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PSMT402/PAMT402: Fourier Analysis

Course Outcomes:

1. Students will be able to understand the Fourier series expansion of a periodic function
and their convergence.

2. Students will be able to grasp properties of the Dirichlet kernel, Fejer kernel, Poisson
kernel and the concept of a good kernel.

3. Students will aware about application of a Fourier series in the solution of the Dirichlet
problem and heat equation.

Unit I: Fourier series (15 Lectures)

The Fourier series of a periodic function, Bessel’s inequality for a 27 periodic Riemann
integrable function, Dirichlet kernel, Convergence theorem for the Fourier series of a 27
periodic and piecewise smooth function, Uniqueness theorem. Derivatives, Integrals and
Uniform Convergence properties, Fourier series on intervals, Even and odd extensions,
Fourier series of a periodic function of an arbitrary period.

Unit II: Dirichlet’s theorem (15 Lectures)

Review: Lebesgue measure of R; Lebesgue integrable functions, Dominated Convergence
theorem, Bounded linear maps (no questions be asked). Fourier coefficients of integrable
and square integrable periodic functions, The Riemann-Lebesgue lemma and its converse,
Bessel’s inequality for a L? periodic functions, Dirichlet’s theorem, Concept of Good
kernels, Dirichlet’s kernel is not good kernel.

Unit III: Fejer’s Theorem and applications (15 Lectures)

Cesaro summability, Cesaro mean and Cesaro sum of the Fourier series, Fejer’s Kernel,
Fejer’s kernel is a good kernel, Fejer’s Theorem, Parseval’s identity. Convergence of
Fourier series of an L? periodic function w.r.t the L?-norm, Riesz-Fischer theorem on
Unitary isomorphism from L?(—m,7) onto the sequence space [? of square summable
complex sequences.

Unit IV: Dirichlet Problem in the unit disc(15 Lectures)

Abel summability, Abel sum of the Fourier series, The Poisson kernel, The Poisson kernel
is a good kernel, Laplacian, Harmonic functions, Dirichlet Problem for the unit disc,
The solution of Dirichlet problem for the unit disc.The Poisson integral, Applications of
Fourier series to heat equation on the circle.

Recommended Text Books:
1. R. Beals, Analysis An Introduction,Cambridge University Press, 2004
2. R. Bhatia, Fourier Series, MAA Press AMS, 2005.



3. G.B. Folland, Fourier Analysis and its Applications, American Mathematical Society,
Indian Edition 2010.

4. E. M. Stein and R. Shakarchi, Fourier Analysis an Introduction, Princeton University
Press, 2003.

5. E. M. Stein and R. Shakarchi, Real Analysis an Introduction, New age International.



FOURIER SERIES

Unit Structure

1.1  Periodic function

1.2  Dirichlet’s conditions

1.3  Fourier Series of periodic continuous functions

1.4  Fourier Series of even and odd functions

1.5 Fourier series of periodic functions having arbitrary period

1.1 DEFINITION : PERIODIC FUNCTION :

A real or complex valued function f is said to be periodic with
periodT >0, if f(x+nt)=f(x), V¥ xand VneZ.

Example: 1)  sin(x+2n7)=sinx
2)  cos(x+2nm)=cosx
hence sinxand cosx are periodic function with period 27z .

The Orthogonality Relations of Trigonometric functions:

0 m==n mn=0,12,...
1) j_” cosmxcosnxdx={ 7 m=n=12,...
2r m=n=0

0 m=n mn=12,..
2) J'_” snmxsinnxdx=<{7 m=n=12,...
0 m=n=0

3) jcosmxsinnxdx:o, vmn=0,12,...

T . 0 m=n
4 [ dme™ dx={ ”
- 2r m=n
Definition : Trigonometric Series: A series of the form

%+alcosx+blsinx+a20052x+bzsin2x+ ......

................ +a, cosnx+b, sSinnNX+...........

where, a,, a,b,a,b,..... ya,b are constants is called as

trigonometric series.
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1.2 DIRICHLET'SCONDITIONS:

If f(x) isaperiodic function of period 2z defined in the interval

C<x<C+2r where C isany constant then following condition are
known to be Dirichlet’ s conditions

i) Function f(x) and itsintegrals arefinite and single valued in the

interval.
if) Function f (x) hasat most finite number of finite discontinuities

in the interval.
iii) Function f (x) has at most finite number of maxima and minima

inthe interval.

1.3 FOURIER SERIES OF PERIODIC CONTINUOUS
FUNCTIONS:

Definition : If f(x) isa periodic function of period 2z defined in

the interval C<x<C+2z and satisfies the Dirichlet’s conditions
then, function f(x) can be represented by the trigonometric series

as %+Z(an cosnx+b,sinnx) . This representation of a function
n=1

f(x) as a trigonometric series is known as Fourier series
expansion of function f(x) and its co-efficients a,, a,, b, are called
Fourier coefficients.

Example:

1) f(x)=tanx cannot be expanded as a Fourier series in the
interval [0, 27] sincetan%:oo.

2) f(x)=€™ where a is constant can be expressed in terms of
Fourier seriesin any interval.

Note : The Fourier series expansion of f(x) converges to
l[f(x*)+f(x*)], i o Right hand limit + left hand limit

5 a the point

of discontinuity.
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Calculation of Fourier coefficients:

Let f(x) beaperiodic function of period 2z defined in the interval
C<x<C+2r satisfying Dirichlet's conditions then its Fourier
series expansion is given by

f(x):%+i(agqcosnx+bnsinnx) (1)

1) To calculate Fourier coefficient a,, integrate equation (1) from
C toC+2r.

C+2n C+2n 0 C+2n C+2r
j f(x)dx:ﬁ j dx+ > | a, I cosnx dx + b, j sinnx dx
C 2 C n=1 c C
C+2rm
j f(x)dx:%[2n]+(0+0):a0ﬂ
C

1 C+2r7
= g,==— I f (x)dx

C

2) To determine the Fourier coefficient a, multiply equation (1) by
cosnx and the integrate from C toC+2r .

f (x)cosnx = % cosnX + i(an cos’ nx+h, sin nxcosnx)

n=1

C+2rn C+2n © C+2n C+2n
I f(x)cosnxdx:% J' cosnxdx+2{a\1 I cos’ nxdx + b, J' sinnx.cosnx de
C

c n=1 c c

C+2r
=— f ( x)cosnx dx
=a=_[ 1
3) To determine the Fourier coefficient b, multiply equation (1) by
sinnx and integrate from C to C+2r .

C+2n E% C+2n © C+2n C+2r

j f (x)sinnxdx=—2 j sinnxdx+ | a, j cosnxsinnxdx +b, j sin®nx
C 2 C n=1 C C

C+2r

© : C+2n
:%{—cosnx} +Z{an j sm(22nX) dx+b, J- (1—cosnxjdx}

C C n

1 C+2r
= b== [ f(x)sinnxdx

C
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Thus we have complete set of formulation for Fourier series
expansion of periodic function f(x) of period 2z satisfying
Dirichlet’s conditions as

f (x)=%+ Ool(an cosnx+ b, sinnx)

(@]
3

dQ.)
Il

Nk 3|k, 3k
(@]
+
»

O'—.rt,
—h
—_
X
N—
o
X

f (x) cosnx dx

Qo
I

o
I

=)

f(x)sinnxdx for C<x<C+2rx

O
O'—.g, O —y

Note:
(1) If C=0then 0<x<2r and

a,=—| f(x)dx
a,=— | f(x)cosnxdx

bh == f(x)sinnxdx for0<x<2x

2) If C=-rthen -z < x<z then

17[
=—| f(x)d
4= [ 10
anzlj f (x) cosnx dx
7T—7[

bn=1j f(x)snnxdx  for—z<x<z
ﬂ’-—ﬂ

1.4 FOURIER SERIES EXPANSION OF EVEN AND ODD
FUNCTIONS:

Definition :
The function f issaid to be even, if f(-x)=f(x), Vx, —c<x<c.
The function f issaid to be odd, if f(-x)=-f(x), Vx, —c<x<c.
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Example: cosé iseven function since cos(—6)=+cos6 .
sing isodd function since sin(-6)=-sing .

Property : [ f(x)dx= 2{f(X)O'X if fiseven

0 if fisodd

Hence Fourier series expansion of even function defined in the
interval -7 < x<7x isgiven by

27[
=—|f d
a, 7;-([ (x) dx

2 I f (x) cosnx dx
0

.'.f(x):%+2ancosnx —m<X<nm

Thisseriesisalso caled as Fourier Cosine series.

Fourier Series expansion of odd function defined in the interval
-n <x<g isgiven by

a,=0, a =0, bnzgjf(x)sinnxdx
71-0

.‘.f(x):ibnsinnx -T<X<7m
=1

This seriesisalso known as Fourier Sine series.

1.5 FOURIER SERIES EXPANSION OF A PERIODIC
FUNCTION HAVING ARBITRARY PERIQOD:

Let f(x) beaperiodic function of period 2L defined in the interval

C < x<C+2L then substitute z:”TX or x:Z—L

T
when x=C = z:%:d(say)
when x=C+2L= z=%(C+2L)=d+2n

Thus f(z) is a periodic function of period 2z defined in the
intervad<z<d+2r.
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Hence Fourier series expansion of a periodic function f(x) of a
period 2L defined intheinterval C < x<C+2Lisgiven by

f (x):%+g{aﬁ cos(?%bn sn(?ﬂ

where the Fourier coefficients are given by

O

1 +2
%=1 l f (x)dx
C+2L
an:% l f(x)cos(?jdx
C+2L
b= | f(x)gn(@jdx
L 2 L

Note:

If C=-L then-L<x<L. In this case we can verify whether the
given periodic function is given either even or odd.

Hence Fourier series expansion of even function defined in the

interval —L <x<L isgiven by
L

aO:% f (x) dx

.'.f(x):%+iancos£?j —L<x<L

Thisseriesisalso caled as Fourier Cosine series.

Fourier series expansion of odd function defined in the interval
-n <x<g isgiven by

25 . [ nTX
=0, =0, b=—|f —|d
3 a, A 7;-([ (x)sm( i j X

f(x)=ibnsin(nil_xj CLe<xs<L
n=1

This seriesisalso known as Fourier Sine series.



Examples

Ex. 1. Find Fourier series expansion of f(x)=

2
show that 12+i2+i2+ ..... T
¥ 3 5 8

Solution : - f(—x)=|—x|=x= f (x)
. f iseven function.

f (x) cosnx dx

X cosnx dx

2| xsin nx| % sinnx }
— dx
T , 1 n

4]
LRl

:—j smnxdx

o0

f(x):%+Zan cosnx
n=1
- 2| (-1)"-1]
=X
N 5 +nZ:; 3 COSIX

0 if niseven

Notethat (-1)"-1= o
-2 if nisodd

hence replace n by 2n — 1, we have

4

—r<x<7 and



T 2y 2

2 7Tn:1(2n—1)2

741 1 1

ERITRNN.

_—{l+i+i+ ....... }:i
? 3F 5 2

LN _z

1 F 5 8

Ex 3. Find Fourier seriesexpansion of f(x)=x* -z<x<rx.

Evaluate seriesat x=7 and find iiz
nfln

Solution :
f(x)=x"
f (—x) :(—x)2 =x*=f(X)

- f(x) iseven function

2 on
La=—| f d
=2 [ 1 (9
"2 gt

3
:gj. deng X_ =" x_
Yo T| 3 T 3

3

a, = 2 r x* cosnx dx
T o

2| ,8nNnNX  ¢rsSiNNX
== - 2x)d
2 SO0 [

:E{O—grxsinnxdx}
T n-o



_2|2 X(—cosnxj J-zrcosnxldxﬂ
zln n o n

(o]

2|2 (-1 +Esinnx| ﬂ
T

“Znl T h Thn ,
:__Z_E _ﬂ(n_l)n %(O)H
:1_74—1)”}

_A-Y

b =0

.. The Fourier Cosine seriesis given by

f (x)=%+i(an cosnx+ b, sinnx)

n=1

72 & 4(-1)
x2=?+n§ (nz) cosnx
at X=rm
2 2 4(-)", . 2t &4(-1)”
n* = +Z (2) (_1) :?4_2 (nz)
n=1 n=1

Ex. 4. Compute Fourier series of f(x)=e™ where a is +ve and
hence prove that

1:Sinh7ra[1+2i(_1)n a? }

ra
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Solution : Let f(x)=e™
1 or
== f(x)d
a,=—[ f(x)ox
1 ¢r
== " e*d
ﬂ.[_ﬂe X
:lﬁﬂ :i e(ra_e—zra
T a]|_ 7ma 2
:isinhna
ra

1 ¢
==\ f d
a, ELT (x) cosnx dx

Let a =1 =1J'” e™ cosnx dx
— T
-1 cosnx &= " - Ee—(—sinnx)ndx}
T a " “J7a
. . - (by LIATE)
:l cosnne——cosnne—+ﬂjﬂsinnxe""xdx}
vl a a“’”r
_1 (_1)”e——(—1)ni N snmal| - e—ncosnx]
T a a a a|_ ‘~a
_1 (—1)”6——(—1)”L+E snnx—/| - e—ncosnx}
T a a a a|_ ‘ra
_1 (-2) (ea”—ea”)+ﬂx(_ﬂr eaxcosnxdxﬂ
| a a al-r
— n 2 V2
:( 1) (ea’f_e*a’f)—n—zl e® cosnx dx
ra a? i
(Vo gy T
| = —e )= |
ra (e © ) a’
n2 (_1)” ar —ar
I+¥I - (e e )
a2+n?), (-1, .. .
[ a’ jlzna(e —° )
/Z n
a _1) ar _ar
= e —g
(@+m) 74 ( )
_a (-1) (eaﬂ_efaﬂ)z ?(_2) snhra
(a +n )n
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:—j smnxdx
(by LIATE)
bn:—j e™ sinnx dx
ﬂ -7

1 . e = e™
s, ==|snnx—| —| — cosnx.ndx
n a| “*a

= l[0— Dr e™ cosnx.ndx}
7r -7

=—><— e cosnx dx
a =«

n(_l)m—l 2n(—1)n+1

=ﬁ(ea”—e'a”)=m

(a T )ﬂ sinhza

Thus the Fourier series expansion of f isgiven by

f (x):%+i(an cosnx+ b, sinnx)

n=1

«_Shhra ¢ 2a(-1)"sinhra 2n(-1)"sinhza |
e +> COSNX + ~— sinnx
n=1 (a +Nn ) (a +Nn )71'

atx=0

snhra
1=
ra +nz_;‘(a2+n2)n

sinhza = (-1)"a®
sl= 1+2
za | ;(a2+n2)]
sinh;ra_ - nooal
sl= 1+2) (-1
za | ;( ) (a2+n2)}
Hence proved

1 ox 2
Ex. 6. Show that " ['f (x) " dx:%+;(anz+bnz)

where a, & b, are Fourier coefficients of Fourier series expansion of
periodic function f defined in [, 7]
(Thisis known as Parseval’s | dentity )



12

Solution: The Fourier series expansion of a periodic function f (x)

of period 2z defined intheinterval —z < x<r satisfying Dirichlet’s
conditionsis given by

f (x):%+i(ah cosnx+ b, sinnx)

n=1
On squaring both sides we get
2 © 0
fz(x):%+26ﬁ cos’ nx+_bZ sin’ nx
n=1 n=1

+ Zlaoan COSNX + zlaobn sinnx + Zzlanbn sinnx conx
n=! n=. n=.

