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Syllabus 
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Lecture  5 
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Evaluation System 
      

Theory Examination 2 60 
TW/Tutorial/Practical - 40 

 
Unit Details 

Unit-I 
 

Classification of Signals and systems: Introduction, 
Continuous Time and discrete time signals, classification of 
signals, simple manipulations of discrete time signals, 
amplitude and phase spectra, classification of systems, analog 
to digital conversion of signals 
Fourier Analysis of Periodic and Aperiodic Continuous 
Time Signals and Systems: Introduction, trigonometric 
Fourier series, Complex or exponential form of Fourier series, 
Parsevals identity for Fourier series, Power spectrum of a 
periodic function. Fourier transform and its properties, Fourier 
transforms of some important signals, Fourier transforms of 
power and energy signals. 

Unit-II 
 

Applications of Laplace Transform to System Analysis 
Introduction, definition, region of convergence (ROC) LT of 
some important functions, Initial and final value theorems, 
convolution integral, Table of Laplace transforms, partial 
fraction expansions, network transfer function. S-plane Poles 
and zeros. LT of periodic functions. Application of LT in 
analysing networks 

Unit-III 
 

Z Transform: 
Introduction, definition of z-transform, properties of z- 
transform, evaluation of inverse z-transform. 

Unit-IV 
 

Linear Time Invariant Systems: 
Introduction, properties of DSP system, Discrete convolution, 
solution of linear constant coefficient difference equation. 
Frequency domain representation of discrete time signals and 
systems. Difference equation and its relationship with system 
function, impulse response and frequency response, 

Unit-V 
 

Discrete and Fast Fourier Transforms: 
Introduction, discrete Fourier series, Discrete time Fourier 
transform (DTFT), Fast Fourier transform (FFT), Computing 
an inverse DFT by doing direct DFT, 
Composite radix FFT, Fast (Sectioned) convolution, 
Correlation. 



 
 

Unit-VI 
 

Finite Impulse Response (FIR) Filters 
Introduction, magnitude response and phase response of 
digital filters, frequency response of linear phase FIR filters, 
Design techniques of FIR filters, design of optimal linear 
phase FIR filters. 
Infinite Impulse Response (IIR) Filters: 
Introduction, IIR filter design by approximation of 
derivatives, IIR filter design by impulse invariant method, IIr 
filter design by the bilinear transformation, 
Butterworth filters, Chebyshev filters, Elliptic filters, 
frequency transformation. 

 
Books: 
Digital Signal Processing by S. Salivahanan, C. Gnanapriya Second 
Edition, TMH 
 
References: 
Digital Signal Processing by Sanjit K. Mitra, Third Edition, TMH 
Signals and systems by A Anand Kumar (PHI) 2011 
Signals and Systems by Alan V. Oppenheim and Alan S. Willsky with S. 
Hamid Nawab, 
Second Edition, PHI (EEE) 
Digital Signal Processing by Apte, Second Edition, Wiley India. 
 
Term Work: 
Assignments: Should contain at least 6 assignments (one per unit) 
covering the Syllabus. 
Practical : ( To be conducted using Scilab / MATLAB) 
1.  Write a program to study and implement Discrete Time Signals and 

systems. 
a. Unit Step Sequence 
b. Unit Ramp Sequence 
c. Exponential Sequence 
d. Exponential Increasing Sequence 
e. Exponential Decreasing Sequence 
f. Even Signals 
g. Odd Signals 

2.  Write a program to implement Z-Transforms. 
a. Z-transform of Finite duration signals 
b. Time shifting property of Z transform 

3.  Write a program to demonstrate convolution property. 
4.  Write a program to demonstrate correlation property. 



 
 

5.  Write a program to implement Frequency Response of First order 
Difference Equation. 

6.  Write program to 
a. Determine N-Point DFT. 
b. Find DFT and IDFT of the given sequence. 

7.  Write a program to implement circular convolution using DFT 
8.  Write a program to perform linear filtering (linear convolution using 

DFT. 
9.  Write a program to implement/Design of FIR Filter using Frequency 

Sampling Technique. 
10.  Write a program to implement low pass, high pass and band pass 

filters. 
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UNIT I 

1 
BASICS OF SIGNALS AND SYSTEMS 

Unit Structure 

1.1  Introduction 

1.2   Energy Signal and Power Signal 

1.3  Transformations of the independent variable 

1.3.1 Examples of Transformations of the Independent Variable 

1.4  Periodic Signals 

1.5  Even and Odd Signals 

1.6  Exponential and sinusoidal signals 

1.6.1 Continuous-time complex exponential and sinusoidal signals 

1.6.2 Discrete-time complex exponential and sinusoidal signals 

1.6.3 Sinusoidal Signals 

1.7 The discrete-Time Unit Impulse and Unit Step Sequences 

1.8  The Continuous-Time Unit Step and Unit Impulse Functions 

1.9  Sampling property of the continuous-time unit impulse: 

1.10  Continuous-Time and Discrete-Time Systems 

1.10.1 Simple Examples of Systems 

1.11  Interconnects of Systems 

1.12  Basic System Properties 

 1.12.1 Systems with and without Memory  

 1.12.2 Invertibility and Inverse System 

1.12.3 Causality 

1.12.4 Stability 

 1.12.5 Time Invariance 

 1.12.6 Linearity 

1.13 Summary 

1.14 Questions 

1.15 References 

1.16 Books 

1.0 OBJECTIVE  

 Understand continuous and discrete time signals. 

 Understand continuous and discrete time systems. 

 Classify the signals and Systems  
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1.1 INTRODUCTION  

Signals are represented mathematically as functions of one or more 

independent variables. Here we focus attention on signals involving a 

single independent variable. For convenience, this will generally refer to 

the independent variable as time.  

There are two types of signals: continuous-time signals and discrete-time 

signals.  

Continuous-time signal: The variable of time is continuous. A speech 

signal as a function of time is a continuous-time signal. 

 

Figure 1.1:  Graphical representation of Continuous-time signal 

Discrete-time signal: the variable of time is discrete. The weekly Dow 

Jones stock market index is an example of discrete-time signal. 

 

Figure 1.2 : Graphical representation of Discrete-time signals 

To distinguish between continuous-time and discrete-time signals we use 

symbol t to denote the continuous variable and n to denote the discrete-

time variable. And for continuous-time signals we will enclose the 

independent variable in parentheses (·), for discrete-time signals we will 

enclose the independent variable in bracket [·].  

A discrete-time signal x [n]may represent a phenomenon for which the 

independent variable is inherently discrete. A discrete-time signal x 

[n]may represent successive samples of an underlying phenomenon for 

which the independent variable is continuous. For example, the processing 

of speech on a digital computer requires the use of a discrete time 

sequence representing the values of the continuous-time speech signal at 

discrete points of time. 
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1.2 ENERGY SIGNAL AND POWER SIGNAL 

 If v (t) and i(t)are respectively the voltage and current across a resistor 

with resistance R , then the instantaneous power is 

p(t) = v(t) i(t) =  v
2 

(t) 

The total energy expended over the time interval is t1  ≤  t ≤ t2 

  =  v
2 

(t) dt 

and the average power over this time interval is 

   =  v
2 

(t) dt 

For any continuous-time signal x (t)( or any discrete-time signal x [n], the 

total energy over the time interval t1  ≤  t ≤ t2  in a continuous-time signal x 

(t) is defined as 

 
2 

dt 

where |x| denotes the magnitude of the (possibly complex) number x .  

The time-averaged power is        

   
2 

dt 

Similarly the total energy in a discrete-time signal x [n] over the time 

interval n1  ≤  n ≤ n2  is defined as 

 
2 

The average power is 

   
 
2 

In many systems, we will be interested in examining the power and energy 

in signals over an infinite time interval, that is, for - ∞ ≤  t  ≤  +∞ or. - ∞ ≤   

n ≤  +∞  

The total energy in continuous time is then defined 

E ∞= Lim (T   
2 

dt = 
2 

dt , 

And  in discrete time, 

E ∞= Lim (N  
2  =  2 

For some signals, the integral in continuous Equation or sum in discrete 

might not converge, that is, if   x (t) or x [n] equals a nonzero constant 
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value for all time. Such signals have infinite energy, while signals with   E 

∞ <    have finite energy. 

The time-averaged power over an infinite interval 

P∞ = Lim (T    
2 

dt 

P∞ = Lim (N     
2 

Three types of signals:  

 Type 1: signals with finite total energy, E ∞ <  ∞ and zero average power, 

P∞ = Lim (T      =0 

Type 2: with finite average power P∞. 

 If P∞ > 0  , then E∞= ∞ .  

An example is the signal x [n] = 4 ,  

it has infinite energy, but has an average power of P∞ =16. 

Type 3: signals for which neither P∞ and E∞ are finite. An example of 

this signal is x(t )= t . 

1.3 TRANSFORMATIONS OF THE INDEPENDENT 

VARIABLE  

In many situations, it is important to consider signals related by a 

modification of the independent variable. These modifications will usually 

lead to reflection, scaling, and shift. 

1.3.1 Examples of Transformations of the Independent Variable 

 

Figure.1.3 Discrete-time signals related by a time shift. 

 

Fig. 1.4 Continuous-time signals related by a time shift. 



 

 5 

Digital Signals And System  

 

Fig. 1.5 (a) A discrete-time signal x [n]; (b) its reflection, x [-n] about n 

= 0 

 

Fig. 1.6 (a) A continuous-time signal x( t) ; (b) its reflection, 

 x (-t)about t = 0 . 

 

Fig. 1.7 Continuous-time signals related by time scaling. 

1.4 PERIODIC SIGNALS  

A periodic continuous-time signal x (t) has the property that there is a 

positive value of T for which x (t) = x (t + T)   for all t   

From Equation , we can deduce that if x (t) is periodic with period T, 

then x (t) = x (t + mT)  for all t and for all integers m .  

Thus, x( t) is also periodic with period 2T, 3T, …. The fundamental period 

T0 of x( t) is the smallest positive value of T 
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Fig. 1.8 Continuous-time periodic signal. 

A discrete-time signal x [n] is periodic with period N , 

where N is an integer, if it is unchanged by a time shift of N,  

x[ n] = x [n + N] for all values of n.  

If Equation holds, then x [n] is also periodic with period 2N , 3N , …. The 

fundamental period N0 is the smallest positive value of N for which 

Equation  holds. 

 

Fig. 1.9 Discrete-time periodic signal. 

1.5 EVEN AND ODD SIGNALS  

In addition to their use in representing physical phenomena such as the 

time shift in a radar signal and the reversal of an audio tape, 

transformations of the independent variable are extremely useful in 

examining some of the important properties that signal may possess. 

Signal with these properties can be even or odd signal, periodic signal: 

An important fact is that any signal can be decomposed into a sum of two 

signals, one of which is even and one of which is odd. 

 

Fig. 1.10 An even continuous-time signal;  (b) an odd continuous-time 

signal. 



 

 7 

Digital Signals And System  

 

which is referred to as the even part of x( t) .  

Similarly, the odd part of x (t) is given by 

 

Exactly analogous definitions hold in the discrete-time case. 

 

Fig.1.11 The even-odd decomposition of a discrete-time signal 

1.6 EXPONENTIAL AND SINUSOIDAL SIGNALS  

1.6.1 Continuous-time complex exponential and sinusoidal signals:  

The continuous-time complex exponential signal 

x(t)= Ce
at 

Where C and a are in general complex numbers. 

Real exponential signals 

 

Fig. 1.12 The continuous-time complex exponential signal at x(t)= Ce
at 

, (a) a > 0 ; (b) a < 0 . 
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Periodic complex exponential and sinusoidal signals: 

 If a is purely imaginary,  

we have  x( t)=  e
jա0t 

 An important property of this signal is that it is periodic. We know x (t) is 

periodic with period T if  

e
jա0t 

 = e
jա0(t +T) =

 e
jա0t 

e
jա0T

 

For periodicity, we must have  

e
jա0T

 =1  

For ա0 ≠ 0, the fundamental period T0 is  

T0 =  

Thus, the signals e
jա0t 

 and e-
jա0t 

 have the same fundamental period.  

A signal closely related to the periodic complex exponential is the 

sinusoidal signal  

x (t) = A cos(ա0 t + Ɵ) 

With seconds as the unit of t, the units of Ɵ and ա0 are radians and 

radians per second. It is also known ա0=2Лf0, where f0 has the unit of 

circles per second or Hz. 

The sinusoidal signal is also a periodic signal with a fundamental period of 

T0 . 

 

Fig. 1.13 Continuous-time sinusoidal signal. 

Using Euler’s relation, a complex exponential can be expressed in terms of 

sinusoidal signals with the same fundamental period: 

e
jա0t 

=  cos ա0t + j sin ա0t 
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complex exponentials with the same fundamental period: 

 

A sinusoid can also be expresses as 

 

And  

 

Periodic signals, such as the sinusoidal signals provide important 

examples of signal with infinite total energy, but finite average power. For 

example: 

 

 

Since there are an infinite number of periods as t ranges from - ∞ to + ∞ , 

the total energy integrated over all time is infinite. The average power is 

finite since 

 

General complex Exponential signals  

Consider a complex exponential at Ce
at
, where C= |C| e 

jƟ  
is expressed in 

polar and 

 a = r +j w0 is expressed in rectangular form.  

Then 

 

Thus, for r = 0 , the real and imaginary parts of a complex exponential are 

sinusoidal.  

For r > 0 , sinusoidal signals multiplied by a growing exponential.  

For r < 0 , sinusoidal signals multiplied by a decaying exponential.  

Damped signal – Sinusoidal signals multiplied by decaying exponentials 

are commonly referred to as damped signal. 
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Fig. 1.14 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

1.6.2 Discrete-time complex exponential and sinusoidal signals: 

A discrete complex exponential or sequence is defined by 

x[n]= Cα
n 

where C and αare in general complex numbers. This can be alternatively 

expressed 

x [n]= C e
βn

 

 where α =e
β
 

Real Exponential Signals: 

If C and α are real, we have the real exponential signals 

 

Fig. 1.15 Real Exponential Signal  x [n]= Cα
n 

: (a) α >1; (b) 0<α< 1 (c) 

-1< α< 0; (d) α < -1
 

1.6.3 Sinusoidal Signals: 

x[n]= e 
jω0n 

e 
jω0n

  = cosω0 n + j sin ω0 n 

Similarly, a sinusoidal signal can also be expresses in terms of periodic 

complex exponentials with the same fundamental period: 
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A cos (ω0 n +ϕ ) =   e 
jϕ

 e 
j ω0 n 

 +   e 
-jϕ

 e 
-j ω0 n

 

A sinusoid can also be expresses as 

A cos (ω0 n +ϕ )= A Re{ e 
j(ω0 n +ϕ)

} 

And A sin (ω0 n +ϕ )= A Im{ e 
j(ω0 n +ϕ)

} 

The above signals are examples of discrete signals with infinite total 

energy, but finite average power. For example: every sample of   x[ n] =  e 
(-j ω0 n ) 

contributes 1 to the signal’s energy. Thus the total energy - ∞ < n < 

+∞ is infinite, while the average power is equal to 1. 

 

 

Fig.1.16 Discrete-time sinusoidal signal. 

1.7. THE DISCRETE-TIME UNIT IMPULSE AND UNIT 

STEP SEQUENCES 

Discrete-time unit impulse is defined as 
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 Fig. 1.17 Discrete-time unit impulse. 

Discrete-time unit step is defined as 

 

Fig. 1.18 Discrete-time unit step sequence. 

The discrete-time impulse unit is the first difference of the discrete-time 

step 

 

The discrete-time unit step is the running sum of the unit sample: 

 

It can be seen that for n < 0 , the running sum is zero, and for n ≥0 , the 

running sum is 1. 

If we change the variable of summation from m to k = n - m we have, 

 

The unit impulse sequence can be used to sample the value of a signal at n 

= 0. Since it is nonzero only for n = 0, it follows that 

 

More generally, a unit impulse 

 

This sampling property is very important in signal analysis. 

1.8 THE CONTINUOUS-TIME UNIT STEP AND UNIT 

IMPULSE FUNCTIONS  

Continuous-time unit step is defined as:  
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Fig. 1.19 Continuous-time unit step function 

The continuous-time unit step is the running integral of the unit impulse 

 

The continuous-time unit impulse can also be considered as the first 

derivative of the continuous time unit step, 

 

Since u (t) is discontinuous at t = 0 and consequently is formally not 

differentiable. This can be interpreted, however, by considering an 

approximation to the unit step u Δ(t) , as illustrated in the figure below, 

which rises from the value of 0 to the value 1 in a short time interval of 

length Δ. 

