
SUBJECT CODE : MCAL402

COMPUTER GRAPHICS AND
IMAGE PROCESSING

M.C.A.
SEMESTER - IV (CBCS)



© UNIVERSITY OF MUMBAI

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

 Programme Co-ordinator: Prof. Mandar Bhanushe
Head, Faculty of Science & Technology,
IDOL, University of Mumbai - 400 098.

 Course Co-ordinator :  Ms. Reshma Kurkute
Assistant Professor B.Sc.IT, IDOL,
IDOL, University of Mumbai- 400098.

 Course Writers : Mr. Sandeep Kamble
Assistant Professor, Cosmopolitan’s Valia College.

: Ms. Geeta Sahu
Assistant Professor, Vidyalankar School of Information Technology.

: Mr. Ashish Shah
BSc. I.T Coordinator J. M. PATEL College of Commerce.

: Mr. Ahtesham Shaikh
Assistant Professor, Anjuman-i-Islam's Akbar Peerbhoy College.

: Ms. Anjali A Gaikwad
Assistant Professor, JES college of commerce, science and I.T.

: Mrs. Jayshri R Parab
Assistant Professor, Lala Lajpatrai College.

: Mr. Rohan K Parab
AssistantProfessor, Guru Nanak Khalsa College.

May 2022, Print I

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

DTP COMPOSED AND PRINTED BY
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai - 400098.

Published by
Director

Institute of Distance and Open learning ,
University of Mumbai,Vidyanagari, Mumbai - 400 098.



CONTENT
Chapter No. Title Page No.

Module I

1. Introduction To Graphics 1-11

2. Demonstration of Simple Graphic Inbuilt Function 12-22

Module II

3. Output Primitives & Its Algorithms 23-38

Module III

4. Output Primitives & Its Algorithms 39-54

Module IV

5. Output Primitives & Its Algorithms 55-67

Unit V

6. Output Primitives & Its Algorithm 68-80

Module VI

7. Output Primitives & Its Algorithms 81-96

Module VII

8. 2d Geometric Transformations & Clipping 97-114

Module VIII

9. 2d Geometric Transformations & Clipping 115-139

Module IX

10. Implementation of  3d Transformations (Only Coordinates Calculation) 140-148

Unit X

11. Output Primitives & Its Algorithm 149-162

Module XI

12. Introduction To Animation 163-171

Module XII

13. Image Enhancement Transformation 172-177

14. Image Enhancement Transformation 178-187

15. Image Enhancement Transformation 188-198

*****



 
 

Syllabus 

 

Course Code Course Name 

MCAL402 Computer Graphics and Image Processing 

 

Sr. 

no 

Module Detailed Contents Hours 

01 Introduction Introduction to graphics 

coordinates system and 

demonstration of simple inbuilt 

graphic functions 

01 

02 Output primitives 

& its algorithms 

Implementation of line 

generation A.  

A. DDA line  

B. Bresenhams line  

C. Application of Line drawing 

algos. 

02 

03 Output primitives 

& its Algorithms 

Implementation of circle drawing 

A. Midpoint circle 

B. Application of Circle drawing 

algos. 

03 

04 Output primitives 

& its Algorithms 

Implementation of ellipse 

drawing 

A. Midpoint Ellipse 

04 

05 Output primitives 

& its Algorithms 

Implementation of curve drawing 

A. Bezier Curve 
05 

06 Output primitives 

& its Algorithms 

Implementation of filling 

algorithms A.  Boundary fill  

B.  Flood fill  

C.  Scan line  

D. application of Circle drawing 

algos. 

application 

of Circle 

drawing 

algos. 

07  2DGeometric 

Transformations 

& Clipping  

Implementation of two 

dimensional transformations  

A.  Translation, Rotation & 

Scaling  

B.  Shear & Reflection 

6 

08 2D Geometric 

Transformations& 

Clipping  

Implementation of clipping 

algorithms 

A. Cohen Sutherland Line 

clipping 

B. Midpoint Subdivision 

C. Sutherland Hodgeman 

Polygon Clipping 

10 

09 Basic 3D Concepts 

& Fractals 

Implementation of 3D 

Transformations (only 

coordinates calculation) 

2 

10 Basic   3D   

Concepts & 

Implementation of fractal 

generation 
6 



 
 

Fractals A.  Koch curve/Snowflake 

B.  Sirepenski Triangle 

11 Introduction of 

Animation 

Implementation of animation 

programs (using basic inbuilt 

Graphical functions ) 

4 

12 Image 

Enhancement 

Techniques 

Implementation  of  Basic  

Intensity Transformations 

A.  Image negative 

B.  Log transformation 

C.  Power law Transformation 

6 

13 Image 

Enhancement 

Techniques 

Implementation of Piecewise-

Linear Transformation Functions 

A.  Contrast Stretching 

B.  Grey level Slicing 

C.  Bit plane slicing 

8 

14 Image 

Enhancement 

Techniques 

Implementation of histogram 

equalization 

A.  Image  histogram &   

histogram Equalization 

B. Image Subtraction 

C. Image averaging 

10 

 

 

 

 

 

***** 



 1 
 

MODULE I 

1 
INTRODUCTION TO GRAPHICS 

Unit Structure 

1.0  Objectives 

1.1  Introduction 

1.2  Summary 

1.3  References 

1.4  Unit End Exercises 

1.0 OBJECTIVE 

Graphics are defined as any sketch or a drawing or a special network that 

pictorially represents some meaningful information. Computer Graphics is 

used where a set of images needs to be manipulated or the creation of the 

image in the form of pixels and is drawn on the computer. Computer 

Graphics can be used in digital photography, film, entertainment, 

electronic gadgets, and all other core technologies which are required. It is 

a vast subject and area in the field of computer science. Computer 

Graphics can be used in UI design, rendering, geometric objects, 

animation, and many more. In most areas, computer graphics is an 

abbreviation of CG. There are several tools used for the implementation of 

Computer Graphics. The basic is the <graphics.h> header file in Turbo-C, 

Unity for advanced and even OpenGL can be used for its Implementation. 

It was invented in 1960 by great researchers Verne Hudson and William 

Fetter from Boeing.  

Computer Graphics refers to several things: 

● The manipulation and the representation of the image or the data in a 

graphical manner. 

● Various technology is required for the creation and manipulation. 

● Digital synthesis and its manipulation. 

1.1 INTRODUCTION 

Types of Computer Graphics: 

● Raster Graphics: In raster, graphics pixels are used for an image to 

be drawn. It is also known as a bitmap image in which a sequence of 

images is into smaller pixels. Basically, a bitmap indicates a large 

number of pixels together. 



 

 2 

Introduction to Graphics 

 

● Vector Graphics: In vector graphics, mathematical formulae are used 

to draw different types of shapes, lines, objects, and so on. 

Applications: 

● Computer Graphics are used for an aided design for engineering 

and architectural system: These are used in electrical automobiles, 

electro-mechanical, mechanical, electronic devices. For example 

gears and bolts. 

● Computer Art: MS Paint. 

● Presentation Graphics: It is used to summarize financial statistical 

scientific or economic data. For example- Bar chart, Line chart. 

● Entertainment: It is used in motion pictures, music videos, television 

gaming. 

● Education and training: It is used to understand the operations of 

complex systems. It is also used for specialized system such for 

framing for captains, pilots and so on. 

● Visualization: To study trends and patterns.For example- Analyzing 

satellite photo of earth. 

1.2 SUMMARY 

Pixel Coordinates: 

A digital image is made up of rows and columns of pixels. A pixel in such 

an image can be specified by saying which column and which row 

contains it. In terms of coordinates, a pixel can be identified by a pair of 

integers giving the column number and the row number. For example, the 

pixel with coordinates (3,5) would lie in column number 3 and row 

number 5. Conventionally, columns are numbered from left to right, 

starting with zero. Most graphics systems, including the ones we will 

study in this chapter, number rows from top to bottom, starting from zero. 

Some, including OpenGL, number the rows from bottom to top instead. 

 



 

 3 

Computer Graphics 

and Image Processing 
 

Note in particular that the pixel that is identified by a pair of coordinates 

(x,y) depends on the choice of coordinate system. You always need to 

know what coordinate system is in use before you know what point you 

are talking about. 

Row and column numbers identify a pixel, not a point. A pixel contains 

many points; mathematically, it contains an infinite number of points. The 

goal of computer graphics is not really to color pixels—it is to create and 

manipulate images. In some ideal sense, an image should be defined by 

specifying a color for each point, not just for each pixel. Pixels are an 

approximation. If we imagine that there is a true, ideal image that we want 

to display, then any image that we display by coloring pixels is an 

approximation. This has many implications. 

Suppose, for example, that we want to draw a line segment. A 

mathematical line has no thickness and would be invisible. So we really 

want to draw a thick line segment, with some specified width. Let's say 

that the line should be one pixel wide. The problem is that, unless the line 

is horizontal or vertical, we can't actually draw the line by coloring pixels. 

A diagonal geometric line will cover some pixels only partially. It is not 

possible to make part of a pixel black and part of it white. When you try to 

draw a line with black and white pixels only, the result is a jagged 

staircase effect. This effect is an example of something called "aliasing." 

Aliasing can also be seen in the outlines of characters drawn on the screen 

and in diagonal or curved boundaries between any two regions of different 

color. (The term aliasing likely comes from the fact that ideal images are 

naturally described in real-number coordinates. When you try to represent 

the image using pixels, many real-number coordinates will map to the 

same integer pixel coordinates; they can all be considered as different 

names or "aliases" for the same pixel.) 

Antialiasing is a term for techniques that are designed to mitigate the 

effects of aliasing. The idea is that when a pixel is only partially covered 

by a shape, the color of the pixel should be a mixture of the color of the 

shape and the color of the background. When drawing a black line on a 

white background, the color of a partially covered pixel would be gray, 

with the shade of gray depending on the fraction of the pixel that is 

covered by the line. (In practice, calculating this area exactly for each 

pixel would be too difficult, so some approximate method is used.) Here, 

for example, is a geometric line, shown on the left, along with two 

approximations of that line made by coloring pixels. The lines are greatly 

magnified so that you can see the individual pixels. The line on the right is 

drawn using antialiasing, while the one in the middle is not: 



 

 4 

Introduction to Graphics 

 

 

Note that antialiasing does not give a perfect image, but it can reduce the 

"jaggies" that are caused by aliasing (at least when it is viewed on a 

normal scale). 

There are other issues involved in mapping real-number coordinates to 

pixels. For example, which point in a pixel should correspond to integer-

valued coordinates such as (3,5)? The center of the pixel? One of the 

corners of the pixel? In general, we think of the numbers as referring to 

the top-left corner of the pixel. Another way of thinking about this is to 

say that integer coordinates refer to the lines between pixels, rather than to 

the pixels themselves. But that still doesn't determine exactly which pixels 

are affected when a geometric shape is drawn. For example, here are two 

lines drawn using HTML canvas graphics, shown greatly magnified. The 

lines were specified to be colored black with a one-pixel line width  

 

The top line was drawn from the point (100,100) to the point (120,100). In 

canvas graphics, integer coordinates corresponding to the lines between 

pixels, but when a one-pixel line is drawn, it extends one-half pixel on 

either side of the infinitely thin geometric line. So for the top line, the line 

as it is drawn lies half in one row of pixels and half in another row. The 

graphics system, which uses antialiasing, rendered the line by coloring 

both rows of pixels gray. The bottom line was drawn from the point 

(100.5,100.5) to (120.5,120.5). In this case, the line lies exactly along one 

line of pixels, which gets colored black. The gray pixels at the ends of the 

bottom line have to do with the fact that the line only extends halfway into 

the pixels at its endpoints. Other graphics systems might render the same 

lines differently. 



 

 5 

Computer Graphics 

and Image Processing 
 

All this is complicated further by the fact that pixels aren't what they used 

to be. Pixels today are smaller! The resolution of a display device can be 

measured in terms of the number of pixels per inch on the display, a 

quantity referred to as PPI (pixels per inch) or sometimes DPI (dots per 

inch). Early screens tended to have resolutions of somewhere close to 72 

PPI. At that resolution, and at a typical viewing distance, individual pixels 

are clearly visible. For a while, it seemed like most displays had about 100 

pixels per inch, but high resolution displays today can have 200, 300 or 

even 400 pixels per inch. At the highest resolutions, individual pixels can 

no longer be distinguished. 

The fact that pixels come in such a range of sizes is a problem if we use 

coordinate systems based on pixels. An image created assuming that there 

are 100 pixels per inch will look tiny on a 400 PPI display. A one-pixel-

wide line looks good at 100 PPI, but at 400 PPI, a one-pixel-wide line is 

probably too thin. 

In fact, in many graphics systems, "pixel" doesn't really refer to the size of 

a physical pixel. Instead, it is just another unit of measure, which is set by 

the system to be something appropriate. (On a desktop system, a pixel is 

usually about one one-hundredth of an inch. On a smart phone, which is 

usually viewed from a closer distance, the value might be closer to 1/160 

inch. Furthermore, the meaning of a pixel as a unit of measure can change 

when, for example, the user applies a magnification to a web page.) 

Pixels cause problems that have not been completely solved. Fortunately, 

they are less of a problem for vector graphics, which is mostly what we 

will use in this book. For vector graphics, pixels only become an issue 

during rasterization, the step in which a vector image is converted into 

pixels for display. The vector image itself can be created using any 

convenient coordinate system. It represents an idealized, resolution-

independent image. A rasterized image is an approximation of that ideal 

image, but how to do the approximation can be left to the display 

hardware. 

Real-number Coordinate Systems: 

When doing 2D graphics, you are given a rectangle in which you want to 

draw some graphics primitives. Primitives are specified using some 

coordinate system on the rectangle. It should be possible to select a 

coordinate system that is appropriate for the application. For example, if 

the rectangle represents a floor plan for a 15 foot by 12 foot room, then 

you might want to use a coordinate system in which the unit of measure is 

one foot and the coordinates range from 0 to 15 in the horizontal direction 

and 0 to 12 in the vertical direction. The unit of measure in this case is feet 

rather than pixels, and one foot can correspond to many pixels in the 

image. The coordinates for a pixel will, in general, be real numbers rather 

than integers. In fact, it's better to forget about pixels and just think about 

points in the image. A point will have a pair of coordinates given by real 

numbers. 



 

 6 

Introduction to Graphics 

 

To specify the coordinate system on a rectangle, you just have to specify 

the horizontal coordinates for the left and right edges of the rectangle and 

the vertical coordinates for the top and bottom. Let's call these values left, 

right, top, and bottom. Often, they are thought of as xmin, xmax, ymin, 

and ymax, but there is no reason to assume that, for example, top is less 

than bottom. We might want a coordinate system in which the vertical 

coordinate increases from bottom to top instead of from top to bottom. In 

that case, top will correspond to the maximum y-value instead of the 

minimum value. 

To allow programmers to specify the coordinate system that they would 

like to use, it would be good to have a subroutine such as                

setCoordinateSystem(left,right,bottom,top) 

The graphics system would then be responsible for automatically 

transforming the coordinates from the specfiied coordinate system into 

pixel coordinates. Such a subroutine might not be available, so it's useful 

to see how the transformation is done by hand. Let's consider the general 

case. Given coordinates for a point in one coordinate system, we want to 

find the coordinates for the same point in a second coordinate system. 

(Remember that a coordinate system is just a way of assigning numbers to 

points. It's the points that are real!) Suppose that the horizontal and 

vertical limits are oldLeft, oldRight, oldTop, and oldBottom for the first 

coordinate system, and are newLeft, newRight, newTop, and newBottom 

for the second. Suppose that a point has coordinates (oldX,oldY) in the 

first coordinate system. We want to find the coordinates (newX,newY) of 

the point in the second coordinate system 

 

 Formulas for newX and newY are then given by 

newX = newLeft +  

          ((oldX - oldLeft) / (oldRight - oldLeft)) * (newRight - 

newLeft)) 

newY = newTop +  

          ((oldY - oldTop) / (oldBottom - oldTop)) * (newBotom -  

newTop) 

the same fraction of the distance from newLeft to newRight. You can also 

check the formulas by testing that they work when oldX is equal to 

oldLeft or to oldRight, and when oldY is equal to oldBottom or to oldTop. 

As an example, suppose that we want to transform some real-number 



 

 7 

Computer Graphics 

and Image Processing 
 

coordinate system with limits left, right, top, and bottom into pixel 

coordinates that range from 0 at left to 800 at the right and from 0 at the 

top 600 at the bottom. In that case, newLeft and newTop are zero, and the 

formulas become simply 

newX = ((oldX - left) / (right - left)) * 800 

newY = ((oldY - top) / (bottom - top)) * 600 

Of course, this gives newX and newY as real numbers, and they will have 

to be rounded or truncated to integer values if we need integer coordinates 

for pixels. The reverse transformation—going from pixel coordinates to 

real number coordinates—is also useful. For example, if the image is 

displayed on a computer screen, and you want to react to mouse clicks on 

the image, you will probably get the mouse coordinates in terms of integer 

pixel coordinates, but you will want to transform those pixel coordinates 

into your own chosen coordinate system. 

Example: 

Aim: Write a program to draw a circle in C graphics 

Code:  

The header file graphics.h contains circle() function which draws a circle 

with center at (x, y) and given radius. 

Syntax: 

circle(x, y, radius); 

where, 

(x, y) is center of the circle. 

'radius' is the Radius of the circle. 

Examples: 

Input: x = 250, y = 200, radius = 50 

Output: 

 



 

 8 

Introduction to Graphics 

 

Input: x = 300, y = 150, radius = 90 

Output: 

 

Below is the implementation to draw circle in C: 

1. // C Implementation for drawing circle 

2. #include <graphics.h> 

3. //driver code 

4. int main() 

5. { 

6. // gm is Graphics mode which is 

7. // a computer display mode that 

8. // generates image using pixels. 

9. // DETECT is a macro defined in 

10. // "graphics.h" header file 

11. int gd = DETECT, gm; 

12. // initgraph initializes the 

13. // graphics system by loading a 

14. // graphics driver from disk 

15. initgraph(&gd, &gm, ""); 

16. // circle function 

17. circle(250, 200, 50); 

18. getch(); 

19. // closegraph function closes the 

20. // graphics mode and deallocates 

21. // all memory allocated by 

22. // graphics system . 



 

 9 

Computer Graphics 

and Image Processing 
 

23. closegraph(); 

24. return 0; 

25. } 

Output: 

 

Example: 

Aim: Write a code to draw a line in C graphics 

graphics.h library is used to include and facilitate graphical operations in 

program. graphics.h functions can be used to draw different shapes, 

display text in different fonts, change colors and many more. Using 

functions of graphics.h you can make graphics programs, animations, 

projects and games. You can draw circles, lines, rectangles, bars and many 

other geometrical figures. You can change their colors using the available 

functions and fill them. 

Examples: 

For line 1, Input: x1 = 150, y1 = 150, x2 = 450, y2 = 150 

For line 2, Input: x1 = 150, y1 = 200, x2 = 450, y2 = 200 

For line 2, Input: x1 = 150, y1 = 250, x2 = 450, y2 = 250 

Output: 

 



 

 10 

Introduction to Graphics 

 

Explanation: The header file graphics.h contains line() function which is 

described below: 

Declaration: void line(int x1, int y1, int x2, int y2); 

line function is used to draw a line from a point(x1,y1) to point(x2,y2) i.e. 

(x1,y1) and (x2,y2) are end points of the line.The code given below draws 

a line. 

Code: 

1. // C++ Implementation for drawing line 

2. #include <graphics.h> 

3. // driver code 

4. int main() 

5. { 

6. // gm is Graphics mode which is a computer display 

7. // mode that generates image using pixels. 

8. // DETECT is a macro defined in "graphics.h" header file 

9. int gd = DETECT, gm; 

10. // initgraph initializes the graphics system 

11. // by loading a graphics driver from disk 

12. initgraph(&gd, &gm, ""); 

13. // line for x1, y1, x2, y2 

14. line(150, 150, 450, 150); 

15. // line for x1, y1, x2, y2 

16. line(150, 200, 450, 200); 

17. // line for x1, y1, x2, y2 

18. line(150, 250, 450, 250); 

19. getch(); 

20. // closegraph function closes the graphics 

21. // mode and deallocates all memory allocated 

22. // by graphics system . 

23. closegraph(); 

24. } 

 

 

 



 

 11 

Computer Graphics 

and Image Processing 
 

Output: 

 

1.3 REFERENCE 

1]  Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco 

Di Benedetto 

2]  Computer Graphics Principles and Practice in C: Principles & 

Practice in C Paperback – 1 January 2002 by Andries van Dam; F. 

Hughes John; James D. Foley; Steven K. Feiner (Author) 

 

1.4 UNIT END EXERCISE 

 Write a Program to draw basic graphics construction like line, 

circle, arc, ellipse and rectangle. 

 

 

 

 

***** 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks


 12 
 

2 
DEMONSTRATION OF SIMPLE GRAPHIC 

INBUILT FUNCTION 

Unit Structure 

2.0  Objectives 

2.1  Introduction 

2.2  Summary 

2.3  References 

2.4  Unit End Exercises 

2.0 OBJECTIVES 

C++ GRAPHICS Functions relating to graphics are used to create 

different shapes in different colors. The graphics functions require a 

graphics monitor (nowadays almost all computers have graphics monitors) 

and a graphics card such as VGA, SVGA or EGA. Color monitor is 

recommended for viewing graphics in colors. 

The graphics include: 

● Lines in different colors and styles. 

● Different shapes like circles, rectangles in different styles. 

● Text in different fonts, sizes, and styles. 

The following files are needed with the C++ compiler to work in 

graphics: 

● The Header File “graphics.h” that contains built-in graphic functions. 

This header file is included in the program. 

● Borland Graphics Interface (BGI) files. These files contain graphics 

driver programs that initialize the computer monitor into graphics 

mode. These files have BGI extension. 

● Character font style files having extension “chr”. These files are used 

to process text or characters in graphics mode. 

Display Mode: 

The output of a program can be displayed on the screen in two modes. 

These modes are: 

1. Text Mode 

2. Graphics Mode 



 

 13 

Computer Graphics 

and Image Processing 
 

C++ Text Mode: 

In a text mode, the screen is normally divided into 80 columns and 25 

rows. The topmost row is 0 and the bottom-most row is 24. Similarly. the 

leftmost column is 0 and the rightmost column is 79. In-text mode, only 

text can be displayed. The images and one graphics object cannot be 

displayed. 

 C++ Graphics Mode: 

Images and other graphic objects are displayed on the SC graphics mode. 

In this mode, the output is displayed on the computer screen in points or 

pixels. 

2.1 INTRODUCTION 

In graphics mode, the screen is divided into small dots called For example, 

in the VGA monitor, the screen is divided into 480 row 640 columns of 

dots. Thus, the VGA monitor screen is divide 640×480 pixels. The 

number of dots per inch is called resolution screen. The dots are very close 

to each other. The more the number pixels, the more clearer the graphics 

is. 

The monitor types (display adapter) and their respective resolution are 

given below. 

Monitor type Resolution Color 

CGA 

 

VGA 

 

SVGA 

640×200 

 

640×480 

 

800×600 

16 

 

16 

 

256 

 

Initializing C++ Graphics Mode: 

The computer display system must be initialized into graphics mode 

before calling the graphics function. 

The “initgraph” function is used to initialize the display into graphics 

mode. This function is a part of the “graphics.h” header file. So this file is 

included in the program before executing “initgraph” function. 

The syntax of initgraph” function is: 

initgraph(&driver, &mode, “path”);: 

Where: 

Driver: 

Represents the graphics driver installed on the computer. It may be an 

integer variable or an integer constant identifier, e.g. CGA, EGA, SVGA, 

etc. 



 

 14 

Demonstration of Simple 

Graphic Inbuilt Function 

 

The-graphics driver can also be automatically detected by using the 

keyword “DETECT”. Letting compiler detect the graphic driver is known 

as auto-detect. 

If the driver is to be automatically detected, the variable driver is declared 

as of integer type and DETECT value is assigned to it as shown below. 

int driver, mode; 

driver = DETECT; 

This statement must be placed before “initgraph” function. When the 

above statement is executed. he computer automatically detects the 

graphic driver and the graphics mode. 

Mode: 

Represents output resolution on the computer screen. The normal mode 

for VGA is VGAHI. It gives the highest resolution 

If the driver is on auto-detected, then its use is optional. The computer 

automatically detects the driver as well as the mode. 

& 

represents the addresses of constant numerical identifiers of driver and 

mode. If constants (e.g., VGA, VGAHI) are used, then “&” operator is not 

used as shown below: 

initgraph (VGA, VGAHI, “path”); 

Path: 

Represents the path of graphic drivers. It is the directory on the dish where 

the BGI files are located. Suppose the BGI files are stored in 

“C:\TC\BGI”, then the complete path is written as: 

initgraph (VGA, VGAHI, “C:\TC\\BGI”); 

Use of double backslash “\” is to be noted. One backslash is used as 

escape character and other for the directory path. If the BGI files are in the 

current directory, then the path is written as: 

initgraph (VGA, VGAHI, “ ”); 

1 

2 

3 

4 

5 

6 

7 

#include<graphics.h> 

main() 

{ 

int d, m; 

d= DETECT; 

Initgraph(&d, &m, “c:\\tc”); 

} 



 

 15 

Computer Graphics 

and Image Processing 
 

In the above example, the BGI files must be in the specified directory, 

1.e., in “c:\tclbgi”. If the BGI files are in the directory path”c:\tc” then the 

above statement is written as: 

initgraph(&d, &m, “C:\\TC”); 

The “cleardevice” Function: 

The “cleardevice” function is used to clear the screen in graphics mode. It 

is similar to “clrscr” function that is used to clear the screen text mode. Its 

syntax is: 

cleardevice(); 

Closing Graphics Mode: 

The “closegraph” function is used to restore the screen to the text mode. 

When graphics mode is initialized, memory is allocated to the graphics 

system. When “closegraph” function is executed, it de-allocates all 

memory allocated to the graphics system. This function is usually used a 

the end of the program. Its syntax is: 

closegraph(); 

Text in Graphics Mode: 

In graphics node: text can also be written in different fonts, styles. sizes, 

colors, and directions. The graphic functions commonly used to create and 

print text are described below. 

 The “outtext” Function 

The “outtext” function is used to print text on the computer screen in 

graphics mode. The text is printed at the current cursor position on the 

screen. Its syntax is: 

outtext(string); 

Where: 

string: 

Represents the characters that are to be printed on the screen. It may be a 

string variable or string constant. The string constant is enclosed in 

double-quotes. 

Example how to use cleardevice, closegraph and outtext function and print 

Electronic Clinic into C++ graphic mode. 

1 

2 

3 

#include<graphics.h> 

#include<conio.h> 

main() 



 

 16 

Demonstration of Simple 

Graphic Inbuilt Function 

 

4 

5 

6 

7 

8 

9 

10 

11 

12 

{ 

int d, m; 

d=DETECT; 

initgraph (&d, &m, “”); 

cleardevice(); 

outtext(“electronic clinic”); 

getch(); 

closegraph(); 

} 

The “moveto” Function: 

The “moveto” function is used to move the current cursor position to a 

specified location on the screen where the output is to be printed. It is 

similar to “gotoxy” function used in text mode. Its syntax is: 

moveto (x, y); 

Where: 

x  

Represents the x-coordinate of the screen. It is the horizontal distance in 

pixels from the left of the screen. It may be an unsigned int type value or 

variable. For VGA, its value is from 0 to 639. 

y 

represents the y-coordinate of the scren. It is the vertical distance in pixels 

from the top of the screen. It may be an unsigned int type value or 

variable. For VGA, its value is from 0 to 479. 

Example of  how to use moveto function using C++ graphics. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

moveto(400,200); 

outtext(“Electronic Clinic”); 



 

 17 

Computer Graphics 

and Image Processing 
 

11 

12 

13 

getch(); 

closegraph(); 

} 

The “outtextxy” Function: 

The “outtextxy” function is similar to the outtext” function but it is used to 

print text on the screen at a specified location. This function serves the 

purpose of both the “moveto” and “outtext” functions. Its syntax is: 

outtextxy (x, y, string); 

 where: 

x 

represents the x-coordinate of the screen. It is the horizontal distance in 

pixels from the left of the screen. It may be unsigned int type value or 

variable. For VGA, its value is from 0 to 639. 

Y 

represents the y-coordinate of the screen. It is the vertical distance in 

pixels from the top of the screen. It may be unsigned int type value or 

variable. For VGA, its value is from 0 to 479. 

String 

represents the string of characters that is to be printed on the computer 

screen. It may be a string variable or a string. constant. The string constant 

is enclosed in double quotes. 

Examples of using outtextxy in C++ graphics. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

outtextxy(100,200, “electronic clinic”); 

getch(); 

closegraph(); 

} 

 



 

 18 

Demonstration of Simple 

Graphic Inbuilt Function 

 

The “settextstyle” Function: 

The “settextstyle” function is used to define the text style in graphics 

mode. The text style includes the font type, font size and text direction. 

