?:

A platform is a group of technologies that are used as a base upon which

other applications, processes or technologies are developed.

In personal computing, a platform is the basic hardware (computer) and

software (operating system) on which software applications can be run.

This environment constitutes the basic foundation upon which any

application or software is supported and/or developed.

Computers use specific central processing units (CPUs) that are designed

to run specific machine language code. In order for the computer to run

software applications, the applications must be in that CPU’s binary-coded

machine language.

Thus, historically, application programs written for one platform would

not work on a different platform.

A computer platform — also called digital platform or computing platform

— generally refers to the operating system and computer hardware only.

An example of a computing platform is a modern laptop running Windows

as an operating system. Another example would be an Apple computer

running the Mac OS X operating system.

179

Cloud Platforms

Platform Standards:

The platform conforms to a set of standards that enable software

developers to develop software applications for the platform. These same

standards allow owners and managers to purchase appropriate applications

and hardware. Thus, to run a bookkeeping program on a computer, one

must purchase a bookkeeping software application that was developed for

the platform on which it will be used.

Multiple Platforms:

New standards-based interfaces and open interfaces allow application

programs to run on multiple platforms. Additionally, software developers

have developed software tools that allow applications to run on multiple

platforms.

Cross-Platform Software and Multi-Platform Software:

This has given rise to the terms cross-platform software and multi-

platform software. A classic example is represented by videogames

developed specifically for a certain platform, in this case a console such as

the PlayStation or Xbox. Although the same game may exist in different

versions to be run on different systems, if that version is built to be run on

Microsoft Windows, it won’t work if loaded on an Xbox. Each gaming

platform will adhere to its own set of standards as well as rules and

hardware restrictions. For example, developers may need to lower in-game

graphics settings if the game engine is too heavy on a specific console’s

hardware.

Browsers:

Newer web browsers allow third-party plug-ins to be run as part of the

browser. Therefore, some browsers are now spoken of as platforms since

they are used as a base on which to run other applications' software

programs.

Mobile Platforms:

Today, new mobile devices such as smartphones and tablets possess their

own software and hardware. They operate independently of other systems

and are capable of running their own apps, tools, and other software,

hence they can be effectively considered as platforms.

Digital Platforms:

Software stacks and some applications are also sometimes referred as

digital platforms.

For example, SQL is a database application that is often used as an

environment to run other tools for CRM, analytics and log management.

Similarly, the collection of the three-open source applications

Elasticsearch, Logstash, and Kibana constitutes the ELK Stack, a platform

used for logging purposes.

180

12
CLOUD ISSUES AND CHALLENGES

Unit Structure

12.0 Objective

12.1 Introduction

12.2 Cloud computing issues and challenges

12.2.1 Security

12.2.2 Elasticity

12.2.3 Resource management and scheduling

12.3 Quality of service (QoS) and Resource allocation

12.4 Identity and Access management

12.0 OBJECTIVE

 To study more about cloud issues and challenges.

 To study about cloud security and elasticity.

 To study and understand about Quality of Service (QoS) and resource

allocation.

12.1 INTRODUCTION

In Simplest terms, cloud computing means storing and accessing the data

and programs on remote servers that are hosted on internet instead of

computer’s hard drive or local server. Cloud computing is also referred as

Internet based computing.

Cloud Computing Architecture:

Cloud computing architecture refers to the components and sub

components required for cloud computing. These component typically

refer to:

1. Front end(fat client, thin client)

2. Back end platforms(servers, storage)

3. Cloud based delivery and a network (Internet, Intranet, Inter cloud).

Hosting a cloud:

There are three layers in cloud computing. Companies use these layers

based on the service they provide.

● Infrastructure

● Platform

● Application

181

Cloud Issues and Challenges

Three layers of Cloud Computing:

At the bottom is the foundation, the Infrastructure where the people start

and begin to build. This is the layer where the cloud hosting lives.

Now, let’s have a look at hosting:

Let’s say you have a company and a website and the website has a lot of

communications that are exchanged between members. You start with a

few members talking with each other and then gradually the numbers of

members increase.

As the time passes, as the number of members increases, there would be

more traffic on the network and your server will get slow down. This

would cause a problem.

A few years ago, the websites are put in the server somewhere, in this way

you have to run around or buy and set number of servers. It costs a lot of

money and takes lot of time. You pay for these servers when you are using

and as well as when you are not using. This is called hosting.

This problem is overcome by cloud hosting. With Cloud Computing, you

have access to computing power when you needed. Now, your website is

put in the cloud server as you put it on dedicated server. People start

visiting your website and if you suddenly need more computing power,

you would scale up according to the need.