 

Fig. 1.20 (a) Continuous approximation to the unit step uΔ (t) ; (b) 

Derivative of uΔ (t) . 

The derivative is 

 

 

Note that It is a short pulse, of duration Δ and with unit area for any value 

of Δ. As Δ -> 0 , becomes narrower and higher, maintaining its unit area. 

At the limit, 
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And 

 

Graphically, it is represented by an arrow pointing to infinity at t = 0 , “1” 

next to the arrow represents the area of the impulse. 

 

Fig. 1.21 Continuous-time unit impulse 

1.9 SAMPLING PROPERTY OF THE CONTINUOUS-

TIME UNIT IMPULSE: 

 

Or more generally, 

 

Example:  

Consider the discontinuous signal x (t) 

 

Fig. 1.22 The discontinuous signal and its derivative. 

Note that the derivative of a unit step with a discontinuity of size of k 

gives rise to an impulse of area k at the point of discontinuity. 
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1.10 CONTINUOUS-TIME AND DISCRETE-TIME 

SYSTEMS  

A system can be viewed as a process in which input signals are 

transformed by the system or cause the system to respond in some way, 

resulting in other signals as outputs. Examples 

 

Fig. 1. 23 Examples of systems.  

(a)  A system with input voltage v s (t) and output voltagev0(t) . 

(b)  A system with input equal to the force f(t )  and output equal to the 

velocity v( t) . 

A continuous-time system is a system in which continuous-time input 

signals are applied and results in continuous-time output signals. 

 

A discrete-time system is a system in which discrete-time input signals are 

applied and results in discrete-time output signals. 

 

1.10.1 Simple Examples of Systems:  

Example 1: Consider the RC circuit in Fig. 23 (a).  

The current i(t ) is proportional to the voltage drop across the resistor: 

 

The current through the capacitor is 
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Equating the right-hand sides of both the above equations, we obtain a 

differential equation describing the relationship between the input and 

output: 

 

Example 2: Consider the system in Fig. 23 (b), where the force f(t ) as the 

input and the velocity v( t) as the output. If we let m denote the mass of 

the car and pv the resistance due to friction. Equating the acceleration with 

the net force divided by mass, we obtain 

 

It is first-order linear differential equations of the form: 

 

Example 3: Consider a simple model for the balance in a bank account 

from month to month. Let y [n] denote the balance at the end of nth 

month, and suppose that y[n] evolves from month to month according the 

equation:  

y [n] = 1.01y[n -1] + x [n] , 

or 

y [n] -1.01y[n -1] = x [n] , 

where x [n] is the net deposit (deposits minus withdraws) during the nth 

month 1.01y[n -1] models the fact that we accrue 1% interest each month. 

Some conclusions:  

• Mathematica descriptions of systems have great deal in common; 

• A particular class of systems is referred to as linear, time-invariant 

systems.  

• Any model used in describing and analyzing a physical system 

represents an idealization of the system. 

1.11 INTERCONNECTS OF SYSTEMS 
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Fig. 1.24 Interconnection of systems. (a) A series or cascade 

interconnection of two systems; (b) A parallel interconnection of two 

systems; 

(c) Combination of both series and parallel systems. 

 

Fig. 1.25 Feedback interconnection. 
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Fig. 1.26 A feedback electrical amplifier. 

1.12 BASIC SYSTEM PROPERTIES  

1.12.1 Systems with and without Memory:  

A system is memoryless if its output for each value of the independent 

variable as a given time is dependent only on the input at the same time. 

For example: 

y[n] =(2 x[n] –x
2
[n])

2 

is memoryless. 

A resistor is a memoryless system, since the input current and output 

voltage has the relationship, 

 

v (t) = R i(t ) , 

where R is the resistance.  

One particularly simple memoryless system is the identity system, whose 

output is identical to its input, that is 

y(t)=x(t) or y[n]=x[n] 

An example of a discrete-time system with memory is an accumulator or 

summer. 

 

Or  

y[n]-y[n-1]=x[n] 

Another example is a delay 
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A capacitor is an example of a continuous-time system with memory 

 

 

where C is the capacitance 

1.12.2 Invertibility and Inverse System:  

A system is said to be invertible if distinct inputs leads to distinct outputs. 

Fig. 1.27Concept of an inverse system. 

Examples of non-invertible systems: 

 y [n] = 0 ,  

the system produces zero output sequence for any input sequence. 

 y( t) = x
2
( t) ,  

in which case, one cannot determine the sign of the input from the 

knowledge of the output. Encoder in communication systems is an 

example of invertible system, that is, the input to the encoder must be 

exactly recoverable from the output. 

1.12.3 Causality:  

A system is causal if the output at any time depends only on the values of 

the input at present time and in the past. Such a system is often referred to 

as being nonanticipative, as the system output does not anticipate future 

values of the input.  
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The RC circuit in Fig. 23 (a) is causal, since the capacitor voltage 

responds only to the present and past values of the source voltage. The 

motion of a car is causal, since it does not anticipate future actions of the 

driver. 

The following expressions describing systems that are not causal:  

y [n] = x [n] - x[ n +1], 

 and  

y (t) = x( t +1) 

All memoryless systems are causal, since the output responds only to the 

current value of input. 

Example: Determine the Causality of the two systems: 

(1) y [n] = x [-n] 

(2) y (t )= x (t) cos(t +1)  

Solution: System (1) is not causal, since when n < 0 , e.g. n = -4 , we see 

that y [-4] = x [4] , so that the output at this time depends on a future value 

of input.  

System (2) is causal. The output at any time equals the input at the same 

time multiplied by a number that varies with time. 

1.12.4 Stability:  

A stable system is one in which small inputs leads to responses that do not 

diverge. More formally, if the input to a stable system is bounded, then the 

output must be also bounded and therefore cannot diverge.  

Examples of stable systems and unstable systems: 

 

The above two systems are stable system.  

The accumulator y[n] =   is not stable, since the sum grows 

continuously even if   x [n] is bounded. 

Check the stability of the two systems: 

 S1; y( t) = tx (t) ;  

 S2: y(t)= e 
x(t)
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 S1 is not stable, since a constant input x (t)= 1, yields y(t ) = t , which 

is not bounded – no matter what finite constant we pick,| y( t)| will 

exceed the constant for some t. 

 S2 is stable. Assume the input is bounded |x (t)| < B , or - B < x (t) < 

B for all t.  

We then see that y (t) is bounded e
-B

  <  y(t)  <  e
B 

1.12.5 Time Invariance: 

A system is time invariant if a time shift in the input signal results in an 

identical time shift in the output signal. Mathematically, if the system 

output is y (t) when the input is x( t) , a timeinvariant system will have an 

output of y(t-t0)  when input is x(t-t0). 

Examples:    

The system y (t) = sin[x (t)] is time invariant. 

The system y [n] = n x[n] is not time invariant. This can be demonstrated 

by using counterexample. Consider the input signal x1[n] =δ[n] , which 

yields  y1[ n] =0 . However, the input   x2[n]= δ[n-1] yields the output 

y2[n]=n δ[n-1]. Thus, while x2[n] is the shifted version of x1[n] , y2[n]  is 

not the shifted version of   y1[ n] . 

The system y (t) = x( 2t) is not time invariant. 

To check using counter example. Consider   x1(t) shown in Fig. 1.30 (a), 

the resulting output  y1( t) is depicted in Fig. 1.30 (b). If the input is 

shifted by 2, that is, consider x2 (t)= x1 (t -2) , as shown in Fig. 1.30 (c), 

we obtain the resulting output y2(t)= x2(2t) shown in Fig. 1.30 (d). It is 

clearly seen that y2(t) ≠ y1(t-2), so the system is not time invariant. 

 

Fig. 1.28 Inputs and outputs of the system y( t) = x(2t) 
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1.12.6 Linearity:  

The system is linear if  

 The response to x1(t)+ x2(t) is  y1(t)+y2(t) - additivity property 

 The response to ax1(t)  is ay1(t) - scaling or homogeneity property.  

 The two properties defining a linear system can be combined into a 

single statement: 

  Continuous time: ax1(t)+bx2(t)    a y1(t) + b y2(t)  

 Discrete time: ax1[n] +b x2[n]   ay1[n]  + b y2[n]   

 Here a and b are any complex constants.  

 Superposition property: If xk [n], k = 1,2,3…… are a set of inputs with 

corresponding outputs yk [n], k = 1,2,3…. , then the response to a linear 

combination of these inputs given by 

 

Is  

 

which holds for linear systems in both continuous and discrete time.  

For a linear system, zero input leads to zero output. 

Examples: 

 The system y (t) = t x(t) is a linear system.  

 The system y(t) = x
2
(t) is not a liner system. ·  

 The system y [n][ = Re{x [n] }, is additive, but does not satisfy the 

homogeneity, so it is not a linear system.  

 The system y[ n][ = 2x [n] + 3 is not linear. y [n] = 3 if x [n] = 0 , the 

system violates the “zeroin/zero-out” property. However, the system 

can be represented as the sum of the output of a linear system and 

another signal equal to the zero-input response of the system. For 

system y [n]= 2x[ n] + 3, the linear system is 

x[n]   2 x[n] 

and the zero-input response is 

y0[n]=3 

as shown in Fig. 1.29. 
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Fig. 1.29 Structure of an incrementally linear system. y0(t) is the zero-

input response of the system. 

The system represented in Fig. 1.29 is called incrementally linear system. 

The system responds linearly to the changes in the input. 

The overall system output consists of the superposition of the response of 

a linear system with a zero-input response. 

1.13 SUMMARY 

Signals are represented mathematically as functions of one or more 

independent variables. 

There are two types of signals: continuous-time signals and discrete-time 

signals. 

The variable of time is continuous in case of Continuous-time signal. 

 The variable of time is discrete in case of Discrete-time signal. 

In many situations, it is important to consider signals related by a 

modification of the independent variable. These modifications will usually 

lead to reflection, scaling, and shift. 

A periodic continuous-time signal x (t) has the property that there is a 

positive value of T for which x (t) = x (t + T)   for all t   

Any signal can be decomposed into a sum of two signals, one of which is 

even and one of which is odd. 

The sinusoidal signal is also a periodic signal with a fundamental period of 

T0 . 

The continuous-time unit impulse can also be considered as the first 

derivative of the continuous time unit step. 

The continuous-time unit step is the running integral of the unit impulse. 

A continuous-time system is a system in which continuous-time input 

signals are applied and results in continuous-time output signals. 

A discrete-time system is a system in which discrete-time input signals are 

applied and results in discrete-time output signals. 

A system is memoryless if its output for each value of the independent 

variable as a given time is dependent only on the input at the same time.  

A system is said to be invertible if distinct inputs leads to distinct outputs. 

A system is causal if the output at any time depends only on the values of 

the input at present time and in the past. Such a system is often referred to 
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as being nonanticipative, as the system output does not anticipate future 

values of the input.  

A stable system is one in which small inputs leads to responses that do not 

diverge. More formally, if the input to a stable system is bounded, then the 

output must be also bounded and therefore cannot diverge. 

A system is time invariant if a time shift in the input signal results in an 

identical time shift in the output signal. Mathematically, if the system 

output is y (t) when the input is x( t) , a time invariant system will have an 

output of y(t-t0)  when input is x(t-t0). 

The system is linear if  

The response to x1(t)+ x2(t) is  y1(t)+y2(t) - additivity property 

The response to ax1(t)  is ay1(t) - scaling or homogeneity property.  

1.14 QUESTIONS 
 

1. What are signals? Explain continuous time signal and discrete time 

signals? 

2. Explain in brief the various basic system properties? 

3. Explain: 

a) Even and Odd Signals 

     b) Exponential and Sinusoidal signal 
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2.0 OBJECTIVES 

 Understand Trigonometric Fourier series components 

 Periodic Fourier series components 

 Understand the properties of Fourier transform 



   

 26 

Fourier Series 

 

2.1 INTRODUCTION TO FOURIER SERIES  

We will now turn to the study of trigonometric series. You have seen that 

functions have series representations as expansions in powers of x, or x − 

a, in the form of Maclaurin and Taylor series. Recall that the Taylor series 

expansion is given by 

 

where the expansion coefficients are determined as 

 

From the study of the heat equation and wave equation, we have found 

that there are infinite series expansions over other functions, such as sine 

functions. We now turn to such expansions and in the next chapter we will 

find out that expansions over special sets of functions are not uncommon 

in physics. But, first we turn to Fourier trigonometric series.  

We will begin with the study of the Fourier trigonometric series expansion 

 

We will find expressions useful for determining the Fourier coefficients 

{an, bn} given a function f(x) defined on [−L, L]. We will also see if the 

resulting infinite series reproduces f(x). However, we first begin with 

some basic ideas involving simple sums of sinusoidal functions. 

There is a natural appearance of such sums over sinusoidal functions in 

music. A pure note can be represented as  

y(t) = A sin(2π f t) 

where A is the amplitude, f is the frequency in hertz (Hz), and t is time in 

seconds. The amplitude is related to the volume of the sound. The larger 

the amplitude, the louder the sound. In Figure 2.1 we show plots of two 

such tones with f = 2 Hz in the top plot and f = 5 Hz in the bottom one. 

In these plots you should notice the difference due to the amplitudes and 

the frequencies. You can easily reproduce these plots and others in your 

favorite plotting utility.  

As an aside, you should be cautious when plotting functions, or sampling 

data. The plots you get might not be what you expect, even for a simple 

sine function.  
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Figure 2.1: Plots of y(t) = A sin(2π f t) on [0, 5] for f = 2 Hz  

and f = 5 Hz. 

In Figure 2.2 we show four plots of the function y(t) = 2 sin(4πt). In the 

top left you see a proper rendering of this function. However, if you use a 

different number of points to plot this function, the results may be 

surprising. In this example we show what happens if you use N = 200, 

100, 101 points instead of the 201 points used in the first plot. Such 

disparities are not only possible when plotting functions, but are also 

present when collecting data. Typically, when you sample a set of data, 

you only gather a finite amount of information at a fixed rate. This could 

happen when getting data on ocean wave heights, digitizing music and 

other audio to put on your computer, or any other process when you 

attempt to analyze a continuous signal. 

 

Figure 2.2: Problems can occur while plotting. Here we plot the 

function y(t) = 2 sin 4πt using N = 201, 200, 100, 101 points. 
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Next, we consider what happens when we add several pure tones. After 

all, most of the sounds that we hear are in fact a combination of pure tones 

with different amplitudes and frequencies. In Figure 2.3 we see what 

happens when we add several sinusoids. Note that as one adds more and 

more tones with different characteristics, the resulting signal gets more 

complicated. However, we still have a function of time. 

 

Figure 2.3: Superposition of several sinusoids. 

Given a function f(t), can we find a set of sinusoidal functions whose sum 

converges to f(t)?” 

Looking at the superposition  in Figure 2.3, we see that the sums yield 

functions that appear to be periodic. This is not to be unexpected. We 

recall that a periodic function is one in which the function values repeat 

over the domain of the function. The length of the smallest part of the 

domain which repeats is called the period. We can define this more 

precisely: A function is said to be periodic with period T if f(t + T) = f(t) 

for all t and the smallest such positive number T is called the period. 

2.2 GOAL - FOURIER ANALYSIS  

Given a signal f(t), we would like to determine its frequency content by 

finding out what combinations of sines and cosines of varying frequencies 

and amplitudes will sum to the given function. This is called Fourier 

Analysis. 
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2.3 TRIGONOMETRIC FOURIER SERIES  

As we have seen in the last section, we are interested in finding 

representations of functions in terms of sines and cosines. Given a 

function f(x) we seek a representation in the form 

 

Notice that we have opted to drop the references to the time-frequency 

form of the phase. This will lead to a simpler discussion for now and one 

can always make the transformation nx = 2π fnt when applying these ideas 

to applications. 

The series representation in Equation  is called a Fourier trigonometric 

series. We will simply refer to this as a Fourier series for now.  

 

Figure 2.4: Plot of the function f(t) defined on [0, 2π]  

and its periodic extension. 

The set of constants a0, an, bn, n = 1, 2, . . . are called the Fourier 

coefficients. The constant term is chosen in this form to make later 

computations simpler, though some other authors choose to write the 

constant term as a0. Our goal is to find the Fourier series representation 

given f(x). Having found the Fourier series representation, we will be 

interested in determining when the Fourier series converges and to what 

function it converges. 
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Figure 2.5: Superposition of several sinusoids. 

