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CourseOutcomes:

1 Inthiscoursethe studentswill learn about seriesof functionsand power series. The concept of
radiusof convergencewill beintroduced and cal cul ated.

2. Thiscoursegivesingght of complex integrationwhichisdifferent fromintegration of red vaued
functions. In particular, Cauchy integra formulawill be proved.

3. Thestudentswill learnthat if afunctionisonce (complex) differentiablethenitisinfinitely many
timesdifferentiable. Thiswill beasharp contrast with thetheoremsof real andysis.

4, Thevarious propertiesof M obiustransformationsthat have awide variety of applications
along with major theorems of theoretical interest like Cauchy-Goursat theorem, Morera’s theorem,
Rouch’e’s theorem and Casorati-Weierstrass theorem will be studied.

Unit . Holomor phicfunctions: (15 L ectur es)
Note: A complex differentiablefunction defined on an open subset of Ciscalled aholomorphicfunction.

Review: Complex numbers, Geometry of the complex plane, Weierstrass’s M-test and its aplication
to uniform convergence, Ratio and root test for convergence of seriesof complex numbers. (no questions
to be asked).

Stereographic projection, Sequence and series of complex numbers, Sequence and seriesof
functionsin ¢, Complex differentia functions, Chain rulefor holomorphic function.

Power series of complex numbers, Radiusof convergence of power series, Cauchy-
Hadamard formula for radius of convergence of power series. Abel’s theorem: let

Z 08 (z— zo)n beapower seriesof radiusof convergence R>0. Then thefunction f(z) defined

by f(z)=> a,(z- z,)" isholomorphic ontheopenball [z-z0| < Randfor all |z- z0|<R.
Trigonometric functions, Applications of Abel’s theorem to trigonometric functions.

Applicationsof thechain ruleto definethelogarithm astheinverseof exponentid, branches

of logarithm, principlebranch i ( z) of thelogarithm and itsderivativeon

C\{zeC|Re(z)<0,Im(z)=0}.



Unit I1. Contour integration, Cauchy-Gour sat theorem: (15 L ectures)

Contour integration, Cauchy-Goursat Theorem for arectangular region or atriangular
region. Cauchy’s theorem(general domain), Cauchy integral formula, Cauchy’s estimates, The
index(winding number) of a closed curve, Primitives. Existence of primitives, Morera’s theorem.
Power series representation of holomorphic function (Taylor’s theorem).

Unit I11. Propertiesof Holomor phicfunctions: (15 L ectures)

Entire functions, Liouville’s theorem. Fundamental theorem of algebra. Zeros of holomorphic
functions, Identity theorem. Counting zeros, Open M apping Theorem, Maximum modul ustheorem,
Schwarz’s lemma. Automorphisms of unit disc.

| solated singularities: removable singularitiesand Removable singul arity theorem, polesand
essential singularities. Laurent Series development. Casorati-\Weierstrass’s theorem.

Unit I V. Residuecalculusand M obiustransformation: (15 L ectures)
Res due Theorem and eva uation of standard typesof integralsby theres due cal culus method.
Argument principle. Rouch’e’s theorem. Conformal mapping, Mobius Transformation.

Recommended Text Books:

J.B. Conway, Functions of one Complex variable, Springer.

A.R. Shastri: Anintroduction to complex analysis, Macmillan.

SergeLang: Complex Analysis. Springer.

L.V.Ahlfors:Complex anayss, McGraw Hill.

R. Remmert: Theory of complex functions, Springer.

JW. BrownandR.V. Churchill:Complex variablesand A pplications, McGraw-Hill.
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INTRODUCTION TO COMPLEX
NUMBER SYSTEM

Unit Structure

1.0. Objectives

1.1. Introduction

1.2. The Field of Complex Numbers

1.3. Extended Complex Plane, The Point at Infinity, Stereographic
Projection

1.4. Summary
1.5. Unit End Exercises

1.0 OBJECTIVES

After going through this unit you shall come to know about

e The field of complex numbers denoted by C.

e Representations of complex numbers in polar forms .

e The Euclidean two dimensional plane R> along with the
point at infinity forms the extended complex plane.

e The extended complex plane is in one to one correspondence

with the unit sphere in R* and such a correspondence is known
to be the stereographic projection.

1.1 INTRODUCTION

Numbers of the form z=a+bi, where a and b are real
numbers and /i =—1are called as Complex Numbers. The identities
involving complex numbers lead to solutions to many problems
in the theory of real valued functions .The wider acceptance of
complex numbers is because of the geometric representation of
complex numbers, which was fully developed and studied by
Gauss. The first complete and formal definition of complex
numbers was given by William Hamilton. We shall begin with
this definition and then consider the geometry of complex
numbers.



1.2 THE FIELD OF COMPLEX NUMBERS

A complex number z is an ordered pair (x, y)of real numbers.
ie. z=(x,y) xeR, ye R. Complex number system, denoted by C

is the set of all ordered pairs of real numbers (i.e. RxR) with the
two operations of addition and multiplication (« or x) which satisfy :

(@) (xp, )+ (22, y2) = (3 + 20+ v +y2)
N ~(x1,31), (%2, y2)e C
(i) (xp, y1)- (32, ¥2)=(x1 X2 = ¥ 2. Xy Yo+ X3 V1)

The word ordered pair means (x;, y;) and (y;,x ) are distinct unless
=0
Let z=(x,y); =xeR, yeR. ‘x” is called Real part of a complex

number z and it is denoted by x=Rez, (Real part of z) and ‘y’ is
called Imaginary part of z and it is denoted by y=Imz.

Two complex numbers z; =(x;,y;) and z, =(x,, y,) are said
to be equal iff x =x,and y; =y, i.e. real part and imaginary part
both are equal.

About Symbol i’:
The complex number (0, 1) is denoted by ‘i” and is called the

imaginary number.
i?=i.i=(0,1).(0,1)

=(0-1, 0+0) by property (ii) abov
=(-10)

= iZ=—1

Similarly,
i*=i%.i=(~1,0).(0,1)=(0-0, —=1+0)=(0,—1)
= =i
i*=i3.i=(0,-1).(0,1)=(0+1, 0+0)=(1,0)..+/3

= i4=1

Using this symbol i, we can write a complex number (x, y) as x+iy
(Since x+iy=(x,0)+(0,1)(y,0)=(x,0)+(0, y)=(x, y)The complex
number z=(x, y) can be written as z=x+iy

Note: (The set of all complex numbers) C forms a field.



Propeties of complex numbers
Let z;=(x,y1), 22 =(x,y2) and z3 =(x3,y3)e C.

1) ClosureLaw : z;+z,eC and 7.2, C

2) Commutative Law of addition : z;+z, =2, + 7

g +25 = (2, )+ (2, y2) = (3 +x0, yi+y2)=(x2+x, y2+)
=(x0, y2) (X, 1) =22+ 7

3) Associative Law of addition : z;+(z, +23)= (27 +23)+ 23

aHzn+z) =(x1,y1)+[(x2,y2)+(x3’y_%)]
=(x, 1)+ +33 ¥2+3) =(xq+x+x3, y+Y2+)3)
=(2q+x, Y +2) +(3+y3) :[(xl’ i)+, yz)]+(x3’ )
=(za+2)+z

4) Existence of additive Identity : The Complex Number
0=(0,0) i.e. z=0+0i is called the identity with respect to

addition.

5) Existence of additive Inverse :
For each complex number z; e C, 3 a unique complex number

ze Csit. zy+z=z+7 =0 1.e. z=-z. The complex number z
is called the additive inverse of z; and it is denoted by z=-z.

6) Commutative law of Multiplication : 7.2, =2, .7

.22 =(xu0).-(x2,3) =(xq- -y y.x-ym+x-y) (1)

and
2.7 =(x,y2) (3, 1) = (X2 x = y2 Yo X2 - i+ X1 ¥2)
:(xl.xz—yz.yl, xl.y2+x2.y1)=zl.z2 from(l)

7) Associative Law of Multiplication : z;.(z,.23)=(z.22). 23

Zl-(Zz .z3)=(x, n)[(xz’yz)-(x&%)]
= (x5, ) [%2 - X3 =2 . y3. x5 . y3+ X3 7]

:[xl(xz-XS_YZ Y3) —Y1(x2-x3—Y2 . Y3)’ xl(xz-x3 +43. Y2)+Y1(x2-x3—Y2 . Y3)]

= (XX X3 =X Y2 V3T X X3 Y F VL Y2 Y3 XX X3 XL X3 V)

+x2.x3.y1+y1.y2.y3) (*)



(21-22)- 23 =[ (1 1) (%2, ¥2) ] (33, ¥3) = (31 ;2 =31 ¥2» 31 ¥2 + 22 1) (%3, ¥3)

=X X X3=X3 Y1 Yo~ X Xp Y3+ Y| Y2 Y3, X X3 Yo+ Xp Y Y3HX X X3~V Y2 V3
=2(22-23) from (*)

8) Existence of Multiplicative Identity : z;.1=1.z =7
The complex number 1=(1,0) (i.e.z=1+0i) is called the

identity with respect to multiplication.

9) Existence of Multiplicative Inverse : For each complex
number z; #0, there exists a unique complex number z in C s.t.

. 1 . i qe e
71.2=z.71=1 1.e. z=— 1s called the multiplicative inverse of
3

.. 1 —
complex number z; and it is denoted by z=— or z I

|
Let z=(x,y) and z; =(x, )
Sz =1
o (0 y) () =(10) = (xg =y 2y +xy)=(1,0)
= x.xq-y.y=1 ... (1) and x.y;+x.y=0 .......>11)
Equation (i1) xx; - Equation (1) x y;, we get
xy + xfy = 0

2
- N T W =N
j— + —_

2, .2
J’(x1 +Y1)=—Y1

ol oy (iii)
2, 2
)|

Substitute equation (iii) in equation (i1) i.e. x.y;+y.x =0

. _ N __ N 1
e X Y|FTY.X =~ > 5 X =Xx= ) 3 X
X+ i Ny N
X
X=——
2 2
Nt

0.0 Z:( xl _yl J
2. 27 2.2
X+ q+»n

z is the multiplicative inverse of complex number z; =(x, y;) -



10) Distributive Law :
g(z+zn)=2.22+7.23

Subtraction: The difference of two complex Numbers
Q= (xl, yl) and
73 =(xp, y,) is defined as :

a1 =23 = (1, y1) = (%2, y2) =(x—x2, y1-¥2)

Division: It is defined by the equality Ao 71-22 ! 2 #0
%)

=( ) ) Yo || X1 XYYy —XYpt Xy
WY T Ty o | 2 2 2. 2
X +yy Xty X3+ ¥ X3+ ¥

Geometrical Representation of a Complex Number :
Consider a complex number z = x+iy.

Complex number is defined as an ordered paired of real
numbers.
ie. z=(x, )
YA

=

Fig. 1.1

This form of a complex number z suggest that z can be
represented by point (say) P whose Cartesian co-ordinates are x and
y referred (relating) to rectangular axis X and Y, usually called the
Real and Imaginary axis respectively.

To each complex number there corresponds points in the
plane and conversely, one and only one each point in the plane there
exist one and only one complex number.

A plane whose points are represented by the complex
numbers is called Complex Plane or Gaussian Plane or Argand
Plane. Gauss was first who formulated that complex numbers are
represented by points in a plane in 1799 then in 1806 it was done by
Argand.
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Vector Representation of a Complex Numbers :

If P is the point in the Complex Plane corresponding to

complex number z can be considered as vector OP whose initial
point is the origin ‘O’ and terminal pointis P=z=(x,y) as shown in
the figure 1.2.

P=z=(x,y)

0
2 > X

N

Fig 1.2

Conjugate:
If z=x+iye C then the complex number x—iy is called the

conjugate of a complex number z or complex conjugate and it is

denoted by z .

e.g. z=4+3i =z=4-3i
w=4+5¢" = w=4+5¢7

i

Geometrically:
The complex conjugate of a complex number z=(x,y)is the image

or reflection of z in the real axis.

A Z= x +1iy
Y
0,
o)
o, x
\ 2 _
zZ= x-1y
Fig 1.3
Let z=x+iy
+z 72—z

e o L] Z
. x=Rez andz=Imz... x=Rez=

and y=Imz=T



Definition: The modulus or absolute value of a complex number
z=x+iy 1is defined by|z| = x> 4y,

YA

P(x,y)=z

Fig 1.4

The distance between Two Complex Numbers :
Let z; =(x.,y1), 22 =(x, y,) in complex plane is given by

2 2
d(z1,2)=|a-2 | =\/(x1—x2) +(y1-2)
YA

z5(X5.¥2)

z1(x1,51)

A
\ 4
>

Fig 1.5

Polar form of a Complex Numbers :

If P is a point in the Complex Plane corresponding to
complex number z=x+iy=(x, y) and let (r,0) be the polar co-

ordinates of point (x, y) from figure 1.3, x=rcos® and y=rsin®,

where r= x2+y2 is called the modulus or absolute value of z

(denoted by |z| and eztan_l(lj is called the argument or

X

amplitude of z (denoted by 6=arg z). Here 0 is the angle between
the two lines OP and the real axis (x- axis) .




W
P=(x)y)
A
r=|

y

0 2 %
€ >
Ol < x > X X

v
Fig 1.6

ooz=x+iy
. z=rcosO+irsin 0
. z=r(cosO+isin0)
This form is called the polar form of a the complex number z.

Y A
0-2n

(A
1/ B
0+2n
0+4m

P

A

v

Fig 1.7

Any complex number z#0 has an infinite number of distinct
arguments.

Any two distinct arguments of z differ each other by an integral
multiple of 27.

If one of the value of argument of z is © then arg z=6+2nt where
n=0,t1,%t2,..

The value of 6 which lies in the interval —t<6<7 or (0<6<2m)

is called the principal value of argument of z and it is denoted
by Arg z=0.




The relation between Arg z and arg z is given by Arg z=argz+2nn
where n=0, 1, £2,...

Exponential form of complex number: A complex number can be
written in the form ofz=re®, where r= \/xz + y2 and

0=tan ! (lj .This is known as the exponential form.
X

(Note: ¢ = cos0+isin @ known as Euler’s Identit )
y
i500

e 4

Note: 1) |9 |=1 2)

2

=1

Solved Examples :
1. Let g =1+i,2y =1-2i,23 =1+~/3i . Find i) z,.z, ii) z,/z, iii) z, iv)
|z1| v) arg(z;) vi) Express z; in polar and exponential form.
Solution:
1) 72y =(+i)(1-2i)=1-2i—i—2i% =1-2i—i+2=3-3i
1+i _ 1+i X1+2i :1+2i+i—2:—1+3i
1-2i 1-2i 1+2i 1—4;2 5
iil)  z,=142i
) x =1y =1
|z1|=\/x2+y2 =\/12+12 =2

V) Xlzl,ylzl

ll) Zl/Z2 =

. 8=t ) =tan Iy =T
X1 1 4
Vi) z; = r(cos 6; +sin 6)
L= \/E(COS r +sin E)
4 4
2.  Find the principal value of arg'i'
0=Arg z -T<O<T

Argi=0= tan”! (lj {rz=i=z=(0x+iy)}
x
= tan_l(ij = tan ~ ! (o) -
0 2
3. Find the principal value of arg(1+i)
" Z=1+i:(x+iy)

Jox=1, y=1

Argz=0= tan ™ (lj =tan"! (% -
X 1 4



4. Express the Complex Number z=1++/31 in polar form.
Solution : *." z=r(cos®+isin6) (1)

and " z=x+iy=1+3i

Sox=1and y=+3

Vor=yxt+y? =143 =44

"= tan‘l(lj — tan ! (?J = tan ! (\/3_) = tan ! (tangj

X

=" Z:Z(cos£+isin£j
3 3 3

Results : tan(45°) = tan(180+45) =1
tan(—45°) + tan (180 45) =-1
tan (60°) = tan (180+60) =3

tan(—60°) = tan(180-60°) = —+/3.
5. Express the Complex Number z=-1+i in polar form
Solution : " z=r(cos®+isin6)
oz=—1+i (given)
Comparing with z=x+iy

o.o x:_l, y:1

Z:\/Z_(COS3—n+iSin3—nj
4 4

Basic Properties of Complex Numbers :
1) z=z iff z is purely a real number
Proof: Let z =x+iy, z=x—iy
Let z=z, = /{+iy=/{—iy
2iy=0 & y=0 < z=x¢& z isreal number.

2)  |z|=0iff z=0

10



Proof: O=|z|:W & x*=0and y2:O<:> x =0and y =0
ie. z=0
3) |z|=‘2‘
Proof: z=x+iy and z=x—iy
Sl g2y ()
2| =\ () =P @

o] z]=| 2] from (1) & (2)
4) RezS|Rez|S|z|
5) Imz£|Imz|S|z|
6) Let ze C, we C then

z+w=2+;

Let z=x+iy, w=u+iv

wz+w= (x+iy)+(u+iv) =(x+u)+i(_y+_v)

=(x+u)=i(y+v) =(x—iy)+(u—iv) =z+w

Y z+w=z4+w

7) W=2Z.w

w= (x+iy)(u+iv) =(xu—yv)+i(xv+ yu)
= (xu—yv)—i(xv+ yu) = (xu—ixv)—(yv —iyu)

=x(u—iv)—iy(u—iv)=(u—iv)(x—iy) =z.w

8) |z| =z
’ 2
| z| :( x2+y2j =x2+y? (1)
z.Zz(x+iy)(x+iy)=x2—%+%—i2y2=x2+y2 (2)
|z|2=z.z from (1) and (2)
9 |aw|=]z[|w]

|zw|2=(zw)(z_w)=(z2)(W) =|z|2|w|2:>|zw|:|z||w|

10) LZM
wi | w]
z 7]
w1 |‘ =TT ]

11



z=)_c——iy=x—i(—y)=x+iy=z
Addition of two Complex Numbers :
Let z=x+iy;w=u+iv

Now, z+w=a+@=a+ﬁ,’=%
YA

o 4

Fig 1.8

Triangle Inequality :
1) z,weCthen|z+w|£|z|+|w|
Proof:

|z+w|2=(z+w).( z+w)=(z+w).(z.w)=z2+zv_v+2w+wv_v

|z+wl =] 2P+ w[ +zw+z.w (1)

Now,

z.v_v+z.wz(x+iy)(u—iv)+(x—iy)(u+iv)zz.v_v+z+v_v =2Re(zv_v)
gz‘z,v_v‘ (‘“Rez<|z|)
=2[ [ w]

z+7v+2.w=2|z|\v_v\ 2)

Substitute (2) in equation (1), we get
| z+wl < 2P+ w ] +2] 2| w] <(| 2|+ wl)’

= |z+w|£|z|+|w|

Geometrically, in any triangle, the sum of the two sides of a triangle
is greater than or equal to the third side(the points are
collinear, in case it is equal).

12



o 4

o)
v

Fig 1.9

2) Let z,we C then H z|-| W”S| z—w|
Proof: Let z=z+w-w
Taking mod on (| |) both the sides

| Z | = | Z+w—w |

<| z—w|+| w]

Lzl wl <] w )
Interchanging z and w, we get

[wi=lz|<[w=z]=|z=w] (ii)

~([z]=[wl)<-z=w]

[ z[=[w]z=[z=w] (iii)
From equation (i) and (ii), we get

“|z-wls(f 2= w]) <[ z=w]

|zl wl<]z=w]

3) Let z,we C then

| z+w|2:| Z |2+2Rezv_v+| w|2
|z—w[ =] z["—2Rezw+| w|’
4) Parallelogram Law: The sum of the squares of the lengths of the

diagonals of a parallelogram is equal to the sum of squares of
lengths of its sides. i.e. prove that

[zew e z=w =2(] <[+ w)
Proof: Let z, we C
=|<[* + 2 Re (zw) +|uf’

|z+w|2: (x+u)+i(y+v)2

o= =| —2Re zw+|uf’
e = wl? =2( [P+ wl)

13



o
XV

Fig 1.10

5) Let z,we C then H z|—| WHS| ziw|$| z|+| w|

Proof: i) T.P.T. | z+w|<|z|[+|w]
Case (i) | z+w|<| z|+| w] by triangle inequality
Case (ii) | z—w|=‘ z+(—w)‘S| z|+|-w|<| 2|+ w]
From above both cases,
|zxw|<|z[+|w] (*)

i) TPT. | z|-|w|<|zEw]|

Consider | z|=|z+w—w|<|z+w|+|—w|<| z+w]|+]| w]

.'.|z|—|w|s|z+w| (a)

Consider |w|=|w+z—z|

<fwz |+ =z ] < wez 4] <]

< wl-l 2|5 wez]

.'.—(|z|—|w|)£|w+z| (b)

Sl 2=l =[x w] (%)
From (*) and (**), we get

[ z|=[wl<[ztw|[<| ]+ w]|

Theorem: The field C is nota linearly totally ordered field
OR

The field C is not partially ordered field (Total ordering or partial
ordaring means that if a#b then either a<b or a>b).
Proof: Suppose that such a total (partial) ordering exists.
Then for i.e. C, we have either i >0 or i<0 if i >0
oo -1=i.i>0
orifit i<0(—i>0)
—1=(=i) (-i)>0

14



We get —1>0, which is not true in R .
" Our supposition is not true.

‘. C is not linearly totally ordered field.

Properties of polar form and exponential form

1) Letzy =5 ¢ = i (cos8, +isin®;), 7o = ne' 2 =1y (cos; +isin,)

then z;.2p =7 .7 (cosO; +isin®;)(cosO, +isin®,) =71 . o (01+62)
eiezel(e”nn), M1 nelZ
 (01+6 e of i( 6146
|Z1.Z2|= rl.rz.el(l 2) =H.n ( el( 1 2)‘:1)

and| arg(z.zp)=argz +arg zp(mod 27) |in the sense that they are

same but for an integral multiple of 2x.

Note : | arg z;.zy =argz +argzy, +2km where k=0,1 or —1
2. Let z;=re® and zp=r, ¢®2 and z,#0
C oz 1 (cosB) +isin®;) _ N i(01-67)

7 n(cosBy +isin®,) n

( j— arg z; —arg z, (mod 21m)

Let zy=—1and z, = (-t<6<m)

z1=—1l=x+iy > x=-1and y=0
arg z; =arg(—1) = tan_l(%l) =tan" 1 (0)=tan"!(tan7) =

p=—i=x+iy = x=0and y=-1

AR IREE
arg(z;.zp) =arg(—1.—i) =arg(i) =tan_1(%)=tan_1(oo) _r

2
arg(z) .2y ) =argz +arg zp + 2km where k=0

[
|
]

Let z=—1and z, =i

g=-1 = z=x+iy =>x=-1, y=0

argzl=arg(—1):tan_l(%):tan_l(%l) =tan"1(0) =7

p=i=x+iy = x=0, y=1

e == ) )=

15



" oarg(z.zp)=arg(-1.i) =arg(—i)=tan” 1(%):tan_l(_%)

T

=—tan(e0) =—=

(=) =3
arg(z;.zp) =arg z; +arg zp + 2kn  where k =—1

In this case, we get correct answer by adding —2n to bring within

the interval (-, ).

When principal argument are added together in multiplication
problem, the resulting argument need not be the principle value.

De-Moivre’s Theorem :
Theorem: If n is any integer or fraction then

(cos®+isin®)" =cos (n0) +i sin (10)

Proof:
LHS=(cos8+isin8)" = ()" =™ =(cosnb +isinn) =RHS

(cos®+isin 6)" =cosnB+isinnd

e.g.1) (cos®+isin 9)5 =08 50 +isin560
2
1) (cos®+isin G)A =Cos (%ej +isin (%6)

Note: (sin®+icos8)" #(sin@+icosnd)

But, (sin9+icose)n =[cosn(§—6}+zsmn(; ﬂ
=cosn(£—6j+lsmn( j
2

2
e.g. 1) (sin9+icose)é ={cos(g—9 +isin ——9

—cosg E—9 +lsm— ——0
3\ 2 3\ 2

2) (cos®—isin®)" =cosn®—isinnd

by above thm)

&

4
e.g. (cose—isine)é =cos%6—isin§9
tz=x+iy

X2 y2 =r? is equation of circle with centre at the origin & radius

equal to r.

16



ay
v
Fig 1.11 C-— plane

Z=x+iy.'. |Z|=”X2+y2=\/r_2=r
2

x2+y2=r

\ 4

The equation of the circle with the centre at c=a+ib € C and
radius equal to r.

N
~ 0 7
\ 4
Fig 1.12

| z—c|=r
eg. ) |z-(2+i)]=1

This is equation of the circle with centre (2,1) and radius 1.

| z—1| =3, circle with centre (1,0) and radius = 3

| z+i|=2, circle with centre (0,-1) and radius = 2

Roots of Complex Number :
Definition: A number w is called the n" root of complex number z if

1
w' =z or w=z4.

Theorem: In C, given z#0, the equation expansion w" =z has n-
0+2km

I
distinct solution given by wy = (’/;.e ( n ), k=0,1,....n—1 where
r:| z| and 0= Argz.

17



Proof: Given, ze C and z#0
". The polar form of complex number z is z=r(cos6+isin6) where
r=| Z| and O =argz.
. w'=z=r(cosO+isin0) (given)
= r[ cos (0 +2km) +isin (0 + 2k) |
OR

1 1 1
w= ZA = rA [ cos(0+2km)+isin(6+ 2k7t):|4
=3r [cos ( O+ 2knj +i sin( O+ 2kn ﬂ (by De-Moiver’s
n

n
theorem)

[ 0+2km

l
W=Wk=<L/7€[

) where k=0,1,2,...,(n—1)

Note : It is sufficient to take k=0,1,2,..(n—1) since all other
values of k lead to repeated roots.

Example : Find all the fourth roots of z=1+i and locate these
roots in C plane.

Solution : Let w*=z=1+i
x=1, y=1

x2+y2— 1+1 = r=x/§
1|y (1 . —
O=tan (4)—tan % —tan . 6—%

wh =12 {cos +isin ( Zﬂ (polar form)

2[00 /+2kn +1isin +2k7t)}

_ -1
8 (n+8knj .. (n+2knj A
w=2 cos 1 +isin

T

w= 24 cos(n+8knj+ i sin
| 16

Fourth roots of equations are

1
For k=0, wy =z£[cos(%}+isi

T+ 2ch) where

18



1
k=2, w2=zé cos(”—njﬂ'sin(”—nJ
16 16
1
k=3, W3:ZA Cos(@jﬂ'sin(@)
16 16

Which are the required four fourth root of z=1+i

Y
N
(Dl
9
Mo \a
17nl6 0 ’
T
M6
< > X
o, 257t16
('03
\ 4
C-plane
Fig 1.13

Example : Find all the fifth roots of z=-32 and locate these
roots in C-plane.

Solution : Let w” = 7=-32
x=-32and y=0

po 2y 2:/_322:
—tan( )—tan /2)—tan1

w> =32(cosT+isinT)

Wk = (32)% [cos(n +2km)+isin(m+ 2kn)]%

ol 2l 2
o tonmfn{ ]
paiacins

0s
k=2, wy= {cos j+zsm( ﬂ =2[cosT+isinT]

19




k=3, wy=2 cos(ﬁjﬂ'sin(ﬁj
5 5

k=4, wy=2 cos(g—njﬂ'sin(g—nJ
5 5

N

Fig 1.14

Example : Solve B2 +7241=0

e z8+z5+z3+120

z5(z3+1)+1(z3+1)
(°+1)(*+1)=0

Consider, 2 +1=0

0

1
2=-1 3wézz=—1
x=—-1, y=0
r:\/x2+y2=\/_1 = r=1
-1 -1
and 6 = tan (%1):—tan (0)
w=2z>=1(cosm+isin) in polar
w=2z> = [ cos(m+2km) +i sin (7 + 2km) ]
1
wy =z = cos(m+2km)+isin(m+ 2k7t):|A

by De-Moivre’s theorem
Wy =2z= Cos(n+32kn) +isin (n+32k75) where k=0,1,2

20



For k=0, wy=cos

w|>.]

()

j+ls1n( j—cos(n)+isin(n)

ol

=1 » W =COS

k=2, wz—co(

Now, consider P +l=
7 =-1
)5
w 5 :Z:—l
.| r=1 and 0=m |
e W=cCosST+isinT
=(cos(m+2km) +isin(m+ 2kT))

w|§_]" w|§°

O

T+ 2kT

. _ 1
- oWy = cos( j+ism(n+ 2kn)£ where £ =0,1,2,3,4

. { (n+2knj . (n+2knﬂ
. W =| cos +isin| —

For k=0, wy=cos §j+lsm( j

k=1, wl—co( j+zsm(35ﬂj

k=2, wy=cos(m)+isin(n)
s
+isin| —
5
j+zsm( j

1
Example: Find all roots of (8—|—8\/§i>1 and represent them
graphically. (2009)

b)

k=3, wy=cos (

U1|§ Ln|§]

k=4, w4—c0s(

Solution: Let z= 8+8«/_ 3i

r—8,/ —160—tan ﬁ)z%
A
{ cos +2k7£j+zsm(3+2k7£Dj k=0,1,2,3.
_ {CO ((6k+1) ]+isin((6k+l)7rD
12 12
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T .. 7
for k=0 WO:Z(COSEHSIHEJ 137%2 77%2

for k=1 w =2 cos7—ﬂ-+isin7—ﬂ
12 12

for k=2 w,=2 cosB—”+isinl3—ﬂ 75&/
12 12 l

for k=3 w;=2 coslg—ﬁﬂ'sinlg—”
12 12

1
Q. Find all the roots of (\/g +i )3 and locate them graphically.

1.3. EXTENDED COMPLEX PLANE, THE POINT AT
INFINITY AND STEREOGRAPHIC PROJECTION

Construction of the Stereographic Projection Map. (2012) Let C
be the Complex plane. Consider a unit sphere S (radius 1) tangent to
C at a point z=0. The diameter NS is perpendicular to C and we
call points N and S the north and south poles of the sphere S
corresponding to any point z on the Complex Plane C, we can

construct a straight line NZ intersecting sphere S at a point P(# N).

N

S = The Unit Sphere

.........
.,
.

S
Fig 1.15

Thus to each point of the Complex Plane C, there
corresponds one and only one point of the sphere S and conversely,
to each point of the sphere S (except N), there corresponds one and
only one point on the plane. For completeness, we say that the point
N itself corresponds to the point at infinity of the plane C. This one-
to-one correspondence between the points of the plane C,_, and the

points of the sphere § 1is called the Stereographic Projection. The
sphere is called the Riemann Sphere (because Complex Number can
also be represented by point on the Sphere.)
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Suppose Complex Plane C passes through centre of the unit
sphere S.

Let x12 + x% + x% =1 be the equation of unit sphere S.
N =(0,0,1)

Also, identify C with {(x,x,,0):x € R, x, € R}.
Put z=(x,y) and p=(x,x,,x3). We will find equations expressing
Xy, X2, x3 in terms of x and y.

The equation of straight line Nz in R3 passing through points N and
Z is given by
{(1-1)z+N:te R} ={(1-1)(x, y)+1(0,0,1) ze R}
={((1-1)x,(1-1) y, 1) te R} ......(1)
.*  Straight line Nz intersects sphere S.
(l—t)2 x? +(1—t)2 vy 42 =1
(l—t)z(x2+y2)=l—t2
(1=1) (x®+y2)=(1-1) (1+1)
(1= | z [P =(1-1) (1+1)

(1-0)| = |=(1+1)

This equation holds if PN ... (*." if P=N then t=1and z=o)
|Z|2—t|z|2=1+t

<[ -1=(1+] [)r

t=|Z|—_21 (for P#N)
1+ z |
2 2 2
PR N A et O D e 1l 1 2 S :
1+|z|2 1+|z|2 1+|Z|

Points N, P, Z are collinear.
From equation (1),
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Aa=loie= 1+ zF 14|z
oy —ilz=2)
2=017)y= 1z 14|z . (2)
NS
|z|2+1 )
.« Point z=x+iye C corresponds to point P.
1+2z _i(Z_z) |z|2—1
B 1+|z|2, 1+] z [ , |27 +1
Again from equation (2),
x:%t::—l)@ T 1x—2l B 1i€2x3 Z:x”y:xii—;jz

Point P =(x;, x5, x3)€ S corresponds to point z.
i
7= X1 TiXp cC
1—)63

Note : From figure (Fig 1.20)

The straight line Nz in R? intersects sphere and in exactly one point

P#N.
If | 4 | >1, then point P is in the Northern hemisphere and if | Z |< 1,

then point P is in the southern hemisphere. Also, if |z |=1, then

P =7z and as 7z — o, P approaches N.

Distance function :

Let z and 7" be any two points on the Complex Plane C. Suppose
point z(x,y) corresponds to point P =(x;,x,,x3)€ S. Suppose point

Z'(x, ") corresponds to point P’ =(xj,x5,x3)€ S.
We define distance function as

A7) =d(P.P) = (3 =5+ (=) + (-5 )
[d(22)] = (=) (12 =55) + (25—’

= xP X2 = 2x0x] + x5 + X5F =200 + X5 + x5 — 230

’%‘*‘x%:l

Since x?+ x5+ x3=1and x '} + x
=+t 3t x T rx3+g=1+1=2

= [a’ (z, Z/)}2 =2-2(xx] + X% + x3%3)
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Put =, Xh=——, X3 =
Y z|2 ? 1+|z|2 |z|2+1
x,: Z’_l_Z' xé :i(Z/+Z) x, _ ’ 2_1
1+ 7 1+ 7 1241
N
2 2+2z z'+z_'2 _Z(Z C j
d(z,7)[ =2-2 +
[ ] 1+ 2P 1+ 2 1+ 2 [
sifema) | flePor (1P
7 |t 2 2
1+ z | |z|” +1 27 +1
1.4 SUMMARY

1) A Complex Number Z is an ordered pair (x, y)of real numbers.

2) The distance between Two Complex Numbers : Let
Zi=(x>31), Zy=(x,y) be two complex numbers. The

distance  between them in complex plane is given by

2 2
d(2,2y)=|21 -2, | =\/(x1 —x)"+ (30— )
3) If P is a point in the Complex Plane corresponding to Complex
Number Z = x+iy=(x, y) and let (r,8) be the polar co-ordinates of

point (x, y) from figure x=rcos® and y=rsin® where

r=+ x2+y* | is called the modulus or absolute value of Z (denoted
by | Z | and

0 = tan —1(lj is called the argument or amplitude of Z (denoted by
X

O=argZ)

Here 6 is the angle between the two lines OP & the real axis (axis —
X)

4) The modulus or absolute value of a Complex Number Z = x+iy

is defined by | z | =+ x* +y* .

5) De-Moivre’s Theorem :

If n is any integer or fraction then (cos®+isin®)" =cosn® +i sinnd

6)Theorem : In C, given z#0, the equation expansion w" =z has
; 0+2km

n-distinct solution given by wjy = Yr e ( " J k=0,1,...,n—1

where r=| z| and 6=argz.
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1.5 UNIT END EXERCISES

1) Find two square roots of 2i .
(Hint: Let x+iy beasquare root of 2i = (x+iy)2 =z.

:>(x2—y2)+(2xy)i:2i, comparing real and imaginary  parts
on both the sides, we get two equations in X,y.

x2 —yZ:O; 2xy=2.=(x+iy)=1+i or (x+iy)=-1-i

2) Describe the set {z:|z+1/<1} in the Complex plane C.

Solution: Let z=x+iy;x=Re(z), y=Im(z)

= |z 4] =[x +iy+1]={(x+ D y* .

Hence |z+1|<1 describes all real number pairs (x,y) in R? such
that (x+1)2+y2 <l1.

= (x+1%)+y*> <1 This is an equation of the open disc with

centre
at and radius equal to 1, which can be described as follows :

m B (-10)1)

(_170)

v

3) Find polar form of the Complex Number 1+i.

(3

4) Show that the n™ roots of 1 satisfy the “ cyclotomic
equation

Tz 4120,
(Hint : Use the identity z"—lz(z—l)(zn_l+zn_2+...+z+1).

(2009)

%k %k % %k %k
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SEQUENCES OF COMPLEX NUMBERS

Unit Structure

2.0 Objectives

2.1. Introduction

2.2. Convergent Sequences

2.3. Topological Aspects of the Complex Plane (Limits,
Continuity, Uniform Continuity)

2.4. Summary
2.5. Unit End Exercises

2.0 OBJECTIVES

This unit shall make you understand :
e Cauchy and convergent sequences of complex number =z .
e The -connection between the convergence of real and
imaginary parts of a sequence z,=x,+y,, namely x, and
v, with the convergence of z, inC. We shall also see that

under what conditions a given sequence of complex
number z, =x,+y, is a Cauchy sequence. Can we relate to

fdour findings for real values sequence x, and y, .

2.1. INTRODUCTION

We have already associated the meaning to a sequence of
real numbers as a function, a:Z" — R, denoted by (a(n)),.y.On
a similar line , we shall define a sequence of complex numbers ,
where each term of a sequence is a complex number . For

I . .
example z,=— is a sequence of Complex Numbers with terms
z

il,iz,%,...etc. In this Unit, we shall consider the topological
z 77 2

aspects of the Complex plane. The concept of absolute value can
be used to define the notion of a limit of a sequence of complex
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numbers . We shall begin with the definition of a complex valued
sequence .

Definition: A function whose domain is a set of natural number
(N) and range is a subset of R, is said to be Real sequence.

Any function whose domain is a set of nature numbers (N) and

range is subset of complex numbers C , is said to be complex
sequence.

Generally, we denote it by {z,}. z, is the n" term of the sequence.

e.g. 1) The set of numbers i,i,i°,...,i°%°. This is finite sequence
and its n" term is z, =", n=12,...,200
240 (2+i)° (2+i)

2) The set of numbers , ,
1 2 3

: o : . 2+i)"
It is the infinite sequence and its ™ term is z,, = (2+1) .

Sequences : Definition : A function whose domain is a set of
natural number (N) and range is a subset of R, is said to be Real

sequence.

Any function whose domain is a set of nature numbers (N)

and Range is subset of R, is said to be Complex sequence.

Generally, we denote it by {z,}. z, is the n" term of the

sequence.

e.g. 1) The set of numbers i,i2, i3,..., i200 " This is finite sequence

and its n" term is z, =", n=12,...,200
2 3
(24 2+
2) The set of numbers 2+ ( ) ( i)
1 2 3
(2+i)"

n

. . . . . th .
It is the infinite sequence and its n~ term is z, =
n

2.2 CONVERGENT SEQUENCES

A sequence {z,} is said to converge to a point z; [or a
sequence {z,} has to limit z,] if for every €>0, there is an N s.t.
| z,—20|<€ ~ n2N and we write lim z, = z.

n—oo
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Geometrically, z, — zo 1if every e€-nbd of z; contains almost all

terms of the sequence {z,}.

