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Course Outcomes:

1. Students will be able to understand the Fourier series expansion of a periodic function
and their convergence.

2. Students will be able to grasp properties of the Dirichlet kernel, Fejer kernel, Poisson
kernel and the concept of a good kernel.

3. Students will aware about application of a Fourier series in the solution of the Dirichlet
problem and heat equation.
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kernels, Dirichlet’s kernel is not good kernel.

Unit III: Fejer’s Theorem and applications (15 Lectures)
Cesaro summability, Cesaro mean and Cesaro sum of the Fourier series, Fejer’s Kernel,
Fejer’s kernel is a good kernel, Fejer’s Theorem, Parseval’s identity. Convergence of
Fourier series of an L2 periodic function w.r.t the L2-norm, Riesz-Fischer theorem on
Unitary isomorphism from L2(−π, π) onto the sequence space l2 of square summable
complex sequences.

Unit IV: Dirichlet Problem in the unit disc(15 Lectures)
Abel summability, Abel sum of the Fourier series, The Poisson kernel, The Poisson kernel
is a good kernel, Laplacian, Harmonic functions, Dirichlet Problem for the unit disc,
The solution of Dirichlet problem for the unit disc.The Poisson integral, Applications of
Fourier series to heat equation on the circle.

Recommended Text Books:
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3. G.B. Folland, Fourier Analysis and its Applications, American Mathematical Society,
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1
FOURIER SERIES

Unit Structure

1.1 Periodic function

1.2 Dirichlet’s conditions

1.3 Fourier Series of periodic continuous functions

1.4 Fourier Series of even and odd functions

1.5 Fourier series of periodic functions having arbitrary period

1.1 DEFINITION : PERIODIC FUNCTION :

A real or complex valued function f is said to be periodic with
period 0T  , if     , x andf x nt f x n     .

Example : 1)  sin 2 sinx n x 

2)  cos 2 cosx n x 

hence sin x and cos x are periodic function with period 2 .

The Orthogonality Relations of Trigonometric functions:

1)

0 , 0,1, 2,....

cos cos 1,2,...

2 0

m n m n

mx nx dx m n

m n









 


     
  



2)

0 , 1, 2,...

sin sin 1, 2,...

0 0

m n m n

mx nx dx m n

m n








 


     
  



3) cos sin 0, , 0,1, 2,...mx nxdx m n




  

4)
0

2
imx inx m n

e e dx
m n



 





  




Definition : Trigonometric Series : A series of the form

0
1 1 2 2cos sin cos 2 sin 2 ......

2

a
a x b x a x b x    

................ cos sin ...........n na nx b nx  

where, 0 1 1 2 2, , , , , ........., , , ..........n na a b a b a b        are constants is called as

trigonometric series.
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1.2 DIRICHLET’S CONDITIONS :

If  f x is a periodic function of period 2 defined in the interval

2C x C    where C is any constant then following condition are
known to be Dirichlet’s conditions

i) Function  f x and its integrals are finite and single valued in the

interval.
ii) Function  f x has at most finite number of finite discontinuities

in the interval.
iii) Function  f x has at most finite number of maxima and minima

in the interval.

1.3 FOURIER SERIES OF PERIODIC CONTINUOUS
FUNCTIONS :

Definition : If  f x is a periodic function of period 2 defined in

the interval 2C x C    and satisfies the Dirichlet’s conditions
then, function  f x can be represented by the trigonometric series

as  0

1

cos sin
2

n n
n

a
a nx b nx





   . This representation of a function

 f x as a trigonometric series is known as Fourier series

expansion of function  f x and its co-efficients 0 , ,n na a b  are called

Fourier coefficients.

Example :

1)   tanf x x cannot be expanded as a Fourier series in the

interval  0, 2 since tan
2


  .

2)   axf x e where a is constant can be expressed in terms of

Fourier series in any interval.

Note : The Fourier series expansion of  f x converges to

   1

2
f x f x    , i.e.

Right hand limit + left hand limit

2
at the point

of discontinuity.
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Calculation of Fourier coefficients :

Let  f x be a periodic function of period 2 defined in the interval

2C x C    satisfying Dirichlet’s conditions then its Fourier
series expansion is given by

   0

1

cos sin
2

n n
n

a
f x a nx b nx





   (1)

1) To calculate Fourier coefficient 0 ,a integrate equation (1) from

C to 2C  .

 
2 2 2 2

0

1

cos sin
2

C C C C

n n
nC C C C

a
f x dx dx a nx dx b nx dx

      



 
     

 
   

     
2

0
02 0 0

2

C

C

a
f x dx a



 


    

 
2

0

1
C

C

a f x dx






  

2) To determine the Fourier coefficient na multiply equation (1) by

cos nx and the integrate from C to 2C  .

   20

1

cos cos cos sin cos
2

n n
n

a
f x nx nx a nx b nx nx





    

 
2 2 2 2

20

1

cos cos cos sin cos
2

C C C C

n n
nC C C C

a
f x nx dx nx dx a nxdx b nx nx dx

      



 
       

 
   

 
2

1
cos

C

n

C

a f x nx dx






  

3) To determine the Fourier coefficient nb multiply equation (1) by

sin nx and integrate from C to 2C  .

 
2 2 2 2

20

1

sin sin cos sin sin
2

C C C C

n n
nC C C C

a
f x nx dx nx dx a nx nx dx b nx

      



 
       

 
   

 2 2 2

0

1

sin 2cos 1 cos

2 2

C C C

n n
nC C C

nxa nx nx
a dx b dx

n n

    



     
           

  

 
2

1
sin

C

n

C

b f x nx dx
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Thus we have complete set of formulation for Fourier series
expansion of periodic function  f x of period 2 satisfying

Dirichlet’s conditions as

   0

1

cos sin
2

n n
n

a
f x a nx b nx





    

where

 

 

 

2

0

2

2

1

1
cos

1
sin 2

C

C

C

n

C

C

n

C

a f x dx

a f x nx dx

b f x nx dx for C x C




















   

   

        







Note :

(1) If 0C  then 0 2x   and

 

 

 

2

0

0

2

0

2

0

1

1
cos

1
sin 2

n

n

a f x dx

a f x nx dx

b f x nx dx for x














   

   

       







2) If C   then x    then

 

 

 

0

1

1
cos

1
sin

n

n

a f x dx

a f x nx dx

b f x nx dx for x

















 








   

   

       







1.4 FOURIER SERIES EXPANSION OF EVEN AND ODD
FUNCTIONS :

Definition :
The function f is said to be even, if     ,f x f x x c x c      .

The function f is said to be odd, if     ,f x f x x c x c      .
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Example : cos is even function since  cos cos   .

sin is odd function since  sin sin   .

Property :  
 

0

2 if is even

0 if is odd

a

a

a

f x dx f
f x dx

f



   

 
   



Hence Fourier series expansion of even function defined in the
interval x    is given by

 

 

 

0

0

0

0

1

2

2
cos

0

cos
2

n

n

n
n

a f x dx

a f x nx dx

b

a
f x a nx x









 




  

   



      







This series is also called as Fourier Cosine series.

Fourier Series expansion of odd function defined in the interval
x    is given by

 0

0

2
0, 0, sinn na a b f x nx dx




      

 
1

sinn
n

f x b nx x 




     

This series is also known as Fourier Sine series.

1.5 FOURIER SERIES EXPANSION OF A PERIODIC
FUNCTION HAVING ARBITRARY PERIOD:

Let  f x be a periodic function of period 2L defined in the interval

2C x C L   then substitute
x

z
L


 or

zL
x




when z ( )
C

x C d say
L


    

when  2 z 2 2x C L C L d
L


      

Thus  f z is a periodic function of period 2 defined in the

interval 2d z d    .
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Hence Fourier series expansion of a periodic function  f x of a

period 2L defined in the interval 2C x C L   is given by

  0

1

cos sin
2

n n
n

a n x n x
f x a b

L L

 



    
         

    


where the Fourier coefficients are given by

 
2

0

1
C L

C

a f x dx
L



  

 
2

1
cos

C L

n

C

n x
a f x dx

L L


 

     
 



 
2

1
sin

C L

n

C

n x
b f x dx

L L


 

     
 



Note :

If C L  then L x L   . In this case we can verify whether the
given periodic function is given either even or odd.

Hence Fourier series expansion of even function defined in the
interval L x L   is given by

 

 

 

0

0

0

0

1

2

2
cos

0

cos
2

L

L

n

n

n
n

a f x dx
L

n x
a f x dx

L L

b

a n x
f x a L x L

L







  

 
    

 



 
       

 







This series is also called as Fourier Cosine series.

Fourier series expansion of odd function defined in the interval
x    is given by

 0

0

2
0, 0, sin

L

n n

n x
a a b f x dx

L





 
       

 


 
1

sinn
n

n x
f x b L x L

L





 
      

 


This series is also known as Fourier Sine series.
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Examples

Ex. 1. Find Fourier series expansion of  f x x x     and

show that
2

2 2 2

1 1 1
.....

1 3 5 8


    .

Solution :    f x x x f x    

f is even function.

 0

0

2

0 0

2

2 2

2

a f x dx

x
x dx








 

   

 
      

 





 
0

0

2
cos

2
cos

na f x nx dx

x nx dx









   

   





 
 

0 0

0

2 2

2 sin sin

2 1 cos

2 1 12 1
1 1

n

n

x nx nx
dx

n n

nx

n n

n n

 







 

 
   

  

  
       

            



 
0

2
sin

0

nb f x nx dx



  





 

 

0

1

2
1

cos
2

2 1 1
cos

2

n
n

n

n

a
f x a nx

x nx
n













   

  
    





Note that  
0

1 1
2 odd

n if n is even

if n is


   



hence replace n by 2n – 1, we have
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2
1

2
1

2 2
cos 2 1

2 2 1

2cos 2 12

2 2 1

0

n

n

x n x
n

n x

n

Put x


















        



 
 



  





 

 

2
1

2
1

2 2 2

2 2cos0
0

2 2 1

2 2

2 2 1

4 1 1 1
.......

2 1 3 5

n

n

n

n






















 




 



 
      





2 2 2

2

2 2 2

4 1 1 1
.......

1 3 5 2

1 1 1
......

1 3 5 8







  
      

    

Ex 3. Find Fourier series expansion of   2f x x x     .

Evaluate series at x  and find
2

1

1

n n






Solution :

  2f x x

     
2 2f x x x f x    

 f x is even function

 0

3 3
2

0

2

2

2 2 2

3 3

2

3

o

o

a f x dx

x
x dx










  



  

 
     

 







 

2

2

2
cos

2 sin sin
2

2 2
0 sin

n o

o o

o

a x nx dx

nx nx
x x dx

n n

x nx dx
n
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2 2 cos cos
o

o

nx nx
x dx

n n n






   
      

     


 

 
 

 

 
2

12 2 1 sin

12 2 1
0

14

4 1

0

n

o

n

n

n

n

nx

n n n n

n n n

n n

n

b













  
     

    

   
    

    

 
  

 
 




 

The Fourier Cosine series is given by

   
1

cos sin
2
o

n n
n

a
f x a nx b nx





  

 2
2

2
1

4 1
cos

3

n

n

x nx
n

at x










  

 



 
 

 
22 2

2

2 2
1 1

4 1 4 1
1

3 3

n n
n

n nn n

 


 

 

 
     

2 2
2

2
1

2

2
1

4 2

3 3

1

6

n

n

n

n

 












   

 





Ex. 4. Compute Fourier series of   axf x e where a is +ve and

hence prove that

 
2

2 2
1

sinh
1 1 2 1

n

n

a a

a n a









 
    





10

Solution : Let   axf x e

 
1

1

o

ax

a f x dx

e dx

















 

 





 

1 2

2

2
sinh

1
cos

ax a a

n

e e e

a a

a
a

a f x nx dx

  







 












   
    

   

 

  

Let
1

cosax
na I e nx dx



 
   

 
1

cos sin

1
cos cos sin

ax ax

a a
ax

e e
nx nx n dx

a a

e e n
n n nx e dx

a a a



 

 






 


 





 
       

 

 
       

 





(by LIATE)

   
1

1 1 sin cos
a a ax ax

n ne e n e e
nxa n nx

a a a a a

 












  
         

    


   

   

   

   

 

2

2

2

2

2

2

1
1 1 sin cos

11
cos

1 1
cos

1

1

a a ax ax
n n

n

a a ax

n

a a ax

n

a a

n

e e n e e
nx n nx

a a a a a

n n
e e e nx dx

a a a

n
e e e nx dx

a a

n
I e e I

a a

n
I I

a a

 






 




 



 





 




















  
         

    

   
         

   


    


    


  







 

   
2 2

2

1

a a

n

a a

e e

a n
I e e

a a

 

 









 
    
 

2

n

a
a 

 
 

2 2

1
n

aa n 





 

 
     

 2 2 2 2

1 2 1
sinh

a a

n n

a a

e e

aa
e e a

a n a n
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1

sin

1
sin

n

ax
n

b f x nx dx

b e nx dx

















  

  




(by LIATE)

1
sin cos .

1
0 cos .

1
cos

ax ax

n

ax

ax

e e
b nx nx ndx

a a

n
e nx ndx

a

n
e nx dx

a

n

a



























 
     

 

 
   


  










a


 
 

 

 
 

   
 

2 2

1 1

2 2 2 2

1

1 2 1
sinh

n

a a

n n

a a

e e
a n

n n
e e a

a n a n

 

 




 



 



 
 



 
  

 

Thus the Fourier series expansion of f is given by

   

 
 

 
 

 
 

 
 

1

1

2 2 2 2
1

2 2
1

2

2 2
1

cos sin
2

2 1 sinh 2 1 sinhsinh
cos sin

0

2 1sinh
1 sinh

1sinh
1 1 2

sin
1

o
n n

n

n n

ax

n

n

n

n

n

a
f x a nx b nx

a a n aa
e nx nx

a a n a n

at x

aa
a

a a n

aa

a a n

 

  




 






















  

    
       
       

 


 



 
   

  

 









 
 

2

2 2
1

h
1 2 1

n

n

a a

a a n

Hence proved









 
  

  





Ex. 6. Show that    
2

2 2 20

1

1

2
n n

n

a
f x dx a b










      
where &n na b are Fourier coefficients of Fourier series expansion of

periodic function f defined in  , 

(This is known as Parseval’s Identity )
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Solution: The Fourier series expansion of a periodic function  f x

of period 2 defined in the interval x    satisfying Dirichlet’s
conditions is given by

   0

1

cos sin
2

n n
n

a
f x a nx b nx





  

On squaring both sides we get

 
2

2 2 2 2 20

1 1

0 0
1 1 1

cos sin
4

cos sin sin

n n
n n

n n n n
n n n

a
f x a nx b nx

a a nx a b nx a b nx conx

 

 

  

  

  

   

 

  

Assuming term by term integration on R.H.S. of above equation is
permissible.