Benefits of Cloud Hosting:

1. Scalability: With Cloud hosting, it is easy to grow and shrink the

number and size of servers based on the need.

This is done by either increasing or decreasing the resources in the

cloud. This ability to alter plans due to fluctuation in business size and

needs is a superb benefit of cloud computing especially when

experiencing a sudden growth in demand.

2. Instant: Whatever you want is instantly available in the cloud.

3. Save Money: An advantage of cloud computing is the reduction in

hardware cost. Instead of purchasing in-house equipment, hardware

182

Distributed System and

Cloud Computing

182

needs are left to the vendor. For companies that are growing rapidly,

new hardware can be a large, expensive, and inconvenience. Cloud

computing alleviates these issues because resources can be acquired

quickly and easily. Even better, the cost of repairing or replacing

equipment is passed to the vendors.

Along with purchase cost, off-site hardware cuts internal power costs

and saves space. Large data centers can take up precious office space

and produce a large amount of heat. Moving to cloud applications or

storage can help maximize space and significantly cut energy

expenditures.

4. Reliability: Rather than being hosted on one single instances of a

physical server, hosting is delivered on a virtual partition which draws

its resource, such as disk space, from an extensive network of

underlying physical servers. If one server goes offline it will have no

effect on availability, as the virtual servers will continue to pull

resource from the remaining network of servers.

5. Physical Security: The underlying physical servers are still housed

within data centres and so benefit from the security measures that

those facilities implement to prevent people accessing or disrupting

them on-site

12.2 CLOUD COMPUTING ISSUES AND CHALLENGES

Let us dive into the challenges of cloud computing, With a multitude of

benefits of implementing cloud computing in all-size businesses, cloud

computing has become a popular trend in the market. To put in simple

words: Cloud computing is nothing but moving on-premises computing to

the internet. It saves both time and money. People around the globe get

access to an open pool of resources like apps, services, servers, data, and

computer networks. It is made possible either by using a privately-owned

cloud or a 3rd-party server. It improves the way data is accessed and

removes inconsistency in further updates. Also, a minimal amount of

administration is required. Cloud computing also ensures data security,

better data storage, increased synchronization between employees, and

flexibility. Organizations have become capable of making better decisions

to scale and grow.

Despite all the development and potential of cloud computing services,

there are multiple challenges of cloud computing services that businesses

face. Here we have compiled a list of challenges of cloud computing that

need to be taken care of, to leverage the maximum capability of the cloud.

Let us get started:

1. Security

2. Password Security

3. Cost Management

https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Security
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Password-Security
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Cost-Management

183

Cloud Issues and Challenges 4. Lack of expertise

5. Internet Connectivity

6. Control or Governance

7. Compliance

8. Multiple Cloud Management

9. Creating a private cloud

10. Performance

11. Migration

12. Interoperability and Portability

13. Reliability and High Availability

14. Hybrid-Cloud Complexity

1. SECURITY:

The topmost concern in investing in cloud services is security issues in

cloud computing. It is because your data gets stored and processed by a

third-party vendor and you cannot see it. Every day or the other, you get

informed about broken authentication, compromised credentials, account

hacking, data breaches, etc. in a particular organization. It makes you a

little more skeptical.

Fortunately, the cloud providers, these days have started to put efforts to

improve security capabilities. You can be cautious as well by verifying if

the provider implements a safe user identity management system and

access control procedures. Also, ensure it implements database security

and privacy protocols.

2. PASSWORD SECURITY:

As large numbers of people access your cloud account, it becomes

vulnerable. Anybody who knows your password or hacks into your cloud

will be able to access your confidential information.

Here the organization should use a multiple level authentication and

ensure that the passwords remain protected. Also, the passwords should be

modified regularly, especially when a particular employee resigns and

leave the organization. Access rights to usernames and passwords should

be given judiciously.

3. COST MANAGEMENT:

Cloud computing enables you to access application software over a fast

internet connection and lets you save on investing in costly computer

hardware, software, management and maintenance. This makes it

affordable. But what is challenging and expensive is tuning the

https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Lack-of-expertise
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Internet-Connectivity
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Control-or-Governance
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Compliance
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Multiple-Cloud-Management
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Creating-a-private-cloud
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Performance
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Migration
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Interoperability-and-Portability
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Reliability-and-High-Availability
https://www.jigsawacademy.com/blogs/cloud-computing/challenges-of-cloud-computing/#Hybrid-Cloud-Complexity

184

Distributed System and

Cloud Computing

184

organization’s needs on the third-party platform. Another costly affair is

the cost of transferring data to a public cloud, especially for a small

business or project.