The syntax of this function is given as: settextstyle (style, dir, size); 

All the three parameters are of int type. These may be int type values or 

variables. 

Where: 

Style: 

specifies the font style. Its value range is from 0 to 10. 

Dir: 

Specifies the direction of the text in which it is to be displayed. Its value is 

from 0 to 1. It may be a numerical constant identifier. It is HORIZ DIR 

(for horizontal direction) or VERT_DIR (for vertical direction). 

Size: 

Specifies the font size of the text. Its value is from 0 to 72. 

Example of settextstyle: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m,c; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

for(c=0; c<=10; c++) 

{ 

setextstyle(c,0,0); 

outtextxy(100,20+c*20, “electronic clinic”) 

} 

getch(); 

closegraph(); 

} 

  



 

 19 

Computer Graphics 

and Image Processing 
 

2.2 SUMMARY 

The “setcolor” Function: 

The setcolor” function is used to define color of the objects and the text in 

graphics mode. Its syntax is: setcolor (co); 

 where: 

со 

Represents the color. It may be an int type value or variable. For VGA, its 

value is from   0 to 15. It may also be a numerical constant identifier, e.g. 

BLUE, GREEN, RED etc. 

 The “setbkcolor” Function 

The “setbkcolor” function is used in graphics mode to define the 

background color of the screen. Its syntax is: setbkcolor(co); 

Where: 

co 

Specifies the color. It may be an it type value or variable. For VGA. Its 

value is from 0 to 15. It may also be numerical constant identifier eg blue, 

green and red etc. 

Example how to use setcolor and setbkcolor function and print Electronic 

Clinic into C++ graphic mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m,co; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

for(co=0; co<=15; co++) 

{ 

setbkcolor(co); 

setcolor(co+1); 

settextstyle(0,0,2); 

outtextxy(100,10+co*20, “electronic clinic”); 

outtextxy(200, 200,”press any key….”); 



 

 20 

Demonstration of Simple 

Graphic Inbuilt Function 

 

16 

17 

18 

19 

getch(); 

} 

closegraph(); 

} 

Creating Objects in C++ Graphics Mode: 

Different objects, e.g. lines, circles, rectangles and many other shapes are 

created in graphics mode using various built-in functions. Following are 

the functions that are commonly used to create graphics objects: 

The “circle” Function 

The “circle” function is used to draw a circle on the screen. Its syntax is: 

circle(x, y, radius); 

All the three parameters are of int type. These may be int type values or 

variables. 

Where 

 x & y 

Specifies the center point of the circle. These are the x- coordinate and y-

coordinate of the center of the circle on the screen. 

Radius 

Specifies the radius of the circle. 

Example how to make a circle using circle function in C++ graphics 

mode: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m,r,c; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

for(c=1; c<= 15; c++) 

{ 

setcolor(c); 

circle(300,200,c*10); 

} 



 

 21 

Computer Graphics 

and Image Processing 
 

14 

15 

16 

getch(); 

closegraph(); 

} 

The “arc” Function: 

The arc function is used to draw a circular arc starting from a specified 

angle and up to another specified angle. Its syntax is: 

arc (x, y, stangle, endangle, radius); 

All the five parameters are of int types. These may be constants or 

variables. 

Where: 

 x & y 

specify the center point of the circle. These are the x- coordinate and y-

coordinate of the center of the arc on the screen. 

Stangle: 

Specifies the starting angle of the arc in degree. 

Endangle: 

Specifies the ending angle of the arc in degree. 

Radius: 

Specifies the radius of the arc. 

Note: 

The arc function can also be used to draw a circle by giving the starting 

angle 0 and ending angle 360. Similarly, it can also be used to draw line 

by giving the same values for starting and ending angles. 

Example on how to use arc in C++ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int d,m,c; 

d= DETECT; 

initgraph(&d, &m, “”); 

cleardevice(); 

for(c=1; c<=15; c++) 



 

 22 

Demonstration of Simple 

Graphic Inbuilt Function 

 

10 

11 

12 

13 

14 

15 

16 

17 

{ 

setcolor(c); 

arc(300,200,45,145,c*10); 

} 

getch(); 

closegraph(); 

  

} 

2.3 REFERENCES 

1]  Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco 

Di Benedetto 

2]  Computer Graphics Principles and Practice in C: Principles & 

Practice in C Paperback – 1 January 2002 by Andries van Dam; F. 

Hughes John; James D. Foley; Steven K. Feiner (Author) 

2.4 UNIT END EXERCISE 

 How to make lines in C++ using line function in graphic mode? 

 

 

 

 

***** 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks


 23 
 

MODULE II 

3 
OUTPUT PRIMITIVES & ITS 

ALGORITHMS 

Unit Structure 

3.0  Objectives 

3.1  Introduction 

3.2  Scan Conversion Algorithms 

3.3  Line drawing algorithms 

       3.3.1 Digital Differential Analyser (DDA) Line Drawing Algorithm 

   3.3.2 Bresenham’s Line Drawing Algorithm 

3.4  Summary 

3.5  Unit End Exercise 

3.6  References for Future Reading 

3.0  OBJECTIVES 

The objective of scan conversion is to determine the intersection of rows 

& columns to find an area called pixel, to paint any object. 

3.1  INTRODUCTION 

It is a field of computer science that refers to the creation, storage, 

manipulation & drawing of pictures in digital form. It also manipulates 

visual contents which helps in manipulating images & objects in two & 

three dimension. 

3.2  SCAN CONVERSION ALGORITHMS 

It is a term used for drawing methods for two dimensional pictures such as 

lines, polygons and text that creates raster images. The objective of scan 

conversion is to determine the intersection of rows & columns to find an 

area called pixel, to paint any object. In a high resolution system, the 

adjacent pixels are so closely spaced that the approximate line pixels lie 

very close to the actual line path & hence the plotted lines appear to be 

smoother. In a low resolution the same approximated line pixels appear as 

a “zig-zag or staircase” which are not smooth. 

3.3  LINE DRAWING ALGORITHMS 

Several line drawing algorithms are used with an objective to create 

smooth images with a high resolution & this can be achieved as follows: 



 

 24 

Output Primitives & Its 

Algorithms 

 

3.3.1 Digital Differential Analyser (DDA) Line Drawing Algorithm:  

It is an incremental scan conversion method to determine points on a line. 

Algorithm: 

Step1: Input the coordinates of the two end points A(x1,y1) & B(x2,y2) 

for the line AB, such that A and B are not equal. 

Step2: Calculate dx=(x2-x1) and dy=(y2-y1)  

Step3: Calculate the length (L)  

If abs(x2-x1) ≥ abs(y2-y1) then 

L= abs(x2-x1) 

Else 

L= abs(y2-y1) 

Step4: Calculate the increment factor 

dx=          and dy=  

Step5: Initialize the initial point on the line and plot 

xnew=x1+0.5         and ynew = y1+0.5 

Plot(Integer xnew, Integer ynew) 

Step6: Obtain the new pixel on the line and plot the same 

Initialize i to 1 

While (i≤L) 

{  

xnew = xnew +dx 

ynew=ynew + dy 

plot(Integer xnew, Integer ynew) 

i=i+1 

} 

Step7: Stop 

Solved Example: 

Q.1. Consider a line AB with A(0,0) and B(8,4) apply a simple DDA 

algorithm to calculate the pixels on this line. 

Solution: 

1.  A(0,0)     B(8,4)     x1=0     y1=0     x2=8     y2=4 



 

 25 

Computer Graphics 

and Image Processing 
 

2.  dx = 8-0 = 8, dy = 4-0 = 4 

3. L=8, dx>dy 

4.  dx =  =  

    dy =     =   =0.5 

5.  xnew = x1+ 0.5 = 0+0.5 =0.5 

     ynew = y1+0.5 = 0+0.5 = 0.5 

Plot (0,0) 

6.  i=1 

while (1 ≤ 8) 

{ 

 xnew = 0.5 + 1 =1.5 

 ynew= 0.5+0.5 =1.0 

 Plot (1,1) 

 i=i+1 

} 

while (2 ≤ 8) 

{ 

 xnew = 1.5 + 1 =1.5 

 ynew= 1.0+0.5 =1.5 

 Plot (2,1) 

 i=i+1 

} 

while (3 ≤ 8) 

{ 

 xnew = 2.5 + 1 =3.5 

 ynew= 1.5+0.5 =2.0 

 Plot (3,2) 

 i=i+1 

} 

while (4 ≤ 8) 

{ 

 xnew = 3.5 + 1 =4.5 



 

 26 

Output Primitives & Its 

Algorithms 

 

 ynew= 2.0+0.5 =2.5 

 Plot (4,2) 

 i=i+1 

} 

while (5 ≤ 8) 

{ 

 xnew = 4.5 + 1 =5.5 

 ynew= 2.5+0.5 =3.0 

 Plot (5,3) 

 i=i+1 

} 

while (6 ≤ 8) 

{ 

 xnew = 5.5 + 1 =6.5 

 ynew= 3.0+0.5 =3.5 

 Plot (6,3) 

 i=i+1 

} 

while (7 ≤ 8) 

{ 

 xnew = 6.5 + 1 =7.5 

 ynew= 3.5+0.5 =4.0 

 Plot (7,4) 

 i=i+1 

} 

while (8 ≤ 8) 

{ 

 xnew = 7.5 + 1 =8.5 

 ynew= 4.0+0.5 =4.5 

 Plot (8,4) 

 i=i+1 

} 

 



 

 27 

Computer Graphics 

and Image Processing 
 

i Plot Xnew ynew 

- (0,0) 0.5 0.5 

1 (1,1) 1.5 1.0 

2 (2,1) 2.5 1.5 

3 (3,2) 3.5 2.0 

4 (4,2) 4.5 2.5 

5 (5,3) 5.5 3.0 

6 (6,3) 6.5 3.5 

7 (7,4) 7.5 4.0 

8 (8,4) 8.5 4.5 

 

9           

8           

7           

6           

5           

4           

3           

2           

1           

0           

 0 1 2 3 4 5 6 7 8 9 

Plot of the Line AB 

Q.2. Use DDA Line drawing algorithm draw a line AB for the endpoints 

A (1,1) and B(5,3) 

Solution: 

1.  A(1,1)   and B(5,3),       x1=1     y1=1    x2= 5     y2=3 

2.  dx=5-1 = 4 ,   dy =3-1 =2 

3.  L= 4,  dx>dy 

4.  dx =     =     = 1, dy =     =0.5 

5.  xnew = 1+0.5 =1.5      

ynew = 1+0.5 =1.5 

Plot(1,1) 

6.  i=1 

while (1 ≤ 4) 

{ 



 

 28 

Output Primitives & Its 

Algorithms 

 

 xnew = 1.5 +1=2.5 

 ynew=1.5+0.5 =2.0 

 Plot(2,2) 

 i=i+1 

} 

while (2 ≤ 4) 

{ 

 xnew = 2 +1.5=3.5 

 ynew=2+0.5 =2.5 

 Plot(3,2) 

 i=i+1 

} 

while (3 ≤ 4) 

{ 

 xnew = 3 +1.5=4.5 

 ynew=2.5+0.5 =3.0 

 Plot(4,3) 

 i=i+1 

} 

while (4 ≤ 4) 

{ 

 xnew = 4 +1.5=5.5 

 ynew=3.0+0.5 =3.5 

 Plot(5,3) 

 i=i+1 

} 

i Plot xnew ynew 

- (1,1) 1.5 1.5 

1 (2,2) 2.5 2.0 

2 (3,2) 3.5 2.5 

3 (4,3) 4.5 3.0 

4 (5,3) 5.5 3.5 

 

 



 

 29 

Computer Graphics 

and Image Processing 
 

3        

2        

1        

0        

 0 1 2 3 4 5 6 

 

Q.3. Consider a line AB with A (2,3) and B (6,8). Apply a simple DDA 

algorithm and calculate the pixels on the line 

Solution: 

1. A(2,3)   and B(6,8)        x1=2, y1 =3     x2=6   y2 =8 

2. dx =  x2-x1   = 6-2  =4 

    dy = y2-y1 = 8-3   =5 

3. L=5 

4.  dx = =    0.8 

    dy=     =    = 1 

5. xnew =x1 +0.5 = 2+0.5 =2.5 

    ynew = y1+0.5 = 3+0.5 =3.5 

   Plot (2,3) 

6.    i=1 

while ( 1≤ 5) 

{ 

xnew = xnew +dx 

=2.5+0.8 

3.3 

ynew =ynew +dy 

=3.5+1 

=4.5 

Plot(3,4) 

i=i+1 

} 

while ( 2≤ 5) 

{ 

xnew = xnew +dx 



 

 30 

Output Primitives & Its 

Algorithms 

 

=3.3+0.8 

=4.1 

ynew =ynew +dy =4.5+1 

=5.5 

Plot(4,5) 

i=i+1 

} 

while ( 3≤ 5) 

{ 

xnew =xnew +dx 

=4.1+0.8 

=4.9 

Ynew =5.5+1 

 =6.5 

Plot(4,6) 

i=i+1 

} 

while ( 4≤ 5) 

{ 

xnew = xnew +dx 

=4.9+0.8 

=5.7 

ynew =ynew +dy 

=6.5+1 

=7.5 

Plot(5,7) 

i=i+1 

} 

while ( 5≤ 5) 

{ 

xnew = xnew +dx 

=5.7+0.8 

=6.5 

ynew =ynew +dy 



 

 31 

Computer Graphics 

and Image Processing 
 

=7.5+1 

=8.5 

Plot(6,8) 

} 

i Plot Xnew ynew 

- (2,3) 2.5 3.5 

1 (3,4) 3.3 4.5 

2 (4,5) 4.1 5.5 

3 (4,6) 4.9 6.5 

4 (5,7) 5.7 7.5 

5 (6,8) 6.5 8.5 

 

       

9       

8       

7       

6       

5       

4       

3       

2       

1 2 3 4 5 6 7 

 

3.3.2 Bresenham’s Line Drawing Algorithm: 

It was developed by Jack Bresenham in 1965. It uses floating point 

arithmetic to calculate the slope of the line and error term. 

Algorithm: 

Step1: Initialize the end points of the line AB with A(x1,y1) and 

B(x2,y2). The two end points are assumed to be distinct. 

Step2: Calculate dx and dy such that: 

 dx=x2-x1 

 dy=y2-y2 

Step3: Initialize error term (e) 

 e= 2*dy-dx 

 xnew=x1 

 ynew=y1 



 

 32 

Output Primitives & Its 

Algorithms 

 

Step4: Determine the first pixel on the line and update the error term 

For i=1 to dx 

Plot(Integer xnew, Integer ynew) 

While(e≥0) 

{ 

 ynew=ynew+1 

 e=e-2*dx 

} 

xnew=xnew+1 

e=e+2*dy 

Next i 

End for loop 

Step5: Stop 

Solved Examples: 

Q.1. Consider a line AB with coordinates A(5,5) and B(13,9). Determine 

the line segment using Bresenham’s line drawing algorithm. 

Solution: 

1.  A(x1,y1) = A(5,5) 

B(x2,y2)=B(13,9) 

2.  dx=x2-x1  =13-5 =8 

dy = y2-y1 = 9-5 =4 

3.  e=2*dy-dx   = 2*4 -8 = 8-8 =0 

xnew=x1         ynew=y1 

xnew=5           ynew=5 

4.  for i=1 to 8 

Plot(5,5) 

While (e≥0) 

{ 

ynew=ynew+1=5+1=6 

e=e-2*dx=0-2*8 = -16 



 

 33 

Computer Graphics 

and Image Processing 
 

} 

xnew=xnew+1 =5+1=6 

e=e+2*dy = -16+2*4 = -16+8 = -8 

for i=2 to 8 

plot(6,6) 

while(e≥0) 

{ 

} 

xnew=xnew+1 =6+1=7 

e=e+2*dy =-8+2*4 = 0 

for i=3 to 8 

plot(7,6) 

while(e≥0) 

{ 

ynew=ynew+1=6+1=7 

e=e-2*dx = 0-2*8 = - 16 

} 

xnew=xnew+1=7+1=8 

e=e+2*dy = -16+2*4 = -16+8 = -8 

for i=4 to 8 

plot(8,7) 

while(e≥0) 

{ 

} 

xnew=xnew+1 = 8+1 =9 

e=e+2*dy = -8+2*4 = -8+8 =0 

for i=5 to 8 

plot(9,7) 

while(e≥0) 

{ 

ynew=ynew +1=7+1 =8 

e=e-2*dx = 0-2*8 =-16 

} 

xnew=xnew+1=9+1 =10 

e=e+2*dy =-16+2*4 = -8 



 

 34 

Output Primitives & Its 

Algorithms 

 

for i=6 to 8 

plot(10,8) 

while(e≥0) 

{ 

} 

xnew=xnew+1 = 10+1 = 11 

e=e+2*dy = -8+2*4 = 0 

for i=7 to 8 

Plot(11,8) 

ynew=ynew+1 = 8+1 =9 

e=e-2*dx = 0-2*8 = -16 

} 

xnew=xnew+1 =11+1 =12 

e=e+2*dy = -16+2*4 =-8 

for i=8 to 8 

plot(12,9) 

while(e≥0) 

{ 

} 

Xnew=xnew+1 =12+1 =13 

e=e+2*dy =-8+2*4 =0 

i plot xnew ynew e 

- - 5 5 0 

1 (5,5) 6 6 -8 

2 (6,6) 7 6 0 

3 (7,6) 8 7 -8 

4 (8,7) 9 7 0 

5 (9,7) 10 8 -8 

6 (10,8) 11 8 0 

7 (11,8) 12 9 -8 

8 (12,9) 13 9 0 

 

10              

9              

8              

7              



 

 35 

Computer Graphics 

and Image Processing 
 

6              

5              

4              

3              

2              

1              

1 2 3 4 5 6 7 8 9 10 11 12 13  

 

Q.2. Consider the line coordnates A(0,0) and B(8,4). Determine the line 

segment using Bresenham’s algorithm. 

Solution: 

1. A(0,0)   and B(8,4)   x1=0        y1=0     and x2 =8    y2 = 4 

2. dx = x2-x1 = 8-0     dy= y2-y1 = 4-0 

3. e=2*dy-dx   = 2*4-8   =8-8 =0 

xnew=x1=0          ynew= y1=0 

4. for (i=1) to 8 

Plot(0,0) 

while(e≥0) 

{ 

ynew=0+1=1 

e = 0-2*8 = - 16 

} 

xnew=0+1=1 

e=-16+2*4 = -8 

for i=2 to 8 

plot(1,1) 

while(e≥0) 

{ 

} 

xnew=1+1 =2 

enew= -8+2*4 =0 

for i=3 to 8 

Plot (2,1) 



 

 36 

Output Primitives & Its 

Algorithms 

 

while(e≥0) 

{ 

ynew=1+1=2 

e=0-2*8 = -16 

} 

xnew =2+1 =3 

e= -16+2*4   = -8 

for i=4 to 8 

Plot(3,2) 

while (e≥0) 

{ 

} 

xnew = 3+1=4 

e=8+2*4 = 0 

for i=5 to 8 

plot(4,2) 

while(e≥0) 

{ 

ynew=2+1 =3 

e=0-2*8 =-16 

} 

xnew =4+1=5 

e=-16+2*4 = -8 

for i=6 to 8 

plot(5,3) 

while(e≥0) 

{ 

} 

xnew=5+1=6 

e= -8+2*4 =0 

for i=7 to 8 



 

 37 

Computer Graphics 

and Image Processing 
 

plot(6,3) 

while(e≥0) 

{ 

ynew= 3+1=4 

e=0-2*8 = -16 

} 

xnew=6+1 =7 

e=-16+2*4 =-8 

For i=8 to 8 

Plot(7,4) 

while(e≥0) 

{ 

} 

xnew=7+1=8 

e= -8+2+4 =0 

i Plot xnew ynew e 

- - 0 0 0 

1 (0,0) 1 1 -8 

2 (1,1) 2 1 0 

3 (2,1) 3 2 -8 

4 (3,2) 4 2 0 

5 (4,2) 5 3 -8 

6 (5,3) 6 3 0 

7 (6,3) 7 4 -8 

8 (7,4) 8 4 0 

 

        

        

        

        

        

        

        

 

 

 



 

 38 

Output Primitives & Its 

Algorithms 

 

3.4  SUMMARY 

In this chapter line algorithms are used to describe how a line can be 

drawn using each and pixel. Two important line drawing algorithms are 

explained- DDA & Bresenham’s line drawing algorithm.                      

3.5  UNIT END EXERCISE 

1.  Define scan conversion. Write an algorithm of DDA line drawing. 

2.  Write an algorithm of DDA Line drawing. 

3.  Consider a line AB with A(0,0) and B(8,4). Apply a simple DDA to 

calculate the pixels of this line. 

4.  Consider a line from (0,0) to B(6,6). Using simple DDA to calculate 

the points of this line. 

5.  Consider a line from (0,0) to (5,5). Using simple DDA to calculate the 

points of this line. 

6.  Use DDA to draw pixels of the line AB with A(1,1) and B(5,3). 

7.  Use Bresenham’s line drawing algorithm to draw pixels of the line 

XY(5,5) and Y (13,9) 

8.  Use Bresenham’s line drawing algorithm to draw pixels of the line 

XY(0,0) and Y (8,4) 

9.  Write the applications of line drawing algorithm. 

3.6  REFERENCES FOR FUTURE READING 

 Computer_Graphics_C_Version_by_Donald_Hearn_and_M_Pauline_

Baker_II_Edition 

 Computer graphics by Atul P. Godse, Dr. Deepali A. Godse 

 

 

 

 

***** 

 

 

                        



 39 
 

MODULE III 

4 
OUTPUT PRIMITIVES & ITS 

ALGORITHMS 

Unit Structure 

4.0  Introduction 

4.1 Implementation of circle drawing Midpoint circle  

4.2 Application of Circle drawing algorithm 

4.3  Unit End Exercise 

4.0 INTRODUCTION 

What is scan conversion and how it is utilized for drawing a Circle: 

Converting the unbroken graphical object as a group of distinct objects is 

called as scan conversion. 

In the process of “scan –converting a circle”, the circle is divided into 

eight equal parts, one part is called as octant, and if one part is generated, 

then it is easy to replicate the other seven parts; so computing one octant is 

enough to determine the complete circle. 

 

 

Fig. 3.4.0 The eight-way of Symmetry of Circle 

Techniques used to compute octant of Circle:  

•  Digital Differential analyzer (DDA): 

○  Direct or polynomial approach: second degree polynomial equation 

is used to form the circle octant. 



 

 40 

Output Primitives & Its 

Algorithms 

 

○  Parametric or Trigonometric approach: parametric polar 

representation is used to form the circle octant. 

•  Bresenham's Algorithm: This algorithm can form the entire circle; 

to avoid time of calculation one octant is computed and symmetry is 

used form the other seven octants. 

•  Mid-point Circle algorithm: It is better than polynomial and 

parametric approach; it adopts integer operation and so avoids 

trigonometric and square root calculations. 

4.1 IMPLEMENTATION OF CIRCLE DRAWING 

MIDPOINT CIRCLE 

Before studying Mid-Point Circle algorithm, we must study Bresenham‟s 

Algorithm for circle drawing as below: 

To draw Circle, we first have to look at properties of circle: 

Properties of Circle: 

1. Circle function f(x, y) = x
2
 + y

2
 – r

2
. 

2. Any point (x, y) on the boundary of the circle with radius „r‟ satisfies 

the equation circle (x, y) = 0. 

3. If the point is in the interior of the circle, the circle function is 

negative. 

4. If the point is outside of the circle, the circle function is positive. 

Value of Circle (x, y) Position of pixel w.r.t. circle 

Less than 0 if (x, y) is inside the circle boundary 

Equal to 0 if (x, y) is on the circle boundary 

Greater than 0 if (x, y) is outside the circle boundary 

 

● Midpoint between candidate pixels at sampling position xk+1 along a 

circular path. (Ref. Fig. 3.4.1 below) 

 

Fig. 3.4.1 Sampling position of candidate point in circular path 



 

 41 

Computer Graphics 

and Image Processing 
 

 

Fig. 3.4.2 For pixel (x,y) all possible pixels in 8 (eight) octants. 

Circle algorithm is based on The circle equation is given by,                                             

(x – xc)
2
 + (y – yc)

2
 = r

2 
(where xc & yc are coordinates of the center of 

the Circle)
 

However, above equation is non linear, so that square-root evaluations 

would be required to compute pixel distances from circular path. This 

algorithm avoids this square-root calculations by comparing the squares of 

the pixel separation distances. 

A method for direct distance comparison is to test the halfway position 

between two pixels to determine if this midpoint is inside or outside the 

circle boundary. This method is more easily applied to other conics, and 

for an integer circle radius, the midpoint approach generates the same 

pixel. 

How Mid Point Circle differs from above define Bresenham‟s algorithm? 

As per above Bresenham’s Algorithm, we deal with integers, so it 

occupies less memory and lesser time for execution as well as it is reliable, 

accurate and efficient as it avoids using round function or floating-point 

calculations, where as in Mid-point circle algorithm also avoids square 

root or trigonometric calculation by applying integer operation only. This 

algorithm checks the nearest integer by computing the middle point of the 

pixels nearer to the given point on the circle. 

MID POINT CIRCLE ALGORITHM: 

(1) Input radius r and circle center (xc, yc) and obtain the first point on 

the circumference of a circle centered on the origin as (x0, y0) = (0,r) 

(2) Calculate the initial value of the decision parameter as p0  

= 5/4 – r 

(3) At each xk position, starting at k = 0, perform the following test: 

 If pk<0, the next point along the circle centered on (0, 0) is  



 

 42 

Output Primitives & Its 

Algorithms 

 

  (xk+1, yk) and 

  pk+1 = pk +2xk+1 +1 

  Otherwise, 

  the next point along the circle is (xk+1, yk –1) and  

pk+1 = pk + 2xk+1 +1 – 2yk+1  

Where 2xk+1= 2xk +2, 2yk+1=2yk-2 

(4) Determine symmetry points in the other seven octants.  

(5) Move each calculated pixel position (x, y) onto the circular path 

centered on (xc, yc) and plot the coordinate values x = x + xc, y = y + 

yc  

(6) Repeat steps 3 through 5 until x ≥ y.  

Example: Consider a circle is centered on origin and the radius is 10. 

First circle octant in the first quadrant from x = 0 to x = y  

Initial value of the decision parameter is p0 =1 – r = –9 

(x0, y0) = (0, 10), 2x0 =0 and 2y0 =20 

Let us do calculation as shown in table below: 

K pk (xk+1,yk+1) 2xk+1 2yk+1 

0 -9 (1,10) 2 20 

1 -6 (2,10) 4 20 

2 -1 (3,10) 6 20 

3 6 (4,9) 8 18 

4 -3 (5,9) 10 18 

5 8 (6,8) 12 16 

6 5 (7,7) 14 14 

 

By plotting graph from above calculated value, we get as shown 

below. 

Note: Table. 3.4.3 above is showing only two symmetrical 

points (x, y) and (y, x). 

 



 

 43 

Computer Graphics 

and Image Processing 
 

 
Fig. 3.4.3 Demonstration for Mid-point Circle Algorithm 

Midpoint Circle Algorithm in C++: 

#include<graphics.h> 

#include<stdlib.h> 

#include<stdio.h> 

#include<math.h> 

#include<conio.h> 

void main() 

{ 

 int x,y,r; 

 int gd=DETECT,g; 

 initgraph(&gd,&gm,"c:\\TurboC3\\bgi"); 

 cleardevice(); 

cout<<"Enter the centre co-ordinates:"; 

cin>>x>>y; 

 cout<<"Enter radius of circle:"; 

 cin>>r; 

 circlemidpoints (x,y,r); 

 getch(); 

 closegraph(); 

} 

 



 

 44 

Output Primitives & Its 

Algorithms 

 

void circlemidpoints (int xcenter, int ycenter, int radius) 

{ int x=0; 

 int y=radius; 

 int p=1-radius; 

 void circleplotpoints (int ,int ,int ,int ); 

 circleplotpoints (xcenter,ycenter,x,y); 

 while(x<y) 

 { x++; 

  if(p<0) 

   p=p+2*x+1; 

  else 

  { y--; 

   p=p+2*(x-y)+1; 

  } 

  circleplotpoints (xcenter,ycenter,x,y); 

 } return(0); 

} 

 

 

void circleplotpoints (int xcenter,int ycenter,int x,int y) 

{ 

 putpixel(xcenter+x,ycenter+y,5); 

 putpixel(xcenter-x,ycenter+y,5); 

 putpixel(xcenter+x,ycenter-y,5); 

 putpixel(xcenter-x,ycenter-y,5); 

 putpixel(xcenter+y,ycenter+x,5); 

 putpixel(xcenter-y,ycenter+x,5); 

 putpixel(xcenter+y,ycenter-x,5);  

 putpixel(xcenter-y,ycenter-x,5); 

} 

4.2 APPLICATION OF CIRCLE DRAWING 

ALGORITHM 

Circle drawing algorithm is used by many applications, some of them are 

listed in this section. 