Looking at the superpositions in Figure 2.5, we see that the sums yield 

functions that appear to be periodic. This is not to be unexpected. We 

recall that a periodic function is one in which the function values repeat 

over the domain of the function. The length of the smallest part of the 

domain which repeats is called the period. We can define this more 

precisely: A function is said to be periodic with period T if f(t + T) = f(t) 

for all t and the smallest such positive number T is called the period. For 

example, we consider the functions used in Figure 3.3. We began with y(t) 

= 2 sin(4πt). Recall from your first studies of trigonometric functions that 

one can determine the period by dividing the coefficient of t into 2π to get 

the period. In this case we have 

 

From our discussion in the last section, we see that The Fourier series is 

periodic. The periods of cos nx and sin nx are 2π n . Thus, the largest 

period, T = 2π, comes from the n = 1 terms and the Fourier series has 

period 2π. This means that the series should be able to represent functions 

that are periodic of period 2π. While this appears restrictive, we could also 

consider functions that are defined over one period.  we  can show a 

function defined on [0, 2π]. In the same figure, we show its periodic 

extension. These are just copies of the original function shifted by the 

period and glued together. The extension can now be represented by a 

Fourier series and restricting the Fourier series to [0, 2π] will give a 

representation of the original function. Therefore, we will first consider 
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that we could just as easily considered functions defined on [−π, π] or any 

interval of length 2π. We will consider more general intervals later in the 

chapter. 

Fourier Coefficients Theorem 2.1. The Fourier series representation of f(x) 

defined on [0, 2π], when it exists, is given by equation with Fourier 

coefficients  

 

These expressions for the Fourier coefficients are obtained by considering 

special integrations of the Fourier series. We will now derive the an 

integrals in equation. We begin with the computation of a0. Integrating the 

Fourier series term by term in Equation above, we have 

 

We will assume that we can integrate the infinite sum term by term. Then 

we will need to compute 

 

From these results we see that only one term in the integrated sum does 

not vanish leaving 

 

This confirms the value for a0
2

Next, we will find the expression for an. 

We multiply the Fourier series above  by cos mx for some positive integer 

m. This is like multiplying by cos 2x, cos 5x, etc. We are multiplying by 

all possible cos mx functions for different integers m all at the same time. 

We will see that this will allow us to solve for the an’s. 

 We find the integrated sum of the series times cos mx is given by  
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Integrating term by term, the right side becomes 

 

We have already established that     which implies that 

the first term vanishes. Next we need to compute integrals of products of 

sines and cosines. This requires that we make use of some of the 

trigonometric identities listed . For quick reference, we list these here. 

Useful Trigonometric Identities 

 

We first want to evaluate   . We do this by using the 

 

There is one caveat when doing such integrals. What if one of the 

denominators m ± n vanishes?  

For this problem  m + n ≠ 0, since both m and n are positive integers. 

However, it is possible for m = n. This means that the vanishing of the 

integral can only happen when m ≠ n. So, what can we do about the m = n 

case? One way is to start from scratch with our integration. (Another way 

is to compute the limit as n approaches m in our result and use L’Hopital’s 

Rule.) 

For n = m we have to compute  . This can also be handled 

using a trigonometric identity. Using the half angle formula,  with θ = mx, 

we find 
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To summarize, we have shown that 

 

This holds true for m, n = 0, 1, . . . . [Why did we include m, n = 0?] When 

we have such a set of functions, they are said to be an orthogonal set over 

the integration interval. A set of (real) functions {φn(x)} is said to be 

orthogonal on [a, b] if   

 

 Furthermore, if we also have that 

 

these functions are called orthonormal. 

The set of functions { are orthogonal on [0, 2π]. Actually, they 

are orthogonal on any interval of length 2π. We can make them 

orthonormal by dividing each function by √ π as indicated by Equation . 

 This is sometimes referred to normalization of the set of functions. The 

notion of orthogonality is actually a generalization of the orthogonality of 

vectors in finite dimensional vector spaces. The integral   

is the generalization of the dot product, and is called the scalar product of 

f(x) and g(x), which are thought of as vectors in an infinite dimensional 

vector space spanned by a set of orthogonal functions. 

 we still have to evaluate . We can use the 

trigonometric identity involving products of sines and cosines,  Setting A 

= nx and B = mx, 

That 

 

So, 
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For these integrals we also should be careful about setting n = m. In this 

special case, we have the integrals 

 

Finally, we can finish evaluating the expression in Equation. We have 

determined that all but one integral vanishes. In that case, n = m. This 

leaves us with 

 

Solving for am gives 

 

Since this is true for all m = 1, 2, . . . , we have proven this part of the 

theorem. The only part left is finding the bn’s This will be left as an 

exercise for the reader. 

 We now consider examples of finding Fourier coefficients for given 

functions. In all of these cases we define f(x) on [0,2 П] 

Example 2.1. f(x) = 3 cos 2x, x ∈ [0, 2π]. We first compute the integrals 

for the Fourier coefficients. 

 

The integrals for a0, an, n ≠ 2, and bn are the result of orthogonality. For 

a2, the integral can be computed as follows: 

 

 

Therefore, we have that the only nonvanishing coefficient is a2 = 3. So 

there is one term and f(x) = 3 cos 2x.  
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all of those integrals. If we have a function expressed simply in terms of 

sums of simple sines and cosines, then it should be easy to write down the 

Fourier coefficients without much work. This is seen by writing out the 

Fourier series, 

 

For the last problem, f(x) = 3 cos 2x. Comparing this to the expanded 

Fourier series, one can immediately read off the Fourier coefficients 

without doing any integration. In the next example we emphasize this 

point. 

Example 2.2. f(x) = sin2 x, x ∈ [0, 2π]. 

 We could determine the Fourier coefficients by integrating as in the last 

example. However, it is easier to use trigonometric identities. We know 

that 

 

There are no sine terms, so bn = 0, n = 1, 2, . . . . There is a constant term, 

implying a0/2 = 1/2. So, a0 = 1. There is a cos 2x term, corresponding to n 

= 2, so a2 = −1 2 . That leaves an = 0 for n ≠ 0, 2. So, a0 = 1, a2 = −1 2 , 

and all other Fourier coefficients vanish 

Example 2.3.  f(x) = 1, 0 < x < π, −1, π < x < 2π, . 

 

Figure 2.6: Plot of discontinuous function in Example 2.3 
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We have found the Fourier coefficients for this function. Before inserting 

them into the Fourier series , we note that cos nπ = (−1) n . Therefore, 

 

    So, half of the bn’s are zero. While we could write the Fourier series 

representation as 

 

we could let n = 2k − 1 in order to capture the odd numbers only. The 

answer can be written as 

 

Having determined the Fourier representation of a given function, we 

would like to know if the infinite series can be summed; i.e., does the 

series converge? Does it converge to f(x)? We will discuss this question 

later in the chapter after we generalize the Fourier series to intervals other 

than for x ∈ [0, 2π].  

2.4 FOURIER SERIES OVER OTHER INTERVALS  

In many applications we are interested in determining Fourier series 

representations of functions defined on intervals other than [0, 2π]. In this 

section we will determine the form of the series expansion and the Fourier 

coefficients in these cases. The most general type of interval is given as [a, 

b]. However, this often is too general. More common intervals are of the 

form [−π, π], [0, L], or 
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intervals arise often in applications. For example, for the problem of a one 

dimensional string of length L we set up the axes with the left end at x = 0 

and the right end at x = L. Similarly for the temperature distribution along 

a one dimensional rod of length L we set the interval to x ∈ [0, 2π]. Such 

problems naturally lead to the study of Fourier series on intervals of length 

L. We will see later that symmetric intervals, [−a, a], are also useful. 

Given an interval [0, L], we could apply a transformation to an interval of 

length 2π by simply rescaling the interval. Then we could apply this 

transformation to the Fourier series representation to obtain an equivalent 

one useful for functions defined on [0, L]. 

 

Figure 2.7: A sketch of the transformation between intervals x ∈ [0, 
2π] and t ∈ [0, L] 

We define x ∈ [0, 2π] and t ∈ [0, L]. A linear transformation relating these 

intervals is simply x = 2πt L as shown in Figure 2.7. So, t = 0 maps to x = 

0 and t = L maps to x = 2π. Furthermore, this transformation maps f(x) to 

a new function g(t) = f(x(t)), which is defined on [0, L]. We will determine 

the Fourier series representation of this function using the representation 

for f(x) from the last section. Recall the form of the Fourier representation 

for f(x) in Equation 

 

Inserting the transformation relating x and t, we have 

 

This gives the form of the series expansion for g(t) with t ∈ [0, L]. But, we 

still need to determine the Fourier coefficients. Recall, that 

 

We need to make a substitution in the integral of x = 2πt L . We also will 

need to transform the differential, dx = 2π L dt. Thus, the resulting form 

for the Fourier coefficients is 

 

Similarly, we find that 
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We note first that when L = 2π we get back the series representation that 

we first studied. Also, the period of cos 2nπt L is L/n, which means that 

the representation for g(t) has a period of L corresponding to n = 1. At the 

end of this section we present the derivation of the Fourier series 

representation for a general interval for the interested reader.  

At this point we need to remind the reader about the integration of even 

and odd functions on symmetric intervals. We first recall that f(x) is an 

even function if f(−x) = f(x) for all x. One can recognize even functions as 

they are symmetric with respect to the y-axis as shown in Figure 2.8 

 

Figure 2.8: Area under an even function on a symmetric interval, [−a, 

a]. 

If one integrates an even function over a symmetric interval, then one has 

that 

 

One can prove this by splitting off the integration over negative values of 

x, using the substitution x = −y, and employing the evenness of f(x). Thus, 

 

This can be visually verified by looking at Figure 2.8. A similar 

computation could be done for odd functions. f(x) is an odd function if 

f(−x) = −f(x) for all x. The graphs of such functions are symmetric with 

respect to the origin as shown in Figure 2.9. If one integrates an odd 

function over a symmetric interval, then one has that 
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Figure 2.9: Area under an odd function on a symmetric interval, 

[−a, a]. 

Example 2.4:  

Let f(x) = |x| on [−π, π] We compute the coefficients, beginning as usual 

with a0. We have, using the fact that |x| is an even function, 

 

We continue with the computation of the general Fourier coefficients for 

f(x) = |x| on [−π, π]. We have 

 

Here we have made use of the fact that |x| cos nx is an even function. In 

order to compute the resulting integral, we need to use integration by 

parts, 

 

by letting u = x and dv = cos nx dx. Thus, du = dx and v = ʃ dv =  sin nx. 
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Continuing with the computation, we have 

 

Here we have used the fact that cos nπ = (−1) 
n
 for any integer n. This 

leads to a factor (1 − (−1) 
n
 ). This factor can be simplified as 

 

So, an = 0 for n even and an = −  for n odd. Computing the bn’s is 

simpler. We note that we have to integrate |x| sin nx from x = −π to π. The 

integrand is an odd function and this is a symmetric interval. So, the result 

is that bn = 0 for all n. Putting this all together, the Fourier series 

representation of f(x) = |x| on [−π, π] is given as 

 

While this is correct, we can rewrite the sum over only odd n by 

reindexing. We let n = 2k − 1 for k = 1, 2, 3, . . . . Then we only get the 

odd integers. The series can then be written as 
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Throughout our discussion we have referred to such results as Fourier 

representations. We have not looked at the convergence of these series. 

Here is an example of an infinite series of functions. What does this series 

sum to? We show in Figure 2.10 the first few partial sums. They appear to 

be converging to f(x) = |x| fairly quickly. Even though f(x) was defined on 

[−π, π] we can still evaluate the Fourier series at values of x outside this 

interval. In Figure 2.11, we see that the representation agrees with f(x) on 

the interval [−π, π]. Outside this interval we have a periodic extension of 

f(x) with period 2π. Another example is the Fourier series representation 

of f(x) = x on [−π, π]  This is determined to be 

 

As seen in Figure 2.12 we again obtain the periodic extension of the 

function. In this case we needed many more terms. Also, the vertical parts 

of the 

 

Figure 2.10: Plot of the first partial sums of the Fourier series 

representation for f(x) = |x|. 

 

Figure 2.11: Plot of the first 10 terms of the Fourier series 

representation for f(x) = |x| on the interval [−2π, 4π]. 
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Figure 2.12: Plot of the first 10 terms and 200 terms of the Fourier 

series representation for f(x) = x on the interval [−2π, 4π]. 

2.5 REPRESENTATION OF APERIODIC SIGNALS: 

THE CONTINUOUS-TIME FOURIER TRANSFORM 

2.5.1 Development of the Fourier Transform Representation of an 

Aperiodic Signal:  

Starting from the Fourier series representation for the continuous-time 

periodic square wave: 

 

 

The Fourier coefficients ak for this square wave are 

 

or alternatively 

 

where 2sin(ωT1 ) /ω represent the envelope of Tak · 

 When T increases or the fundamental frequency ω0 = 2П / T 

decreases, the envelope is sampled with a closer and closer spacing. 
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approaches a rectangular pulse.  

 Tak becomes more and more closely spaced samples of the envelope, 

as T  ∞ , the Fourier series coefficients approaches the envelope 

function. 

 

 

This example illustrates the basic idea behind Fourier’s development of a 

representation for aperiodic signals.  

Based on this idea, we can derive the Fourier transform for aperiodic 

signals.  

Suppose a signal x(t) with a finite duration, that is, x(t) = 0 for  |t | > T1 , as 

illustrated in the figure below.  

 From this aperiodic signal, we construct a periodic signal ẋ(t) , shown 

in the figure below. 
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 As T ∞ ,  ~x (t) = x( t) , for any infinite value of t .  

 The Fourier series representation of ~x (t) is 

 

Since  ~x( t) = x( t) for |t| < T / 2 , and also, since x(t) = 0 outside this 

interval, so we have 

 

 Define the envelope  X( jw) of Tak as 

 

we have for the coefficients ak , 

 

Then  ~x( t) can be expressed in terms of X( jw), that is 

 

 As T  ∞ ,  ~x (t) = x (t) and consequently, Equation becomes a 

representation of x(t).  

 In addition, ω0   0 as T ∞ , and the right-hand side of Equation  

becomes an integral.  

We have the following Fourier transform: 

 

2.5.2 Convergence of Fourier Transform:  

If the signal x(t) has finite energy, that is, it is square integrable, 
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If  e(t) =~ x (t) - x (t) , we have 

 

An alternative set of conditions that are sufficient to ensure the 

convergence: 

Condition1: Over any period, x(t) must be absolutely integrable, that is 

 

Condition 2: In any finite interval of time, x(t) have a finite number of 

maxima and minima.  

Condition 3: In any finite interval of time, there are only a finite number 

of discontinuities. Furthermore, each of these discontinuities is finite. 

2.5.3 Examples of Continuous-Time Fourier Transform: 

Example: consider signal x(t) e
-at

 u(t) = , a > 0 . 

From Equation, 

 

If a is complex rather then real, we get the same result if Re{a}> 0 

 The Fourier transform can be plotted in terms of the magnitude and phase, 

as shown in the figure below. 

 

 

Example: Let   x (t)= e 
–a|t|

 , a > 0 
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The signal and the Fourier transform are sketched in the figure below 

 

Example: 

 

 

 

That is, the impulse has a Fourier transform consisting of equal 

contributions at all frequencies. 

 Example: Calculate the Fourier transform of the rectangular pulse signal 

 

The Inverse Fourier transform is 

 

Since the signal x(t) is square integrable, 

 

xˆ(t) converges to x(t) everywhere except at the discontinuity, T1 t = ± , 

where xˆ(t) converges to ½, which is the average value of x(t) on both 

sides of the discontinuity. 

In addition, the convergence of xˆ(t) to x(t) also exhibits Gibbs 

phenomenon. Specifically, the integral over a finite-length interval of 

frequencies 
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As W ∞ , this signal converges to x(t) everywhere, except at the 

discontinuities. More over, the signal exhibits ripples near the 

discontinuities. The peak values of these ripples do not decrease as W 

increases, although the ripples do become compressed toward the 

discontinuity, and the energy in the ripples converges to zero. 

 Example: Consider the signal whose Fourier transform is 

 

The Inverse Fourier transform is 

 

Comparing the results in the preceding example and this example, we have 

 

This means a square wave in the time domain, its Fourier transform is a 

sinc function. However, if the signal in the time domain is a sinc function, 

then its Fourier transform is a square wave. This property is referred to as 

Duality Property.  