Integrating both side of above equation with the limit  to  .

 
2

2 2 20

1

2 2
0

1 1

0
1 1

cos
4

sin cos

sin 2 sin cos

n
n

n n
n n

n n n
n n

a
f x dx dx a nx dx

b nx dx a a nx dx

a b nxdx a b nx nx dx

  

  

 

 

 

 



  


 

 
 

 

 
 

      

    

    

  

  

  

Using orthogonality relations we get

   
2

2 2 20

12
n n

n

a
f x dx a b













        

   
2

2 2 20

1

1

2
n n

n

a
f x dx a b










      

This relation is known as Parseval’s Identity.
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2
BASIC PROPERTIES OF FOURIER SERIES

Unit Structure

2.1 Complex form of Fourier series

2.2 Properties of Fourier Coefficient

2.3 Riemann Lebesgue Lemma

2.4 Good kernels

2.1 COMPLEX FORM OF FOURIER SERIES :

Let  f x be a periodic function of period 2 defined in the interval

2C x C    then its Fourier series expansion is given by

   0

1

cos sin
2

n n
n

a
f x a nx b nx






   

We have cos
2

i ie e 






sin
2

i ie e

i

 






  0

12 2 2

inx inx inx inx

n n
n

a e e e e
f x a b

i

 



    
      

   


  0

12 2 2
inx inxn n n n

n

a a ib a ib
f x e e






      
      

    


Setting 0
0

2

a
C

;
2 2

n n n n
n n

a ib a ib
C C

 
   

   0
1

inx inx
n n

n

f x C C e C e







   

  inx
n

n

f x C e
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This is Complex form of Fourier series where, nC is Fourier

coefficient which is given by,
2

n n
n

a ib
C


 .

Using value of Fourier coefficient &n na b  we can simplify for nC as.

   
2 2

1 1
cos sin

2

C C

n

C C

i
C f x nx dx f x nx dx

 

 

  
       

 
 

   
2

1
cos sin

2

C

n

C

C f x nx i nx dx




 
    

 


 
2

1

2

C
inx

n

C

C f x e dx





  

This is general formula for Fourier coefficient in the complex
form.

Note :

1) The Fourier series coefficients nC in complex form is also

denoted by  f̂ n .

i.e.    
2

1ˆ
2

C
inx

n

C

f n C f x e dx





  

2) If  f x is a periodic function of period 2 defined in the

interval x    then    
1ˆ

2
inx

nf n C f x e dx









   .

3) We have
2

n n
n

a ib
C


 and

2
n n

n

a ib
C




 

2

n n n

n n n

n n n

o
o

C C a

C C ib

b i C C

a
C







  

 

  

 

4) Similarly, we can find the Fourier series expansion of a periodic
function  f x of arbitrary period 2L defined in the interval

2C x C L   in complex form of as

 
in x

L
n

n

f x C e
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where,

   
2

1ˆ
2

C L in x

L
n

C

f n C f x e dx
L

 

     

Ex. 1. Find complex form of Fourier series of

 g        

Solution: We have Fourier coefficient in Complex Fourier series
expansion as

 

 2 2

1

2

1

2

1

2

1 1

2

1 1 1
cos

2

in
n

in

in in

in in
in

in in
in in

C g e d

e d

e e
d

in in

e e
e

in in in

e e
e e n i

in in n n











 

 

 




 
 

 


 


 


 



 









 

 

 




 

 

 

 
   

   

 
        


      

 





 

 
 

 

 

1

1

sin cos sin

11
1

2

11
2

2

1

n
n

n

n

n n i n

in in

in

in

  













 
   

 

 
    

   

 
  

  




 

 
1

1

in
n

n

n in

n

g C e

e

in





















 




0At n 

To find the value 0C consider Fourier coefficient in complex form

 
1

2
in

nC g e d





 





 

Put n 

 0

1

2
C g d




 

 
    …….. {since g is odd function}.
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Thus complex form of Fourier series of a given function is given by

 

 

1
1

n in

n
n o

e

in

g at n
















  



We have

 
 

 

1
1

0 0

n in

n
n o

e
g

in

g at n



 










 

   



Since    1 1
n n

   as n varies from -ve to +ve integer.

Hence we can combine nth term & (-nth) term as.

 
 

1
11

1

n in in in
ne e e

in in in

   
  

   
 

   

 

 

1

1

1

1

1

1
cos

n

in in

n

in in

n

ie ie
n

i e e
n

i n
n

 

 












  


    


   sin cosi n n   

 
 

 

 
 

1

1

1

1

sin

1
2 sin

2 1
sin

2 1
sin n

n

n

n

n

i n

i i n
n

n
n

g
n

 





  










 
 


 





  

Note : The function  g         is odd function. Hence we

can expand this function in terms of Fourier Sine series.

Ex. 2. Show that  
22 1

2
n

n

C f x dx









 
where nC is complex Fourier coefficient of Fourier series expansion of

periodic function f defined in  , 

(This relation is known as Bessel’s Inequality. )
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Solution : The complex form of Fourier series expansion of periodic

function  f x is given by   inx
n

n

f x C e




  .

We have property of the complex number
2

,z z zz 

Consider,

     
2N N N

inx inx inx
nn n

N N N

f x C e f x C e f x C e

  

   
        

   
  

         
N N

i m n xinx inx
n nn m

N m n N

f x f x C f x e C f x e C C e


  

       
  

Divide both side of above equation by 2 and integrate within limit
 to  also using

   
1 1

&
2 2

inx inx
nnf x e dx C f x e dx C

 

  
 

 
         and

  01

12

i m n x m n
e dx

m n














We obtains

   

 

 

 

2
2

2 2 2

2 2

1 1

2 2

1
2

2

1

2

N
inx

n
N

N N

n n nn n n
N N

N N

n n
N N

N

n
N

f x C e dx f x dx

C C C C C C

f x dx C C

f x dx C
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22

1

2

1

2

N

n
N

n
n

C f x dx

Letting N we get

C f x dx





















 

  



 

 

where nC is complex Fourier coefficient.

This relation is known as Bessel’s Inequality.
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Note :

1)  2 2 2

0
1

1 1

4 2
n n

n

a a b




 

 
22 1

2
n

n

C f x dx









   .

2) From above Bessel’s Inequality the series
2 2 2

,n n na b C   
are convergent.

2.2 PROPERTIES OF FOURIER COEFFICIENT

The following statements are equivalent
1) 2 Periodic function on R like exponential function.
2) Function defined on the interval of length 2 .
3) Function defined on the unit circle.

Since a point on the unit circle takes the form ie  ,  is real and
unique up to integer multiple of 2 . If F is a function on the circle
then we may define for each real number 

  ( )if F e  

Observe that  2 ( )f f    for all  .

Thus f is periodic of period 2 . The integrability, continuity and
other smoothness properties of F are determined by those of f.

Definition : The Fourier coefficient of an integrable periodic

function f are the complex number  f̂ n defined by the integral.

    
1

,
2

inxf n f x e dx n z






    

The 1L norm of an integrable periodic function f is given by

 
1

1

2
f f x dx



 
  .

The 2L norm of square integrable periodic function f is given by

 

1

22

2

1

2
f f x dx



 

 
  
 

 .

Properties of Fourier Coefficient:

Theorem 1: Suppose that f is an integrable periodic function then

 
1

ˆ ,f n f n Z   .
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Proof:

We have,

   
1ˆ

2
inxf n f x e dx







  

Taking mod on both sides

   

     

 

1ˆ
2

1ˆ
2

1

2

inx

inx

inx

f n f x e dx

f n f x e dx f f

f x e dx































  

     

  



  


since

   

 

2 2

1

1

cos sin cos sin 1

1ˆ
2

ˆ

inxe nx i nx nx nx

f n f x dx f

f n f n Z









    

   

   



Theorem 2: Translation Property : Suppose that f is an

integrable periodic function. Given a in R. Let af translate function

f as    af x f x a  then    ˆ ˆ .ina
af n e f n n Z   

Proof : We have,

   
1ˆ

2
inxf n f x e dx







   

   

        

1ˆ
2

1ˆ
2

inx
a a

inx
a a

f n f x e dx

f n f x a e dx f x f x a





















   

        





Put x a y x a y    

dx dy

when ,x y a    

when ,x y a    

     

 

1ˆ
2

2

a in a y

a a

ina
a

iny

a

f n f y e dy

e
f y e dy
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Since f is periodic function of period 2 .

   

   

1ˆ
2

ˆ ˆ

ina iny
a

ina
a a

f n e f y e dy

f n e f n




 





 
   

 

  



Theorem 3: Suppose that f is continuous function with continuous

derivative 'f then  'ˆ ˆ( )f n in f n n    .

Proof : We have,

   
1ˆ

2
inxf n f x e dx







  

On integrating by parts

 
 

 '1ˆ
2

inx inxf x e e
f n f x dx

in in









 




   
    

   


Since f is periodic function of period 2 , we have

     2f f f       

The 1st term in above equation vanishes

   

 

     

   

'

'

' ' '

'

1 1ˆ
2

1 1

2

1 1ˆ ˆ }
2

ˆ ˆ

inx

inx

inx

f n f x e dx
in

f x e dx
in

f n f n f x e dx
in

f n in f n n































 
     

   

    

   









Notation :

  2

1
f̂ n O

n

 
  

 
 

as n means L.H.S. is bounded by constant

multiple of R.H.S. i.e. there exist constant C >0 such that

  2
ˆ C
f n

n
  large n .

In general,    f x O g x    as x a means for some +ve constant C,

   f x C g x as x a .

Note :    1f x O means f is bounded function.
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Theorem 4: Suppose that function f is twice continuously

differentiable function defined on the circle then   2

1
f̂ n O

n

 
  

 
 

as

n  . So that Fourier series of f converges absolutely &

uniformly to f .

Proof : We have

   
1ˆ

2
inxf n f x e dx







  

Integrating R.H.S. by part

     

     

'

'

1ˆ
2

ˆ2

inx inx

inx inx

e e
f n f x f x dx

in in

e e
f n f x f x dx

in in

















 




 




  
    

    

 
    

  





Since f is periodic function with period 2 . 1st term of R.H.S.

Vanishes

   '1ˆ2 inxf n e f x dx
in




 




  
Once again integrating by parts,

     

     

' ''

' ''

ˆ2

ˆ2

inx inx

inx inx

e e
in f n f x f x dx

in in

e e
f n f x f x dx

in in

















 




 




 
     

  

 
    

  





Since 'f is periodic and

     cos sin cos sin 0inx in ine e e n i n n i n
  


    


      

   

   

2 ''

2 ''

ˆ2

ˆ2

inx

inx

n f n f x e dx

n f n f x e dx





















     

     





     2 ''ˆ2 1inx inxn f n f x e dx e



  


       

   2 ''ˆ2 .n f n f x dx C






      .

where C is a constant and independent of n. and since f is twice

continuously differentiable, ''f is bounded function.

Setting 2C B where, B is bound of ''f
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2

2

ˆ2 2

ˆ

n f n B

B
f n

n

   

 

  2

1
f̂ n o

n

 
   

 
 

as n 

2.3 THE RIEMANN - LEBESGUE LEMMA :

Statement : If f is integrable function defined on a circle then

 ˆ 0f n  as n  .

OR

If f is integrable periodic function of period 2 then  ˆlim 0
n

f n


 .

Proof : Since for any 0 , we can choose a continuous periodic
function g with f g  .

Since  ˆ ,f n f n Z  

   ˆ ˆf n g n f g     (1)

i.e. the Fourier coefficient of function f and g differ by less than .

So that  f̂ n are eventually less than  in modulus if    0g n  as

n  .

If g is continuous periodic function and a then we have

   ag x g x a 

   ˆ ˆina
ag n e g n n Z     (2)

Choose a
n




   ˆ ˆ
in

n
ag n e g n




 

     ˆ ˆ1ag n g n    (3)

We have,

   
1

1
ˆ

2
g n g g x dx



 
   (4)
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Now consider,

     ˆ ˆ ˆ2g n g n g n 

   ˆ ˆ
ag n g n  (by equation (3))

   
1

2
ag x g x dx



 
    (by equation (4))

   
1

2
g x g x a dx



 
    

Put a
n




   
1

ˆ2
2

g n g x g x dx
n







 

 
    

 


As 0n a
n


  

hence,   0g x g x
n

 
   

 

 ˆ2 0g n  as n 

 ˆ 0g n  as n 

By (1),  ˆ 0f n  as n 

 ˆlim 0
n

f n


 

hence proof.

2.4 GOOD KERNELS :

Definition : A family of Kernels   
1n n

K x



defined on the circle is

said to be family of good Kernel if it satisfies the following property

1) for all  
1

1 , 1
2

nn K X dx


 
    

2) There exist M > 0 Such that for 1n 

 nK x dx M



 

3) for every 0  ,  n

x

K x dx o
  

 as n 

Convolution : Let f and g be 2 periodic integrable functions then
the convolution of function f and g on interval  ,  is denoted

and defined as
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1

2
f g x f y g x y dy



 
    

OR

      
1

2
f g x f x y g y dy



 
    

Note :    f g g f  

Theorem : Let  
1n n

K



be a family of Good Kernels and f is an

integrable periodic function defined on the circle then

     lim n
n

f K x f x


   whenever, f is continuous at x .

If f is continuous everywhere then the above limit is uniform.

Proof : If 0 and f is continuous at x then we can choose  , So

that y  .

   f x y f x    (1)

Consider,

          
1

*
2

n nf K x f x K y f x y dy f x


 
    

(Definition of convolution)

As nK is a good Kernel  
1

1
2

nK y dy


 
  

             

     

          

     

1 1
*

2 2

1

2

1
*

2

1

2

n n n

n

n n

n

f K x f x K y f x y dy f x K y dy

K y f x y f x dy

f K x f x K y f x y f x dy

K y f x y f x dy

 

 













 







 







       

      

       

    



 







     

     

1

2

1

2

n

y

n

y

K y f x y f x dy

K y f x y f x dy
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Note that

&

y y

y y y

  

     

    

          

         
2

2 2
n n n

y y

B
f K x f x K y dy K y dy

  
 

  


        (2)

Clearly, 1st term is bounded by
2

M




(by 2nd property of good

Kernel) and by 3rd property of Good Kernel for large value of n, 2nd

term will be less than .

Hence for some constant C we have,      nf K x f x C    

    nf K x f x   as n  .

If f is continuous everywhere then is it uniformly continuous.

Hence,  can be chosen independent of x which proves desired
conclusion.

nf K f 

i.e.      lim n
n

f K x f x
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3
DIRICHLET KERNEL

Unit Structure

3.1 Dirichlet’s Kernel

3.2 Properties of Dirichlet’s Kernel

3.3 Dirichlet Theorem on point wise convergence of Fourier
series

3.1 DIRICHLET’S KERNEL :

We have complex form of a Fourier series expansion of a periodic
function f of a period 2 defined on  ,  .

