
S.Y. MCA
SEMESTER - IV (CBCS)

ARTIFICIAL INTELLIGENCE
AND SOFT COMPUTING

SUBJECT CODE: MCA405

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai

Dr. Prakash Mahanwar
Director,

IDOL, University of Mumbai

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai

May 2022, Print - 1

Programme Co-ordinator : Shri Mandar Bhanushe
 Head, Faculty of Science and Technology IDOL,
 Univeristy of Mumbai – 400098

Course Co-ordinator : Reshma Kurkute
 Assistant Professor,

 Department - MCA, IDOL
 University of Mumbai- 400098

 Course Writers : Mr. Ashish Shah
 B. Sc. I. T. Coordinator,
 J. M. Patel College of Commerce

 : Mr. Sandeep Kamble
 Assistant Professor,
 Cosmopolitan's Valia College

 : Ms.Anjali Gaikwad
 Assistant Professor

 JES college of Commerce,
 Science & IT Jogeshwari

 : Ms.Gauri Ulhas Ansurkar
 Assistant Professor,
 KSD’s Model College (Autonomous)

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by:
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai- 400098

CONTENTS

 Chapter No. Title Page No.

 1. Introduction to AI ...01

 2. Intelligent Agent ...13

 3. Problem Solving - I ..29

 4. Problem Solving - II ...42

 5. Knowledge Representation ..56

 6. Concepts of Soft Computing ..72

	 7	 Artificial	Neural	Network ..89

	 8.	 Supervised	&	Unsupervised	Learning	Networks ...107

 9 Fuzzy Logic ..127

 10 Fuzzy Inference System - I ..147

 11 Fuzzy Inference System - II ...158

 12 Fuzzy Inference System - III ..171

 13 Genetic Algorithm ..185

S.Y. MCA

SEMESTER - IV (CBCS)

ARTIFICIAL INTELLIGENCE
AND SOFT COMPUTING

SYLLABUS

Sr.
No.

Module Detailed Contents Hrs

1 Introduction to
AI

Artificial Intelligence : Role of AI in
engineering, AI in daily life, Intelligence and
Artificial	 Intelligence,	Different	 task	 domains	
of AI, Programming methods, Limitations of
AI

Intelligent Agent: Agent, Performance
Evaluation,	 task	environment	of	agent,	Agent	
classification,	Agent	architecture

05

2 Problem
Solving

Problems, problem spaces and search:
Define	 the	 problem	 as	 a	 state	 space	 search,	
Production systems, Problem characteristics,
Production system characteristic, Issues in
design of search program

Search Techniques: DFS, BFS, Hill Climbing

06

3 Knowledge
Representati on

Knowledge Representation:	Need	to	represent	
knowledge,	 Knowledge	 representation	
with mapping scheme, Properties of good
knowledge-based	 system,	 Knowledge	
representation	 issues,	AND-OR	 graph,	 Types	
of	knowledge

09

4 Concepts of
Soft Computing

Soft Computing: Hard computing Vs Soft
Computing, Soft

computing	constituents	–	ANN,	Fuzzy	Logic,	
GA Applications of Soft Computing

02

5 Neural Network Artificial Neural Network:
Introduction,Fundamental	 Concept,	 Artificial	
Neural	 Network,	 Brain	 vs.	 Computer	 -	
Comparison	 Between	 Biological	 Neuron	 and	
Artificial	 Neuron,	 Basic	 Models	 of	Artificial	
Neural	Network

Supervised Learning Network-Linear
Separability,	 Perceptron	 Networks,	 Adaptive	
Linear	 Neuron	 (Adaline),	 Multiple	 Adaptive	
Linear	Neurons,	Back-Propagation	Network.

Unsupervised Learning Networks- MaxNet

12

6 Fuzzy Logic Introduction to Fuzzy Logic, Classical Sets
and Fuzzy Sets:Introduction to Fuzzy Logic,
Classical Sets (Crisp Sets),Fuzzy Sets

Classical Relations and Fuzzy Relations:
Introduction, Cartesian Product of Relation,
Classical Relation, Fuzzy Relations
Membership Functions:
Introduction, Features of the
Membership	Functions,	Fuzzification,	
Methods of Membership Value Assignments

Defuzzification: Introduction, Lambda-Cuts
for Fuzzy Sets (Alpha-Cuts), Lambda-Cuts for
Fuzzy	Relations,	Defuzzification	Methods

10

7 Fuzzy Inference
System

Fuzzy Inference System: Truth Values and
Tables in Fuzzy Logic, Fuzzy Propositions,
Formation of Rules, Decomposition of Rules
(Compound Rules), Aggregation of Fuzzy
Rules, Fuzzy Inference Systems (FIS)-
Construction	 and	 Working	 Principle	 of	 FIS,	
Methods of FIS, Overview of Fuzzy Expert
System

04

8 Genetic
Algorithm

Genetic Algorithm: Basic concepts,
Difference	 between	 genetic	 algorithm	 and	
traditional methods, Simple genetic algorithm,
Working	principle,	Procedures	of	GA,	Genetic	
operators-

reproduction, Mutation, crossover.

04

1

1
INTRODUCTION TO AI

Unit Structure

1.1 Introduction to Artificial Intelligence

1.2 Role of an AI engineer

1.3 AI in daily life

1.4 Intelligence and Artificial Intelligence

1.5 Different tasks domain of AI

1.6 Programming methods

1.7 Limitations of AI

1.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

artificial intelligence (AI), the ability of a digital computer or computer-

controlled robot to perform tasks commonly associated with intelligent

beings. The term is frequently applied to the project of developing systems

endowed with the intellectual processes characteristic of humans, such as

the ability to reason, discover meaning, generalize, or learn from past

experience. Since the development of the digital computer in the 1940s, it

has been demonstrated that computers can be programmed to carry out

very complex tasks-as, for example, discovering proofs for mathematical

theorems or playing chess with great proficiency. Still, despite continuing

advances in computer processing speed and memory capacity, there are as

yet no programs that can match human flexibility over wider domains or

in tasks requiring much everyday knowledge. On the other hand, some

programs have attained the performance levels of human experts and

professionals in performing certain specific tasks, so that artificial

intelligence in this limited sense is found in applications as diverse as

medical diagnosis, computer search engines, and voice or handwriting

recognition.

1.2 ROLE OF AN AI ENGINEER

What is an AI engineer?

Artificial intelligence engineers are responsible for developing,

programming and training the complex networks of algorithms that make

up AI so that they can function like a human brain. This role requires

combined expertise in software development, programming, data science

and data engineering. Though this career is related to data engineering, AI

engineers are rarely required to write the code that develops scalable data

sharing. Instead, artificial intelligence developers locate and pull data from

a variety of sources, create, develop and test machine learning models and

then utilize application program interface (API) calls or embedded code to

build and implement AI applications.

2

Artificial Intelligence
and Soft Computing

2

What does an AI engineer do?

AI engineers are primarily responsible for using various programming

algorithms so that they can build, test and deploy AI models. Some of the

other duties commonly found in an artificial intelligence engineer job

description include:

• Coordinating with other team members

• Creating and managing the AI development process and overall

infrastructure of the product

• Conducting statistical analysis and interpreting the results so that

they can guide the organization's decision-making process

• Automating important infrastructure for the data science team

• Developing infrastructures for data transformation and ingestion

• Building AI models

• Explaining the usefulness of the AI models they create to a wide

range of individuals within the organization, including stakeholders

and product managers

• Transforming the machine learning models into APIs that other

applications can interact with.

 Why are AI engineers important?

Machine learning and artificial intelligence are developing specialties that

can have a large impact on the overall success of an organization. That's

because information technology professionals that decide to pursue a

career in AI can develop advanced machine learning models that have the

ability to provide valuable recommendations and insight into future issues

or decisions. Some of the fields that are utilizing this technology include:

• Finance: In the finance industry, many organizations are beginning

to use AI to learn the habits of users so that they can better identify

suspicious and fraudulent activity.

• Manufacturing: Manufacturing organizations have begun using AI

models to rethink the supply chain, predict maintenance issues and

integrate with technological systems. As a result, these companies

can manufacture products more safely and inexpensively.

• Health care: The health. care industry has many processes that

monopolize a great deal of time and resources. By using AI,

organizations can reduce the cost and time associated with things

like drug discovery.

• Enterprises: Many businesses are beginning to utilize AI so that

they can identify important insights in otherwise unstructured data,

such as social media.

3

Introduction to AI 1.3 AI IN DAILY LIFE

You probably heard the term “artificial intelligence” multiple times and

thought you had nothing to do with it but that’s not the case. Artificial

intelligence has a wide range of applications in our daily lives. While

some refer to this as the “robots taking over the world in an evil genius

way” scenario, there is no doubt that artificial intelligence has simplified

our lives by saving us time, money, and energy.

Here are examples of artificial intelligence that you’re likely to come

across regularly but aren’t aware of their AI aspect.

1. Social Media

Many individuals check their social media accounts, including Facebook,

Twitter, Instagram, and others, daily. Not only is AI working behind the

scenes to customize what you see on your feeds, but it’s also figuring out

friend recommendations, recognizing and filtering out fake news.

2. Music and Media Streaming Services

The music and media streaming services that we use on a daily basis are

other wonderful examples of AI. AI is making decisions for you whether

you’re using Spotify, Netflix, or YouTube. These platforms create

recommendations according to your tastes. The next time you play a

recommended video on YouTube or watch a suggested show on Netflix,

or any other media for that matter; remember that AI is at work.

3. Search Engines

The majority of us can’t go a day without looking for an answer or a

product on search engines like Google, Yandex, or Bing. Without artificial

intelligence, search engines would be unable to scan the whole internet

and offer what you want. Those ads that appear to track your every move?

These are enabled by AI, based on your search history, and personalized to

you with the goal of presenting you with items that the algorithms believe

you will value.

4. Navigation Apps

You need Artificial intelligence even on your everyday journey to and

from work. Navigation applications such as Google Maps use AI to

evaluate the speed of movement of traffic. It also analyses user-reported

events, such as traffic accidents or road construction, to estimate how long

it will take you to get to your location and recommend the quickest route.

5. Banking

In the banking and finance business, artificial intelligence is a hot topic.

AI has an influence on the banking business, from fraud detection to

customer service and investing. Automated emails from banks out of the

ordinary transaction are an example of the use of AI.

6. Smart Devices

Many of the smart home products use artificial intelligence to learn our

habits and automatically modify settings to make our experience as

4

Artificial Intelligence
and Soft Computing

4

seamless as possible. It may take a while to have a perfect AI-powered

house but some steps will take us there. For example, there are smart

thermostats that change the temperature according to your preferences, as

well as smart lights that alter the colour and intensity of lights based on

time. It won’t be long before our primary interactions with all of our smart

home gadgets are conducted entirely through AI.

7. Video Games

Various components driven by AI or similar applications may be found in

a wide range of video games, including racing games, shooting games, and

strategy games. The fundamental goal of incorporating AI into gaming is

to provide a realistic gaming experience for players to compete on a digital

platform. Some companies are currently developing computer games with

the goal of studying their patterns in order to improve their algorithms.

8. Chatbots

Chatbots identify words and phrases in order to provide relevant

information to clients with typical inquiries. Chatbots can be so accurate

that it appears as though you’re chatting with a real person. Chatbots try to

imitate natural language by mimicking conversations while assisting with

daily tasks like scheduling appointments, accepting orders, and responding

to billing questions.

9. Healthcare

Artificial intelligence has provided new opportunities in healthcare. It’s

gotten a little simpler to identify and diagnose diseases thanks to the

development of AI-powered robots. Furthermore, it contributes

significantly by making the treatment and management processes more

simplified. As a result, hospitals and healthcare organizations are quickly

adopting AI-enabled technology to help with anything from research to

disease diagnosis.

10. Security and Surveillance

While we may all argue about the ethics of employing a large surveillance

system, there’s no doubt that it’s being used, and AI is playing a

significant role in it. Since it is not possible for humans to keep monitoring

multiple monitors at the same time, using AI makes perfect sense. With

technological advances such as object recognition and facial recognition, it

won’t be long until all security camera feeds are watched by AI rather than

humans. While it will take some time for AI to be completely integrated, it

is going to be our future.

12. Smart Personal Assistants

With advancements in speech recognition technologies, we can now hold

a full conversation with digital assistants, and the technology is nearly

flawless. Voice assistants, such as Google Assistant, Alexa, and Siri, are

the greatest AI examples in real life. They take your inquiry via voice,

process it with your phone’s Speech Recognition and Natural Language

Processing technologies, and then deliver the results as speech or text. As

their function gets increasingly important, these smart digital assistants

5

Introduction to AI manage our digital lives. They help with a wide range of tasks. The

following are some of the most typical activities they help with:

• Online shopping

• Controlling internet-enabled devices

• Setting alarms and reminder

• Reservations for taxis, planes, and trains

• Playing media

1.4 INTELLIGENCE AND ARTIFICIAL INTELLIGENCE

What is intelligence?

All but the simplest human behaviour is ascribed to intelligence, while

even the most complicated insect behaviour is never taken as an indication

of intelligence. What is the difference? Consider the behaviour of the

digger wasp, Sphex ichneumoneus. When the female wasp returns to her

burrow with food, she first deposits it on the threshold, checks for

intruders inside her burrow, and only then, if the coast is clear, carries her

food inside. The real nature of the wasp’s instinctual behaviour is revealed

if the food is moved a few inches away from the entrance to her burrow

while she is inside: on emerging, she will repeat the whole procedure as

often as the food is displaced. Intelligence—conspicuously absent in the

case of Sphex—must include the ability to adapt to new circumstances.

psychologists generally do not characterize human intelligence by just one

trait but by the combination of many diverse abilities. Research in AI has

focused chiefly on the following components of intelligence: learning,

reasoning, problem solving, perception, and using language.

What is artificial intelligence?

According to the father of Artificial Intelligence, John McCarthy, it

is “The science and engineering of making intelligent machines, especially

intelligent computer programs”.

Artificial Intelligence is a way of making a computer, a computer-

controlled robot, or a software think intelligently, in the similar manner

the intelligent humans think. AI is accomplished by studying how human

brain thinks, and how humans learn, decide, and work while trying to

solve a problem, and then using the outcomes of this study as a basis of

developing intelligent software and systems.

Philosophy of AI

While exploiting the power of the computer systems, the curiosity of

human, lead him to wonder, “Can a machine think and behave like

humans do?”

Thus, the development of AI started with the intention of creating similar

intelligence in machines that we find and regard high in humans.

6

Artificial Intelligence
and Soft Computing

6

Goals of AI

• To Create Expert Systems − The systems which exhibit intelligent

behavior, learn, demonstrate, explain, and advice its users.

• To Implement Human Intelligence in Machines − Creating systems

that understand, think, learn, and behave like humans.

1.5 DIFFERENT TASK DOMAINS OF AI

Artificial intelligence is a computer system that is able to perform tasks

that ordinarily require human intelligence. Artificial intelligence systems

are critical for companies that wish to extract value from data by

automating and optimizing processes or producing actionable insights.

There are certain domains of artificial intelligence on which we can create

our expertise

1. Machine learning

2. Deep learning

3. Robotics

4. Expert systems

5. Fuzzy logic

6. Natural language processing

7. Computer vision

1. Machine learning

Machine learning is a subset of artificial intelligence. Machine learning

enables computers or machines to make data-driven decisions rather than

being explicitly programmed for a certain task. These programs or

algorithms are designed in a way that they learn and improve over time

when are exposed to new data.

Different types of machine learning models

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Use cases

• Product recommendation on a shopping website.

• spam filter on email.

• Chatbots

2. Deep learning

Deep learning is artificial intelligence (AI) function that imitates the

working of the human brain in processing data and creating patterns for

use in decision making. Deep learning is a subset of machine learning in

artificial intelligence that has network capable of learning unsupervised

7

Introduction to AI from data that is unstructured or unlabelled also known as deep neural

learning or deep neural network.

Different types of deep learning models

• Autoencoders

• Deep belief net

• Convolutional neural network

• Recurrent neural network

• Reinforcement learning to neural network

Use cases

• Driverless vehicles

• Virtual assistants

• chatbots

• Medical research

• Facial recognition

3. Robotics

Robotics is a branch of engineering that involves the conception, design,

manufacture, and operation of robots. This fields overlaps with

electronics, computer science, artificial intelligence, mechatronics,

nanotechnology and bioengineering.

Different types of robots

• Pr-programmed robots

• Humanoid robots

• Autonomous robots

• Teleoperated robots

• Augmenting robots

Use cases

• Manufacturing

• Logistics

• Healthcare

• Home

4. Expert system

An expert system is a program that uses artificial intelligence technology

to simulate the knowledge and judgement of humans. Expert systems

usually include a subject-specific knowledge base and can have additional

modules added to expand their capacities.

8

Artificial Intelligence
and Soft Computing

8

Different types of expert systems

• Rule-based systems

• Frame-based systems

• Hybrid systems

• Model-based systems

• Off the shelf systems

• Custom made systems

Use cases

• In the medical field

• In the agriculture field

• In the education field

5. Fuzzy logic

Fuzzy logic is a method of reasoning that resembles human reasoning. The

approach of fuzzy logic imitates the way of decision making in humans

that involves all intermediate possibilities between digital values yes or

no. The conventional logic block that a computer can understand takes

precise input and produces a definite output as true or false which is

equivalent to human's yes or no.

Different types of fuzzifier

• Singleton fuzzifier

• Gaussian fuzzifier

• Trapezoidal or triangular fuzzifier

Use cases

• Psychology

• Pattern recognition and classifications

• Securities

• Medical

• Marine

• Finance

6. Natural language processing

Natural language processing is a branch of artificial intelligence that helps

the computers understand interpret and manipulate human language.

Natural language processing draws from many disciplines including

computers science and computational linguistics in its pursuit to fill the

gap between human communication and computer understanding.

Different types of Natural Language Processing (NLP)

• Optical character recognition

• Speech recognition

9

Introduction to AI • Machine translation

• Natural language generation

• Sentiment analysis

• Semantic search

• Machine learning

Use cases

• Email filter

• Smart assistants

• Search results

• Predictive text

• Language translation

• Digital phone calls

• Text analytics

7. Computer vision

Today, computer vision is one of the hottest subfields of artificial

intelligence and machine learning given its wide variety of applications

and tremendous potential. It's a goal to replicate the powerful capacities of

human vision. Computer vision system must recognize the present objects

and their characteristics such as shapes textures, colours, sizes, spatial

arrangement, among other things to provide a description as complete as

possible of the image.

Different techniques of computer vision

• Image classification

• Object detection

• Object tracking

• Semantic segmentation

• Instance segmentation

Use cases

• Defect detection

• Metrology

• Intruder detection

• Assembly verification

• Screen reader

1.6 Programming methods

Artificial Intelligence can be divided into different categories based on the

machine’s capacity to use past experiences to predict future decisions,

memory, and self-awareness. IBM came up with Deep Blue, a chess

program that can identify the pieces in the chessboard. But it does not

have the memory to predict future actions. This system though useful, but

it cannot be adapted to another situation. Another type of AI system that

10

Artificial Intelligence
and Soft Computing

10

uses past experiences and has the bonus of a limited memory to predict the

decisions. An example of this kind of AI system can be found in the

functions of decision making in case of the self-driving cars. Here the

observations help in the actions to be taken shortly, which does not get

stored permanently as the observations change frequently. At the same

time with the advancement in technology, it might be possible to have

machines with a sense or consciousness where the machines understand

the current state of things, which can be used to infer what is to be done.

But such systems do not exist.

Below are the various categories of Artificial Intelligence:

1. Machine Learning

It is one of the applications of AI where machines are not explicitly

programmed to perform certain tasks; rather, they learn and improve from

experience automatically. Deep Learning is a subset of machine learning

based on artificial neural networks for predictive analysis. There are

various machine learning algorithms, such as Unsupervised Learning,

Supervised Learning, and Reinforcement Learning. In Unsupervised

Learning, the algorithm does not use classified information to act on it

without any guidance. In Supervised Learning, it deduces a function from

the training data, which consists of a set of an input object and the desired

output. Reinforcement learning is used by machines to take suitable

actions to increase the reward to find the best possibility which should be

taken in to account.

2. NLP (Natural Language Processing)

It is the interactions between computers and human language where the

computers are programmed to process natural languages. Machine

Learning is a reliable technology for Natural Language Processing to

obtain meaning from human languages. In NLP, the audio of a human talk

is captured by the machine. Then the audio to text conversation occurs,

and then the text is processed where the data is converted into audio. Then

the machine uses the audio to respond to humans. Applications of Natural

Language Processing can be found in IVR (Interactive Voice Response)

applications used in call centres, language translation applications like

Google Translate and word processors such as Microsoft Word to check

the accuracy of grammar in text. However, the nature of human languages

makes the Natural Language Processing difficult because of the rules

https://www.educba.com/what-is-natural-language-processing/
https://www.educba.com/what-is-natural-language-processing/

11

Introduction to AI which are involved in the passing of information using natural language,

and they are not easy for the computers to understand. So NLP uses

algorithms to recognize and abstract the rules of the natural languages

where the unstructured data from the human languages can be converted

to a format that is understood by the computer.

3. Automation and Robotics

The purpose of Automation is to get the monotonous and repetitive tasks

done by machines which also improve productivity and in receiving cost-

effective and more efficient results. Many organizations use machine

learning, neural networks, and graphs in automation. Such automation can

prevent fraud issues while financial transactions online by using

CAPTCHA technology. Robotic process automation is programmed to

perform high volume repetitive tasks which can adapt to the change in

different circumstances.

4. Machine Vision

Machines can capture visual information and then analyse it. Here

cameras are used to capture the visual information, the analogue to digital

conversion is used to convert the image to digital data, and digital signal

processing is employed to process the data. Then the resulting data is fed

to a computer. In machine vision, two vital aspects are sensitivity, which

is the ability of the machine to perceive impulses that are weak and

resolution, the range to which the machine can distinguish the objects. The

usage of machine vision can be found in signature identification, pattern

recognition, and medical image analysis, etc.

1.7 LIMITATIONS OF AI

1. One of the main barriers to implementing AI is the availability of

data. Data is often siloed or inconsistent and of poor quality, all of

which presents challenges for businesses looking to create value

from AI at scale. To overcome this, you should have a clear strategy

from the outset for sourcing the data that your AI will require.

2. Another key roadblock to AI adoption is the skills shortage and the

availability of technical staff with the experience and training

necessary to effectively deploy and operate AI solutions. Research

suggests experienced data scientists are in short supply as are other

specialised data professionals skilled in machine learning, training

good models, etc.

3. Cost is another key consideration with procuring AI technologies.

Businesses that lack in-house skills or are unfamiliar with AI often

have to outsource, which is where challenges of cost and

maintenance come in. Due to their complex nature, smart

technologies can be expensive and you can incur further costs for

repair and ongoing maintenance. The computational cost for training

data models etc can also be an additional expense.

https://www.educba.com/what-is-neural-networks/
https://www.educba.com/pattern-recognition/
https://www.educba.com/pattern-recognition/

12

Artificial Intelligence
and Soft Computing

12

4. Software programs need regular upgrading to adapt to the changing

business environment and, in case of breakdown, present a risk of

losing code or important data. Restoring this is often time-

consuming and costly. However, this risk is no greater with AI than

with other software development. Provided that the system is

designed well and that those procuring AI understand their

requirements and options, these risks can be mitigated.

13

2
INTELLIGENT AGENT

Unit Structure

2.1 Agent

2.2 Performance Evaluation

 2.2.1 Essay

 2.2.2 Field Review

 2.2.3 360 C Feedback

2.3 Task environment of agent

2.4 Agent classification

2.5 Agent architecture

2.1 AGENT

An intelligent agent (IA) is an entity that make decisions, that enables

artificial intelligence to be put into action. It can also be described as a

software entity that conducts operations in the place of users or programs

after sensing the environment. It uses actuators to initiate action in that

environment.

What is an Intelligent Agent (IA)?

This agent has some level of autonomy that allows it to perform specific,

predictable, and repetitive tasks for users or applications. It’s also termed

as ‘intelligent’ because of its ability to learn during the process of

performing tasks. The two main functions of intelligent agents include

perception and action. Perception is done through sensors while actions

are initiated through actuators. Intelligent agents consist of sub-agents that

form a hierarchical structure. Lower-level tasks are performed by these

sub-agents. The higher-level agents and lower-level agents form a

complete system that can solve difficult problems through intelligent

behaviours or responses.

Intelligent agents have the following distinguishing characteristics:

They have some level of autonomy that allows them to perform certain

tasks on their own. They have a learning ability that enables them to learn

even as tasks are carried out. They can interact with other entities such as

agents, humans, and systems. New rules can be accommodated by

intelligent agents incrementally. They exhibit goal-oriented habits. They

are knowledge-based. They use knowledge regarding communications,

processes, and entities.

The structure of intelligent agents:

The IA structure consists of three main parts: architecture, agent function,

and agent program.

14

Artificial Intelligence
 and Soft Computing

14

1. Architecture: This refers to machinery or devices that consists of

actuators and sensors. The intelligent agent executes on this

machinery. Examples include a personal computer, a car, or a

camera.

2. Agent function: This is a function in which actions are mapped

from a certain percept sequence. Percept sequence refers to a history

of what the intelligent agent has perceived.

3. Agent program: This is an implementation or execution of the

agent function. The agent function is produced through the agent

program’s execution on the physical architecture.

2.2 PERFORMANCE EVALUATION

Methods of Performance Evaluation:

Performance evaluation is a systematic process of evaluating how well

employees are performing their jobs. The appraisal is based on results

obtained by the employee in his/her job, not on the employee’s personality

characteristics.

4 Methods of Performance Evaluation:

1. Category rating methods.

2. Comparative methods.

3. Behavioural/objective methods.

4. Narrative methods.

1. Category Rating Methods

The simplest methods for appraising performance are category rating

methods, which require a manager to mark an employee’s level of

performance on a specific form divided into categories of performance.

https://www.iedunote.com/performance-evaluation

15

Intelligent Agent The graphics rating scale and checklist are common category rating

methods.

a. Graphics Rating Scale.

b. Checklist.

a. Graphics Rating Scale

Graphic rating scale is a scale that lists a number of traits and a range of

performance for each that is used to identify the score that best describes

an employee’s level of performance for each trait.

b. Checklist

The checklist is composed of a list of statements or words. Raters check

statements most representative of the characteristics and performance of

employees. This method requires the rater to select statements or words

that describe the employee’s performance and characteristics. He does not

evaluate employee performance. The rater is usually the immediate

supervisor. He just supplies report about Performance Appraisals and the

final rating is done by the HR department.

But without rater’s knowledge, the HR department may assign weights to

different items on the checklists according to each item’s importance. The

result is called a weighted checklist. The weight is the average score of the

raters prior to use the checklist. The weights allow the rating to be

quantified so total scores can be determined. The limitations of this

method include use of personality criteria instead of performance criteria,

misinterpretation of checklist items and the usage of improper weights by

the HR department.

These statements are ordered progressively in terms of more or less of

some property. An example-

i. David always goes to John.

ii. David often goes to John.

iii. David sometimes goes to John.

iv. David never goes to John.

Limitations of checklist

• It suffers from biases on the part of the rater because he cannot

distinguish between positive and negative questions.

• A separate checklist must be prepared for different classes of jobs. It

is expensive and time-consuming.

2. Comparative Methods

Comparative methods require that managers directly compare the

performance of their employees against one another. For example, a data-

entry operator’s performance would be compared with that of other data-

16

Artificial Intelligence
 and Soft Computing

16

entry operators by the computing supervisor. Comparative techniques

include ranking, paired comparison, and forced distribution.

i. Ranking: The ranking method consists of listing all employees from

highest to lowest in performance. The primary drawback of the

ranking method is that the size of the differences among individuals

is not well defined. For example, there may be little difference in

performance between individuals ranked second and third, but a big

difference in performance between those ranked third and fourth.

Ranking scale gives rank by value, such as-

Very Good

Good

Not Bad

Bad

Very Bad

(5)

(4)

(3)

(2)

(1)

ii. Forced Distribution: Forced distribution performance appraisal

method in which ratings of employees’ performance are distributed

along a bell-shaped curve. It is Similar to grading on a curve;

predetermined percentages of rates are placed in various

performance categories.

• Example:

• 15% high performers.

• 20% of high-average performers.

• 35% average performers.

• 20% of low-average performers.

• 15% low performers.

3. Behavioural/Objective Methods

In an attempt to overcome some of the difficulties of the methods

just described, several different behavioural approaches have been

used. Behavioural approaches hold promise for some situations in

overcoming some of the problems with other methods.

i. Behavioural Rating Approaches: Behavioural rating approaches

attempt to assess an employee’s behaviours instead of other

characteristics. Some of the different behavioural approaches are

behaviourally anchored rating scales (BARS), behavioural

observation scales (BOS), and behavioural expectation scales (BES).

ii. Management by Objectives (MBO): Management by objectives

(MBO) specifies the performance goals that individual hopes to

attain within an appropriate length of time. The objectives that each

manager sets are derived from the overall goals.

https://www.iedunote.com/definition-management-by-objectives-mbo
https://www.iedunote.com/definition-management-by-objectives-mbo

17

Intelligent Agent 4. Narrative Methods

Managers and HR specialists frequently are required to provide written

appraisal information.

Documentation and description are the essence of the critical incident, the

essay, and the field review methods.

1. Critical Incident.

2. Essay.

3. Field Review.

4. 360° Feedback or Multi-source Appraisal.

These records describe an employee’s actions rather than indicating an

actual rating.

1. Critical Incident

In the critical incident method, the manager keeps a written record of both

highly favourable and unfavourable actions in an employee’s

performance. When a “critical incident” involving an employee occurs,

the manager writes it down. A list of critical incidents is kept during the

entire rating period for each employee. The critical incident method can be

used with other methods to document the reasons why an employee was

rated in a certain way.

Critical Incident Method was first used by the US Army during World

War Two. Now it is widely used in the business organizations to appraise

employee performance. Under this method, the manager keeps a written

record of highly favourable and unfavourable employee actions. The focus

is on the key behaviours that make the difference between doing a job

effectively or ineffectively. The statements are called critical incidents.

The supervisor records these incidents during the evaluation- period for

each employee. Both positive and negative incidents are recorded.

Supervisor keeps a log with positive and negative examples (critical

incidents) of subordinate’s work behaviour.

Advantages of Critical Incident method

1. This method is extremely useful for giving employees’ job-related

feedback.

2. It also reduces recency biases.

3. It identifies even rare events that might be missed by other methods

which only focus on common and everyday events.

4. Data are collected from the respondent’s perspective and in his or

her own words.

5. It provides an objective basis for conducting a discussion of an

individual’s performance.

6. It forces the supervisor to evaluate subordinates on an ongoing

performance basis. Drawbacks.

18

Artificial Intelligence
 and Soft Computing

18

This method suffers from some limitations, which are listed below:

1. It is difficult to rate or rank employees relative to one another,

2. There may occur variations in how managers define a ‘critical

incident’,

3. Most employee actions are not observed and may become different

if observed,

4. Supervisors often do not record incidents as they occur,

5. Negative incidents are more noticeable than positive ones,

6. Very close supervision is required, which employees may not like,

7. It is time-consuming and burdensome for managers to write down

critical behaviors of a large number of subordinates throughout the

year.

8. Respondents may not be accustomed to or willing to take the time to

say (or write) a complete story when describing a critical incident.

2.2.1 Essay

The essay, or “free-form,” appraisal method requires the manager to write

a short essay describing each employee’s performance during the rating

period. The rater usually is given a few general headings under which to

categorize comments. The intent is to allow the rater more flexibility than

other methods do. As a result, the essay is often combined with other

methods. The rater writes a narrative describing an employee’s strengths,

weaknesses, past performance, potential and suggestions for improvement.

It is simple and requires no complex forms or extensive training to

complete. It can provide a good deal of information about an employee.

Because essays are unstructured, they are likely to vary widely in terms of

length and content. Some raters are better writers than others are. It

contains a subjective evaluation of the reported behaviour of an individual

and may affect such important decisions as promotion and layoff. No

attempt is made to evaluate an employee in a quantitative manner.

2.2.2 Field Review

This approach can include the HR department as a reviewer, or a

completely independent reviewer outside the organization. In the field

review, the outside reviewer becomes an active partner in the rating

process. The outsider interviews the manager about each employee’s

performance and then compiles the notes from each interview into a rating

for each employee. Then the rating is reviewed by the supervisor for

needed changes. This method assumes that the outsider knows enough

about the job setting to help supervisors give more accurate and thorough

appraisals.

In this method, a skilled representative of the human resource department

goes into the field and assists supervisors with their ratings. The personnel

specialists solicit from the immediate supervisor specific information

about the employee’s performance. Then the experts prepare an evaluation

based on this information. The evaluation is sent to the supervisor for

19

Intelligent Agent review, changes, approval, and discussion with an employee who was

rated.

Since the skilled professional is completing the evaluation form, reliability

and comparability are more likely, but the usage of skilled professionals

makes this approach costly and impractical for many firms. And since the

supervisor is the primary source of information, bias may still exist.

2.2.3 360° Feedback or Multi-source Appraisal

360-degree feedback, also known as multi-rater feedback, multisource

feedback, or multi-source assessment. Most often, 360- degree feedback

will include direct feedback from an employee’s subordinates, peers, and

supervisor(s), as well as a self-evaluation. It can also include, in some

cases, feedback from external sources, such as customers and suppliers or

other interested stakeholders.

360-degree evolution means the evaluation of an employee will be

assessed based on ideas of many other different people for example

customers, suppliers, peers, and direct reports. If the assessee is a

manager, his/her staff will be often asked for feedback on how that

manages is doing his task. It can of using 360-degree evolution it is vital

that the process is implemented by the managers of the Human Resources

Department. So that the subordinate reviewer’s (or staff) are made sure

that all their assessments on performance are kept anonymous.

The components of this evaluation are as follows;

• Self-evaluation

• Subordinate’s appraisal

• Peer appraisal and

• Superior’s appraisal

Advantages of this evaluation are as follows;

● Offer a more comprehensive view of the performance of employees.

● Improve Credibility of performance appraisal.

● Such a colleague’s feedback will help strengthen self-development.

● Increase the responsibility of employees to their customers.

● The mix of ideas can give a more accurate assessment.

● Opinions gathered from lots of staff are sure to be more persuasive.

● Not only a manager should make assessments on its staff

performance but other colleagues should do too.

● People who undervalue themselves are often motivated by feedback

from others.

● If more staff takes part in the process of performance evaluation, the

organizational culture of the company will become more honest.

20

Artificial Intelligence
 and Soft Computing

20

2.3 TASK ENVIRONMENT OF AGENT

An environment in artificial intelligence is the surrounding of the agent.