We also note that when the width of X( jw) increases, its inverse Fourier 

transform x(t) will be compressed. When W  ∞ , X( jw) converges to an 

impulse. The transform pair with several different values of W is shown in 

the figure below. 
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2.6 THE FOURIER TRANSFORM FOR PERIODIC 

SIGNALS 

 The Fourier series representation of the signal x(t) is 

 

It’s Fourier transform is 

 

Example: If the Fourier series coefficients for the square wave below are 

given 

 

The Fourier transform of this signal is 

 

 

Figure : Fourier transform of a symmetric periodic square wave 

Example:  

The Fourier transforms for x (t ) = sin ω0t and  x(t ) = cosω0t are shown in 

the figure below. 
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Example: Calculate the Fourier transform for signal  

 

The Fourier series of this signal is 

 

The Fourier transform is 

 

The Fourier transform of a periodic impulse train in the time domain with 

period T is a periodic impulse train in the frequency domain with period 

2П /T , as sketched din the figure below. 
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2.7 PROPERTIES OF THE CONTINUOUS-TIME 

FOURIER TRANSFORM  

2.7.1 Linearity: 

 

Then  

 

2.7.2 Time Shifting 

 

Then 

 

Or 

 

Thus, the effect of a time shift on a signal is to introduce into its transform 

a phase shift, namely, -ω0t . 

Example: To evaluate the Fourier transform of the signal x(t) shown in the 

figure below. 
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The signal x(t) can be expressed as the linear combination 

 

x 1(t) and  x2( t) are rectangular pulse signals and their Fourier transforms 

are 

 

Using the linearity and time-shifting properties of the Fourier transform 

yields 

 

2.7.3 Conjugation and Conjugate Symmetry: 

 

Then 

 

 

Replacing ω by -ω , we see that 
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The right-hand side is the Fourier transform of x * (t). 

If x(t) is real, from Equation we can get 

 

We can also prove that if x(t) is both real and even, then X( jw) will also 

be real and even.  

Similarly, if x(t) is both real and odd, then X( jw) will also be purely 

imaginary and odd.  

A real function x(t) can be expressed in terms of the sum of an even 

function xe(t) = Ev{x(t)}and an odd function xo (t) = Od{x(t)}. That is 

 

Form the Linearity property, 

 

From the preceding discussion, F{xe(t)} is real function and F{xo(t)} is 

purely imaginary. Thus we conclude with x(t) real, 

 

Example: Using the symmetry properties of the Fourier transform and the 

result 

 

to evaluate the Fourier transform of the signal x(t)=e 
-|a|t

 , where  a  > 0 . 

Since 
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2.7.4 Differentiation and Integration 

 

Then 

 

 

Example: Consider the Fourier transform of the unit step x(t) = u(t).  

It is know that 

 

Also note that 

 

The Fourier transform of this function is 

 

where G(0) = 1. 

Example: Consider the Fourier transform of the function x(t) shown in the 

figure below. 

 

From the above figure we can see that g(t) is the sum of a rectangular 

pulse and two impulses. 

 

Note that G(0) = 0 , using the integration property, we obtain 
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It can be found X( jw) is purely imaginary and odd, which is consistent 

with the fact that x(t) is real and odd. 

2.7.5 Time and Frequency Scaling: 

 

Then  

 

From the equation we see that the signal is compressed in the time 

domain, the spectrum will be extended in the frequency domain.  

Conversely, if the signal is extended, the corresponding spectrum will be 

compressed. 

If a = -1, we get from the above equation, 

 

That is, reversing a signal in time also reverses its Fourier transform.  

2.7.6 Duality: 

The duality of the Fourier transform can be demonstrated using the 

following example. 
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transform in general. For any transform pair, there is a dual pair with the 

time and frequency variables interchanged. 

 Example: Consider using duality and the result  

 

to find the Fourier transform G( jw) of the signal 

 

Multiplying this equation by 2П and replacing t by - t , we have 

 

Interchanging the names of the variables t and ω , we find that 

 

Based on the duality property we can get some other properties of Fourier 

transform: 

 

 

2.7.7 Parseval’s Relation: 
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We have 

 

Parseval’s relation states that the total energy may be determined either by 

computing the energy per unit time 2 x(t) and integrating over all time or 

by computing the energy per unit frequency  |X(jw) |
2
  / 2П and integrating 

over all frequencies. For this reason, 2 X ( jw) is often referred to as the 

energy-density spectrum. 

2.8 THE CONVOLUTION PROPERTIES 

 

The equation shows that the Fourier transform maps the convolution of 

two signals into product of their Fourier transforms. 

 H( jw), the transform of the impulse response, is the frequency response 

of the LTI system, which also completely characterizes an LTI system.  

Example: The frequency response of a differentiator. 

 

From the differentiation property, 

 

The frequency response of the differentiator is 

 

Example: Consider an integrator specified by the equation: 

 

The impulse response of an integrator is the unit step, and therefore the 

frequency response of the system: 

 

So we have 

 

which is consistent with the integration property.  

Example: Consider the response of an LTI system with impulse response 
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To calculate the Fourier transforms of the two functions: 

 

Therefore, 

 

using partial fraction expansion (assuming a ≠ b ), we have 

 

The inverse transform for each of the two terms can be written directly. 

Using the linearity property, we have 

 

We should note that when a = b , the above partial fraction expansion is 

not valid. However, with a = b , we have 

 

2.9 THE MULTIPLICATION PROPERTY 
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Multiplication of one signal by another can be thought of as one signal to 

scale or modulate the amplitude of the other, and consequently, the 

multiplication of two signals is often referred to as amplitude modulation. 

Example: Let s(t) be a signal whose spectrum S( jw) is depicted in the 

figure below. 

 

Also consider the signal 

 

The spectrum of r(t) = s(t) p(t) is obtained by using the multiplication 

property, 

 

which is sketched in the figure below.  

 

From the figure we can see that the signal is preserved although the 

information has been shifted to higher frequencies. This forms the basic 

for sinusoidal amplitude modulation systems for communications.  

Example: If we perform the following multiplication using the signal r(t) 

obtained in the preceding example and p (t)= cosω0t , 

 that is,  

g(t) = r(t) p(t) 

 The spectrum of P( jw), R( jw) and G( jw) are plotted in the figure below 
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If we use a lowpass filter with frequency response H( jw) that is constant 

at low frequencies and zero at high frequencies, then the output will be a 

scaled replica of S( jw). Then the output will be scaled version of s(t)- the 

modulated signal is recovered. 

2.10  SUMMARY OF FOURIER TRANSFORM 

PROPERTIES AND BASIC FOURIER TRANSFORM 

PAIRS 
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System Characterized by Linear Constant-Coefficient Differential 

Equations An LTI system described by the following differential equation: 

 

which is commonly referred to as an Nth-order differential equation.  

The frequency response of this LTI system 

 

where X( jw), Y( jw) and H( jw) are the Fourier transforms of the input 

x(t), output y(t) and the impulse response h(t), respectively. 

 Applying Fourier transform to both sides, we have 

 

From the linearity property, the expression can be written as 

 

From the differentiation property, 

 

H( jw) is a rational function, that is, it is a ratio of polynomials in ( jw).  
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Example: Consider a stable LTI system characterized by the differential 

equation 

 

The frequency response is 

 

The impulse response of this system is then recognized as 

 

Example: Consider a stable LTI system that is characterized by the 

differential equation 

 

The frequency response of this system is 

 

Then, using the method of partial-fraction expansion, we find that 

 

The inverse Fourier transform of each term can be recognized as 

 

Example: Consider a system with frequency response of 

 

and suppose that the input to the system is  

 

find the output response. 

 The output in the frequency domain is give as 
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By inspection, we get directly the inverse Fourier transform: 

 

2.11 SUMMARY  

A function is said to be periodic with period T if f(t + T) = f(t) for all t and 

the smallest such positive number T is called the period. 

The Fourier series representation of f(x) defined on [0, 2π], when it exists, 

is given by equation with Fourier coefficients  

 

 

If one integrates an even function over a symmetric interval, then one has 

that 
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Over any period, x(t) must be absolutely integrable, that is 

 
In any finite interval of time, x(t) have a finite number of maxima and 

minima. 

In any finite interval of time, there are only a finite number of 

discontinuities. 

The Fourier transform can be plotted in terms of the magnitude and phase, 

as 

 

The impulse has a Fourier transform consisting of equal contributions at 

all frequencies. 

The Fourier series representation of the signal x(t) is 

 

It’s Fourier transform is 

 

The Fourier transform of a periodic impulse train in the time domain with 

period T is a periodic impulse train in the frequency domain with period 

2П /T ,  

Different properties of Fourier transforms are Linearity, Time Shifting, 

Conjugation and Conjugate Symmetry, Differentiation and Integration, 

Time and Frequency Scaling, Duality, Parseval’s Relation, convolution 

properties, Multiplication Property 

2.12 UNIT END QUESTION  

1.  Explain Trigonometric Fourier Series with example. 

2.  Explain Exponential Fourier Series with example. 

3.   Explain Convergence Of Fourier Transform. 

4.   Explain Fourier Transform For Periodic Signals 
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6.  Explain Convolution properties of Fourier Transform. 

7.  Explain Multiplication properties of Fourier Transform. 

2.13 BOOKS 

1.  Digital Signal Processing by S. Salivahanan, C. Gnanapriya Second 

Edition, TMH 
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UNIT II 

3 
LAPLACE TRANSFORM 

Unit Structure 

3.0  Objectives 

3.1  Introduction  

3.2  Definition of Laplace Transform 

3.3  Convergence of Laplace Transform 

3.4  Properties of  ROC 

3.5  Properties of Laplace Transform 

3.5.1 Linearity 

3.5.2 Time Shifting (Translation in Time Domain) 

3.5.3 Shifting in s- Domain (Complex Translation) 

3.5.4 Time Scaling 

3.5.5 Differentiation in Time Domain 

3.5.6 Differentiation in s- Domain 

3.5.7 Convolution in Time Domain 

3.5.8 Integration in Time domain 

3.5.9 Integration in s- Domain 

3.6  Examples of Laplace Transform 

3.7  Unilateral Laplace Transform 

3.7.1 Differentiation in Time Domain 

3.7.2 Initial Value Theorem 

3.7.3 Final Value Theorem 

3.8  Summary 

3.9  Questions  

3.10  Books 

3.11  References 

3.0 OBJECTIVES 

 Understand Laplace transform of basic signals. 

 To understand and apply properties of Laplace transform.  

 To understand and apply unilateral Laplace transforms. 

3.1 INTRODUCTION  

Laplace transform represents continuous time signals in terms of complex 

exponentials i.e.  
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e 

–st 

Continuous  time systems are also analyzed more effectively using 

Laplace transform. 

Laplace transform can be applied to the analysis of unstable systems also. 

Types of Laplace Transform 

i) Bilateral or two sided Laplace transform 

ii) Unilateral or one sided Laplace transform 

3.2 DEFINITION OF LAPLACE TRANSFORM 

X(s)=  e
-st

  dt 

Here the independent variable ‘s’ is complex in nature and it is given as 

s = σ + jω 

Here σ is real part of ‘s’ It is called attenuation constant. 

jω is the imaginary part of ‘s’ and it is called complex frequency. 

The Laplace transform pair x(t) and X(s) is represented as, 

x(t)            X(s) 

The unilateral Laplace transform is given as 

X(s)=  e
-st

  dt 

Laplace transform is mainly used for causal signals. 

The Inverse Laplace transform is given as  

x(t) =   e
st
  dt 

3.3 CONVERGENCE OF LAPLACE TRANSFORM 

We know that Laplace Transform is basically the Fourier transform of x(t) 

e
-σt

 . 

If Fourier transform of x(t) e
-σt 

exists , then Laplace transform of x(t) exits. 

For the Fourier transform to exists , x(t) e
-σt 

 must be absolutely integrable. 

  <  ∞ 

The range of values of σ for which Laplace transform converges is called 

region of convergence or ROC. 
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Example 3.1:- Calculate the Laplace transform of following functions and 

plot their ROC  

i) x(t)= e
at 

 u(t)   

Solution: 

 

 

 

 

The shaded area is called Region of convergence  

Since Re(s) is real part of ‘s’ i.e. σ . 

Hence ROC : σ > a or Re(s) > a 

ii) x(t) = -e
at

  u(-t) 
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Solution:  

 

 

 

The shaded region shows ROC of  s <  a  

Thus, 

 

Example 3.2 Determine the Laplace transform of 

i) x1(t) = e 
-2t 

u(t) – e
2t  

u(-t) 

Solution:  
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From above result Laplace transform of x1(t) will be  

 

The figure shows ROC of -2 < s < 2 

 

ii) x2(t) = 3 e 
-2t 

u(t) – e
-t  

u(t) 

Solution:  

 

Therefore Laplace transform of x2(t) become 

 

ROC : s  > -2  and s > -1 
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Both the terms of converge for ROC of s > -1 .Hence ROC of Laplace 

transform will be s >-1 

3.4 PROPERTIES OF  ROC 

1.  No poles lie in ROC. 

2.  ROC of the causal signal is right hand sided. It is of the form Re(s) > 

a. 

3.  ROC of the noncausal signal is left hand sided. It is of the form Re(s) 

< a. 

4.  The system is stable if its ROC includes jω axis of s-plane. 

3.5 PROPERTIES OF LAPLACE TRANSFORM  

For all the properties we have, 

 

3.5.1 Linearity  

Statement: Laplace transform follows superposition principle ,i.e. it is 

linear 

 

Proof: 
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Here ROC : R1 ᴖ R2  indicates the intersection of R1 and R2 

3.5.2 Time Shifting (Translation in Time Domain) 

Statement: A time shift in the signal introduces frequency shift in 

frequency domain. 

 

Proof: 

 

By substituting in above equation we have 

 

3.5.3 Shifting in s- Domain (Complex Translation): 

Statement: A shift in the frequency domain is equivalent to multiplying 

the time domain signal by complex exponential.  

 

Proof: 

 

3.5.4 Time Scaling: 

Statement: Expansion in time domain is equivalent to compression in 

frequency domain and vice versa 

 

ROC :  
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Proof: 

 

Similar procedure can be repeated for Laplace transform of x(-at) . We get 

 

The above equations can be combined as follows: 

 

As a special case with a= -1 we have  

 

This result shows that inverting the time axis inverts frequency axis as 

well as ROC. 

3.5.5 Differentiation in Time Domain: 

Statement: Differentiation in time domain adds a zero to the system. 

 

Proof: 

 

Differentiate both sides of above equation with respect to ‘t’ i.e. 
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For multiple order derivative 

 

3.5.6 Differentiation in s- Domain: 

Statement: Differentiation in s-domain corresponds to multiplying the 

time domain sequence by -t 

 

Proof: 

 

Differentiating above equation with respect to ‘s’  

 

For multiple order differentiation in s-domain, 

 

3.5.7 Convolution in Time Domain: 

Statement: The Laplace transform of convolution of two functions is 

equivalent to multiplication of their Laplace transforms. 

 

ROC : containing R1  ᴖ R2 

Proof:  
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Taking Laplace transform of both the sides, 

 

Changing the order of integration, 

 

 

3.5.8 Integration in Time domain:  

Statement: Time domain integration adds a pole to the system. 

         , ROC : R ᴖ [ Re(s)  > 0 ] 

Proof: 

 

Hence above equation becomes  
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Taking Laplace transform of both sides, 

 

For multiple order of integration, 

 

3.5.9 Integration in s- Domain: 

Statement:  

Frequency domain integration corresponds to dividing the time domain 

signal by t   

 

Proof: 

 

Changing the order of integration and rearranging the terms, 
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 3.6 EXAMPLES OF LAPLACE TRANSFORM 

Example 3.3 : Obtain the Laplace transform and ROC of following 

signals :  

i) x(t) = u(t) 

Solution: 

 

Here e 
–s x ∞

 = e 
-∞

 = 0  

If s > 0 . Then above equation will be, 

 

 

ROC  

Thus 

 

ii) x(t) = δ(t) 

Solution: 
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Here use, 

 

With  t0 = 0 , the above equation becomes 

 

This is convergent for all values of s. 

 

iii) x(t)= r(t) 

Solution: 

 

Integrating by parts, 
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Similarly, 

 

iv) x(t) = t e
-at

 u(t) 

Solution : 

 

By differentiation in s-domain property, 

 

 

Similarly, 

 

 

Example 3.4: Obtain the Laplace transform of following signals :  

i) x(t) = A sin ω0 t 
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Solution : 

 

 

We know that , 

 

The above equation can be written as , 

 

Here s > jω can be written as σ+ jω > 0 +jω , hence σ >0 . 

Therefore ROC will be Re(s) or σ >0. 

 

ii) x(t) = A cos ω0 t u(t) 

Solution: 
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Therefore, 

 

3.7 UNILATERAL LAPLACE TRANSFORM  

The unilateral Laplace transform is given as , 

X(s) =  e
-st

 dt  

The lower limit is taken as 0
- 
to indicate that initial conditions at t=0 are 

also considered. 

Note that unilateral Laplace transform will be always convergent since 

ROC will be always R.H.S. of S-plane. 

