
M.Sc. (CS)
SEMESTER - I

ADVANCED DATABASE
SYSTEMS

SUBJECT CODE : PSCS103



© UNIVERSITY OF MUMBAI

ipin Enterprises

Tantia Jogani Industrial Estate, Unit No. 2,

Ground Floor, Sitaram Mill Compound,

J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

October 2021, Print - I

Programme Co-ordinator : Shri Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor, B.Sc. I.T.
IDOL, University of Mumbai, Mumbai

Course Writers : Ms. Sandhya Pandey
Assistant Professor,
The S.I.A. College of Higher Education,
Dombivli (E), Thane

: Ms. Priya Jadhav
N.G. Acharya and D. K. Marathe College,

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

Prof. Suhas Pednekar
Vice-Chancellor,
University of Mumbai,

Prof. Ravindra D. Kulkarni Prof. Prakash Mahanwar
Pro Vice-Chancellor, Director,
University of Mumbai, IDOL, University of Mumbai,



CONTENTS

Unit No. Title Page No.

Module - I

1. Distributed Database Concepts 01

2. DDBMS Architecture 07

3. Distributed Database Design 15

Module - II

4. Transaction Processing in Distributed Databases and
Parallel Databases 24

Module - III

5. Object Oriented, Temporal and Spatial Databases 88

Module - IV

6. Deductive, Active, Multimedia and XML Databases 141





I

Syllabus Advanced Database System
Semester I

Unit I: Distributed Database Concepts
Definition of Distributed databases and Distributed Database Management
System (DDBMS), Distributed transparent system. DDBMS Architecture:
DBMS standardization, Global, Local, External, and Internal Schemas,
Architectural models for DDBMS. Distributed database design: Design
problem of distributed systems, Design, strategies (top-down, bottom-up),
Fragmentation, Allocation and replication of fragments. Query Processing
Overview, Query Optimization.

Unit II: Transaction Processing in Distributed databases and Parallel
databases
Transaction Management: Definition and examples, formalization of a
transaction, ACID properties, classification of transaction. Concurrency
Control: definition, execution schedules, examples, locking based
algorithms, timestamp ordering algorithms, deadlock management. DBMS
reliability: Definitions and Basic Concepts, Local Recovery Management,
In-place update, out-of-place update, Distributed Reliability Protocols,
Two phase commit protocol, Three phases commit protocol. Parallel
Database System: Definition of Parallel Database Systems. Parallel query
evaluation: Speed up and scale up, Query Parallelism: I/O Parallelism
(Data Partitioning) Intra-query Parallelism, Inter –Query Parallelism, Intra
Operation Parallelism, Inter Operation Parallelism.

Unit III: Object Oriented, Temporal and Spatial Databases:
Object Oriented Database: Object Identity, Object structure, Type
Constructors, Encapsulation of Operations, Methods, Persistence, Type
and Class Hierarchies, Inheritance, Complex Objects, Object-oriented
DBMS , Languages and Design: ODMG Model, Object Definition
Languages (ODL), Object Query Languages (OQL). Temporal and Spatial
Database: Introduction to Temporal Database: Time ontology, structure,
and granularity, Temporal data models, Temporal relational algebras.
Introduction to Spatial Database: Definition, Types of spatial data,
Geographical Information Systems (GIS), Conceptual Data Models for
spatial databases, Logical data models for spatial databases: rastor and
vector model. Physical data models for spatial databases: Clustering
methods (space filling curves), Storage methods (R-tree). Query
processing.

Unit IV: Deductive, Active, Multimedia and XML Databases
Deductive Database: Introduction to recursive queries, Datalog Notation,
Clause Form and Horn Clauses, Interpretation of model: Least Model
semantics, The fixed point operator, safe Datalog program, recursive
query with negation. Active Database: Languages for rule specification:
Events, Conditions, Actions. XML and Database: Structure of XML Data,
XML Document Schema, Querying and Transformation, Storage of XML
Data. Introduction to multimedia database systems.



II

Text book:

 Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

 Database Management Systems, 3rd edition, Raghu Ramakrishnan and

 Johannes Gehrke, McGraw-Hill (2002).