4. LACK OF EXPERTISE:

With the increasing workload on cloud technologies and continuously

improving cloud tools, the management has become difficult. There has

been a consistent demand for a trained workforce who can deal with cloud

computing tools and services. Hence, firms need to train their IT staff to

minimize this challenge.

5. INTERNET CONNECTIVITY:

The cloud services are dependent on a high-speed internet connection. So

the businesses that are relatively small and face connectivity issues should

ideally first invest in a good internet connection so that no downtime

happens. It is because internet downtime might incur vast business losses.

6. CONTROL OR GOVERNANCE:

Another ethical issue in cloud computing is maintaining proper control

over asset management and maintenance. There should be a dedicated

team to ensure that the assets used to implement cloud services are used

according to agreed policies and dedicated procedures. There should be

proper maintenance and that the assets are used to meet your

organization’s goals successfully.

7. COMPLIANCE:

Another major risk of cloud computing is maintaining compliance. By

compliance we mean, a set of rules about what data is allowed to be

moved and what should be kept in-house to maintain compliance. The

organizations must follow and respect the compliance rules set by various

government bodies.

8. MULTIPLE CLOUD MANAGEMENT:

Companies have started to invest in multiple public clouds, multiple

private clouds or a combination of both called the hybrid cloud. This has

grown rapidly in recent times. So it has become important to list

challenges faced by such organizations and find solutions to grow with the

trend.

9. CREATING A PRIVATE CLOUD:

Implementing an internal cloud is advantageous. This is because all the

data remains secure in-house. But the challenge here is that the IT team

has to build and fix everything by themselves. Also, the team needs to

ensure smooth functioning of the cloud. They need to automate maximum

manual tasks. The execution of tasks should be in the correct order.

So, at the moment, it sounds quite difficult to set up a private cloud all by

yourself. But many organizations are planning to do so in future.

185

Cloud Issues and Challenges 10. PERFORMANCE:

When your business applications move to a cloud or a third-party vendor,

so your business performance starts to depend on your provider as well.

Another major problem in cloud computing is investing in the right cloud

service provider. Before investment, you should look for providers with

innovatory technologies. The performance of the BI’s and other cloud-

based systems are linked to the provider’s systems as well. Be cautious

about choosing the provider and investigate that they have protocols to

mitigate issues that arise in real-time.

11. MIGRATION:

Migration is nothing but moving a new application or an existing

application to a cloud. In the case of a new application, the process is

pretty straightforward. But if it is an age-old company application, it

becomes tedious.

12. INTEROPERABILITY AND PORTABILITY:

Another challenge of cloud computing is that applications need to be

easily migrated between cloud providers without being locked for a set

period. There is a lack of flexibility in moving from one cloud provider to

another because of the complexity involved. Changing cloud inventions

bring a slew of new challenges like managing data movement and

establishing a secure network from scratch. Another challenge is that

customers can’t access it from everywhere, but this can be fixed by the

cloud provider so that the customer can securely access the cloud from

anywhere.

13. RELIABILITY AND HIGH AVAILABILITY:

Some of the most pressing issues in cloud computing is the need for high

availability (HA) and reliability. Reliability refers to the likelihood that a

system will be up and running at any given point in time, whereas

availability refers to how likely it is that the system will be up and running

at any given point in time. Because most businesses are now reliant on

third-party services, cloud systems must be dependable and robust. Cloud

providers continue to lack round-the-clock service, resulting in frequent

outages. It is critical to use internal or third-party tools to monitor the

service being provided. It is critical to have plans in place to monitor

SLAs, usage, robustness, performance, and business reliance on these

services.

14. HYBRID-CLOUD COMPLEXITY:

For any company, a hybrid cloud environment is often a messy mix of

multiple cloud application development and cloud service providers, as

well as private and public clouds, all operating at once. A common user

interface, consistent data, and analytical benefits for businesses are all

missing from these complex cloud ecosystems. Cloud computing

186

Distributed System and

Cloud Computing

186

challenges such as scalability, integration, and disaster recovery are

magnified in a hybrid cloud environment.

12.2.1 Security:

Cloud Computing is a type of technology that provides remote services on

the internet to manage, access, and store data rather than storing it on

Servers or local drives. This technology is also known as Serverless

technology. Here the data can be anything like Image, Audio, video,

documents, files, etc.

Need of Cloud Computing:

Before using Cloud Computing, most of the large as well as small IT

companies use traditional methods i.e. they store data in Server, and they

need a separate Server room for that. In that Server Room, there should be

a database server, mail server, firewalls, routers, modems, high net speed

devices, etc. For that IT companies have to spend lots of money. In order

to reduce all the problems with cost Cloud computing come into existence

and most companies shift to this technology.