The agent takes input from the environment through sensors and delivers

the output to the environment through actuators. There are several types of

environments:

1. Fully Observable vs Partially Observable

2. Deterministic vs Stochastic

3. Competitive vs Collaborative

4. Single-agent vs Multi-agent

5. Static vs Dynamic

6. Discrete vs Continuous

7. Episodic vs Sequential

1. Fully Observable vs Partially Observable

 When an agent sensor is capable to sense or access the complete

state of an agent at each point in time, it is said to be a fully

observable environment else it is partially observable. Maintaining a

fully observable environment is easy as there is no need to keep

track of the history of the surrounding. An environment is

called unobservable when the agent has no sensors in all

environments.

 Examples:

 Chess – the board is fully observable, so are the opponent’s moves.

 Driving – the environment is partially observable because what’s

around the corner is not known.

2. Deterministic vs Stochastic

 When a uniqueness in the agent’s current state completely

determines the next state of the agent, the environment is said to be

deterministic. The stochastic environment is random in nature which

is not unique and cannot be completely determined by the agent.

 Examples:

 Chess – there would be only a few possible moves for a coin at the

current state and these moves can be determined.

 Self-Driving Cars – the actions of a self-driving car are not unique,

it varies time to time.

3. Competitive vs Collaborative

 An agent is said to be in a competitive environment when it

competes against another agent to optimize the output. The game of

chess is competitive as the agents compete with each other to win

the game which is the output. An agent is said to be in a

collaborative environment when multiple agents cooperate to

21

Intelligent Agent produce the desired output. When multiple self-driving cars are

found on the roads, they cooperate with each other to avoid

collisions and reach their destination which is the output desired.

4. Single-agent vs Multi-agent

 An environment consisting of only one agent is said to be a single-

agent environment. A person left alone in a maze is an example of

the single-agent system. An environment involving more than one

agent is a multi-agent environment. The game of football is multi-

agent as it involves 11 players in each team.

5. Dynamic vs Static

 An environment that keeps constantly changing itself when the agent

is up with some action is said to be dynamic. A roller coaster ride is

dynamic as it is set in motion and the environment keeps changing

every instant. An idle environment with no change in its state is

called a static environment. An empty house is static as there’s no

change in the surroundings when an agent enters.

6. Discrete vs Continuous

 If an environment consists of a finite number of actions that can be

deliberated in the environment to obtain the output, it is said to be a

discrete environment. The game of chess is discrete as it has only a

finite number of moves. The number of moves might vary with

every game, but still, it’s finite. The environment in which the

actions performed cannot be numbered i.e. is not discrete, is said to

be continuous. Self-driving cars are an example of continuous

environments as their actions are driving, parking, etc. which cannot

be numbered.

7. Episodic vs Sequential

 In Episodic task environment, each of the agent’s action is divided

into an atomic incidents or episodes. There is no dependency

between current and previous incident. In each incident agent

receives input from environment and then performs corresponding

action.

Example: Consider an example of Pick and Place robot, which is used to

detect defective parts from conveyer belt. Here, every time robot(agent)

will make decision on current part i.e. there is no dependency between

current and previous decision.

In Sequential environment, previous decision can affect all future

decisions. The next action of agent depends on what action he has taken

previously and what action he is supposed to take in future.

Example:

Checkers- Where previous move can affect all the following moves.

22

Artificial Intelligence
 and Soft Computing

22

2.4 AGENT CLASSIFICATION

Agents can be grouped into five classes based on their degree of perceived

intelligence and capability. All these agents can improve their

performance and generate better action over the time. These are given

below:

1. Simple Reflex Agent

2. Model-based reflex agent

3. Goal-based agents

4. Utility-based agent

5. Learning agent

1. Simple Reflex agent:

The Simple reflex agents is the simplest agents. These agents take

decisions on the basis of the current percept and ignore the rest of the

percept history. These agents only succeed in the fully observable

environment. The Simple reflex agent does not consider any part of

percept history during their decision and action process. The Simple reflex

agent works on Condition-action rule, which means it maps the current

state to action. Such as a Room Cleaner agent, it works only if there is dirt

in the room.

Problems for the simple reflex agent design approach:

• They have very limited intelligence

• They do not have knowledge of non-perceptual parts of the current

state

• Mostly too big to generate and to store.

• Not adaptive to changes in the environment.

23

Intelligent Agent 2. Model-based reflex agent

The Model-based agent can work in a partially observable environment,

and track the situation. A model-based agent has two important factors:

Model: It is knowledge about "how things happen in the world," so it is

called a Model-based agent.

Internal State: It is a representation of the current state based on percept

history.

These agents have the model, "which is knowledge of the world" and

based on the model they perform actions.

Updating the agent state requires information about:

• How the world evolves

• How the agent's action affects the world.

3. Goal-based agents

The knowledge of the current state environment is not always sufficient to

decide for an agent to what to do. The agent needs to know its goal which

describes desirable situations. Goal-based agents expand the capabilities

of the model-based agent by having the "goal" information. They choose

an action, so that they can achieve the goal. These agents may have to

consider a long sequence of possible actions before deciding whether the

goal is achieved or not. Such considerations of different scenario are

called searching and planning, which makes an agent proactive.

24

Artificial Intelligence
 and Soft Computing

24

4. Utility-based agents

These agents are similar to the goal-based agent but provide an extra

component of utility measurement which makes them different by

providing a measure of success at a given state. Utility-based agent act

based not only goals but also the best way to achieve the goal. The Utility-

based agent is useful when there are multiple possible alternatives, and an

agent has to choose in order to perform the best action. The utility function

maps each state to a real number to check how efficiently each action

achieves the goals.

5. Learning Agents

A learning agent in AI is the type of agent which can learn from its past

experiences, or it has learning capabilities. It starts to act with basic

knowledge and then able to act and adapt automatically through learning.

25

Intelligent Agent A learning agent has mainly four conceptual components, which are:

1. Learning element: It is responsible for making improvements by

learning from environment

2. Critic: Learning element takes feedback from critic which describes

that how well the agent is doing with respect to a fixed performance

standard.

3. Performance element: It is responsible for selecting external action

4. Problem generator: This component is responsible for suggesting

actions that will lead to new and informative experiences.

Hence, learning agents are able to learn, analyse performance, and look for

new ways to improve the performance.

2.5 AGENT ARCHITECTURE

Agent architecture in computer science is a blueprint for software

agents and intelligent control systems, depicting the arrangement of

components. The architectures implemented by intelligent agents are

referred to as cognitive architectures.[1] The term agent is a conceptual

idea, but not defined precisely. It consists of facts, set of goals and

sometimes a plan library.

Following are the types of agent architecture :

• Reactive architectures

• Deliberative reasoning architectures

• Layered/hybrid architectures

• Cognitive architectures

Reactive architecture

Reactive Architecture is nothing more than the combination of reactive

programming and software architectures. Also known as reactive systems,

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Blueprint
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Intelligent_control
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Cognitive_architecture
https://en.wikipedia.org/wiki/Agent_architecture#cite_note-1
https://en.wikipedia.org/wiki/Agent_architecture#Reactive_architectures
https://en.wikipedia.org/wiki/Agent_architecture#Deliberative_reasoning_architectures
https://en.wikipedia.org/wiki/Agent_architecture#Layered/hybrid_architectures
https://en.wikipedia.org/wiki/Agent_architecture#Cognitive_architectures

26

Artificial Intelligence
 and Soft Computing

26

the goal is to make the system responsive, resilient, elastic, and message

driven. A Reactive system is an architectural style that allows multiple

individual applications to coalesce as a single unit, reacting to its

surroundings while aware of each other, and enable automatic scale up and

down, load balancing, responsiveness under failure, and more.

Reactive Architecture can elastically scale in the face of varying incoming

traffic. Scaling usually serves one of two purposes: either we need to scale

out (by adding more machines) and up (by adding beefier machines), or

we need to scale down, reducing the number of resources occupied by our

application. An interesting scaling pattern popularized by the likes of

Netflix is predictive scaling, in which we know when spikes are going to

hit so we can proactively provision servers for that period, and once traffic

starts going down again, decrease the cluster size incrementally.

Reactive Architecture Benefits

• Be responsive to interactions with its users

• Handle failure and remain available during outages

• Strive under varying load conditions

• Be able to send, receive, and route messages in varying network

conditions.

Deliberative reasoning architectures

We define a deliberative agent or agent architecture to be one that contains

an explicitly represented, symbolic model of the world, and in which

decisions (for example about what actions to perform) are made via

logical (or at least pseudo-logical) reasoning, based on pattern matching

and symbolic manipulation. The idea of deliberative agents based on

purely logical reasoning is highly seductive: to get an agent to realise

some theory of agency one might naively suppose that it is enough to

simply give it logical representation of this theory and `get it to do a bit of

theorem proving' [Shardlow, 1990]. If one aims to build an agent in this

way, then there are at least two important problems to be solved:

1. The transduction problem: that of translating the real world into an

accurate, adequate symbolic description, in time for that description

to be useful.

2. The representation/reasoning problem: that of how to symbolically

represent information about complex real-world entities and

processes, and how to get agents to reason with this information in

time for the results to be useful.

Layered/Hybrid architecture

A hybrid architecture is one that combines or adapts one of the previously

discussed systems. For example, system manufacturers will connect

multiple SMP machines using a high-speed interconnect to create a hybrid

system with a communications model involving two different levels of

service. On-node communication (where a node is a single SMP machine)

27

Intelligent Agent is significantly faster than cross-node communication. Another

configuration might connect small MPP (i.e., 16-node) machines, each of

which shares some memory with other small MPP machines within a

single box. The use of a hybrid architecture may be very dependent on the

specific application, because some systems may be better suited to the

concurrency specifics associated with each application.

Cognitive architecture

A cognitive architecture is a hypothesis about the fixed structures that

provide a mind, whether in natural or artificial systems, and how they

work together – in conjunction with knowledge and skills embodied

within the architecture – to yield intelligent behaviour in a diversity of

complex environments. A grand unified architecture integrates across

(nominally symbolic) higher-level thought processes plus any other

(nominally sub-symbolic) aspects critical for successful behaviour in

human-like environments, such as perception, motor control, and

emotions. A generically cognitive architecture spans both the creation of

artificial intelligence and the modelling of natural intelligence, at a

suitable level of abstraction. A functionally elegant architecture yields a

broad range of capabilities from the interactions among a small general set

of mechanisms – essentially what can be thought of as a set of cognitive

Newton’s laws. A sufficiently efficient architecture executes

quickly enough for its anticipated applications; for example, taking no

more than 50m sec per cognitive cycle for real-time virtual humans.

Multiple Choice Questions

1) Artificial Intelligence is about_____.

a. Playing a game on Computer

b. Making a machine Intelligent

c. Programming on Machine with your Own Intelligence

d. Putting your intelligence in Machine

2) Who is known as the -Father of AI"?

a. Fisher Ada

b. Alan Turing

c. John McCarthy

d. Allen Newell

3) Which of the given language is not commonly used for AI?

a. LISP

b. PROLOG

c. Python

d. Perl

28

Artificial Intelligence
 and Soft Computing

28

4) An AI agent perceives and acts upon the environment using___.

a. Sensors

b. Perceiver

c. Actuators

d. Both a and c

5) Ways to achieve AI in real-life are_________.

a. Machine Learning

b. Deep Learning

c. Both a & b

d. None of the above

6) The best AI agent is one which____________

a. Needs user inputs for solving any problem

b. Can solve a problem on its own without any human

intervention

c. Need a similar exemplary problem in its knowledge base

d. All of the above

7) If a robot is able to change its own trajectory as per the external

conditions, then the robot is considered as the__

a. Mobile

b. Non-Servo

c. Open Loop

d. Intelligent

8) Which rule is applied for the Simple reflex agent?

a. Simple-action rule

b. Simple &Condition-action rule

c. Condition-action rule

d. None of the above

9) Which agent deals with the happy and unhappy state?

a. Utility-based agent

b. Model-based agent

c. Goal-based Agent

d. Learning Agent

10) The exploration problem is where______.

a. Agent contains the knowledge of State and actions.

b. Agent does not contain the knowledge of State and actions.

c. Only actions are known to the agent.

d. None of the above

29

3
PROBLEM SOLVING - I

Unit Structure

3.0 Introduction

3.1 Problems,

3.2 Problem spaces and search: Define the problem as a state space

search

3.0 INTRODUCTION

With reference to Artificial Intelligence, Problem is defined as a statement

who clearly describes the problem in real world as well as beginning state

of a problem that's need to be solved.

This statement indicates properties of problem like as

• The task to be solved

• The current performance of existing systems, and

• Experience with the current system

In other word, one can state Problem as, it is a query, needs to get solve.

For solving a query, Problem must be clearly defined, means clear

understanding of begin state, goal or final state as well as valid states and

how it changes its states from beginning to final states as well it undergoes

many stages which during the process of solving the query.

3.1 Problems :

As defined in section 3.0. Every Problems needs to be having its start stat,

end state as well as intermediate state which it may acquire during the

process of solving any real-world problem. The solution to any problem is

a fixed sequence of actions.

The problem-solving approach has been applied to a vast array of task

environments. We list some of the best known here, distinguishing

between toy and real-world problems. A toy problem is intended to

illustrate or exercise various problem-solving methods. It can be given a

concise, exact description and hence is usable by different researchers to

compare the performance of algorithms.

A real-world problem is one whose solutions people actually care about.

Such problems tend not to have a single agreed-upon description, but we

can give the general flavour of their formulations.

The process of looking for a sequence of actions that reaches the goal is

called search.

30

Artificial Intelligence
and Soft Computing

30

A search algorithm takes a problem as input and returns a solution in the

form of an action sequence. Once a solution is found, the actions it

recommends can be carried out. This is called the execution phase.

Thus, we have a simple “formulate, search, execute” design for the agent,

as shown in algorithm 3.1. After formulating a goal and a problem to

solve, the agent calls a search procedure to solve it.

It then uses the solution to guide its actions, doing whatever the solution

recommends as the next thing to do—typically, the first action of the

sequence—and then removing that step from the sequence. Once the

solution has been executed, the agent will formulate a new goal.

Well-defined problems and solutions:

A problem can be defined formally by five components:

1. The initial state that the agent starts in. (agent could be anything

that makes decisions)

2. A description of the possible actions available to the agent. Given a

particular state “s”, ACTIONS(s) return the set of actions that can be

executed in s. We say that each of these actions are applicable in s.

 A description of what each action does; the formal name for this is

the TRANSITION MODEL, specified by a function RESULT(s, a)

that returns the state that results from SUCCESSOR doing action

“a” in state “s”. We also use the term successor to refer to any state

reachable from a given state by a single action.

3. Together, the initial state, actions, and transition model implicitly

define the state space of the problem—the set of all states reachable

from the initial state by any sequence of actions. The state space

forms a directed network or graph in which the nodes are states and

the links between nodes are actions.

4. A path in the state space is a sequence of states connected by a

sequence of actions.

The goal test, which determines whether a given state is a goal state.

Sometimes there is an explicit set of possible goal states, and the test

simply checks whether the given state is one of them.

A path cost function that assigns a numeric cost to each path. The

problem-solving agent chooses a cost function that reflects its own

performance measure.

The preceding elements define a problem and can be gathered into a

single data structure that is given as input to a problem-solving

algorithm.

5. A solution to a problem is an action sequence that leads from the

initial state to a goal state. Solution quality is measured by the path

cost function, and an optimal solution has the lowest path cost

among all solutions.

31

Problem Solving - I function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an

action persistent: seq, an action sequence, initially empty state, some

description of the current world state goal, a goal, initially null problem, a

problem formulation

 state←UPDATE-STATE(state, percept)

 if seq is empty then

 goal ←FORMULATE-GOAL(state)

 problem ←FORMULATE-PROBLEM(state, goal)

 seq ←SEARCH(problem)

 if seq = failure then return a null action

 action ←FIRST(seq)

 seq ←REST(seq)

 return action

Algorithm 3.1.

Above algorithm is a demonstration of a simple problem-solving agent. It

first formulates a goal and a problem, searches for a sequence of actions

that would solve the problem, and then executes the actions one at a time.

When this is complete, it formulates another goal and starts over.

What is Abstraction:

With reference to solve problem of travelling from source to destination,

as well as many state of object in between then, for such a case “Once we

start moving from one source to reach to destination, All the

considerations are left out of our source state descriptions because they are

irrelevant to the problem of finding a route to Destination. The process of

removing detail from a representation is called abstraction”.

Following are Some examples shows problems initialisation state, goal

state and mid-state arises during processing of problem to achieve target

goal state.

Touring problems:

Touring problems are closely related to route-finding problems, but with

an important difference. As with route finding, the actions correspond to

trips between adjacent cities. The state space, however, may quite

different, and the goal test would check whether the agent is achieved a

target-states or not along with all mid cities must have been visited.

The traveling salesperson problem (TSP):

The traveling salesperson problem (TSP) is a touring problem in which

each city must be visited exactly once. The aim is to find the shortest tour.

The problem is known to be NP-hard, but an enormous amount of effort

has been expended to improve the capabilities of TSP algorithms. In

addition to planning trips for traveling salespersons, these algorithms have

32

Artificial Intelligence
and Soft Computing

32

been used for tasks such as planning movements of automatic circuit-

board drills and of stocking machines on shop floors.

Very Large Scale Integrated (VLSI) Circuits (VLSI) Layout Problem:

A VLSI layout problem requires positioning millions of components and

connections on a chip to minimize area, minimize circuit delays, minimize

stray capacitances, and maximize manufacturing yield.

The layout problem comes after the logical design phase and is usually

split into two parts: cell layout and channel routing. In cell layout, the

primitive components of the circuit are grouped into cells, each of which

performs some recognized function.

Each cell has a fixed footprint (size and shape) and requires a certain

number of connections to each of the other cells. The aim is to place the

cells on the chip so that they do not overlap and so that there is room for

the connecting wires to be placed between the cells.

Channel routing finds a specific route for each wire through the gaps

between the cells. These search problems are extremely complex, but

definitely worth solving.

Robot navigation:

Robot navigation is a generalization of the route-finding problem

described earlier. Rather than following a discrete set of routes, a robot

can move in a continuous space with (in principle) an infinite set of

possible actions and states.

For a circular robot moving on a flat surface, the space is essentially two-

dimensional. When the robot has arms and legs or wheels that must also

be controlled, the search space becomes many-dimensional. Advanced

techniques are required just to make the search space finite.

Automatic assembly sequencing:

Automatic assembly sequencing of complex objects by a robot was first

demonstrated by FREDDY (Michie, 1972). Progress since then has been

slow but sure, to the point where the assembly of intricate objects such as

electric motors is economically feasible.

In assembly problems, the aim is to find an order in which to assemble the

parts of some object. If the wrong order is chosen, there will be no way to

add some part later in the sequence without undoing some of the work

already done. Checking a step in the sequence for feasibility is a difficult

geometrical search problem closely related to robot navigation.

 Thus, the generation of legal actions is the expensive part of assembly

sequencing. Any practical algorithm must avoid exploring all but a tiny

fraction of the state space. Another important assembly problem is protein

design, in which the goal is to find a sequence of amino acids that will

fold into a three-dimensional protein with the right properties to cure some

disease.

33

Problem Solving - I TOY PROBLEM:

The problem-solving approach has been applied to a vast array of task

environments. We list some of the best known here, distinguishing

between toy and real-world problems. A toy problem is intended to

illustrate or exercise various problem-solving methods. It can be given a

concise, exact description and hence is usable by different researchers to

compare the performance of algorithms.

A real-world problem is one whose solutions people actually care about.

Such problems tend not to have a single agreed-upon description, but we

can give the general flavour of their formulations.

The first example we examine is the vacuum world, this can be

formulated as a problem as follows:

• States: The state is determined by both the agent location and the

dirt locations. The agent is in one of two locations, each of which

might or might not contain dirt.

Thus, there are 2 * 22 = 8 possible world states. A larger environment with

n locations has n * 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three

actions: Left, Right, and Suck. Larger environments might also

include Up and Down.

• Transition model: The actions have their expected effects, except

that moving Left in the leftmost square, moving Right in the

rightmost square, and Sucking in a clean square have no effect. The

complete state space is shown in Figure 3.3.0

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps

in the path.

34

Artificial Intelligence
and Soft Computing

34

Conclusion: “Compared with the real world, this toy problem has discrete

locations, discrete dirt, reliable cleaning, and it never gets any dirtier.”

3.2 PROBLEM SPACES AND SEARCH: DEFINE THE

PROBLEM AS A STATE SPACE SEARCH

As per definition of Problem (Ref. 3.1) with reference to an Artificial

Intelligence, definition of start state (Begin State), goal state (End State),

other valid states and transitions must be clearly stated before problem

solving process will be carried out.

Whenever state of any problem needs to be represented, a state space

representation allows for the formal definition of a problem which makes

the movement from start state to the end state very acceptable and

understanding way. So, we can say that various problems like planning,

learning, algorithm creation etc. are all mandatory a search problem only.

State space search is a process used in the field of computer science,

including artificial intelligence (AI), in which successive configurations or

states of an instance are considered, with goal of finding a goal state with

a desired property.

Following example demonstrate problem and state space search :

An Eight-Tile Puzzle Problem:

The 08-tile puzzle consist of a 3X3 (3 by 3) tiles arranged in matrix format

frame board which hold 08 movable tiles numbered from one (01) to eight

(08).

One square is left vacant, allowing the adjacent tiles to be shifted from all

direction. The objective of the puzzle is to find a sequence of tile

movements that leads from starting configuration to a goal configuration.

Fig. 3.1 Problem statement for 08 tile puzzle

The state of 08 tile puzzle are the different permutations of the tile within

frame.

The formulation of this problem can be stated as follows:

States: The location of each 08 tiles and the blank in one of the nine

squares.

Initial state : Any state can be designated as the initial state.

Goal : Many goal configurations are possible one such is shown in the

figure

35

Problem Solving - I Rule of Legal moves or state : They generate legal states that result from

trying the four actions as “Blank Tile Moves in any of the four directions

as Left, Right, Up, Down”

Cost of Path : Every step cost unique 01, so the path cost is the number of

steps in the path.

The tree diagram showing the search space is shown in figure:

Fig. 3.2 Initial stat, Steps wise states and Goal state of Problem

statement for 08 tile puzzle

What abstractions have we included here? The actions are abstracted to

their beginning and

final states, ignoring the intermediate locations where the block is sliding.

We have abstracted away actions such as shaking the board when pieces

get stuck and ruled out extracting the pieces with a knife and putting them

back again. We are left with a description of the rules of the puzzle,

avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are

often used as test problems for new search algorithms in AI. This family is

known to be NP-complete, so one does not expect to find methods

significantly better in the worst case than the search algorithms.

The 8-puzzle has 9!/2=181, 440 reachable states and is easily solved.

The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and random

instances can be solved optimally in a few milliseconds by the best search

algorithms.

The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random

instances take several hours to solve optimally.

36

Artificial Intelligence
and Soft Computing

36

The 8-queens problem:

The goal of the 8-queens problem is to place eight queens on a chessboard

such that no queen attacks any other. (A queen attacks any piece in the

same row, column or diagonal.)

Figure 3.3 shows an attempted solution that fails: the queen in the

rightmost column is attacked by the queen at the top left.

Fig. 3.3 Solution to the 08-queens problem

• Although efficient special-purpose algorithms exist for this problem

and for the whole n-queens family, it remains a useful test problem

for search algorithms.

• There are two main kinds of formulation. An incremental

formulation involves operators that augment the state description,

starting with an empty state; for the 8-queens problem, this means

that each action adds a queen to the state.

• A complete-state formulation starts with all 8 queens on the board

and moves them around. In either case, the path cost is of no interest

because only the final state counts. The first incremental formulation

one might try is the following:

• States: Any arrangement of 0 to 8 queens on the board is a state.

• Initial state: No queens on the board.

• Actions: Add a queen to any empty square.

• Transition model: Returns the board with a queen added to the

specified square.

• Goal test: 8 queens are on the board, none attacked. In this

formulation, we have 64 · 63 ··· 57 ≈ 1.8 × 1014 possible sequences

to investigate. A better formulation would prohibit placing a queen

in any square that is already attacked:

• States: All possible arrangements of n queens (0 ≤ n ≤ 8), one per

column in the leftmost n columns, with no queen attacking another.

• Actions: Add a queen to any square in the leftmost empty column

such that it is not attacked by any other queen.

37

Problem Solving - I Real-world problems:

Following are some of the examples of Real-World problems:

• Touring problems are closely related to route-finding problems, but

with an important difference.

• The traveling salesperson problem (TSP) is a touring problem in

which each city must be visited exactly once. The aim is to find the

shortest tour. The problem is known to be NP-hard, but an enormous

amount of effort has been expended to improve the capabilities of

TSP algorithms.

• In addition to planning trips for traveling salespersons, these

algorithms have been used for tasks such as planning movements of

automatic circuit-board drills and of stocking machines on shop

floors.

Searching for solutions:

A solution is an action sequence, so search algorithms work by

considering various possible action sequences.

The possible action sequences starting at the initial state form a search tree

with the initial state NODE at the root; the branches are actions and the

nodes correspond to states in the state space of the problem. Refer

algorithm below for general search algorithm.

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem loop do if the

frontier is empty then return failure choose a leaf node and remove it

from the frontier if the node contains a goal state then return the

corresponding solutionexpand the chosen node, adding the resulting nodes

to the frontier

Algorithm 3.2

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem initialize the

explored set to be empty loop do if the frontier is empty then return

failure choose a leaf node and remove it from the frontier if the node

contains a goal state then return the corresponding solution add the node

to the explored set expand the chosen node, adding the resulting nodes to

the frontier only if not in the frontier or explored set

Algorithm 3.3

Above algorithms (3.2 & 3.3) shows an informal description of the

general tree-search and graph-search algorithms.

The parts of GRAPH-SEARCH marked in bold italic are the additions

needed to handle repeated states.

38

Artificial Intelligence
and Soft Computing

38

Infrastructure for search algorithms:

Search algorithms require a data structure to keep track of the search tree

that is being constructed. Refer Figure 3.4.

For each node n of the tree, we have a structure that contains four

components:

• n.STATE: the state in the state space to which the node corresponds;

• n.PARENT: the node in the search tree that generated this node;

• n.ACTION: the action that was applied to the parent to generate the

node;

• n.PATH-COST: the cost, traditionally denoted by g(n), of the path

from the initial state to the node, as indicated by the parent pointers.

Fig. 3.4 : Nodes are the data structures from which the search tree is

constructed.

Each has a parent, a state, and various bookkeeping fields. Arrows point

from child to parent.

Given the components for a parent node, it is easy to see how to compute

the necessary components for a child node. The function CHILD-NODE

takes a parent node and an action and returns the resulting child node:

function CHILD-NODE(problem, parent , action) returns a node

return a node with

STATE = problem.RESULT(parent.STATE, action),

PARENT = parent, ACTION = action,

PATH-COST = parent.PATH-COST + problem.STEP-

COST(parent.STATE, action)

The node data structure is depicted in Figure 3.4. Notice how the

PARENT pointers string the nodes together into a tree structure. These

pointers also allow the solution path to be extracted when a goal node is

found; we use the SOLUTION function to return the sequence of actions

obtained by following parent pointers back to the root.

39

Problem Solving - I Up to now, we have not been very careful to distinguish between nodes

and states, but in writing detailed algorithms, it’s important to make that

distinction. A node is a bookkeeping data structure used to represent the

search tree.

A state corresponds to a configuration of the world. Thus, nodes are on

particular paths, as defined by PARENT pointers, whereas states are not.

Furthermore, two different nodes can contain the same world state if that

state is generated via two different search paths.

Now that we have nodes, we need somewhere to put them. The frontier

needs to be stored in such a way that the search algorithm can easily

choose the next node to expand according to its preferred strategy. The

appropriate data structure for this is a queue. The operations on a queue

are as follows:

• EMPTY(queue) returns true only if there are no more elements in

the queue.

• POP(queue) removes the first element of the queue and returns it.

• INSERT(element, queue) inserts an element and returns the resulting

queue.

Queues are characterized by the order in which they store the inserted

nodes. Three common variants are the first-in, first-out or FIFO queue,

which pops the oldest element of the queue; the last-in, first-out or LIFO

queue (also known as a stack), which pops the newest element of the

queue; and the priority queue, which pops the element of the queue with

the highest priority according to some ordering function.

The explored set can be implemented with a hash table to allow efficient

checking for repeated states. With a good implementation, insertion and

lookup can be done in roughly constant time no matter how many states

are stored. One must take care to implement the hash table with the right

notion of equality between states.

Measuring problem-solving performance:

Before we get into the design of specific search algorithms, we need to

consider the criteria that might be used to choose among them. We can

evaluate an algorithm’s performance in four ways:

• Completeness: Is the algorithm guaranteed to find a solution when

there is one?

• Optimality: Does the strategy find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed to perform the

search?

40

Artificial Intelligence
and Soft Computing

40

Time and space complexity are always considered with respect to some

measure of the problem difficulty. In theoretical computer science, the

typical measure is the size of the state space graph, |V | + |E|, where V is

the set of vertices (nodes) of the graph and E is the set of edges (links).

This is appropriate when the graph is an explicit data structure that is input

to the search program.

In AI, the graph is often represented implicitly by the initial state, actions,

and transition model and is frequently infinite.

For these reasons, complexity is expressed in terms of three quantities:

1. b, the branching factor or maximum number of successors of any

node;

2. d, the depth of the shallowest goal node (i.e., the number of steps

along the path from the root); and

3. m, the maximum length of any path in the state space.

Time is often measured in terms of the number of nodes generated during

the search, and space in terms of the maximum number of nodes stored in

memory. For the most part, we describe time and space complexity for

search on a tree; for a graph, the answer depends on how “redundant” the

paths in the state space are in kilo meters. Thus, to compute the total cost,

we have to add milliseconds and kilo meters.

There is no “official exchange rate” between the two, but it might be

reasonable in this case to convert kilo meters into milliseconds by using an

estimate of the car’s average speed (because time is what the agent cares

about). This enables the agent to find an optimal trade off point at which

further computation to find a shorter path becomes counterproductive.

To assess the effectiveness of a search algorithm, we can consider just the

search cost- which typically depends on the time complexity but can also

include a term for memory usage or we can use the total cost, which

combines the search cost and the path cost of the solution found. For the

problem of finding a route from Source to Destination, the search cost is

the amount of time taken by the search and the solution cost is the total

length of the path becomes counterproductive.

Bibliography:

1. Artificial Intelligence, Modern Approach, By Stuart Russel & Peter

Norving

2. A First Course in Artificial Intelligence, By Deepak Khemani, TMH

3. Artificial Intelligence: A Rational Approach, By Rahul Deva, Shroff

publishers

Web Reference:

1. http://www.simplynotes.in/state-space-search/

http://www.simplynotes.in/state-space-search/

41

Problem Solving - I Exercise:

Answer the following:

1. Explain Goal and problem formulation.

2. Explain Search, Solution and Execution with reference to AI.

3. Explain following terms:

i) State space of problem

ii) Path in state space

iii) Goal test

iv) Path cost

v) Solution to problem

4. Explain 8-puzzle game problem.

5. Explain real world problem.

6. Explain Infrastructure for search algorithms.

7. Explain how algorithm’s performance can be evaluated?

42

Artificial Intelligence
 and Soft Computing

42

4
PROBLEM SOLVING - II

Unit Structure

4.1 Production systems

4.2 Problem characteristics

4.3 Production system characteristic

4.4 Issues in design of search program

4.5 Search Techniques: DFS, BFS, Hill Climbing

4.1 PRODUCTION SYSTEMS (P. S.)

With reference to Artificial Intelligence, a production system is a special

type of software program that provides artificial intelligence based on a set

of rules.

A production system is also referred as a production rule system. It is a

kind of rational or cognitive architecture that is used to implement search

algorithms and imitate human problem-solving skills.

This problem-solving knowledge is encoded in the system in the form of

little quanta which is known as productions. It consists of two

components: rule and action.

The process starts with the rules, which identifies the condition, and the

action part has the knowledge of how to deal with the condition. In

general, the production system in AI contains a set of rules which are

defined by the left side and right side of the system. The left side contains

a set of things to watch for (condition), and the right side contains the

things to do (action).

Following are the important elements of P.S.:

1. Global Database

2. A set of Production Rules

3. Control System

Detailed description of elements of P.S. are as follows:

1. Global Database: The primary database which contains all the

information necessary to successfully complete a task. It is further

broken down into two parts: temporary and permanent. The

temporary part contains information relevant to the current situation

only whereas the permanent part contains information about the

fixed actions.

43

Problem Solving - II

2. A set of Production Rules: A set of rules that operates on the

global database. Each rule consists of a precondition and

postcondition that the global database either meets or not. For

example, if a condition is met by the global database, then the

production rule is applied successfully.

3. Control System: A control system that acts as the decision-maker,

decides which production rule should be applied. The Control

system stops computation or processing when a termination

condition is met on the database.

The Features of a P. S.?

A P.S. has the following features:

1. Simplicity: Due to the use of the IF-THEN structure, each sentence

is unique in the production system. This uniqueness makes the

knowledge representation simple to enhance the readability of the

production rules.

2. Modularity: The knowledge available is coded in discrete pieces by

the production system, which makes it easy to add, modify, or delete

the information without any side effects.

3. Modifiability: This feature allows for the modification of the

production rules. The rules are first defined in the skeletal form and

then modified to suit an application.

4. Knowledge-intensive: As the name suggests, the system only stores

knowledge. All the rules are written in the English language. This

type of representation solves the semantics problem.

Classification of P.S.: Refer Fig. 4.1

• Monotonic Production System:

In this type of P.S., the use of one rule never prevents the

involvement of another rule when both the rules are selected at the

same time. Hence, it enables the system to apply rules

simultaneously.

• Partially Commutative Production System:

In this type of P.S., if a set of rules is used to change state A to state

B then any allowable combination of these rules will also produce

the same results (convert state A to state B).

• Non-Monotonic Production System:

In this type of P.S., increases the problem-solving efficiency of the

machine by not keeping a record of the changes made in the

previous search process. These types of production systems are

useful from an implementation point of view as they do not

44

Artificial Intelligence
 and Soft Computing

44

backtrack to the previous state when it is found that an incorrect path

was followed.

• Commutative Production System:

In this type of P.S., is used when the order of operation is not

important, and the changes are reversible.

Fig. 4.1 Classification of P.S

Contribution of P.S. in A.I.:

• Offers modularity as all the rules can be added, deleted, or modified

individually.

• Separate control system and knowledge base.

• An excellent and feasible model that imitates human problem-

solving skills.