Assuming term by term integration on R.H.S. of above equation is
permissible.

Integrating both side of above equation with the limit - to .
2 0
_[j;[f (x)]2 dx:fﬂ% dx + nZ;aﬁJ'ﬂﬂcosz nx dx
+ib§f sn? nxdx++ia0an.|'_” cosnx dx
n=1 n=1

+ i aobn.[_’; sinnxdx+ 2 i %bnf_: sinnx cosnx dx
n=1 n=1

Using orthogonality relations we get
[T 2 Eﬁi?f -
..J:ﬂ[f (%] dx:7+7r ;(a§+bf)

0

HAUCICEE S (ST

Thisrelation is known as Par seval’s | dentity.
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2

BASIC PROPERTIES OF FOURIER SERIES

Unit Structure

21  Complex form of Fourier series
2.2 Properties of Fourier Coefficient
2.3  Riemann Lebesgue Lemma

2.4  Good kernels

2.1 COMPLEX FORM OF FOURIER SERIES:

Let f(x) beaperiodic function of period 2z defined in the interval
C <x<C+2r thenits Fourier series expansion is given by

f(x):%+i(an cosnx+b, sinnx)

n=1

eiG +e—i9
We have cosé =

10

e —i0

-e
2i

0 einx + e—inx einx _ e—inx
:f(x)—%+z_;‘an[ 5 j+b"( > J

(=243 Han_Tihwjeme{an;ibnjemx}

n=1

sing =
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This is Complex form of Fourier series where, C, is Fourier

coefficient which is given by, C, = —2in .

Using value of Fourier coefficient a, & b, we can simplify for C,as.

1 1C+2ﬂ | C+2r
Cn:—[—j f (x) cosnx dx— — I f(x)sinnxdx}

T ¢ T ¢

C

C+2rn
CH:Z{ I f () (cosnx—lsmnx)dx}

1 C+2rm .
C,=— I f(x)e™ dx

C

This is general formula for Fourier coefficient in the complex
form.

Note:

1) The Fourier series coefficients C, in complex form is also
denoted by f (n).

C+2r

i.e. fA(n):Cn:i j f (x) e ™dx

2 -,

2) If f(x) is a periodic function of period 2z defined in the

interval —z <x<x then f( :—J' f(x)e ™dx .

3) Wehave C, = 3“2 " and C_, a“+T'b“

=C,+C =4,
C -C, =ib,
b, =-i(C,~C.,)
c =2

2

4) Similarly, we can find the Fourier series expansion of a periodic
function f(x) of arbitrary period 2L defined in the interval

C<x<C+2L incomplex form of as
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where,
—inTx

R C+2L
f(n)=C,==- j f(x)et dx
C

Ex. 1. Find complex form of Fourier series of
9(9)29 -r<0<r

Solution: We have Fourier coefficient in Complex Fourier series
expansion as
1 ¢ i
C,=— 0)e"™do
" 2n '[—”g( )
1

-—["0e™do
2w
[ —_ing |* —ino i
2 e de}
27| —in|__ —in i
1 nei_ +7re7_ +_i[e_i”9]ﬂ}
2r|  —in —-in in -
1] e™ —ze™™ ey 1 . .
= |7 ——+———+(€" —€" )+ (cosnr —i sinnr —cosnr —isinnr)
2r|  —in —-in n n
PN n
L EL (—1)}
2 —-in —In
B n+l
=i 277(__1) ]
2 in
_(_1)I’H—l
" in

To find the value C, consider Fourier coefficient in complex form

1 ¢ —ind
C, :Ejlﬂg(e)e do

Co=o "g(0)do=0........ {since g isodd function}.
T
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Thus complex form of Fourier series of a given function is given by
© _1 n+1 eing
0= Z ( )in

g(0)=0 atn=0

We have
© _1 n+l ing
o(0)=0=3 2
= in
g(0)=0 at n=0

Since (-1)" =(-1) "asn varies from -ve to +ve integer.
Hence we can combine n™ term & (-n™) term as.

()7e” (—1)”*1(6”9 +ﬂJ

in  —in

:(_1) (_iein9+ie—in9)

_ (_1n)n+l i[-€"+e™ ]
:(_1n)n+1i[—(pesﬁ0+isinn9)+(pesﬁ9—isinn9)}
:(_1n)n+li(—2isinn9)

G sinnd

_ 2 2(-1)""

~g(0)=6=> . sinno

Note: Thefunction g(6)=6 -z <6<z isodd function. Hence we
can expand this function in terms of Fourier Sine series.

f (x)|2 dx

Ex.2. Showthat S [C[P< 1 [
X ow >c. <2ﬂj_ﬂ

N=—c0

where C_ is complex Fourier coefficient of Fourier series expansion of
periodic function f defined in [, 7]
(Thisrelation is known as Bessel’ s | nequality. )
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Solution : The complex form of Fourier series expansion of periodic
function f (x) isgivenby f( Z C.e™

N=—0

We have property of the complex number z, |z|2 =7z
Consider,

SRUETULE TS

- N

= 1) T (- [C. T (e +Cn f ()e™ |+ 3 C,Cael™™

-N m=n-N

Divide both side of above equation by 2z and integrate within limit
—-m to = aso using

1 (= —inx _ 1o =75 i o~
E_ﬂf(x)e dx_Cn&ZJ'_ﬂf(x)e dx=Cn, and
1 ﬂei(m_n)xdxz{o m#n
2 - 1 m=n
We obtains
1 i 1 2
) ZC dx— ol x)| dx
_ NG
—Z(cncn+c:nc:n)+2c:nc:n
-N -N
2 N 2 2
S Ll1 0o a3 2+ e,
17 (o e
271
>0
N 2
=Y |G| <
-N
Letting N — oo we get
i|Cn|2£ = x)|2dx

where C, iscomplex Fourier coefficient.
Thisrelation is known as Bessel’s | nequality.
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Note:
1, 2 1 2 2
D Sl 45X af )

=1

= ICf <[ Jf (x)f o
- 2

2) From above Bessel’s Inequality the series > [a |, > |o* Y|C.[
are convergent.

2.2 PROPERTIESOF FOURIER COEFFICIENT

The following statements are equivalent

1) 2 Periodic function on R like exponential function.
2) Function defined on theinterval of length 27 .

3) Function defined on the unit circle.

Since a point on the unit circle takes the forme?, 6 is red and
unique up to integer multiple of 2z . If F is a function on the circle
then we may define for each real number 6

f(0)=F(")
Observethat f(6+2r)=f(0) forall 6.

Thus f is periodic of period2z . The integrability, continuity and
other smoothness properties of F are determined by those of f.

Definition : The Fourier coefficient of an integrable periodic
function f arethe complex number f(n) defined by the integral.

?(n):% j; f(x)e™dx, nez

The L' norm of an integrable periodic function f isgiven by
1 or
1= 5171 (e

The L norm of sguare integrable periodic function f isgiven by
1
1 = 2 )2
1= o e

Properties of Fourier Coefficient:

Theorem 1. Suppose that f isan integrable periodic function then
f(n)|<]fl,, vnez.
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Pr oof :

We have,

f(n):% ()™ dx

Taking mod on both sides

HOE %j_”ﬂ (x)e"™ dx
f(n)‘gé j; f(x)He"”x dx {Uf‘s.ﬂﬂ}
:% j; f(x)He*‘“x dx
since
‘e“”x :|cosnx—isinnx|:x/cosz nx+sinnx =1

.'.‘f(n)‘s%fﬂ

| F)[<]f], wnez

() =] £

Theorem 2. Trandation Property : Suppose that f is an
integrable periodic function. Given ain R. Let f, trandate function

f as f,(x)=f(x-a) then f,(n)=e™ f(n) V neZ
Proof : We have,

f(n):%j”ﬂ f(x)e™ dx
= fa(n):%jﬂﬂ f,(x)e™ dx
fa(n):% j; f (x—a)e™ dx (- f.(x)=f(x-a)}

Put x-a=y = x=a+y
dx=dy
when x=—z, y=-n-a
when x=7n, y=r-a

£ 1 (za —in(a+
fa(n):z ~f(ye (=) gy

2

[T f(y)e™dy
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Since f isperiodic function of period 2r .

£ —ina 1 = —in
2. (n)=-e (Z.[_ﬂf(y)e dej
f.(n)=e™ f,(n)
Theorem 3: Supposethat f iscontinuous function with continuous
derivative f' then f'(n)=inf(n), VneZ.

Proof : We have,

f(n)=% ()™ dx

On integrating by parts
R 1 f (X) g™’ . g™
f (n) —Z{[T]ﬂ +J._ﬂ f (X) in dX]

Since f isperiodic function of period 2z , we have
f (—ﬂ): f (—7[+27r): f (7[)

The 1% term in above equation vanishes

- (n) =%P [t (e dx}

in
:_ixi " f'(x)e™ dx
in 2z~
1, o 1 ¢~ .. -
=—f - f - f iy
() (= [ F(x)e™ o9
- f'(n)=inf(n),  Vnez
Notation :

f(n)=O[#J as |n|—comeans L.H.S. is bounded by constant
n

multiple of R.H.S. i.e. there exist constant C >0 such that

2

|f(n)|s|£ vlarge |n|.
n

In general, f(x)=0]g(x)]as x—ameansfor some +ve constant C,

|f(x)|<Clg(x) as x—>a.

Note: f(x)=0(1) means f isbounded function.
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Theorem 4: Suppose that function fis twice continuously
nf

Infl>. So that Fourier series of f converges absolutely &
uniformly to f .

differentiable function defined on the circle then |f(n)| = O(i} as

Proof : We have
A 1 ¢r .
f(n)=—[" f(x)e™™d
(M=o [ T (x)e™ ax
Integrating R.H.S. by part

f(n)%{[f () j [ dx]

T —-in -7 —in

. e—inx 4 . e—inx .
2 f = f - f d
= 105 ] J S (o
Since fis periodic function with period 27 . 1% term of R.H.S.
Vanishes
2nf(n):_+_nl " e (x) dx
I -
Once again integrating by parts,

Zninf(n):(f'(x)e___m]ﬂ [ (x)ax

in -7 —in
-7

R . g™ 4 . g™
2r f =| f - f d
=[S TS e
Since f' isperiodic and
»(e™) =e™ -e™ =(cosnz —isinnz)—(cosnr +isinnz)=0
n):—f f'(x)e™ dx
) :‘_ [" 1 (x)e™ dx‘
n) sf
Il
where C is a constant and independent of n. and since f is twice

continuoudly differentiable, f* isbounded function.
Setting C = 27B where, B isbound of f°

f(x)e™

dx ( |e‘"1X

:1)

f"(x)|dx.§C.
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; f(n)Fo[#} as |n| — oo

23 THE RIEMANN - LEBESGUE LEMMA :

Statement : If fis integrable function defined on a circle then
f(n)>0as|n—w.
OR

If f isintegrable periodic function of period 2z then ‘Iim f(n):o.

n—o
Proof : Since for any >0, we can choose a continuous periodic
function g with |[f —g||<e.
Since | f (n)|<[f[, v nez
=|f(m)-a(n)|<|f -g|<e ®
i.e. the Fourier coefficient of function f and g differ by less than <.

So that f(n)are eventualy less than e in modulus if g(n)— Oas

|n|—>oo.

If g is continuous periodic function and ae R then we have
9. (x)=9(x-a)

=g,(n)=e"™g(n), YneZ (2
Choose a==
n
6.(n)=¢ " g(n)
8. (n)=(-1)6(n) ©
We have,

a(n)|<[al, =" Ja(]ax @
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Now consider
[26(n)|=a(n)+g(n)
( ) ( )I (by equation (3))
(x)[dx  (by equation (4))
(x—a)|dx
Put a="
n
(<L g(x)—g(x——j dx
2 n
As || - o a=%—>0
hence, g(x)—g(x—%)‘—w
=[2g(n) >0 @& |n—>w
~|g(n)|—0 as |n| - oo
- By (1), | |—>O as |n—» o
.'.‘I‘lm f( )=0
hence proof.

2.4 GOOD KERNELS:

Definition : A family of Kernels {K, (x)}"_ defined on the circle is
said to be family of good Kerndl if it satisfies the following property
1) foral n>1 _j K, (X)dx=1

2) Thereexist M >0 Such that for n>1
X)| dx < M

3) forevery 6>0, [ |K,(x)|dx>0 asn—w

5S‘X‘Sﬂ

Convolution : Let f and g be 2z periodic integrable functions then
the convolution of function fand g on interval [-z,7]is denoted

and defined as
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(f+a)(x)=5- ] 1 (¥)a0-y)dy

OR
1

(F+g)(x) -

[" f(x-y)a(y)dy

-

Note: (f=g)=(g=f)

Theorem : Let {K }" be afamily of Good Kernels and f is an
integrable periodic function defined on the circle then

lim(f =K, )(x)=f (x) whenever, f iscontinuousat x.