Security Issues in Cloud Computing:

There is no doubt that Cloud Computing provides various Advantages but

there are also some security issues in cloud computing. Below are some

following Security Issues in Cloud Computing as follows.

187

Cloud Issues and Challenges Data Loss:

Data Loss is one of the issues faced in Cloud Computing. This is also

known as Data Leakage. As we know that our sensitive data is in the

hands of Somebody else, and we don’t have full control over our database.

So if the security of cloud service is to break by hackers then it may be

possible that hackers will get access to our sensitive data or personal files.

Interference of Hackers and Insecure API’s:

As we know if we are talking about the cloud and its services it means we

are talking about the Internet. Also, we know that the easiest way to

communicate with Cloud is using API. So it is important to protect the

Interface’s and API’s which are used by an external user. But also in cloud

computing, few services are available in the public domain. An is the

vulnerable part of Cloud Computing because it may be possible that these

services are accessed by some third parties. So it may be possible that with

the help of these services hackers can easily hack or harm our data.

User Account Hijacking:

Account Hijacking is the most serious security issue in Cloud Computing.

If somehow the Account of User or an Organization is hijacked by

Hacker. Then the hacker has full authority to perform Unauthorized

Activities.

Changing Service Provider:

Vendor lock In is also an important Security issue in Cloud Computing.

Many organizations will face different problems while shifting from one

vendor to another. For example, An Organization wants to shift

from AWS Cloud to Google Cloud Services then they ace various

problem’s like shifting of all data, also both cloud services have different

techniques and functions, so they also face problems regarding that. Also,

it may be possible that the charges of AWS are different from Google

Cloud, etc.

Lack of Skill:

While working, shifting o another service provider, need an extra feature,

how to use a feature, etc. are the main problems caused in IT Company

who doesn’t have skilled Employee. So it requires a skilled person to work

with cloud Computing.

Denial of Service (DoS) attack:

This type of attack occurs when the system receives too much traffic.

Mostly DoS attacks occur in large organizations such as the banking

sector, government sector, etc. When a DoS attack occurs data is lost. So,

in order to recover data, it requires a great amount of money as well as

time to handle it.

https://www.geeksforgeeks.org/introduction-to-amazon-web-services/
https://www.geeksforgeeks.org/what-is-google-cloud-platform-gcp/
https://www.geeksforgeeks.org/introduction-to-aws-simple-storage-service-aws-s3/

188

Distributed System and

Cloud Computing

188

12.2.2 Elasticity:

The Elasticity refers to the ability of a cloud to automatically expand or

compress the infrastructural resources on a sudden-up and down in the

requirement so that the workload can be managed efficiently. This

elasticity helps to minimize infrastructural cost. This is not applicable for

all kind of environment, it is helpful to address only those scenarios where

the resources requirements fluctuate up and down suddenly for a specific

time interval. It is not quite practical to use where persistent resource

infrastructure is required to handle the heavy workload.

It is most commonly used in pay-per-use, public cloud services. Where IT

managers are willing to pay only for the duration to which they consumed

the resources.

Example:

Consider an online shopping site whose transaction workload increases

during festive season like Christmas. So for this specific period of time,

the resources need a spike up. In order to handle this kind of situation, we

can go for Cloud-Elasticity service rather than Cloud Scalability. As soon

as the season goes out, the deployed resources can then be requested for

withdrawal.

Cloud Scalability:

Cloud scalability is used to handle the growing workload where good

performance is also needed to work efficiently with software or

applications. Scalability is commonly used where the persistent

deployment of resources is required to handle the workload statically.

Example:

Consider you are the owner of a company whose database size was small

in earlier days but as time passed your business does grow and the size of

your database also increases, so in this case you just need to request your

cloud service vendor to scale up your database capacity to handle a heavy

workload.

It is totally different from what you have read above in Cloud Elasticity.

Scalability is used to fulfill the static needs while elasticity is used to

fulfill the dynamic need of the organization. Scalability is a similar kind of

service provided by the cloud where the customers have to pay-per-use.

So, in conclusion, we can say that Scalability is useful where the workload

remains high and increases statically.

Types of Scalability:

1. Vertical Scalability (Scale-up):

In this type of scalability, we increase the power of existing resources in

the working environment in an upward direction.

189

Cloud Issues and Challenges

2. Horizontal Scalability:

In this kind of scaling, the resources are added in a horizontal row.

3. Diagonal Scalability:

It is a mixture of both Horizontal and Vertical scalability where the

resources are added both vertically and horizontally.

12.2.3 Resource management and scheduling:

Cloud resource management requires complex policies and decisions for

multi-objective optimization. Effective resource management is extremely

challenging due to the scale of the cloud infrastructure and to the

unpredictable interactions of the system with a large population of users.