 Fundamentals of Database Systems, 6thEdition, Elmasri and Navathe,
Addison. Wesley (2003).

 Unifying temporal data models via a conceptual model, C.S. Jensen,
M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7,
pp. 513-547, 1994.

 Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla,
Prentice Hall, 2003 (ISBN 013-017480-7)

 Principles of Multimedia Database Systems, Subramanian V. S.
Elsevier Publishers, 2013.

References:

 Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Valduriez, Person Education Asia.

 Database System Concepts, 5th edition, Avi Silberschatz , Henry F.
Korth , S. Sudarshan: McGraw-Hill (2010)

 Database Systems: Concepts, Design and Applications, 2nd edition,
Shio Kumar Singh, Pearson Publishing, (2011).

 Multi-dimensional aggregation for temporal data. M. Böhlen, J.
Gamper, and C.S. Jensen. In Proc. of EDBT-2006, pp. 257-275,
(2006).

 Moving objects databases (chapter 1 and 2), R.H. Güting and M.
Schneider: Morgan Kaufmann Publishers, Inc., (2005)

 Advanced Database Systems, (chapter 5, 6, and 7), Zaniolo et al.:
Morgan Kaufmann Publishers, Inc., (1997).





1

Module - I

1
DISTRIBUTED DATABASE CONCEPTS

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Distributed Database Concept

1.2.1 Definition of Distributed Databases and Distributed Database
Management System (DDBMS)

1.2.1.1 Features of Distributed Database Management System

1.2.1.2 Advantages of Distributed Database Management
System

1.2.1.3 Disadvantages of Distributed Database Management
System

1.2.2 Reasons to boosting DDBMS

1.2.3 Databases Types

1.3 Distributed Transparent System

1.3.1 Levels of Distributed Transparent System

1.3.1.1 Fragmentation Transparency

1.3.1.2 Location Transparency

1.3.1.3 Replication Transparency

1.4 Summary

1.5 List of References and Bibliography and further Reading

1.6 Model Questions

1.0 OBJECTIVE:

After going through this unit, you will be able to:
 understand what Distributed database is.
 define what is Distributed Database Management System
 describe features of DDBMS its advantages and disadvantages
 Illustrate Distributed transparent system
 Classify Distributed transparent System.

1.1 INTRODUCTION:

For appropriate working of any business/organisation, there’s a
requirement for a well-organised database management system. In the past
databases used to centralize in nature. But, with the growth of
globalization, organisations lean towards expanded crosswise the world.



2

Because of this reason they have to choose distributed data instead of
centralized system. This was the reason concept of Distributed Databases
came in picture.

Distributed Database Management System is a software system
that manages a distributed database which is partitioned and placed on
different location. Its objective is to hide data distribution and appears as
one logical database system to the clients.

1.2 DISTRIBUTED DATABASE CONCEPT:

Distributed Database is database which is not restricted to one
system only. It is a group of several interconnected databases. These are
spread physically across various locations that communicate through a
computer network. Distributed Database Management System (DDBMS)
manages the distributed database and offers mechanisms so as to make the
databases clear to the users. In these systems, data is intentionally
distributed among multiple places so that all computing resources of the
organization can be optimally used.

1.2.1. Definition of Distributed Databases and Distributed Database
Management System (DDBMS)

The concept that is most important to the DDBMS is location
clearness, meaning the user should be unaware of the actual location of
data.

“A distributed database management system (DDBMS) can be
defined as the software system that permits the management of the
distributed database and makes the distribution transparent to the
users.”:- M. Tamer Özsu

A Distributed Database Management System allows end users or
application programmers to view a pool of physically detached databases
as one logical unit. In another word, we can say distributed database is,
where different data stored among multiple locations but connected via
network, and for user it represent as a single logical unit.

Distributed Database Management System



3

1.2.1.1 Features ofDistributed Database Management System

Some features of Distributed Database Management system are as
follows:

 DDBMS software maintain CRUD (create, retrieve, Update,
Delete) functions.

 It covers all application areas where huge volume of data are
processed and retrieved simultaneously by n number of users.

 It ensure that data modified at any location update universally.

 It ensures confidentiality and data integrity which is important
feature in transaction management.

 It can handle heterogeneous data platforms.

