
SUBJECT CODE : USIT301

PYTHON PROGRAMMING

S.Y.B.SC.(IT)
SEMESTER - III (CBCS)

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,
Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Varda Offset and Typesetters
Andheri (W), Mumbai - 400 053.Pace Computronics

"Samridhi" Paranjpe 'B' Scheme, Vile Parle (E), Mumbai - 57.
Printed by :

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Gouri S. Sawant
Assistant Professor, B.Sc. IT, IDOL,
University of Mumbai- 400098.

Course Writers : Mr. Rahul S. Navale
Assistant Professor,Sinhgad Institute of Management,
Pune.

: Dr. Sunil khilari
Assistant Professor, Sinhgad Institute of Management, Pune

: Mr. Rahul Borate
Assistant Professor, Sinhgad Institute of Management,
Pune.

: Ms. Aarti Sahitya
Assistant Professor, K J Somiya Institute of Engineering and
Information Technology, Sion

August 2021, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

UNIT I

1. Introduction 01

2. Variables And Expression 13

3. Conditional Statements, Looping, Control Statements 26

UNIT II

4 Functions 42

5. Strings 59

UNIT III

6. List 75

7. Tuples And Dictionaries 88

8. Files And Exceptions 112

UNIT IV

9. Regular Expression 125

10 . Classes And Objects 134

11. Multithreaded Programming 147

12. Module 157

UNIT V

13. Creating The GUI Form And Adding Widgets 169

14. Layout Management & Look & Feel Customization 192

15. Storing Data In Our Mysql Database Via Our GUI 213

CONTENTS
Chapter No. Title Page No

Syllabus

M. Sc (Information Technology) Semester – I
Course Name: Python Programming Course Code: USIT301
Periods per week (1 Period is 50 minutes) 5

Credits 2
Hours Marks

Evaluation System Theory Examination InternalTheory Examination 2½ 75
Theory Internal - 25

Unit Details Lectures
I Introduction: The Python Programming Language,

History, features, Installing Python, Running Python
program, Debugging : Syntax Errors, Runtime Errors,
Semantic Errors, Experimental Debugging, Formal and
Natural Languages, The Difference Between Brackets,
Braces, and Parentheses,
Variables and Expressions Values and Types,
Variables, Variable Names and Keywords, Type
conversion, Operators and Operands, Expressions,
Interactive Mode and Script Mode, Order of Operations.
Conditional Statements: if, if-else, nested if –else
Looping: for, while, nested loops
Control statements: Terminating loops, skipping
specific conditions

12

II Functions: Function Calls, Type Conversion Functions,
Math Functions, Composition, Adding New Functions,
Definitions and Uses, Flow of Execution, Parameters
and Arguments, Variables and Parameters Are Local,
Stack Diagrams, Fruitful Functions and Void Functions,
Why Functions? Importing with from, Return Values,
Incremental Development, Composition, Boolean
Functions, More Recursion, Leap of Faith, Checking
Types
Strings: A String Is a Sequence, Traversal with a for
Loop, String Slices, Strings Are Immutable, Searching,
Looping and Counting, String Methods, The in
Operator, String Comparison, String Operations.

12

III Lists: Values and Accessing Elements, Lists are
mutable, traversing a List, Deleting elements from List,
Built-in List Operators, Concatenation, Repetition, In
Operator, Built-in List functions and methods
Tuples and Dictionaries: Tuples, Accessing values in
Tuples, Tuple Assignment, Tuples as return values,
Variable-length argument tuples, Basic tuples
operations, Concatenation, Repetition, in Operator,
Iteration, Built-in Tuple Functions Creating a
Dictionary, Accessing Values in a dictionary, Updating

12

Dictionary, Deleting Elements from Dictionary,
Properties of Dictionary keys, Operations in Dictionary,
Built-In Dictionary Functions, Built-in Dictionary
Methods
Files: Text Files, The File Object Attributes,
Directories
Exceptions: Built-in Exceptions, Handling Exceptions,
Exception with Arguments, User-defined Exceptions

IV Regular Expressions – Concept of regular expression,
various types of regular expressions, using match
function.
Classes and Objects: Overview of OOP (Object
Oriented Programming), Class Definition, Creating
Objects, Instances as Arguments, Instances as return
values, Built-in Class Attributes, Inheritance, Method
Overriding, Data Encapsulation, Data Hiding
Multithreaded Programming: Thread Module,
creating a thread, synchronizing threads, multithreaded
priority queue
Modules: Importing module, Creating and exploring
modules, Math module, Random module, Time module

12

V Creating the GUI Form and Adding Widgets:
Widgets: Button, Canvas, Checkbutton, Entry, Frame,
Label, Listbox, Menubutton, Menu, Message,
Radiobutton, Scale, Scrollbar, text, Toplevel, Spinbox,
PanedWindow, LabelFrame, tkMessagebox. Handling
Standard attributes and Properties of Widgets.
Layout Management: Designing GUI applications
with proper Layout Management features.
Look and Feel Customization: Enhancing Look and
Feel of GUI using different appearances of widgets.
Storing Data in Our MySQL Database via Our GUI
: Connecting to a MySQL database from Python,
Configuring the MySQL connection, Designing the
Python GUI database, Using the INSERT command,
Using the UPDATE command, Using the DELETE
command, Storing and retrieving data from MySQL
database.

12

Books and References:
Sr.
No.

Title Author/s Publisher Edition Year

1. Think Python Allen Downey O’Reilly 1st 2012

2. An Introduction
to Computer
Science using
Python 3

Thomas Erl,
Zaigham
Mahmood,
and Ricardo

SPD 1st 2014

Puttini
3. Python GUI

Programming
Cookbook

Burkhard A.
Meier

Packt 1st 2015

4. Introduction to
Problem
Solving with
Python

E.
Balagurusamy

TMH 1st 2015

5. Murach’s Python
programming

Joel Murach,
Michael
Urban

SPD 1st 2017

6. Object-oriented
Programming in
Python

Michael H.
Goldwasser,
David
Letscher

Pearson
Prentice
Hall

1st 2008

7. Exploring Python Budd TMH 1st 2016

1

UNIT I

1

INTRODUCTION

Unit Structure
1.0 Objectives

1.1 Introduction: The Python Programming Language

1.2 History

1.3 Features

1.4 Installing Python

1.5 Running Python program

1.6 Debugging

1.6.1 Syntax Errors

1.6.2 Runtime Errors

1.6.3 Semantic Errors

1.6.4 Experimental Debugging

1.7 Formal and Natural Languages

1.8 The Difference Between Brackets, Braces, and Parentheses

1.9 Summary

1.10 References

1.11 Unit End Exercise

1.0 OBJECTIVES

After reading through this chapter, you will be able to –
 To understand and use the basic of python.

 To understand the history and features of python programming.

 To understand the installation of python.

 To handle the basis errors in python.

 To understand the difference between brackets, braces and
parenthesis.

1.1 INTRODUCTION: THE PYTHON
PROGRAMMING LANGUAGE

 Python is an object-oriented, high level language, interpreted,
dynamic and multipurpose programming language.

 Python is not intended to work on special area such as web
programming. That is why it is known as multipurpose because it
can be used with web, enterprise, 3D CAD etc.

2

 We don’t need to use data types to declare variable because it
is dynamically typed so we can write a=10 to declare an integer
value in a variable.

 Python makes the development and debugging fast because there is
no compilation step included in python development.

1.2 HISTORY

 Python was first introduced by Guido Van Rossum in 1991 at the
National Research Institute for Mathematics and Computer
Science, Netherlands.

 Though the language was introduced in 1991, the development
began in the 1980s. Previouslyvan Rossum worked on the ABC
language at CentrumWiskunde & Informatica (CWI) in
the Netherlands.

 The ABC language was capable of exception handling and
interfacing with the Amoeba operating system. Inspired by the
language, Van Rossum first tried out making his own version of it.

 Python is influenced by programming languages like: ABC
language, Modula-3, Python is used for software development at
companies and organizations such as Google, Yahoo, CERN,
Industrial Light and Magic, and NASA.

 Why the Name Python?

 Python developer, Rossum always wanted the name of his new
language to be short, unique, and mysterious.

 Inspired by Monty Python’s Flying Circus, a BBC comedy series,
he named it Python.

1.3 FEATURES

There are a lot of features provided by python programming language
as follows

1. Easy to Code:

 Python is a very developer-friendly language which means that
anyone and everyone can learn to code it in a couple of hours or
days.

 As compared to other object-oriented programming languages like
Java, C, C++, and C#, Python is one of the easiest to learn.

2. Open Source and Free:

 Python is an open-source programming language which means that
anyone can create and contribute to its development.

 Python has an online forum where thousands of coders gather daily
to improve this language further. Along with this Python is free to
download and use in any operating system, be it Windows, Mac or
Linux.

3

3. Support for GUI:

 GUI or Graphical User Interface is one of the key aspects of any
programming language because it has the ability to add flair to
code and make the results more visual.

 Python has support for a wide array of GUIs which can easily be
imported to the interpreter, thus making this one of the most
favorite languages for developers.

4. Object-Oriented Approach:

 One of the key aspects of Python is its object-oriented
approach. This basically means that Python recognizes the
concept of class and object encapsulation thus allowing
programs to be efficient in the long run.

5. Highly Portable:

 Suppose you are running Python on Windows and you need to shift
the same to either a Mac or a Linux system, then you can easily
achieve the same in Python without having to worry about
changing the code.

 This is not possible in other programming languages, thus making
Python one of the most portable languages available in the
industry.

6. Highly Dynamic

 Python is one of the most dynamic languages available in the
industry today. What this basically means is that the type of a
variable is decided at the run time and not in advance.

 Due to the presence of this feature, we do not need to specify the
type of the variable during coding, thus saving time and increasing
efficiency.

7. Large Standard Library:

 Out of the box, Python comes inbuilt with a large number
of libraries that can be imported at any instance and be used in a
specific program.

 The presence of libraries also makes sure that you don’t need to
write all the code yourself and can import the same from those that
already exist in the libraries.

1.4 INSTALLING PYTHON

 To install Python, firstly download the Python distribution from
official website of python (www.python.org/ download).

 Having downloaded the Python distribution now execute it.

 Setting Path in Python:

4

Before starting working with Python, a specific path is to set to set path
follow the steps:

Right click on My Computer--> Properties -->Advanced System
setting -->Environment Variable -->New

In Variable name write path and in Variable value copy path up to C://
Python (i.e., path where Python is installed). Click Ok ->Ok.

1.5 RUNNING PYTHON PROGRAM:

There are different ways of working in Python:

1) How to Execute Python Program Using Command Prompt:
If you want to create a Python file in .py extension and run. You can
use the Windows command prompt to execute the Python code.

Example:

 Here is the simple code of Python given in the Python file
demo.py. It contains only single line code of Python which prints
the text “Hello World!” on execution.

 So, how you can execute the Python program using the command
prompt. To see this, you have to first open the command
prompt using the ‘window+r’ keyboard shortcut. Now, type the
word ‘cmd’ to open the command prompt.

 This opens the command prompt with the screen as given
below. Change the directory location to the location where you
have just saved your Python .py extension file.

 We can use the cmd command ‘cd’ to change the directory
location. Use ‘cd..’ to come out of directory and “cd” to come
inside of the directory. Get the file location where you saved your
Python file.

 To execute the Python file, you have to use the keyword
‘Python’ followed by the file name with extension.py See the
example given in the screen above with the output of the file.

5

2) Interactive Mode to Execute Python Program:

 To execute the code directly in the interactive mode. You have to
open the interactive mode. Press the window button and type the
text “Python”. Click the “Python 3.7(32 bit) Desktop app” as given
below to open the interactive mode of Python.

 You can type the Python code directly in the Python interactive
mode. Here, in the image below contains the print program of
Python.

 Press the enter button to execute the print code of Python. The
output gives the text “Hello World!” after you press the enter
button.

 Type any code of Python you want to execute and run directly on
interactive mode.

6

3) Using IDLE (Python GUI) to Execute Python Program:

 Another useful method of executing the Python code. Use the
Python IDLE GUI Shell to execute the Python program on
Windows system.

 Open the Python IDLE shell by pressing the window button of the
keyboard. Type “Python” and click the “IDLE (Python 3.7 32
bit)” to open the Python shell.

 Create a Python file with .py extension and open it with the Python
shell. The file looks like the image given below.

7

 It contains the simple Python code which prints the text “Hello
World!”. In order to execute the Python code, you have to open the
‘run’ menu and press the ‘Run Module’ option.

 A new shell window will open which contains the output of the
Python code. Create your own file and execute the Python code
using this simple method using Python IDLE.

1.6 DEBUGGING

 Debugging means the complete control over the program
execution. Developers use debugging to overcome program from
any bad issues.

 debugging is a healthier process for the program and keeps the
diseases bugs far away.

 Python also allows developers to debug the programs using pdb
module that comes with standard Python by default.