   ˆ in

n

f f n e 




  (1)

The Nth partial sum of Fourier series expansion of a series (1) is
denoted and defined as,

   ˆ
N

in
N

n N

S f f n e 


  (2)

We have Fourier series coefficient.

   
1ˆ

2
inf n f e d




 


    (3)

Using equation (3) in equation (2) we have,

   

  
  ( )

1

2

1

2

1

2

N
in in

N
n N

N
in in

N

N
in

N N

S f f e d e

f e d e

f e d























 




 




 




   

   

   

 

 

 

      1

2

N
in

N
N

S f f e d
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Put     , d d  
When ,         

When ,       

   
1

2

N
in

N
N

S f f e d
 

 

 



 

  

   

Since f is periodic function of period 2

   
1

2

N
in

N
N

S f f e d



 




 




   

     
1

2
N NS f f D d




 






    (4)

where  
N

in
N

N

D e 



  (5)

and it is known as Nth Dirichlet Kernel.

Equation (4) represents Nth partial sum of Fourier series in terms of
Dirichlet Kernel.

3.2 PROPERTIES OF DIRICHLET’S KERNEL :

Theorem 1: The Nth Dirichlets’s kernel is given by

 

1
sin

2
1

sin
2

N
in

N
N

N

D e 



 
  

   




Proof : We have

 
N

in
N

N

D e 



 

   
 

 

( 1) ( 2) 0 2

2 ( ) ( 2) 2

2

0

2

0

.... .....

1 ...... ......

iN i N i N i i iN
N

iN i i iN nH i i N iN

N
iN in

n

N niN i

n

D e e e e e e e

e e e e e e e

e e

e e

          

        

  



  



         

        









The above series is a geometric series with first term a=1 and
common ratio , r 1ir e     .

we have
1

0

1

1

KK
n

n

r
r

r
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2 1

1

1

1

1

Ni

iN
N i

i N iN

N i

e
D e

e

e e
D

e



 



   



 
   
 
 

 
      

Multiply Numerator as well as Denominator by /2ie 

 
( 1) /2

/2

1 1

2 2

/2 /2

1

i N iN i

N i i

i N i N

i i

e e e
D

e e

e e

e e

     

  

   
       

   

  

 
    

 






 

 

1 1

2 2

/2 /2
2

2

1
sin

2
... sin

1 2sin
2

i N i N

N i i

i i

N

e e

iD
e e

i

N
e e

D
i

   
       

   

  

  



 


 
           

 

Theorem 2: Suppose that f is periodic and integrable then nth

partial sum of Fourier series expansion of f is given by

         
1 1

2 2
N N NS f D x y f y dy D y f x y dy



 
     

i.e.          N N NS f x D f x f D x   

Proof : The Nth partial sum of Fourier series is given by

    ˆ
N

inx
N

n N

S f x f n e


  (1)

where  f̂ n is a Fourier coefficient given by

    
1

2
inyf n f y e dy







   (2)

Put (2) in (1) we get

     
1

2

N
iny inx

N
N

S f x f y e dy e








 
    

 
 

       1

2

N
in x y

N
N

S f x f y e dy








    (3)



29

Put x y z 

dy dz

When ,y z x    

When ,y z x     

       
  

1

2

1

2

N x
inz

N x
N

N x
inz

x
N

S f x f x z e dz

f x z e dz























     

   

 

 

Since f is periodic function of period 2 defined on the interval

 , 

     1

2

N
inz

N
N

S f x f x z e dz









     

    
1

2

N
iny

N
N

S f x f x y e dy


 


     (4)

Put (3) and (4) we get,

         
1 1

2 2

N N
in x y iny

N
N N

S f x f y e dy f x y e dy
 

  



 
 

        

Since  
N

in x
N

N

D x e 





       

       

1 1

2 2

1 1

2 2

N N
in x y in y

N
N N N

N N

S f x f y e dy f x y e dy

f y D x y dy f x y D y dy

 

 

 

 

 

 
 

 

       

      

  

 

By definition of convolution,

         N N NS f x f D x D f x   

Theorem 3:  
1

1
2

ND d



 

 
  where, ND Nth Dirichlet Kernel.

Proof : We have Nth Dirichilet Kernel

 

   cos sin

N
in

N
n N

N

N
n N

D e

D n i n
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   cos 0 sin 0 cos si nND i i         cos si ni      

cos 2 sin 2i





 
 

    cos 2 sini      2 .........

cos sinN i N





  
 

    cos si nN i      
 

 
1

1 2cos 2cos 2 ..... 2cos

1 2 cos

N

N

N
n

N

D N

D n



   

 


 
 

    

  

On Integrating both side from to   

 

   
1

1 2 cos

2 2 0..... cos 0

N

N
n

N

D d d n d

D d n d

  

  

 

 

    

    

  


 

    

      

  

 

 
1

1
2

ND d



 

 
  

Theorem 4:   logND x dx c N



   as N where, C is any

constant and  ND x is Nth Dirichlet Kernel

Proof : Step (1)

We have  
1

1

2
f f x dx



 
 

Similarly    
1

1

2
N ND x D x dx



 
 

Since  ND x is even,

   
1

2

2
N No

D x D x dx



  

We have,  

1
sin

2
1

sin
2

N

N x

D x

x

 
 

 

 
1

1
sin

1 2
1

sin
2

N o

N x

D x dx

x





 
 

  

Put
2

x
y

2dx dy 

When 0, 0x y  
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When ,
2

x y   

 
 

2

1

1
sin 2

1 2
2

sin
N o

N y

D x dy
y





 
 

   

 2 sin 2 12

sino

N y
dy

y






  (1)

Sin y can be approximated as y
i.e. sin y y 

 
 

 2

1

sin 2 12
1N o

N y
D x dy o

y






   

Step (2) :
Put  2 1N y t 

 2 1N dy dt  

When 0, 0y t  

When
2 1

,
2 2

N
y t 

 
    

 

 

 

 
 

2 1

2

1
0

2 1

2

1
0

1
1

22

1
0 1

2

sin
2

(1)
2 1 2 1

2 sin
(1)

2 sin
(1)

N

N

N

N

K
N

N
K

K

t
dttD x o

N N

t
D x dt o

t

t
D x dt o

t















 
 
 

 
 
 







   
 


   


   





 

Step (3) :

Put
2

K
t S


 

dt ds 

When
1

, 0
2

t K S   

When  
1

1 ,
2 2

t K S
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22

1
0 0

sin
2 2

(1)

2

N

N
K

K
S

D x ds o
K

S




 

 
 

    


  (2)

We have,

  sin sin sin

sin
2 cos sin cos

2

s if K is even S n S
K

S n
s if K is odd S






          
 

      
              

  

 
sin

cos
K

s if K is even
u S

s if K is odd

     
 

     

 
 22

1
0 0

2
(1)

2

N
K

N
K

u S
D x ds o

K
S



 

   


  (3)

The value
2

K
S


 can be approximated to

2

K
.

Since
1 1

0

2 2

K K
S

 
 



2 2

2 20

2 2 2 2

0

2 4

K K
S

S

K K K K
S S

S

K S K

 

   

 

 
 

   
    

   





The maximum value of
2 2

4
2

S K

K




 
 

 
 
 

is
2 2

2

S

KK






 
 
 

2 2

2
0

4
2

S K S

K K


 

   

Also
2

1

1

K K




 is convergent and Hence bounded.
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 22

1
0 0

2
(1)

2

N
K

N
K

u S
D x ds o

K
S



 

    


 

This equation can be written as

   
22

1
0 0

2 1
(1)

2

N

N K
K

D x u S ds o

K



 

    (4)

3) Step (4) :

Consider,  2 2 sin 1Ko o
u S ds s ds

 

     if K is even and

 2 2 cos 1Ko o
u S ds s ds

 

     if K is odd use this value in (4).

 

 

2

1
0

2

21
0

2 1
(1) (1)

2

4 1
(1)

N

N
K

N

N
K

D x O

K

D x O
K









   

    





Now we have,
2

0

1
log

N

K

N
K



  21

4
log (1)ND x N O


   

By using definition of 1L nom

  2

1 4
log (1)

2
ND x dx N O



 
    

 

 

2

8
log (1)

log

N

N

D x dx N O

D x dx C N













    

   





Theorem 5: Dirichlet Kernel is not good Kernel.

Proof: By above property of Dirichlet Kernel, the 2nd property of
good Kernel fails and hence Dirichlet Kernel is not good Kernel.

3.3 DIRICHLET’S THEOREM :

Statement : The Fourier series of real continuous periodic function
f which has only finite number of relative maxima and minima

converges everywhere to f (and hence converges uniformly)
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OR

Suppose that f is an integrable periodic function that is

differentiable at 0x x then    0 0lim N
N

S f x f x


 .

Proof : We have Nth partial sum of integrable periodic function f as

     
1

2
N NS f x f x y D y dy



 
   

at 0x x

     0 0

1

2
N NS f x f x y D y dy



 
   

Consider,

         0 0 0 0

1

2
N NS f x f x f x y D y dy f x



 
      .

By property of Dirichlet Kernel,

         0 0 0 0

1 1
( )

2 2
N N NS f x f x f x y D y dy f x D y dy

 

   

 
       

 
 

 
1

1
2

ND y dy


 

 
   
 



       

        
      

0 0

0 0

0 0

1 1

2 2

1

2

1

2

N N

N N

N

f x y D y dy D y f x dy

f x y D y D y f x dy

f x y f x D y dy

 

 









 





 





     

    

     
  

 





as again by property of Dirichlet Kernel.

       

 

0 0 0 0

1
sin

1 2
12 sin
2

1 1
sin

2 2

N

N y

S f x f x f x y f x dy

y

N y g y dy

















  
   

        
 
 
 

  
     

  





where,  
   0 0

sin
2

f x y f x
g y

y
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i.e.  
   0 0 2 2

sin
2

y
f x y f x

g y
yy

 
  

clearly,
1

sin
2

N y
  

  
  

is bounded near zero and hence integrable on

 ,  . Also 2nd factor  g y is bounded and hence integrable on

 ,  {since f is diff at 0x &
0

sin
2lim 1

2
y

y

y
  }

Hence it follows that

   0 0 0NS f x f x  as N 

 0 0lim ( )N
N

S f x f x


 

Ex : If f is 2 periodic and piecewise smooth on  then show that

     1
lim

2
N

N
S f f f   


    and hence show that

   lim N
N

S f f 


 for every  where f is continuous.

Solution : We have,

Step (1) :

    ...... 2
o

N ND d D d


 
 

 
          

 
0

1 1

2 2
ND d






    

 
 

 0

2 2
N

f f
D d



 



 



     (1)

Also  N

o

D d


   

 
 

 
2 2

N

o

f f
D d

 



 

     (2)

Step (2) :

We have Nth partial sum of Fourier series

     
1

2
N NS f f D d





 




    

       
0

0

1 1

2 2
N Nf D d f D d
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Consider,

     

       
0

0

1

2

1 1

2 2

N

N N

S f f f

f D d f D d




  

 
 

 



   

            

 
 

 
 

0

0

1

2
N N

f f
D d D d





 

 

 



 
        
  

 

           
1 1

2 2

o

N Nf f D d f f D d


   
 

 


                

(4)

Step 3 :
We have,

 
 1

1

i N iN

N i

e e
D

e

  




 



Consider,

   1i N iNg e e d




  


     

where  

   

   

0
1

1

i

i

f f

e
g

f f

e

 


 










  
    
 

  
 

   


g is well defined function defined on  ,  and also g is smooth

except at 0 

Also,     0f f    at 0  .

Hence,  g  is in
0

0
form at 0  .

By applying 1L Hospital rule,

 
   

   
0 0

'

0

lim lim
1

lim

i

i

f f
g

e

ff

ie i

 



 






 






 
 




 

Similarly,

 
   

   
0 0

'1

0

lim lim
1

lim

i

i

f f
g

e

ff o

ie i

 



 






 






 
 



 
 

Thus R.H.S. & L.H.S. limit exist.
Hence g is piecewise continuous on  ,  .
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Step (4) : Using equation (4) we have,

     

       1 1

1

2

1 1

2 2

N

o i N i NiN iN

o

S f f f

g e e d g e e




  

 

 

     



   

               

   11

2

i N iNg e e d



   


        (5)

We have, Fourier coefficient    
1ˆ

2
inf n g e d




 


    

By Riemann Lebesque lemma ,  f̂ n o as n  .

Consider,

        

   

     

1

1

1 ˆ ˆ1
2

1

2

1
lim

2

i N iN

i N iN

N
N

g e e d f N f N

g e e d o as N

S f f f













  

  



 



 



       

          

    





whenever if f is continuous at  then  lim N
N

S f 


=  f 
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4
FEJER KERNEL

Unit Structure

4.1 Cesaro mean and Cesaro summation

4.2 Fejer’s kernel

4.3 Properties of Fejer’s kernel

4.4 Fejer’s theorem

4.5 Uniqueness theorem

4.6 Weirstrass approximation Theorems

4.1 CESARO MEAN AND CESARO SUMMATION :

Let 0 1 2
0

...... ..... K
K

C C C C




     be a series of complex numbers.

Define nth partial sum by
0

n

n k
K

S C


 .

This series converges to S if lim N
N

S S


 .

The average of 1st N partial sum is denoted and defined by

0 1 2 1..... N
N

S S S S

N
    



i.e.
1

0

1 N

N n
n

S
N






  is called Nth Cesaro Mean of the series
0

k
K

C



 .

If N converges to  as N  then we say that n
N

C



 is Cesaro

summable to  .

Example : Consider  
0

1 1 1 1 1 1 ..... 1
K

K





       

Partial sum of the sequence  1 1 1 1 1........    is  1,0,1,0,.......

which has no limit since partial sum fluctuate between 0 and 1.

So average value
1 0 1

2 2
N


  .

Therefore, above series is Cesaro summable to
1

2
.
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4.2 FEJER’S KERNEL

The Nth Cesaro mean of Fourier series is given by

 
     0 1 1.... N

N

S f x S f x S f x
f x

N
   



We have, Nth partial sum of Fourier series given by N NS f f D  .

 
     

 
      

   

0 1 1

0 1 1

......

........

N

N

N

N

N N

f D x f D x f D x
f x

N

f D x D x D x
f x

N

f x f F x











               

   


  

where  
     0 1 1......... N

N

D x D x D x
F x

N
  



i.e.    
1

0

1 N

N n
n

F x D x
N





  is called the Nth Fejer’s kernel .