1.2.1.2 Advantages of Distributed Database Management System:

Some of the advantages of DDBMS are as follows:

 Reliable:

Incase of centralized DBMS if database fails entire system comes
to a halt whereas in DDBMS when a component fails may be
reduce performance but it will not stop fully.

 Easy Expansion
In centralized database system if system needs to be expanded, the
implementation require extensive efforts and interruption in the
existing functionality. However in DDBMS no disturbance in
current functioning.

 Faster Response
In centralized database all queries are passing through central data
repository because of that response time is more although in
DDBMS data is distributed in well-organized, so it runs faster
response onqueries.

1.2.1.3 Disadvantages ofDistributed Database Management System:

 Complex and Expensive

DDBMS provides data transparency and work on different sites so
it may require complex and expensive software for proper
working.

 Overheads

Simple and complex operation and queries may require large
communication and calculation. Responsiveness is largely
dependent upon appropriate data distribution. Improper data
distribution often leads to slow response to user requests.

 Integrity

As data is on multiple sites it may create problem in updating data
and maintaining data integrity.



4

1.2.2. Reasons to Boosting DDBMS

The following Reasons inspire moving towards DDBMS −

 Distributed Nature of Structural Units – Now a days most
organizations are partitioned into several units that are physically
scattered over the world. Each unit needs its own set of local data.
Thus, the total database of the organization converts into
distributed.

 Data sharing Need −The several organizational divisions often
need to interact with each other and share data and resources. This
demands common databases or simulated databases that should be
used in a co-ordinated manner.

 Provision for OLTP and OLAP–Online Analytical Processing
(OLAP) and Online Transaction Processing (OLTP) works on
diversified systems. Distributed database systems supports and
both OLAP and OLTP.

 Database Retrieval − One of the common methods used in
DDBMS is imitation of data across different locations.
Replication of data spontaneously helps in data recovery if
database in any site is broken. Users can access data from other
sites while the damaged site is being rebuilt. Thus, database
disaster may convert inconspicuous to users.

 Usefulin Multiple Application Software − Most organizations
use a variant of application software and each is having different
database support. DDBMS provides anidentical functionality for
using the same data among diversified platforms.

1.2.3 Databases Types:

1.2.3.1. Homogeneous Database:
In a homogeneous database, all diverse sites collect data

identically. At all the sites same operating system, database management
system and the data structures used is being used. Therefore, they are easy
to manage.

1.2.3.2 Heterogeneous Database:
In a heterogeneous distributed database, different sites can use

dissimilar schema and software that can lead to glitches in transactions
and query processing. Also, a particular site might be completely
uninformed of the other sites. Diverse computers may use a different
operating system, different database application. They possibly will even
use changed data models for the database. Therefore, conversions are
compulsory for different sites to interconnect.

1.3 DISTRIBUTED TRANSPARENT SYSTEM:

One of the property of Distributed Database Management System is
Distributed transparent system. Because of this feature internal details of



5

the distribution is hidden from the users. DDBMS hides all the distributed
complexities and allow users to feel that they are working on single and
centralized database.

Different Layers of transparencies

1.3.1 Levels of Distributed Transparent System:
DDBMS is supporting transparency at three levels:

1.3.1.1 Fragmentation Transparency
In Fragmentation transparency, fragments are created to store the

data in distributed wayand should stay transparent. In this all the data
administration work necessarily control by the system, not by the user. In
this job, when a user sets a query, the global query is distributed in many
sites to get data from fragments and this data is place together at the end to
produce the result.

1.3.1.2 Location Transparency
Location transparency confirms that the user can fire query on any

relation or fragment of a relation like they are stored locally on user’s
place. But the table or its fragments are kept at isolated site in the
distributed database system, should be completely unaware to the user.
The address and access mechanism of the remote site are completely
hidden.

In order to integrate location transparency, DDBMS must have
access to restructured and perfect data dictionary and DDBMS directory
which contains the details of locations of data.

1.3.1.3 Replication Transparency
Replication transparency certifies that duplication of databases are

concealed from the users. It permits users to query upon a relation as if
only a single copy of the table is in place.