 We just need to import pdb module in the Python script. Using pdb
module, we can set breakpoints in the program to check the current
status

8

 We can Change the flow of execution by using jump, continue
statements.

1.6.1 Syntax Error:

 Errors are the mistakes or faults performed by the user which
results in abnormal working of the program.

 However, we cannot detect programming errors before the
compilation of programs. The process of removing errors from a
program is called Debugging.

 A syntax error occurs when we do not use properly defined syntax
in any programming language. For example: incorrect arguments,
indentation, use of undefined variables etc.

Example:
age=16

if age>18:

print ("you can vote”) # syntax error because of not using indentation
else

print ("you cannot vote”) #syntax error because of not using
indentation

1.6.2 Runtime Errors:

 The second type of error is a runtime error, so called because the
error does not appear until after the program has started running.

 These errors are also called exceptions because they usually
indicate that something exceptional (and bad) has happened.

 Some examples of Python runtime errors:

 division by zero

 performing an operation on incompatible types

 using an identifier which has not been defined

 accessing a list element, dictionary value or object attribute
which doesn’t exist

 trying to access a file which doesn’t exist

1.6.3 Semantic Errors:

 The third type of error is the semantic error. If there is a semantic
error in your program, it will run successfully in the sense that the
computer will not generate any error messages, but it will not do
the right thing. It will do something else.

 The problem is that the program you wrote is not the program you
wanted to write. The meaning of the program (its semantics) is
wrong.

 Identifying semantic errors can be tricky because it requires you to
work backward by looking at the output of the program and trying
to figure out what it is doing.

9

1.6.4 Experimental Debugging:

 One of the most important skills you will acquire is debugging.
Although it can be frustrating, debugging is one of the most
intellectually rich, challenging, and interesting parts of
programming.

 Debugging is also like an experimental science. Once you have an
idea about what is going wrong, you modify your program and try
again.

 For some people, programming and debugging are the same thing.
That is, programming is the process of gradually debugging a
program until it does what you want.

 The idea is that you should start with a program that does
something and make small modifications, debugging them as you
go, so that you always have a working program.

1.7 FORMAL AND NATURAL LANGUAGES

 Natural languages are the languages people speak, such as English,
Spanish, and French. They were not designed by people (although
people try to impose some order on them); they evolved naturally.

 Formal languages are languages that are designed by people for
specific applications.

 For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among
numbers and symbols. Chemists use a formal language to represent
the chemical structure of molecules.

 Programming languages are formal languages that have been
designed to express computations.

 Formal languages tend to have strict rules about syntax. For
example, 3 + 3 = 6 is a syntactically correct mathematical
statement.

 Syntax rules come in two flavors, pertaining to tokens and
structure. Tokens are the basic elements of the language, such as
words, numbers, and chemical elements.

 The second type of syntax rule pertains to the structure of a
statement; that is, the way the tokens are arranged. The statement
3+ = 3 is illegal because even though + and = are legal tokens, you
can’t have one right after the other.

1.8 THE DIFFERENCE BETWEEN BRACKETS,
BRACES, AND PARENTHESES:

 Brackets []:
Brackets are used to define mutable data types such as list or list
comprehensions.

10

Example:
To define a list with name as L1 with three elements 10,20 and 30

>>> L1 = [10,20,30]

>>> L1

[10,20,30]

 Brackets can be used for indexing and lookup of elements
Example:

>>>L1[1] = 40

>>>L1

[10,40,30]

Example: To lookup the element of list L1

>>> L1[0]

10

 Brackets can be used to access the individual characters of a string
or to make string slicing

Example:
Lookup the first characters of string

str>>>’mumbai’
>>> str [0]

‘m’
Example: To slice a string

>>> str [1:4]

‘umb’

Braces {}

 Curly braces are used in python to define set or dictionary.

Example:
Create a set with three elements 10,20,30.

>>> s1 = {10,20,30}

>>> type(s1)

<class ‘set’>

Example:
Create a dictionary with two elements with keys, ‘rollno’ and ‘name’
>>> d1= {‘rollno’:101, ‘name’:’ Vivek’}
>>> type(d1)

<class ‘dict’>

 Brackets can be used to access the value of dictionary element by
specifying the key.

>>> d1[‘rollno’]
101

11

Parentheses ()

 Parentheses can be used to create immutable sequence data type
tuple.

Example: Create a tuple named ‘t1’ with elements 10,20,30
>>> t1= (10,20,30)

>>> type(t1)

<class ‘tuple’>

 Parentheses can be used to define the parameters of function
definition and function call.

Example:
Multiply two numbers using a function

def mul(a,b):

returns a*b
x=2

y=3

z=mul (2,3)

print(x,’*’,y,’=’z)

 In the function definition def mul(a,b) formal parameters are
specified using parentheses

 In the function call z=mul (2,3) actual values are specified using
parenthesis.

1.9 SUMMARY

 In this chapter we studied Introduction, history, features of Python
Programming Language.

 We don’t need to use data types to declare variable because it
is dynamically typed so we can write a=10 to declare an integer
value in a variable.

 In this chapter we are more focused on types of errors in python
like syntax error, runtime error, semantic error and experimental
debugging.

 Execution of Python Program Using Command Prompt and
Interactive Mode to Execute Python Program.

 Also, we studied Difference between Brackets, Braces, and
Parentheses in python.

1.10 REFERENCES

 www.journaldev.com

 www.edureka.com

 www.tutorialdeep.com

12

 www.xspdf.com

 Think Python by Allen Downey 1st edition.

 Python Programming for Beginners By Prof. Rahul E. Borate, Dr.
Sunil Khilari, Prof. Rahul S. Navale.

1.11 UNIT END EXERCISE

1. Use a web browser to go to the Python website http: // python.org.
This page contains information about Python and links to Python-
related pages, and it gives you the ability to search the Python
documentation.

For example, if you enter print in the search window, the first link
that appears is the documentation of the print statement. At this
point, not all of it will make sense to you, but it is good to know
where it is.

2. Start the Python interpreter and type help () to start the online help
utility. Or you can type help ('print') to get information about the
print statement.

13

2

VARIABLES AND EXPRESSION

Unit Structure
2.0 Objectives

2.1 Introduction

2.2 Values and Types

2.2.1 Variables

2.2.2 Variable Names and Keywords

2.3 Type conversion

2.3.1 Implicit Type Conversion

2.3.2 Explicit Type Conversion

2.4 Operators and Operands

2.5 Expressions

2.6 Interactive Mode and Script Mode

2.7 Order of Operations

2.8 Summary

2.9 References

2.10 Unit End Exercise

2.0 OBJECTIVES

After reading through this chapter, you will be able to –
 To understand and use the basic datatypes of python.

 To understand the type conversion of variables in python
programming.

 To understand the operators and operands in python.

 To understand the interactive mode and script mode in python.

 To understand the order of operations in python.

2.1 INTRODUCTION

 Variables in a computer program are not quite like mathematical
variables. They are placeholders for locations in memory.

 Memory values consists of a sequence of binary digits (bits) that can
be 0 or 1, so all numbers are represented internally in base 2.

 Names of variables are chosen by the programmer.

14

 Python is case sensitive, so myVariable is not the same
as Myvariable which in turn is not the same as MyVariable.

 With some exceptions, however, the programmer should avoid
assigning names that differ only by case since human readers can
overlook such differences.

2.2 VALUES AND TYPES

 A value is one of the basic things a program works with, like a letter or
a number. The values we have seen so far are 1, 2, and 'Hello, World!'.

 These values belong to different types: 2 is an integer, and 'Hello,
World!' is a string, so-called because it contains a “string” of letters.
Youcan identify strings because they are enclosed in quotation marks.

 If you are not sure what type a value has, the interpreter can tell you.
>>>type ('Hello, World!')
<type ‘str’>
>>> type (17)
<type ‘int’>

 Not surprisingly, strings belong to the type str and integers belong to
the type int. Less obviously, numbers with a decimal point belong to a
type called float, because these numbers are represented in a format
called floating-point.
>>> type (3.2)
<type ‘float’>

 What about values like '17' and '3.2'? They look like numbers, but they
are in quotation marks like strings.
>>> type (‘17’)
<type ‘str’>
>>> type (‘3.2’)
<type ‘str’>
They are strings.

2.2.1 Variables:

 One of the most powerful features of a programming language is the
ability to manipulate variables. A variable is a name that refers to a
value.

 An assignment statement creates new variables and gives them values:
>>> message = ‘Welcome to University of Mumbai’
>>> n = 17
>>> pi = 3.1415926535897932

 The above example makes three assignments. The first assigns a string
to a new variable named message, the second gives the integer 17 to n,
the third assigns the (approximate) value of π to pi.

15

 A common way to represent variables on paper is to write the name
with an arrow pointing to the variable’s value.
>>> type(message)
<type ‘str’>
>>> type(n)
<type ‘int’>
>>> type(pi)
<type ‘float’>

2.2.2 Variable Names and Keywords:

 Programmers generally choose names for their variables that are
meaningful they document what the variable is used for.

 Variable names can be arbitrarily long. They can contain both letters
and numbers, but they have to begin with a letter. It is legal to use
uppercase letters, but it is a good idea to begin variable names with a
lowercase letter.

 The underscore character, _, can appear in a name. It is often used in
names with multiple words, such as my_name or
airspeed_of_unladen_swallow.

 If you give a variable an illegal name, you get a syntax error:
>>> 76mumbai= 'big city'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced python'
SyntaxError: invalid syntax

 76mumbai is illegal because it does not begin with a letter. more@ is
illegal because it contains an illegal character, @. But what’s wrong
with class?

 It turns out that class is one of Python’s keywords. The interpreter uses
keywords to recognize the structure of the program, and they cannot be
used as variable names.

 Python has a lot of keywords. The number keeps on growing with the
new features coming in python.

 Python 3.7.3 is the current version as of writing this book. There are
35 keywords in Python 3.7.3 release.

 We can get the complete list of keywords using python interpreter help
utility.

 $ python3.7
>>> help ()
help> keywords

16

Here is a list of the Python keywords. Enter any keyword to get more
help.

False class from or

None continue global pass

True def if raise

and del import return

as elif in try

assert else is while

async except lambda with

await finally nonlocal yield

break for not

 You might want to keep this list handy. If the interpreter complains
about one of your variable names and you don’t know why, see if it is
on this list.

2.3 TYPE CONVERSION

The process of converting the value of one data type (integer, string, float,
etc.) to another data type is called type conversion. Python has two types
of type conversion.

2.3.1 Implicit Type Conversion:

 In Implicit type conversion, Python automatically converts one data
type to another data type. This process doesn't need any user
involvement.

 example where Python promotes the conversion of the lower data type
(integer) to the higher data type (float) to avoid data loss.

Example 1: Converting integer to float
num_int = 123

num_flo = 1.23

num_new = num_int + num_flo

print ("datatype of num_int:”, type(num_int))

print ("datatype of num_flo:”, type(num_flo))

print ("Value of num_new:”, num_new)

print ("datatype of num_new:”, type(num_new))

When we run the above program, the output will be:

datatype of num_int: <class 'int'>

datatype of num_flo: <class 'float'>

Value of num_new: 124.23

datatype of num_new: <class 'float'>

17

 In the above program, we add two variables num_int and num_flo,
storing the value in num_new.

 We will look at the data type of all three objects respectively.

 In the output, we can see the data type of num_int is an integer while
the data type of num_flo is a float.

 Also, we can see the num_new has a float data type because Python
always converts smaller data types to larger data types to avoid the
loss of data.

Example 2: Addition of string(higher) data type and integer(lower)
datatype
num_int = 123

num_str = “456”
print (“Data type of num_int:”, type(num_int))
print (“Data type of num_str:”, type(num_str))

print(num_int+num_str)

When we run the above program, the output will be:

Data type of num_int: <class 'int'>

Data type of num_str: <class 'str'>

Traceback (most recent call last):

File "python", line 7, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

 In the above program, we add two variables num_int and num_str.

 As we can see from the output, we got TypeError. Python is not able to
use Implicit Conversion in such conditions.

 However, Python has a solution for these types of situations which is
known as Explicit Conversion.

2.3.2Explicit Type Conversion:

 In Explicit Type Conversion, users convert the data type of an object
to required data type. We use the predefined functions
like int(), float(), str(), etc to perform explicit type conversion.

 This type of conversion is also called typecasting because the user
casts (changes) the data type of the objects.

Syntax:
<required_datatype>(expression)

Typecasting can be done by assigning the required data type function to
the expression

18

Example 3: Addition of string and integer using explicit conversion
num_int = 123

num_str = "456"

print (“Data type of num_int:”, type(num_int))
print (“Data type of num_str before Type Casting:”, type(num_str))
num_str = int(num_str)

print (“Data type of num_str after Type Casting:”, type(num_str))

num_sum = num_int + num_str

print (“Sum of num_int and num_str:”, num_sum)
print (“Data type of the sum:”, type(num_sum))

When we run the above program, the output will be:

Data type of num_int: <class 'int'>

Data type of num_str before Type Casting: <class 'str'>

Data type of num_str after Type Casting: <class 'int'>

Sum of num_int and num_str: 579

Data type of the sum: <class 'int'>

 In the above program, we add num_str and num_int variable.