• Beneficial in real-time applications and environment.

• Offers language independence

4.2 PROBLEM CHARACTERISTICS

As artificial intelligence (AI) is mainly concerned to the search process, it

is important to have some methodology to choose the best possible

solution.

To choose an appropriate method for a particular problem first we need to

categorize the problem based on the following characteristics.

1. Is the problem decomposable into small sub-problems which are

easy to solve?

● Answer to this question is that, to solve any problems based on

Search, A.I. , first breaking down the bigger problem into smaller

problems to be solved independently?

● The decomposable problem can be solved easily.

45

Problem Solving - II

Example: In this case, the problem is divided into smaller problems. The

smaller problems are solved independently. Finally, the result is merged to

get the final result.

Fig. 4.2 problem decomposable into small sub-problems by A.I.

As shown in above Figure: left side and right side of the equation will be

solved independently of each other than results of both sides will be

clubbed together for multiplication and result of multiplication will get

stored in ANS.

2. Can solution steps be ignored or undone?

In the Theorem Proving problem, a lemma that has been proved can

be ignored for the next steps. Such problems are

called Ignorable problems. Eg. In the 8-Puzzle, Moves can be

undone and backtracked.

Fig. 4.3 Eight (08)-Puzzle, Moves can be undone and backtracked

Such problems are called Recoverable problems. Ignorable problems can

be solved using a simple control structure that never

backtracks. Recoverable problems can be solved using

backtracking. Irrecoverable problems can be solved by recoverable style

methods via planning.

46

Artificial Intelligence
 and Soft Computing

46

3. Is the universe of the problem being predictable?

In Playing Bridge, we cannot know exactly where all the cards are or

what the other players will do on their turns.

 Uncertain outcome!

 For certain-outcome problems, planning can be used to generate a

sequence of operators that is guaranteed to lead to a solution.

 For uncertain-outcome problems, a sequence of generated

operators can only have a good probability of leading to a solution.

Plan revision is made as the plan is carried out and the necessary

feedback is provided.

4. Is a good solution to the problem is absolute or relative?

The Travelling Salesman Problem, we have to try all paths to find

the shortest one. Any path problem can be solved using heuristics

that suggest good paths to explore. For best-path problems, a much

more exhaustive search will be performed.

5. Is the solution to the problem a state or a path:

The Water Jug Problem, the path that leads to the goal must be

reported. A path-solution problem can be reformulated as a state-

solution problem by describing a state as a partial path to a solution.

The question is whether that is natural or not.

6. What is the role of knowledge in solving a problem using

artificial intelligence?

 Playing Chess

Consider again the problem of playing chess. Suppose you had

unlimited computing power available. How much knowledge would

be required by a perfect program? The answer to this question is

very little—just the rules for determining legal moves and some

simple control mechanism that implements an appropriate search

procedure.

Additional knowledge about such things as good strategy and tactics

could of course help considerably to constrain the search and speed

up the execution of the program. Knowledge is important only to

constrain the search for a solution.

 Reading Newspaper

 Now consider the problem of scanning daily newspapers to decide

which are supporting the Democrats and which are supporting the

Republicans in some upcoming election. Again, assuming unlimited

computing power, how much knowledge would be required by a

computer trying to solve this problem? This time the answer is a

great deal.

47

Problem Solving - II

• It would have to know such things as: The names of the candidates

in each party. The fact that if the major thing you want to see done is

have taxes lowered, you are probably supporting the Republicans.

 The fact that if the major thing you want to see done is improved

education for minority students, you are probably supporting the

Democrats. The fact that if you are opposed to big government, you

are probably supporting the Republicans. And so on …

 Note: Knowledge is required even to be able to recognize a solution.

7. Does the task of solving a problem require human interaction?

 Sometimes it is useful to program computers to solve problems in

ways that the majority of people would not be able to understand.

 This is fine if the level of the interaction between the computer and

its human users is problem-in solution-out.

 But increasingly we are building programs that require intermediate

interaction with people, both to provide additional input to the

program and to provide additional reassurance to the user.

 The solitary problem, in which there is no intermediate

communication and no demand for an explanation of the reasoning

process.

 The conversational problem, in which intermediate communication

is to provide either additional assistance to the computer or

additional information to the user.

4.3 PRODUCTION SYSTEM CHARACTERISTIC

Main characteristics of the P.S. in AI that is

• simplicity,

• modifiability,

• modularity, and

• knowledge-intensive.

Simplicity

The production rule in AI is in the form of an ‘IF-THEN’ statement. Every

rule in the production system has a unique structure. It helps represent

knowledge and reasoning in the simplest way possible to solve real-world

problems. Also, it helps improve the readability and understanding of the

production rules.

Modularity

The modularity of a production rule helps in its incremental improvement

as the production rule can be in discrete parts. The production rule is made

from a collection of information and facts that may not have dependencies

48

Artificial Intelligence
 and Soft Computing

48

unless there is a rule connecting them together. The addition or deletion of

single information will not have a major effect on the output. Modularity

helps enhance the performance of the production system by adjusting the

parameters of the rules.

Modifiability

The feature of modifiability helps alter the rules as per requirements.

Initially, the skeletal form of the production system is created. We then

gather the requirements and make changes in the raw structure of the

production system. This helps in the iterative improvement of the

production system.

Knowledge-intensive

Production systems contain knowledge in the form of a human spoken

language, i.e., English. It is not built using any programming languages.

The knowledge is represented in plain English sentences. Production rules

help make productive conclusions from these sentences.

Disadvantages of a Production System

Many remarkable disadvantages are there in a P.S. in A.I. as given below:

Opacity

Communication between the rule interpreter and the production rules

creates difficulty for the understanding of the control system and its

strategies. This condition arises due to the impact of the combined

operation of the control program. There exist difficulties in understanding

the hierarchy of operations.

Inefficiency

There are various rules that we employ for solving a problem. The rules

can be effective in different ways. There are conditions where multiple

rules get activated during execution. All the individual rules apply

exhaustive searches in each cycle that reduces the efficiency of the

production system.

Inability to Learn

A simple production system based on certain rules is not capable of

learning through experience, unlike advanced AI systems. They are simply

bound to specific rules for actions. We can understand the rules and break

them.

Conflict Resolution

To satisfy a condition, various production rules are employed. The

condition may arise when there is a triggering of more than one rule. In

that condition, the control system has to determine the best possible rule

from the set of conflicting rules. This may reduce the efficiency of the

production system

49

Problem Solving - II

4.4 ISSUES IN DESIGN OF SEARCH PROGRAM

Search problem consists of following:

• A Start State. The state from where the search begins.

• A State Space. Set of all possible states where you can be.

• A Goal Test. A function that looks at the current state returns

whether or not it is the goal state.

While solving search problem, object undergoes above stats,

Following issues are faced during design of search program:

Issues in the design of search programs

1. The direction in which to conduct search (forward versus backward

reasoning). If the search proceeds from start state towards a goal

state, it is a forward search or we can also search from the goal.

2. How to select applicable rules (Matching). Production systems

typically spend most of their time looking for rules to apply. So, it is

critical to have efficient procedures for matching rules against states.

3. How to represent each node of the search process (knowledge

representation problem).

Above issues can be minimized by following Control strategies to decide

which rule to apply next during the process of searching for a solution to a

problem.

Good control strategy should:

1. It should cause motion

2. It should be Systematic

Control strategies are classified as:

1. Uninformed/blind search control strategy.

2. Informed/Direct Search Control Strategy.

Uninformed/blind search control strategy:

• Do not have additional information about states beyond problem

definition.

• Total search space is looked for solution.

• Example: Breadth First Search (BFS), Depth First Search

(DFS), Depth Limited Search (DLS).

Informed/Directed Search Control Strategy:

• Some information about problem space is used to compute

preference among the various possibilities for exploration and

expansion.

https://medium.com/p/4a3eafa2b039/
https://medium.com/p/4a3eafa2b039/
https://medium.com/@dpthegrey/iterative-deepening-search-5f702cce97d5

50

Artificial Intelligence
 and Soft Computing

50

• Examples: Best First Search, Problem Decomposition, A*, Mean

end Analysis.

4.5 SEARCH TECHNIQUES: DFS, BFS, HILL CLIMBING

Introduction to uninformed search / Blind search:

• The term means that the strategies have no additional information

about states beyond that provided in the problem definition.

• All they can do is generate successors and distinguish a goal state

from a non-goal state.

• All search strategies are distinguished by the order in which nodes

are expanded.

• Strategies that know whether one non-goal state is “more promising”

than another are called informed search or heuristic search strategies

 Breadth-first search:

• Breadth-first search is a simple strategy in which the root node is

expanded first, then all the successors of the root node are expanded

next, then their successors, and so on.

• In general, all the nodes are expanded at a given depth in the search

tree before any nodes at the next level are expanded.

• Breadth-first search is an instance of the general graph-search

algorithm as given below, in which the shallowest unexpanded node

is chosen for expansion.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or

failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST

= 0

if problem.GOAL-TEST(node.STATE) then return SOLUTIONS(node)

frontier ← a FIFO queue with node as the only element

explored ← an empty set

loop do

if EMPTY?(frontier) then return failure

node ← POP(frontier)

/* chooses the shallwest node in frontier */

add node.STATE to explored

for each action in problem.ACTIONS(node.STATE)

do

child ← CHILD-NODE(problem, node, action)

if child.state is not in explored or frontier then

if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)

frontier ← INSERT(child,frontier)

https://medium.com/@dpthegrey/the-a-algorithm-7d6f981c3a51
https://medium.com/@dpthegrey/mean-ends-analysis-heuristic-search-technique-f5a5625427b1
https://medium.com/@dpthegrey/mean-ends-analysis-heuristic-search-technique-f5a5625427b1

51

Problem Solving - II

Algorithm: Breadth-first search on a graph

• This is achieved very simply by using a FIFO queue for the frontier.

• Thus, new nodes (which are always deeper than their parents) go to

the back of the queue, and old nodes, which are shallower than the

new nodes, get expanded first.

Depth-First Search:

• It is implemented in recursion with LIFO stack data structure. It

creates the same set of nodes as Breadth-First method, only in the

different order.

• As the nodes on the single path are stored in each iteration from root

to leaf node, the space requirement to store nodes is linear. With

branching factor band depth as m, the storage space is bm. (Refer

Fig. 4.5)

Fig. 4.5: Depth-first search on a binary tree. The unexplored region is

shown in light- gray. Explored nodes with no descendants in the frontier

are removed from memory. Nodes at depth 3 have no successors and M is

the only goal node.

52

Artificial Intelligence
 and Soft Computing

52

Disadvantage of DFS:

This algorithm may not terminate and go on infinitely on one path. The

solution to this issue is to choose a cut-off depth. If the ideal cut-off isd,

and if chosen cut-off is lesser than d, then this algorithm may fail. If

chosen cut-off is more than d, then execution time increases.

• Its complexity depends on the number of paths. It cannot check

duplicate nodes.

Hill Climbing:

To understand local search, we find it useful to consider the state-space

landscape (as in Figure 4.6). A landscape has both “location” (defined by

the state) and “elevation” (defined

by the value of the heuristic cost function or objective function). If

elevation corresponds to cost, then the aim is to find the lowest valley—a

global minimum; if elevation corresponds to an objective function, then

the aim is to find the highest peak—a global maximum. (You can convert

from one to the other just by inserting a minus sign.) Local search

algorithms explore this landscape. A complete local search algorithm

always finds a goal if one exists; an optimal algorithm always finds a

global minimum/maximum

Figure: 4.6 A one-dimensional state-space landscape in which

elevation corresponds to the objective function. The aim is to find the

global maximum. Hill-climbing search modifies the current state to

try to improve it, as shown by the arrow. The various topographic

features are defined in the text.

• In addition to finding goals, local search algorithms are useful for

solving pure optimization problems, in which the aim is to find

the best state according to an objective function.

• To understand local search, we find it useful to consider the state-

space landscape A landscape has both “location” (defined by the

state) and “elevation” (defined by the value of the heuristic cost

function or objective function).

53

Problem Solving - II

• If elevation corresponds to cost, then the aim is to find the lowest

valley—a global minimum; if elevation corresponds to an

objective function, then the aim is to find the highest peak—a global

maximum.

• Local search algorithms explore this landscape. A complete local

search algorithm always finds a goal if one exists; an optimal

algorithm always finds a global minimum/maximum. Refer

Figure 4.6 & Algorithm stated below for The hill-climbing search

algorithm.

Hill-climbing search:

• The hill-climbing search algorithm (steepest-ascent version) is

shown in Figure.

• It is STEEPEST ASCENT simply a loop that continually moves in

the direction of increasing value—that is, uphill.

• It terminates when it reaches a “peak” where no neighbour has a

higher value.

• Hill-climbing algorithms typically choose randomly among the set

of best successors if there is more than one.

function HILL-CLIMBING (problem) returns a state that is a local

maximum

current ←MAKE-NODE (problem. INITIAL-STATE)

loop do

neighbor ←a highest-valued successor of current

if neighbor.VALUE ≤ current. VALUE then return current. STATE

current←neighbor

Algorithm: The hill-climbing search algorithm, which is the most basic

local search technique. At each step the current node is replaced by the

best neighbor; in this version, that means the neighbor with the highest

VALUE, but if a heuristic cost estimate h is used, we would find the

neighbor with the lowest h.

Greedy local search:

• Hill climbing is sometimes called greedy local search because it

grabs a good neighbour state without thinking ahead about where to

go next.

• Although greed is considered one of the seven deadly sins, it turns

out that greedy algorithms often perform quite well.

• Hill climbing often makes rapid progress toward a solution because

it is usually quite easy to improve a bad state.

• Unfortunately, hill climbing often gets stuck for the following

reasons:

54

Artificial Intelligence
 and Soft Computing

54

• Local maxima: a local maximum is a peak that is higher than

each of its neighbouring states but lower than the global maximum.

• Hill-climbing algorithms that reach the vicinity of a local maximum

will be drawn upward toward the peak but will then be stuck with

nowhere else to go. Refer Figure 4.7

Fig. 4.7 (a) An 8-queens state with heuristic cost estimate h=17, showing

the value of h for each possible successor obtained by moving a queen

within its column. The best moves are marked. (b) A local minimum in the

8-queens state space; the state has h=1 but every successor has a higher

cost.

• Ridges: a ridge is shown in Figure 4.8 result in a sequence of

local maxima that is very difficult for greedy algorithms to

navigate.

• Plateaux: a plateau is a flat area of the state-space landscape. It can

be a flat local maximum, from which no uphill exit exists, or a

shoulder, from which progress is possible. (Refer Figure 4.8) A hill-

climbing search might get lost on the plateau.

55

Problem Solving - II

Fig. 4.8 Illustration of why ridges cause difficulties for hill climbing. The

grid of states (dark circles) is superimposed on a ridge rising from left to

right, creating a sequence of local maxima that are not directly connected

to each other. From each local maximum, all the available actions point

downhill.

Stochastic hill climbing:

• Many variants of hill climbing have been invented. Stochastic hill

climbing chooses at random from among the uphill moves; the

probability of selection can vary with the steepness of the uphill

move.

• This usually converges more slowly than steepest ascent, but in

some state landscapes, it finds better solutions.

Bibliography:

1. Artificial Intelligence, Modern Approach, By Stuart Russel & Peter

Norving

2. A First Course in Artificial Intelligence, By Deepak Khemani, TMH

3. Artificial Intelligence: A Rational Approach, By Rahul Deva, Shroff

publishers

Web Reference:

1. http://www.simplynotes.in/state-space-search/

Exercise:

Answer the following:

Q-1. With reference to A.I. explain What is meant by Production System.

Explain the important elements of P.S.

Q-2. Explain features and classification of production system.

Q-3. Explain the characteristics based on which problem can be

characterised.

Q-4. Explain characteristics and disadvantages of production system.

Q-5. Explain issues of design a search program.

Q-6. Write a short note of the following:

 a. Depth first search

 b. Breadth first search

 c. Hill climbing algorithm

http://www.simplynotes.in/state-space-search/

56

Artificial Intelligence
 and Soft Computing

56

5
KNOWLEDGE REPRESENTATION

Unit Structure

5.0 Objective

5.1 Introduction

5.2 knowledge Representation

 5.2.1 Types of knowledge Representation in AI system

5.3 Types of knowledge

 5.3.1 Declarative knowledge

 5.3.2 Procedural knowledge

 5.3.3 Meta knowledge

 5.3.4 Heuristic knowledge

 5.3.5 Structural knowledge

5.4 knowledge representation with mapping scheme

 5.4.1 AI lifecycle

5.5 Approaches of knowledge representation

 5.5.1 Simple relational knowledge

 5.5.2 Procedural knowledge

 5.5.3 Inheritable knowledge

 5.5.4 Inferential knowledge

5.6 Ways of Knowledge Representation

 5.6.1 Logical representation

 5.6.2 Semantic network

 5.6.3 Frame representation

 5.6.4 Production rules

 5.6.5 Ontology

5.7 Properties of good Knowledge Representation system

5.8 knowledge Representation issues

5.9 AND OR graph

5.10 Summary

5.11 Unit End Exercise

5.12 References

5.0 OBJECTIVE

This chapter will able you to understand the following concept

• What is knowledge? How it will be used in our day to day life

• Types of knowledge

• Methods/ approaches of knowledge representation

• Ways of knowledge representation

57

Knowledge Representation • Properties of good knowledge based system

• Issues of Knowledge representing

• AND OR search graph

• AI life cycle

5.1 INTRODUCTION

Knowledge level is based level of an agent, which consist of domain

specific content.in this level agent has facts/information about surrounding

environment in which they are working, it does not consider the actual

implementation. Knowledge based agent is crucial to use in observable

environments. Before choosing any action, knowledge based agents make

use of the existing knowledge along with the current inputs from the

environment in order to infer hidden aspects of the current state.

As we have learnt that knowledge base is a setoff representations of

facts/information about surroundings. Every single representation in the

set is called a sentence and sentence are expressed with the help of formal

representation language. We can say that sentence is a statement which is

a set of words that express some truth about real world. The knowledge

level describes agent by saying what it knows.

5.2 KNOWLEDGE REPRESENTATION

Humans are having the ability to understand things, reasoning and

knowledge interpreting. Human have knowledge about the things and they

behave as per their knowledge. They act in real life based upon situation

as per their knowledge. But in this technology era all the work is replaced

by intelligent machine which can perform all the activities which can man

done. This act of machine tells about knowledge representation and

reasoning.

• In artificial intelligence Knowledge representation and reasoning are

the most important feature with which we can identify how the

machine can contribute in thinking and acting like human. This

specify the intelligent bbehaviour of agents.

• It represents the real world activity by which computer can

understand, think over the situation and will act like human with his

prior knowledge. This will helpful to solve the problem in medical

world like diagnosis the medical condition or it can also

communicate with human in natural language.

• It also tells how human can talk with the machine and getting the

knowledge based answer form it which shows the intelligence of the

machine. Knowledge representation is come from stored data in

machine which make the machine more intelligent and it will look

like an intelligent human.

58

Artificial Intelligence
 and Soft Computing

58

Types of knowledge present in AI systems:

• Object: facts that represents the real information about the world

object. E.g., mango, banana grapes are fruits.

• Events: the actions in our world represent Events.

• Performance: the prescribe steps using the present knowledge in

machine to do the things which also can define the behaviour of the

agent.

• Meta-knowledge: as metadata is data about data as same the

knowledge is also defining as the facts that we know in respect to

any object.

• Facts: the truth about any data represent in real world is called

Facets.

• Knowledge-Base: it can be also known as KB. Many sentence come

together to make the knowledge. The sentence can be logical or

natural language sentence. The main component of knowledge base

agent is knowledge.

Knowledge: Knowledge is awareness or familiarity gained by experiences

of facts, data, and situations.

5.3 TYPES OF KNOWLEDGE

5.3.1. Declarative Knowledge:

• To know about something is called as Declarative knowledge.

• It includes concepts, facts, and objects.

• With declarative sentence it can express. It is also called descriptive

knowledge

• It is simpler than procedural language.

5.3.2. Procedural Knowledge

• It is also known as imperative knowledge.

• The steps to do something is described as procedure and Procedural

knowledge is define the process or procedure of any action.

• Any task can be done through the procedure.

• It includes rules, strategies, procedures, agendas, etc.

• The task dependent procedure is there for all type task hence the

Procedural knowledge depends on the task

5.3.3. Meta-knowledge:

• As metadata is data about data as same the knowledge is also

defining as the facts that we know in respect to any object.

59

Knowledge Representation 5.3.4. Heuristic knowledge:

• Subject experts are heir for different field as they have the more

knowledge and experience about the field. This type of knowledge is

called as Heuristic knowledge.

• It can be gained with rules of thumb based on previous experiences,

awareness of approaches, and which are good to work.

5.3.5. Structural knowledge:

• to solve a problem, we need to have some steps of action, this

structure is called as Structural knowledge.

• It describes relationships among various concepts such as type of,

part of, and grouping of something.

• The relationship between concepts or objects can be described by

structural knowledge.

5.4 HOW KNOWLEDGE & INTELLIGENCE CAN BE

MAPPED EACH OTHER

Artificial intelligence can be creating by Knowledge of real-worlds objects

which plays a vital role in demonstrating intelligent behaviour of AI

agents. On some input agent should accurate act with applying knowledge

or experience about that input.

Let's suppose if you act on a situation where the lady who is trying to

cross the road by following signals, and she did not turn up t cross the

road, one need to help her to cross the road likewise the intelligent agent

also takes the decision from the knowledge that he have within himself

and do the action as human.

Following figure can show that decision can be taken from sensing the

environment and using the knowledge which the agent has. The intelligent

behaviour can be display only with the knowledge.

60

Artificial Intelligence
 and Soft Computing

60

5.4.1 AI knowledge cycle:

In Artificial intelligence, intelligent behaviour can be display through the

following components:

• Perception

• Learning

• Knowledge Representation and Reasoning

• Planning

• Execution

The above diagram shows that the interaction among the AI system and

how can it relate with the real world object and how the components help

each other to get expected result. Through perception AI system perceives

or retrieves information from the environment. It can be audio, visual,

image or data captured by the sensor. All the inputs are transfer t learning

agent, the agent will form a fact full data from the sensory input captured

by perception component. Now the data will transfer to knowledge

representation and reasoning module. Where the agent twill decide the

steps of action performed by analysing the data captured at learning phase.

Reasoning will make the system to work as human or think as human.

These two components work together. And then the decision will forward

to the planning and execution component where the actual implementation

of decision will do.

5.5 APPROACHES OF KNOWLEDGE REPRESENTATION

5.5.1. Simple relational knowledge:

• In relational model sorting the facts the simplest which uses the

relational method, and each object is explain their facts of

information systematically in columns.

• The relationship between different entities in database is represented

by this famous approach.

61

Knowledge Representation • This approach has little opportunity for inference.

Example: simple relational knowledge representation.

Player Age No. Of Matches

Played

Player 1 50 56

Player 2 60 122

Player 3 45 80

5.5.2. Inheritable knowledge:

• The data must be stored into a hierarchy of classes, said about the

inheritable knowledge approach.

• All classes and objects must be arranged in a hierarchal manner or a

generalized form.

• The inheritance property will be applying in this method.

• object inherit values from other class as well as other members of a

class.

• In this approach inheritable knowledge is apply, which indicates a

relation between object and class, and it is called instance/object

relation.

• Collection of attributes and values can be represented by individual

frame.

• objects and values are represented in Boxed nodes as shown in

diagram.

• objects to their values direction can be indicate by arrow.

Example:

62

Artificial Intelligence
 and Soft Computing

62

5.5.3. Inferential knowledge:

• knowledge in the form of formal logics represents by Inferential

knowledge approach.

• to derive more facts this approach is used.

• Correctness can be achieved through this approach.

Example: Let's suppose there are two statements:

a. Marcus is a man

b. All men are mortal

man(Marcus)

∀x = man (x) ----------> mortal (x)

5.5.4. Procedural knowledge:

Step wise process of hoe to do specific thing and how to proceed with the

object is known as Procedural knowledge approach. This uses small

programs and codes to proceed the things.

If-Then rule is the most important rule in this approach.

• In this knowledge, LISP language and Prolog language is used to

represent the language.

• In this approach heuristic or domain-specific knowledge can

represent easily.

1. Representational Accuracy:

• the ability to represent all type of required knowledge as data in

provide in KR system.

2. Inferential Adequacy:

• KR system should have ability to manipulate the representational

structures to produce new knowledge corresponding to existing

structure.

3. Inferential Efficiency:

• The conversion between the inferential knowledge mechanism to the

most productive directions by storing appropriate guides can be done

through this approach.

4. Acquisitional efficiency- The latest knowledge can be easily

upgrade using automatic method is the most important feature of AI

5.6 WAYS OF KNOWLEDGE REPRESENTATION

USING RULES

1. Logical Representation

2. Semantic Network Representation

3. Frame Representation

4. Production Rules

63

Knowledge Representation

5.6.1. Logical Representation

In our day to day life normal language we have to implement in logical

format as system knows only logical language. Logical representation can

be done with concrete rules which deals with preposition and it does not

have any confusion, with all this thing we can use logical language. To

draw a conclusion, we need on the basis of various condition is Logical

representation. Communication rules are important rule to use logical

expression. It works on precisely defined syntax and semantics which

supports the sound inference.

Syntax:

• Set of rules which define how the syntaxes will work. And it will

show how to construct the sentence with logical connectives.

• The symbols used in logical language determines knowledge

representation.

Semantics:

• Interpretation between sentence and logic are called as semantics.

• The meaning of sentence should not change when we apply logic to

the sentence.

Two main categories of Logical Representation

Propositional Logics: a very simple logic called prepositional logic. This

runs with the syntax and semantics with truth sentences. The syntax of

proportional logic defines the allowable sentence. Each such symbol

stands for a preposition that can be true or false.

Predicate logics: models of logical language are the formal structures

that constitute the possible world under consideration.

Advantages of logical representation:

1. logical reasoning can be done with logical representation.

2. The programming languages are used for logic representation.

64

Artificial Intelligence
 and Soft Computing

64

Disadvantages of logical Representation:

1. Some restriction made Logical representations complex.

2. Inference may not be so efficient and logical representation

technique may not be easy.

5.6.2. Semantic Network Representation

Alternative of predicate logic for knowledge representation is known as

semantics. In Semantic networks, in graphical format we can represent our

knowledge. The relationship between the objects may be represent by this

network many different applications are present with which can determine

Semantic networks. It is very easy to understand and easy to implement

also.

Two types of relations:

IS-A relation (Inheritance)

Kind-of-relation

Example: Following are some statements which we need to represent in

the form of nodes and arcs.

Statements:

1. Jerry is a cat.

2. Jerry is a mammal

3. Jerry is owned by Priya.

4. Jerry is brown colored.

5. All Mammals are animal.

The diagram shows that the representation about the objects which are

connected to each other with the help of nodes as entity and line as

relationship among them.

Drawbacks in Semantic representation:

1. Semantic networks require more running time to traverse the

complete network tree to answer any questions. In some case it

65

Knowledge Representation happens that after traversing entire tree there will be no answer for

some questions or the solution might not be exist in the network.

2. Semantic networks always try to store the information like human

memory, but in some condition, it seems not possible to develop

such type of network model.

3. All these sentences cannot be representing with help of normal

quantifier for more explanation we need adequate equivalent

quantifier, e.g., for all, for some, none, etc.

4. Semantic networks do not have any standard definition.

Advantages of Semantic network:

1. natural representation of knowledge can come under Semantic

networks.

2. The transparent transaction can be done through Semantic networks.

3. It is very simple and easily understandable network representation.

5.6.3. Frame Representation

A frame is a collection of attributes and its respective value and

description of an entity record in the world. Frames can divide knowledge

into substructures by representing stereo types situations in AI data

structure, which holds a collection of slots and slot values. The size and

type of slots can be varying with data. Facets are having slots with names

and values.

Facets: The various aspects of a slots are known as Facets. In some cases

we need to put some constraints on the frames which can be a feature of

Facets. Example: IF-NEEDED facts are called when data of any particular

slot is needed. Any number of slots may have in frame. followed by any

number of slot may have in facets followed same as any number of slot

facet may have values. A frame is also known as slot-filter knowledge

representation in artificial intelligence.

Frames are derived from semantic networks and later evolved into our

modern-day classes and objects. A single frame is not much useful.

Frames system consist of a collection of frames which are connected. In

the frame, knowledge about an object or event can be stored together in

the knowledge base. The frame is a type of technology which is widely

used in various applications including Natural language processing and

machine visions.

Example of a person Ram,

(Ram)

(PROFESSION (VALUE Professor))

(AGE (VALUE 50))

(WIFE (VALUE Sita))

(CHILDREN (VALUE Lav Kush))

(ADDRESS (VALUE Ayodhya))

(STATE (VALUE Uttar Pradesh))

66

Artificial Intelligence
 and Soft Computing

66

Advantages of frame representation:

1. By grouping the related data makes the programming easier and

hence the frame knowledge representation is very easy.

2. Many applications in AI used the flexible frame representation.

3. Adding slots for new attribute and relations are very easy.

4. Including default data and missing value search can have done very

easily.

5. Visualization and understanding frame representation is easy.

Disadvantages of frame representation:

1. inference mechanism is not supported by frame representation.

2. In frame representation Inference mechanism cannot be proceeded

smoothly.

3. generalized approach is the main disadvantage of frame

representation.

5.6.4. Production Rules

Condition & action together can make Production rules system; it can be

follow as:

"If condition then action". It is divided into 3 parts:

• The set of production rules

• Working Memory

• The recognize-act-cycle

In production rules agent will check for the situation or condition and if

the solution is available for the condition he will do the task as per the

condition. The agent with his prior knowledge of the situation will decide

which rule may be applied to solve the problem. The steps of action take

to solve the situation or problem is known as problem solving steps. And

this complete process of problem solving is known as act cycle.

the description of the current state of problems stored in the working

memory of problem-solving system, and rule can write as steps perform to

solve the problem.

If there is an unknown situation (state) generates, then the agent will use

multiple production rules to find the solution for the problem, this

situation is called as conflict set. In this situation, the agent needs to select

a rule from these sets, and it is called a conflict resolution.

67

Knowledge Representation Example:

• IF (at theatre AND got ticket) THEN action (watch movie)

• IF (in the train AND paid AND empty seat) THEN action (sit

down).

• IF (pressure is high AND air is locked) THEN action (volume is

small).

• IF (the road is slippery) THEN action (driving is dangerous).

Advantages of Production rule:

1. Natural language is used to expressed production rules.

2. Individual rule can easily remove, add or modify therefore the

production rules are highly modular.

Disadvantages of Production rule:

1. Production rule system does not store the result of the problem for

the future uses hence it does not support any learning capabilities.

2. rule-based production systems are inefficient as during the execution

of the program, many rules may be active.

5.6.5. Ontology

Ontology is study about what kind of things or entities exist in the

universe. In AI, ontology is the specification of conceptualization, used to

help programs and humans to share knowledge about a particular domain.

In turn ontology is a set of concepts, like entity, relationships among the

entities, events that are expressed in a uniform way in order to create a

vocabulary for information exchange.

For example: consider a map showing hotels, railway station, buildings,

schools, hospitals in a particular locality. In this map the symbols used to

indicate these entities are enough to describe them.

5.7 PROPERTIES OF GOOD KNOWLEDGE

REPRESENTATION SYSTEM

• Representational Accuracy: all kinds of required knowledge it

should present in the prescribed format.

• Inferential Adequacy: manipulation should be done as and when

required to represent the new structure which corresponds to the

producing new structure with the using existing structure.

• Inferential Efficiency: appropriate guides can be used to direct the

inferential knowledge mechanism into the most productive

directions.

68

Artificial Intelligence
 and Soft Computing

68

• Acquisitional efficiency: using automatic methods it should acquire

new knowledge easily.

5.8 ISSUES IN KNOWLEDGE REPRESENTATION

The main aim of knowledge Representation is to give immense feature of

inference (conclusions) from knowledge.

Many issues are faced by people during the use of KR techniques. Some

are listed below

1. Important Attributes:

There are two main attributes present in the Knowledge

representation “instance” and “isa”, they represent the inheritance

property of knowledge.

2. Relationship among attributes:

The attributes are used to describe the objects and they are

themselves entities that we can represent in knowledge.

The relationship between the attributes of an object, independent of

specific knowledge they encode, may hold properties like:

i. Inverse — in this we will check consistency among the attributes,

whenever needed the value is added to one attribute. other in many

different ways the entities are related to each.

ii. Existence in an isa hierarchy — This tells about specification, like,

classes of objects and specialized subsets of those classes, there are

attributes and specialization of attributes. For example, the height

attribute is a specialize attribute of general attribute physical-size.

This shows the relationship between generalization-specialization

which support inheritance property.

iii. Technique for reasoning about values — the reasoning value

about the attributes which cannot given explicitly. Different type of

reasoning, like, weight: must be in number, Age: child age must not

be greater than the age of parents. The values are based on

knowledge.

iv. Single valued attributes — the unique value about a specific

attribute. For example, a football player can at time have only a

member of one team. KR systems provide different approaches for

single valued attributes.

3. Choosing Granularity:

• The level of knowledge and the primitives required for the KR can

done with choosing granularity.

• It should have a small number or large number of High-level facts or

low-level primitives.

• In this Low-level primitives may require a lot of storage while High-

level facts may not be adequate for inference while.

69

Knowledge Representation 4. Set of objects:

To present the appropriate properties of objects which are the member of a

set that are true;

Example: Consider the assertion made in the sentences:

 “there are more ladies than gents in Kerala”, and

 “beautiful girls can be found all over the world.”

To describe these facts, the only way is to attach assertion to the sets

representing people, sheep, and English.

The sets of objects can be representing in: if a property is true for all or

most elements of a set, then it is more efficient to associate it once with

the set rather than to associate it explicitly with every elements of the set.

• universal quantifier can be used for the representation of logical

sentences

• in this hierarchical structure, node represent as a set and inheritance

propagate set level assertion down to individual.

5. Finding Right structure:

In this phase one need to find the right structure to represent the data or a

particular situation.

This can be done through the selecting an initial structure and then

revising the choice.

While doing it, one need to consider the following problem

 How does an initial selection of the most appropriate structure?

• How we can fill the appropriate details of current situations and how

we can relate with each other.

• if the variable chosen initially turns out not to be appropriate what

should be the corrective step.

• What should be the step if none of the available structures is correct.

• When to create and remember a new structure.