The scale makes it impossible to have accurate global state information

and the large user population makes it nearly impossible to predict the

type and the intensity of the system workload.

An overview of policies and mechanisms for cloud resource management

is followed by a presentation of energy efficiency and cloud resource

utilization and the impact of application scaling on resource management.

190

Distributed System and

Cloud Computing

190

The policies for CRM can be loosely grouped into five classes:

(1) admission control;

(2) capacity allocation;

(3) load balancing;

(4) energy optimization; and

(5) quality of service (QoS) guarantees.

The explicit goal of an admission control policy is to prevent the system

from accepting workload in violation of high-level system policies. A

system should not accept additional workload if this would prevent it from

completing work already in progress or contracted. Limiting the workload

requires some knowledge of the global state of the system.

Capacity allocation means to allocate resources for individual instances.

An instance is an activation of a service on behalf of a cloud user.

Locating resources subject to multiple global optimization constraints

requires a search in a very large search space. Capacity allocation is more

challenging when the state of individual servers changes rapidly.

Load balancing and energy optimization are correlated and affect the cost

of providing the services; they can be done locally, but global load

balancing and energy optimization policies encounter the same difficulties

as the capacity allocation. Quality of service (QoS) is probably the most

challenging aspect of resource management and, at the same time,

possibly the most critical for the future of cloud computing.

Resource management policies must be based on a disciplined approach,

rather than ad hoc methods.

To our knowledge, none of the optimal or near-optimal methods to address

the five classes of policies scale up, thus, there is a need to develop novel

strategies for resource management in a computer cloud. Typically, these

methods target a single aspect of resource management, e.g., admission

control, but ignore energy conservation; many require very complex

computations that cannot be done effectively in the time available to

respond.

Performance models required by some of the methods are very complex,

analytical solutions are intractable, and the monitoring systems used to

gather state information for these models can be too intrusive and unable

to provide accurate data. Many techniques are concentrated on system

performance in terms of throughput and time in system, but they rarely

include energy trade-offs or QoS guarantees. Some techniques are based

on unrealistic assumptions; for example, capacity allocation is viewed as

an optimization problem, but under the assumption that servers are

protected from overload.

191

Cloud Issues and Challenges Virtually all mechanisms for the implementation of the resource

management policies require the presence of a few systems which monitor

and control the entire cloud, while the large majority of systems run

applications and store data; some of these mechanisms require a two-level

control, one at the cloud level and one at the application level. The

strategies for resource management associated with IaaS, PaaS,

and SaaS will be different, but in all cases the providers are faced with

large fluctuating loads.

In some cases, when a spike can be predicted, the resources can be

provisioned in advance, e.g., for Web services subject to seasonal spikes.

For an unplanned spike, the situation is slightly more complicated. Auto-

scaling can be used for unplanned spike loads provided that: (a) there is a

pool of resources that can be released or allocated on demand and (b) there

is a monitoring system which allows a control loop to decide in real time

to reallocate resources.

Policies and mechanisms for resource management

A policy typically refers to the principal guiding decisions, whereas

mechanisms represent the means to implement policies. Separation of

policies from mechanisms is a guiding principle in computer science.

Cloud resource management policies can be loosely grouped into five

classes:

1. Admission control.

2. Capacity allocation.

3. Load balancing.

4. Energy optimization.

5. Quality-of-service (QoS) guarantees.

The explicit goal of an admission control policy is to prevent the system

from accepting workloads in violation of high-level system policies; for

example, a system may not accept an additional workload that would

prevent it from completing work already in progress or contracted.

Limiting the workload requires some knowledge of the global state of the

system. In a dynamic system such knowledge, when available, is at best

obsolete. Capacity allocation means to allocate resources for individual

instances; an instance is an activation of a service. Locating resources

subject to multiple global optimization constraints requires a search of a

very large search space when the state of individual systems changes

rapidly.

Load balancing and energy optimization can be done locally, but global

load-balancing and energy optimization policies encounter the same

difficulties as the one we have already discussed. Load balancing and

energy optimization are correlated and affect the cost of providing the

192

Distributed System and

Cloud Computing

192

services. Indeed, it was predicted that by 2012 up to 40% of the budget for

IT enterprise infrastructure would be spent on energy .