 We converted num_str from string(higher) to integer(lower) type
using int() function to perform the addition.

 After converting num_str to an integer value, Python is able to add
these two variables.

 We got the num_sum value and data type to be an integer.

2.4 OPERATORS AND OPERANDS:

 Operators are particular symbols which operate on some values and
produce an output.

 The values are known as Operands.

Example:

4 + 5 = 9

Here 4 and 5 are Operands and (+), (=) signs are the operators.

They produce the output 9

 Python supports the following operators:
Arithmetic Operators.

19

Relational Operators.

Logical Operators.

Membership Operators.

Identity Operators

 Arithmetic Operators:

Operators Description

// Perform Floor division (gives integer value after division)

+ To perform addition

- To perform subtraction

* To perform multiplication

/ To perform division

% To return remainder after division (Modulus)

** Perform exponent (raise to power)

 Arithmetic Operator Examples:
>>> 10+20

30

>>> 20-10

10

>>> 10*2

20

>>> 10/2

5

>>> 10%3

1

>>> 2**3

8

>>> 10//3

3

 Relational Operators:

Operators Description
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

20

 Relational Operators Examples:
>>> 10<20

True

>>> 10>20

False

>>> 10<=10

True

>>> 20>=15

True

>>> 5==6

False

>>>5!=6

True

Logical Operators:

Operators Description

and Logical AND (When both conditions are true output will
be true)

or Logical OR (If any one condition is true output will be
true

not Logical NOT (Compliment the condition i.e., reverse)

Logical Operators Examples:
a=5>4 and 3>2

print(a)

True

b=5>4 or 3<2

print(b)

True

c=not(5>4)

print(c)

False

Membership Operators:

Operators Description

in Returns true if a variable is in sequence of another
variable, else false.

not in Returns true if a variable is not in sequence of
another variable, else false.

21

Membership Operators Examples:
a=10

b=20

list= [10,20,30,40,50]

if (a in list):

print (“a is in given list”)

else:

print (“a is not in given list”)

if (b not in list):

print (“b is not given in list”)
else:

print (“b is given in list”)

Output:

>>>

a is in given list

b is given in list

Identity operators:

Operators Description

is Returns true if identity of two operands are same, else
false

is not Returns true if identity of two operands are not same,
else false.

Identity operators Examples
a=20

b=20

if (a is b):

print (“a, b has same identity”)

else:

print (“a, b is different”)

b=10

if (a is not b):

print (“a, b has different identity”)

else:

print (“a, b has same identity”)

>>>

a, b has same identity

a, b has different identity

22

2.5 EXPRESSIONS

 An expression is a combination of values, variables, and operators.

 A value all by itself is considered an expression, and so is a variable,
so the following are all legal expressions (assuming that the variable x
has been assigned a value):

17

x

x + 17

A statement is a unit of code that the Python interpreter can execute. We
have seen two kinds of statement: print and assignment.

 Technically an expression is also a statement, but it is probably
simpler to think of them as different things. The important difference
is that an expression has a value; a statement does not.

2.6 INTERACTIVE MODE AND SCRIPT MODE:

 One of the benefits of working with an interpreted language is that you
can test bits of code in interactive mode before you put them in a
script. But there are differences between interactive mode and script
mode that can be confusing.

 For example, if you are using Python as a calculator, you might type
>>> miles = 26.2

>>> miles * 1.61

42.182

The first line assigns a value to miles, but it has no visible effect. The
second line is an expression, so the interpreter evaluates it and displays the
result. So we learn that a marathon is about 42 kilometers.

 But if you type the same code into a script and run it, you get no
output at all.

 In script mode an expression, all by itself, has no visible effect. Python
actually evaluates the expression, but it doesn’t display the value
unless you tell it to:

miles = 26.2

print (miles * 1.61)

This behavior can be confusing at first.

 A script usually contains a sequence of statements. If there is more
than one statement, the results appear one at a time as the statements
execute.

 For example

23

print 1

x = 2

print x

produces the output

1

2

The assignment statement produces no output.

2.7 ORDER OF OPERATIONS

 When more than one operator appears in an expression, the order of
evaluation depends on the rules of precedence. For mathematical
operators, Python follows mathematical convention. The acronym
PEMDAS is a useful way to remember the rules:

 Parentheses have the highest precedence and can be used to force an
expression to evaluate in the order you want. Since expressions in
parentheses are evaluated first,

 2 * (3-1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to
make an expression easier to read, as in (minute * 100) / 60, even if it
doesn’t change the result.

 Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4,
and 3*1**3 is 3, not 27.

 Multiplication and Division have the same precedence, which is higher
than Addition and Subtraction, which also have the same precedence.
So 2*3-1 is 5, not 4, and 6+4/2 is 8, not 5.

 Operators with the same precedence are evaluated from left to right
(except exponentiation). So, in the expression degrees / 2 * pi, the
division happens first and the result is multiplied by pi. To divide by
2π, you can use parentheses or write degrees / 2 / pi.

 Example for Operator Precedence
>>> 200/200+(100+100)

201.0

>>>

>>> a=10

>>> b=20

>>> c=15

>>> (a+b)*(c+b)-150

900

>>> (a+b)*c+b-150

320

>>> a+b**2

410

24

>>> a or b + 20

10

>>> c or a + 20

15

>>> c and a + 20

30

>>> a and b + 20

40

>>> a>b>c

False

>>>

2.8 SUMMARY

 In this chapter we studied how to declare variables, expression and
types of variables in python.

 We are more focuses on type conversion of variables in this chapter
basically two types of conversion are implicit type conversion and
explicit type conversion.

 Also studied types of operators available in python like arithmetic,
logical, relational and membership operators.

 Focuses on interactive mode and script mode in python and order of
operations.

2.9 UNIT END EXERCISE

1. Assume that we execute the following assignment statements:

width = 17

height = 12.0

delimiter = '.'

For each of the following expressions, write the value of the expression
and the type (of the value of

the expression).

1. width/2

2. width/2.0

3. height/3

4. 1 + 2 * 5

5. delimiter * 5

25

Use the Python interpreter to check your answers

2. Type the following statements in the Python interpreter to see what
they do:

5

x = 5

x + 1

Now put the same statements into a script and run it. What is the
output? Modify the script by transforming each expression into a print
statement and then run it again.

3. Write a program add two numbers provided by the user.

4. Write a program to find the square of number.

5. Write a program that takes three numbers and prints their sum. Every
number is given on a separate line.

2.9 REFERENCES

 Think Python by Allen Downey 1st edition.

 Python Programming for Beginners By Prof. Rahul E. Borate, Dr.
Sunil Khilari, Prof. Rahul S. Navale.

 https://learning.rc.virginia.edu/

 www.programiz.com

 www.itvoyagers.in

26

3

CONDITIONAL STATEMENTS,
LOOPING, CONTROL STATEMENTS

Unit Structure
3.0 Objectives

3.1 Introduction

3.2 Conditional Statements:

3.2.1 if statement

3.2.2 if-else,

3.2.3 if...elif...else

3.2.4 nested if –else

3.3 Looping Statements:

3.3.1 for loop

3.3.2 while loop

3.3.3 nested loops

3.4 Control statements:

3.4.1 Terminating loops

3.4.2 skipping specific conditions

3.5 Summary

3.6 References

3.7 Unit End Exercise

3.0 OBJECTIVES

After reading through this chapter, you will be able to –

 To understand and use the conditional statementsin python.

 To understand the loop control in python programming.

 To understand the control statements in python.

 To understand the concepts of python and able to apply it for
solving the complex problems.

3.1 INTRODUCTION

 In order to write useful programs, we almost always need the
ability to check conditions and change the behavior of the program
accordingly. Conditional statements give us this ability.

 The simplest form is the if statement:
if x > 0:

print 'x is positive'

27

The boolean expression after if is called the condition. If it is true,
then the indented statement gets executed. If not, nothing happens.

 if statements have the same structure as function definitions: a
header followed by an indented body. Statements like this are
called compound statements.

 There is no limit on the number of statements that can appear in the
body, but there has to be at least one. Occasionally, it is useful to
have a body with no statements. In that case, you can use the pass
statement, which does nothing.

if x < 0:

pass # need to handle negative values!

3.2 CONDITIONAL STATEMENTS

Conditional Statement in Python perform different
computations or actions depending on whether a specific Boolean
constraint evaluates to true or false. Conditional statements are handled
by IF statements in Python.

Story of Two if’s:
Consider the following if statement, coded in a C-like language:

if (p > q)

{ p = 1;

q = 2;

}

Now, look at the equivalent statement in the Python language:

if p > q:

p = 1

q = 2

 what Python adds

 what Python removes

1) Parentheses are optional

if (x < y) ---> if x < y

2) End-of-line is end of statement

C-like languages Python language

x = 1; x = 1

3) End of indentation is end of block

Why Indentation Syntax?

A Few Special Cases

a = 1; b = 2; print (a + b)

28

You can chain together only simple statements, like assignments,
prints, and function calls.

3.2.1 if statement:

Syntax

if test expression:

statement(s)

 Here, the program evaluates the test expression and will execute
statement(s) only if the test expression is True.

 If the test expression is False, the statement(s) is not executed.

 In Python, the body of the if statement is indicated by the
indentation. The body starts with an indentation and the first
unindented line marks the end.

 Python interprets non-zero values as True. None and 0 are
interpreted as False.

Example: Python if Statement

If the number is positive, we print an appropriate message

num = 3

if num > 0:

print (num, "is a positive number.")

print ("This is always printed.")

num = -1

if num > 0:

print (num, "is a positive number.")

print ("This is also always printed.")

When you run the program, the output will be:

3 is a positive number.

This is always printed.

This is also always printed.

 In the above example, num > 0 is the test expression.

 The body of if is executed only if this evaluates to True.

 When the variable num is equal to 3, test expression is true and
statements inside the body of if are executed.

 If the variable num is equal to -1, test expression is false and
statements inside the body of if are skipped.

 The print() statement falls outside of the if block (unindented).
Hence, it is executed regardless of the test expression.

29

3.2.2 if-else statement:

Syntax

if test expression:

Body of if

else:

Body of else

 The if...else statement evaluates test expression and will execute
the body of if only when the test condition is True.

 If the condition is False, the body of else is executed. Indentation is
used to separate the blocks.

Example of if...else

Program checks if the number is positive or negative

And displays an appropriate message

num = 3

Try these two variations as well.

num = -5

num = 0

if num >= 0:

print ("Positive or Zero")

else:

print ("Negative number")

Output:

Positive or Zero

 In the above example, when num is equal to 3, the test expression
is true and the body of if is executed and the body of else is
skipped.

 If num is equal to -5, the test expression is false and the body
of else is executed and the body of if is skipped.

 If num is equal to 0, the test expression is true and body of if is
executed and body of else is skipped.

3.2.3 if...elif...else Statement:

Syntax

if test expression:

Body of if

elif test expression:

Body of elif

else:

Body of else

30

 The elif is short for else if. It allows us to check for multiple
expressions.

 If the condition for if is False, it checks the condition of the
next elif block and so on.

 If all the conditions are False, the body of else is executed.

 Only one block among the several if...elif...else blocks is executed
according to the condition.

 The if block can have only one else block. But it can have
multiple elif blocks.

Example of if...elif...else:

'''In this program,

we check if the number is positive or

negative or zero and

display an appropriate message'''

num = 3.4

Try these two variations as well:

num = 0

num = -4.5

if num > 0:

print ("Positive number")

elif num == 0:

print("Zero")

else:

print ("Negative number")

 When variable num is positive, Positive number is printed.

 If num is equal to 0, Zero is printed.

 If num is negative, Negative number is printed.

3.2.4 nested if –else:

 We can have a if...elif...else statement inside
another if...elif...else statement. This is called nesting in computer
programming.

 Any number of these statements can be nested inside one another.
Indentation is the only way to figure out the level of nesting. They
can get confusing, so they must be avoided unless necessary.

Python Nested if Example

'''In this program, we input a number

check if the number is positive or

negative or zero and display

31

an appropriate message

This time we use nested if statement'''

num = float (input ("Enter a number: "))

if num >= 0:

if num == 0:

print("Zero")

else:

print ("Positive number")

else:

print ("Negative number")

Output1:

Enter a number: 5

Positive number

Output2:

Enter a number: -1

Negative number

Output3:

Enter a number: 0

Zero

3.3 LOOPING STATEMENTS

 In general, statements are executed sequentially: The first
statement in a function is executed first, followed by the second,
and so on. There may be a situation when you need to execute a
block of code several number of times.