5.9 AND- OR SEARCH TREE

Now the question arises how to find solutions to nondeterministic

problems. In other hand in in a deterministic environment, branching can

be introduced by the agent’s own choices in every state. And these all

node called as OR nodes. In the example of vacuum world, in OR

condition agent has a liberty to choose Left or Right or Suck. In the other

hand of nondeterministic environment, branching can be introduced by the

environment’s choice of output for each and every action. We call these

nodes AND nodes. For example, the Suck action in state 1 leads to a state

in the set {5,7}, so the agent would need to find the plan for state 5 and for

state 7. These two kinds of nodes alternate, leading to an AND-OR tree as

illustrated in following figure.

70

Artificial Intelligence
 and Soft Computing

70

A best solution for AND-OR search problem is a construction of subtree

that has goal node at each leaf node, every node specifies the action to

meet the goal node of its OR node, and (3) consist every extension node at

each branch of its AND nodes.in the diagram solution of this darken and;

it corresponds to the process given in Equation. (it uses if-then-else

conditional statements to handle the AND branches, but when there are

present more branches of nodes, it easy to use case constructor.

Here we have to Modify the basic problem-solving agent as seen in above

Figure. The contingent solutions can be find straightforward when

executed tree. One can also travel with different path where we get

different agent design, in which the agent can travel the entire tree and fin

some paths like in some situation it has to deal with contingencies and act

before it has found a guaranteed plan This situation is called as

interleaving of search and this type of execution can be useful for

exploration of problems and for game tree.

AND OR graph search algorithm is a recursive, depth-first algorithm.

Important feature of that is how the algorithm deals with cycles, which

often arise in nondeterministic problems. In current state If the identical

path is there from the root, then it returns with failure. it shows the

solution is not from the current state; it simply turns out with a noncyclic

solution, it must be reachable from the earlier node of the current state, so

the new path can be discarded. With this we can say that the termination

of algorithm is at every finite state space, because every node of a tree

makes path must reach a goal, a dead end, or a repeated state. Here one

thing we should notice that the algorithm sometimes goes with the current

state repetition of a state on some other path from the root, which is

important for efficiency.

AND-OR graphs follow the properties of breadth-first or best-first

methods. In AND-OR graph The heuristic function must be modified to

calculate the cost of a contingent solution rather than a sequence, but the

notion of admissibility carries over and there is an analog of the A*

algorithm for finding optimal solution.

71

Knowledge Representation 5.10 SUMMARY

As we have learnt that knowledge base is a setoff representations of

facts/information about surroundings. Every single representation in the

set is called a sentence and sentence are expressed with the help of formal

representation language. In artificial intelligence Knowledge

representation and reasoning are the most important feature with which we

can identify how the machine can contribute in thinking and acting like

human. This specify the intelligent bbehaviour of agents. Types of

knowledge are declarative knowledge, meta knowledge, procedural

knowledge, structural knowledge. There are many ways to represent the

knowledge like simple representation, semantic network, frame

representation, logical representation, ontology and many more. There are

many properties of knowledge representation such as representation

accuracy, Inferential Adequacy, Inferential Efficiency, Acquisitional

efficiency. AND-OR graphs follow the properties of breadth-first or best-

first methods. In AND-OR graph The heuristic function must be modified

to calculate the cost of a contingent solution. AND OR graph search

algorithm is a recursive, depth-first algorithm. Important feature of that is

how the algorithm deals with cycles, which often arise in nondeterministic

problems.

5.11 UNIT AND EXCERCISE

1. What is Knowledge? Explain how it can have mapped with

intelligence?

2. Explain types of knowledge.

3. Discuss about AND-OR search graph.

4. Explain different approaches of knowledge representation.

5. Discuss various types of knowledge representation ways.

6. Explain ways of knowledge representation.

7. What are the properties of good knowledge representation

techniques?

8. Explain AI life cycle.

9. What type of problem are facing during knowledge representation?

5.12 REFERENCES

• Artificial Intelligence a Modern Approach 4th Edition by Peter

Norvig and Stuart Russell published by Pearson

• Artificial Intelligence a Modern Approach 3rd Edition by Peter

Norvig and Stuart Russell published by Pearson

• Understanding machine learning from theory to algorithms 1st

Edition Shai Shalev and Shai Ben David published by Cambridge

University Press

72

Artificial Intelligence
and Soft Computing

72

6
CONCEPTS OF SOFT COMPUTING

Unit Structure

6.1 Soft computing Vs Hard computing

 6.1.1 Soft computing constituents

 6.1.2 Artificial Neural Network (ANN)

 6.1.3 The architecture of an artificial neural network

 6.1.4 Types of Artificial Neural Network:

6.2 Fuzzy Logic

 6.2.1 Fuzzy Logic Architecture

 6.2.2 Advantages of fuzzy logic in AI

 6.2.3 Applications of fuzzy logic

6.3 Genetic Algorithm applications of soft computing

 6.3.1 GA-Motivation

 6.3.2 Genetic Algorithm

 6.3.3 Basic Structure

6.1 SOFT COMPUTING VS HARD COMPUTING

Soft computing Hard computing

1. Soft Computing is liberal of

inexactness, uncertainty, partial

truth and approximation.

1. Hard computing needs an

exactly state analytic model.

2. Soft computing relies on

formal logic and probabilistic

reasoning.

2. Hard computing relies on

binary and crisp logic system.

3. Soft computing is stochastic

in nature.

3. Hard computing is

deterministic in nature.

4. Soft computing can perform

parallel computations.

4. Hard computing uses

sequential computations.

5. Soft computing works on

ambiguous and noisy data

5. Hard computing works

on exact data.

6.1.1 Soft Computing Constituents

6.1.2 Artificial Neural Network (ANN)

The term "Artificial Neural Network" is derived from Biological neural

networks that develop the structure of a human brain. Similar to the

73

Concepts of Soft Computing human brain that has neurons interconnected to one another, artificial

neural networks also have neurons that are interconnected to one another

in various layers of the networks. These neurons are known as nodes.

The given figure illustrates the typical diagram of Biological Neural

Network.

The typical Artificial Neural Network looks something like the given

figure.

Dendrites from Biological Neural Network represent inputs in Artificial

Neural Networks, cell nucleus represents Nodes, synapse represents

Weights, and Axon represents Output.

An Artificial Neural Network in the field of Artificial

intelligence where it attempts to mimic

74

Artificial Intelligence
and Soft Computing

74

Biological Neural Network Artificial Neural Network

Dendrites Inputs

Cell nucleus Nodes

Synapse Weights

Axon Output

An Artificial Neural Network in the field of Artificial

intelligence where it attempts to mimic the network of neurons makes up

a human brain so that computers will have an option to understand things

and make decisions in a human-like manner. The artificial neural network

is designed by programming computers to behave simply like

interconnected brain cells.

6.1.3 The architecture of an artificial neural network

To understand the concept of the architecture of an artificial neural

network, we have to understand what a neural network consists of. In

order to define a neural network that consists of a large number of

artificial neurons, which are termed units arranged in a sequence of layers.

Let us look at various types of layers available in an artificial neural

network.

Artificial Neural Network primarily consists of three layers:

Input Layer:

As the name suggests, it accepts inputs in several different formats

provided by the programmer.

Hidden Layer:

The hidden layer presents in-between input and output layers. It performs

all the calculations to find hidden features and patterns.

75

Concepts of Soft Computing Output Layer:

The input goes through a series of transformations using the hidden layer,

which finally results in output that is conveyed using this layer.

The artificial neural network takes input and computes the weighted sum

of the inputs and includes a bias. This computation is represented in the

form of a transfer function.

It determines weighted total is passed as an input to an activation function

to produce the output. Activation functions choose whether a node should

fire or not. Only those who are fired make it to the output layer. There are

distinctive activation functions available that can be applied upon the sort

of task we are performing.

How do artificial neural networks work?

Artificial Neural Network can be best represented as a weighted directed

graph, where the artificial neurons form the nodes. The association

between the neurons outputs and neuron inputs can be viewed as the

directed edges with weights. The Artificial Neural Network receives the

input signal from the external source in the form of a pattern and image in

the form of a vector. These inputs are then mathematically assigned by the

notations x(n) for every n number of inputs.

Afterward, each of the input is multiplied by its corresponding weights (

these weights are the details utilized by the artificial neural networks to

solve a specific problem). In general terms, these weights normally

represent the strength of the interconnection between neurons inside the

76

Artificial Intelligence
and Soft Computing

76

artificial neural network. All the weighted inputs are summarized inside

the computing unit.

If the weighted sum is equal to zero, then bias is added to make the output

non-zero or something else to scale up to the system's response. Bias has

the same input, and weight equals to 1. Here the total of weighted inputs

can be in the range of 0 to positive infinity. Here, to keep the response in

the limits of the desired value, a certain maximum value is benchmarked,

and the total of weighted inputs is passed through the activation function.

The activation function refers to the set of transfer functions used to

achieve the desired output. There is a different kind of the activation

function, but primarily either linear or non-linear sets of functions. Some

of the commonly used sets of activation functions are the Binary, linear,

and Tan hyperbolic sigmoidal activation functions. Let us take a look at

each of them in details:

Binary:

In binary activation function, the output is either a one or a 0. Here, to

accomplish this, there is a threshold value set up. If the net weighted input

of neurons is more than 1, then the final output of the activation function

is returned as one or else the output is returned as 0.

Sigmoidal Hyperbolic:

The Sigmoidal Hyperbola function is generally seen as an "S" shaped

curve. Here the tan hyperbolic function is used to approximate output from

the actual net input. The function is defined as:

F(x) = (1/1 + exp(-????x))

Where ???? is considered the Steepness parameter.

6.1.4 Types of Artificial Neural Network:

There are various types of Artificial Neural Networks (ANN) depending

upon the human brain neuron and network functions, an artificial neural

network similarly performs tasks. The majority of the artificial neural

networks will have some similarities with a more complex biological

partner and are very effective at their expected tasks. For example,

segmentation or classification.

Feedback ANN:

In this type of ANN, the output returns into the network to accomplish the

best-evolved results internally. As per the University of Massachusetts,

Lowell Centre for Atmospheric Research. The feedback networks feed

information back into itself and are well suited to solve optimization

issues. The Internal system error corrections utilize feedback ANNs.

77

Concepts of Soft Computing Feed-Forward ANN:

A feed-forward network is a basic neural network comprising of an input

layer, an output layer, and at least one layer of a neuron. Through

assessment of its output by reviewing its input, the intensity of the

network can be noticed based on group behaviour of the associated

neurons, and the output is decided. The primary advantage of this network

is that it figures out how to evaluate and recognize input patterns.

Prerequisite

No specific expertise is needed as a prerequisite before starting this

tutorial.

Audience

Our Artificial Neural Network Tutorial is developed for beginners as well

as professionals, to help them understand the basic concept of ANNs.

Problems

We assure you that you will not find any problem in this Artificial Neural

Network tutorial. But if there is any problem or mistake, please post the

problem in the contact form so that we can further improve it.

6.2 FUZZY LOGIC

What is Fuzzy Logic?

The term Fuzzy means something that is a bit vague. When a situation is

vague, the computer may not be able to produce a result that is True or

False. As per Boolean Logic, the value 1 refers to True and 0 means False.

But a Fuzzy Logic algorithm considers all the uncertainties of a problem,

where there may be possible values besides True or False.

The term Fuzzy Logic was first described by Lotfi Zadeh in 1965. He

thought that traditional computer logic is not capable of handling unclear

or vague data. Similar to humans, there are many possible values between

True and False that a computer can incorporate. These can be:

• Certainly yes

• Possibly yes

• Can’t say

• Possibly no

• Certainly no

Check out this simple example of Fuzzy Logic:

Problem – Is it hot outside?

Boolean Logic

Solution:

● Yes (1.0)

● No (0)

78

Artificial Intelligence
and Soft Computing

78

According to conventional Boolean Logic, the algorithm will take a

definite input and produce a precise result Yes or No. This is represented

by 0 and 1, respectively.

Fuzzy Logic

Solution:

• Very hot (0.9)

• Little hot (0.20)

• Moderately hot (0.35)

• Not hot (1.0)

As per the above example, Fuzzy Logic has a wider range of outputs, such

as very hot, moderately hot and not hot. These values between 0 and 1

display the range of possibilities.

So, in cases where accurate reasoning cannot be provided, Fuzzy Logic

provides an acceptable method of reasoning. An algorithm based on Fuzzy

Logic takes all available data while solving a problem. It then takes the

best possible decision according to the given input.

Charles Elkan, Assistant Professor of the Computer Science and

Engineering department at the University of California at San Diego, shed

some light upon Fuzzy Logic. He said that Fuzzy Logic in artificial

intelligence is a generalized form of standard logic, where any concept

might have a truth degree ranging between 0.0 and 1.0. Fuzzy Logic can

be used for vague concepts, such as the characteristic of tallness. For

example, we can say that President Clinton is tall, and the concept can

have a degree of truth of 0.9.

He further said that Fuzzy Logic is very useful in low-level machine

control especially in consumer appliances. Some special-purpose

microprocessors built on Fuzzy Logic perform fuzzy operations on their

hardware.

6.2.1 Fuzzy Logic Architecture:

The architecture of Fuzzy Logic consists of the following components:

Rule base

This is the set of rules along with the If-Then conditions that are used for

making decisions. But, modern developments in Fuzzy Logic have

reduced the number of rules in the rule base. These set of rules are also

called a knowledge base.

Fuzzification

This is the step where crisp numbers are converted into fuzzy sets. A crisp

set is a set of elements that have identical properties. Based on certain

logic, an element can either belong to the set or not. Crisp sets are based

on binary logic – Yes or No answers.

79

Concepts of Soft Computing Here, the error signals and physical values are converted into a normalized

fuzzy subset. In any Fuzzy Logic system, the fuzzifier separates the input

signals into five states that are:

• Large positive

• Medium positive

• Small

• Medium negative

• Large negative

The fuzzification process converts crisp inputs, such as room temperature,

fetched by sensors and passes them to the control system for further

processing. A Fuzzy Logic control system is based on Fuzzy Logic.

Common household appliances, such as air-conditioners and washing

machines have Fuzzy Control systems within them.

Inference Engine

The inference engine determines how much the input values and the rules

match. The rules are applied based on the input values received. Then, the

rules are used to develop control actions. The inference engine and the

knowledge base together are called a controller in a Fuzzy Logic system.

Defuzzification

This is the inverse process of fuzzification. Here, the fuzzy values are

converted into crisp values by mapping. There will be several

defuzzification methods for doing this, but the best one is selected as per

the input. This is a complicated process where methods, such as the

maximum membership principle, weighted average method and centroid

method, are used.

6.2.2 Advantages of Fuzzy Logic in Artificial Intelligence

1. It is a robust system where no precise inputs are required

2. These systems are able to accommodate several types of inputs

including vague, distorted or imprecise data

3. In case the feedback sensor stops working, you can reprogram it

according to the situation

4. The Fuzzy Logic algorithms can be coded using less data, so they do

not occupy a huge memory space

5. As it resembles human reasoning, these systems are able to solve

complex problems where ambiguous inputs are available and take

decisions accordingly

6. These systems are flexible and the rules can be modified

7. The systems have a simple structure and can be constructed easily

8. You can save system costs as inexpensive sensors can be

accommodated by these systems

80

Artificial Intelligence
and Soft Computing

80

Disadvantages of Fuzzy Logic in Artificial Intelligence

1. The accuracy of these systems is compromised as the system mostly

works on inaccurate data and inputs

2. There is no single systematic approach to solve a problem using

Fuzzy Logic. As a result, many solutions arise for a particular

problem, leading to confusion

3. Due to inaccuracy in results, they are not always widely accepted

4. A major drawback of Fuzzy Logic control systems is that they are

completely dependent on human knowledge and expertise

5. You have to regularly update the rules of a Fuzzy Logic control

system

6. These systems cannot recognize machine learning or neural

networks

7. The systems require a lot of testing for validation and verification

6.2.3 Applications of Fuzzy Logic

The applications of Fuzzy Logic are spread across several fields. They are

as follows:

1. Medicine

• Controlling arterial pressure when providing anaesthesia to patients

• Used in diagnostic radiology and diagnostic support systems

• Diagnosis of prostate cancer and diabetes

2. Transportation systems

• Handling underground train operations

• Controlling train schedules

• Braking and stopping vehicles based on parameters, such as car

speed, acceleration and wheel speed.

3. Defence

• Locating and recognizing targets underwater

• Supports naval decision making

• Using thermal infrared images for target recognition

• Used for controlling hypervelocity interceptor.

4. Industry

● Controlling water purification plants

● Handling problems in constraint satisfaction in structural design

● Pattern analysis for quality assurance

● Fuzzy Logic is used for tackling sludge wastewater treatment.

81

Concepts of Soft Computing 5. Naval control

● Steer ships properly

● Selecting the optimal or best possible routes for reaching a

destination

● Autopilot is based on Fuzzy Logic

● Autonomous underwater vehicles are controlled using Fuzzy Logic.

6.3 GENETIC ALGORITHM APPLICATIONS OF SOFT

COMPUTING

Genetic Algorithm (GA) is a search-based optimization technique based

on the principles of Genetics and Natural Selection. It is frequently used

to find optimal or near-optimal solutions to difficult problems which

otherwise would take a lifetime to solve. It is frequently used to solve

optimization problems, in research, and in machine learning.

6.3.1 Introduction to Optimization

Optimization is the process of making something better. In any process,

we have a set of inputs and a set of outputs as shown in the following

figure.

What are Genetic Algorithms?

Nature has always been a great source of inspiration to all mankind.

Genetic Algorithms (GAs) are search based algorithms based on the

concepts of natural selection and genetics. GAs is a subset of a much

larger branch of computation known as Evolutionary Computation.

GAs was developed by John Holland and his students and colleagues at

the University of Michigan, most notably David E. Goldberg and has since

been tried on various optimization problems with a high degree of success.

In GAs, we have a pool or a population of possible solutions to the

given problem. These solutions then undergo recombination and mutation

(like in natural genetics), producing new children, and the process is

repeated over various generations. Each individual (or candidate solution)

is assigned a fitness value (based on its objective function value) and the

fitter individuals are given a higher chance to mate and yield more “fitter”

individuals. This is in line with the Darwinian Theory of “Survival of the

Fittest”.

82

Artificial Intelligence
and Soft Computing

82

Advantages of Genetic Algorithms

1. Does not require any derivative information (which may not be

available for many real-world problems).

2. Is faster and more efficient as compared to the traditional methods.

3. Has very good parallel capabilities.

4. Optimizes both continuous and discrete functions and also multi-

objective problems.

5. Provides a list of “good” solutions and not just a single solution.

6. Always gets an answer to the problem, which gets better over the

time.

7. Useful when the search space is very large and there are a large

number of parameters involved.

Limitations of Genetic Algorithms

1. GAs are not suited for all problems, especially problems which are

simple and for which derivative information is available.

2. Fitness value is calculated repeatedly which might be

computationally expensive for some problems.

3. Being stochastic, there are no guarantees on the optimality or the

quality of the solution.

4. If not implemented properly, the GA may not converge to the

optimal solution.

6.3.2 GA – Motivation

Genetic Algorithms have the ability to deliver a “good-enough” solution

“fast-enough”. This makes genetic algorithms attractive for use in solving

optimization problems. The reasons why GAs are needed are as follows –

Solving Difficult Problems

In computer science, there is a large set of problems, which are NP-Hard.

What this essentially means is that, even the most powerful computing

systems take a very long time (even years!) to solve that problem. In such

a scenario, GAs prove to be an efficient tool to provide usable near-

optimal solutions in a short amount of time.

Failure of Gradient Based Methods

Traditional calculus-based methods work by starting at a random point and

by moving in the direction of the gradient, till we reach the top of the hill.

This technique is efficient and works very well for single-peaked objective

functions like the cost function in linear regression. But, in most real-

world situations, we have a very complex problem called as landscapes,

which are made of many peaks and many valleys, which causes such

83

Concepts of Soft Computing methods to fail, as they suffer from an inherent tendency of getting stuck

at the local optima as shown in the following figure.

Getting a Good Solution Fast

Some difficult problems like the Travelling Salesperson Problem (TSP),

have real-world applications like path finding and VLSI Design. Now

imagine that you are using your GPS Navigation system, and it takes a few

minutes (or even a few hours) to compute the “optimal” path from the

source to destination. Delay in such real-world applications is not

acceptable and therefore a “good-enough” solution, which is delivered

“fast” is what is required.

6.3.3 Genetic Algorithm

This section introduces the basic terminology required to understand GAs.

Also, a generic structure of GAs is presented in both pseudo-code and

graphical forms. The reader is advised to properly understand all the

concepts introduced in this section and keep them in mind when reading

other sections of this tutorial as well.

Basic Terminology

Before beginning a discussion on Genetic Algorithms, it is essential to be

familiar with some basic terminology which will be used throughout this

tutorial.

• Population − It is a subset of all the possible (encoded) solutions to

the given problem. The population for a GA is analogous to the

population for human beings except that instead of human beings,

we have Candidate Solutions representing human beings.

• Chromosomes − A chromosome is one such solution to the given

problem.

• Gene − A gene is one element position of a chromosome.

• Allele − It is the value a gene takes for a particular chromosome.

84

Artificial Intelligence
and Soft Computing

84

● Genotype − Genotype is the population in the computation space. In

the computation space, the solutions are represented in a way which

can be easily understood and manipulated using a computing

system.

● Phenotype − Phenotype is the population in the actual real-world

solution space in which solutions are represented in a way they are

represented in real world situations.

● Decoding and Encoding − For simple problems, the phenotype

and genotype spaces are the same. However, in most of the cases,

the phenotype and genotype spaces are different. Decoding is a

process of transforming a solution from the genotype to the

phenotype space, while encoding is a process of transforming from

the phenotype to genotype space. Decoding should be fast as it is

carried out repeatedly in a GA during the fitness value calculation.

For example, consider the 0/1 Knapsack Problem. The Phenotype space

consists of solutions which just contain the item numbers of the items to

be picked.

However, in the genotype space it can be represented as a binary string of

length n (where n is the number of items). A 0 at position x represents

that xth item is picked while a 1 represents the reverse. This is a case

where genotype and phenotype spaces are different.

85

Concepts of Soft Computing • Fitness Function − A fitness function simply defined is a function

which takes the solution as input and produces the suitability of the

solution as the output. In some cases, the fitness function and the

objective function may be the same, while in others it might be

different based on the problem.

• Genetic Operators − These alter the genetic composition of the

offspring. These include crossover, mutation, selection, etc.

6.3.4 Basic Structure

The basic structure of a GA is as follows −

We start with an initial population (which may be generated at random or

seeded by other heuristics), select parents from this population for mating.

Apply crossover and mutation operators on the parents to generate new

off-springs. And finally, these off-springs replace the existing individuals

in the population and the process repeats. In this way genetic algorithms

actually try to mimic the human evolution to some extent.

Each of the following steps are covered as a separate chapter later in this

tutorial.

86

Artificial Intelligence
and Soft Computing

86

A generalized pseudo-code for a GA is explained in the following

program −

GA()

 initialize population

 find fitness of population

 while (termination criteria is reached) do

 parent selection

 crossover with probability pc

 mutation with probability pm

 decode and fitness calculation

 survivor selection

 find best

 return best

Genetic Algorithms are primarily used in optimization problems of

various kinds, but they are frequently used in other application areas as

well.

In this section, we list some of the areas in which Genetic Algorithms are

frequently used. These are −

• Optimization − Genetic Algorithms are most commonly used in

optimization problems wherein we have to maximize or minimize a

given objective function value under a given set of constraints. The

approach to solve Optimization problems has been highlighted

throughout the tutorial.

• Economics − GAs are also used to characterize various economic

models like the cobweb model, game theory equilibrium resolution,

asset pricing, etc.

• Neural Networks − GAs are also used to train neural networks,

particularly recurrent neural networks.

• Parallelization − GAs also have very good parallel capabilities, and

prove to be very effective means in solving certain problems, and

also provide a good area for research.

• Image Processing − GAs are used for various digital image

processing (DIP) tasks as well like dense pixel matching.

• Vehicle routing problems − With multiple soft time windows,

multiple depots and a heterogeneous fleet.

• Scheduling applications − GAs are used to solve various

scheduling problems as well, particularly the time tabling problem.

• Machine Learning − as already discussed, genetics-based machine

learning (GBML) is a niche area in machine learning.

• Robot Trajectory Generation − GAs have been used to plan the

path which a robot arm takes by moving from one point to another.

87

Concepts of Soft Computing • Parametric Design of Aircraft − GAs have been used to design

aircrafts by varying the parameters and evolving better solutions.

• DNA Analysis − GAs have been used to determine the structure of

DNA using spectrometric data about the sample.

• Multimodal Optimization − GAs are obviously very good

approaches for multimodal optimization in which we have to find

multiple optimum solutions.

• Traveling salesman problem and its applications − GAs have

been used to solve the TSP, which is a well-known combinatorial

problem using novel crossover and packing strategies

Multiple Choice Questions

1) Which of the following is associated with fuzzy logic?

a) Crisp set logic

b) Many-valued logic

c) Two-valued logic

d) Binary set logic

2) The truth values of traditional set theory can be defined as

_________ and that of fuzzy logic is termed as _________.

a) Either 0 or 1, either 0 or 1.

b) Between 0 & 1, either 0 or 1.

c) Either 0 or 1, between 0 & 1.

d) Between 0 & 1, between 0 & 1.

3) How many types of random variables are there in Fuzzy logic?

a) 2

b) 4

c) 1

d) 3

4) Which of the following fuzzy operators are utilized in fuzzy set

theory?

a) AND

b) OR

c) NOT

d) EX-OR

5) What happens if chain-termination mutation is in the S gene?

a) Cell lysis is blocked

b) Growth of cells containing low levels of packaging proteins is

notallowed

c) The lysis of cells is not carried artificially

d) Packaging is not carried out efficiently

88

Artificial Intelligence
and Soft Computing

88

 6) A perceptron can be defined as _________

a) A double layer auto-associative neural network

b) A neural network with feedback

c) An auto-associative neural network

d) A single layer feed-forward neural network with pre-

processing

7) What is meant by an auto-associative neural network?

a) A neural network including feedback

b) A neural network containing no loops

c) A neural network having a single loop

d) A single layer feed-forward neural network containing

feedback

8) Each connection link in ANN is linked with ________ that contains

statics about the input signal.

a) Neurons

b) Activation function

c) Weights

d) Bias

 9) What is the name of the process that represents modified elements of

the DNA?

a) Selection

b) Mutation

c) Recombination

d) None of the above

10) What is the name of the operator that is functioned on the

population?

a) Recombination

b) Reproduction

c) Mutation

d) None of the above

89

7
ARTIFICIAL NEURAL NETWORK

Unit Structure

7.0 Introduction

7.1 Fundamental Concept

7.2 Artificial Neural Network

7.3 Brain vs. Computer - Comparison Between Biological Neuron and

Artificial Neuron

7.4 Basic Models of Artificial Neural Network

 7.4.1 Interconnections

 7.4.2 Learning rules

 7.4.3 Activation function

7.5 List of References

7.6 Quiz

7.7 Exercise

7.8 Video Links

7.0 INTRODUCTION

When we fail to get satisfactory predictive models use neural networks

and hence neural networks have emerged as advanced data mining tools.

The term neural network is inspired from biological concept. The basic

unit by which the brain works is a neuron and it is used for transmitting

electrical signals from one end to another. Electrical signals are

transmitted from dendrites to the axon terminals through the axon body.

Further the electrical signals continue to be transmitted across the synapse

from one neuron to another neuron. The human brain consists of

approximately 100 billion neurons. It is very difficult for us to imitate this

level of complexity with existing computers.

fig. 7.1 Biological neuron

90

Artificial Intelligence
and Soft Computing

90

Working of a Biological Neuron

As proven within the above diagram, a typical neuron includes the

subsequent 4 components with the help of which we can explain its

running −

• Dendrites − they are tree-like branches, accountable for receiving

the records from other neurons which are linked to it. In other

words, we can say that they're like the ears of neuron.

• Cell Body − it is the cellular frame of the neuron and is answerable

for processing of records, they've received from dendrites.

• Axon − it is similar to a cable via which neurons send the facts.

• Synapses − it's the relationship among the axon and different neuron

dendrites It is used for sending information from other neurons, in

the form of electrical impulses, enters the dendrites at connection

points

ANN had been investigated by using researchers for greater than half of a

century the formal has a look at of ANN started out with the

pioneering paintings of McCulloch & Pitts in 1943. Inspired via the results

of biological experiments and observations McCulloch & Pitts added a

simple version of a binary artificial neuron that captured some of the

capabilities of biological neurons. using facts processing machines the

next day within the brain McCulloch & Pitts built their neural community

model the use of a huge number of interconnected synthetic binary

neurons. From this starting neural network community research became

quite popular in the past due 1950s and early 1960s after a thorough

evaluation open early neural community model name does the perceptron

which use no hidden layer in addition to a pessimistic evaluation of studies

capacity by way of Minsky and Papert in 1969, interest neural networks

diminished.

7.1 FUNDAMENTAL CONCEPT

The human brain has capabilities for information processing and problem

solving those modern computers cannot compete within many aspects. It

has been postulated that a model or a system that is enlightened and

supported by the results from the brain research is the structure similar to

the biological neurons could exhibit similar intelligent functionality.

Based on this bottom up approach a name also known as connectionist

model parallel distributed processing models neuromorphic systems or

simply neural networks has been developed as a biologically inspired

model for doing various tasks.

Neural computing refers to a pattern recognition methodology for a

machine learning. The resulting model from neural computing is often

called as artificial neural network or a neural network. Neural networks

have been used in many business applications for forecasting predictions,

pattern recognition and classification. It is a key computing component of

any data mining toolkit. Applications of neural networks can be found in

91

Artificial Neural Network finance, marketing, manufacturing, operations, information systems and so

on.

7.2 ARTIFICIAL NEURAL NETWORK

An artificial neural network is a series of algorithms which aim at finding

underlying relationships in a set of data by using a process which is

inspired by the working of human brain. An artificial neural network is

based on Feed-forward strategy.

A neural network is an oriented graph such as nodes, which within the

biological analogy constitute neurons, linked by way of arcs, which

correspond to dendrites and synapses. every arc is related to a weight,

even as at each node an activation characteristic is described which is

applied to the values obtained as enter by means of the node alongside the

incoming arcs, adjusted by using the weights of the arcs. The training

stage is achieved via analysing in series the observations contained in the

training set one after the opposite and through editing at each iteration the

weights associated with the arcs.

Neural networks are organised in various layers:

• Input layer

 The training observations are fed through these neurons.

• Hidden layer

 The intermediate layer is called as hidden layer. It is said to be

hidden because there is no contact with the outside world directly.

 The outputs of each hidden layer are given as input to the next layer.

• Output layer

 This is the last layer of neural network. It is producing results and

predictions.

7.3 BRAIN VS. COMPUTER - COMPARISON BETWEEN

BIOLOGICAL NEURON AND ARTIFICIAL NEURON

1. Size

 Our brain consists of about an average of 86 billion neurons and

more than a 100 trillion synapses.

 The artificial neural network consists of a smaller number of

neurons as compared to human brain. Perceptrons just take inputs on

their “dendrites” and generate output on their “axon branches”. A

single layer perceptron network includes numerous perceptrons that

aren’t interconnected: all of them just carry out this very same task

at once. Deep Neural Networks normally encompass input neurons,

output neurons and neurons in the hidden layers, in-between.

92

Artificial Intelligence
and Soft Computing

92

2. Storage

 While allocating storage for a new process artificial neural network

is strictly irreplaceable as the old location is used for saving the

previous process whereas allocation for storage of new process is

very easy by adjusting the interconnection strength in biological

neural networks.

3. Mode of operation & speed

 in artificial neural network processes are operated in sequential

mode whereas in biological neural network processes can operate in

massive parallel operations.

 Processing speed of artificial neural network is faster as compared to

biological neural networks.

4. Fault-tolerance

 Biological neurons are fault tolerant because the information is

stored redundantly so any minor issues will not result in memory

loss. The brain can recover or heal to an extent whereas artificial

neural networks are not modelled for fault tolerance or self-

generation though the recovery is possible by returning back to the

currently saved state.

5. Consumption of power

 Artificial neural networks our way less efficient than the biological

neural networks with respect to the power consumption.

6. Learning process

 Artificial neural network cannot learn by recalling information. The

biological neural network can learn with the help of recalling and the

learning process deepens even during the sleep. The artificial neural

network cannot do self-learning, the model can be trained to learn

but has limitations as we cannot add more neurons in the trained

network.

7.4 BASIC MODELS OF ARTIFICIAL NEURAL

NETWORK

Basic models of artificial neural network are classified into 3 different

categories:

7.4.1 Interconnections

7.4.2 Learning rules

7.4.3 Activation function

93

Artificial Neural Network

fig 7.2 Basic models of ANN

7.4.1 Interconnections

Based on interconnections ANN can be further classified as:

• Feedforward network

• Feedback network

• Recurrent network

fig 7.3 Classification based on Interconnections

• Single layer feed-forward network

In this type of network, we have only two layers, i.e. input layer and

output layer however the input layer does not count due to the fact

that no computation is performed in this layer.

Output Layer is formed when specific weights are applied on input nodes

and the cumulative effect according to the per node is taken.

After this, the neurons together deliver the output layer to compute the

output signals.

94

Artificial Intelligence
and Soft Computing

94

fig 7.4 Single layer feed-forward network

Input and outputs are linked to each other. The simplest kind of neural

network is a single-layer perceptron network and corresponds to a single

neuron that receives as input the values (x1, x2,...,xn) along the incoming

connections, and returns an output value f (x). The input values coincide

with the values of the explanatory attributes, while the output value

determines the prediction of the response variable y. Each of the n input

connections is associated with a weight wj . An activation function g and a

constant ϑ, called the distortion, are also assigned.

fig 7.5 Operation of a single unit in a neural network

Suppose that the values of the weights and the distortion have already

been determined during the training phase. The prediction for a new

observation x is then derived by performing the following steps.

First, the weighted linear combination of the values of the explanatory

variables for the new observation is calculated and the distortion is

subtracted from it

 (7.1)

The prediction f (x) is then obtained by applying the activation function g

to the linear combination of the predictors

 (7.2)

95

Artificial Neural Network The purpose of the function g is to map the linear combination into the set

H = {v1, v2,...,vH } of the values assumed by the target variable, usually by

means of a sigmoid profile. For binary classification problems we have H

= {−1, 1}, so that one may select g(·) = sgn(·), making the prediction

coincide with the sign of the weighted sum in (7.1)

 (7.3)

An iterative algorithm is then used to determine the values of the weights

wj and the distortion ϑ, examining the examples in sequence, one after the

other. For each example xi the prediction f (xi) is calculated, and the value

of the parameters is then updated using recursive formulas that take into

account the error yi − f (xi).

classification problems it is possible to give a geometrical interpretation of

the prediction obtained using a Rosenblatt perceptron. Indeed, if we place

the m observations of the training dataset in the space Rn, the weighted

linear combination in (7.1) calculated for xi expresses the slack between

the observation and the hyperplane

 (7.4)

The purpose of the activation function g(·) = sgn(·) is therefore to

establish if the point associated with the example xi is placed in the lower

or upper halfspace with respect to the separating hyperplane.