3.7.1 Differentiation in Time Domain:  

Let x(t)  X(S)  Laplace transform pair 

Then, 

   s X(s ) – x(0
-
) 

Here x(0
-
) is value of x(t) at t=0

-
 . It is initial value of x(t). 

Proof :  

By definition of Laplace transform, 

 

Integrating above equation by parts, 

 

The integration term in above equation is Laplace transform of x(t) . 
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Hence, 

 

We know that e 
-∞ 

= 0  and e
0
 =1. Hence the above equation becomes, 

 

This property can be further  expanded for multiple differentiations as 

follows: 

 

3.7.2 Initial Value Theorem: 

Let x(t)  X(S)  Laplace transform pair 

Then initial value of x(t) is given as  

 

Provided that the first derivatives of x(t) should be Laplace transformable. 

Proof: From the differentiation property of Laplace transform we know 

that,  

 

Let us take limit of the above equation as s∞ ,i.e., 

 

Consider L.H.S of above equation i.e., 
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Therefore above equation becomes 

 

x(0
-
) indicates the value of x(t) just before t=0 and x(0+) indicates value of 

x(t) just after t=0 . 

If the function x(t) is continuous at t=0 , then its value just before and after 

t=0 will be same i.e., 

 

 

This equation is used to determine the initial value of x(t) and its 

derivative. 

3.7.3 Final Value Theorem: 

Let x(t)  X(S)  Laplace transform pair 

Then initial value of x(t) is given as  

 

Proof : From differentiation property we know that, 

 

Let us take limit of above equation as s0 , i.e. 

 

Consider L.H.S of above equation, 
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Hence equation can be written as  

 

Application of Initial and Final Value Theorem 

The initial voltage on the capacitor or current through an indicator can be 

evaluated with the help of initial value theorem. 

The final charging voltage on capacitor or saturating currents through an 

inductor can be evaluated with the help of final value theorem. 

Example 3.5: Find f(∞) final value of function whose Laplace transform 

is given by 

F(s)=   -  

Solution:  

Final value is given as, 

 

Example 3.6:  Use the s- domain shift property and Fourier transform pair 

 

To derive the unilateral Laplace transform of x(t) = e
-at

 u(t) cos ω1t u(t) 

Solution: 

 

Here 
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By shifting in s-domain property, 

 

 

Example 3.7 : Determine initial and final values of signal x(t) whose 

unilateral Laplace transform : 

 

Solution: 

Initial value is given by, 

 

Final value is given as, 

 

3.8 SUMMARY 

Laplace transform represents continuous time signals in terms of complex 

exponentials i.e.  

e 
–st 

Continuous  time systems are also analyzed more effectively using 

Laplace transform. 

Laplace transform can be applied to the analysis of unstable systems also. 

X(s)=  e
-st

  dt 

Here the independent variable ‘s’ is complex in nature and it is given as 

s = σ + jω 

Here σ is real part of ‘s’ It is called attenuation constant. 

jω is the imaginary part of ‘s’ and it is called complex frequency. 
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Types of Laplace Transform i) Bilateral or two sided Laplace transform 

ii) Unilateral or one sided Laplace transform 

The Inverse Laplace transform is given as  

x(t) =   e
st
  dt 

If Fourier transform of x(t) e
-σt 

exists , then Laplace transform of x(t) exits. 

For the Fourier transform to exists , x(t) e
-σt 

 must be absolutely integrable. 

  <  ∞ 

The range of values of σ for which Laplace transform converges is called 

region of convergence or ROC. 

No poles lie in ROC. 

ROC of the causal signal is right hand sided. It is of the form Re(s) > a. 

ROC of the noncausal signal is left hand sided. It is of the form Re(s) < a. 

The system is stable if its ROC includes jω axis of s-plane. 

Properties of Laplace Transform are Linearity, Time Shifting, Shifting in 

s- Domain, Time Scaling, Differentiation in Time Domain, Differentiation 

in s- Domain, Convolution in Time Domain, Integration in Time domain, 

and Integration in s- Domain. 

The unilateral Laplace transform is given as , 

X(s) =  e
-st

 dt  

The lower limit is taken as 0
- 
to indicate that initial conditions at t=0 are 

also considered. 

Note that unilateral Laplace transform will be always convergent since 

ROC will be always R.H.S. of S-plane. 

3.9 QUESTIONS  

1) Calculate Laplace transform of e
-at

 u(t).      

  [Ans.   , ROC: s > -a ] 

2) Calculate Laplace transform of -e
-at

 u(t).       

[Ans.   , ROC: s > -a ] 

3) Calculate Laplace transform of -e
-3t

 u(-t).      

  [Ans. -  , ROC: s > -3 ] 
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4) Obtain Laplace transform of the following signals. 

i. x(t) = sin (3t) u(t) 

ii. x(t) = e
-2t

 u (t + 1) 

5)   Find the Laplace transform of the following with ROC: 

i.  x(t) = u (t -5) 

ii. x(t) = e
5t 

 u (-t + 3) 

6)  State and prove initial value theorem of Laplace transforms. 

7)  State and prove final value theorem of Laplace transforms. 

8)  Explain properties of Laplace Transform. 

9)  State and prove Convolution in Time Domain property. 

10)  State and prove Integration in Time domain property. 

11)  State and prove  Integration in s- Domain property. 

3.10 BOOKS 

1.  Digital Signal Processing by S. Salivahanan, C. Gnanapriya Second 

Edition, TMH 
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UNIT III 

4    
Z-TRANSFORM 

Unit Structure 

4.0  Objective 

4.1  Introduction 

4.2  Definition of z-transform 

 4.2.1.1 Region of Convergence (ROC) 

4.3  Properties of z-transform 

4.4  Evaluation of the Inverse of z-transform 

4.5  Summary 

4.6  Exercise 

4.7  List of References 

4.0 OBJECTIVE 

By the end of this chapter, student will be able to understand Z-transform 

as a tool for the solution of linear constant difference equations. Also one 

can analyse discrete time systems in the frequency domain. 

4.1  INTRODUCTION 

Z-transform simplies signal analysis by reducing the number of poles and 

zeros to a finite number in z-plane. Z-transform has real and imaginary 

parts, whose plot is called Z-plane. 

Z-transform maps(transforms) any point   in s-plane to a 

corresponding point    in the z-plane using the relationship : 

,   where T is the sampling period 

The poles and zeros of discrete time system are plotted in the complex z-

plane. 

Figure 4.1 shows Mapping of s-plane into z-plane for  

 

Fig 4.1 Mapping of s-plane into z-plane for  
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The stability of the system can be checked using pole-zero plot. Also z-

transform can be used to analyse discrete time systems for finding system 

transfer function and digital network realisation. 

4.2 DEFINITION OF Z-TRANSFORM 

The z-transform of a discrete time signal  can be defined as : 

 

Where z is a complex variable. This equationis also called two sided z 

transform. 

One sided z-transform is given as : 

 

Inverse Z-transform: 

Inverse z-transform is defined as : 

 

Inverse z-transform is applied to recover original time domain discrete 

signal from ite frequency domain signal. 

Z-transform can be denoted as: 

 

Or z-transform can also be denoted as: 

 

4.2.1.1  Region of Convergence (ROC): 

If the output signal magnitude of thedigital signal system,  is to be 

finite, then the magnitude of its z-transform must be finite. The Z values in 

the z-plane for which the magnitude of  is finite is called the Region 

of Convergence (ROC). 

ROC for  is the area outside the unit circle in the z-plane. 

Z-transform of the unit step  is   which has a zero at   

and pole at  and the ROC is  extending to  as shown in Fig 

4.2 
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Fig 4.2 Pole-zero plot and ROC of the Unit-Step response  

Properties of ROC : 

1)  ROC does not contain any poles 

2)  System stability can be checked with ROC 

3)  ROC also determines the types of sequence as  

a)  Causal or Non-causal signal 

b)  Finite or Infinite signal 

Table 4.1) Finite Duration causal, anti-causal and two-sided signals with 

their ROCs. 

Finite Duration Signals and their ROCs 
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Table 4.2) Infinte Duration causal, anticausal and two-sided signals 

with their ROCs 

Infinite Duration Signals and their ROCs 

 

 
 

 

 
 

 

 
 

 

Table 4.3) Some z-transform pairs 

Sl Signal 

 

Sequence 

 

Laplace 

Transform 

 

z-transform 

 

ROC 

1.    1 All z-plane 

2.      
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3.   
  

 

4.   
  

 

5.   
  

 

 

Example 4.1) Determine z-transform of following finite duration signals. 

(a)   

(b)   

(c)    

(d)   

Solution : 

(a)  

 Taking z-transform, 

   

  ROC entire plane except  and   

(b)  

 Taking z-transform, 

   

  ROC entire plane except  and   

(c) , hence ROC : Entire z-plane 

(d) ,    

since there is no bottom arrow, it is assumed to be below first element i.e. 

4 

   

  ROC entire plane except  and   

4.3 PROPERTIES OF Z-TRANSFORM 

Table 4.4 shows some of the important properites of z-transform 
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Table 4.4)  Z-tranform properties 

 

Example 4.2)  Find z-tranform of the signal 

   

Solution : Taking z-transform of the given signal, 

   

  Using linearity property, 

   

     (Ans) 

Example 4.3)  By applying time shifting property, determine the inverse 

z-transform of the signal 

   

Solution :  By applying time shifting propery, we have   and  

 

  Hence,    (Ans) 

Example 4.4)  Determine the convolution of two sequences 
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Solution :  Taking z-transorm of the two given signals , 

       and    H  

   

 

  

   

  Taking Inverse z-transform,  

    (Ans) 

Initial Value Theorem 

If   is a causal sequence with z-transform , the initial value can 

be determined as : 

 

Final Value Theorem: 

If     and the poles of    are all inside the unit circle, 

then the final value of the sequence,   can be determined as : 

 

       if   exists 

Example 4.5)  Find Initial and final values of    for  

 

Solution :   

 

 

 

 

                           (Ans) 

4.4 EVALUATION OF INVERSE Z-TRANSFORM 

Various methods are available to take Inverse Z-transform. We will use 

Partial Fraction method for taking Inverse z-transform. 

Example 4.6)  Find Inverse z of the following : 
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Solution : Taking Inverse z-transform, 

     (Ans) 

Example 4.7)  Find the signal , whose z-transform is given as  

 

Solution:   

 

 

Equating numerators,  

 

 

 

 

Equating like terms, 

 

Solving simultaneously, 

 

 

  Taking Inverse z-transform, 

 

Example 4.8)  Find   for given  

 

Solution:  Writing denominator in terms of its factors, 
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Taking Inverse z-transform, 

 

 

          (Ans) 

Example 4.9)  Determine inverse z-transform of    for  ROC  

 

Solution : We will use Residue method. 

 

 

We note that, the pole is at   and order  . 
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 The Residue of    at    is calculated as : 

 

 

 

 

 

  since ROC     (Ans) 

4.5 SUMMARY 

1)  Z-transform is a powerful tool in digital signal analysis 

2)  Z-transform is used to analyze discrete-time systems for finding the 

transfer function, stability and network realization of system 

3)   ,    where ,  T being smapling 

period 

4)  The Z values in the z-plane for which the magnitude of  is finite 

is called the Region of Convergence (ROC). 

5)  The stability of the system can be determined by using the location of 

poles of  

6)  Some of the important properties of x-transform are linearity, time 

reversal, time shifting, time scling, differentiation, concoulution and 

correlation. 

7)  Inverse z-transform can be obtained by either of the methods : long 

division method, partial fraction method or residue method 

4.6 EXERCISE 

1)  Define z-transform 

2)  Explain shift property of z-transform 

3)  Explain what is discrete convolution 

4)  Explain inverse z-transform 

5)  Determine z-trasnform of   
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6) Determine the inverse z-transform of ,   for   

7) Determine the causal signal having z-transform    

for  

4.7 LIST OF REFERENCES 

1) Digital Signal Processing, S Salivahanan, TMH 

2) Digital Signal Processing, Sanjit Mitra, TMH 

3) Signals and Systems, A Anand Kumar, PHI 

4) Digital Signal Processing, Apte, Wiley India. 
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UNIT IV 

5 
LINEAR TIME INVARIANT SYSTEMS 

Unit Structure 

5.0  Objective 

5.1  Introduction 

5.2  Properties of DSP System 

5.3  Discrete Convolution 

5.4  Solution of Linear constant coefficient Difference Equation 

5.5 Frequency domain representation of Discrete Time Signals and 

Systems 

5.6 Difference Equation and its relationship with System Functions, 

Impulse Response and Frequency Response 

5.7  Frequency Response 

5.8  Summary 

5.9  Exercise 

5.10 List of References 

5.0 OBJECTIVE 

This chapter deals with Linear time invariant systems analysis using tool 

like z-transform. Important methods like convolution, response to discrete 

systems by using standrd digital inputs like impulse and unit step signals 

are discussed in detail. Concept of difference equation is introduced for 

signal analysis. 

5.1 INTRODUCTION 

A typical Digital System has input  and has an output  as a 

response to input. The sytem output depends on the input as well as on the 

system parameters. Some of the inputs used to study digital systems are 

Impulse and Unit Step Signals, among others. Similarly the Systems can 

also be classified as Liner Time Variant, Time Invariant and others. 

5.2 PROPERTIES OF DSP SYSTEMS 

Various system properties as discussed in this chapter are linearity, time 

invariance, causality and stability. 

Linearity: 
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Where F is an operator 

Example 5.1)  Check if the system   is linear : 

Solution : 

 

 

Since,    ,  the systemin non-

linear. 

Time Invariance: 

A system is said to be time-invariant if the relationship between the input 

and output does not change with time.  

If ,  then  

 represents a single delay of  samples. 

Example 5.2) Check if system  is time invariant or not 

Solution : 

 

 The delayed repsonse is :  

 

 Since, , the system is not time invariant.

  (Ans) 

Causality: 

The systems in which changes in the output are only dependent on the 

changes in the present and past values of the input and/or previous output 

values, and are not dependent on future input values are called Causal 

Sytems. 

The Causality condition for linear time invariant systems is given as : 

 

Example 5.3) Check if system  is causal or 

not. 

Solution : 

In this system, the output is computed only on past sample values i.e. 

  and  , the system is causal. 
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Example 5.4) Check if system  is causal or 

not. 

Solution : 

In this system, the output is computed on past sample values i.e.   

and also future values, i.e.  , the system is non-causal. 

Stability 

A DSP is said to be stable, if system poles are given as : 

  i.e.   

The pole-zero plot in Fig. 5.1 shows pole position of stable and unstable 

systems. 

 

Fig 5.1 Z-plane regions for stable and unstable systems 

Example 5.5) Check stability of the system  

Solution : 

 

 Since, , the given system is stable.  

 (Ans) 

Bounded Input – Bunded Output (BIBO) stability : 

A system is said to BIBO stable, if and only if every bounded input gives 

bounded output. 

The impulse response of the system decides the BIBO stability of the 

linear time invariant system. 

The necessary and sufficient condition for the BIBO stability is : 
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Example 5.6) Check BIBO stability of system  

Solution : 

 

If  , then  

Hence, impulse response is  

When,  

When,  

so,  

  therefore, 

 

 

The necessary and sufficient condition for BIBO stability is : 

 

therefore,     

       

This is diverging series, hence the given system is BIBO unstable.

 (Ans) 

5.3 DISCRETE CONVOLUTION 

Convoluting two signals in time domain is same as muliplying two signals 

in frequency domain. Convolution is useful in studying analysing input 

signal response to the given system. The concolution of the two signals is 

given as : 
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Properties of Convolution: 

a) Commutative law: 

 

b) Associative law: 

For    

and    

 

 

c) Distributive law: 

 

Example 5.7) Plot the signal given by sequence   

Solution:  

 

5.4 SOLUTION OF LINEAR CONSTANT COEFFICIENT 

DIFFERENCE EQUATION 

A discrete time system transforms an input sequence into an output 

sequence according to the recursion formula that represents the solution of 

a difference equation. 

The general formof the difference equation is : 
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Where N is the order of the differenc equation. 

The solution of the dfference equation has two parts : 

 

Where,   is the solution to the homogeneous difference equation and 

  represents the particular solution to the difference equation. 