4.3 PROPERTIES OF FEJER’S KERNEL

Theorem 1: The Nth
is Fejer’s kernel is given by

 

2

2

sin
1 2

sin
2

N

Nx

F x
xN

 
 
  
 
 
 

Proof : We have,

 
1

0

1 N

N n
n

F x D x
N





 

1

0

1
sin

1 2
1sin

2

N

n

n x

N x





  
  

   
 
 
 



 

1 1

2 21

0

1 2 2

0

1 1
2 2

0 0

1

1 2sin
2

1 .

1 2sin
2

1

1
2 sin

2

i n x i n x
N

n

ix ix
inx inxN

N
n

ix ixN N
inx inx

n n

e e

iN x

e e e e
F x

iN x

e e e e

iN x
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Both of above series are in geometric progressive

for 1st series, Common ratio ixr e  ,
for 2nd series, Common ratio ixr e

Note that, 1r 

Using
1

0

1

1

KK
n

n

r
r

r











 
   

2 2
1 11

1 1 12 sin
2

N Nix ixix ix

N ix ix

e e
F x e e

e eiN x





     
     
     

    

   2 2

2 2 2 2

2 2 2 2

1 1 1

2 sin 1 1
2

1 1 1

2 sin
2

1 1 1

2 sin
2

iNx iNx

ix ix
ix ix

iNx iNx

ix ix ix ix

iNx iNx

ix ix ix ix

e e

x
iN e e e e

e e

x
iN e e e e

e e

x
iN e e e e








 



 

     
      

      
           

    
 

  

    
 

  

 

 
 

2

2 2

1 2

2 sin sin
2 2

1
2

2 sin
2

iNx iNx

iNx iNx

e e

x x
i N

e e
xi N





 
  

  
 
 

  

 
 

2

2 2
2 2

1

2 sin
2

iNx iNx

NF x e e
xi N

 
  

 

2

2 2

2

1

2sin
2

iNx iNx

e e

x iN

 
 

 
 
 

 

2

2

sin
1 2

sin
2

N

Nx

F x
xN
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Theorem 2: The Nth Cesaro sum of Fourier series of continuous
periodic function f is given by

         
1 1

2 2
N N Nf x F x y f y dy F y f x y dy

 

 


  
      

where, NF is Nth Fejer’s kernel.

i.e.         N N Nf x F f x f F x    

Proof : We have Nth partial sum of Fourier series is given by

         
1 1

2 2
N N NS f x D x y f y dy D y f x y dy

 

   
        

where, ND is Nth Dirichlet Kernel.

Taking summation on both side.

     

   

1 1

0 0

1

0

1

2

1

2

N N

n n
n n

N

n
n

S f x D x y f y dy

D y f x y dy













 

  






  

  

  



         
1 1 1

0 0 0

1 1

2 2

N N N

n n n
n n n

S f x D x y f y dy D y f x y dy
 

  

  

 
  

        

We have Nth Cesaro sum of Fourier series f
1

0

1 N

N n
n

f S
N






  and also

we have, Fejer’s Kernel    
1

0

1 N

N n
n

F x D x
N





  .

     

   

1

2

1

2

N N

N

N f x N F x y f y dy

N F y f x y dy


















     

    





         
1 1

2 2
N N Nf x F x y f y dy F y f x y dy

 

 


  
         
Thus      N N Nf x F f x f F x    

Theorem 3:  
1

1
2

NF x dx


 
  where  NF x is Nth

is Fejer’s kernel

Proof : Nth Fejer’s Kernel is given by,    
1

0

1 N

N n
n

F x D x
N





  .

Now integrating using limit to   
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1

0

1

0

1

0

1

1

1 1
2 2 2

N

N n
n

N

n
n

N

N
n

F x dx D x dx
N

D x dx
N

F x dx N
N N

 

 








  



 












  

 

    

 





 
1

2
NF x dx



 
  
Hence proved,

Theorem 4:  lim 0N
N

x

F x dx
 


 

  if 0    .

Proof : We have, Nth Fejer Kernel

 

2

2

sin
2

sin
2

N

Nx

F x
x

N





The maximum value of 2sin
2

x
is one.

Also, 2sin
2

x
increases as x goes away from the origin in  ,  .

Hence,  
2

1

sin
2

NF x

N






where x  

  0N

x

F x dx
  

   as N  .

Theorem 5: Fejer Kernel  NF x is good kernel

Proof : Since we have
1)   0NF x x 

2)  
1

1
2

NF x dx


 
 

3) M   such that  NF x dx M



 

4) for every  0, 0N

x

F x dx
 


 

   as N 

Thus Fejer’s Kernel is good kernel.
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4.4 FEJER’S THEOREM :

Theorem: If f is integrable on the circle then Fourier Series of f

is Cesaro summable to f at every point of continuity of f .

Moreover, if is continuous on the circle then Fourier series of f is

uniformly Cesaro summable to f

Proof :

Step (1) : If f is integrable function defined on the circle then it can

be approximated as a Fourier series

inx
n

n

f ( x ) a e




 

The Nth Cesaro mean of Fourier Series is given by
N 1

N n
n 0

1
f ( x ) S f ( x )

N





   

Where, NS f ( x ) is thN Partial sum of Fourier series.
thN Cesaro mean of Fourier series of f can be written as

convolution

N Nf ( x ) ( f * F )( x )    

where, NF is thN Fejer kernel

Step(2) :
We have property of good kernel i.e. let  n n 1

K


be a family of good

kernel and f is integrable function defined on the circle then

n
n
lim ( f * )( x ) f ( x )

    

Whenever, f is continuous at x .

Moreover, if f is continuous everywhere then above limit is

uniform.

Step(3): We know that thN Fejer kernel NF is good kernel

 By property mention in step (2) we can write

N
N

N
N

lim ( f * F )( x ) f ( x )

lim f ( x ) f ( x )





     

  

Hence, Fourier series of an integrable function defined on the circle
is Cesaro summable to f at every point of continuity Also, by

step(2), if f is continuous on the circle then the Fourier series of f

is uniformly Cesaro summable to f .
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Fejer’s Theorem: Alternative Form
Alternatively the statement of Fejers theorem may be written as

Statement : If f is continuous and periodic then averages N f of

partial sum of Fourier series of f converges uniformly to f as

N  .
i.e. lim ( ) ( )N

N
f x f x




Proof : Claim : N f f  as N 

i.e. lim ( ) ( )N
N

f x f x




We have Nth Cesaro mean of Fourier series of f is given by,

     
1

2
N Nf x F y f x y dy






 
   

Consider,

       
 

 

       

     

1

2 2

1 1

2 2

1

2

N N N

N N

N

f x
f x f x F y f x y dy F y dy

F y f x y dy F y f x dy

F y f x y f x dy

 

 

 

 






 

 



 

 



      

      

      

 

 



         
1

2
N N

y

f x f x F y f x y f x dy







       

     
1

2
N

y

F y f x y f x dy
 


 

       (1)

For any choice of  such that o    . By the properties of Fejer
Kernel, the 1st integral,

     
1

2
N

y

F y f x y f x dy





      has modulus bounded by
1

2
sup

    /f x y f x y     (2)

A continuous periodic function is uniformly continuous so given

o , we fix so small so that the bound of equation (2) is
2

N  .

The modulus of 2nd integral      
1

2
N

y

F y f x y f x dy
 




      is

bounded by     
1

2 sup
2

N

y

f y F y dy
 


 

  (3)
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For large N, the bound of equation (3) is
2

 .

Since  lim 0N
N

y

F y dy
 




 

Now using equation (1), (2) and (3),

   
2 2

N f x f x
 

    as N 

   lim N
N

f x f x




Alternative Proof of Fejer’s Theorem

Step 1: We have theorem

Let  
1n n

K



be a family of Good Kernels and f is an integrable

periodic function defined on the circle then

     lim n
n

f K x f x


   whenever, f is continuous at x .

If f is continuous everywhere then the above limit is uniform.

Step 2: We know that Fejer Kernel is a good kernel and hence by
above theorem, we have

     lim n
n

f F x f x


   whenever, f is continuous at x .

If f is continuous everywhere then the above limit is uniform.

Step 3: We also know that,      N N Nf x F f x f F x    

Hence by above step 2, we have

   lim N
n

f x f x


 whenever, f is continuous at x .

If f is continuous everywhere then the above limit is uniform.

4.5 UNIQUENESS OF FOURIER SERIES

Theorem : If f is integrable periodic function defined on the circle

and  ˆ 0f n n  then 0f  at all points of continuity of a

function f .
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Proof : We have Nth partial sum of Fourier series of f

   ˆ
N

inx
N

n N

S f x f n e


 

Since  ˆ 0f n n 

  0NS f x n   (1)

i.e. all partial sum of Fourier series of function f are zero

Also, we have Nth Cesaro mean of Fourier series of function f .

   
1

0

1 N

N n
n

f x S f x
N






 

By equation (1)

  0N f x n   (2)

i.e. Nth Cesaro mean of Fourier series of f are zero we have,

property of Fejer Kernel.

   *N Nf x f F x 

By equation (2)

 

   

* 0

0 0

N

N

f F x

f x F



   

Uniqueness of Fourier Series :

Since Fourier series of a continuous periodic function f converges

to f , the function f is uniquely determined by its Fourier

coefficients.

If f and g are two functions having same Fourier coefficients then

functions f and g are necessarily equal i.e. if  f ( n ) g ( n )   then
f g 0 

f g 0   {By above then i.e. if f ( n ) 0 f 0   }
f g 

4.6 THE WEIERSTRASS APPROXIMATION
THEOREM :

Statement :

Any continuous periodic function f can be approximated by

trigonometric polynomial.

OR
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If f is continuous function defined on the interval  ,  with

f ( ) f ( )   and 0 then there exist trigonometric polynomial P

such that f ( x ) p( x ) , x      

Proof :

By Fejer’s Theorem, if f is continuous and periodic then averages

N f of partial sum of Fourier series of function f converges

uniformly to f .

i.e. N f ( x ) f ( x )   for 0 x     

Here, N f ( x ) itself proves existence of trigonometric polynomial

P( x ) .
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5
POISSON KERNEL

Unit Structure

5.1 Abel mean and Abel summation

5.2 Poisson Kernel

5.3 Properties of Poisson Kernel

5.4 Abel summability of Fourier series

5.1 ABEL MEAN AND SUMMATION :

Definition : A series of complex number k
k 0

C



 is said to be Abel

Summable to S if for every 0 r 1  the series A( r ) k
k

k 0

C r




 is

convergent and if
r 1
lim A( r ) S

  . The quantity A( r ) is called Abel

mean of the series.

Example : consider the Series

1-2+3-4+5- --------- k

k 0

( 1) ( k 1)




  

k k

k 0

2

A( x ) ( 1) ( k 1) r

1

(1 r )





    






r 1

1
lim A( r )

4
 

Hence Series 1-2+3-4+5-6+........ is Abel summable to
1

4
.

5.2 POISSON KERNEL

The Poisson kernel is denoted and defined as   n in
r

n

P r e


 



 

Definition : Let us define Abel Mean of the Fourier series

in
n

n

f ( ) a e
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where, na is Complex Fourier coefficient, is given by

n in
r n

n

A f ( ) r a e







   

Since n takes positive and negative integer value, we consider n

here. Here f is integrable and na a complex Fourier coefficient

which is uniformly bounded. Hence Series rA f ( ) converges

absolutely and uniformly for each r , 0 r 1  .

Theorem: The Abel Mean can be written as convolution of periodic
integrable function f and the Poisson kernel  rP   as

     r rA f f P    

Proof : We have,

n in
r n

n

A f ( ) r a e






   

where, complex Fourier coefficient

 in
n

1
a f ( n ) f ( ) e d

2


 



     
 

n in in
r

n

1
A f ( ) r f ( ) e d e

2


  

 

 
        

 
 

n in

n

n in ( )

n

n in ( )

n

1
r f ( ) e d

2

1
r f ( ) e d

2

1
f ( ) r e d

2


 

 


  

 

 
  



 
      

 

   


 
       

 

 



since we have, Poisson Kernel n in
r

n

P ( ) r e






  

      

r r

r rr

1
A f ( ) f ( ) P ( ) d

2

A f ( ) f P P f





        


       



5.3 PROPERTIES OF POISSON KERNEL

Theorem 1: If 0 r 1  then Poisson kernel
2

r 2

1 r
P ( )

1 2r cos r
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Proof: We have by definition of poisson kernel

n in
r

n

P ( ) r e






  

n in n in
r

n n 1

P ( ) r e r e
 

  

 

      (1)

Both of above Series are geometric Series.
For 1st Series,
First term = a =1 and Common Ratio = R = ire 

i iR re r e 1    

Since i0 r 1 r e 1    

For 2nd Series,
First team = ia re   and Common ratio = iR re 

i iR re r e     

We have sum of infinite term of geometric Series whose 1st team is a

and common ratio is R is given by
a

S
1 R

  


, provided R 1 .

Use this in equation (1)
i

r i i

1 re
P ( )

1 re 1 re

 

  
  

 
i i 2

i i 2

2

i i
2

1 re re r

1 re re r

1 r

e e
1 2r r

2

   

  

  

  
 

  




 
  

 
2

2

1 r

1 2r cos r




 

i ie e
cos

2

   
   
 



Theorem 2: The Poisson kernel  rP 0 

Proof:
2

r 2

1 r
P ( ) 0 r 1

1 2r cos r


    

 

Since 20 r 1 1 r 0    

Also 1 cos 1    . Hence in any case
21 2r cos r 0   

Hence   0rP   .
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Theorem 3: r

1
P ( ) d 1

2





   
 

where  rP  is the Poisson kernel

Proof:
2

r 2

1 r
P ( )

1 2r cos r


 

 

2

r 2

1 r
P ( ) d d

1 2r cos r

 

 


      

  

Since rP ( ) is even function
2

r 2

0

1 r
P ( ) d 2 d

1 2r cos r

 




     

  

Also we can write
2 2

r 2

0

1 1 r
P ( ) d 2 d

2 1 2r cos r

 



 
        

  
 

2 2

2

0

1 r
d 1)

1 2r cos r




   
 

By applying contour integration Method
Put iZ e z 1  

idz ie d i z d

dz
d

iz

     

 

i i
1

z
e e zcos

2 2

   


 

Put in (1)
2

r

c

2

1 r dz
I P ( ) d

1 iz
z

z1 2r r
2






     

 
 

  
 
 

 

2

2c

1 r 1
.dz

1 iz
1 r z r

z


   

 
   

 



 

2

2 2
c

(1 r )z 1
.dz

izz r z 1 r z
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2

2 2

c

1 1 r
dz

i z rz r r z


 

  
2

2 2

c

1 1 r
I dz ( 2 )

i rz (1 r )z r


   

   

To Find poles and residues :

Let  2 21rz r z r o    

   

   

2 2

1

1

rz z r z r o

rz r z r z o

rz r z o

z r and z are poles
r

    

   

  

      

Since 1,z r z r    lies inside circle  1C z  .

1
1,z

r
  so

1
z

r
 lies outside circle C.