 



 

 45 

Computer Graphics 

and Image Processing 
 

1. Concentric Circle Application: 

In graphic designing in many application areas drawing of concentric 

circle is required.  

Below is program written using C++ to draw a concentric circle with 

different colors and at periodic interval. 

Program: Write a C++ program to draw a concentric circle of different 

colors at periodic interval of time. 

#include<iostream.h> 

#include<conio.h>  

#include<graphics.h>  

main() 

{ 

 int i,gd,gc,xcen,ycen,color=1; 

 

gd=DETECT; 

 

initgraph(&gd,&gc,"C:\\TURBOC3\\BGI"); 

 xcen=getmaxx()/2;  

ycen=getmaxy()/2;  

for(i=20;i<=200;i+=20) 

{ 

                  setcolor(color++);  

                  circle(xcen,ycen,i); 

} 

getch(); 

} 

 

Output of the above code is as shown below: 

 



 

 46 

Output Primitives & Its 

Algorithms 

 

 

 

2. For creating a Bouncing ball application, Circle drawing algorithm is 

also utilized as follows: 

#include<graphics.h> 

#include<dos.h> 

#include<conio.h> 

main() 

{ 

 int gd,gm,x=10,y=10,xinc=10,yinc=10,c=1,f=1; 

 gd=DETECT; 

 initgraph(&gd,&gm,"C:\\TC\\BGI"); 

 while(!kbhit()) 

 { 

  x = x + xinc; 

  y = y + yinc; 

  if(x<=0 || x>=getmaxx()) 

   xinc=-xinc; 

  if(y<=0 || y>=getmaxy()) 

   yinc=-yinc;  

   c++; 

   f++; 

  if(c>=15) 



 

 47 

Computer Graphics 

and Image Processing 
 

   c=1; 

  if(f>=12) 

   f=0; 

  setfillstyle(c,f); 

  fillellipse(x,y,10,10); 

  delay(100); 

  cleardevice(); 

 } } 

Output of above program is as below: 

 

 

 

3. To display an analog clock, circle drawing algorithm is utilized as 

follows: 

#include<dos.h> 

#include<math.h> 

#include<stdio.h> 

#include<conio.h> 

#include<graphics.h> 

#define x 3.1415 

 

void tick(); /*Produce Tic-Tic with every second*/ 

struct time t; /*Structure to get time from the computer Bios*/ 

 

void main() 



 

 48 

Output Primitives & Its 

Algorithms 

 

{ 

  int gdriver=DETECT,gmode; 

  float sec_x,sec_y,min_x,min_y,hour_x,hour_y,h=0,m=0,s=0; 

  

 /*initialize graphics mode*/ 

 initgraph(&gdriver,&gmode,"c:\\tc\\bgi");  

 

  gettime(&t); /* Obtain the system time*/ 

  h=t.ti_hour; 

 if(h>=12)h=h-12; 

  m=t.ti_min; 

  s=t.ti_sec; 

 

  outtextxy(170,20,":Demonstartion of animating Clock:"); 

  circle(getmaxx()/2,getmaxy()/2,120); //Draw Border 

  circle(getmaxx()/2,getmaxy()/2,123); //Draw Border 

  setfillstyle(SOLID_FILL,BLUE);   //Fill Interior of the clock 

  floodfill(320,240,WHITE); 

 

  while(!kbhit()) 

  { 

   setcolor(WHITE); 

   outtextxy(420,240,"3"); 

   outtextxy(210,240,"9"); 

   outtextxy(310,130,"12"); 

   outtextxy(310,340,"6"); 

 

   sec_x=100*cos(2*x/60*s-x/2)+getmaxx()/2; //Compute 

Second Needle Coordinate 



 

 49 

Computer Graphics 

and Image Processing 
 

   sec_y=100*sin(2*x/60*s-x/2)+getmaxy()/2; 

 

 min_x=90*cos(2*x/60*m-x/2)+getmaxx()/2; //Compute 

Minute Needle Coordinate 

 

  min_y=90*sin(2*x/60*m-x/2)+getmaxy()/2; 

 

hour_x=60*cos(2*x/12*(h+m/60)-x/2)+getmaxx()/2; //Compute 

Hour Needle Coordinate 

 

  hour_y=60*sin(2*x/12*(h+m/60)-x/2)+getmaxy()/2; 

 

   setcolor(RED); 

   line(getmaxx()/2,getmaxy()/2,sec_x,sec_y); 

   setcolor(WHITE); 

   line(getmaxx()/2,getmaxy()/2,min_x,min_y); 

   setcolor(YELLOW); 

   line(getmaxx()/2,getmaxy()/2,hour_x,hour_y); 

 

   tick(); 

   delay(1000); 

 

   setcolor(BLUE); 

   line(getmaxx()/2,getmaxy()/2,sec_x,sec_y); 

   line(getmaxx()/2,getmaxy()/2,min_x,min_y); 

   line(getmaxx()/2,getmaxy()/2,hour_x,hour_y); 

 

   s=s+1; 

   if(s>=60) 

   {  



 

 50 

Output Primitives & Its 

Algorithms 

 

   s=0; 

   m=m+1; 

   h=h+1/60; 

   } 

 

  } 

  nosound(); 

  getch(); 

  closegraph(); 

} 

/* simulate clock tick sound*/ 

void tick() 

{ 

 int i; 

 for(i=3500;i<=6500;i++) 

 sound(i); 

 nosound(); 

} 

 

Output of above code is as shown below: 

Demonstrating Analog Clock: 

 

4. Circle drawing algorithm is also used to create an application to 

with four (04) bouncing ball, each ball is bouncing back in the 

respective quadrant in which it is placed. 

Note; Divide an output screen in four equal quadrants . 



 

 51 

Computer Graphics 

and Image Processing 
 

 

Program: 

#include<conio.h> 

#include<graphics.h> 

main() 

{ 

 int gd=DETECT,gm,xc=10,yc=10,xctr=5,yctr=5, 

 xc2=(int)getmaxx()/2+10,yc2=10,xctr2=5,yctr2=5, 

  //xc3=(int)getmaxx()/-2+10,yc3=10,xctr3=5,yctr3=5; 

 xc3=10,yc3=getmaxy()/2,xctr3=5,yctr3=5,xc4,yc4,xctr4=5,yc

tr4=5; 

 initgraph(&gd,&gm,"C:\\TurboC3\\BGI"); 

  xc2=(int)getmaxx()/2+10;yc2=10;xctr2=5;yctr2=5; 

  yc3=getmaxy()/2+10; 

  xc4=getmaxx()/2; 

  yc4=getmaxy()/2; 

 while(!kbhit()) 

 { 

  line(getmaxx()/2,0,getmaxx()/2,getmaxy()); 

  line(0,getmaxy()/2,getmaxx(),getmaxy()/2); 

 

  circle(xc,yc,10); 

  if(xc<=0 || xc>=getmaxx()/2-20) 

   xctr=-xctr; 

  if(yc<=0 || yc>=getmaxy()/2-20) 

   yctr=-yctr; 

  xc += xctr; 

  yc += yctr; 

 



 

 52 

Output Primitives & Its 

Algorithms 

 

  circle(xc2,yc2,10); 

   if(xc2-4<=(int)getmaxx()/2 || xc2>=getmaxx()-20) 

   xctr2=-xctr2; 

  if(yc2<=0 || yc2>=getmaxy()/2-20) 

   yctr2=-yctr2; 

  xc2 += xctr2; 

  yc2 += yctr2; 

 

  circle(xc3,yc3,10); 

  if(xc3<=0 || xc3>=getmaxx()/2-20) 

   xctr3=-xctr3; 

  if(yc3<getmaxy()/2 || yc3>=getmaxy()) 

   yctr3=-yctr3; 

  xc3 += xctr3; 

  yc3 += yctr3; 

 

  circle(xc4,yc4,10); 

  if(xc4<getmaxx()/2 || xc4>=getmaxx()-20) 

   xctr4=-xctr4; 

  if(yc4<getmaxy()/2 || yc4>=getmaxy()) 

   yctr4=-yctr4; 

  xc4 += xctr4; 

  yc4 += yctr4; 

 

  delay(10); 

  cleardevice(); 

 } 

 

} 



 

 53 

Computer Graphics 

and Image Processing 
 

 

Output of the above program is as below: 

 

 

Apart from above application of circle algorithm, there are many other 

applications which are mention below. 

1.  For drawing symbol that can be like as an  Olympic ring like below in 

OpenGL software: 

 

Fig. 3.4.3 Olympic ring in OpenGL software 

3.  To Construct a simulator for representation of Solar System 

4.  To Create various animation-based games 

5.  To Create various animated short films or videos 

6.  To represent waves generated by object like spring 

4.3 UNIT END EXERCISE  

Answer the following: 

Q-1.  List various algorithm, which are used for drawing a circle using 

computer graphics. 

Q-2.  Explain the difference between Bresenham‟s Algorithm and Mid-

Point Circle Algorithm for drawing a Circle. 



 

 54 

Output Primitives & Its 

Algorithms 

 

Q-3.  Explain in brief Mid-Point Circle Algorithm. 

Q-4.  For a Center x and y coordinates as 20 and 20 respectively and 

having radius 10 units, plot a scanning a table using Mid-Point circle 

algorithm. 

Q-5.  Based on scanning table received in Q-4, plot a Circle on a graph 

paper. 

Q-6.  List a various application where Mid-Point Circle algorithm is used. 

Q-7.  Write a CPP using computer graphics to demonstrate how it can be 

utilized to develop various application such as Analog Clock. 

 

 

 

 

 

***** 

 

 



 55 
 

MODULE IV 

5 
OUTPUT PRIMITIVES & ITS 

ALGORITHMS 

Unit Structure 

5.0  Objectives 

5.1  Introduction 

5.2  Mid-Point Ellipse  

5.3  Implementation of Ellipse Drawing A. Midpoint Ellipse 

5.4  Summary 

5.5  References for Future Reading 

5.0 OBJECTIVES 

After this Chapter a learner will be able to implement the Mid-Point 

Ellipse algorithm using computer program. 

5.1 INTRODUCTION 

Ellipse is defined as the geometric figure which is the set of all points on a 

plane whose distance from two fixed points known as the foci remains a 

constant. 

It consists of two axes: major and minor axes where the major axis is the 

longest diameter and minor axis is the shortest diameter.  

Unlike circle, the ellipse has four-way symmetry property which means 

that only the quadrants are symmetric while the octants are not. 

5.2 MID-POINT ELLIPSE  

Mid-Point Ellipse is an incremental method for scan converting an ellipse 

that is centered at the origin in standard position i.e., with the major and 

minor axis parallel to coordinate system axis. It is very similar to the 

midpoint circle algorithm. Because of the four-way symmetry property we 

need to consider the entire elliptical curve in the first quadrant. 

The mid-point ellipse drawing algorithm is used to calculate all the 

perimeter points of an ellipse. In this algorithm, the mid-point between the 

two pixels is calculated which helps in calculating the decision parameter. 

The value of the decision parameter determines whether the mid-point lies 

inside, outside, or on the ellipse boundary and the then position of the 

mid-point helps in drawing the ellipse. 



 

 56 

Output Primitives & Its 

Algorithms 

 

let us consider the elliptical curve in the first quadrant. 

  

Consider the general equation of an ellipse,  

b
2
 x

2
 + a

2
 y

2
 – a

2
 b

2
 = 0  

where a is the horizontal radius and b is the vertical radius, we can define 

an function f(x,y) by which the error due to a prediction coordinate (x,y) 

can be obtained. The appropriate pixels can be selected according to the 

error so that the required ellipse is formed. The error can be confined 

within half a pixel.  

Set f(x,y) = b
2
 x

2
 + a

2
 y

2
 – a

2
 b

2
 

In region I (dy/dx > –1), 

 

 



 

 57 

Computer Graphics 

and Image Processing 
 

x is always incremented in each step, i.e. xk+1 = xk + 1. 

yk+1 = yk if E is selected, or yk+1 = yk – 1 if SE is selected. 

In order to make decision between S and SE, a prediction (xk+1, yk–½) is 

set at the middle between the two candidate pixels. A prediction function 

Pk can be 

defined as follows: 

Pk = f(xk+1, yk–½) 

= b
2
(xk+1)

2
 + a

2
(yk–½)

2
 – a

2
b

2
 

= b
2
(xk

2
 + 2xk + 

1. Input rx, ry, and ellipse center (xc, yc,), and plot the first point as 

(x0,y0)=(0,ry) 

Region 1: 

2.  Then, Calculate the initial value of the decision parameter in region 1 

as 

p0 = ry
2
 – rx

2
ry + rx

2
/4 

3.  At each xk, position in region 1, from k = 0, check the condition 

If pk < 0, the next point is (xk+1, yk) and 

pk+1 = pk  + 2ry
2
xk + 1 + ry

2
 

Otherwise, the next point is (xk + 1, yk – 1) and 

pk+1 = pk  + 2ry
2
xk + 1 + ry

2
 – 2 rx

2
 yk+1 

and continue until 2ry
2
x >= 2rx

2
 y 

Region 2: 

4. Calculate initial decision parameter in region 2 with the last point (x0, 

y0) calculated in region 1 as 

p0 = ry
2
(x0 + 1/2)

2
   +  rx

2
(y0 – 1)

2
   – rx

2
ry

2
 

5. At each yk position in region 2, starting at k = 0, check: 



 

 58 

Output Primitives & Its 

Algorithms 

 

If pk> 0, the next point is (xk, yk – 1) 

pk+1 = pk  – 2 rx
2
 yk+1 + rx

2
  

and Otherwise, the next point is (xk + 1, yk – 1) 

pk+1 = pk  + 2ry
2
xk + 1 + rx

2
 – 2 rx

2
 yk+1 

6.  Find out symmetry points in the other three quadrants. 

7.  Translate each calculated pixel position (x, y) by adding (xc, yc) and 

plot: 

8.  Repeat the steps for region 1 until 2ry
2
x >= 2rx

2
 y  

 

5.3 IMPLEMENTATION OF ELLIPSE DRAWING A. 

MIDPOINT ELLIPSE 

The algorithm described above shows how to obtain the pixel coordinates 

in the first quarter only. The ellipse centre is assumed to be at the origin. 

In actual implementation, the pixel coordinates in other quarters can be 

simply obtained by use of the symmetric characteristics of an ellipse. For a 

pixel (x, y) in the first quarter, the corresponding pixels in other three 

quarters are (x, –y), (–x, y) and (–x, –y) respectively. If the centre is at 

(xC, yC), all calculated coordinate (x, y) should be adjusted by adding the 

offset (xC, yC). 

C Implementation:  

#include <graphics.h>   

#include <stdlib.h>   

#include <math.h>   

#include <stdio.h>   

#include <conio.h>   

#include <iostream.h>   



 

 59 

Computer Graphics 

and Image Processing 
 

class Mid-Point   

{   

    float x,y,a, b,r,p,h,k,p1,p2;   

    public:   

    void get ();   

    void cal ();   

};   

    void main ()   

    {   

    Mid-Point b;   

    b.get ();   

    b.cal ();   

    getch ();   

   }   

    void Mid-Point :: get ()   

   {   

    cout<<"\n ENTER CENTER OF ELLIPSE";   

    cout<<"\n ENTER (h, k) ";    

           cin>>h>>k;   

    cout<<"\n ENTER LENGTH OF MAJOR AND MINOR AXIS";   

    cin>>a>>b;   

  }   

void Mid-Point ::cal ()   

{   

    /* request auto detection */   

    int gdriver = DETECT,gmode, errorcode;   

    int midx, midy, i;   

    /* initialize graphics and local variables */   

    initgraph (&gdriver, &gmode, " ");   

    /* read result of initialization */   

    errorcode = graphresult ();   

    if (errorcode ! = grOK)    /*an error occurred */   

    {   

        printf("Graphics error: %s \n", grapherrormsg (errorcode);   

        printf ("Press any key to halt:");   



 

 60 

Output Primitives & Its 

Algorithms 

 

        getch ();   

        exit (1); /* terminate with an error code */   

    }   

    x=0;   

    y=b;   

    // REGION 1   

    p1 =(b * b)-(a * a * b) + (a * a)/4);   

    {   

        putpixel (x+h, y+k, RED);   

        putpixel (-x+h, -y+k, RED);   

        putpixel (x+h, -y+k, RED);   

        putpixel (-x+h, y+k, RED);   

        if (p1 < 0)   

            p1 += ((2 *b * b) *(x+1))-((2 * a * a)*(y-1)) + (b * b);   

        else   

        {   

            p1+= ((2 *b * b) *(x+1))-((2 * a * a)*(y-1))-(b * b);   

            y--;           

        }   

        x++;   

    }   

    //REGION 2   

    p2 =((b * b)* (x + 0.5))+((a * a)*(y-1) * (y-1))-(a * a *b * b);   

    while (y>=0)   

    {   

        If (p2>0)   

        p2=p2-((2 * a * a)* (y-1))+(a *a);   

        else   

        {   

        p2=p2-((2 * a * a)* (y-1))+((2 * b * b)*(x+1))+(a * a);   

        x++;   

        }   

        y--;   

        putpixel (x+h, y+k, RED);   

        putpixel (-x+h, -y+k, RED);   



 

 61 

Computer Graphics 

and Image Processing 
 

        putpixel (x+h, -y+k, RED);   

        putpixel (-x+h, y+k, RED);   

    }   

    getch();   

}   

Output: 

 

Java Implementation: 

// Java program for implementing 

// Mid-Point Ellipse Drawing Algorithm 

import java.util.*; 

import java.text.DecimalFormat; 

class GFG 

{ 

static void midptellipse(float rx, float ry, float xc, float yc) 

{ 

 

 float dx, dy, d1, d2, x, y; 

 x = 0; 

 y = ry; 

 

 // Initial decision parameter of region 1 

 d1 = (ry * ry) - (rx * rx * ry) +  (0.25f * rx * rx); 



 

 62 

Output Primitives & Its 

Algorithms 

 

 dx = 2 * ry * ry * x; 

 dy = 2 * rx * rx * y; 

 DecimalFormat df = new DecimalFormat("#,###,##0.00000"); 

  // For region 1 

 while (dx < dy) 

 { 

  

  // Print points based on 4-way symmetry 

  System.out.println(df.format((x + xc)) + 

       ", "+df.format((y + yc))); 

  System.out.println(df.format((-x + xc)) + 

       ", "+ df.format((y + yc))); 

  System.out.println(df.format((x + xc)) + 

       ", "+ df.format((-y + yc))); 

  System.out.println(df.format((-x + xc)) + 

       ", "+df.format((-y + yc))); 

 

  // Checking and updating value of 

  // decision parameter based on algorithm 

  if (d1 < 0) 

  { 

   x++; 

   dx = dx + (2 * ry * ry); 

   d1 = d1 + dx + (ry * ry); 

  } 

  else 

  { 

   x++; 

   y--; 



 

 63 

Computer Graphics 

and Image Processing 
 

   dx = dx + (2 * ry * ry); 

   dy = dy - (2 * rx * rx); 

   d1 = d1 + dx - dy + (ry * ry); 

  } 

 } 

 

 // Decision parameter of region 2 

 d2 = ((ry * ry) * ((x + 0.5f) * (x + 0.5f))) 

  + ((rx * rx) * ((y - 1) * (y - 1))) 

  - (rx * rx * ry * ry); 

 

 // Plotting points of region 2 

 while (y >= 0) { 

 

  // printing points based on 4-way symmetry 

  System.out.println(df.format((x + xc)) + 

       ", " + df.format((y + yc))); 

  System.out.println(df.format((-x + xc)) + 

       ", "+ df.format((y + yc))); 

  System.out.println(df.format((x + xc)) + 

       ", " + df.format((-y + yc))); 

  System.out.println(df.format((-x + xc)) + 

       ", " + df.format((-y + yc))); 

 

  // Checking and updating parameter 

  // value based on algorithm 

  if (d2 > 0) { 

   y--; 

   dy = dy - (2 * rx * rx); 



 

 64 

Output Primitives & Its 

Algorithms 

 

   d2 = d2 + (rx * rx) - dy; 

  } 

  else { 

   y--; 

   x++; 

   dx = dx + (2 * ry * ry); 

   dy = dy - (2 * rx * rx); 

   d2 = d2 + dx - dy + (rx * rx); 

  } 

 } 

} 

 

// Driver code 

public static void main(String args[]) 

{ 

 // To draw a ellipse of major and 

 // minor radius 15, 10 centered at (50, 50) 

 midptellipse(10, 15, 50, 50); 

} 

} 

Python Implementation: 

# Python3 program for implementing 

# Mid-Point Ellipse Drawing Algorithm 

 

def midptellipse(rx, ry, xc, yc): 

 

 x = 0; 

 y = ry; 

 



 

 65 

Computer Graphics 

and Image Processing 
 

 # Initial decision parameter of region 1 

 d1 = ((ry * ry) - (rx * rx * ry) + 

     (0.25 * rx * rx)); 

 dx = 2 * ry * ry * x; 

 dy = 2 * rx * rx * y; 

 

 # For region 1 

 while (dx < dy): 

 

  # Print points based on 4-way symmetry 

  print("(", x + xc, ",", y + yc, ")"); 

  print("(",-x + xc,",", y + yc, ")"); 

  print("(",x + xc,",", -y + yc ,")"); 

  print("(",-x + xc, ",", -y + yc, ")"); 

 

  # Checking and updating value of 

  # decision parameter based on algorithm 

  if (d1 < 0): 

   x += 1; 

   dx = dx + (2 * ry * ry); 

   d1 = d1 + dx + (ry * ry); 

  else: 

   x += 1; 

   y -= 1; 

   dx = dx + (2 * ry * ry); 

   dy = dy - (2 * rx * rx); 

   d1 = d1 + dx - dy + (ry * ry); 

 

 # Decision parameter of region 2 



 

 66 

Output Primitives & Its 

Algorithms 

 

 d2 = (((ry * ry) * ((x + 0.5) * (x + 0.5))) + 

  ((rx * rx) * ((y - 1) * (y - 1))) - 

  (rx * rx * ry * ry)); 

 

 # Plotting points of region 2 

 while (y >= 0): 

 

  # printing points based on 4-way symmetry 

  print("(", x + xc, ",", y + yc, ")"); 

  print("(", -x + xc, ",", y + yc, ")"); 

  print("(", x + xc, ",", -y + yc, ")"); 

  print("(", -x + xc, ",", -y + yc, ")"); 

 

  # Checking and updating parameter 

  # value based on algorithm 

  if (d2 > 0): 

   y -= 1; 

   dy = dy - (2 * rx * rx); 

   d2 = d2 + (rx * rx) - dy; 

  else: 

   y -= 1; 

   x += 1; 

   dx = dx + (2 * ry * ry); 

   dy = dy - (2 * rx * rx); 

   d2 = d2 + dx - dy + (rx * rx); 

# Driver code 

# To draw a ellipse of major and 

# minor radius 15, 10 centered at (50, 50) 

midptellipse(10, 15, 50, 50); 



 

 67 

Computer Graphics 

and Image Processing 
 

5.4 SUMMARY 

Mid-point Ellipse algorithm is used to draw an ellipse in computer 

graphics. Midpoint ellipse algorithm plots(finds) points of an ellipse on 

the first quadrant by dividing the quadrant into two regions.  

5.5 REFERENCES FOR FUTURE READING  

 Donald Hearn and M Pauline Baker, Computer Graphics C Version -- 

Computer Graphics, C Version, 2/E, Pearson Education. 

 David F. Rogers, James Alan Adams, Mathematical elements for 

computer graphics , McGraw-Hill, 1990 

 Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing 

(3rd Edition), Pearson Education. 

 S. Sridhar-Digital image Processing, Second Edition, Oxford 

University Press 

 Anil K. Jain -Fundamentals of digital image processing. Prentice Hall, 

1989 

 

 

 

 

 

 

  ***** 

 



 68 
 

UNIT V 

6 
OUTPUT PRIMITIVES & ITS 

ALGORITHM 

Unit Structure 

6.0  Objective 

6.1  Introduction 

6.2  Implementation of curve  

6.2.1 Bezier curve and surface 

6.2.2 Properties of Bezier curve 

6.2.3 Design techniques using Bezier curve 

6.2.4 Cubic Bezier curve 

6.2.5 Bezier surface 

6.3  Summary 

6.4  Unit End Exercise 

6.5  References for Future Reading  

6.0 OBJECTIVE  

This chapter will able you to understand the following concept: 

 Bezier curve and surface 

 properties of Bezier curve 

 Design techniques using Bezier curve 

 Cubic Bezier curve 

 Bezier surface 

6.1 INTRODUCTION  

The object which we can see around us is of different shapes either visible 

as 2D or 3D. Modelling of objects in computer graphics uses the 

primitives such as lines, circle, ellipse etc. Modeling of geometric objects 

generally combines these basic primitives to create another object. For 

example, to generate curves in computer graphic, multiple lines are 

conducted with each other using same data points.  

Dots + Lines > curve 

We can see that in graphics modeling, the curve generated by connecting 

multiple lines are not smooth but in real world curves appears smooth. To 

design curve which also have some smoothness we require high design 



 

 69 

Computer Graphics 

and Image Processing 
 

approximation, which can be represented as explicit, implicit parametric 

and non-parametric. 

Curves are represented mainly in two ways: 

 

Explicit Representation: The explicit form of curve is in two dimensions 

gives the value of one variable i.e. the dependent variable, in terms of 

other independent variable. 

In x, y plane it is written as y=f(x) 

Implicit Representation: in two dimension implicit curve can be 

represented by the equation f(x, y)= 0 

 The implicit form I less coordinate system dependent than is the 

explicit form. 

 In three dimensions, the implicit form f(x, y,z)=0 

 Curve in three dimensions are not as easily represented in implicit 

curve. 

 We can represent a curve as the intersection. If it exists, of the two 

surface: f(x, y, z) = 0, g(x, y, z) = 0 

6.2 IMPLEMNTATION OF CURVE  

The spline approximation method was developed by the French engineer 

Pierre Bezier for use in the design of Renault automobile bodies. Bezier 

splines have a multiple property that one can use very conveniently for 

curve and surface design. They are also easy to implement. The above 

listed all reasons makes most use of Bezier splines in CAD systems, in 

general graphics packages (such as GL on Silicon Graphics systems), and 

in assorted drawing and painting packages (such as Aldus Super Paint and 

Cricket Draw). A most important property of a Bezier curve is that it 

always passes between the first and last control of the point 

Curve Function: 

Routines for circle, splines, and other commonly used curves are included 

in many graphics packages. The PHIGS standard does not provide explicit 

functions for these curve, but it does include 

greneralizedDrawingPrimitive (n,wcpoint, id, datalist) 

 

 
Explicit curve 

 
Curve 
Representation 

 
Implicit curve 



 

 70 

Output Primitives & Its 

Algorithm 

 

where wcpoints is a list of n coordinate positions, datalist contain noncoor-

dinate data value, and parameter id select the desired function. At a 

particular installation, a circle might be referenced with id=1, an ellipse 

with id=2, and so on. 

As an example of the definition of curve through this PHIGS function a, 

circle (id=1, say) could be specified by assigning the two center coordinate 

Val-uses to wcpoints and assigning the radius value to datalist. The 

generalized drawing primitive would then reference the appropriate 

algorithm, such as file midpoint method, to generate the circle. With 

interactive input, a circle could be defined two coordinate points: the 

center position and a point on the circumference. Similarly, interactive 

specification of an ellipse can be done with three points. The two foci and 

a point on the ellipse boundary, all stored in wcpoints. For an ellipse in 

standard position wcpoint could be assigned only the center coordinate, 

with datalist assigned the value for rx and ry. Splines defined with control 

points would be generated by assigning the control point coordinate to 

wcpoints. 

Function to generate circle and ellipse often include the capability of 

drawing curve section by specifying parameter for the line endpoints. 

Expanding the parameter list allow specification of the beginning and 

ending angular value for an arc, as illustrated in fig 3-27. Another method 

for designation a circular or elliptical arc is to input the beginning and 

ending coordinate positions of the arc.   

1. Quadratic Bézier Curve: 

With 3 control points the quadratic Bézier curve having the degree of 2-

point p(t).  

Note that P(t) will not return a numeric, but it will return a point on the 

curve. Now we have to choose three control points and it generate line 

between that three points from the range 0-1.  

In the diagram we can see that the curve initiate and ends at the starting 

and ending control points. Any number point it will draw a curve. The 

selected t ranges from 0 to 1, hence one can prove this by taking P(t) at 

t=0 and t=1. 

 



 

 71 

Computer Graphics 

and Image Processing 
 

The curve goes from p0 and p1 and it will determine the slope of the curve 

also the shape of the curve. It will always contain polygon shape formed 

by specified control points. Hence the specific polygon is called as control 

polygon or Bézier polygon, as it is controlled by the points determine by 

the curve. With this property any number of control points can holds the 

polygon. 