 Programming languages provide various control structures that
allow for more complicated execution paths.

 A loop statement allows us to execute a statement or group of
statements multiple times.

3.3.1 for loop:

 The for loop in Python is used to iterate over a sequence
(list, tuple, string) or other iterable objects. Iterating over a
sequence is called traversal.

 Syntax of for Loop

for val in sequence:

Body of for

32

 Here, val is the variable that takes the value of the item inside the
sequence on each iteration.

 Loop continues until we reach the last item in the sequence. The
body of for loop is separated from the rest of the code using
indentation.

 Example: Python for Loop

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

sum = sum+val

print ("The sum is", sum)

When you run the program, the output will be:

The sum is 48

The range () function:

 We can generate a sequence of numbers using range
() function. range (10) will generate numbers from 0 to 9 (10
numbers).

 We can also define the start, stop and step size as range (start,
stop,step_size). step_size defaults to 1, start to 0 and stop is end of
object if not provided.

 This function does not store all the values in memory; it would be
inefficient. So, it remembers the start, stop, step size and generates
the next number on the go.

 To force this function to output all the items, we can use the
function list().

Example:

print(range(10))

print(list(range(10)))

print (list (range (2, 8)))

print (list (range (2, 20, 3)))

Output:

range (0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[2, 3, 4, 5, 6, 7]

[2, 5, 8, 11, 14, 17]

33

 We can use the range () function in for loops to iterate through a
sequence of numbers. It can be combined with the len () function to
iterate through a sequence using indexing. Here is an example.

Program to iterate through a list using indexing

city = ['pune', 'mumbai', 'delhi']

iterate over the list using index

for i in range(len(city)):

print ("I like", city[i])

Output:

I like pune

I like mumbai

I like delhi

for loop with else:

 A for loop can have an optional else block as well. The else part is
executed if the items in the sequence used in for loop exhausts.

 The break keyword can be used to stop a for loop. In such cases,
the else part is ignored.

 Hence, a for loop's else part runs if no break occurs.

Example:

digits = [0, 1, 5]

for i in digits:

print(i)

else:

print("No items left.")

When you run the program, the output will be:

0

1

5

No items left.

 Here, the for loop prints items of the list until the loop exhausts.
When the for-loop exhausts, it executes the block of code in
the else and prints No items left.

 This for...else statement can be used with the break keyword to run
the else block only when the break keyword was not executed.

Example:

program to display student's marks from record

student_name = 'Soyuj'

marks = {'Ram': 90, 'Shayam': 55, 'Sujit': 77}

34

for student in marks:

if student == student_name:

print(marks[student])

break

else:

print ('No entry with that name found.')

Output:

No entry with that name found.

3.3.2 while loop:

 The while loop in Python is used to iterate over a block of code as
long as the test expression (condition) is true.

 We generally use while loop when we don't know the number of
times to iterate beforehand.

 Syntax of while Loop in Python

while test_expression:

Body of while

 In the while loop, test expression is checked first. The body of the
loop is entered only if the test_expression evaluates to True.

 After one iteration, the test expression is checked again. This
process continues until the test_expression evaluates to False.

 In Python, the body of the while loop is determined through
indentation.

 The body starts with indentation and the first unindented line marks
the end.

 Python interprets any non-zero value as True. None and 0 are
interpreted as False.

Example: Python while Loop

Program to add natural

numbers up to

sum = 1+2+3+...+n

To take input from the user,

n = int (input ("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

while i <= n:

sum = sum + i

i = i+1 # update counter

35

print the sum

print ("The sum is", sum)

When you run the program, the output will be:

Enter n: 10

The sum is 55

 In the above program, the test expression will be True as long as
our counter variable i is less than or equal to n (10 in our program).

 We need to increase the value of the counter variable in the body of
the loop. This is very important. Failing to do so will result in an
infinite loop (never-ending loop).

While loop with else:

 Same as with for loops, while loops can also have an
optional else block.

 The else part is executed if the condition in the while loop
evaluates to False.

 The while loop can be terminated with a break statement. In such
cases, the else part is ignored. Hence, a while loop's else part runs
if no break occurs and the condition is false.

 Example:

'''Example to illustrate

the use of else statement

with the while loop'''

counter = 0

while counter < 3:

print ("Inside loop")

counter = counter + 1

else:

print ("Inside else")

Output:

Inside loop

Inside loop

Inside loop

Inside else

 Here, we use a counter variable to print the string Inside loop three
times.

 On the fourth iteration, the condition in while becomes False.
Hence, the else part is executed.

3.3.3 Nested Loops:

 Loops can be nested in Python similar to nested loops in
other programming languages.

36

 Nested loop allows us to create one loop inside another loop.

 It is similar to nested conditional statements like nested if
statement.

 Nesting of loop can be implemented on both for loop and while
loop.

 We can use any loop inside loop for example, for loop can have
while loop in it.

Nested for loop:

 For loop can hold another for loop inside it.

 In above situation inside for loop will finish its execution first and
the control will be returned back to outside for loop.

Syntax

for iterator in iterable:

for iterator2 in iterable2:

statement(s) of inside for loop

statement(s) of outside for loop

 In this first for loop will initiate the iteration and later
second for loop will start its first iteration and till second for loop
complete its all iterations the control will not be given to
first for loop and statements of inside for loop will be executed.

 Once all iterations of inside for loop are completed then statements
of outside for loop will be executed and next iteration from
first for loop will begin.

Example1: of nested for loop in python:

for i in range (1,11):

for j in range (1,11):

m=i*j

print (m, end=' ')

print (“Table of “, i)

Output:

1 2 3 4 5 6 7 8 9 10 Table of 1

2 4 6 8 10 12 14 16 18 20 Table of 2

3 6 9 12 15 18 21 24 27 30 Table of 3

4 8 12 16 20 24 28 32 36 40 Table of 4

5 10 15 20 25 30 35 40 45 50 Table of 5

6 12 18 24 30 36 42 48 54 60 Table of 6

7 14 21 28 35 42 49 56 63 70 Table of 7

8 16 24 32 40 48 56 64 72 80 Table of 8

37

9 18 27 36 45 54 63 72 81 90 Table of 9

10 20 30 40 50 60 70 80 90 100 Table of 10

Example2: of nested for loop in python:

for i in range (10):

for j in range(i):

print ("*”, end=' ')
print (" ")

Output:

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * *

Nested while loop:

 While loop can hold another while loop inside it.

 In above situation inside while loop will finish its execution first
and the control will be returned back to outside while loop.

Syntax

while expression:

while expression2:

statement(s) of inside while loop

statement(s) of outside while loop

 In this first while loop will initiate the iteration and later
second while loop will start its first iteration and till
second while loop complete its all iterations the control will not be
given to first while loop and statements of inside while loop will be
executed.

 Once all iterations of inside while loop are completed than
statements of outside while loop will be executed and next iteration
from first while loop will begin.

 It is also possible that if first condition in while loop expression is
False then second while loop will never be executed.

Example1: Program to show nested while loop

p=1

38

while p<10:

q=1

while q<=p:

print (p, end=" ")

q+=1

p+=1

print (" ")

Output:

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9

Exampleb2: Program to nested while loop

x=10

while x>1:

y=10

while y>=x:

print (x, end=" ")

y-=1

x-=1

print(" ")

Output:

10

9 9

8 8 8

7 7 7 7

6 6 6 6 6

5 5 5 5 5 5

4 4 4 4 4 4 4

3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

39

3.4 CONTROL STATEMENTS:

 Control statements in python are used to control the order of
execution of the program based on the values and logic.

 Python provides us with three types of Control Statements:

Continue

Break

3.4.1 Terminating loops:

 The break statement is used inside the loop to exit out of the loop.
It is useful when we want to terminate the loop as soon as the
condition is fulfilled instead of doing the remaining iterations.

 It reduces execution time. Whenever the controller encountered a
break statement, it comes out of that loop immediately.

 Syntax of break statement

for element in sequence:

if condition:

break

Example:

for num in range (10):

if num > 5:

print ("stop processing.")

break

print(num)

Output:

0

1

2

3

4

5

stop processing.

3.4.2 skipping specific conditions:

 The continue statement is used to skip the current iteration
and continue with the next iteration.

 Syntax of continue statement:
for element in sequence:

if condition:

continue

40

Example of a continue statement:

for num in range (3, 8):

if num == 5:

continue

else:

print(num)

Output:
3

4

6

7

3.5 SUMMARY

 In this chapter we studied conditional statements like if, if-else, if-
elif-else and nested if-else statements for solving complex
problems in python.

 More focuses on loop control in python basically two types of
loops available in python like while loop, for loop and nested loop.

 Studied how to control the loop using break and continue
statements in order to skipping specific condition and terminating
loops.

3.6 UNIT END EXERCISE

1. Print the squares of numbers from 1 to 10 using loop control.

2. Write a Python program to print the prime numbers of up to a
given number, accept the number from the user.

3. Write a Python program to print the following pattern
1

23

456

78910

1112131415

4. Write a Python program to construct the following pattern, using a
nested for loop.

*
* *

* * *
* * * *

* * * * *
* * * *
* * *
* *
*

41

5. Write a Python program to count the number of even and odd
numbers from a series of numbers.

Sample numbers: numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9)

Expected Output:

Number of even numbers: 5

Number of odd numbers: 4

6. Write a Python program that prints all the numbers from 0 to 6
except 3 and 6

Note: Use 'continue' statement.

Expected Output: 0 1 2 4 5

7. Print First 10 natural numbers using while loop

8. Print the following pattern
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

9. Display numbers from -10 to -1 using for loop

10. Print the following pattern
*

**

3.7 REFERENCES

 Think Python by Allen Downey 1st edition.

 Python Programming for Beginners By Prof. Rahul E. Borate, Dr.
Sunil Khilari, Prof. Rahul S. Navale.

 www.programiz.com

 https://itvoyagers.in

 https://www.softwaretestinghelp.com

 https://pynative.com

42

UNIT II

4

FUNCTIONS

Unit Structure
4.0 Objectives

4.1 Introduction

4.2 Function Calls

4.3 Type Conversion Functions

4.4 Math Functions

4.5 Adding New Functions

4.6 Definitions and Uses

4.6.1 Flow of Execution

4.6.2 Parameters and Arguments

4.6.3 Variables and Parameters Are Local

4.6.4 Stack Diagrams

4.7 Fruitful Functions and Void Functions

4.8 Why Functions?

4.9 Importing with from, Return Values, Incremental Development

4.10 Boolean Functions

4.11 More Recursion, Leap of Faith, Checking Types

4.12 Summary

4.13 References

4.14 Unit End Exercise

4.0 OBJECTIVES

After reading through this chapter, you will be able to –
 To understand and use the function calls.

 To understand the type conversion functions.

 To understand the math function.

 To adding new function.

 To understand the Parameters and Arguments.

 To understand the fruitful functions and void functions.

 To understand the boolean functions, Recursion, checking types
etc.

4.1 INTRODUCTION

 One of the core principles of any programming language is, "Don't
Repeat Yourself". If you have an action that should occur many

43

times, you can define that action once and then call that code
whenever you need to carry out that action.

 We are already repeating ourselves in our code, so this is a good
time to introduce simple functions. Functions mean less work for
us as programmers, and effective use of functions results in code
that is less error.

4.2 FUNCTION CALLS

What is a function in Python?

 In Python, a function is a group of related statements that performs
a specific task.

 Functions help break our program into smaller and modular
chunks. As our program grows larger and larger, functions make it
more organized and manageable.

 Furthermore, it avoids repetition and makes the code reusable.

Syntax of Function

def function_name(parameters):

"""docstring"""

statement(s)

Above shown is a function definition that consists of the following
components.

1. Keyword def that marks the start of the function header.

2. A function name to uniquely identify the function. Function
naming follows the same rules of writing identifiers in Python.

3. Parameters (arguments) through which we pass values to a
function. They are optional.

4. A colon (:) to mark the end of the function header.

5. Optional documentation string (docstring) to describe what the
function does.

6. One or more valid python statements that make up the function
body. Statements must have the same indentation level (usually 4
spaces).

7. An optional return statement to return a value from the function.

Example:

def greeting(name):

"""

This function greets to

the person passed in as

44

a parameter

"""

print ("Hello, " + name + ". Good morning!")

How to call a function in python?

 Once we have defined a function, we can call it from another
function, program or even the Python prompt.

 To call a function we simply type the function name with
appropriate parameters.

>>> greeting('IDOL')

Hello, IDOL. Good morning!

4.3 TYPE CONVERSION FUNCTIONS

 The process of converting the value of one data type (integer,
string, float, etc.) to another data type is called type conversion.
Python has two types of type conversion.

1. Implicit Type Conversion

2. Explicit Type Conversion

1. Implicit Type Conversion:

 In Implicit type conversion, Python automatically converts one
data type to another data type. This process doesn't need any user
involvement.