By Cauchy Residue theorem,

 
   

21 1
2 lim

1z r

r
I i z r

i z r rz




 
        

2

2

1 1
2

1

2

r
i

i r





  





From (1),  rP 2d



  




 
1

1
2

rP d



 

 
  

Theorem 4: For  0, 0 1rP d as r
  

  
 

     

Proof :

 
2

2

1
, 1

1 2 cos
r

r
P r

r r





   

 

   
221 2 cos 1 2 1 cosr r r r      

As 1r  ,  21 2 cos 2 1 cosr r    
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which is bounded as cos is bounded.
Hence

2

r

1 r
P ( )

C


  

(as  approaches towards  , cos decreases)
2

r

1 r
P ( ) d 0 as r 1

C 


         

Theorem 5: The Poisson Kernel is a good kernel.

Proof: Since we have proved

1) rP ( ) 0  

2) r

1
P ( ) d 1

2





   
 

3) M 0   Such that 0 r 1  

rP ( ) d M




  

4) for every 0 , rP ( ) d 0 as r 1
  

      

Hence Poisson Kernel is a good kernel.

5.4 ABEL SUMMABILITY OF FOURIER SERIES:

Theorem: The Fourier Series of an integrable function on circle is
Abel summable to f at every point of continuity, Moreover, if f is

continuous on the circle then the Fourier series of f is uniformly

Abel summable to f .

Proof: Step 1: We have, Abel mean of the function f ( ) which is

approximated by the Fourier series where f is integrable function

defined on the circle.

in
n

n

f ( ) a e






  

n in
r n

n

A f ( ) r a e






   

Abel Mean of Fourier Series of f can be written as convolution

r rA f ( ) ( f P ) ( )    

Where, rP ( )  is the Poisson kernel
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Step 2 : We have property of a good kernel,

Let  n n 1
K




be a family of good kernel and f is integrable function

defined on the circle then

whenever, f is continuous at x . If f is continuous everywhere then

above limit is uniform.

Step 3: We know that Poisson kernel rP ( ) is a good kernel

Therefore by above property mention in step (2)

r
r 1

r
r 1

lim ( f P )( ) f ( ) 0 r 1

lim A f ( ) f ( )





        

     

Hence, Fourier series of an integrable function defined on the circle
is Abel summable to f at every point of continuity.

Also, by step (2)
If f is continuous on the circle then the Fourier series of f is

uniformly Abel summable to f .

Ex: If  rP  denotes the Poisson kernel, show that the function

 
  rP

u r, , 0 r 1, R
 

    


satisfies

(i) u 0  in the disc where
2 2

2 2 2

1 1

r r r r

  
   

  
(ii)

1
lim ( , ) 0
r

u r 


 for each 

However u is not identically zero.

Solution: (i) We have   n in
r

n

P r e


 



 

On differentiating w.r.t  , we have

  r n in

n

P
inr e


 



 





 
  r n in

n

P
u r, inr e


 



 
  


 (1)

Consider
2 2

2 2 2

u 1 u 1 u
u

r r r r

  
   

  

n
n
lim ( f )( x ) f ( x )
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On differentiating (1) term by term, we obtain

 
 

 
 

  

3

n 2 n 1 nin in in

2

3

n 22 in

2

n 23 in

in n in
u in n n 1 r e r e r e

r r

in n in
u in n n 1 r r r e

r r

u in n n 1 in n in r e

u 0

      

  

  

    

  
     

  

    

 

(ii)We have  
2

2

1
, 1

1 2 cos
r

r
P r

r r





   

 

 
  

 
  

 

2
r

2

2

22

P 1 r
u r ,

1 2r cos r

1 r 2r sin
u r ,

1 2r cos r

    
    

    

 
  

 

Consider

  

 

2

21 1 2

1

1 2 sin
lim ( , ) lim

1 2 cos

lim ( , ) 0

r r

r

r r
u r

r r

u r








 




 

 



Since 1r   u is not identically zero.
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6
DIRICHLET PROBLEM

Unit Structure

6.1 Laplacian operator and Harmonic functions

6.2 Dirichlet problem for the unit disc

6.3 The Solution for Dirichlet problem

6.4 The Poisson integral

6.1 LAPLACIAN OPERATOR AND HARMONIC
FUNCTIONS:

Two dimensional transient (time dependent) heat equation is given
by

2 2

2 2

u u u

x y k t

   
  

  

where u ( x, y,t ) is the temperature at point ( x, y ) at time t.

Transient means temperature depends on time. The & k are
physical quantities namely specific heat and thermal conductivity of
the material respectively.

If temperature is independent of time then
u

0
t





and such a

physical situation is known as steady state. Hence above Heat
Equation can be written as

2 2

2 2

u u
0

x y

 
 

 

This equation is known as Laplace equation.
Laplace equation can be written as :

2 2

2 2

u u
u 0

x y

 
   

 

The Operator
2 2

2 2x y

 
  

 
is known as Laplacian operator.

The Solution of Laplace equation u 0  is known as Harmonic
function.
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6.2 DIRICHLET’S PROBLEM FOR UNIT DISC:

Consider unit disc in the plane   2 2 2D x, y / x y 1    whose

boundary is unit circle   2 2 2, / 1C x y x y    .

In polar co - ordinate ( r , ) with 0 r 1 & 0 2       , we have unit

disc  D ( r, ) / 0 r 1, 0 2           whose boundary is a unit circle

 C ( r, ) / r 1,0 2         .

The boundary value problem u 0  with u f ( )  at

r 1 0 2      is known as Dirichlet problem in the unit disc.

Note: The Laplace equation u 0  where
2 2

2 2x y

 
  

 
which is in

Cartesian form can be convert in terms of polar form ( r , ) as
2 2

2 2 2

u 1 u 1 u
0

r r r r

  
    

  

i.e.
2 2

2 2 2

1 1

r r r r

  
    

  

6.3 SOLUTION OF DIRICHLET PROBLEM FOR UNIT
DISC:

Problem Statement:

Consider unit disc  D ( r, ) / 0 r 1, 0 2          

whose boundary is unit circle

 C ( r, ) / r 1,0 2        

The governing steady-state heat equation given by the Laplace
equation

u 0 

i.e.
2 2

2 2 2

u 1 u 1 u
0

r r r r

  
    

  
(1)

subjected to boundary condition.,

u f ( )  at r 1, 0 2      (2)

Solution: Let us apply separation of variables method to solve
Dirichlet problem.

Let u( r, ) F( r )G( )    (3)

where , F( r ) is some function of r and G( ) is some function of 
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Using equation (3) in equation (1)
2 2

2 2 2

1 1
( FG ) ( FG ) ( FG ) 0

r r r r

  
    

  

2

1 1
F" G F' G FG" 0

r r
     

2

1 1
F" G F ' G FG"

r r
    

Divide both sides by FG

2

1 1
F" G F' G FG"

r r
FG FG

   


2

1 1
F" F ' G"

r r
F G

 
 

2

rF" F ' G"

rF r G

 
 

rF" F ' G"

F rG

 
 

2r F" rF ' G"

F G

 
 

which is separation form of given D.E.

Since r and  are independent variables we can write
2r F" rF ' G"

F G

  
   (4)

Where  is constant

Consider,
G"( )

G( )

 
 



G"( ) G( ) 0    

2 d
( D )G( ) here, D

d
      


(5)

Consider Auxiliary equation 2D 0 
2D 

Since G is a function of  and 0 2    i.e. G is defined on a
circle i.e. G is periodic of paired 2

2

2 2

0

let m , m z

D m

D mi
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Hence solution of equation (5) can be written as
G( ) Acos m B sin m     

Or im imG( ) Ae Be     (6)

where A & B   are constants.
Now consider,

2r F"( r ) rF '( r )

F( r )


 

2r F"( r ) r F ' ( r ) F( r ) 0       (7)
zput r e i.e. z log r   

 

 2

r. F '( r ) DF z

r . F"( r ) D( D 1)F z

  

    

where
d

D
dr



Put these values in equation (7)

2

2

D( D 1) F( z ) DF( z ) F( z ) 0

( D D D )F( z ) 0

( D ) F( z ) 0

     

   

  

Auxiliary equation
2

2 2

D 0

D m

 

  

D m 
mz mzF( x ) Ce De   

where C and D arbitrary constants.

Put Z log r

mlog r mlog r

m m

m

m

F( r ) Ce De

F( r ) Cr Dr

D
F( r ) Cr

r





 

  

   

(8)

Using equation (6) and (8) in (3) i.e. u( r , ) F( r )G( )      we have

 m im im

m

D
u( r, ) cr Ae Be

r
   

     
 

(9)

Since 0 r 1  

as r 0 then
m

D

r
 and F will be unbounded at center and hence

arbitrary constant D 0 .
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 Solution (9) can be written as
m im imu( r, ) Cr ( Ae Be )    

m imu( r, ) Er e , m z      (10)

where E is new constant combining all the solutions

m im
m

m

u( r, ) a r e






    (11)

where ma is arbitrary constant.

Equation (11) gives general solution of Dirichlet problem to find
particular solution we need to find constants ma which can be

determined by boundary condition given by equation (2), u f ( ) 

at r 1 .

im
m

m

u(1, ) a e






    (12)

The above equation is complex form of Fourier series of periodic
function f ( )  of period 2 .

Hence, ma is a Fourier coefficient which is given by,

2
im

m

0

1
a f ( ) e d

2


     

 
(13)

6.4 THE POISSON INTEGRAL:

Theorem: Let f be integrable function define on the unit circle

then the function u defined in the unit disc given by the Poisson
integral as ru( r, ) ( f P )( )     has the following property

1) u has two continuous derivatives in the unit disc and satisfies
u 0  (i.e. u satisfies Laplace equation)

2) If  is any point of continuity of function f then

r 1
lim u( r, ) f ( )

   

If f is continuous everywhere then this limit is uniform .

3) If f is continuous then u( r, ) is the unique solution to the steady

state heat equation equation in the disc which satisfies above
condition (1) & (2).
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Proof :

Step (1) :

Claim : u( r, ) has two continuous derivatives in unit disk and it

satisfies Laplace equation
we have, ru( r, ) ( f P )( )    

Fix 1  inside each disc r 1   centered at origin.

The Series u Can be differentiated term by term and the
differentiated series is uniformly and absolutely convergent. Thus,
u can be differentiated twice. (Infact, u can be differentiated
infinitely many times) and since this holds for for all 1  , we can

conclude that u is twice differentiable inside the unit disc.

In polar co- ordinates we have
2 2

2 2 2

u 1 u 1 u
u

r r r r

  
     

  
Put ru ( f P )( )   

Term by term differentiation gives us u 0 

Step (2) :

Claim :

a)    
1

lim ,
r

u r f 


 , whenever f is continues at  .

b) If f is continuous everywhere then above limit is uniform.

We have, property of a good kernel,

Let  n n 1
K




be a family of good kernel and f is integrable function

defined on the circle then

whenever, f is continuous at . If f is continuous everywhere then

above limit is uniform.

We know that Poisson kernel rP ( ) is a good kernel Therefore by

above property mention in step (2)

n
n
lim ( f )( x ) f ( x )
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r
r 1

r 1

lim ( f P )( ) f ( ) 0 r 1

lim u r, f ( )





        

    

whenever, f is continuous at x . If f is continuous everywhere then

above limit is uniform.

Hence claim.

Step (3) :
Suppose v( r , ) is another solution of steady state heat equation

0  in the unit disc and converges to f as r 1

i.e.
r 1
lim V( r, ) f ( )

   

Sub claim : V( r, ) u( r , )   

For each fix r with 0 r 1  the function V( r, ) has a Fourier series

expansion

in
n

n

V( r, ) a ( r )e






  

in
n

1
a ( x ) V( r, ) e d

2


 



   
 

Since V( r , )  satisfies Laplace equation

i.e.
2 2

2 2 2

v 1 v 1 v
0

r r r r

  
      
  

(1)

Put in
nv a ( r ) e n     

2
in in in

n n n2

2
in in in

n n n2

1 n
a "( r ) e a '( r ) e a ( r ) e 0

r r

1 n
a "( r ) e a '( r ) e a ( r ) e 0

r r

  

  


       

       

2

n n n2

1 n
a "( r ) a '( r ) a ( r ) 0

r r
       (2)

The solution of above equation (2) is given by,
n n

n n na ( r ) A r B r n 0    {see solution of Dirchlet problem}

where n nA & B   are arbitrary constants.

To evaluate constant n nA and B   we observe that nA ( r ) is bounded

because v is bounded
Since,

n n
n n n

B
a ( r ) A r

r
  

Since na ( r ) bounded nB 0 

Hence, nB 0
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Also to find nA if we take limit r 1 Since v converges uniformly

to f , we can write nA as a Fourier coefficient

in
n

1
A f ( ) e d

2


 



   
 

By similar arguments above formula holds for n 0 Hence, for each
0 r 1  , the Fourier Series of v is given by u( r, ) . So by the

uniqueness of Fourier series of continuous function, we must have,
v( r, ) u( r , )  

Note: If u Satisfies Laplace equation u 0  in the unit disc and
converges to zero uniformly as r 1 then u must be identically
zero. However if uniform convergence is replaced by pointwise
convergence then this conclusion may fail.

Ex 1: In a semicircular plate of radius 1 cm, the bounding diameter
is kept at 00 C and the circumference is at fixed temperature 0

0u C

until steady state condition revels. Find the temperature distribution
in the semi - circular plate.

Solution : The steady state temperature with the semi - circular plate
is given by Laplace equation (Polar form)

2 2

2 2 2

u 1 u 1 u
0

r r r r

  
    

  
(1)

where, u( r, ) represent temperature within semi-circular plate with

boundary condition
u( r,0 ) u( r , ) 0    (2)

0u(1, ) u   (3)

We have general solution of dirichelet problem as

m im
m

m

u ( r, ) a r e






    

This solution may be written as

m

m m
m 0

u( r, ) ( A cos m B sin m ) r




        (4)

where m mA & B  are arbitrary constants.

u( r,0 ) 0  i.e. u 0 at 0   

m

m

0 A cos0

A 0
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put in (4)

m
m

m 0

u( r, ) B r sin m




      (5)

Now u( r, ) 0   i.e. at u 0  at   
m

m0 B Sin ( m ) r

Sin( m )

m n n 0,1,2,.........

i.e.m n

     

  

    

 

Also from (3)

0u (1, ) u   Where 0r 1, u u  

put in (5)

0 m
m 0

u B sin m




   

Which represents the sine series and mB represent the Fourier

coefficient of sine series.

m 0

0

2
B u sin m d



    
 

0
m

0

m0

2u cos m
B

m

2u
[( 1) 1]

m


  

  
  


  



Put this value of mB  in equation (5)

m m0

m 0

2u
u( r, ) [1 ( 1 ) ] sin m r

m





       




The solution is not defined at m 0

m 0

0

2
B u sin m d



     
 

Put m 0

0 0

0

2
B u sin m d 0



    
 

m m0

m 1

2u
u( r, ) [1 ( 1) ] sin m r

m





        



m1 ( 1) 0   if m is even

2 if m is odd
2m 1

0

m 1

4u sin [( 2m 1) ]r
u( r, )

2m 1





  
  

 


Which gives temperature distribution u( r , ) within the semicircular

plate.
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Ex. 2: Solve Dirichlet Problem on unit disc defined by
D {( r, ) / 0 r 1, 0 2 }          

Whose boundary is unit circle C {( r, ) / r 1, 0 2 }         

Subject to boundary condition u sin  on C .