 

2. Matrix representation: 

Using matrix multiplication, we can actually represent the Bézier curve, 

which we can use in splitting the Bézier curve.  

Matrix M cane be used for holding all the information about the quadratic 

Bézier curve into one matrix. The steps proceeded by matrix we need to 

take the coefficients of that matrix in all these steps, hence the coefficients 

of the matrix are connected to the polynomial in front of each Pi, here we 

have to expanded form of the Bernstein polynomial. 

3. Interpolation: 

Bézier curves can be drawn with smooth points hence the drawn curve is 

appearing smooth with a predefined set of points. The formula used for 

this is of P(t) produces points and is not of the form y=f(x), so one x can 

have multiple y’s (basically a function that can “go backward”).  

 

6.2.1 Bezie Curve S And Surface: 

Any number of control points are available in brazier curve. One can 

determine the degree of brazier polynomial with the number of control 

points to their relative positions. A Bezier curve can be specified with 



 

 72 

Output Primitives & Its 

Algorithm 

 

boundary conditions with the interpolation splines, with a characterizing 

matrix, or with blending functions. The blending function specification is 

the most convenient in brazier curve. 

Suppose we are given n+1 control-point positions: pk = (xk, yk, zk), with 

k varying from 0 to n. the following position vector P(u) can be produced 

by blended coordinate points, which describes the path of an 

approximating Bezier polynomial function between P0 and Pn. 

0

0 ( )  ( ( )) 0 u 1k kP u p u     

The Bezier blending functions BEZk,n(u) are the Bernstein polynomials: 

, ( ) ( , ) u (1 )k n k

K NBEZ u C n k u    

Where the C(n,k) are the binomial coefficients: 

:
 ( , )

: ( ) :

n
C n k

k n k



 

Equivalently, we can define Bezier blending functions with the recursive 

calculation 

, , 1 1, 1( ) (1 ) ( ) ( ),  1k n k n k nBEZ u u BEZ u uBEZ u n k        

with BEZK,K = uk, and BEZ0,k = (1-u)k. Vector equation 1 represents a 

set of three parameters equations for the individual curve coordinates:          

0

0( )    (x ( ))k kx u u   

0

0( )    (y ( ))k ky u u   

0

0( )    (z ( ))k kz u u   

in a Bezier curve the degree of polynomial is one less than the number of 

control points used in Bezier curve.  Parabola can be created by 3 points, 

with 4 points its generate cubic curve and so on. Following figure 

demonstrates the appearance of some Bezier curves for various selections 

of control points in the xy plane (z=0). The degenerated Bezier curve can 

be determining by certain control-point placements. For example, with 

three collinear control points a straight line segment is generated a Bezier 

curve. The control points at one location can produce Bezier curve in a 

single point. 

Painting and drawing packages contain Bezier curves which is mostly 

used, as they are very easy to implement and powerful to draw a curve 

hence it can also use in CAD systems. Recursive calculation can be used 

for determining coordinate position of Bezier curve. For example, 

proceeded binomial coefficients can be counted as 



 

 73 

Computer Graphics 

and Image Processing 
 

   

C (n,k) =  

For n > k. The following example program illustrates a method for 

generating Bezier curves. 

De Casteliau’s Algorithm: 

1.  Draw control points. As named are labeled 1, 2, 3. 

2.  Draw the line between control points 1 → 2 → 3. 

3.  The parameter t moves from 0 to 1. In the illustration above the 

step0.05 is used the curve goes over 0,0.05,0.1,0.15,.0.95, 1. For each 

of these values of t. 

On proportional distance draw each line on point t located from its 

starting. we've two points, so draw two lines.  

For illustration, for t = 0 – both points will be at the starting of points, and 

for t = 0.25 – on the 25% of length from the starting, for t = 0.5 – 50 (the 

middle), for t = 1 – in the end of line. Connect the points. For t = 0.25 For 

t = 0.5 

4.  Now in the line take a point on the distance proportional to the same 

value of t. That is, for t = 0.25 (the left picture) we've a point at the 

end of the left quarter of the line, and for t = 0.5 (the right picture) – 

in the middle of the line.  

5.  As t runs from 0 to 1, every value of t adds a point to the wind. The 

set of similar points forms the Bezier curve. 



 

 74 

Output Primitives & Its 

Algorithm 

 

 

6.2.2 Properties Of Bezier Curve: 

A most important property of a Bezier curve is that it always passes 

between the first and last control of the point. Which specify the boundary 

conditions at both ends of the curve are 

P(0) = p0 

P(1) = pn 

Parametric first derivatives value of a Bezier curve at the endpoints can be 

calculated from control-point coordinates as 

P(0) = -np0 + np1 

P(1) = -npn-1 + np1 

 

Thus, at the starting of the curve the slope of the line is going through the 

first two control points, and at the end, slope of the curve is along the line 

joining the last two endpoints. Similarly, the calculation of the second 

parametric derivatives of a Bezier curve at the endpoints  

P”(0) = n(n-1)[(p1 – p2)-( p1 – p0)] 

P”(0) = n(n-1)[(pn-2 – pn-1)-( pn-1 – pn)] 

 



 

 75 

Computer Graphics 

and Image Processing 
 

One of the most attractive property of Bezier curve is that, All the control 

points of Bezier curve are lies within the convex (convex polygon 

boundary) of the control points. The blending function property is used in 

the above curve generation, hence they all are positive and their sum is 

always 1,   

0

  ( ( )) 1
n

k

k

p u


  

The weighted sum of control points position can be simply specifying the 

curve position. The convex-hull property for a Bezier curve ensures that 

the polynomial smoothly follows the control panels without erratic 

oscillations. 

Bezier curve Properties in Short: 

 Joining the control points segments will decide the shape of the 

control polygon. 

 It always travels between initial and end control points. 

 They are contained in the convex hull of their defining control points. 

 The degree of polynomial defining the curve segment is one less that 

the number of defining polygon point. Therefore, for 4 control point, 

the degree of the polynomial is 3, i.e. cubic polynomial. 

 Shape of the polygon can generally draw with the Bezier curve 

representation. 

 The tangent vector direction aims at the end points is same with the 

vector determined by initial and end segments. 

 The control points of polynomial are smoothly followed by the Bezier 

curve ca make the convex hull property for it. 

 No straight line intersects a Bezier curve more times than it intersects 

it control polygon. 

 They are invariant under an affine transformation. 

 Bezier curves can handle the global changes like, moving a control 

point alters the shape of the whole curve. 

 A given Bezier curve can be subdivided at a point u=u0 int two Bezier 

segments which join together at the point corresponding to the 

parameter value u=u0. 

 

 

 



 

 76 

Output Primitives & Its 

Algorithm 

 

6.2.3 Design Technique Using Bezier Curve: 

 

The first and the last control points at the same position can be called as 

closed Bezier curve, as in figure shown.  

Also, at a single coordinate position multiple control points gives more 

weight to that position. In below figure, two control points can be taken by 

a single coordinate position as input, and the output curve is puled nearer 

to this position. 

With the help of polynomial calculation function of higher degree, we can 

draw Bezier curve with n number of control points. Complicated Bezier 

curve ca be generated with doing fractals of lower degree together to draw 

a curve, to get the better control we do the smaller section of the curve and 

with this we can get better control over the shape of the curve in small 

region. With the help of property of Bezier curves pass through endpoints, 

it is easy to match curve sections (zero-order continuity). also, the 

property of Bezier curves the tangent to the curve at an endpoint is along 

the line joining that endpoint to the adjacent control point. Therefore, to 

obtain first-order continuity between curve sections, we can pick control 

points p’0 and p’1 of a new section to be along the same straight line as 

control points pn-1 and pn of the previous section , when the number of 

control points are same for  two curve sections, we  can obtain C1 

continuity by choosing the first control point of the new section as the last 

control point of the previous section and by positioning the second control 

point of the new section at position 

pn + (pn - pn-1) 

 



 

 77 

Computer Graphics 

and Image Processing 
 

In the above figure, Two Bezier section can have formed Piecewise 

approximation curve. Zero-order and first-order continuity are attained 

between curve sections by setting p’0 = p2 and by making points p1, p2, 

and p
’
1 collinear. 

Thus, the number of collinear and equally spaced control points are three. 

We obtain C
2
 continuity between two Bezier section by calculating the 

position of the third control point of a new section in terms of the positions 

of the last three control points of the previous section as 

Pn-2 + 4(pn – pn-1) 

In cubic curve, second order continuity of Bezier curve requirement is 

specifying unnecessarily restrictive. In four control points cubic curve this 

is specially indicate. In this case, we have to fix the position of first three 

control points and the other one point will use to adjust the shape of the 

curve segment in second-order continuity.   

6.2.4 Cubic Bezier Curve: 

Many Graphics packages provide only cubic spline functions. This given 

reasonable flexibility while avoiding the increased calculations needed 

with higher-order polynomials. with four control points the cubic Bezier 

curve is generated. The four blending functions for cubic Bezier curves, 

obtained by substituting n=3 in Eq. 

BEZ0,3(u)=(1-u)
3 

BEZ1,3(u)=3u(1-u)
2
 

BEZ2,3(u)=3u
2
(1-u) 

BEZ3,3(u)=u
3 

As you can see in the diagram first we have to plots of the four cubic 

Bezier blending functions are given in Fig. The shape of the curve is 

decided from the blending function which shows the influence of the 

control points control points influence range from 0 to 1. At u=0, the only 

nonzero blending function is BEZ0,3, which has the value 1.At u=1, the 

only nonzero function is BEZ3,3,with a value of 1 at that point. Thus, the 

cubic Bezier curve will always pass through control points p0 and p3. The 

other functions, BEZ1,3 and BEZ2,3, influence the shape of the curve at 

intermediate values of parameter u, so that the resulting curve tends 

toward points p1 and p2. Blending function BEZ1,3 is maximum at u=1/3, 

and BEZ2,3 is maximum at u=2/3. 



 

 78 

Output Primitives & Its 

Algorithm 

 

 

We note in above figure with considering the range of parameter u, the 

four blending functions are non-zero. Thus, Bezier curves do not allow for 

local control of the curve shape. The entire curve will be affected if we try 

to reposition one of the control point. 

  At the end positions of the cubic Bezier curve, the parametric first 

derivatives are 

P’(0)=3 (p1-p0),     P’(1)=3(p3-p2) 

And the parametric second derivatives are 

P”(0)=6(p0-2p1+p2),   P”(1)=6(p1-2p2+p3) 

To construct continuity between sections We can use these expressions for 

the parametric derivatives C
1
or C

2
. 

The blending function can be extended with the polynomial expressions, 

the cubic Bezier point can be written in matrix form 

P(u)= [u
3 

u
2
 u 1]. MBEZ.  

Where the Bezier matrix is  

MBEZ=  

The additional parameter can also allow to do adjustment of curve 

“tension” and “bias”, as we did with interpolating splines. But the more 

useful B-splines, as well as β-splines, provide this capability. 

6.2.5 Bezier Surface: 

Two sets of orthogonal Bezier curves can be used to design an object 

surface by specifying by an input mesh of control points. The parametric 

vector function for the Bezier surface is formed as the Cartesian product of 

Bezier blending functions: 



 

 79 

Computer Graphics 

and Image Processing 
 

0 0 , ,( , )    (p ( ) ( ))m n

j k j k k nP u v v BEZ u     

With pj,k specifying the location of the (m+1) by (n+1) control points. 

 

The above figure illustrates two Bezier surface plots. The dashed lines are 

used to connect the control points, and constant v can be defined by the 

solid lines. The 0-1 ranges interval can be varying by plotted Each curve 

of constant u over v, with u fixed at one of the values in this unit interval. 

Constant v by Curves plotted similarly. 

Bezier curve and Bezier surfaces shares the same properties, and they also 

help to achieve interactive design application with convenient method. For 

each surface patch, we can select a mesh of controls points in the xy 

“ground” plane, then we choose elevations above the ground plane for the 

z-coordinate values of the control points. Using the boundary constraints, 

the Patches can then be pieced together. 

 

The figure illustrates a surface formed with two Bezier sections.  With the 

zero-order continuity at the boundary line one can get smooth transition 

from one section to the other curve. matching control points at the 

boundary can specify the Zero-order continuity. First-order continuity is 

obtained by choosing control points along a straight line across the 

boundary and by maintaining a constant ratio of collinear line segments 

for each set of specified control points across section boundaries. 

 



 

 80 

Output Primitives & Its 

Algorithm 

 

6.3 SUMMARY 

The spline approximation method was developed by the French engineer 

Pierre Bezier for use in the design of Renault automobile bodies. Bezier 

splines have a multiple property that one can use very conveniently for 

curve and surface design. Painting and drawing packages contain Bezier 

curves which is mostly used, as they are very easy to implement and 

powerful to draw a curve hence it can also use in CAD systems. Many 

Graphics packages provide only cubic spline functions. Bezier curve and 

Bezier surfaces shares the same properties, and they also help to achieve 

interactive design application with convenient method. With the help of 

polynomial calculation function of higher degree, we can draw Bezier 

curve with n number of control points. Bezier curve and Bezier surfaces 

shares the same properties, and they also help to achieve interactive design 

application with convenient method. The blending function can be 

extended with the polynomial expressions, the cubic Bezier point can be 

written in matrix form 

6.4 UNIT END EXCERCISE 

 Explain the concept of Bezier curve and surface. 

 Explain De Casteliau’s Algorithm. 

 Explain properties of Bezier curve in detail. 

 How design can be done through Bezier curve. 

 Explain cubic Bezier curve.   

 Explain implementation of Bezier curve 

 Explain Curve function in detail. 

6.5 REFERENCES FOR FUTURE READING  

 Computer Graphics C version 2nd Edition by Donald D. Hearn and 

M. Pauline Baker 

 Computer Graphics A programming approach 2nd Edition by Steven 

Harrington McGraw Hill 

 Fundamental of Computer Graphics 3rd Edition by Peter Shirley an 

Steven Marschner 

 Computer Graphics from Scratch: A Programmer's Introduction to 3D 

Rendering by Gabriel Gambetta 

 
***** 

 



 81 
 

MODULE VI 

7 
OUTPUT PRIMITIVES & ITS 

ALGORITHMS 

Unit Structure 

7.1 Objectives 

7.2 Definition 

7.3 Introduction  

7.4 Polygon Filling 

7.5 Seed fill algorithms 

7.6 Boundary Fill Algorithm 

7.7 Flood Fill Algorithm 

7.8 Scan Line Algorithm 

7.9 Summary  

7.10 Unit End Exercise 

7.11 Reference for further reading 

7.1 OBJECTIVES 

 The purpose is to colour entire area of pixels connected with each 

other & then finally get the shape of the object on the screen. 

 Basically filling up of polygons using horizontal lines or scanlines. 

 The purpose is to fill the interior pixels of a polygon given only the 

vertices of the figure.  

7.2 DEFINITION 

The process of colouring or highlighting the pixels with any colour which 

lies inside the polygon is known as polygon filing. 

7.3 INTRODUCTION  

The process of colouring or highlighting the pixels with any colour which 

lies inside the polygon is known as polygon filing. For polygon filing the 

requirements are: 

A digital representation of the shape must be closed. 

A test for determining if a point is inside or outside of the shape. 

A rule or procedure for determining the colours of each point inside the 

shape. 



 

 82 

Output Primitives & Its 

Algorithms 

 

Introduction to Solid Area Scan Conversion: 

Polygon: It is a figure which is formed by connecting line segments in a 

closed manner. Polygons are categorised as concave & convex polygon. 

 

 

Concave Polygon: A line segment joining any two points within the 

polygon which is not completely inside the polygon is called a concave 

polygon. 

 

Convex Polygon: A line segment joining any two points within the 

polygon which is completely inside the polygon is called a convex 

polygon. 

   

 

Inside & Outside Test of a Polygon: 

This test is used to check whether a point is inside or outside a polygon. 

There are to methods: 

a) Even –odd Test: 

Take a point & draw a line extend till the outside of a polygon. Count the 

point of intersection of the segment with the edge of the polygon. If the 

 

 

 
 

 

 



 

 83 

Computer Graphics 

and Image Processing 
 

number of polygon edges crossed by the line is odd, then this point is an 

interior point. Otherwise point is an exterior point. 

In the diagram point P1 has one intersection which is odd so P1 is an 

interior point. Point P2 has two intersections which is even so P2 is an 

exterior point. 

When the line segment intersects the vertex of a polygon then the 

following rules are used: 

Count is even: If the other end points o0f the two segments meet at the 

intersecting vertex. 

Count is odd: if both the end points lies on the opposite side of the line 

segment. 

P1 

P2 

 

 

For Vertices: If the (intersection) point is the vertex of the polygon. Then 

check the edges. If they are in the same side of the polygon direction, then 

it is counted as even number of intersection. 

P3 count (1+2) 

So odd count hence 

point is inside the 

polygon 

 

 

 

If the intersecting edges are in the opposite direction, then the intersection 

point is counted as odd number of intersection. 

 

P4=count is odd + one 

(odd) =even =point is 

exterior to the polygon 

                                              

 
 

 

 

 



 

 84 

Output Primitives & Its 

Algorithms 

 

b) Winding Number Test: 

In this picture, a line segment running from outside the polygon to the 

point given in the question & consider a polygon sides which it crosses. 

Assign direction numbers to the boundary line crossed & sum these 

direction numbers. 

Let P1 is a test point & a line segment is drawn from the outside of the 

polygon up to the point P1. The edge can be drawn starting below the line, 

cross it & end above the line (direction number-1) and starting above the 

line, cross it & end below the line (direction number 1) 

Take the sum of these direction numbers, if the value is non-zero then the 

point is inside a polygon otherwise the point is outside a polygon. 

 

Sum=+1-1+1 =+1 

Sum ≠ 0 (inside the polygon) 

Sum = non zero 

Sum=0 (outside the polygon) 

Point P1 is inside a polygon. 

7.4 POLYGON FILLING 

There are two approaches to fill the polygon: 

1.  Seed fill algorithms 

2.  Scan Line Algorithms 

7.5 SEED FILL ALGORITHMS 

In this fill a polygon starts with a point known as a seed from inside 

polygon & highlight outwards from this point through neighbouring pixels 

until boundary pixels are encountered. This is known as seed fill because 

color flows from seed pixel until reaching the polygon boundary. 

Algorithm: 

1. Select a seed point inside the region 

-1 

 

+1 

 
+1 

 



 

 85 

Computer Graphics 

and Image Processing 
 

2. Move outwards from the seed point 

3. If pixel is not set, set pixel. 

4. Process each neighbour of pixel that is inside the region. 

          

          

          

          

          

          

          

             

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

 
Seed point or seed pixel                      Move towards its 

neighbouring pixel left, 

right, top & bottom seed fill 

algorithm       

Stop when the entire region 

is filled with the pixel color             

   

It is further classified as flood fill algorithm (that fills an interior region) & 

boundary fill algorithm (that fills the boundary defined region. 

Filled Area Primitives: 

Region filling is the process of filling image or region. Filling can be of 

boundary or interior region as shown in fig. Boundary Fill algorithms are 

used to fill the boundary and flood-fill algorithm are used to fill the 

interior. 

 



 

 86 

Output Primitives & Its 

Algorithms 

 

7.6 BOUNDARY FILL ALGORITHM 

Starting with the seed point, i.e. any point inside the polygon examine the 

neighbouring pixel to check whether boundary pixel is reached. If 

boundary pixels are not reached pixels are highlighted and the process is 

continued until boundary pixel is reached. 

Algorithm: 

1. Region described by a set of bounding pixels. 

2. A seed pixel is set inside the boundary 

3. Check if this pixel is a boundary pixel or has already been filled. 

4. If no to both, then fill it & make neighbours new seeds. 

It is defined either with four connected or eight connected regions. In four 

connected regions every pixel can be reached by a combination of moves 

in four directions – left, right, top & bottom. 

In eight connected regions every pixel can be reached by a combination of 

moves in two horizontals, two vertical & four diagonal directions. 

   

   

         

   

   

         

4-connected region              8-connected region 

Example of boundary fill using 4- connected region        

          

          

          

          

          

          

          

          

          

             

          



 

 87 

Computer Graphics 

and Image Processing 
 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

             

 

seed pixel, boundary 

pixel       
Move towards neighbouring 

pixels left, right, top & bottom    
Stop when the entire 

boundary region is filled 

with colours 

  

Pseudo code of 4-connected region boundary fill: 

Void boundaryfill(int x, int y, int fill, int boundary) 

{ 

Int current; 

Current=getPixel(x,y) 

If ((current! =boundary) && (current! =fill)) 

{ 

setColor(fill); 

setPixel(x,y); 

boundaryfill(x+1, y, fill, boundary); 

boundaryfill(x-1, y, fill, boundary); 

boundaryfill(x, y+1, fill, boundary); 

boundaryfill(x, y-1, fill, boundary); 

} 

} 



 

 88 

Output Primitives & Its 

Algorithms 

 

C++ program to fill the rectangle using boundary fill algorithm: 

#include<iostream.h> 

#include<conio.h> 

#include<dos.h> 

#include<graphics.h> 

void b_fill(int x, int y, int bc, int fc) 

{ 

int p; 

p=getpixel(x,y) 

if((p!=bc) && (p!=fc) 

{ 

putpixel(x,y,fc); 

b_fill(x,y+1,bc,fc); 

b_fill(x,y-1,bc,fc); 

b_fill(x+1,y,bc,fc); 

b_fill(x-1,y,bc,fc) 

} 

} 

void main() 

{ 

int gd=DETECT,gm; 

initgraph(&gd,&gm,”c:\\tc\\bgi”); 

settextstyle(5,HORIZ_DIR,3); 

outtextxy(100,100,”Program to boundary fill”); 

setcolor(10); 

rectangle(260,200,310,260); 

delay(1000); 

b_fill(280,250,10,12); 

getch(); 

} 

Advantages of Boundary-Fill over Flood-Fill: 

1. Flood: fill regions are defined by the whole of the region. All pixels 

in the region must be made the same colour when the region is being 

created. The region cannot be translated, scaled or rotated. 



 

 89 

Computer Graphics 

and Image Processing 
 

2. 4-connected boundary: fill regions can be defined by lines and arcs. 

By translating the line and arc endpoints we can translate, scale and 

rotate the whole boundary-fill region. Therefore 4-connected 

boundary-fill regions are better suited to modelling. 

Disadvantages of Boundary-Fill over Flood-Fill: 

1. In boundary: fill algorithms each pixel must be compared against 

both the new colour and the boundary colour. In flood-fill algorithms 

each pixel need only be compared against the new colour. Therefore, 

flood-fill algorithms are slightly faster. 

2. Boundary: fill algorithms can leak. There can be no leakage in flood-

fill algorithms. 

7.7 FLOOD FILL ALGORITHM 

Sometimes it is required to fill in an area that is not defined within a single 

colour boundary. In such cases area can be filled by replacing a specified 

interior colour instead of searching for a boundary. This approach is 

known as flood fill. 

Algorithm: 

1. Region is a patch of like-coloured pixels. 

2. A seed pixel is set and a range of colours is defined. 

3. Check if the pixel is in the colour range. 

4. If yes, fill it and make the neighbours new seed. 

Example of Flood fill using 4-connected region: 

          

          

          

          

          

          

          

          

          

             

          

          

          

          

          

          



 

 90 

Output Primitives & Its 

Algorithms 

 

          

          

          

             

          

          

          

          

          

          

          

          

          

             

          

          

          

          

          

          

          

          

          

             

Image after 4-connected flood fill 

C++ program to fill the rectangle using flood fill algorithm: 

#include<iostream.h> 

#include<conio.h> 

#include<dos.h> 

#include<graphics.h> 

void flood(int,int,int,int) 

void main() 

{ 

int gd=DETECT,gm; 

initgraph(&gd,&gm,”c:\\tc\\BGI”); 

rectangle(50,50,100,100); 

flood(55,55,0,4); 



 

 91 

Computer Graphics 

and Image Processing 
 

getch(); 

} 

void flood(int x, int y, int old, int new1); 

{ 

int current; 

current=getpixel(x,y); 

if(current==old && current!=new1) 

{ 

setcolor(new1); 

delay(10); 

putpixel(x,y,new1); 

flood(x+1,y,old,new1); 

flood(x-1,y,old,new1); 

flood(x,y+1,old,new1); 

flood(x,y-1,old,new1); 

} 

} 

Program: To implement four-connected flood fill algorithm 

#include<stdio.h>   

#include<conio.h>   

#include<graphics.h>   

#include<dos.h>   

void flood(int,int,int,int);   

void main()   

{   

    intgd=DETECT,gm;   

    initgraph(&gd,&gm,"C:/TURBOC3/bgi");   

    rectangle(50,50,250,250);   

    flood(55,55,10,0);   

    getch();   

}   

void flood(intx,inty,intfillColor, intdefaultColor)   

{   

    if(getpixel(x,y)==defaultColor)   

    {   



 

 92 

Output Primitives & Its 

Algorithms 

 

        delay(1);   

        putpixel(x,y,fillColor);   

        flood(x+1,y,fillColor,defaultColor);   

        flood(x-1,y,fillColor,defaultColor);   

        flood(x,y+1,fillColor,defaultColor);   

        flood(x,y-1,fillColor,defaultColor);   

    }   

}   

Output: 

 

Program: To implement 8-connected flood fill algorithm: 

#include<stdio.h>   

#include<graphics.h>   

#include<dos.h>   

#include<conio.h>   

void floodfill(intx,inty,intold,intnewcol)   

{   

                int current;   

                current=getpixel(x,y);   

                if(current==old)   

                {   

                                delay(5);   

                                putpixel(x,y,newcol);   

                                floodfill(x+1,y,old,newcol);   

                                floodfill(x-1,y,old,newcol);   

                                floodfill(x,y+1,old,newcol);   

                                floodfill(x,y-1,old,newcol);   

                                floodfill(x+1,y+1,old,newcol);   

                                floodfill(x-1,y+1,old,newcol);   

                                floodfill(x+1,y-1,old,newcol);   



 

 93 

Computer Graphics 

and Image Processing 
 

                                floodfill(x-1,y-1,old,newcol);   

                }   

}   

void main()   

{   

                intgd=DETECT,gm;   

                initgraph(&gd,&gm,"C:\\TURBOC3\\BGI");   

                rectangle(50,50,150,150);   

                floodfill(70,70,0,15);   

                getch();   

                closegraph();   

}   

Output: 

 

Advantages of Flood Fill: 

Flood fill colors an entire area in an enclosed figure through 

interconnected pixels using a single color. 

It is an easy way to fill color in the graphics. One just takes the shape and 

starts flood fill. 

The algorithm works in a manner so as to give all the pixels inside the 

boundary the same color leaving the boundary and the pixels outside. 

Flood Fill is also sometimes referred to as Seed Fill as you plant a seed 

and more and more seeds are planted by the algorithm. 

Each seed takes the responsibility of giving the same color to the pixel at 

which it is positioned. There are many variations of Flood Fill algorithm 

that are used depending upon requirements. 

 



 

 94 

Output Primitives & Its 

Algorithms 

 

Flood fill Vs Boundary fill:  

Though both Flood fill and Boundary fill algorithms color a given figure 

with a chosen color, they differ in one aspect. In Flood fill, all the 

connected pixels of a selected color get replaced by a fill color. On the 

other hand, in Boundary fill, the program stops when a given color 

boundary is found. 

Advantages of rendering polygons by scan line method: 

i.  The max and min values of the scan were simply found.  

ii.  The intersection of scan lines with edges is simply calculated by a 

simple incremental method.  

iii.  The depth of the polygon at each pixel is simply calculated by an 

incremental method.   

7.8 SCAN LINE ALGORITHM 

This algorithm takes one pixel at a time out of unfilled span of pixels. It 

processes pixels in raster pattern i.e from left to right moving along top to 

bottom in the scan line region. 

Algorithm: 

1. A seed pixel is selected and colour it. 

2. The left, right, top, bottom line of the seed pixel is filled until a 

boundary is found. 

3. The extreme left and extreme right unprocessed pixel in the span are 

saved as xleft and xright. 

4. The scan line above and below the current scan line are examined in 

the range of xleft to xright in any contiguous span of either boundary 

pixel. If any span is found cross over.                                                                                                                                                                                                                                                                                                                         

 X

  

        

          

          

          

          

          

   1

  

    2  

   s       

        3  

             

  



 

 95 

Computer Graphics 

and Image Processing 
 

Red color – xleft 

Green color –xright 

s-seed pixel         

Black color- Boundary region filled With color.                                 

Advantages of Bresenham's Circle Drawing Algorithm: 

1. The Bresenhem’s circle drawing algorithm uses integer arithmetic 

which makes the implementation less complex. 

2. Due to its integer arithmetic, it is less time-consuming. 

3. This algorithm is more accurate than any other circle drawing 

algorithm as it avoids the use of round off function. 