Replication transparency is connected with concurrency
transparency and failure transparency. At any time a user updates a data
element, the update is replicated in all the replicas of the table. Though,



6

this process should not be identified to the user. This is known as
concurrency transparency.

In case of let-down of a site, the user can still progress with his
queries using replicated copies without any information of failure then
this is failure transparency.

1.4 SUMMARY

Distributed Database Management System (DDBMS) software
which manages number of databases raised at different locations and
connected with each other through a computer network. It offers
mechanisms so that the delivery remains unaware to the users, who see the
database as a single database. Its internal details hidden from users with
transparency feature.

1.5 LIST OF REFERENCES AND BIBLIOGRAPHY AND
FURTHER READING

 Principles of Distributed Database Systems; 2nd Editied By M. Tamer
Ozsu and Patrick Valduriez, Person Education Asia.

 Distributed Database; Principles & Systems By Publications, Stefano
Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions
(1984)

 https://cs.uwaterloo.ca/~tozsu/publications/distdb/distdb.pdf

 https://www.tutorialspoint.com/distributed_dbms/index.htm

 https://www.geeksforgeeks.org/distributed-database-system/

1.6 MODEL QUESTIONS:

1. Explain Distributed Database Management System? Where we can use
it instead of DBMS?

2. Write and explain problem areas of distributed data base system.
3. Write advantages and disadvantages of DDBMS.
4. What is Distributed Transparent System? Explain its types.
5. Explain reasons for advancement of DDBMS.
6. Write a short note on:

 Fragmentation Transparency
 Location Transparency
 Replication Transparency





7

2
DDBMS ARCHITECTURE

Unit Structure

2.0 Objective

2.1 Introduction

2.2 DBMS standardization

2.3 DDBMS Architecture

2.3.1 Factors for DDBMS Architecture

2.3.1.1. Distribution

2.3.1.2. Autonomy

2.3.1.3. Heterogeneity

2.4 Architectural models of Distributed DBMS

2.4.1 Client-Server Architecture

2.4.2 Peer- to-Peer Architecture

2.4.2.1 Global, Local, External, and Internal Schemas

2.4.3 Multi - DBMS Architectures

2.5 Summary

2.6 List of References and Bibliography and further Reading

2.7 Model Questions

2.0 OBJECTIVES

After going through this Chapter, you will be able to:
 understand Distributed database management system architecture
 define what is Global, Local, External, and Internal Schemas
 describe different architectural model for DDBM

2.1 INTRODUCTION

In any system architecture defines its structure. This means that the
components of the system are identified, the purpose of each element is
specified, and the interrelationships and interactions among these
components are defined. The specification of the architecture of a system
requires identification of the various units, with their connections and
relationships, in terms of the data and control flow over the system.



8

2.2 DBMS STANDARDIZATION

Data standardization is the acute method of fetching data into a
collective layout that allows for combined research, large-scale analytics,
and sharing of refined tools and procedures

2.3 DDBMS ARCHITECTURE

Database systems comprise of complex data structures. Thus, to
make the system efficient for retrieval of data and reduce the complexity
of the users, developers use the method of Data Abstraction.

2.3.1.Factors for DDBMS Architecture:
DDBMS architectures are commonly developed dependent on

three factors –

2.3.1.1. Distribution–Itstates the physical dispersal of data crosswise the
different sites. Autonomy refers to the distribution of control, the
distribution aspect of the classification deals with data. The user sees the
data as one logical group. There are a numeralways DBMS have been
distributed. We abstract these alternatives into two classes:

 client/server distribution
 peer-to-peer distribution (or full distribution).

2.3.1.2 Autonomy
Autonomy, in this perspective, refers to the distribution of

mechanism, not of data. It identifies the distribution of regulator of the
database system and the degree to which each component DBMS can
work independently. Autonomy is a function of a quantity of factors such
as whether the module systems interchange information, whether they can
independently accomplish transactions, and whether one is certified to
modify them. Requirements of an autonomous structure have been stated
as follows:

 The local procedures of the individual DBMSs are not affected by
their involvement in the distributed system.

 The method in which the individual DBMSs develop queries and
optimize them should not be affected by the accomplishment of global
queries that access multiple databases.

 System regularity or operation should not be negotiated when
individual DBMS join or leave the distributed system.