/},, ~~~‘\\ . Zl
l' 3 8 1
i 2y /‘. °Z)
] . 1
“\ 20 ZS I" * Z3

X ’

~~~ R

Fig 2.1

Divergent Sequences: A sequence is said to be divergent if it is not
convergent.

Theorem: Prove that any convergent sequence has a unique limit.

Solution : Let lim z, =z and lim z, =g,
n—yo0 n—oo

If z) # z, then fore:@>0

AN, st n2 Ny =z, —z|<e/2

and AN, s.t. n2, N, =z, —zo|<€/2

choose N = max {NI,NZ} = N2=N;and N 2N,
= |2y — 7| <&y and |zy —zo|<e/2

=z = 20| <[z —an|+an — 2| <&

= 0<|z— 2| <€ a contradiction.
L7 =7

Theorem : Suppose z, = x, +iy, and zy=xg+iyy then lim z, =z
n—oo
iff lim x, =xy and lim y, =y,.
n—oo n—oo

Proof : Suppose lim z,=z, =>€>0, 3, an integer N s.t.
n—oo

| z,—29 |<€ »n2N.
Now, |z, =20 |=| %, +iv, —x0 —ivo | <| %, —x0 | +i] v =0 |

|xn—x0|<8
~n=2N
and|yn—y0|<8
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= lim x, =xy and lim y, =y,
n—oo n—>oo

Conversely, suppose lim x, =xy and lim y, =y, ~ €>0,3 N
n—oo n—>oo

and N2 S.t.|xn—x0|<% Av‘l’lZ]Vl
and|yn—y0|<% ~ n2=N,
Choose N =max {Nj, N,}

if n> N then

in—20 |:|xn+iyn_x0_iy0 | S|xn_x0 |+| yn_y0|
('.’RezS| z| and Isz|z|)

<&)+&=¢

Zn—Zo|<8

lim z, =z,
n—oo

Theorem : If lim z, =z,, then lim | Z, |=| 20 | and the sequence
n—oo n—>oo

{z,} is bdd.

Proof : Suppose lim z,=z; -~ £>0, 3 an integer N s.t.
n—»eo

zn—z0|<e ~»+ n2N.

Zn|_|ZO|S|Zn_ZO|

Solz |-l 20| < ~ n=N (1)
.o lim |zn|=|zn|
n—yoo

.". from equation (1)
|20 |[—e<] 2y [<| 20 |+€

- Sequence {z,} is bounded.

Example : If lim z, =z, and lim w, =w, prove that
n—oo n—oo

1) lim [Zn-f—Wn]:Zoi'WO
n—co

11) lim [Zn . Wn] =20 WO
n—co

oy z Z .
iii) lim | =2 |=—=% provided wy #0
n—oo| Wy wWo

Definition : Cauchy Sequence : A sequence {z,} is said to be a

Cauchy sequence for every €>0 there is an integer N s.t.
|2, = Zy| <€~ n=N,and m>N.
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Note : From equation (1) | z,, -z, |<&, ~ n2=N
Put m=n+p for p=1,2,3,...

<¢ ~»n2N and p>1.

In+p ~Zn
Theorem: Every convergent sequence is a Cauchy Sequence.

Proof : Suppose {z,} is a convergent Sequence.

.. A sequence {z,} has alimit of z.

lim z, =z,

n—oo

.« For every €>0, there is an integer N  s.t.
|zn—z0|<% ~+n2N

If m>N and n> N then

|zm—z0|<% ~+ m2N

EEISA v n2N
zn—zm|=|Zn—z0+z0—zm|S|zn—z0+z0—zm|<%+%:€

s zn—zm|<e if n>N and m>N

= {z,,} is a Cauchy sequence.

Theorem : C is complete. [i.e. T.P.T. every Cauchy sequence in C
is convergent.|

Proof : Let {z,} ={x, +iy,} be a Cauchy sequence in C.
={x,} and {y,} are Cauchy sequence in R.

" R is complete.
<o x, > x9 and y, — yy for xp, ype R

s lim gz, = lim (x, +iy,) = lim x, +i lim y, = xy +iyy = 29
n—co n—oo n—co n—>co
= sequence {z,}is convergent.

Hence C is complete.

Note : A sequence is convergent iff it is a Cauchy sequence (Cauchy
Criteria for convergence of a sequence.)

Theorem: Let (a,),., be a sequence of positive real numbers. If

. a )
lim—* =] <1, thenlima, = 0.
n—0 an n—0
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Proof: We have | <l—;1 <1, and by data there exist me N such that

l<h<ﬂ forall n>m

a

n

Put rz%. Then 0 < r < 1. Then

a,.,<a,,a, ,<a, r<(a,;r)r=a,r’ and soon. We get

a .
a,., <a,r* VkeN.Put c=—"_ Then 0<a, <cr" Vne N. Since
r

O<r<l,cr"—>0asn—e.So0a, >0asn— .

2.3 TOPOLOGICAL ASPECTS OF THE COMPLEX
PLANE

Topology in the C-plane :

A function CxC—R, (z,z")—|z—z’| has the following

properties.

1) z—2720, if z#z  and |z—2z]=0 if z=2z"
i) |z-z'=]z"-{

1ii) |Z—Z'|S|Z—W|+|W—Z'| 2,z ,we C

Thus, C 1s a metric space with Euclidean metric (distance)
defined by d(z1,25)=| 21— 22|, 2. 22€C

1) Let zye C and €>0, then the set B(zy,€)={ze C:| z—z |<g} is

called an open disk or open ball with centre at z, and radius € (This

is also called the €-nbd of z; or nbd z;).
Geometrically, B(zg,€) is an open disk, consisting of all points at a

distance less than € from the point z.
YA
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2) A set of the form, B(zg.€)|{z}={z€ C:0<|z—2z|<¢} is called

the deleted neighbourhood of z or punctured disk.

3) The set of the form

0B(zg,r)={ze C:| z—zy|=r} is the circle

with centre at zy and radius r and is called the boundary of circle.

4) Let GeC, A set of

G is said to be open in C if for every

2p€G, 3 r>0,s.t B(zo,r)c G

-
——
~ -
......
-~ -~
- -
Cmmm

T

-’
-
--------------------

Fig 2.3

e.g. 1) Interior of circle is an open set

i1) The entire plane C

1S an open set

ii1) Half planes: Re z>0,Re z<0,Im z>0,Im z <0 are open set.

Thoerem :.Any open disk is

Fig 2.4

an open set

Proof : Let zpeC, r>0 and B(zg,r)={ze C:|z—z5|<r} be an

open disk.
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Let ae B(zg.r)=|a—z|<r (i)
If |z—d|<d then
|z-z0|=|z—a+a—z|<|z—a|+|a—z]
<d+r-9 (From (1))
<r
|Z—Z0 |<r
i.e. ZE€E B(a,8)2>z€ B(Z(),’”)
= B(a,ﬁ)CB(ZO,T)

= Any open disk is an open set

5) The complement of a set S < C is denoted by S¢, and defined by
§¢={zeC:z¢ S}

6) A set F c C is said to be closed if its complement i.e. F° is open.
OR
A set Fis said to be closed if it contains all its limit points.

7) A set of the form B(zy,r)={ze C:|z—z|<r} is called the
closed disk or closed ball.
e.g.1) C is closed set

1) & is closed set

iil) E={ze C:Imz=4}

1v) S:{Ze C:| z|£2}

v) S={zeC:|z-2|<|z|}
8) Interior point : Let S < C, then the point ze S is said to be an
interior point of set Sif 3 r>0 s.t. B(z,r)cS.

9) The point Ce S is said to be exterior point of the set S if 3 a
B(c, r) which does not contain any point of set S.

10) A point pe S is said to be a boundary point of set § if it is a
neither a interior point nor an exterior point.

( % C-plane >X

Fig 2.5
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11) The set of all interior point of the set S is said to be interior of S.
12) A set G c C is said to be open if each point of G is an interior
point of G.

13) Closure set : The closure of the set S ¢ C, denoted by CI(S)

CI(S)=SUdS (where &S is boundary element is always closed.)
14) A subset S of C is said to be Dense if CI(S)=C
e.g.1) Q isdensein R.
i) {x+iy /xeQ, ye Q} isdensein C.
15)  Anopen set G is said to be connected if for any two points z;

and z, can be joined by a curve that lies entirely in G.

OR
A metric space (X,d) is said to be connected if the only

subset of X which are both open and closed are X and
(D =the empty set) .

Fig 2.6
e.g. 1) Open disk is a connected set.
2) The unit disk B(0,1)={ze C||z|<1} is a connected set.

3) The annulus B={ze C:1<|z|<2} is connected Fig. 2.6

4) The set S ={ze C:|z-2|<1} or |z+2|<!I is not connected

Fig. 2.6(b).
A YA
< :\" : > X <'\.2,‘=-101“23>
U =
C—plane C-plane
J v
fig (a) fie
|Z—2|<1 |z+2|<l
Fig 2.7
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16) A domain is an open connected set.

17) A domain together with some none or all of its boundary
point is referred to as a region.

18) Bounded Set : A set is said to be bounded if 3 R>0 s.t.
S<B(0,R)={ze C:|z|<R}.

19) A set which is closed as well as bounded is called compact
set.

20) A set that cannot be enclosed by any closed disk is called
unbounded set.

21) Let z71eC and z,e€ C. These we denote the line segment

from 4] to V) by [Zl,Zz]:{(l—t)Zl‘F[ZzZOSISl}

YA

N
v
o

Fig 2.8

Function, limits and continuity :

Definition : Let A and B be two non-empty subset of complex
numbers. A function from A to B is a rule, f, which associates to
each zg=xp+iype A aunique wy =uy+ivye B

The number wy is the value of f at zy and we write
f(z9)=wp. If z varies in A then f(z)=w varies in B. We say that
f1s a complex valued function of a complex variable.
Here w is the dependent and z is the independent variable.
Let f:A—>B be a function and ScA
then f(S)={f(z)/,ze S} where f(S) is called the image of S under
‘f” and the set R={f(z)/z€ A} is called range of ‘f’.

Single and Multiple Valued Function :

Let ze C—{0}, then we write the polar form of a complex number z

is z=re'® where r=|z| and 6e[-m, 7] i.e. z=2(r,8)=re®.
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0
ar >X
v
Fig 2.9
If we increase 0 to 6+2n
2(r.0+2m)=re' (B+27) _ 1gi® 21 — 10 z(r.0) returning to

its original value.

Definition : A function f is said to be a single valued if f satisfies
f(@)=f(z(r,0)=f(r,0+2m).

Otherwise, f'is said to be a multiple valued function.

e.g. f(z)=7", neZ isasingle valued function.
Solution : . f(z)=f(z(r, 6)):(rei9)n
f(z(r,0+2m))= [r el(ne+2n)} _ ppl(10+2nm) _ n ind 2inm
= /"¢ { X" =1, ne Z}
~(re®)" = 1 (2(r.8))

Note : If n¢ Z then f(z)=z" is a multiplied valued function.

s e 41 when ne Z

Let f:A— B be a function.

1) If the elements of A are complex numbers and those of B are Real
Numbers then we say that f is a real valued function of complex
variable.

i1) If the elements of A are Real Numbers and those of B are
complex numbers then we say that f'is a complex valued function of
real variable.

Let f:R — R be a function then the graph of fis a subset of RxR

and it is two dimensional object and we can represent it very well on
the two dimensional page. However the graph of the f:C —>C isa
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subset of CxC (RxRxRxR Cartesian product) i.e. a four
dimensional object and we cannot represent it on two dimensional
plane. In this case we consider two plane, one plane is z-plane and
other one is w-plane.

@ N VA
— : 0\)
V4
> X >U
C—plane C—-plane
z—plane W—plane
Fig 2.10

Limit Point :

Let D be a subset of C i.e. D < C then we say that a point z,
is a limit point of D if every neighbourhood of z; contains a point of
D other than zj i.e. (B(zy,r)—{z,}) forany r>0.

Definition : Let f be a complex valued function defined on D and let
zp€ CI(D). We say that a number ¢ is a limit of f(z) as z— z

and we write lim f(z)=".
7-2()

& iff +e>0,38>0 s.t ‘f(z)—€‘<£ whenever ze D and
O<|z—z0|<5.
& f(z)e B((.e) wherever ze D[ B(z.8)—{z} ]

N

v




Note : 1) fmay not be defined at z=z,
2) zy need not be in D.
3)evenif zype D, f(z9)#/
4) In real variable theory, if xje R then x — x, has only two

possible ways, either from left or from right. In complex case,
Z — 7, in any manner in the Complex Plane.

Theorem : Let f be a complex valued function defined on D and let
z0€ CL(D). If lim f(z) exists, then this limit is unique.

7—2()
Proof : Let lim f(z)=/¢;and lim f(z)=/,
770 770
T.P.T. él :£2
By definition for a given €>0, 3 8,>0,0,>0

s.t.‘f(z)—£1‘<%, whenever zeDﬂ[B(zO,Sl)—{zo}] and

| f(2)-12 ‘<y,whenever ze DN B(z9.8,)—{z0}]-
Let =min{3,,5,} .

If ze DN{B(z9,8)—{z0}} then

[ =] =0 = F @+ f@= L] [ 4= £ () |+] £ (2) = 12|

e/ 1¢/ _
<A+A—£
" g is arbitrary.
fl = ﬁz

1.e. limit is unique.
Theorem : Let f be a complex valued function defined on D.
suppose, f(z)=u(x,y)+iv(x,y), zo=xg+iyg, wy=ug+ivg and
€ CZ(D).
Then lim =wy iff lim u(x,y)=ug and lim v(x,y)=y.

Z—2() 7—2() 72

Proof : Direct part —

Let lim f(z)=wy, and wy=ug+iv,
=70

By definition, ~ €>0,38>0 s.t ‘f(z)—wo ‘<£ whenever

ze DN[B(z.8)~{z}].
Now,

‘f(z)—wo ‘z‘ u(x,y)+iv(x,y)—(u0+iv0)‘

:‘ I:u(x, y)—u0:|+i|:V(x’ y)_VO:H

39



‘u(x,y)—uo‘ ['.'RezS|Rez|S|z|]

B ‘v(x,y)—vo‘ Isz|Imz|S|z|

If z€ Dﬂ[B(zO,S)—{ZO}] then ‘u(x,y)—uo ‘<8 and

‘ v(x, )= ‘ <€
= lim u(x,y)=uy and lim v(x, y)=y,
=70 770

Conversely, assume that lim u (x,y)=uy& lim v(x,y)=v,
727 720

"+ By definition given € >039;,, >0.

s.t. |u(x,y)—up|<e /2 and |v(x,y)—vy|<e /2 whenever |z—zy|<§,
and |z—zy|<3,.

let §=min{3,,3,}.

- whenever |z —zo| <3,

Consider ‘f(z) -wy = |u(x, V) +iv(x,y)—uy— ivOH

S|u(x, y)— u0| +|v(x, y)—v0| <%+% =€

= lin f(z2)=w,
770

Examples : If f (z):%Z in the open disk B(0,1), prove that

.z
lim—=—.
=12 2
Solution : Given f (z):%Z
.« We must prove that for every €<0, 38>0, s.t. %—é«e
whenever ze B(0,1) and 0<|z—1|<38, f(z)#/
. ] ' i d
if 0<|z-1/<3&, then L =u|z—1|<—
2 2 2

iz

choosing 6 =2¢, we see that <¢ whenever ze B(0, 1) and

0<|z-1|<3.
. iz i
Iim —=—
71 2 2
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2 X
ld bl \s. ’¢'
s A ~aha=
1 0
’ h)
o M
#
Q G
3 i/ \‘ ‘\
r —
; §)
v r o = 2e
Y 4 ]
) v 1 ¢
Y 0 3 g ’
1 $‘ 2 >
D (R4 Re
\ P
N, %
\ 0
., e
N ‘-‘

w — plane

Fig 2.12

Problem : If f (z)—%l in the open disk |z|<1 prove that

i
lim =—.
z—)lf(Z) 2
iz

Solution : Given f(z)= 5
We must prove that for every €>0, for given any €>0 we can find

iz i

<& whenever 0<|z—1|<38.

0>0 s.t.

If 0<|z-1|<e
M<e =|i||z-1]<2e =|z-1|<2e

i|=1

<e, whenever 0<|z—1|<8

Z I

Choosing, §=2¢, we see that

. . Iz i
o o llm —_— =
71 2 2
P
H Z l
| / /2 H
. z ",4:.“26
".‘ 0 s ’.' 1 ,:"
w— plane
z— plane p
Fig 2.13



Problem : Prove that lim = does not exist.
z—0 2

Solution : We know that the function f(z)— ¢ (a unique limit) as

z — z¢ 1n any manner in the C-plane.

Let f(z)=—-
z
Let z — 0, along the real axis.
... y:O’ =X (...Z:X+iy)
. lim f(z)=lim == lim —=1
z—0 z=0 2 z-0 x
Let z — 0, along the imaginary axis.
. x=0, z=iy (" z=x+iy)

. lim f(z)=lim == lim —2~=-1
z—0 z—0 Z z—0 1y

= limit is not unique along real and imaginary axis.

. Z .
lim = does not exist.
z—0 2

Problem : If f(z)= 2, prove that lim f(z)= 2.

270
Solution : Let e>0given, to find §>0 s.t. ‘zz—z2‘<e whenever
0<|z—2z0/<8
consider ‘Zz —22‘ =|(z+ 29)(z = 7))
|2+ zo||z = 20| < 8|2+ 2|
=8|z — 29 +220| < 8|z~ 20|+ 28|zo| < 8.5+28|zy| =

j

-+ Choose 6>0 s.t. min { ———
1422

= ‘zz —102‘ <e.

= lim f(z)=z0>.
=20
Theorem : Let f and g be defined in the neighbourhood of z, except
possibly at z = z,.
If lim f(z)=(and lim g(z)=m

70 70
Then 1) lim [ f(z)%g(z)]=t%m
=2
2) Zli)nzlo[f(z).g(z)]=€m
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3) lim { f(z) }:i

770

Continuity
Definition : A function f:D — C is said to be continuous at a point

zo€ D, iff lim f(z) exists and lim) f(z)= f(z).

=20 797

OR
Definition :A function f:D — C is said to be continuous at a point

€D iff ~€>0, 3 §>0 s.t. ‘f(z)—f(zo)‘«s whenever ze D

and | z—zg|<e

OR
Definition : A function f is said to be continuous at a point zy€ D

iff the following 3 conditions hold true :
i) fisdefined at z; i.e. f(zq) exists.

i) lim f(z) exists
=70

i) lim f(z)=r(z)

720

OR
Definition : A function f:D — C is continuous or f is continuous

on D if f1is continuous at every point of D.

Example : If f (z)=z2 then prove that f is continuous at a point
z=ieC.

Solution : Given, f(z)=z2%, zy=i

fi)=i*=-1
lim z% = (* =1
7

lim 2% =-1= £ (i)
7>

= fis continuous at a point z=i.

2
z z . :
Example : Let f(z)= prove that fis not continuous at
0 z=1i
apoint z=i.
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Solution : f(i)=0 (given)
lim f(z)=1lim (> =1

lim f(z)=—1=# f (i)

.. fis not continuous at z = z,

2 [ﬁ
Problem :Discuss the continuity of f(z) = % at z=e 4
7" +3z°+1
T T
1— 11—
Solution : z=¢4 = 72=e2=i=7*=-1
. _ ! _1
J@= 573
T

l'i

-. the limit exist z=¢ 4.
i
- f(2) is continuous atz=e 4

Uniformly Continuous : A function f:D—>C is said to be

uniformly continuous on D iff the following conditions holds for
every €>0, 3 J> s.t. for any two points z; and z, in D.

|2 -2 [<8=] f(z)-f(2)]<e

Example : Let f(z)=2z in the open disk B(0,1), prove that f is

uniformly continuous on B(0,1).

Solution : Given, f(z)=2z>.

"« We must prove that for a given €>0, we can find §>0, s.t. for
any two points z; and , in B(0,1) and

ERECIRES f(Zl)—f(Zz)‘Z‘ i$-1 ‘ =la-z||a+zn|

<8( z |+ 2 ]) by triangle inequality
<28 (1] z1|<! and | 2 |<1)
Choosing Szg, we see that ‘ z12 —z% ‘< e whenever |z -z, |<3,

A«7’-21,2263(0,1).

.". fis uniformly continuous on B(0,1).

Definition : Unbounded set :
A set E is said to be unboundedif 3 R>0 s.t.ze E +z€ E.
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Definition : Limit at Infinity

Let f be defined on an unbounded set E. If for each €>0,
AR>0 s.t. | f(z)-¢|<e whenever ze E and | z|>R then we say

that f(z) —> ¢ as z—> oo and we write lim f(z)="/.

z—>o0
e.g. lim 1 =(0for given >0 above R>0st. R >l
70z T €
1 1 1
= ——O|:—<e(|z|>R>—j
z E S

Infinite Limit :
Let f be defined out D except possible at zy€ D. If for every

R>0,38>0 s.t. ‘f(z)‘>R whenever 0<|z—zy|<8 then we say

that f(z) > as z—zy and we write lim f(z)=oo.

220
g i =00
=8 zl—>ml -1
2.4 SUMMARY

1) Let f be a complex valued function defined on D and let

zp€ CI(D). If lim f(z) exists, then this limit is unique.
720

2) Let f and g be defined in the neighbourhood of zje except

possibly at
If lim f(z)=¢and lim g(z)=m
720 720
Then 1) lim | f(z)*g(z)]|=¢%m
7220
2) lim [ f(z).g(z)]|=tm
Z2—2()
3) lim [f(z)}:i
7—2() g(z) m

3) A function f is said to be continuous at a point zye D iff the
following 3 conditions holds
i) fisdefined at z, i.e. f(zg) exists.

ii) lim f(z) exists
=20

i) lim f(z)=/f(z)

720
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4) A function f:D — C is said to be Uniformly continuous iff the
following conditions holds for every ¢>0, 3 &> s.t. for any two

points z; and z, in D then| z; -z, |<8:>‘ f(zl)—f(zz)‘<£

5) Every convergent sequence is a Cauchy Sequence.

6) C is complete.

2.5 UNIT END EXCERCISES

1) Find the limit of asequence z, =z" for |z[<I.

Solution : Consider |z, —0|= ‘z" —O‘ = , for |z]<1.

n .
- is convergent or not.

2) Check whether the sequence z, = N
n+i

Solution : -z, =—" then a, _(
n+i

1
n+i |_‘(n+l| Jn2+1

n
j |z—2|<5, because
3+4i

n
—0 as n—oo .

3) Which of the following subsets of C are connected, if not
connected then what are it’s components ?

(a) X ={z:|/<1}Ans : X is connected .
(b) X ={z:|¢|<1} U{z:]z-2|<1}

Ans: X is not connected , because X ={z:[z|<1jU{z:|z-2|<1}

1s adisjoint union of nonempty closed subsets ( Components) of
X.

4) Let z,,z be points in C and let d be the metric on C,.
Show that |z,—z|—0 if and only if d(z,,2) >0 asn—eo.
2z=21

@+

(Hint: For z,z€C, d(z,z")= and

2T

2
1

(1+|2[)?

d(z,00) =

5) Let P(z) be a nonconstant polynomial in z. Show that
P(z) > as z—oo.
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6) Suppose f:X —Q is uniformly continuous , show that if
{x,}  is a Cauchy sequence in , then {f(x,)} is a Cauchy

sequence in Q.

7) Show that if f and g are bounded uniformly continuous
functions from X into C then fg is also bounded and uniformly
continuous function from X into C.

(Hint:

()0 = (fOD)|=[f (g ()= F(Mg L))

<[f )= FODlg@[+fDlg(x0) -]

8) Verify the continuity of the following function f of the extended

complex plane Cu{e} at the point a :_73 (2012)
f@=e  ifzzT
4
= 2L g
4z+3 4
% % %k %k %k
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SERIES OF COMPLEX NUMBERS

Unit Structure

3.0. Objectives

3.1. Introduction

3.2. Convergence of Series

3.3. Tests for determining the Convergence of Power Series
3.4. Summary

3.5. Unit End Exercises

3.0 OBJECTIVES

This unit shall make you construct a series of
complex numbers by understanding the definition of a series of
real’s . Basically, we are going to define a power series of the

form Y ,a,z". We shall check for the conditions , under

which the given power series is convergent or not. Hence, we
shall employ certain tests in order to determine the
convergence of the given power series.

3.1 INTRODUCTION

An infinite series of real’s is the expression of the form
Yeo1a;, where a,is areal number for all k>1. Similarly we

construct an infinite series of complex numbers as Y, z,,
where z,s are complex numbers for all n>1. For example

by iiis an infinite series of complex numbers. To check
whether the sum exists or not, in other words whether a given
series of complex numbers is convergent or not, we employ
certain tests for convergence and we shall convert the given
problem of checking convergence of the series of complex
numbers to checking convergence of the series of real

numbers. For example, s i* is a convergent series of real
A PR
numbers, because | i |_ 1 and we know that yo 1
K2 +i| k41 VE*+1
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converges. Let us start with defining a series of  complex
numbers.

3.2 COVERGENCE OF SERIES

Definition: Let {z,} be a sequence of complex numbers, Form a
new sequence defined by S; =z, S)=z1+2p,... S, =2+ +...2,,
where S, is called the sequence of n™ partial sums of sequence {z,}.

The sequence {S,} is symbolized by zj+zy+..=) z, called an
n=1

Infinite series.

If lim S, =S exists then the series is said to be convergent and S is

n—»oo
its sumie. ) z,=lim ) z = lim S, =S

A series is said to be divergent if it is not convergent sequence. (The
necessary condition for the convergence of the series.)

Theorem : If the series ) z, is convergent then lim z,=0.

n=l1 n—oo

Proof : Given series is ) z,.
n=1
Let S, =71+ +...+2,1+2,  «oeveeennn (1)
be the n"” partial sum of series.
Given that the series is convergent

Let S be the sum i zZ,

n=1
So lim S, =S
n—oo
."« from equation (1)
Zp =Sy =Sy (Catm etz =S,0)

Taking limit on both sides,
<o lim z,=lim S, — lim S, =5-S
n—oo n—oo n—oo

So lim z, =0
n—oo

Consider the infinite series Y z, =zg+z +...
n=0
If R,=2z,+z,41+2,42+.. then R, is called remainder of infinite

series. If S is sum of infinite series then S=S,+R, or R, =S-5,,.
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Theorem : A series Z z, of complex terms is convergent iff for
n=0

every €>0, 3 an integer N s.1. ‘zn+zn+1+...+zn+p‘<e ~»n2N

and p>0. (Cauchy criteria for convergence of series)

Proof : Suppose Z z,, 1s convergent
n=0
Let S, =z9+2 +2,+...+ 2,1 be the n™ partial sum of series and let §

be a sum of series.

S lim S, =S
n—oo
~ €>0, 3Janinteger Ns.t. |S,-S|<e (1) ~n=N

Let R, =z, + 2,41 + 2,42 +... be the remainder of an infinite series.
SeS§=S,+R,0or R,=5-85,

" From equation (1)

|S,-S|=|5-S,|=|R,|<e ~n=N

L.e. | 2, +2pq1 +2ngn T | <8 ~ n>=N

zn+zn+1+zn+2+...+zn+p‘<e ~+n>2N and p>0

Converse :
Given €> 0, there is an integer N s.t.

‘Zn+2n+1+2n+2 +ot Zyyp ‘<e ...................... (2)

~»n>N and ~ p>0

We know that, >z, =zp+2z +..+2, +..
n=0
If S is its sum then we write S =S, —R,

Lo R,=S,-S =|R,|<|S,-S]

n

But|Rn|=‘zn+zn+1+...+zn+p‘<8 given from (2)
~»n2N and ~+ p>0
= |5,-S|<e ~»n=N
= lim S, =S
n—oco

(o)
>z, is convergent.

n=1
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Definition : Let z, € C. For every n>0 the series Z z, converges
n=1

n

<g¢ VnzN.

to zq iff for every € >0, 3 aninteger N s.t.| 2 z; — 2

k=1

Definition : A series Y z, converges absolutely if |zn| converges.
n=l

n=l1

Proposition : If the series )| z, converges absolutely then > z,
converges.

(o)

Proof : Let € >0, consider an infinite series z Zp -

n=1

Let S, =z +z, +...+z, be the partial sum of series given that z Z,
n=1

convergent absolutely.

For a given € >0, 3 an integer N s.t.

> | |<e ~ n2N (1)
k=n+1

If n>m>N then

n

DI

k=m+1

n

< > |l

k=n+1

Sp=Sn |:| I+l Tt ipe2 Tt 2y | =

(o]

< > |al<e  from(1)
k=n+1
=1{S,,} is a Cauchy sequence.

={S,} is a convergent Sequence. (*." by Cauchy criteria)

Se 3 Z()E(C s.t. lim S, =2
n—sco

Thus, » z, is convergent.
n=1
Examples :

1) Prove that Z =1tz o= 11

if |z|<1
n=0 -z

Solution : Given > z, =1+z+z" +..

n=0

2 1

Let S, =l+z+z"+..+2"

28, =z+z2+20+...+7" (multiplied by z, z#0)
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8, -z8,=1-7" = §,(1-z)=1-z = S§,=
(z#D
1

TPT. Sy=o— e (1)

ie. T.P.T. lim 7" =0

n—oo

n
<

Given any €>0, we must find integer N s.t. <e¢ ~»n2>N [If

z=0, then the result is true].
Let z#0

=] z|" <e

= nlog| z|<10g£

loge . .
= % { " log|z| is negative when |z|<1}
log| Z |
. loge
Choosing Nzi, we see that ‘ 7' |<e »n>N
10g| Z
lim 7" =0
n—co
From equation (1)
n
lim §, = lim - 1 ('.'ZnZO as n—)oo)
n—oo n—oo| 1=z -z
Hence, >’ z"=11 when | z|<1
-z

n=0

Note : 1) Geometric series (G.S.) Y| " is cgt when |z|<1 and
n=0
divergent when | F4 | >1.

Uniformly converges for series :
For each ne N, let f,(z) be a complex function of complex

variable.The series ¥ f,(z) converges to f(z) point wise for each
ze D iff X f,(z) = f(z) and for each ze D [This means that for each
z€ D and for each € >0, 3 an integer N (depends on z) and €], s.t.
|S,(2)-f(z)|<e  ~n2N.

Definition : The series 2. f,(z) is said to be uniformly convergent

on D to f{z) if for every €>0, 3 an integer N (depends only on ¢€)
s.t.|S,(z)-f(z)|<e~ ze D, and ~ n>N. A power series about
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20 1s an infinite series of the

form > a, (z-zy)" —ap+(z-20)a+(z2-20) @ + croern , where
n=0

constants g, and z; are called complex numbers and z is a complex
variable.
Note : If z5 =0 then Z a, 7" =ag+a;+...

n=0
This is power series about origin (i.e. z=0)

e.g. Geometric Series (G.S.) > z"=1+z+ 2.
n=0

i) If |z|<1 then lim S, =

n—»oo 1-z
(] n 1
> =l

n=0 1=z

and the G.S. converges with

ii)  If|z|>1then lim S, =c and the G.S. diverges.

n—oo

3.3 TESTS FOR DETERMINING THE CONVERGENCE
OF A POWER SERIES

Weierstrass M-test :
Statement : Let f,: D c C — C be a complex function defined on D

s.t. ‘fn(z)‘<Mn ~zeD and neN. If > M, is convergent
1

(o]

series of positive real numbers then series z f, 1s uniformly
1

convergent.

Proof : Given | f, (z)|<M, +z€ Dand ne N (1)
Let €>0

Given that z M, is convergent
1

~. Janinteger N st. > M,<e ~n=N (2)
k=n+l1

Given series i fm(z)
1
Let S, (z)=fi(z)+ f2(z)+...+ f,,(z) if n>m>=N, then
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‘Sn(Z “W‘ﬁn+1 +\ﬁn+2( )+”"4_fﬁ(z)‘
RACIERELIO]

k=m+1 k=m+1

n
< > M from (1)
k=m+1

n

> Mp<e from (2)
k=m+1

‘Sn(z)—Sm(z)‘<£, ~ n,m=>2N

= {S,(z)} is a Cauchy sequence.
=  Sequence {S,(z)} is a convergent sequence

3 weC s.t. lim S,(z)=w

n—so0
Define w= f(z) this gives a function f:D — C for each ze D and

foreach n2N |5, (z)-f(z)|=| f(2)-5,(2)]-

| S (2)=f(2)|=] £ (2)=Su(2)] =| S (2)+ fura (2) 4|
> ()| X | (@)
k=n+1 k=n+1
< i M) <e from (1) and (2)
k=n+1
Hence | S, (z)-f(z)|<e ~ ze D where n2N

=  Series Z f, 1s uniformly convergent on D.

Examples : 1) Prove that the series Z is uniformly

m

convergent on aset D={ze C:| z|<1}.

I’l

s

o0
Solution : Given series Z

n

Letfn(z):w

: 1 N

‘fn(z)‘_‘nm‘—m {| |—1}
<=M, (N )




1 . . .
ZMHZZT/ is a p-series and it is convergent

e

By Weierstrass M-test,

The given series Z is uniformly convergent.

n=1 I’L\/I’L+

oo

2)  Givenseries ) z"(1-z)

n=1
i) Prove that the series converges for | z|<1 and find its

sum.
i1) Prove that the series converges uniformly to the sum z for

| Z | < % .
111) Does the series converges uniformly for | K4 | <17 Explain.

Solution :

i) The given series is Y z" (1-2)

n=l1

i (1-2)=z(1-2)+z2(1-2)+ 2> (1-2)+

n=1
:Z—ZZ+22—Z3+Z3—Z4+---+Zn—2n+l

= 77" =z(1—z")

We must prove that given any €>0, we can find an integer N s.t.

‘Sn(z)—z‘<£ ~» n2N
. ‘Sn(z)—z‘=‘ Z—Z"+1—z‘<8:>‘—zn+l ‘<e =]z <e
= (n+1)log| z|<loge
=>n+l1> loge z#0 :>n>10i8—1=N
10g|Z log|z|
Choosing, N =—28& _; (1)
log|z|
1S, —Z|<e ~ n=N
lim S, = lim z—z"" =
n—oo n—>o0

Hence, the series converges for | z|<1 and z s its sum.
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1) Since from (i) the series converges to some z for |z |<1 and

. 1
hence it converges for | z| < 3

loge

N = -1 from (1)
log| z |
1 log e . loge
If |z|=—,then N = 1 s the largest value of —=——1.
2 log ~ 10g| z|
| S, —z|<& »n=2N= g8} where N depends only on

log %

. . . 1
The given series converges uniformly to sum z for | b4 | < 5

€ and not on z.

i)  If|z|<1
N = loge —1l=o from (1)
log 1

Hence, the series does not converges uniformly for | Z | <l.

Ratio Test for series (2012)
Statement: Let Y z;, be an infinite series for non-zero complex term

S.1.
|Zn|:|ZN|-|ZN+1|.|ZN+2| ------- K |<|ZN|7‘n_N
Iy || 2N+ Zn—l‘ = L then
Z |ZN|;\,p Se 2y, %Ozzn
p=1

1) If L<1, the series converges absolutely.
1) If L>1, the series diverges.
ui) If L =1, the series may converge or diverge.

Proof: Suppose L<I. Then for 4 with L< A1 <1, there exist an integer

N s.t.
il g yns N so that,
Zn
|zn|:|ZN|.|ZN“|.|ZN+2| ------- 2 |<|ZN|7‘H_N
IN | |2N+1 Zn—l‘

‘ZNJ,I,‘ <|zy|AP forp=1.
Since ¥ |zy|APis a convergent (geometric series), ¥ |zy| is
p=1 n>1

covergent by comparision test. This proves (1)
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Zn+l

Zn

If L>1, then there an integer N s.t. L>k>1 and > k for all

n=N

- for all n >N|zn|=|zN|.|ZN+l|.|ZN+2| ....... | o |

AN | [2N+ Zn—l‘
Hence, ..z, =5 0as n —> o and so Y z, diverges. Hence (ii).

>|ZN|kn_N —>

Example:

Zl’l

n!

1) Prove that the power series Z converges for all values of z.

n=0

oo n

. . . . Z
Solution : Given power series is Y, -
n=l n:

1

Here ! =
, a4, =——=a, | =————
o ntl (n+1)!

1
lim %241 = fim @ ~ lim |—{=0<1
n—e| a, n—oo %' n—o|n+1

Therefore the the series is convergent.

Comparison Test :
If the series z | v, | converges and | u,, |S| v, | then z u,

converges absolutely. Also, z | u, | converges.

Abels’ theorem :

Statement : If the power series Zanz” converges to particular

value zo#0 of z then it converges absolutely ~ z s.t. |z|<| z0|.

Proof : Given that the power series Zanz" us converges for a
particular value zp #0of z.
<+ D.a, z§ converges.

. . n _
e« lim a, z5 =0
n—oo

= sequence {an 2 } is bounded.

."+ 3 positive number M s.t. anzo”‘SM
o, s
B
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n

<M|—
20

n

i1s a geometric series and convergent for

n
or‘anz

<1

20

VMDY

ie. |z|<|z|

£
20

- By comparison test z a, z”‘ converges absolutely for

|Z|<|Zo|-

Cauchy-Hadaward Theorem :

(o]
Statement: For a given power series Z a, 7" define a number R,
n=0

0<R<c, by %:lim.sup|an |% then

i) If | Z | < R, then the series converges absolutely

ii) If O<r<R, then the series converges uniformly on
{ze (C:|z|£r}

iii) If |z|>R, then the series diverges [Here R is radius of

converges of power series.] (2008)
1
Proof : Given, % =limsup| a,, |4 (1)

[Note : A number L is said to be a limit superior of the sequence
{u,} if infinitely many terms of the sequence u, are greater than

L—¢, while finite number of terms greater than L+¢ where €>0.]

i) Let|z|<R,then 3 r>0s.t.|z|<r<R

1 1

J— > —_

r R

By definition of the lim sup and from equation (1)

1
= |ay|<—
K
| a, 7, |< — ~n2N
r

n
Z(Mj is a G.S. and it is convergent for M<1 1.e.
r

r

|z|<r.
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=

By comparison test,
Y a,z" converges for | z|<R.

Z a, 7' converges absolutely for | Z | <R.
n=0

Let 0<r <R choosing r’,3 0<r<r’<R.
By using part (1), we have

an1la <L wnzw
r

@

1
(r')"

)

n
a,z

n
Z(L,j is a G.S. of positive real numbers and it convergent

r

for r<r’.

(o)

By Weierstrass M-test, the power series Z a, 7" converges
n=0
uniformly on {ze C:| z|<r}.

Let|z|>R,then 3 r>05|2|>r>R
1 1

—_—<—

r R

By definition lim sup and from equation (1)
1
la et N
r
1

|an|> n
n
r
‘anz" >| | > =1
n
r r
anzn >1 ~n2>2N
n L J
a,z’ =50 as n—oe{ " Y z, converges  then

lim z,=0, z, >0 as n—oo}

n—oo

=

(o]

Power series Y. a, Z" is divergent for | z|>R.
n=0
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Definition : The radius of convergence R of the power series

(o]
D a,7" is defined as R = sup {r’ the series converges
n=0

+zsatisfying |z|<r}.

1) If R=0, then power series z a, 7" cgsonly for z=0.
11) If R=oo, then the power series converges , for all values of z.
iii) If 0<R <o, the power series converges for all z, f,(z)<R and

diverges vz, f,(z)>R.

The power series may converge or diverge on the circle
| Z | =R. The circle | Z | =R is then called the circle of convergence.

Note : If Z a, 7" is power series with radius of converges R then

n=0
. a ) e
R= lim 1 ,provided this limit exist.
n—eo| Ayt

Theorem : If a, #0 for all but finitely many values of n then the

radius of convergence R of z a, 7" is related by following,

n=0
. . .la 1 . a
liminf | 2+ | <— <limsup | =24 |
an al’l
. . . an+1 .
In particular, if lim |- exists, then
n—oo a,
. |a . 1
— = lim | L =limsup| a, |/1. (2007,2008,)
n—oo| a,

(o]
Proof : Given R is radius of convergence of the series Y’ a, z".

n=0
: An+1 B n+1
Suppose, limsup| ———|=L and liminf | —/—— =/
al’l al’l
"« By the definition of limit sup, 3 an N s.t.
a
Sl o Lte ~n2N
a}’l
. a a a
R SN e p e, | —NE2 N cpte, | —2 < L+e
an aAN+1 p-1
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Multiplication of these inequalities gives

a1 || aN+2 G l<(L+e)™™N
ay aN+1 n-1
Sn <(L+8)”_N
ay
| a, |<|ay|(L+e)""
1
| a, |% <[| ay |(L+e)"_N}A
1
ol <[ ay liz e ™) "(ve)
€ is arbitary as n — o, we get
- b
lim sup|an| n<L (1)

n—sco
(“limgp =1 n—a if p>0)
Similarly, by the definition of lim in f
¢ < liminf | a, |% (2)
From equation (1) and (2), we get

6S1iminf| a, |% Slimsup| a, |% <L

1 «or 1 1
= ES?SL {.hmsup|an |4:?}
If lim | -Zotl exists then /=L

n—oo a,
%:liminﬂ a, |% =lim sup| a, |%
Lo fim | Gt |2 i sup| a,, |%

n—oo a, n—oo
Note : R = lim | -2

n—eo| Ayt

Theorem: Let ) a,z" be a power and  na,z"" be the power series

obtained by differentiating Zanz” term by term. Then the derived

series has same radius of convergence as the original series.

Proof: Suppose for R and R’ be the radii of the convergenve of the

series » a,z" and Y na,z"" respectively.

Then we have,
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1 1 — ot
nand thmn" a,|n

L _Timlg,
R

1
In order the desired result we have to show that limn” =1

n—oo

1
Suppose n" =1+h. Then we have

n=(1+h)'=1+nh+ @hz oo, n" >%n(n—1)h2 1.e.

n—1
1

Thus :1n1+i%:i§ so that limn" =1.

n—oo

Hence R=R’

Proposition : Let f(z)= > a, 2" have radius of convergence R>0

n=0

then for each K 21, the series

(o)

> n(n-1)(n=2)...(n—K +1)a, "% has radius of convergence R

n=

(2009)

Proof : Let R be a radius of convergence of the power series

n=0
> !
Let R’ be a radius at cgs. of a power series Z S
= (n—K)!
T.P.T. R=F
Y
| n
_ = lim sup| ———— "
(n—k)!
]
n! A y
= lim sup o1 .limsup| a, | n
Y
— =lim sup _n l ...(1)
(n—k)! R

{ lim sup| a, |% = %?}
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Now, lim sup|a, |% — 1lim | Zn+l

n—o0 n—oo| a,
1
. n! A . (n+1)! (n—k)!
lim sup | ———— = lim X
(n—k)! n—oeo| (n+1-k) n!

| ) (n—)!
Cnoe| (n+1=k) T (nA) A
1+1
= lim —‘z lim 1 Ak
n—o| n+l—k n—>oc0 1+A_4

Substituting in equation (1), we get
1 1
_=].—
R R

n
<

Example: 1) Prove that the power series Z converges for all
n=0

n!

values of z.

Zl’l

n!

Solution : Given power series is Z

1
Here, a, = =a,, =

I

R = lim 1= lim #

n—oo| Apyl | n—se %n+1)!
! v
= lim (n+1) = lim M = lim |n+1|=oo
n—o0 n! n—oo }’ﬁ n—oo
R=0c

© 7
> Z—' converges for all values of z.
0 n:

2) Prove that the power series Z n!z" converges only for z=0.
0

Solution : Given the power series Z n'z"
0
=n! = a,4=(n+1)!

ap
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!