Table 5.1) Particular solution of several types of inputs 

 

5.5 FREQUENCY DOMAIN REPRESENTATION OF 

DISCRETE TIME SIGNALS  AND SYSTEMS 

In a discrete time invariant system, if the input is of the form , the 

output is . 

  is a function of , which denotes the frequency response of the 

system. 

  or 

,  where  

The input-output relation is : 

 

Example 5.8) Find transfer function of the system : 

 

Solution: 

The given difference equation can be written as : 

 

The system transfer function can be written as : 

                                                    (Ans) 
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 5.6 DIFFERENCE EQUATION AND ITS 

RELATIONCHIP WITH SYSTEM FUNCTION,  

IMPULSE RESPONSE AND FREQUENCY RESPONSE 

A causal LIT system is defined by a linear constant coefficient difference 

equation : 

 

The system function    

IIR Systems – Infinite Impulse Response Systems: 

An LTI system is said to be an Infinite Impulse Response (IIR) system if 

its unit sample response   is of infinte duration. Recursive filter 

having feedback has an impulse response that is theoretically continues for 

ever.  

FIR Systems – Finite Impulse Response Systems: 

An LTI system is said to be a finite impulse response (FIR) system if its 

unit sample response  is of finite duration. Non-recursive filters can 

be FIR systems. 

Example 5.9) A DSP is given as a difference equation: 

 

Digital input sequence   is applied to this DSP. Find output 

response. 

Solution: 

 

Taking z-transform of the given difference equation, 

 

Therefore, 

 

Input sequence is,  , and its z-transform is 

 

Since,  
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Taking Inverse transform,  

   (Ans) 

Example 5.9) Determine the impulse response of the systems described 

by the difference equation : 

 

Solution: 

The given difference equation is : 

 

This equation canbe written as : 

 

Input impulse is give as   .  

Hence,   

Taking z-transform,  

 

 

 

 

 

Taking inverse z-transform, 

 (Ans) 

Example 5.10) Determine the unit step response of the systems described 

by the difference equation: 

 

Solution: 

The given difference quation of the system is : 
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This can be written as: 

 

Taking z-transform,  

 

 

 

 

 

Taking inverse z-transform, 

  
      

5.7 FREQUENCY RESPONSE  

Frquency response describes the magnitude and phase shift over a range of 

frequencies. 

Properties of Frequency Response: 

Properties of frequency response of a real sequence  are given as : 

a)     takes on values for all  

b)    is periodic in  with period  

c)  The magnitude response  is an even function of  and 

symmetric about   

d)  The magnitude response    is an odd function of  and 

antisymmetric about   

Frequency Response of an inter connection of Systems: 

Parallel connection: 

When there are   number of linear time invariant systems in time domain 

connected in parallel, the impilse response   of the resultant sytem is 

given as: 
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Using, linearity property of z-transform, the frequency response of the 

complete system is : 

 

Where  

Parallel interconnection of linear discrete time signal is shown in figure 

5.2 

 

Figure 5.2 Parallel interconnection of linear discrete time systems 

Cascade connection: 

The impulse respopnse of   linear time invriant systems connected in 

cascade is given as : 

 

Using Convolution property, z-transform is obtained as : 

 

 

Figure 5.3 Cascade interconnection of linear discrete time systems 

5.8 SUMMARY 

1)  Linear time invariant systems have properties like linearity, time-

invariance and causality which can be used in system analysis 

2)  A DSP is said to be stable, if system poles are given as : 

  i.e.   
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3)  A system is said to BIBO stable, if and only if every bounded input 

gives bounded output. 

4)  Convolution is useful in studying analysing input signal response to 

the given system. 

5)  A discrete time system transforms an input sequence into an output 

sequence according to the recursion formula that represents the 

solution of a difference equation. 

6)  Frquency response describes the magnitude and phase shift over a 

range of frequencies. 

5.9 EXERCISE 

1)  Explain what do you understand by discrete tim invariant systems 

2)  Explain conditions of causality and stability of a linear time invariant 

systems 

3)  What is BIBO stability? 

4)  Write a note on system transfer function 

5)  Find the stability region of the causal system 

 

6)  Write a note on discrete convolution 

7)  Check if the system   is causal or not 

8)  Explain how can the linearity of a discrete system be found out? 

5.10 LIST OF REFERENCES 

1)  Digital Signal Processing, S Salivahanan, TMH 

2)  Digital Signal Processing, Sanjit Mitra, TMH 

3)  Signals and Systems, A Anand Kumar, PHI 

4)  Digital Signal Processing, Apte, Wiley India 

 

 

***** 
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UNIT V 

6 
DISCRETE AND FAST FOURIER 

TRANSFORMS 

Unit Structure 

6.0  Introduction 

6.1  Discrete Fourier series 

6.2  Discrete time Fourier transform (DTFT) 

6.3  Fast Fourier transforms (FFT) 

6.4  Inverse DFT 

6.5  Composite radix FFT 

6.6  Fast (Sectioned) convolution 

6.7  Correlation 

6.8 Summary 

6.9 Unit End Questions 

6.10  References 

6.0 INTRODUCTION 

The DFT is important because it is the mathematical relation that is 

implemented by the various Fast Fourier Transform (FFT) algorithms. In 

this section we will discuss 

 •  Relationships between periodic and finite-duration time functions 

 •  The discrete Fourier series (DFS) for periodic time functions 

 •  The discrete Fourier transform (DFT) for finite-duration time 

functions 

The discrete Fourier series (DFS) is used to represent periodic time 

functions and the DFT is used to represent finite-duration time functions. 

The two representations are virtually identical mathematically, and they 

are closely related because a finite-duration time function can be thought 

of as a single period of a periodic time function. Conversely, a periodic 

time function can be easily constructed from a finite-duration time 

function simply by repeating the finite-duration sequence over and over 

again, ad infinitum. 

Let’s adopt the notation used by OSYP to distinguish these functions: let 

x˜[n] represent a periodic discrete-time sequence with period N, and let 

x[n](without the tilde) represent a finite-duration sequence that is nonzero 

for 0<= n<=N-1. We than note (trivially) that 
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6.1 DISCRETE FOURIER SERIES 

 Definitions of the DFS: 

If a time function x˜[n] is periodic has period N, we can write 

 

There are only N unique frequency components because for integer k, n, 

and r. 

  

Comments: 

1.  Both the time function x˜[n] and the Fourier series coefficients X˜[k] 

are periodic with period N, so they are represented by only N distinct 

(possibly complex) numbers. 

2.  The series can be evaluated over any consecutive of values of n or k 

of length N.  

 

4.  The frequency components are N equally-spaced samples of the 

frequencies of the DTFT, or alternatively they represent N equally-

spaced locations around the unit circle of the z-plane. 
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Properties of the DFS: 

In general, the properties of the DFS are very similar to what we would 

expect from the DTFT, except that the functions considered are periodic. 

 

Note that in the previous two properties, shift in one domain corresponds 

to multiplication in the other by a complex exponential, both of which 

may be easier to evaluate when you apply the definition for WN. 

 

The sum on the right hand side is very important for our work and is 

referred to as periodic convolution or circular convolution. The operator 

for circular convolution is normally written as an asterisk with a circle 

around it, possibly with an accompanying number that indicates the size of 

the convolution (which matters). 

6.2 DISCRETE TIME FOURIER TRANSFORM (DTFT) 

The discrete-time Fourier transform has essentially the same properties as 

the continuous-time Fourier transform, and these properties play parallel 

roles in continuous time and discrete time. As with the continuous-time 

Fourier transform, the discrete-time Fourier transform is a complex-valued 

function whether or not the sequence is real-valued. Furthermore, as we 

stressed in Lecture 10, the discrete-time Fourier transform is always a 

periodic function of fl. If x(n) is real, then the Fourier transform is 

conjugate symmetric, which implies that the real part and the magnitude 

are both even functions and the imaginary part and phase are both odd 

functions. Thus for real-valued signals the Fourier transform need only be 

specified for positive frequencies because of the conjugate symmetry. 

Whether or not a sequence is real, specification of the Fourier transform 

over a frequency range of 2π specifies it entirely. For a real-valued 

sequence, specification over the frequency range from, for example, 0 to π 

is sufficient because of conjugate symmetry. 

The time-shifting property together with the linearity property plays a key 

role in using the Fourier transform to determine the response of systems 

characterized by linear constant-coefficient difference equations. As with 

continuous time, the convolution property and the modulation property are 

of particular significance. As a consequence of the convolution property, 

which states that the Fourier transform of the convolution of two 

sequences is the product of their Fourier transforms, a linear, time-it 

variant system is represented in the frequency domain by its frequency 
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response. This representation corresponds to the scale factors applied at 

each frequency to the Fourier transform of the input. Once again, the 

convolution property can be thought of as a direct consequence of the fact 

that the Fourier transform decomposes a signal into a linear combination 

of complex exponentials each of which is an Eigen function of a linear, 

time-invariant system. The frequency response then corresponds to the 

eigenvalues. The concept of filtering for discrete-time signals is a direct 

consequence of the convolution property. The modulation property in 

discrete time is also very similar to that in continuous time, the principal 

analytical difference being that in discrete time the Fourier transform of a 

product of sequences is the periodic convolution. 

 

Figure 6.1: DTFT 

6.3 FAST FOURIER TRANSFORMS (FFT) 

The time taken to evaluate a DFT on a digital computer depends 

principally on the number of multiplications involved, since these are the 

slowest operations. With the DFT, this number is directly related to V 

(matrix multiplication of a vector), where is the length of the transform. 

For most problems, is chosen to be at least 256 in order to get a reasonable 

approximation for the spectrum of the sequence under consideration – 

hence computational speed becomes a major consideration. Highly 

efficient computer algorithms for estimating Discrete Fourier Transforms 

have been developed since the mid-60’s. These are known as Fast Fourier 

Transform (FFT) algorithms and they rely on the fact that the standard 

DFT involves a lot of redundant calculations. 
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It is easy to realise that the same values of : are calculated many 

times as the computation proceeds. Firstly, the integer product nk repeats 

for different combinations of n and k; secondly, is a periodic 

function with N only distinct values. 

6.4 INVERSE DFT 

The inverse transform of 

 

Is given as: 

 

i.e. the inverse matrix is 1/N : times the complex conjugate of the original 

(symmetric) matrix. 

 

6.5 COMPOSITE RADIX FFT 

It is not always possible to work with sequences whose length is a power 

of 2. However, efficient computation of the DFT is still possible if the 

sequence length may be written as a product of factors. For example, 

suppose that N may be factored as follows: N=N1.N2. 

We then decompose x(n) into N2 sequences of length NI and arrange these 

sequences in an array as follows: 
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6.6 FAST (SECTIONED) CONVOLUTION 

6.6.1 Fast Circular Convolution: 

Since 

 

 

Cost 

 Direct 

 N2 complex multiplies. 

 N (N - 1) complex adds. 

 

6.6.2 Fast Linear Convolution: 

For linear convolution, we must zero-pad sequences so that circular wrap-

around always wraps over zeros.  

 

Figure 6.2: Fast Linear Convolution 
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To achieve linear convolution using fast circular convolution, we must use 

zero-padded DFTs of length . 

 

Figure 6.3 

Choose shortest convenient N (usually smallest power-of-two greater than 

or equal to L +M - 1). 

 

6.6.3 Running Convolution: 

Suppose L = ∞, as in a real time filter application, or (L >> M). There are 

efficient block methods for computing fast convolution. 

6.6.3.1 Overlap-Save (OLS) Method: 

Note that if a length-M filter h (n) is circularly convolved with a length-N 

segment of a signal x (n),  

 

Figure 6.4: Overlap –Save method 

The Overlap-Save Method: Break long signal into successive blocks of N 

samples, each block overlapping the previous block by M-1 samples. 

Perform circular convolution of each block with filter h (m). Discard first 
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M - 1 point in each output block, and concatenate the remaining points to 

create y (n). 

 

 

Figure 6.5 

6.7 CORRELATION 

The concept of correlation can best be presented with an example. Figure 

6.6 shows the key elements of a radar system. A specially designed 

antenna transmits a short burst of radio wave energy in a selected 

direction. If the propagating wave strikes an object, such as the helicopter 

in this illustration, a small fraction of the energy is reflected back toward a 

radio receiver located near the transmitter. The transmitted pulse is a 

specific shape that we have selected, such as the triangle shown in this 

example. The received signal will consist of two parts: (1) a shifted and 

scaled version of the transmitted pulse, and (2) random noise, resulting 

from interfering radio waves, thermal noise in the electronics, etc. Since 

radio signals travel at a known rate, the speed of light, the shift between 

the transmitted and received pulse is a direct measure of the distance to the 

object being detected. This is the problem: given a signal of some known 

shape, what is the best way to determine where (or if) the signal occurs in 

another signal. Correlation is the answer. Correlation is a mathematical 

operation that is very similar to convolution. Just as with convolution, 

correlation uses two signals to produce a third signal. This third signal is 
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called the cross-correlation of the two input signals. If a signal is 

correlated with itself, the resulting signal is instead called the 

autocorrelation. The convolution machine was presented in the last chapter 

to show how convolution is performed. Figure 6.6 is a similar illustration 

of a correlation machine. The received signal, x[n], and the cross-

correlation signal, y[n], are fixed on the page. The waveform we are 

looking for, t[n], commonly called the target signal, is contained within 

the correlation machine. Each sample in y[n] is calculated by moving the 

correlation machine left or right until it points to the sample being worked 

on. Next, the indicated samples from the received signal fall into the 

correlation machine, and are multiplied by the corresponding points in the 

target signal. The sum of these products then moves into the proper 

sample in the cross correlation signal.  

 

Figure 6.6 

The amplitude of each sample in the cross-correlation signal is a measure 

of how much the received signal resembles the target signal, at that 

location. This means that a peak will occur in the cross-correlation signal 

for every target signal that is present in the received signal. In other words, 

the value of the cross-correlation is maximized when the target signal is 

aligned with the same features in the received signal. What if the target 

signal contains samples with a negative value? Nothing changes. Imagine 
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that the correlation machine is positioned such that the target signal is 

perfectly aligned with the matching waveform in the received signal. As 

samples from the received signal fall into the correlation machine, they are 

multiplied by their matching samples in the target signal. Neglecting 

noise, a positive sample will be multiplied by itself, resulting in a positive 

number. Likewise, a negative sample will be multiplied by itself, also 

resulting in a positive number. Even if the target signal is completely 

negative, the peak in the cross-correlation will still be positive. If there is 

noise on the received signal, there will also be noise on the cross 

correlation signal. It is an unavoidable fact that random noise looks a 

certain amount like any target signal you can choose. The noise on the 

cross-correlation signal is simply measuring this similarity. Except for this 

noise, the peak generated in the cross-correlation signal is symmetrical 

between its left and right. This is true even if the target signal isn't 

symmetrical. In addition, the width of the peak is twice the width of the 

target signal. Remember, the cross-correlation is trying to detect the target 

signal, not recreate it. There is no reason to expect that the peak will even 

look like the target signal. Correlation is the optimal technique for 

detecting a known waveform in random noise. That is, the peak is higher 

above the noise using correlation than can be produced by any other linear 

system. (To be perfectly correct, it is only optimal for random white 

noise). Using correlation to detect a known waveform is frequently called 

matched filtering. 

The correlation machine and convolution machine are identical, except for 

one small difference. As discussed in the last chapter, the signal inside of 

the convolution machine is flipped left-for-right. This means that samples 

numbers: 1, 2, 3˛ run from the right to the left. In the correlation machine 

this flip doesn't take place, and the samples run in the normal direction.  

6.8 SUMMARY 

This chapter explain about the Fourier transform and its types. The DFS 

represents the periodic time functions. DFT used to present the finite 

duration and time function.  

6.9 UNIT END QUESTIONS  

1) What is discrete Fourier series? 

2) What do you mean by convolution? 

3) Explain Fast Fourier transform (FFT). 
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7 
FINITE IMPULSE RESPONSE AND 

INFINITE IMPULSE RESPONSE FILTERS 

Unit Structure 

7.0 Objectives 

7.1 Finite Impulse Response (FIR )Filters 

 7.1.1 Introduction 

 7.1.2 Magnitude response and phase response of digital filters 

 7.1.3 Frequency response of linear phase FIR filters 

 7.1.4 Design techniques of FIR filters 

 7.1.5 Design of optima linear phase FIR filters 

7.2 Infinite Impulse Response (IIR) Filters 

 7.2.1 Introduction 

 7.2.2 IIR filter design by approximation of derivatives 

 7.2.3 IIR filter design by impulse invariant method 

 7.2.4 IIR filter design by the bilinear transformation 

 7.2.5 Butterworth filters 

 7.2.6 Chebyshev filters 

 7.2.7 Elliptic filters 

 7.2.8 Frequency transformation 

7.3 Summary 

7.4 List of References 

7.5 Bibliography 

7.6 Unit End Exercises 

7.0 OBJECTIVES 

After going through this unit you will be able to : 

● Define finite impulse response as well as infinite impulse response 

filters 

● Describe design techniques of FIR filters 

● Explain IIR filter design by approximation of derivatives,impulse 

invariant method,bilinear transformation 

● Understand butterworth and chebyshev filters. 