Solution : Consider Dirichlet Problem on unit disc D whose
boundary is unit circle C given by u 0  subject to u sin on C.   .
We have general solution of Dirichlet problem,

m
m m

m 0

u( r, ) ( A cos m B sin m ) r




      (1)

On the boundary C we have u sin  at r 1

m m
m 0

sin ( A cos m B sin m )




      

Which is a Fourier series expansion where, m mA & B  represents

fourier coefficients.
2

m

0

1
A f ( )cos m d



   
 

2

0

1
sin cos m d



   
 

mA 0  ...... { By Orthogonality property of circular function}
2

m

0

2

0

1
B f ( )sin m d

1
sin sin m d 0





    


      






 
0

2
sin sin m d

0 m 1

1 m 1



     


 
 

 



1 m

m

B 1 & 0 m 1

& A 0 m

      

   

 1u( r, ) B r sin =r sin    

Ex. 3: Find the solution of Dirichelet problem on unit disc D whose
boundary is unit circle C as defined before subjected to boundary
conditions.

0

0

u 0
f ( )

u 2
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Solution : We have dirichlet problem u 0 

Where
2 2

2 2 2

1 1

r r r r

  
    

  
on unit disc D {( r, ) / 0 r 1, 0 2 }         

Whose boundary is unit circle C {( r, ) / r 1, 0 2 }         subject

to boundary condition

0

0

u 0
f ( )

u 2

     
  

     

We have general solution of Dirichlet problem

m
m m

m 0

m m
m 0

u( r, ) ( A cos B sin m )r

at r 1

u(1, ) f ( )

f ( ) ( A cos m B sin m )











      

 

  

       





(1)

which is Fourier Series expansion of f ( ) where m mA & B   are

Fourier coefficients

we have ,    
2

m

0

1
A f cos m d



     
 

2

m 0 0

0

1 1
A u cos m cos m d

 



      
  

2

0 0

0

u usin m Sin m

m m

0

 



     
        


2

m

0

1
B f ( ) sin m d



    
 

2

0 0

0

1 1
u sin m u sin m d

 



      
  

2

0 0

0

u ucos m cos m

m

 



       
          

  

m m0 0

m0

u u
( 1) 1 1 ( 1)

m m

2u
1 1

m


             

  


at m 0
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2

0

0

2

1
B f ( ) 0.d 0

Also,

1 ( 1 ) 2 if m is odd

0 if m is even



    


       

    



 

 

0
m

2m 10

m 1

2m 10

m 1

4u
B

( 2m 1)

4u
f ( ) sin ( 2m 1) r

( 2m 1)

sin ( 2m 1)4u
r

2m 1











 
 

      
 

 
  

 













68

7
HILBERT SPACES

Unit Structure

7.1 Hilbert Spaces - Definition and its properties

7.2 Standard examples of Hilbert spaces

7.3 Properties of Hilbert Space

7.4 Cauchy - Schwarz inequality

7.5 Orthonormal basis

7.6 Equivalent characterization: Bessel’s inequality and
Parseval’s identity

7.1 DEFINITION: HILBERT SPACE

Definition 1 :

Let H be a complex Banach space then H is called Hilbert space if
,x y associated to each of two vectors x & y H in such a way that

i) , ,x y y x

ii) , , ,x y z x z y z     

iii)
2

, , ,x x x x y z H  

for all scalars , 

Definition 2 :

The vector space with their inner product and norm satisfying :

i) The inner product is strictly positive definite.

i.e. 0 0x x  

ii) The vector space is complete.

i.e. Every Cauchy sequence in the norm converges to a limit in the
vector space, is called Hilbert Space.
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Definition 3 :

A set H is called Hilbert Space if it satisfied the following properties

i) H is a vector space over  2or  

ii) H is an inner product space satisfying.

a) ,f g g f  (conjugate symmetry)

b) , , ,f g h f h g h      (linearity property)

c) , 0 , , , , ,f f f H f g h H        

iii) Let
1

2,f f f

0f  if and only if 0f  i.e. Inner product is strictly positive

definite.

iv) The Cauchy - Schwarz inequality and Triangle inequality
Cauchy - Schwarz inequality

,f g f g

Triangle inequality

,f g f g f g H     .

V) H is complete in the metric  ,d f g f g 

Note : In the above definition of Hilbert space, the Cauchy-Schwarz
inequality and triangle inequality are direct consequence of property
(I) & (II).

7.2 EXAMPLES OF HILBERT SPACE :

1) The space dR

Let  1 2, ,......., dX x x x

 1 2, ,......., dY y y y

Then inner product of X & Y

1 1 2 2, ..... d dX Y x y x y x y    and
1

2

2 2 2
1 2

,

.... d

X X X

x x x



   

Which is usual Euclidean distance .
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2) The space dC

Let  1 2, ,......., dZ z z z

 1 2, ,......., d
dW w w w C 

Then 1 1 2 2, ..... d dz w z w z w z w    and

 

 

1 1
2 2

1 1

1
2 2 2

1

, ......

......

d d

d

Z Z Z z z z z

z z

   

  

2
zz Z

3) The sequence space  2 

The sequence space  2  over  is set of all infinite sequences of

complex number as  1 0 1 2...... ,...... , ,...... ,.....n na a a a a a     such that
2

n
n

a


 


Let  1 0 1.... ......A a a a   

 1 0 1.... ......B b b b    be the elements in  2 

Then , n n
n

A B a b





1 1
1 2 22
2, n n n

n n

A A A a a a
 

   
      

   
 
 

4) The sequence space  2 N

The sequence space  2 N over  is set of all infinite sequence of

complex number as  1 2 ...... ,.....na a a   one sided such that
2

n
n N

a


 

Let  1 2 ......A a a  

 1 2 ......B b b  

1

, n n
n

A B a b





1 1

1 2 22
2

1 1

, n n n
n n

A A A a a a
 

 

   
      

   
 

5) Square Integrable function  2L E .

Let E be measurable subset of d with   0m E  . Let  2L E denote

the space of square integrable function that are supported on E.

i.e.  2L E = {f supported on E such that  
2

E

f x dx   }
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The norm & Inner product is defined as

   

     

1 1

2 22

,
E

E E

f g f x g x dx

f f x f x dx f x dx

 

   
       
   



 

7.3 PROPERTIES OF HILBERT SPACE:

Theorem 1: Let , ,X Y Z H , ,   are scalars then

i) , , ,X Y Z X Z Y Z     

ii) , , ,X Y Z X Y X Z     

iii) , , ,X Y Z X Y X Z     

iv) ,0 0 0, ,X X X H   

Proof :
i)Consider

 

 

 

, ,

, ,

, ,

, ,

X Y Z X Y Z

X Z Y Z

X Z Y Z

X Z Y Z

   

 

 

 

   

  

  

 

ii) , ,X Y Z Y Z X     

, ,

, ,

, ,

, ,

Y X Z X

Y X Z X

Y X Z X

X Y X Z

 

 

 

 

 

 

 

 

iii)  , ,X Y YZ X Y Z     

 

 

, ,

, 1 ,

, ,

, ,

X Y X Z

X Y X Z

X Y X Z

X Y X Z

 

 

 

 

  

  

 

 

iv) Consider 0, 0. 0, 0 0, 0X X X     

,0 0, 0 0X X  
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Definition : Orthogonality : Let V be vector space over    with

inner product and associated norm  . The two element X and Y are

said to be orthogonal if , 0X Y  and we write X Y .

Theorem 2: The Pythagorean Theorem :

If X & Y H are orthogonal then
2 2 2 2

X Y X Y X Y    

Proof :
2

2 2

, , , , ,

, ,

X Y X Y X Y X X X Y Y X Y Y

X X Y Y X Y

       

   

Since , , 0X Y X Y Y X   
2 2 2

X Y X Y   
2

2 2

, , , , ,

0 0

X Y X Y X Y X X X Y Y X Y Y

X Y

       

   

Since X Y

, , 0X Y Y X 
2 2 2

X Y X Y   

7.4 THE CAUCHY - SCHWARZ INEQUALITY :

Theorem 3: For any ,X Y H

,X Y X Y

Proof : Case (i) if 0 0Y Y   and

, ,0 0X Y X  .

and obviously Cauchy - Schwarz inequality holds.

Case (ii) If 0Y 

For any scalar  we have

, 0X Y X Y    ……. {+ve definite prop.}

, , 0X X Y Y X Y      ……{Linearity prop.}

, , , , 0X X X Y Y X Y Y     

2 2 2
, , 0X X Y Y X Y     

Since 0Y  put
2

,X Y

y
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2

2 2

2 2 22

,, , ,
, 0

X YX Y X Y X Y
X Y X Y

Y Y Y


   

2 2 2

2

2 2 2

, , ,
0

X Y X Y X Y
X

Y Y Y
   

2

2

2

22 2

,

,

,

X Y
X

Y

X Y X Y

X Y X Y

 

 

 

Theorem 4: Triangle Inequality :

For any ,X Y H , X Y X Y  

Proof :
2

,X Y X Y X Y   

, , , ,X X X Y Y X Y Y   

 2 2
, , ,X X X Y Y Y 

By Cauchy Schwarz inequality us have, ,X Y X Y

2 2 2

, ,

2

X Y Y X X Y X Y

X Y X X Y Y

   

    

 
22

X Y X Y

X Y X Y

   

   

Theorem 5: Parallelogram Law

If ,X Y H then
2 2 2 2

2 2X Y X Y X Y    

Proof :
Consider,

2 2

2 2

, ,

, , , ,

, , , ,

2 2

X Y X Y X Y X Y X Y X Y

X X X Y Y X Y Y

X X X Y Y X Y Y

X Y
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7.5 ORTHONORMAL BASIS :

Definition : A finite or countably infinite subset  1 2, ........e e of

Hilbert Space H is said to be orthonormal if

1
,

0
k

when k
e e

when k

  
 

  






and 1ke k 

i.e. Each ke has unit norm and is orthogonal to e whenever k   .

Property: Let H be a non-zero Hilbert space so that the class of all
its orthonormal set is non-empty. This class is a partially ordered set
w.r.t. set inclusion relation.

Definition :
An orthonormal set  ie in Hilbert space H is said to be complete if

it is maximal in partial order set i.e. if it is impossible to adjoin the
vector e to collection  ie in such a way that  , ie e is an orthonormal

set which properly contains  ie .

Theorem : Every non-zero Hilbert space contains a complete
orthonormal set.

Proof :

We know that

i) An orthonormal set  ie in Hilbert space H is said to be complete

if it is maximal in partial order set w.r.t. set inclusion relation.

ii) Zorn’s Lemma states that if P is partially ordered set in which
every chain has an upper bound then P posses a maximal
element.

iii) Since the union of any chain of orthonormal set is clearly an
upper bound for the chain in the partially ordered set of all
orthonormal set.

The above three statements shows that every non-zero Hilbert space
contains complete orthonormal set.
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Theorem : If  
1k k

e



is orthonormal and k kf a e H  where sum

is finite then
22

kf a .

Proof :
2

, ,k k l lf f f a e a e   

2

,

..... , 1

0

k k

k k

a a e e

a e e k l

k l



    

  





 



Orthonormal Basis:

Given an orthonormal subset    1 2 1
, ... k k

e e e



 of Hilbert Space H

Spans H i.e. Linear Combination of elements in  1 2, ......e e are dense

in H and  1 2, ......e e are linearly independent then we say that

 1 2, ......e e is an orthonormal basis for H.

Note : For any f H and  
1k k

e



is orthonormal basis for H then

1
k k k

k

f a e a C




  

i.e. f can be written as linear combination of elements in 1 2, ......e e .

Consider,

1

1

, ,

,

j k k j
k

k k j
k

f e a e e

a e e









 

 





When  , , 1& , , 0k k k jfor k j e e for k j e e       

i.e. , j jf e a

Hence, whenever
1

k k
k

f a e




 then ,k ka f e .

7.6 EQUIVALENT CHARACTERIZATION :

Theorem : The following property of an orthonormal set  
1k k

e



are

equivalent.

1) Finite linear combination of elements in  
1k k

e



are dense in H.

2) If f H and , 0jf e j  then 0f  .
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3) If f H and
1

N

N k k
k

S f a e


 then  NS f f as N  in norm of

Hilbert space H.

4) If ,k ka f e  then
2

2

1
k

k

f a




 .

Proof : Step (1) :    1 2

Given : finite linear combination of elements in   1
e
k k




are dense

in H.

Let f H and , 0jf e j 

Claim : 0f 

Proof : Since finite linear combination of elements in  
1k k

e



are

dense in H, there exist a sequence  ng of elements in H which is

finite linear combination of elements in  
1k k

e



such that

nf g o  as n  .

Since , 0jf e j 

, 0 ....nf g n    { ng is finite linear combination of elements in

 
1k k

e



}

By Cauchy - Schwarz inequality.
Consider,

2
, , n nf f f f f g f f g     



 

, , ,

, ,

, ... , 0

n n

n

n

f f g f f f g

f f f g

f f f g

   

 

  

Letting n 

 2
0 0nf f g as n      

0

0

f

f



 

Step 2 :    2 3

Given , , 0,jf H f e j    then 0f 

Also we have
1

N

N k k
k

S f a e


 where, ,k ka f e .
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Claim :   0NS f f  AS N 

Consider,

         

1 1 1

1 , 1

1

, , ,

, ,

, ,

,

N N N N N

N N N

k k k k
K k

N N

k k k k
K k

k K

f S f S f f S f S f S f

f a e a e a e

a f e a a e e

a a e e

  

 





  

 

 



  

 

 


 


 
1 , 1

1 1

2 2

1 1

,

, 1
.....

N N

k k
K k

N N
k

k k k k
K K

N N

k k
K K

a a e e

e e k
a a a a

o k

a a

 

 

 



     
   

    

 



  

 

 

 


 



0

   

   

, 0N N

N N

f S f S f

f S f S f

 

  

By Pythagorean theorem,

   

 

2 22

2 2

1

N N

N

N k
K

f f S f S f

f S f a


  

  

2 2

1

N

k
K

f a


 

Letting N 

2 2

1
k

K

a f




 {This is known as Bessel’s Inequality}

Bessel’s inequality implies that series
2

1
k

K

a



 is convergent.