 Let's see an example where Python promotes the conversion of the
lower data type (integer) to the higher data type (float) to avoid
data loss.

Example 1: Converting integer to float

num_int = 123

num_float = 1.23

num_new = num_int + num_float

print (“datatype of num_int:”, type(num_int))

print (“datatype of num_float:” type(num_float))

print (“Value of num_new:”, num_new)

print (“datatype of num_new:”, type(num_new))

Output:

datatype of num_int: <class 'int'>

datatype of num_float: <class 'float'>

Value of num_new: 124.23

datatype of num_new: <class 'float'>

45

Example 2: Addition of string(higher) data type and integer(lower)

datatype

num_int = 123

num_str = "456"

print ("Data type of num_int:”, type(num_int))

print ("Data type of num_str:”, type(num_str))

print(num_int+num_str)

Output:

Data type of num_int: <class 'int'>

Data type of num_str: <class 'str'>

Traceback (most recent call last):

File "python", line 7, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

 In the above program,

 We add two variables num_int and num_str.

 As we can see from the output, we got TypeError. Python is not
able to use Implicit Conversion in such conditions.

 However, Python has a solution for these types of situations which
is known as Explicit Conversion.

2. Explicit Type Conversion:

 In Explicit Type Conversion, users convert the data type of an

object to required data type. We use the predefined functions like

int(), float(), str(), etc to perform explicit type conversion.

 This type of conversion is also called typecasting because the user

casts (changes) the data type of the objects.

Syntax:

<required_datatype>(expression)

Example 3: Addition of string and integer using explicit conversion

num_int = 123

num_str = "456"

print ("Data type of num_int:”, type(num_int))

print ("Data type of num_str before Type Casting:”, type(num_str))

num_str = int(num_str)

print ("Data type of num_str after Type Casting:”, type(num_str))

num_sum = num_int + num_str

46

print ("Sum of num_int and num_str:”, num_sum)

print ("Data type of the sum:”, type(num_sum))

Output:

Data type of num_int: <class 'int'>

Data type of num_str before Type Casting: <class 'str'>

Data type of num_str after Type Casting: <class 'int'>

Sum of num_int and num_str: 579

Data type of the sum: <class 'int'>

 Type Conversion is the conversion of object from one data type to
another data type.

 Implicit Type Conversion is automatically performed by the
Python interpreter.

 Python avoids the loss of data in Implicit Type Conversion.

 Explicit Type Conversion is also called Type Casting, the data
types of objects are converted using predefined functions by the
user.

 In Type Casting, loss of data may occur as we enforce the object to
a specific data type.

4.4 MATH FUNCTIONS

 The math module is a standard module in Python and is always
available. To use mathematical functions under this module, you
have to import the module using import math.

 For example
Square root calculation

import math

math.sqrt(4)

 Functions in Python Math Module

Pi is a well-known mathematical constant, which is defined as the
ratio of the circumference to the diameter of a circle and its value is
3.141592653589793.
>>> import math

>>>math.pi

3.141592653589793

 Another well-known mathematical constant defined in the math
module is e. It is called Euler's number and it is a base of the
natural logarithm. Its value is 2.718281828459045.

>>> import math

>>>math.e

2.718281828459045

47

 The math module contains functions for calculating various
trigonometric ratios for a given angle. The functions (sin, cos, tan,
etc.) need the angle in radians as an argument. We, on the other
hand, are used to express the angle in degrees. The math module
presents two angle conversion functions: degrees () and radians (),
to convert the angle from degrees to radians and vice versa.

>>> import math

>>>math.radians(30)

0.5235987755982988

>>>math.degrees(math.pi/6)

29.999999999999996

 math.log()

The math.log() method returns the natural logarithm of a given

number. The natural logarithm is calculated to the base e.

>>> import math

>>>math.log(10)

2.302585092994046

 math.exp()

The math.exp() method returns a float number after raising e to the

power of the given number. In other words, exp(x) gives e**x.

>>> import math

>>>math.exp(10)

22026.465794806718

 math.pow()

The math.pow() method receives two float arguments, raises the first to

the second and returns the result. In other words, pow(4,4) is

equivalent to 4**4.

>>> import math

>>>math.pow(2,4)

16.0

>>> 2**4

16

 math.sqrt()

The math.sqrt() method returns the square root of a given number.

>>> import math

>>>math.sqrt(100)

10.0

48

>>>math.sqrt(3)

1.7320508075688772

4.5 ADDING NEW FUNCTIONS

 So far, we have only been using the functions that come with
Python, but it is also possible to add new functions.

 A function definition specifies the name of a new function and the
sequence of statements that execute when the function is called.

 Example:

def print_lyrics():

print ("I'm a lumberjack, and I'm okay.")

print ("I sleep all night and I work all day.")

 def is a keyword that indicates that this is a function definition. The
name of the function is print_lyrics. The rules for function names
are the same as for variable names: letters, numbers and some
punctuation marks are legal, but the first character can’t be a
number. You can’t use a keyword as the name of a function, and
you should avoid having a variable and a function with the same
name.

 The empty parentheses after the name indicate that this function
doesn’t take any arguments.

 The first line of the function definition is called the header; the rest
is called the body. The header has to end with a colon and the body
has to be indented.

 By convention, the indentation is always four spaces .The body can
contain any number of statements.

 The strings in the print statements are enclosed in double quotes.
Single quotes and double quotes do the same thing; most people
use single quotes except in cases like this where a single quote
appears in the string.

 Once you have defined a function, you can use it inside another
function. For example, to repeat the previous refrain, we could
write a function called repeat_lyrics:
def repeat_lyrics():

print_lyrics()

print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and I work all day.

49

4.6 DEFINITIONS AND USES

 Pulling together the code fragments from the previous section, the
whole program looks like this:

def print_lyrics ():

print ("I'm a lumberjack, and I'm okay.")

print ("I sleep all night and I work all day.")

def repeat_lyrics ():

print_lyrics ()

print_lyrics ()

repeat_lyrics ()

 This program contains two function
definitions: print_lyrics and repeat_lyrics. Function definitions get
executed just like other statements, but the effect is to create
function objects.

 The statements inside the function do not get executed until the
function is called, and the function definition generates no output.

4.6.1 Flow of Execution:

 In order to ensure that a function is defined before its first use, you
have to know the order in which statements are executed, which is
called the flow of execution.

 Execution always begins at the first statement of the program.
Statements are executed one at a time, in order from top to bottom.

 Function definitions do not alter the flow of execution of the
program, but remember that statements inside the function are not
executed until the function is called.

 A function call is like a detour in the flow of execution. Instead of
going to the next statement, the flow jumps to the body of the
function, executes all the statements there, and then comes back to
pick up where it left off.

 When you read a program, you don’t always want to read from top
to bottom. Sometimes it makes more sense if you follow the flow
of execution.

4.6.2 Parameters and Arguments:

 Some of the built-in functions we have seen require arguments. For
example, when you call math.sin you pass a number as an
argument. Some functions take more than one
argument: math.pow takes two, the base and the exponent.

50

 Inside the function, the arguments are assigned to variables
called parameters. Here is an example of a user-defined function
that takes an argument.

 def print_twice(bruce):

print(bruce)

print(bruce)

 This function assigns the argument to a parameter named bruce.
When the function is called, it prints the value of the parameter
twice.

>>> print_twice('Spam')

Spam

Spam

>>> print_twice (17)

17

17

>>> print_twice(math.pi)

3.14159265359

3.14159265359

 The same rules of composition that apply to built-in functions also
apply to user-defined functions, so we can use any kind of
expression as an argument for print_twice.

>>> print_twice ('Spam '*4)

Spam SpamSpamSpam

Spam SpamSpamSpam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the
examples the expressions 'Spam '*4 and math.cos(math.pi) are only
evaluated once.

4.6.3 Variables and Parameters Are Local:

 When you create a variable inside a function, it is local, which
means that it only exists inside the function.

 For example
def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

51

This function takes two arguments, concatenates them, and prints the
result twice. Here is an example that uses it:

>>> line1 = 'Bing tiddle '

>>> line2 = 'tiddle bang.'

>>> cat_twice(line1, line2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

 When cat_twice terminates, the variable cat is destroyed. If we try
to print it, we get an exception:

>>> print cat

NameError: name 'cat' is not defined

 Parameters are also local. For example, outside print_twice, there is
no such thing as bruce.

4.6.4 Stack Diagrams:

 To keep track of which variables can be used where, it is
sometimes useful to draw a stack diagram. Like state diagrams,
stack diagrams show the value of each variable, but they also show
the function each variable belongs to.

 Each function is represented by a frame. A frame is a box with the
name of a function beside it and the parameters and variables of the
function inside it. The stack diagram for the previous example is
shown in Figure.

Fig. Stack Diagram

 The frames are arranged in a stack that indicates which function
called which, and so on. In this example, print_twice was called
by cat_twice, and cat_twice was called by __main__, which is a
special name for the topmost frame. When you create a variable
outside of any function, it belongs to __main__.

52

 Each parameter refers to the same value as its corresponding
argument. So, part1 has the same value as line1, part2 has the same
value as line2, and bruce has the same value as cat.

 If an error occurs during a function call, Python prints the name of
the function, and the name of the function that called it, and the
name of the function that called that, all the way back to __main__.

4.7 FRUITFUL FUNCTIONS AND VOID FUNCTIONS

 Some of the functions we are using, such as the math functions,
yield results; for lack of a better name, I call them fruitful
functions. Other functions, like print_twice, perform an action but
don’t return a value. They are called void functions.

 When you call a fruitful function, you almost always want to do
something with the result; for example, you might assign it to a
variable or use it as part of an expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays
the result:
>>>math.sqrt(5)

2.2360679774997898

 But in a script, if you call a fruitful function all by itself, the return
value is lost forever

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store or
display the result, it is not very useful.

 Void functions might display something on the screen or have
some other effect, but they don’t have a return value. If you try to
assign the result to a variable, you get a special value called None.

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string 'None'. It is a special
value that has its own type:

>>> print type(None)

<type 'NoneType'>

 The functions we have written so far are all void.

53

4.8 WHY FUNCTIONS?

 It may not be clear why it is worth the trouble to divide a program
into functions. There are several reasons:

 Creating a new function gives you an opportunity to name a group
of statements, which makes your program easier to read and debug.

 Functions can make a program smaller by eliminating repetitive
code. Later, if you make a change, you only have to make it in one
place.

 Dividing a long program into functions allows you to debug the
parts one at a time and then assemble them into a working whole.

 Well-designed functions are often useful for many programs. Once
you write and debug one, you can reuse it.

4.9 IMPORTING WITH FROM, RETURN VALUES,
INCREMENTAL DEVELOPMENT

 Importing with from:
Python provides two ways to import modules, we have already seen
one:

>>> import math

>>> print math

<module 'math' (built-in)>

>>> print math.pi

3.14159265359

 If you import math, you get a module object named math. The
module object contains constants like pi and functions
like sin and exp.

But if you try to access pi directly, you get an error.

>>> print pi

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'pi' is not defined

 As an alternative, you can import an object from a module like this:

>>> from math import pi

Now you can access pi directly, without dot notation.

>>> print pi

3.14159265359

Or you can use the star operator to import everything from the module:

>>> from math import *

54

>>> cos(pi)

-1.0

 The advantage of importing everything from the math module is
that your code can be more concise.

 The disadvantage is that there might be conflicts between names
defined in different modules, or between a name from a module
and one of your variables.

4.10 BOOLEAN FUNCTIONS

 Syntax for boolean function is as follows

Bool([value])

 As we seen in the syntax that the bool() function can take a single
parameter (value that needs to be converted). It converts the given
value to True or False.

 If we don’t pass any value to bool() function, it returns False.

 bool() function returns a boolean value and this function
returns False for all the following values

1. None

2. False

3. Zero number of any type such as int, float and complex. For

example: 0, 0.0, 0j

4. Empty list [], Empty tuple (), Empty String ”.

5. Empty dictionary {}.

6. objects of Classes that implements __bool__() or __len()__

method, which returns 0 or False

 bool() function returns True for all other values except the values
that are mentioned above.

 Example: bool() function

In the following example, we will check the output of bool() function
for the given values. We have different values of different data
types and we are printing the return value of bool() function in the
output.

empty list

lis = []

print(lis,'is',bool(lis))

empty tuple

t = ()

print(t,'is',bool(t))

zero complex number

55

c = 0 + 0j

print(c,'is',bool(c))

num = 99

print(num, 'is', bool(num))

val = None

print(val,'is',bool(val))

val = True

print(val,'is',bool(val))

empty string

str = ''

print(str,'is',bool(str))

str = 'Hello'

print(str,'is',bool(str))

Output:

[] is False

() is False

0j is False

99 is True

None is False

True is True

is False

Hello is True

4.11 MORE RECURSION, CHECKING TYPES:

 What is recursion?
Recursion is the process of defining something in terms of itself.