• Multi-layer feed-forward network

A multi-layer feed-forward network is having a more complex structure

than a simple perceptron. In this network there are no feedback

connections in which outputs of the model are fed back into itself.

It consists of following component:

Input nodes:

The use of input nodes is to get input values of explanatory attributes for

every observation. The number of input nodes present in input layer is

equal to the number of explanatory variables. These nodes are giving

inputs to network but does not perform any computation.

Hidden nodes:

These nodes are used to apply transformations to the input values inside

the given network.

96

Artificial Intelligence
and Soft Computing

96

All hidden nodes are connected to the incoming arcs that arrives from

other hidden nodes or from input nodes depending on the level of hidden

layer.

Also, hidden nodes are connected with the outgoing arcs to output nodes

or other hidden nodes depending on the level of hidden layer.

Output nodes:

Hidden nodes give input to output nodes by using the connections of

outgoing arcs.

Output nodes returns an output value that corresponds the prediction of the

response variable.

fig 7.6 Multi-layer feed-forward network

• Recurrent Neural Network

 The networks which are with closed loop are called as recurrent

network. When output is directed back as inputs to the same layer or

preceding layer nodes, then it results in feedback networks.

 This type of neural network is used in solving problems where the

solution depends not just on current input but also on past inputs.

 An auto-associative network is equivalent to a neural network that

contains feedback.

 Recurrent neural networks can be trained by using backpropagation

algorithm.

97

Artificial Neural Network

fig 7.7 Recurrent neural network

7.4.2 Learning Rules

It is a methodology by which neural network learns from existing

conditions and increases the performance. It is a continuous process.

There are various learning rules like:

7.4.2.1 Hebbian learning rule

It is used to identify, how to modify the weights of nodes of a network.

Hebbian rule was the first law of learning. In 1949 Donald Hebb

developed it as a learning algorithm for the unsupervised neural network.

We can use it to discover a way to enhance the weight of network nodes.

The Hebb learning rule assumes - When two neighbouring neurons are

activated and deactivated at the same time. Then the weight connecting

these nodes should increase. For neurons working inside the opposite

section, the weight among them have to decrease. If there is no signal

correlation, the weight should not change.

If the input of both nodes is positive or negative, then there is strong

positive weight present between the nodes. When a node input is positive

and negative in another, a strong negative weight is present between the

nodes.

Initially, the values of all weights are set to zero. This learning rule can be

applied to both soft and hard work. Since the desired responses of neurons

can be used in the learning process, this is an unsupervised learning law.

Total weight values are generally equal to the duration of the study, which

is not required.

Mathematical formula of Hebb Learning Rule in ANN

98

Artificial Intelligence
and Soft Computing

98

7.4.2.2 Perceptron learning rule

In this network begins its learning process by assigning a random value to

each weight.

In a neural network each node is associated to weight that changes in the

course of learning. According to it, an instance of supervised learning, the

network begins its learning through assigning a random value to every

weight.

Calculate the output value on the premise of a set of information for which

we are able to understand the anticipated output value. that is the learning

pattern that suggests the complete definition. As a result, it is referred to as

a learning pattern. The network then compares the calculated output value

with the anticipated value. next calculates an error function ∈, which may

be the sum of squares of the errors happening for every character inside

the learning pattern.

Mathematical formula of Perceptron Learning Rule in ANN

Carry out the first summation on the people of the learning sample set, and

carry out the second summation at the output units. Eij and Oij are the

anticipated and obtained values of the jth unit for the ith individual.

The network then adjusts the weights of the distinctive units, checking

every time to peer if the mistake function has expanded or reduced. As in

a traditional regression, that is a matter of solving a problem of least

squares.

Considering that assigning the weights of nodes consistent with users, it's

an instance of supervised learning.

7.4.2.3 Delta learning rule

In this modification in sympatric weight of a node is equal to the

multiplication of error and the input.

It is the most common learning algorithm which was developed by

Widrow and Hoff. It relies upon supervised learning. This rule states that

the change in sympatric weight of a node is identical to the multiplication

of error and the input.

Mathematical formula of Delta Learning Rule in ANN

For a given input vector, examine the output vector is the precise solution.

If the difference is zero, no learning takes place; otherwise, adjusts its

weights to reduce this difference. The change in weight from ui to uj is:

dwij = r* ai * ej.

99

Artificial Neural Network wherein r is the learning rate, ai represents the activation of ui and ej is the

difference between the anticipated output and the actual output of uj. If the

set of input patterns form an impartial set, then arbitrary associations can

be learnt using the delta rule.

It has seen that for networks with linear activation functions and without

hidden units. The error squared vs. the weight graph is a paraboloid in n-

space. As the proportionality constant is negative, the graph of such a

function is concave upward and has the least value. The vertex of this

paraboloid represents the point wherein it reduces the error. The weight

vector corresponding to this point is then the ideal weight vector.

We can use the delta learning rule with both single output unit and several

output units. While applying the delta rule assume that the error can be

directly measured. The aim of applying the delta rule is to reduce the

difference between the actual and expected output that is the error.

7.4.2.4 Correlation learning rule

The correlation rule is majorly used in supervised learning, it is based on

the principle of Hebbian rule.

The correlation learning rule assumes that weights between responding

neurons should be more positive, and weights between neurons with

opposite reaction should be more negative.

Contrary to the Hebbian rule, the correlation rule is the supervised

learning.

The response, oj, the desired response, dj, uses for the weight-change

calculation.

Mathematical formula of Correlation Learning Rule in ANN

Here dj is the anticipated value of response signal. This training algorithm

generally starts with weights value initialized to zero.

7.4.2.5 Out Star learning rule

The out-star learning rule is used when we assume that nodes or neurons

in a network arranged in a layer. It is a supervised learning process

because desired outputs must be known.

Here the weights connected to a certain node should be equal to the

desired outputs for the neurons connected through those weights. The out-

star rule produces the desired response t for the layer of n nodes.

100

Artificial Intelligence
and Soft Computing

100

Apply this type of learning for all nodes in a particular layer. Update the

weights for nodes are as in Kohonen neural networks. The Kohonen neural

network is an unsupervised network used for clustering.

Mathematical formula of Out Star Learning Rule in ANN

7.4.3 Activation function

The general model of ANN is inspired by biological neuron. The single

layer neuron is also called as Perceptron. It is meant to give single output.

Diagrammatic representation on Rosenblatt Perceptron

In the above figure, for one single observation, x0, x1, x2, x3...x(n)

represents multuiple inputs of independent variables to the network. Each

of these inputs is multiplied by a connection weight or synapse. The

weights are represented as w0, w1, w2, w3….w(n). Weight shows the

strength of a particular node, b is a bias value. A bias value allows you to

shift the activation function up or down.

In the simplest case, these products are summed, fed to a transfer function

called as activation function to generate a result, and this result is sent as

output.

Mathematically, x1.w1 + x2.w2 + x3.w3 xn.wn = ∑ xi.wi

Now activation function is applied 𝜙(∑ xi.wi)

Activation function

The main purpose of an activation function is to convert an input signal of

a node in an Artificial neural network to output signal. This output signal

is used as input for the next layers in the network.

Activation function decides whether a neuron should be activated or not

by calculating the weighted sum and further adding bias to it. The motive

is to introduce non-linearity into the output of a neuron.

101

Artificial Neural Network If we do not apply activation function then the output signal would be

definitely linear function. Now, a linear function is easy to solve but they

are constrained in their complexity, have less power. Without activation

function, our model cannot learn and model complex data such as images,

videos, audio, speech, etc.

Types of Activation Functions:

7.4.3.1 Threshold Activation Function — (Binary step function)

A Binary step function is a threshold-based activation function. If the

input value is above or below a certain threshold, the neuron is activated

and sends exactly the same signal to the next layer.

Activation function A = “activated” if Y > threshold

else not or A=1 if y > threshold, 0 otherwise.

The problem with this function is for creating a binary classifier (1 or 0),

but if you want multiple such neurons to be connected to bring in more

classes, Class1, Class2, Class3, etc. In this case, all neurons will give 1, so

we cannot decide.

7.4.3.2 Sigmoid Activation Function — (Logistic function)

A Sigmoid function is a mathematical function having a characteristic

“S”-shaped curve or sigmoid curve which ranges between 0 and 1,

therefore it is used for models where we need to predict the probability as

an output.

102

Artificial Intelligence
and Soft Computing

102

The Sigmoid function is differentiable, means we can find the slope of the

curve at any two points.

The drawback of the Sigmoid activation function is that it can cause the

neural network to get stuck at training time if strong negative input is

provided.

7.4.3.3 Hyperbolic Tangent Function — (tanh)

It is similar to Sigmoid but better in performance. It is nonlinear in nature,

so great we can stack layers. The function ranges between (-1,1).

The main advantage of this function is that strong negative inputs will be

mapped to negative output and only zero-valued inputs are mapped to

near-zero outputs. So less likely to get stuck during training.

7.4.3.4 Rectified Linear Units — (ReLu)

ReLu is the most used activation function in CNN and ANN which ranges

from zero to infinity. (0, ∞)

It gives an output ‘x’ if x is positive and 0 otherwise. It looks like having

the same problem of linear function as it is linear in the positive axis.

103

Artificial Neural Network Relu is non-linear in nature and a combination of ReLu is also non-linear.

In fact, it is a good approximator and any function can be approximated

with a combination of Relu.

ReLu is 6 times improved over hyperbolic tangent function. It should only

be applied to hidden layers of a neural network. So, for the output layer

use softmax function for classification problem and for regression problem

use a Linear function.

Here one problem is some gradients are fragile during training and can

die. It causes a weight update which will make it never activate on any

data point again.

Basically, ReLu could result in dead neurons.

To fix the problem of dying neurons, Leaky ReLu was introduced. So,

Leaky ReLu introduces a small slope to keep the updates alive. Leaky

ReLu ranges from -∞ to +∞.

Leak helps to increase the range of the ReLu function. Usually, the value

of a = 0.01 or so.

When a is not 0.01, then it is called Randomized ReLu

7.5 LIST OF REFERENCES

• Kumar Satish ,Neural Networks, Second edition Tata McGraw Hill-,

2013, ISBN1259006166, 9781259006166

• Neural Networks and Deep Learning: A Textbook 1st ed. 2018

Edition ISBN-13: 978-3319944623 ISBN-10: 3319944622

• Artificial Neural Networks, Robert J. Schalkoff, Tata McGraw Hil ,

ISBN: 9780071155540, 0071155546

104

Artificial Intelligence
and Soft Computing

104

7.6 QUIZ

1. What is a perceptron?

a) a neural network that contains no loops

b) a neural network that has only one loop

c) a single layer feed-forward neural network with pre-

processing

d) a neural network that contains feedback

2. What are the advantages of neural networks over conventional

computers?

i. They have ability to learn by example

ii. They are fault tolerant

iii. They are more suited for real time operation due to their high

computational rates

a) i and ii are true

b) i and iii are true

c) only i is true

d) i, ii and iii are true

3. Which network involves backward links from output to the input

and hidden layers ?

a) Perceptron

b) Multi layered perceptron

c) Self-organizing maps

d) Recurrent neural networks

4. Which of the following is not a component of learning systems?

a) Goal

b) Model

c) Experience

d) Trees

5. In artificial Neural Network interconnected processing elements are

called

a) nodes or neurons

b) weights

c) axons

d) cell body

6. Each connection link in ANN is associated with ________ which

has information about the input signal.

a) nodes or neurons

b) weights

c) bias

d) activation function

105

Artificial Neural Network 7. Information from other neurons, in the form of electrical impulses,

enters the dendrites at connection points called________

a) Axons

b) Synapse

c) Dendrites

d) Weights

8. In FeedForward ANN, information flow is _________

a) unidirectional

b) Bidirectional

c) Multidirectional

d) polydirectional

9. What was the name of the first model which can perform weighted

sum of inputs?

a) Papert neuron model

b) McCulloch-pitts neuron model

c) Marvin Minsky neuron model

d) Hopfield model of neuron

10. Who proposed the first perceptron model in 1958?

a) McCulloch-pitts

b) Marvin Minsky

c) Hopfield

d) Rosenblatt

11. What is R in RNN?

a) Recurrent

b) Recovered

c) Repetitive

d) Reversed

12. __________takes a real-valued input and squashes it to the range.

a) Sigmoid

b) tanh

c) ReLU

d) Network

13. Correlation learning law is special case of?

a) Hebb learning rule

b) Perceptron learning rule

c) Delta learning rule

d) LMS learning rule

106

Artificial Intelligence
and Soft Computing

106

14. Which learning rule was developed by Widrow and Hoff?

a) Hebb learning rule

b) Perceptron learning rule

c) Delta learning rule

d) Out star learning rule

15. What is an auto-associative network?

a) a neural network that contains no loops

b) a neural network that has only one loop

c) a single layer feed-forward neural network with pre-processing

d) a neural network that contains feedback

7.7 EXERCISE

1. What is Artificial neural network?

2. Compare similarities and differences between BNN & ANN.

3. What are the basic models of ANN?

4. Explain models classified based on interconnections with diagram

5. Explain learning models

6. Explain activation function

7. What is Rosenblatt perceptron?

8. Short note on Recurrent neural network

7.8 VIDEO LINKS

1. (1857) Neural Network Full Course | Neural Network Tutorial For

Beginners | Neural Networks | Simplilearn - YouTube

2. (1857) Biological and Artificial Neural Network | Basic Concepts |

Neural Networks - YouTube

3. (1857) Types of Artificial Neural Network(ANN) Architectures -

YouTube

4. (1863) Perceptron learning algorithm with solved example (in

Hindi) - YouTube

5. (1863) Neural Network Learning Rules - Part 2 - Perceptron, Delta,

Widrow-Hoff - YouTube

6. (1863) Lecture 14: Widrow-Hoff Learning Rule | ANN - YouTube

7. (1863) Delta Learning Rule | Application of Soft Computing |

Lecture Series - YouTube

https://www.youtube.com/watch?v=ob1yS9g-Zcs
https://www.youtube.com/watch?v=ob1yS9g-Zcs
https://www.youtube.com/watch?v=0aDq6ax6kGQ
https://www.youtube.com/watch?v=0aDq6ax6kGQ
https://www.youtube.com/watch?v=wUIQVzw0xS4
https://www.youtube.com/watch?v=wUIQVzw0xS4
https://www.youtube.com/watch?v=GDJM8MXYaK0
https://www.youtube.com/watch?v=GDJM8MXYaK0
https://www.youtube.com/watch?v=f7jOPfYhi_A
https://www.youtube.com/watch?v=f7jOPfYhi_A
https://www.youtube.com/watch?v=yOhG9RN7hZ4
https://www.youtube.com/watch?v=FBQ14UJoDBM
https://www.youtube.com/watch?v=FBQ14UJoDBM

107

8
SUPERVISED & UNSUPERVISED

LEARNING NETWORKS

Unit Structure

8.0 Introduction

 8.0.1 What is Learning?

 8.0.2 Types of Learning Process

 8.0.3 Supervised Learning Network

8.1 Linear Separability

8.2 Perceptron Networks

8.3 Adaptive Linear Neuron (Adaline)

8.4 Multiple Adaptive Linear Neurons

8.5 Back-Propagation Network

8.6 Unsupervised Learning Networks

 8.6.1 MaxNet

8.7 List of References

8.8 Quiz

8.9 Exercise

8.10 Video Links

8.0 INTRODUCTION

Artificial neural network is a complex adaptive system which is changing

itself based on data it is processing. Machines can learn how to perform

tasks better with experience. We can define learning as art of being able to

perform at a given task, or a range of tasks with experience in a better

way.

Neural networks help to develop this adaptation skill by training with the

help of past evaluations and solutions over multiple problems.

8.0.1 What is Learning?

Learning is the ability to adapt with the changes in the environment

whenever any new data is processed or event is evaluated.

ANN can model learning process by adjusting the weighted connections or

arcs found between neurons or nodes in the network.

Learning algorithms are very useful when it comes to few problems that

cannot be written practically.

108

Artificial Intelligence
and Soft Computing

108

Learning Algorithms

Define an architecture-dependent procedure to encode pattern information

into weights. Learning proceeds by modifying connection strengths.

Learning is data driven:

A set of input–output patterns derived from a (possibly unknown)

probability distribution.

• Output pattern might specify a desired system response for a given

input pattern

• Learning involves approximating the unknown function as described

by the given data

 Alternatively, the data might comprise patterns that naturally cluster

into some number of unknown classes

• Learning problem involves generating a suitable classification of the

samples.

8.0.2 Types of Learning Process

8.0.2.1 Supervised Learning

Throughout the training of ANN under supervised learning, the input

vector is presented to the network, which will give an output vector. This

output vector is compared with the preferred output vector. An error signal

is generated, if there is a difference between the actual output and the

preferred output vector. On the basis of this error signal, the weights are

adjusted till the actual output is matched with the desired output.

Supervised learning happens in the presence of a supervisor. An output or

target attribute of supervised learning is already known. Machine is fed

with multiple input data and then the model is built to predict the output.

It is used as fast learning mechanisms with better accuracy. It includes

regression & classification.

8.0.2.2 Unsupervised Learning

Unsupervised learning happens without the help of supervisor. It is having

an independent learning process. No output is mapped with the input as

we are not aware of about the output variable that we are going to achieve

after evaluation.

In unsupervised learning the neural network is responsible to find the

patterns from the input provided to the model use for predicting the

preferences or similarities. It is using unlabelled dataset for finding hidden

patterns. It includes Clustering and Association rule. It is descriptive in

nature.

109

Supervised & Unsupervised

Learning Networks
Unsupervised learning provides the system with an input Xk, and allow it

to self-organize its weights to generate internal prototypes of sample

vectors.

There is no teaching input involved here. The system attempts to represent

the entire data set by employing a small number of prototypical vectors

which are enough to allow the system to retain a desired level of

discrimination between samples. As new samples continuously buffer the

system, the prototypes will be in a state of constant flux. This kind of

learning is often called adaptive vector quantization.

8.0.2.3 Reinforcement Learning

Reinforcement learning, learns from feedback on past experiences. It is a

long-term iterative process. If more feedback is obtained then more

learning has been performed.

Reinforcement learning is similar to supervised learning. The aim of

reinforcement learning is to maximize the reward of the system through a

trial and error. This is strongly with how learning works in nature.

Remembering the actions performed in the past and taking decisions based

on those actions will lead to gain more rewards. It is also called as Markov

Decision Process.

It is more accurate system.

8.0.3 Supervised Learning Network

In supervised learning network we get labelled input data. Data comprises

a set of discrete samples drawn from the pattern space where each sample

relates an input vector Xk ∈ Rn to an output vector Dk∈ Rp.

• The set of samples describe the behaviour of an unknown function

 f : Rn → Rp which is to be characterized.

An example function described by a set of noisy data points

110

Artificial Intelligence
and Soft Computing

110

8.1 Linear Separability

Linear Separability refers to the fact that classes of patterns with ‘n’

dimensional vector X=(x1,x2,…..,xn) can be separated with single decision

surface. When two classes of patterns that can be separated by decision

boundary represented by linear equation. then they are referred to as

Linearly separable.

Below graph shows Linearly separable pattern which separates data or

classes with the help of single line ‘L’

• AND Problem

As per truth table of AND we can have two classes; class1 will hold

values when output is 1 i.e y=1 and class2 will hold values when

output is -1 i.e y=-1

i/p i/p o/p

-1 -1 -1

-1 1 -1

1 -1 -1

1 1 1

Graph to evaluate whether the values are linearly separable or not.

If we consider a class1 it lies in positive quadrant and class2 consist of

remaining three quadrants that very clearly can be separated by a single

line.

111

Supervised & Unsupervised

Learning Networks

Hence, we can say that AND Problem is linearly separable.

• OR Problem

As per truth table of OR we can have two classes; class1 will hold

values when output is 1 i.e y=1 and class2 will hold values when

output is -1 i.e y=-1

i/p i/p o/p

-1 -1 -1

-1 1 1

1 -1 1

1 1 1

Graph to evaluate whether the values are linearly separable or not.

If we consider a class1 it lies in quadrant 1,2,4 and class2 consist of

quadrant 3 hence we can separate data using single line

Hence, we can say that OR Problem is linearly separable

112

Artificial Intelligence
and Soft Computing

112

• XOR Problem

As per truth table of XOR we can have two classes; class1 will hold

values when output is 1 i.e y=1 and class2 will hold values when

output is -1 i.e y=-1

i/p i/p o/p

-1 -1 -1

-1 1 1

1 -1 1

1 1 -1

Graph to evaluate whether the values are linearly separable or not.

If we consider a class1 it lies in quadrant 1,3 and class2 consist of

quadrant 2,4 hence we cannot separate data using single line

Hence, we can say that XOR Problem is not linearly separable

8.2 PERCEPTRON NETWORKS

In the single layer network, a set of inputs is directly mapped to an output

by using a generalized variation of a linear function. This simple

instantiation of a neural network is also referred to as the perceptron. This

neural network contains a single input layer and an output node. The basic

architecture of the perceptron is shown below:

113

Supervised & Unsupervised

Learning Networks

Architecture of the perceptron

Components of Perceptron

• Input: Features are taken as inputs in the perceptron algorithm.

Inputs are denoted as x1, x2, x3, x4, .xn – ‘x’ in these inputs suggests

the characteristic value and ‘n’ the entire occurrences of those

features. There is also a unique input type, which is referred to as

bias.

• Weights: These are values that are calculated during the training of

the model. The weights are given a preliminary value in the

beginning. With every occurrence of a training error, the values of

weights are modified. Weights are represented as w1, w2, w3, w4,

..wn.

• Bias: A bias is a special input type which allows the classifier to

move the decision boundary around from its original position to the

right, left, up, or down. The objective of the bias is to shift every

point in a specific path for a specified distance. Bias allows for

higher quality and quicker model training. Perceptron algorithms can

be categorized into single-layer and multi-layer perceptron. The

single-layer type arranges neurons in a single layer while the multi-

layer type arranges neurons in multiple layers. In case of multi-layer,

each neuron of the first layer picks inputs and provides a response to

the group of neurons present in the second layer. This process

continues until the final layer.

• Activation/step function: Activation or step functions are used to

create non-linear neural networks. These functions can change the

value of neural networks to 0 or 1. The conversion of value is done

to make a data set easy to classify. We can use the step function

depending on the value required. Sigmoid function and sign

functions can be used for values between 0 and 1 and 1 and -1,

respectively. The sign function is a hyperbolic tangent function

which is ideal for multi-layer neural networks. Rectified linear unit

(ReLu) is another step function which can be used for values

approaching zero – value more less than or more than zero.

However, linear classification requires the perceptron to be linear.

114

Artificial Intelligence
and Soft Computing

114

• Weighted summation: The multiplication of each feature or input

value (xn) associated with related weight values (wn) gives us a sum

of values that are called weighted summation. Weighted summation

is represented as ∑wixi for all i -> [1 to n].

The input layer contains d nodes that transmit the d features

 with edges of weight to an output node.

The input layer does not perform any computation in its own right. The

linear function is computed at the output node.

Subsequently, the sign of this real value is used in order to predict the

dependent variable of . Therefore, the prediction is computed as

follows:

The sign function maps a real value to either +1 or −1, which is

appropriate for binary classification.

The error of the prediction is therefore , which is one of the

values drawn from the set {−2, 0, +2}. In cases where the error value

 is nonzero, the weights in the neural network need to be updated in

the (negative) direction of the error gradient. As we will see later, this

process is similar to that used in various types of linear models in machine

learning.

In many settings, there is an invariant part of the prediction, which is

referred to as the bias. For example, consider a setting in which the feature

variables are mean centered, but the mean of the binary class prediction

from {−1, +1} is not 0. This will tend to occur in situations in which the

binary class distribution is highly imbalanced. We need to incorporate an

additional bias variable b that captures this invariant part of the prediction.

The bias can be incorporated as the weight of an edge by using a bias

neuron. This is achieved by adding a neuron that always transmits a value

of 1 to the output node. The weight of the edge connecting the bias neuron

to the output node provides the bias variable.

115

Supervised & Unsupervised

Learning Networks
Algorithm:

Step 1 - Initialize weight and bias to 0. Set learning rate α between 0 to

1.

Step 2 - Feed the features of the model that is required to be trained as

input in the first layer.

Step 3 - Product of all weights and inputs will be added up.

Step 4 - The Bias value will be added to shift the output function

Step 5 - This value will be presented to the activation function

Step 6 - The value received after the last step is the output value.

8.3 ADAPTIVE LINEAR NEURON (ADALINE)

Adaline is also referred to as the Widrow-Hoff learning rule. The units

with linear activation function are called as linear unit and a network with

single linear unit is called as Adaline. The relationship between input and

output is linear. Adaline makes a use of bipolar activation function for its

input and output signals. It has only one output. The delta rule is used for

weight adjustment and it is given as

Δ Wij = α (tj – yin) xi

We can train the network to have minimum error by using the Least Mean

Squares method.

The basic structure of Adaline is similar to perceptron having an extra

feedback loop with the help of which the actual output is compared with

the desired target output. After comparison on the basis of training

algorithm, the weights and bias will be updated.

Algorithm

Step 1 - Initialize weight and bias to some random value but not 0. Set

learning rate α between 0 to 1.

Step 2 - Calculate the net input to the output unit

yin = b +

116

Artificial Intelligence
and Soft Computing

116

here,

b = bias

w = weights

x = inputs

y = output

Step 3 - Keep updating weights and bias for i = 1 till n, until least

mean square is achieved, t-yin

wi(new) =wi(old)+ α(t-yin) xi

b(new) =b(old)+ α(t-yin)

 here,

w is weight

b is bias

xi is input

α is learning rate

t is desired output

yin is net input to output neuron

8.4 MULTIPLE ADAPTIVE LINEAR NEURONS (MADALINE)

It is a network which consists of many Adaline networks in parallel. It will

be having single output unit. It acts like multilinear perceptron in which

hidden unit between input and Madaline layer will be Adaline. The

weights and the bias between the input and the Adaline layer is adjustable.

Both Adaline & Madaline layers have a fixed bias as 1.

The architecture of Madaline consists of “n” neurons of the input layer,

“m” neurons of the Adaline layer, and 1 neuron of the Madaline layer. The

Adaline layer can be considered as the hidden layer as it is between the

input layer and the output layer, i.e. the Madaline layer.

Algorithm

Step 1 - Initialize weight and bias to 0. Set learning rate α between 0 to

1 preferably 1

Step 2 - When stopping criteria is false go to step 3 to 8

117

Supervised & Unsupervised

Learning Networks
Step 3 - For each bipolar training pair s.t do step 4 to 7

Step 4 - Set activation of input unit xi = si (i =1 to n)

Step 5 - Calculate the net input to the output unit

Qinj = bj + (j = 1 to m)

here,

b = bias

w = weights

x = inputs

y = output

n = total number of input neurons

Step 6 - Apply the activation function to obtain the final output at the

Adaline and Madaline layer

Output at the hidden unit

Qj = f(Qinj)

Final output of the network

y= f(yin)

i.e. yinj = b +

Step 7 - Calculate the error and adjust the weights as follows –

Case 1 − if y ≠ t and t = 1 then,

wij(new) =wij(old)+ α(1-Qinj) xi

bj(new) =bj(old)+ α(1-Qinj)

here,

w is weight

b is bias

xi is input

α is learning rate

yinj is net input to output neuron

In this case, the weights would be updated on Qj where the net input is

close to 0 because t = 1.

Case 2 − if y ≠ t and t = -1 then,

wik(new) =wik(old)+ α(-1-Qink) xi

bk(new) =bk(old)+ α(-1-Qink)

In this case, the weights would be updated on Qk where the net input is

positive because t = -1.

Here ‘y’ is the actual output and ‘t’ is the desired/target output.

Case 3 − if y = t then

There would be no change in weights.

118

Artificial Intelligence
and Soft Computing

118

Step 8 - Test for the stopping condition, which will happen when there

is no change in weight or the highest weight change occurred

during training is smaller than the specified tolerance.

8.5 BACK-PROPAGATION NETWORK

The backpropagation algorithm is a supervised learning algorithm for

training neural networks. The backpropagation algorithm is one of the

algorithms responsible for updating network weights with the objective of

reducing the network error.

The principle behind the back propagation algorithm is to reduce errors of

randomly allocated weights and biases. We need to update the weights

such that we get the global loss minimum.

The most important features of backpropagation algorithm are that it is

recursive, iterative and efficient method.

Gradient Descent

We can update weights by using gradient descent. It is used for finding the

minimum of a function.

Types of Back propagation network

• Static back propagation

It deals with static input and static output. The mapping is faster in static

back propagation.

• Recurrent back propagation

119

Supervised & Unsupervised

Learning Networks
In it network is fed until a fixed value is obtained. Later the error is

calculated and propagated backward. The mapping is slower in recurrent

back propagation.

As we know in artificial neural networks, training occurs in various steps:

Step 1 - Initialization.

Step 2 - Forward propagation.

Step 3 - Error Function.

Step 4 - Backpropagation.

Step 5 - Weight Update.

Step 6 - Iteration.

It is the fourth step of the process, a backpropagation algorithm that

calculates the gradient of a loss function of the weights in the neural

network to ensure the error function is minimum.

The backpropagation algorithm accomplishes this through a set of

Back Propagation Algorithm Steps, which involves:

Step 1 - Selecting Input & Output: To choose an input for the

process and to set the desired output.

Step 2 - Setting Random Weights: Once the input and output are set,

random weights are allocated, as it will be needed to

manipulate the input and output values. Later, the output of

each neuron is calculated through the forward propagation,

which goes through:

• Input Layer

• Hidden Layer

• Output Layer

Step 3 - Error Calculation: This is an important step that calculates

the total error by determining how far and suitable the actual

output is from the required output. This is done by calculating

the errors at the output neuron.

Step 4 - Error Minimization: Based on the observations made in the

earlier step, here the focus is on minimizing the error rate to

ensure accurate output is delivered.

Step 5 - Updating Weights & other Parameters: If the error rate is

high, then parameters (weights and biases) are changed and

updated to reduce the rate of error using the delta rule or

gradient descent. This is accomplished by assuming a suitable

learning rate and propagating backward from the output layer

to the previous layer. Acting as an example of dynamic

programming, this helps avoid redundant calculations of

repeated errors, neurons, and layers.

120

Artificial Intelligence
and Soft Computing

120

Step 6 - Modelling Prediction Readiness: Finally, once the error is

optimized, the output is tested with some testing inputs to get

the desired result.

This process is repeated until the error reduces to a minimum

and the desired output is obtained.

Advantages of the backpropagation algorithm:

• It’s memory-efficient in calculating the derivatives, as it uses less

memory compared to other optimization algorithms.

• The backpropagation algorithm is fast, especially for small and

medium-sized networks. As more layers and neurons are added, it

starts to get slower as more derivatives are calculated.

• This algorithm is generic so it can be used to work with different

network architectures, like convolutional neural networks,

generative adversarial networks, fully-connected networks, and

more.

• There are no parameters to tune the backpropagation algorithm, so

there’s less overhead. The only parameters in the process are related

to the gradient descent algorithm, like learning rate.

8.6 UNSUPERVISED LEARNING NETWORKS

Unsupervised learning provides the system with an input Xk, and allow it

to self-organize its weights to generate internal prototypes of sample

vectors. There is no supervisor involved here. The system attempts to

represent the entire data set by employing a small number of prototypical

vectors- enough to allow the system to retain a desired level of

discrimination between samples. As new samples continuously buffer the

system, the prototypes will be in a state of constant flux. This kind of

learning is often called adaptive vector quantization.

Local information is used for learning i.e unlabelled data and this allows

synapses to learn in real time.

8.6.1 MaxNet

MaxNet is a type of competitive learning network where one of the

competing neurons has a non-zero output. Before understanding MaxNet

we need to know about Hamming neural network. The output of hamming

neural network will be given as input to MaxNet. It is a feed backward

neural network with single layer. It has fixed weights in it. It takes inputs

and cluster them.

121

Supervised & Unsupervised

Learning Networks

It is a feed backward neural network with single layer. It has fixed weights

in it. It depends on Winner-Take-All WTA policy.

An example of TB test:

A simple test for Tuberculosis disease is carried out. TP has 11 symptoms

from which 6 come together for an infected person. Each input or a case of

the test is a vector of 11 values. Two examples in the test, one of for the

infected person and the other one for the normal person. Set the value of 1

for the existing symptoms in the input vector, otherwise -1. Anybody has 6

known symptoms like cough, fever, chest pain, coughing up blood,

fatigue, night sweating or more will be classified as an infected person.

Any case with less than six known symptoms will be classified as normal

person, but he or she may suffer from the other disease.

The TB test

The case is the input of the first layer which is hamming network. The

output of Hamming network will be the input of MaxNet network. Each

case is classified to the closest example. One non zero output at the end

will be the winner.

122

Artificial Intelligence
and Soft Computing

122

Hamming Algorithm

Step 1 - Specify the examples

Step 2 - Fix the weights matrix

m*n where n is no of vector values and m is no of examples.

Step 3 - Find Ꝋ as Ꝋ= n/2

Step 4 - Specify the input vector

Step 5 - Find the output as

MaxNet Algorithm

Step 1 - Fix the weights matrix :

123

Supervised & Unsupervised

Learning Networks

Step 2 - Find Yk+1

Step 3 - Repeat step 2 until convergence

Hamming – MaxNet Network is having high speed in classification of

random inputs.

Only one node which has the short Hamming distance from the example

will be the non-zero output at the end that is, it will be considered as the

winner. Hamming-MaxNet network always give a closed output to the

examples.

8.7 LIST OF REFERENCES

• Kumar Satish, Neural Networks, Second edition Tata McGraw Hill-,

2013, ISBN1259006166, 9781259006166

• Neural Networks and Deep Learning: A Textbook 1st ed. 2018

Edition ISBN-13: 978-3319944623 ISBN-10: 3319944622

• Artificial Neural Networks, Robert J. Schalkoff, Tata McGraw Hill,

ISBN: 9780071155540, 0071155546

• Widrow, “Generalization and information storage in networks of

adaline ‘neurons’,” in Self Organizing Systems 1962, (M. C. Yovitz,

G. T. Jacobi, and G. D. Goldstein, eds.), pp. 435-461, Washington,

DC: Spartan Books, 1962

• A Comprehensive Guide to the Backpropagation Algorithm in

Neural Networks - neptune.ai

• Back Propagation Algorithm (professional-ai.com)

• K Ming Leung (2007) Fixed eight Competitive Nets : Hamming Net.