R= lim m_ 1= lim "
n—oo| 4y n—oo (l’l+1)!
{
= lim }/ = lim ! ‘=L=0
n—eo| (n+1)pl | noee| n+1 | oo
R=0

z n'z" converges only for z=0.
0

Z(n+2) o

3) Find the radius of convergence of series
(3n+5)

Z(n+2) "

Solution : The given series is =——~ 7" .
8 (3n+5)

0 = n+2 BN (n+1)+2 n+3
" 3n+s " [B(n+1)+5]  3n+8

(n+2) (n+3)
/(3n+8)

(1+2) (nrg) || al1+2)n(3+8)

(3n+5) (n+3) e n(3+%)n(1+%)

o (1+2)(3+8)

nte 2 n(3+3)(143)

_(1+20)3+8,) _1+0)3+0) 3 -

(3+3.)(1+3,) (3+0)(1+0) 3 )

ay

= lim

R= lim
n—oo (3n+5)

n—oo

Ayl

= lim
n—oo

4) Find the radius of convergence of the power series Z(?n +;)z" .
n+
Solution : The given series is Z(2n+1)z”
3n+5
_ 2n+1 2(n+1)+1 _ 2n+3

a, =——=a,,1 = =
" 3n4s " T 3(n+1)+5 3n+8

(2n+1) (3n+8)
Ay (3n+5)  (2n+3)

| )
)

ay

R = lim = lim

n—>co
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)B4 ey
(3+%)(2+%0) (3+0)(2+0) B

5) Find the radius of convergence of the series ) (c+id )" 2" where
c,de R.

Solution : The given series »_(c+id)"z"

a, =(c+id)" = a,,, :(c+ial)nJrl

R fim ||| {c*id) 1
n—eo| dpy] (c+id)""
= lim (c+id) = lim _ ‘
now| (c4id)" (c+id) | n—oel| ctid
By Rationalizing
o Je—id| 1

_ngrolo|cz+d2|_\/cz+d2

6) Find the radius of convergence of the power series Z nl 7.
47 +1

Solution : The given power series is z nl Z"
47 +1

n
7) Find the radius of convergence of the series Z (1 +lj 4

n

. : o ', 1.2
Solution : The given series is Z 1+—| Z". Let a,=(1+-)"

n n
1

1 1 A L
—=Ilim sup| a |A =lim sup (1+—j = lim sup (1+—j
R n n

ll’l
=lim |1+—| = R=1
,Hw( ) e A
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8) Find the domain of region of convergence of the power series

 1.3.5....(2n-1 -z Y
Z (2n-1) (1 Z] and show the domain or region

n=l1 n! Z
graphically.
= 1.3.5....(2n—-1 -z
Solution : The given power series is Z '( n-1) (1 Z] .
n=l1 n: z
Put 1=z =&, we get
z
o (2n-1
1.3.5....(2n-1
Now, q, = ( " )
n!
_1.3.5.. ~(2n-1)(2n+1)
= (n+1)!
1.3.5...(2n-1)
* R=lim |—2—|= lim nl
n—oo| Q41 n—e| 1.3.5...(2n-1)(2n+1)
(n+1)!
~ 1.3.5....(2n—1) (n+1)!
- 1.3.5...(2n=1)(2n+1) n!
, (n+1)! (n+1) 1
= lim |———|=
n—seo| (2n+1)n! | noeo| (2n+1 /
n+l . "{(1"'%)
L 2| A2+ 1
" (2+))
1+ 1+ 1
= lim / Ko
n—o0 2+/ 2+%o
R=1
2

. . 1
Domain of convergence of power series | & | < >

ey = -zl g <]
2 2

i.e. ‘
Z

Taking square on both sides.

1=z <52

66



(1_Z)(1_z)<%zz folef =22
4(1—E—z+zz)< ZZ
=  4-d7-47+477<77=  4—4d7-47+377<0

= i (242) =<0
3 3

Put z=x+iy 3Z:x+iy
= x2+y2——+%<0
= x2——x+%+y2+%—£ 0

Fig 3.1
Given series converges inside the circle.
9) Find the domain of convergence of the power series
oL 3+4i

n=

olution : The given power series is
o [ . n %) . . n
5 z_—l} =Z[M} (2 =-1)
aooL 34 a—oL 3t4i
o0 . n
-5 (55 ) iy
—\ 3+4i
n=0

l. n
a =
" (3+4ij
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%:lim sup| ay, |% = lim sup

Ja

= lim sup

3+4i

]

:‘ 3+4i

. n
l
(3+4i}
T 3+4i]

Z=x+iy:>|z|=\/x2+y2

i=0+iy=|i|=v0+1 =1 =1 and
|3+4i|=V37+4% =\9+16 =25 =5

L]

R |3+4i] 5

(0,1

RN

Fig 3.2

. Domain of convergence of power series is | Z+i | <5

. Centre =(0,1) , Radius =5
. The given series converge inside the circle.

Find the radius of converges of the series »_ (3n+2)(z-2)".

10)
Solution : The given series is Y (3n+2)(z-2)".
Put (z-2)=¢&
= >.(3n+2)g"
a,=3n+2 =a,,=3(n+1)+2=3n+5
n(3+2
Now, R= lim |9 |= fim | 2%*2 ‘: lim M =1
n—oo| 4y n—oeo| 3n+5 n—oo n(3+%)
-"» Domain of convergence of power series is |z - 2| <5
1.e a circle with C=(2,0) andr =5
11) Find the region of convergence of power series
5 (z+2)""
n=1 (n+1)3 4"
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Solution : The given series is Z—3n
n=1 (n+1)° 4
1 1

Uy =—""73 — =0y =

(n+1)° 4"

| y .
Now,— =limsup| a,, |/n =lim sup 3
R (n+1)> 4/

. 1 1
=limsup| ——— | =—

(n+1)%4 4

The region of convergence of the series is | z+2 | <R

ie. |z+2|<4 = |z+2|2<16
= |z+2|[z+2<16 (‘.'|z|2=z.2)

= (2z+2z+27+4)<16 = zz+2(z+2)+4<16

Put z=x+iy = z=x—iy

= 24y 42x.2-12<0 ('.'z.2=x2+y2 and z+2=2x)
=  x*+y?+4x-12<0 = xXP+dx+4+y7-12-4<0
= (x+2)%+y?-16<0 = (x+2)7+y%<16

c=(-2,00 r=4
ANY

4
(-2,0)
< _-2 _:1 0 / > X

v
Fig 3.3
. The given series converges inside the circle.

(-1)°

(n))?*

(12) Find the radius of convergence of (i)} (z/12)*" (2009)

oo 2j n
(i) ¥ —= ’ (2009) (i) T n"z"  (2008) (iv)¥ - (2008)
=2 Jj(j=D n
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(13) Find the power series for the function f(z) _1 about the point
Z

z=2 and find its radius of convergence. (2007)

14) Check for the convergence of the series i nz" .
n=0

Solution : Here after comparison with  a,z",

n=0
wa,=n V nz2l.
1
lim,_,., sup|a,|n =lim,_,,n" =1 - L=1.
— R=1-1. .. The series y==0""" converges for |z/<1 and
L

diverges for |z|>1.

For |z|:1,nz" =n—o ,as n—>0w.

Yo onz" diverges  for |z|=1.

15) Find the radius of convergence of the following series .

(1) Z—(n) Z— (1i1) Z— (iv) Z z

n=l N n=i 1 n=1 n!
1 1
Solution : (i) " a,=— = L=lim,_,,sup|a,|n =1.
n

g R=%:1. The radius of convergence of the power series

n

w1~ 1s equal to 1.
n
(iv) 7 oa,=1i1f " n=k?* for some integer k = 0 otherwise.
1
Consider “." L=lim,_,,, sup|a,|» =sup{1,0} =1.
1

g R=Z:1.The radius of convergence of the power series

2
> oz"  is equal to 1.
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3.5 SUMMARY

1) If the series Z z, 1s convergent then lim z, =0.

n=1 n—oo

2) A series Z z, of complex terms is convergent iff for every
n=0

€>0, 3 an integer N s.t. |z, +Zz, . +..+ 2,4, |<€ ~» n2N and

p20. (Cauchy criteria of convergence of series)

3) The series Y f, 1is said to be uniformly converges on D to f if
for every €>0, 3 an integer N (depends only on ¢€) s.t.
‘S,,(z)—f(z)‘<s ~ zeD, and %+ n>=N.

4) Let m:DcC—C be a complex function defined on D s.t.

‘fn(z)‘<Mn ~ zeD and ne N. 1If Z M, 1is convergent series
1

of positive Real numbers then series Z f, 1s uniformly convergent.
1

5) Let ) u, be an infinite series for non-zero complex term s.t.

Up+1

up,

lim =L then

n—soo

1) If L<1, the series converges absolutely.
i1) If L>1, the series diverge.
ui) If L=1, the series may converges or diverge.

6) A power series about z; is an infinite series of the form

> a,(z—20)" = ag +(z—2z9)a +(z—z9)*ay +..... Where constants a,
n=0

and z are called complex numbers and z is a complex variable.

7) The radius of convergence R of the power series Y a,z" 1is
n=0

defined as R =sup{r:the series cgs ~ z satisfying | z|<r}.
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3.6 UNIT END EXCERCIES

1) Check for the convergence of the series Y, z".

_n+l
Solution: If |z|<1 then 1+z+...+z”:11Z —>11 as n— oo
-z -z

(<) n 1
-0 ——.
Zn—O 1— z

If |z|>1, then lim,_,|¢|" =c. .. The series ¥ z"diverges.

2) Show that the radius of convergence of the power series
¥,z is equal to 1.

Solution : + Y2, 7"V =_z2 +%z6 —%zlz +..
coa,=01f n#k(k+1)for some integer k
_ 1\
a, D otherwise.
n

1
- L=lim,_,., sup|a,|» =sup{0,1} =1. - R=%=1

. The series has the radius of convergence equal to 1.

-k
. i
3) Find whether 2?217 converges or not.
+1i

1

VEZ +1

Solution :

e
%kzlﬂ%:\/kz_’_l and we know that Y3,
k

. w 1
converges. .. The series ZkZIkz— converges.
+1

4) Check whether Zleﬁ is convergent or not. (Hint : Check
l

whether ZleRe(%+iJiS convergent or not.)

5) Show that f(z)=Y7, kz"is continuous in |z|<1.( Hint :
Here the convergence is uniform . Show that Y% kz* is

convergent in |¢/<1. Let f(z)=kz* which  is  uniformly

continuous for all k>1)
n

6) Show that the series Z;’;OZ—' is convergent everywhere in
n.

the complex plane.
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7) Show that the functions f(z)=cos(z), g(z)=sin(z)are analytic

in the whole complex
plane. (Hint: Show that each of the series

f(Z)—COS(Z)—Z“ ﬂ and (Z)_Sin(Z)_Zm ﬂ
=0 @2l § "= 2n+1)!
have infinite radius of convergence. )
8) Let (a,)be a sequence of positive  real’s and
lim, . %l = . Show that
a}’l
1
lim,_, a*=L.
Z2n+1
9) Find the radius of convergence of the series ., .
(2n+1)
2n+ 30,5
Solution: >, =z+—+—+..+..
(2n+1)! 3151

-.Comparing with Y% a,z", we get
a,=01f n=2,4,6,...
:iifn=3,5,7...
n!
1
~.L=1lim,_,., sup|a,|» =sup{0,0}=0.

2n+1

(o)

.-.Rzézoo. The power series Y., has infinite radius of

(2n+1)
convergence.

10) Find the domain of convergence of the series

w (D"
n=0

(z+D".
n!

Solution: Put 6=7+1.

w (=D" n e (=D "
X T ey =, Tl 6, =
. a . 1
~.L=1lim,_, (’;—:1 =lim,_,, ?|:()

.'.R:%:oo.The given power series converges for all 6.

But 6=z+1.As 0 varies over C, .. z also varies over C.
-.The given power series converges for all complex numbers.
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11) Find the domain of convergence of the power series
Z:,o:o(Z_i)n

(Ans : The series converges for ze C such that |z—i|<1.

1 1
12) Show that n" —1 as n—oo. ( Hint: Put an_logLn”]

forn>1.)

13) If Y a,z" has radius of convergence R, what is the radius of

convergence of
> a, z2" and of Za,% 7t ?

0 ) n—1
14) Prove that the series > (Z+ )

—~——5— converges for [ z+2|<4.
n=1(n+1) 4"

15) Find the radius of convergence of the power series

X n2 n
a 7z, acC.
n=0
16) Find the domain of convergence of the series %z +£Z2 +%z3 F o

17) Find the radii of convergence of the following power series

20

1+

i
18) Show that the ROC for the power series " is 1. Discuss the

convergence of this series of the points on the boundary or the

{ze C/|7 <1}
disc

%k %k % %k %k
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DIFFRENTIABILITY

Unit Structure

4.0. Objectives

4.1. Introduction

4.2 . Differentiability in complex
4.3. Summary

4.4. Unit End Exercises

4.0. OBJECTIVES

After going through this chapter you shall come to know about :

e Defining a polynomial with complex coefficients and in an
indeterminant z, which can take any complex number value.

e An infinite series of the form Y=0q,z" is called a power
series.

We shall investigate for the differentiability of a power series as
a function of acomplex variable z, at the same time we shall
also check for the condition, under which two power series

are one and the same , that is both the power series represent
the same complex valued function.

4.1. INTRODUCTION

(3

Through this Unit , we shall examine the notion of “ a
function of z “, where z is a Complex Number of the form z=x+iy.

A Complex Number z can be viewed as an ordered pair of real
numbers x and y as z=(x,y). The point of view taken in this Unit

18 to understand some functions , which are direct functions of
z=x+iy and not simply functions of the separate parts x and y

Consider for example the function x*-y?+2ixy is a direct

function of x+iy, since x> — y? +2ixy =(x+iy)>.

75



( f (Z)=Z2) but x*+y?—2ixy is not expressible as a polynomial

in variable x+iy. Therefore we are compelled to consider a
special class of functions , given by direct/ analytic expressions in
x+iy. We shall name such direct functions as the analytic
functions . Let us start this Unit by defining an ¢ polynomial
p(z) in a Complex variable z.

Definition : A polynomial P(x,y) in a Complex variable z =(x,
y) 1is an expression of the form

P(x,y)= 0g+0y (x+iy)+...+0, (x+iy)" where oy, 0., 0, are

complex constants e.g. (i) P(x,y)= x? - yz +2ixy (ii) x>+ y2 —2ixy 18
not a polynomial in z=x+1iy.

4.2 DIFFERENTIABILITY IN COMPLEX

Differentiation: Let G be an open set in C and f:G — C can be a
function, we say that fis differentiable at a point z, in G if the limit

im L&) (1)

220 22
exists, this limit is denoted by f’(zy) and is called derivative of f

at 20 -
Put z = zy + i, (complex number) then equation (1) becomes

= f'(z)= lim flag+h)=f(z)

770 h

In terms of ‘e€e—9§’ notation limit in equation (1) exists iff
f(2)=f (=)
SR
If f1s differentiable at each point of G then f is differentiable on G.
Notice that if f is differentiable on G, f’(zy) defines a function

f:G—>C.

~+€>0, 3 8>0, > —f(2) |<€ whenever0<| z—z, |<38.

If f” continuous then we say that f'is continuously differentiable. If

f~ is differentiable, then f is twice differentiable continuing, a

different function > each successive derivative is differentiable is
called infinitely differentiable.

Proposition: Iff:G — C is differentiable at zoe G then f is
continuous at z (2012)
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Proof : Given f:G — C is differentiable at zp€ G.

lim f(2)=1(z) = f"(zg) exists.

7220 =20

lim ‘f(z)—f(zo)‘= lim ‘f(z)—f(zo)‘ Jz-2z0|

=70 20 | 1720 |
=1"(z9).0=0

lim f(z)=f(z)

720

- f1s continuous at z.

Theorem : If f and g are differentiable at zye G then
fxg, f.g f/g.(g#0) are also differentiable at zy€ G.

The Increment Theorem: Let f:G— C be a complex valued
function zye G and r>0, 3 B(zg, r)=G. Then f is differentiable
at zo iff I a complex number o and a function
N: B(o;s) = C(o, s,r) such that + he B(o;s),
f(zo+h)=f(z9)+ho+hn(h) and }}iil}lon(h)=0.
Proof : Let fis differentiable at point z.

f(z0+h)-f(2)

(Let) put n(h)= . -0
So that, f(zg+h)=f(z9)+ha+hn(h)
Let f/(z9) =0 (*)

f is differentiable at z;.

f(zo+h)=f(z)

lim n(4)= lim -
he()n( ) h—0 h
=f(z)-a=a-a from (*)
=0
Conversely,
Let  lim n(k)=0 and (%)
h—0

f(zg+h)=f(z9)+ha+hn(h)

f(ZO_hz_f(ZO) =0€+1‘|(h)

Taking lim on both sides.

n—>o0
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tim | L= =S () |y [0+0]

h—0 N | n>0

tim | L2011 (=) | from (%)
h—0] n |

dw
=Y ese
f@=2.a2"
f is differentiable at point z, and f'(zy)=a

Composite Function : Let Ge C and Qe C be open sets. Let
f:G—C and g:Q — C be functions > f(G)c Q. Then for each

Ze G, the association go f defined by [g° f](z) g[ f(z :' is a

function called of composite function.

Note : In general fog#go f

Chain Rule :

Theorem: Let GeC, Qe C be open sets and let f and g be
differentiable on G and Q (respectively). Suppose f(G)cQ then
gof is diﬁ‘erentiable on G and

(8o f)(2)=8[f(z)]-f'(z) ~ zeG

Proof : Fix a point ze G, choose r>0 > B(z,r)cG.
Let 0#he C and | h|<r(z#h)

Given that f'is differentiable on G.
f 1s differentiable at a point Ze G .
By increment theorem,
f(z+h)=f(2)=hf"(z)+hn(h) where n(k) is continuous function

and lim n(k)=0
h—0

Put  K=f(z+h)-f(z), where K =hf"(z)+hn(h)
Also g is differentiable at f(z)e Q

‘. by increment them,

gl f(z+n)]=2(f()+K)=g[ f() ]+ K [ F() ]+ Kw(K)

where y(K) is continuous function and lim y(K)=0.
k—0

e[ z+h1=g[f )+ [0 () +rn(m)][ & [f ()] +w(K)]
=g[ f(2)]+h (2). ¢[ £ () ]+hn(h).g[ f(2)]

+hf'(z) . w(K)+hn(h). y(K)
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=g[fz]+hg’[f )| f/(2)+h8(h)
Where, §(h) )&'[ f(2) ]+ (2)w(K)+n(h)y(K)

T.P.T. lim 5(h) =0.
h—0

W n(h)—>0as h—>0

As h—0, K=f(z+h)-f(z) >0
“y(K)>0as h—>0

Hence, lim 8(h)=0

n—oo
‘. by increment theorem,
(go f) is differentiable at ze G

" Z was arbitrary .

. go f is differentiable on G and
(82f)(2)=¢[f(2)]f(z) ~zeG
Let z=x+iye G and f:G — C be defined by, f(z)=u(z)+iv(z),
where u and v are real valued function

OR
f(xy)=u(xy)+iv(x,y).

Definition : If im ~-XF/)=u(x)
h—0 h

partial derivative of u w.r.t x as the point (x, y) and is denoted by
ou
ox o

exists then it is called

)’) or ”x(x’y)'

Theorem : Let f(z)= ). a,z" have the radius of convergence
n=0

R>0 then

1) The function f is infinitely differentiable on B(0;r) and

FO@) = ¥ nin-1)n=2).(n—k+1)a,z"* for|z|<R and ¥V k>1.
n=k

(n)
2) Ifn>0thena—f '(0)
n!

(o]

Proof 1) For | z| <R, we will write f(z)= ) a,z"=5,(z)+R,(2)
n=0

where S, ( Zaz and R,(z)= > ag ¥
n=0 K=n+1
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Put g(z)=> na,z"" = lim S (z)
n=1

fi—>00
Fix a point z; in B(0; R)

(Choose r>0, 5> | zg|<r<R and | z|<r<R (z#29)
We will prove that f"(z9)=g(z9)

Let 8>0 be arbitary > B(z(:8) < B(0,r)

Let ze B(zj,d) then

f(2)—f(z) —g(zy) = S, (2) +R,(2) =[S, (z0)+ R, (29)] g
=2 =2
Sn(z)_Sn(ZO) Rn(z)_Rn(ZO)

= =8, (20)+ S, (20) +
=2 =2

(Zo)

Taking modulus on both the sides.

.| f(2D)-flz Sp(2) =S (20 ,
LI ) <] S g s ) a0)
=y =y
Z—20
Let €>0, be given
Now. Fn(2)=Ri(z0) _ 1 i aK(zK—z(g{)
2720 2720 g=n+1
1 i _ _ _ _
= 2: aK(z—aﬂ[zK1+zozK 2+m+zz§>2+z§ q
L7720 K=n+1
R —R >
1 (2)=Ru (20) < > |aK|‘zK_1+z0zK_2+...+zzé{_2+z§_l‘
720 K=n+l
< Z |aK|‘rK_1+rK_1+...+rK_l‘ = Z |aK|.KrK_1
K=n+1 K=n+1

o0

"." The derived series Y na, 2" is convergent at z=r.
n=1

.". The power series > |ag |. K 7%~

K=1

converges for r<R.
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"« For the above >0, 3 an integer N >

(o]

> Jag |-k < % ~ n> Nj. (by Cauchy criteria)
K=n+1

Thus, <— s nzN (2)

" lim S, (z9)=g(2)

n—oo

For the above £¢>0, 3 an integer N, s.t.
| Sn(20)-2(20)|< & (3)
Choose N =max{N,,N,}. forn=N

For this n, we can find 6>0 s.t.

Sn(z)_Sn(ZO) Z )
Z—20 0

=S (

€
< 3 “4)

whenever 0<|z—zq|<3.

From equation (1), (2), (3), (4) we get

‘f&%fMﬂ_d%)¢£+i+i
=2 3 3 3
=g whenever 0<|z—2z5<3|

=  fis differentiable at z,€ B(0,R)
. zis arbitary.
fis differentiable on B(0; R)

A repeated application of this argument shows that the heigher

derivatives f’,f",...,f(K)... exists, so that

f(K)(z): > n(n-1)..(n—K+1)a, "% exists for |z|<R and
n=K

~ K2>1.

—  fis infinitely differentiable on B(0; R).
2) Since

i n n K+1 i zn_K

n=K n=K n K)
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- n! K
=K!ak+ - 4a Zn
K=Zn:+1 (n—k) "
Put z=0

o ) (0)=K1ag +0

£%)(0)

a =
k K|

Replace K by n
")

n!

Corollary : If the power series Z a, 7" has radius of convergence
n=0
R>0, then f(z)=Ya,z" is analytic on B(0;R).

Theorem : If G is an open connected set and f:G—C is
differentiable with f’(z)=0 ~ze G, then fis constant.

Proof : Fix a point z5€ G and let wy = f (zp).

Let A={ze G; f(z)=wp}

TPT. A=G.

[i.e. by showing A is both open and closed and A+ O]
T.P.T. A is closed.

Let ze G and {z,} be a sequence in A> lim z, =z
n—oo

f(z,)=wp, foreach ne N

f 1s differentiable on G (given)

f is continuous on G.

F2)=f| 1im 2, |= tm 7 (z) =m0

n—yoo n—oo
= ze A

A contain its limit point.
=  Aisclosed.
Now, T.P.T. A is open.
Fix ae A, since G is open.

3r>0 > B(a;r)cG
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Let ze B(a;r) and set g (t f[tz+ (1-1) ] 0<r<1

g(t)-g(s) _ flr+(1-t)a]+f[S +(1-5) a] S)z+(S—1)a
t—s (1=S)z+(S—t)a (t S)

.| g(t)-g(S) _ f[tz+ (1-1) a] fI:sz+ (1-S5) a:|

g%[T}t]f}?{ (1=S)z+(S-t)a X(z-a)

g's=f'[sz+A-9)a]x(z—a)
g'(5)=0,0<s<1("" f/(2)=0, + ze G)
= g(s)=constant, 0<S<1
= g(1)=constant=g(0)
f(z)=g(1)=constant=g(0) = f(a)=w
= ze A
ze B(a;R)=ze A
= B(a;r)cA
= Aisopenand Az (. ze A)

Hence, by the connectedness of G
A=G

-+ f1is constant on G.

4.3 SUMMARY

1) If f:G—C is differentiable at a point z; in G, then fis
continuous at z;.

2)The Increment Theorem : Let f:G — C be a complex valued
function zpe G and r>0, 3 B(zg, r)cG. Thenf is differentiable
at zg iff 3 a complex number o and a function
N:B(0;s) —> C(0,8,r) > ~ he B(0;S)
f(zg+h)=f(z9)+ho+hn(h) and }}ig})n(h):o.

3) Chain Rule : Let Ge C, Qe C be open sets and let f and g be
differentiable on G and Q (respectively). Suppose f(G)cQ then
gof is differentiable on G and

(82 f)(2)=g[f(z)].f'(z) ~ zeG
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h —
4) If lim u(xth y)-u(x.y)
h—0 h
derivative of u w.r.t x as the point (x,y) and is denoted by

ou

g(x, y) or u,(x,y).

exists then it is called partial

5)Let f(z)= ), a,z" has the radius of convergence R>0 then
n=0
i) The function fis infinitely differentiable on B(0;r) and

FP@) = 3 nn-D(n=2)...n—k +Da,z"* for | z| <R and » K >1.

n=k
£")(0)

n!
6) If G is an open connected set and f:G — C is differentiable with

i) If n>0 then G, =

f’(z)=0 ~ ze G, then fis constant.

4.4. UNIT END EXERCISES

1) Check for the differentiability of the power series

f(2)= z:;;o%.

n
Solution: We know that the series Z;’,"zlz—' converges for all
n.

complex numbers.
f’(z) exist for all zeC and

, _mnzn—l_w Zn—l _°°Zn_
U N TR T e AL

f’(2)=f(z)for all zeC.

2) If the series Y _ya,(z—a)"has the radius of convergence

R>0, then show that f(z)=30pa,(z—a)" is analytic in
B(a;R).
( Hint : Use the fact that f is infinitely differentiable on

B(a;R) and g, :i'f”(a)‘v’n >1.)
n!

% %k 3k %k k
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COMPLEX LOGARITHM

Unit Structure

5.0. Objectives

5.1. Introduction

5.2. Logarithmic function

5.3. Branches of Logarithmic Function
5.4. Properties of Logarithmic Function
5.5 Trigonometric and hyperbolic functions
5.6. Summary

5.7. Unit End Exercises

5.0. OBJECTIVES

We are already familiar with a logarithm function,
defined for positive real x. In the same manner one can define a
complex logarithm Log (z) of a complex number ze C. We shall
study the branches of this complex logarithm function . The
complex logarithm Log (z) posseses some branches, which we
shall try to investigate. We shall also study the properties of a
complex logarithm in detail.

5.1. INTRODUCTION

With the help of order completeness property of, we
proved in our earlier course that if y>0 and n>2 is any

integer, then there is a unique positive number x such that

x"=y. xis called »” root of y, since there is a unique positive
1

number x satisfying this, defining y; is justified. We proved that,
y
for a>land xe R, a*.a” =a™ Vx,ye Rand (ax) =a"v.

f:R—(0,)defined by f(x)=a* is a bijective function and
it’s inverse is called as the logarithm of y to the base a,
denoted by log,(y). We want to discuss these concepts once
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again but we consider the logarithm of complex numbers
with base ¢, hence we try to identify the nature of inverse
of the exponential function of complex variable z, namely

f(z)=e* onsome domain Dc C. Here we shall start defining
log (z)for ze C.

5.2 LOGARITHMIC FUNCTION

Definition : For z#0, the logarithmic function of a complex

variable Z, denoted by log z, 1s defined as
log z=1In| z|+i(arg z+2n ) where O=argze[-m 7] or [0,27]
and ne Z.

Here, log z is a single valued function.

5.3 BRANCHES OF LOGARITHMIC FUNCTION

Definition : If O¢ G is an open connected setin C and f:G — C is

a continuous function such thate’ (?) = 7z, ~ ze G, then fis branch
of logarithm.

Theorem: A branch of the logarithm is analytic and its derivative is
1

z
Proof: Let f(z)=logz=In|z|+iargz be a branch of logarithm,

where z#0, arg(z)=[-7,7].
Let f(z)=u(z)+iv(z) and z=x+iy

u+iv=1n\/x2+y2+itan_1(%) where |z|:\/x2+y2 and

9=tan_1(%)
u(x,y)=ln\/x2+y2 and v=tan_1(%)
u(x,y):ln\/x2+y2

ou 2x _ X and Ju (x,y)=

ox o) /x2+y2 24y? dy 2+y?
v=tan_1(%)
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v ! x(_yj: — = and
ox v/ 2 2

1+(4)
v —Xx

dy x2 + y2

Therefore C-R equations are satisfied

0 (=
S F ()= (log:2)

ou . dv X |l =y z z 1
W e R R B S R R
ox ox  x*+y x“+y |Z|

Theorem : Let 0¢ G be an open connected set in C and suppose
that f:G — C is analytic. Then f is a branch of logarithm iff

f'(z)zi, vzeG and /9 =4 for atleast one ac G.
z

Proof : Suppose f is a branch of a logarithm.

JE = o eo (1)
Differentiate w.r.t. to z on both sides.

. ef(z).f'(z):l

o« L 1

.. f(Z)ZW
)= ~zeG

Clearly, from equation (1), 2 (a) a for atleastone ae G.
Conversely,

Suppose f’(z):L v zeG and ¢/ =4 for atleast one acG.
z

T.P.T. f 1s a branch of the logarithm.
Define, g(z)= z.e /@ 2)

"." g is analytic.
.*. g is differentiable.

()= O] e L]

dz dz Zd_z
= /%) +[—f’(z).Ze_f(Z)}
AL (gt
z z
S _ 1)
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= g(z) = constant = K (Say) (3)

To find K, put z=a in equation (2) and (3)
g(a)za.e_f(a) and g(a)=K.

= K:a.e—f(a):a.L {.‘.e_f(a)=i}

a
=1

=

Put K =1 in equation (3), we get g(z)=1

Put g(z)=1 in equation (2), we get 1= z.e /)

(2 _ 7z ~wzeG
= f 1s branch of logarithm (by definition)

e

A single valued function (is branch of logarithm)

log z= ln| Z |+iarg z (z #0 and O=arg ze [T, n]) is continuous
function in the region or a Domain
D=C |{z=x+iye C; y=0, x<0}

logz=In|z|+iargz (z#0 and @=argze[-m,7])

.. log z is not defined at the point z=0.

Theorem : Prove that log z is not continuous on the negative real
axis.

Proof : Let z; =xy <0 be any point on the negative real axis.
For z=x+iy with x<0, y<0,
we have, }1_{? argz = ll_gl arg(x+iy)=7m7 =7
y>0
For z=x+iy with x<0 and y<0,
We have !l_)r{l argz = }1_{51 arg(x+iy)=-7x
y<0
Two limits obtained are different.
1.e. arg z fails to possess a limit every point of the negative real axis.

log z is not continuous along the negative real axis.

Theorem: Let 0¢ G be an open connected set in C. If a branch of
the logarithm f:— C is related by g(z)=f(z)+2min [for some

integer ne Z ] with g:G — C then g is branch of logarithm.(2008)

Proof : Given that f is a branch of the logarithm.

f(2)

e =z v ze G
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Given, g(z)=e(z)+2nin (for some intneZ)
f(z)+2min :ef(z).ezmn

=e
eg(z) =z v zeG { €f(z) =z and eETEin :1}

. g is a branch of logarithm.

5.4 PROPERTIES OF LOGARITHM FUNCTION

Theorem:
1) log(z .zp)=logz +logz, +2min, where n=1,0or -1 by
definition.

Proof : log z=1In| z|+iarg z where z#0 and 6=arg ze [-m,7].

" log(z1.2p)=In(z1.2p) +iarg(z1.2)
=In| z |[+In| z; |+i[arg 2y +arg zp +2min|

(" arg(z).zp)=arg z; +arg zp +2min)

:(ln| 4] |+iarg zl)+(ln| 2 |+iarg z2)+2nin =log z; +log zp +2Win

2) log( ]—log 71 —log zp +2min

3) log( j:—logz

Proof: log( j—ln

. (lj
+iarg| —
Z
. - o o 1 -
:—ln|z|+zargz ( arg(—):argzj
Z

=—In|z|-iargz =—[In|z|+iargz] =—log z

Evaluate :-
1) logi

B z=x+iy=i = x=0and y=1
logz=In|z |+iarg| z]| (by definition)

T .
logi=lnlil+i o T _.T
ogi n|z|+zarg|z| 1n1+z2 12

2) log(1-1)
z=1-i = x=1 and y=-1,

|z|:\/x2+y2 =J1+1 =2
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log(1-i)=In(1—=i)+iarg|1-i|=In (V2 )+ian~" (- V)
:ln(x/z)—itan_l(l) :ln(ﬁ)—i%

3) log (1+i)
z=1+i = x=1y=1 = |z|=\/§

+iarg|1+i|:ln(ﬁ)ﬂ'tan_l(%)
:ln(ﬁ)ﬂtan_l(l) :ln(ﬁ)ﬂ‘%

4) In unit disk B(0,1)={zeC:|z|<1} prove that power series

© n
z £ :log(

log(1+i)=In| 1+i

j where log( ) is a branch of the logarithm

oon -z I-z
1

1 .

Og(l—zj
o _n

Solution : Let f(z)=> = (1)
n=1 "

and g(z):log( ! ) 2)

I-z

= g is differentiable.

g’(z):diz{log( = H: %ll—z)z{ (11)2 (_1)} ) ((11__;))2

, 1
g(z)= (3)
-z
=) Zn
Given, the power series f(z)= ),
n=1 "
1
Here, a, =—, a,,; = —
A1+ 1
R=lim |[—2|= lim ix(n+1)‘=1im —( 4
n—oo| dyiq n—eo| N n—eo }{

o [

—  f is analytic in open disk B(0,1) (using corollary)

=  f is differentiable in B(0;1)
oo n—1 oo )
n n=l n=0

n=1
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f(2)= 4

'.'ZznisaG.S.andcgsto|z|<1, '.'iG”: 1 J
n=0 =0 1-z2

From equation (3) and (4), we get

f(z)-¢'(z)=0 = [f(z)—g(z)]1 =0
=  f(z)-g(z) = constant =K (5)
To find k, put z=0 in equation (1), (2) and (3)

£(0)=0, g(0)=0

f(0)-g(0)=K
= K=0
Put K =0 in equation (3), we get

f(z)-8(2)=0

- f(2)=g(z)

Y < :log( 11

n=1 n -2

j for all ze B(0;1)

Definition : Given 0O¢ C, the principal value of z” (i.e. the b™

power of z) is defined by 7% =¢?"1°2% peC

Here, z” is analytic. (*s" logz is analytic)
Consider z” =¢?-1°82 peC
Here, z” is multivalued function.

arg z (and hence log z) is a multiple valued function.

Case I : If b is an integer then z” =082

function.

is a single valued

Proof : Let b=Ke 7Z.

b= blogz _ ek[lnl z |+i (arg z+2mn) |

_ ek[ln| z|+iarg 7] i(+2mKn)

_ oklogz (i) ( el(ZTEKn) —LneZ
— eblog Z
22 =¢?1°27 i5 a single valued function.

Case Il : If b="7 f (real rational) then z” has produces exactly g

values.
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Case III : If b is an irrational number or imaginary number then 2

is infinite valued function.

Example 1 : Find the principal value of 7'

Solution : ;2 =¢""122  pecC (by definition)

: .t/ 2 )
i gidogi _ i[n|il+iargi] :el[()-i-l / Lelz'%

i

Example 2 : Find all the values of i~ .

Solution : ;”=¢"122  pecC (by definition)

—2i 0+i(n+2nnj
=20 _ ~2idogi _ = 2i[ln| i |+i(arg i+2nn)] —e 2

_ e_ 7 {{m;mcj] . i2[n(1+4n)]
_ —(-1)[n(1+4n)]

=e nez
_ en(4n+1)

Here, the principal value of i~ 2 is ¢™ .(All values are not found.)

Example 3 : Find the value of i°.

Solution : ;2 = o202 — e2[1n| i|+i (argi+2mn) | _ e2[ln 1+i (arg i+2mn) |

:e2[O+1%J .e4T|:m' :eiTl: (... e47tni =1, ne Z)

=cosm+isint=—1+0

i2=—1

Example 4 : Find all the values of (1+i)(1+i).

5.5 TRIGNOMETRIC AND HYPERBOLIC FUNCTIONS

Trigonometric Function : The Complex trigonometric functions
sin and cos are defined by
iz —iz -z —iz
sin z = % and cos z = % (2008)
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. —e
Similarly, tanz = — sec 7 =— —
i(e’z+e_’z) el +e
9 il +e lz)
COS€CZ:,—_,, cotz= . —
PR P 4
Note :

1) sin? z+cos? z=1

2) i(sinz):cosz and i(cosz)=—sinz
dz dz

3) sin(—z)=-sinz and cos(—z)=cosz
4) sin(z+w)=sinz.cos w+cos z.sin w
5) cos(z+w)=cosz.cos w—sinz.sinw

6) sin2z=2sinz.cosz

Hyperbolic Function : The complex hyperbolic functions sin 4 and
cos h are defined by

Z —Z Z —Z
. e’ — e“+e
sinhz=———— and cosh=
2 2
Z —Z Z —Z
.. e’ —e e’ +e
Similarly, tan hz=———, cothz=———
e‘+e © et —e *
2 2
sec hy =————, cosec hz = —
e‘+e ¢ et —e *
Note :
1) cos? z—sinZ z=1
d ,.
2) ——(sinhz)=cos hz
dz

3) a4 (cos hz) =sin hz
dz

4)  sin h(z+w)=sin hz.cos hw+cos hw.sin hz

5) cosh(z+w)=cos hz.cos hw+sin hw.sin hz

Relation between Trigonometric and Hyperbolic Function :
1) siniz =isin hz

Proof :
. ei(iz)_e—i(iz) . i2 (ez—e_z) i(ez—e_z)
sln ZZ: = = =
2i 21 2i 2
=isin hz
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2) cosiz=cos hz
iz —iz —Z Z
e +e e “+e
Proof :cos(z)= 5 = 5 =cos hz

3) taniz =itan hz
4) cos hiz =cos z

5) sin hiz=isin z
6) tan hiz=itan z

Periodic Function : A function f:G — C is said to be periodic if 3

a non-zero complex number 7 > f(z+7T)=f(z) ~ zeG.
Here T is a period of the function n.

Periodicity of e*:

Let T be the period of e®
z+T 2z

o e =e ~+ ze C.
To find 7, put z=0

T = o0 == p2%in
Let T=a+ip

e(x+i[3 26275 in
¢® =1 and P =2min
= o=0 and B=2nn

T =oa+if=0+2i7n is a period of e°.

OR
T =logl=0 (is not possible by definition)
Let T=a+iB
eoc+i[3 -1

¢®.cosp=1 and sinp=0
= ¢®*=0 and B=2nnt = T=a+iB=0+2innt=2inm
2inT is a period of e*

+2nim
et =e°

Periodicity of sinz :
Let T be the period of sin z.
sin(z+7)=sinz

Put z=0
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sin(0+7)=sin0
sin7 =0
T=nm,where n=0,+1,%£2,...

Uy

sin (z+27) =sin z.cos 21+ cos z.sin 2= (—1)" sin z

=sin zif n 18 even.

" The period of sin z is 2nw where ne Z.

Periodicity of cosz :
Let T be the period of cos z.

cos(z+T)=cos z
Put z=0

cos (0+7T)=cos0
= cosT =1

= T =2mn ~ ne
" The period of cosz is 2nm, where ne Z.

5.6 SUMMARY

1) For z#0, the logarithmic function of a complex variable z,
denoted by logz, is defined as logz=In|z|+i(argz+2nT)

where 0 =arg ze [- 7, 7] or [0,2n] and ne Z.

2) If 0¢ G 1s an open connected set in C and f:G—>C 1is a

continuous function > /() = z, ~ ze G, then f is a branch of
the logarithm.

3) Given 0¢ c, the principal value of e (i.e. the p™® power of 7) is
defined by

Zb :eb.logz’ beC

4) The Hyperbolic functions sinh and cosh are defined by

Z —Z Z —Z
. e —e e”+e
S hZ:T and cosh=———

5.7 UNIT END EXERCISES

1) Suppose that f:G — C is a branch of the logarithm and nis
any integer . Prove that 7" =exp(nf(z))for all ze G.
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Solution: Since f:G — C is a branch of the logarithm (GcC

1s an open connected set .)
~z=exp(f(z)) for all zeG.

w27 = exp(f (2).exp(f (2)) = exp(f (2) + £ (2)) = exp(2[ (2)) -

- 7" =exp(nf(z)) forall ze G. (By induction on power of z.

2) Describe the branches of an analytic function f(z)= \z .
Solution: ... f(z)= Jz = exp(%log(z)j ,since

2
1 1 1
(CXP(EIOg(Z)D = eXp(EIOg(Z) +510g(z)j = exp(log(2)) =z.
~.This defines +z and it is analytic , where the log(z)is

analytic.

.. Different branches of log(z)yield different branches of Jz.
log(z) has infinitely many different branches log(z)+ 27zki for any

integer k but there are only two different branches of /z .

Since exp(%log(z)j=exp[%(logz+2n’ki)} whenever k is an even

integer .

3) Find all values of the complex number i'.

Solution: .-.i' = ¢!108(® = plog+iarg(i) _ ,—arg(@)
Here we know that

4) Find all values of (1+i)" (Hint: (1+i)" =Tl

5) Let f:G—>C and g:G—C be branches of z* and z°
f

and — i1s a
8

respectively. Show that fg is a branch of %

branch of z¢7”.
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Solution: .. f(z)=z" and g(z)=z" for all ze G.
© fe:G—>C defined by (fg)(2)=f(2).g(z)=2"2" =z
(fg)(2)=2z" for all ze G .
- z%*" has a branch fg on G.
f

Similarly, = is a branch of z%7.
8

6) Let z;,z5,....,z, be complex numbers such that Re(z;)>0and
Re(zyz5...2,) >0, for 1<k<n. Then show that

log(z;z,...2; ) =log(z;) +...+log(z,) -

Solution : Let f(z)=1log(z) be the principle branch of the

logarithm function .. ¢/ (?) = 182 = 7|

Take a=gz..z,. Since the arguments of each z; and that of
712--2; ~ lies between —g to % for all 1<k<n. Therefore

log(z12.-2;) = 10g|z1...zk|+i Arg(zy25---2;) and
log(z;) = 10g|zk|+iArg(zk), for 1<k<n.

o Arg(z2p...2,) = Arg(z) + Arg(zp) +...+ Arg(z,) + 2km where k is
any integer .

o fla)= log|z1...zn| +i Arg(z12,...2,,)

= k§110g|zk|+i[Arg(zl)+Arg(12)+...+Arg(z”)+2k7£]
= Y7 [ log|z | +iArg(z,) |+ 2k

=i log(zy )+ 2kmi

@S oszp)=e? =

= f(a)—Xk=1log(z) =0
~ fa) =Xk=log(zy)

- log(z1zy...2,) =log(z) +...+1log(z,,) .

7) Give the principal branch of 1-z ( Hint
elog(\/E) — %log(l _ Z) )
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8) Prove that there is no branch of the logarithm defined on
G=C-0.

(Hint: Assume the existence of a continuous function L(z)
defined on a connected open set G of the complex plane such that
L(z) is a logarithm of z for each z in G, compare L(z) with the
Principal branch of log(z). As o goes from 0 to 2z, since

L(e“Y=ia and L being continuous function of o,

L(ez”i) =27xi=L()=0, a contradiction.)
9) Evaluate i’ by taking the logarithm in its principal branch.
10) Prove that |sin z|2 =sin” x+sinh® y

Solution:

. 2 . . \2 . . .2 . . . 2
|s1nz| =‘sm(x+zy)‘ =|smxcoszy+cosxs1nly| :|s1nxcoshy+zcosxs1nhy

= (sin xcosh y +icos xsinh y)(sin xcosh y +icos xsinh y)

= (sin xcosh y +icos xsinh y)(sin x cosh y —icos xsinh y)

=sin® xcosh® y+cos® xsinh® y =sin® x(1+sinh® y)+(1—sin”® x)sinh* y
=sin” x+sin” xsinh® y+sinh” y —sinh® ysin® x =sin® x +sinh” y

i

11) Find the principal value of i 2

% % %k %k %k
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ANALYTIC FUNCTIONS

Unit Structure

6.0. Objectives

6.1. Introduction

6.2. Analytic Functions

6.3. Cauchy Riemann equations

6.4. Harmonic Functions

6.5. The Functions e®,sin(z),cos(z) etc.
6.6. Summary