On the other hand, the proportions of autonomy can be stated as follows:

Design autonomy: Individual DBMS are permitted to use the data models
and transaction management systems that they desire.



9

 Communication autonomy: To each of the discrete DBMS is free to
make its own decision as to what type of information it wants to offer
to the other DBMS or to the software that controls their global
execution.

 Execution autonomy: Each DBMS can implement the transactions
that are submitted to it in any way that it wants to.

2.3.1.3. Heterogeneity– It refers to the uniformity or variation of the data
models, system tools and databases. Heterogeneity may happen in various
forms in distributed systems, ranging from hardware heterogeneity and
dissimilarities in networking protocols to distinctions in data managers.
Representing data with different modelling tools creates heterogeneity
because of the inherent expressive powers and limitations of individual
data models. Heterogeneity in query languages not only involves the use
of completely different data access paradigms in different data models
(set-at-a-time access in relational systems versus record-at-a-time access
in some object-oriented systems), but also covers differences in languages
even when the individual systems use the same data model. Although SQL
is now the standard relational query language, there are many different
implementations and every vendor’s language has a slightly different
flavour.

DBMS Implementation Alternatives



10

2.3 ARCHITECTURAL MODELS OF DISTRIBUTED
DBMS:

2.4.1 Client-Server Architecture:

Client-Server architecture is a two-level architecture where the
functionality is distributed into servers and clients. The server functions
mainly comprise data management, query handling, transaction
management and optimization. Client functions contain mainly user
interface. Nevertheless, they have some functions resembling consistency
checking and transaction management.

The two different types of clients – server architecture are as follows:

 Single Server Multiple Client



11

 Multiple Server Multiple Client:

2.4.2 Peer- to-Peer Architecture for Distributed DBMS
In this systems, each peer actions both as a client and a server for

instructing database services. The peers share their source with other
peers and co-ordinate their actions.

This architecture in general has four levels of schemas −

2.4.2.1 Global, Local, External, and Internal Schemas:

 Global Conceptual Schema –Global Conceptual Schema represents
the global logical view of data. It represents the logical explanation of
entire database as if it is not circulated. This level encloses definitions
of all units, relationships among entities and security and integrity
facts of whole databases kept at all sites in a distributed system.

 Local Conceptual Schema –Local Conceptual Schema Show logical
data organization at individual location.

 Local Internal Schema –Local Internal Schema represents physical
record at each site.

 External Schema –External Schema Describes user’s vision of facts
and figures.



12

2.4.3 Multi - DBMS Architectures
This is an integrated database system formed by a collection of

two or more autonomous database systems.

Multi-DBMS can be expressed through six levels of schemas −

 Multi-database View Level − Describes multiple user views
including of subsets of the integrated distributed database.

 Multi-database Conceptual Level − Shows integrated multi-
database that comprises of global logical multi-database structure
definitions.

 Multi-database Internal Level − Illustrates the data distribution
across different sites and multi-database to local data mapping.

 Local database View Level − Give a picture of public view of local
data.

 Local database Conceptual Level − Describes local data
organization at each site.

 Local database Internal Level − Shows physical data organization at
each site.



13

There are two design alternatives for multi-DBMS −

 Model with multi-database conceptual level.

 Model without multi-database conceptual level.

_



14

2.5 SUMMARY

There is different types of distributed databases. Distributed
databases can be classified into homogeneous and heterogeneous
databases having further divisions. Distributed architecture can be
classified in various types namely client – server, peer – to – peer and
multi – DBMS.

2.5 LIST OF REFERENCES AND BIBLIOGRAPHY
AND FURTHER READING

 https://www.csitweb.com/distributed-dbms-features-needs-and-
architecture/

 https://www.ohdsi.org/data-standardization/
 Principles of Distributed Database Systems; 2nd Editied By M. Tamer

Ozsu and Patrick Valduriez, Person Education Asia.