N—o0

If f iscontinuous everywhere then the above limit is uniform.

Proof : If e>0 and f is continuous at x then we can choose §, SO
that |y <&

= |f(x-y)-f(x) <e 1)

Consider,
1

(F*K)()=f (=5 Ko(y) F(x=y)dy—f(x)
(Definition of convolution)

As K_isagood Kernel:>i.[” K,(y)dy=1

(K :_I K. ( y——f I K, (

1

:E (Y)[ f(x=y)-f(x)]dy

(1K) I “ >[f<x—y>—f<x>dy]\

1
SZ (Y)||f (x=y)—f(x)|dy
)y
<2 [ om0
+i ||f X y—f(x)|dy




25

Note that
lY|<6=>-6<y<é

S<ly|l<n=>-r<y<-6 & S<y<n

2B
K, (y)|dy+==

T

.'.|(f*Kn)(x)—f(x)|$§I

ly|<s

Ko(y)dy (2

s<lyl<n

Clearly, 1% term is bounded by EZ—M (by 2™ property of good
T

Kernel) and by 3" property of Good Kernel for large value of n, 2™
term will belessthan <.

Hence for some constant C we have, |(f K, )(x)— f (x)<Ce
=(f*K,)(x)> f(x) a n-oow.
If f iscontinuous everywherethenisit uniformly continuous.
Hence, & can be chosen independent of x which proves desired
conclusion.
fxK, > f
e lim(f*K )(x)=f(x)

N—o0
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DIRICHLET KERNEL

Unit Structure
3.1 Dirichlet’s Kernel
3.2  Properties of Dirichlet’sKernel

3.3 Dirichlet Theorem on point wise convergence of Fourier
series

3.1 DIRICHLET'SKERNEL :

We have complex form of a Fourier series expansion of a periodic
function f of aperiod 2z defined on [-7,7].

f(0)= 3 f(n)e” @

The N™ partial sum of Fourier series expansion of a series (1) is
denoted and defined as,

S.F(0)= Y f(n)e" @

We have Fourier series coefficient.
£ 1 (7 —in
f(n)=zf_ﬂ f(¥)e™dy A3

Using equation (3) in equation (2) we have,

S f()=2

n=-N

I_” f(¥)e™dy v

[ f(w)emar) &

M= =D ¥

(j f (\P)e‘““’@’d\}')

.S f(0) =ii [ f (lp)e'i””-f”dtp)
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Put ¥-0=0, d¥ =do
When¥=-r7, ®=-7-0
When¥Y=n , ®=7-0

n—0

1 N
f(0)=— f(0+D)e™dDd
S(0)=5.2 [ f(o+a)e
Since fis periodic function of period 2x
Zj (0+®)e™dd

S.1(0)= 22

where D, Z e (5)

£ (0+0)D, (0)dd (4)

and it is known asNth Dirichlet Kerndl.

Equation (4) represents N™ partial sum of Fourier series in terms of
Dirichlet Kernel.

3.2 PROPERTIES OF DIRICHLET'SKERNEL :

Theorem 1: The N Dirichlets s kernel is given by

N 'n(N +;jd)
Z |nd>

1
sn—®
2
Proof : We have
z mcD
( e 4 g NP L gtNA e e e e
=™ (1+€ +™ ...+ e+ M L dNAT | e

The above series is a geometric series with first term a=1 and
common ratio =r =€°, vr#1.
we have

S

K+l 1
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e -1

i \ 2N+1
: e’ -1
Dy (@)= [()—]
i(N+)D>

- D, (@)= (%J

Multiply Numerator as well as Denominator by e’
(ei(Nﬂ)cb _giNe J R

g _1 Sio/2

Dy (@)= :

ei(N-v—%)(b 3 e—i(N+%]CD

%2 _

efi(D/Z

2
Dy (q)) T g2 _gion
2
1
sn(N+j®
2 e’ -e
Dy (®)=— 1 { 5 =sn®}
sn§®

Theorem 2: Suppose that fis periodic and integrable then n™

partial sum of Fourier series expansion of f isgiven by

S (1) == [ D (=) F (M) =Dy (1) f (x-y) &y

e S,(1)(0)=(Dy* 1)(x)=(F*D,)(x

Proof : The N™ partial sum of Fourier seriesis given by

S.(N(x)= 3 f(n)e o
where f (n)isaFourier coefficient given by
?(n) :%jﬂ” f(y)e™dy (2

Put (2) in (1) we get

N

S(N0=2( 2 (e e

-N

S(N(9= X[ 1 ()& o) ©

-N
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Since fis periodic function of period 2z defined on the interval

[-.7]

S5 271 (x-2) e
SN = 2] F(x-y)e" @

Put (3) and (4) we get,
1 N

SN =5 ([T )™ ay) =L 3 [ f (x-y)em ay

N

Since D (x) =) e™
-N

S f (X)=%J._ﬂﬂ f (y) N_iNein(x—y) dy=%.|._ﬂﬂ f (X_y)ieiny dy
1

=21t DN(x—y)dy%I_’; f(x-y)Dy(y)dy

. By definition of convolution,

Su (1) (x)=(F Dy )(x)=(Dy * F)(x)
Theorem 3: Zij'” D, (6)d6 =1 where, D, N" Dirichlet Kernel.
)

Proof : We have N"" Dirichilet Kernel

N
Dy (9) = Z e’
n=—N

D, (0)= ZN: (cosn@+isinng)

n=-—N
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Dy (6) = (cos0-+isin o)+[(cos9+is: 10)+(cos(-0)+is ;f(—e))}
+[(cos,20+is,'n2(9)+(cos(—29)+isjn(/ze))}r .........
+| (cosN@+isin X6)+(cos(-N6)+isi A (-N6))]
Dy (6) =1+ 2C0S0 + 2€0520 + ...+ 2cosNO
D, (6)=1+ zzN; cosrd

On Integrating both side from -z to =

[ Dy(0)do=[" 1d6+ 22] cosn 6 do

. 1 i

..Z o

D, (6)do =1
Theorem 4: ["|D (x)|dx>clogN ~ as N-—>cowhere, C is any
constant and Dy, (x) isN™ Dirichlet Kernel

Proof : Step (1)
1 =
Wehave |f|, = EL{

f (x)‘ dx

Similarly |0, ()], =

7; Dy (X)| dx

Since |D, ()| iseven,

2 (x
~[oy (%), =, [P (%) dx

sin(N+1jx

We have, DN(X)=—12
gnix

1 ﬂsin(N+2jx
B Ol = [, =g = o
SN—X
2
X

Put —=
5 y

- dx=2dy
When x=0, y=0
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When x=r, yz%

et

~|Dy (%)

2 7%
—I/

T o

sin(2N+1

u‘dy L)
siny

Siny can be approximated asy

i.e. siny=y

dy+o(1)

‘ 2 (mlSN(2N+1)y
[ (0] -2 2

Step (2) :
Put (2N+1)y=t

(2N +1)dy = dt
When y=0, t=0

when y=54, 1= 201

2N+1 sint

57
. _2 t | d
“[Bu(x) _71 { I EEIP TP R

2 T
2 SN G+ o(1)
T %

—|dt+0(1)

When t:%(K+1)7r . S=

N



K )
+ -
2

We have,
sins if Kiseven{sin(S+nz)=sinS}
sin(8+ﬁj— nr
2 coss if Kisodd {sin(8+7]:cos}

sins if Kiseven
U (S)= o
coss if Kisodd

©)
T k=09 S+—ﬂ

The value S+K—2” can be approximated to K~

SinceOsi—;
K Kz
o S+7
2 2
Kr Krx
A
o< 2 2 _ S
K S K Krx S Krx
2 2 2 2
S
T KzS K?g?
+
2 4
2_2
The maximum vaueof | -+ X7~ |is_~ 2:?
Q 4 K Kz
2 2
2_2
o<S  Km S
Kz 4 ~Kn
2

Also Z% is convergent and Hence bounded.
K=1
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o a7y
-y (%) l=;;£ )/l as+ o)

Si

2
- This equation can be written as
2N
|Dy (x _2 —ju S)ds+o(D) (%)
= K
3) Step (4):

Consider, L:Vzu,((s)ds:f;%sinsdsﬂ if K is even and

J.;%UK (S)ds:fc:%cossdsﬂ if K isodd use thisvaluein (4).

P (=2 3~ 0 +0@
K2

‘ —i ZNi

..||DN(X)||1—7T2KZ:;)K+O(1)

2N
Now we have, Z% =logN

K=0
Py (%), = % logN +0O(1)

-.By using definition of L' nom

X)) dx:%log N +0(1)

X)| dx = % log N +O(1)

j D,

x)| dx>ClogN

Theorem 5: Dirichlet Kernel is not good Kernel.

Proof: By above property of Dirichlet Kernel, the 2" property of
good Kernel fails and hence Dirichlet Kernel is not good Kernel.

3.3 DIRICHLET'STHEOREM :

Statement : The Fourier series of real continuous periodic function
f which has only finite number of relative maxima and minima

converges everywhereto f (and hence converges uniformly)
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OR
Suppose that fis an integrable periodic function that is
differentiable at x = x, then LimSNf(xO): f(%)-

Proof : We have Nth partial sum of integrable periodic function f as

= I )dy

a’[x_x0

f xo)=%f_’;f(xo—y)DN(y)dy

Consider,
S (%)= (%)= [ T (% =) Dy (y) dy=F ().
By property of Dirichlet Kerndl,
S (%)= 1 () =5 [ (- o[ 10D (1))
{% [ Dy(y) dy=1}

T

= (%) DN(y)dy—%fﬂDN(y)f(Xo)dy

1 (j f (% - ) Dy (y)-Dy () f (><0))dy

T2
{7 (£ (6= )= £ () Du ()

as again by property of Dirichlet Kernel.

i sn(N+;jy
Sef (%)= 1 (%)= [ [T (6= f(%)]| ———|&




clearly, sinK N +%j y} is bounded near zero and hence integrable on

[-7,7]. Also 2™ factor g(y) is bounded and hence integrable on

inY
sin
[-7,7] {since fisdiffat x, & lim 4:1}

eo%

Hence it follows that
Suf (%)-f(%)—>0aN->w®

= Im S f (%) = F(%)

:If f is 2z periodic and piecewise smooth on R then show that
ms“f( )= 2[f(0‘)+f(9+)]and hence  show  that

limS, f(0)=f(0) for every 6 where f iscontinuous.

N—

Solution : We have,

Step (1) :
["Dy(@)do=71.... { [" by )dCD=27r}

:EIHDN(@)ch:—
3%TDN(®)M)=@ D

Also IDN (®)dd =7

f(9+) _f(e)
e {D ®)dd = > 2)
Step (2) :

We have N" partial sum of Fourier series

:-j 0+®)D, (®)dd

:%f f(9+CD)DN(CD)dd>+%T[f(9+CD)DN (®)do
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Consider,
1 - +
st(e)—i[f(e )+ f(6")]
zzi _°ﬂf(9+c1>)DN(q>)dq>+ij”f (6+®) D, (@) dd
1) b, (a0 o,
=% °[f(o+®)-1(0)]D, (@)d®+%[f(0+®)—f(0+)]DN (©)do
(4)
Step 3
We have,
ei(N+l) _eiNCD
DN(CD): a® _1
Consider,
J‘j; g(q))|:e|(N+l) |N<I>:|dq)
f(9+$)—1f(9‘) 020
where g(®)= N .
f(0+;)_—1f(0) e

g is well defined function defined on [-z,z] and aso g is smooth

exceptat ® =0
Also, f(6+®)-f(6)=0a ®=0.

Hence, g(®) isin %format ®=0.

-.By applying L' Hospital rule,
f(0+®)—f(07)

)=
' f/ 9+
i (0+@)_F(0)
©0 ie i
Similarly,
_f(o+@)-1f(07)
im (@)= fim ——ga 3
L —o f'(6°
i 10+ ®)=0_ ()
-0 e |

ThusR.H.S. & L.H.S. limit exist.
Hence g is piecewise continuous on [-7,7].
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Step (4) : Using equation (4) we have,
st(e)—l[f (07)+f(6")]

J' g [ (Nt 'N(b}dq)ﬂ——f g [ (N+1)(I>_e7iN<1)i|

[ g(@)[e" —e™ ]do (5)
We have, Fourier coefficient f(n)= —j e™ do
By Riemann Lebesque lemma, f(n)—o as |n| N

Consider
j g(®)(e™* " )do = f (N+1)- f(N)
J' g(® [ {(N+) 'N“’}ddb—m asN —

s lim s, f(0)= z[f(e-)+ f(07)]

whenever if f iscontinuousat 6 then lim S f(0)=f(0)

N—
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FEJER KERNEL

Unit Structure

4.1  Cesaro mean and Cesaro summation
42 Feger'skernd

4.3  Properties of Feer’'skernd

44  Feger'stheorem

4.5  Uniqueness theorem

4.6  Waeirstrass approximation Theorems

41 CESARO MEAN AND CESARO SUMMATION :

Let Co+C,+C,+....+.....= Y C, beaseries of complex numbers.
K=0

Define n” partial sumby S, = Zn:Ck :
K=0

This series convergesto Sif Lim S, =S.

The average of 1% N partial sum is denoted and defined by

o, :3)+S_+S§N+ ..... +Sy4

N-1 0
>'s, iscalled N" Cesaro Mean of the series > C, .
n=0 K=0

Z|~

I.e oy =

If o, convergesto o as N —« then we say that >  C is Cesaro

N=c0

summableto o .

Example: Consider 1-1+1-1+1-1+....= > (-1)°

Partial sum of the sequence {1-1+1-1+1.....} is {1,0,10,....}

which has no limit since partial sum fluctuate between 0 and 1.
So average value o, =¥=%.