6.7. Unit End Exercises

6.0. OBJECTIVES

In this unit we shall characterise the differentiability of a
complex valued function in terms of it’s power series
expansion , in this case the function is said to be an analytic
function  about some point z;e C. An analytic function
f(z)satisfies some properties, among these one  important
property is to satisfy Cauchy-Riemann equations . Further we
shall also see the term by term differentiation of a power series
function, provided that such term by term differentiation is
possible. We shall also study the inverse function theorem then
we shall define a class of functions called as harmonic
functions .We shall also discuss the differentiability of a

complex valued functions like e*,sin(z),cos(z) etc.

6.1 INTRODUCTION

Given a function of the complex variable z, we wish to
examine if f is a differentiable function of z or not. As we
saw 1n the case real valued functions, we look for existence
0 f(Z+h)_f(Z) Wthh

n

of the limit lim,_,

should exist regardless
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of the manner in which 4 approaches O through complex values.
An immediate consequence is that the partial derivatives of f
, considered as a function of two real variables x and
y(f(z)=f(x+iy)= f(x,y) must satisfy the Cauchy Riemann
equations. Let us define the derivative of a function of
complex variable z at the point z=7z,€ C.

Let z=x+iye G and f:G — C be defined by, f(z)=u(z)+iv(z),
where u and v are real valued function
OR
f(xy)=u(xy)+iv(x,y).

+h,y)—ul(x, . Lo
Definition : If 1lim u(x y) u(x y) exists then it is called

h—0 h
partial derivative of u w.r.t x as the point (x, y) and is denoted by

0
%(x, y) or u,(x,y).

6.2 ANALYTIC FUNCTIONS

A function fis said to be analytic (or holomorphic or regular)
at a point z =z, if f is differentiable at every point of some nbd.

Of 20 -

Definition : A function f:G — C is analytic if f is continuous
differentiable on G.

A function fis analytic on a closed set S if fis differentiable at every
point of some open set containing S.

Theorem : Let f(z)= ) a,z" have the radius of converges R>0
n=0

then

1) The function f is infinitely differentiable on B(0;r) and

R @=> n(n=1.....n-K+Da,z"*for | z|<R and ~ K >1.

n=K

_ ")

2) Ifnz0 then a, ’
n!
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Proof : 1) For | z| <R, we will write

f(z)=> a,z"=5,(z)+R,(z) where S,(z)=> a,z" and

K=n+1

Put g(z)=’gnan ! =n1£nooS,;(Z)
Fix a point z; in B(0;R)

(Choose r>0, 5> |zg|<r<R and | z|<r<R (z#29)

We will prove that f'(zy)= g(zo)

Let 8>0 be arbitrary > B(z(:8) < B(0,r)

Let ze B(z,8) then
OG0Bl [5n () By l)]

o) Z—20

- g(zl0)

-2 — 0
f(Z):f(ZO) —g(z0) |< S"(Z)__S”(ZO) =S, (z0) |+ S;l(z())—g(Zo)‘
-2 LT20
| Ra(2)= Ry (20) ‘ o
p—

Let €>0, be given

Now Ro(2)=Rulz0) __ 1 3 aK(ZK—Z(g{)
1720 2720 K=p+1
1 i _ _ _ _
= Z aK(z—zo)[zK 1+z0 ZK 2+...+zz6< 2+z§ 1}
L7720 K=n+1
R -R ind
2 (2) =R, (20) ‘S Z |aK|‘zK_1+z0 ZK_2+...+ZZ6{_2+ZK_1‘
1720 K=n+1
< z |aK| rK_1+rK_1+...+rK_1‘

K=n+1

= i |aK |.KrK_1
K=n+1
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(e e}

"." The derived series > na, z"~' is convergentat z=r.

n=l1

. The power series > |ag |.K r® ' converges for r<R.
K=l

For the above €>0, 3 an integer Ny >
> K-1 € ° o . .
> Jag|.K.r <A ~ n>=N;. (" by Cauchy criteria)
K=n+1

Rn(z)_Rn(ZO)
=20

Thus, <— s nzN (2)

" lim S;(zp)=g(z)

n—eo

For the above €¢>0, 3 an integer N, s.t.

| 57(20)-8(20)|< % (3)
Choose N =max {N;,N,}

For this n, we can find 8 >0 s.t.

Sn(2)=Sa(20) — 8% (z0)
-2 n\<0

€
< 3 4)

whenever 0<|z—zy|<3.

From equation (1), (2), (3), (4) we get
‘ F@=F20) )

=20

€ € €
<?+?+?=e whenever 0<| Z—Zo<5|

= fisdifferentiable at zy€ B(.; R)

z 1s arbitrary.
f is differentiable on B(0; R)

A repeated application of this argument shows that the heigher

derivatives f’,f",...,f(K)... exists, so that

f(K)(z): Z n(n-1)...(n-K+1)a, K exists for | z|<R and
n=K

~ K21,

—  fis infinitely differentiable on B(0; R).
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2) Since

- n! n—-K
=K!a; + a, z
K§+1 (n—-K) "
Put z=0
" ) (0)=K1ag +0
%) (0)
ap =————
K!
Replace K by n
7 (0)
a, =———
n!

Corollary : If the power series Z a, 7" has radius of cgs. R>0,
n=0

then f(z)=Y a,z" is analytic on B(0;R).

Theorem : If G is an open connected set and f:G—C is

differentiable with f'(z) =0 ~ z€ G, then fis constant.

Proof : Fix a point 7€ G and let wy = f (zp).
Let A={ze G; f(z)=wp}
TPT. A=G.

[i.e. by showing A is both open and closed and A+ O]
T.P.T. A is closed.

Let ze G and {z,} be asequence in A> lim z, =z
n—o00

f(z,)=wp, foreach ne N

f is differentiable on G (given)
f is continuous on G.
F2)=f| 1im 2| = 1 7 (z) =m0
n—yoo n—oo
= ze A
A contain its limit point.
=  Aisclosed.
Now, T.P.T. A is open.
Fix ae A, since G is open.
3r>0 > B(a;r)cG
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Let ze B(a;r) and set g(r)=f[1z+(1-t)a], 0<r<1

. g(0)—g(s)  flr+(-t)al+f[S,+(1-5) a] -8)z+(S-1)a
s (t-8)z+(S—1)a (1-S5)

o [en)-e(s)] . | fle+(1-1)a]-f[sz+(1-5)a]
. lim [7}_hm|: X(z—a)

1—S 1—S (1=S)z+(S-t)a

g'S=f[Sz+(1-S)a|x(z—a)

g’ (8)=0, 0<S5<1 (" f/(2)=0, » ze G)
= g(s)=constant, 0<S<1
= g (1) =constant = g (0)

f(z)=g(1)=constant=g (0) =f(a)=w
= ze A
ze B(a;R)=ze A
=>zebla;r)Cc A
=  Aisopen.
Hence, by the connectedness of G.
A=G

e fis constant on G.

6.3 CAUCHY RIEMANN EQUATIONS (C-R Eq.)

Theorem : Let u and v be real valued function defined on the domain

G c C and suppose that u and v have continuous partial derivatives
then f:G — Cdefined by f(z)=u(z)+iv(z) is analytic iff u and v
satisfy Cauchy Riemann equation. i.e. ou = o and Ju =— o

ox dy dy ox
(2006, 2007, 2008, 2009)

Proof : Let z=x+iye G and Az =Ax+iAy.
Given, f:G—C is defined by f( )=u(z)+iv(z) OR
f(xy)=u(x,y)+iv(x,y)

f 1s analytic on G.

f is differentiable at ze G .

flz+A2)-f(2)
Az

as Az — 01in any manner in C.

— f(z9) (a unique limit)
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Now,
f(Z+AZ)—f(Z) _ [u(x+Ax, y+Ay)+iv(x+Ax, y+Ay):|—[u(X, y)+iV(x, )’)]

Az A x+iAy
u(x+Ax,y+Ay)—u(x,y) o v(x+Ax.y+Ay)—v(x,y)
= i
Ax+iAy Ax+iAy

Suppose z — 0, along the real axis (x-axis)
Az=Ax and Ay=0

F(48)-1() _ {umm,y)—u(x,y)

lim

Az—0 Az Ax—0 Ax

Ax

N i{v(x+Ax, y)—v(x, y)} ]

F(2) =2 ()42

o (1Y) (1)

Suppose Az — 0, along the imaginary axis (y-axis).
Az =iAy and Ax=0

lim f(z+Az)-f(z2) _ fim u(x, y+Ay)—u(x,y)
Az—0 Az Ay—0 iAy
N i{v(x,y+Ay)—v(x,y)}
iAy
, 1 du v . ou ov
= _— [ +_
1(2) i8y+8y l(ayj dy
el
i 2 i
=—za—u(x,y)+a—(x,y) .................... (1ID)
dy dy
From equation (II) and (III)
ou . ov _odu  ov
ti—=—i—+

ox ox dy dy
Equating Real and imaginary part on both sides.

) du ov ou ov
1.€. = and =—

ox  dy dy ox

which are Cauchy Riemann equations.
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Conversely,
Let ze G

" Gisopen = 3 r>0,5 B(z,r)cG
Let Az=Ax+iAye B(O;r).

Given, u and v have continuous partial derivatives.

. ou Jdu ox 9v )
o u,v, , , , are continuous on G.
ox dy Jdx dy

.". The expression u(x+Ax, y+Ay)—u(x,y) can be written as (by
definition of partial derivative.)
u(x+Ax, y+Ay)—u(x, y)=Axv.uy(x,y)+Ay u,(x, y)+D(Ax, Ay)

D(Ax, A
where, lim uzo OR lim M:O
Ax—Ay—0 Ax+iAy Az—0 Az
..................... (Iv)
Similarly,
v(x+Ax, y+Ay)—v(x, y)=Ax vx(x, y)+Ay vy(x, y)+\u(Ax, Ay)
Ax, A
where  lim u =0 (V)
Ax+iAy—0  Ax+iAy
f(z+A2)—f(z)=u(x+Ax, y+Ay)—u(x,y)
+i[v(x+Ax, y+Ay)—v(x, y)] from equation  (I)
=Ax.u, +Ay uy +D(Ax, Ay)+i[Ax vy +Ay vy +y(Ax, Ay)]
from equation (IV) and (V)
= Ax(u, +iv, )+ Ay(uy +ivy, ) +D(Ax, Ay) + iy (Ax, Ay)
By Cauchy-Riemann equations
ou dv ou —dv
—=—and —=
ox dy dy ox
1.€. Uy =V, and uyz—vxzi2 Ve ('.'izz—l)

f(z+Az)—f(z):Ax(ux+ivx)+Ay(i2 vx+iux)+@+i\|!

= Ax(uy +iv, ) +idy(iv, +u, )+ D+iy

= (Ax+iAy) (uy +iv, )+ D +iy
f(z+A2)-f(z) Ax+iAy _ D+ iy
- S (ux+lvy)+—AZ

106



= ou +i o + @ﬂ\lf {*." Az = Ax+iAy where
ox ox  Ax+iAy
lim 2V _

Ax+iAy—0 Ax +iAy

= f is differentiable at z and

. flz+A2)-f(2) du . ov
1 = =] —
AZIEO Az 7(2) ox : ox
= f’ is continuous (. Ju and v are continuous)

ox ox
=  fis continuously differentiable.
= fis analytic.

Note: If f(z) is analytic then it can be differentiated directly

Example :
(1) Prove that the function f(z)=e® is analytic in C. Also find
its derivative.
Solution : Let f(z)=u(z)+iv(z) and z=x+iy
Given that, f(z)=e"
u+iv=e"" =% ¢ = ¢ (cos y+isin y)
Equating real and imaginary parts on both sides.

T.P.T. fis analytic.

By previous theorem, we see that in order to prove and is analytic
we have to verify that u and v are satisfy Cauchy-Riemann

equations.
. Ou Ov ou —adv
1.e. = and =

ox dy dy ox

Now, « u=e*cosy and v=e"siny
0 .
—uzex.cosy, e sin y
X dy
ou v Ju —ov

= = and
ox dy dy ox

=  uand v satisfies the C-R equation.

= f 1s analytic.
-0, 06

sin i0 =% — sin /0
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-0, 0

N € te
and 00519=T=cos ho
, ou ov Cx . '
f(Z):a—'l'ia—=exc0sy+zexsmy=ex(cosy+zs1ny):ex.e’y
X x
P L

(Or ** f(2) is analytic it can be differentiated directly i.e. f (2)=¢")

2) Show that the function f(z)=w=sinz is analytic and also find
dw

o

Solution : Let z=x+iy and u+iv=w

Given that w=sinz

u+iv =Sin(x+iy) =sin x4+ cos iy +cos x.sin iy

=sin x.cos hy +i cos x.sin hy

Comparing real and imaginary parts

'« u=sinx.cos hy, v=cosx.sin hy

= u and v are real valued function of x and y.

u Jov ) )
.o —— =co0sx.cos hy, — =—sin x.sin hy
ox ox

0 ) ) 0
and a—uzsm hy .sin x, a—vzcosx.cos hy

y y
. ou v ou —odv
.o —=—and —=
ox dy dy ox

A Cauchy-Riemann equations are satisfied.
<« f(z)=sinz is an analytic function.
. ow _ du

—=f'(Z)——+i—v =c0S x+cos hy —isin x.sin hy
0z ox X

(Or ~f(2) is analytic it can be differentiated directly
ie. f(2)=sinz)

3) Using the Cauchy- Riemann equations , verify  that
x*+y?+2ixy is not analytic.

Solution: " P(x,y)= x% 4+ y? + 2ixy

= P, =-2y+2ix, P, =2x+2iy = P, #iP,

= P(x,y) is analytic.
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4) Using Cauchy-Riemann equations , verify that x*+ y?—2ixy
is not analytic.

Solution : - P(x,y)= X%+ y2 = 2ixy
= P, =2y—=2ix,P, =2x-2iy = iP, =2ix+2y
= P, =2y—2ix, P, = 2x~2iy = iP, = 2ix+2y = P, #iP, = P(x,y)

is not analytic.

(5) Give an example of function which is continuous everywhere but
not analytic

Solution: Let f(z) = xy+iy

~u=xy,v=y. Since u and v are polynomials , they are
continuous everywhere.

a—M=y,a—u=x,a—y=0,a—y=l
Now ox dy ox ox
" du _ dv du v

..§¢$,$¢_a

Therefore f(z) is not analytic

6.4 HARMONIC FUNCTIONS

If G is an open subset of C, then the function U:G —- R (i.e.
Real valued function of complex variable) is harmonic if, it has
continuous second order partial derivatives and

%u  9° - .
Z ‘2) =0 (This is called Laplace’s equation)

ox dy

e.g. u(x,y)=e".cosy is harmonic function ?
au X au X -
—=¢".cos ——=—¢"sin

ox Y dy Y

d° 32
Z =e*.cosy Z =—¢"cosy

ox dy

u 9
Z +—2=ex cos y—e” cos y=0

ox 0

. Above function is Harmonic function.
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Proposition : Let f be a analytic function in a region and
f(z)=u(z)+iv(z). If u and v have continuous second partial

derivatives then u, v are harmonic function.
OR
1) If f:G—C defined by f(z)=u(z)+iv(z) is analytic then,

u=Re f and v=1Im f are harmonic functions.

Proof : Given that f(z)=u(z)+iv(z) is analytic.

Cauchy Riemann equations are satisfied.

. du ov
.€. —_—=— |
ie 9y (D
and 2 (10
dy ox

Differentiate equation (I) partially w.r.t. x and (II) w.r.t. y.

u 9% u  —o%
= and =

ox>  Ox.dy 8y2 0x.dy

%u % 0%y 9%y

0

+ = - =
ox? 8y2 0x.dy  0x.dy

v is harmonic function.

Differentiate equation (I) and (II) partially w.art. y and x
respectively.

0%u 0%y 0%u ~ 3%y
= and =
ox.dy  gy? dx.dy  9y?
2 2 2 2
Consider, 9y + 9y o"u ou 0

ox? ay2 B 0x.dy - 0x.dy B

- v 1s harmonic function.

Definition : If f:G — C is analytic and f(z)=u(z)+iv(z) then
u=Re f and v=Im f are harmonic conjugate i.e. u and v are

harmonic conjugate then u and v are harmonic function and u, v are
satisfied C — R equations.

Example : If f:G—C is analytic and f(z)=u(z)+iv(z) then

prove that harmonic function u satisfies the partial differential
2Ll
equations — =0.
0z.0z
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Solution : Given fis analytic.
Let z=x+iy=>z=x—1iy.

Here, u=u(x,y) where x= i

du 0 ou ox du dy 1 du 1 Jdu
—=—U (x, y) = . + . =— -
dz 0z ox dz dy dz 2 ox 2i 9y

OR

Pu 9 7a] 1[0, 00 1[0 0
9z.9z 9dz | oz 2| ox dy | 2| ox dy
1w Pu  Ba P | 1| 0% 0% |
41 ox? 8y2 ﬁ&.ax ﬁgzax 41 ox? 8y2
92” -0

dz.0z

Example: Prove that the function u(x, y)= ©=3xy% +3x2 =3y% +2
1s harmonic. Find its harmonic conjugate and corresponding analytic
function f(z)=u(z)+iv(z).

Solution : Given function u(x, y)= x> —3xy? +3x% =3y> +2

a—u:3xz—3y2+6x and ﬂ=—6xy—6y
ox dy

2 2

J ;‘ = 6x+6 and a—Z:—6x—6
ox dy

2 2

J ;‘ 82” = 6x+6—6x—6=0

ox 07y

u is a harmonic function.
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To find v, we use Cauchy Riemann equation.
ou _ ov ou —dv

—=—and —=
ox dy dy ox

.. ou 2 2 ov 2 2

. —=3x"-3y"+6x=>—=3x"-3y" +6x
ox dy

By integrating Iav = I(?)xz ~3y%+ 6x) dy

3
v= 3x2y—3%+6xy+®(x) = 3x2y— y3 +6xy +J(x)
(1)
where &(x) is an arbitrary function of x. To find &(x), we use
another equation of Cauchy-Riemann.
ou —dv

g_ ox

. 0
oo —6xy—6y:—¥{3x2y—y3+6xy+®(x)}

=—{6xy+6y+ agg(x) } =—6xy—6y—2'(x)
x

&(x)=0
Integrating, we get &(x)=c, where c is constant.

v:3xzy—y3 +6xy+c
i.e.  the required harmonic conjugate.
-+ Analytic function
f@)=ulx, y)+iv(x,y)
=x’ =3xy” +3x° =3y’ +2+i(3x2y—y3 +6xy+c)
Put x=z and y=0
f(2)= 2 +3z4+24+c¢

(Alternate method to find harmonic conjugate using Milne
Thompson method)

Given function u(x, y)= =307 +3x2 =3y% 42
. Ju ou
celet A(x,y)= —=3x2—3y2 +6x and ¢@,(x,y)= ——=—6xy—06y
ox dy

Now,

f/(2) = 9,(z,0)=ig,(2,0) = (32° +62) +i(0) (purting x=z, y=0)
s fl)= I(3z2 +67)dz =7 +37

Put z = x+iy,
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s f (@)= (x+iy) +3(x+iy)’
=x° +3x7yi+3xy%i* + v +3x7 + 6xyi +3y°0°
Separating real and imaginary parts we get v=3x>y—y’ +6xy

Example : If f:G—C defined by f(z)=u(z)=u(z)+iv(z) is

analytic and u—v=e"(cos y—siny) then find the function f(z) in

terms of z.

Solution :
f(2)=u+iv

if (z)=ui—v

SA+Df(D)=u+ivtui—-v=u—-v+i(u+v) =U +iV(say)
~U_ =e'(cosy—siny)=¢(x,y)
U,=e'(—siny—cosy)=g,(x,y)
~(A+D) f(2)=U,=iU, = ¢,(z,0)— $,(2,0)
L+ f(2) = [(eF +iet)dz = (1+i) [ e*dz

S f()=e"+c

Proposition: Suppose that f is analytic in a region G.

| f (2)|=constant.

Proof : Let z=x+iy € G and f(z)=u(z)+iv(z).
Given that fis analytic.
= Cauchy-Riemann equations are satisfied.

du Jv ou  —ov
———and —=
ox dy dy ox
Here, we given that ‘ f(2) ‘: constant =K (say).

Let k=0 [If k=0, it is obvious that f(z)=0].

|u+iv|=K S At vt =K
wrevi=k* (D
Differentiate equation (I) partially w.r.t. x
P AI L
ox X
u a_bt +v i =0
ox ox
R L )
ox dy dy ox
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Again, differentiate equation (I) partially w.r.t y

2ui+2vi=0:> ua—u+vi=0
dy dy dy  dy
G, [ ou _ ﬂ} ............. (1)
dy ox ox dy
Multiplying equation (II) by u# and equation (III) by v and add
7 du ou
uw'— - w— = 0
ox dy
2 du ou
+ — + — =0
v » uy %
(u2 +v? )8u =0
dx
2 du ou
K°—=0 —=0
= ox = ox
Multiply equation II by v and III by u and subtract.
ou 7 du
w—- — v — = 0
ox dy
- uv a_u + u? a_u =0
ox dy
—(u2+v2)a”dy =0
2 du
= -K*——=0
dy
ou _
dy
Using Cauchy-Riemann equation
du v du —ov
ox dy an dy ox
v v
- —0=—
ox dy

f1s analytic at z.
f1s differentiable at z and

, dy . ov
=2 i =0+i0=0
f(2) o +i o +i
f'(z)=0, ze G
= f(z) = constant.

Theorem : Suppose that f is analytic in a domain (region) D then
a) If f(z)=0,Vze D, fis constant.
b) If any one 0f| f |, Re f, Imf, are f is constant in D (2008)
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Proof : Let z=x+iye D and f(z)=u(z)+iv(z)
Given that fis analytic in D.
Cauchy-Riemann (C.R) equations are satisfied.

ie. du _ v, and Ou _—dv (1)
ox dy dy ox
a) If f’(z)=0, ~ ze D then f is constant. (Already done, last
proposition)

b) i) Let | f| = constant.

Vu?+v? =K (say)

= ur+v’=K (2)

where u(x,y) and v(x,y) are real valued function. Let

K #0 [if K =0 then nothing to prove.]
Differentiate equation (2) w.r.t. x

ou v
2u—+2v—-=0
! ox e ox
UL
0x ox
ua_“JH,i:O a_”: —Jv (3)
ox dy dy ox
Again differentiate equation (2) w.r.ty
LI LI
dy dy
u a_u +v i =0
dy dy
pou o . ou _ o (4)
ox dy ox dy

Multiplying equation (2) by u and (4) by v and adding

> du ou
on X o_ 0
u n uy %
+ ﬂi + va—u =0
ox dy
(u2+v2)a% =0
— K2a_”:()
0x
ou
X 0
- o0x

Multiply equation (3) by v and (4) by u and subtracting
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ou 7 du
- w— + u-—

ox dy

- (u2+v2)a%y =0

From equation (1), i =0 and —=0
ox dy

f%zy:91+ﬁ%1=o+io:0

ox X
Z is arbitrary.
f’(z) =0 ~ ze D

by part (a)
f 1s constant.

11) Let Re f =constant = K (say)

u(x,y)=K (say)
ou =0 and o =0

ox dy

.". from equation (1)

*." fis analytic.
fis differentiable and f'(z)=—+i—
f(2)=0+i.0=0
. f(2)=0 = f(z)= constant by (a)

1) Let Im f = constant = K

. v(x,y)=K (say)
" i:0 and i=O
ox dy

*." f is analytic.

. f is differentiate and f'(z)=—+i——
ox ay
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By Cauchy Riemann equation o = o =0
ox dy
. f(z)=0+i.0=0 = f(z)= constant
by (a)

iv) Let arg f (z)= constant

arg(f(z))zeztan_l(lj:K (say)
u

tan~ ! (Lj =K
u

u
—=tan K = u=

=vcot K
% tan K
‘“u—-vcotK=0
Put cutr K =C

=u—-vc=0 unless v.c=0
But u—cv is areal part of (1+ic) f (z)

= (1+ic) f (z) = constant by (a)
_ constant
flz)= (1+ic)

= [ 1s constant.

=constant  {"."1+ic = constant}

Example 1 : Prove that the function f(z)=z is not differentiable
anywhere in the complex plane.

Solution : We know that, fis differentiable at z if

f(z+Az)-f(2)
Az
as Az — 0 in any manner in C-plane.

fz+A2)=z+Az=2+Az

f(z+Az)-f(2)

— f’(z) (a unique limit)

‘(z)= lim
! ( ) Az—0 Az
. z4+Az .. z+Az—z . Az
= lim = lim ——— = lim —
Az—0 Az Az—0 Az Az—0 Az
= fim XA (1)
Az—0 Ax+iAy

Let Az — 0 along the Real axis.
Az=Ax and Ay=0
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, ) Ax
z)= lim —=1
f() Ax—0 Ax

Let Az — 0 along the imaginary axis.
Az =iAy and Ax=0

= lim = =-1
/ (Z) Ay—0 iAy

Two limits obtained are different.
i.e.  limitis not unique.

Given function f(z)=z is not differentiable in C to check

Az —0. x=y,weget —.
1+i

2) Show that the function f(z)=|z |2 is differentiable only at the
origin. (2006 )

Solution : Let f(z)=x>+y’.
Since, x*+y* is continuous everywhere, f(z) is continuous
everywhere.

2 2
@+~ f () _ o |20 +07 [z
§Z 570 §Z

(20+02)(2, +02) =242, (20+02)(2, +02)— 2y,

f(z,)=lim

= lim =lim
570 5Z 070 5Z
. 7,02+2,02+0207 .. 7,02+2,07+0202
= lim = lim
620 0z 820 oz

. oz  — . o
=lim z,——+7,+0z2
620 5Z

(i) When &z is real: Then Jy=0 and Jz=0z=0x. As
07—0,0x—0

: 0z  — .. — —
f(z,)=1lim z,—+z,+dz=1lim z,+ 7, + Sx =z, + 2,
5x—0 §Z 5x—0

(i1)) When ¢z is imaginary: Then Jdx=0and 85z=i8y,85z=—idy.
As 67—0,0y—0

T ) - _

Since the two limits are different along two different paths except at
z=0, f’(z,)does not exist anywhere except at z=0

Hence, f(z) is not differentiable anywhere except at z=0
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x3—y3+i(x3+y3)
3 Let  f(2)= 24y

0 x=0, y=0ie. z=0
Prove that C.R. equations are satisfied at the origin but f’(0) does

x#0, y#0ie z#0

not exist i.e. f(z) is not differentiable there.

Solution : Let z=x+iy and f(x)=u(z)+iv(z)
f(z)=u(z)+iv(z)

x3—y3+i(x3+y3) (x.3)
z=(x,y)#0
= x2+y2
0 z=0
x3—y3+i(x3+y3)
) z#0
u(xy)=1 <Py
0 z=0
x3+y3+i(x3+y3)
) z#0
v(x, y)= X“+y
0 z=0
hy) —
O (g y)= fim ) ()
X h—0 h
h,0 0,0
94 (0,0) = fim ~1-0)=1(0.0)
ox h—0 h
3_
h2 0 ~0 .
— lim =0 _ im L1
h—0 h h—0 h
Similarly,
0-r
0,u)-u(0,0 2 _
a—M(O,O):lim u(0,u) —u( ):th:hm_h:_l
dy h—0 h h—0 h h—0 h
3
. h erO _0 ,
2 (0,0)= lim —*% = lim — =1
X h—0 h h—0 h
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0+h3

) +h - ) 2 3
‘. i()C,y): lim v(x Y ) V(X y) = lim O+h” _ lim h— =1
dy h—0 h h—0 h h—0 h2
du dv ou —ov
—=—and —=
ox dy dy ox

Cauchy-Riemann equations are satisfied at the origin.
A7) —
F(2)= tim L EFA)ZIG)
Az—0 Z
0)= lim ——————~
/ ( ) Az—0 z—=0
where z — 0, in any manner in Complex Plane.
Along the x-axis, y=0 and z=x

3.,..3
X~ +ix
——F——0
— 0 2 1+ .
" f/(0)=xlim M: lim—* = lim @
h—0 X x—0 X x—0 }/{

=1+i
Along the y-axis, x=0 and z =iy

—y3 +iy3

f(y)=1(0) v

" £(0)= tim L .
iy—0 1y iy—0 1y
= i2'+i = i(ifrl) =1+
l l

Let z —0 along the line y=x, x=y,and z=x+ix=x(1+i).

F)=-£0) . i i i

“0)= lim ———— 7 =]im —2——=lim =
f( ) x(1+i)—>0 x(1+i) x—0 /2{[(1_'_1') x—0 1+ix 1+

Hence, f’(0) is not unique.

. The given f(z) is not differentiable at origin.

4) If f:G—C defined by f(z)=u(z)+iv(z) is analytic and

suppose that W =wy(u,v) be any continuously differentiable function.

prove s (32'+( 3] - (3] (3] |1 1o

Solution : Let z=x+iy and f(x,y)=u(x,y)+iv(x,y)

Given, f(z) is analytic.

Cauchy Riemann equations are satisfied.
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du v ou —ov

and 24 = (1)
ox ay dy ox
Now, y=wy(u,v) where u=u(x,y) and v=v(x,y)
Y and v exist.
ox dy
2 [y ()]
ox
_ 8\|I Ju N oy ov )

du Oox dv  Ox
Similarly,
8\|f=8\|1.8u+8\|f_8v
dy ou dy dv Ody
By C.R. equations
oy _ — oy ' ov aw ou 3)
dy ou ax oy Ox
Squaring and adding equations (2) and (3)

(awj2+ oy zz(au au)2+(a\p avj2+2 v o oy v
ox dy du Ox d du ox dv ox
{B_\v ijﬂ(a_w ﬂf_zaw du dy du
du  Ox o ox du ox dv  oOx

]33
@@ e

f 1s analytic at z.
= f 1s differentiable at z.

Fe) =i O and ()= - 2

o =2 (2] () 2]
S RE R R eI,

5) Prove that the function Re z is differentiable anywhere in C.

Solution : - f'(2) (a unique limit)

f(z+Az)
Az

as Az — 0 in any manner in C plane.
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Here f(z)=ReZ
. f(A+A7)=Re(z+Ac)

6) Prove that Cauchy Riemann equation can be written polar Co-
. ou 1 dv ov -1 du
ordinates as —=———and —=— —.
or r do or r 26
Solution : Let f(r,0)=u(r,8)+iv(r,0)

Let x=rcos0 and y=rsin0

_[2, 2 =1y
=r=4x"+y~ and B =tan (4)

Now, u=u(r,8) where r and 6 are functions of x and y.
ou du Or N du 06

ox or ox 00 ox

r=«/x2+y2 and G:tan_l(%)

o Zx 3 # cos @ _ cosh
ox 72 /x2+y2 /
and
39 _ 1 . X[—x_zyJ= —2y - —rs;ne _ —sin®
A A T
ou  du ou ( —sin© J
—=——.cos0+——
ox  Or 20 r
(1)
Similarly, 21 0% O ou 98 ou it cose. O
dy dr dy 090 dy or r 0
@) |
Similarly, 27 = cos, 2" _ SN0 v
ox or r 00
3)
and i=sin9. ov + cos® : o
dy or r 00
(4)
By Cauchy — Riemann Equations
ou dv ou —dv ou 9v
= and = = — =0
ox dy dy ox ox dy
Consider,
u _ v _ ou (cose)—La—usine—isine—iicose
ox dy or r 00 or r o
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or r 0 Jor r 90
(5)
and a_u i — O
dy  oOx
ou 1 ou dv  sin® ov
——sin®+—cos@.—— +cosH. - =0
or o r €08 00 €0’ or r 00
sine(a—u—i ij+cose(i.a—u+i J—=0
Jor r 00 r 00 or
(6)
Multiplying equation (3) xcos0 and equation (6) xsin6 and adding.
o (du 1 ov ) ov u
0] ——— — | - 0.cos0 F— ——| =0
o8 ( or r 00 j S o8 or r 00
+ sinzeia—u—i i) — sin©.cos0 4 +__u = 0
or r 00 or r 00

Multiplying equation (3) xsin® and equation (6) Xcos® and
subtracting.

sin0.cos O dt - — sin29(i+i a_uj =0
Jor r 00 Jor r 00

— sin0.cos O du - + c:osze(i+L a—”) = 0
Jor r 09 Jor r 00

—(sin26+cosze)(av +L a—”} =0

or  r 08
‘. —(sin29+cos2 9) ( i +i a—uj=0

0 r or
v 1 Ju
LN )
or r 00
v _ 1 o
or r 00
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6.5 THE FUNCTIONS e%,sin(z),cos(z) etc

Exponential Function : The exponential function in Complex

Plane C denoted by e, is defined by as
. o N Z2 Z3
e” = —=l+z+—+—+
= on! 20 3!

1) The exponential function f(z)=e"is analytic in the whole
Complex Plane and f'(z) = f (z) with f(0)=1.

_9

R= lim

n—>o0

= lim | (n+1)]

n—>oo

= lim
n—yoo

Apy1

The radius of convergence of the given power series is R =oo.
.". The power series converges for all z and convergence is uniform
for each compact subset of C.
.. By using corollary.
[If f(z)=) a,z"has a radius of convergence R>0 then f is

analytic in B(0,R)]

f(z)=¢" is analytic in whole Complex Plane.

) 2n+1

oo 2n
Note: Similarly, sinz= ,COS 7= <
Yo Sz ;(2n+l)! ¢ ;;(2;1)!

are analytic in

whole Complex Plane.

Definition :
Entire Function : If the function f is analytic everywhere in whole
Complex Plane C (except at «) is called an Entire function or

integral function. e.g. e*,cosz,sin z.

6.6 SUMMARY

1) A function fis said to be analytic (or holomorphic or regular) at a
point z =z, if f1s differentiable at every point of some nbd of z.
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2) If the power series » a,z" has radius of cgs. R>0, then
n=0

f(z)=Ya,z" is analytic on B(0;R).

3) Let u and v be real valued function defined on the domain G < C
and suppose that u and v have continuous partial derivatives then

f:G— Cdefined by f(z)=u(z)+iv(z) is analytic iff u and v
ou _ 9v ou v

satisfy Cauchy Riemann equation. i.e. —=—— and —=———.
x  dy dy ox
© N Z2 Z3
4) =) =l+z+—+——+
ol 21 3

6.7 UNIT END EXERCISES

1) Give an example of a function which is not differentiable at the
origin but the partial derivatives exist and satisfy the Cauchy-
Riemann equations there .

Solution: Consider f:C — C defined by
Fley =200 ()2 0,0
y
=0 (x,y)=1(0,0).
£,(0,0) =0 similarly f,(0,0)=0
f(z)-f(0)

<

JS@-f0)_ «a ~for z#0. =The limit depends
Z 1+a

x2+

But lim__,, =lim, ) %(0,0)%does not exist. For, on

the line y=ax-.

on real number «.

2) Check at what points does the function f (z):|z|2 is
differentiable.

Solution : f(z)=|z]*. Let z=x+iy.

= f@=x"+y". s fo=2x, f,=2y
= f has continuous partial derivatives for all =.
- f 1s differentiable at ze C, provided that f, =if, .
=2y=2ix=2y-i2x=0=(x,y) =(0,0) .
.. f1s differentiable only at the origin (0,0)
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3) Show that f(z)=x%+iy* is differentiable at all points on the
line y=x.

Solution: “ f(z)=x"+iy>.. f, =2x, f, =2iy

= f, fyexist and are continuous functions of z=x+iy

= fy=2iy=if, =2xiiff x-y=0.

This 1is possible iff x=y.

= By proposition fis differentiable at all points on the line
y=x.

4) Suppose fis analytic in aregion and at every point , either
f=0 or f2=0. Show that fis a constant function.

(Hint: Consider The derivative of f 2(2))
5) Find all analytic functions f =u+iv with u(x,y)= x2—y?

Solution: - f =u+iv is analytic.
-+ f satisfies Cauchy- Riemann equations .

DUy =V, V=Tl oV, —2y=-v,
=V, =2x, v, =2y.
~.v(x,y)=2xy+c,where ¢ is any real constant.

= f=(x*—y?)+2ixy+ic

6) If fis a analytic in a region and if | f | is constant there , then

show that f is constant.

Solution: If |f|=0, the proof is immediate , otherwise assume
that |f|¢0.Let f=u+iv=u®+v? £0.

~ Taking the partial derivatives w.r.t. x and y, we see that

s+ vy, =0, uuy, +vvy =0.
Making use of the Cauchy- Riemann equations, we get,

souy —viy, =0, vuy +uuy, =0

= W+ )u, =0 = u, =v, =0, similarly u, =v, =0.

= f1s constant.
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7) Show that di(sin(z)):cos(z). (Hint: Use
Z

that sin(z) = %(eiZ —e™))
l

8) Find a power series representation for cos(z) .

n

Solution: - cos(z) = %(e"z +e D) et = fo:oz—'
n.
. i\ e \n
elZ — 200:0 (ZZ) , elZ — Zoo:() ( ZZ)
" on =l
l(e"Z reiy= ¥ bl
2 n=0 (2n)!
o (_1\1 .,2n 2 4 6
S COS(Z) = Z % = l—Z—+Z__Z_+
n=0 (2n)! 21 4! 6!

9) Show that log(x*+ y?)is harmonic in C-0.

Solution: Let u(x,y)=log(x>+ ).
2x 4 = 2y C—0

> u. = =
X
y x2+y2

x> +y°

- 2y2 —2x? 2x? —2y2
Uy =5 55 Uy = "5 55
C+y2)2 Y ()2
= Uy, Uy exist and are continuous functions of z on C-0,
also v u,, +u,, =0.

= u(x,y)1is harmonic in C-0 .

10) For the function f{z) defined by

f(z)z(zz) if 2#0
= 0 if z=0

Prove that C-R eq. are not satisfied at the origin , but the function
f(z) is not differentiable at the origin(2009)

11) Find the holomorphic function f{z) whose real part is 2xy+2x
(2008)

12) Find the analytic function f(z)=u(r,0)+iv(r,0) whose real

part is 2 cos 20.
127



-2
4

13) For the function, f(z) defined by f(z)= % z#=0,
0, z=0

Prove that the Cauchy Riemann equations are satisfied at (0,0) but

the function is not differentiable at (0,0).

52
a2

14) If f:G — C is analytic, prove that 5
y

82
—+
x>

15) Construct an analytic function f (z)=u(z)+iv(z), whose real part

is cos x cosh y. express the result as a function of z.

16) Construct an analytic function f(z)=u(z)+iv(z), whose real

partis e* (xcos y—ysin y).

Express the result as a function of z.

% % %k %k %k
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COMPLEX INTEGRATION

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Complex Line integrals

7.3 Integration along piecewise smooth path, The Closed
Curve Theorem

7.4 Summary
7.5 Unit End Exercises

7.0 OBJECTIVES

Through this unit we shall study the concept of complex

integration, an integration of the form [ f(z)dz taken over a
Y

piecewise  smooth path y further we shall derive certain

properties of this integral. We would like to know further that

what can be the integral of an entire function along a

boundary of a rectangle in a complex plane, the answer is
given in form of a closed curve theorem.

7.1 INTRODUCTION

We have to recall theorem on differentiability of a power

series that states that a power series f(z)= Y a,z" converges for
n=0

Z|CR. Then f(z)exists and f(z)= fj na,z" ' on the open disc

n=1
|Z|CR . Therefore —an everywhere convergent power series

represents an entire function. Our main goal in this unit is to
study the converse of this result namely that every entire
function can be expanded asan everywhere convergent power
series. This result has a consequence that every entire function
1s infinitely differentiable. We shall also arrive at these
results by discussing integrals. Let us start by defining a
Line integral.
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7.2 COMPLEX INTEGRATION

Definition : Trace of a curve :
If x:[a,b] >C is a curve, then the set {x(¢)} is called the

trace x and is denoted by {x} ={x(¢):a <t <b}
The trace of x is always a compact set.

Definition : Contour : A contour is a piecewise smooth curve.

Definition : A complex valued function f is said to be continuous on
a smooth curve x:[a,b]—>C if, f(z)=f(x(r))=u(t)+iv(r) is
continuous.

7.3 INTEGRATION ALONG A PIECEWISE SMOOTH
PATH, THE CLOSED CURVE THEOREM

Definition : Complex Line Integral :

Suppose f is complex valued, continuous and defined on open set
GcC and that x:[a,b] > C is a piecewise smooth curve with
{x}caG.
Then, the expression

n-1 Jj+1

jf )dz = jf[x ¥ (1)dr =3 [ f[x(1)]
J=l i
where a=1,<ty<t<..<t,_;=b 1s called the complex line integral

of f over x.
This curve x is called path of integration of this integral.

Connection between Real and Complex line integral :
If f(z)=u(z)+iv(z) then the complex line integral If(z)dz
X
can be expressed as

J‘f(z)dz=J‘ udx—vdy+ijudy+vdx

X X

Theorem : Let x be such that x(t)=x(t)+iy(t), a<t<b is a
smooth curve and suppose that f and g are continuous function on
open set G c C containing {x} then ;
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i) Ioc f(2)dz= OCJ. f(z)dz where o is a complex constant.

ii) I[f(z)+g(z)]dz=ff(z)dz+fg(z)dz

X

Example 1 : Evaluate I L , where x(t)=e", 1€[0,2n].

Z
X

Solution : By the definition of complex line integral.
b
[£(2)de=[ r[x(e)] X (r)dr
X a

Here, f(z):i, x(t):e”, a=0, b=2m
z

Flx(1)]= elt LX) =ie
Laf L
0

X

/dt— jldt—l[ ]O =2ni

Definition : Rectifiable Curve :A curve is rectifiable if it has finite
length.

Note : Every piecewise smooth curve is Rectifiable.

Definition : If x is s.t. x().a <t < bis rectifiable, then its length L(x)
b

us defined by L(x) =J' | x'(¢) | at
a

Example 1 : Find the length of the curve x(r)=4¢", t€ [0, 2n].

21

Solution : Length of x=L(x)=I 4i " "ar
0

2n m
= .[ 4dt = 4'[ d_ =
0 0 !
Example 2 : Find the length of the curve x(7)=(1+i)7, 1€[0,4].

Solution :
W x(f)=(1+0)r

¥ (1) = (1+1)
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Length of

x:L(x)=}\(1+i)\dt=]1\/ 12412 dt=}ﬁdt:ﬁ[r]§:4ﬁ
0 0 0

Definition : Opposite Curve :
If x:[a,b] > C is a given curve then, the opposite curve —x to x is
defined as —x(1)=x(a+b—t); t€[a,b]

Example : Let x(1)=¢"; t€[0,7].

N\ N
x -x
el AN 1N
< i T > € 1 n >
v ¥
Fig. 7.1

Definition : Let x :[a,b]>Cand x,:[a,b]>C be two smooth

curves such that x;(b)=xy(ay). Then we define the path
x1+ x5 :[a, by +by —ay ]| - C as follows.

(q+x)() = | x(1) if 1€ [ay,b]
OR
(qUx) (1) = | x(r=b+ay) if t€[by, b +by—ay]

The path x; +x, is called the sum of two curves x; or x, or the
union of two curves x; and x, .

Example 1: Let x(r)=1, 1e[0,3] and x,(t)=3¢", te [0,3%]
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A
)
€ > >
0 C
\ ) 3
v
Fig 7.2

Theorem : Let x be s.t. x(t)=x(t)+iy,(t) be a smooth curve and

suppose that f is a continuous function on an open set G containing
{x}. Then,

i) [ f(@)de==[f(2)dz

i) | [f(2)dz|<[]s(z)]]dz]
ii)  If M= l\flaé]‘ f(x(t))‘ and L=L(x) (Lengthofx)
tela,
then If(z)dz <ML.

(This property is called standard estimate for the integral.)

v) If x and xy, are smooth curves in G then,

_[ f(Z)dz=jf(z)dz+Jf(z)dz, where x|+ x, are sum
X]+x2 X1 b))
of 2 curves.

Proof : i) By definition of opposite curve
—x(t)=x(a+b-1)

By definition of complex line integral.

b
I f(Z)dZ=If[—x(t)][—x'(a+b—t)]dt
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Put a+b—-t=u = dt=—du, When t=a, u=>
t=b, u=a

[ f(z)dz=- jf[x )].[ % (u) jf[x

) If j f(z) dz =0, then there is nothing to prove.

Let I f(z)dz#0

Put u=¢"", where e—arg{j f(z)dz]

X

lu|=1
2)dz = [ f(z)dz=u[ f(z)dz (1)
| 2|=Re] z| x x
z)dz |=Re jf(z)dz _R{ujf(z)dz] from (1)
:Rej 7(2) jre[uf )dz |
sH:f(z)dz\ x (" Rez<|z|)
=[lul| £ (2)]] e
Az <[ | 7(2)]| ez C+ ful=D
iii) Given that, M = ti\ff’;i]‘ F(x(1))| and L=L(x)
By using part (ii),
[ r(2)dz|<[|r(2)] ]
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b b

If(z)dz :Hf(x(t))H x'(t)‘dt SM”x’(t)‘dt=ML(x)

a

[ £z)az|<mL

iv) Let x;:[a;, 5] > G and x, :[ay, by ] > G with x;(by) = x5 (ay).
We define X1+ Xy :[al bl +b2 —Clz] -G

x (1) if 1€ [ay, ]
(q+x)(r) = ,
.Xz(t—b1+a2) if tGI:bl,bl‘sz—az:I
x| +x, has derivative x{(t) in [a;.b] and (th +ay) in
[y, by + by — a5 ]
b+by—ay

I f(z)dz= f L0 +x2) (0] (x +x2) (1)t
e no b+
:Jf[xl(t)]xi(t)dt+ j (3 (t =ty +ay) (1 by +ay) ]
a h
1 bthy+h3
=[rQ&+ | floli-h+a)b(i-h+a)d]
X b

Put t—-b+a,=u = dt=du,then t=b, u=a,, t=b+by—a,,
I/l:bz.

by

_J'f dz+j f[xz(u)]x'z(u)du
a

—If dz+j f(z)dz

X2
Note : i) If x is piecewise smooth then, there is a partition

Pra=ty<t;<..<t,=b of [a,b] s.t. the restriction x; of curve x to
[te—1» 1] is smooth for 1<k <n.