The common meaning of the term load balancing is that of evenly

distributing the load to a set of servers. For example, consider the case of

four identical servers, A,B,C, and D, whose relative loads

are 80%,60%,40%, and 20%, respectively, of their capacity. As a result of

perfect load balancing, all servers would end with the same load -50% of

each server’s capacity. In cloud computing a critical goal is minimizing

the cost of providing the service and, in particular, minimizing the energy

consumption. This leads to a different meaning of the term load balancing;

instead of having the load evenly distributed among all servers, we want to

concentrate it and use the smallest number of servers while switching the

others to standby mode, a state in which a server uses less energy. In our

example, the load from D will migrate to A and the load from C will

migrate to B; thus, A and B will be loaded at full capacity,

whereas C and D will be switched to standby mode. Quality of service is

that aspect of resource management that is probably the most difficult to

address and, at the same time, possibly the most critical to the future of

cloud computing.

As we shall see in this section, often resource management strategies

jointly target performance and power consumption. Dynamic voltage and

frequency scaling (DVFS)
1
 techniques such as Intel’s SpeedStep and

AMD’s PowerNow lower the voltage and the frequency to decrease power

consumption.
2
 Motivated initially by the need to save power for mobile

devices, these techniques have migrated to virtually all processors,

including the ones used for high-performance servers.

As a result of lower voltages and frequencies, the performance of

processors decreases, but at a substantially slower rate [213] than the

energy consumption. Table 6.1 shows the dependence of the normalized

performance and the normalized energy consumption of a typical modern

processor on clock rate. As we can see, at 1.8 GHz we save 18% of the

energy required for maximum performance, whereas the performance is

only 5% lower than the peak performance, achieved at 2.2 GHz. This

seems a reasonable energy-performance tradeoff!

12.3 QUALITY OF SERVICE (QOS) AND RESOURCE

ALLOCATION

In a general sense, Quality of Service (QoS) is defined as a set of quality

requirements (i.e., desirable properties) of an application, which are not

explicitly formulated in its functional interfaces (1.4.1). In that sense,

QoS includes fault tolerance, security, performance, and a set of "ilities"

such as availability, maintainability, etc. In a more restricted meaning

(considered in this chapter), QoS characterizes the ability of an application

to satisfy performance-related constraints. This specific meaning of QoS is

specially relevant in areas such as multimedia processing, real-time

control, or interactive services for end users.

193

Cloud Issues and Challenges Performance control is achieved through resource management, the main

theme of this chapter. We examine the main abstractions and patterns for

managing resources, including the use of feedback control methods.

Introducing Resource Management:

The function of a computing system is to provide services to its users.

Each service is specified by a contract between a service provider and a

service requester. This contract defines both the functional interface of the

service and some extra-functional aspects, collectively known as Quality

of Service (QoS), which include performance, availability, security, and

need to be accurately specified for each application or class of

applications. The part of the contract that defines QoS is called a Service

Level Agreement (SLA). The technical expression of an SLA usually

consists of a set of Service Level Objectives (SLO), each of which defines

a precise objective for one of the specific aspects covered by the SLA. For

instance, for an SLA on the performance of a web server, an SLO can

specify a maximum response time to be achieved for 95% of the requests

submitted by a certain class of users.

Motivation and Main Definitions:

In order to perform its function, a computing system uses various

resources such as processors, memory, communication channels, etc.

Managing these resources is an important function, and there are several

strong reasons for performing it accurately:

● Maintaining quality of service: Various indicators related to QoS in

user applications, specially performance factors, are directly

influenced by resource allocation decisions.

● Resource accounting: The users of a shared facility should be

charged according to their actual resource consumption. Therefore,

any consumed resource must be traced back to a user activity.

● Service differentiation and resource pricing: The resource

management system may allow users to pay for improved service.

The system should guarantee this differentiated form of service, and

the pricing scheme should adequately reflect the added value thus

acquired.

● Detecting and countering Denial of Service (DoS): A DoS attack

aims at preventing useful work from being done, by undue massive

acquisition of resources such as CPU time, memory, or network

bandwidth.

● Tracking and eliminating performance bugs: Without accurate

monitoring of resource usage, a runaway activity might invisibly

consume large amounts of resources, leading to performance

degradation in user applications; or a regular activity may reserve

unnecessary resources, thus hampering the progress of other activities.

194

Distributed System and

Cloud Computing

194

In the traditional view of a computing system, resource allocation, i.e., the

sharing of a common set of resources between applications contending for

their use, was a task performed by the operating system, and user

applications had little control over this process. This situation has changed

due to the following causes:

● The increasing number of applications subject to strong constraints in

time and space, e.g., embedded systems and applications managing

multimedia data.

● The growing variability of the environment and operating conditions

of many applications, e.g., those involving mobile communications.

● The trend towards more open systems, and the advent of open

middleware.

Thus, an increasing part of resource management is being delegated to the

upper levels, i.e., to the middleware layers and to the applications

themselves. In this chapter, we examine some aspects of resource

allocation in these upper levels.