Therefore, above series is Cesaro summable to % )
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4.2 FEJER'SKERNEL

The N™ Cesaro mean of Fourier seriesis given by
o f (X)= Sf(x)+Sf (xlzl+....+ Suaf(x)
We have, N™ partial sum of Fourier series given by S, f=1+D,.

. [ £#Dy(X) ]+ f#Dy(X) ]+t F Dy (X)]
(%) d

Oy

4.3 PROPERTIESOF FEJER'SKERNEL

Theorem 1: The N™isFejer’skerne isgiven by
7
1 2
F(x)=—t 1 2)

()
2

Proof : We have,
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Both of above series are in geometric progressive

for 1% series, Common ratio =r = &*,
for 2" series, Common ratio r = e ™
Note that, |r| =1

. ] K n_rK+l_1
-.Using gr =
N N
1 ix eIX _1 ;IX e*IX _1
FN(X)_ __ 2 (eix)_l e (e—ix)_l
2iINsin=Xx
_ 1 -1 || e™-1
2iNsin® eﬁéx(e‘x—l) e%(e"X 1)

_ 1 eV 4e™ -2
(2i)2Nsin X sn>
2 2
— 1 (eiNx+e—iNx_2)
.\2 )
(2|) Nsin %

N i
B 1 ez -e?
Nsinzy2 2
Sinzw
1
Fu(¥)=y §
sin® 2
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Theorem 2: The N Cesaro sum of Fourier series of continuous
periodic function f isgiven by
1

ot ()= [ Fu (-9 F () dy = [ Fu (1) F (x-y) oy

where, F, isN" Fejer’ s kernel.

e o f(X)=(Fy*f)(x)=(f*F)(x)

Proof : We have N™ partial sum of Fourier seriesis given by

1
S f(x :—I Dy (x- y)f(y)dy_z Dy (y) f(x-y)dy
where, D, isN" Dirichlet Kernel.

Taking summation on both side.

N-17

Nz_lajf ZJ.D (x—y)f (y)dy

7T n=0",

1 W \a
—_,[Z;ID (x-y)dy

?Z:Snf (x)=%fﬂ,,n2(; D, (x-y) (y)dy=gj'ﬂﬂ?Z:Dn(y) f (x—y)dy

We have N™ Cesaro sum of Fourier series f o f :%an and also
n=0

we have, Fejer'sKernel F (x)=

1 ¢n

NoNf(x)=zJ‘_ﬂN Fo(x—y) f(y)dy
1 n

=>-IN Fo(y) f(x=y)dy

1

ot (9= [ Fu(x-y) (v dy= [ Ry () T (- y) o
Thus o f (x)=F,* f (x)=f *F(x)

Theorem 3: —j F\ (X) dx=1 where F, (x) isN"is Fejer' s kernel

Proof : N" Fejer' sKernel isgiven by, F, (x)=%
n=0
Now integrating using limit -z torx
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ju N—
RACESTL)
1 N-
S
J._’r Fy (%) —%Nz 21 =%27TN 2

—IF dxl

Hence proved,

Theorem 4: lim Fy(X)dx=0if 0<s <.

N—w
S<|<m

Proof : We have, N" Fejer Kernel

The maximum value of sinzg isone.
Also, sinzgincreasesasx goes away fromthe originin [-z,7].

Hence, F, (x)ﬁ% where 5 <[ <7
NsinzE

= I F dx—>0asN—>oo

S<|<m
Theorem 5: Fejer Kernel F (x) isgood kernel

Proof : Sincewe have
1) Fy(x)=0 v X

2)—j|: x)dx=1

R (%) dx<M
4) forevery 5>0, [ |Fy(x)|dx—>0as N

S<|X<m

Thus Fejer'sKernel is good kernel.
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4.4 FEJER'STHEOREM :

Theorem: If f isintegrable on the circle then Fourier Series of f
is Cesaro summable to f at every point of continuity of f.
Moreover, if is continuous on the circle then Fourier series of f is
uniformly Cesaro summableto f

Proof :

Step (1) : If f isintegrable function defined on the circle then it can
be approximated as a Fourier series

f(x)~ Y a €™

The N™ Cesaro mean of Fourier Seriesis given by
N-1
6 f(X)=—3'S, f(x)
N 7=
Where, S, f(x) is N" Partial sum of Fourier series.

N™ Cesaro mean of Fourier series of f can be written as
convolution

o F(X)=(f* Fy)(x)

where, F, is N" Fegjer kernel

Step(2) :

We have property of good kernel i.e. let {K | beafamily of good
kernel and f isintegrable function defined on the circle then
lim(f*K,)(x)=f(x)

Whenever, f iscontinuousat x.

Moreover, if f is continuous everywhere then above limit is
uniform.

Step(3): Weknow that N™ Fejer kernel F, isgood kernel
. By property mention in step (2) we can write
m (% Fy)(x)=T(x)

= lim o, f(x)=f(x)

Hence, Fourier series of an integrable function defined on the circle
is Cesaro summable to f at every point of continuity Also, by

step(2), if f iscontinuous on the circle then the Fourier series of f
isuniformly Cesaro summableto f .
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Fger’sTheorem: Alternative Form
Alternatively the statement of Fejers theorem may be written as

Statement : If fis continuous and periodic then averages o, f of
partial sum of Fourier series of f converges uniformly to f as

N — o0,
i.e. LimO'Nf(X): f(X)

Proof : Claim: o f > fas N>
i.e. LimaNf(x)= f(x)
We have N" Cesaro mean of Fourier series of f is given by,

)= | Ful(y) f(x-y) oy

Consider,

ot ()= 1 (0= [ R () T oy () oy
:% Fy (y)f(x—y)dy—ifﬂFN(y)f X) dy
[ R y)= 1 ()]

aNf(x)—f(x):%d (y)[ f(x=y)-f(x)]dy
+% Fo(Y)[ f(x=y)-f(x)]dy (1)

For any choice of & such that o<5 <n. By the properties of Fejer
Kernel, the 1% integral,

1

2 M< s

{|f(x—y)—f(x)/|y|<5|} (2)

(y)[ f(x-y)-f(x)]dy has modulus bounded by o Sup

A continuous periodic function is uniformly continuous so given
e>o0, wefixs so small so that the bound of equation (2) is 5 VN.

The modulus of 2 integral - [ R f(x=y)-f(x)]dy is

T Slyl<m

bounded by %Zsupﬂf(y)” [ Ry ®)

S<lyl<m
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For large N, the bound of equation (3) is € 5
Since lim | F(y)dy=0

Slyl<m
Now using equation (1), (2) and (3),
onf(x)-f (X)<§+§:e as N — o

limoy f(x)=f(X)

N—0

Alternative Proof of Fger’'s Theorem

Step 1. We have theorem

Let {K,}  be a family of Good Kernels and f is an integrable
periodic function defined on the circle then

lim(f =K )(x)=f(x) whenever, f iscontinuousat x.

N—o0

If f iscontinuous everywhere then the above limit is uniform.

Step 22 We know that Fejer Kernel is a good kernel and hence by
above theorem, we have

lim(f=F,)(x)=f(x) whenever, f iscontinuousat x.
If f iscontinuous everywhere then the above limit is uniform.

Step 3: We also know that, o f (x)=F = f (x) = f *F ()
Hence by above step 2, we have

limo, f (x)=f (x) whenever, f iscontinuousat x.

If f iscontinuous everywhere then the above limit is uniform.

4.5 UNIQUENESS OF FOURIER SERIES

Theorem : If f isintegrable periodic function defined on the circle
and f(n)=0vn then f=0 at al points of continuity of a
function f .
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Proof : We have N" partial sum of Fourier seriesof f
N A .
S f ()= 2, f(n)e™
n=—N
Since f(n)=0 vn
~ S f(x)=0Vn (1)

i.e. al partial sum of Fourier series of function f are zero
Also, we have N™ Cesaro mean of Fourier series of function f .

aNf(x)=%§Snf (x)

By equation (1)
ouf(x)=0Vn 2

i.e. N Cesaro mean of Fourier series of f are zero we have,
property of Fejer Kernel.

o f(x)=f*F (X)
By equation (2)

f*Fy(x)=0

= f(x)=0 (" Fy>0)

Uniqueness of Fourier Series:

Since Fourier series of a continuous periodic function f converges
to f, the function f is uniquely determined by its Fourier
coefficients.

If f and g are two functions having same Fourier coefficients then
functions f and g are necessarily equal i.e. if f(n)=g(n) then
f:g:O

.. f-g=0 {Byabovetheni.e.if f(n)=0= f =0}

=>f=g

4.6 THE WEIERSTRASS APPROXIMATION
THEOREM :

Statement :

Any continuous periodic function f can be approximated by
trigonometric polynomial.

OR



47

If f is continuous function defined on the interval [-z,7] with
f(-n)=f(n) and > 0then there exist trigonometric polynomial P
suchthat [f(x)—p(x)<e, —t<x<n

Proof :

By Fger's Theorem, if f is continuous and periodic then averages
o f of partia sum of Fourier series of function f converges
uniformly to f .

i.e |oy f(x)-f(x)<e for e>0 -n<x<n

Here, o, f(x) itself proves existence of trigonometric polynomial
P(x).
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POISSON KERNEL

Unit Structure

5.1 Abe mean and Abel summation
5.2  Poisson Kerngl

5.3  Properties of Poisson Kernel

54  Abe summability of Fourier series

5.1 ABEL MEAN AND SUMMATION :

Definition : A series of complex number ick is said to be Abel
k=0

Summable to S if for every 0<r <1 the series A(r)= iCk r* is
convergent and if lrif?A(r):S' The quantity A(r) is c;I:IOed Abel
mean of the series.
Example: consider the Series
(T WY — =3 (-1)(k+1)

k=0

= AX)= 3 (1) (k+1)r*
— 1 _

S (L4r)?

|imA(r)=%

r-1

Hence Series 1-2+3-4+5-6+........ isAbel summableto %.

5.2 POISSON KERNEL

The Poisson kernel is denoted and defined as P (0)= 3 ri"e"

Definition : Let us define Abel Mean of the Fourier series
f(e)z i aneine

N=—w
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where, a, is Complex Fourier coefficient, is given by

AT(0)= Mg e
Since n takes positive and negative integer value, we consider |n|
here. Here f is integrable and |a,| a complex Fourier coefficient

which is uniformly bounded. Hence Series A f(6) converges
absolutely and uniformly for each r, 0<r <1.

Theorem: The Abel Mean can be written as convolution of periodic
integrable function f and the Poisson kernel P (6) as

Af(0)=(f=R)(6)
Proof : We have,

AT(0)=Y rfig e
where, complex Iiourier coefficient

¥ 1 M —in
a,= f(n)=2—njnf(¢)e * do
~AT(0)= i I’n(zijf f(p)e™ d¢Jeine

=3 (Z—ttj f(p)e e d¢j

:2_17c i r‘“‘f f(h)edg

n=-oo

_in N In| ~in(6—¢)
—Zn_jnfw)(nZ_wr e d¢j

since we have, Poisson Kernel P(0)=> r" "

n=o

L
--.Af<e)=ﬁ£f(¢)e(e—¢)d¢

AT(0)=(1+P), (6)=(R* £)(0)

5.3 PROPERTIES OF POISSON KERNEL

1-r?

Theorem 1: If 0<r <1 then Poisson kernel P(6)= >
1-2rcosO+r
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Proof: We have by definition of poisson kernel
Pr(e): i r\n\ einG

Pr(f)):i:r“e‘“9+ir“e“”e (1)
n=0 n=1

Both of above Series are geometric Series.
For 1% Series,
Firsstteem=a=1 and Common Ratio=R = re°

IR=|re"|=|r||e"|<1
Since 0<r <1=|r|<1 &|€°|=1

For 2™ Series,

Firstteam= a=re™ and Common ratio= R=re "
IR/=|re’’|=|r||e"|<1

We have sum of infinite term of geometric Series whose 1% team is a

and common ratioisRisgivenby S, :ﬁ , provided |R/ < 1.

Usethisin equation (1)
1 re "

P(0)=—-

(0)=— 5+

r® 1-re

1-re'+re’’
1-re'® —ré®+r?
B 1-r?

- i0 —i0
1—2r(e|+2ej+r2

1-r2 { é6+eie}
cosezT

2

T 1-2rcos+r?
Theorem 2: The Poisson kernel P (6)>0

Proof:

1-r?
1-2r cosf +r?
Since 0<r<1 = 1-r?>0
Also -1<cos6<1 . Hencein any case

1-2rcosO+r%>0

P(0)= 0<r<1

b

Hence P (0)>0.
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Theorem 3: Zij P(6)d6=1 where P (6) isthe Poisson kernel
n—n

Pr oof:
1-r?
P(0)=
(9) 1—2r cosO +r?
2
jp(e)de j 1or do
1-2rcosO+r?

Since P (6) iseven function
2

jp(e)de 2j do
1- 2rcose+r

Alsowecanwnte

T 127[ 1_r2
P(06)do=2| = do

J;r( ) (Zjl—ZrcosOH2 J

2r cose+r

1)

O'—-.N

By applying contour integration M ethod
Put z=€ = |Z=
dz=i€’ d® =i zd@

dz_de
iz
z+1
i0 -
cose—e ez
2 2
PUtin (1)
f 1-r? dz
I=|P(06)do= -
-[ - (9) -[ 1 iz
-7 (o} Z_{_i
1-2r Z 4y
2
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1 1-r?
:-__[ 2 7 0z
I~ Z-IZ —-r+r-z

1-r?
= rmee
be—rz" +(1+r°)z—r

(2)
To Find poles and residues :

Let —rz’ +(1+r?)z-r =0
12 +z+r°z-r=0
rz(r-z)-(r-z)=o
(rz-1)(r-z)=o0

1
= z=r and z== are poles
r

Since |7 =|r|<1, z=r liesinsidecircle C(|z|:1).