A physical world example would be to place two parallel mirrors
facing each other. Any object in between them would be reflected
recursively.

 In Python, we know that a function can call other functions. It is
even possible for the function to call itself. These types of construct
are termed as recursive functions.

56

 Following is an example of a recursive function to find the factorial
of an integer.

Factorial of a number is the product of all the integers from 1 to that
number. For example, the factorial of 6 (denoted as 6!)
is 1*2*3*4*5*6 = 720.

 Example of a recursive function
def factorial(x):

"""This is a recursive function

to find the factorial of an integer"""

if x == 1:

return 1

else:

return (x * factorial(x-1))

num = 3

print("The factorial of", num, "is", factorial(num))

Output:

The factorial of 3 is 6

 In the above example, factorial () is a recursive function as it calls
itself. When we call this function with a positive integer, it will
recursively call itself by decreasing the number.

 Each function multiplies the number with the factorial of the
number below it until it is equal to one. This recursive call can be
explained in the following steps.

factorial (3) # 1st call with 3

3 * factorial (2) # 2nd call with 2

57

3 * 2 * factorial (1) # 3rd call with 1

3 * 2 * 1 # return from 3rd call as number=1

3 * 2 # return from 2nd call

6 # return from 1st call

4.12 SUMMARY

 In this chapter we studied function call, type conversion functions
in Python Programming Language.

 In this chapter we are more focused on math function and adding
new function in python.

 Elaborating on definitions and uses of function, parameters and
arguments in python.

 Also studied fruitful functions and void functions, importing with
from, boolean functions and recursion in python.

4.14 UNIT END EXERCISE

1. Python provides a built-in function called len that returns the length
of a string, so the value of len('allen') is 5.

Write a function named right_justify that takes a string named s as
a parameter and prints the string with enough leading spaces so that
the last letter of the string is in column 70 of the display.

>>> right_justify('allen')

allen

2. Write a Python function to sum all the numbers in a list. Go to the
editor

Sample List : (8, 2, 3, 0, 7)
Expected Output : 20

3. Write a Python program to reverse a string

Sample String : "1234abcd"

Expected Output : "dcba4321"

4. Write a Python function to calculate the factorial of a number (a
non-negative integer). The function accepts the number as an
argument.

5. Write a Python program to print the even numbers from a given
list.

Sample List: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Expected Result: [2, 4, 6, 8]

58

4.13 REFERENCES

 https://www.tutorialsteacher.com/python/math-module

 https://greenteapress.com/thinkpython/html/thinkpython004.html

 https://beginnersbook.com/

 https://www.programiz.com/python-programming/recursion

 www.journaldev.com

 www.edureka.com

 www.tutorialdeep.com

 www.xspdf.com

 Think Python by Allen Downey 1st edition.

59

5
STRINGS

Unit Structure
5.1 A String is a Sequence

5.2 Traversal with a for Loop

5.3 String Slices

5.4 Strings Are Immutable

5.5 Searching

5.6 Looping and Counting

5.7 String Methods

5.8 The in Operator

5.9 String Comparison

5.10 String Operations

5.11 Summary

5.12 Questions

5.13 References

5.0 OBJECTIVES

 To learn how to crate string in Python

 To study looping and counting in Python

 To write programs for creating string methods in Python

 To understand various operators and string operation of Python

 To learn the string traversal with a for loop in Python

5.1 A STRING IS A SEQUENCE

There are numerous types of sequences in Python. Strings are a
special type of sequence that can only store characters, and they have a
special notation. Strings are sequences of characters and are immutable.

A string is a sequence of characters. We can access the characters
one at a time with the bracket operator:

>>>food = 'roti'
>>>letter = food[1]

The second statement retrieves the character at index position one
from the food variable and assigns it to the letter variable.The expression

60

in brackets is called an index. The index indicates which character in the
sequence you required.

Example.
‘I want to read book’. This is a string, It has been surrounded in single
quotes.

Declaring Python String
String literals in Python
String literals are surrounded by single quotes or double-quotes.

‘I want to read book’
“I want to read book’”

You can also surround them with triple quotes (groups of 3 single quotes
or double quotes).

“””I want to read book’”””
”’ I want to read book’”’

Or using backslashes.

>> ‘Thank\

Good Morning Sir !’
‘ThanksGood Morning Sir!’

You cannot start a string with a single quote and end it with a double
quote..

But if you surround a string with single quotes and also want to use single
quotes as part of the string, you have to escape it with a backslash (\).

‘Send message to Madam\’s son ’

This statement causes a SyntaxError:

‘Send message to Madam’s son’

You can also do this with double-quotes. If you want to ignore escape
sequences, you can create a raw string by using an ‘r’ or ‘R’ prefix with
the string.

Common escape sequences:

 \\ Backslash

 \n Linefeed

 \t Horizontal tab

 \’ Single quotes
 \” Double quotes

We can assign a string to a variable.

61

name=’Sunil’

You can also create a string with the str() function.

>>> str(567)

Output:

‘567’

>>> str('Shri')

Output:
‘Shri’

5.2. TRAVERSAL AND THE FOR LOOP: BY ITEM

A lot of computations involve processing a collection one item at a
time. For strings this means that we would like to process one character at
a time. Often we start at the beginning, select each character in turn, do
something to it, and continue until the end. This pattern of processing is
called a traversal.

We have previously seen that the for statement can iterate over the
items of a sequence (a list of names in the case below).

for aname in ["Joe", "Amy", "Brad", "Angelina", "Zuki", "Thandi",
"Paris"]:

invitation = "Hi " + aname + ". Please come to my party on Saturday!"

print(invitation)

Recall that the loop variable takes on each value in the sequence of
names. The body is performed once for each name. The same was true for
the sequence of integers created by the range function.

for avalue in range(10):

print(avalue)

Since a string is simply a sequence of characters, the for loop iterates over
each character automatically.

for achar in "Go Spot Go":

print(achar)

62

The loop variable achar is automatically reassigned each character
in the string “Go Spot Go”. We will refer to this type of sequence iteration
as iteration by item. Note that it is only possible to process the characters
one at a time from left to right.

Check your understanding

strings-10-4: How many times is the word HELLO printed by the
following statements?

s = "python rocks"
for ch in s:

print("HELLO")

Ans - Yes, there are 12 characters, including the blank.

strings-10-5: How many times is the word HELLO printed by the
following statements?

s = "python rocks"
for ch in s[3:8]:

print("HELLO")

Ans - Yes, The blank is part of the sequence returned by slice

5.3. STRING SLICES

Python slice string syntax is:

str_object[start_pos:end_pos:step]

The slicing starts with the start_pos index (included) and ends at
end_pos index (excluded). The step parameter is used to specify the steps
to take from start to end index.

Python String slicing always follows this rule: s[:i] + s[i:] == s for any
index ‘i’.

All these parameters are optional – start_pos default value is 0, the
end_pos default value is the length of string and step default value is 1.

Let’s look at some simple examples of string slice function to create
substring.

s = 'HelloWorld'

print(s[:])

print(s[::])

63

Output:
HelloWorld

HelloWorld

Note that since none of the slicing parameters were provided, the substring
is equal to the original string.

Let’s look at some more examples of slicing a string.
s = 'HelloWorld'

first_five_chars = s[:5]

print(first_five_chars)

third_to_fifth_chars = s[2:5]

print(third_to_fifth_chars)

Output:
Hello

Llo

Note that index value starts from 0, so start_pos 2 refers to the third
character in the string.

Reverse a String using Slicing

We can reverse a string using slicing by providing the step value as -1.

s = 'HelloWorld'

reverse_str = s[::-1]

print(reverse_str)

Output:
dlroWolleH

Let’s look at some other examples of using steps and negative index
values.

s1 = s[2:8:2]

print(s1)

Output:

loo

Here the substring contains characters from indexes 2,4 and 6.

s1 = s[8:1:-1]

print(s1)

64

Output:

lroWoll

5.4 STRINGS ARE IMMUTABLE

The standard wisdom is that Python strings are immutable. You
can't change a string's value, only the reference to the string. Like so:

x = "hello"

x = "goodbye" # New string!

Which implies that each time you make a change to a string
variable, you are actually producing a brand new string. Because of this,
tutorials out there warn you to avoid string concatenation inside a loop and
advise using join instead for performance reasons. Even the official
documentation says so!

This is wrong. Sort of.

There is a common case for when strings in Python are actually
mutable. I will show you an example by inspecting the string object's
unique ID using the builtin id() function, which is just the memory
address. The number is different for each object. (Objects can be shared
though, such as with interning.)

An unchanging article alludes to the item which is once made can’t
change its worth all its lifetime. Attempt to execute the accompanying
code:

name_1 = "Aarun"

name_1[0] = 'T'

You will get a mistake message when you need to change the substance of
the string.

Traceback (latest call last):

Record "/home/ca508dc8fa5ad71190ca982b0e3493a8.py", line 2, in
<module>

name_1[0] = 'T'

TypeError: 'str' object doesn't uphold thing task

Arrangement

One potential arrangement is to make another string object with vital
alterations:

name_1 = "Aarun"

name_2 = "T" + name_1[1:]

print("name_1 = ", name_1, "and name_2 = ", name_2)

65

name_1 = Aarun and name_2 = Tarun

To watch that they are various strings, check with the id() work:

name_1 = "Aarun"

name_2 = "T" + name_1[1:]

print("id of name_1 = ", id(name_1))

print("id of name_2 = ", id(name_2))

Output:

id of name_1 = 2342565667256

id of name_2 = 2342565669888

To see more about the idea of string permanence, think about the
accompanying code:

name_1 = "Aarun"

name_2 = "Aarun"

print("id of name_1 = ", id(name_1))

print("id of name_2 = ", id(name_2))

Output:

id of name_1 = 2342565667256

id of name_1 with new value = 2342565668656

5.5 SEARCHING

Searching is a very basic necessity when you store data in different
data structures. The simplest approach is to go across every element in the
data structure and match it with the value you are searching for.This is
known as Linear search. It is inefficient and rarely used, but creating a
program for it gives an idea about how we can implement some advanced
search algorithms.

Linear Search:

In this type of search, a sequential search is made over all items
one by one. Every item is checked and if a match is found then that
particular item is returned, otherwise the search continues till the end of
the data structure.

Example

def linear_search(values, search_for):

search_at = 0

search_res = False

66

Match the value with each data element

while search_at < len(values) and search_res is False:

if values[search_at] == search_for:

search_res = True

else:

search_at = search_at + 1

return search_res

l = [64, 34, 25, 12, 22, 11, 90]

print(linear_search(l, 12))

print(linear_search(l, 91))

Output:

When the above code is executed, it produces the following result −
True

False

Interpolation Search:

This search algorithm works on the probing position of the
required value. For this algorithm to work properly, the data collection
should be in a sorted form and equally distributed. Initially, the probe
position is the position of the middle most item of the collection. If a
match occurs, then the index of the item is returned. If the middle item is
greater than the item, then the probe position is again calculated in the
sub-array to the right of the middle item. Otherwise, the item is searched
in the subarray to the left of the middle item. This process continues on the
sub-array as well until the size of subarray reduces to zero.

Example

There is a specific formula to calculate the middle position which is
indicated in the program below −
def intpolsearch(values,x):

idx0 = 0

idxn = (len(values) - 1)

while idx0 <= idxn and x >= values[idx0] and x <= values[idxn]:

Find the mid point

mid = idx0 +\

int(((float(idxn - idx0)/(values[idxn] - values[idx0]))

* (x - values[idx0])))

Compare the value at mid point with search value

if values[mid] == x:

67

return "Found "+str(x)+" at index "+str(mid)

if values[mid] < x:

idx0 = mid + 1

return "Searched element not in the list"

l = [2, 6, 11, 19, 27, 31, 45, 121]

print(intpolsearch(l, 2))

Output:

Found 2 at index 0

5.6 LOOPING AND COUNTING

The following program counts the number of times the letter “r” appears
in a string:

word = 'raspberry'

count = 0

for letter in word:

if letter == 'r':

count = count + 1

print(count)

This program demonstrates another pattern of computation called a
counter. The variable count is initialized to 0 and then incremented each
time an “r” is found. When the loop exits, count contains the result: the
total number of r’s.
s = "peanut butter"

count = 0

for char in s:

if char == "t":

count = count + 1

print(count)

Output:

The letter t appears 3 times in "peanut butter".

5.7 STRING METHODS

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the
original string.