The term resource applies to any identifiable entity (physical or virtual)

that is used by a system for service provision. The entity that actually

implements service provision, using resources, is called a resource

principal. Examples of physical resources are processors, memory, disk

storage, routers, network links, sensors. Examples of virtual resources are

virtual memory, network bandwidth, files and other data (note that virtual

resources are abstractions built on top of physical resources). Examples of

resource principals are processes in an operating system, groups of

processes dedicated to a common task (possibly across several machines),

various forms of "agents" (computational entities that may move or spread

across the nodes of a network). One may define a hierarchy of principals:

for example, a virtual machine provides (virtual) resources to the

applications it supports, while requesting (physical or even virtual)

resources from a hypervisor.

Goals and Policies:

The role of resource management is to allocate resources to the service

providers (principals), subject to the requirements and constraints of both

service providers and resource providers. The objective of a service

provider is to respect its SLA, the contract that binds it to service

requesters (clients). The objective of a resource provider is to maximize

the utilization rate of its resources, and possibly the revenue it draws from

their provision. The relationships between clients, service providers, and

resource providers are illustrated in below figure,

195

Cloud Issues and Challenges

Figure: Service providers and resource providers

The requirements are the following, as seen by a service provider.

● The service provider should offer QoS guarantees to its clients, as

specified by an SLA. The SLA may take various forms: strict

guarantee, probabilistic (the agreed levels will be reached with a

specified probability, or for a specified fraction of the demands), best

effort (no guarantee on the results). The SLA is a contract that goes

both ways, i.e., the guarantees are only granted if the clients respects

some conditions on their requests. These conditions may apply to

each client individually or to a population of clients as a whole.

● The service provider allocates resources for the satisfaction of clients'

requests. It should ensure equitable treatment (fair share), in the sense

that each client needing a resource should be guaranteed a share of

that resource proportional to its "right" (or "priority"), as defined by a

global policy. The share should be guaranteed in average over a

specified period of time. If all clients have the same right, then each

should be guaranteed an equal share. Other situations may occur:

● Service differentiation is a means of specifying different classes

of clients with different rights, which may be acquired by

purchase or by negotiation.

● The rights may be time-dependent, e.g., the right of a client may

be increased to allow it to meet a deadline.More generally, the

guarantee may be in terms of a minimal rate of progress, which

prevents starvation, a situation in which a client’s requests are

indefinitely delayed.

More generally, the guarantee may be in terms of a minimal rate of

progress, which prevents starvation, a situation in which a client's requests

are indefinitely delayed.

● If several classes of clients are defined, the service provider should

guarantee service isolation: the allocation of resources for a class

should not be influenced by that of other classes. This means that a

196

Distributed System and

Cloud Computing

196

misbehaving client (one that does not respect its side of the SLA) may

only affect other clients of its class, not clients from other classes.

The above requirements may be contradictory. For instance, ensuring

guarantees through worst case reservation may entail sub-optimal resource

utilization. Such conflicts may only be resolved according to a higher level

policy, e.g., through priority setting or through negotiation. Another

approach is to pool resources, in order to amortize their cost among

several applications, provided that peak loads do not occur at the same

time for all of them. Also note that the fairness requirement should be met

both at the global level (sharing resources among service providers) and

for each service provider with respect to its own service requesters.

Resource management policies may be classified using various criteria

(based on prediction and/or observation, using open loop or closed loop)

and may face various operating conditions: if resources are globally

sufficient to meet the global demand, combinatorial optimization is the

relevant tool; if resources are insufficient (the common case), control

methods are more appropriate. Examples throughout this chapter illustrate

these situations.

Resource allocation is subject to a number of known risks, which any

resource management policy should consider.

● Violation of fairness, examples of which are the above-mentioned

starvation, and priority inversion, a reversal of prescribed priorities

due to unwanted interference between synchronization and priority

setting.

● Congestion, a situation in which the available resources are

insufficient to meet the demand. This may be due to an inadequate

policy, in which resources are over-committed, or to a peak in the

load. As a result, the system's time is essentially spent in overhead,

and no useful work can be done, a situation known as thrashing.

Thrashing is usually avoided or delayed by an admission control

policy

● Deadlock, a situation of circular wait, in which a set of processes are

blocked, each of them waiting for a resource that is held up by another

member of the set. Deadlock may be prevented by avoiding circular

dependencies (e.g., through ordered allocation), or detected and

resolved, usually at some cost in progress rate.

In the context of this book, we are specifically interested in resource

management for middleware systems; among these, Internet services are

the subject of an intense activity, due to their economic importance. We

conclude this section with a review of the main aspects of resource

management for this class of systems.