2.7 MODEL QUESTIONS:

1. What is Distributed Database Management System Architecture?
Explain

2. Explain different architectural model for DDBMS
3. Explain Peer- to-Peer Architecture for Distributed DBMS. Write Short

Notes on the following:
 Global Schema
 Local Schema
 External Schema
 Internal Schemas





15

3
DISTRIBUTED DATABASE DESIGN

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Design problem of distributed systems

3.3 Design, strategies (top-down, bottom-up)

3.4 Fragmentation

3.5 Allocation and replication of fragments

3.6 Query Processing Overview

3.7 Query Optimization

3.5 Summary

3.6 List of References and Bibliography and further Reading

3.7 Model Questions

3.0 OBJECTIVES

After going through this Chapter, you will be able to:
 understand Design of Distributed System
 Know Top-down and Bottom-up Strategies of Database Design
 describe Fragmentation and Allocation and replication of fragments
 gain knowledge about Query processing and Query Optimization

3.1 INTRODUCTION

The design of a distributed computer system contains making
conclusions on the placement of data and programs through the sites of a
computer network, as well as probably designing the network itself. In
Distributed DBMS, the distribution of applications includes two things:
 Distribution of the distributed DBMS software
 Distribution of the application programs that run on it.

3.2 DESIGN PROBLEM OF DISTRIBUTED SYSTEMS

The distributed information system is defined as “a number of
interdependent computers linked by a network for sharing information
among them”. A distributed information system comprises of multiple
independent computers that transfer or exchange information via a
computer network.



16

 Heterogeneity:
Heterogeneity is functional to the network, computer hardware,

operating system and execution of different developers. A crucial
component of the heterogeneous distributed structure client-server
environment is middleware. Middleware is a set of facilities that permits
application and end-user to interrelate with each other across a
heterogeneous distributed system.

 Openness:
The openness of the distributed system is determined mainly by the

point to which new resource-sharing facilities can be made offered to the
users. Open systems are considered by the fact that their key interfaces are
circulated. It is based on a uniform communication tool and published
interface for access to pooled resources. It can be built from varied
hardware and software.

 Scalability:
Scalability of the system should persist efficient even with a

important increase in the number of operators and resources coupled.

 Security:
Security of information system has three mechanisms

confidentially, integrity and availability. Encryption defends shared
resources, preserves delicate information secrets when communicated.

 Failure Handling:
When some errorsarise in hardware and the software suite, it may

produce incorrect results or they may stop before they have completed the
predicted computation so corrective techniques should to implement to
handle this case. Failure control is challenging in distributed systems
because the let-down is incomplete i.e. some components fail while others
come to an end.

 Concurrency:
There is a chance that several users will attempt to access a

common resource at the similar time. Multiple users create requests for the
same resources, i.e. read, write, and update. Each source must be safe in a
parallel environment. Any item that signifies a shared resource a
distributed system must confirm that it operates properly in a concurrent
setting.

 Transparency:
Transparency confirms that the distributed system should be observed as a
single object by the users or the application programmers somewhat than
the pool of autonomous systems, which is work together. The user should
be uninformed of where the services are situated and the transmitting from
a local machine to anisolated one should be transparent.



17

3.3DESIGN, STRATEGIES (TOP-DOWN, BOTTOM-UP)

It has been recommended that the group of distributed systems can
be scrutinized along three scopes
1. Level of Sharing
2. Behaviour of access forms
3. Level of information on access pattern behaviour

To follow all extents some proper method has to be there to grow
distributed database design. There are two methods for developing any
database, the top-down method and the bottom-up method. Although these
approaches appear completely different, they share the mutual goal of
employing a system by relating all of the communication between the
processes.

3.3.1 Top-down design Strategy

The top-down design structure starts from the common and
transfers to the specific. In other words, you start with a universal idea of
what is required for the system and then work your method down to the
more specific particulars of how the system will work together. This
process contains the identification of diverse entity types and the
definition of each entity’s characteristics.

3.3.2 Bottom – up design Strategy

The bottom-up approach begins with the specific details and
moves up to the general. This is complete by first recognizing the data
elements and then alliance them collected in data sets. In other words, this
technique first identifies the aspects, and then groups them to form
objects.