X=X +X +...+X,

. If(z)dz: I f(z)dz=jf(z)dz+j f(z)dz+...+_[ f(z)dz

X]+x0+Xxp, X[ X Xpn

ii) R{J.f(z)dz}tj Re[ f(z)]dz
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Example 1: Let f(z)=1and x(¢)=it, r€[0,1].

b 1
[ £(zydr=] f[x()] ¥ (e)dr =] Lidi=i

0

R{I f(z)dt}:Rei:O (1)

1
and J-Re[f(z)]dz:'[l.idtzl (2)
X 0

From equation (1) and (2)

Re!j f(z)dz}tj Re[ f(z)]dz

Change of Parameter :
Let x:[a,b)] >C and o:[c,d]>C be two smooth curve.

Then the curve ¢ is equivalent to curve x if, there is a function
@:[c,d]—[a,b] which is contain non-decreasing and with &(c)=a

and B(d)=b s.t. 6=x0J.

Here, we call the function & a change of parameter. This
new curve xo is called the Reparametrization of the curve x.

Theorem : Let x:[a,b]—>C be a smooth curve and suppose that
D:[c,d]—>[a,b] is a continuous non-decreasing function with
D(c)=a and D(d)=b. If f is continuous on {x} then

jf(z)dz= j f(z)dz

X xoJ
Proof : Given that x:[a,b)]>C is a smooth curve and

@:[c,d]—[a,b] is continuous non-decreasing function with
D(c)=a and D(d)=b.

By hypothesis, there is a change of parameter & |[c,d]| — [a,b] s.t.

(xoD)(s)= x[@ (s)]
and  (x0@) (s)=x[D(s5)]D () for se[c,d]

d
J‘ f(z)dz =J‘ f[x(@(s))] (xo2) (s)ds

xolJ
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d
= | 1[x(@(s))] X (2(s)) @'(s)ds

Put 1=(s) =  dt=(s)
when s=c, r=0(c)=a and when s=d, r=3(d)=b

b
[ r(2)dz=] £(x(r)) x(c)ar
xoJ a
J' f(z)dz=J.f(z)dz
2.1/ X

Fundamental theorem of calculus :
If f is continuous on [a,b] and F’(x)= f(x) in [a,b] then

b
[ f(x)dx=F(©b)—F(a).

Primitive or Antiderivative of a function :
A function f:G — C 1is said to be primitive or antiderivative of f

in G if, F is analytic in G and F’(z)= f(z) in G.

Theorem : Let G be an open set in C and suppose that f:G — C is
a continuous function with primitive F:G —C. If x:[a,b] > G isa
smooth curve, then If(z) dz = F[x(b)] - F[x(a)].
X
In particular, if x is closed then I f(z)dz=0.

X
Proof : Given that, f:G—C is a continuous function with

primitive f:G — C.

F(z)=f(z)

If x is closed, then x(a)=x(b).

[ £(z)dz=F[x(a)]-F[x(b)]=0

137



.2

Example : Evaluate j 2% dz where x(t) =+ te [0, 7].

T
X

Solution : Given integral is j 22 dz.

X
Here, f(z)= 22

3
F(z)= ZT is primitive of f.

a=0, b=m.
By previous theorem,

J7(@az=[F(+()],

2N\ 2
J.ZZdZ{J{HLH = (HL] .i
. T 0 T 3

1 2y 1 )3
=5 (nﬂTJ -0 =?[(n+zn) ]

3
T A3
=—(1+
= (1+)

Definition : The index of curve or winding number : If x is a
closed rectifiable curve in C and if ae{x}, then,

n(x a)= 1_ j dz is called the index of x w.r.t the point o.
2 T Lo

It is also called the winding number about o.

N B ¢ x @x
J n(x; oy=0
N(xa)=1 n(xo)=2 N(xc)=-1
Nn(xp)=0 n(xp)=1
Fig. 7.3
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AN
x .
e X3x(t)={zzz—oc=re”,te[0,47t]}
< neEoy=2 > |Z_a|:|r€it|:|r||eit|:|r|
Fig 7.4

Theorem : If x:[0,1] > C is a closed rectifiable curve and o.¢ {x}
then M(x; ) is an integer.

Proof : Define g:[0,1] - C by,

te[0,1]

e)=] = €
(put x(s)=z = x'(s)ds=dz)
To prove that g(1)=2min for some integer 7.
from equation (1),
(- * )
(1)= o 1€ [0,1]
Now i[e_g(t)(x(t) Oc)}=e_g(t)x'(t)+(x(t)—(x)e_g(t)(—g’(t))
dt
— 80 () (x(r= 1) || Z ey
e {xm M{ — H [¥(1)-%(1)]
=20 0=0

e_g(t).(x(t) —a) = constant = K (say)

OR x(1)-a=K.e" (2)

To find K, put =0
x(O)—OczKeg(O)zKeO:K {°-'eo=1}
K=x(0)-a
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Putting the value of K in (2), we get
x(1)— o= (x(0)— ).V

Put 7 =1,
e _x()-a =1 (" xis closed x(1)=x(0))
x(0)-a
o2 2min (" Q2min _ 1)
g(1)=2nin
For some integer n substitute the above value in (*), we get
2nin =
in= | —
X
1 dz
n=n(xa) 2mi { -0

Component of a Metric space:

A subset D of a metric space X is a component of X if D is a
maximal connected subset of X i.e. D is connected and there is no
connected subset of X that properly contains D.

(&Y
)
J GzC/{x}
Fig 7.5

Note: If G is open then component of G also open.

Simply and multiply connected domains :

Definition : A domain D is said to be simply connected if any
simple closed curve which lies in D can be shrunk to a point without

leaving domain D.

Definition : A domain which is not simply connected is said to be a
multiply connected domain.
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Green’s Theorem :
Let M (x,y) and N(x,y) be continuous and have continuous

partial derivatives in a domain Q and on its boundary x, Green’s
theorem states that,

IN oM
J‘de+Ndy=J.J‘(E—WJd dy

Cauchy Theorem :
Let G be an open set in C and suppose that x:[a,b] > G is a

smooth curve. If f is analytic with f~ continuous inside and on a

simple closed curve x then, J- f (z) dz=0.

G
x J

X

Fig 7.6
Proof : Let z=x+1iy,

f(2)=u(z)+iv(z)
and Q=Intx
If( )dz = I[u +iv( dx+ldy)

:j(udx—vdy)+lj-vdx+udy (1)

Given that, f is analytic in Q and on its boundary x.

f 1s continuous in Q and hence u and v are continuous.

Also, given that, f’ is continuous inside and on a simple closed
curve x.

Partial derivatives of u and v are also continuous in Q and on
its boundary x.

By Green’s theorem

—dv  du
J-udx—vdyz.g{ P —gjdxdy

X
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ou ov
and jvdx+udy=g(¥—gjdx dy

X

Substituting above values in equations (1), we get
-9
[ f(z)dz:jj( o
X
X Q

Given that, f is analytic.

Cauchy Riemann equations are satisfied.

du —ov and dv  —ov

ox  dy dy  ox
;[f(z)dz=ﬂ{g—;t——yjdxdy H (a—;——yjdxdy
jf(z)dz:O

Note : In Cauchy’s theorem, Cauchy assumed the continuity of
derived function f’(z). It was Goursat who first proved that this
condition can removed from the hypothesis in the theorem. The

revised form of the theorem is known as Cauchy- Goursat theorem
which we shall study in the next chapter.

8.4SUMMARY
n-1 Jj+1
1)jf )dz = jf[x ¥ ()= [ f[x(1)]
J=1 i
If J‘udx—vdy+l_|.udy+vdx

2) If x:[a,b] > C is a given curve then, the opposite curve —x to x

1s defined as
—x(t)=x(a+b-1); tela,b]

3) If x 1s piecewise smooth then, there is a partition
P+a=ty<t;<..<t,=b of [a,b] s.t. the restriction x; of curve x to

[te_1» 1] is smooth for .- If(z)dz = I f(2)dz = If(z)dz85|h| <0

—X,

F(z+h)—F’(z)=f(z)j f(w)dw—jf(w)dw: j f(w)dw+jf(w)dw= j f(w)dw
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F(z+h)-F(2) f(z)
h

lim =f(2)=— jf( )elw -

h—0

z+h z+h

jf(w)dw f(2 jdw =— j (f (W)= f(2))dw

z+h z+h

h j|f(w) £(@)]-Jdw| < ej|dw| ||g|h|

1SkS
jfz dz= [ f()de=[f()de+ [ f(2)dzt.+ [ f(2)d
X x1+x2+xn X1 X2 *n

X=X +Xx)+..+x,

4) Let x:[a,b]—>C and o:[c,d] > C be two smooth curve. Then
the curve o 1is equivalent to curve x if, there is a function
@:[c,d]— [a,b] which is contain non-decreasing and with &(c)=a

and J(d)=b s.t. 6=x0.

5) Fundamental theorem of calculus :
If f is continuous on [a,b] and F’(x)=f(x) in [a,b] then

b
[ f()dx=F(b)-F(a).

6) Primitive or Antiderivative of a function :
A function f:KC is said to be Primitive or Antiderivative

of f in G if, F is analytic in G and F'(z)= f(z) in G.

7) The index of curve or winding number :
If x is a closed rectifiable curve in C and if ae{x}, then,

e E—

5 is called the index of x w.r.t. the point o.
T
X

72—
It is also called the winding number about o.
8) A domain D is said to be simply connected if any simple closed

curve which lies in D can be shrunk to a point without leaving
domain D.
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8.5 UNIT END EXERCISES

1) Suppose f(z)=x>+iy> where z=x+iy. Then evaluate
je f(2)dz, where

c:z(t)=t+it,0<t<1.

Solution: Consider c: z(t)=t+it,0<t<1.Then z(t)=1+i, and

I f@dz =[5 +ir* )1+ i)t =%.

2) Find the integral of the function f(z) = zi taken over a circle

of radius R .

Solution: -_-f(z):l: 2x 5= 2ly 5
Z XxT+y" x4y

v c:72)t)=Rcos(t)+iRsin(1),0<t<27,R>0. Then

| f(2)de= ;gﬂﬂ Coz(t ) j —(i Si;(t ) ﬂ(—R sin(f) +iRcos(r)) = 27i

3) Let ¢ be any smooth curve in. Let f(z)=1. Then find
[ f(2)dz.

4) Let cbe the Unit circle and suppose that f <1 on ¢. Then
prove that jc f(2)dz < 2rm .

(Hint: M =1,L=27. Apply ML formula.)

5) Let cbe any closed curve not passing through the origin ,
then show that

jcizdz =0 :jc *dz =0,k -1,k is any integer.
Z

(Hint: -~ g(z):iz:F (z) where F(z)=—l and F(z)is analytic
z z
everywhere except at the origin .)

6) Evaluate jc(z—i)dz, where cis the parabolic segment
c:z(t) =t+it?,-1<t<1
Solution : Let f(z)=z—i. Then fis the derivative of an analytic

2
function F(z)= % —iz.
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.. By proposition , jc f(2)dz = F(z(b))— F(z(a))

2 2
IC(Z—i)dZ=|:%—iZ} —l:%—iz} =0'.'jc(z—i)dz=0.
1+ 1+i

1
7) Find fyzzdz. Where (a) y is the upper half of the Unit circle

from +1 to -1.
(b) ¥ is the lower half of the Unit circle from +1 to -1.

(Hint: (a) Let y(¢) =cos(¢) +isin(1),0<t<7x
(b) Let y(r)=—cos(t)—isin(t), 71 <t <271

8) Let y(r)=2¢", for —x<r<x.Find jy(zz—l)_ldz.

9) Prove the following integration by parts formula. Let f and
gbe analytic in G, let y be a rectifiable curve from ato bin G.

Then show  that f},fg '=f(b)g(b)—f(a)g(a)—f},f g .

10) Evaluate the integral [ (| z|—e®sin z+z)dz  where v is the
g
circle | z|=2.

% %k 3k k %k

145



CAUCHY THEOREM

Unit Structure

8.0. Objectives

8.1. Introduction

8.2. Cauchy Theorem for an Open Star shaped Domain
8.3. Cauchy Integral Formula

8.4. Summary

8.5. Unit End Exercises

8.0. OBJECTIVES

Our main goal in this unit is to show that a function
analytic in a disc can be represented as a power series. We
shall prove Cauchy’s theorem for an open star-shaped domain
and Cauchy integral formula for an analytic function f in a

disc.

8.1. INTRODUCTION

We have seen that a function is analytic on a closed
curve cbut jc f#0. For example consider the function
f:C-0->C defined as f (Z):l_ In this example

z

I‘Z‘:l f(2)dz =jzzlldz:27ri. Whereas , the closed curve theorem
Z

states that if fis analytic throughout a disc, the integral

around any closed curve is 0. We shall try to find the most
general type of domain in which the closed curve theorem is

valid. We should note that f (z):l is analytic in the punctured
z

plane C—-0. We shall see that the existence of a hole at z=0

allows us to construct an example above, for which the

integral is non-vanishing. The property of a domain, which

assures that it has no holes is called simple connectedness.

The formal definition is as follows.
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Definition : A domain D is said to be simply connected if any
simple closed curve which lies in D can be shrunk to a point without
leaving domain D.

Definition :Singular point :
A point at which the function f 1is not analytic is said to be a
singular point or singularity of the function f.

2
eg. f(x)=

Z
z-3

Here, f 1is not defined at z=3 and hence not analytic at

z =3, therefore z=3 is singular point.

8.2 CAUCHY THEOREM FOR AN OPEN STAR
SHAPED DOMAIN

Theorem : Let G be star like w.r.t. point zy and suppose that f is
analytic in G. Then there exists an analytic function F in G s.t.

F'(z)=f(z) inG.

In particular, I f(2)dz=0, for every closed, piecewise smooth curve

X

xin G. (2008)

Proof : Given that, G is a starlike w.r.t point z; and f analytic in G.
By definition, [zg,z]cG ~zeG
Fix a point z in G and define

Fl)= | F(e)ae=] £(e)a

[20. 2] 20

Fig 8.1
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Choose he C with | h|>0 s.t.
B(z(h))c G and [z,z+h]cG
Since G is starlike w.r.t. point z;.
The triangle A= [zo, 7,2+ h] is contained in G.

f 1s analytic inside and on the boundary of the triangle A.
By Cauchy Goursat theorem,

] f(Z)dZ(= ] (i)dij
8a 8a

re)ae+T re)aes | re)ae=o

20 z z+h
z+h
I f(& F(z+h)=0
z+h
. F(z+h)- jf
z+h z+h

F(z+h)=F(2)=h f(2)= j F(&)de- [ f(z)at

z+h

F(z+hz—F(Z) ~ :_ j [f (z)]di
z+h
F(z+h2—E(z) ﬁ f | £(8)-£(2)]| €| (1)

Given that, F' is analytic in G.

.". f is differentiable in G.

.. f is continuous at a point ze G .

Fora given £>0, 3 >0 s.t.| f(§)— f(z) |<e whenever |§-z|<3

Choose |&—z|=|h|<e
From equation (1),

F(z+h)-F(z)
h

z+h

[ lagl= | n]

By definition lim F(z+h)-F(z) _
h—0 h

F/(2)=£(z) in B(=

hl)
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Since z is fixed but arbitrary.
F'(z)=f(z) inG. (2)
— The derivative F’ exists and is continuous at every point z in G.
F 1s analytic in G.
From equation (2),
F is primitive of f.
By using the theorem
I f(z) dz=0 for every closed, piecewise smooth curve x in G.
X

In Cauchy’s theorem, Cauchy assumed the continuity of derived
function f’(z). It was Goursat who first prove that this condition

can removed from the hypothesis in the theorem. The revised form
of the theorem is known as Cauchy-Goursat theorem.

Cauchy-Goursat Theorem : (Cauchy Triangular Theorem) :

Let f be analytic in an open set G D. Let z,z5,z3 be points in
G. Assume that the triangle A with vertices zj,z,,z3 IS continuous
in G then I f(z)dz=0 where JA is the boundary of a triangle A.

X
(2007,2008, 2009)
Proof : Given that, the triangle A with vertices zj,zp,23 1S

continued in G. Let my,my,m; be mid points of line segment
[21,22].[22, 3], [23, @] respectively.

Then we get 4 smallest triangles Al, Az, A3, A%,

Fig 8.2
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j f(z)dz= _[ f(z)dz
0A

LMy My 232y

= | r@de+ | rR)d

Mayzymyms My 2o 1My My

] r@de+ [ f(R)d

My 233ty msmy

+ | r@d+ | f()d

mym, myma
:J' f(Z)dZ+J. f(z)dz+'[ f(Z)dZ+'[ f(z)dz
ol A2 I an’
4
=> | fl(2)dz
K=1 oK

Among this 4 triangles, there is one triangle, call it A, s.t.

[ f)a|2| [ f(a)dz| K=1234
aAl aAK

If(z)dz <4 I f(z)dz
0A 0A]

Let L(0A) be the perimeter of a triangle A, then

L(0A;) =%L(8A) and diam. A, =% diam. A (diameter of triangle

means the length of its largest side)

Now, perform the same process on the triangle A; getting a triangle
A, with analogus properties.
(1) A:AoDAlDAZ

<& [ fla)az

oAy

(ii)

j f(z)dz
oA

1
(ii)) L(94,) =?L(8A)

. 1
(1v)  diam A, = — diam A
2

Continue the process and at the n® stage, we get
(1) A=AgDA DAy D..DA,
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(ii)

| r2)de|<4"| [ f(2)dz
oA oA,

i) L(3A,) :?L(BA)

. 1
(1v)  diam A, =——diam A
2}’!

A metric space x is complete iff for any sequence {F,} of

non-empty closed sets with FoFE>Fo.. and

diam F,, — 0, ﬂ F,, consists of a single point.
n=l

Since C is complete and {A,} is a sequence of non-empty closed

sets with Ag=AD A D..

n—y0 n—y0

n
and lim diam A, = lim [(%j diam An]

=0 { lim x”=0if|x|<l}

n—o0
By using cantor’s theorem,

ﬂ A,, consists of a single point say z.
n=0
In particular zpe AG.
Given that, f is analytic on G.
.*. f is differentiable at a point zye G forevery €¢>0, 33>0 s.t.

f(z)=f(z0)

1=

—f"(z9) | <& where 0<| z—zy|<e

By increment theorem,
f(2)=f(z0)+(z=20) f'(z0) +(z=20)n(z) with n(z) is
continuous and | n(z)|<e for | z—z|<3.

[ £(R)dz= | f(zo)dz+ [ (z=29) f'(z0)dz+ [ (z=z9)n(z)dz
A,

A, A, aA,
=0+0+ j (z—2z0)n(z)dz ( jf(z)zO if  x is
oA, x

closed cure and here dA,, is closed.)

J £2)dz|< [ |z==|[n(2)|] ]
A A,
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Choose n s.t. diamA,, = Ln diam A< 9.
2

z0€ A, = A, < B(z;9)

]
’——- -.~

L 4 L
X d L
o’ e
L4 §
4 4
V4 $
/4 \
q | )
4 |

: o %
| |

| %

[ | X 1

[} ]

| | |

1 |

1 J
X \l, ’
U4
\‘ ’l
. An ~
L 4
5 ~ - P 4

-~
~.-Il-—-'

Fig 8.3

[ f(2)dz|<ediama, | |dz|
oA oA,

(" |n(2)|<e and | z—zy |< diam A,))
=ediam A, L(dA,))
("7 L(0A,)= J | da )

A,

=8.LdiamA.iL(aA)
2" 2

.o I 1
("s" diam A, :7dlamA and L(aAn):?L(aA)
4" I f(z)dz|<ediamA.L(0A)
0An

I f(z)dz|<ediam A.L(9A)
aA,

j f(z)dz |<4" jf(z)dz)
oA o,

Since €>0 is arbitrary.

I f(z)dz=0
0A
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Check your progress:

1) State and prove Cauchy Goursat Theorem for a closed
quadrilateral.

2) State and prove Cauchy Goursat Theorem for a closed Rectangle.

Theorem : Let G be an open set in C. Let f be analytic in G except
possibly at a point zpe G. Assume that f'is continuous in G and that

the triangle A with vertex at zy is contained in G. Then

J- f(2)dz =0, where dA is a boundary of the triangle A.
oA

Proof : Let A=z, z,2,].
Let & be a point on the line segment [z, z] and &, be a point on

the line segment [z, z;].

N

7

N
v

Fig 8.4

Consider the subtriangles,
Ar=[82.20-&1]- Mg =[21.2.&2]. A3 =[§1. 2. &;]

S [ £(2)dz= [ f(z)dz
oA

E22081 21228

= | f@d+ [ f@der [ f(2)d

2208152 1218281 2122828]
= j f(z)dz + I f(z)dz + j f(z)dz = j f(z)dz+0+...
oA oAy 0A3 oA

(by Cauchy Goursat theorem)
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Hf || dz |

oA
Put M = max ‘ f(z ‘
ZEOA
[ ()de|sm [ |de|=ML(3A)
0A oA

As & and &, tend to zj, perimeter of the triangle A; tends to zero

i.e. L(0A;)—0.
[ r(z)dz=
oA
%

A

4 “— g1

Fig 8.5

Theorem : Let G be an open set in C. Let f be analytic G /{o}

for some oe G. If f is continuous on G, then j f(z)dz=0, where

oA
0A is a boundary of the triangle A contained in G.

Star Shaped Domains :
Definition : A set G in C is said to be convex if, given any two

points z and w in G, the line segment [z, w] lies entirely in G .

Not a convex set

Fig 8.6
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Definition : A set G is said to be starlike (or star shaped) w.r.t.
points o.e G if for any point z(#a) in G, the line segment [a, z]

lies entirely in G.

T h

Open sets, closed, half planes
The above set is starlike w.r.t. o if Rez>0,Imz >0 etc. are

Fig 8.7
Punctured disk is not starlike w.r.t .o

Note : Every starlike set is not convex but every convex set is
starlike.

Question : If f is analytic in a simply connected domain D, then
22

I f(z)dz is independent of path in D, joining any two points z
a1

and z, in D.

Solution : Let x; and x,:[a,b] > G be two smooth paths in G such
that X1 ((1) =Xy (a) =7 and X1 (b) =Xy (b) =27.

x(n)#x (1), f4.6(-a,b)

v
D
Z,
X
2 X,
Zy
Z N
~ 7z
X
v
o
Fig 8.8



Form a simple closed curve ¢ which moves from z; to z, via x
and z, to z; via —x,.

f 1s analytic inside and on a simple closed curve G.
By Cauchy Goursat theorem,

jf )dz=0
jf Jdz+ [ f(z)dz=0
jf dz=_—xzj f(2)dz
“y
[ F@a=] 1@)de= | F)a:
X x2 7]

I f (z) dz is independent of path.

Cauchy Deformation Theorem :

Statement : If f is analytic in ¢ domain bounded by two simple

closed curves x; and x, (where x, is inside x;) and on these

curves, then I f(z)dz= _[ f(z)dz where x; and x, are both
A X2

traversed in anticlockwise direction.

Proof : Join two curves x; and x, by lines AB and CD. Denote,

x¢ =lower section of x; from A to D.

u
X
D
A
Y
Fig 8.9
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xu = the upper section of x; from D to A.
x,¢ = the lower section of x, from B to C.
xu = the upper section of x, from C to B.

Form a simple closed curve o; by transversing from A to B
then from B to C by x,u, then from C to D and finally from C to D
and finally from D back to A by xju.

f 1s analytic inside and on the simple closed curve o .

By Cauchy- Goursat theorem.
j f(z)dz=0

. j f(z)dz+ j f(z)dz+I f(z)dz+j f(z)dz=0 (1)
AB

—XouU CD x|u

From a simple closed curve o, by transversing from A to D by x¢
then from D to C, then from C to B by —x,/ and finally from B back
to A.

) f 1is analytic inside and on the simple closed curve o,.

By Cauchy - Goursat theorem,
[ £(z)dz=0
(o}

2

. J f(z)dz+ j f(z)dz+ _[ f(z)dz+_[ f(z)dz=0 (2
x4 DC —xp/ BA

Adding equations (1) and (2), we get

[ f(2)de+ | f(2)dz=| [ flz)dz+ [ f(z)dz|=0

u it ey ou
{If dz:—j f(z d}
It - ] 1
J s st
i

Generalization of Cauchy Deformation Theorem :
Statement : If f is analytic in a domain bounded by non-intersecting
simple closed curves x,x,...,x, where x,xp,...,x, are inside x and

on this curves, then
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jf(z)dz:j f(z)dz+j f(z)dz+..+ j f(z)dz where,
X X1 X2 Xn
X, X{, Xp,..., X,, are traversed in anticlockwise direction.

Fig 8.10

8.3 CAUCHY INTEGRAL FORMULA

Statement : Let f be analytic in a simply connected domain G,
Gc D. If x is a simple closed curve in G and be any point inside x
then

I dz 2mil f (2 ] _y=2mif(a)  where, x is traversed in
antlclockwise direction.

Proof : Given that, f is analytic in a simply connected domain G.
construct a circle I" with centre at a and radius r>0 so that I" lies
entirely inside x.

Fig 8.11
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f(2)
-0
by two simple closed curves x and I" and on these curves.
By Cauchy deformation theorem,
I f(z) o= f(z) & = f(z)=f(o)+f(a)

—a —a —a
X ° r ¢ r <

I dz—J.—f /(@) dz+ f (a)

zZ—O

The function is analytic in a domain which is bounded

dz

(D

or

-
z=0+er it, te [O, 275]

dzzireitdt

e-al=r

z=r+re®, 8e(0,2n]

=Oc+reit, te [O, 275]

o+ret®

/)

o+r

Fig 8.12
2T . gt 21
'[ dz :j lrel,t dz:ij dr=2mi
p Ty e 0
Equation (1), becomes,

J'Mdzzj' f(2)-f(a)

7—a 7Z—a
X

dz +2mi f (at)
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Given that, f is analytic in G.
f 1s differentiable in G.
f 1s continuous in G.
f 1s continuous at a point ae G .
For a given €>0, 3 & >0 such that,

J]z-a] <8 = ‘f(z)—f(oc)‘«s
Choose, r s.t. | r|<3

From equation (2)

1o Sl e ]dz| e
2T . 7—0O dz f(a) < 27 l'[ r {.Z OC_Y}
€ € €
 2mr 1-[|dz|_ 21r 'L(T)_ 21r 21
L fle)
2niJ; =0 dz=f(a)|<e

€ is arbitrary.

I 552 =2mi f (o)

Theorem : Let [ be analytic in a simply connected domain G.
GcC. If x is closed rectifiable curve in G and o€ G [{x}, then
f(2)
z—

ZLmJ. —adzzf(a)n(x;a).

Proof : Given that, f is analytic in a simply connected domain G.
Define F(z) as follows,

f(z)-f(@)  Lio

F(z)= i (1)
(%), =0
f(z)-f(a)

F(z)= is analytic in G / {o} .
-0

(" f(z2)-f(a) and are analytic in G /{a})

z—Q

lim £(2)= lim %#(a)ﬂ(a) by (1)

.. Fis continuous at a point ooe G and hence F is continuous in G.
F 1s analytic in G.
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By Cauchy- Goursat theorem I F(z)dz=0

X

I f&)—f@UC&ZO

=]

J ffza dz=f (@) 2min(x.0)... (0 (x:0)) = —
| =St

Example 1 : Use Cauchy integral formula, to evaluate I

where x is a circle | z|=2.

Solution : Given that, j
X

F(

z)=

2

Z +2dZ

z—1
f(z) _ 22+2
z—1 z—1

I
L

2

Fig 8.13
F has singular point at z=1.
Given equation of circle is | z |=2.

Centre is origin and radius is 2.

The singular point z =1, lies inside the circle.
We use Cauchy integral formula

!
!

f(2)

z—o

z2+2
z—1

dz=2mi[ f(z)]

dz = 2m'[z2 + 2}

=q

z=1
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z2+2
z—1
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2) Evaluate I cot zdz where x is a circle |z| = /2

X

Solution: _[ cotzdz= j -
S Sin 7

COS Z
dz

X
For finding singular point put sinz =0

= z=sin_1(0)=nn

Singular point z=0, lies inside the circle | z |= y .

ICOSZ
Sin 7

Hence by Cauchy’s integral formula dz =27i(cos0) = 27i

sin(z7)

s

sin(z7)

-5

7= A is a point of singularity and lies inside |z| =
S gy = 12, f(z)=sin(z7)
o1 =27if (z,) = 2m'sin(%)

where C i1s the unit circle oriented clockwise.

3) Evaluate j

Solution: Let I= I

Theorem : Let f be analytic in a simply connected domain G,
G c C and suppose x is a simple closed curve in G. If o is any
point inside x then

j , where x is traversed in
Zm
anticlockwise a’lrectlon.

(Note: To prove the theorem we will need the following theorem
Boundedness Theorem :Let f be continuous on a compact set S.
then, f 1s bounded on § 1i.e. there exists a number M

st|f(z)|sm ~ zeS)

Proof : Given that, x is a simple closed curve in G and o is any
point inside x.
By Cauchy-integral formula,
f(2)
o) =
/(@) 27'L'ZJ-Z (a+h)

I f(z) dz and f(a+h)=
7—a

2T
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f(z)
h 2mi I [z—(a+h)](z—a) “
1 [; Loten)iia, |
2mi [z (o+h)](z—0)
- hf(z) dz
[z oc+h)]( )
o EI
2xi i[z—(m)](z— )2
‘f(owh)—f(oc)_ 1 _[ fl(z |h|j ‘f Hdz
h 2mi * (z—o \z Oc+h)‘(z Oc)2

(1)
Theorem will be proved if L.H.S. of equation (1) tends to zero as
h—0. Choose r=inf{|z—a|:ze x}=>r<|z-al.
Choose ‘oc—(oc+h)‘=|h|<%
| z=(a+h) 2] z—a|-| 7]
Ula=bl<|a|-[b]}

>r—

r_r
2 2
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f 1s analytic in G.

f is continuous on {x} { x? is compact set}
By boundedness theorem, 3 M >0 s.t.

f|<M. Nze{x}

From equation (1),

flo+h)-f I fl(z |h|J~M | dz|
h 2mx / 2
_|hn|-M J-|dz|:|h|.3M L(x)
r X mr

L.H.S. tends to zero as h — 0.
i L1 (@) 1 (1)
2T

h—0 h

(maf

A 2;‘ J f(Z)2 “

(z-a)

Generalization of the above theorem :

Theorem : Let f be analytic in a simply connected domain G,
G c C and suppose x is a simple closed curve in G. If o is any
point inside x, then

f"(a)= 2’;!1- J (Zf(z) dz

_ a)n+1

where n=0,1,2,... x is traversed in anticlockwise direction.
Prove this theorem by induction on n.

Note : If a function f 1s analytic at a point ae G, then its
derivatives of all orders are also analytic at a point o.

Example 1 :
Use Cauchy integral formula or theorem, to evaluate

sin Tz + cos Tz ) ) 3
I dz where xis acircle |z |=—.
- (z-1)(z-2) 2
Solution : Given integral _[ SN T2 + S T2 dz
(=-1)(z-2)
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By partial fraction,
sin 7tz + CoS Tz $in 7z + COS Tz sin 7tz + Cos Tz
j o= | e+
X

()

Here, F(z)z F(z)z

z—1 z—2
X

f(2)
(z=1)(z-2)

has singular point at z=1

and z=2.

(Note : If the singular points lies inside the circle then we use
Cauchy integral formula and it lies outside the circle then we use

Cauchy integral theorem.)
: 9
z|=% ie. X2+y?==

4

Singular point z =1 lies inside the circle and z=2 lies outside
the circle.

Given equation of circle,

For z=1, we use Cauchy integral formula

J‘%dz=2ni[f(z)]z=a

sin 7tz + cos Tz T
I ; dz = 27i[sin Ttz + cos Tcz]z_1
- =

=27 [sinTt+cos | = 27i[0—1]

=-2m ....(a)
For z=2, we use Cauchy integral formula theorem
IF (z)dz=0
X

J- sin 7tz + COS Tz
z—2

=0 (b)

Substituting (a) and (b) in equation (1), we get
J- Sin 7tz + cos Tz

(-2

dz=0-2mi =-2mi

2) Ie—3 dz where x is the rectangle with vertices at +i
i
2
and 1%i.

f(z2)

Solution : Here, F(z)= ;- has singular point at z= A of
1
2

order 3.
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N
i < a0
v 1+1
< - : >
172 A
i > 1"
Fig 8.15

By Generalization of derivative of an analytic function.

(@)=L L)

zni " (Z—a)n+1
2 )
x(Z_O(‘) n:
et Zni o1 . d* 2
{( 1)3 dz = 7 f (7J—m>{—dzz (e z)} N
i—— 2—7
Z
2 2><l
=Ti| 4e°*° =mi|4e 2| =4mie
=n

Exercise : Use Cauchy integral formula to evaluate,

. COST : : . :

1) j 3  where x is a rectangle with vertices at 2+i and
x £ -1
-2ti.

. . : T T

11) Itan zdz where x is a circle | z ey ‘ = 5

X

Z —
iii) J.u dz where x is a circle | z|=3.
(z-2)°
X

2
1v) J-Z—lﬂdz where x is a circle | z-3 | =1.

x Z———1
2

Singular point is P=%+i and here centre c¢=(3,0)

d(c,p)=d(3,%+ij=\/(3—%)2+(0,—1)2 :‘/%Tpﬂ .

Singular point p lies outside the circle.
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J- Z2+2z+3

V) where x is a circle | z—i |=2

z—1I

Cauchy estimate or Cauchy inequality :
Theorem: If f is analytic in an open disk B(a;R) and

| f(2)|sM ~ ze B(a, R)
‘S n!M
Rn

then ‘ (o) n=0,1,2,..

Proof : For O<r<R,

Construct a circle x with centre at o and radius 7y.

By generalization of the theorem on Derivative of an analytic
function.

f”(0€)= . /() —dz n=0.1,2,..

+ (z-a)™
L@

n!
\f”(o«)\s (1)
o1 .)[ | Z—OC|n+1
Given that,
‘ f(z2) ‘SM v ZEX
For any point z on x, we have | z—o|=r
From equation (1),
(n) oM - _n M
X X
. n!M
. ‘f(”)(oc)‘s -
,
r <R 1is arbitrary.
As r— R, wehave | f* (a) |<— n=0,1,2,...
R

Cauchy Integral formula for Multiply connected domains:
Theorem: It f is analytic in a domain which is bounded by two
simple closed curves x; and x, (where x, lies inside x;) and on

these curves and if z is any point in G. Then

F(z0) = I f(z) I f(z)

2mi ¢ z— zo - zo

Where x| and x, are transverse in anticlockwise direction
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Proof: Construct a circle x with centre at zyand radius r, so that x
lies inside x;

J@
=20
non-intersecting simple closed curves x;,x,x, where (x; and x, lies

.. The function is analytic in a domain which is bounded by

inside x; ) and on these curves

1
x
2
Fig 8.16
By using Cauchy determination theorem,
.[ S@ .[ BACIIN .[ S@ I
Z—Z 0 Z—20 x = Z()
By using Cauchy integer formula, I (@) dz =2mi f(zp)
Z 20
Put this value in equation (I),
I WACIR. (2o )+I f@
e o Z()
, _ 1 [ f@
1) 27i ;C[z—zo omi xJ. z- zo
8.4 SUMMARY

1) Let G be starlike w.r.t. point z; and suppose that f is analytic in
G. Then there exists an analytic function F in G s.t. F'(z)=f(z)
in G.

In particular, I f(z)dz=0, for every closed, piecewise

smooth curve x in G.
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2) Cauchy-Goursat Theorem : (Cauchy Triangular Theorem) :
Let f be analytic in an open set G D. Let zj,2,,23 be

points in G. Assume that the triangle A with vertices zj, z5, z3 1S
continuous in G then j f(z)dz=0, where 0A is the boundary of a

X

triangle A.

3) Cauchy Deformation Theorem :

Statement : If f is analytic in ¢ domain bounded by two simple
closed curves x and x, (where x, is inside x;) and on these
curves, then j f (z)dz:j f(z)dz where x and x, are both

X1 X2
transverse in anticlockwise direction.

4) Statement : Let f be analytic in a simply connected domain G,
Gc D. If x is a simple closed curve in G and be any point inside x

then, J‘ fEZ) dz=2ni[f(z)]z=a=2nif(oc)

o

where, x is traversed in anticlockwise direction.

5) Theorem : Let f be analytic in a simply connected domain G,
G c C and suppose x is a simple closed curve in G. If o is any

1 .[ f(z)

' (z-a)?

point inside x then, f’(o)= dz , where x is traversed

in anticlockwise direction.

6) Generalization of the above theorem :

Theorem : Let f be analytic in a simply connected domain G,
G c C and suppose x is a simple closed curve in G. If o is any
point inside x, then

!
(o) =—= I f(Z)H dz ,where n=0,1,2,... x is
27 (Z a)n

traversed in anticlockwise direction.

8.5 UNIT END EXCERCISES

1) Suppose f:G — C be an analytic function, define &:GxG — C
by

Bzw) =L DT we L,
—w
=flz) if z=w.
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Prove that @ is a continuous and for each fixed w,
7 — @(z,w)is analytic function of z.

(Hint: Take z=zy+h,w=wy+k and zy+h#wy+k for any h,k.
Considerlimy, ;) _.0) (2o +h, wy +k) =D(zy,w,) , similarly
h#k.

2) Let 6be a closed rectifiable curve in C and a¢{y}. Then
show that for n>2,
J(z=a)"dz=0.

Solution: Use the lemma that, if y is arectifiable curve and
¢ is a function defined and continuous on {y}.

For each m=>1, Fm(z):fyg(w)(w—z)_mdw for z¢ {y}. Then each

F, 1s analytic on

m

C-{y}and F,=mF,,,. Take m=1,0=1 on {y}. Then
Fl(z)=Iy(w—z)_1dw.

- F(z)=F,(z) on C—{y}. Here ae C—{y}.

s Fllay=F,(a) "+ F,(a)=0, since Fj(a)is constant number
independent of a.

Iy(Z —a)"%dz =0Inductively Iy(Z —a)"dz=0for n>2.

3) Let fbe analytic on D=B(0,;1). Suppose |f(z)|<1 for |z|<1.
Then show that
VOB

( Hint: fis analytic in a simply connected set B(0,;l).
Let y:boundary(B(O;%D, then yis a simple closed curve and
0=0 is a point inside vy.

dor froe L £
Consider f (0)_27n‘ j}/ . dz
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S@

S5 =2r=1.

Y 4

- £ 0| I

1 . f(2)
= —j —2d >
27wV 2| 7

4) Let y(1)=1+¢"for 0<r<2x .Find | ( J dzfor all positive
7—

integers n.

( Hint : Put f(z) =2 f(z)=2z". Then | (ij dz = (f(z)/(z—l)”)dz
7\ z-1 4

Where ;/(t)_(1+cos(t),sm(t)) for 0<t<2z. Apply the following

Cauchy- Integral formula

n oy ! f @)
f (a)n(%a)_27:ij7(z_a)”+1dz’ for n>1.

5) Use Cauchy- Integral formula to evaluate

@ f cos(nz)

dz, vy 1is a rectangle with vertices at 2Fi,—-2Fi

(ii) [ dz, y is acircle |¢[=3
7 (z-2)°

Solution (ii)) Let f(z)=e°—z.

By  generalisation of Cauchy formula for derivative of
analytic function

n! f(2)
f"(@n(y;a )— j7(z a)n+ldz, for n>1.

Here a=2 and we have [z]=3 and an=2.
i e“—z
f? (2)77(7,2)—— —
I7/(Z 2)°
zZ_
) ¢ dz 7if2(2), since n(y;2)=1.
7 (z-2)
z _
fP)=e*. = f22)=¢. ) ¢ dz—mez
7 (z-2)
(iii) L M4z where 7 is the cicle || =

-m)(z=%)
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dz

6) Evaluate the integral j}/ ,7/(49):2|cos(29)|ei9 for

2 +1
0<6<2r.
7) Use Cauchy-integral theorem or formula to evaluate
cos(mz)+sin(mz _ _ .
I ( )2 ) ( )dz where Yis the circle |z|=2, taken in
5+

r

positive sense.

cos(ez)

dz , where 7 is a unit circle.
z(z+2)

8) Evaluate I

/4

%k %k % %k %k

172



9

THEOREMS IN COMPLEX ANALYSIS

Unit Structure

9.0 Objectives

9.1 Introduction

9.2 Morera’s Theorem

9.3 Liouville’s Theorem

9.4 Taylor’s Theorem

9.5 Fundamental Theorem of Algebra
9.6 Summary

9.7 Unit End Exercises.

9.0 OBJECTIVES

In this unit we shall prove the important theorems in complex
analysis.

1) Morera’s theorem

2) Liouville’s theorem

3) Taylor’s theorem

4) Fundamental theorem of Algebra

9.1. INTRODUCTION

Given an entire function f, we saw that fhas a power

50

k!

series representation as Y j.,a, , where each q; = . In fact

being an entire function the ks order derivative f k(7) exists
Vk=>0.

In this unit we propose to prove some important
theorems in complex analysis .Let us start with the Taylor’s
theorem.
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9.2 MORERA’S THEOREM

Note: this is a sort of converse of Cauchy Goursat thm.

Theorem:
If f(z) is continuous in a simply connected domain D and

I f(2)dz =0 where x is rectifiable curve in D , then f{(z) is analytic in
D

Proof: Suppose z is any variable point and z, is a fixed in the region
D. Also suppose x; and x; are any two continuous rectifiable curve in
D joining z, to z and x is the closed continuous rectifiable curve
consisting of x; and -x,. Then we have

J.f(Z)dZ—J.f(Z)dZ+ I f(z)dz and .[f(z)dz 0 (given)

—X,

..jf(z)dz:—j f(2)dz = [ f(2)dz

1.e. the integral along every rectifiable curve in D joining z, to z is
the same

Now, consider a function F(z) defined by F(z)= I fwydw ........ (1)
As discussed above (1) depends only on the end points z, and z
If z+h 1s a point in the neighbourhood of z, then we

have F(z+h) = j F(w)dw (2)

From(1)and (2), we have

z+h z+h

F(z+h) -F(z)= j F(wydw— jf(w)dw jf(w)dw+jf(w)dw

20

= j fwydw ... (3)

Since the integral on the RHS of (3) is path independent therefore it
may be taken along the straight line joining z to z+h, so that

F(z+h2—F(z)_f(Z):1 ff( e~ f(z)
{ [ Fovaw-f) | dw}z— [rm=-reyaw 4)

The function f(w)is given to be continuous at x therefore for a given
£>0 there exist >0 s.t. [f(w)— f(2)| <€ s.t. |w—z|<d
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Since h is any arbitrary therefore choosing || <& so that every point

w lying on the line
joining z to z+h satisfies e (5)
From (4)and(5), we have