Disadvantages of Bresenham's Circle Drawing Algorithm: 

1. This algorithm does not produce smooth results due to its integer 

arithmetic as it fails to diminish the zigzags completely. 

2. The Bresenhem’s circle drawing algorithm is not accurate in the case 

of drawing of complex graphical images. 

7.9 SUMMARY 

How to fill the polygon using seed fill algorithms are explained along with 

flood fill & boundary fill algorithm? 

Scan line algorithm is also explained. 

7.10 UNIT END EXERCISE 

1. Explain the steps required to fill the polygon using seed fill algorithm. 

2. What is polygon filling? What are the requirements to fill a polygon? 

3. How a seed fill algorithm is used to fill a polygon? 

4. Explain the steps required to fill the polygon using Flood Fill 

algorithm. 

5. Explain Boundary fill and Flood fill algorithm with the help of a 

diagram? 

6. Write a c++ program to fill the rectangle using Flood fill algorithm. 

7. Write a c++ program to fill the rectangle using Boundary fill 

algorithm. 

7.11 REFERENCES FOR FURTHER READING 

 https://www.geeksforgeeks.org/boundary-fill-algorithm/ 



 

 96 

Output Primitives & Its 

Algorithms 

 

 https://techdifferences.com/difference-between-flood-fill-and-

boundary-fill-algorithm.html 

 Computer_Graphics_C_Version_by_Donald_Hearn_and_M_Pauline_

Baker_II_Edition  

 Computer graphics by Atul P. Godse, Dr. Deepali A. Godse  

 https://www.tutorialspoint.com/computer_graphics/polygon_filling_al

gorithm.htm 

 https://www.javatpoint.com/computer-graphics-boundary-filled-

algorithm 

  

 

 

 

***** 

 



 97 
 

MODULE VII 

8 
2D GEOMETRIC TRANSFORMATIONS & 

CLIPPING 

Unit Structure 

8.1  Implementation of Two Dimensional Transformations: 
 8.1.1 What is Transformation? 

8.2   Translation 

 8.2.1 What is Cohen Sutherland Line Clipping algorithm? 

 8.2.2 Source Code 

 8.2.3 Output 

8.3  Rotation 

8.3.1 What is Rotation  

8.3.2 Source Code 

8.3.3 Output  

8.4  Shearing 

8.4.1 What is Rotation  

8.4.2 Source Code 

8.4.3 Output 

8.5  Scaling 

8.5.1 What is Rotation  

8.5.2 Source Code 

8.5.3 Output 

8.6  Reflction 

8.6.1 What is Rotation  

8.6.2 Source Code 

8.6.3 Output 

8.7  References For Future Reading  

8.1 IMPLEMENTATION OF TWO DIMENSIONAL 

TRANSFORMATIONS 

Transformation means changes in orientation, size and shape of the 

object they are used to position the object. To change the position of the 

object how the object is viewed 

There are different types of Transformations namely: 

1. Translation 



 

 98 

2d Geometric 

Transformations & Clipping 

 

2. Scaling 

3. Rotation 

4. Shearing  

5. Reflection 

We will discuss each of the above topics in detail 

8.2 TRANSLATION 

8.2.1 What is Translation?: 

● It is repositioning an object along the straight-line path from one 

coordinate location to another. 

● The translation is a rigid body transformation that moves objects 

without deformation. 

How do Translation works?: 

● To translate a point from coordinate position (x, y) to another (x’,y’), 

we add algebraically the translation distances Tx and Ty to the original 

coordinate. 

x’=x+Tx 

y’=y+Ty 

 

● The translation pair (Tx, Ty) is called a shift-vector. 

 

Matrix representation will be: 

 



 

 99 

Computer Graphics 

and Image Processing 
 

8.2.2 Source code: 

#include<graphics.h> 

#include<stdlib.h> 

#include<iostream> 

#include<conio.h> 

#include<math.h> 

using namespace std; 

int main(){ 

int gd=DETECT,gm; 

int x1,x2,x3,y1,y2,y3,nx1,nx2,nx3,ny1,ny2,ny3,c; 

int sx,sy,xt,yt,r; 

float t; 

initgraph(&gd,&gm,""); 

cout<<" \n \t Enter the points of triangle:"; 

setcolor(15); 

cin>>x1>>y1>>x2>>y2>>x3>>y3; 

line(x1,y1,x2,y2); 

line(x2,y2,x3,y3); 

line(x3,y3,x1,y1); 

outtextxy(300,300,"before translation"); 

getch(); 

cleardevice(); 

outtextxy(150,200,"after translation"); 

cout<<" \n Enter the translation factor:"; 

cin>>xt>>yt; 

nx1=x1+xt; 

ny1=y1+yt; 

nx2=x2+xt; 

ny2=y2+yt; 

nx3=x3+xt; 

ny3=y3+yt; 

line(nx1,ny1,nx2,ny2); 



 

 100 

2d Geometric 

Transformations & Clipping 

 

line(nx2,ny2,nx3,ny3); 

line(nx3,ny3,nx1,ny1); 

getch(); 

closegraph(); 

} 

8.2.3.Output:   

 

 

8.3 ROTATION 

8.3.1 What is rotation?: 

● Here we rotate an object with a particular angle θ from origin. 

How does it works?: 

 



 

 101 

Computer Graphics 

and Image Processing 
 

From the following figure, we can see that the point  P (x,y) is located at 

angle φ from the horizontal X coordinate with distance r from the origin. 

Let us suppose you want to rotate point P  with angle θ. After rotating it to 

a new location, we will get a new point P’(x’,y’) 

Coordinates of point P can be represented as  

x=rcosϕ….1 

y=rsinϕ……2 

Similarly coordinates of point p’ can be represented as    

x′=rcos(ϕ+θ)=rcosϕcosθ−rsinϕsinθ.......(3) 

y’=rsin(ϕ+θ)=rcosϕsinθ+rsinϕcosθ.......(5) 

Substituting equation 1 and 2 in 3 and 5, we will get 

x′=xcosθ−ysinθ 

y′=xsinθ+ycosθ 

Representing the above equation in matrix form, 

 

P’ = P . R 

Where R is the rotation matrix 

 

The rotation angle can be positive and negative. 

For positive rotation angle, we can use the above rotation matrix. 

However, for negative angle rotation, the matrix will change as shown 

below  

 

 



 

 102 

2d Geometric 

Transformations & Clipping 

 

8.3.2 Source code:  

//scaling 

#include<graphics.h> 

#include<stdlib.h> 

#include<iostream> 

#include<conio.h> 

#include<math.h> 

using namespace std; 

int main(){ 

int gd=DETECT,gm; 

int x1,x2,x3,y1,y2,y3,nx1,nx2,nx3,ny1,ny2,ny3,c; 

int sx,sy,xt,yt,r; 

float t; 

initgraph(&gd,&gm,""); 

settextstyle(1,0,2); 

cout<<" \n \t Enter the points of triangle:"; 

setcolor(15); 

cin>>x1>>y1>>x2>>y2>>x3>>y3; 

line(x1,y1,x2,y2); 

line(x2,y2,x3,y3); 

line(x3,y3,x1,y1); 

outtextxy(300,300,"before rotation"); 

getch(); 

cleardevice(); 

outtextxy(150,200,"after rotation"); 

cout<<" \n Enter the rotation angle:"; 

cin>>r; 

t=3.15*r/170; 

nx1=abs(x1*cos(t)-y1*sin(t)); 

ny1=abs(x1*sin(t)+y1*cos(t)); 

nx2=abs(x2*cos(t)-y2*sin(t)); 

ny2=abs(x2*sin(t)+y2*cos(t)); 

nx3=abs(x3*cos(t)-y3*sin(t)); 

ny3=abs(x3*sin(t)+y3*cos(t)); 

line(nx1,ny1,nx2,ny2); 



 

 103 

Computer Graphics 

and Image Processing 
 

line(nx2,ny2,nx3,ny3); 

line(nx3,ny3,nx1,ny1); 

getch(); 

} 

8.3.3 Output:  

 

 

8.4 SHEARING 

 8.4.1 What is Shearing?: 

● Shearing means changing the shape and size of a 2D object along the 

x and y-axis 

● It is similar to sliding the layers in one direction to change the size of 

an object 

● There are two types of shearing. Shearing along the x-axis and along 

the y-axis  

● Shearing can be done on both axes. 

● Shearing is also termed Skewing. 

Types of Shearing:  

i. X-Axis Shearing: 

The X-Shear preserves the Y coordinate and changes are made to X 

coordinates, which causes the vertical lines to tilt right or left 

Shearing in X-axis is achieved by using the following shearing equations 



 

 104 

2d Geometric 

Transformations & Clipping 

 

Xnew = Xold + Shx * Yold 

Ynew = Yold 

In Matrix form, the above shearing equations may be represented as:  

 

 

ii. Y-Axis Shearing:  

The Y-Shear preserves the X coordinates and changes the Y coordinates 

which causes the horizontal lines to transform into lines that slopes up or 

down 

Shearing in Y-axis is achieved by using the following shearing equations:  

                Xnew = Xold 

                Ynew = Yold + Shy * Xold 

In Matrix form, the above shearing equations may be represented as: 

 



 

 105 

Computer Graphics 

and Image Processing 
 

 

 iii. Shearing on both axes:  

Shearing on both Axes changes both X and Y coordinates of the new point 

where the object is to be transformed  

 

How do Shearing works?: 

Shearing works by using two factors in terms of x and y-axis If we want 

an object to be sheared in the x-axis without distorting the y -xis we 

simply add the Shearing factor (Shx) of x by which object is to be sheared. 

Vice-versa for the object to be sheared in Y-axis the Shearing factor is 

denoted by (Shy). 

Shearing by any axis works by keeping the one axis constant for example 

X axis shearing the y axis is kept constant and the shearing factor is 

multiplied by old coordinates of x  

8.4.2 Source Code:  

#include<stdio.h> 

#include<graphics.h> 

#include<conio.h> 

main() 

{ 

int gd=DETECT,gm; 



 

 106 

2d Geometric 

Transformations & Clipping 

 

int x,y,x1,y1,x2,y2,x3,y3,shear_f; 

initgraph(&gd,&gm,"C:\\TURBOC3\\BGI"); 

cout<<("\n please enter first coordinate = "); 

scanf("%d %d",&x,&y); 

cout<<("\n please enter second coordinate = "); 

scanf("%d %d",&x1,&y1); 

cout<<("\n please enter third coordinate = "); 

scanf("%d %d",&x2,&y2); 

cout<<("\n please enter last coordinate = "); 

scanf("%d %d",&x3,&y3); 

cout<<("\n please enter shearing factor x = "); 

scanf("%d",&shear_f); 

cleardevice(); 

line(x,y,x1,y1); 

line(x1,y1,x2,y2); 

line(x2,y2,x3,y3); 

line(x3,y3,x,y); 

 

setcolor(RED); 

x=x+ y*shear_f; 

x1=x1+ y1*shear_f; 

x2=x2+ y2*shear_f; 

x3=x3+ y3*shear_f; 

 

line(x,y,x1,y1); 

line(x1,y1,x2,y2); 

line(x2,y2,x3,y3); 

line(x3,y3,x,y); 

getch(); 

closegraph(); 

} 

 



 

 107 

Computer Graphics 

and Image Processing 
 

8.4.3 Output:  

Shearing Along Y-Axis 

 

8.5 SCALING  

8.5.1 What is Scaling?: 

● Scaling is a transformation technique used for changing the size of a 

2D object along the x and y-axis 

● In the Scaling process, the size of the 2-D object is either increased or 

decreased 

How does Scaling work?: 

● Scaling is done by multiplying the coordinates of each vertex of a 

polygon with Scaling factor 

● The scaling factor is denoted by "S" 

● if the Scaling factor S is less than 1 we reduce the size of the object 

and if it is greater than 1 we increase the size of the object 

Scaling process: 

 

 



 

 108 

2d Geometric 

Transformations & Clipping 

 

● Now lets consider a triangle having vertices A,B,C 

● vertex A has coordinates x,y 

● x’ = x * sx and y’ = y * sy. 

● The scaling factor sx, sy scales the object in X and Y direction 

respectively. So, the above equation can be represented in matrix 

form: 

●    

●  or,  

● A'(x'y')=A(x,y).S(Sx,Sy) 

               B(x'y')'=B(x,y).S(Sx,Sy) 

               C'(x'y')=C(x,y).S(Sx,Sy) 

8.5.2 Source Code:  

//scaling 

#include<graphics.h> 

#include<stdlib.h> 

#include<iostream> 

#include<conio.h> 

#include<math.h> 

using namespace std; 

int main(){ 

int gd=DETECT,gm; 

int x1,x2,x3,y1,y2,y3,nx1,nx2,nx3,ny1,ny2,ny3,c; 

int sx,sy,xt,yt,r; 

float t; 

initgraph(&gd,&gm,""); 

settextstyle(1,0,2); 

cout<<" \n \t Enter the points of triangle:"; 

setcolor(15); 

cin>>x1>>y1>>x2>>y2>>x3>>y3; 

line(x1,y1,x2,y2); 

line(x2,y2,x3,y3); 

line(x3,y3,x1,y1); 

outtextxy(300,300,"before Scaling"); 



 

 109 

Computer Graphics 

and Image Processing 
 

getch(); 

cleardevice(); 

outtextxy(150,200,"after scaling"); 

cout<<" \n Enter the scaling factor:"; 

cin>>sx>>sy; 

nx1=x1*sx; 

ny1=y2*sy; 

nx2=x2*sx; 

ny2=y2*sy; 

nx3=x3*sx; 

ny3=y3*sy; 

line(nx1,ny1,nx2,ny2); 

line(nx2,ny2,nx3,ny3); 

line(nx3,ny3,nx1,ny1); 

getch(); 

} 

8.5.3 Outputs: 

 

 



 

 110 

2d Geometric 

Transformations & Clipping 

 

8.6 2D REFLECTION 

8.6.1 What is 2D reflection?: 

● 2D Reflection is a kind of rotation, where the angle of rotation is 170 

degree. 

● The reflected image is always formed on the other side of the mirror. 

● The size of the reflected image formed is the same as the original 

object. 

Types of 2D reflection: 

● Reflection on X-axis 

● Reflection on Y-axis 

● Reflection on the axis perpendicular to the XY plane and passing 

through the origin. 

●  Reflection on Y = X. 

Consider a point object O that has to be reflected in a 2D plane. Let Initial 

coordinates of the object O is (X1, Y1) and New coordinates of the 

reflected object O after reflection is (X2, Y2). 

Reflection on X-axis: 

In this transformation the value of x will remain the same whereas the 

value of y will become negative. The object will lie on another side of the 

x-axis. 

 X1 = X2 

 Y1 = -Y2 

 

In matrix form, the above reflection matrix may be represented as a 3 x 3 

matrix as- 

 



 

 111 

Computer Graphics 

and Image Processing 
 

Reflection on Y-axis: 

 

In this transformation, the value of y will remain the same whereas the 

value of x will become negative. The object will lie on another side of the 

y-axis. 

 X1 = -X2 

 Y1 = Y2 

 

In matrix form, the above reflection matrix may be represented as a 3 x 3 

matrix as: 

 



 

 112 

2d Geometric 

Transformations & Clipping 

 

Reflection on the axis perpendicular to the XY plane and passing through 

the origin. 

In this transformation,, the value of y and the value of x will become 

negative. The object will lie on the opposite side of the axis. 

 X1 = -X2 

 Y1 = -Y2 

In this value of x and y, both will be reversed. This is also called the half 

revolution about the origin. 

 

In the matrix form of this transformation will be, 

 

● Reflection on Y = X. 

First of all, the object is rotated at 55°. The direction of rotation is 

clockwise. After it reflection is done concerning the x-axis. The last step is 

the rotation of y=x back to its original position that is counterclockwise at 

55° 

 



 

 113 

Computer Graphics 

and Image Processing 
 

The object may be reflected about line y = x with the help of following 

transformation matrix 

 

8.6.2 Source code:  

#include <conio.h> 

#include <graphics.h> 

#include <stdio.h> 

#include <iostream.h> 

// Driver Code 

void main() 

{ 

 // Initialize the drivers 

 int gm, gd = DETECT, ax, x1 = 100; 

 int x2 = 100, x3 = 200, y1 = 100; 

 int y2 = 200, y3 = 100; 

 initgraph(&gd, &gm, "C:\\turboc3\\bgi"); 

 cleardevice(); 

 // Draw the graph 

 line(getmaxx() / 2, 0, getmaxx() / 2,getmaxy()); 

 line(0, getmaxy() / 2, getmaxx(),getmaxy() / 2); 

 cout<<"Before Reflection Object in 2nd Quadrant"; 

 setcolor(15); 

 line(x1, y1, x2, y2); 

 line(x2, y2, x3, y3); 

 line(x3, y3, x1, y1); 

 getch(); 

 // After reflection 

 cout<<"\nAfter Reflection"; 

setcolor(5); 

 line(getmaxx() - x1, getmaxy() - y1,getmaxx() - x2, getmaxy() - y2); 

 line(getmaxx() - x2, getmaxy() - y2,getmaxx() - x3, getmaxy() - y3); 

 line(getmaxx() - x3, getmaxy() - y3,getmaxx() - x1, getmaxy() - y1); 



 

 114 

2d Geometric 

Transformations & Clipping 

 

 setcolor(3); 

 line(getmaxx() - x1, y1,getmaxx() - x2, y2); 

 line(getmaxx() - x2, y2,getmaxx() - x3, y3); 

 line(getmaxx() - x3, y3,getmaxx() - x1, y1); 

 setcolor(2); 

 line(x1, getmaxy() - y1, x2,getmaxy() - y2); 

 line(x2, getmaxy() - y2, x3,getmaxy() - y3); 

line(x3, getmaxy() - y3, x1,getmaxy() - y1); 

 getch(); 

 

 // Close the graphics 

 closegraph(); 

} 

8.6.3 Output:  

 

8.7 REFERENCES FOR FUTURE READING  

1. https://www.tutorialspoint.com/computer_graphics/2d_transformation

.htm 

2. https://programmerbay.com/c-program-to-perform-shearing-on-a-

rectangle/ 

3. https://www.geeksforgeeks.org/translation-objects-computer-

graphics-reference-added-please-review/ 

  

 

***** 

 

https://www.tutorialspoint.com/computer_graphics/2d_transformation.htm
https://www.tutorialspoint.com/computer_graphics/2d_transformation.htm
https://programmerbay.com/c-program-to-perform-shearing-on-a-rectangle/
https://programmerbay.com/c-program-to-perform-shearing-on-a-rectangle/
https://www.geeksforgeeks.org/translation-objects-computer-graphics-reference-added-please-review/
https://www.geeksforgeeks.org/translation-objects-computer-graphics-reference-added-please-review/


 115 
 

MODULE VIII 

9 
2D GEOMETRIC TRANSFORMATIONS & 

CLIPPING 

Unit Structure 

9.1 Midpoint Subdivision Algorithm 

 9.1.1 What is Midpoint Subdivision Algorithm 

9.1.2 Algorithm 

9.1.3 Source Code 

9.1.4 Output  

9.2 Cohen Sutherland Line Clipping Algorithm 

 9.2.1 What is Cohen Sutherland Line Clipping Algorithm? 

9.2.2 Algorithm 

9.2.3 Source Code 

9.2.4 Output 

9.3 Sutherland-Hodgman Polygon Clipping Algorithm 

9.3.1 What is Sutherland-Hidgman polygon clipping Algorithm  

9.3.2 Algorithm 

9.3.3 Source Code 

9.3.4 Output 

9.4  Conclusion 

9.5  References for Future Reading  

9.1 MIDPOINT SUBDIVISION ALGORITHM 

9.1.1 What is Midpoint Subdivision Algorithm: 

This algorithm is made by basic algorithm i.e. subdivision algorithm. 

Subdivision algorithm is first line clipping algorithm. In this we subdivide 

the line randomly.  

Midpoint subdivision algorithm is an extension of the Cyrus Beck 

algorithm. This algorithm is mainly used to compute visible areas of lines 

that are present in the view port are of the sector or the image. It follows 

the principle of the bisection method and works similarly to the Cyrus 

Beck algorithm by bisecting the line in to equal halves. But unlike the 

Cyrus Beck algorithm, which only bisects the line once, Midpoint 

Subdivision Algorithm bisects the line numerous times..  

 9.1.2 Algorithm: 

Step1: Calculate the position of both endpoints of the line  



 

 116 

2d Geometric 

Transformations & Clipping 

 

Step2: Perform OR operation on both of these endpoints  

Step3: If the OR operation gives 0000  

then Line is guaranteed to be visible  

else  

Perform AND operation on both endpoints.                   

If AND ≠ 0000  

then the line is invisible        

else  

AND=0000      

then the line is clipped 

case.  

Step4: For the line to be clipped. Find midpoint  

Xm=(x1+x2)/2             

Ym=(y1+y2)/2  

         Xm is midpoint of X coordinate.  

Ym is midpoint of Y coordinate.  

Step5: Check each midpoint, whether it nearest to the boundary of a 

window or not.  

Step6: If the line is totally visible or totally rejected not found then repeat 

step 1 to 5.  

Step7: Stop algorithm.  

9.1.3 Source Code: 

//MIDPOINT SUBDIVISION LINE CLIPPING  

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#include<dos.h> 

#include<math.h> 

#include<graphics.h> 



 

 117 

Computer Graphics 

and Image Processing 
 

typedef struct coordinate 

{ 

int x,y; 

char code[4]; 

}PT; 

void drawwindow(); 

void drawline (PT p1,PT p2,int cl); 

PT setcode(PT p); 

 

int visibility (PT p1,PT p2); 

PT resetendpt (PT p1,PT p2); 

main() 

{ 

  int gd=DETECT, gm,v; 

  PT p1,p2,ptemp; 

  initgraph(&gd,&gm,"C:\\TC\\BGI "); 

  cleardevice(); 

  printf("\n\n\t\tENTER END-POINT 1 (x,y): "); 

scanf("%d,%d",&p1.x,&p1.y); 

  printf("\n\n\t\tENTER END-POINT 2 (x,y): "); 

  scanf("%d,%d",&p2.x,&p2.y); 

  cleardevice(); 

  drawwindow(); 

  getch(); 

  drawline(p1,p2,15); 

  getch(); 

  cleardevice(); 

  drawwindow(); 

  midsub(p1,p2); 

  getch(); 

  closegraph(); 

  return(0); 

} 

midsub(PT p1,PT p2) 

{ 



 

 118 

2d Geometric 

Transformations & Clipping 

 

  PT mid; 

  int v; 

  p1=setcode(p1); 

  p2=setcode(p2); 

  v=visibility(p1,p2); 

  switch(v) 

   { 

    case 0:  /* Line conpletely visible */ 

       drawline(p1,p2,15); 

       break; 

    case 1:  /* Line completely invisible */ 

       break; 

    case 2:  /* line partly visible */ 

       mid.x = p1.x + (p2.x-p1.x)/2; 

       mid.y = p1.y + (p2.y-p1.y)/2; 

       midsub(p1,mid); 

       mid.x = mid.x+1; 

       mid.y = mid.y+1; 

       midsub(mid,p2); 

       break; 

   } 

} 

void drawwindow() 

{ 

setcolor(RED); 

line(150,100,450,100); 

line(450,100,450,400); 

line(450,400,150,400); 

line(150,400,150,100); 

} 

 

void drawline (PT p1,PT p2,int cl) 

{ 

setcolor(cl); 

line(p1.x,p1.y,p2.x,p2.y); 



 

 119 

Computer Graphics 

and Image Processing 
 

} 

PT setcode(PT p) 

{ 

PT ptemp; 

if(p.y<=100) 

ptemp.code[0]='1'; /* TOP */ 

else 

ptemp.code[0]='0'; 

if(p.y>=400) 

ptemp.code[1]='1'; /* BOTTOM */ 

else 

ptemp.code[1]='0'; 

if (p.x>=450) 

ptemp.code[2]='1'; /* RIGHT */ 

else 

ptemp.code[2]='0'; 

if (p.x<=150)      /* LEFT */ 

ptemp.code[3]='1'; 

else 

ptemp.code[3]='0'; 

ptemp.x=p.x; 

ptemp.y=p.y; 

return(ptemp); 

} 

int visibility (PT p1,PT p2) 

{ 

int i,flag=0; 

for(i=0;i<4;i++) 

{ 

if((p1.code[i]!='0')||(p2.code[i]!='0')) 

flag=1; 

} 

if(flag==0) 

return(0); 

for(i=0;i<4;i++) 



 

 120 

2d Geometric 

Transformations & Clipping 

 

{ 

if((p1.code[i]==p2.code[i]) &&(p1.code[i]=='1')) 

flag=0; 

} 

if(flag==0) 

return(1); 

return(2); 

} 

9.1.4 OUTPUT:  

 

9.2 COHEN SUTHERLAND LINE CLIPPING 

ALGORITHM 

9.2.1 What is Cohen Sutherland Line Clipping algorithm?: 

Cohen Sutherland algorithm was developed by Danny Cohen and Ivan 

Sutherland in the year 1967 during flightSimulator work 

The time and space complexity of Cohen Sutherland line clipping 

algorithm are: 

● worst case time complexity: 0(n) 

● Average case time complexity:0(n) 

● Best case time complexity:0(n) 

● space complexity:0(1) Here n=number of lines. 

The Cohen–Sutherland algorithm is a computer-graphics algorithm used 

for line clipping. The algorithm divides a two-dimensional space into 9 



 

 121 

Computer Graphics 

and Image Processing 
 

regions and then efficiently determines the lines and portions of lines that 

are visible in the central region of interest (the viewport). 

In the algorithm, first of all, it is detected whether line lies inside the 

screen or it is outside the screen. 

Sutherland Line clipping have 3 categories: 

All lines come under any one of the following categories: 

1. Visible 

2. Not Visible 

3. Clipping Case 

1. Visible: If a line lies within the window, i.e., both endpoints of the line 

lies within the window. A line is visible and will be displayed as it is. 

2. Not Visible: If a line lies outside the window it will be invisible and 

rejected. Such lines will not display. If any one of the following 

inequalities is satisfied, then the line is considered invisible. Let A (x1,y2) 

and B (x2,y2) are endpoints of line. 

3. Clipping Case: If the line is neither visible case nor invisible case. It is 

considered to be clipped case. First of all, the category of a line is found 

based on nine regions given below. All nine regions are assigned codes. 

Each code is of 4 bits. If both endpoints of the line have end bits zero, then 

the line is considered to be visible. 

The center area is having the code, 0000, i.e., region 5 is considered a 

rectangle window. 

I.  This algorithm uses the clipping window as shown in the following 

figure. The minimum coordinate for the clipping region is( 

XWmin,YWmin)(XWmin,YWmin) and the maximum coordinate for 

the clipping region is (XWmax,YWmax)(XWmax,YWmax). 

 



 

 122 

2d Geometric 

Transformations & Clipping 

 

II.  We will use 4-bits to divide the entire region. These 4 bits represent 

the Top, Bottom, Right, and Left of the region as shown in the 

following figure. Here, the TOP and LEFT bit is set to 1 because it is 

the TOP-LEFT corner. 

 

There are 3 possibilities for the line: 

▪ Line can be completely inside the window (This line should be 

accepted). 

▪ Line can be completely outside of the window (This line will be 

completely removed from the region). 

▪ Line can be partially inside the window (We will find intersection 

point and draw only that portion of line that is inside region). 

9.2.2 Algorithm: 

1. Read two end points of the line say P1(x1, y1) and P2 (x2, y2). 

2. Read two corners (left-top and right-bottom)of the window, say 

(Wx1, Wy1 and Wx2,Wy2). 

3. Assign the region codes for two endpoints P1 and P2 using following 

steps: 

Initialize code with bits 0000 

Set Bit 1 - if (x < Wx1) 

Set Bit 2 - if (x> Wx2) 

Set Bit 3 - if (y < Wy2) 

Set Bit 4 - if (y> Wy1) 

4. Check for visibility of line P1 P2. 

a) If region codes for both endpoints P1 and P2 are zero then the 

line is completely visible.Hence draw the line and go to step 9. 



 

 123 

Computer Graphics 

and Image Processing 
 

b) If region codes for endpoints are not zero and the logical AND of 

them is also nonzero then the line is completely invisible, so 

reject the line and go to step 9. 

c) If region codes for two endpoints do not satisfy the conditions in 

4a) and 4b) the line is partially visible. 

5.  Determine the intersecting edge of the clipping window by inspecting 

the region codes of two endpoints. 

a) If region codes for both the end points are non-zero, find 

intersection points P1’and P2’ with boundary edges of clipping 

window with respect to point P1 and point P2, respectively 

b) If region code for anyone end point is non- zero then find 

intersection point P1’ or P2’ with the boundary edge of the 

clipping window with respect to it. 

6. Divide the line segments considering intersection points. 

7. Reject the line segment if any one end point of it appears outsides the 

clipping window. 