1
2=

1, so z:} liesoutside circle C.
r

By Cauchy Residue theorem,

2
I _Lor x 277 x{lim(z—r)-

i
1-r?

=" x27ix
[ 1-r

=27

2

From (1), [ R(6)do =27

1 ¢=
—\| P(0)do=1
:>27rj—” r()

Theorem 4: For & >0, I

63‘9‘371

P (0)|d0 >0 asr >1

Proof :
1-r?

P(0)=

(6) 1-2r cosd +r?
1-2rcos +r2=(1-r)" +2r (1-cosd)
Asr —1,1-2rcosf+r?=2(1-cosb)

, 0<r<1
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which is bounded as cosé is bounded.

Hence
p(0)< "
(as eapproachesﬁtowards n, cosO decreases)
[ P(o)do<] 132 s0asr—1
5<fo|<n 5

Theorem 5: The Poisson Kernel isagood kernel.

Proof: Since we have proved

1) P(6)>0
2) i]i P(6)do=1
2n 7 '

3)3IM>0 Suchthat v 0<r<1

[[p(o) 0 <M

—T

4) forevery 5>0, [ [R(0)do >0 asr—1

SS‘Q‘STE

Hence Poisson Kernel isagood kernel.

5.4 ABEL SUMMABILITY OF FOURIER SERIES:

Theorem: The Fourier Series of an integrable function on circle is
Abel summable to f at every point of continuity, Moreover, if f is

continuous on the circle then the Fourier series of fis uniformly
Abel summableto f.

Proof: Step 1: We have, Abel mean of the function f(6)which is
approximated by the Fourier series where f is integrable function
defined on thecircle.

f(0)~ Y a, e

AT(0)=3 r"a v
Abel Mean of Fourier Seriesof f can be written as convolution

AT(8)=(f=*R)(0)
Where, P(6) isthe Poisson kernel
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Step 2 : We have property of agood kernel,
Let {K,}", beafamily of good kernel and f isintegrable function
defined on the circle then

lim (f*K,)(x)=f(x)

whenever, f iscontinuousat x. If f is continuous everywhere then
above limit isuniform.

Step 3: We know that Poisson kernel P(6) is a good kernel
Therefore by above property mention in step (2)
Iirr;(f*R)(@):f(G) 0<r<1

=1imA ()= f(6)

Hence, Fourier series of an integrable function defined on the circle
isAbel summableto f at every point of continuity.

Also, by step (2)
If f is continuous on the circle then the Fourier series of f is
uniformly Abel summableto f .

Ex: If P, (6)denotes the Poisson kernel, show that the function

o{P (0
u(r,e):m, 0<r<1, 6eR sdtisfies
00

2 2
() Au=0inthediscwhere o= 0 19,10
orc ror r°ooe
(i) lim u(r,0) = Ofor each 0
r—-l

However uisnot identically zero.

Solution: (i) Wehave P, (6)= i rgn®
On differentiating w.r.t 8, we have

a{I:)f(e)}_ < [N 4in6
— _n;wlnr e

u(r,e):w: i_:winr“eine 1)

o°u 1léu 1 ou

Consider Au=— t—5—
or ror r°oo



55
On differentiating (1) term by term, we obtain

Au=injn(n-1)

Au—{m‘n n—1)/+ n|n|r+ mz) r } (-2l gino

(-2 gno | ] oy oo, ('”)3r‘”‘ ino
r

r

AU = {ln‘n n—1)|+infn/— m} 2 gno
AU =

(ilWehave P (9)= el , 0<r<1
1-2rcosO +r?

u(r.0) = 2RO :i{ 1-r2 }

00 00 |1-2rcosf+r?
(1-r?)(2r sine)
(1-2r cosE)+r2)2
Consider

u(r.0)=-

(1— rz)(Zr sing)

limu(r,0)=lim-

2
r—1 r—1 (1—2rcos€+r2)
limu(r,0)=0
r—-l1

Since 0 <r <1 uisnot identically zero.
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DIRICHLET PROBLEM

Unit Structure

6.1 Laplacian operator and Harmonic functions
6.2  Dirichlet problem for the unit disc

6.3  The Solution for Dirichlet problem

6.4  The Poisson integral

6.1 LAPLACIAN OPERATOR AND HARMONIC
FUNCTIONS:

Two dimensional transient (time dependent) heat equation is given
by

o°u 0°u o du

-t == —

¢ oy kot
where u(x,y,t)isthe temperature at point (x,y) at time t.

Transent means temperature depends on time. The c&k are
physical quantities namely specific heat and thermal conductivity of
the material respectively.

If temperature is independent of time then %:0 and such a

physical situation is known as steady state. Hence above Heat
Equation can be written as

X2 8y2 -
This equation is known as L aplace equation.
L aplace equation can be written as :

0

o°u o
—2+—2:0
ox~ oy

0?0

The Operator A = P + o is known as Laplacian operator.
X

AUu=

The Solution of Laplace equation Au=0 is known as Harmonic
function.
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6.2 DIRICHLET'SPROBLEM FOR UNIT DISC:

Consider unit disc in the plane D ={(x,y) e R*/ x* + y* <1} whose

boundary is unit circle C={(x,y) e R*/x*+y* =1}.

In polar co - ordinate (r,0) with 0<r <1 & 0<0< 2x, we have unit
disc D={(r,0)/0<r <1, 0<6<2n} whose boundary isa unit circle

C={(r.0)/r=1,0<6<2n}.

The boundary value problem Au=0 with u= f(0) at
r=1, 0<0<2r isknown asDirichlet problem inthe unit disc.

2 2
Note: The Laplace equation Au=0 where A:%+% whichisin
X

Cartesian form can be convert in terms of polar form (r,0) as
ou lou 1 é4u

— S+ —— =

o ror r?oe?

. 0> 10 1 0°

|.e.A=—2+——+—2—2
or ror r-o060

6.3 SOLUTION OF DIRICHLET PROBLEM FOR UNIT
DISC:

Problem Statement:
Consider unitdisc D={(r,0)/0<r<1, 0<6<2n}

whose boundary is unit circle

C={(r,0)/r=1,0<0<2n}

The governing steady-state heat equation given by the Laplace
eguation

Au=0

.0 1au 1 d«
e —+- "4+~ —=0 1
or> raor r?o6? (1)

subjected to boundary condition.,
u=f(0) atr=1,0<6<2n 2

Solution: Let us apply separation of variables method to solve
Dirichlet problem.

Let u(r,0)=F(r)G(6) ©)
where, F(r) issome function of r and G(0)is some function of 0
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Using equation (3) in equation (1)

0° 10 1 6°
C(FG)+=(FG)+= 2 (FG)=0
arz( ) rar( ) rzﬁez( )
F"G+1F G+~ FG"=0
r r
F'G+LF' G=— L FG"
r r
Divide both sides by FG
F"G+r1F'G —rleG"
FG  FG
FII+}FI _iZGII
r o __r
F G
rF"+ F' _—G"
rF r’G
rE"+F -G"
F rG
r°F"+rF' _ -G"
F G

which is separation form of given D.E.

Since r and 0 areindependent variables we can write
2 " 1 el
r“rF"+rF _ G . 4

F G

Where L is constant

-G"(0) _,

G(6)

= G"(0)+1G(06)=0

Consider,

= (D?+1)G(0) where, D:% (5)

Consider Auxiliary equation D?*+1=0
=D*=-)
Since G isafunction of 6 and 0<6<2x i.e. G isdefined on a

circlei.e. Gisperiodic of paired 2n
=120

leteA=m" , mez
D*=-m’
D=xmi
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Hence solution of equation (5) can be written as
G(6)=Acosmb+Bsinmo6

Or  G(6)=Ae™ +Be™

where A& B are constants.
Now consider,

rzF"(r)quF'(r):)L
F(r)
r*F"(r)+r F'(r)-AF(r)=0
put r=€* ie z=logr
= r.F'(r)=DF(z)
r’.F"(r)=D(D-1)F(z)

where D :i
d

;
Put these values in equation (7)
D(D-1)F(z)+DF(z)-AF(z)=0
(D*-D+D-X)F(2)=0
(D*-1)F(2)=0
Auxiliary equation

D*-A=0

D2=A=n7

D=+m
o F(x)=Ce™+De ™
where C and D arbitrary constants.

Put Z =logr
F( r )= Cemlogr + De—mlogr

~F(r)y=Cr"+Dr ™"

F(r):Crm+Rm
;

(6)

(7)

(8)

Using equation (6) and (8) in (3) i.e. u(r,0)=F(r)G(06) we have

u(r,0) :(Crm +ij(Aeim9 n Be—ime)
r

Since 0<r<1

(9)

asr—0 then Rm — o and F will be unbounded at center and hence
r

arbitrary constant D =0.
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. Solution (9) can be written as
u(r,0)=Cr"(Ae™ +Be ™)

u(r,0)=Er"e™, mez (10)
where E isnew constant combining all the solutions
u(r,0)= i a rmem (12)

where a,, is arbitrary constant.

Equation (11) gives general solution of Dirichlet problem to find
particular solution we need to find constants a which can be

determined by boundary condition given by equation (2), u= f(0)
ar=1.

S u(10)=Y a,e™ (12)

m=—o0

The above equation is complex form of Fourier series of periodic
function f(0) of period 2r .

Hence, a_ isaFourier coefficient which is given by,

2n
%:%jumymw (13)
0

6.4 THE POISSON INTEGRAL:

Theorem: Let f be integrable function define on the unit circle

then the function u defined in the unit disc given by the Poisson
integral as u(r,0)=(f =P )(0) hasthe following property

1) u has two continuous derivatives in the unit disc and satisfies
Au=0 (i.e. u satisfies Laplace equation)

2) If 6 isany point of continuity of function f then
Iinl1 u(r,0)=f(0)

If f iscontinuous everywhere then thislimitisuniform.

3) If f iscontinuous then u(r,0)is the unique solution to the steady

state heat equation equation in the disc which satisfies above
condition (1) & (2).
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Proof :

Step (1)

Claim : u(r,0) has two continuous derivatives in unit disk and it
satisfies Laplace equation
wehave, u(r,0)=(f=*P)(0)

Fix p<1insdeeachdisc r <p<1 centered at origin.

The Series u Can be differentiated term by term and the
differentiated series is uniformly and absolutely convergent. Thus,
u can be differentiated twice. (Infact, ucan be differentiated
infinitely many times) and since this holds for for al p<1, we can

conclude that u is twice differentiable inside the unit disc.

In polar co- ordinates we have Au:a—+——+—
Put u=(f=*P)(0)
Term by term differentiation givesus Au=0

Step (2) :

Claim :

a) limu(r,0)= f (0), whenever f is continuesat 6.

b) If f is continuous everywhere then above limit is uniform.
We have, property of a good kernel,

Let {K,}" beafamily of good kernel and f is integrable function
defined on the circle then

lim (f*K,)(x)=f(x)

whenever, f is continuous at6. If f is continuous everywhere then
above limit isuniform.

We know that Poisson kernel P(0) is a good kernel Therefore by
above property mention in step (2)
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Iinlw(f*R)(e)zf(e) 0<r<1
=limu(r,0)=f(0)
whenever, f is continuous atx. If f is continuous everywhere then

above limit is uniform.
Hence claim.

Step (3) :
Suppose V(r,0)is another solution of steady state heat equation

Av =0 intheunit disc and convergesto f asr —»1
i.e. Iin;V(r,e):f(G)

Subclaim: V(r,0)=u(r,0)

For each fix r with O<r <1 the function V(r,0)has a Fourier series
expansion

V(r.0)= Z a,(r)e"

1 f —in
an(x):z—njnV(r,e)e °do

Since V(r,0) satisfies Laplace equation
ov 1ov 1 o%v

e —+-—+5——=0 1
o2 ror oo @

Put v=a(r)e" -w<n<w

|n6

3,"(r)é '”9+—an'(r)e'""+—an(r)
an (r) |n6+ an(r) |ne 2 an(r) |n6
3,"(r)+- an(r)— am(r) 0 (2)

The solution of above equation (2) is given by,
a,(r)=Ar"+Br™" ..n=0 {seesolutionof Dirchlet problem}
where A, & B, are arbitrary constants.

To evaluate constant A and B, we observe that A (r) is bounded

because v is bounded
Since,

a,(r)=Ar"+

Since a, (r) bounded B, =0
Hence, B, =0
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Alsoto find A, if we take limit r — 1 Since v converges uniformly
to f, wecanwrite A asaFourier coefficient

1 7 .
=— | f(0)e™do
A ann ()

By similar arguments above formula holds for n=0 Hence, for each
O0<r<1, the Fourier Series of v is given by u(r,0). So by the

unigueness of Fourier series of continuous function, we must have,
v(r,0)=u(r,0)

Note: If u Satisfies Laplace equation Au=0 in the unit disc and
converges to zero uniformly as r -1 then u must be identically
zero. However if uniform convergence is replaced by pointwise
convergence then this conclusion may fail.

Ex 1. Inasemicircular plate of radius 1 cm, the bounding diameter
is kept at 0°C and the circumference is at fixed temperature ugC

until steady state condition revels. Find the temperature distribution
in the semi - circular plate.

Solution : The steady state temperature with the semi - circular plate
isgiven by Laplace equation (Polar form)

2 2
Ju 1ou 18u:o )

+__
o’ ror r? oo

where, u(r,0) represent temperature within semi-circular plate with

boundary condition
u(r,0)=u(r,xt)=0 2
u(1,6)=u, ©)

We have general solution of dirichelet problem as
u(r,0)= i a rmem

=0

This solution may be written as
U(r,e)Ii(Ancosme+Bms'nme)r‘rd (4)

m=0

where A & B, are arbitrary constants.
u(r,0)=0 i.e u=0ato=0

= 0= A, cosO

= A, =0
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putin (4)
u(r,e):iermsinme 5)

Now u(r,m)=0 i.eau=0a6=n
0=B,Sn(mr)r"
= Sn(mr)=0
= Mn=Nnn n=0,1,2,.........
iem=n
Also from (3)
u(L,6)=u, Wherer=1,u=u,
putin (5)
U =Y B,sinmp

m=0
Which represents the sine series and B, represent the Fourier
coefficient of sine series.