h B 1 z+h

IF(z+ 2 F@ e < [ [Fom = £ @) Jaw
1 z+h 1

<—¢ | |dw|=—¢lh=¢
14| !' | z ||

Since & is small and positive, therefore we have
|F(z+h)—F(z)_f(Z) F(z+h)—F(2) - 1)

h h
Hence F'(z) = f(2)
1.e. F(z) is differentiable for all values of z inD. Therefore F(z) is
analytic in D. Since the deriviative of an analytic function therefore
f(z) 1s analytic in D

=0 or lim
h—0

9.3 LIOUVILLE’S THEOREM

Statement : If [ is an entire and bounded function, then f is
constant. (2006, 2008)

Proof : Given that, f is an entire and bounded function.
dM >0 s.t. ‘f(z)‘SM v zeC

f 1is an entire function and hence f is analytic everywhere in

Complex Plane C and C=B(o; R) (say)
7 (@) |< ”};‘f n=0,12,..
Put z=o
M (2) < ”I;[}‘f n=0,1,2,..
Put n=1
, 1'M
| ()<=

\f’(z)\s%—m as R—oo,

‘f’(z)‘:() ~ ze C.

=  f is constant.

Aliter :
Given that f is an entire and bounded function. Let z; and z, be

any two points in C.
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Construct a circle x with centre at z; and radius R so that point z,
lies inside x.

By Cauchy’s integral formula

=gy [ de nd ()= [

ﬁzz

F(a)=f ()= 5| | af—(i &~ jgjlda

|7 (®)]
|Z2 Z1|J‘|§ 2 ||E_, Z||d£.v| (1)

R . . .
Choose R, so large that | -7 |<7, since & is any point on the
circle x.
[&-u[=R
R R

—2[2|8-a |-l n-a > R-—=—

Now,

Given that f is bounded function.
‘ (&) ‘ <M v Eex

From equation (1)
| f(22)-f(z ‘<Z—|Zz Z1|I R |d§|
et
22— |
=—— M| |d
T R? “ é|
B |z2—zl|M><2Tl',R 3 2| zz—z1|M
- T R? - R

‘f(zz)_f(Z1)‘5%| -7 |M -0 as R—>oo.

| f(z1)-f(22)]|=0

f(z1)=f(zp) for any two points z; and z, in C.
. f 1s constant.

Note : If f is a non-constant entire function the f is unbounded.

Example : Let f(z)=u(z)+iv(z) be an entire function and suppose

‘u(z)‘SM ~+ ze C. Prove that f is constant.
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Proof : Given that, f(z)=u(z)+iv(z) is an entire function.

Define g(z)= /)

= g 1is an entire function.
‘ g(z) ‘ _ ef(z) _ eu(z)+iv(z)

(ol

‘ g(z2) ‘<eM constant.

[ p1(2)

eie

= g is bounded.
(- |u(z)|sM ~ ze C)

Thus, g is entire and bounded function.
By Liouville’s theorem,
g is constant.

/(3 is constant.
f(z)=u(z)+iv(z) is constant.

= u and v are constant.

(o]

Note : If f(z)=)_ a,(z—a)" has radius of convergence.
n=0
R>0, then f is analytic in B(o;R).

9.4 TAYLOR’S THEOREM

If f is analytic in a domain G, then for any point ze B(o,R)cG, f

has Taylor series expansion, f(z)= i a,(z—o)"  where
n=0

o)

n!

Proof : Given that f is analytic in G.
For O0<r <R, construct a circle x with centre at o and radius r so
that the point z lies inside x.

By Cauchy integral formula, f(z)= 1' I& dg (1)
2T 1672
NOW’§1 T (leroc B 1( )
-z - -z z—a
(‘tﬁ_a)|:1_ (&—OC) i|
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(
(§-0) | (§-a)
S I+ (z=a) +..+ (Z_a)n_l + (Z_a)n +
(E-0) | (&-7) (E-a)"  (E-a)"
{ (x) Dot a2+ }
1 (z—a) (z—0)"" (z-a)" 1
= (E—a) 1+ =) +..+ (é—oc)”_l + ) - (=a)

[ (1=x) ' =l x4+ 2

=1+x+x2+...+xn_1+x"(1+x+x2+...)

—l4x+ o (1—x)_1}

1 (z—a) (z—oc)n_l (z—a)" 1 ]
- (2)
[ﬁ-“+(a—a>2 ecay (e-a)t &z

6

Multiplying equation (2) by ——= and integrating w.r.t. £ over.

Y f(z 1 J-f dE

2m . Z
B (z—a) f(&)
= I&—oc dé + j —— d&+...
- /(€ (z-a)" f(8)
— d d 3
o) a) o e @
By generalization of the theorem on derivative of analytic function.
n f(8)
£ ()= 2m£ ST d&  n=0,1,2,..
(n)
orR (o) _ J' f(§)
n! 2mi )”+1
Substituting all these Values in equation (3), we get
7 2 =1 (n-1)
1= ple)+(a=o) 25 ey L,
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= q +a1(z—oc)+a2(z—oc)2+...+an_1(z—oc)"_1+An

g o A () PPN CL ) L B
¢ (E-0)"(5-2)

" n! 2mi

The theorem will be proved if lim A, =0
n—so0

n
-o
PYCELT Y S N
oy (E-a) (§-2)
Fi3l
oy le-altfE-z|
Choose |$|>0 s.t. | z—a|=%  (0<$<r)
Since § is any point on the circle x.
E-z|=|&-a+a—z|2|E-a|-|z-a|=r-3
Given that, f is analytic in G.
f is continuous on {x} (*."{x}is compact set)

| d€ | 4

Now,

By boundness theorem, 3 M >0 s.t. ‘ (&) ‘ <M ~ Cex

From equation (4),

g" M M Y
[ 4] 2n £ " (r—9) |45]= 2n(r—3) (rj {'dm

:L(éjn_%r

M n
| A, | < A (ij —0 as n—oo
(r—s) \Ur
( lim x" =0, 0<x<landhence 0<$<1 = O<?<rj
n—soo
lim A, =0
n—>00

Given series is convergent and we write
2

f(2)=f(o)+(z—a) f/(x)+(z—a) f (o) +

F=5 ap(e-at | where 0, =L10)
Put =0 in equnazt(i)on (1), we get, |
f(Z)=i‘;anz" where an:f;('o)

179



Example 1 : Expand sin z in a Taylor series about z = %

Solution : By Taylor series
f(2)=f(a)+(z—a) f (o) + ——
Here, f(z)=sinz and oc:%

f(oc)zsinoczsin%z—

f’(Z)ZCOSZz>f’((x):cos()c:cos%:%
f”(z)=—sinz:>f”(oc):—sinocz—sin%:%
f’”(z):—cosz:f”’(oc):_cosa:_cosiz__l

TERNEY

Substituting above values in equation (1), we get

gt i
S s (L 1

Zeros of an Analytic Function :

Definition : A complex polynomial p(z) of degree n is an

expression of the form ay+a;z+ayz+...+a,z", where qg,ay,...,a,
are complex constants and a, #0.

Definition : Let G be an open set and suppose f:G — C is a given
function. A point zye G is said to be zero (or root) of f if

f(z0)=0.
e.g. f(z)=2>-5z+6=2>-37-22+6=(z-3)(z—2). Here roots or

zero of, f are z=2 and z=3.

Definition : If f:G — C is analytic and o in G satisfies f(a)=0,
then o is a zero of f of order (multiplicity) m>1, if 3 an analytic

function g:G — C s.t. f(z)=(z—a)" g(z) where g(a)=#0.
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Example : Let f:G — C be an analytic function then f has a zero
of order m>1 at z=a if f(z)=(z-a)" g(z) where g is analytic on
G and g(a)#0. (2006)

Solution : Let f(z)=(z-a)" g(z) where g is analytic on G and
g(a)#0 (1

By Taylor series,
For any ze B(o;Y) € G, g has Taylor series expansion

()0 (z-) ¢'0) +- L2 .
P = (-] o)+ (-0 +- 2L o
(-0 e+ (-0 o)+ )
/()= (Z;ﬁ)m e ((;Ol)ln;l " e ((;1?:):2
£ @)+

Clearly, this is a Taylor series expansion about z = o and
Fla)=f/(0)=f(a)=.= "V (0)=0 and ") (a) 0.

—  f hasazeroof order m>1 at z=a.

Conversely, assume that f has a zero of order m>1 at z=«.

Flo)=f(a)=..= "V (a)=0

m
Fa (2-0)" s (- )" b

=(z-a)" [am +ay,(z—a)+a,,9 (z—oc)2 +}

()" Y (@) F(2)=(z-)" g(5)  g(a)#0
n=0
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Note: f'(z)=m(z=0)"" g(z)+(z-a)" &(2)
£0m) ()= m(m—l)(m—2)..l.;<!2><‘ g(2) [+t

Each of these terms have (z—a) as one form.

f(’") (a)=m!g(a)+0+0+...
" (@)=mtg (a)

Definition : A zero of an analytic function f is said to be isolated if
it has a neighbourhood in which there is no other zero of f.

Theorem : Any zero of an analytic function is isolated in the set of
its zeros. (2009)

Proof : Let f:G — C be an analytic function.
Suppose f has a zero of order m at z=q..

fz)=(z-a)"g(2) (1)
where g is analytic on G and g(a)#0.
Let €>0 be given.
Put ‘ g(oc)‘:2£>0

g 1is analytic on G.
—  giscontinuous at e G .
= for the above e>0, 36>0

stz-a]<d = |g(z)-g(a)|<e
When | z—a|<3d ie. ze B(a,d)
8|2 |g ()] ~[g (@)~ g(2)| 2| g () |~| ¢ ( ) +g(ct)|>2e—e=¢

| g(z)|>e>0

g(z)#0 ~ ze B(a,d)

g(z)#0 ~ ze B(a,8)—{a}
and |z-a|#0 ~ ze B(a,d)—{a}
or |z-o|#0  zeB(o,d)—{a}

From equation (1)
f(z)=(z—a)" g(z)#0 ~ ze B(a, 8)—{a}

o is arbitrary.

. Any zeros of an analytic function is isolated in the set of its zeros.
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9.4 FUNDAMENTAL THEOREM OF ALGEBRA

Statement: Every non-constant complex polynomial has a root.
(2009)
OR

If p(z) is a non-constant complex polynomial then, there is a

complex number and o, with p(a)=0

Proof : Given that p(z) is a non-constant complex polynomial
TP.T. p(a)=0.

Assume that this is not true.

Suppose p(z)#0 ~ z.

p(z) is an entire function.

Let f(z)= 1

p(z)
=  f is an entire function.
" p(z) is non-constant entire function.

(D)

= p(z) is unbounded (by contra positive statement of Lioville’s
theorem)
lim p(z)=o0

700

From equation (1), lim f(z)= lim L P
p(z) | =

7300 z—>00
Let f be defined on an bounded set E .

If for a given €>0, 3 R>0 s.t.

| f(2)-t]|<e whenever  |z|>R and ze E

Then, we say that f(z) —> ¢ as z —> .
lim f(z)=¢

700

LY TN
- S~
-

~
RS
-
"
.
e
o B

-—7 B (O,R)
/" closed disk

pJ Q
. L

~
~
~ .
R B as

( closed disk B (O,R) is compact set )
Fig 9.1
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For given €>0, 3 R>0 s.t. ‘ f(2) ‘<s whenever | z|> R
f 1s an entire function.

f is continuous on B(0; R).

By boundedness theorem.

f is bounded on B(0;R).

AM>0st|f(z)|sM  ~ ze B(O:R)

f is entire and bounded on B(0; R)

By Liouville’s theorem, f is constant.

From equation (1),
p(z)= L ! = constant
f(z)  constant

which contradicts the hypothesis that p(z) is non-constant.

Our assumption is wrong.
<. There is a Complex Number o with p(a)=0.

Exercise : Prove that a complex polynomial
p(2)=ay+az+az? +..+a,7" has exactly n roots where aq. qj.....a, are

complex constant and a,, # 0. (Use fundamental theorem of Algebra)

Theorem : Suppose that f is analytic in domain G. If zy, the set of
zeros of f in G, has limit point in G, then f(z)=0 in G.

Proof : Given that f is analytic in a domain G.
2y ={ze: f(z)=0} and a is a limit point of z.

Let {z,} be a sequence of zeros of f in G, such that lim z, =«
n—oo

" fisanalyticon G, f is continuous on G.
£(0)=7{ 1im 2, |= tim f(z,)=0
n—oo n—>o0
{ z, isazeroof = f(z,)= O}
f(@)=0
zeros of an analytic function are isolated.
either f(z)=0 ~ ze B(;d)
OR f(z)#20 ~ B(o;d)—{a}

x 1s connected if the only sets of x which are both open and
closed are & and x.

Assume that f(z)#0 in B(o;8)—{a}
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o is a limit point of z; = every nbd of a continuously
infinitely many points of z ;.
For sufficiently large n, there is a point z, such that f(z,)=0 in
B(0:5)—{o)
) Our assumption is wrong.
Hence, we must have f(z)=0 -~ ze B(o;d)

Fig 10.2

Given that, G is a domain.

G 1is open and connected.
We split the set G into two sets.

A:{ée G:& is a point of zf}
B={Ee G:&¢ A}, where z; is the set of zeros of f in G.
) ANB=Y and AUB=G

§e A is a limit point of z; in G.

f(z2)=0 ~ ze B(&;9)

= Z€EA
) ze B(&;8)=>ze A
B(&,8)c A
= Aisanopensetand A#J ("ae A)

Let &'e B, then & is not a limit point of z;.
By continuity of f at &, 3 8>0 s.t.
f(z)#20 ~ ze B(&;9)

= z€e B
Thus, ze B(§,8)= ze B
B(&:;8)cB

= B is an open set.
" G is connected.
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It can not be written as a union of two non-empty disjoint open sets.
= A=0 or B=U

But AzOJ (" ae A)
’ B=J
A=G (*."AUB=G and B=0)
Each point of G is a limit point of z.
~ f(z2)=0 v zeG

Theorem: Let f and g be analytic in a domain G. If T isa
subset of G having limit point o in G and if

f(z)=g(z) ~ zeT, then f(z)=g(z) ~ zeG.
F(z)=f(z).g(z), T={ze G:F(z)=0} and use of previous

theorem.

Theorem : Let f be analytic in a domain G such that for some o
in G and f(n)(oc):O, n=0,1,2,.. then f(z)=0 -~ zeG. (Use

Taylor’s theorem)

Exercise : Prove that the function f(z)=ze®—z has a zero of order
2 at origin.

f(2)=z¢" -z

.. by Maclaurin expansion

f(z)=ze" -z

2 3 4 5 6

2.2 .72 .2 .7 .2
=z(+=+ >+ >+ + 2+ ) —¢

20 31 41 5! 6!

2 3 4 5 6 7
AR
=(z+—+ =+ T+ T+ T+ )2
120 31 41 51 6!

2 3 4 5 6 7
A A A A

1120 31 41 51 6!
2 3 4 5
:Z2(1+£+Z_+Z_+Z_+Z_)
1 2! 3t 4! 5! 6!

.. since lowest power of z is 2

9.5 SUMMARY

1) Morera’s Theorem :
Statement : Let G be a domain in C and let f:G—C be a

continuous function s.t. I f(z)dz=0 for any triangle A in G then
0A
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f 1s analytic in G. (This is a partial converse of Cauchy — Goursat
theorem.)

2) Liouville’s Theorem :

Statement : If f is an entire and bounded function, then f is
constant.

1) Taylor’s Theorem: If f is analytic in a domain G, then for any
point  ze B(a,R)cG, f has taylor series expansion,

o (n)
f(@2)= % a,(z—a)" where an:f—(oc).

n=0 n!
3) Fundamental Theorem of Algebra :

Statement : Every non-constant complex polynomial has a root.
OR
If p(z) is a non-constant complex polynomial then, there is a

complex number and o with p(a)=0.

9.6 UNIT END EXERCISES

1) Show that an entire function is infinitely differentiable .

Solution: If fis entire , by Taylors expansion of f, fhas a
power series representation. In

fact f k(0) exist Vk>1.

o ok
f(2)= Z—f (O)Zk, Vze C
k=0 k!

We can see that f(z)has an infinite radius of convergence .
f(z)converges for all ze C.

By the result that Power series are infinitely differentiable
within  their ~domain of convergence, f(z)is infinitely
differentiable.

°°kf(0)k1 = f50) e

f()—k1 X kzl(k ok
2w RE=DRO0) 2 RO
(=% TR => - 2(k_2)!z and so on.
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2) Find the power series expansion of f (z)=7z% around z=2

f "(2)

Solution: .. f(2)=fQ)+ f ' 2)(z-2)+L—(z-2)*+...

f(D)=4+4(z-2)+(z-2)
3) Find the power series expansion for ¢° about any point a.

4) Suppose an entire function fis bounded by M, along |z|=

Show that the coefficients in it’s power series expansion about

- M S ()
z=0 sat1sfy|ck|sF. (Hint: ¢, = o

by Cauchy formula . fX(0)= j S (Z) dz Vk=1)
7i =Ry ke+1
5) Let fbe an entire function, if for some integer k >0, there

exist positive constants A and B such that | f (z)|_ zk,then

f1s apolynomial of degree atmost k.
( Hint: Use Liouville’s Theorem)

6) Using Morera’s theorem show that the function f defined by

t
eZ

f(z)= jo dt 1s analytic in the left half plane D:Re(z)<0.

't
€Z

1
Solution: .. [T —ldr<[Te"dt=—— for Re(z)=x<0.
o<l = (2)=x

This integral is absolutely convergent and |f(z)|< !

X

zt
Consider [ f(z)dz ZIFU;O te—ldt]dz. Here I'= The boundary of
+

some closed rectangle in D.

t
eZ

Since, Ir Iy —ldtdz converges hence we can interchange the order
r+

of integration .
zt zt

o € w :
e f(@)dz = jrmdtdz =[;0dr =0, since

is analytic inside
t+1

and on a closed curve T

. By Morera’s Theorem fis analytic in D.
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7) Show that j(l) s1n§2t) dris an entire function.( Use Morera’s

Theorem. )

8) Show that a is azero of multiplicity k if and only if
P(a)=Pa)=...= P*Y(a)=0 but P*(a)#0.
( Hint : Use the Fundamental theorem of Algebra .)

9) Find the order of zero at z =0 of the function f(z)= z(zez — z).

10) Find the Maclaurin series expansion of f(z)= sin” z.

%k %k % %k %k
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10

MAXIMUM AND MINIMUM MODULUS
PRINCIPLE

Unit Structure
10.0 Objectives
10.1 Introduction

10.2 Maximum Modulus Principle, Schwarz Lemma, Open
Mapping Theorem

10.3 Automorphisms of the Unit Disc
10.4 Summary
10.5 Unit End Exercises

10.0 OBJECTIVES

After going through this unit, we shall understand
I)Maximum modulus principle and open mapping theorem for
analytic functions . 2) Corollaries on open mapping theorem
and maximum modulus principle. 3) Possible Automorphisms
of the Unit disc B(0;1). 4)Harmonic functions and their

properties.

10.1 INTRODUCTION

In previous sections, we have studied the connections
between everywhere convergent power series and entire
functions. We shall now turn our attention to the general
relationship between power series and analytic functions.
According to a theorem, every power series represents an
analytic function inside it’s circle of convergence.

Our first goal is the converse of this theorem. We then

turn to the questions of analytic functions in arbitrary open
sets and local behaviour of such functions.
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10.2 THE MAXIMUM MODULUS PRINCIPLE

Definition : Let G be any subset of C. A complex function f
defined on G is said to have local maximum modulus at a point o in

G if, there exists >0 s.t. B(a;8) =G and
£ () <|f (@) VieB@.0).

Similarly, f has local minimum modulus at a point o in G, if
3 8>0 s.t. B(0;8)cG and

| f(2)|2] f(@)| + ze B(a,3).

Theorem : Suppose f is analytic in a domain G and there is a
point o. in G s.t. ‘f(z)‘:‘f(a)‘Vze G. Then f is constant i.e. if

| f | attains to maximum modulus in G then f is constant.

Proof : Given that, f is analytic in domain G (open and connected
set)
) ae G and G is open.

3r>0s.t Bla;r)cG

where x=0B(a;r)=boundary of closed disk B (o;r)

Fig 10.1

By Cauchy integral formla,
1 flz
fla)=—t [

2T 7—0O
X

Here x is the circle | z—ot|=r

Z=0+ re'! te [O, 275] , dz=1i re'! dt
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2n/ T f(o}:/re ) ///dt__ I ot ret )

Given that, ‘f(z)‘s‘f(oc)‘ v zeG
‘f(oc+reit) < Oc)‘

From equation (1), we get

(D

1 21 y 1 o
@l || lorre)ars 5 T L@l
_r@ \f )|
2 g []

fz(n)‘ xan = f ()|
1 27 '
‘f((x)‘sgj- f(oc+re”) < (oc)‘
1 27
=E£ f(oc+re)
21
2n| £ ()| = | f(oc+re )
21 2% _
J‘f(a)‘dt:j f(oc+re”)
0 0
21
[-.—m\f(oc)\_j ‘f(oc)‘a’t}
0
27
fla) || flo+re)||di=0
H\ ()\‘ (et )}t

Here, the integral ‘ f(oc)‘—‘ f(oc+ re'l ) is continuous and non-

negative.

| f(a)|- f(oc+re”) = [0,27]
‘f(OH'Feit) =| f(a)] ~ 1€ [0, 2]
‘f(z)‘z‘f((x)‘ M ZEX
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This equation holds on all circles | z—a|=8 0<s<r
f(z) is constant in B(a;r)
f(z) is constant in B(a;r)

("."If £:G—C is analytic and | f(z)|= constant if ze G then, f

is constant on G .

By using theorem [Let f and g be analytic in a domain G.
If T 1is a subset of G having limit point « in G and if

f(z)=g(z) ~ zeT then f(z)=g(z) ~ zeG]

f 1s constant in G.

Maximum Modulus Principle :
Suppose  f is analytic in a bounded domain D and

continuous on D (Closure of D). Then, | f | attains its maximum on
the boundary oD of D. (2006, 2012)

Proof : If f is constant, then there is nothing to prove. Let f be a
non-constant function.

Given that, f is continuous on D (D is a compact set).
| f
Maximum modulus principal,
| f | does not attain its maximum in D.

attains its maximum value at same pointin D.

| f| attains its maximum on the boundary oD of D.
(D=DUoaD)

Minimum Modulus Principle :
Suppose f is a non-constant and analytic function in a

domain G. If | f | attains its local minimum G at o, then f(o)=0
or fis constant (2006,2007)

Proof : Given that, f is a non-constant analytic function in a domain
G and | f | attains its local minimum at a point o in G.

| f(a)|<|f(z)| ~ zeB(wd)cG (1)
To prove that f (a)=0

Assume that this is not a true.
ie.  f(a)#0 in some open disk B(a,r)cG.
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2)

Let g(z)= 0

g is analyticin B(o;r)cG.

From equation (1),

1 S 1
7] T70)]
OR
| 8(2)]<] ()| v zeBla.r)

g has a local maximum modulus at a point a in G.

By maximum modulus principle,
G is constant in G.
From equation (2),
1
f(z)= E_- = constant
g(z)  constant

=  f isconstantin G.
which is contradicts that f is a non-constant function.

Our assumption is wrong.

f(a)=0
Theorem : If f is a non-constant analytic function in a bounded
domain G and f(z)#0 for any ze G, then | f | can not attain its

minimum in G.

Example : Let f(z)=e¢° and T=B(2+3i,1). Find a point in T at
which | f | attains its maximum value.

Solution : Given function, f(z)=e*T = B(2+3i,1)

B=BUJB

3,3)

Fig 10.2
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The boundary of T is the circle.

| z-(2+3i) |=1
By maximum modulus theorem, | f | attains its maximum
value on dB.
, 0 P
‘f(Z)‘: 2 :‘ e(2+3l)+(l)el :‘ 62+cose'ez(3+sm9) ‘ :‘ 2+COSG‘
( e'® :1)
= +cos
We know that, the value of cos0 1s maximum when 6=0.
P :€2+1 =e3
¢*|=¢’ is the maximum value of f ata point (3,3) or 3+3i inT.

Exercise : Let f(z)=z and T =B(0;1).
Prove that the function | f | cannot attain its minimum value on the
boundary of 7.

Schwarz’s Lemma
Let D :{ze C :|z| < 1} be the unit disk and suppose f is analytic in D

with, (i) f (0) = 0 and (ii) |f(z)<lforzeD.  Then,
f(2)|<|z] VzeD and |f'(0)<1. Moreover, if |f(z)|=|7 for
some z#0, then there is a constant C with |c|:1 s.t.
f (®) =c.o Yoe D.(2004, 2005, 2008)

Proof: Given that, f is analytic in D, with (i) f(0)=0 and (ii)
‘f(z)‘él for ze D. Define g:D — C by

f(2)/z z#0
g(z)=9" ,

f (0) z=0
= g is analytic in D
Chooser s.t. 0<r<l1
-. on the circle |z|=r

HOE /2

4
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‘g (Z)‘ < _l on the circle |Z| =r
r

........ (] () <1and|d)=r)

. by Maximum Modulus theorem,

‘g(z)‘ﬁ% Vze E(O;r)
As r>1, |g(z)<1 Vze D=B(0,1) -mmmmmmmmeee- (2)
Alf()st e (by (1)

:>‘f(z)‘£|z| Vze D

Again, from equation (1)

O )

- F(0)<1

If |£(2)| =] for some z#0 then,
f(2)

‘g(z)‘= ‘ |Z| ‘ :azl

- |g| attains its maximum value of some point z inside D.

. by maximum Modules principle,
g 1s constant in D

i.e. g(z)=c where, ¢ is constant and |c|=1

f)

-

or f(Z):CZ VZED

or f(®)=co v we D

Example: o;z in D, define the M.T. ¢4 (z) = IZ —a
-0z

Let f be analytic in D and let ‘ f(z)‘<1, then
| f(Z)_f(a)| < |z—_06|
1= f(a) £(z)] ~ -0
iy (Z)‘z < —
=G 1

) OR [0, /() < [0 (2)] Vouze D

YzeD

Solution:
Fix a pint o in D arbitrarily

z—o o+ o
1—oz q)“( ) 1+
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0+

" ”Z’f{:;?"}j(mffi))

1+

. g is analytic in D, g(o) = 0 and ‘g ((o)‘ <1
By using Schwarz’s Lemma,

‘8'(0)‘<1and‘g(w)‘3|0)| YoeD

_|f@-r@)] |z-al
=7 (07| ol

OR
‘q)f(x)f(z)‘ S‘q’a(z)‘ VzeD

From equation (1)
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1—\f(oc)\2 1-Jof”
f(o) 1
1—\f(oc)\2 1-Jof”
Put o=z MO 12 vzeD
=7 (z)] 14
111 Z ‘f +|Z”
)‘f( )‘ = 1+‘f(0)HZ|
'."g(()))‘ s|oo| Y we D
f(Z)—f(0)| S1|Z__OL|
=7 (0)f (z)]  1-ocl
Put aa=0
f(2)=f(o) E
1-f(0) f(2)
If |a| <1 and |b| <1
{8 _fla=t] _ lol+[o
Jall] =|1=ab| = 15[l
TR | @)= |
=7 [ ()] ~[1=7 (0)and £ (2)|
f(z)[=|f (o) <[4
1|7 (2)[|f (o)

£ (=)= £ () <l (1=|£ (2)]| £ (o))
a|f (2) = )<l (2] (o)
| f(z \+|sz 2| f (o) < [£(o)+]d
QLS
1+]7 (o)

Counting zero

Definition : A zero of order one is said to be a simple zero.
e.g. Let f(z)=2>-3z+2

Here, f has simple zeros at z=1 and z=2.

f(z)<
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F(z)=22-3

f()=-1 #0

f(2)=-1 %0
Prove that all zeros of the function sin zare simple.
To find zeros at sin z put sinz=0

sinz=0 = z=sin"1(0)=2", n=0,%1%2,.. neZ
f(z)=sinz
f(z)=cosz

f’(z)zcosmtz(—l)n 20, ~» ne’Z
- All zeros of sin z are simple.

Theorem : Let f be analytic in a domain G with zeros
04, 0y, ..., O, (repeated according to order)

If x is a smooth closed curve in G which does not pass through any

o s then
L A CI PR
- ;[ e dz—kzz:l n(x; o)

Proof : Given that, f is analytic in a domain G with zeros
04, 0y, ..., 0., (repeated according to order or multiplicities.)

f(z)=(z-04)(z-0ay)...(z—,,), where g is analytic and
g(o)#0, k=1,2,...m

Taking log on both sides and differentiating w.r.t. z, we get
fle) 1 + ! +..+ ! +g(z)

f(z)  z-op z-o0y z-o,, g(2)

Multiply this equation by and integrate w.r.t z over {x /on

2mi
both side.
1.J' /(2) dz = 1_J- <4 1..[ e, I.J' §'(2) dz
2mi * f(z2) M 7 z-0y 2mi ¢ z—o,, 2m Y g(z)
X X X X
" gand g’ are analytic in G.
£ s analytic in G and x is a smooth closed curve.
8

g'(2)

g(z)

By Cauchy theorem, I dz=0

X
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/

j ZZ dz =n(x00)+n (x50 )+ n(xia,)

T
X

m
z X, OCk
Note :

1 J- f(z) dzzi n(x,ay )= Number of zeros of f inside x,
2mi - f(2) -

where each zero is counted according to its order.

eg. for f(z)~(z—oy)(z-0)" g(2)

2;] f,(z)) dz=n(x;0p)+n(x,0,)+3N(x,03) =1+0+3 =4
l

G

%y

Fig 10.4
Corollary : Let f, G and x be as in the preceding theorem except
that ay,0,,03,...,0, are the points in G that satisfy the equation

f(z)=o then,

! f) &
e ;[ )= dz = Z::I n(x; 0 ) Number of zeros of

f(z)=a inside x.

r'(2) (e-1)°
Example : Evaluate I dz where f(z)=—5—— and x is
" f(z) 7 +5

the circle | z|=1.2.

z(z —1)2
Solution : Given function, f(z)=—>——

2 +5
Here, f(z) has simple zero at z=0 and z=1 is a zero of order 2.
=1.2.

Zero z=0 and z =1 lies inside x.
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1.2

I
N

C
Fig 10.5

)
)
each zero 1s counted according to its order.

1 f(z) f'(2)
omi L f (2) f(z)

dz = number of zeros of inside x where

By theorem, 1‘ I f(z
2T f(z

dz =67

dz=1+2=3 :>j
X

2 +(z-1)(z+3)
z3+2

r(2)
it

x 1s the circle | z|=1.5.

Exercise: Evaluate j

dz where f(z)= and

Note : Let x:[0,1] > G be a closed (Smooth) curve in C and

suppose f:G — C 1is an analytic function. Then 6= fox is also a
closed curve in w-plane. If o 1is a Complex Number

a¢ {o} = f({x}), we write,
n(e:e)= 2151‘ (J; wd—woc B Z:ti !)- csct)(t—)oc a
_ 1 J.f’(x(t))x’(t dt
2mi 0 f(x(t) -
1 f(z)
- m{ ) dz=1+2=3
f'(z) =67
;[ 72) dz=6
f'(z) 2 (z=1)(z+3)

dz where f(z)= and x

f(2)

Exercise : Evaluate j 3
" 77+2

1s the circle | Z | =1.5.
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Note : Let x:[0,1]>G be a closed (smooth) curve in C and

suppose f:G — C 1is an analytic function. Then 6= fox is also a
closed curve in w-plane. If a

ag{o} = f(x , We write,

)
.[ dw 1 .[ G,(t)
;c X

is a Complex Number

= dt
27tz w—0 27'Cl c t)—oc
Fla@)x(d 1 ¢ ),
2m g (x t) —o 2w { f(2) de=l+2=3

n
z x, 0y )= numbers at zeros of f(z)—o inside x where each

zero is counted according to its order.

X Oo=fox

C-plane \/

z—plane

w—plane
Fig 10.6

where o, 0., ..., 0, are points in G with f (o )=a

[0,1] G C
\%{fox
Fig 10.7
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Theorem : Suppose that f is analytic in B(a;R) and let f(a)—o
has a zero of order m at z=a then there is an €>0 and >0 s.t.
|§—Oc | <8 and the equation f(z)-& has exactly m simple roots in

B(a;¢).

Proof : Given that, f(a)—o has a zero of order m at z=a.
*.*  Zeros of an analytic function are isolated.

. R

.« Wecan choose €>0 s.t. €< A

f(z)—o has no solution with 0<|z—a |<2e and f’(z)=#0 if

0<|z—al|<2e.

A
"' ------
x - SN
ll'
4
:" ," \‘
i \
] 1 |‘
1 1 i
H : i
L 1
b -
' 1
ooy !
‘\‘ ‘\‘ N
(Y Y ,'
\‘ . ’
AN o
‘Q~~ -----------
~§~~ “'é
L. N
~ T
v z—plane
Fig 10.8
Let x be the circle, | z—a|=¢

1.€. x(t)=a+8€2m, te [O, 1].
x:[0,1] = B(a; R)

. f is an analytic on B(a;R)

o = fox is also a closed curve in w-plane.
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A\
\4

Now, o¢ {c]}
So, 38>0 s.t.B(a;8)n{c}=0
(It means open disk B(a;8) does not touch trace of o .

B(a;d) is contained in the same component of w / {c} .

For &€ B(w;8) i.e. [E—a|<d

=  n(ca)=n(c:§) (1)
1 ,

Now, (o) =— [ —2 o= ()= dv=/2)dz
T 5 w—o

f(z)
Zm';[ f(z)-a

=mn(c;a) = dz

= Number of zeroes of f(z)—a inside x, where each
zero is counted according to its order.

= Thm f(z)—o has a zero of order m at z=a)

2 Y w—§
o f(z
n(e:8)= 2mi { f(z)-¢ &
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L LG gnot)=n(ea)=m By (1) and

n(o;a)=m
= f(z)=¢& has exactly m-roots in B(a;&)
f(z)#0 for 0<|z-a|<e

=  The equation f(z)=¢& has exactly m-simple roots in B(a,§).

Definition : If x and o are Metric spaces and f:X — Y has the
property that f(0) is open in o whenever U is open in X, then f is
called an open map.

Open Mapping Theorem :
Statement : Suppose G is a domain in C, f is a non-constant

analytic function on G. Then for any open set U in G, f(U) is an
open. (2007, 2009)

Proof : Given that, f is a non-constant analytic function on G.

Let aeU and f(a)=a

Uisopen = 3 €>0 s.t. B(a;e)cU.

" f is non-constant analytic function on G.
by fundamental theorem of algebra, 3 an integer m>1.

f (z)—o has a zero of order m at z=a.

by using previous theorem, for the above €¢>0, 3 6>0 s.t.
for the above £>0, 3 8>0 s.t. |§—a|<8 and the equation f(z)=§

has exactly m simple roots in B(a;€).
Thus ~ &e B(o;8), we an find m points in B(o;€) which
are mapped to & by f.
B(o;8)c f(B(oe))
B(a;8)c f(U) (" B(ase)cU)
a is interior point of f(0).
But « is arbitrary.
~ f(U) is open.
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10.3 AUTOMORPHISMS OF THE UNIT DISC

A function f:D — D is said to be an Analytic automorphism or

Automorphism of the Unit disc D if fis bijective and if both f, f -l
are analytic in D.

Note: Let 0#oe D={ ze C:|z[<1}

=0

1-az

This Mobius transformation is analytic in D and also in D=DUJD,

For a,zin D, define the Mobius transformation ¢ (z)=

0y (z) is not analytic at a point z = L
a
Which lies outside the disk D . (oeD=lo<1 )

1 1 -

—=—=>land|z|=|z

o =g =

Note: ¢, :0— D is an analytic automorphism.
1. 04 (0)=—aand oy () =0

2. for any point ze D, ¢04(z)e D

D
+o -0
C—-plane w—plane
Fig 10.10

ie. [0q(z)|<l VzeD

ince P = (z-a)(z-a)
Since, |0 ()| (1—az)(1-az7)

(| =22)
_ 2T 70— 0Z+00 _ |2” +|of* - (za+02) J2-(z-a+az)
-0z -0z +00 T (+|of*|* —(az +0z) 2~ (0+02)

... zoe D=7 < L|of<1)
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|0 (z)‘2 <1

.-.\q)a (z)‘ <1

= ‘q)oc (z)‘e D

.0, maps D onto itself i.e. ¢, (0)=D

(3) If ae D, sois —a and for any ze D,

[0, 200 ](2)=2=[0_g °0s](2) i.e. ¢&1 =0q

7—0
S = |+
z—a} _ (l—ocz)

1—&z B 1+a(z—06)
o

Now [q)_ao% }(z)=¢a[¢a(z)]=¢_a[

cavacats f[i-P

+

[¢—oc°¢oc](z)zz ix (i |OL| ;Z ( 2)
1- 0z + 0z —|qf 1-|af

Similarly, [0y °0_](2) =2

¢&1:¢—oc

= 0o, maps D onto D in a one-one manner Hence, ¢, and ¢;1 are

automorphisms of the Unit disc.
4.For zedD,¢,(z)edD i.e. ‘(I)a (z)‘ =1 VzedD

00 (2)| = oD

Since,

z—o
I-oz
» z€adD

.. For any point ze€ dD
z=¢® , 0e[0,2n]

eie - 1‘

al_

¢ z 11.
ie‘_

i€ 11

‘1—&6 eie

0

‘q)oc (Z)‘
eie =1land eie = e_ie)

o0 (2] =1 (- H=F)
=0y (z)e oD
. O maps oD onto 0D
i.e. ¢ (0D)=0D
combining results (2) and (4), we get

0o maps D onto D .
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5. Mobius transformation ¢y (z)= 1Z —% s analytic in D,
—0z
: 1-az)()+(z-a)o 1—|o?
¢OL (Z) = ( ) —\2 = |_ | 2
(1- o) (1-02)
In particular,
(1)&(0)=1—|0c|2 #0 (- ae D= |of<1

0 (00) = 1|2 %0

=of? <1 . 1-Jaf* +0)

Proposition: If |z|<1 then, ¢y is one map of D onto itself. The
inverse of ¢y is O_o. Furthermore, ¢, maps oD onto 0D,

00/(0) =0, 4, (0) = 1-[<f* and 9, (o) =——.

1=of

Theorem: Let f:D — D be a one-one analytic map of D onto itself,
with f(a)=0 and suppose that ¢ is a one-one analytic map of D
onto itself with analytic inverse ¢o. Then, there is a complex no. C
with |C|=1 s.t. f=Cdq.

Proof: Given that, f:D — D is an one-one analytic map of D onto
itself with f(a)=o0.
Put 0= =¢ 4(0) . lof <1

Define,
g=f °¢—(x

=g 1s a one-one analytic map of D onto itself and

g(0)=f[¢_(x (0)]=f(06)=0

----- (@) =0 0_q (o) = 22

and ‘g(w)‘:‘f[¢_a(co)]‘:‘f(z)‘<l ...... (v z=0_g () and
f:D — Dand D is unit Disk
. ze D= f(z)e D=|f (2)|<1)
- by Schwarz’s Lemma,
HOHE Vwe D

and ‘g'(o)‘él
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let |g (o)|=|w) for some ®w#o0 inD

. by second part of Schwarz’s Lemma,
There is a complex no. C with |C|=1 s.t.

g(0)=co vV oe D
= f[q)_a (co)] =c®
= f(2)=c0q(2)

= [ =clq

104 SUMMARY

1) The Maximum Modulus Principle:
Let G be any subset of C. A complex function f defined on G is
said to have local maximum modulus at a point o in G if, there

exists >0 s.t. B(o;8)cG and | f(z)|<| f(a)| ~ zeB(0:d).
Similarly, f has local minimum modulus at a point o in G, if
3 8>0s.t. B(o;8) <G and | f(z)|2] f(a)| ~ ze B(a.3).

2) Minimum Modulus Principle : Suppose f is a non-constant
and analytic function in a domain G. If | f| attains 1its local

minimum G at o, then f(a)=0.

3) Schwarz’s Lemma: Let D={ze C:|z|<1}be the unit disk and
suppose f is analytic in D with, (i) f (0) = 0 and (ii)
‘f(z)‘élforze D. Then, ‘f(z)‘s|z| Vze D and f'(O)‘Sl.

Moreover, if ‘f(z)‘ =|z| for some z#0, then there is a constant C

with |c|=1 s.t. f(0)=co Voe D.

4) Theorem : If f is a non-constant analytic function in a bounded
domain G and f(z)#0 for any ze G, then | f | cannot attain its

minimum in G.

S) Theorem : Let f be analytic in a domain G with zeros
04, 0y, ..., 0, (repeated according to order)

If x 1s a smooth closed curve in G which does not pass through any

o s then
Lo fe) 5
- ;|; e dz—k:1 n(x;oy)
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6) Open Mapping Theorem :
Statement : Suppose G is a domain in C, f is a non-constant

analytic function on G. Then for any open set U in G, f(U) is an

open.

7) A function f:D — D is said to be an Analytic automorphism or
Automorphism of the unit disc D, if f is bijective and if both

£, 7! are analytic in D.

10.5 UNIT END EXERCISES

1) Find the maximum modulus of z*-zin the disc |¢|<1.

Solution: .. z%-z=z(z-1)
. The maximum modulus 1is assumed at the boundary of the disc
|Z<1  That is at z=-1.

max‘z‘g 22 —Z= 2

2) Show that the maximum modulus of ¢* is always assumed on
the boundary of the compact domain .

X

=¢* where z=x+iy

Solution: Since |e®

e‘| is maximum at a point in the domain with maximal x.

.o

(At a point farthest to the right. )

3) Suppose f,g both are analytic in a compact domain D. Show
that | f(z)|+|g(z)| takes it’s maximum on the boundary.

( Hint: Take f(z)er_ia,g(z):Beiﬁthen put

h(z)=|f (2)|+]g(2)|

=[h(2)|=|f (2)|+[g ()] <|f (2)] +]g(2)

Let z, be an interior point of a compact domain D. Assume that
| f|+|g| takes maximum values inside D, say |f(zq)|+|g(zo)|

|h(z)| = |f(z)|+|g(z)|

<|f (@) +[8 ()| S| f (z0)]+ g (z0)| =|h(zo)

- |h(2)| < |h(zp)|

~.The analytic function h(z)assumes it’s maximum at the
interior point z, (not on the boundary), which is not possible.

. |f(2)|+|g(2)| takes it’s maximum on the boundary.
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4) Let f be analytic and bounded by 1 in the Unit disc and
3
(3

Solution: Since f (%) =0, define g:C — C as follows:

f (%) =0 Estimate

g(z)=( la(z() Zj for z;t%
z=— /| 1-=
2 2

:%f(%j for Z:%

Then g is analytic in |z|<1 Letting |/ —>1we find that |g|<1 on
the disc .

-
~]f )< 22 forz:%, ‘f{-j

5) Show that among all functions , which are analytic and

a8

|
| f(z)—f@
Solution: Suppose f (gj #0, consider g(z) =y
1-f ( jf (2)
1
it}

3
‘ 1—f(;jw

. By Maximum-Modulus Theorem |g|<1 in |z|<1 .
1
By direct calculations (lj—L?’j . (lj >|f (lJ
y 8 3 2} s 08 3 3

This is a contradiction.

bounded by 1, in the Unit disc, Max is assumed, when

=1 when |w|=1 and |f|<1 in |z|<1,
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6) Show that the automorphisms of the Unit Disc are of the

form g(z)=e" (LO{J al<1.
a-z0

Solution: Let g(z)= (IZ —a

j. Then |g(z)|=1for |z]=1.

Since g(a)=0= gis an automorphism of the Unit disc.
Assume that fis an automorphism of the Unit Disc
fl)=0.

soh= fog_lis an automorphism with 2(0)=0.

with

~.By the lemma that describes automorphisms of the Unit disc,

- h(z)=e?zor f(z)=e"? (ﬂj :
1-za

% %k 3k k %k
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11

SINGULARITIES

Unit Structure

11.0 Objectives

11.1 Introduction

11.2 Three Types of isolated Singularities
11.3 Laurent’s Theorem

11.4 Classification of Singularities by the Principal Part of
Laurent’s Expansion

11.5 Casorati- Weirstrass Theorem
11.6 Summary
11.7 Unit End Exercises

11.0 OBJECTIVES

After going through this unit, you will understand the