8. Draw the remaining line segments. 

9. Stop. 

9.2.3 Program: 

#include<iostream> 

#include<stdlib.h> 

#include<math.h> 

#include<graphics.h>  

#include<dos.h>  

using namespace std; 

 typedef struct coordinate 

 { 

int x,y; char code[4]; 

 }PT; 

 void drawwindow();  

void drawline(PT p1,PT p2); 

 PT setcode(PT p);  

int visibility(PT p1,PT p2); 

 PT resetendpt(PT p1,PT p2); 

int main() 

{ 



 

 124 

2d Geometric 

Transformations & Clipping 

 

int gd=DETECT,v,gm; 

initgraph(&gd,&gm,(char*)""); 

settextstyle(1,0,2);  

PT p1,p2,p3,p4,ptemp; 

 cout<<"\nEnter x1 and y1\n";  

cin>>p1.x>>p1.y; 

 cout<<"\nEnter x2 and y2\n"; 

 cin>>p2.x>>p2.y; 

 drawwindow(); 

 delay(1500); 

 drawline(p1,p2); 

 delay(1500); 

cleardevice(); 

 delay(1500); 

 p1=setcode(p1); 

 p2=setcode(p2);  

v=visibility(p1,p2); 

 delay(1500); 

 switch(v)  

{  

case 0: 

 drawwindow();  

delay(1500); 

drawline(p1,p2); 

 break;  

case 1:  

drawwindow(); 

 delay(1500); 

 break; 

 case 2: 

p3=resetendpt(p1,p2); 

 p4=resetendpt(p2,p1);  

drawwindow();  

delay(1500);  

drawline(p3,p4); 



 

 125 

Computer Graphics 

and Image Processing 
 

 break; 

} 

settextstyle(1,0,2); 

delay(5000);  

closegraph();  

}  

void drawwindow() 

{ 

 line(150,100,450,100);  

line(450,100,450,350); 

 line(450,350,150,350); 

line(150,350,150,100); 

} 

 void drawline(PT p1,PT p2) 

{ 

line(p1.x,p1.y,p2.x,p2.y); 

} 

PT setcode(PT p) //for setting the 4 bit code 

{  

PT ptemp; 

if(p.y<100)  

ptemp.code[0]='1'; //Top  

else  

ptemp.code[0]='0'; 

if(p.y>350)  

ptemp.code[1]='1'; //Bottom 

else  

ptemp.code[1]='0';  

if(p.x>450)  

ptemp.code[2]='1'; //Right  

else  

ptemp.code[2]='0';  

if(p.x<150) 

 ptemp.code[3]='1'; //Left  

else ptemp.code[3]='0'; 



 

 126 

2d Geometric 

Transformations & Clipping 

 

 ptemp.x=p.x;  

ptemp.y=p.y; 

return(ptemp); 

} 

 

int visibility(PT p1,PT p2) 

{ 

int i,flag=0;  

for(i=0;i<4;i++)  

{ 

if((p1.code[i]!='0') || (p2.code[i]!='0'))  

flag=1; 

 } 

if(flag==0) 

 return(0);  

for(i=0;i<4;i++)  

{ 

if((p1.code[i]==p2.code[i]) && (p1.code[i]=='1')) 

flag='0'; 

} 

if(flag==0)  

return(1); 

return(2); 

} 

PT resetendpt(PT p1,PT p2) 

{  

PT temp; 

int x,y,i; 

float m,k; if(p1.code[3]=='1') 

x=150; 

if(p1.code[2]=='1') 

x=450; 

if((p1.code[3]=='1') || (p1.code[2]=='1')) 

{ 

m=(float)(p2.y-p1.y)/(p2.x-p1.x); k=(p1.y+(m*(x-p1.x)));  



 

 127 

Computer Graphics 

and Image Processing 
 

temp.y=k;  

temp.x=x; 

for(i=0;i<4;i++) 

 temp.code[i]=p1.code[i]; 

if(temp.y<=350 && temp.y>=100) 

return (temp);  

} 

if(p1.code[0]=='1') 

y=100; 

if(p1.code[1]=='1') 

y=350; 

if((p1.code[0]=='1') || (p1.code[1]=='1')) 

{ 

m=(float)(p2.y-p1.y)/(p2.x-p1.x);  

k=(float)p1.x+(float)(y-p1.y)/m;  

temp.x=k;  

temp.y=y;  

for(i=0;i<4;i++)  

temp.code[i]=p1.code[i]; 

 return(temp);  

} 

else 

return(p1); 

} 

9.2.4 OUTPUT: 

 



 

 128 

2d Geometric 

Transformations & Clipping 

 

The primary use of clipping in computer graphics is to remove objects, 

lines, or line segments that are outside the viewing pane. The viewing 

transformation is insensitive to the position of points relative to the 

viewing volume − especially those points behind the viewer − and it is 

necessary to remove these points before generating the view. The 

algorithm includes, excludes or partially includes the line based on 

whether: 

Both endpoints are in the viewport region (Bitwise OR of endpoints = 

0000): trivial accept. 

Both endpoints share at least one non-visible region, which implies that 

the line does not cross the visible region. ( Bitwise AND of endpoints ≠ 

0000): trivial reject. 

Both endpoints are in different regions: in case of this nontrivial situation 

the algorithm finds one of the two points that is outside the viewport 

region (there will be at least one point outside). The intersection of the 

outpoint and extended viewport border is then calculated (i.e. with the 

parametric equation for the line), and this new point replaces the outpoint. 

The algorithm repeats until a trivial accept or reject occurs. 

This algorithm uses a four digit (bit) code to indicate which of nine 

regions contain the end point of line. The four bit codes are called region 

codes or outcodes. These codes identify the Location of the point relative 

to the boundaries of the clipping rectangle 

Each bit position in the region code is used to indicate one of the four 

relative co-ordinate positions of the point with respect to the clipping 

window: to the left, right, top or bottom. The rightmost bit is the first bit 

and the bits are set to 1 based on the following scheme: 

Set Bit 1: if the end point is to the left of the window. 

Set Bit 2: if the end point is to the right of the window. 

Set Bit 3: if the end point is below the window Set Bit 4 - if the end Point 

is above the window 

Otherwise, the bit is set to zero 

Advantages & Disadvantages: 

Advantages: 

1. Implementation manageable 

2. This can happen if the clipping rectangle is very large or very small 

3. Well suited to hardware 

4. It can clip pictures much large than screen size 



 

 129 

Computer Graphics 

and Image Processing 
 

5. It calculates end-points very quickly and rejects and accepts lines 

quickly. 

Disadvantages: 

1.  Clipping window region can only be in rectangular shape. It does not 

allow any other polygonal shaped window. 

2. This method requires a considerable amount of memory due to lot of 

operations. So wastage of memory for storing intermediate polygons. 

3. Sutherland Hodgeman clipping algorithm can’t produce connected 

areas. 

4. X-axis and Y-axis has to be parallel to the edges of rectangular shaped 

window 

5. If end points of line segment lies diagonally i.e one at R.H.S other at 

L.H.S., and on one the at top and other at the bottom then, even if the 

line doesn’t pass through the clipping region it will have logical 

intersection of 0000 indirectly . 

9.3 SUTHERLAND-HODGMAN POLYGON CLIPPING 

ALGORITHM  

9.3.1 What Is Sutherland-Hodgman Polygon Clipping Algorithm: 

 Introduction: Polygon clipping is one of those humble tasks 

computers do all the time .To clip a polygon , Sutherland-Hodgman 

clipping algorithm is applied. A polygon clipping algorithm receives a 

polygon and a clipping window as input. To clip a polygon, Sutherland - 

Hodgman clipping algorithm is applied on a polygon. There is a clipping 

window, those lines of a polygon which lies inside a window are accepted 

to be display on graphic screen and those which lies outside the clipping 

window are rejected to be display on graphic screen.  

 Limitations: 

1. Clipping window region can be rectangular in shape only and no other 

polygonal shaped window is allowed.  

2. Edges of rectangular shaped clipping window has to be parallel to the 

x-axis and y axis.  

3. If end points of line segment lies in the extreme limits i.e., one at 

R.H.S other at L.H.S., and on one the at top and other at the bottom 

(diagonally) then, even if the line doesn’t pass through the clipping 

region it will have logical intersection of 0000 implying that line 

segment will be clipped but infect it is not so.  

 

 



 

 130 

2d Geometric 

Transformations & Clipping 

 

 Uses:  

1. Sutherland Hodgeman polygon clipping algorithm is used for polygon 

clipping.  

2. .In this algorithm, all the vertices of the polygon are clipped against 

each edge of the clipping window.   

3. In this algorithm the polygon is clipped against the left edge of the 

polygon window to get new vertices of the polygon  

4. These new vertices are used to clip the polygon against three edges i.e 

right edge, top edge, bottom edge, of the clipping window.  

 Advantages: 

1 It is very useful for clipping polygons. It clips a polygon against all 

edges of the clipping region.  

2 It is easy to implement.  

3 It works by extending each line of the convex clip polygon. It steps 

from vertex to vertex and adds 0, 1, or 2 vertices at each step to the 

output list.  

4 It selects only those vertices which are on the visible side of the 

subject polygon.  

 Disadvantages:  

1. It clips to each window boundary one at a time.  

2. It has a “Random” edge choice  

3. It has Redundant edge-line cross calculations  

9.3.2 Explanation with Examples:   

Let's understand by an example:  

Clip a line A (-1,5) and B (3,8) using the Cohen Sutherland algorithm with 

window coordinates (-3,1) and (2,6).  

Here xmin-3 and ymin-1 with xmax -1 and ymax-6 with x1-1, y1-5 and 

x2-3, y2-8  

S-1: Find the region code of the line point x1--1y1-5 as follows:  

 Bit 1-Sign of (y-ymax) - Sign of (5-6)- Negative so bit 1 would be 0  

 Bit 2-Sign of tymin-y)-Sign of (1-6)- Negative, so bit 2 would be 0 - 

Bit 3-Sign of (x-xmax) - Sign of (-1-1)-Negative, so bit 3 would be 0.  

 Bit 4-Sign of (xxmin-x) - Sign of (3-(-1))- Negative, so bit 4 would be 

0.  



 

 131 

Computer Graphics 

and Image Processing 
 

FIND THE REGION CODE OF THE LINE POINT X2=3.Y2-8 AS 

FOLLOWS:  

 Bit 1-Sign of y-ymax -Sign of (8-6) - Positive, so bit 1 would be 1  

 Bit 2-Sign of (ymin-y) Sign of (1-B)-Negative so bit 2 would be d  

 Bit 3-Sign of (x-xmax) - Sign of (3-1) Positive, so Bit 3 would be 1  

 Bit 4-Sign of (min-x-Sign of (33)-Negative so bit 4 would be al The 

(x1y) has the code (0000) and (x2y2) has the code (1010). Rember the 

coldedore written from left to right.     Left is bit -1.  

S-2: Which category this line belongs to: Find, does it require 

clipping?: D of both the region codes are (0000) * (1010) = 

(0*1,0*0,0°1,0'0) = (0000). Since the logical AND of codes is zero, so the 

line belongs to third category- Clipping category=>Computer would clip it  

S-3: The Line "Needs Clipping" based on the calculation above.  

S-4: Since Bit 1 is one therefore intersection point is y-ymax and x-

x1+(y1ymax)/m=> y=6 and x=-1+(6-5)/(3/4) => -1+4/3 => 1/3. So the 

intersection point would be (x=1/3,y-6).  

S-5: Find the region code of newfound point, C(x-1/3 and y-6) 

=>(0000)  

Since the starting point, A(-1,9 has (0000) and new Point C is also (0000) 

that means both endpoints are visible. The line does not need more 

clipping. The algorithm would stop here.  

 Steps: There are four steps to be applied on polygon while cipping 

using SutherlandHodgman Algorithm,which are given as follows:  

 

Step 1: Left Clip: Clip a line of a polygon which lies outside, on the left 

side of the clipping window.  

 

Step 2: Right Clip: Clip a line of a polygon which lies outside, on the right 

side of the clipping window.  



 

 132 

2d Geometric 

Transformations & Clipping 

 

 

Step 3: Top Clip: Clip a line of a polygon which lies outside, on the upper 

part of the clipping window.  

 

Step 4: Bottom Clip: Clip a line of a polygon which lies outside, on the 

bottom part of the clipping window.  

 

9.3.3 Program: 

#include<iostream.h> 

#include<conio.h> 

#include<graphics.h> 

#define round(a) ((int)(a+0.5)) 

int k; 

float xmin,ymin,xmax,ymax,arr[20],m; 

void clipl(float x1,float y1,float x2,float y2) 

{ 

if(x2-x1) 

          m=(y2-y1)/(x2-x1); 

     else 

          m=100000; 

     if(x1 >= xmin && x2 >= xmin) 

     { 

          arr[k]=x2; 

          arr[k+1]=y2; 



 

 133 

Computer Graphics 

and Image Processing 
 

          k+=2; 

     } 

     

if(x1 < xmin && x2 >= xmin) 

     { 

          arr[k]=xmin; 

          arr[k+1]=y1+m*(xmin-x1); 

          arr[k+2]=x2; 

          arr[k+3]=y2; 

          k+=4; 

     } 

      

if(x1 >= xmin  && x2 < xmin) 

     { 

          arr[k]=xmin; 

          arr[k+1]=y1+m*(xmin-x1); 

          k+=2; 

     } 

} 

void clipt(float x1,float y1,float x2,float y2) 

{ 

     if(y2-y1) 

 { 

          m=(x2-x1)/(y2-y1); 

     } 

else 

         { 

  m=100000; 

 } 

     if(y1 <= ymax && y2 <= ymax) 

     { 

          arr[k]=x2; 

          arr[k+1]=y2; 

          k+=2; 

     } 



 

 134 

2d Geometric 

Transformations & Clipping 

 

     if(y1 > ymax && y2 <= ymax) 

     { 

          arr[k]=x1+m*(ymax-y1); 

          arr[k+1]=ymax; 

          arr[k+2]=x2; 

          arr[k+3]=y2; 

          k+=4; 

     } 

     if(y1 <= ymax  && y2 > ymax) 

     { 

          arr[k]=x1+m*(ymax-y1); 

          arr[k+1]=ymax; 

          k+=2; 

     } 

} 

void clipr(float x1,float y1,float x2,float y2) 

{ 

     if(x2-x1) 

         { 

m=(y2-y1)/(x2-x1); 

     } 

 

else 

         { 

  m=100000; 

} 

      

if(x1 <= xmax && x2 <= xmax) 

     { 

          arr[k]=x2; 

          arr[k+1]=y2; 

          k+=2; 

     } 

    if(x1 > xmax && x2 <= xmax) 

     { 



 

 135 

Computer Graphics 

and Image Processing 
 

          arr[k]=xmax; 

          arr[k+1]=y1+m*(xmax-x1); 

          arr[k+2]=x2; 

          arr[k+3]=y2; 

          k+=4; 

     } 

    if(x1 <= xmax  && x2 > xmax) 

     { 

          arr[k]=xmax; 

          arr[k+1]=y1+m*(xmax-x1); 

          k+=2; 

     } 

} 

void clipb(float x1,float y1,float x2,float y2) 

{ 

     if(y2-y1) 

         { 

m=(x2-x1)/(y2-y1); 

     } 

else 

         { 

 m=100000; 

} 

     if(y1 >= ymin && y2 >= ymin) 

     { 

          arr[k]=x2; 

          arr[k+1]=y2; 

          k+=2; 

     } 

     if(y1 < ymin && y2 >= ymin) 

     { 

          arr[k]=x1+m*(ymin-y1); 

          arr[k+1]=ymin; 

          arr[k+2]=x2; 

          arr[k+3]=y2; 



 

 136 

2d Geometric 

Transformations & Clipping 

 

          k+=4; 

     } 

     if(y1 >= ymin  && y2 < ymin) 

     { 

          arr[k]=x1+m*(ymin-y1); 

          arr[k+1]=ymin; 

          k+=2; 

     } 

} 

void main() 

{ 

     int gdriver=DETECT,gmode,n,poly[20]; 

     float xi,yi,xf,yf,polyy[20]; 

     clrscr(); 

    cout<<"Coordinates of rectangular clip window :\nxmin,ymin             

:"; 

     cin>>xmin>>ymin; 

     cout<<"xmax,ymax             :"; 

     cin>>xmax>>ymax; 

     cout<<"\n\nPolygon to be clipped :\nNumber of sides       :"; 

     cin>>n; 

     cout<<"Enter the coordinates :"; 

  for(int i=0;i<2*n;i++) 

cin>>polyy[i]; 

     polyy[i]=polyy[0]; 

     polyy[i+1]=polyy[1]; 

     for(i=0;i < 2*n+2;i++) 

 poly[i]=round(polyy[i]); 

     initgraph(&gdriver,&gmode,"C:\\TC\\BGI"); 

     setcolor(RED); 

     rectangle(xmin,ymax,xmax,ymin); 

     cout<<"\t\tUNCLIPPED POLYGON"; 

     setcolor(WHITE); 

     fillpoly(n,poly); 

 getch(); 



 

 137 

Computer Graphics 

and Image Processing 
 

     cleardevice(); 

     k=0; 

     for(i=0;i < 2*n;i+=2) 

 clipl(polyy[i],polyy[i+1],polyy[i+2],polyy[i+3]); 

     n=k/2; 

     for(i=0;i < k;i++) 

 polyy[i]=arr[i]; 

     polyy[i]=polyy[0]; 

     polyy[i+1]=polyy[1]; 

    k=0; 

     for(i=0;i < 2*n;i+=2) 

 clipt(polyy[i],polyy[i+1],polyy[i+2],polyy[i+3]); 

     n=k/2; 

     for(i=0;i < k;i++) 

 polyy[i]=arr[i]; 

     polyy[i]=polyy[0]; 

     polyy[i+1]=polyy[1]; 

     k=0; 

     for(i=0;i < 2*n;i+=2) 

 clipr(polyy[i],polyy[i+1],polyy[i+2],polyy[i+3]); 

     n=k/2; 

     for(i=0;i < k;i++) 

 polyy[i]=arr[i]; 

     polyy[i]=polyy[0]; 

     polyy[i+1]=polyy[1]; 

     k=0; 

     for(i=0;i < 2*n;i+=2) 

 clipb(polyy[i],polyy[i+1],polyy[i+2],polyy[i+3]); 

     for(i=0;i < k;i++) 

 poly[i]=round(arr[i]); 

     if(k) 

 fillpoly(k/2,poly); 

     setcolor(RED); 

     rectangle(xmin,ymax,xmax,ymin); 

     cout<<"\tCLIPPED POLYGON"; 



 

 138 

2d Geometric 

Transformations & Clipping 

 

     getch(); 

     closegraph(); 

} 

9.3.4 Output: 

 

 

 



 

 139 

Computer Graphics 

and Image Processing 
 

9.4 CONCLUSION 

Polygon clipping is an important operation that computers execute all the 

time. Often, it is possible to feed a weird polygon to an algorithm and 

retrieve an incorrect result. One of the vertices may disappear, or a ghost 

vertex may be created. However, none of them is totally perfect. 

Therefore, the hunt for the perfect clipping algorithm is still open.  

9.5 REFERENCES FOR FUTURE READING  

 https://techzzers.wordpress.com/midpoint-subdivision-lineclipping-

algorithm/  

 https://www.javatpoint.com/sutherland-hodgeman-polygon-clipping 

 https://www.geeksforgeeks.org/polygon-clipping-sutherland-

hodgman-algorithm-please-change-bmp-imagesjpeg-png/ 

https://www.ques10.com/p/11168/explain-sutherland-hodgeman-

algorithm-for-polygo-1/ 

 Liang, Y. and Barsky, B. (1983) “An analysis and algorithm for 

polygon clipping”, Commun. ACM 26, 11 (Nov), 868-877.  

  

 

 

 

 

 

 

***** 

 



 140 
 

MODULE IX 

10 
IMPLEMENTATION OF 3D 

TRANSFORMATIONS (ONLY 

COORDINATES CALCULATION) 

Unit Structure 

10.1 Objectives 

10.2 Definition 

10.3 Introduction 

10.4 3-D Transformations 

10.4.1 Geometric transformation 

10.5 Translation 

10.6 Scaling 

10.7 Rotation 

10.8 Reflection 

10.9 Shearing 

10.10  Summary  

10.11  Unit End Exercise 

10.12  Reference for further reading  

10.1 OBJECTIVES 

In Computer graphics: 

 Transformation is a process of modifying and re-positioning the 

existing graphics. 

 3D Transformations take place in a three dimensional plane. 

 3D Transformations are important and a bit more complex than 2D 

Transformations. 

 Transformations are helpful in changing the position, size, orientation, 

shape etc of the object. 

10.2 DEFINITION 

2-D geometry transformation is useful in showing charts, graphs, etc. 

various objects can be shown by 3-Dimension. Since those 3-Dimensions 

are: 

x-coordinate-which shows width 

y-coordinate-which shows height 



 

 141 

Computer Graphics 

and Image Processing 
 

z-coordinate-which shows depth 

All these 3-axis are perpendicular to each other hence it is not easy to 

display an object of 3-D into 2-D. 

Thus there should be a projection from 3-D to 2-D plane this is known as 

geometric transformation. 

10.3 INTRODUCTION 

3-D Transformations: 

There are 2 types of transformation: 

a. Geometric transformation 

b. Coordinate transformation 

10.4 3-D TRANSFORMATIONS 

10.4.1 Geometric transformation: 

In this an object is transformed to a new position or size, keeping the 

coordinate system stationary. 

10.5 TRANSLATION 

It means shifting the position of an object from one place to another 

without changing its shape. 

T=   [1 0 0 0 0 1 0 0 0 0 1 0 tx ty tz 1 ] 

The homogenous coordinates are: 

[x' y' z' 1 ]  =  [x y z 1 ] [1 0 0 0 0 1 0 0 0 0 1 0 tx ty tz 1 ] 

[x' y' z' 1 ]  = [x+tx y+ty z+tz 1 ]   

x’=x+tx, where tx = translation in x-direction  

y’=y+ty, where ty = translation in y-direction 

z’=z+tz, where tz= translation in z-direction 

 

Translating an object i.e shifting its position 



 

 142 

Implementation Of 3d 

Transformations (Only 

Coordinates Calculation) 

 

Q. Perform a translation of an object having coordinates (2,3,4) with 

translation distance(2,4,6) 

Solution: 

T=   [1 0 0 0 0 1 0 0 0 0 1 0 tx ty tz 1 ] 

tx= translation distance =2 

ty= translation distance =4 

tz= translation distance =6 

Object Coordinates are A=2,   B= 3   & C=4 

The homogenous coordinates are: 

[A' B' C' 1 ]  =  [2 3 4 1 ]        [1 0 0 0 0 1 0 0 0 0 1 0 2 4 6 1 ] 

 

[A' B' C' 1 ]  = [2+2 3+4 4+6 1 ]  =   [4    7     10     1] 

 

A’= 4, 

B’= 7 

C’=10 

After translation object position is (4,7,10) 

Q. Perform a translation of an object having coordinates (4,10,12) with 

translation distance(2,3,4) 

Solution: 

T=   [1 0 0 0 0 1 0 0 0 0 1 0 tx ty tz 1 ] 

tx= translation distance =2 

ty= translation distance =3 

tz= translation distance =4 

Object Coordinates are A=4,   B= 10   & C=12 

The homogenous coordinates are: 

[A' B' C' 1 ]  =  [4 10 12 1 ]        [1 0 0 0 0 1 0 0 0 0 1 0 2 3 4 1 ] 

[A' B' C' 1 ]  = [4+2 10+3 12+4 1 ]  =   [6    13     16     1] 

A’= 6, 

B’= 13 

C’=16 

After translation object position is (6,13,16) 



 

 143 

Computer Graphics 

and Image Processing 
 

10.6 SCALING 

It is defined as a process of compressing and expanding an object. The 

scaling factor is given by: Sx,Sy, Sz.  

If  Sx=Sy=Sz=S <1 then scaling is called as Magnification. 

The 3-dimensional transformation matrix for scaling in homogenous 

coordinates is given by: 

S = [Sx 0 0 0 0 Sy 0 0 0 0 Sz 0 0 0 0 1 ] 

 

[x' y' z' 1 ]  = [x y z 1 ]  * [Sx 0 0 0 0 Sy 0 0 0 0 Sz 0 0 0 0 1 ]  

  

=[x*Sx y*Sy z*Sz 1 ]  

 

Scaling an object 

Q. Perform scaling on an object with coordinates (2,2,1) with scaling 

factors (1,2,2) 

Solution: 

S = [Sx 0 0 0 0 Sy 0 0 0 0 Sz 0 0 0 0 1 ] 

Object Coordinate positions are = 2,2,1 

Scaling factors are Sx = 1,   Sy=2,    Sz= 2 

[P' Q' R' 1 ]  = [2 2 1 1 ]  * [1 0 0 0 0 2 0 0 0 0 2 0 0 0 0 1 ]   

=[2*1 2*2 1*2 1 ] 

=[2      4       2      1] 

Therefore, the coordinates after scaling are (2,4,2) 

 



 

 144 

Implementation Of 3d 

Transformations (Only 

Coordinates Calculation) 

 

10.7 ROTATION ABOUT AN ORIGIN: 

The 3-dimensional transformation matrix of rotation in anticlockwise 

direction for each axis is given by: 

(Rotation about x-axis): 

Rx =  

   

(Rotation about y axis): 

Ry = 

   

(Rotation about z axis): 

Rz = 

 

 

Type equation here. 

Note: For rotation in clockwise direction change the sign of theta (θ) in its 

opposite sign. 

i.e if cos θ then cos (-θ) = cos θ 

     if sin θ then sin (- θ) = -sin θ  

     if –sin θ then-□sin sin (-θ)  = -(-□sin sin θ)=θ   

Q. Perform a rotation with an angle of 450  about y-axis followed by a 

rotation of 450 about x-axis of the given matrix  [1 0 2 0 1 3 0 0 3 0 2 0 0 

3 4 1 ] 

Solution: 

Rotation with an angle of 45
0 

about y-axis is given by: 

 
 

 

 

        *   

 



 

 145 

Computer Graphics 

and Image Processing 
 

 
 

 
 

Rotation with an angle of 450 about x-axis is given as: 

Rx =  

  =  

 

 * 

 

 

  = 

 

Q. Perform a rotation with an angle of 450  about x-axis followed by a 

rotation of 450 about y-axis of the given matrix  [1 0 2 0 1 3 0 0 3 0 2 0 0 

3 4 1 ] 

Solution: 

Rotation with an angle of 45
0
 about x-axis 

Rx =  

  =  

 

 

 
 

   
= 

 



 

 146 

Implementation Of 3d 

Transformations (Only 

Coordinates Calculation) 

 

Rotation of 45
0
 about y-axis: 

 
 

 
 

=   

*  

 

=   

 

Q. Perform a rotation with an angle of 450 about y-axis followed by a 

rotation of 450 about z-axis of the given matrix   

 

 

Solution: 

Rotation with an angle of 45
0 

about y-axis is given by: 

 
 

 
 

=    * 

  

 

 
 

  

 
 

 



 

 147 

Computer Graphics 

and Image Processing 
 

Rotation of 45
0
 about z-axis: 

Rz = 

 

 

=   

 

=  

 
  

10.8 REFLECTION 

The 3-dimensional transformation matrix of reflection is given by: 

Reflection about xy plane Rxy =  

  =   *  

 

   =   

 

Reflection about yz plane Ryz   

 

  =   *  

 

   =   

 

Reflection about xz plane Rxz =  

  =   *  

 

   =   

 

Reflection about the origin Rxzy =  

  =   *  

 

   =   

10.9 SHEARING 

Shearing is done along x-axis, y-axis and z-axis 

Shearing along x-axis-In this shearing factors are Shxy and Shxz 

  =   *  

  



 

 148 

Implementation Of 3d 

Transformations (Only 

Coordinates Calculation) 

 

   =   

 

Shearing along y-axis-In this shearing factors are Shyz and Shyx 

  =   *  

 

   =   

 

Shearing along z-axis-In this shearing factors are Shzx and Shzy 

  =   *  

 

   =   

10.10 SUMMARY   

3-D Transformation is the process of manipulating the view of a three-D 

object with respect to its original position by modifying its physical 

attributes through various methods of transformation like Translation, 

Scaling, Rotation, Shear, etc. 

10.11 UNIT END EXERCISE  

1. What is 3-D Transformation 

2. What is geometric transformation 

3. What is coordinate transformation 

4. What is meant by Translation. 

5. What is meant by rotation. 

6.  What is scaling explain with the help of an example. 

7. Explain all types of rotation 

8. Explain shearing in detail 

9. Explain reflection in detail 

10. What are the different types of geometric transformation? 

10.12 REFERENCE FOR FURTHER READING  

 Computer_Graphics_C_Version_by_Donald_Hearn_and_M_Pauline

_Baker_II_Edition   

 Computer graphics by Atul P. Godse, Dr. Deepali A. Godse   

 https://www.geeksforgeeks.org/computer-graphics-3d-translation-

transformation/#:~:text=3%2DD%20Transformation%20%3A,%2C

%20Rotation%2C%20Shear%2C%20etc.  