● Explain frequency transformation 

● Describe frequency response of linear phase FIR filters. 
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 7.1 FINITE IMPULSE RESPONSE (FIR) FILTERS 

7.1.1 Introduction: 

A filter is a frequency selective system.Digital filters are classified as 

finite duration unit impulse response filters or infinite duration unit 

impulse response filters.In signal processing,a finite impulse response 

filter is a filter whose impulse response is of finite duration. I.e it has a 

finite number of non zero terms.FIR filter is a filter with no feedback in its 

equation.the response of FIR filter depends only on past and present 

samples.FIR filters are usually implemented using non-recursive 

structure,however they can be realized in both recursive as well as non 

recursive structures.  

Following are the main advantages of FIR filters: 

1. FIR filters are always stable. 

2. FIR filters are free of limit cycle oscillations , when implemented on a 

finite word length digital system. 

3. Excellent design methods are available for various kinds of FIR 

filters. 

Disadvantages of FIR filters are as follows:  

1. Memory requirement for FIR filter is very high 

2. The implementation of FIR filters is very costly, since it requires 

more arithmetic operations and hardware components such as 

multipliers, adders and delay elements. 

The basis FIR filter is characterized by two equations :  

           (7.1a) 

                    (7.1b) 

Where , are the impulse response coefficient of 

the filter, is the transfer function of the filter and N is the filter 

length,i.e the number of filter coefficients.equation 7.1a is the FIR 

difference equation. 

y(n) is a function only of past and present values of input x(n).FIR filters 

are always stable ,if they are implemented by direct evaluation as shown 

in equation 7.1a.Equation 7.1b represents the transfer function of 

filter,which provides a mean of analyzing the filter. 

All DSP processors available have architecture suited to FIR filtering.FIR 

filters are very simple to implement. 

7.1.2 Magnitude response and phase response of digital filters: 

The magnitude response of the filter can be characterized in terms of 

frequency bands the filter will pass or reject.The transfer function of a FIR 

causal filter is given by 
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where h(n) is the impulse response of the filter. The frequency response 

[Fourier transform of h(n)] is given by 

     

which is periodic in frequency with period 2 p , i.e., 

    ,  k = 0,1,2.. 

Since  is complex it can be expressed as 

     

Where  is the magnitude response and is the phase response . 

We define the phase delay and group delay of a filter as: 

 =  =  

7.1.3 Frequency response of linear phase FIR filters: 

The frequency response of the filter is the fourier transform of its impulse 

response.if h(n) is the impulse response of the system, then the frequency 

system is denoted by  or . is a complex function of 

frequency  and so it can be expressed as magnitude function  

| | and phase function  

Linear phase filters have 4 possible type of impulse response, depending 

on N and the type of symmetry : 

1. Symmetrical impulse response when N is odd. 

2. Symmetrical impulse response when N is even. 

3. Asymmetrical impulse response when N is odd. 

4. Asymmetrical impulse response when N is even. 

7.1.3.1 Frequency response of linear phase FIR filter when impulse 

response is symmetrical and N is odd. 

The equation for frequency response of linear filter when impulse 

response is symmetrical and N is odd is given by : 
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The magnitude function is given by  

  

The phase function is given by  

 

 

Figure a shows symmetrical impulse response when N is 9,wheres figure b 

shows the corresponding magnitude function of frequency response. 

 

 (a) Symmetrical impulse response, N = 9       (b) Magnitude function of 

. 

From the figure it can be observed that the magnitude function of h is 

symmetric with  , when the impulse response is symmetric and N is 

an odd number. 

7.1.3.2  Frequency response of linear phase FIR filter when impulse 

response is symmetrical and N is even: 

The expression for frequency response of linear phase FIR filter when 

impulse response is symmetrical and N is even is given by 

. 

The magnitude function of H( w ) is given by 
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The phase function of H( w ) is given by 

 

Following figure (a) shows a symmetrical impulse response when N = 8, 

and figure (b) shows the corresponding magnitude function of frequency 

response. From these figures it can be observed that the magnitude 

function of  is antisymmetric with  , when impulse response is 

symmetric and N is even number. 

 

Fig (a) symmetrical impulse response(N=8)  Fig (b) magnitude 

function of frequency response 

7.1.3.3  Frequency response of linear phase FIR filter when impulse 

response is anti symmetric and N is odd: 

This is the equation for frequency response of linear phase FIR filter when 

impulse response is antisymmetric and N odd. 

 

The magnitude function is given by 

 

The phase function is given by 
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Where 

 

Figure  a) shows an antisymmetric impulse response when N = 9, and 

Figure (b) shows the corresponding magnitude function of frequency 

response. From these figures, it can be observed that the magnitude 

function is antisymmetric with  , when the impulse response is 

antisymmetric and N is odd. 

 

Fig(a) antisymmetric impulse response(N=9)   Fig(b) magnitude 

function of frequency response 

7.1.3.4  Frequency response of linear phase FIR filter when impulse 

response is anti symmetric and N is even. 

This is the equation for the frequency response of linear phase FIR filter 

when impulse response is antisymmetric and N is even. 

 

The magnitude function is given by 

 

The phase function is given by 

 

Where 
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Figure (a) shows an antisymmetric impulse response when N = 8, and 

Figure (b) shows its corresponding magnitude function of frequency 

response. it can be observed that the magnitude function of  is 

symmetric with  when the impulse response is antisymmetric and N 

is an even number. 

 

Fig (a) Antisymmetric impulse response for N = 8    Fig (b) Magnitude 

function of . 

7.1.4 Design techniques of FIR filters: 

 Design of digital filter involves : 

1. Filter specification: This may include stating the type of filter, for 

example lowpass filter, the desired amplitude and/or  phase responses 

and the tolerance, the sampling frequency, and the word length of 

input data. 

2. Coefficient calculation to find transfer function: At this step,we 

determine the coefficient of transfer function. 

3. Realization function: This involves converting the transfer function 

into a suitable filter network or structure. 

4. Analysis of finite wordlength effects : Here, we analyze the effect of 

quantizing the filter coefficients and the input data as well as the 

effect carrying out the filtering operations 

5. Implementation: This involves producing the software and/or 

hardware and performing the actual filtering. 

To design FIR filters following methods are followed : 

1. Fourier series method 

2. Window method 

3. Frequency sampling method 

4. Optimum filter design 
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7.1.4.1 Fourier series method of design:  

The procedure for designing FIR filters by Fourier series method is as 

follows: 

Step 1:  Choose the desired frequency response  of the filter. 

Step 2:  Evaluate the Fourier series coefficients of which gives 

the desired impulse response . 

Step 3:  Truncate the infinite sequence  to a finite sequence . 

Step 4: Take Z-transform of  to get a non-causal filter transfer 

function . 

Step 5: Multiply by  to convert the non-causal transfer 

function to a realizable causal FIR filter transfer function. 

We know that any periodic function can be expressed as a linear 

combination of  complex exponentials. The frequency response of a 

digital filter is periodic with period equal to sampling frequency. Therefor, 

the desired frequency response of an FIR filter can be represented by 

fourier series as : 

  

Where the fourier coefficients hd(n) are the desired impulse response 

sequence of the filter.the samples of  hd(n) can be determined using the 

equation :  

  

Where ws is a sampling frequency in rad/sec. Fs is sampling frequency in 

Hz. T = 1/Fs is a sampling period in sec. 

The impulse response from the above equation is an infinite duration 

sequence. 

For FIR filters, we truncate this infinite impulse response to a finite 

duration sequence of length N , where N is odd. Therefore , 

   

Taking Z - transform of the above equation for  , we get  
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This transfer function of the filter   represents a non-causal filter. 

Hence the transfer function represented by the above equation for  is 

multiplied by . Therefore  

 

Since =h(-n) , we express as : 

 

Hence we see that casualty is brought by multiplying the transfer function 

by the delay factor . This modification does not affect the 

amplitude response of the filter, however the abrupt truncation of the 

fourier series results in oscillations in the pass band and stop band.these 

oscillations are due to slow convergence of the fourier series.This effect is 

known as gibbs phenomenon. 

7.1.4.2 Design of FIR filter using windows: 

A finite weighing sequence w(n) with which the infinite impulse response 

is multiplied to obtain a finite impulse response is called a window.A 

finite weighing sequence w(n) with which the infinite impulse response is 

multiplied to obtain a finite impulse response is called a window. This is 

necessary because abrupt truncation of the infinite impulse response will 

lead to oscillations in the pass band and stop band, and these oscillations 

can be reduced through the use of less abrupt truncation of the Fourier 

series. 

The desirable characteristics of the window : 

1. The central lobe of the frequency response of the window should 

contain most of the energy and should be narrow. 

2. The highest side lobe level of the frequency response should be small. 

3. The side lobes of the frequency response should decrease in energy 

rapidly as w tends to pi. 

The procedure for designing FIR filters using windows is: 

Step 1: For the desired frequency response , find the impulse 

response  using the equation: 
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Step 2: Multiply the infinite impulse response with a chosen window 

sequence 

 of length N to obtain filter coefficients , i.e. 

 

Step 3: Find the transfer function of the realizable filter 

 

Some common window functions are : 

1. Rectangular 

2. Bartlett 

3. Hanning 

4. Hamming 

5. Blackmann 

Rectangular window: 

The weighting function (window function) for an N-point rectangular 

window is given by 

 

The spectrum (frequency response) of rectangular window  is 

given by the Fourier transform of  

The characteristic features of rectangular window are 

(i)  The main lobe width is equal to  

(ii)  The maximum side lobe magnitude is –13 dB. 

(iii) The side lobe magnitude does not decrease significantly with 

increasing . 

In a rectangular window, the width of the transition region is related to the 

width of the main lobe of window spectrum. Gibbs oscillations are noticed 

in the pass band and stop band. The attenuation in the stop band is 

constant and cannot be varied. 
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Bartlett Window:  

Bartlett window is also called a triangular window. This window has been 

chosen such that it has tapered sequences from the middle on either side. 

The window function w T (n) is defined as  

 

        

In magnitude response of triangular window, the side lobe level is smaller 

than that of the rectangular window being reduced from –13 dB to –25 dB. 

However, the main lobe width is now  or twice that of the 

rectangular window. 

The triangular window produces a smooth magnitude response in both 

pass band and stop band, but it has the following disadvantages when 

compared to magnitude response obtained by using rectangular window: 

1. The transition region is more. 

2. The attenuation in the stop band is less. 

Because of these characteristics, the triangular window is not usually a 

good choice 

Hanning window: 

The Hanning window function is given by 

 

 

The width of main lobe is , i.e twice that of a rectangular window 

which results in doubling of the transition region of the filter. The peak of 

the first side lobe is –32 dB relative to the maximum value. This results in 

smaller ripples in both the pass band and stop band of the low-pass filter 

designed using the Hanning window. The minimum stop band attenuation 

of the filter is 44 dB. At higher frequencies the stop band attenuation is 

even greater. When compared to a triangular window, the main lobe width 
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is the same, but the magnitude of the side lobe is reduced, hence the 

Hanning window is preferable to the triangular Window. 

Hamming window: 

The Hamming window function is given by 

 

 

In the magnitude response for N = 31, the magnitude of the first side lobe 

is down about 41 dB from the main lobe peak, an improvement of 10 dB 

relative to the Hanning window. But this improvement is achieved at the 

expense of the side lobe magnitudes at higher frequencies, which are 

almost constant with frequency. The width of the main lobe is 8 p /N. In 

the magnitude response of a low-pass filter designed using the Hamming 

window, the first side lobe peak is –51 dB, which is –7 dB lesser with 

respect to the Hanning window filter. However, at higher frequencies, the 

stop band attenuation is low when compared to that of Hanning window. 

Because the Hamming window generates lesser oscillations in the side 

lobes than the Hanning window for the same main lobe width, the 

Hamming window is generally preferred. 

Blackman window: 

The Blackman window function is another type of cosine window and 

given by the equation 

 

Or  

 

In the magnitude response, the width of the main lobe is , which is 

highest among windows. The peak of the first side lobe is at –58 dB and 

the side lobe magnitude decreases with frequency. This desirable feature is 

achieved at the expense of increased main lobe width. However, the main 
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lobe width can be reduced by increasing the value of N. The side lobe 

attenuation of a low-pass filter using Blackman window is –78 dB. 

 

Summary of window characteristics 

7.1.4.3 Frequency sampling method: 

The ideal frequency response is sampled at sufficient number of points 

(i.e. N-points). These samples are the DFT coefficients of the impulse 

response of the filter. Hence the impulse response of the filter is 

determined by taking IDFT. 

Let  = Idea frequency response 

       = DFT sequence obtained by sampling  

       = Impulse response of FIR filter 

The impulse response   is obtained by taking IDFT of  .The 

samples of impulse response should be real. The terms  

should be matched by the . 

Frequency sampling methods include two design techniques i.e,  

1. type-I design  

2. type-II design. 

In the type-I design, the set of frequency samples includes the sample at 

frequency  

When other set of samples are used instead of ,such a design 

procedure is referred to as the type-II design 

Procedure for type-I design: 

1. Choose the ideal (desired) frequency response . 

2 Sample  at N-points by taking , where 

 to generate the sequence . 
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3. Compute the N samples of h(n) using the following equations: 

 When N is odd , 

 

When n is even , 

 

4. Take Z-transform of the impulse response h(n) to get the transfer 

function  

     

Procedure for type-II design: 

1.  Choose the ideal frequency response . 

2.  Sample  at -points by taking   

where  to generate the sequence . 

  

3.  Compute the N samples of  using the following equations: 

When N is odd, 
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When N is even, 

N 

4.  Take Z-transform of the impulse response  to get the transfer 

function . 

 

7.1.4.4 Optimum filter design: 

In optimum filter design method, the weighted approximation error 

between the desired frequency response and the actual frequency response 

is spread evenly across the pass band and evenly across the stop band of 

the filter. This results in the reduction of maximum error. 

The resulting filter has ripples in both the pass band and the stop band. 

This concept of design is called optimum equiripple design criterion. 

7.1.5 Design of optimal linear phase FIR filters: 

The optimal method is based on the concept of equiripple passband and 

stopband. In the passband , the practical response oscillates between 1-  

and 1+ . in the stopband the filter response lies between 0 and .The 

difference between the ideal filter and the practical response can be 

viewed as error function 

   

Where  is the ideal or desired response and ) is a weighing 

function that allows the relative error of approximation between different 

bands to be defined in the optimal method. 

The main problem in the optimal method is to find the location of the 

external frequencies. A powerful technique which employs remez 

exchange algorithm to find the external frequencies has been developed. 

For a given set of specifications (that is passband edge frequencies N and 

the ratio between the passband and stopband ripples the optimal method 

involves the following key steps : 

1. Use the remez exchange algorithm to find the optimum set of external 

frequencies. 

2. Determine the frequency response using external frequencies 

3. Obtain the impulse response coefficients. 
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Flow chart of the optimal method.: 

 

   Flowchart for optimal method 

The heart of the optimal method is the first step where an iterative process 

is used to determine the external frequencies of a filter whose amplitude-

frequency response satisfies the optimality condition. This step relies on 

the alternation theorem which specifies the number of external frequencies 

that can exist for a given value of N.  

7.2 INFINITE IMPULSE RESPONSE (IIR) FILTERS 

7.2.1 Introduction: 

The type of filters which make use of feedback connection to get the 

desired filter implementation are known as recursive filters. Their impulse 

response is of infinite duration. So, they are called IIR filters. IIR filters 

are designed by considering all the infinite samples of the impulse 

response. The impulse response is obtained by taking the inverse Fourier 

transform of ideal frequency response. There are several techniques 

available for the design of digital filters having an infinite duration unit 

impulse response. The popular methods for such filter design uses the 

technique of first designing the digital filter in analog domain and then 

transforming the analog filter into an equivalent digital filter because the 

analog filter design techniques are well developed.  
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IIR filters normally require fewer coefficients than FIR filters.These filters 

are mainly used when throughput and sharp cutoff is the important 

requirement. The physically realizable and stable IIR filter cannot have a 

linear phase. For a filter to have a linear phase, the condition to be 

satisfied is h(n) = h(N – 1 – n) where N is the length of the filter and the 

filter would have a mirror image pole outside the unit circle for every pole 

inside the unit circle. This results in an unstable filter. As a result, a causal 

and stable IIR filter cannot have linear phase. In the design of IIR filters, 

only the desired magnitude 

Important features of IIR filters: 

1.  The physically realizable IIR filters do not have linear phase. 

2.  The IIR filter specifications include the desired characteristics for the 

magnitude response only. 