68

Method Description
capitalize() Converts the first character to upper case
casefold() Converts string into lower case
center() Returns a centered string
count() Returns the number of times a specified value occurs in

a string
encode() Returns an encoded version of the string
endswith() Returns true if the string ends with the specified value
expandtabs() Sets the tab size of the string
find() Searches the string for a specified value and returns the

position of where it was found
format() Formats specified values in a string
format_map() Formats specified values in a string
index() Searches the string for a specified value and returns the

position of where it was found
isalpha() Returns True if all characters in the string are in the

alphabet
isdecimal() Returns True if all characters in the string are decimals
isdigit() Returns True if all characters in the string are digits
isidentifier() Returns True if the string is an identifier
islower() Returns True if all characters in the string are lower

case
isnumeric() Returns True if all characters in the string are numeric
isprintable() Returns True if all characters in the string are printable
isupper() Returns True if all characters in the string are upper

case
join() Joins the elements of an iterable to the end of the string
ljust() Returns a left justified version of the string
lower() Converts a string into lower case
lstrip() Returns a left trim version of the string
maketrans() Returns a translation table to be used in translations
partition() Returns a tuple where the string is parted into three

parts
replace() Returns a string where a specified value is replaced with

a specified value
rfind() Searches the string for a specified value and returns the

last position of where it was found
rindex() Searches the string for a specified value and returns the

last position of where it was found
rjust() Returns a right justified version of the string
rsplit() Splits the string at the specified separator, and returns a

list
rstrip() Returns a right trim version of the string
split() Splits the string at the specified separator, and returns a

list
splitlines() Splits the string at line breaks and returns a list
startswith() Returns true if the string starts with the specified value
strip() Returns a trimmed version of the string

69

swapcase() Swaps cases, lower case becomes upper case and vice
versa

Note: All string methods returns new values. They do not change the
original string.

5.8. THE IN OPERATOR

Not let us take an example to get a better understanding of the in operator
working.

x in y

Here “x” is the element and “y” is the sequence where membership is
being checked.

Let’s implement a simple Python code to demonstrate the use of the in
operator and how the outputs would look like.

vowels = ['A', 'E', 'I', 'O', 'U']

ch = input('Please Enter a Capital Letter:\n')

if ch in vowels:

print('You entered a vowel character')

else:

print('You entered a consonants character')

We can use the “in” operator with Strings and Tuples too because they are
sequences.

>>> name='JournalDev'

>>> 'D' in name

True

>>> 'x' in name

False

>>> primes=(2,3,5,7,11)

>>> 3 in primes

True

>>> 6 in primes

False

Can we use Python “in” Operator with a Dictionary?
Let’s see what happens when we use “in” operator with a dictionary.
dict1 = {"name": "Pankaj", "id": 1}

print("name" in dict1) # True

70

print("Pankaj" in dict1) # False

It looks like the Python “in” operator looks for the element in the
dictionary keys.

5.9 STRING COMPARISON

The following are the ways to compare two string in Python:

1. By using == (equal to) operator

2. By using != (not equal to) operator

3. By using sorted() method

4. By using is operator

5. By using Comparison operators

1. Comparing two strings using == (equal to) operator

str1 = input("Enter the first String: ")

str2 = input("Enter the second String: ")

if str1 == str2:

print ("First and second strings are equal and same")

else:

print ("First and second strings are not same")

Output:

Enter the first String: AA

Enter the second String: AA

First and second strings are equal and same

2. Comparing two strings using != (not equal to) operator

str1 = input("Enter the first String: ")

str2 = input("Enter the second String: ")

if str1 != str2:

print ("First and second strings are not equal.")

else:

print ("First and second strings are the same.")

Output:

Enter the first String: ab

Enter the second String: ba

First and second strings are not equal.

71

3. Comparing two strings using the sorted() method:

If we wish to compare two strings and check for their equality even if the
order of characters/words is different, then we first need to use sorted()
method and then compare two strings.

str1 = input("Enter the first String: ")

str2 = input("Enter the second String: ")

if sorted(str1) == sorted(str2):

print ("First and second strings are equal.")

else:

print ("First and second strings are not the same.")

Output:

Enter the first String: Engineering Discipline

Enter the second String: Discipline Engineering

First and second strings are equal.

4. Comparing two strings using ‘is’ operator
Python is Operator returns True if two variables refer to the same object
instance.

str1 = "DEED"

str2 = "DEED"

str3 = ''.join(['D', 'E', 'E', 'D'])

print(str1 is str2)

print("Comparision result = ", str1 is str3)

Output:

True

Comparision result = False

In the above example, str1 is str3 returns False because object str3 was
created differently.

5. Comparing two strings using comparison operators

input = 'Engineering'

print(input < 'Engineering')

print(input > 'Engineering')

print(input <= 'Engineering')

print(input >= 'Engineering')

Output:

False

72

False

True

True

5.10 STRING OPERATIONS

String is an array of bytes that represent the Unicode characters in
Python. Python does not support character datatype. A single character
also works as a string.Python supports writing the string within a single
quote('') and a double quote("").

Example

"Python" or 'Python'

Code

SingleQuotes ='Python in Single Quotes'

DoubleQuotes ="Python in Double Quotes"

print(SingleQuotes)

print(DoubleQuotes)

Output:

Python in Single Quotes

Python in Double Quotes

A single character is simply a string with a length of 1. The square
brackets can be used to access the elements from the string.

print()

This function is used for displaying the output or result on the user screen.

Syntax

print('Text or Result') or print("Text or Result')

Indexing in String

It returns a particular character from the given string.

Syntax

getChar = a[index]

message = "Hello, Python!"

If I want to fetch the characters of the 7th index from the given string.

Syntax

print(string[index])

Code

print(message[7])

73

Output:

P

5.11 SUMMARY

A Python String is an array of bytes demonstrating Unicode
characters. Since there is no such data type called character data type in
python, A single character is a string of length one. String handling is one
of those activities in coding that programmers, use all the time.
In Python, we have numerous built-in functions in the standard library to
assist you manipulate. If the string has length one, then the indices start
from 0 for the preliminary character and go to L-1 for the rightmost
character. Negative indices may be used to count from the right end, -
1(minus one) for the rightmost character through -L for the leftmost
character. Strings are immutable, so specific characters could be read, but
not set. A substring of 0 or more successive characters of a string may be
referred to by specifying a starting index and the index one earlier the last
character of the substring. If the starting and/or ending index is left out
Python uses 0 and the length of the string correspondingly. Python
assumes indices that would be beyond an end of the string essentially say
the end of the string. String formatting is the way we form instructions so
that Python can recognize how to integrate data in the creation of strings.
How strings are formatted determines the presentation of this data. The
basis of string formatting is its use of the formatting directives.Logical
operators return true or false values. Comparison operators (==, !=, <>, >,
>=, <, <=) compare two values.Any value in Python equates to a Boolean
true or false. A false can be equal to none, a zero of numeric type (0, 0l,
0.0), an empty sequence ('', (), []), or an empty dictionary ({}). All other
values are reflected true. Sequences, tuples, lists, and strings can be added
and/or multiplied by a numeric type with the addition and multiplication
operators (+, *), correspondingly. Strings should be formatted with tuples
and dictionaries using the format directives %i, %d, %f, and %e.
Formatting flags should be used with these directives.

5.12 QUESTIONS

1. Find the index of the first occurrence of a substring in a string.

2. How would you check if each word in a string begins with a capital
letter?

3. Write a Python program to calculate the length of a string

4. Write a Python program to get a string from a given string where all
occurrences of its first char have been changed to '$', except the first
char itself.

74

Sample String given: 'reboot'

1. Write a Python program to change a given string to a new string where
the first and last chars have been exchanged.

2. Write a Python program to count the occurrences of each word in a
given sentence

3. Write Python program to Check all strings are mutually disjoint

4. Write a program to find the first and the last occurence of the letter 'o'
and character ',' in "Good, Morning".

5. Write a program to check if the word 'open' is present in the "This is
open source software".

6. Write a program to check if the letter 'e' is present in the word
'Welcome'.

5.13 REFERENCES

1. https://developers.google.com/edu/python/strings

2. https://docs.python.org/3/library/string.html

3. https://www.programiz.com/python-programming/string

4. http://ww2.cs.fsu.edu/~nienaber/teaching/python/lectures/sequence-
string.html

5. https://www.tutorialsteacher.com/python/python-string

6. https://techvidvan.com/tutorials/python-strings/

7. http://anh.cs.luc.edu/handsonPythonTutorial/objectsummary.html

8. https://docs.python.org/3/library/stdtypes.html

9. https://www.programiz.com/python-programming/methods/string

10. https://www.w3schools.com/python/python_ref_string.asp

11. https://www.tutorialspoint.com/python_text_processing/python_string
_immutability.htm

12. https://web.eecs.utk.edu/~azh/blog/pythonstringsaremutable.html

75

UNIT III

6
LIST

Unit structure
6.1 Objectives

6.2 Values and Accessing Elements

6.3 Lists are mutable

6.4 Traversing a List

6.5 Deleting elements from List

6.6 Built-in List Operators

6.7 Concatenation

6.8 Repetition

6.9 In Operator

6.10 Built-in List functions and methods

611 Summary

6.12 Exercise

6.13 References

6.1 OBJECTIVES

1. To learn how python uses lists to store various data values.

2. To study usage of the list index to remove, update and add items from
python list.

3. To understand the abstract data types queue, stack and list.

4. To understand the implementations of basic linear data structures.

5. To study the implementation of the abstract data type list as a linked
list using the node.

The list is most likely versatile data type available in the Python
which is can be written as a list of comma-separated values between
square brackets. The Important thing about a list is that items in the list
need not be of the same type.

Creating a list is as very simple as putting up different comma-
separated by values between square brackets. For example –

list1 = ['jack', 'nick', 1997, 5564];
list2 = [1, 2, 3, 4];
list3 = ["a", "b", "c", "d"];

76

Similar to a string indices, A list indices start from 0, and lists can
be sliced, concatenated.

6.2 VALUES AND ACCESSING ELEMENTS

To access values in lists, use the square brackets for slicing along
with the index or indices to obtain value available at that index. For
example –
list1 =['jack','nick',1997,5564];

list2 =[1,2,3,4,5,6,7];

print"list1[0]: ", list1[0]

print"list2[1:5]: ", list2[1:5]

output −
list1[0]: jack

list2[1:5]: [2, 3, 4, 5]

6.3 LISTS ARE MUTABLE:

lists is mutable. This means we can change a item in a list by
accessing it directly as part of the assignment pf statement. Using the
indexing operator (square brackets) on the left of side an assignment, we
can update one of the list item.

Example:

color = ["red", "white", "black"]
print(color)

color [0] = "orange"
color [-1] = "green"
print(color)

Output:.

["red", "white", "black"]

["orange ", "white", "green "]

6.4 TRAVERSING A LIST

The mostly common way to traverse the elements of list with for loop. The
syntax is the same as for strings:

color = ["red", "white", "blue", "green"]

77

for color in cheeses:

print(color)

This works well if you only need to read the element of list. But if you
want to do write or update the element, you need the indices. A common
way to do that is to combine the functions range and len:

for i in range(len(number)):

number [i] = number[i] * 2

output −
red
white
blue
green

6.5 DELETING ELEMENTS FROM LIST

To delete a list element, you can use either the del statement, del removes the
item at a specific index, if you know exactly which element(s) you are deleting
or the remove() method if you do not know. For example –

list1 = [‘red’, ‘green’, 5681, 2000,];

print(list1)

del list[2]

print(“After deleting element at index 2 :”);

print(list1)

output −.

[‘red’, ‘green’, 5681, 2000,]

After deleting element at index 2 :

[‘red’, ‘green’ , 2000,]

Example2:

numbers = [50, 60, 70, 80]
del numbers[1:2]
print(numbers)

Output:
[50, 70, 80]

78

 One other method from removing elements from a list is to take a slice
of the list, which excludes the index or indexes of the item or items
you are trying to remove. For instance, to remove the first two items of
a list, you can do

list = list[2:]

6.6 BUILT-IN LIST OPERATORS

In this lesson we will learn about built-in list operators:

1. Concatenation:

Concatenation or joining is a process in which multiple sequence / lists
can be combined together. ‘+’ is a symbol concatenation operator.

Example:

list1 = [10, 20, 30]

list2 = [40, 50, 60]

print(list1 + list2)

Output:

[10, 20, 30, 40, 50, 60]

Concatenation

Repetition

Membership
TestingSlicing

Indexing

List Operation

79

2. Repetition / Replication / Multiply:

This operator replication the list for a specified number of times
and creates a new list. ‘*’ is a symbol of repletion operator.

Example:

list1 = [10, 20, 30]

list2 = [40, 50, 60]

print(list1 * list2

Output:

[10, 20, 30,10, 20, 30,10, 20, 30,])

3. Membership Operator:

This operator used to check or test whether a particular element or
item is a member of any list or not. ‘in’ And ‘not in’ are the operators for
membership operator.

Example:

list1 = [10, 20, 30]

list2 = [40, 50, 60]

print(50 in list1) #false

print(20 in list1) #true

print(50 not in list1) #true

print(20 not in list1) #false

Output:

False

True

True

False

4. Indexing:

Indexing is nothing but there is an index value for each tem present
in the sequence or list.