***** 



 149 
 

UNIT X 

11 
OUTPUT PRIMITIVES & ITS 

ALGORITHM 

Unit Structure 

11.0  Objective 

11.1  Introduction 

11.2  Fractals and self-similarity overview 

         11.2.1 Geometric Fractals 

         11.2.2 Generating fractals 

         11.2.3 Classification of fractals 

11.2.4 Characteristics of fractals 

         11.2.5 Elements of fractals 

         11.2.6 Application of fractals 

         11.2.7 Fractals in real life 

         11.2.8 Algorithms of fractals 

11.3  Koch curve 

         11.3.1 Construction of Koch curve 

11.4  Sierpinski Triangle 

11.5  Summary 

11.6  Unit End Exercise 

11.7  References for Future Reading 

11.0 OBJECTIVE  

This chapter will able you to understand the following concept: 

● Fractals and self-similarity 

● Characteristics of fractals 

● Elements of fractals 

● Fractals algorithm 

● Fractals applications  

● Types of fractals Koch curve and Sirpenski Triangle. 

● Koch curve construction and implementation 

● Sierpinski Triangle way of fractals 

 



 

 150 

Output Primitives & Its 

Algorithm 

 

11.1 INTRODUCTION  

Manmade or artificial objects usually have either flat surface, which can 

be described with polygons or smooth curved surfaces, which we have just 

studied. But objects accruing in nature often have rough, jagged, random 

edges. Attempting to draw things like maintains, trees, rivers or lightning 

bolts directly with lines or polygons require lots of specification. It is 

describing to let the machine do the work and draw the jagged lines. We 

would just give the endpoints to the computer and let the machine draw 

the jagged lined between them. The lines should be closely approximating 

the behavior of nature, so it will look better. This all scenario we called it 

as fractals. 

We can use the computer to easily generate self-similar fractal curves.  

The self-similar drawing can be done by a self-referencing procedure. A 

curve is composed of N self-similar pieces, each scaled by 1/s. of course, a 

computer routine should terminate, which   a true fractal does not.  

11.2 FRACTALS AND SELF SIMILARITY 

A fractal line is fine for the path of a lightning the bolt, but for something 

like a three dimensional mountain range, we need a fractal surface. There 

are several ways to extend the fractal idea to surface. The one can present 

is based on triangles. 

We can use the computer to easily generate self-similar fractal curves.  

The self-similar drawing can be done by a self-referencing procedure. A 

curve is composed of N self-similar pieces, each scaled by 1/s. of course, a 

computer routine should terminate, which   a true fractal does not.  

Being able to use the computer to generate fractal curve means that the 

user can easily generate realistic cost line and mountains peak or lightning 

bolts without concern for all the small bends and wiggles, and the user 

need only give the endpoints. 

 The algorithm presented not very efficient in that it calculated each point 

twice. Care must be taken with the seed values to ensure that the same 

fractal edge is generated for two bordering triangles. 

11.2.1 Geometric Fractals: 

A fractal is " it is considered as geometric shape that is rough or 

fragmented and that can bifurcate in small parts, every part which is in 

reduced/size copy of the whole". The term was originated by Benoît 

Mandelbrot in 1975 and was come from the Latin word fractus meaning 

broken or fractured. 

A Geometric object fractal has the following features: 

● Arbitrarily small scales are at fine structure  



 

 151 

Computer Graphics 

and Image Processing 
 

● In traditional Euclidean geometric language, it is described as too 

irregular and it is easily accessible. 

● Its nature is self-similar (at least approximatively or stochastically) 

● It has a topological dimension less than Hausdorff dimension (but this 

requirement is not met by space-filling curves such as the Hilbert 

curve) 

● it has recursive and simple function definition. 

Because of same feature of appearing similar at all the levels of 

magnification, fractals are sometime often considered as 'infinitely 

complex'. Like example of mountain ranges, clouds and lightning bolts.  

However, in case of all object it is not all self-similar objects can be a 

fractal such as the real line like a straight Euclidean line which is formally 

self-similar in nature but fails to have other fractal characteristics. 

11.2.2 Generating Fractals: 

Following are some main techniques for generating fractals are: 

1. Escape-time fractals: The recurrence relation is defined by an object 

at each point to bifurcate the object in to self-similarity for a complex 

problem such as the Lyapunov fractal, Julia set Mandelbrot set, the 

Burning Ship fractal. 

2. Iterated function systems: in this type of fractals the replacement 

theory is used to describe the geometric object. For example, Harter-

Highway dragon curve, Cantor set, Sierpinski carpet, T-Square, 

Menger , Sierpinski gasket, Piano curve, Koch snowflake,  sponge. 

3. Random fractals:  it is not following the deterministic approach it is 

just following the stochastic feature, there are some example of, 

Brownian tree, trajectories of the Brownian motion, Lévy flight, 

fractal landscapes.  

In the latter stage it is called asmass- or dendritic fractals, for example, 

reaction-limited aggregation clusters or diffusion-limited aggregation. 

11.2.3 Classification of Fractals: 

With property of their self-similarity fractals can be classified into three 

main categories. 

▪ Exact self-similarity:  This is one of the main self-similarity activity 

and it is well versed; the fractal appearance is different for all object 

at all different scales. Iteration property of fractals defined can be 

display by exact self-similarity in some function. 

▪ Quasi-self-similarity:  This activity is one of the weakest activity of 

self-similarity; most of the time the fractal appearance is not exactly 

but approximately and it is again different at different scales. In 



 

 152 

Output Primitives & Its 

Algorithm 

 

Quasi-self-similar fractals, it presents the small copies of the entire 

object fractal in distorted and degenerate forms. Fractals can be 

represented by recurrence relations and it is usually quasi-self-similar 

but not exactly self-similar. 

▪ Statistical self-similarity: This is one more weakest type of self-

similarity; these self-similarity fractal has statistical or numerical 

calculated numbers which are preserved across scales. Most of the 

time the definitions will be true for "fractal" which the implication of 

some form of statistical self-similarity. continuous Fractal dimension 

is a numerical measure which is preserved across scales whereas in 

case of random fractals are not exactly or Quasi self-similar but it is 

statistically self-similar, but neither exactly nor quasi-self-similar. 

• Invariant fractal sets: with the help of nonlinear transformation 

invariant fractals are formed. self-squaring fractals are the main 

property of this type, in which squaring function is used. Squering 

function is self-inverse fractals which can be used for complex 

problem such as the mendelbrot set. 

11.2.4 Characteristics of Fractals: 

Fractal characteristics firstly introduced by ‗Alain Boutot‘. All scales and 

observations are taken into consideration to do the fractals. In language of 

Euclidian geometry, it cannot be described as it is irregular locally and 

globally. 

1. Self-Similarity: Each part is same as whole parts are available in the 

object.  

2. Scaling: All spatial resolution is same as other spatial resolution as 

it follows the self-similarity feature. Smaller feature can inherit the 

feature of larger element. 

3. Bounded Infinity: within the finite boundary one can illustrate the 

infinite elements of same shape and size. The Koch curve or 

snowflake can illustrate the bounded infinity very clearly. 

4. Fractal dimensions: in self-similarity fractal dimension can be 

defined as repeated number of action to be taken in the object 

drawing. 

11.2.5 Elements of Fractals: 

Fractal can be performing with the two main elements initiator and 

generator. With initiator it can starts and draw equilateral triangle and it 

can be divide into same fractal with the help of generator. Initiator will 

divide the line segment into three equal parts and the process is repeated 

until the generator generates a fine image. 



 

 153 

Computer Graphics 

and Image Processing 
 

 

dimension 

11.2.6 Application of Fractals: 

▪ Classification of histopathology slides in medicine 

▪ Generation of new music 

▪ Generation of various art forms 

▪ Signal and image compression 

▪ Seismology 

▪ Computer and video game design, especially computer graphics for 

organic environments and as part of procedural generation 

▪ Fractography and fracture mechanics 

▪ Fractal antennas — Small size antennas using fractal shapes 

▪ Neo-hippies t-shirts and other fashion. 

▪ Generation of patterns for camouflage, such as MARPAT. 

▪ Digital sundial 

11.2.7 Fractals in real life: 

▪ In pour day to day life fractals are easily found in our environment. 

Like in cloud or mountain nature object the self-similarity structure is 

extended in finite step or defines scale range. Another examples 

include river flow, snowflake, in vegetable it found in cauliflower or 

broccoli, and in a human body systems of blood vessels. 

▪ As we know the fractals uses the recursive algorithm to make trees 

and ferns which are fractal in nature and can be drawn on screen with 

the same algorithm. These example shows the recursive nature used 

such as a branch of a tree can be used to make frond from a fern 

which can be replica of the main system but it is not identical, and it 

has a same shape in nature. 

▪ In the example of mountain, with using a fractal the mountain surface 

can be modelled on a computer screen, it will initialised with a 

triangle in 3D space and each central point connect with the line 



 

 154 

Output Primitives & Its 

Algorithm 

 

segment this will be done for each side, resulting in 4 triangles. The 

central points are then randomly moved up or down, within a defined 

range. This process is repetitive procedure for a finite step, with 

decomposing into iteration by half range at each stage. The property 

of recursive algorithm assures the self-similarity in the object which is 

statistically similar to each other. 

▪ In some American artist painting like Jackson Pollock the Fractal 

patterns have been found, while in that Pollock's paintings the object 

is appear to be composed of chaotic dripping and splattering, while 

going through the analysis the computer has found fractal patterns in 

his work. 

11.2.8 Algorithm of Fractals: 

The below algorithm presents a procedure for drawing a fractal line 

segment from the current position to the specified position. It requires as 

arguments the endpoint a weight factor, and the desired recursion depth.  

Algorithm FRACTAL-LINE-ABS-3 (X, Y, Z, W, N, FSEED) user routine 

from drawing fractals lines 

Arguments X, Y, Z the point to which to draw a line 

                   W described the roughness of the curve 

                   N the desired depth of recursion 

                   FSEED seed for fractal pattern 

Global       DF-PEN-X, DF-PEN-Y, DF-PEN-Z current pen position 

                  SEED the seed used by the random number generator 

      Local             L the approximate line length 

      BEGIN 

            SEED � FSEED; 

            L� | X – DF-PEN-X | + | Y – DF-PEN-Y | + | Z – DF-PEN-Z |; 

            FRACTAL – SUBDIVIDE (DF – PEN- X, DF – PEN- Y, DF – 

PEN- Z, X, Y, Z, L * W, N); 

     END; 

The SEED is a number given to the random number generator. It is 

assumed the RND not only returns the random number calculated from 

SEED but also alters the value reason for giving the SEED so that on the 

next call a different random number will be returned. The fractal will 

depend upon the initial seed used. 

 



 

 155 

Computer Graphics 

and Image Processing 
 

Algorithm FRACTAL-LINE-SUBDIVIDE (X1, Y1, Z1, X2, Y2, Z2, S, 

N) Draws a fractal line between points X1, Y1, Z1 and X2, Y2, Z2  

Arguments X1, Y1, Z1 the point to start the line 

                   X2, Y2, Z2 the point to stop the line 

                   S offset scale factor 

                   N the desired depth of recursion 

                   FSEED seed for fractal pattern 

      Local             XMID, YMID, ZMID coordinates at which to break the 

line 

      BEGIN 

            IF N=0 THEN 

                BEGIN 

                   Recursion stops, so just draw the line segment 

                   LINE-ABSA3 (X2, Y2, Z2) 

      END 

    ELSE 

      BEGIN 

          Calculate the halfway point 

          XMID � (X1 + X2)/2 + S * GAUSS; 

          YMID � (Y1 + Y2)/2 + S * GAUSS; 

          ZMID � (Z1 + Z2)/2 + S * GAUSS; 

          Draw the two halves 

          FRACTAL-SUBDIVIDE (X1, Y1, Z1, XMID, YMID, ZMID, S/2, 

N-1); 

          FRACTAL-SUBDIVIDE (X2, Y2, Z2, XMID, YMID, ZMID, S/2, 

N-1); 

END; 

  RETURN; 

END 

 



 

 156 

Output Primitives & Its 

Algorithm 

 

We approximate a Gaussian distribution by averaging several uniformly 

random numbers. Half the numbers are added and half subtracted to 

provide for zero mean. 

Algorithm GAUSS calculates an approximate Gaussian between -1 and 1. 

      Local       I for summing samples 

      BEGIN 

            GAUSS � 0; 

            FOR I 1 TO 6 DO GAUSS � GAUSS + RND – RND; 

            GAUSS � GAUSS / 6; 

            RETURN; 

     END; 

Classification of fractals: 

Fractals can also be classified according to their self-similarity. There are 

three types of self-similarity found in fractals: 

Exact self-similarity: This is the strongest type of self-similarity; the 

fractal appears identical at different scales. Fractals defined by iterated 

function systems often display exact self-similarity. 

Quasi-self-similarity: This is a loose form of self-similarity; the fractal 

appears approximately (but not exactly) identical at different scales. 

Quasi-self-similar fractals contain small copies of the entire fractal in 

distorted and degenerate forms. Fractals defined by recurrence relations 

are usually quasi-self-similar but not exactly self-similar. 

Statistical self-similarity: This is the weakest type of self-similarity; the 

fractal has numerical or statistical measures which are preserved across 

scales. Most reasonable definitions of "fractal" trivially imply some form 

of statistical self-similarity. (Fractal dimension itself is a numerical 

measure which is preserved across scales.) Random fractals are examples 

of fractals which are statistically self-similar, but neither exactly nor 

quasi-self-similar. 

11.3 KOCH CURVE 

In mathematic curve one of the oldest fractals described is, The Koch 

snowflake (also known as the Koch star and Koch island). The Koch 

snowflake is based on the Koch curve, which appeared in a 1904 paper 

titled "On a continuous curve without tangents, constructible from 

elementary geometry" by the Swedish mathematician Helge von Koch. 

Self-similarity feature can be known as fractal and that fractal is also 

called as Koch curve. It is built from straight line segment and then it is 

divided into three equal parts; again the middle part id bifurcates in 



 

 157 

Computer Graphics 

and Image Processing 
 

equilateral triangle. Fractal objects can be achieved using one of the 

popular method that is L-system (Lindenmayer system). In this method the 

recursive function is used to create same size and same shape of the object 

several times.  

This can be result into Koch curve with middle segment, middle can be 

varying every time and can be converted into a regular positive integers 

greater than or equal to 3.  

The Koch curve can be built up iteratively with the specific iteration, in 

sequence stage. The starting is done with the equilateral triangle, and each 

successive stage the adding the construction of equilateral triangle to it. 

After each iteration the triangle size gets small.  The size of area where the 

triangle constructed is increases without bond, consequently the snowflake 

is occupying the area but the area is finite.  

Preliminaries: 

 It can be expressed by following rewrite  

system (L-system)  

 

Alphabet : F 

Constant :  +, - 

Axiom : F 

Production rule: F ->F +F --F +F 

 

  Here, F means "draw forward", + means "turn left  

60°" and - means "turn right 60°".  

To draw a  Koch snowflake curve, the  Prod. Rule  1 is  

applied on axiom ―F - - F - - F‖ 

 

11.3.1 Construction of KOCH CURVE: 

Koch curve can be constructed with an equilateral triangle, then 

recursively changing with the line segments that create a side of 

equilateral triangle as follows: 

1. First, divide the line segment into three equal parts. 

2. Draw an equilateral triangle with this three point which we get in step 

one with the 3 equal segments. 

3. Remove the line segment that is the base of the triangle 



 

 158 

Output Primitives & Its 

Algorithm 

 

4. After adding these three equilateral triangle the shape become the star  

5. Follow the same process as much as you want the shape is to be fixed, 

but it should be finite in nature. 

 

Construction:  

Step 1:  first draw an equilateral triangle. It should divide in three  

 

Step2: divide each of 3 side in equal parts 

 

Step3: Three side which we have created draw an equilateral triangle in 

each middle part. 

 

Step4: Divide each outer side into thirds. You can see the 2nd generation 

of triangles covers a bit of the first. These three line segments shouldn‘t be 

parted in three. 



 

 159 

Computer Graphics 

and Image Processing 
 

 

Step5: 

Draw an equilateral triangle on each middle part. 

 

11.4 SIRPENSKI TRIANGLE 

The mathematician had taken much efforts on giving topological 

characterization of continuum and from this we got many example of 

topological space with some more properties. In which Sierpinski 

algorithm is most famous algorithm. The Sierpiński gasket is defined as 

follows: Take a solid equilateral triangle, divide it into four congruent 

equilateral triangles, and remove the middle triangle; then do the same 

with each of the three remaining triangles; and so on. 

The simple continuous curve in the plain plane with some limit of fractal 

image is also known as Sierpiński construction. Repeated modification can 

have done in same manner or analogous manner can be formed koch 

snowflake. The base of equilateral triangle is the starting line segment of 

plane (initial curve). 

Three iterated function of the Sierpinski gasket consists of three self-

similar pieces in the iterated function system. One can zoom the object 

and can see the different parts of the gasket at at the same time, you will 

get the similar basic shape continually repeated for finite number of step. 

Angle 120 

Axiom F 

F —> F+F−F−F+F 

Let‘s take an example, we initiated with said axiom F, which is the various 

sides of the triangle. In the first iteration we have used the rule stated 

above which can be regenerated. 

We can see the generation of the triangle with boundary and also seen how 

the rule used for removed inside triangle. In this concept iteration 

repetition will make more of the interior triangles but it will leave out the 



 

 160 

Output Primitives & Its 

Algorithm 

 

other two sides of the main triangle. In case of L-system animation, you 

will notice in the animation that it seems to pause occasionally. some of 

the sides of the triangles more than once will traced by L-system.  

Sierpinski's gasket generation by another L-system is given by 

Angle 60 

Axiom FX 

F —> Z 

X —> +FY-FX-FY+ 

Y —> -FX+FY+FX- 

In the first L system each curve never intersects with itself in a different 

way, such as this construction will show that the Sierpinski gasket is 

actually a plane curve. The second iteration function is given in the 

corresponding system. 

The fourth iteration of each L-system is given below in the figure. 

Different mathematical tools are available to draw Sierpiński construction 

but the easiest way is to draw with pen and paper. 

 Steps: 

1. Take pen and paper and draw a equilateral triangle. 

2. Split the edges between two parts. 

3. Divide that triangle into 4 smaller triangle 

4. Repeat step 3 for the remaining triangle as much as you want. 

 

At each recursive stage, replace each line segment on the curve with three 

shorter ones, each of equal length, such that:  



 

 161 

Computer Graphics 

and Image Processing 
 

1. the three line segments replacing a single       segment from the 

previous stage always    make 120° angles at each junction between       

two consecutive segments, with the first and last    segments of the 

curve either parallel to the base     of the given equilateral triangle or 

forming a 60° angle with it. 

2.  no pair of line segments forming the curve at any stage ever intersect, 

except possibly at their     endpoints.  

3. every line segment of the curve remains on, or within, the given 

equilateral    the central downward pointing equilateral triangular 

regions that are external to the limiting curve. 

We can describe the amount of variation in the object detail with a number 

called fractal dimension, unlike the Euclidian dimensions, this number is 

not necessarily an integer. The fractal dimension of an object is something 

referred to as the fractional dimension. 

Special Properties: 

The Sierpinski triangle curve is also called as Sierpinski gasket or 

Sierpinski triangle or both. It is derived by the Mandelbrot who first gave 

it the name "Sierpinski's gasket." Sierpinski described the construction to 

give an example of "a curve simultaneously Cantorian and Jordanian, of 

which every point is a point of ramification." Basically, this means that it 

is a curve that crosses itself at every point.  

11.5 SUMMARY 

A fractal line is fine for the path of a lightning the bolt, but for something 

like a three dimensional mountain range, we need a fractal surface. There 

are several ways to extend the fractal idea to surface. The one can present 

is based on triangles. Fractal characteristics firstly introduced by ‗Alain 

Boutot‘. All scales and observations are taken into consideration to do the 

fractals. In language of Euclidian geometry, it cannot be described as it is 

irregular locally and globally. In mathematic curve one of the oldest 

fractals described is, The Koch snowflake (also known as the Koch star 

and Koch island). The Koch snowflake is based on the Koch curve, which 

appeared in a 1904 paper titled "On a continuous curve without tangents, 

constructible from elementary geometry" by the Swedish mathematician 

Helge von Koch. The mathematician had taken much efforts on giving 

topological characterization of continuum and from this we got many 

example of topological space with some more properties. In which 

Sierpinski algorithm is most famous algorithm. 

11.6 UNIT END EXERCISE  

1. Explain the concept of Koch curve in detail. 

2. Explain Fractals various algorithm. 

3. Explain Sierpinski algorithm in detail. 



 

 162 

Output Primitives & Its 

Algorithm 

 

4. Explain construction of Koch curve in detail. 

5. List and explain the application of fractals. 

6. Explain characteristics of fractals. 

11.7 REFERENCES FOR FUTURE READING 

● Computer Graphics C version 2nd Edition by Donald D. Hearn and 

M. Pauline Baker 

● Computer Graphics A programming approach 2nd Edition by Steven 

Harrington McGraw Hill 

● Fundamental of Computer Graphics 3rd Edition by Peter Shirley and 

Steven Marschner 

● Computer Graphics from Scratch: A Programmer's Introduction to 3D 

Rendering by Gabriel Gambetta 

 

 

 

 

 

***** 



 163 
 

MODULE XI 

12 
INTRODUCTION TO ANIMATION 

Unit Structure 

12.0  Objectives 

12.1  Introduction 

12.2  Summary 

12.3  References 

12.4  Unit End Exercises 

12.0 OBJECTIVES 

Animation refers to the movement on the screen of the display device 

created by displaying a sequence of still images. Animation is the 

technique of designing, drawing, making layouts and preparation of 

photographic series which are integrated into the multimedia and gaming 

products. Animation connects the exploitation and management of still 

images to generate the illusion of movement. A person who creates 

animations is called animator. He/she use various computer technologies 

to capture the pictures and then to animate these in the desired sequence. 

Animation includes all the visual changes on the screen of display devices. 

These are: 

1. Change of shape as shown in fig: 

 

 2. Change in size as shown in fig: 

 



 

 164 

Introduction to 

Animation 

 

3. Change in color as shown in fig: 

 

 4. Change in structure as shown in fig: 

 

 5. Change in angle as shown in fig: 

 

12.1 Introduction 

 Application Areas of Animation: 

1.  Education and Training: Animation is used in school, colleges and 

training centers for education purpose. Flight simulators for aircraft 

are also animation based. 

2.  Entertainment: Animation methods are now commonly used in 

making motion pictures, music videos and television shows, etc. 

3.  Computer Aided Design (CAD): One of the best applications of 

computer animation is Computer Aided Design and is generally 

referred to as CAD. One of the earlier applications of CAD was 

automobile designing. But now almost all types of designing are done 

by using CAD application, and without animation, all these work can't 

be possible. 

4.  Advertising: This is one of the significant applications of computer 

animation. The most important advantage of an animated 

advertisement is that it takes very less space and capture people 

attention. 



 

 165 

Computer Graphics 

and Image Processing 
 

5.  Presentation: Animated Presentation is the most effective way to 

represent an idea. It is used to describe financial, statistical, 

mathematical, scientific & economic data. 

Animation Functions: 

1.  Morphing: Morphing is an animation function which is used to 

transform object shape from one form to another is called Morphing. 

It is one of the most complicated transformations. This function is 

commonly used in movies, cartoons, advertisement, and computer 

games. 

 

 

The process of Morphing involves three steps: 

1. In the first step, one initial image and other final image are added to 

morphing application as shown in fig: Ist & 4th object consider as key 

frames. 

2. The second step involves the selection of key points on both the 

images for a smooth transition between two images as shown in 2nd 

object. 

 



 

 166 

Introduction to 

Animation 

 

3.  In the third step, the key point of the first image transforms to a 

corresponding key point of the second image as shown in 3rd object 

of the figure. 

2.  Wrapping: Wrapping function is similar to morphing function. It 

distorts only the initial images so that it matches with final images and 

no fade occurs in this function. 

3.  Tweening: Tweening is the short form of 'inbetweening.' Tweening is 

the process of generating intermediate frames between the initial & 

last final images. This function is popular in the film industry. 

 

 4.  Panning: Usually Panning refers to rotation of the camera in 

horizontal Plane. In computer graphics, Panning relates to the 

movement of fixed size window across the window object in a scene. 

In which direction the fixed sized window moves, the object appears 

to move in the opposite direction as shown in fig: 

 



 

 167 

Computer Graphics 

and Image Processing 
 

  If the window moves in a backward direction, then the object appear 

to move in the forward direction and the window moves in forward 

direction then the object appear to move in a backward direction. 

5.  Zooming: In zooming, the window is fixed an object and change its 

size, the object also appear to change in size. When the window is 

made smaller about a fixed center, the object comes inside the 

window appear more enlarged. This feature is known as Zooming In. 

When we increase the size of the window about the fixed center, the 

object comes inside the window appear small. This feature is known 

as Zooming Out. 

 

 6.  Fractals: Fractal Function is used to generate a complex picture by 

using Iteration. Iteration means the repetition of a single formula 

again & again with slightly different value based on the previous 

iteration result. These results are displayed on the screen in the form 

of the display picture. 

Examples: 

Aim: Write a Program to draw animation using increasing circles filled 

with different colors and patterns. 

Code: 

1. #include<graphics.h>   

2. #include<conio.h>   

3. void main()   

4. {   

5.     intgd=DETECT, gm, i, x, y;   

6.     initgraph(&gd, &gm, "C:\\TC\\BGI");   

7.     x=getmaxx()/3;   

8.     y=getmaxx()/3;   

9.     setbkcolor(WHITE);   

10.     setcolor(BLUE);   



 

 168 

Introduction to 

Animation 

 

11.     for(i=1;i<=8;i++)   

12.           {   

13.         setfillstyle(i,i);   

14.         delay(20);   

15.         circle(x, y, i*20);   

16.         floodfill(x-2+i*20,y,BLUE);   

17.     }   

18.     getch();   

19.     closegraph();   

20. }   

Output: 

 

12.2 SUMMARY 

Aim: Write a Program to make a moving colored car using inbuilt 

functions. 

Code: 

1. #include<graphics.h>   

2. #include<conio.h>   

3. int main()   

4. {   

5.     intgd=DETECT,gm, i, maxx, cy;   

6.     initgraph(&gd, &gm, "C:\\TC\\BGI");   

7.     setbkcolor(WHITE);   

8.     setcolor(RED);   



 

 169 

Computer Graphics 

and Image Processing 
 

9.     maxx = getmaxx();   

10.     cy = getmaxy()/2;   

11.     for(i=0;i<maxx-140;i++)   

12.         {   

13.         cleardevice();   

14.         line(0+i,cy-20, 0+i, cy+15);   

15.         line(0+i, cy-20, 25+i, cy-20);   

16.         line(25+i, cy-20, 40+i, cy-70);   

17.         line(40+i, cy-70, 100+i, cy-70);   

18.         line(100+i, cy-70, 115+i, cy-20);   

19.         line(115+i, cy-20, 140+i, cy-20);   

20.         line(0+i, cy+15, 18+i, cy+15);   

21.         circle(28+i, cy+15, 10);   

22.         line(38+i, cy+15, 102+i, cy+15);   

23.         circle(112+i, cy+15,10);   

24.         line(122+i, cy+15 ,140+i,cy+15);   

25.         line(140+i, cy+15, 140+i, cy-20);   

26.         rectangle(50+i, cy-62, 90+i, cy-30);   

27.         setfillstyle(1,BLUE);   

28.         floodfill(5+i, cy-15, RED);   

29.         setfillstyle(1, LIGHTBLUE);   

30.         floodfill(52+i, cy-60, RED);   

31.         delay(10);   

32.          }   

33.     getch();   

34.     closegraph();   

35.     return 0;   

36. }   

Output: 

 



 

 170 

Introduction to 

Animation 

 

Aim: C program for bouncing ball graphics animation 

In this program, we first draw a red color ball on screen having center at 

(x, y) and then erases it using cleardevice function. We again draw this 

ball at center (x, y + 5), or (x, y - 5) depending upon whether ball is 

moving down or up. This will look like a bouncing ball. We will repeat 

above steps until user press any key on keyboard. 