3.4 FRAGMENTATION

Data fragmentation is a procedure used to break up entities. The
item might be a user’s database, a system database, or a table. It permits
you to breakdown a single object into two or more sectors, or fragments.
Each fragment can be put in storage at any site over a computer network.
In designing a scattered database, you must decide which portion of the
database is to be put in storage where. One method used to break up the
database into logical entities called fragments. Facts about data
fragmentation is kept in the distributed data catalog(DDC), from which it
is retrieved by the TP to process user requests. Fragmentation information
is deposited in a distributed data catalogue which the dealing out computer
uses to process a user's demand.



18

3.4.1 Data Fragmentation Strategies:
Data fragmentation strategies, are established at the table level and

comprise of dividing a table into logical fragments. There are three forms
of data fragmentation strategies: horizontal, vertical, and mixed.

3.4.1.1 Horizontal fragmentation
This kind of fragmentation refers partition of a relation into

fragments of rows. Each fragment is kept at a different workstation or
node, and each fragment comprises unique rows. Each horizontal fragment
may have a changed number of rows, but each fragment must have the
identical attributes.

3.4.1.2 Vertical fragmentation

This type of fragmentation refers to the partition of a relation into
fragments that contain a collection of attributes. Each vertical fragment
must have the same number of rows, but can have dissimilar attributes
depending on the key.

3.4.1.3 Mixed fragmentation
This type of fragmentation is a two-step procedure. First,

horizontal fragmentation is completed to obtain the essential rows, then
vertical fragmentation is done to distribute the attributes between the rows.



19

3.5 ALLOCATION AND REPLICATION OF
FRAGMENTS

3.5.1 Data Allocation
Data allocation is a procedure of deciding where to accumulate the

data. It also comprises a decision as to which data is stored at what
location. Data provision can be centralised, partitioned or replicated.

3.5.1.1. Centralised
The entire database is stored at one place. No distribution happens.

3.5.1.2 Partitioned
The database is distributed into several fragments that are deposited at
numerous sites.

3.5.1.3 Replicated
Copies of one or added database fragments are kept at several sites.

3.5.2 Data Replication

Data replication is the storage of data replicas at numerous sites on
the network. Fragment copies can be stored at several site, thus increasing
data availability and reply time. Replicated data is subject to a common
consistency rule. This rule involves that all replicas of the data fragments
must be same and to ensure data consistency among all of the imitations.

Although data replication is favourable in terms of availability and
response periods, the maintenance of the replications can turn into
complex. For example, if data is simulated over multiple sites, the
DDBMS needs to decide which copy to access. For a query process, the
nearest copy is all that is necessary to satisfy a transaction. Though, if the
operation is an update, at that time all copies must be selected and
restructured to satisfy the common consistency rule.

A database can be moreover fully replicated, partially replicated or
not replicated.

3.5.2.1 Full replication
Stores multiple copies of each database fragment at various sites.

Fully replicated databases can be unlikely because of the amount of
overhead forced on the system.

3.5.2.2 Partial replication
Stores multiple copies of some database fragments at multiple

sites. Most DDBMS can hold this type of replication precise well.

3.5.2.3 No replication
Stores each database section at a single site. No repetition arises.



20

Data replication is mainly useful if usage frequency of remote data
is great and the database is fairly huge. Another advantage of data
replication is the opportunity of restoring lost data at a specific site.

3.6 QUERY PROCESSING OVERVIEW

A Query processing in a distributed database management system
needs the transmission of data among the computers in a network. A
distribution approach for a query is the ordering of data diffusions and
local data processing in a database system. Usually, a query in Distributed
DBMS entails data from multiple sites, and this need for data from
different sites is termed the transmission of data that causes
communication costs. Query processing in DBMS is unlike from query
processing in centralized DBMS due to this communication cost of data
transmission over the network. The transmission cost is small when sites
are joined through high-speed Networks and is pretty significant in other
networks.

In a distributed database system, handling a query comprises of
optimization at both the world-wide and the local level. The query move
in the database system at the client or supervisory site. Here, the user is
legalised, the query is checked, translated, and enhanced at a global level.

The architecture can be signified as −

Mapping Global Queries into Local Queries
The procedure of mapping global queries to local ones can be

recognised as follows −
 The tables essential in a global query have fragments distributed
crosswise multiple sites. The local databases have data only about limited
data. The supervisory site uses the global data dictionary to collect
information about the distribution and recreates the global vision from the
fragments.