Bm:g'[uosinmede
To

B

m

-2y, (cosme]“

1 m

0

S (GO
™m

Put thisvalue of B, in equation (5)
u(r.0)=3 2511 (-1)"] snmer"
= mm

The solution isnot defined at m=0
Bngjuosinmede

TCO
Put m=0
Bozgjuosinmedezo

TCO

.'.u(r,e):i%[l—(—l)m] snmor™

1-(-1)"=0 if miseven
=2 if misodd
4u, & sin[(2m-1)0]r>™t
0)=—"2
u(r.9) T gi 2m-1
Which gives temperature distribution u(r,0) within the semicircular
plate.
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Ex. 2: Solve Dirichlet Problem on unit disc defined by
D={(r,0)/0<r<1, 0<6<2n}

Whose boundary isunit circle C={(r,0)/r=1, 0<0<2r}
Subject to boundary condition u=sin6 on C.

Solution : Consider Dirichlet Problem on unit disc D whose
boundary is unit circle C given by Au=0 subject to u=sin6 onC. .
We have genera solution of Dirichlet problem,

u(r,e):i(Ancosm6+Bmsinme)r”‘ D
Onthebgaondary Cwehaveu=sno ar=1

sin0 =Y (A,cosm0-+B, snmo)
Which is a nIézc(;urier series expansion where, A & B, represents
fourier coefficients.

2n
A, == [ £(0)cosmd do
TCO
127[
=—Isin6005m@d6
o

A, =0 ... { By Orthogonality property of circular function}

2n
B, = [ f(0)snmodo
TCO
2n
=1jgnesnmede=0
7-[:0
2. .
:;J'Osne-sn(rrﬂ)de)

0 m=#1
1 m=1

~B=1 & B,=0 V m=#1
& A,=0 vV m
~u(r,0)=Brsind=rsno

Ex. 3: Find the solution of Dirichelet problem on unit disc D whose
boundary is unit circle C as defined before subjected to boundary
conditions.

£(0)= U, 0<6<m
- —U, n<0<2n
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Solution : We have dirichlet problem Au=0
2 2
\NhaeA;>Q3+}—g+iéﬁ7
o” r o r°oo

onunitdisc D={(r,0)/0<r<1, 0<0<2n}

Whose boundary is unit circle C={(r,0)/r=1, 0<0<2r} subject

to boundary condition

u, 0<Bb<m
f(0)=
-U, 1<0<2n

We have general solution of Dirichlet problem
u(r,e):i(Ancose+ B,snmo)"

m=0
atr=1
u(1,0)=f(0)
- 1(0)=3 (A, cosm0+B, snm)
m=0
which is Fourier Series expansion of f(0) where
Fourier coefficients

2n
we have, A, :1_[ f(6)-cos(m6)de
T

0

m 2n
A, :ljuocosm(ﬂ1 j—pocosmede
Ty T

_&[sinm@}“_&[&'nmer
nl m J, nl m

=0

2n
B, == | £(0)sinm0do
TCO

17[ 127[
=—Iu0§nm6+—j—u0§nmed6
Ty T

_ﬁ[—cosme}“ Uy [—cosmerr

T m 0o T T
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Bo=lsz(e)o.de=o

Also,
1-(-1)*=2 if misodd
=0 if miseven

B - Mo

" (2m+1)n

f(0)= z sm[(2m 1)6]r2m*
4u0 Zsm(2m 1)6] (21
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HILBERT SPACES

Unit Structure

7.1  Hilbert Spaces - Definition and its properties
7.2  Standard examples of Hilbert spaces

7.3 Properties of Hilbert Space

7.4  Cauchy - Schwarz inequality

7.5  Orthonormal basis

7.6 Equivaent characterization. Bessel’'s inequality and
Parseval’sidentity

7.1 DEFINITION: HILBERT SPACE

Definition 1:

Let H be a complex Banach space then H is called Hilbert space if
(X, y> associated to each of two vectors x & ye H in such away that

) (xy)=(v.x)
i) (ax+By,z)=a(x,z)+B(Y.2)
iii) (x,x>=||x|| VX, Y,z eH
for al scaars a, B

Definition 2 :
The vector space with their inner product and norm satisfying :
i) Theinner product is strictly positive definite.
i.e. [x[=0=>x=0

i) The vector space is complete.

i.e. Every Cauchy sequence in the norm converges to a limit in the
vector space, iscalled Hilbert Space.
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Definition 3 :

A set H is called Hilbert Space if it satisfied the following properties
i) H isavector spaceover C(or R?)

i) Hisaninner product space satisfying.
a) (f,g)=(gf) (conjugate symmetry)
b) (af+pg,hy=a(f,h)+pB(g,h) (linearity property)
C) <f,f>20 vfeH, f,g,heH,a,feC

i) Let |f[|=(f,f)"?

|f|=0 if and only if f =0 i.e. Inner product is strictly positive
definite.

iv) The Cauchy - Schwarz inequality and Triangle inequality
Cauchy - Schwarz inequality
(f.a)l <[l

Triangle inequality
[f+al<[t]+]g] vf.geH.

V) Hiscompletein the metric d(f,g)=|f -]

Note : In the above definition of Hilbert space, the Cauchy-Schwarz
inequality and triangle inequality are direct consequence of property
M & (I1).

7.2EXAMPLESOF HILBERT SPACE :

1) Thespace R°
Let X =(%,X,mweee X)

Y =(Yy Yoreowns Yy )
Theninner product of X & Y

(X,Y) = XY+ XY, + ot XY @N
IX]1=(x.%)

:Jﬁ+@+w+ﬁ
Which isusua Euclidean distance .
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2) The space C*
Let Z=(z,2, . Zy)

Then (z,w)=zW, + Z,W, +.....+ Z,W, and
1Z]=(2.2)2 =(2Z +.....+ 2,2,) 2

3) The sequence space (*(Z)
The sequence space ¢*(Z) over C isset of al infinite sequences of
complex number as (....a,,....a,,8, &, 8, ......a,....) such that

Yla <o

nez

Let A=(..a,aya,......)
(

M- (ARt (] <[ Zar]

nez nez

4) The sequence space (*(N)
The sequence space ¢*(N) over C is set of al infinite sequence of
complex number as (a,, a,,......a,,.....) one sided such that Z|ah|2<oo

neN

Let A=(a,a,......)
B=(h.b,.....)
(AB)=Yah,

M- (a A= Saa ] (Sar T

5) Squarelntegrablefunction L*(E).
Let E be measurable subset of R with m(E)> 0. Let L?(E) denote
the space of square integrable function that are supported on E.
i.e. L*(E)={f supported on E such that J'| f (x)|2dx< o}
E
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The norm & Inner product is defined as

(f,g>:£f(x)§(x)dx

iE [f (] ()dx]l—(ﬂf |dx]2

7.3 PROPERTIESOF HILBERT SPACE:

Theorem 1: Let X,Y,ZeH a,pB,y arescaarsthen
) (aX-pY,Z)= ( -B{Y, )

i) (X, ﬂY+yZ> 7
i) (X,BY-yZ)=p
V) (X,0)=0=(0,X

Proof :
i)Consider

(aX=BY,Z)=(aX+(-B)Y,Z)
<

i) (X, BY=YZ)=(X,BY +(-yZ))
=B(XY)+(=r)(X,2)
= F(XY)+ (D7 (X.2)
=B{X,Y)-7(X,Z)
=F(X.Y)-7(X.Z)
iv) Consider (0,X)=(0.0,X)=0(0,X)=0
(X,0)=(0,X)=0=0
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Definition : Orthogonality : Let V be vector space over R(C)with
inner product and associated norm |«|. The two element X and Y are
said to be orthogonal if (X,Y)=0and wewrite X LY .

Theorem 2: The Pythagorean Theorem :
If X & Y eH areorthogonal then | X + Y| = |X|* +[Y|} =X - Y|

Proof :

X +Y||2:(X +Y, X+Y) = (X, X)+{X,Y)+ (Y, X)+(Y,Y)

= X[+ (X, Y)Y X) + Y[
Since X LY . (X,Y)=(Y,X)=0
XY =X v
||X—Y||2=(X—Y,x—Y>=(x,x)-(x,Y>—(Y,X>+(Y,Y>
=[[X[* ~0-0+|v[}

Since X LY

(X,Y)={Y,X)=0

XY =X v

7.4 THE CAUCHY - SCHWARZ INEQUALITY :

Theorem 3: Forany X,YeH
Y= Y]

Proof : Case (i) if Y=0 |Y||=0 and
(X,Y)=(X,0)=0.
and obviously Cauchy - Schwarz inequality holds.
Case (i) If Y=0
For any scalar 4 we have
(X+AY,X+AY)>0 ....... {+ve definite prop.}

(X, X+AY)+2(Y, X +AY)>0...... {Linearity prop.}
(X, XY+ 2 (X, Y)+ (Y, X)+22(Y,Y) >0
IX[F+ 2 (X, Y)Y+ A0, XY +[Af|Y|F >0

Since Y =0 put Az%
y
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pep =0 Oy X o

IvI° IvI° (IvIFY
o)) Y
X[ - 7t 20
I M vl
pxpXf

M
2

I =)

X

Theorem 4: Triangle Inequality :

Forany X,YeH, |[X+Y|<|X]+|Y|

Proof : X +Y["=(X+Y,X+Y)
= (X X)X, Y)+{Y, X) (YY)
({3 X) =X, v v) =)

By Cauchy Schwarz inequality us have, [(X,Y)|<|X| ||
=[0G )+ O <X VX Y]

= XY <X [P+ 20 x| v+

= XY < (X[ ]

= [X+Y[<[X]+[]

Theorem 5: Parallelogram Law

If X,Y e H then
v x =Y = 2] x|+ 2

Proof :
Consider,

[X+Y[*+[X =Y[* = (X +Y, X +Y)+{X =Y, X -Y)
= (X, XY+ (Y)Y, X)+Y,Y)
(XY= (XYY = (Y, X)+ (Y, Y)
=2+ 2|}
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7.5 ORTHONORMAL BASIS:

Definition : A finite or countably infinite subset {g,e,.......} of
Hilbert Space H is said to be orthonormal if

< e)— 1 whenk=/
%710 whenk ¢

and [g=1 vk
i.e. Each ¢ has unit norm and is orthogonal to e whenever k = 7.

Property: Let H be a non-zero Hilbert space so that the class of all
its orthonormal set is non-empty. This classis a partially ordered set
w.r.t. set inclusion relation.

Definition :

An orthonormal set {g}in Hilbert space H is said to be complete if
it is maximal in partial order set i.e. if it isimpossible to adjoin the
vector e to collection {g} in such away that {e e} isan orthonormal
set which properly contains {g}.

Theorem : Every non-zero Hilbert space contains a complete
orthonormal set.

Proof :
We know that

i) Anorthonormal set {e} in Hilbert space H is said to be complete
if itismaximal in partial order set w.r.t. set inclusion relation.
i) Zorn's Lemma states that if P is partially ordered set in which

every chain has an upper bound then P posses a maximal
element.

iii) Since the union of any chain of orthonormal set is clearly an
upper bound for the chain in the partially ordered set of all
orthonormal set.

The above three statements shows that every non-zero Hilbert space
contains complete orthonormal set.
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Theorem : If {g}, isorthonorma and f=> ae eH where sum
isfinitethen || f°=>|a,

|2

Proof :
[ =(f. 1) =(Xas. X ae)
=2.33,(8.8)
=>lal .. {(g.e)=1k=

Orthonormal Basis:
Given an orthonormal subset {ee,...;={g},  of Hilbert Space H

Spans H i.e. Linear Combination of elementsin {e,e,......} aredense
in H and {e,e,....} are linearly independent then we say that
{e.e,.....} isan orthonormal basis for H.

]

, s orthonormal basis for H then

Note : For any feH and {g}

f=>a&, aecC
k=1

i.e. f can be written as linear combination of elementsin{e,e,.....} .

Consider,
<f’ei>:<;ak3<’ ej>
~Yale.e)
k=1
When {for k=j.(e.g)=1& for k= |, <eK,ej>:O}
ie (f.g)=a

Hence, whenever f =iakeK then a =(f.g).
k=1

7.6 EQUIVALENT CHARACTERIZATION :

o0

Theorem : The following property of an orthonormal set {e |,  are
equivaent.

1) Finitelinear combination of elementsin {g },  aredenseinH.

2) If feHand (f,g)=0V j then f=0.
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N
3) If feHand S;f=) ag then §(f)— f as N— oo innorm of
k=1
Hilbert space H.

- 2
4 1 a=(1.e) then |1~ a
k=1

Proof : Step (1) : (1) =(2)
Given : finite linear combination of elements in {ek}oo are dense

k=1
inH.
Let feH and (f,g)=0V ]

Claim: f=0
Proof : Since finite linear combination of elements in {e} " are
dense in H, there exist a sequence {g,}of elementsin H which is

finite linear combination of elements in {g} , such that

|f—g,|]>08sn—>cw.

Since (f,e)=0 Vv j
=(f,g,)=0 vn... {..g, isfinite linear combination of elementsin

{8t

By Cauchy - Schwarz inequality.

Consider,
[ =t £)=(f. f~g.) <[ f[]f -ai|
{(f.f-g,)=(f.F)+(f.-g,)
=(f. 1)=(f.9,)
=(f.f)  {(f.0,)=0f
Letting n— o
[tf=0  {|f-g.]>0asn—o)
[f]=0

=0

Step 2: (2)=(3)
Given feH,(f,e)=0 v then f=0

Also we have S, f =ZN:akeK where, 3, =(f,g).
k=1
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Claim: |S,(f)-f|>0AS N>
Consider,

(f=Su(f).S(F))=(f.Su(F))=(Su(F). S (1))

=Ki1§k<gaﬁewel< _eilakaA% e/>
I SR (g.€8)=1 =k
aa-Faa (07T
=2lal - 2faf
=0

(f-su(f).s(f))=0

= f-S(f) LS(f)
By Pythagorean theorem,
I =t =su (] +su (1)
N
- (0 + 3af

N
=[f 2> [af

K=1
Letting N — oo
i|ak|2 <[ f[* { Thisisknown as Bessel’s Inequality}
K=1
Bessdl’ sinequality implies that series i|ak|2 is convergent.