Therefore, partial sum   
1N N

S f



forms Cauchy seq. in H.

Since    
1 1

N M

N M k k k k
K K

S f S f a e a e
 

   

1

2

1

N

k k
K M

N

k
K M

a e N M

a whenever N M
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Since H is complete g H  such that  NS f g as N  .

Fix j and note that for all sufficiently larger N,

   , , ,N j j N jf S f e f e S f e   

,

( )

0

j k k j

j j

a a e e

a a orthonormality

 

 






Since  NS f g we can write

, 0jf g e j  

f g o   …………. {By given hypothesis (2)}

f g  , 0, 0jf e j f   

Hence  NS f f as N 

i.e.   0NS f f  as N 

Step 3 : (3)  (4)

Given  
1

N

N k k
k

f H S f a e


  

 NS f f o  as N 

Claim :
2 2

1
k

k

f a






We have  
22 2

1

N

N k
K

f f S f a


  

Letting N  and using   0NS f f  as N 

2 2

1
k

K

f a






This is known as Parseval’s Identity.

Step 4 : (4)  (1)
2 2

1
k

k

f a






Claim : finite . .c of elements in  
1k k

e



are dense in H.

We have from equation

 
22 2

1

N

N k
K

f f S f a
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as N  , we have Parseval’s identity.

2 2

1
k

K

f a






  0Nf S f   as N 

Since each  NS f is finite linear combination of elements in  
1k k

e



.

Hence finite linear combination of elements in  
1k k

e



are dense

in H.

Ex 1: Let H be Hilbert Space. Show that for any ,x y H
2 2 2 2

4 ,x y x y x y i x iy i x iy       

Solution:

Consider
2 2 2 2

x y x y i x iy i x iy      

 

 

2 2

2 2

, ,

, ,

,

,

x y x y y x

x y x y y x

i x iy x iy

i x iy x iy

   

    
 

    

    
2

2

2 2

2 2

2 , 2 , , , ,

, , ,

2 , 2 , , ,

, ,

2 , 2 , , , , ,

4 ,

x y y x i x x iy iy x iy iy

i x x iy iy x iy iy

x y y x i x i x y i y x y

i x i x y i y x y

x y y x x y y x x y y x

x y

      
 

        
 

      
 

    
 

     



Ex 2: Let  1 2, ,...., ne e e be a finite orthonormal set in a Hilbert space

H. If x is any vector in H. Then show that
2 2

1

,
n

i
i

x e x




Also show
1

,
n

er
i i j

i

x x e e e


  for each j.
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Solution : Consider
2

1

1 1

2

1 1 1 1

2

1 1 1 1

2

1 1

0 ,

, , ,

, , , , , , ,

, , , , , , ,

, , , , , ,

n

i i
i

n n

i i j j
i j

n n n n

j j i i i i j j
j i i j

n n n n

j i i i i j i j
j i i j

n n

j j i i i i
j i

x x e e

x x e e x x e e

x x x e e x e e x x e e x e e

x x e x e x e e x x e x e e e

x x e x e x e x e x e x e



 

   

   

 

 

  

    

    

   



 

   

  

 
1

2

1 1 1

22 2 2

1 1

, , , , , ,

, ,

n

i

n n n

i i i i i i
i i i

n n

i i
i i

x x e x e x e x e x e x e

x x e x e x



  

 

   

   



  

 

Consider 1
1

, ,
n

i i j
i

x x e e e




1

, , ,
n

j i i j
i

x e x e e e


  

1

, , ,
n

j i i j
i

x e x e e e


 

1

, , ,

, ,

0

,

j j j j

j j

n

i i j
i

x e e e x e

x e x e

x x e e e j


 

 



   

Ex 3: Let H be Hilbert space. Let  ie be an orthonormal set in H.

Then show that the following conditions are equivalent.

1)  ie is complete

2)  ix e then 0x 

3) If x H then , i i
i

x x e e 

4) If x H then
22

, i
i

x x e
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Solution :

Step - I :    1 2

Let  ie be complete.

Suppose ix e i 

Sub claim - 0x 

Suppose that 0x 

Define
x

e
x



Clearly  , 0i ie e x e i     . Thus  , ie e is orthonormal set which

properly contains  ie

Which is contradiction to  ie be complete.

Hence our assumption is wrong.
0x 

Step - II :    2 3

Suppose ix e i  then 0x 

Sub claim : , i i
i

x x e e 

We know that , i ix x e e  is orthogonal to  ie

By hypothesis, , i ix x e e  
, i ix x e e  

Step III :    3 4

Suppose for , , i ix H x x e e   

Sub claim :
22

, ix x e
Consider  

2
,x x x

  
2

, , , ,

, , ,

, , 1

,

i i j j

i j i j
i j

i i
i

i

i

x e e x e e

x e x e e e

x e x e

e orthonormal set

x e
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Step IV :    4 1

Suppose
22

, , ix H x x e   

Sub claim :  ie is complete.

Suppose  ie is not complete then it is proper subset of an

orthonormal set  ,ie e . Since er
ie e i 

Put x e in above identity.
22

2

,

0

0

ie e e 









This is contradiction to e is a unit vector
Hence our assumption is wrong.
Thus  ie is complete.

Note : Let  ie be complete orthonormal set in Hilbert space H. Let

x be an arbitrary vector in H. Then , ix e are Fourier coefficients of

x and the expression , i i
i

x x e e  is called Fourier series expansion

of x and the equation,
22

, ix x e is called Parseval’s identity.

(all w.r.t. complete orthonormal set  ie under consideration.)

Ex 4: If  
1

n

i i
e


is an orthonormal set in Hilbert space H and if x is

any vector in H then  , 0i iS e x e  is either empty or countable.

Solution :

For each +ve integer n, consider
2

2
,n i i

x
S e x e

n

  
  
  

. We have

Bessel’s inequality.
2 2

1

,
n

i
i

x e x




Bessel’s inequality gives us, nS contains at most  1n  vectors since

1

.n
n

S S




 S is either empty or countable.

Ex 5: Show that a closed convex subset C of a Hilbert space H
contains a unique vector of smallest norm.
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Solution : We recall from the definition in Problem 32-5 that since
C is convex, it is non-empty and contains   / 2x y whenever it

contains x and y. Let d = inf  :x x C . There clearly exists a

sequence  nx of vectors in C such that nx d . By the convexity

of C,   / 2m nx x is in C and   / 2m nx x d  , so   2m nx x d  .

Using the parallelogram law, we obtain

2 2 2 2

2 2 2

2 2

2 2 4 ;

m n m n m n

m n

x x x x x x

x x d

    

  

and since
2 2 2 2 2 22 2 4 2 2 4 0m nx x d d d d      , it follows that

 nx is a Cauchy sequence in C. Since H is complete and C is closed

C is complete, and there exists a vector x in C such that nx x . It is

clear by the fact that lim limn nx x x d    that x is a vector in C

with smallest norm. To see that x is unique, suppose that x is a
vector in C other than x which also has norm d. Then   / 2x x is

also in C, and another application of the parallelogram law yields.

2 22 2

2 2

2

2 2 2 2

,
2 2

x xx x x x

x x
d

  
  


  

which contradicts the definition of d.
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8
HILBERT SPACE  2 ,L    

Unit Structure

8.1 Hilbert Spaces  2 0,2L  or  2 ,L  

8.2 Existence of orthonormal basis

8.3 Orthonormal basis for  2 0,2L  or  2 ,L  

8.4 Mean Square Convergence

8.5 Best Approximation Lemma

8.1 HILBERT SPACE  2 ,L    

Consider the Hilbert space 2L , associated with measure space  0, 2

where measure is Lebesgue measure and integrals are Lebesgue
integrals. This space essentially consist of all complex functions f
defined on  0, 2 which are Lebesgue measurable and square

integrable.

i.e.  
2

2

0

f x dx


 

Its norm and inner product is defined as   
1

2 22

2 0
f f x dx



 

   
2

0

,f g f x g x dx


  

The function
2

inxe



 
 
 

where 0, 1, 2,....n    forms an orthonormal

basis for H since
2

0

2
.

0
imx inx m n

e e dx
m n

   
  

 


This gives us   ,
2

inx

n

e
e x n


  

For any 2f L , the number,  
2

0

1
,

2

inx
n nC f e f x e dx





    gives

Fourier coefficient of the Fourier series expansion of f given by,

 
1

2

inx
n

n

f x C e






  .
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Definition:

The Hilbert Space  2 0,2L  or  2 ,L   .

Let R denote set of complex valued Riemann integrable functions
defined on a circle then the inner product and norm is defined as

   
2

0

1
,

2
f g f g d



  


  and  

1
2 22

2
0

1

2
f f d



 


 
  
 

 .

Similarly, for interval  ,  .

   
1

,
2

f g f g d




  




  and  

1

22

2

1

2
f f d





 




 
  
 

 .

8.2 EXISTENCE OF ORTHONORMAL BASIS OF
HILBERT SPACE

Theorem : Any Hilbert Space has on orthonormal basis.

Proof : The proof of this theorem is follows from gram Schmidt
process.

Given finite family of elements  1 2, ......, kf f f , the span of this

family is set of all elements which are finite linear combination of

elements  1 2, ......, kf f f We denote it by span  1 2, ......, kf f f . Now we

construct a sequence of orthonormal vectors say 1 2, ......e e such that

span   1 2, ......, ne e e = span  1 2, ......, 1nf f f n  .

Let us prove this by induction on n.

Step 1 : By Linear independent hypothesis, 1 0f  then we can take

1
1

1

f
e

f
 .

Step 2 : Assume that orthonormal vectors  1 2, ......, ke e e has been

found such that span   1 2, ......, ke e e  span  1 2, ......, kf f f .

Claim : span   1 2 1, ......, ke e e   span  1 2 1, ......, kf f f 

i.e. '
1 1

1

k

k k j j
j

e f a e 
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 '
1 1

1

1
1

1
1

'
1 1

, ,

, ,

, ,

, ,

k

k j k i i j
i

k

k j i i j
j

k

k j i i j
i

k j k j j

e e f a e e

f e a e e

f e a e e

e e f e a

 








 

   

  

  

 







To have : '
1,k je e 0 j

We must have 1,k j jf e a  

This choice of for 1ja j k    assure that '
1ke  is orthogonal to

 1,.... ke e .

Moreover, our linear independent hypothesis assure that '
1 0ke  

Hence, the choice of 1ke  is
'

1
1 '

1

k
k

k

e
e

e






 .

Hence span   1 2, ......, ne e e  span  1 2, ......, nf f f .

Thus, Every Hilbert space has an orthonormal Basis.

Example: Consider, Hilbert space H. Transform Basis  1 2, ......, nf f f

into orthonormal basis where,      1 2 31, 1,1 , 2,1,0 , 1, 1,1f f f      .

(Take Euclidean inner product)

Solution:

1)
 1

1

1

1, 1,1 1 1 1
, ,

3 3 3 3

f
e

f

  
    

 

2) Using 1 1
1

k

k k j j
j

e f a e 


  

2 2 2 1 1,e f f e e   

2 1

2
2

2

5 4 1
, , ,

3 3 3

5 4 1
, ,

42 42 42

j K je a f e

e
e

e
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3) Using 1 1
1

k

k k j j
j

e f a e 


  

3 3 3 1 1 3 2 2e f f e e f e e     

3

3
3

3

1 2 3
, ,

7 7 7

1 2 3
, ,

14 14 14

e

e
e

e

    
 

  
     

8.3 ORTHONORMAL BASIS OF  2 ,L     :

Theorem 1: The sets  inx

n
e




&    cos sin

n n
nx nx

 

 
 are

complete orthonormal basis for  2 ,L   . Also the sets  cos
n

nx




&  sin
n

nx



are complete orthogonal basis for  2 0,L  .

Proof : Consider,   inx
n x e 

Let  2 ,f L   

Let 0 (small)

Claim : Nth partial sum of Fourier series of f approximate f in norm
within  when N is sufficiently large.
i.e. NS f f  as N  .

We can find 2 periodic function f possessing derivatives of all

order such that
3

f f   .

Let  
1

2 ,n nC f


  

   
11

2 ,
2

inx
n nC f x e dx f e












 
    

 


and  
1

2 ,n nC f 


  be Fourier coefficients of &f f  

respectively.

We know that Fourier series n nC f   uniformly.

Hence it converges to f in norm.

If we take N sufficiently large then
3

N

n n
N

f C



   

By Bessel’s inequality
2

2N N N

n n n n n n
N N N

C C C C
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2

n nC C N




     

2
2

3
f f

 
    

 


Consider,

 
N N N N

n n n n n n n n
N N N N

f C f f f C C C
   

   
             

   
      

Taking norm on both side
Now using triangle inequality.

3 3 3

N N N N

n n n n n n n n
N N N N

f C f f f C C C
   

          

  
   

      

This proves completeness of set    inx
n e  in  2 ,L   .

Completeness of    cos sin
n n

nx nx
 

 
 in  2 ,L   can be derived

by completeness of  inxe .

Similarly, completeness of  cos nx &  sin nx in  2 ,L   can be

prove by considering even & odd extension of 2[0, 2 ]f L  to

[ , ]  .

Theorem 2: Let  2 ,H L    and   int
nf t e for 0, 1, 2,....n   

and  ,t    then   0, 1, 2,......nf t n    is an orthonormal basis

for  2 ,L   .

Proof :

Step 1 : Lets verify   0, 1, 2,......nf t n    is orthonormal

    int i t1 1
, .

2 2
m

n m n mf f f t f t dt e e dt
 

 
 

 

    

int i t1
.

2
me e dt










  

 i n1

2

m te dt
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1

2

1

2

1
cos sin cos sin

2

2 sin

2

sin

0

i n m t

i n m i n m

e

i n m

e e
i n m

n m i n m n m i n m
i n m

i n m

i n m

n m

n m





 





   














  

 
  

 

   

         












{Since n m  and sin 0k k   }

, 0,n mf f n m   

Now consider,

   

 

2

2

int int

1
,

2

1

2

1
1

2

n n n n nf f f f t f t dt

e e dt













 








  

 

  





, 1n nf f n 

Hence,
, 0,n mf f n m   and

2
1nf n  .

Thus, set   0, 1, 2,......nf t n    is orthonormal.

Step 2 : Claim :   0, 1, 2,....nf t n    is basis for  2 ,H L    .

Since   0, 1, 2,....nf t n    is linearly independent and it spans

 2 ,H L    , hence   0, 1, 2,....nf t n    is basis for

 2 ,H L    .
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Theorem 3: The set  
1 cos sin

, , 1,2,....., ,
2

nt nt
n t  

  

 
    

 
is an

orthonormal basis for  2 ,L   .

Prove of this theorem is similar to above theorem so left as an
exercise

8.4 MEAN SQUARE CONVERGENCE:

Consider space R of integrable functions define on the circle.