197

Cloud Issues and Challenges 12.1.3 Resource Management for Internet Services:

An increasing number of services are available over the Internet, and are

subject to high demand. Internet services include electronic commerce, e-

mail, news diffusion, stock trading, and many other applications. As these

services provide a growing number of functions to their users, their scale

and complexity have also increased. Many services may accept requests

from millions of clients. Processing a request submitted by a client

typically involves several steps, such as analyzing the request, looking up

one or several databases to find relevant information, doing some

processing on the results of the queries, dynamically generating a web

page to answer the request, and sending this page to the client. This cycle

may be shortened, e.g., if a result is available in a cache. To accommodate

this interaction pattern, a common form of organization of Internet

services is a multi-tier architecture, in which each tier is in charge of a

specific phase of request processing.

To answer the demand in computational power and storage space imposed

by large scale applications, clusters of commodity, low cost machines

have proved an economic alternative to mainframes and high-performance

multiprocessors. In addition to flexibility, clusters allow high availability

by replicating critical components. Thus each tier of a cluster-based

application is deployed on a set of nodes (Figure). How the application

components running on the servers of the different tiers are connected

together depends on the architecture of the application; examples may be

found in the rest of this chapter. Nodes may be reallocated between

different tiers, according to the resource allocation policy.

Figure: A cluster-based multi-tier application

A service provider may deploy its own cluster to support its applications.

An alternative solution, in increasing use, is for the provider to host the

application on a general-purpose platform (or data center) owned by a

computing facility provider, and shared with other service providers. The

drawback of this solution is that the service provider has less control on

the fine-grain tuning of the infrastructure on which its application is

running. However, there are several benefits to using shared platforms.

● The service provider is freed from the material tasks of maintaining

the infrastructure.

198

Distributed System and

Cloud Computing

198

● The fixed cost of ownership (i.e., the part of the cost that is not

proportional to the amount of resources) is shared between the users

of the common facility.

● Mutualizing a large pool of resources between several applications

allows reacting to load peaks by reallocating resources, provided the

peaks are not correlated for the different applications.

● Resource sharing improves global availability, because of redundancy

in hosts and network connections.

12.4 IDENTITY AND ACCESS MANAGEMENT

Identity and Access Management (IAM) is a combination of policies and

technologies that allows organizations to identify users and provide the

right form of access as and when required. There has been a burst in the

market with new applications, and the requirement for an organization to

use these applications has increased drastically. The services and resources

you want to access can be specified in IAM. IAM doesn’t provide any

replica or backup. IAM can be used for many purposes such as you want

to secure the control of individual and group access from your AWS

resources. With IAM policies, managing permissions to your workforce

and systems to ensure least-privilege permissions becomes easier. The

AWS IAM is a global service.

Components of IAM

Users

Roles

Groups

Policies

With these new applications being created over the cloud, mobile and on-

premise can hold sensitive and regulated information, It’s no longer

acceptable and feasible to just create an Identity server and provide access

based on the requests. In current times an organization should be able to

track the flow of information and provide least privileged access as and

when required, obviously with a large workforce and new applications

being added every day it becomes quite difficult to do the same. So

organizations specifically concentrate on managing identity and its access

with the help of few IAM tools. It’s quite obvious that it is very difficult

for a single tool to manage everything but there are multiple IAM tools in

the market that help the organizations with any of the few services given

below.

Services By IAM:

Identity management

Access management

https://www.geeksforgeeks.org/identity-and-access-management-iam/

199

Cloud Issues and Challenges Federation

RBAC/EM

Multi-Factor authentication

Access governance

Customer IAM

API Security

IDaaS – Identity as a service

Granular permissions

Privileged Identity management – PIM (PAM or PIM is the same)

Figure : Services under IAM

More About the Services: Looking into the services on brief, Identity

management is purely responsible for managing the identity lifecycle,

access management is responsible for the access to the resources, access

governance is responsible for access request grant and audits, PIM or

PAM is responsible for managing all the privileged access to the

resources. The remaining services either help these services or help in

increasing the productivity of these services.

Market for IAM: Current situation of the market, there are three market

leader (Okta, Saipoint and Cyberark) who master one of the three domains

(Identity Management, Identity Governance and Privilege access

management), according to Gartner and Forrester reports. These

companies have developed solutions and are still developing new

solutions that allow an organisation to manage identity and its access

securely without any hindrances in the workflow. There are other IAM

tools, Beyond Trust, Ping, One login, Centrify, Azure Active Directory,

Oracle Identity Cloud Services and many more.

https://www.geeksforgeeks.org/role-based-access-control/
https://www.geeksforgeeks.org/identity-as-a-service-idaas-as-a-cloud-based-service/