Polytechnic University

8.8 QUIZ

1. What is the objective of backpropagation algorithm?

a) To develop learning algorithm for multilayer feedforward

neural network, so that network can be trained to capture

the mapping implicitly

b) To develop learning algorithm for multilayer feedforward

neural network

https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide
https://neptune.ai/blog/backpropagation-algorithm-in-neural-networks-guide
https://www.professional-ai.com/back-propagation-algorithm.html

124

Artificial Intelligence
and Soft Computing

124

c) To develop learning algorithm for multilayer feedforward

neural network

d) All of the above

2. The general limitations of back propagation rule is/are

a) Scaling

b) Slow convergence

c) Local minima problem

d) All of the above

3. Identify the type of learning in which labelled training data is used.

a) Unsupervised

b) Supervised

c) Reinforcement

d) Semi supervised

4. What is unsupervised learning?

a) Number of groups may be known

b) Features of group explicitly stated

c) Neither feature nor number of groups is known

d) None of the above

5. Real-Time decisions, Game AI, Learning Tasks, Skill acquisition,

and Robot Navigation are applications of ________

a) Unsupervised Learning: Regression

b) Supervised Learning: Classification

c) Reinforcement Learning

d) Semi supervised

6. ______________ are used to create non-linear neural networks.

a) nodes or neurons

b) weights

c) bias

d) activation function

7. The aim of _________________ is to maximize the reward of the

system through a trial and error.

a) supervised learning

b) reinforcement learning

c) unsupervised learning

d) semi supervised learning

125

Supervised & Unsupervised

Learning Networks
8. Which problem is not linearly separable?

a) XOR

b) AND

c) OR

d) both XOR & OR

9. Which methos can train the network to have minimum error ?

a) generalized least square

b) Least Mean Squares method

c) ordinary least squares

d) Minima

10. Sigmoid function can be used for values between _________.

a) 1 and 2

b) 0 and -1

c) 1 and -1

d) 0 and 1

11. What is M in MADALINE?

a) Multiple

b) Many

c) Minimum

d) Maximum

12. __________takes a real-valued input and squashes it to the range.

a) Sigmoid

b) tanh

c) ReLU

d) Network

13. Adaline is also referred to as the ______________

a) Widrow-Hoff learning rule

b) Perceptron learning rule

c) Delta learning rule

d) LMS learning rule

14. The output of ________ will be given as input to MaxNet.

a) Adaline neural network

b) backpropagation neural network

c) hamming neural network

d) Madaline neural network

126

Artificial Intelligence
and Soft Computing

126

15. Which of the following depends on Winner-Take-All WTA policy?

a) Linear separability

b) Madaline

c) Adaline

d) MaxNet

8.9 EXERCISE

1. What is learning? Explain the types of learning process.

2. Explain

a) Supervised learning

b) Unsupervised learning

c) Reinforcement learning

3. Explain the implementation of linear separability

4. Show that XOR is not linear separable.

5. Explain perceptron learning algorithm

6. What is adaptive linear neuron?

7. Describe Madaline in detail.

8. Give the steps for back propagation algorithm.

9. Explain MaxNet in detail.

8.10 VIDEO LINKS

1. (1897) Supervised, Unsupervised, Reinforcement learning in

Machine Learning | Talib Iqbal - YouTube

2. (1863) Perceptron learning algorithm with solved example (in

Hindi) - YouTube

3. (1863) Neural Network Learning Rules - Part 2 - Perceptron, Delta,

Widrow-Hoff - YouTube

4. (1897) Lecture 8: Linear Separability | ANN - YouTube

5. (1863) Lecture 14: Widrow-Hoff Learning Rule | ANN - YouTube

6. (1897) Adaptive Linear Neuron | Adaline | Basic Concepts | Neural

Networks - YouTube

7. (1897) Multiple Adaptive Linear Neuron | Madaline | Basic

Concepts | Neural Networks - YouTube

8. (1897) Maxnet Neural Networks - YouTube

https://www.youtube.com/watch?v=BscxUPgR6m8
https://www.youtube.com/watch?v=BscxUPgR6m8
https://www.youtube.com/watch?v=GDJM8MXYaK0
https://www.youtube.com/watch?v=GDJM8MXYaK0
https://www.youtube.com/watch?v=f7jOPfYhi_A
https://www.youtube.com/watch?v=f7jOPfYhi_A
https://www.youtube.com/watch?v=dDHvWa_zfZo
https://www.youtube.com/watch?v=yOhG9RN7hZ4
https://www.youtube.com/watch?v=-daqvXBKT0k
https://www.youtube.com/watch?v=-daqvXBKT0k
https://www.youtube.com/watch?v=--B_EM8Yu2I
https://www.youtube.com/watch?v=--B_EM8Yu2I
https://www.youtube.com/watch?v=Y--FtCTzh_s

127

9
FUZZY LOGIC

Unit Structure

9.1 Objective

 9.1.1 Introduction

 9.1.2 Architecture

 9.1.3 Membership function

 9.1.4 Fuzzy control

 9.1.5 Applications

9.2 Classical sets

9.3 Fuzzy sets

9.4 Classical relations and Fuzzy relations

9.5 Cartesian product of relations

 9.5.1 Cartesian product

 9.5.2 Cartesian Product Definition

 9.5.3 Find cartesian product

 9.5.4 Cartesian product of several sets

 9.5.5 Cartesian product of Empty set

 9.5.6 Cartesian product of countable set

 9.5.7 Cartesian product of relations

 9.5.8 Cardinality of a cartesian product

9.6 Classical relations

9.7 Fuzzy relations membership functions

 9.7.1 Mathematical Notations

9.8 Features of membership functions

9.9 Fuzzification

9.10 Methods of membership value assignment

9.11 Defuzzification

9.12 Lambda- cuts for fuzzy sets (Alpha-Cuts)

9.13 Lambda cut for fuzzy relations

9.14 Defuzzification methods

9.1 OBJECTIVE

The word fuzzy refers to things which are not clear or are vague. Any

event, process, or function that is changing continuously cannot always be

defined as either true or false, which means that we need to define such

activities in a Fuzzy manner.

128

Artificial Intelligence
and Soft Computing

128

9.1.1 Introduction

What is Fuzzy Logic?

Fuzzy Logic resembles the human decision-making methodology. It deals

with vague and imprecise information. This is gross oversimplification of

the real-world problems and based on degrees of truth rather than usual

true/false or 1/0 like Boolean logic.

Take a look at the following diagram. It shows that in fuzzy systems, the

values are indicated by a number in the range from 0 to 1. Here 1.0

represents absolute truth and 0.0 represents absolute falseness. The

number which indicates the value in fuzzy systems is called the truth

value.

In other words, we can say that fuzzy logic is not logic that is fuzzy, but

logic that is used to describe fuzziness. There can be numerous other

examples like this with the help of which we can understand the concept

of fuzzy logic.

Fuzzy Logic was introduced in 1965 by Lofti A. Zadeh in his research

paper “Fuzzy Sets”. He is considered as the father of Fuzzy Logic.

9.1.2 Architecture:

Its Architecture contains four parts :

Rule base: It contains the set of rules and the IF-THEN conditions

provided by the experts to govern the decision-making system, on the

basis of linguistic information. Recent developments in fuzzy theory offer

several effective methods for the design and tuning of fuzzy controllers.

Most of these developments reduce the number of fuzzy rules.

Fuzzification: It is used to convert inputs i.e. crisp numbers into fuzzy

sets. Crisp inputs are basically the exact inputs measured by sensors and

passed into the control system for processing, such as temperature,

pressure, rpm’s, etc.

129

Fuzzy Logic Inference engine: It determines the matching degree of the current fuzzy

input with respect to each rule and decides which rules are to be fired

according to the input field. Next, the fired rules are combined to form the

control actions.

Defuzzification: It is used to convert the fuzzy sets obtained by the

inference engine into a crisp value. There are several defuzzification

methods available and the best-suited one is used with a specific expert

system to reduce the error.

9.1.3 Membership function:

Definition: A graph that defines how each point in the input space is

mapped to membership value between 0 and 1. Input space is often

referred to as the universe of discourse or universal set (u), which contains

all the possible elements of concern in each particular application.

There are largely three types of fuzzifiers:

1. Singleton fuzzifier

2. Gaussian fuzzifier

3. Trapezoidal or triangular fuzzifier

9.1.4 What is Fuzzy Control?

It is a technique to embody human-like thinking’s into a control system.

It may not be designed to give accurate reasoning but it is designed to give

acceptable reasoning. It can emulate human deductive thinking, that is, the

process people use to infer conclusions from what they know. Any

uncertainties can be easily dealt with the help of fuzzy logic.

Advantages of Fuzzy Logic System:

1. This system can work with any type of inputs whether it is

imprecise, distorted or noisy input information.

2. The construction of Fuzzy Logic Systems is easy and

understandable.

3. Fuzzy logic comes with mathematical concepts of set theory and the

reasoning of that is quite simple.

4. It provides a very efficient solution to complex problems in all fields

of life as it resembles human reasoning and decision-making.

5. The algorithms can be described with little data, so little memory is

required.

Disadvantages of Fuzzy Logic Systems:

1. Many researchers proposed different ways to solve a given problem

through fuzzy logic which leads to ambiguity. There is no systematic

approach to solve a given problem through fuzzy logic.

2. Proof of

130

Artificial Intelligence
and Soft Computing

130

3. 100its characteristics is difficult or impossible in most cases because

every time we do not get a mathematical description of our

approach.

4. As fuzzy logic works on precise as well as imprecise data so most of

the time accuracy is compromised.

9.1.5 Application :

1. It is used in the aerospace field for altitude control of spacecraft and

satellites.

2. It has been used in the automotive system for speed control, traffic

control.

3. It is used for decision-making support systems and personal

evaluation in the large company business.

4. It has application in the chemical industry for controlling the pH,

drying, chemical distillation process.

5. Fuzzy logic is used in Natural language processing and various

intensive applications in Artificial Intelligence.

6. Fuzzy logic is extensively used in modern control systems such as

expert systems.

7. Fuzzy Logic is used with Neural Networks as it mimics how a

person would make decisions, only much faster. It is done by

Aggregation of data and changing it into more meaningful data by

forming partial truths as Fuzzy sets.

9.2 CLASSICAL SETS

Classical set is a collection of distinct objects. For example, a set of

students passing grades.

Each individual entity in a set is called a member or an element of the set.

The classical set is defined in such a way that the universe of discourse is

splitted into two groups members and non-members. Hence, In case

classical sets, no partial membership exists.

Let A is a given set. The membership function can be used to define a set

A is given by:

Operations on classical sets: For two sets A and B and Universe X:

Union:

This operation is also called logical OR.

131

Fuzzy Logic Intersection:

This operation is also called logical AND.

Complement:

Difference:

Properties of classical sets: For two sets A and B and Universe X:

Commutativity:

Associativity:

Distributivity:

Idempotency:

Identity:

Transitivity:

132

Artificial Intelligence
and Soft Computing

132

9.3 FUZZY SET

Fuzzy set is a set having degrees of membership between 1 and 0. Fuzzy

sets are represented with tilde character(~). For example, Number of cars

following traffic signals at a particular time out of all cars present will

have membership value between [0,1].

Partial membership exists when member of one fuzzy set can also be a

part of other fuzzy sets in the same universe. The degree of membership or

truth is not same as probability, fuzzy truth represents membership in

vaguely defined sets.

A fuzzy set A~ in the universe of discourse, U, can be defined as a set of

ordered pairs and it is given by,

When the universe of discourse, U, is discrete and finite, fuzzy set A~ is

given by

Fuzzy sets also satisfy every property of classical sets.

Common Operations on fuzzy sets: Given two Fuzzy sets A~ and B~

Union : Fuzzy set C~ is union of Fuzzy sets A~ and B~ :

Intersection: Fuzzy set D~ is intersection of Fuzzy sets A~ and B~ :

Complement: Fuzzy set E~ is complement of Fuzzy set A~ :

133

Fuzzy Logic Some other useful operations on Fuzzy set:

Algebraic sum:

Algebraic product:

Bounded sum:

Bounded difference:

9.4 CLASSICAL RELATIONS AND FUZZY RELATIONS

A relation is of fundamental importance in all-engineering, science, and

mathematically based fields. It is associated with graph theory, a subject

of wide impact in design and data manipulation. Relations are intimately

involved in logic, approximate reasoning, classification, rule-based

systems, pattern recognition, and control. Relations represent the mapping

of the sets. In the case of crisp relation there are only two degrees of

relationship between the elements of sets in a crisp relation, i.e.,

“completely related” and “not related”. But fuzzy relations have infinite

number of relationships between the extremes of completely related and

not related between the elements of two or more sets considered. A crisp

relation represents the presence or absence of association, interaction, or

interconnectedness between the elements of two or more sets. Degrees of

association can be represented by membership grades in a fuzzy relation

by membership grades in a fuzzy relation in the same way as degrees of

set membership are represented in the fuzzy set. Crisp set can be viewed

as a restricted case of the more general fuzzy set concept.

9.5 CARTESIAN PRODUCT OF RELATIONS

Cartesian product is most commonly implemented in set theory. In

addition to this, many real-life objects can be represented by

using cartesian products such as a deck of cards, chess boards, computer

images, etc. Most of the digital images displayed by computers are

represented as pixels which are graphical representations of cartesian

products.

134

Artificial Intelligence
and Soft Computing

134

9.5.1 What Is a Cartesian Product?

Cartesian product is the product of any two sets, but this product is

actually ordered i.e., the resultant set contains all possible and ordered

pairs such that the first element of the pair belongs to the first set and the

second element belongs to the second set. Since their order of appearance

is important, we call them first and second elements respectively. We use

ordered pairs to obtain a new set from two given sets A and B.

An ordered pair (p, q) consists of two values p and q. Example: (1, 3) and

(- 4, 10) is an ordered pair where these pair of numbers are in a specific

order.

Consequently, (p, q) ≠ (q,p) unless p = q. In general, (p, q) = (s, t) if and

only if p = s and q = t. Example: (1, 3) is not equivalent to (3, 1) i.e., (1, 3)

≠ (3, 1).

(1, 2) and (- 4, 12) An ordered pair is a pair of numbers in a specific order.

For example, (1, 2) and (- 4, 12) are ordered pairs. The order of the two

numbers is important: (1, 2) is not equivalent to (2, 1) -- (1, 2)≠(2, 1).

9.5.2 Cartesian Product Definition

If C and D are two non-empty sets, then the cartesian product, C × D is the

set of all ordered pairs (a, b) with the first element from C and the second

element from D. Similar to the other product operations, we use the same

multiplication sign × to represent the cartesian product between two

sets. Here, we use the notation C × D for the Cartesian product of C and

D.

By using the set-builder notations, we can write the cartesian product as:

C × D = {(a,b): a ∈ C, b ∈ D}. Here a belongs to set C and b belongs to set

D.

If both the sets are the same i.e, if C = D then C × D is called the cartesian

square of the set C and it is denoted by C2

C2 = C × C = {(a,b): a ∈ C, b ∈ C}

Cartesian Product of Sets:

The cartesian products of sets can be considered as the product of two

non-empty sets in an ordered way. The final product of the sets will be a

collection of all ordered pairs obtained by the product of the two non-

empty sets. In an ordered pair, two elements are taken from each of the

two sets.

9.5.3 How to Find Cartesian Product?

Consider two non-empty sets C = {x, y, z} and D = {1, 2, 3} as shown in

the below image:

135

Fuzzy Logic

Cartesian Product

The cartesian product, also known as the cross-product or the product set

of C and D is obtained by following the below-mentioned steps:

The first element x is taken from the set C {x, y, z} and the second

element 1 is taken from the second set D {1, 2, 3}

Both these elements are multiplied to form the first ordered pair (x,1)

The same step is repeated for all the other pairs too until all the possible

combinations are chosen

The entire collection of all such ordered pairs gives us a cartesian product

C x D = {(x,1), (x,2), (x,3), (y,1), (y,2), (y,3),(z,1), (z,2), (z,3)}.

Similarly, we can find the cartesian product of D x C.

Let us find the cartesian product of the two sets C and D, where C =

{11,12,13} and D = {7, 8}.

After following the steps mentioned above:

The resultant product C x D will be: {(11,7), (11,8), (12,7), (12,8), (13,7),

(13,8)}.

Similarly, we can find the cartesian product of D and C as D × C = {

(7,11),(7,12),(7,13),(8,11),(8,12),(8,13)}.

The cartesian products C × D and D × C do not contain exactly the same

ordered pairs. Hence, in general, C × D ≠ D × C.

9.5.4 Cartesian Product of Several Sets:

We can extend or define the cartesian product to more than two sets. The

cartesian product of several input sets is a larger set that contains every

ordered combinations of all the input set elements. The cartesian product

of three sets P, Q, and R can be written as:

P × Q × R = { (a,b,c): a ∈ P, b ∈ Q, c ∈ R }

Let us consider the example of three sets A, B and C, where A = {2,3} , B

= {x,y}, and C = {5,6}. In order to find the cartesian product of A × B ×

C, let us find the cartesian product of A × B first.

136

Artificial Intelligence
and Soft Computing

136

A × B = {(2,x), (2,y),(3,x),(3,y)}.

A × B × C = {(2,x,5), (2,x,6), (2,y,5), (2,y,6), (3,x,5), (3,x,6), (3,y,5),

(3,y,6)}

9.5.5 Cartesian Product of Empty Set:

The empty set is a unique set with no elements. Both its size

or cardinality i.e, the total count of elements in a set will remain as zero.

An empty set is also referred to as a void set. The Cartesian product of C

and the empty set ∅ is the empty set ∅.

Let C × ∅ = {(a,b)| a ∈ C, b∈ ∅}. There is no element in ∅. C × D =∅ if

and only if C = ∅ or D = ∅. Here, the cartesian product of two sets will

result in an empty set if and only if, either of the sets is an empty set.

Consider the example: If C = {1, 2} and D = ϕ. Then, C × D = ϕ and D ×

C = ϕ.

These are the properties of the empty set:

Empty set's subset is the empty set itself: ∀C:C⊆∅⇒C=∅∀C:C⊆∅⇒C=∅

The empty set's power set is the set containing only the empty set: 2n =

20 = 1.

The cardinality of the empty set i.e., the number of elements of the set is

zero: n(∅) = 0

9.5.6 Cartesian Product of Countable Sets:

The cartesian product of two countable sets is countable. Let us take these

two cases to understand this:

Consider an integer b in such a way that b > 1. Then the cartesian product

of b countable sets is countable.

Consider the two countable sets A = { a0a0, a1a1,a2a2.. } and B =

{b0b0, b1b1,b2b2.. }. If both the sets A and B are countable, then the

resulting set will also be countable.

9.5.7 Cartesian Product of Relations:

The cartesian product of relations is the same as the relation across two

sets. Generally, the cartesian product is represented for a set and not for a

relation. Further the universal relation relates every element of one set to

an element of another set, and hence it can be represented as the cartesian

product of relations.

Properties Representation

Cartesian product is non-

commutative i.e., the result

depends on the order of the sets

Consider the two sets C and

D:

C × D ≠ D × C

C × D = D × C, if and only if

C = D.

137

Fuzzy Logic

Properties Representation

C × D = ∅, if either C = ∅ or

D =∅

Cartesian product is non-

associative i.e., it does not

follow the associative property.

rearranging the parentheses in

this expression will change the

result.

(C × D) × E ≠ C × (D × E)

Distributive property over

the intersection of sets.

C × (D∩E) = (C × D) ∩ (C ×

E)

Distributive property over

the union of sets.

C × (D∪E) = (C × D) ∪ (C ×

E)

9.5.8 Cardinality of a Cartesian Product

The cardinality of a set is the total number of elements present in the

set. The cardinal number of A is n(A) = number of all the elements in set

A. Example: The cardinal number of a set of English alphabets A = (a, b, c

.....x. y. z) is n(A) = 26.

The сardinality of a cartesian product of two sets C and D is equal to the

product of the cardinalities of these two sets: n(C × D) = n(D × C) = n(C)

× n(D). Similarly, n(C1C1 ×…× CnCn) = n(C1C1) ×…× n(CnCn).

Consider two sets C and D, where C = {2,3} and n(C) = 2, D = {5,4,7}

and n(D) = 3. So, n(C × D) = n(C) × n(D) = 2 × 3 = 6. Here, we can see

that the cardinality of the output set C × D is equal to the product of the

cardinalities of all the input sets C and D. That is, 6.

9.6 CLASSICAL RELATIONS

Crisp relation basically is a collection of ordered pairs. So, if A and B are

the two sets then all its ordered pairs are denoted by the Cartesian product

A ×B i.e {(a , b)∨ a∈ A ∧ b∈B} and a subset of this collection will be

Binary relation Let us make it clear with the help of an example

138

Artificial Intelligence
and Soft Computing

138

 Example: Consider two crisp sets A and B as given below

A={1,2,3,4} and B={3,5,7}

Then cartesian product A X B = {(1,3),(1,5),(1,7), (2,3), (2,5), (2,7), (3,3),

(3,5), (3,7), (4,3), (4,5), (4,7)}

Now let us define a relation R as a collection of all those ordered pairs

where b=a+1 i.e if i write it mathematically

R= {(a,b)|b= a+1, (a,b) Ɛ A X B

Then binary relation R= {(2,3), (4,5)} in this case

Note since we have two sets A and B, the relation R is a binary relation.

So, a relation is basically a collection of order pairs which satisfy a

particular mapping or a particular definition.

We can also say that A ×B essentially provides a mapping from an

element a that belongs to set A i.e a ∈ A to another element b that belongs

to set B i.e b ∈ B . So, it is basically a mapping and this mapping is

expressed by means of an order pair and this particular mapping is called a

relation.

This crisp relation can be represented in a more visual and compact way in

the form of a matrix

If we take the previous example R= {(2,3), (4,5)}

We can also represent the relation in given example in matrix form as

shown below:

• So, you can see 1 and 3 does not belong to the set therefore it is 0

and the elements 2 and 3 belong to the set R, so it is 1. So, here 0

and 1 are the entries in the relation matrix. 0 indicates that the

ordered pair does not belong to relation R and 1 indicates that the

ordered pair belongs to the relation R.

• So, this way a relation can be represented by means of a Relation

Matrix.

• You can also easily observe from the relation matrix R given above

that there are only two degrees of relationship between elements of

the sets in a crisp relation: the relationships ‘‘completely related’’

(1) and ‘‘not related,’’ (0) in a binary sense.

9.7 FUZZY RELATIONS MEMBERSHIP FUNCTIONS

We already know that fuzzy logic is not logic that is fuzzy but logic that is

used to describe fuzziness. This fuzziness is best characterized by its

membership function. In other words, we can say that membership

function represents the degree of truth in fuzzy logic.

139

Fuzzy Logic

Following are a few important points relating to the membership

function −

1. Membership functions were first introduced in 1965 by Lofti A.

Zadeh in his first research paper “fuzzy sets”.

2. Membership functions characterize fuzziness (i.e., all the

information in fuzzy set), whether the elements in fuzzy sets are

discrete or continuous.

3. Membership functions can be defined as a technique to solve

practical problems by experience rather than knowledge.

4. Membership functions are represented by graphical forms.

5. Rules for defining fuzziness are fuzzy too.

9.7.1 Mathematical Notation

We have already studied that a fuzzy set Ã in the universe of

information U can be defined as a set of ordered pairs and it can be

represented mathematically as −

A˜={(y,μA˜(y))|y∈U}A~={(y,μA~(y))|y∈U}

Here μA˜(∙)μA~(∙) = membership function of A˜A~; this assumes values

in the range from 0 to 1, i.e., μA˜(∙)∈[0,1]μA~(∙)∈[0,1]. The membership

function μA˜(∙)μA~(∙) maps UU to the membership spaceMM.

The dot (∙)(∙) in the membership function described above, represents the

element in a fuzzy set; whether it is discrete or continuous.

9.8 FEATURES OF MEMBERSHIP FUNCTIONS

We will now discuss the different features of Membership Functions.

1. Core

For any fuzzy set A˜A~, the core of a membership function is that region

of universe that is characterize by full membership in the set. Hence, core

consists of all those elements yy of the universe of information such that,

μA˜(y)=1μA~(y)=1

2. Support

For any fuzzy set A˜A~, the support of a membership function is the

region of universe that is characterize by a nonzero membership in the set.

140

Artificial Intelligence
and Soft Computing

140

Hence core consists of all those elements yy of the universe of information

such that,

μA˜(y)>0μA~(y)>0

3. Boundary

For any fuzzy set A˜A~, the boundary of a membership function is the

region of universe that is characterized by a nonzero but incomplete

membership in the set. Hence, core consists of all those elements yy of the

universe of information such that,

1>μA˜(y)>0

9.9 FUZZIFICATION

It may be defined as the process of transforming a crisp set to a fuzzy set

or a fuzzy set to fuzzier set. Basically, this operation translates accurate

crisp input values into linguistic variables.

Following are the two important methods of fuzzification −

Support Fuzzification(s-fuzzification) Method

In this method, the fuzzified set can be expressed with the help of the

following relation −

A˜=μ1Q(x1)+μ2Q(x2)+...+μnQ(xn)A~=μ1Q(x1)+μ2Q(x2)+...+μnQ(xn)

Here the fuzzy set Q(xi)Q(xi) is called as kernel of fuzzification. This

method is implemented by keeping μiμi constant and xixi being

transformed to a fuzzy set Q(xi)Q(xi).

Grade Fuzzification (g-fuzzification) Method

It is quite similar to the above method but the main difference is that it

kept xixi constant and μiμi is expressed as a fuzzy set.

9.10 METHODS OF MEMBERSHIP VALUE ASSIGNMENT

The method of assigning membership values are as follows:

1. Intuition

2. Inference

3. Rank Ordering

4. Angular Fuzzy Sets

141

Fuzzy Logic 5. Neural Networks

6. Genetic Algorithm

7. Inductive Reasoning.

1) Intuition

 Intuition method is based upon the common intelligence of human. It is

the capacity of the human to develop membership functions on the basis of

their own intelligence and understanding capacity. There should be an in-

depth knowledge of the application to which membership value

assignment has to be made. The Figure below shows various shapes of

weights of people measured in kilogram in the universe. Each curve is a

membership function corresponding to various fuzzy (linguistic) variables;

such as very light, light, normal, heavy and very heavy. The curves are

based on context functions and the human developing them. For example,

if the weights are referred to range of thin persons we get one set of

curves, and if they are referred to range of normal weighing persons we

get another set and so on. The main characteristics of these curves for their

usage in fuzzy operations are based on their overlapping capacity.

2) Inference

The inference method uses knowledge to perform deductive reasoning.

Deduction achieves conclusion by means of forward inference. There are

various methods for performing deductive reasoning. Here the knowledge

of geometrical shapes and geometry is used for defining membership

values. The membership functions may be defined by various shapes:

triangular, trapezoidal, bell-shaped, Gaussian and so on. The inference

method here is discussed via triangular shape.

Consider a triangle, where X, Y and Z are the angles such that

and let u be the universe of triangles, i.e.,

142

Artificial Intelligence
and Soft Computing

142

There are various types of triangles available. Here a few are considered to

explain inference methodology:

The membership values of approximate isosceles triangle are obtained

using the

The membership value of approximate right-angle triangle is given by:

3) Rank Ordering

The formation of government is based on the polling concept; to identify a

best student, ranking may be performed; to buy a car, one can ask for

several opinions and so on. All the above-mentioned activities are carried

out on the basis of the preferences made by an individual, a committee, a

poll and other opinion methods. This methodology can be adapted to

assign membership values to a fuzzy variable. Pairwise comparisons

enable us to determine preferences and this results in determining the

order of the membership.

143

Fuzzy Logic

9.11 DEFUZZIFICATION

It may be defined as the process of reducing a fuzzy set into a crisp set or

to convert a fuzzy member into a crisp member.

We have already studied that the fuzzification process involves conversion

from crisp quantities to fuzzy quantities. In a number of engineering

applications, it is necessary to defuzzify the result or rather “fuzzy result”

so that it must be converted to crisp result. Mathematically, the process of

Defuzzification is also called “rounding it off”.

9.12 LAMBDA –CUTS FOR FUZZY SETS (ALPHA-CUTS)

Consider a fuzzy set Aλ,. The set Aλ(0< λ<1) ,called the lambda (λ)- cut

or (alpha cut [α]-cut)set, is a crisp set of the fuzzy set and is defined as

follows:

Aλ = {x|µA(x) ≥ λ}

The setAλ.is called a weak lambda-cut set if it consists of all the elements

of a fuzzy set whose membership functions have values greater than or

equal to a specified value. On the other hand, the set Aλ, is called a Strong

lambda-cut set if it consists of all the elements of a fuzzy set whose

membership functions have values strictly greater than specified value. A

strong λ-cut set is given by: Aλ = {x|µA(x) ≥ λ}

Properties of lambda cut fuzzy sets:

If A and B are two fuzzy sets, defined with the same universe of discourse,

then

1. 1 (A ∪ B)λ = Aλ ∪ Bλ

2. 2 (A ∩ B)λ = Aλ ∩ Bλ

3. 3 (A)λ 6= Aλ except for value of λ = 0.5

4. 4 For any λ ≤ α, where α varies between 0 and 1, it is true that Aα ⊆

Aλ , where the value of A0 will be the universe of discourse.

9.13 LAMBDA CUT FOR FUZZY RELATIONS

The lambda cut procedure for relations is similar to that for the lambda cut

sets. Considering a fuzzy relation R ∼, in which some of the relational

matrix represents a fuzzy set.

A fuzzy relation can be converted into a crisp relation by depending the

lambda cut relation of the fuzzy relation as:

 Rλ = {x,y/µR (x,y) ≥ λ}

144

Artificial Intelligence
and Soft Computing

144

 Properties of Lambda Cut Relations:

If R and S are two fuzzy relations, defined with the same fuzzy sets over

the same universe of discourses, then

(1) (R ∪ S)λ = Rλ ∪ Sλ

(2) (R ∩ S)λ = Rλ ∩ Sλ

(3) (R)λ 6= Rλ

(4) For λ ≤ α, where α between 0 and 1 , then Rα ⊆ Rλ

9.14 DEFUZZIFICATION METHODS

The different methods of Defuzzification are described below :

1. Max-Membership Method

This method is limited to peak output functions and also known as height

method. Mathematically it can be represented as follows −

μA˜(x∗)>μA˜(x)forallx∈XμA~(x∗)>μA~(x)forallx∈X

Here, x∗x∗ is the defuzzified output.

2. Centroid Method

This method is also known as the center of area or the center of gravity

method. Mathematically, the defuzzified output x∗x∗ will be represented

as −

x∗=∫μA˜(x).xdx∫μA˜(x).dxx∗=∫μA~(x).xdx∫μA~(x).dx

3. Weighted Average Method

In this method, each membership function is weighted by its maximum

membership value. Mathematically, the defuzzified output x∗x∗ will be

represented as −

x∗=∑μA˜(xi¯¯¯¯¯).xi¯¯¯¯¯∑μA˜(xi¯¯¯¯¯)x∗=∑μA~(xi¯).xi¯∑μA~(xi¯)

4. Mean-Max Membership

This method is also known as the middle of the maxima. Mathematically,

the defuzzified output x∗x∗ will be represented as −

x∗=∑i=1nxi¯¯¯¯¯n

Multiple Choice Questions

1) Which of the following is associated with fuzzy logic?

a) Crisp set logic

b) Many-valued logic

c) Two-valued logic

d) Binary set logic

145

Fuzzy Logic 2) The truth values of traditional set theory can be defined as

_________ and that of fuzzy logic is termed as _________.

a) Either 0 or 1, either 0 or 1.

b) Between 0 & 1, either 0 or 1.

c) Either 0 or 1, between 0 & 1.

d) Between 0 & 1, between 0 & 1.

3) How many types of random variables are there in Fuzzy logic?

a) 2

b) 4

c) 1

d) 3

4) Which of the following represents the values of set membership?

a) Degree of truth

b) Probabilities

c) Discrete set

d) Both a & b

5) The probability density function is represented by

a) Continuous variable

b) Discrete variable

c) Probability distributions for Continuous variables

d) Probability distributions

6) _________is used for probability theory sentences.

a) Logic

b) Extension of propositional logic

c) Conditional logic

d) None of the above

7) Which of the following fuzzy operators are utilized in fuzzy set

theory?

a) AND

b) OR

c) NOT

d) EX-OR

8) What is the name of the operator in fuzzy set theory, which is found

to be linguistic in nature?

a) Lingual Variable

b) Fuzz Variable

c) Hedges

d) None of the above

146

Artificial Intelligence
and Soft Computing

146

9) _________ represents the fuzzy logic

a) IF-THEN rules

b) IF-THEN-ELSE rules

c) Both a & b

d) None of the above

10) Uncertainty can be represented by _________

a) Entropy

b) Fuzzy logic

c) Probability

d) All of the above

147

10
FUZZY INFERENCE SYSTEM - I

Unit Structure

10.1 Objective

 10.1.1 Introduction

10.2 Truth Values and Tables in Fuzzy Logic

10.3 Fuzzy Propositions Rules

10.4 Formation of Rules

10.5 Decomposition of Rules

10.6 Aggregation of Rules

10.7 Fuzzy Inference System

 10.7.1 Construction and Working Principle of FIS

 10.7.2 Methods of FIS

 10.7.3- Comparison between the two methods

10.1 OBJECTIVE

In a fuzzy inference system, an inference rule is a mapping from a set of

premise facts to a conclusion fact. There are several approaches to fuzzy

inference system design. For example, one approach is based on a set of

rules whose premises are all combinations of the input fuzzy sets, while

the conclusion is determined by the output fuzzy set. Another is based on a

set of rules whose premises are all combinations of the input fuzzy sets,

while the conclusion is determined by the complement (negation) of the

output fuzzy set. Yet another approach is based on a set of rules whose

premises are the input fuzzy sets, and whose conclusions are the

complement of the output fuzzy set.

10.1.1 Introduction

Fuzzy Inference System is the key unit of a fuzzy logic system having

decision making as its primary work. It uses the “IF…THEN” rules along

with connectors “OR” or “AND” for drawing essential decision rules.

Characteristics of Fuzzy Inference System:

• The output from FIS is always a fuzzy set irrespective of its input

which can be fuzzy or crisp.

• It is necessary to have fuzzy output when it is used as a controller.

148

Artificial Intelligence
 and Soft Computing

148

• A defuzzification unit would be there with FIS to convert fuzzy

variables into crisp variables.