Let   in
ne e   , n is an integer then clearly, Set  n n z

e


is

orthonormal.

Consider,  
2

0

1
,

2
in

nf e f e d


 


  

 
2

0

1

2
inf e d


 


  

 ˆ
nf n a  {Fourier coefficient}

where,  f̂ n or na is Fourier coefficient of complex Fourier series of

function f.

Consider the Nth partial Sum ,  N n n
n N

S f a e


 

Then orthonormal property of family  ne and the fact that

, n nf e a gives that the difference  Nf S f is orthogonal to ne i.e.

 N nf S f e n N    .

Since    , , ,N n n N nf S f e f e S f e  

,

,

, 1

0

0

n m m n
m N

n m m n

m n

n n

a a e e

a a e e

e e m n
a a

m n



  

 

     
   

    







Hence,   Nf S f is orthogonal to ne n N 

n n
n N

f a e


 
   

 
 is orthogonal to n n

n N

b e

 where, nb is complex.



91

We have, n n n n
n N n N

f f a e b e
 

   

 By Pythagorean theorem,

2 2

2

2

2 2

n n n n
n N n N

f f a e b e
 

   

when n na b the orthogonal property of family  n n
e


gives us

2

2

2

n n n
n N n N

a e a
 

  .

 
2 22

2 2N n
n N

f f S f a


   .

This is called mean square approximation.

8.5 BEST APPROXIMATION LEMMA :

Statement: If f is integrable function defined on a circle with

Fourier co-efficient na then  N n n
n N

f S f f c e


   for any

complex number nc . Moreover, equality holds when

n nc a n N   .

Proof :

Consider

 n n n n n
n N n N

f c e f a b e
 

     where n n na b c 

n n n n n n
n N n N n N

f c e f a e b e
  

     

Taking norm on both sides.

n n n n n n
n N n N n N

f c e f a e b e
  

     

Since an is Fourier coefficient  n n N
n N

a e S f




 n n N n n
n N n N

f c e f S f b e
 

     .

Also we have  Nf S f is orthogonal to n n
n N

b e

 .
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By Pythagorean theorem.

 
2 2

2

n n N n n
n N n N

f c e f S f b e
 

    

This statement gives us,  n n N
n N

f c e f S f


  

when n nc a where, na is Fourier coefficient given.

0n n n nc a b b   

 N n n
n N

f S f f c e
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9
RIESZ FISHER THEOREM

Unit Structure :

9.1 Completeness of  2 dL 

9.2 Bessel’s inequality for  2 ,L     function

9.3 The Riesz Fisher Theorem

9.4 Unitary Isomorphism

9.5 Separability of  2 ,L    

9.1 COMPLETENESS OF  2 dL  :

Theorem : The space  2 dL  is complete in its metric.

Proof : Let  
1n n

f



be a Cauchy sequence in 2L .

Consider  
1kn k

f



be a subsequence of  

1n n
f




with the property

1
2 1

k k

k
n nf f k



    (1)

Let         
1 1

1
k kn n n

k

f x f x f x f x






   (2)

and        
1 1

1
k kn n n

k

g x f x f x f x






   (3)

Consider partial sum

        
1 1

1
k k

K

k n n n
k

S f x f x f x f x




  

and        
1 1

1
k k

K

k n n n
k

S g x f x f x f x




   

The triangle inequality implies that

 
1 1

1
k k

K

k n n n
k

S g f f f




   

1

1

2
K

k
n

k

f 



  {by (1)}
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Letting K  and applying monotone convergence theorem we
have,

2

g  
Since 2 0kk  

   
1k nS g f x 

thk partial sum of g is finite

g is square summable & hence square integrable
2

g

f g

 

 


{by (2) & (3)

2
f  

 2 df L  

In particular, the series defining f converges almost everywhere and

since  1
th

k  partial sum of this series is precisely
knf , we have,

 
knf f x almost everywhere for all x.

To show
knf f in  2 dL 

We have,    
2 2

2kf S f g k  

Applying dominated convergence theorem, we obtain, 0
knf f 

as k  .

Since  
1n n

f



is Cauchy sequence for given 0, N  such that

,n m N
2n mf f   .

If kn is chosen, so that kn N

2knf f  

By triangle inequality

2 2k kn n n nf f f f f f         

nf f  whenever n N

Hence sequence  nf f in  2 dL 

 2 dL  is complete.
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9.2 BESSEL’S INEQUALITY FOR  2 ,L     :

If f is 2L -periodic function then  
2 2

2
f̂ n f .

Proof : Let  Nf S f g  where  NS f is Nth partial sum of f i.e.

   ˆ
N

inx
N

n N

S f f n e


  .

Consider,

 , ,n N ng e f S f e 

 , ,n N nf e S f e 

 

 

 

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ

0

, 0

1 }

N
imx

n
N

N
imx

n
N

N
imx inx

N

inx
n

n m

f n f m e e

f n f m e e

f n f m e e

f n f n e e

e e m m

m n







 

 

 

   

 

   

  







Consider,

 

   

       

   

22

2 2

,

, , , ,

, ,

N

N N

N N N N

N N

f S f g

S f g S f g

S f S f S f g g S f g g

S f S f g g

 

  

   

 



 

 

, 0

ˆ, 0

, 0

n

n

N

g e

g f n e

g S f



 

 



 
22 2

2 22Nf S f g  

 
22

2 2Nf S f  (1)
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Consider,

     

   

   

2

2

,

,

ˆ ˆ,

ˆ ˆ ,

N N N

N N
inx imx

N N

N
inx imx

n m N

S f S f S f

f n e f m e

f n f m e e

 





  

 

 



     
2

ˆ ˆ ˆ
N N

N N

f n f n f n
 

    (2)

Substituting (2) in (1) we get

 
22

2
ˆ

N

N

f f n




Writing N 

 
2 2

2
ˆ

n

f n f






Thus we proved,

 
2 2

2
ˆ

n

f n f






9.3 THE RIESZ FISHER THEOREM:

Statement : Suppose that f is 2L -periodic function then the Nth

partial sum of its Fourier Series  NS f converges to f in 2L (I) where

 ,I    .

i.e.  
2

lim 0N
N

S f f


 

Moreover,  
2 2

2
ˆ

n

f n f




 {Parseval’s identity}

Conversely, suppose that  n n
a


is two sided complex sequence

which is square summable i.e.
2

na   then there is unique

function f in 2L (I) that has na as its Fourier coefficient.

Proof : Step (1) : Let 2f L (I)

Given o choose a continuous periodic function g such
f g ……(1)

Then        
2 2N N NS f f S f g S g f g g      

     
22 2 2N N NS f f S f g S g g g f       
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We have  NS f f

 NS f g f g   

   

   

   

2 22 2

2

2 2

2 ..... 1

2

N N

N

N N

S f f f g S g g g f

S g g from

S f f S g g

       

     

    

Since g is continuous periodic function,

 
2NS g g   for large N

 

 

 

2

2

2

3

0

lim 0

N

N

N
N

S f f

S f f as N

S f f


  

     

  

Step (2) We have

   N Nf S f S f  i.e.  Nf S f is orthogonal to  NS f .

 By Pythagorean theorem,

   
2 22

2 2 2N Nf f S f S f  

Also we have    
22

2

ˆ
N

N
N

S f f n




We get    
222

2 2

ˆ
N

N
N

f f S f f n


   .

Letting N  and using  
2

2
lim 0N
N

f S f


 

 
22

2
ˆf f n







(This is known as Parseval’s Identity)

Step (3) Converse part :

Suppose that  n n
a




is square summable two sided sequence of

complex numbers.

Let  
N

inx
N n

n N

f x a e


  .

The orthonormality of exponential function ne implies that for M<N.

 2 2 2 2

2 2
'N M n n

M n N

f f a f a parseval s identity
 

       and ˆ
n na f .

By the assumption of square summability i.e.
2

na   .
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The right side of above equation converges to zero as ,M N  . i.e.

2
0N Mf f  as ,N M  .

 nf is Cauchy sequence in  2L I .

Let f be the limit

By orthonormality, , &N n nf e a N n   

Letting N 

 

lim ,

,

1

2

N n n
N

n n

inx
n

f e a n

f e a n

f x e dx a n











 

  

   

na is Fourier coefficient of Fourier series of function f. Also by

uniqueness of Fourier series, we can conclude that there exists
unique f whose Fourier coefficient is na .

9.4 UNITARY ISOMORPHISM :

Unitary Mappings : Suppose H & H’ be two given Hilbert spaces
with respect to inner product  ,

H
  &   1,

H
  and corresponding norm

H
 & 1H

 .

A mapping 1:U H H is called unitary mapping if
1) U is linear
i.e.      U f g U f U g      where ,  are scalars &

,f g H .

2) U is bijection
3) 1H H

Uf f f H  

Note :
1) Since unitary mapping U is bijective, its inverse 1 1:U H H  is

also unitary mapping. (prove it)
2) Property (3) of unitary mapping implies that

   1, , ,
H H

Uf Ug f g f g H  

Unitary Isomorphism : Two Hilbert spaces 1&H H are said to be
unitarily equivalent or unitary isomorphic if  a unitary mapping

1:U H H .

Note : Unitary isomorphism of Hilbert spaces is an equivalence
relation
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Theorem : Any two infinite dimensional Hilbert spaces are unitary
equivalent or unitary isomorphic.

Proof : If &H H  are two infinite dimensional Hilbert spaces.

We may select orthonormal basis i.e.  1 2, ,.......e e of H &

 ' '
1 2, ,.......e e of H  .

Consider the mapping :U H H  defined as if
1

k k
k

f a e




 then

 U f g  where,
1

,k k
k

g a e g H f H




     .

Claim : 1:U H H is unitary
1)       , , ,U f h U f U h f h H          are scalars.

Let
1 1

,k k k k
k k

f a e h b e
 

 

  

Consider

 

 

 

   

1 1

1

1

k k k k
k k

k k k
k

k k k
k

k k k k

k k k k

U f h U a e b e

U a b e

a b e

a e b e

a e b e

   

 

 

 

 

 

 









 
   

 

 
  

 

  

  

  



 





 
 
   U f U h    

2) Claim U is bijective
Clearly,    U f U h

   k k k k

k k k k

k k

U a e U b e

a e b e

a b k

f h

U is one one



 

  

 

 

 
 

For any k kg a e H   , we have k kf a e H  such that

 U f g U  is onto .

Clearly U is invertible
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3) Claim 1H H
Uf f

Consider,  
1 1

k k k k
k k

f a e U f a e
 

 

   

 

 

1

1

1
2

2

1

1

..... '

.... '

k kH
k H

k
k

k k
k H

H

Uf a e

a By parseval s identity

a e again by parseval s identity

f



 











   

   









Hence by (1), (2) & (3) :U H H  is unitary and hence &H H  are
unitary isomorphic.

Theorem : Suppose  2 ,f L    then the mapping  nf a is

unitary correspondence between  2 ,L   & square summable

sequence  2 Z .

Proof :

Step (1) : Let  2 ,H L    with inner product

   
1

,
2

f g f x g x dx







 

Let  2 ,f L   

Let  
1k k

e



is an orthonormal basis for H.

1
k k k

k

f a e a C




  

Step (2) : Let  1 2H Z  (sequence space) defined as

   
22

1 0 1
1

..... , , .... &j n
n

Z a a a a C a





 
      
 

 with inner

product.

, k k
k

a b a b




 

Step (3) Consider a mapping :U H H  such that

   &n nf a f H a H     

   k k kU a e a

Claim : :U H H  is unitary
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1) Sub-claim : U is linear
i.e.      U f g U f U g      ,  scalar ,f g H

Let
1 1

, gk k k k
k k

f a e b e
 

 

  

   U f g U f g     

 
  

 

   

   

k k k k

k k k

k k

k k

U a e b e

U a b e

a b

a b

U f U g

 

 

 

 

 

 

 

 

 

  

 



2) Sub-claim : U is bijective
i.e. U is one-one and onto.
Clearly, U is one-one
Since    U f U g

   
   

k k k k

k k

U a e U b e

a b



 

 

k k

k k k k

a b K

a e b e f g U is one one

  

        

To Prove U is onto

Consider,
2

2

1 1

N

N k k k k
k k

f S f a e a e


 

   
2

1

2

1

k k
k N

n
n N

a e

a



 



 









If    2
na z then

   
2

2

1 1

2

1

2

1

N M

N M k k k k
k k

N

k k
k M

N

k
k M

S f S f a e a e N M

a e

a

 

 

 

    



  

 





    0N MS f S f   as ,N M  .
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Hence completeness of 2L guarantee that, there is 2f L such that

0Nf S f  as N  .

As f has  na as its Fourier coefficient we can conclude that

 nf a is onto (By the uniqueness of Fourier coefficient)

Hence U is bijective

3) Claim : 1H H
Uf f

Consider, 1 1

2 2

nH H
Uf a

2

2

,n n

n n

n

H

a a

a a

a

f



 









Hence by (1) , (2) & (3) , 1:U H H is unitary mapping.

9.5 SEPARABLE HILBERT SPACE:

Definition : The space H is said to be separable if their exist
countable collection  kf of elements in the space H such that there

linear combination are dense in space H.

Theorem : A Hilbert Space H is separable if and only if it has
countable orthonormal basis.

Proof : Step 1: Suppose that Hilbert space H is separable.

Claims : Hilbert space H has countable orthornormal basis.
Suppose Hilbert space H has uncountable orthornormal basis say

 e 

Then 1, , &e e          

1 1
, ,
2 2

S e S e 

   
     

   
 , &      .

Hence there exist an uncountable family of disjoint open sphere with
radius ½.
 H is not separable which is a contradiction to our assumption.
Hence Hilbert space H has countable orthonormal basis.

Step (2) Converse part
Hilbert Space H has countable orthonormal basis
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Claim : Hilbert space H is separable.
Let H has a countable orthornormal basis say  ne .

Let f H

1

1

,

,

n n
n

n n

n n
n

f f e e f H

f e a

f a e









   

 



 






 f H is a cluster point (i.e. limit point) of set of linear

combination of elements of  ne .

Since  ne is complete orthonormal basis, set of linear combination

of elements of  ne contains countable dense set of linear

combination of  ne with rational coefficients.

Hence H is separable Hilbert space.

Theorem : Hilbert Space  2 ,L   is separable.

Proof : Step (1) : Let  2 ,H L   

We know that Hilbert space  2 ,L   has an orthonormal basis

 0, 1 , 2,........nf n    .

Where,    
int

, ,
2

n

e
f t n t  


      .

Since set of integer is countable, hence set of orthonormal basis

 0, 1 , 2,........nf n    is countable.

Step (2) : If Hilbert Space H has a countable orthonormal basis then
H is separable.

Step (3) : Hilbert Space  2 ,L   has a countable orthonormal basis.

Hence H is separable.