K=1

Therefore, partial sum {S, ()} forms Cauchy seq. in H.

Since s, (f)-S, (f)H=HKi_lakeK—gakeKH

i aqu N>M

K=M+1

= i la°  whenever N >M

K=M+1
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SinceH iscomplete 3ge H suchthat S, (f)—>g as N— .
Fix j and note that for all sufficiently larger N,

(f-su(f).e)=(1.e)=(s,(1))

=a,~().a8.8)
=3, —q,...(orthonormality)
=0
Since S, ( f)— gwe can write
(f-9,6)=0 V]
=>f-g=0..ccene..n. { By given hypothesis (2)}
=g (f.g)=0Vj =f=0

Hence S (f)—> f as N>
ie|s(f)-f|>0aN->w
Step 3: (3) = (%)

Given f e H SN(f)=ZN:akek

H%U%Wao%NAw

Claim: |f|’ =kz_;|ak|2

N
Wehave | [ |1 -5, (1)f + 3

Letting N — o andusing S, (f)-f|>0as N>

[ =X [af

K=1
Thisis known as Parseval’s | dentity.
Step4: (4) =)

11 =2 la
k=1

Claim : finite ¢.c. of elementsin {e}  aredenseinH.
We have from eguation

11 =l - (Of + Slaf
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as N — oo, we have Parseval’ s identity.
[ =l
K=1

=|f-s,(f)|>0aN->w

0

Since each S ( f) isfinite linear combination of elementsin {e |, .

Hence finite linear combination of elements in {e}  are dense
inH.

Ex 1. Let H be Hilbert Space. Show that for any x,yeH
2 2 . .2 . -2
A% y) =[x+ Y= x= v iy =i x=iy]

Solution:

Consider |x+ y||2 —|x- y||2 +i ||x+iy||2 —i ||x—iy||2
=[x+ [y +{x v)+(y.%)

I+ I = y) = ()|

+H [ {x+iy,x+iy} ]

—i[ {x—iy,x—iy} ]|

=2(X,Y)+2(y, X)+i [||x||2 +(x,iy)+(iy, x) + iy, iy>}
—i [||x||2 +(X,—iy) +(=iy, x) +(-iy, —iy>}

=20x,y)+ 2y ) +i| 4 =T (x V)+ 1 (v, )+ [y |
i P+ 0 y) =iy )+ v
=2(%,¥)+2(y, %)+ (% y) = (¥, ¥) + (% y) = (y,%)
=4(xy)

Ex 2. Let {g,e,,....,e,} beafinite orthonormal set in a Hilbert space
H. If x isany vector in H. Then show that

>l <l

Also show x—i(x,q)q 1% ¢ foreachj.

i=1
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Solution : Consider
2

0< X—Z(x,am
:<x—zl<x,el>el,x—; xej>e]>

LB XECNETYED ACRNETIED AR
= 2xa () z<xe>< xe) e (x

“< X

X qu gle Vj
=1

Ex 3: Let H be Hilbert space. Let {g} be an orthonormal set in H.
Then show that the following conditions are equivalent.

1) {e} iscomplete
2) xL{g}then x=0
3) If xeH then x=>(x.e)g

4) 1f xeH then |x*=Y|(x.e)
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Solution :

Step-1: (1)=(2)
Let {g} becomplete.
Suppose x L e Vi
Sub clam- x=0
Suppose that x =0

Define e=i
I

Clearly (e,g)=0(..xLg)Vi. Thus {ee} is orthonormal set which
properly contains {e}
Which is contradiction to {e} be complete.

Hence our assumption iswrong.
=x=0

Step-11: (2)=(3)
Suppose x Le Vi then x=0

Sub claim: x=>(xe)e

We know that x—> (x,&)e isorthogonal to {g}
By hypothesis, x-> (x,g)g =0

=x=> (x8)8§

Step 111 : (3)=(4)
Supposefor xe H,x=>Y(x,g)g

Sub claim : x|’ =Z|<X’q>|2
Consider |x|*=(xx)

:<Z<X’Q>Q’Z<X’ei>ei’>
=Z<X,%>Z<X’ej><‘%’e;>

j

=Y (x&)(xe)

(--{e} orthonormal set)

=>lxe)f
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Step IV : (4)=(1)
Suppose xe H,[x[* = |(x.q)

Sub claim : {g} iscomplete.

Suppose {g} is not complete then it is proper subset of an
orthonormal set {g,e}. Since e L™ g Vi

Put x=e in above identity.

=d* =X [(ee)
- 202

=0
Thisis contradiction to e is aunit vector
Hence our assumption iswrong.
Thus {g} iscomplete.

Note: Let {g} be complete orthonormal set in Hilbert space H. Let
X be an arbitrary vector in H. Then (x,g) are Fourier coefficients of
x and the expression x=>(x,g)e iscaled Fourier series expansion

of x and the equation, |* = "|(x,¢)|" is called Parseval’sidentity.
(all w.r.t. complete orthonormal set {g} under consideration.)

Ex 4: If {g} , isan orthonormal set in Hilbert space H and if x is
any vector in H then S={g|(x,g) =0} iseither empty or countable.

Solution :

2
For each +ve integer n, consider S ={a |<x,q>|2 >@} We have

Bessdl’ sinequality.
0 2
> fixelf <l
Bessel’sinequality gives us, S, containsat most (n—1) vectors since

S= O S,. Siseither empty or countable.

n=1

Ex 5. Show that a closed convex subset C of a Hilbert space H
contains a unique vector of smallest norm.
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Solution : We recall from the definition in Problem 32-5 that since
C is convex, it is non-empty and contains (x+y)/2 whenever it

contains x and y. Let d = inf {|x|:xeC}. There clearly exists a
sequence {x,} of vectorsin C such that ||x,| —d . By the convexity
of C, (x,+%,)/2 isin C and |(x,+x,)/2|>d, s0 |(x,+x,)[=2d.
Using the parallelogram law, we obtain

=51 = 2" 20 =+ 5,
< 2|+ 2] | - 407
and since 2||x,|* +2||x,|* —4d? — 2d*+2d?~4d? =0, it follows that
{x,} isaCauchy sequencein C. Since H is complete and C is closed
C is complete, and there exists avector x in C such that x, — x. Itis
clear by the fact that ||x| = |lim x,|=lim||x,|=d that x is avector in C

with smallest norm. To see that x is unique, suppose that x' is a
vector in C other than x which also has norm d. Then (x+x)/2 is

also in C, and another application of the parallelogram law yields.

x—x|F

2

X+ X
2

2 2 2
L L
2 2

< Mz + MZ = dz’
2 2
which contradicts the definition of d.
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HILBERT SPACE L*[-x, 7]

Unit Structure
8.1  Hilbert Spaces L*[0,27]or L*[-7,7]

8.2  Existence of orthonorma basis
8.3  Orthonormal basisfor L*[0,2z]or L*[-x, ]

84  Mean Sguare Convergence
8.5 Best Approximation Lemma

8.1 HILBERT SPACE L*[-r,7]

Consider the Hilbert space L*, associated with measure space [0, 2]

where measure is Lebesgue measure and integrals are Lebesgue
integrals. This space essentialy consist of all complex functions f
defined on [0,27] which are Lebesgue measurable and square

integrable.
2z

ie I|f(x)|2 dx < oo
0

Its norm and inner product is defined as | f |, = (IOZ”

(19)= [ 100300

i (x)|2 dx)y2

inx

The function { c

5 } where n=0,+1,+2,.... forms an orthonormal
T

) ) A 27 m=n
basis for H since Ie'”‘x.e"”x dx={ d
0 0 m=#n
. . einx
Thisgivesus e (X)=——,neZ
g n( ) N

1 2n ; .
For any f eL?, the number, C =(f,e)=———| f(x)e™dx gives
y Te (f.e) \/%J.O (%) g
Fourier coefficient of the Fourier series expansion of f given by,

f(x)=% i c.e™.

N=—c0



85
Definition:
The Hilbert Space L*[0,27]or L*[-7,7].

Let R denote set of complex valued Riemann integrable functions
defined on a circle then the inner product and norm is defined as

1

(1.9)= = |t (0jat0)a0 s 1], L]|1 (0)f a0

0 0

Similarly, for interval [-z,7].

(1.0)- = [ 10lo(@)00 and 1], [ X |t (o) eo]

82 EXISTENCE OF ORTHONORMAL BASIS OF
HILBERT SPACE

Theorem : Any Hilbert Space has on orthonormal basis.

Proof : The proof of this theorem is follows from gram Schmidt
process.

Given finite family of elements {f,, f,......, f.} , the span of this

family is set of al elements which are finite linear combination of
elements { f,, f,....., f,} Wedenoteit by span {f, f,...., f,} . Now we

construct a sequence of orthonormal vectorssay g,e,...... such that
span ({e,e,......6})=span {f, f,... f,} Vv nx1.

Let us prove this by induction on n.

Step 1 : By Linear independent hypothesis, f, =0 then we can take
f
€ =
A

found such that span ({g.e,.......g })=span { f,, f,....., f,}.
Claim: span ({g,€,......6.,}) =span { f,, f,..., .}

k
ie g, ="f.,+> ae
=1
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—
D
i
@
S~——"
Il
/\
—
=
i
+
g
)
o]
®
=2

Tohave: (e,,,€)=0 V]
We must have ( ;. /) =—a

This choice of a,,for 1< j<k assure that e, is orthogona to

Moreover, our linear independent hypothesis assure that e, # 0

Hence, the choiceof ¢ , is e, = S
+1

Hence span({e.e,......€ })=span { f,, f,.... f }.
Thus, Every Hilbert space has an orthonormal Basis.

Example: Consider, Hilbert space H. Transform Basis { f,, f,......, f,}
into orthonormal basis where, f,=(1-11),f,=(210), f, =(-1-11).
(Take Euclidean inner product)

Solution:
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k

3) Usng q'(+l k+1 Z

>Z>

g =f,—
=(71%;1
1 2 3
T (r’mm]

8.3 ORTHONORMAL BASISOF 1*[-z,x]:

Theorem 1; The sets {é”x}?:_w& {cosnx}” Uf{sinnx}”  are
complete orthonormal basis for L*[-z,7]. Also the sets {cosnx}’
& {sinnx}” are complete orthogonal basis for L*[0,7].

Proof : Consider, ¥, (x)=¢€™
Let f e LZ[—7T,7T]
Let e>0 (small)

Claim : N™ partial sum of Fourier series of f approximate f in norm
within e when N is sufficiently large.
ie S f-f|<e asN—>w.

We can find 2z periodic function f possessing derivatives of all
order such that ||f - f||<€/3.

Let C, =(2z) (f,¥,)

(e o[ (90 ™ de(20) (1.5}

and C,=(2r)"(f.y,) be Fourier coefficients of f&f
respectively.

We know that Fourier series >.C ¥, — f uniformly.
Hence it convergesto f in norm.

~ N ~
If we take N sufficiently large then Hf -3C¥, <§
N

By Bessal’ sinequality

N 2
\Pn _chl}ln
N

-N
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Consider,
f —icn\yn =(f- f)+( f —iénwn}(ién\yn —icnlynj
_N -N -N -N

Taking norm on both side
Now using triangle inequality.

l-Scoe] |-+ S [Sew. S,
_N -N -N N
e € €
<—+—+—=€
3 3 3

This proves completeness of set {¥ }={e™ in LU’[-m,x].

Completeness of {cosnx}” U{sinnx}"in L*[-z,z] can be derived

]
N=—w0

by completeness of {&™}.

Similarly, completeness of {cosnx} & {sinnx} in L*[-z,7] can be
prove by considering even & odd extension of f eL?[0,2z] to
[-7,x].

Theorem 2. Let H=L*[-z,7] and f (t)=€" for n=0,+1+2,....
and te[-z,7] then {f (t)n=0,£1+2,....}is an orthonormal basis
for L*[-x,x].

Proof :

Step 1: Letsverify {f (t)jn=0,+1+2,.....} isorthonormal

_ 1 T _ 1 T int ~imt
(fn,fm>_—2ﬂ_jﬂfn(t)fm(t)dt_—zﬂ_jﬂe & dt
1 T int -im
=Z_J;et.e tdt
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1 ei(n—m)t T
o i(n—m) y

1 i(n—m)z —i(n-m)z
:m[e< gl

:m[cos(n—m)nﬂsin(n—m);r—cos(n—m)n+isin(n—m)ﬂ]
_2isn(n-m)z
27i(n—m)
_sn(n-mjz
z(n-m)
=0
{Since n#meZ and sinkzr =0 keZ}

.'.<fn,fm>:O, nzm

Now consider,
2 1 % S
Il =(f f) =2 [ L OO
zzi]ieint e—intdt
ﬂ—n
=%[7T+7[]=1
<fn’fn>:1 vn
Hence,
f,f)=0 nzmand|f| =1 WV¥n.
2

Thus, set { f, (t)|n=0,+1+2,......} isorthonormal.
Step 2: Claim: {f (t)|n=0,+1+2,..}isbasisfor H = *[-7,7].

Since {f,(t))n=0,+1+2,...} is linearly independent and it spans
H=L*[-7,z], hence {f (t)n=0+1+2..}is bass for
H = LZ[—7Z',7T].
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1 cosnt sinnt c
T T Jp L2

orthonormal basis for L*[-7,x].

Theorem 3: The set {

Prove of this theorem is ssimilar to above theorem so left as an
exercise

8.4 MEAN SQUARE CONVERGENCE:

Consider space R of integrable functions define on the circle.

Let e (0)=€™, n is an integer then clearly, Set {e} is
orthonormal.
127r _
Consider, (f,e)=—| f(0)e™ do
onsicer, {.6)= | £(6)¢
1271'
o

= f (n)=a, { Fourier coefficient}

f(6)e™ do

where, f(n)or a, is Fourier coefficient of complex Fourier series of
function f.