10.2 TRUTH VALUES AND TABLES IN FUZZY LOGIC

Fuzzy logic uses linguistic variables. The values of a linguistic variable

are words or sentences in a natural or artificial language. For example,

height is a linguistic variable if it rakes values such as tall, medium, short

and so on. The linguistic variable provides approximate characterization of

a complex problem. The name of the variable, the universe of discourse

and a fuzzy subset of universe of discourse characterize a fuzzy variable.

A linguistic variable is a variable of a higher order than a fuzzy variable

and its values are taken to be fuzzy variables.

A linguistic variable is characterized by:

• name of the variable (x);

• term set of the variable t(x);

• syntactic rule for generating the values of x;

semantic rule for associating each value of x with its meaning.

Apart from the linguistic variables, there exists what are called as

linguistic hedges (linguistic modifiers).

Examples of linguistic hedges In the fuzzy set "very tall", the word "very"

is a linguistic hedge. A few popular linguistic hedges include: very,

highly, slightly, moderately, plus, minus, fairly, rather.

Reasoning has logic as its basis, whereas propositions are text sentences

expressed in any language and are generally expressed in a canonical form

as zisP

Where 🡪 the symbol of the subject and P🡪 the predicate designing the

characteristics of the subject.

Example:

 "London is in United Kingdom"

"London" 🡪 the subject and "in United Kingdom" 🡪 the predicate, which

specifies a property of ''London," i.e., its geographical location in United

Kingdom.

Negation:

Every proposition has its opposite, called negation.

Logic Functions:

Truth cables define logic functions of two propositions.

Let X and Y be two propositions, either of which can be true or false.

149

Fuzzy Inference System - I The basic logic operations performed over the propositions are the

following:

1. Conjunction (Ʌ) :X AND Y.

2. Disjunction (˅) :XOR Y.

3. Implication or conditional (=>): IF X THEN Y.

4. Bidirectional or equivalence (<->): X IF AND ONLY IF Y.

Inference Rules:

On the basis of these operations on propositions, inference rules can be

formulated. Few inference rules are as follows:

The above rules produce certain propositions that are always true

irrespective of the truth values of propositions X and Y. Such propositions

are called tautologies.

An extension of set-theoretic bivalence logic is the fuzzy logic where the

truth values are terms of the linguistic variable "truth." The truth values of

propositions in fuzzy logic are allowed to range over the unit interval [0,

1]. A truth value in fuzzy logic "very true" may be interpreted as a fuzzy

set in [0, I]. The truth value of the proposition'' Z is A," or simply the truth

value of A, denoted by tv(A) is defined by a point in [0, 1] (called the

numerical truth value) or a fuzzy set in [0, 1] (called the linguistic truth

value). The truth value of a proposition can be obtained from the logic

operations of other propositions whose truth values are known. If tv(X)

and tv(Y) are numerical truth values of propositions X and Y,

respectively, then

10.3 FUZZY PROPOSITIONS

The fuzzy propositions are as follows:

1. Fuzzy predicates: In fuzzy logic the predicates can be fuzzy, for

example, tall, short, quick. Hence, we have proposition like "Peter is

tall."

150

Artificial Intelligence
 and Soft Computing

150

2. Fuzzy-predicate modifiers: In fuzzy logic, there exists a wide

range of predicate modifiers that act as hedges. For example, very,

fairly, moderately, rather, slightly. These predicate modifiers are

necessary for generating the values of a linguistic variable. An

example can be the proposition "Climate is moderately cool,"

where" moderately" is the fuzzy predicate modifier.

3. Fuzzy quantifiers: The fuzzy quantifiers such as most, several,

many, frequently are used in fuzzy logic. Employing these, we can

have proposition like "Many people are educated." A fuzzy

quantifier can be interpreted as a fuzzy number or a fuzzy

proposition, which provides an imprecise characterization of the

cardinality of one or more fuzzy or non-fuzzy sets. Fuzzy quantifiers

can be used to represent the meaning of propositions containing

probabilities; as a result, they can be used to manipulate probabilities

within fuzzy logic.

4. Fuzzy qualifiers: There are four modes of qualification in fuzzy

logic, which are as follows:

(i) Fuzzy truth qualification: It is expressed as "x is τ ," in

which τ is a fuzzy truth value. A fuzzy truth value claims the

degree of truth of a fuzzy proposition.

Example

(Paul is Young) is NOT VERY True.

Here the qualified proposition is (Paul is Young) and the

qualifying fuzzy truth value is "NOT Very True."

(ii) Fuzzy probability qualification: It is denoted as "x is λ

"where, λ is fuzzy probability. In conventional logic,

probability is either numerical or an interval. In fuzzy logic,

fuzzy probability is expressed by terms such as likely, very

likely, unlikely, around and so on.

 Example:

(Paul is Young) is Likely.

Here the qualifying fuzzy probability is "Likely." These

probabilities may be interpreted as fuzzy numbers, which may

be manipulated using fuzzy arithmetic.

(iii) Fuzzy possibility qualification:

 It is expressed as "x is π",where πis a fuzzy possibility and can

be of the following forms: possible, quite possible, almost

impossible. These values can be interpreted as labels of fuzzy

subsets of the real line.

Example:

(Paul is Young) is Almost Impossible.

Here the qualifying fuzzy possibility is "Almost Impossible."

151

Fuzzy Inference System - I (iv) Fuzzy usuality qualification: It is expressed as "usually (X)

=usually (X is F),"in which the subject X is a variable taking

values in a universe of discourse U and the predicate F is a

fuzzy subset of U and interpreted as a usual value of X

denoted by U(X) = F. The propositions that are usually true or

the events that have high probability of occurrence are related

by the concept of usuality qualification.

10.4 FORMATION OF RULES

The general way of representing human knowledge is by forming natural

language expressions given by

IF antecedent THEN consequent.

The above expression is referred to as the IF - THEN rule based form.

There are three general forms that exist for any linguistic variable. They

are:

(a) Assignment statements;

(b) Conditional statements;

(c) Unconditional statements.

1. Assignment statements:

They are of the form

y =small

Orange colour = orange

a=s

Paul is not tall and not very short Climate = autumn

Outside temperature = normal

These statements utilize "=" for assignment.

2. Conditional statements:

The following are some examples.

• IF y is very cool THEN stop.

• IF A is high THEN B is low ELSE B is not low.

• IF temperature is high THEN climate is hot.

The conditional statements use the "IF - THEN" rule-based form.

3. Unconditional statements:

They can be of the form

• Go to sum.

• Stop.

• Divide by a.

• Turn the pressure low

152

Artificial Intelligence
 and Soft Computing

152

10.5 DECOMPOSITION OF RULES

A compound rule is a collection of many simple rules combined together.

Any compound rule structure may be decomposed and reduced to a

number of simple canonical rule forms. The rules are generally based on

natural language representations.

The following are the methods used for decomposition of compound

linguistic rules into simple canonical rules.

• Multiple conjunctive antecedents

• Multiple disjunctive antecedents

• Conditional statements (ELSE and UNLESS)

• Nested IF-THEN rules

10.6 AGGREGATION OF FUZZY RULES

The rule-based system involves more than one rule. Aggregation of rules

is the process of obtaining the overall consequents from the individual

consequents provided by each rule.

The following two methods are used for aggregation of fuzzy rules:

1. Conjunctive system of rules:

For a system of rules to be jointly satisfied, the rules are connected by

"and" connectives. Here, the aggregated output, y, is determined by the

fuzzy intersection of all individual rule consequents, yi, where i=1ton, as

Y= y1, y2……and yn

This aggregated output can be defined by the membership function

2. Disjunctive system of rules:

 In this case, the satisfaction of at least one rule is required. The rules are

connected by "or" connectives. Here, the fuzzy union of all individual rule

contributions determines the aggregated output, as

Y= y1 or y2 or…. Or yn

Again, it can be defined by the membership function

153

Fuzzy Inference System - I 10.7 FUZZY INFERENCE SYSTEM (FIS)

Fuzzy rule-based systems, fuzzy models, and fuzzy expert systems are

generally known as inference systems. The key unit of a fuzzy logic

system is FIS. The primary work of this system is decision making.

FIS uses "IF ... THEN" rules along with connectors "OR" or "AND" for

making necessary decision rules. The input to FlS may be fuzzy or crisp,

but the output from FIS is always a fuzzy set. When FlS is used as a

controller, it is necessary to have crisp output. Hence, there should be a

defuzzification unit for converting fuzzy variables into crisp variables

along FIS.

10.7.1 Construction and Working Principle of FIS:

1. A rule base that contains numerous fuzzy IF-THEN rules.

2. A database that defines the membership functions of fuzzy sets used

in fuzzy rules.

1. 3.Decision making unit that performs operations on the rules.

2. 4.Fuzzification interface unit that converts the crisp quantities into

fuzzy quantities.

3. 5.Defuzzification interface unit that converts the fuzzy quantities

into crisp quantities.

Working methodology of FIS:

Initially, in the fuzzif1cation unit, the crisp input is converted into a fuzzy

input. Various fuzzification methods are employed for this. After this

process, rule base is formed. Database and rule base are collectively called

the knowledge base. Finally, defuzzification process is carried out to

produce crisp output. Mainly, the fuzzy rules are formed in the rule base

and suitable decisions are made in the decision-making unit.

154

Artificial Intelligence
 and Soft Computing

154

10.7.2 Methods of FI:

Let us now discuss the different methods of FIS. Following are the two

important methods of FIS, having different consequent of fuzzy rules −

• Mamdani Fuzzy Inference System

• Takagi-Sugeno Fuzzy Model (TS Method)

Mamdani Fuzzy Inference System

This system was proposed in 1975 by Ebhasim Mamdani. Basically, it was

anticipated to control a steam engine and boiler combination by

synthesizing a set of fuzzy rules obtained from people working on the

system.

Steps for Computing the Output

Following steps need to be followed to compute the output from this FIS −

Step 1 Set of fuzzy rules need to be determined in this step.

Step 2 In this step, by using input membership function, the input

would be made fuzzy.

Step 3 Now establish the rule strength by combining the fuzzified

inputs according to fuzzy rules.

Step 4 In this step, determine the consequent of rule by combining the

rule strength and the output membership function.

Step 5 For getting output distribution combine all the consequents.

Step 6 Finally, a defuzzified output distribution is obtained.

Following is a block diagram of Mamdani Fuzzy Interface System.

Takagi-Sugeno Fuzzy Model (TS Method)

155

Fuzzy Inference System - I This model was proposed by Takagi, Sugeno and Kang in 1985. Format of

this rule is given as −

IF x is A and y is B THEN Z = f(x,y)

Here, AB are fuzzy sets in antecedents and z = f(x,y) is a crisp function in

the consequent.

Fuzzy Inference Process

The fuzzy inference process under Takagi-Sugeno Fuzzy Model (TS

Method) works in the following way −

• Step 1: Fuzzifying the inputs − Here, the inputs of the system are

made fuzzy.

• Step 2: Applying the fuzzy operator − In this step, the fuzzy

operators must be applied to get the output.

Rule Format of the Sugeno Form

The rule format of Sugeno form is given by −

if 7 = x and 9 = y then output is z = ax+by+c

10.7.3 Comparison between the two methods

Let us now understand the comparison between the Mamdani System and

the Sugeno Model.

● Output Membership Function − The main difference between

them is on the basis of output membership function. The Sugeno

output membership functions are either linear or constant.

● Aggregation and Defuzzification Procedure − The difference

between them also lies in the consequence of fuzzy rules and due to

the same their aggregation and defuzzification procedure also

differs.

● Mathematical Rules − More mathematical rules exist for the

Sugeno rule than the Mamdani rule.

● Adjustable Parameters − The Sugeno controller has more

adjustable parameters than the Mamdani controller.

Multiple Choice Questions

1) Which of the following is considered while determining the nature

of the learning problem?

a) Problem

b) Feedback

c) Environment

d) All of the above

156

Artificial Intelligence
 and Soft Computing

156

2) The probability density function is represented by

a) Continuous variable

b) Discrete variable

c) Probability distributions for Continuous variables

d) Probability distributions

3) What is the name of the operator in fuzzy set theory, which is found

to be linguistic in nature?

a) Lingual Variable

b) Fuzz Variable

c) Hedges

d) None of the above

4) ________ represents the fuzzy logic

a) IF-THEN rules

b) IF-THEN-ELSE rules

c) Both a & b

d) None of the above

5) Uncertainty can be represented by _________

a) Entropy

b) Fuzzy logic

c) Probability

d) All of the above

6) Which of the following condition can directly influence a variable

by all the others?

a) Fully connected

b) Local connected

c) Partially connected

d) None of the above

7) Based on _________ membership function can be used to solve

empirical problems.

a) Knowledge

b) Learning

c) Examples

d) Experience

8) Which of the following takes input as an object described by a set of

attributes?

a) Graph

b) Decision graph

c) Tree

d) Decision tree

157

Fuzzy Inference System - I 9) FSI stands for____________

a) Fuzzy Inference System

b) Fuzzy Inferred System

c) Fuzzy Inter System

d) Fuzzy Interconnected system

10) A perceptron can be defined as _________

a) A double layer auto-associative neural network

b) A neural network with feedback

c) An auto-associative neural network

d) A single layer feed-forward neural network with pre-

processing

158

Artificial Intelligence
 and Soft Computing

158

11
FUZZY INFERENCE SYSTEM - II

Unit Structure

11.1 Objective

11.2 Introduction

 11.2.1 Truth Values and Tables in Fuzzy Logic

11.3 Fuzzy Propositions Rules

11.4 Formation of Rules

11.5 Decomposition of Rules

11.6 Aggregation of Rules

11.1 OBJECTIVE

In a fuzzy inference system, an inference rule is a mapping from a set of

premise facts to a conclusion fact. There are several approaches to fuzzy

inference system design. For example, one approach is based on a set of

rules whose premises are all combinations of the input fuzzy sets, while

the conclusion is determined by the output fuzzy set. Another is based on a

set of rules whose premises are all combinations of the input fuzzy sets,

while the conclusion is determined by the complement (negation) of the

output fuzzy set. Yet another approach is based on a set of rules whose

premises are the input fuzzy sets, and whose conclusions are the

complement of the output fuzzy set.

11.2 INTRODUCTION

Fuzzy Inference System is the key unit of a fuzzy logic system having

decision making as its primary work. It uses the “IF…THEN” rules along

with connectors “OR” or “AND” for drawing essential decision rules.

Characteristics of Fuzzy Inference System:

• The output from FIS is always a fuzzy set irrespective of its input

which can be fuzzy or crisp.

• It is necessary to have fuzzy output when it is used as a controller.

• A defuzzification unit would be there with FIS to convert fuzzy

variables into crisp variables.

Combining Outputs into an Output Distribution:

The outputs of all of the fuzzy rules must now be combined to obtain one

fuzzy output distribution. This is usually, but not always, done by using

the fuzzy. The output membership functions on the right hand side of the

figure are combined using the fuzzy "or" to obtain the output distribution

shown on the lower right corner of the figure.

159

Fuzzy Inference System - I

Defuzzification of Output Distribution

In many instances, it is desired to come up with a single crisp output from

a FIS. For example, if one was trying to classify a letter drawn by hand on

a drawing tablet, ultimately the FIS would have to come up with a crisp

number to tell the computer which letter was drawn. This crisp number is

obtained in a process known as defuzzification.

where z is the center of mass and uc is the membership in class c at value

zj. An example outcome of this computation is shown in below figure.

Fuzzy Query System:

A fuzzy query system is an interface to users to get information from the

database using (quasi) natural language sentences. Many fuzzy query

implementations have been proposed, resulting in slightly different

languages. Although there are some variations according to the

particularities of different implementations, the answer to a fuzzy query

sentence is generally a list of records, ranked by the degree of matching.

Fuzzy Logic : Application

Aerospace

In aerospace, fuzzy logic is used in the following areas −

• Altitude control of spacecraft

• Satellite altitude control

• Flow and mixture regulation in aircraft deicing vehicles

160

Artificial Intelligence
 and Soft Computing

160

Automotive

In automotive, fuzzy logic is used in the following areas −

• Trainable fuzzy systems for idle speed control

• Shift scheduling method for automatic transmission

• Intelligent highway systems

• Traffic control

• Improving efficiency of automatic transmissions

Business

In business, fuzzy logic is used in the following areas −

• Decision-making support systems

• Personnel evaluation in a large company

Defense

In defense, fuzzy logic is used in the following areas −

• Underwater target recognition

• Automatic target recognition of thermal infrared images

• Naval decision support aids

• Control of a hypervelocity interceptor

• Fuzzy set modeling of NATO decision making

Electronics

In electronics, fuzzy logic is used in the following areas −

• Control of automatic exposure in video cameras

• Humidity in a clean room

• Air conditioning systems

• Washing machine timing

• Microwave ovens

• Vacuum cleaners

Finance

In the finance field, fuzzy logic is used in the following areas −

• Banknote transfer control

• Fund management

• Stock market predictions

Industrial Sector

In industrial, fuzzy logic is used in following areas −

• Cement kiln controls heat exchanger control

161

Fuzzy Inference System - I

• Activated sludge wastewater treatment process control

• Water purification plant control

• Quantitative pattern analysis for industrial quality assurance

• Control of constraint satisfaction problems in structural design

• Control of water purification plants

Manufacturing

In the manufacturing industry, fuzzy logic is used in following areas −

• Optimization of cheese production

• Optimization of milk production

Marine

In the marine field, fuzzy logic is used in the following areas −

• Autopilot for ships

• Optimal route selection

• Control of autonomous underwater vehicles

• Ship steering

Medical

In the medical field, fuzzy logic is used in the following areas −

● Medical diagnostic support system

● Control of arterial pressure during anesthesia

● Multivariable control of anesthesia

● Modeling of neuropathological findings in Alzheimer's patients

● Radiology diagnoses

● Fuzzy inference diagnosis of diabetes and prostate cancer

Securities

In securities, fuzzy logic is used in following areas −

• Decision systems for securities trading

• Various security appliances

Transportation

In transportation, fuzzy logic is used in the following areas −

• Automatic underground train operation

• Train schedule control

• Railway acceleration

• Braking and stopping

162

Artificial Intelligence
 and Soft Computing

162

Pattern Recognition and Classification

In Pattern Recognition and Classification, fuzzy logic is used in the

following areas −

• Fuzzy logic based speech recognition

• Fuzzy logic based

• Handwriting recognition

• Fuzzy logic based facial characteristic analysis

• Command analysis

• Fuzzy image search

Psychology

In Psychology, fuzzy logic is used in following areas −

• Fuzzy logic based analysis of human behavior

• Criminal investigation and prevention based on fuzzy logic

reasoning

Fuzzy Query System

A fuzzy query system is an interface to users to get information from the

database using (quasi) natural language sentences. Many fuzzy query

implementations have been proposed, resulting in slightly different

languages. Although there are some variations according to the

particularities of different implementations, the answer to a fuzzy query

sentence is generally a list of records, ranked by the degree of matching.

11.2.1 Truth Values and Tables in Fuzzy Logic

Fuzzy logic uses linguistic variables. The values of a linguistic variable

are words or sentences in a natural or artificial language. For example,

height is a linguistic variable if it rakes values such as tall, medium, short

and so on. The linguistic variable provides approximate characterization of

a complex problem. The name of the variable, the universe of discourse

and a fuzzy subset of universe of discourse characterize a fuzzy variable.

A linguistic variable is a variable of a higher order than a fuzzy variable

and its values are taken to be fuzzy variables.

A linguistic variable is characterized by:

• name of the variable (x);

• term set of the variable t(x);

• syntactic rule for generating the values of x;

semantic rule for associating each value of x with its meaning.

Apart from the linguistic variables, there exists what are called as

linguistic hedges (linguistic modifiers).

163

Fuzzy Inference System - I

Examples of linguistic hedges In the fuzzy set "very tall", the word "very"

is a linguistic hedge. A few popular linguistic hedges include: very,

highly, slightly, moderately, plus, minus, fairly, rather.

Reasoning has logic as its basis, whereas propositions are text sentences

expressed in any language and are generally expressed in a canonical form

as zisP

Where 🡪 the symbol of the subject and P🡪 the predicate designing the

characteristics of the subject.

Example:

 "London is in United Kingdom"

"London" 🡪 the subject and "in United Kingdom" 🡪 the predicate, which

specifies a property of ''London," i.e., its geographical location in United

Kingdom.

Negation:

Every proposition has its opposite, called negation.

Logic Functions:

Truth cables define logic functions of two propositions.

Let X and Y be two propositions, either of which can be true or false.

The basic logic operations performed over the propositions are the

following:

1. Conjunction (Ʌ) :X AND Y.

2. Disjunction (˅) :XOR Y.

3. Implication or conditional (=>): IF X THEN Y.

4. Bidirectional or equivalence (<->): X IF AND ONLY IF Y.

Inference Rules:

On the basis of these operations on propositions, inference rules can be

formulated. Few inference rules are as follows:

The above rules produce certain propositions that are always true

irrespective of the truth values of propositions X and Y. Such propositions

are called tautologies.

164

Artificial Intelligence
 and Soft Computing

164

An extension of set-theoretic bivalence logic is the fuzzy logic where the

truth values are terms of the linguistic variable "truth." The truth values of

propositions in fuzzy logic are allowed to range over the unit interval [0,

1].

A truth value in fuzzy logic "very true" may be interpreted as a fuzzy set

in [0, I]. The truth value of the proposition'' Z is A," or simply the truth

value of A, denoted by tv(A) is defined by a point in [0, 1] (called the

numerical truth value) or a fuzzy set in [0, 1] (called the linguistic truth

value).

The truth value of a proposition can be obtained from the logic operations

of other propositions whose truth values are known. If tv(X) and tv(Y) are

numerical truth values of propositions X and Y, respectively, then

11.3 FUZZY PROPOSITIONS

Fuzzy propositions are assigned to fuzzy sets. Suppose a fuzzy proposition

‘P’ is assigned to a fuzzy set ‘A’, then the truth value of the proposition is

proposed by T (P) = μA(x) where 0 ≤ μA(x) ≤ 1

Therefore, truthness of a proposition P is membership value of x in fuzzy

set A.

The logical connectives like disjunction, conjunction, negation and

implication are also defined on fuzzy propositions.

Let, a fuzzy proposition ‘P’ is defined on a fuzzy set A Q is defined on

fuzzy set B

Conjunction

P / Q : x is A and B

T(P / Q) = Min [T(P), T(Q)]

Negation

T(Pc) = 1 – T(P)

Disjunction

P V Q : x in A or B

T (P V Q) = Max [T(P), T(Q)]

https://www.tech-wonders.com/2010/12/what-is-fuzzy-set-theory.html

165

Fuzzy Inference System - I

Implication

P → Q : x is A then x is B

T(P → Q) = T (Pc V Q) = Max [T(Pc, T(Q)]

If P is a proposition defined on set A on universe of discourse X and

Q is another proposition defined on set B on universe of discourse Y,

then the implication P → Q can be represented by the relation R

R = (A X B) U (Ac X Y) = If A then B

If x ∈ A, where x ∈ X and A ⊂ X then y ∈ B, where y ∈ Y and B ⊂ Y

Implication of Classical Logic:-

Properties P and Q are given by P : x ∈ A, where A is defined on x.

Q : y ∈ B, where B is defined on y.

Then the implication P → Q is represented in set theoretic form by a

relation R as

R = (A X B) U (Ac X Y)

The implication is equivalent to linguistic rule form, if x ∈ A then y ∈ B.

For the classical predicate logical rule, (P → Q) V (Pc → S) the linguistic

rule form is, if x is A then y is B, else y is C. Where C is defined as

S : y is C , C ⊂ Y.

The above linguistic rule form is decomposed as if (x is A) then (y is B) or

if (x is A) then (y is not B)

In set theoretic form it can be represented by the relation R = (A X B) U

(Ac X C)

The characteristic function for above compound proposition is given by

For example, suppose we have two universe of discourse X and Y X =

{1, 2, 3, 4} Y = {1, 2, 3, 4, 5, 6}

X is the universe of normalized temperatures. Y is the universe of

normalized pressures.

Two crisp sets A and B defined on universe of discourses X and Y are

A={2, 3} ; B={3,4} for the deductive inference if A and B, find the

relational matrix R.

sets A and B in Zedah’s notations are given by A = {0/1 + 1/2 + 1/3 + 0/4}

B = {0/1 + 0/2 + 1/3 + 1/4 + 0/5 + 0/6}

for the deductive inference if A then B, the set theoretic form is given by

the relation R = (A X B) U (Ac X Y)

https://www.tech-wonders.com/2009/12/crisp-sets-explained.html

166

Artificial Intelligence
 and Soft Computing

166

The fuzzy propositions are as follows:

1. Fuzzy predicates: In fuzzy logic the predicates can be fuzzy, for

example, tall, short, quick. Hence, we have proposition like "Peter is

tall."

2. Fuzzy-predicate modifiers: In fuzzy logic, there exists a wide

range of predicate modifiers that act as hedges. For example, very,

fairly, moderately, rather, slightly. These predicate modifiers are

necessary for generating the values of a linguistic variable. An

example can be the proposition "Climate is moderately cool,"

where" moderately" is the fuzzy predicate modifier.

3. Fuzzy quantifiers: The fuzzy quantifiers such as most, several,

many, frequently are used in fuzzy logic. Employing these, we can

have proposition like "Many people are educated." A fuzzy

quantifier can be interpreted as a fuzzy number or a fuzzy

proposition, which provides an imprecise characterization of the

cardinality of one or more fuzzy or non-fuzzy sets. Fuzzy quantifiers

can be used to represent the meaning of propositions containing

probabilities; as a result, they can be used to manipulate probabilities

within fuzzy logic.

4. Fuzzy qualifiers: There are four modes of qualification in fuzzy

logic, which are as follows:

(i) Fuzzy truth qualification: It is expressed as "x is τ ," in

which τ is a fuzzy truth value. A fuzzy truth value claims the

degree of truth of a fuzzy proposition.

 Example

 (Paul is Young) is NOT VERY True.

Here the qualified proposition is (Paul is Young) and the qualifying

fuzzy truth value is "NOT Very True."

(ii) Fuzzy probability qualification: It is denoted as "x is λ

"where, λ is fuzzy probability. In conventional logic,

probability is either numerical or an interval. In fuzzy logic,

fuzzy probability is expressed by terms such as likely, very

likely, unlikely, around and so on.

Example:

(Paul is Young) is Likely.

 Here the qualifying fuzzy probability is "Likely." These

probabilities may be interpreted as fuzzy numbers, which may

be manipulated using fuzzy arithmetic.

(iii) Fuzzy possibility qualification:

 It is expressed as "x is π",where πis a fuzzy possibility and

can be of the following forms: possible, quite possible, almost

impossible. These values can be interpreted as labels of fuzzy

subsets of the real line.

167

Fuzzy Inference System - I

Example:

(Paul is Young) is Almost Impossible.

Here the qualifying fuzzy possibility is "Almost Impossible."

(iv) Fuzzy usuality qualification: It is expressed as "usually (X)

=usually (X is F),"in which the subject X is a variable taking

values in a universe of discourse U and the predicate F is a

fuzzy subset of U and interpreted as a usual value of X

denoted by U(X) = F. The propositions that are usually true or

the events that have high probability of occurrence are related

by the concept of usuality qualification.

11.4 FORMATION OF RULES

The formation of rules is in general the canonical rule formation. For any

linguistic variable, there are three general forms in which the canonical

rules can be formed. They are:

(1) Assignment statements

(2) Conditional statements

(3) Unconditional statements

(1) Assignment statements These statements are those in which the

variable is assignment with the value. The variable and the value

assigned are combined by the assignment operator “=.” The

assignment statements are necessary in forming fuzzy rules. The

value to be assigned may be a linguistic term.

 Fuzzy Rule-Based System

 The examples of this type of statements are:

 y = low,

 Sky color = blue,

 Climate = hot a = 5 p = q + r

 Temperature = high

 The assignment statement is found to restrict the value of a variable

to a specific equality.

(2) Conditional statements

In this statements, some specific conditions are mentioned, if the

conditions are satisfied then it enters the following statements, called

as restrictions.

If x = y Then both are equal,

If Mark > 50 Then pass,

If Speed > 1, 500 Then stop.

These statements can be said as fuzzy conditional statements, such

as If condition C Then restriction F

168

Artificial Intelligence
 and Soft Computing

168

(3) Unconditional statements

There is no specific condition that has to be satisfied in this form of

statements. Some of the unconditional statements are:

Go to F/o

Push the value

 Stop

The control may be transferred without any appropriate conditions.

The unconditional restrictions in the fuzzy form can be:

 R1 : Output is B1 AND

 R2 : Output is B2 AND ..., etc.

where B1 and B2 are Fuzzy consequents. Both conditional and

unconditional statements place restrictions on the consequent of the

rule-based process because of certain conditions

The general way of representing human knowledge is by forming

natural language expressions given by

IF antecedent THEN consequent.

The above expression is referred to as the IF - THEN rule based form.

There are three general forms that exist for any linguistic variable. They

are:

(a) Assignment statements;

(b) Conditional statements;

(c) Unconditional statements.

1. Assignment statements:

They are of the form

y =small

Orange colour = orange

a=s

Paul is not tall and not very short Climate = autumn

Outside temperature = normal

These statements utilize "=" for assignment.

2. Conditional statements:

 The following are some examples.

• IF y is very cool THEN stop.

• IF A is high THEN B is low ELSE B is not low.

• IF temperature is high THEN climate is hot.

The conditional statements use the "IF - THEN" rule-based form.

169

Fuzzy Inference System - I

3. Unconditional statements:

 They can be of the form

• Go to sum.

• Stop.

• Divide by a.

• Turn the pressure low

11.5 DECOMPOSITION OF RULES (COMPOUND RULE)

A compound rule is a collection of many simple rules combined together.

Any compound rule structure may be decomposed and reduced to a

number of simple canonical rule forms. The rules are generally based on

natural language representations.

The following are the methods used for decomposition of compound

linguistic rules into simple canonical rules.

• Multiple conjunctive antecedents

• Multiple disjunctive antecedents

• Conditional statements (ELSE and UNLESS)

• Nested IF-THEN rules

11.6 AGGREGATION OF FUZZY RULES

The rule-based system involves more than one rule. Aggregation of rules

is the process of obtaining the overall consequents from the individual

consequents provided by each rule.

The following two methods are used for aggregation of fuzzy rules:

1. Conjunctive system of rules:

For a system of rules to be jointly satisfied, the rules are connected by

"and" connectives. Here, the aggregated output, y, is determined by the

fuzzy intersection of all individual rule consequents, yi, where i=1ton, as

Y= y1, y2……and yn

This aggregated output can be defined by the membership function

2. Disjunctive system of rules:

In this case, the satisfaction of at least one rule is required. The rules are

connected by "or" connectives. Here, the fuzzy union of all individual rule

contributions determines the aggregated output, as

170

Artificial Intelligence
 and Soft Computing

170

Y= y1 or y2 or…. Or yn

Again, it can be defined by the membership function

Aggregation of The Rule Outputs

1. Aggregation is the process of unification of the outputs of all rules.

2. We take the membership functions of all rule consequents

previously clipped or scaled and combine them into a single fuzzy

set.

3. There are several defuzzification methods, but probably the most

popular one is the centroid technique.

4. It finds the point where a vertical line would slice the aggregate set

into two equal masses. Mathematically this centre of gravity

Aggregation of the rule outputs

171

12
FUZZY INFERENCE SYSTEM - III

Unit Structure

12.1 Fuzzy Inference System

12.2 Construction and Working Principle of FIS

12.3 Methods of FIS

 12.3.1 Comparison between the two methods

12.4 Overview of fuzzy expert system

12.1 FUZZY INFERENCE SYSTEM (FIS)

Fuzzy rule-based systems, fuzzy models, and fuzzy expert systems are

generally known as inference systems. The key unit of a fuzzy logic system

is FIS. The primary work of this system is decision making.

FIS uses "IF ... THEN" rules along with connectors "OR" or "AND" for

making necessary decision rules. The input to FlS may be fuzzy or crisp,

but the output from FIS is always a fuzzy set. When FlS is used as a

controller, it is necessary to have crisp output. Hence, there should be a

defuzzification unit for converting fuzzy variables into crisp variables along

FIS.

Applications of FIS

A fuzzy inference system is used in different fields, for example,

information order, choice examination, master system, time arrangement

forecasts, advanced mechanics, and example acknowledgment. It is

otherwise called a fuzzy rule-based system, fuzzy model, fuzzy logic

controller, fuzzy expert system, and fuzzy associative memory.

It is the vital unit of a fuzzy logic system that deals with decision-making

and choosing essential tasks. It utilizes the “IF… . At that point” leads

alongside the connectors “AND” “OR” to draw fundamental choice

standards.

Characteristics of Fuzzy Inference system

● The yield from FIS is consistently a fuzzy set irrespective of its input

which can be fuzzy or crisp.

● It is necessary to have a fuzzy output when it is used as a controller.

● A defuzzification unit would accompany the FIS to convert the fuzzy

variable into a crisp variable.

Structure of Fuzzy Inference System

The essential structure of a fuzzy inference system comprises three entities:

● A rule base containing fuzzy rules

172

Artificial Intelligence

and Soft Computing

172

● A database (or dictionary), containing the participation functions

utilized in the fuzzy rules.

● A reasoning mechanism performing the induction made upon the

guidelines and the facts given to infer a reasonable output or

conclusion.

What is Defuzzification?

Defuzzification is the extraction of a value representing a fuzzy set.

Defuzzification methods:

1. Centroid of area

2. Bisector of area

3. Mean of max

4. Smallest of max

5. Largest of max

It is mandatory to have a crisp output in some instances where we use an

interference system as a controller.

173

Fuzzy Inference System - III Fuzzy Inference System Inputs and Outputs

● The fundamental fuzzy inference system can take either fuzzy inputs

or crisp inputs, yet the yield it produces is quite often fuzzy sets.

● Sometimes it is important to have a crisp output, particularly in a

situation where a fuzzy inference system is utilized as a controller.

● Therefore, we need a technique of defuzzification to extricate a crisp

value to represent a fuzzy set.

Block diagram for a Fuzzy Inference System with Crisp Output

Popular Fuzzy Inference Systems (Fuzzy Models)

1. Mamdani Fuzzy Models

2. Sugeno Fuzzy Models

The core difference between these fuzzy inference systems is in the

consequents of their fuzzy rules, and their distinguishing conglomeration

and defuzzification procedures.

1. Ebrahim Mamdani Fuzzy Model

This is the most used fuzzy inference system.

Professor Mamdani fabricated one of the primary fuzzy systems to control

a steam motor and kettle mix. He applied fuzzy rules put forth by

experienced human operators.