concept of continuing an analytic function to another region.
We shall also study three types of singularities of a function
f(z) and the theorems like Casorati-Weirstrass theorem and the

Laurent’s theorem.

Given a singularity z, of a function f(z), we shall try to classify

the singularities by finding the principal part of Laurent series
expansion of a function f(z).

11.1 INTRODUCTION

We shall recall the uniqueness theorem that states that if
f is analytic in a region D and {z,}is a sequence of distinct
points such that f(z,)=0 Vn and {z,}converges to some
zo€ C, then fis identically zero in a region D. Suppose we are
given a function f, which is analytic in region D. The
question is that of continuing f analytically to a region D, such
that ¢g=fon D,ND. By the uniqueness theorem such
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continuation  of fis wuniquely determined. The Schwarz

reflection principle is an example of how, in some cases, an
analytic function can be continued beyond it’s original domain
of analyticity. In this unit, we shall examine the possibilities
of such extensions for functions given by power series.

11.2 THREE TYPES OF ISOLATED SINGULARITIES

Definition :
A point at which the function f 1is not analytic is said to be a
singular point or singularity of the function f.

2
eg f(x)=-

z
-3

Here, f is not defined at z=3 and hence not analytic at z=3,

therefore z =3 is singular point.

Definition : A point at which the function f'is analytic is said to be a
Regular point.

Definition : A function f has isolated singular point at z =z, if 3

an R>0 s.t. f is defined and analytic in 0<| =2 |<R but not

B(Z(),R).

Z2

(z=1)(z-3)

z=1and z=3are points of singularity

2) f(z)zcotz _ sin z

eg. 1) f(z)=

COS Z
Putcos z=0=>z=nx
.. Singular points are nn, ne Z.

Definition : Let f be analytic 0<|z—zy |[<R. Let z; be an isolated
singular point of f. A point z=z; is said to be a Removable
singularity of f, if 3 an analytic function g:B(z;,R)—>Cg s.t.
f(z)=g(z) for 0<|z—z |<R.(2007)

Or
Definition : If a single valued function f(z) is not defined at a

point z=z; but lim f(z) exists. Then z=gz, is said to be a
720
removable singularity of f.
sin z

e.g. f(z)z . z#0
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sin z

In this case, f 1is not defined at a point z=0 but lim =1

z—0 Z
exists.

z=0 is a Removable singularity of f.
OR
Define g:B(0;R) — C s.t.

sin z 0

=0
=g z) f0r0<|z 0|<R
2

9,z¢3

f)==%
-

Here, f is not defined at z=3.

2 J—
But, lim f(z)= lim <~ = im (273 (2+3)
73 73 Z—3 73 Z_3

z=3 is aremovable singularity of f.

=6 exist.

Definition: A singular point which is not isolated is said to be Non-
isolated singular point.

1
e.g. f(z)=cos ec(zJ = %in(z)

In the delta nbd at zeros, there are other singular point of f ..z=01s
a non isolated singular point of f.

For, Singular points, Put sin (lj =0
z

lzmt nez
Z

1 . 1
7=——>0n—o0, n=0,£1,%2,.... .Since z=— —0as n >
nm nm

Here, z = 0 is a non-isolated singular point, whereas other singular
points are isolated.

Theorem: If f has an isolated singular point at zy, then z=zyis a

removable singularity of fiff lim (z—2z9)f(z)=0
270

Proof: Let lim (z-zy)f(z)=0
770

T.P.T. z = 7y is a removable singularity of f.
Given, f has an isolated singular point at z = z,
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. there exists R > 0 s.t. f is defined and analytic in B(zq;R)\{z(}
but not in B(z(;R)

Define
h(Z):{(z—zo)f(z) ’ zfzo I
0 =2
<. h is analytic in B(zq;R)\{zy} and
lim A(z)= lim (z—2z¢)f(2)=0=h(zy) from (I)

770 7270
<. h is continuous in B(zy;R)
T.P.T. h is analytic in B(zq;R)

ie. T.P.T. I h(z)dz =0 for every triangle A=intA+0A in B(z(;R)
oA

There are four cases :
. By Morera’s Theorem,

h is analytic in B(z,R)
from equation (I), h(zy)=0
. zp 1s a zero (root) of h
- fan analytic function g:B(z;R)— Cs.t. h(z)=(z-29) g(2)
where g(zy) #0
o for 0<|z—zp <R|
h(z)=(2-20)g(2) =(z-2) S (2) by (D
S f(@)=2g(2) for 0<|z—zo| <R
= z =g 1s aremovable singularity of f.

Conversely,
Suppose z = zp1s a removable singularity of f.

T.P.T. lim (z—z)f(2)=0

7220

By definition, f an analytic function g:B(zy,R) > C

s.t. f(z2)=g(2) for 0<|z—zo| <R
lim f(z)= lim g(z)=g(z))#0
z-7( 720
s lim (z—zo)f(z):OXg(zo)=0
=70
s lim (z—zo)f(z)=0
=70
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Definition:
If f has an isolated singular point at zp,then z =z, 1is a pole of f

if lim f(z)=oo1.e. for any M >0,

720

386>0 s.t. | f(2)| = M where 0<|z—2z|<d

Definition:
If f has a pole at z=zyand m=>1 is the smallest positive

integer s.t. (z—zp)" f(z) has a removable singularity at z =z, then, f
has a pole of order m at z =z, .

Definition:
A pole of order one is said to be a simple pole.
cg (=2
e z—4
Here, z = 4 is an isolated singular point at f.
3
lim f(z)= lim —— =oo
7—4 74 z2—4
~.z=4 is a simple pole of f.
2
f@)=—"r
(z=2)(z=D

Here f has simple pole at z = 2 and z =1 is a pole of order 4.

Essential Singularity:
An isolated Singular point which is neither a pole nor a
removable singularity is said to be Essential singularity. e.g.
1
f (z)=e/Z
Here, f has essential singularity at z = 0. T.P.T. z = 0 neither a pole
nor a removable singularity.

Theorem: If a function f(z) of analytic for all finite values of z and as

|Z| — oo, |f (z)‘ = a|z|k then f(z) is a polynomial of degree < k.

Proof: Since f(z) is analytic for all finite values of z therefore it can

be expanded by Taylor’s theorem in the form f (z):ianz", for

n=0

|Z|<R, where R is large.
Let max |f(z)|=M on the circle |z|=r(r<R). Then by Cauchy’s

inequality , we have |a,| < Mn for all values of n
r
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= = Ar"*r > ooVn>k <k, since |f(z)|=A|z|k when |z| — oo

= = Ar"™*, which tends to zero when r — o since n>k.

Thus a,=0, n>k.

Hence, we have f(z)=ap+ a;z+ a ot YU +a, 7", which is a
polynomial of degree <k.

11.3 LAURENT’S THEOREM

Theorem: If fis analytic in G=ay,,(0;Ry,R|), Ry >0 then for any

point Z in G, f has unique representation
S
f(2)= Za (z—o)" +Z where, a, = n
= = I(Z a) I’l an J-(& a)n+1
_ _ 1 i) _
=0,1,2..and b,= - sz o dé, n=12, ...

of=r, respectively with

and x,xy are circles [E—o|=n, [E-

R2<I’2<7‘1<R1

Proof: for a given ze G, choose r and r, s.t. Ry <r <|z—0|<n <R
by using Cauchy integral formula for multiply connected domain

f(g) f(é)
f(z)— I omi I “ M
Consider, L If(&)
For any point 50” |
S D B 1
Consider Fr E—atoz (&_a){l_(z—ﬁ)}
(E-a)
_ 1 z—0ol) (z-0)"" (z=o)” 1
_(a_a) 1+ &_a)-l_ ...... +(§_OC)”_1+(E)—OC)H 1_(2_0(,)
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Eo) o T ma)  (E-a) (t-a)

Multiply the above equation by j;L;)// and then integrating w.r.t.

T
E over x;
LA 1 @), (o) f()
2nif _Zd&—m.f _ad§+ — ){a_a)zd&+....

L J‘&dﬁzao +a(z2=0)+0...4a, | (z-0)"T+R, (2)
27 i E-z

Where, R, = (Z_O?)n /& d§
e (E-0)" (8-2)

T.P.T. lim R, =0

n—>eo

< 20 ] O )

g-of" 67

il

Choose $>0 s.t. |z—a]=$ equation of the circle x is,

E-o|=r,

Now,

E—z|=[f-a+oa—z2[f-o/-|z—a|=5-%
Given that, f is analytic in G

. fis continuous on x;  (Compact set)

By boundedness theorem

IM; >0 st |f(E)<M VEe x

Put all the above values in equation (3) we get

n n
R < [ o= flag
Tt n-s) o 2nnt(n-s)
= —1-27tr1= )5 —0as n—>o
n) 2m(n-3) n-s\n
. lim R, =0
n—oo
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- from equation (2)

e fE) e S
2niﬂ(§—z)d&_ggf%(z “ @
Consider,
-1 ¢ f(&)
27i (&—z)da

X
For any point & on x,,

1 1 1

Consider ~1 -

= I+ +ont + -
(z—a)|  (z-a) (z-0)" (z-a)" - 5%
z—o
n-1 n
. (E,,—oc)z Fos +(§—oc) + (§-a)
-0 (z-a) (z-a)"  (z-a)"(z-a)
Solving in the same manner as above, we get,
-1 ¢ f(%) s _ b
P =3 —"— (*)
2T b (&-2) ot (z—a)"
From equation (1), (4) and (*), we get
f(Z)=Zan(z—oc)n+z bn e (**)
n=0 n=1 (z—a)
Note: (i) equation (*+) can also be written as f(z)= i a, (z—a)"

for R2 <|Z_(X|<R1

1) Where x is the circle [E—o|=r with Ry <r <R,

_1J' f (&)

) 2mi X (&_Oc)m_1

dg n=0+1,+2

n
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Proof: If xis the circle |§—o|=r s.t. R, <r <Ry, then both functions
! (ér)fzﬂ and ! (g—)nﬂ
(E-o) (E-o)

Cauchy De-formation Theorem,

are analytic in R, <|&—a|<R; by using

BN CE
" e e
A R I
' mx{(é—a)‘”*l é Zmi(é—a)*”“ g
X1
F
[F=[F
1T R
Fig 11.1
We observe that, b, =a_,
From (%)
7(2)= Y ay(2-a)' + X a, (z-a)”
n=0 n=l1
=Y a,(2-0)"+ X a,(z-0)
n=0 n=—
f2)= i a, (z—a)"
Where anzzjﬁj /(&) d& n=0,+1,%+2...

" (& _ a)l’l+l
2. The Laurent Series expansion is Unique.

Proof: Suppose that we have another Laurent series expansion

f@= Y A,(z-a)"  for Ry <|z—0|<R (1)

m=—oo
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We prove that equation (1) is identical with

(o)

f@= a,(z-a) for Ry <|z—0|< Ry

Nn=—oo

Where a4, = | f(&,)m dg, n=0,+1,%+2...
2mi x(&_a)

To prove that q, = A

m

Let x be the circle [ —o] =r with R2 <r<R

:1.[ f (&)

1
, « ———d¢
1 - m—n-—1 1 - m—n—1
= A, (E—a dE =— A, [(E-a d
Zm.j _Z_ n(E-0)"" T de = 3 Ay (&)
X Mm=—0° m=—o° X
> m—n— 1
19
27& J-(re )
m=—co 0
|§—Oc|=r
SE=a+re 0e [0,27]
2n
Z A" jel(’"‘”)ede . This integral =27 ,m=n
27'Cl “
m=—oo 0
=0 m#n
=L A, 0 on
2mi
al’l - Am
- Laurent series is unique in G.
Note:
1. The Laurent series for given function
is f(z)= z an(z—oc)n+2an(z—oc)n R2<|z—0c|<R1
n=-—1 =

1) The part ) a
n=—1

principal part of f(z) at z=a.

2)  The part » a,(z-oa)"
n=0
Analytic part of f(z) at z=o..

—a)" of Laurent series is called the

of Laurent series is called the
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2. If f has a pole of order m at z=a., then f(z)=—2"—

is analytic at a point o and g(o)#0

2
4

(z-3)°

g(z)= 22 s analytic at point 3 and g(3)= 32=9%0.

e.g. f(2)=

11.4 CLASSIFICATION OF SINGULARITIES BY THE
PRINCIPAL PART OF LAURRENT’S EXPANSION

Corollary: Let z=o be an isolated singularity of f(z) and let
f(@= > a,(z-a)" be its Laurent expansion in a,,(a;0,R)

Nn=—oo

0< |z - oc| < R (Punctured disk or  deleted nbd of o).

Then,

1) z=a 1is a removable singularity of f iff a, =0 for n<-1 1i.e.
(Principal part is zero) (2008)

i) z=a is a pole of order m iff a_,, #0and a, #0 for n<—(m+1).
1.e (Principal part is finite)

ii1) z=a 1is an essential singularity of f iff g, # 0for infinitely many
negative integers n. i.e. (Principal part is infinite)

Proof: Given, f(2)= Y| a,(z-a)"
n=—oo

—0Q

f@=> a,(z-0)"+Y a,(z-a)" (1)
n=0

n=-1
1) Let a, =0 for n<-1
T.P.T. z=0a 1s a removable singularity of f.
From equation (1)

(o]

f(z)= Zan(z—oc)” (v a,=0 for n<1)

n=0

f(Z):aO'i'zan(Z_oc)n

n=l
lim f(z)= lim a0+2an(z—oc)n =ap+0=ay#0
20 -0 el
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lim (z—a) f(z)=lim (z—a)+lim f(z)=0eay=0

>0 7o 7>
~.z=0 1s a removable singularity of f
Conversely, suppose, z=a is a removable singularity of f.

<. 3 an analytic function g:B(a;R) > C s.t.
f(z)=2() in 0<|z—of<R

-+ g is analytic in B(o;R)

-. for any point ze B(o;R)

g has Taylor series expansion

- g(2)=) a,(z—)"
n=0
. the Laurent series expansion for f(z) must coincide with the

Taylor series expansion for g(z) about z =
L f@=) a,(z-a)
n=0
=a, =0 for n<-1 (Compare equation (1) and above equation)

Be f0-20 | g
<
Z3 ZS Z7
z— Z_§+§ ?-i- ....... . 22 Z4
f(Z): 3 :a—a‘l‘? ............

Principal part is zero i.e. a, =0 for n<-1.

This is a Laurent series expansion for f(z) but principal part contain
no negative power of z.

1e. a,=0 for n<-1

~. z=0 1s aremovable singularity of f.

i1) Given a_,, #0 and a, = for n <—(m+1)

f@= Y a,z-)"= D a,z-a)"+ ) a,(z-w)"

n=—o0 n=-1 n=0

fR)=—mm g PRSI L(z—a)"
Z (Z—OC)m (Z—OL) ngoa (Z )

Multiplying above equation by (z - oc)m ,
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(z—oc)m f@=a_,+... +a_1(z—oc)m_1 +(z—o)" Z an(z—oc)n

lim (z—a)" f(z)=lim | a_,, +.....+a_ (z—=)" " +(z—a)" > a,(z-a)"

0 =0 n=0

=a_, +0+0+...+0+0 =a_,, #0

- lim (z—oc) f(z)= lim (z—oc)a_m =0
70 70

m+1

<. the function (z —oc)m f(2) has a removable singularity at z =

- z=0o is a pole of order m

Converse, (Exercise)

Z
Eg. f(2)= 6—3, Here f has pole of order 3 at z=0

Z
z2 z3
1+Z+§+§+.... | ZZ Z3
f(2)= 3 = 1+ z+—+
Z Z
1 1 1 1 =z
=t —t—F—+—+.......

This is a Laurent series expansion for f (z) but principal part of
Laurent series is finite.
<. fhasapoleof order 3atz =10

111) Combine part (i) and (ii) and by definition essential singularity,
we see thatz—o is an essential singularity of f iff a,#0 for
infinitely many negative integers n.

e.g. f(z)= eyZ

1 1 1 1
=14+—+ + + +o

z 2122 312 a1t
Prinicpal part
This is a Laurent series expansion for f(z) and principal part of
Laurent series is infinite.
~.z=0 1is an essential singularity of f.

Theorem: Let f be analytic in 0<|z—o/<R (R>0). Then, f has a
pole of order m at z=o iff there exists an analytic function,
8(z)

m

where g(o)#0
(z—a)

g:B(a;R)—>C s.t. f(z)=
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(Note: We know that the geometric series z 7" converges for
n=0

|z|<1andwewr1te— z 2422 )

n_n

Similarly, the geometric series Z( 1)"z" converges for |z| <1 and

n=0
we write BLENERS > (-D"z O P Sy SR
1+z =0
Example:1
Expand f(z) —L in a Laurent series valid for (i) 2<|¢[<3
2+7-6

(ii) [z|<2 (i) |z|>3 (@v) 0<|z—2|<4

Solution: Give function

5 5 1 1
= = = - 1
/) Z2+Z—6 (Z—2KZ+3) z—2 z+3 ()

1) For 2<|7|<3, if 2<|z| then 24

e i e o
=5 (llzjlzo(gj -X

Z

if|z|<3 then%<1
. Z( )(jziel)”i
z+3 3(1+§j o 3t

From equation (1), we get

[e) n [e)

2 n 7"
f=2, nl 2. (1) 3;1

n=0 < n=0
A 20 U R OO
A2 2 2|3 32 3
3,52 2
= +2—+2—+i+l—l+i+z—+ ....... (In this case, z = 0

1s an essential singularity)

This is the required Laurent series for 2 <|z| <3
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11) For |z|<2
|z|<2<3:>|;|<1 and | |<1
1 n

=2 21- /):__z(éj iziﬂ

n=0

1 1 1 < n(z - 7"
2+3 3(1+§j 3 n=0 3 n=0 3n+1
- from equation (1)

f<z>=—2 pvE Z( D"

n= 0
This is the requlred Laurent series for |z| <2 (In this case, z = 0 is
removable singularity)

3n+1

iii) For |¢|>3

'.'|Z|>3>2:>|2|<1and |3| <1
< <
1 1 e 2) s o
ST e R
1 _ 1S - 3"
R AT R

from equation (1),
f(Z) - Z n+l z n+l
n=0 < n=0 <

This is the required Laurent series (In this case z = 0 is essential
singularity)

iv) For 0<|z—-2|<4

putz—2=u=z=u+2
.. from equation (1)

T = ) (243)  (2=2)(2=2+5)  u(u+5)

O<lul<4<5= %d

5 1 © '
o f@) === Y (D"
@ 4-5(1+1) ug‘)( : (5)
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Example: 2

Expand f(z)= % in a Laurent series valid for
z77+2z-3

(i) 1<|z|<3 (ii) |2[ >3 (iii) |z[<1
(iv) 0<|z-1]<4

Example 3:
Expand f(Z) — M

4
e

in a Laurent series about z = 0 and name

the singularity .

Solution: f(z)= COSZ_I
Z
2 4 6
T~ -1
21 4! 6! o1 2
Z4 —2'Z2 Z_a ..........

Z. =0 1s a pole of order 2

Example 4:Find the Laurent series of f(z)=; in the
2(z-1)(z-2)
annular region 1<|z|<2. (2012)
1
Solution: f(z)=————
J) z2(z-1)(z-2)

By partial fraction for 1<|z/<2, la & % <1
z

1 1 1

) %)

- f(z)=

2z Z 4
1 1 1 1 1 7 7
= ———| l+—+—+.... — |1+ =+ ...
27 2 7z 4 2 4
Definition:

A set D in a Metric space X is said to be Dense iff D = X, where D,

is closure of D.
OR
Let D be a subset of C(D < C), we say that D is dense in C if, for

any ope C ande>0 B(wy,e)nD#0
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11.5 CASORATI -WEIERSTRASS THEOREM

If f has an essential singularity at z=aq, then for every 6>0,
£ @nn (2:0,8)] is dense in C. (2005, 2008) OR f(a,,(:0,6))=C

Proof: Let G =a,, (2:;0,8)=0<|z—0of<8=B(o;8)\{o}
Given that, f has an essential singularity at z =o

. fis analytic in G.

T.P.T. f(G) is dense in C i.e. {f(G)}=C

r.e. T.P.T. for given wpe C ,e>0, 6>0,3z
s.t. [z—0| <8 and |f(z)—wyp|<e

/

,\ [

-———
. ~
g Ss,

~ ’
.......

N

v
N
v

C—plane
O—plane

Fig 11.1

Assume this is not true
1.e. Assume there is o€ C ande>0 s.t.

FGRONES V2e G =ay, (0;0,8)

i L@ _
z—0 |Z—OC|

N,
The function fla)-a has a pole at z=o
-«
z=z, isapole of fif lim f(z)=o0
77

Note: If lim |x—a|=0 then lim |x—oc|2 =0
X—0 xX—
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If m>1 is the order of this pole then, (z—a)" [M} has a

(z-a)
removable singularity at z=co.

|[f(2)~ay|=0 (1)

o lim [z —af™!
—

Now, z—06|erl /() =|z—oc|m+1 |f(2)—c+c|

i {[e=of™ )] < tim | |2= o) =cl+]z =0l
70

=0

| Y | S ——— by (1)

o lim |z o™
=

|f(2)]=0

~.the function (z—a)" f(z) has a removable singularity at z=o

-.f has a pole of order m at z=a which contradicts the hypothesis
that z=a is an essential singularity of f.

. Our assumption was wrong

Hence, | f(z)—ay| <€ VzeG

= f(G) isdense in C i.e. {f(G)}=C

* 7 =z 1S a removable singularity < zli?; (z2=20) f(2)=0
0

#% If z=o 1s an essential singularity of f then f has Laurent series
expansion about z=o..

##x If f is analytic in B(o;y) than for any ze B(o;y) and has a

Taylor series expansion about z = «.

m—1
s g@=-0"f()= " V(2 =%(Z—0‘)m f(2)
Z
m—1
:>g(m_1) (o) = lim g(m_l)(z)z lim (Z—Oc)m f(z)
70 z—a dz

11.6 SUMMARY

1) A point at which the function f is not analytic is said to be a
singular point or singularity of the function f.

2) A function f has isolated singular point at z=z5 if 3 an R>0
s.t. f is defined and analytic in 0<| z—z |<R but not B(zy,R).
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3) If f has an isolated singular point at z,, then z=zy1s a removable
singularity of f iff lim (z-zy)f(z)=0
2

4) If f has a pole at z=zpand m =1 is the smallest positive integer

s.t. (z—z9)" f(z) has a removable singularity at z =z, then, f has a
pole of order m at z =z,

5) Laurent Theorem: If f is analytic in G=a,, (; Ry,R;), Ry >0
then for any point z in G, f has unique representation

f@=2 ay(z-)"+ o .
n=0 n=1 (Z_O(’)

Where, a, = 1' J- f@&) d§ n = 0, 1, 2,
21t i (g_(x)n+l

1 f &)
= = 1 2 3 ...............
+bn 2T XJ-Z E—o) ds n=1.2.3,

and x,x, are circles [§—of=n,

&—a|=r, respectively with
R2 <Kn<np< Rl

6) Let f be analytic in 0<|z—o/<R (R>0) Then, f has a pole of

order m at z=a iff there exists an analytic function,

g:B(a;R)—>C s.t.
f(@) =% where g(a)#0
z—o

7) Casorati Weierstrass Theorem:
If f has an essential singularity at z=a, then for every 8>0,

f[a,m (o 0,6)] is dense in C.

11.7 UNIT END EXERCISES

1) Each of the following functions f has an isolated singularity
at z=0. Determine it’s nature, if it is removable singularity ,
define f(0), so thatfis analytic at z=0 if itis apole, find the
singular part; if it 1s an essential singularity determine

f ({z:0<|z|<5})for arbitrarily small values.
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(@ f(=202 () pp=@]

z

2
© f=="1 (9 f(Z)=zsin(lj.

z(z=1) Z

Solution: (a) .. lim__, f(z)=1lim_ SinZ(Z) =1exists.
. z=01s aremovable singularity of f.
Define g:B(0:r)—C as g(z)=22) ~20=17=0.

Then f(z)=g(z)for 0<|z|< R and g is analytic on B(0;r).

(b) limzﬁo(Z—O)f(Z) =]imzﬁow:
Z

. By theorem on removable singularity, ;=0 is a removable
singularity of f. ..Define f(0)=0.
cos(s)—1

0

Define g:B(0;r) > C as f(z)= z#0

=0 =0
Then f(z)=g(z)for 0<|z[<Rand gis analytic on B(0;r).

(c)f has a pole at z=0.

2

2) Classify the singularities of (a) cot(z) (b) —eXp(1/1Z)
7—

sin z

. (2005)
z2(z-1)(z-2)

(©) f(z)=

exp(z)
Solution: (b) Let f(z)=——%~2,
z

-1
&
exp—z
vlhnT%Jf(zﬂzlhn————%f—

=oo=> f(z)has a pole at z=1.
=l Z—

Since f(z) =&, where A(z) :exp(i),B(z) =z-1.
B(z) 22
A()#0,B(1)=0=>Bhas a zeroof orderl atz=1=
f(z)has a pole of order 1 at z=1.
We know that f is analytic in a deleted neighbourhood

B(0;R)-0 of 0 and fis not analytic at z=0=z=0is a

exp(lz)
singularity of f. Since we know that lim—z1
-1 zZ-=

does not exist .
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~.z=01s not a removable singularity of f.
Alz) _ AQD)
B(z) 7*
analytic at z=0 .. z=0 is not apole of f.
~.z=01s an essential singularity of f.

© = sy

f(z)cant be written as f(z)= , where A and B are

Solution: f{z) has pole at z=0, z=1, z=2 of order 1, 1,2 respectively.

3) Find the Laurent series expansion of (a) about z=0.

2 2
z7+z

about z=0.

(b)

-4
Solution:

(a)
Let f(2) =g =g — g = 2

2 oo k 2k
5 5 =z —2k=0(-D"z
7 +z 77 14z

8}

_ § (=11 2k
k-1
4) Check  whether z=0 1s a removable singularity of

f(2)= sin(z)

or not.

Solution: f(z)= sin(z)
Z

) _sin(z) _z2 z4_
s f(p)=—">==1 3!+5!

Here all the coefficients ¢_, =0for k >0.
. f(z) has removable singularity at z=0

5) Show that the image of B(0;1)-0 under the function

f (z):cosec(lj is dense in the Complex plane. (Hint: z=0 is
z

essential  singularity of sin(lj. Make use of the following
b4

theorem: If fis analytic in a deleted neighbourhood D of z,
except for poles at all points of a sequence {z,} — z,. Then

f(D) 1s dense in the Complex plane.
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1
6)Expand f(z)= ze/Zz in a Laurent series about z = 0 and name the
singularity.

in a Laurent series about z = 1 and name

2 2(1—1))
02 027.p72,2 ¢ (6

the singularity. (Hint: f(z)= = = )
(-1 (z=1)  (z-1)

7) Expand f(z)=
(z-1)°

8) Determine the number of zeroes, counting multiplicities, of the
polynomial z*-2z7+97°+z-1 inside the circle |z| =2

9) Expand f(z)=—————— in a Laurent series valid for
(z—1)(2-z2)
(1)0< |z| <2 (i1) |z| <1 (2008)

2z

10) Expand f(z)= in a Laurent series about z=/ and name

z-1)°

the singularity. (2007)

11) Expand f(z) :WZ(Z-% in a Laurent series valid for
(Ml<|z<2 (i) |z>2 (2007)
12) Expand f(z)= m in a Laurent series valid for

i 1<|z|<2, (i) 2<|z|<oo0.

13) Expand f(z)=(z—3)sin in a Laurent series about

Z+2
z=—"2 and name the singularity.

(14) Expand f(z) :2; in a Laurent series valid for
2" +4z+3

()1<|z|<3, (i) |z|<3.
%K K K K K
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12

RESIDUE CALCULUS AND
MEROMORPHIC FUNCTIONS

Unit Structure

12.0 Objectives

12.1 Introduction

12.2 The Residue Theorem and it’s Application

12.3 Evaluation of Standard Types of Integrals by the Residue
Calculus Method

12.4 Argument Principle
12.5 Rouche’s Theorem
12.6 Summary

12.7 Unit End Exercises

12.0 OBJECTIVES

In this unit we shall study the generalisation of the
Cauchy closed curve theorem to functions having isolated
singularities. We shall prove the Residue theorem and further we
shall use it to evaluate the standard types of integrals like
s SIN(x)

=, dx, [y dxz, [ f(z)dzetc. . We shall also prove the
x 14+ x2 2=

Argument Principle and Rouche’s theorem for Meromorphic
functions in the complex plane C.

12.1 INTRODUCTION

In this unit, we now seek to generalize the Cauchy closed
curve theorem to functions, which have isolated singularities. If is a
circle surrounding a single isolated singularity  z;,and

f (Z)=ZZ°:_ka(Z-Zo)k in a deleted neighbourhood of z, that
contains trace of a circle y, then f,f=2zic,;. Thus the

coefficient ¢_; is of special significance in this context. We
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shall see some of the applications of the Residue theorem.
Let us start defining the Meromorphic functions.
Residues: Let fhas an isolated singularity at z=a and

Let f(z)= z a,(z—a)" be its Laurent expansion about z =0 Res

Nn=—oo

(f;o)= Coefficient of (z— oc)_1 in Laurent series = a_;.

122 THE RESIDUE THEOREM AND IT’S
APPLICATIONS

Proposition: If f has a pole of order m at z=o and
(m-1)

g (o)
( m— 1)!

Proof: Given that, f has a pole of order m at z =«

g(2) =(z—a) f(z) then, Res (f;0)=

~.z=0 1s an 1solated singularity of f
.. by definition, 3R >0 s.t.
~.fis analytic in 0<|z—of< Ror B(o; R)\{ot}

" fhas a pole of order m at z=a

.-.f(z)=L)m ,where g(o)#0 and g is analytic in B(a;R).

(z—a

- forany ze B(o;R), g has Taylor expansion about z = o

o (n)
g(2)=Y a,(z-a)" where a, = i n‘(a) _________ 2)

n=0 :
g(D)=ag+a(z= )+t ay_ (z—)" " +a, (z—a)" +a,, (-
= f2)= {0 R — S

(z—a)" (z-a)" (z—a)""
+a, + a1 (2= 0)+ a0 (2—0)% +.

This is a Laurent expansion for f(z) about z=o
.. by definition of residue,

Res (f;a)= Coefficient of (z- oc)_1 in a Laurent series =a,,_,

(m—l) )
Res (f:a)=(gm_1)! ....................... (._.an:g nfa)j
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Calculation of Residues:
1) If f has a pole of order mat z=o then,

Res (f;o)=

m—1
( 1)' lim le o (Z_a)mf(z):l Where m = order
m—1j. z—-o Z

2) If f has a simple pole at z =« then,
Res (f:00)= lim [(z-a)f(z)]
7=
2

Example: Determine the residue of f(z)= ¢ 5 at its
(z—2)(z-3)
poles
Z
Solution: Given function, f(z)=———
(2-2)(z-3)

Here f has simple pole at z=2 and z = 3 is a pole of order 2.
For z= 2:

Res (f;0)= lim [(z—oc)f(z)]

Z—>o
62 82
Res(f;2)= lim | (2-2)- > |= lim 5
=2 (-2)e-3 ] 2oy
2 _ 2 2
(2+37 (-1)°
For z=3
dm—l m
Res(f;(x)—(m_l)! Zlg)rzx dzml(z_a) f(z)
oa=3 m=2
Res(f:3)=— lim| -~ ¢

=lim|e + 62 =—e3>< + =—e"+e” =0
=3 (z-2)* (2-2) } (3-2) (3-2)
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Example: Determine the residues of f(z)=cot(z) at its poles
Solution: Here

J.f(z)dz =If(z)dz+J.f(z)dz+....+ J. f(2)dz

oo 2
.'.J.f(z)dz = z a, I (r.e”)'ire’d6

n=—oo 0

0<|z—z,|<80<]2|<1

2z

e

-5
F(z)=cotz= Cf)SZ
sin z

. f has simple pole at nm, where nis an integer

Res(f;a)= Zlin(x[(z—oc)f(z)]

Res(f,nm)= lim [(z—nn).cosz} %form

7—nm sin z
—(z—nm)sinz+cosz _

By using L’hospital rule, lim 1
7N COS Z
)= sin z
Example: Compute the residue of z* atthe pole z=0.
(2012)
Solution:
_sinz 1 .7 2z
r(2)="1 —?(z—; T j
_ 1 1,z Z
Z 6 st
-1
_ .. 1/ _—t
Res(f,O) coeﬁﬁczentof/Z 5

Residue Theorem or Cauchy Residue Theorem

Let f be analytic in a domain G except for the isolated singular

DOINLS 2,25, z,-If x is a simple closed curve which does not pass

through an of the points z; then

m
[f(z)d z=2mi Y Res(f;zg)
x k=1 =27i X[sum of residue of f at its pole

inside x |, where x is traversed in anticlockwise direction. (2008)
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Proof: Given that, z;,2,,23......... z,, are isolated singular points in G.
Assume these points lie inside x

Choose positive numbers #,7,.......r,, so small that no two circles
X t|2—zx| = intersectk =1,2.......m and every circle

xp (k=12,........ m) is inside x.
@xm Q O O

Fig 12.1

.. the function f is analytic in a domain which is bounded by non-
intersecting closed curves x; x; ......... x,, and on the curves.

By using Cauchy Deformation Theorem

If(z)dz = If(z)dz+jf(z)dz+....+ I f(2)dz
.'.jf(z)dz:ijf(z)dz .............. (1)

k=l 5
.. f has an isolated singular point at z = z;
. f has Laurent expansion about z = z;

(o]

~f@)= Y anlz=z) 0<|z=z|<n

Nn=—oo

Any point on the circle = centre + radius x e'®

Consider,
[ alew) .
x| f(2)de = n=m =2 xl (73] e
Nn=—oo
Any point on the circle x;, is,
7=z +ne® 0e [0,2n]

dz = inedo
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oo 2z oo 7 .
2 [ f(edz= Y 0, [ (reYine®do =Y a,.in" [ " ag
Xi n=—oo 0

n=—oo O

2z

Note: [ e d6=22

0

,n=-1

0 ,n#-1

j f(2)dz=a_yin " (2m) =2mia_; =2mi . Res(f i z;)
Xk

definition of residue.
Put this value in equation (1) to get.

If(z)dzzi%ti Res(f;zk):Znii Res(f,z;)

k=1 k=1
Example 1: Use Residue Theorem to evaluate
2
77 +1
v2(2-2)(+4)°

where x is the circle |z| =3

Solution:- By using Residue Theorem

I f (z)dz =2mi sum of residues of f at its poles inside x].....
X

z2+1

Here f(z)= z(z—2)(z+4)2

by

. f has a simple pole at z=0 and z=2 i and z=-4 is a pole of

order 2.

But, simple poles z=0, z=2lies inside x

-
N

N/

Fig 12.2
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For simple pole at z=0

Res(f;a)zzlg(z—a)f(z)

z2+1
Res(f;0)=lim (z—0)x 5
S0 ) )
2
. /Z(Z “) . 241 0+1
= lim = lim =

=0 2 (z-2)(z+4)*  0(z-2)(z+4) (0—2)(o+4)2=

Similarly,

‘ ef+e’’
2

—Sef=—l>e

—Z

=0=e‘+te =02 e =—¢

(2n+1)7i

= 22=(2n+1)7i
= z=(2n+1)%i /=3

ZE X,

S
72

.. from equation (1)

Res(f;2)=

z2+1
iz(z—z>(z+4)2

- 2 11
=27 —1+i =27 —1+i =2mi —9+20 Zm‘x
32 72 8x4  8x9 72x4 T2xA

22 +1 11
i(i-2)(cea) 144

= 2mi[ Res(f:0)+Res(f:2)]

U

(2) Use Residue Theorem to evaluate

J'—sz dz where zis a closed square bounded by x=12, and
)3

v (2-%)

y=12

Solution : By using residue Theorem,
j f (z)dz =2mi [sum of residue of f at its poles inside x]....... (1)
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sin z

(=7)"

- f has a pole of order 3 at z-=7

Here f(z)=

But, the pole z :% lies inside x

For pole of order m =3,

1 m—l m
R (0= li ¢/
o=y i ()
A
=42
-1
f@ z=1l;
< P 1 I -1- -1 > rd
)
v
Fig 12.3
sin 2

3-1
Res(f;zjz ! lim d 7|
4) (3-1)z5a 437! 4 .

-1 tim d—z(sinz) =— lim (—sinz)
2, mdg?

...£f(z)dzzj(s%/z)3dzzzm{%}

.XZ_4

eZ

dz where x is circle |z| =3

3) |

cosh z

243



Solution :- by using residue Theorem

I f(z)dz=2mi [sum of residue of f at its poles
X

z

Here f(z)= ¢
cosh z
Let coshz=0

—Z

z —Z
e‘+e _
=0=ef+te‘=0= e =—¢

Qn+l)7i

=e=—le =2z=02n+7i

:>z=(2n+l)%i

.. f has simple poles at z = i(zn;ljn

But , the simple poles z=*i= lies inside |z|=3

N a

For simple pole

Res(f;a)=lim (z—a) f(z)

7—>0
2
Res| f1iZ|= Tim | z—iZ |-¢ 9 form
2 T 2 Jcoshz 0
=i
) oz, 2
i (Z_lgje +et(1) _cos%+isin% _0+il .
zit sinh z isin © i1
2 2
T ) &
Res(f;—i—j: lim (z+i—j
2 T 2 Jcosh z
i
2
T} 2, 2 .
1 (Z"'lzje +e” (1) 0+e_l% cos(_%)ﬂ'sin(%)
= lim = = =1

) e sinh z ) sinh(igj  isin(T)
I

cosh z
X

4)
I

=2mi[1+1] = 4mi

z2+1
—1)(z-2)*(2+5)

where x is the circle|z =4
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123 EVALUATION OF STANDARD TYPES OF
INTEGRALS BY THE RESIDUE CALCULUS
METHOD

* Application of Residue Theorem to evaluate real Integrals.

Type-I
27 27
Integral of the type '[F(cos,sin 0)d6, Where jF(cosG,sinG) is
0 0
rational function of cos® and sin0
21
Consider, J' F(cos6,sin0)d6
0
Put z =" . 0e[0, 21], di=i-e®ap= do=-% =%
i.ele Iz
Cosezeie+e—ie _ z+z‘1:Z+%:z2+l
2 2 T 2 2
sinG:M :Z+Z_1:Z_}/:Z2—l
2i 2i 2i 2iz
21 2 2
1 1
.-.J-F(cose,sine)dG:JF <t , <t ﬁ,Where
27 2z )iz
0 X
2 2 .
z°+1 z°+41 |1
Z =F ’ o
f( ) [ 27 27 Jiz

=2xi [sum of residue of f at its pole inside x ]

(by residue Theorem)
(—b)£b* —4ac

ax® +bx+c is polynomial than the root are x =

2a
27 40
(1) Use Residue Theorem to evaluate I
0 2+cos0
21 40
Solution :- the given integral is J'
0 2+cos0
Put z=e® , 00, 2n], dr=i-e®d0
do= d—?e = dO= %
ie iz
AN z+ z_l z2 +1
cos0 = = =
2 2 2z
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'T a0 ___ !
2+cos0 22 +1
2z
Ll
i x%/ 4z+zz+1
24
......... (1)
Put f(z)=— 1
72" +4z+1
f has simple pole at

z==2%3

:_Iz

+4z+1

(-4)£v16-4 _Z(243

where x is the unit circle |z| =

1.e.

Z:
2

but, the simple pole =—2+~/3 =—2+1.73 lies inside x

For simple pole,

Res(f;

o) = lim (z-)f(z)

Res(fi=2+33)= tim [e(-2B)Jxy
7—-2+3 Z-+4z+1
. 1 1 1
= Ilim = =
o243 2044 2(-2443)+4 243

-. by using Residue Theorem

dz =27

[£(2)
o

+4z+1

[sum of residue of f at its poles inside x|

galFelh

I

3

Put this value in equation (1)

ZI“ 46 2

0 2+cosO i

T

3

ZIn 46

0 2+cosO

e

27
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275

(2) use residue Theorem to evaluate I L a>|b|
0 ¢ +bsin®
27
Given , I L
a+bsin®
0
Put z=¢' 6c[0.2n] =dz=ie"d8  =db=—p = —
ie Iz
. |
sin@ = = =
2i 2i 2iz

T ©___ a

a+bcos0
X X

j =2 [— e
}{ 2azz+bz2 b xbz 2aiz—b
2a}{

1
Put f(z)=———
(2) bz% +2aiz —b

24 4b2
. f has simple pole at z =—2ai +wf

—2at * 2\/b2 —a?

2b

2 2 + [ 2 2
L.e. / has simple pole at z=—aii\/b ba —_{%}

L . a—Ja*-b* . a+Va* b
1
'.'ocB:1:>|oc||[3|:1:>|oc|=H<l ............ (- [p|<a)

But the pole a lies inside x
For simple pole,

Res(f;0)= lim (z—a) f(z)

Z—>0
Res(fio)= fim (c—ay)———— (ngorm
0 bz” +2aiz—b \0
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- lim —
z—ay 2bz+2ia

_ 1 1

¥

1
Res(f;04)=—F——
21'\/c12—b2

By using Residue Theorem,

I f(z)dz=2mi [sum of residue of f at its poles inside x]

=27 X
2iNa? —b>

jf )dz = ———

a —b2

Put this value in equation (1) we get

27 46 - o
J- —_— Y = 2X =
[ a+bcos® \/az—bz \/az_bz
T 4o
3. Use residue theorem to evaluate j 7" a>b!
04 +bcosH
21
Hint: First evaluate I _ 48
04 +bcosO

2% T
Then use the property I p +bcos 0 Zj a +bcos )
0 0

4. Evaluate I %de &
cos

2z cos 30
5. Evaluate J. ——do &
5—4cos0

T
6. EvaluateJ. a9 5
0 a+cos

a>1
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Type-I1

Integral of the type j f(x)dx

Improper Integral where f (x)=ix),where p(x),Q(x) are

0(x)

polynomial in x.

Example: If | f(z)|S£K for z=Re® where K>1 and M are
R

constants.

Then lim j f(2)dz=0 where, xp is the semi circle are of radius
R—oo
XR

R as shown in figure.

Proof: Given | f(2)| SﬂK for 7 =Re™®
R

X X R
>—1—>
-R (0] R
Fig 12.4

a | ] Fdd < [ | f(2)|de < RﬂK [ ]
Xp Xp XR

Put z= Re'® = dz = Rie'®d0

T
f f(2)dz sﬂ j ‘Rie’ede‘:ﬂ X TR
RX RX
XR 0

J.f(z)dz < 7511{\4_1 -0 as R—
R

XR
. lim j f(z)dz=0

R—o0
X

R
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Example: Evaluate J' f(x)dx , where

fx)= Px) , P(x) and Q(x) are polynomials inx .
0(x)
Solution:

Consider I f(2)dz where x is a closed curve consisting of
X

large semicircle x, of radius R and the real axis from —-R to R

R
traversed in the anticlockwise direction.

Oe [O,TC} X R
-R (0 R
C—-plane
Fig 12.5

We choose only those poles of f which lie in the upper half of the
complex plane.

.. by residue theorem,
J. f(2)dz =2mi [sum of residues of f at its pole inside x|

X

R
I f(z)dz+ I f(x)dx=2mi [sum of residues of f at its pole inside x]
X —R
on real axis z=x

R—o0
X

R
. lim I f(2)dz+ lim J. f(x)dz=2mi [sum of residues of f at its
R—
-R

R
poles inside x|

o0

O+ I f(x)dx=2mi [ sum of residues of f at its poles inside x]

o0

........... (by previous example lim j f(2)dz
R—eo x=0
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Note: If f(2) =% where, P(z) and Q(z) are polynomial in z such
Z

that,

(1) Q(z) = 0 has no real roots.

(i1) The degree of Q(z) is greater than that of P(z) by atleast 2, then,

J. f(z2)dz =2mi [Sum of residue of f at its poles inside x |

X

Example:
oo 2
(1) Evaluate J- X +3 dx
oo (x2+1)(x2+4)
N
X TR
< /\/ >\ >
R ~ O R
v
Fig 12.6
Where x is a closed curve consisting of large semicircle x, of

R
radius R and real axis form —R to R traversed in the anticlockwise
direction.

degQ(z)=>degP(z)+2
P()=2"+3 & 0(2)= (% +1) (> +4]

.. this general method is applicable

Consider,
J‘ 12 +3
(12 +1)(Z2 +4)
_ 243
Here. (= (z2 +1)(z2 +4)

Here f has simple poles at z=*i and z=12i but the poles z=i and
z=2i lies inside x.

For simple pole
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Res (f;a)= lim (z—a) f(z)

72—

Res

T . 2243
(f’l)_;l—>mi(Z l)x(z2+1)(z2+4)

i )
Zﬁi(z—i)(z+i)(z2+4) 21 (z+i) (z2+4)
%43 ( 1)+3

_(l+l (

Res(f; ):

_3-1 2
2i(-1+4) 2i(4-1) 2i(3)

)

. . . 2243
Res(f;2i)= lim (z-2i)
22 (z2+1)(z2+4)
(z-2i)(<*+3) 215
= lim = lim
222 (22 41) (2, 20) (2, +20) 202 (2% +1)(2+2i)
Qi +3 4’3 443