21

 If there is no duplication, the global optimizer tracks local queries
at the sites where the fragments are kept. If there is replication, the global
optimizer selects the site based upon communication cost, workload, and
server speed.

 The global optimizer produces a distributed execution proposal so
that least amount of data allocation occurs across the sites. The plan
shapes the location of the fragments, order in which query steps wishes to
be executed and the processes involved in transferring transitional results.

 The local queries are optimized by the local database servers.
Finally, the local query effects are merged together through blending
operation in case of horizontal fragments and join process for vertical
fragments.

3.7QUERY OPTIMIZATION

Distributed query optimization needs evaluation of anenormous
number of query trees each of which produce the necessary results of a
query. This is primarily due to the occurrence of large volume of
replicated and fragmented data. Hence, the goal is to find an optimal
solution instead of the finest solution.

The main concerns for distributed query optimization are −
 Optimal consumption of resources in the distributed system.
 Query trading.
 Decrease of solution space of the query.

3.7.1 Optimal Utilization of Resources in the Distributed System

A distributed system has a number of database servers in the
various sites to perform the actionsbelong to a query. Following are the
approaches for optimal resource utilization −

 Operation Shipping − In operation shipping, the process is run at
the location where the data is kept and not at the client site. The results
are then transported to the client site. This is applicable for operations
where the operands are presented at the same site. i.e. Select and Project
operations.

 Data Shipping − In data shipping, the facts fragments are
transported to the database server, where the processes are executed. This
is used in procedures where the operands are distributed at diverse sites.
This is also suitable in systems where the communication overheads are
low, and local processors are abundant slower than the client server.

 Hybrid Shipping − This is a mixture of data and operation
shipping. At this point, data fragments are transmitted to the high-speed
processors, where the process runs. The results are then lead to the client
site.



22

3.7.2 Query Trading
In query trading system for distributed database systems, the

controlling/client site for a dispersed query is called the buyer and the
locations where the local queries execute are entitled sellers. The buyer
expresses a number of options for choosing sellers and for restructuring
the global results. The goal of the buyer is to reach the optimal cost.

The algorithm jumps with the buyer allocating sub-queries to the
vender sites. The best plan is created from local improved query plans
proposed by the sellers joined with the communication cost for renovating
the final result. Once the global optimum plan is framed, the query is
performed.

3.7.3 Reduction of Solution Space of the Query
Optimal solution normally involves reduction of clarification

space so that the cost of query and data relocation is reduced. This can be
attained through a set of experimental rules, just as heuristics in
centralized structures.

Some of the rules are as follows:

 Implement selection and projection tasks as early as promising. This
eases the data flow over communication web.

 Streamline operations on horizontal fragments by removing selection
conditions which are not applicable to a particular site.

 In case of join and union procedures comprising of fragments sited in
multiple sites, transfer fragmented data to the site where utmost of the
data is present and implement operation there.

 Use semi-join process to qualify tuples that are to be combined. This
decreases the amount of data relocation which in turn reduces
communication cost.

 Combine the common leaves and sub-trees in a dispersed query tree.



23

3.5 SUMMARY

The improvement in technology has opened the locks for unlimited
volumes of data to transfer into the system. Distributed database
technology is certainly one of the key growths in the field of database
systems. Though, with the remarkable amount of data driving in from
various sources and in many formats, it may become relatively a difficult
task for a business to stock, process and manage this data. Choosing the
services of a database expansion company that provides tradition database
development solutions provider may support to meet the specific
experiments of the business by keeping data well-organized, protected and
easily accessible for approved users.

3.6 LIST OF REFERENCES AND BIBLIOGRAPHY
AND FURTHER READING

 https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distribute
d_sys/ddms_design.htm

 http://www.myreadingroom.co.in/notes-and-studymaterial/65-
dbms/559-database-design-concepts.html

 https://www.geeksforgeeks.org/design-issues-of-distributed-system/

3.7 MODEL QUESTIONS

1. Explain Design problem of distributed systems.
2. What is Query Optimization? Explain Types.
3. Explain Query Processing. Differentiate Global Queries into Local

Queries.
4. Explain Data Fragmentation Procedure.
5. Explain Design Problem of Distributed System.