Steps for Computing the Output

Following advances should be followed to compute the output from this FIS

Step 1: Deciding a bunch of fuzzy principles

Step 2: Fuzzifying the inputs with the elements of info participation

Step 3: Amalgamating the fuzzified inputs according to the fuzzy

guidelines to discover a standard strength

Step 4: Finding the aftereffect of the standard by summarizing the

standard strength with the yield participation work

Step 5: Combining the outcomes to get the yield conveyance

https://www.sciencedirect.com/topics/engineering/fuzzy-inference-system

174

Artificial Intelligence

and Soft Computing

174

Step 6: Performing defuzzification of the output dispersion

Two Rules Mamdani with Min and Max Operators

The Mamdani FIS using min and max for T-norms and S-norms, subject to

two crisp inputs x and y.

Two Rules Mamdani FIS with Max and Product Operators

The Mamdani FIS using product and max for T-norms and S-norms,

subject to two crisp inputs x and y.

175

Fuzzy Inference System - III

Mamdani composition of three SISO fuzzy outputs

2. Sugeno Fuzzy Model

This model was proposed by Takagi, Sugeno, and Kang.

For developing a scientific approach to generate fuzzy rules from a given

set of input-output data.

The format of this rule is given as:

IF x is A and y is B; Z= f(x,y)

Here, AB is fuzzy sets in antecedents, and z= f(x, y) is a crisp function

within the consequent.

The most commonly used zero-order Sugeno fuzzy model applies fuzzy

rules within the following form:

IF x is A AND y is B; z is k

Where k is a constant

In this case, the output of every fuzzy rule is constant, and every consequent

membership function is represented by singleton spikes.

So,

• First-order Sugeno fuzzy model: f(x, y) – first-order polynomial

• Zero-order Sugeno fuzzy model: f – constant

http://en.wikipedia.org/wiki/Fuzzy_control_system

176

Artificial Intelligence

and Soft Computing

176

Fuzzy reasoning procedure for a first-order Sugeno Fuzzy Model

The fuzzy inference system under Sugeno Fuzzy method works in the

following way-

Step 1: Fuzzifying the inputs- the inputs of the system are made fuzzy.

Step 2: Applying the fuzzy operator- the fuzzy operators must be

applied to get the output.

Rule Format

The rule format of Sugeno form-

If 7 = x and 9 = y; output is z = ax+by+c

The Sugeno fuzzy inference system is very similar to the Mamdani

method.

Only change a rule consequent: instead of a fuzzy set, used a mathematical

function of the input variable.

How to Decide Whether to Apply- Mamdani or Sugeno Fuzzy Inference

System?

● Mamdani technique is broadly acknowledged for capturing expert

knowledge and information. It allows us to depict the skill in a more

instinctive, more human-like way.

However, Mamdani type fuzzy inference entails a considerable

computational burden.

● On the other hand, the Sugeno method is computationally feasible. It

functions effectively with advancement and versatile procedures

making it exceptionally alluring in versatile issues, particularly for

dynamic nonlinear frameworks.

https://link.springer.com/article/10.1007/s40815-017-0378-y

177

Fuzzy Inference System - III Fuzzy Inference Systems Advantages

Fuzzy Inference

System
Advantages

Mamdani

• Intuitive

• Well-suited to human inputs

• More interpretable and rule-based

• Has widespread acceptance

Sugeno

• Computationally efficient

• Functions well with linear techniques, like

PID control

• Functions with optimization and adaptive

techniques

• Guarantees output surface continuity

• Well-suited to mathematical analysis

12.2 CONSTRUCTION AND WORKING PRINCIPLE OF FIS

1. A rule base that contains numerous fuzzy IF-THEN rules.

2. A database that defines the membership functions of fuzzy sets used

in fuzzy rules.

3. Decision making unit that performs operations on the rules.

4. Fuzzification interface unit that converts the crisp quantities into

fuzzy quantities.

5. Defuzzification interface unit that converts the fuzzy quantities into

crisp quantities.

178

Artificial Intelligence

and Soft Computing

178

Working methodology of FIS:

Initially, in the fuzzif1cation unit, the crisp input is converted into a fuzzy

input. Various fuzzification methods are employed for this. After this

process, rule base is formed. Database and rule base are collectively called

the knowledge base. Finally, defuzzification process is carried out to

produce crisp output. Mainly, the fuzzy rules are formed in the rule base

and suitable decisions are made in the decision-making unit.

12.3 METHODS OF FI:

Let us now discuss the different methods of FIS. Following are the two

important methods of FIS, having different consequent of fuzzy rules −

• Mamdani Fuzzy Inference System

• Takagi-Sugeno Fuzzy Model (TS Method)

Mamdani Fuzzy Inference System

This system was proposed in 1975 by Ebhasim Mamdani. Basically, it was

anticipated to control a steam engine and boiler combination by

synthesizing a set of fuzzy rules obtained from people working on the

system.

Steps for Computing the Output

Following steps need to be followed to compute the output from this FIS −

Step 1 Set of fuzzy rules need to be determined in this step.

Step 2 In this step, by using input membership function, the input

would be made fuzzy.

Step 3 Now establish the rule strength by combining the fuzzified

inputs according to fuzzy rules.

Step 4 In this step, determine the consequent of rule by combining the

rule strength and the output membership function.

Step 5 For getting output distribution combine all the consequents.

Step 6 Finally, a defuzzified output distribution is obtained.

Following is a block diagram of Mamdani Fuzzy Interface System.

179

Fuzzy Inference System - III

Takagi-Sugeno Fuzzy Model (TS Method)

This model was proposed by Takagi, Sugeno and Kang in 1985. Format of

this rule is given as −

IF x is A and y is B THEN Z = f(x,y)

Here, AB are fuzzy sets in antecedents and z = f(x,y) is a crisp function in

the consequent.

Fuzzy Inference Process

The fuzzy inference process under Takagi-Sugeno Fuzzy Model (TS

Method) works in the following way −

Step 1: Fuzzifying the inputs − Here, the inputs of the system are made

fuzzy.

Step 2: Applying the fuzzy operator − In this step, the fuzzy operators

must be applied to get the output.

Rule Format of the Sugeno Form

The rule format of Sugeno form is given by −

if 7 = x and 9 = y then output is z = ax+by+c

12.2.1 Comparison between the two methods

Let us now understand the comparison between the Mamdani System and

the Sugeno Model.

• Output Membership Function − The main difference between them

is on the basis of output membership function. The Sugeno output

membership functions are either linear or constant.

• Aggregation and Defuzzification Procedure − The difference

between them also lies in the consequence of fuzzy rules and due to

the same their aggregation and defuzzification procedure also differs.

180

Artificial Intelligence

and Soft Computing

180

• Mathematical Rules − More mathematical rules exist for the Sugeno

rule than the Mamdani rule.

• Adjustable Parameters − The Sugeno controller has more adjustable

parameters than the Mamdani controller.

12.4 OVERVIEW OF FUZZY EXPERT SYSTEM

What is a Fuzzy Expert System?

Put as simply as possible, a fuzzy expert system is an expert system that

uses fuzzy logic instead of Boolean logic. In other words, a fuzzy expert

system is a collection of membership functions and rules that are used to

reason about data. Unlike conventional expert systems, which are mainly

symbolic reasoning engines, fuzzy expert systems are oriented toward

numerical processing.

The rules in a fuzzy expert system are usually of a form similar to the

following:

if x is low and y is high then z = medium

where x and y are input variables (names for-know data values), z is an

output variable (a name for a data value to be computed), low is a

membership function (fuzzy subset) defined on x, high is a membership

function defined on y, and medium is a membership function defined on z.

The part of the rule between the "if" and "then" is the rule's _premise_ or

antecedent. This is a fuzzy logic expression that describes to what degree

the rule is applicable. The part of the rule following the "then" is the rule's

conclusion or _consequent_. This part of the rule assigns a membership

function to each of one or more output variables. Most tools for working

with fuzzy expert systems allow more than one conclusion per rule.

A typical fuzzy expert system has more than one rule. The entire group of

rules is collectively known as a _rulebase_ or _knowledge base_.

The Inference Process

With the definition of the rules and membership functions in hand, we now

need to know how to apply this knowledge to specific values of the input

variables to compute the values of the output variables. This process is

referred to as _inferencing_. In a fuzzy expert system, the inference process

is a combination of four subprocesses: _fuzzification_, _inference_,

composition, and _defuzzification_. The defuzzification subprocess is

optional.

For the sake of example in the following discussion, assume that the

variables x, y, and z all take on values in the interval [0, 10], and that we

have the following membership functions and rules defined.

low(t) = 1 - t / 10

high(t) = t / 10

rule 1: if x is low and y is low then z is high

181

Fuzzy Inference System - III rule 2: if x is low and y is high then z is low

rule 3: if x is high and y is low then z is low

rule 4: if x is high and y is high then z is high

Notice that instead of assigning a single value to the output variable z, each

rule assigns an entire fuzzy subset (low or high).

Note:

1. In this example, low(t)+high(t)=1.0 for all t. This is not required, but

it is fairly common.

2. The value of t at which low(t) is maximum is the same as the value of

t at which high(t) is minimum, and vice-versa. This is also not

required, but fairly common.

3. The same membership functions are used for all variables. This isn't

required, and is also *not* common.

Fuzzification

In the fuzzification subprocess, the membership functions defined on the

input variables are applied to their actual values, to determine the degree of

truth for each rule premise. The degree of truth for a rule's premise is

sometimes referred to as its _alpha_. If a rule's premise has a nonzero degree

of truth (if the rule applies at all...) then the rule is said to _fire_.

For example:

x y low(x) high(x) low(y) high(y) alpha1 alpha2 alpha3 alpha4

Inference

In the inference subprocess, the truth value for the premise of each rule is

computed, and applied to the conclusion part of each rule. This results in

one fuzzy subset to be assigned to each output variable for each rule.

I've only seen two _inference methods_ or _inference rules_: _MIN_ and

PRODUCT. In MIN inferencing, the output membership function is

clipped off at a height corresponding to the rule premise's computed degree

of truth. This corresponds to the traditional interpretation of the fuzzy logic

182

Artificial Intelligence

and Soft Computing

182

AND operation. In PRODUCT inferencing, the output membership

function is scaled by the rule premise's computed degree of truth.

Due to the limitations of posting this as raw ASCII, I can't draw you a decent

diagram of the results of these methods. Therefore, I'll give the example

results in the same functional notation I used for the membership functions

above.

For example, let's look at rule 1 for x = 0.0 and y = 3.2. As shown in the

table above, the premise degree of truth works out to 0.68. For this rule,

MIN inferencing will assign z the fuzzy subset defined by the membership

function:

 rule1(z) = { z / 10, if z <= 6.8

 0.68, if z >= 6.8 }

For the same conditions, PRODUCT inferencing will assign z the fuzzy

subset defined by the membership function:

 rule1(z) = 0.68 * high(z)

 = 0.068 * z

Note: I'm using slightly nonstandard terminology here. In most texts, the

term "inference method" is used to mean the combination of the things I'm

referring to separately here as "inference" and "composition." Therefore,

you'll see terms such as "MAX-MIN inference" and "SUM-PRODUCT

inference" in the literature. They mean the combination of MAX

composition and MIN inference, or SUM composition and PRODUCT

inference respectively, to use my terminology. You'll also see the reverse

terms "MIN-MAX" and "PRODUCT-SUM" - these mean the same things

as the reverse order. I think it's clearer to describe the two processes

separately.

Composition

In the composition subprocess, all of the fuzzy subsets assigned to each

output variable are combined together to form a single fuzzy subset for each

output variable.

I'm familiar with two _composition rules_: _MAX composition_ and _SUM

composition_. In MAX composition, the combined output fuzzy subset is

constructed by taking the pointwise maximum over all of the fuzzy subsets

assigned to the output variable by the inference rule. In SUM composition

the combined output fuzzy subset is constructed by taking the pointwise

sum over all of the fuzzy subsets assigned to the output variable by the

inference rule. Note that this can result in truth values greater than one! For

this reason, SUM composition is only used when it will be followed by a

defuzzification method, such as the CENTROID method, that doesn't have

a problem with this odd case.

183

Fuzzy Inference System - III For example, assume x = 0.0 and y = 3.2. MIN inferencing would assign the

following four fuzzy subsets to z:

 rule1(z) = { z / 10, if z <= 6.8

 0.68, if z >= 6.8 }

 rule2(z) = { 0.32, if z <= 6.8

 1 - z / 10, if z >= 6.8 }

 rule3(z) = 0.0

 rule4(z) = 0.0

MAX composition would result in the fuzzy subset:

fuzzy(z) = { 0.32, if z <= 3.2

z / 10, if 3.2 <= z <= 6.8

0.68, if z >= 6.8 }

PRODUCT inferencing would assign the following four fuzzy subsets to z:

rule1(z) = 0.068 * z

rule2(z) = 0.32 - 0.032 * z

rule3(z) = 0.0

rule4(z) = 0.0

SUM composition would result in the fuzzy subset:

fuzzy(z) = 0.32 + 0.036 * z

Where are Fuzzy Expert Systems Used?

To date, fuzzy expert systems are the most common use of fuzzy logic. They

are used in several wide-ranging fields, including:

• Linear and nonlinear control.

• Pattern recognition.

• Financial systems.

Multiple Choice Questions

1) Which of the following is considered while determining the nature of

the learning problem?

a) Problem

b) Feedback

c) Environment

d) All of the above

2) The probability density function is represented by

a) Continuous variable

b) Discrete variable

c) Probability distributions for Continuous variables

d) Probability distributions

3) What is the name of the operator in fuzzy set theory, which is found

to be linguistic in nature?

a) Lingual Variable

b) Fuzz Variable

c) Hedges

d) None of the above

184

Artificial Intelligence

and Soft Computing

184

4) ________ represents the fuzzy logic

a) IF-THEN rules

b) IF-THEN-ELSE rules

c) Both a & b

d) None of the above

5) Uncertainty can be represented by _________

a) Entropy

b) Fuzzy logic

c) Probability

d) All of the above

6) Which of the following condition can directly influence a variable by

all the others?

a) Fully connected

b) Local connected

c) Partially connected

d) None of the above

7) Based on _________ membership function can be used to solve

empirical problems.

a) Knowledge

b) Learning

c) Examples

d) Experience

8) Which of the following takes input as an object described by a set of

attributes?

a) Graph

b) Decision graph

c) Tree

d) Decision tree

9) FSI stands for____________

a) Fuzzy Inference System

b) Fuzzy Inferred System

c) Fuzzy Inter System

d) Fuzzy Interconnected system

10) A perceptron can be defined as _________

a) A double layer auto-associative neural network

b) A neural network with feedback

c) An auto-associative neural network

d) A single layer feed-forward neural network with pre-processing

185

13
GENETIC ALGORITHM

Unit Structure

13.0 Objective

13.1 Introduction

13.2 Genetic algorithm

13.3 Approaches of genetic algorithm

 13.3.1 Population

 13.3.2 Fitness function

 13.3.3 Selection

 13.3.4 Crossover

 13.3.5 Mutation

13.4 Operators of genetic algorithm

 13.4.1 Encoding

 13.4.2 Crossover

 13.4.3 Mutation

 13.4.4 Termination

13.5 Parameters of genetic algorithm

 13.5.1 Crossover probability

 13.5.2 Mutation probability

 13.5.3 Population size

13.6 Limitations of genetic algorithm

13.7 Genetic algorithm V/s Traditional Algorithm

13.8 Summary

13.9 Unit End Exercise

13.10 References

13.0 OBJECTIVE

This chapter will able you to understand the following concept

• What is Genetic algorithm

• Approaches of genetic algorithm

• Pseudocode of genetic algorithm

• Types of Operators of genetic algorithm

• Different characteristics of genetic algorithm

• Limitations of genetic algorithm

• Difference between genetic algorithm and traditional algorithm

186

Artificial Intelligence and Soft
Computing

186

13.1 INTRODUCTION

A Genetic algorithm is dealing with reproduction, for this one need to

combine feature of two parent to reproduce the new offspring’s. it is not

modifying the feature of one parent it is combining the feature of both

parent to generate a new offspring. Hence the new offspring is much better

than the old one as they have inherited properties of both the parents, this

approach is scholastic beam search and this is the variant of Genetic

algorithm. Can be done with some steps like population, selection,

crossover, mutation. It has different approaches as well as different

operators with which we will combine the feature of parents.

In scholastic beam search a set of k randomly generated states, called

population. In population the words, numbers are used to represent the

population. Most of the time binary number is used to represent the

population i.e. 0 and 1. Each individual number represent chromosome of

the selected population. Production of the next generation depends on the

fitness function of the selected parents, the properties of the both parents

are inherited by the new offspring. In this scholastic method selection will

be depend on the fitness function of the chromosome. Crossover point

should be select for the mutation purpose

13.2 GENETIC ALGORITHM

A theory of natural evolution coined by Charles Darwin’s and named as

genetic algorithm in which search heuristic is used. Natural selection

process is used in which it selected fittest individuals for reproduction in

order to produce offspring of the next generation.

To find a best solution of some problem we will check the space of all

feasible solutions which are all possible to solve the problem is

called search space. Every point in search space represents one possible

solution. Every possible solution can be checked by its value which is also

called as fitness for the problem. Using GA one will try to find the best

solution among a number of possible solutions - represented by one point

in the search space.

When we will be finding solution of the problem at the same time we are

checking its Looking for a minimum or maximum value in the search

space. Sometime the search space may be well defined, or sometime we

know only a few points in the search space. To ease of use in GA, the

process of finding solutions generates other possible points for further

evaluation.

In some cases, the search can be very complicated sometimes. Hence one

may not know where to start and how to proceed for solution. Many

methods are available to finding a suitable solution, but this will not surely

have said that the outcome of any solution will be best solution. In some

methods hill climbing, tabu search, simulated annealing and the genetic

algorithm this technique I used. These methods salutations are often

considered as good solutions.

187

Genetic Algorithm

13.3 APPROACHES OF GENETIC ALGORITHM

Natural selection process is used in which it selected fittest individuals for

reproduction in order to produce offspring of the next generation. From

the process new offspring inherits the properties of the parents and will be

added to the next generation. If the properties of parents better in fitness,

then their offspring properties will be additional as well as better than

parents hence they have a better chance at surviving. This is iterative

process until it reaches to end, and in result a new generation with the

fittest individuals will be found. This process is used for a search problem.

Five approaches of genetic algorithm.

1. Initial population

2. Fitness function

3. Selection

4. Crossover

5. Mutation

13.3.1 Initial Population

In this process we will starts with a set of individuals which is called a

Population. Each individual can be a solution of the problem.

An individual is characterized by a set of parameters (variables) known as

Genes. Genes are joined into a string to form a Chromosome (solution).

Using a string the set of genes are used to represent an individual in

genetic algorithm, in terms of an alphabet. In binary values 1 and 0 the

strings are defined. A chromosome can be made from encoding of genes.

188

Artificial Intelligence and Soft
Computing

188

13.3.2 Fitness Function

How fit an individual is (the ability of an individual to compete with other

individuals) determines the fitness function. With fitness score we can

determine each individual. While reproducing the probability of an

individual will be selected and based on its fitness score the reproduction

quality will judge.

13.3.3 Selection

For producing next generation, the selection is very important as it selects

the individual with its fitness for reproduction. For making new generation

two pairs (parent) are required from the initial population according to

their fitness score. The good fitness score ca has higher chance of

selection for reproduction.

As we already know in Genetic Algorithm, selection of chromosomes is

done form the population and make them as parents for crossover.

According to Darwin’s theory selection of chromosomes are based on

fitness function of the selected chromosomes to reproduce the new

offspring’s with better properties so that it can survive in the environment.

There are many ways to select the best chromosomes. They are such as

roulette wheel selection, Boltzman selection, tournament selection, rank

selection, steady state selection and some others.

Roulette Wheel Selection

The fitness function of the parents is deciding factor in this selection

method. If they have better fitness function the chances of selecting these

chromosomes are higher. In this selection method e all the chromosomes

in the population are placed. According to the value of fitness function

proportionate the section in the roulete wheel indicate. Hence the high

value of fitness function is proportionate to the bigger section of the

Roulette Wheel shows in following picture.

As we can see the bigger section contains the higher value of

chromosomes hence they have higher chance to get selected for crossover.

So the selection can be more times from the particular section.

Following are the steps of algorithm.

1. [Sum] sum of the all chromosome fitnesses in population - sum S.

2. [Select] Generate random number from the interval (0,S) - r.

189

Genetic Algorithm 3. [Loop] Go through the population and sum the fitnesses from 0 -

sum s. When the sum s is greater then r, stop and return the

chromosome where you are.

Of course, the step 1 is performed only once for each population.

Rank Selection

In the roulette wheel selection method, the main issue is that selection will

be complicated as there have big difference between fitness value. For

example, if 90% fitness is there in best chromosome sum of all finesses

then the other rest chromosomes are having very low chances to select for

crossover and mutation.

In Rank selection method it ranks the population first then for every

chromosome it gives fitness value calculated by this ranking. The worst

will have the fitness 1, the second worst 2 etc. and the best will have

fitness N (number of chromosomes in population).

The following figure shows that how the situation gets changed after

changing fitness to the numbers determined by the ranking.

Situation before ranking (graph of fitnesses)

Situation after ranking (graph of order numbers)

We can see that all the chromosomes will get the chance to be selected.

Due to this the selection lead to slower convergence.

13.3.4 Crossover

Crossover is the most important step in a genetic algorithm. Here mutation

of two selected parents are done with a crossover point is chosen at

random from within the genes.

190

Artificial Intelligence and Soft
Computing

190

In the below figure it is shown (random crossover point).

Crossover point

By exchanging the parent’s genes Offspring are created among themselves

until the crossover point is reached.

Exchanging genes among parents

The new offspring are added to the population.

New offspring

13.3.5 Mutation

From the population to create new offspring genes can be subjected to

mutation with some probability. With the implementation of this some pf

the random bits are changed.

191

Genetic Algorithm

Mutation: Before and After

Mutation occurs to maintain diversity within the population and prevent

premature convergence.

13.4 OPERATORS OF GENETIC ALGORITHM

There are some basic operators of GA like Encoding, Crossover and

mutation. They are the most important factors on which Performance of

GA depends. The operator implementation is totally depending on

encoding and also on the problem.

We can see the ways of crossover and mutation in following example.

13.4.1 Encoding

Encoding is changing of chromosomes as per the problem solution in GA.

Encoding depends on the problem.

1. Binary Encoding

It is the most used and common property in GA, as it is very simple and

relative in nature. Every chromosome is represented by 0 and 1 In binary

encoding. As shown in below figure

Chromosome

A

101100101100101011100

101

Chromosome

B

111111100000110000011

111

Binary encoding has many possible chromosomes. Sometimes in this

concept encoding is not natural or for some cases it will change or have

correction after crossover or mutation.

2. Permutation Encoding

In ordering problem Permutation encoding can be used, such as task

ordering problem or travelling salesman problem.

In permutation encoding, every chromosome is a string of numbers that

represent a position in a sequence.

192

Artificial Intelligence and Soft
Computing

192

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

3. Value Encoding

In some problem direct value encoding can be used where some are more

complicated values such as real numbers are used. It is difficult if we used

binary encoding for this type. every chromosome is a sequence of some

values in this concept. Values can be anything like numbers, chars or any

object as shown in below table.

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

In some mutation and crossover problem this concept is a good choice for

the specific problem.

4. Tree Encoding

To evolve programs and expression Tree encoding is mainly used, i.e.

for genetic programming.

In this concept every chromosome is a tree of some objects, such as

commands or functions in programming language.

Chromosome A Chromosome B

(+ x (/ 5 y)) (do_until step wall)

Tree encoded structured problem solution can be find with the help of

Tree encoding. LISP programming language is used for this purpose, since

programs in LISP are represented directly in the form of tree and can be

easily parsed as a tree.

193

Genetic Algorithm 13.4.2 Crossover

1. Single point crossover – in this concept one random crossover point

is selected, till reach the crossover point the chromosome of the first

parent will be copied as it is once it reached to the crossover point it will

change that means it will have copied from second parent binary digit and

again it is copied from the first parent, the rest is copied from the other

parent

11001011+11011111 = 11001111

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

2. Two-point crossover - in this concept one random crossover point

is selected, till reach the crossover point the chromosome of the first

parent will be copied as it is once it reached to the crossover point it will

change that means it will have copied from second parent binary digit and

again it is copied from the second parent, the rest is copied from the other

parent characteristic

11001011 + 11011111 = 11011111

3. Uniform crossover -in this concept bits are randomly copied from

the both parents.

11001011 + 11011101 = 11011111

4. Arithmetic crossover – in some cases arithmetic operation is

performed to make a new offspring

11001011 + 11011111 = 11001001 (AND)

5. Tree crossover – from both the parents one crossover point is

selected, parents are divided in other two point and the parts below

crossover points are exchanged to produce new offspring

194

Artificial Intelligence and Soft
Computing

194

13.4.3 Mutation

1. Bit inversion – in this some bits are randomly selected and inverted

11001001 => 10001001

2. Order changing - in this some bits are randomly selected and

exchanged

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

13.4.4 Termination

At this stage he algorithm terminates if the selected population has

converged i.e. it does not produce any new offspring which are different

from the previous generation offspring. The difference should be there in

parent and child offspring. If it gives differentiation between them then it

is said to be that the genetic algorithm has provided a solution to our

problem.

Pseudocode

START

Generate the initial population

Compute fitness

REPEAT

 Selection

 Crossover

195

Genetic Algorithm Mutation

 Compute fitness

UNTIL population has converged

STOP

13.5 PARAMETERS OF GENETIC ALGORITHM

Crossover probability and Mutation probability are two basic parameter of

GA.

13.5.1 Crossover probability:

crossover probability is property of exchanging data between both parents.

If the crossover will not happen, new offspring are inheriting all properties

of parents as it is hence it is carbon copies of parents. If the crossover is

done, new offspring are generating from the properties of both parent's

chromosomes. If 100% crossover probability is there then all new

offspring are made by crossover and mutation. If it is 0%, whole new

generation is exact copies of chromosomes from old population (but this

does not mean that the new generation is the same!).

Crossover is useful in making the new offspring will be better than the old

chromosomes as it is having good properties in it. However, it is good to

leave some part of old population survive to next generation.

13.5.2 Mutation probability:

If the mutation is not done, new offspring are generated proceeding

immediately after crossover (or directly copied) without any change. If

mutation is done in any case, at least one or more parts of a chromosome

are changed for mutation. If 100% mutation probability is there, then

whole chromosomes are changed, if 0%mutation is there, then nothing is

changed.

GA generally prevents by mutation from falling into local extremes.

Mutation may not be occurring very often, as GA will change to random

search.

Other Parameters

population size ca be the other parameters of GA which is mainly used.

13.5.3 Population size:

the number of chromosomes are present in population is called population

size. The problem solvation is totally depending on the population size, if

the chromosomes present are too few, GA have less possibilities to

perform crossover hence only small part of search space is travel through.

On the other side, if the chromosomes are too many in numbers the search

space is too large and finding solution is too difficult as it required more

time to travel all the nodes hence the result is not accurate and it will not

solve the problem faster than moderate sized populations.

196

Artificial Intelligence and Soft
Computing

196

13.6 LIMITATIONS OF GENETIC ALGORITHM

• For complex problem or big problem continually repeated fitness

function of population evaluation is the most prohibitive and

limiting segment of genetic algorithms. Hence one cannot Find the

optimal solution of complex, multimodal problems, for finding the

solution one need to use very expensive fitness function. In some

cases of real world problems like structural optimization problems, a

single fitness function valuation may require much hours, its time

consuming process.

• In complex problem Genetic algorithms cannot use. Because in

mutation if the number of elements are higher than the search space

size is also increase and it ultimately time taking process. To find

out the solution of such problems the bigger problem has to

decomposed into several small simplest representations possible.

The another problem of complexity is having the issue protection of

the parts that have used in representation as a good solution from

destructive mutation, accordingly when the fitness assessment

requires combination of parts can do the same.

• The other limitation of GA, is it having the feature of converge

towards or even arbitrary points instead of global optimum of the

problem. Hence it does not "know how" one can use short-term

fitness to produce longer-term fitness.

• In GA the operation performs on dynamic data values which is

difficult, as it genomes starts converge early towards solutions

which may no longer be valid for later data. many methods are

present to solve this by adding genetic diversity and preventing early

convergence, by extending the probability of mutation or

occasionally introducing new elements generated to improve the

quality of the solution.

• when the solution quality drops (called triggered hypermutation), or

by occasionally introducing entirely new, randomly generated

elements into the gene pool (called random immigrants).

Again, evolution strategies and evolutionary programming can be

implemented with a so-called "comma strategy" in which parents are

not maintained and new parents are selected only from offspring.

This can be more effective on dynamic problems.

• When single measure function is considered GAs cannot effectively

work for solve problems. In such cases, GA search a random

solution as quickly. If that random solution allows the

success/failure trial giving probability of different results, then the

ratio of successes to failures can be measured as suitable fitness

function of the problem.

• To find optimise solution of problem in some cases use of

optimization algorithms are more efficient than the genetic

algorithm as it finds the solution in minimum speed.

• Some Alternative and complementary algorithms are like hill

climbing swarm intelligence, simulated annealing, Gaussian

197

Genetic Algorithm adaption, etc. the working of the of genetic algorithms is dependent

on the amount of knowledge of the problem; well-known problems

often have better, more specialized approaches.

13.7 GENETIC ALGORITHM V/s TRADITIONAL

ALGORITHM

What is Genetic Algorithm

This algorithm is based on Genetics and Natural Selection. It is similar to

the process of inheritance where the species which can adapt to changes of

the environment and are ready to survive in the environment. In other

words, it is based on biological evolution.

To move forward, in this algorithm continuous changes can be happening

in the population of individual solutions at every step, it varies from parent

to child in which it chooses individuals randomly from the current

population as parents and generates children for the next generation.

• Selection rules – It chooses individuals from population (parents)

that can help to create new child.

• Crossover rules –it merges two parent’s properties and it will help

in creating new child.

• Mutation rules – to create a chid required changes are made in

parent selected from population. This algorithm is helpful for

finding the optimal solution or near-optimal solution to a problem.

With this great feature one can reduce time require to find the

solution of the problem.

What is Traditional Algorithm

General algorithms which we use to solve problems is called as

Traditional Algorithms. It is a method in which step by step procedure are

made to solve a given problem. Algorithm itself is called as steps of

process. There are many algorithms are available to solve any problem.

The best algorithm is which algorithm in that required time for

computation, speed and result accuracy is perfect.

This type of algorithms is traditional algorithm which must be clear and

have defines 0 for finite number of well-defined inputs and 1 or more

well-defined outputs. With the help of available resources, it can be

finding solutions.it should also complete the process after some finite

number of steps. Some common types of traditional algorithms.

• Search – this type of algorithms help to search a particular item in a

particular data structure. (Linear search, Binary search, Tree search)

• Sort – this type of algorithms helps to sort data in either ascending

or descending order. (Bubble sort, Selection sort, Insertion sort,

radix sort)

https://pediaa.com/what-is-the-difference-between-linear-search-and-binary-search/#Linear%20Search
https://pediaa.com/what-is-the-difference-between-linear-search-and-binary-search/#Binary%20Search
https://pediaa.com/what-is-the-difference-between-bubble-sort-and-selection-sort/

198

Artificial Intelligence and Soft
Computing

198

• Divide and Conquer – it is helpful in large problems like dividing a

large problem into small sub problems and solving them individually

to find the solution of the original problem. (merge sort)

Difference Between Genetic Algorithm and Traditional Algorithm

1. Definition

 Genetic algorithm is an algorithm which solve both constrained and

unconstrained problem solution which will be based on Genetics and

Natural Selection whereas, traditional algorithm is a process to find

out unambiguous specification that shows how to solve a problem

by its rules.

199

Genetic Algorithm 2. Usage

 Genetic algorithm is helps in finding optimal or near optimal

solution of the problem whereas traditional algorithm provides step

by step process to find the solution of the problem which may not be

optimal.

3. Complexity

 Genetic algorithm is simpler whereas traditional algorithm is more

complex hence it cannot have used for big problem.

4. Applications

 Genetic Algorithm is applied in the fields of Artificial Intelligence,

research, Machine Learning whereas, Traditional algorithm is

applied in the fields of Programming, Mathematics, etc.

Travelling Salesman Problem

In Travelling salesman problem (TSP) many cities are listed with their

appropriate distance from one another. The task is to visit all the cities at

least once, no city should be repeated for finding the path and also it

should take smallest path to reach the destination. The traveller should

record the distance travelled by agent. In minimum time he has to travel

maximum cities.

13.8 SUMMARY

A theory of natural evolution coined by Charles Darwin’s and named as

genetic algorithm in which search heuristic is used. Natural selection

process is used in which it selected fittest individuals for reproduction in

order to produce offspring of the next generation. There are five

approaches of genetic algorithm firstly finding the population for mutation

process, from population one need to select the chromosomes with great

fitness function, after getting the selection of chromosomes crossover

activity need to be perform in which the parents are going to share their

features between them to produce new offspring’s. in crossover the

activity crossover point is to be selected to do the crossover. Last but not

the least in mutation the new offspring were created with the inheritance

property of parents as we select the chromosomes with great fitness

function the new offspring is better than the parents. There are some basic

operators of GA like Encoding, Crossover and mutation. They are the

most important factors on which Performance of GA depends. The

operator implementation is totally depending on encoding and also on the

problem. General algorithms which we use to solve problems is called as

Traditional Algorithms Genetic algorithm is an algorithm which solve

both constrained and unconstrained problem solution which will be based

on Genetics and Natural Selection whereas, traditional algorithm is a

process to find out unambiguous specification that shows how to solve a

problem by its rules.

200

Artificial Intelligence and Soft
Computing

200

13.9 UNIT AND EXCERCISE

1. What is Genetic algorithm? Explain in detail.

2. Explain 5 approaches of genetic algorithm.

3. List and explain all the parameters of genetic algorithm.

4. Explain various operators of genetic algorithm.

5. Discuss various limitations of genetic algorithm.

6. Write down the difference between traditional algorithm and genetic

algorithm.

7. What is traditional algorithm and how it works?

8. Explain various selection process methods.

13.10 REFERENCES

• Artificial Intelligence a Modern Approach 4th Edition by Peter

Norvig and Stuart Russell published by Pearson

• Artificial Intelligence a Modern Approach 3rd Edition by Peter

Norvig and Stuart Russell published by Pearson

• Understanding machine learning from theory to algorithms 1st

Edition Shai Shalev and Shai Ben David published by Cambridge

University Press

	0 Artificial Intelligence and Soft Starting pages
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