i [(21')2 +1} i+2i] (42 +1)(40) 4i(-4+1)

1
P21

By using Residue Theorem

Res(f;2i)=

I i3 dz=2mi [Sum of Residue of f at its pole lies inside
2 2
(z +1)(z +4)
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. 2243 _
T.P.T. Rlinoo x£ (Z2+1)(Z2+4)_o

R2e2ie + 3‘

Re'® de‘
dz

T

{ put z=Re'®, 8¢ [0, 2n]}

— dz =iRe™® 40

RzeZi9 + 1‘ ‘Rzeﬁ9 + 4‘
2 (R2 + 3) RdO
<

RIGEIG

i 1
26219

'.'|z1 +z2| 2|z1|—|z2| :‘Rzeﬁe +1‘ Z‘R

1
-1 = - <
! ‘RZeZ’e +|1|‘ R*-1

[ Z3+32 dz | < R3(1+%R2) ]tde
(@) R ) o
3 .
:l (1+/RZ) i — 0as R—>o
(- el el
- lim SRE R

L (z2+1)(z2 +4)

Put this value in equation (1)

T xP+3 _5n
] e
]? x> +3 dxzén

_w( 2+1)(x2+4) 6

(2) Use Residue theorem to evaluate

oo 2
I : i
0 (1 +x? )
(o) xz
Hint: First calculate .[ 5 dx and then use the property
—o0 (1 +x° )
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oo 2 oo 2
[ ——ar=2] ——ax
2 2
—oo(1+x ) 0 (1+x )
22
Solution: Consider j 5 dz where x 1s a closed curve
X (1+ Z2)
consisting of large semicircle xp of Radius R and real axis from —R
2
to R traversed in the anticlockwise direction. Here f(z)= £ 5
(1+z2)
Here, f has pole of order z at z=*i but, the pole z=i lies inside x.
For pole of order 2
. . d 2

Res (f;i)= Iim —(z—i (2)

(f ) (2—i)!z%i dZ( ) f

2 _ 2 2 2
= lim L (21— = tim (=) = lim L
7—i dz (1+z2) 221 (z—i)(z+1) z—i dz (z+i)

(o] 2 _
o oy,

X +10x7+9

Type-III: Integral of the type I simmx f(x)dx or T cos(mx) f(x) dx

—0Q

P(x)
m > 0 where f(x)=
() O(x)
A
x *Rr
. / \>\ S
S~ R 7 O R
v
Fig 12.7

Consider J. &M f(z)dz where x is a closed curve consisting of large
X
semicircle xp of radius R and the real axis from —R to R traversed in

the anticlockwise direction.
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. by residue theorem

Ieimz f(2)dz =2mi [Sum of residue of f at its pole lies inside x]
X
R
.‘.jeimzf(z) dz + I ¢ f(x)dx=2mi [ Sum of residue of f at its pole
R -R
lies inside x]
R
. lim [™ f(z)dz+ lim j ¢™ f(x)dx=2mi [Sum of residue of f
R—o0 " R—eo ° R
atits pole inside x] s (1)

- lim Y -1 | R — (by next example)
R—oo
R

. from equation (1),
0+ I (Cosmx+isinmx) f(x)dx=2mi [Sum of residue of its poles

—0Q

inside x|
. * cos3x
Example: 1) Use Residue Theorem, to evaluate | — 4dx
S X7+
e3iz
Solution: Consider I s dz
L t4
N
X TR
e:n//\\z oo
< > > >
R ~ O R
\ 4
Fig 12.8

Where x is a closed curve consisting of large semicircle xp of

radius R and the real axis from —-R to R traversed in the
anticlockwise direction.

3iz

e

22 +4

Here, f is a simple poles at z ==%2; but, the pole z = zilies inside x.
For simple pole,

Put f(z2)=
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Res (f;0) = lim (z—o) f(2)

721
3iz -2 3iz
Res(f:2i)= lim (z-2i)x———= lim (z ,’)e ,
22 244 -2 (z2-2i)(z+2i)
. s 2
6312 31(21) 661

= lim
1—2i 7+2i (21+2l) 4i

-6

Res(f;2i)= I

® by residue theorem,

J. f(z2)dz =2mi [Sum of residue of f at its all poles inside x ]

X

—6
R
" z +4 4i

e3iz : -6

T.P.T. lim j

R—>°°x 2 +4

Put z=Re® 0e[0,2n]

dz = iR do
1 .1
‘R262i9+4‘  R?-4

R22® +4‘ > R2-4—

3i.Reie

e iRe" d)

2T
St e

T
iR Cos 0+isin 9)‘ doe :L."e—ﬂ Sin®
2

(R2 4) g
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:1)

2 Sing>2) | e (0.7 ]

- ( ‘ (3iR Cos®

T
N
S y=Sind
1 fpm=mm===== G
'/' y=3Sind
N : ' >
Fig 12.9
PR R P -6Re 20
> dz | S 2jende ....... ( Sin® > =
xRZ +4 (R —4) 0 T
:—Sines_—ze:—msme s_6Re
T T
—6R0 %
—-6R T —6R
2R e T 2R T | x5 -0
= = X e T 2 —e TC
) | e
T o

:_—n |:€_3R—1:| :+)|:1—€_3R:| —0 as R—0

3(R? -4) 3R (1—%2

Put this value in equation (1)

-6

T
=—e
4

T Cos3x+i Sin3x
O+_’[O x2 +4

Equating Real part from both sides

(o)

J- Cos3x
x> +4

—00

dx= kil e 0
2
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(Z)Ide m>0 ae R

0 X(X2+Clz)

(3) J-Cmezdx [ (z=%i) is a pole of order 2 ]
0 (1+x2)

T Sinx
(4) j ——————dx
x“+4x+5

—0Q

Type-IV: Poles on the Real axis
In this case, we cannot use residue theorem because the pole z
= 0 lie on real axis and hence on x.

sin x T
dx=—
X 2

Example: Prove that I
0

[ iZ
Solution: Consider J. e—dz
Z
0

> =

Fig 12.10

Where xis a closed curve consisting of
(1) areal axis fromr to R

(i1) a large semicircle xp of radius R.
(i11) a real axis from —R to —r

(iv) a small semicircle x, of radiusr.

. the pole z = 0 lie outside x,

.. by Cauchy- Goursat theorem,

jédzzO

4
X
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R ix

j—dx+j —a’z+ j —a’x+ j—dz—o

r XR Xy
In 3" integral x is negative = dx will be —dx, using this negative
sign make limits r to R.

R i

—dx— —d + —d + —d 0

[“-ax I x I e [ e

r XR Xy

Reix_ —ix
2ijdx+ j —dz+j—dz 0

)CR Xr

RSinx P P PUIP
2i dx+ | —dz+ | —dz=0 o Sinz =

I X I Z ¢ I Z ¢ ¢ 2

r )CR Xr
Taking limit R — o and r -0

R Sinx

lim 2ij X dx+ lim j—dz+ lim j—dz [0 — (1)
R—o X R—)oo rF—>o0
r—0 r

iz
TP.T. lim [ $-dz=0 (Proof as similar as Type III)
R—c0 Z
*R

eiz
Consider j —dz

Z
R

Put z=r = dz=ir ¢0d0

iz lree
j7dz——j s xire%df  eeee- [ [r= jf}

Taking limit as r — 0

eiz T 0
lim [ “—dz=-i[e’d6=—in
x—=0 Z
Xp 0

. from equation (1),

2ijS’”xdx+0—in:0
0 X

S e 0—in=0

X

O — 3§
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Meromorphic Function (ML.F):
If f is defined and analytic in an open set G ¢ C except for
poles. Then fis a Meromorphic function on G.

2
e.g. f(2)=

z(z-5)

Theorem (1) If f has a zero of order m at z=a, then Res
(f @) OCJ -
f(2)
Proof: Given that, fhas a zero of order m at z=a
- 3 an analytic function g:B(a;R)—C

s.t. f(2)=(z-a)" g(z2) where g(a)#0
Diff. w.r.t. z

F@=m(z-0)"" g(2)+(z-0)" ¢'(2)

£(2) (=) [mg@+8'@] _ mg(z)+g'(2)

f(2) (z—a)" ¢(2) (z-a)g(z)
Laurent expansion for f(2) about z=q
f(2)
Y__m +g(z) ,0<|z—0f<R

(z)
(z2) (m-a) g(z)
g'(z)
g(z)

expansion about z=a.

F
f

is analytic in B(a,R) and hence it has Taylor series

.. By the definition of residue,

Res ((];((Z)) ];oc}=m= Coefficient of (z—a) in the Laurent series
z

expansion.

Theorem (2) If f has a pole of order n at z=p then Res

1@ ),
(f(Z) ’B]_
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Proof: Given that, f h as a pole of ordern at 7=

- 3 an analytic function g:B(B;R) —>C

s.t. f(2) =L)n where g(B)£0
(z-B)

Diff. w.r.t. z

() _ (B [(-B)g () -ne ()] (BT

f(z) (z—B)" x (z~BT" g(2)

_(z-B)g'(z)=ng(z) _ &'(z) __n

(z-B)e(z) g(z) (z-B)

’

(2)
(2) (==B) " 2(2)
8'(2)

f
s ) is analytic in B(B;R) and hence it has Taylor series
g(z

expansion about z =

.. by definition

FE) )
e ((f(z)] ’BJ‘

124 THE ARGUMENT PRINCIPLE

Let f be a Meromorphic function in a domain G and have only
finitely many zeros and poles. If x is a simple closed curve in G s.t.
no zeroes and poles of f lie, on x, then

X

number of zeros and poles of f inside x, each counted according to
their order or multiplicity. (2004, 2007)

Proof: Given that, f is a Meromorphic function in domain G.

Put F(z)= j}((zz))

= the singular points of F inside xare the zeros and poles of f.
.. by Residue Theorem,
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IF(z)dzz_[f (Z)dz=27ti [Sum of residues of F at its singular

Y1)

points inside x. e (1)

Ifoc 1sazer00ff0f0rderm then Res (f(z);oc]}:m

If B, is apole of f of order n; , then Res (f (2) ;BKJ:—nk

From equation (1)

f’(z) =2mi| Res f’(z) ;0 |+ Res f’(z)‘

I e? {R (f(Z)’ J N (f(Z) BKH
%J‘ ’ZZ))d Zm %nK
1 f(z2)
2mi If(z)

dz =Zy— Py

Example:

(1) Use Argument Principal to evaluate
’ -2

I 12) dz where f(z)zL and x is the circle |z|=

2 F(@) z2(z-1)(z-4)

Solution by Argument Principal

f
e j dz =Z;-P; where, Z ¥ and Z f are the no. of zeros and

poles of f inside xeach --(1)
Given function,

)
M= oy ea)

Here f has simple zeros atz=2 and z=0,Z = 1 and z = 4 are simple
poles

4y
NPA

Fig 12.11
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Given equation of circle |z| =3
But, simple zero z = 2 and simple poles z =0, 1, lies inside x.
.. from equation (1)
11 /(2) f'(2)
f(2)

z_nixf(z) =—27‘Ci

dz=1-2=-1= |

X

f(2)
f(z)

dz where

(2) Use the argument principal to evaluate I

(c-1) i
(-2)(:-3)

and x is the circle |z| =7

F(2)=—

Solution:
By argument principle
1 If’(Z)
- —dZ:Zf _Pf
27 . f(2)
(z=1)
22 (2-2)(z-3)

Here f has simple zero at z=1and z=0 is a poles of order 2 and z =
2, 3 are simple poles.

Given function f(z)=

Given equation at circle,

Z=m

But simple zero z = 1 and simple poles z = 2,3 and z = 0 is pole of

order 2 lie inside x.

From equation (1),

J‘ f(2)
f(2)

(3) Evaluate | cotzzby using argument principle
|ld=7

=2mi [1-4]=2mi[-3] =-6mi

X

. COSTTZ 1 7T.COSTTZ
Solution: | cotzz= | dz =

: — : dz
o= ld= Sinzmz | f=r Sinzmz

. by argument principal

| cotzdzz%Zﬂ'i[Zp—PfJ :2i[zf—Pf] ............. (1)

[2=7

Here f(z)=Sinmz has simple zeros at

TZ = NT neZz
SZ=n neZz
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nz=0,121,+,2,43, . are simple zeros of f and f has no poles but
zeros z=0,1,£2,%3 lies inside x i.e. |z| =T

[ cot(mz) =2i[7-0] =14i

Z=m

(4) Evaluate j tan 1z dz where x is the circle |z| =7

X

Take as an Exercise.

12.5 ROUCHE’S THEOREM

Suppose f and g are Meromorphic functions in a nbd. of
z—OL|=R}. If

Zf,2g (Pf,Pg) are the no. of zeros (poles) of f and g counted

B (oc;R) with no zeros and poles on the circle xz{z;

according to their order and if ‘f(z)—g(z)‘<‘g(z)‘ V2e x then,
Zp-Pp =7, P, (2005, 2008,2009)

Proof: Given that, f and g are Meromorphic functions in a nbd. of

B(o;R)
f(2)
g(z)

— Fis a Meromorphic function in a neighbourhood of B(o;R)

Put F(z)=

Let Z =x(t) be any point on the circle x.

Then, z=x(t)=0+Re" te[0,27]
F /"" o=Fox \\
x "' \“
R4 Y
G ()Y
2 1
R ! :
o : . ;
o “‘ 1 ':' 27
“\ O"
Y 4

Z—plane oo “} B@ ;1)

-
-
~ -
~ -
‘‘‘‘‘‘‘‘‘‘

.+ x 1s a simple closed curve in Z-plane and F is analytic.
~.0=F.x is also a closed curve in w-plane

-, for any 7€ [0,2n]
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lo(1)=1]=|F (x(r)-1)|=

Given that

F(2)-g(2)<[e(z))  vzex
O
8(z)
Put z=x(r)
£ (x(1)
g(x(1))
Put the above value in equation (1), we get
‘G(I)—l‘ <1

f(x(t))_l‘
g(x(1))

<1

—-1<1

{0} < B((1,0);1)
- 0 belongs to the unbounded component of w\{c}
.. by definition of winding no;
n(0;0)=0 (- 0 lies outside the curve o)

1 do
=>— | —=0
2mi Y ®-0
(¢}

Put o=0(t) =>dw=0'(r)dt 1e[0,2x]

27 ’
t
1 G()d_o

2mi o o(1)
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_ L SE0) SO
O‘zmﬂm(t» g(xo))} e .
Put z=x(1)=dz=x'(r)dt

_ LR g,

O_2ni ﬂf(z) g(z):ld
1 f(z), 1 8(2)
2ni£f(z) = ')[g(z) a

.. by the argument principle
Zf—br=24-F

Example:
(1) Use Rouche’s theorem to prove that all zeros of the polynomial

z7 —5z3 +12 =0 lie between the circles |z| =1 and |z| =2.

Solution:
Consider the circle x; :|z| =1

Let f(z)=2' -5z°+12 and g(z)=12

= g has no zeros inside x

For any point ze x,

£ (2)-g () =|¢" -5 +12-12| =27 =527 <[ef +5]f
=17+5(1)° =1+5=6<12 =[9(z)|

f(2) - 8(2)|<|g(2)|vze {0}

o=Fox

| f(2)-g(z)

.. by Rouche’s theorem,

o) viex

Zy=2Z, (Here, there are no poles)
= f has no zeros inside x
Consider the Circle x, :|z| =2
Let f(z)=z'-5°+12  and g(z)=7’

= g has 7 zeros, counting order, inside x,
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For any point z€ x,
‘f(z)—g(z)z‘z7 —5z3+12—z7H =‘—5z3+12‘
=5|2P +12 =5(2)* +12=5x8+12=40+12
:52<z7:‘g(z)‘
Af()-s(2)<lg=)]  Vzex
Hence all zeros of the polynomial 2/ =522 +12=0 lie between the

circles |z| =1 and |z| =2

(2) Use Rouche’s theorem, to prove that e* =az" (a>e) has n zeros
(roots) inside the circle |z| =1

Solution: Consider the circle x: |z| =1 X

Let f(z)=az"-e* /\r\
NI

and g(z)=az"

= g has n zeros, counting order, inside x.
For any point ze€ x,

£ (2)-2(2)=

€Z

n n
a7’ —e* —az

Fig 12.13

E - <a=‘g(z)‘

Af@)-g()<le(z)]  vew
- by Rouche’s theorem Z =Z,

= f has n-zeros inside the circle |z| =1

(3) Use Rouche’s theorem to prove that every polynomial of degree
n has n zeros.

12.6 SUMMARY

1) Residues:
Let f has an isolated singularity at z=o and

(o]

Let f(z)= z a,(z—a)" be its Laurent expansion about z =0 Res

Nn=—oo

(f;0)= Coefficient of (z- oc)_1 in Laurent series = a_;.
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2) Calculation of Residues:
1) If f has a pole of order mat z = then,

Res (f;a)=

m—1
(1) im l:j — (z—oc)mf(z)} Where m = order
—1). 720 Z

2) If f has a simple pole at z =, then,
Res (f:00)= lim [(z-a)f(z)]
=

Let f be analytic in a domain G except for the isolated
singular points zj,25,.......2,, : If x 1s a simple closed curve which
does not pass through an of the points z; than.

3) Cauchy - Residue Theorem:

m
[f(z)d z=2mi Y Res(f;zg)
X k=1

=27 [sum of residue of f at its pole inside x ]
Where, x is traversed in anticlockwise direction

4) Meromorphic Function (M.F):

If fis defined and analytic in an open set GC C except
for poles. Then f is a Meromorphic function on G.

5) The Argument Principle:

Let f be a Meromorphic function in a domain G and have
only finitely many zeros and poles.

If x is a simple closed curve in G s.t. no zeroes and poles of f
f'(2)
()

respectively the number of zeros and poles of f inside x, each

lie, on x, then 2mi I dz=27 =Py where, Z 7P denote

counted according to their order or multiplicity.
6) Rouche’s Theorem:

Suppose f and g are Meromorphic functions in a nbd. of
Z —oc| = R} I

B(o; R) with no zeros and poles on the circle x={z;

Zf,2g (Pf,Pg) are the no. of zeros (poles) of f and g counted
according to their order and if ‘f(z)—g(z)‘<‘g(z)‘ V2e x then,
Zf —Pf = Zg —Pg

268



7) Schwarz’s Lemma
Let D={zeC:|z/<1} be the unit disk and suppose f is

analytic in D with, (i) f (0) = 0 and (ii) |f (z)|<1 forze D
2)|<l4] 0)<1

8) A function f:D — D is said to be an Analytic automorphism or
Automorphism of the Unit disc D, if f is bijective and if both

£, 7! are analytic in D.

12.7 UNIT END EXCERCISES
1) Show that the Polynomial P(2)=27""+4z2+1 has exactly

two zeroes in |z|<1.

Solution: Let f(z)=4z%, g(z)=27""+1
. |f(2)]>|g(2)| for every number on the Unit circle.

By Rouche’s theorem, the number of zeroes of (f+g)
inside the curve (|Z|:1)= the number of zeroes of f inside the
curve (|Z|=1).

» 27'%+4z% +1 has exactly two zeroes in the curve |z|<1.

(Here the number of zeroes of f inside the curve (|Z|:1).

22 gz=2.
27 I\ = "o I\z\ 14 2

2) Suppose that f is entire and f(z) is real if and only if z is

real .Use the Argument Principle to show thatfcan have atmost
one zero.
( Hint: Consider the image of the circle |z|=R. Here f maps the

entire upper semicircle |z|=R,y>O into either the upper half

plane or the lower half plane .
Similarly, f maps the entire lower semicircle |z/=R,y>0 into

either the upper or lower half plane, because aArg(w) is atmost
n in any upper/ lower half plane .. aAgf(z) <2z as z traverses
through the circle |z|=

- The Number of zeroes of f(z) in |z|<R

- L Argr (< Loz=1.
2z 2z
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3) Find the number of zeroes of f(z):%ez—z in |¢/<1. (Hint:

1
Let f()=z g(z)=7e" £ (2)|>|g(2)| Vz, |2 <1)
4) Find the number of zeroes of f(z)=2z"-5z"+3z"~1 in |z|<1(
Hint : Take f(z)=5z4,g(z)=z6+3z2—1
f@)|= ‘5z4‘ =52 ‘26 +327 —1‘

- on |z =1,
Also |f(2)|=|g(z)| only at Fi.
There are 4 zeroes of fin [z|<1.

5) Show that for each R>0 if n is large enough then
2 n

z z .
Pn(z)=1+z+?+...+—' has no zeroes in |z|<R.
! n'

(Hint: P,(z) > e® as n—o0.)

6) If f is Meromorphic on G and f:G — C,, is defined by

f(z)=o0 if 7 is pole of f
= f(z) otherwise. Show that f is continuous on G.

dx

2 .

7) Find |7,
x +1

i
. 7 iz
Solution: Here z;=¢% and z, = e

Represent the poles of

e in the upper half plane. Since
z +

each of these i1s a simple pole

. The residues are given by the values of f '(z)=% at these
z

poles.

i
.-.Res[ 1 ;e4j——%(x/_2+i\/§)and

z4+1

Res[ 41 ;e?}——l(ﬁ—iﬁ)
8

7 +1
i
A fx =27i| Res 41 ce 4 +Res( 41 ;e3"”j :;;ﬁ
x +1 7 +1 " +1 2
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8) Evaluate [ —— Sm(x)

ix

Solution: We know that the function < has pole at x=0.

X
. We modify the integral as follows:
lX

Ijooosm(x) de=1Tm Iw -1 dr.
X
M eix_l _ 1_eiz . iz
. _Mde—jIM—dz—m—le7dz
. iz - eix_l
codimy, o [, —dz=0= " dx = 7i
Z
ix _ :
Imjf’we 1dx=7£’.:> j;sm(x)dx:x.
9) Evaluate [, ——
IO 1+ x°
Solution: Let f(2)= 13.Then f has
I+z
iz
Zzzelﬂ':_l,z?’:e 3
i . .
~.Res 10g(z3);Zl_ 3| 71 N3
1+z 912 2
i .
.. Res IOg(i),zz_e3 __r
1+z 3
~.Res 10g(z)’Z3_ 3 |2 Szl 1 ﬁ
1+2° 9 (2 2
log(z) 27
> Res( 2 j:-—@
o dx log(z) 27
o9, )20
b 1+x k 1437 9
dx
10) Evaluate [
: b Jx(1+x)
a—l

( Hint: The integral has the form Io

p(X)

Use the formula |(1—e?™@D
{( )IO p(x)

sum on R.H.S. is taken over the zeroes
271

dx Zk Res(

i

poles at z =e3 and

dx with O<a=%<1

p(x) 2 H the

of the function p(z).

a—l



dé

11) Evaluate J}” Treosi®)
+oos

— . 2r a6 ._2 dz
Solution: Consider [; TOS(Q)_YJ‘ z\=1m

=47zRes(2;;\/§—2j:§ﬂ'x/§

z°+4z+1

x2

o0
12) Evaluate the integral [ ————dx.
o0 ( 21 1)
13) Use Cauchy-Residue theorem to evaluate

sin z

S dz where v is the circle | z—i|=7.
v z7+1
14) Use Cauchy-Residue theorem to evaluate | CZS Sz dx.
0x"+

3k 3k %k %k %
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13

MOBIUS TRANSFORMATION

Unit structure

13.0 Objective

13.1 Introduction

13.2 Conformal Mapping

13.3 Some standard transformation

13.4 Mobius Transformation Or Bilinear Transformation Or
Linear Fractional Transformation

13.5 Summary
13.6 Unit End Exercise

13.0 OBJECTIVE

After going through this unit you shall come to know about

e Special type of functions called transformation from C — C

e The combination of special function to give rise to a
transformation called Mobius Transformation

e Special properties of Mobius Transformation like fixed point
and cross ratio.

e Method to find the bilinear transformation using various
method.

13.1 INTRODUCTION

There are certain transformation that can be readily described
in terms of geometry. In this chapter, we are mainly concerned with
certain geometric interpretations of functions and finding the image
of a given figure under a given bilinear function .

13.2 CONFORMAL MAPPING

A differentiable map f:Q — R’ is said to be conformal map if
det(Df,)#0Vze Q & £(Df. (), Df.(B))=£(a.B) Va, Be C—{0}

Thus, conformal map is preserves the angle between two intersecting
curves in C
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Proposition: Let Q be a domain in C and f:Q—C be a map.
Then f is any analytic function with f'(z)#0Y z€ Q if and only if f
is conformal map with det(Df,) > 0 ¥V z€ Q

Proof: Let f be analytic, Df, (@)= f'(z)a V ae C. Then

o o Re(F()2) 7(8) _Re(ap)
£(f'(2)e f(2)B)= FRa|f ()8 |ells

Thus fis conformal map.

£L(a,p)Vea,feCl{0}

Let f(z)=u(z)+iv(z),ze Q. By Cauchy Riemann equation, the
Jacobian of f=(u(x,y),v(x,y)) is KX Z;}z{ux —vx]

V| ve

X X

Hence det(Df,)=u,’+ u,">0. Now f'(z)=u, +iv, & f’(z)%0.
, 2
f'(z) >0.

Conversely, Fix zeQ. Since f i1s conformal map,
£(Df.(1,0),Df.(0,1))= £(Li)=0

So,  Df.(L0)LDf (0,1). Let Df (1,0)=(a,b)e R>.  Then
Df.(1,0)=(%b,a).

Since det(Df.)>0,Df. (0,1)=(-b,a) Let o=a+ib. Then
Df (B)=ap (Verity) and fis complex differentiable.

Hence det(Df,)=u’+ u,’=

13.3 SOME STANDARD TRANSFORMATION

(1) Translation: |w = z+c¢| where c is a complex constant.

The transformation w= z+cis simply a translation of the axes
and as such as preserves the shape if the region in z-plane.

Note: in particular translation maps circle in z-plane onto circles in
the w-plane.

(i1)) Rotation and Reflection: |w=cz| where ¢ is a complex
constant.
Let w=Re"”,z=re”,c = pe”
i(a+6)

Now, Re” =re” - pe'™ = rpe
" R=rp&p=a+06
- Thus the transformation maps a point P(r, ) in the z-plane
onto a point P’(rp,a+6) in the w-plane.
1.e. the image is magnified (or diminished) by rp and rotated
by a+86.
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Note: in particular w=cz maps circle in z-plane onto circles in the
w-plane.

(i11) Inversion: |w=

1
Z
Let w=Re”, z=re"
, 1
R _
-.Re¥ = o

R=lg&p=——8
r

. . 1 . .

i.e. transformatiom w=—maps P(r,8) in the z-plane onto a point
z

P’(r,—6) in the w-plane.

. . 1 . . . .
Note: in particular w=— maps circle in z-plane onto circles in the
z

w-plane.

13.4 MOBIUS TRANSFORMATION OR BILINEAR
TRANSFORMATION OR LINEAR FRACTIONAL
TRANSFORMATION

.ps . az+b
Definition: A transformations(z)=w= R where a,b,c,d are
cz+

complex constant and ad —bc #0 1is called Mobius Transformation
or Bilinear Transformation or Linear fractional transformation.

Note : If ad —-bc=0 = ad=bc zizi
a c

b

alz+
= az+b = ( A) _i = constant.

= = y =
CcZ + d C ( d —+ A) C
Thus, ad-bc#0 1s a necessary condition for the Mobius

az+b
cz+d

Transformation:  s(z)=w=

1) If S is a Mobius transformation, then S~! is the inverse mapping
of Sice. (057! (2)=2=(57"5)(2).

az+b

Let S(z)= y where a,b,c,d are complex constant and
czZ+
ad—bc #0.
_ dz—b
571(5)=—%
—cz+a
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(50571 ()=5(571(2)) :S(ﬂj

—cz+a

dz—-b 1
=[a(—j+b}< b
—cz+a {c( 7 — j+d}
—cz+a
_ adz—ﬂﬁ—bcz+;¢’b/ « ;ezﬁ _adz—bcz
—er¥a od? —bc—¢d? +ad ~— —be+ad
(ad—bc)
(ad—bc)

Similarly, (S7'o5)(2)=z.

(Aa)z+(Ab)  Alaz+b) _
(A)z+(Ad)  Alcz+d)

= The w-—efficients a, b, c, d are not unique.
al%bTCZ +aaydidy +bibycic, + bzﬁidl/dz

—01%3’1/% —aybicidy — abycyd; — bz}rdfdz =
a1a2d1d2 — a2b2C2d1 + b1b2C1C2 - azblcldz

s(z) (A#0)

Consider

=aydy (aydy —bycy )+ bicy (bycy —ayd,y ) =
ad, (azdz —bycy ) —bicy (a2d2 _bzcz)
= (aid, —bic;)-(aydy —byc, ) # 0. i.e. the coefficients a,b,c,d

are not unique.

3) Let S be a Mobius transformation on C_, .

S(z)= az:s where a,b, c,d are complex constant and ad —bc #0.
cz
S( ) Z((Z+%) a+%
Z = =
d d
t(e+d]) o+
() =L when c#0
C
=oo when c¢=0
. +b az+b
Again, §(z)=—"" =
d d
cwrd ez )
d
S(——j:oo when c#0
c
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4) If § and T are Mobius Transformations, then (7ToS ),
(composition of T and S ) is also a Mobius Transformation.
Let £=5(z)= 99D here a,b,c,d are complex constant and
cz+ dl
(12& + b2
ad)—bc;#0 and =T (§)=—=-—= where ay,b),c;,d, are
ng_, + dz
complex constant and a,d, —bycy #0.

[To8](z)=T[S(z)]= T[“l”bl}

1z + dl

(ToS)(z)zaz{m}Hazx { !

cz+d a7+
12+d) e b, 4
1z +d1
. 4qanz + Clzbl + bZClZ + b2d1 % M
M 01C2Z+b]C2 +C1d2Z+d1d2
_aqapztagb +byciz+byd) _ (aay+byc)z+(agh +bydy) oz +p
CllCzZ-i-blCz +C1d22+d1d2 (611C2 +C1d2)Z+(b1C2 +dld2) )CZ+5
Where, oa=aqap + szl, B = a2b1 + b2d1 , X=aqcy + Cldz,
0= b|C2 + d1d2

NOW, o0 — BX = (611612 + b2C1 ) (b1C2 + dld2 ) - (a2b1 + b2d1 ) (611C2 + C1d2 )
= ayaybycy +ayardidy +bybycicy +bycydidy —(ajazbicy

+ a2b161d2 + a1b2c2d1 + b2€1d1d2 )
#0
Hence, composition of S and T is also a Mobius transformation.

Proposition : If S isa M.T. then, S is a composition of translation
rotation, inversion and Magnification.

az+

Proof : Consider a Mobius Transformation, S(z)= where,

cz+d
a,b,c,d are complex constant and ad —bc #0

CaseI: When ¢c=0

S(2)= az+b :%Z+

b
If Sl(z)=%z and Sz(Z)=Z+g
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a
then, (S,08,)=S5|S;( So|l—z|=—z+—=8(z
(5205 =828 (2] =52 2 |-z L5 ()
S = SZ o Sl
In this case, Mobius transformation is a composition of translation,

rotation and Magnification.

Case Il : When c#0

S(z)=

i( az+bj_ az+bc+ad—ad _ (bc—ad) La (cz+d)
cz+d (ccz+d) clecz+d) ¢ (cz+d)
_ bc—ad 1 L.
=t
c Z+4 ¢
If Sl Z+cy Sz / ( )—(bc_zad jzand S4( )—Z+ﬁ

C C

(S408308,08)(z)=S$, [53(52(51( )))]zs‘{s{sz(“%jﬂ

(be— ad) c bc—ad
cz+d ﬂ SZ{ X62+d}zs4{c(cz+d)}

bc ad ﬁ
c(ez+d) ¢
a+bc—ad
-t =5 (2)
c(cz+d)
S :S4OS3052051
In this case, M.T. is a composition of translation, rotation,
inversion and magnification.

Fixed Points :
Definition : Let G be a subset of C_, and f:G — C_. Then point

70 € G is said to be a fixed point of f if f(zg)=zy.

e.g.i) Let f(z )=z2 Here, f has fixed points 0, 1 and .
ii) Let f(z)= / Here, f has fixed point 1 and — 1.
iii) Let f(z)=z+(3+i).Here, f has fixed point

Example 1 : What are the fixed points of Mobius transformation?
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Solution : Consider a M.T., S(z)= aZ+2 where, a,b,c,d are
cz+

complex constant and ad —bc #0.
For fixed points,
Put
S(z)=z = aztb
cz+d
= cz?+(d—a)z-b=0
—(d—a)+\/(d—a)2—4.b.c

= z= 5 =
C

(a+d)*y (d—a) -abe
2c

A. M.T. can have atmost 2 fixed points unless
S(z)=z =~z

iz+2
2) S(z)= —

=z= az+b=cz>+dz

Z:

Solution : For fixed points

iz+2 .
=7 = lz+2:z2
z+1

—(1-i) %y (1-i)* =8
2

PutS(z)=z = e z2+(1—i)z—2=0

= z=

Definition : For any three distinct points z,, z3,z4 1n C,,, the cross
ratio of four points z,z5,23,24 1S defined to Dbe
(ZI_Z3)(Z2_Z4)

(z1-24)(22-23)

(21522, 23.24) =

For z =2 (22,22, 23, 24) = (22=2) (29~ 24) =1
’ (22-24)(22-23)

For 7 =23 (23,22, 23, 24) = (z3-23) (22— 24) o
’ (z3-24) (22— 23)
(24 —23) (22— 24)

For Z1:Z4’ (Z49Z2’Z39Z4): (Z4_Z4)(Z2_Z3) = o0

Definition : If z e C,, then the cross ratio (zj,z5,23,24) is the
image of z; under the unique. Mobius transformation which takes

o1, z3 00 and z4 to . ie. S(z)=(2, 22,23, 24) -
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Note : If M is any Mobius transformation and w,,ws, wy are

complex number s.t. M (wy)=1, M (w)=0 and M (w;)=c then

M (z)=(z, wy, w3, wy).

Proposition : If z,,z3,z4 are distinct points in C,, and T is any

Mobius transformation then, (zy,z,,23,24)=(T2,T22,T23,T24) for

any fix z;.

Proof : Let S(z)=(z,22,23.24)

= S isa M.T.

and  S(zp)=1 S(z3)=0 and S(z4) =00
Given that, T is any M.T.

Put M = ST}

L M(Tn)=S(17"(Tz)) =5 () =1

M (T23) =5 (T (123)) =S (23) =0
M (Tey) =8 (171 (724)) =S (24) ==
M (z)=(2,Tzy,Tz3, Tz4)
Put z=Tz
. M (Tz;)=(Tz,Tzp,T23,T24)
S(T_l (TZI)) = (T2, T2, 723, Tzy)
S(z1)=(Tz21, T2y, Tz3, Tzy)

(D)

(m =577

(. S is M.T.)

i.e. The cross ratio is invariant under Mobius Transition.

Proposition : If z,, z3,z4 are distinct points in C,, and wy, ws, wy

are also distinct points in C,, then, there is a unique M.T. S s.t.

S(z)=wy. S(z3)=ws and S(z4)=wy.

S

Zz
3 /K
z, Wo

zZ
4
SisaM.T.

Wa

C

o (z-plane)

Fig 13.1
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Proof : Let T (z)=(z, 2, 23,24) and M (z)=(z, wy, w3, wy).
= T and M are Mobius Transformations and T7T(zp)=1,
T(z3)=0 and T(z4)=c0, M (wy)=1, M (w3)=0 and M (wy)=co.
Put S=M"'T
S(z)=M""(Tzp) =M~ (1) =w
S(z3)=M""(T3)=M""(0) = w;
S(z4) =M~ (Tz4) =M () = wy
Let R be another M.T. s.t.
R(z;)=w; for j=2,3,4

(R o) () =R (S(22) =R (w2) = 22

(R_l°S)(Z3)=R_I(S(Z3))=R_1(W3)=Z3

Here, (R_1 ° S) composite map of § and R™! has 3 fixed points.

Rlos=1 (Identify map)
= S=R
Hence, S is the unique transformation.

Proposition : Let z, z5, z3, z4 be distinct points in C,, then the cross
ratio (zy,2p,23,24) is a real number < all four points lies on a
circle (or a straight line). (2009)
Proof : Let S:C,, — C,, be defined by S(z)=(z,2,23,24) = Real
number.

—

S
Mobius
A .
7 transformation

S R

N

(o]

Fig 13.2

Then, S™'{R}={z:(z 23, 23,24) is real] i.e. image of R, under
the Mobius Transformation is a circle.
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We will prove that the image of R_, under the Mobius
transformation is a circle.
az+b

Let S(z)= y where a,b,c,d are complex constant and
cz+

ad—bc#0.

If z=xe R and w=S_1(x),then S(w)=xeR.

S(w) is purely real number.

" S(w)=s(w)
aw+b aw+b
cw+d cw+d

" (aw+b)(cw+d)=(aw+b)(cw+d)

= aE| w|2+a5w+b;v_v+bgzac|w|2+5v_vd+5cw+zd

(az—ac)| u|2+(ag—l_7c)w+(b;:—;d)v_v+(bg—l_7d)=0 (1)

Case I : If ac is not real, then ac—ac#0.
If ac is real then ac = ac = ac
= ac=ac=0
From equation (1),
(ad-bc)  (ad-bc)  (bd-bd)

2
) ) " aea)
Put x= 9470 g 5= bd=bd
ac —dac ac—dac
|w|2+)_cw+xv_v—5=0
| wl*+ow+xw+| x| =| x [ +5
w+x=R = lw—(=x)|=R which is the equation of the

circle with centre at (-x, 0) and radius equal to R.

Where, R:\/|x|2+8

=J

ad —bc

a.c—ac

2 _ _ —
bd —bd ‘ad—bc|
+ — — =

ac—ac
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Case II : If ac is real then ac—ac=0
From equation (1)

(ad —bc)w+(bc—ad ) w+(bd —bd ) =0
Put a=ad—bc & Bzi(bg—l_od)

:%w—gw—iBZO.

- Im (aw) —iB=0.

= Im (aw—-P)=0.
P4l
Ja

Note : Consider a straight line L inthe Complex Plane C. If a
1s any point in L and b is its direction vector then,

or Im =0 (2)

A
L
b
/ ’
< >
A\ 4
Fig 13.3

tefen( 552 )

={z=a+bt:teR, ie.—oo<t<oo}
- The point w lies on a line determined by equation (2) for
fixed o and B.

Theorem : A Mobius transformation takes circles onto circles.
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Proof : Let T" be any circle in C_, (z-plane). Let S be any Mobius
Transformation.  Suppose z;,z3,z4 are distinct points on the

circle T".
r I’

/7

S
isa
M.T. .

S(TJ:F'

Fig 13.4
Put Sz;=w; for j=2,3,4.
= wy, w3, wy are distinct points in C,, (w-plane).
These three distinct points w,, wz, wy determine a circle in w-

plane.
TP.T. s(I')=T"
Since, z;, z3, z4 are distinct points in C,, and § ina M.T.

(2,22, 23, 24) =(Sz, Sz5, Sz3, Sz4 ) for any point z.

=(Sz, w2,w3,w4)... (D)

If ze T then the cross ratio (z, z,, 23, z4) iS a real number.
7, 22,23, 24 all lie on a circle ...

(Sz, wy, w3, wy) is a real number. (by equation (1))
= These four points Sz, wy, wy, w, lie on a circle T'”.

Put Sz=w
As z moves on the circle I', then the corresponding point w moves
on the circle I'" under a M.T. ‘S .

= S()=r".

Hence, a Mobius Transformation takes circles onto circles.

13.6 UNIT END EXERCISE

Example : Find a M.T. which maps points z=-1,0,1 onto the
points w=—1,—i,1. Also find the image of unit circle | Z | =1 in the

C -plane under this M.T.
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Solution : Given points z=z, zp=-1, z3=0, zg=1 and w=w,

%) =—1 w3 :—i, Wy =1.
AY y

y=0-1 X '1\\ 1 4
7 o=l
\4 v
2~ plane o—plane
Fig 13.5
M.T. is given by (z, 2, 23, 24 ) = (W, wy, w3, wy )
(Proposition on page no.81(2))
— (Z Z?))(ZZ_Z4) (W W3)(W2_W4) -
(Z Z4)(Z2_Z3) (W )(WZ_W3)
(z2=0)(=1=1) _ (w+i)(-1-1)
(z=1)(=1-0)  (w=1)(~1+i)
= (—z+iz)(w-1)=(1-z2) (w+i) =
—,zﬁ+z+izw—}'{=w+i—,zﬁ—}'{
= z+izw=w+i =
| z—i
S(z)=w= 1
(z)=w l[zﬂ_} (1)
which is a required bilinear transformation.
From equation (1), w:i{ Z_l: }
Z+i
= wz+iw=iz+l=>wz—iz=1-iw = z(w—i)=1-iw
1—iw
= z= :
w—i

Given equation of unit circle is | Z | =1.

|Z|z%:1 o 1miw]=lwei] = [1-iw =] wi?
w—l1

= (1—iw)(1—iw)=(w—i)(w—i)
= (l—iw) (i—;v_v) = (w—i) (v_v—;)
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—1 —Z Z
Z Z
7=, =0 & 2=0
g g
w w
wy, =0, —=0 & —2=0
Ws Ws

= (1=iw)(1+iw)=(w=i)(w+i)
= 1+iv_v—iw+| w|2 =| w |2+iw—iv_v+1

= 2iw—-2iw=0 = w—w=0 = w=w
Put w=u+iv,

w=w = u+iv=u-+iv = u+tiv=u-—iv = 2iv=0
= v=0
which is the equation of real axis.

1) Find a Mobius transformation , which send 1, i,—1 onto
—1,i,1 respectively.

Solution : F()=2T2 =1 piy=4Fb_; =00y
c+d ci+d —c+d

= a+b=-c—-d,

ai+b=di-c=>a=dand b=—-c,

b—a=d-c=>-c-d=d-c=>d=0=a=0

.'.f(z)zﬁziz—l, since ¢ #0.
cz oz oz

1 . . - .
- f(z)=—— 1is therequired bilinear transformation.
Z

2) Find the fixed points of the mapping w:ﬁ.
z

Solution: Let z, be the fixed point of the mapping

w=f(z)=iz>z0= %0 :>z§=0, let zp=xy+iyg=x=0
z+1 7o +1

and y,=0.

.79 =0 1s the fixed point of the mapping wzﬁ.
z

3) Find the Mobius Transformation bilinear mapping sending

—i,i,2i onto oo,O,% respectively.
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Solution: Let f(z)= aZ:f;,(ad—bc);tO be the required
cz

mapping . We know that f maps _d onto oo = _d_ —i,
C C

rd=ic= f(z)=2*P
cz+ic
Now f(i)=0=> f(i)=2"7 =~ 0= b=—ai
ci+ic 2ci
az—ai a(z-i) N N a 1
= = LS 2 =— 2 ==
( cz+ic c(z+i) f( l) 3:>f( l) 3¢ 3
=a=c.
.'.f(z):a(z_l):z_l,here a#0

c(z+i) z+i
(Alternate method for problems involving infinity)

4) Find the bilinear transformation which maps the
z =o0,i,0 onto the points z=0,i,0

Solution: We have transformation

bilinear

points

(W_W1)(W2 _W3) — (Z_Zl)(zz _Z3)

(Wl _Wz)(w3 - W) (Zl - Zz)(z3 - Z)
Since, z;, =« and w, =, we define N and D of LHS and RHS by

w,and z, respectively.

vz =ee, —=0 & 2=0and - w =, —=0 & -2
g 3 W; Ws

(W_Wl)(_l) — (_1)(Z2 _Z3)

(Wl_wz) (Z3_Z)
Put z,=i, z;3=0 and w;=0, w,=i

w i -1

—.:— w=—

—1 —Z Z

=0

5) Find a Mobius transformation , which send 1, i,—1 onto

—1,i,1 respectively.

a+b ai+b -a+b

Solution : f(l):c+d =—1,f(i):ci+d :i,f(—l):_c+d

=a+b=-c—-d,
ai+b=di—-c=>a=dand b=—c,
b—-a=d-c=>-c-d=d-c=>d=0=a=0

.'.f(z):ﬁziz—l, since ¢#0.
cz ¢z 2

1 . . - .
~ f(z)=—— 1is therequired bilinear transformation.
z
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6) Find the fixed points of the mapping W:%'
z

Solution: Let z, be the fixed point of the mapping

W:f(Z):i :ZOZ( %0 lj: Z§=0, let ZOZXO+iy0:>X0:O

and y,=0.

~.z9=0 18 the fixed point of the mapping w:&.
z

7) Find the Mobius Transformation/ bilinear mapping sending

—i,i,2i onto oo,O,% respectively.

Solution: Let f(z)= az+b

(ad —bc)#0 be the required bilinear

’

cz+d
mapping . We know that f maps _d onto oo:>—£=—i,
c c
rd=ic= f(z)=L2*P
cz+ic
Now f(1)=0= f(i) =22 =P ~0 = p=—ai
ci+ic  2ci
az—ai a(z—i) N N a 1
= = LS 2 =— 2 == —
( cz+ic c(z+i) 7(20) 3:>f( 2 3c 3

= a=c.
.'.f(z)za(z_l_) = Z_l., here a#0
c(z+i) z+i

8) Let z;,z,,23.24 be four distinct points in C,. Then show
that  (z,25,23,24)is a real number iff all four points lie

on a circle.

(Hint: Define s:C,, —» C., by s(z)=(z,2,23.24) Show that s(R.,)
is a circle. Here s7'(R)=the set of all z such that

(z.25,23,24) is real.

=2 lie in a circle.

9) Prove that all the points ze C satisfying ‘Z—j‘
7+

Find its radius and centre (2009)
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10) Find the image of the circle xX*+ y'+2x=0 in the complex plane

under the transformation w=l (2008)

Z
11) Find the Mobius transform which maps the points z=1, I ,-1
onto the points Mobius transformation (2008)

12) Let H={ze C/Im(z) >0 }and let D={ze C/|1zIk1}. Find the

Mobius transformation g s.t.g(H)=D and g(i)=0. Justify your claims
(2007)

13) Show that Mobius transformation has 0 and ~as its only fixed
points if and only if it is dilation (magnification) (2007)

14) Show that Mobius transformation has « as its only fixed points
if and only if it is a translation (2007)

15) Find the Mobius transform which maps the real axis RUoo onto
the circle |z] =1 (2006)

az+b a
- —as 7 —> o

16) Fix a,b,c,de C with c# 0.show that
cz+d c

17) Verify that the Mobius transformation w:lJrlZ maps the

14z
exterior of the circle | z | =1 in the z-plane into the upper half plane

Im(w)> 0 in the w-plane.

18) Find the image of the circle |z—3i|=3 in the complex plane

. 1 .
under the transformation w=—. Illustrate the results graphically.
Z

. : e .1 1.
19) Find the image of an infinite strip 1 <y SE in the complex plane
under the transformation w = 1
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