Consider the N" partial Sum, S,(f)=> ae,
|

n<N
Then orthonorma property of family {e}and the fact that
(f.,e,)=a, givesthat the difference f — S, (f)isorthogonal to e, i.e.
f-S.(f)Le, V|n<N.
Since (f-S,(f).e,)=(f.8)-(S\(f).&)

=%—<%anem,%>

=8,~ . 8, (6.6)

<ewen>=1m=n}

“hTE { =0m=n
=0

Hence, (f - S, (f))isorthogonal to e,, V|n<N

[n<N [n<N

= [f - ahen] isorthogonal to >_ b.e, where, b, is complex.
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Wehave, f=f-> ae+> be,

[n<N [n<N

. By Pythagorean theorem, ||f|| =|f-> ag,

[n<N

+|2 b,

<N

2

when an—b the orthogonal property of famny {e,} ,gives us

Zanen =Y laf".

[n<N [N

=7 -Su (D + X[l

<N

Thisis called mean square approximation.

8.5BEST APPROXIMATION LEMMA :

Statement: If f is integrable function defined on a circle with

f-> ce
[n<N

complex number c¢,. Moreover, equality holds when
c,=a, V[n<N.

Fourier co-efficient a, then |f-S (f)|< for any

Proof :

Consider
->.c&="Ff-> (a,~-b)e where a -b, =c,

N =

f—chen_f—ZanenqLZ

[nj<N [ni<N [n<N

Taking norm on both sides.

f—chen‘ f—Zanen+Z ‘

[n<N [j<N [n<N
Since &, is Fourier coefficient > ae, =S, (f)

[n<N

s gee
Alsowehave f-S (f) isorthogona to » be,

n\<N
[n<N

Hf_zcnen

[n<N
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By Pythagorean theorem.

=[f-su () +| X b,

[n<N

=

[n<N

This statement gives us,

f-> ce
\

n<N

2|t =S (1)]
when c¢,=a, where, a, is Fourier coefficient given.
c,=a,—-b,=b,=0

:>Hf—3“(f)H: f-> ce,

n<N
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RIESZ FISHER THEOREM

Unit Structure:
91 Completenessof L*(R‘)

9.2 Bessd’sinequality for L* [z, z] function

9.3 TheRiesz Fisher Theorem
9.4  Unitary Isomorphism
9.5  Separability of L*[-x,7]

9.1 COMPLETENESS OF LZ(R") )

Theorem : The space L*(R") iscompletein its metric.
Proof : Let {f,}” beaCauchy sequencein L*.

Consider {fnk}; be a subsequence of {f }” with the property

f,. vk>1 (1)
Let f(x)= fm(x)+§;(fnm(x)—fnk(x)) )
and g(x)=f, ()| + gfnm(x)—fnk(x)| 3)
Consider partial sum
S.f(x Z( fy, (%))

and S, g(x | f, (X x)|

The triangle inequality |mpI|esthat

IS (o) <]+ 2]
slezt oy

M Ny
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Letting K > and applying monotone convergence theorem we
have,

2
.|.|g| < oo
Sincek—>w 20

[s@)] <] . ()

- k" partial sum of gisfinite

.. g Issquare summable & hence square integrable

= flof <o
{by (2 & (3)

=|f|<g
2.[|f|2 <0
= fel’(R?)
In particular, the series defining f converges ailmost everywhere and

since (k—l)th partial sum of this series is precisely f, , we have,
f, — f(x) amost everywhere for all x.

Toshow f, — f in *(R?)
Wehave, |f-S (f) <(29)" v k

Applying dominated convergence theorem, we obtain,

f, — f[—0
aS k— .

Since {f,}” is Cauchy sequence for given >0,3 N such that
n,m> N |fn—fm|<€/2.

If n_ischosen, sothat n, > N

f, > <55

. By triangle inequality

[fo=Fl <] fa=fo |+ fa — F| <S5+ S5 =<

|f,— f[ <e whenever n>N

+

Hence sequence {f,} > f in L*(R?)

- ?(R?) iscomplete.
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9.2BESSEL’SINEQUALITY FOR L*[-z,7] :

If f is L2-periodic function then Z|f(”)|2 <[

Proof : Let f-S,(f)=g where S, (f) is N" partia sum of f i.e,

S (f)= ; f(n)e™.
Consider,

(9.8)=(f-S(f).8)

Consider,
1[5 =]

=[S (D +lf
s (1) ¥
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Consider,

s (D) =(su(1),5(1))
f(n)emx,iN f(m)e‘”‘x>

)

Il
/\
| > |
D= 7= LM
—h>
—~~
=)
~—
—h>
—_~
3
N
T
@
2
(0N
3
~~—

Substituting (2) in (1) we get
N . 2
[2= 3] ()
Writing N — oo
e A 2
f(m) <t

2

N=—o0

Thus we proved,

S| <]

9.3THE RIESZ FISHER THEOREM:

Statement : Suppose that f is L?-periodic function then the N™
partial sum of its Fourier Series S ( f) convergestof in L*(I) where

| =[-m,7].

i.e lim|s, (f)-f| =0

N—w
Moreover, 3 f (n)|2 =| f[ { Parseval’sidentity}

Conversely, suppose that {a,}  is two sided complex sequence

which is square summable i.e. Z|an|2<oothen there is unique
functionf in L*(I) that has a, asits Fourier coefficient.

Proof : Step (1) : Let f e L*(1)
Given e>o0 choose a continuous periodic function g such
If-g<e...... (1)

Then |S, (f)-f||, =[Sy (f -g)+S(9)-(f -9)-g],
=|sv(f)-f],<[s\ (f-9)|, +[S: (9)-g, +|a -],
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We have S, ()] <[]

=[sv(f-g)|<|f -

slsv ()= 1], <[t ~al, +]s\ (9)-g], <lg~f],
<[ sy (g)—gH2+Ze ..... from(1)

s (F)- 1], <2e+[s\ ()4,

Since g is continuous periodic function,
~|sv(9)-g|,<e forlargeN

s ()~ f[, <3¢

~[sv(f)-f||, >0asN -

clim s (f)-f[,=0

N—o

Step (2) We have
f-S(f)LS.(f)i.e. f—S,(f)isorthogonal to S (f).
.. By Pythagorean theorem,

I =17 =S (LS (P
Alsowe have |, (1) =3 | (n)

‘2

We get [} =] -5, ()], +2 | (0]

2

Letting N —» o and using Lig;”f -S,(f)[,=0

I1[2=Jf (0

(Thisis known as Parseval’s | dentity)

‘2

Step (3) Conversepart :
Suppose that (a,)”  is square summable two sided sequence of
complex numbers,

Let 1,(x)= Y ae™.

n=—N
The orthonormality of exponential function e, implies that for M<N.
Ifa-fuli= 3 la)f {||f||§ =Y |a, parseval 'sidentity} and a = f .

M <|nj<N

By the assumption of square summability i.e. Z|an|2 <o,



98

The right side of above equation convergesto zeroas M,N - «. i.e.
|fy—ful,>0as N,M - .
~.{ f,}is Cauchy sequencein L*(1).
Let f be the limit
By orthonormality, (fy.,e,)=a, VYN&n
Letting N — oo
Ligt‘]o(fN,en):an vn
~(f,e)=a, Vvn
1 f(x)e™dx=a, Vvn

2r 7

= a,is Fourier coefficient of Fourier series of function f. Also by

uniqueness of Fourier series, we can conclude that there exists
unique f whose Fourier coefficient is a, .

9.4 UNITARY ISOMORPHISM

Unitary Mappings : Suppose H & H’ be two given Hilbert spaces

with respect to inner product (-,-),, & (--),. and corresponding norm

[ & [

A mapping U : H — H'is called unitary mapping if

1) Uislinear

ie. U(af+pg)=aU(f)+pU(g) where o, ae scadas &
f,geH.

2) U ishijection
8) Ut =[fl, e

Note:

1) Since unitary mapping U is bijective, itsinverse U™ :H' > H is
also unitary mapping. (proveit)

2) Propety (3) of unitay mapping implies that
(Uf,Ug),.=(f.,g), vf.geH

Unitary I somorphism : Two Hilbert spaces H & H* are said to be
unitarily equivalent or unitary isomorphic if 3 a unitary mapping
U:H->H.

Note : Unitary isomorphism of Hilbert spaces is an equivalence
relation
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Theorem : Any two infinite dimensional Hilbert spaces are unitary
equivaent or unitary isomorphic.

Proof : If H & H'aretwo infinite dimensional Hilbert spaces.

Consider the mapping U:H — H' defined as if f:iakeK then
k=1
U(f)=g where, g:iake{(, geH' feH.
k=1

Claim: U:H — H' isunitary
1) U(af+ph)=aU(f)+pU(h), f,heH,a,p aescaars.

Let f=> ag, h=>he
k=1 k=1

Consider
U(af +ph) =U(agakeK+ﬁZbKeK]
=U[§ as,+pb,) J
=3 (a3, + )
=Y aad +) phe
- ( a8 )+B(2be)
=aU(f)+pU(h)

2) Claim U isbijective
Clearly, U (f)=U (h)

U(Xa&)=U(2bs)

>a& =2 be
=a =bh VK
= f=h

=U isone-one
For any g=>a€ eH’, we have f=)ageH such tha

U(f)=g=Uisonto.
Clearly U isinvertible
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3) Claim |uf . =] ],

Consider, f =iakeK :>U(f)=iakei
k=1

url,. - Sad

k=1 H’
0 %

- Z|a|f| ..... {By parseval 'sidentity}
k=1

= iakeK ...{againby parseval 'sidentity}
k=1 H

=11,

Hence by (1), (2) & (3) U:H — H' isunitary and hence H & H' are
unitary isomorphic.

Theorem : Suppose f el*[-7,z] then the mapping f —{a,} is
unitary correspondence between L*[-7,z] & square summable
sequence (*(Z).

Proof :
Step (1) : Let H = L*[—x, 7] with inner product

1 G —
(f,g>=z_fﬂf(x)g(x)dx
Let f e Lz[—n,n]
Let [e ], , isan orthonormal basis for H.
f=>as., aeC
k=1
Step (2) : Let H* = ¢*(Z) (sequence space) defined as

a-eC&i|ah|2<oo} with  inner

product.

(ab)=> ah

k=+o0

Step (3) Consider a mapping U:H—>H' such that
f>{a}, feH&{a}eH’

U(XYae)={a}

Claim: U:H — H' isunitary
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1) Sub-claim: U islinear
i.eU(af+pg)=aU(f)+pU(g) o,p scalar f,geH

Let f=>ae, g=> hbe
k=1 k=1

U(af+pg)=U(af+pg)
U(a) ae +BY.be)

U (X (a8 +Bh)e)

{oa +pb}

=a{a+p b}

—aU (f)+BU(g)

2) Sub-claim: U isbijective
i.e. U isone-one and onto.
Clearly, U isone-one
SinceU (f)=U(g)
U(Xae)=U(2hs)
={af={b}
=a, =hb vK
=Y a8 =Y bhe = f=g=Uisone-one

To Prove U isonto
2

© N
Consider, | f —SNf||2: Yae-Yae
k=1 k=1
" 2
= > a&
k=N+1
= > fal
n=N+1
If {a,} < #2(2) then
N M 2
\\Sw(f)—ﬁw(f)\\2=‘2ak%—2akq N> M
k=1 k=1
N 2
=| 2. a&
k=M +1
= > [af <

k=M +1

s (f)-Sy (f)|>0as NM > .
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Hence completeness of L*> guarantee that, there is f € L* such that
|f-Syf|>0aN—>w.

As f has {a,} as its Fourier coefficient we can conclude that
f —{a,} isonto (By the uniqueness of Fourier coefficient)

Hence U is bijective

3) Claim: |Ut],. =[f[,

Consider, [Uf[",. =[a[}.
=(a,.a,)
=2.a,8,
=2 [af

=[£I
Henceby (1), (2) & (3), U :H — H" isunitary mapping.

9.5 SEPARABLE HILBERT SPACE:

Definition : The space H is said to be separable if their exist
countable collection { f,} of elements in the space H such that there

linear combination are dense in space H.

Theorem : A Hilbert Space H is separable if and only if it has
countable orthonormal basis.

Proof : Step 1: Suppose that Hilbert space H is separable.

Claims: Hilbert space H has countable orthornormal basis.
Suppose Hilbert space H has uncountable orthornormal basis say

{ea }aEA

Then |e, —¢,|>1 Va,feA & a#p

:S(ea,%]ﬂS(eﬁ,%j=(D Va,feA&a+f.

Hence there exist an uncountable family of disjoint open sphere with
radius Y.

= H is not separable which is a contradiction to our assumption.
Hence Hilbert space H has countable orthonormal basis.

Step (2) Converse part
Hilbert Space H has countable orthonormal basis
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Claim : Hilbert space H is separable.
Let H has a countable orthornormal basis say {e,} .

Let feH
f=3(f.e)e VicH
n=1
(f.e)=4,
f=>ae

n=1

= feH is a cluster point (i.e. limit point) of set of linear
combination of elements of {e,}.

Since {e,} is complete orthonormal basis, set of linear combination
of elements of {e }contains countable dense set of linear
combination of {e,} with rational coefficients.

Hence H is separable Hilbert space.

Theorem : Hilbert Space L*[-r, 7] is separable.

Proof : Step (1) : Let H = L*[-7, 7]
We know that Hilbert space L*[-z,z]| has an orthonormal basis
{f,In=0,£1,42,.......} .

int

Where, f, (t):e—, neZ,t e[—n,n].

J2r

Since set of integer is countable, hence set of orthonormal basis
{f,|n=0,+1,%2,........} iscountable.

Step (2) : If Hilbert Space H has a countable orthonormal basis then
H is separable.

Step (3) : Hilbert Space L*[-,7| has acountable orthonormal basis.
Hence H is separable.