7.2.2 IIR filter design by approximation of derivatives: 

The approximation of derivative method is also known as backward 

difference method. The analog filter having the rational system function 

H(s) can also be described by the linear constant coefficient differential 

equation. 

 

In this method of IIR filter design by approximation of derivatives, an 

analog filter is converted into a digital filter by approximating the above 

differential equation into an equivalent difference equation. 

The backward difference formula is substituted for the derivative  

at time   

 

Thus, 

   

Or     

where T is the sampling interval and  

The system function of an analog differentiator with an output  is 

 and the digital system which produces the 
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 output  has the system function 

. 

Comparing these two, we can say that the frequency domain equivalent 

for the relationship  is: 

    

Thus, this is the analog domain to digital domain transformation. 

Mapping of the z-plane from the s-plane 

We have   i.e.   

Substituting  in the expression for z, we have  

   

  

It can be observed that the mapping of the equation  

takes the left half plane of s-domain into the corresponding points inside 

the circle of radius 0.5 and centre at z = 0.5. Also the right half of the s-

plane is mapped outside the unit circle. Because of this, mapping results in 

a stable analog filter transformed into a stable digital filter. However, 

since the location of poles in the z-domain are confined to smaller 

frequencies, this design method can be used only for transforming analog 

low-pass filters and band pass filters which are having smaller resonant 

frequencies. 

 

Fig : Mapping of s-plane into z-plane by the backward difference 

method. 
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7.2.3 IIR filter design by impulse invariant method: 

The desired impulse response of the digital filter is obtained by uniformly 

sampling the impulse response of the equivalent analog filter. The main 

idea behind this is to preserve the frequency response characteristics of the 

analog filter. For the digital filter to possess the frequency response 

characteristics of the corresponding analog filter, the sampling period T 

should be sufficiently small (or the sampling frequency should be 

sufficiently high) to minimize (or completely avoid) the effects of aliasing. 

Let  = Impulse response of analog filter 

             = Sampling period 

       = Impulse response of digital filter 

For impulse invariant transformation, 

 =  =  

Analog filter’s system function is given by  

 

The relationship between the transfer function f the digital filter and 

analog filter is given by  

 

Comparing the above expressions for and , we can say that the 

impulse invariant 

transformation is accomplished by the mapping. 

 

The above mapping shows that the analog pole at  is mapped into a 

digital pole at . Therefore, the analog poles and the digital poles 

are related by the relation. 
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Fig : Mapping of (a) s-plane into (b) z-plane by impulse invariant 

transformation. 

The mapping from the analog frequency  to the digital frequency  by 

impulse invariant transformation is many-to-one which simply reflects the 

effects of aliasing due to sampling of the impulse response. 

The stability of a filter (or system) is related to the location of the poles. 

For a stable analog filter the poles should lie on the left half of the s-plane. 

That means for a stable digital filter the poles should lie inside the unit 

circle in the z-plane. 

7.2.4 IIR filter design by the bilinear transformation” 

The IIR filter design using impulse invariant as well as approximation of 

derivatives methods is appropriate only for the design of low-pass filters 

and band pass filters whose resonant frequencies are small. These 

techniques are not suitable for high-pass or band reject filters. The 

limitation is overcome in the mapping technique called the bilinear 

transformation. This transformation is a one-to-one mapping from the s-

domain to the z-domain. That is, the bilinear transformation is a conformal 

mapping that transforms the imaginary axis of s-plane into the unit circle 

in the z-plane only once, thus avoiding aliasing of frequency components. 

In this mapping, all points in the left half of s-plane are mapped inside the 

unit circle in the z-plane, and all points in the right half of s-plane are 

mapped outside the unit circle in the z-plane. So the transformation of a 

stable analog filter results in a stable digital filter. The bilinear 

transformation can be obtained by using the trapezoidal formula for the 

numerical integration. 

Let the system function of analog filter be  

The differential equation describing the above analog filter can be 

obtained as:         

       



   

 140 

Finite Impulse Response And 
Infinite Impulse Response 

Filters 

 

   Or            

Taking inverse Laplace transform on both sides, we get 

    

Integrating the above equation between the limits (nT – T) and nT, we 

have 

    

The trapezoidal rule for numeric integration is expressed as: 

    

Therefore, we get 

 

 

After taking z-transform, the system function of a digital filter is  

 

Comparing this with the analog filter system function  we get 

 

On rearranging, 

 

This is the relation between analog and digital poles in bilinear 

transformation.  

So to convert an analog filter function into an equivalent digital filter 

function, we need to put 
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 The general characteristic of the mapping may be obtained by 

putting  and expressing the complex variable z in the polar 

form as  in the above equation for s. 

Thus, 

 

Which is equal to 

 

On the imaginary axis of s-plane  and correspondingly in the z-plane 

r = 1. 

Therefore, The relation between analog and digital frequencies is: 

     

Fig : Mapping between  and  in bilinear transformation. 

The mapping is non-linear and the lower frequencies in analog domain are 

expanded in the digital domain, whereas the higher frequencies are 

compressed. This is due to the nonlinearity of the arctangent function and 

is usually known as frequency warping. 

7.2.5 Butterworth filters: 

To design a Butterworth IIR digital filter, first an analog Butterworth filter 

transfer function is determined using the given specifications. Then the 

analog filter transfer function is converted to a digital filter transfer 
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function using either impulse invariant transformation or bilinear 

transformation. Infinite-duration Impulse Response (IIR) Filters  

The analog Butterworth filter is designed by approximating the ideal 

frequency response 

using an error function. The error function is selected such that the 

magnitude is maximally 

flat in the passband and monotonically decreasing in the stopband. 

(Strictly speaking the magnitude is maximally flat at the origin, i.e., at W 

= 0, and monotonically decreasing with increasing W). 

The magnitude response of low-pass filter obtained by this approximation 

is given by 

 

 where W c is the 3 dB cutoff frequency and N is the order of the filter. 

7.2.5.1 Frequency response of the Butterworth filter: 

The frequency response of Butterworth filter depends on the order N. The 

magnitude response for different values of N are shown in Figure. From 

Figure 8.8, It can be observed that the approximated magnitude response 

approaches the ideal response as the value of N increases.  

However, the phase response of the Butterworth filter becomes more 

nonlinear with increasing N. 

 

Magnitude response of Butterworth low-pass filter for various values of N. 

Design procedure for low-pass digital Butterworth IIR filter: 

The low-pass digital Butterworth filter is designed as per the following 

steps: 
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Step 1 :  Choose the type of transformation, i.e., either bilinear or 

impulse invariant transformation. 

Step 2 :  Calculate the ratio of analog edge frequencies depending upon 

the transformation chosen such as bilinear or impulse 

Step 3 :  Decide the order N of the filter. Choose N such that it is an 

integer just greater than or equal to the value obtained. 

Step 4 :   Calculate the analog cutoff frequency for both transformation 

Step 5 :  Determine the transfer function of the analog filter. 

Step 6:  Using the chosen transformation, transform the analog filter 

transfer function H a (s) to digital filter transfer function H(z). 

Step 7 :  Realize the digital filter transfer function H(z) by a suitable 

structure. 

Properties of Butterworth filters: 

1.  The Butterworth filters are all pole designs (i.e. the zeros of the filters 

exist at ¥). 

2.  The filter order N completely specifies the filter. 

The magnitude response approaches the ideal response as the value of N 

increases. 

The magnitude is maximally flat at the origin. 

The magnitude is a monotonically decreasing function of W. 

At the cutoff frequency W c , the magnitude of normalized Butterworth 

filter is 1/ 

2 . Hence the dB magnitude at the cutoff frequency will be 3 dB less than 

the maximum value. 

7.2.6 Chebyshev filters: 

or designing a Chebyshev IIR digital filter, first an analog filter is 

designed using the given specifications. Then the analog filter transfer 

function is transformed to digital filter transfer function by using either 

impulse invariant transformation or bilinear transformation. 

The analog Chebyshev filter is designed by approximating the ideal 

frequency response using an error function. There are two types of 

Chebyshev approximations. In type-1 approximation, the error function is 

selected such that the magnitude response is equiripple in the passband 

and monotonic in the stopband. In type-2 approximation, the error 

function is selected such that the magnitude function is monotonic in the 

passband and equiripple in the stopband. The type-2 magnitude response 

is also called inverse Chebyshev response. The type-1 design is presented 

in this book 
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The magnitude response of type-1 Chebyshev low-pass filter is given by: 

 

where e is attenuation constant given by  

 

Frequency response of the Chebyshev filter: 

The frequency response of Chebyshev filters depends on order N. The 

approximated response approaches the ideal response as the order N 

increases. The phase response of the Chebyshev filter is more nonlinear 

than that of the Butterworth filter for a given filter length N. 

 

Design procedure for low-pass digital Chebyshev IIR filter: 

The low-pass Chebyshev IIR digital filter is designed following the steps 

given below. 

Step 1 :  Choose the type of transformation. 

(Bilinear or impulse invariant transformation) 

Step 2 :  Calculate the attenuation constant e . 

Step 3 :  Calculate the ratio of analog edge frequencies W 2 /W 1 . 

Step 4 :  Decide the order of the filter N  

Step5 :  Calculate the analog cutoff frequency W c . for both 

transformation. 
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Step 6 :  Determine the analog transfer function H a (s) of the filter, 

wehn the order of N is odd or even 

Step 7 :  Using the chosen transformation, transform H a (s) to H(z), 

where H(z) is the transfer function of the digital filter. 

Properties of Chebyshev filters (Type 1): 

1. The magnitude response is equiripple in the passband and monotonic 

in the Stopband. 

2. The chebyshev type-1 filters are all pole designs. 

3. The normalized magnitude function has a value of 1/ 1 + F 2 at the 

cutoff frequency W c 

4.  The magnitude response approaches the ideal response as the value 

of N increases. 

Inverse Chebyshev filters: 

Inverse Chebyshev filters are also called type-2 Chebyshev filters. A low-

pass inverse Chebyshev filter has a magnitude response given by 

 

where e is a constant and W c is the 3 dB cutoff frequency. The 

Chebyshev polynomial c N (x) is given by 

 

The magnitude response has maximally flat passband and equiripple 

stopband, just the opposite of the Chebyshev filters response. That is why 

type-2 Chebyshev filters are called the inverse Chebyshev filters. 
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7.2.7 Elliptic filters: 

The elliptic filter is sometimes called the Cauer filter. This filter has 

equiripple passband and stopband. Among the filters discussed so far, for 

a given filter order, pass band and stop band deviations, elliptic filters 

have the minimum transition bandwidth. The magnitude response of an 

elliptic filter is given by 

 

where is the Jacobian elliptic function of order N and  is a constant 

related to the passband ripple. 

7.2.8 Frequency transformation: 

In the design techniques discussed so far, we have considered only low-

pass filters.  

This low-pass filter can be considered as a prototype filter and its system 

function H p (s) can be determined. The high-pass or band pass or band 

stop filters are designed by designing a low-pass filter and then 

transforming that low-pass transfer function into the required filter 

function by frequency transformation. Frequency transformation can be 

accomplished in two ways. 

Basically there are four types of frequency selective filters, viz. low-pass, 

high-pass, band pass and the band stopped. In Figure 8.11, the frequency 

response of the ideal case is shown in solid lines and practical case in 

dotted lines 
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Frequency response of (a) Low-pass filter, (b) High-pass filter, (c) Band 

pass filter and 

(d) Band stop filter: 

The high-pass or band pass or band stop filters are designed by designing 

a low-pass filter and then transforming that low-pass transfer function into 

the required filter function by frequency transformation. Frequency 

transformation can be accomplished in two ways: 

1. Analog frequency transformation 

2. Digital frequency transformation 

Analog frequency transformation: 

In the analog frequency transformation, the analog system function  

of the prototype filter is converted into another analog system function 

 of the desired filter (a low-pass filter with another cutoff frequency 

or a high-pass filter or a band pass filter or a band stop filter). Then using 

any of the mapping techniques (impulse invariant transformation or 

bilinear transformation) this analog filter is converted into the digital filter 

with a system function . 

The frequency transformation formulae used to convert a prototype low-

pass filter into a low-pass (with a different cutoff frequency), high-pass, 

band pass or band stop are given in Table.  is the cutoff frequency of the 

low-pass prototype filter.  * cutoff frequency of new low-pass filter or 

high-pass filter and and are the cutoff frequencies of band pass or 

band stop filters. 
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Digital Frequency Transformation: 

As in the analog domain, frequency transformation is possible in the 

digital domain also. The frequency transformation is done in the digital 

domain by replacing the variable  by a function of , i.e., . 

This mapping must take into account the stability criterion. All the poles 

lying within the unit circle must map onto itself and the unit circle must 

also map onto Itself. 

Following table gives the formulae for the transformation of the prototype 

low pass digital filter into a digital low-pass, high-pass, band pass or band 

stop filters. 

 

 

The frequency transformation may be accomplished in any of the available 

two techniques, however, caution must be taken to which technique to use. 

For example, the impulse invariant transformation is not suitable for high-

pass or bandpass filters whose resonant frequencies are higher. In such a 
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case, suppose a low-pass prototype filter is converted into a high-pass 

filter using the analog frequency transformation and transformed later to a 

digital filter using the impulse invariant technique. This will result in 

aliasing problems. However, if the same prototype low-pass filter is first 

transformed into a digital filter using the impulse invariant technique and 

later converted into a high-pass filter using the digital frequency 

transformation, then it will not have any aliasing problem. Whenever the 

bilinear transformation is used, it is of no significance whether analog 

frequency transformation is used or digital frequency transformation. In 

this case, both analog and digital frequency transformation techniques will 

give the same result 

7.3 SUMMARY 

● Based on impulse response, filters are of two types: (i) IIR filters and 

(ii) FIR filters. The IIR filters are designed using an infinite number 

of samples of impulse response. They are of recursive type, whereby 

the present output depends on the present input, past input and past 

output samples. The FIR filters are designed using only a finite 

number of samples of impulse response. They are non-recursive types 

whereby the present output depends on the present input and past 

input samples. 

● The necessary and sufficient condition for the linear phase 

characteristic of FIR filter is that the phase function should be a linear 

function of , which in turn requires constant phase delay or constant 

phase and group delay. 

● The transformation of analog filter to digital filter without modifying 

the impulse response of the filter is called impulse invariant 

transformation (i.e. in this transformation, the impulse response of the 

digital filter will be the sampled version of the impulse response of 

the analog filter). 

● FIR filter is always stable because all its poles are at the origin. 

● The two concepts that lead to the design of FIR filter by Fourier series 

are: (i) The frequency response of a digital filter is periodic with 

period equal to sampling frequency.(ii) Any periodic function can be 

expressed as a linear combination of complex exponentials. 

● A finite weighing sequence w(n) with which the infinite impulse 

response is multiplied to obtain a finite impulse response is called a 

window. This is necessary because abrupt truncation of the infinite 

impulse response will lead to oscillations in the pass band and stop 

band, and these oscillations can be reduced through the use of less 

abrupt truncation of the Fourier series. 

● Chebyshev approximation is one in which the approximation function 

is selected such that the error is minimized over a prescribed band of 

frequencies. 

● Type-1 Chebyshev approximation is one in which the error function is 

selected such that the magnitude response is equiripple in the 

passband and monotonic in the stopband. 
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● Type-2 Chebyshev approximation is one in which the error function is 

selected such that the magnitude response is monotonic in the 

passband and equiripple in the stopband. The type-2 Chebyshev 

response is called inverse Chebyshev response. 
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7.5 UNIT END EXERCISES 

1.  What is an FIR filter? Compare an FIR filter with an IIR filter. 

2.  Write the steps in the design of FIR filters. 

3.  Explain FIR filter design using windowing method. 

4.  Find the frequency response of a rectangular window. 

5. Design an FIR digital filter to approximate an ideal low-pass filter 

with pass band gain of unity, cutoff frequency of 1 kHz and working 

at a sampling frequency of = 4 kHz. The length of the impulse 

response should be 11. Use the Fourier series method. 

6.  Compare analog and digital filters. State the advantages of digital 

filters over analog filters. 

7.  Define infinite impulse response and finite impulse response filters 

and compare. 

8.  Justify the statement IIR filter is less stable and give reason for it. 

9.  Describe digital IIR filter characterization in time domain. 

10.  Describe digital IIR filter characterization in z-domain. 

11.  Discuss the impulse invariant method. 

12.  What are the limitations of impulse invariant method? 

13  Compare impulse invariant and bilinear transformation methods. 

14.  Discuss the magnitude and phase responses of digital filters. 
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