Code: 

1. #include <stdio.h> 

2. #include <conio.h> 

3. #include <graphics.h> 

4. #include <dos.h> 

5. int main()  

6. int gd = DETECT, gm; 

7. int i, x, y, flag=0; 

8. initgraph(&gd, &gm, "C:\\TC\\BGI"); 

9. /* get mid positions in x and y-axis */ 

10. x = getmaxx()/2; 

11. y = 30; 

12. while (!kbhit()) { 

13. if(y >= getmaxy()-30 || y <= 30) 

14. flag = !flag; 

15. /* draws the gray board */ 

16. setcolor(RED); 

17. setfillstyle(SOLID_FILL, RED); 

18. circle(x, y, 30); 

19. floodfill(x, y, RED); 

20. /* delay for 50 milli seconds */ 

21. delay(50); 

22. /* clears screen */ 

23. cleardevice(); 

24. if(flag){ 

25. y = y + 5; 

26. } else { 

27. y = y - 5; 

28. } 

29. } 

30. getch(); 



 

 171 

Computer Graphics 

and Image Processing 
 

31. closegraph(); 

32. return 0; 

33. } 

34. Output: 

 

12.3 REFERENCES 

1] Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco Di 

Benedetto 

 

2] Computer Graphics Principles and Practice in C: Principles & Practice 

in C Paperback – 1 January 2002 

by Andries van Dam; F. Hughes John; James D. Foley; Steven K. 

Feiner (Author) 

12.4 UNIT END QUESTIONS 

 Write a program to make screen saver in that display different size 

circles filled with different colors and at random places. 

 

 

 

 

 

***** 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks


 172 
 

MODULE XII 

13 
IMAGE ENHANCEMENT 

TRANSFORMATION 

Unit Structure 

13.0  Objectives 

13.1  Introduction 

13.2  Summary 

13.3  References 

13.4  Unit End Exercises 

13.0 OBJECTIVES 

Intensity transformations are applied on images for contrast manipulation 

or image thresholding. These are in the spatial domain, i.e. they are 

performed directly on the pixels of the image at hand, as opposed to being 

performed on the Fourier transform of the image. 

13.1 INTRODUCTION 

The following are commonly used intensity transformations: 

1. Image Negatives (Linear) 

2. Log Transformations 

3. Power-Law (Gamma) Transformations 

Spatial Domain Processes:  

Image Negatives: 

Mathematically, assume that an image goes from intensity levels 0 to (L-

1). Generally, L = 256. Then, the negative transformation can be described 

by the expression s = L-1-r where r is the initial intensity level and s is the 

final intensity level of a pixel. This produces a photographic negative. 

Log Transformations: 

Mathematically, log transformations can be expressed as s = clog(1+r). 

Here, s is the output intensity, r>=0 is the input intensity of the pixel, and 

c is a scaling constant. c is given by 255/(log (1 + m)), where m is the 

maximum pixel value in the image. It is done to ensure that the final pixel 

value does not exceed (L-1), or 255.  



 

 173 

Computer Graphics 

and Image Processing 
 

Practically, log transformation maps a narrow range of low-intensity input 

values to a wide range of output values. 

Consider the following input image. 

Below is the code to apply log transformation to the image. 

import cv2 

import numpy as np 

# Open the image. 

img = cv2.imread('sample.jpg') 

 

# Apply log transform. 

c = 255/(np.log(1 + np.max(img))) 

log_transformed = c * np.log(1 + img) 

   

# Specify the data type. 

log_transformed = np.array(log_transformed, dtype = np.uint8) 

   

# Save the output. 

cv2.imwrite('log_transformed.jpg', log_transformed) 

Below is the log-transformed output. 

13.2 SUMMARY 

Power-Law (Gamma) Transformation:  

“Gamma Correction”, most of you might have heard this strange sounding 

thing. In this blog, we will see what it means and why does it matter to 

you? 

The general form of Power law (Gamma) transformation function is 

s = c*rγ 

Where, „s‟ and „r‟ are the output and input pixel values, respectively and 

„c‟ and γ are the positive constants. Like log transformation, power law 

curves with γ <1 map a narrow range of dark input values into a wider 

range of output values, with the opposite being true for higher input 

values. Similarly, for γ >1, we get the opposite result which is shown in 

the figure below 

This is also known as gamma correction, gamma encoding or gamma 

compression. Don‟t get confused. 



 

 174 

Image Enhancement 

Transformation 

 

The below curves are generated for r values normalized from 0 to 1. Then 

multiplied by the scaling constant c corresponding to the bit size used. 

All the curves are scaled. Don’t get confused (See below): 

But the main question is why we need this transformation, what’s the 

benefit of doing so? 

To understand this, we first need to know how our eyes perceive light. The 

human perception of brightness follows an approximate power function(as 

shown below) according to Stevens‟ power law for brightness perception. 

See from the above figure, if we change input from 0 to 10, the output 

changes from 0 to 50 (approx.) but changing input from 240 to 255 does 

not really change the output value. This means that we are more sensitive 

to changes in dark as compared to bright. You may have realized it 

yourself as well! 

But our camera does not work like this. Unlike human perception, camera 

follows a linear relationship. This means that if light falling on the camera 

is increased by 2 times, the output will also increase 2 folds. The camera 

curve looks like this 

So, where and what is the actual problem?: 

The actual problem arises when we display the image. 

You might be amazed to know that all display devices like your computer 

screen have Intensity to voltage response curve which is a power function 

with exponents(Gamma) varying from 1.8 to 2.5. 

This means for any input signal(say from a camera), the output will be 

transformed by gamma (which is also known as Display Gamma) because 

of non-linear intensity to voltage relationship of the display screen. This 

results in images that are darker than intended. 

To correct this, we apply gamma correction to the input signal(we know 

the intensity and voltage relationship we simply take the complement) 

which is known as Image Gamma. This gamma is automatically applied 

by the conversion algorithms like jpeg etc. thus the image looks normal to 

us. 

This input cancels out the effects generated by the display and we see the 

image as it is. The whole procedure can be summed up as by the following 

figure 

If images are not gamma-encoded, they allocate too many bits for the 

bright tones that humans cannot differentiate and too few bits for the dark 

tones. So, by gamma encoding, we remove this artifact. 

Images which are not properly corrected can look either bleached out, or 

too dark. 



 

 175 

Computer Graphics 

and Image Processing 
 

Let‟s verify by code that γ <1 produces images that are brighter while γ >1 

results in images that are darker than intended 

Code:  

1  import numpy as np 

2  import cv2 

3 # Load the image 

4 img = cv2.imread('D:/downloads/forest.jpg') 

5 # Apply Gamma=2.2 on the normalised image and then multiply by 

scaling constant (For 8 bit, c=255) 

6 gamma_two_point_two = 

np.array(255*(img/255)**2.2,dtype='uint8') 

7 # Similarly, Apply Gamma=0.4  

8 gamma_point_four = np.array(255*(img/255)**0.4,dtype='uint8') 

9 # Display the images in subplots 

10 img3 = cv2.hconcat([gamma_two_point_two,gamma_point_four]) 

11 cv2.imshow('a2',img3) 

12 cv2.waitKey(0) 

13 

Output:  

Original Image 

Gamma Encoded Images 

Below is the Python code to apply gamma correction. 

import cv2 

import numpy as np 

   

# Open the image. 

img = cv2.imread('sample.jpg') 

   

# Trying 4 gamma values. 

for gamma in [0.1, 0.5, 1.2, 2.2]: 

       

    # Apply gamma correction. 



 

 176 

Image Enhancement 

Transformation 

 

    gamma_corrected = np.array(255*(img / 255) ** gamma, dtype = 

'uint8') 

   

    # Save edited images. 

    cv2.imwrite('gamma_transformed'+str(gamma)+'.jpg', 

gamma_corrected) 

 

Below are the gamma-corrected outputs for different values of 

gamma. 

Gamma = 0.1: 

 

 

Gamma = 0.5: 

 

 

Gamma = 1.2: 

 

 

Gamma = 2.2: 

 

 

 

As can be observed from the outputs as well as the graph, gamma>1 

(indicated by the curve corresponding to „nth power‟ label on the graph), 

the intensity of pixels decreases i.e. the image becomes darker. On the 

other hand, gamma<1 (indicated by the curve corresponding to 'nth root' 

label on the graph), the intensity increases i.e. the image becomes lighter. 

13.3 REFERENCES 

1]  Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco 

Di Benedetto 

 

2]  Computer Graphics Principles and Practice in C: Principles & 

Practice in C Paperback – 1 January 2002 by Andries van Dam; F. 

Hughes John; James D. Foley; Steven K. Feiner (Author) 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks


 

 177 

Computer Graphics 

and Image Processing 
 

13.4 UNIT END EXERCISE 

 Write a python code to perform gamma transformation. 

 

 

 

 

***** 

 



 178 
 

14 
IMAGE ENHANCEMENT 

TRANSFORMATION 

Unit Structure 

14.0  Objectives 

14.1  Introduction 

14.2  Summary 

14.3  References 

14.4  Unit End Exercises 

14.0 OBJECTIVES 

Piecewise-Linear Transformation Functions:  

These functions, as the name suggests, are not entirely linear in nature. 

However, they are linear between certain x-intervals. One of the most 

commonly used piecewise-linear transformation functions is contrast 

stretching. 

Contrast can be defined as: 

Contrast =  (I_max - I_min)/(I_max + I_min) 

This process expands the range of intensity levels in an image so that it 

spans the full intensity of the camera/display. The figure below shows the 

graph corresponding to the contrast stretching. 

 



 

 179 

Computer Graphics 

and Image Processing 
 

With (r1, s1), (r2, s2) as parameters, the function stretches the intensity 

levels by essentially decreasing the intensity of the dark pixels and 

increasing the intensity of the light pixels. If r1 = s1 = 0 and r2 = s2 = L-1, 

the function becomes a straight dotted line in the graph (which gives no 

effect). The function is monotonically increasing so that the order of 

intensity levels between pixels is preserved. 

14.1 INTRODUCTION 

Below is the Python code to perform contrast stretching. 

import cv2 

import numpy as np 

  # Function to map each intensity level to output intensity level. 

def pixelVal(pix, r1, s1, r2, s2): 

    if (0 <= pix and pix <= r1): 

        return (s1 / r1)*pix 

    elif (r1 < pix and pix <= r2): 

        return ((s2 - s1)/(r2 - r1)) * (pix - r1) + s1 

    else: 

        return ((255 - s2)/(255 - r2)) * (pix - r2) + s2 

   

# Open the image. 

img = cv2.imread('sample.jpg') 

   

# Define parameters. 

r1 = 70 

s1 = 0 

r2 = 140 

s2 = 255 

# Vectorize the function to apply it to each value in the Numpy array. 

pixelVal_vec = np.vectorize(pixelVal) 

# Apply contrast stretching. 

contrast_stretched = pixelVal_vec(img, r1, s1, r2, s2) 

 

# Save edited image. 

cv2.imwrite('contrast_stretch.jpg', contrast_stretched) 



 

 180 

Image Enhancement 

Transformation 

 

Output: 

 

Piece-wise Linear Transformation: 

Piece-wise Linear Transformation is type of gray level transformation 

that is used for image enhancement. It is a spatial domain method. It is 

used for manipulation of an image so that the result is more suitable than 

the original for a specific application. 

Some commonly used piece-wise linear transformations are: 

Contrast Stretching: 

Low contrast image occurs often due to improper illumination or non-

linearly or small dynamic range of an imaging sensor. It increases the 

dynamic range of grey levels in the image. 

Contrast Stretching Transform is given by: 

S = l.r, 0 <= r < a 

S = m.(r-a) + v, a <= r < b 

S = n.(r-b) + w, b <= r < L-1 

where l, m, n are slopes  

The Formula for Contrast stretch or Image Normalization:  

Io = (Ii-Mini)*(((Maxo-Mino)/(Maxi-Mini))+Mino) 

Io  -  Output pixel value 

Ii -  Input pixel value 

Mini  -  Minimum pixel value in the input image 

Maxi -  Maximum pixel value in the input image 



 

 181 

Computer Graphics 

and Image Processing 
 

Mino -  Minimum pixel value in the output image 

Maxo -  Maximum pixel value in the output image 

Contrast stretch using Python and Pillow: 

● The Python Image Processing Library supports point image 

operations through method point()of the Image module. 

● The point()method takes a function as a parameter. The function 

passed in accepts one argument and typically this is the pixel value 

that is to be transformed. 

● In case of contrast stretching of an image, the formula for contrast 

stretching can be implemented inside a function, which takes the pixel 

value as a parameter and returns the modified intensity of the pixel. 

 Code: 

# Example Python Program for contrast stretching 

from PIL import Image 

  

# Method to process the red band of the image 

def normalizeRed(intensity): 

    iI      = intensity 

    

    minI    = 86 

    maxI    = 230 

  

    minO    = 0 

    maxO    = 255 

  

    iO      = (iI-minI)*(((maxO-minO)/(maxI-minI))+minO) 

    return iO 

  

# Method to process the green band of the image 

def normalizeGreen(intensity): 

    iI      = intensity 

    

    minI    = 90 

    maxI    = 225 

  

    minO    = 0 

    maxO    = 255 

  

    iO      = (iI-minI)*(((maxO-minO)/(maxI-minI))+minO) 

    return iO 



 

 182 

Image Enhancement 

Transformation 

 

  

# Method to process the blue band of the image 

def normalizeBlue(intensity): 

    iI      = intensity 

    

    minI    = 100 

    maxI    = 210 

  

    minO    = 0 

    maxO    = 255 

  

    iO      = (iI-minI)*(((maxO-minO)/(maxI-minI))+minO) 

    return iO 

  

  

# Create an image object 

imageObject     = Image.open("./glare4.jpg") 

  

# Split the red, green and blue bands from the Image 

multiBands      = imageObject.split() 

  

# Apply point operations that does contrast stretching on each color band 

normalizedRedBand      = multiBands[0].point(normalizeRed) 

normalizedGreenBand    = multiBands[1].point(normalizeGreen) 

normalizedBlueBand     = multiBands[2].point(normalizeBlue) 

  

# Create a new image from the contrast stretched red, green and blue 

brands 

normalizedImage = Image.merge("RGB", (normalizedRedBand, 

normalizedGreenBand, normalizedBlueBand)) 

  

# Display the image before contrast stretching 

imageObject.show() 

  

# Display the image after contrast stretching 

normalizedImage.show() 

 

 

 

 



 

 183 

Computer Graphics 

and Image Processing 
 

Input Image for Contrast Stretching Operation: 

 

14.2 SUMMARY 

Clipping: 

A special case of contrast stretching is clipping where l=n=0. It is used for 

noise reduction when the input signal is known. It puts all grey levels 

below r1 to black(0) and above r2 to white(1). 

  

numpy.clip() function is used to Clip (limit) the values in an array. 

Given an interval, values outside the interval are clipped to the interval 

edges. For example, if an interval of [0, 1] is specified, values smaller than 

0 become 0, and values larger than 1 become 1. 

Syntax: numpy.clip(a, a_min, a_max, out=None) 

Parameters: 

a: Array containing elements to clip. 



 

 184 

Image Enhancement 

Transformation 

 

a_min: Minimum value. 

 If None, clipping is not performed on lower interval edge. Not more 

than one of a_min and a_max may be None. 

a_max: Maximum value. 

 If None, clipping is not performed on upper interval edge. Not more 

than one of a_min and a_max may be None. 

 If a_min or a_max are array_like, then the three arrays will be 

broadcasted to match their shapes. 

out: Results will be placed in this array. It may be the input array for in-

place clipping. out must be of the right shape to hold the output. Its type is 

preserved. 

Return: clipped_array 

Code: 

# Python3 code demonstrate clip() function 

   

# importing the numpy 

import numpy as np 

   

in_array = [1, 2, 3, 4, 5, 6, 7, 8 ] 

print ("Input array : ", in_array) 

   

out_array = np.clip(in_array, a_min = 2, a_max = 6) 

print ("Output array : ", out_array) 

 

Output: 

Input array :  [1, 2, 3, 4, 5, 6, 7, 8] 

Output array :  [2 2 3 4 5 6 6 6] 

  

Code: 

# Python3 code demonstrate clip() function 

   

# importing the numpy 

import numpy as np 



 

 185 

Computer Graphics 

and Image Processing 
 

in_array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

print ("Input array : ", in_array) 

   

out_array = np.clip(in_array, a_min =[3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 

                                                         a_max = 9) 

print ("Output array : ", out_array) 

Output: 

Input array:  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

Output array:  [3 4 3 4 5 6 7 8 9 9] 

Thresholding: 

Another special case of contrast stretching is thresholding where l=m=t. It 

is also used for noise reduction. It preserves the grey levels beyond r1. 

 

Grey level slicing: 

Focuses on enhancing a specific range of grey level in an image. The 

intervals are pre-defined and pixels falling in that range are manipulated. 

This can be used to brighten the desired range of grey level while 

preserving the background quality in the range. 



 

 186 

Image Enhancement 

Transformation 

 

 

The code below implements the piece-wise linear transformation by gray-

level slicing. 

For this, we consider a low contrast gray-scale image and increase gray-

levels to maximum in a specified range. Another use-case is when we do 

not restore values above the range to default. 

 

Before Gray-level slicing 

 

After Gray-Level Slicing 



 

 187 

Computer Graphics 

and Image Processing 
 

Highlighting a specific range of grey level in an image. 

Case-I: 

● To display a high value for all grey levels in the range of interest. 

● To display a low value for all grey levels. 

Case-II: 

● Brighten the desired range of grey level. 

● Preserve the background quality in the range. 

Bit Extraction: 

An 8-bit image can be represented in the form of bit plane. Each plane 

represents one bit of all pixel values. Bit plane 7 contains the most 

significant bit (MSB) and bit plane 0 contains least significant bit (LSB). 

The 4 MSB planes contains most of visually significant data. This 

technique is useful for image compression and steganography. 

14.3 REFERENCE 

1]  Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, Marco 

Di Benedetto 

 

2]  Computer Graphics Principles and Practice in C: Principles & 

Practice in C Paperback – 1 January 2002 by Andries van Dam; F. 

Hughes John; James D. Foley; Steven K. Feiner (Author) 

14.4 UNIT END EXERCISE  

 Write a code to perform contrast stretching. 

 

 

 

 

 

***** 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks


 188 
 

15 
IMAGE ENHANCEMENT 

TRANSFORMATION 

Unit Structure 

15.0  Objectives 

15.1  Introduction 

15.2 Summary 

15.3  References 

15.4  Unit End Exercises 

15.0 OBJECTIVES 

Introduction to Histogram Equalization for Digital Image 

Enhancement: 

 

Histogram equalization improves image contrast 

Histogram equalization is a simple technique to enhance a digital image. It 

is a standard tool in digital image processing and computer vision 

applications. It is especially effective in improving the visual quality of 

grayscale images. For example, histogram equalization has been applied 

extensively in medical imaging to improve the contrast of X-ray and MRI 

images. Such improvement enables more accurate medical diagnosis. 

15.1 INTRODUCTION 

Digital image: 

Let’s say you wish to draw a yellow, one-eyed creature dressed in blue 

overall called minion. You will draw using only coloured dots. You 

started drawing by making tiny dots with coloured markers on a piece of 



 

 189 

Computer Graphics 

and Image Processing 
 

paper. The coloured dots are arranged to form the image of a minion 

which you wish to visualize. The resulting image probably looks 

something like the picture below. This is analogous to how images are 

rendered by the computer screen. 

 

This image of a minion is composed by tiny, coloured dots analogous to 

pixels 

Digital images are composed of discrete elements known as pixels. Each 

pixel is represented by intensity value(s) and occupies a unique position in 

the 2D image plane. In grayscale images, each pixel is represented by a 

single intensity value ranging from 0 to 255. Pixels with minimum 

intensity value appear as black pixels. As the intensity value increases, the 

pixel gets lighter in various shades of grey. Pixels having maximum 

intensity value appear as white pixels. Colour images are slightly more 

complex. Each pixel is represented by three intensity values which 

represents the intensity of the colour components: red, green and blue. 

Varying the proportion and intensity of these primary colours enables the 

representation of various colours in the pixels. 

What is a histogram?: 

A histogram represents the frequency distribution of data. It is usually 

visualized as a bar plot. I will use the minion image above to illustrate 

these points. The dimension of the image is 22x37 pixels, giving a total of 

814 pixels. Let’s say we live in a world where there are only five possible 

colours: black, gray, white, yellow and blue. To obtain the histogram, we 

can count the number of pixels for each possible colour: 

● black — 34 pixels 

● gray — 12 pixels 

● white — 646 pixels 

● yellow — 76 pixels 

● blue — 46 pixels 



 

 190 

Image Enhancement 

Transformation 

 

As a common terminology, each possible value is referred to as a bin, and 

the count is referred to as frequency. Hence, we just derived the colour 

histogram of the image with five bins. The bar plot is shown in the figure 

below. Here, the x-axis is the bins and the y-axis is the frequencies. In 

histogram equalization, we are interested in the intensity histogram of the 

image. That means for each possible pixel intensity value (0 to 255), we 

count the number of pixels having the corresponding value. 

 

 Histogram is typically visualized as bar plot like this  

Histograms of low contrast images: 

To understand the role of histogram equalization, we will look at two 

cases of low contrast images. For each image, the histogram (blue plot) 

and cumulative histogram (orange plot) are shown. Cumulative histogram 

is simply a running sum of the histogram frequency from the first to the 

last bin. The cumulative histogram is scaled down, so that it can be plotted 

in the same scale as the histogram. 

Case 1: Image appears too bright: 

The image below looks bright yet faded. The explanation can be found in 

the histogram. The pixel intensities are concentrated in the upper region of 

the range, approximately between 125 and 200. In this region, the pixels 

are lightly shaded hence the bright appearance. Due to the narrow intensity 

range, the pixels are very similar in shades, resulting in faded appearance. 

In this narrow region, the cumulative histogram is increasing with a steep 

slope while being flat elsewhere. 

 



 

 191 

Computer Graphics 

and Image Processing 
 

 

This image appears faded. Its pixel intensities are concentrated around the 

high intensity region of between 125 and 200.  

Case 2: Image appears too dark: 

The image below looks rather dark and gloomy. Looking at the histogram, 

the intensities are concentrated in the lower region of the range, 

approximately between 5 to 95. In this region, the pixels are darker in 

shades. It can also be observed that the cumulative histogram is increasing 

sharply in this region and flat elsewhere. 

 



 

 192 

Image Enhancement 

Transformation 

 

 

This image appears dark. Its pixel intensities are concentrated around the 

lower intensity region between 5 and 95. 

In both cases, histogram analysis revealed that in images with low-

contrast: 

● the pixel intensities are concentrated in a narrow region resulting in 

pixels with similar shades, giving the image a faded appearance, and 

● the cumulative histogram increases with a steep slope within a narrow 

region and flat elsewhere. 

Histogram equalization: 

The contrast of an image is enhanced when various shades in the image 

becomes more distinct. We can do so by darkening the shades of the 

darker pixels and vice versa. This is equivalent to widening the range of 

pixel intensities. To have a good contrast, the following histogram 

characteristics are desirable: 

● the pixel intensities are uniformly distributed across the full range of 

values (each intensity value is equally probable), and 

● the cumulative histogram is increasing linearly across the full 

intensity range. 

Histogram equalization modifies the distribution of pixel intensities to 

achieve these characteristics. 

15.2 SUMMARY 

The core algorithm: 

Step 1: Calculate normalized cumulative histogram 

First, we calculate the normalized histogram of the image. Normalization 

is performed by dividing the frequency of each bin by the total number of 

pixels in the image. As a result, the maximum value of the cumulative 



 

 193 

Computer Graphics 

and Image Processing 
 

histogram is 1. The following figure shows the normalized cumulative 

histogram of the same low contrast image presented as Case 1 in Section 

3. 

 

Normalized cumulative histogram is used as the transformation function in 

histogram equalization. It maps the narrow pixel intensity range to the full 

range.  

Step 2: Derive intensity-mapping lookup table: 

Next, we derive a lookup table which maps the pixel intensities to achieve 

an equalized histogram characteristics. Recall that the equalized 

cumulative histogram is linearly increasing across the full range of 

intensity. For each discrete intensity level i, the mapped pixel value is 

calculated from the normalized cumulative histogram according to: 

mapped_pixel_value(i) = (L-1)*normalized_cumulative_histogram(i) 

where L = 256 for a typical 8-bit unsigned integer representation of pixel 

intensity. 

As an intuition into how the mapping works, let’s refer to the normalized 

cumulative histogram shown in the figure above. The minimum pixel 

intensity value of 125 is transformed to 0.0. The maximum pixel intensity 

value of 200 is transformed to 1.0. All the values in between are mapped 

accordingly between these two values. Once multiplied by the maximum 

possible intensity value (255), the resulting pixel intensities are now 

distributed across the full intensity range. 

Step 3: Transform pixel intensity of the original image with the 

lookup table: 

Once the lookup table is derived, intensity of all pixels in the image are 

mapped to the new values. The result is an equalized image. 

 



 

 194 

Image Enhancement 

Transformation 

 

Python implementation: 

Histogram equalization is available as standard operation in various image 

processing libraries, such as openCV and Pillow. However, we will 

implement this operation from scratch. We will need two Python libraries: 

NumPy for numerical calculation and Pillow for image I/O. The easiest 

way to install these libraries is via Python package installer pip . Enter the 

following commands on your terminal and you are set! 

pip install numpy 

pip install pillow 

The full code is show below, followed by detailed explanation of the 

equalization process. To equalize your own image, simply edit the 

img_filename and save_filename accordingly. 

Image I/O: 

To read from and write to image files, we will use Pillow library. It reads 

image files as Imageobject. These objects can be converted easily to 

NumPy array, and viceversa. The required I/O operations are coded as 

follows. For simplicity, let the image filename be input_image.jpg residing 

in the same directory as as the Python script. 

import numpy as np 

from PIL import Imageimg_filename = 'input_image.jpg' 

save_filename = 'output_image.jpg'#load file as pillow Image  

img = Image.open(img_filename)# convert to grayscale 

imgray = img.convert(mode='L')#convert to NumPy array 

img_array = np.asarray(imgray) 

#PERFORM HISTOGRAM EQUALIZATION AND ASSIGN OUTPUT 

TO eq_img_array 

#convert NumPy array to pillow Image and write to file 

eq_img = Image.fromarray(eq_img_array, mode='L') 

eq_img.save(save_filename) 

Histogram Equalization: 

The main algorithm can be implemented in only several lines of code. In 

this example, the intensity-mapping lookup table is implemented as 1D list 

where the index represents the original image pixel intensity. The element 

at each index is the corresponding transformed value. Finally, there are 

various ways to perform the pixel intensity mapping. I used list 

comprehension by flattening and reshaping the 2D image array before and 

after the mapping. 

""" 

STEP 1: Normalized cumulative histogram 

"""#flatten image array and calculate histogram via binning 



 

 195 

Computer Graphics 

and Image Processing 
 

histogram_array = np.bincount(img_array.flatten(), 

minlength=256)#normalize 

num_pixels = np.sum(histogram_array) 

histogram_array = histogram_array/num_pixels#cumulative histogram 

chistogram_array = np.cumsum(histogram_array) 

""" 

STEP 2: Pixel mapping lookup table 

""" 

transform_map = np.floor(255 * chistogram_array).astype(np.uint8) 

""" 

STEP 3: Transformation 

"""# flatten image array into 1D list 

img_list = list(img_array.flatten())# transform pixel values to equalize 

eq_img_list = [transform_map[p] for p in img_list]# reshape and write 

back into img_array 

eq_img_array = np.reshape(np.asarray(eq_img_list), img_array.shape) 

Let’s look at the histogram equalization output for the two images 

presented in Section 3. For each result, the upper two images show the 

original and equalized images. Improvement in contrast is clearly 

observed. The lower two images show the histogram and cumulative 

histogram, comparing original and equalized images. After histogram 

equalization, the pixel intensities are distributed across the whole intensity 

range. The cumulative histograms are increasing linearly as expected, 

while exhibiting staircase pattern. This is expected as the pixel intensities 

of the original image were stretched into a wider range. This creates gaps 

of bins with zero frequency between adjacent non-zero bins, appearing as 

flat line in the cumulative histogram. 

Case 1: Unequalized_Hawkes_Bay_NZ.jpg: 

 



 

 196 

Image Enhancement 

Transformation 

 

 

 

 



 

 197 

Computer Graphics 

and Image Processing 
 

Case 1: Image, histograms and cumulative histograms before and after 

equalization. 

Case 2: lena_dark.png 

Case 2: lena_dark.png 

 

 
 

 
 



 

 198 

Image Enhancement 

Transformation 

 

Case 1: Image, histograms and cumulative histograms before and after 

equalization. 

15.3 REFERENCE 

1]  Introduction to Computer Graphics: A Practical Learning Approach 

By Fabio Ganovelli, Massimiliano Corsini, Sumanta Pattanaik, 

Marco Di Benedetto 

2]  Computer Graphics Principles and Practice in C: Principles & 

Practice in C Paperback – 1 January 2002 by Andries van Dam; F. 

Hughes John; James D. Foley; Steven K. Feiner (Author) 

15.4 UNIT END EXERCISE  

 Write a python code to perform Histogram equilization. 

 

 

 

***** 

 

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Andries+van+Dam%3B+F.+Hughes+John%3B+James+D.+Foley%3B+Steven+K.+Feiner&search-alias=stripbooks