80

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[4])

Output:

50

5. Slicing operator:

This operator used to slice a particular range of a list or a sequence.
Slice is used to retrieve a subset of values.

Syntax: list1[start:stop:step]

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[3:7])

Output:

[40, 50, 60, 70]

6.7 CONCATENATION

In this we will learn different methods to concatenate lists in
python. Python list server the purpose of storing homogenous elements
and perform manipulations on the same.

In general, Concatenation is the process of joining the elements of
a particular data-structure in an end-to-end manner.

The following are the 4 ways to concatenate lists in python.

 Concatenation (+) operator:

The '+' operator can be used to concatenate two lists. It appends one list at
the end of the other list and results in a new list as output.

80

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[4])

Output:

50

5. Slicing operator:

This operator used to slice a particular range of a list or a sequence.
Slice is used to retrieve a subset of values.

Syntax: list1[start:stop:step]

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[3:7])

Output:

[40, 50, 60, 70]

6.7 CONCATENATION

In this we will learn different methods to concatenate lists in
python. Python list server the purpose of storing homogenous elements
and perform manipulations on the same.

In general, Concatenation is the process of joining the elements of
a particular data-structure in an end-to-end manner.

The following are the 4 ways to concatenate lists in python.

 Concatenation (+) operator:

The '+' operator can be used to concatenate two lists. It appends one list at
the end of the other list and results in a new list as output.

80

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[4])

Output:

50

5. Slicing operator:

This operator used to slice a particular range of a list or a sequence.
Slice is used to retrieve a subset of values.

Syntax: list1[start:stop:step]

Example:

list1 = [10, 20, 30, 40, 50, 60, 70]

print(list1[3:7])

Output:

[40, 50, 60, 70]

6.7 CONCATENATION

In this we will learn different methods to concatenate lists in
python. Python list server the purpose of storing homogenous elements
and perform manipulations on the same.

In general, Concatenation is the process of joining the elements of
a particular data-structure in an end-to-end manner.

The following are the 4 ways to concatenate lists in python.

 Concatenation (+) operator:

The '+' operator can be used to concatenate two lists. It appends one list at
the end of the other list and results in a new list as output.

81

Example:

list1 =[10, 11, 12, 13, 14]
list2 =[20, 30, 42]

result =list1 +list2

print(str(result))

Output:

[10, 11, 12, 13, 14, 20, 30, 42]

 Naive method:

In the Naive method, a for loop is used to be traverse the second list.
After this, the elements from the second list will get appended to the first
list. The first list of results out to be the concatenation of the first and the
second list.

Example:

list1 = [10, 11, 12, 13, 14]

list2 = [20, 30, 42]

print(“Before Concatenation:” + str(list1))

for x in list2 :

list1.append(x)

print (“After Concatenation:” + str(list1))

Output:

Before Concatenation:

[10, 11, 12, 13, 14]

After Concatenation:

[10, 11, 12, 13, 14, 20, 30, 42]

List comprehension:

Python list comprehension is an the alternative method to concatenate
two lists in python. List comprehension is basically the process of building
/ generating a list of elements based on an existing list.

It uses the for loop to process and traverses a list in the element-wise
fashion. The below inline is for-loop is equivalent to a nested for loop.

82

Example:

list1 = [10, 11, 12, 13, 14]

list2 = [20, 30, 42]

result = [j for i in [list1, list2] for j in i]

print ("Concatenated List:\n"+ str(result))

Output:

Concatenated list:

[10, 11, 12, 13, 14, 20, 30, 42]

Extend() method:

Python extend() method can be used to concatenate two lists in
python. The extend() function does iterate over the password parameter
and add the item to the list, extending the list in a linear fashion.

Syntax:
list.extend(iterable)

Example:

list1 = [10, 11, 12, 13, 14]

list2 = [20, 30, 42]

print("list1 before concatenation:\n" + str(list1))

list1.extend(list2)

print ("Concatenated list i.e ,ist1 after concatenation:\n"+ str(list1))

All the elements of the list2 get appended to list1 and thus the list1 gets
updated and results as output.

Output:

list1 before concatenation:

[10, 11, 12, 13, 14]

Concatenated list i.e ,ist1 after concatenation:

[10, 11, 12, 13, 14, 20, 30, 42]

 ‘*’ operator:

Python’s '*' operator can be used for easily concatenate the two lists in
Python.

83

The ‘*’ operator in Python basically unpacks the collection of items at
the index arguments.

For example: Consider a list list = [1, 2, 3, 4].

The statement *list would replace by the list with its elements on the index
positions. So, it unpacks the items of the lists.

Example:

list1 = [10, 11, 12, 13, 14]

list2 = [20, 30, 42]

res = [*list1, *list2]

print ("Concatenated list:\n " + str(res))

Output:

In the above snippet of code, the statement res = [*list1, *list2]
replaces the list1 and list2 with the items in the given order i.e. elements of
list1 after elements of list2. This performs concatenation and results in the
below output.

Output:

Concatenated list:

[10, 11, 12, 13, 14, 20, 30, 42]

 Itertools.chain() method:

Python itertools modules’ itertools.chain() function can also be used to
concatenate lists in Python.

The itertools.chain() function accepts different iterables such as lists,
string, tuples, etc as parameters and gives a sequence of them as output.

It results out to be a linear sequence. The data type of the elements
doesn’t affect the functioning of the chain() method.

For example: The statement itertools.chain([1, 2], [‘John’,
‘Bunny’]) would produce the following output: 1 2 John Bunny

Example:

import itertools

list1 = [10, 11, 12, 13, 14]

84

list2 = [20, 30, 42]

res = list(itertools.chain(list1, list2))

print ("Concatenated list:\n " + str(res))

Output:

Concatenated list:

[10, 11, 12, 13, 14, 20, 30, 42]

6.8 REPETITION

Now, we are accustomed to using the '*' symbol to represent the
multiplication, but when the operand on the left of side of the '*' is a tuple,
it becomes the repetition operator. And The repetition of the operator it
will makes the multiple copies of a tuple and joins them all together.
Tuples can be created using the repetition operator, *.

Example:

number = (0,) * 5 # we use the comma to denote that this is a single valued tuple
and not an ‘#’expression

Output

print numbers

(0, 0, 0, 0, 0)

[0] is a tuple with one element, 0. Now repetition of the operator it will
makes 5 copies of this tuple and joins them all together into a single tuple.
Another example using multiple elements in the tuple.

Example:

numbers = (0, 1, 2) * 3

Output

print numbers

(0, 1, 2, 0, 1, 2, 0, 1, 2)

6.9 IN OPERATOR

Python's in operator lets you loop through all the members of a
collection (such as a list or a tuple) and check if there's a member in the
list that's equal to the given item.

85

Example:

my_list = [5, 1, 8, 3, 7]

print(8 in my_list)

print(0 in my_list)

Output:

True

False

Note: Note that in operator against dictionary checks for the presence of
key.

Example:
my_dict = {'name': 'TutorialsPoint', 'time': '15 years', 'location': 'India'}
print('name' in my_dict)

Output:

This will give the output −

True

6.10 BUILT-IN LIST FUNCTIONS AND METHODS

1. Built-in function:

Sr. No. Function with Description
1 cmp(list1, list2)

Compares elements of both lists.
2 len(list)

Gives the total length of the list.
3 max(list)

Returns item from the list with max value.
4 min(list)

Returns item from the list with min value.
5 list(seq)

Converts a tuple into list.

86

2. Built-in methods:

Sr.
No.

Methods with Description

1 list.append(obj)
Appends object obj to list

2 list.count(obj)
Returns count of how many times obj occurs in list

3 list.extend(seq)
Appends the contents of seq to list

4 list.index(obj)
Returns the lowest index in list that obj appears

5 list.insert(index, obj)
Inserts object obj into list at offset index

6 list.pop(obj=list[-1])
Removes and returns last object or obj from list

7 list.remove(obj)
Removes object obj from list

8 list.reverse()
Reverses objects of list in place

9 list.sort([func])
Sorts objects of list, use compare func if given

6.11 SUMMARY

Python lists are commanding data structures, and list
understandings are one of the furthermost convenient and brief ways to
create lists. In this chapter, we have given some examples of how you can
use list comprehensions to be more easy-to-read and simplify your code.
The list is the common multipurpose data type available in Python. A list is
an ordered collection of items. When it comes to creating lists, Python list
are more compressed and faster than loops and other functions used such
as, map(), filter(), and reduce().Every Python list can be rewritten in for
loops, but not every complex for loop can be rewritten in Python list
understanding. Writing very long list in one line should be avoided so as
to keep the code user-friendly. So list looks just like dynamic sized
arrays, declared in other languages. Lists need not be homogeneous
always which makes it a most powerful tool in Python. A single list may
contain Datatype’s like Integers, Strings, and Objects etc. List loads all
the elements into memory at one time, when the list is too long, it will
reside in too much memory resources, and we usually only need to use a
few elements. A list is a data-structure that can be used to store multiple
data at once. The list will be ordered and there will be a definite count of
it. The elements are indexed allowing to a sequence and the indexing is
done with 0 as the first index. Each element will have a discrete place in
the sequence and if the same value arises multiple times in the sequence.

87

6.12 QUESTIONS

1. Explain List parameters with an example.

2. Write a program in Python to delete first and last elements from a list

3. Write a Python program to print the numbers of a specified list after
removing even numbers from it.

4. Write a python program using list looping

5. Write a Python program to check a list is empty or not

6. Write a Python program to multiplies all the items in a list

7. Write a Python program to remove duplicates from a list

8. Write a Python program to append a list to the second list

9. Write a Python program to find the second smallest number in a list.

10. Write a Python program to find common items from two lists

6.13 REFERENCES

1. https://python.plainenglish.io/python-list-operation-summary-
262f40a863c8?gi=a4f7ce4740e9

2. https://howchoo.com/python/how-to-use-list-comprehension-in-python

3. https://intellipaat.com/blog/tutorial/python-tutorial/python-list-
comprehension/

4. https://programmer.ink/think/summary-of-python-list-method.html

5. https://www.geeksforgeeks.org/python-list/

6. https://enricbaltasar.com/python-summary-methods-lists/

7. https://developpaper.com/super-summary-learn-python-lists-just-this-
article-is-enough/

8. https://www.programiz.com/python-programming/methods/list

9. https://www.hackerearth.com/practice/python/working-with-
data/lists/tutorial/

10. https://data-flair.training/blogs/r-list-tutorial/

88

7

TUPLES AND DICTIONARIES

Unit Structure
7.1 Objectives
7.2 Tuples

7.2 Accessing values in Tuples

7.3 Tuple Assignment

7.4 Tuples as return values

7.5 Variable-length argument tuples

7.6 Basic tuples operations

7.7 Concatenation

7.8 Repetition

7.9 In Operator

7.10 Iteration

7.11 Built-in Tuple Functions

7.12 Creating a Dictionary

7.13 Accessing Values in a dictionary

7.14 Updating Dictionary

7.15 Deleting Elements from Dictionary

7.16 Properties of Dictionary keys

7.17 Operations in Dictionary

7.18 Built-In Dictionary Functions

7.19 Built-in Dictionary Methods

7.20 Summary

7.21 Exercise

7.22 References

7.1 OBJECTIVES

1. To understand when to use a dictionary.

2. To study how a dictionary allows us to characterize attributes with
keys and values

3. To learn how to read a value from a dictionary

4. To study how in python to assign a key-value pair to a dictionary

5. To understand how tuples returns values

89

7.2 TUPLES

A tuple in the Python is similar to the list. The difference between
the two is that we cannot change the element of the tuple once it is
assigned to whereas we can change the elements of a list

The reasons for having immutable types apply to tuples: copy
efficiency: rather than copying an immutable object, you can alias it (bind
a variable to a reference) ... interning: you need to store at most of one
copy of any immutable value. There’s no any need to synchronize access
to immutable objects in concurrent code.

Creating a Tuple:

A tuple is created by the placing all the elements inside
parentheses '()', separated by commas. The parentheses are the optional
and however, it is a good practice to use them.

A tuple can have any number of the items and they may be a
different types (integer, float, list, string, etc.).

Example:

Different types of tuples

Empty tuple

tuple = ()

print(tuple)

Tuple having integers

tuple = (1, 2, 3)

print(tuple)

tuple with mixed datatypes

tuple = (1, "code", 3.4)

print(tuple)

nested tuple

tuple = ("color ", [6, 4, 2], (1, 2, 3))

print(tuple)

90

Output:
()
(1, 2, 3)

(1, 'code', 3.4)

('color', [6, 4, 2], (1, 2, 3))

A tuple can also be created without using parentheses. This is known as
tuple packing.

tuple = 3, 2.6, "color"

print(tuple)

tuple unpacking is also possible

a, b, c = tuple

print(a) # 3

print(b) # 4.6

print(c) # dog

Output:

(3, 2.6, 'color')

3

2.6

color

7.3 ACCESSING VALUES IN TUPLES

There are various ways in which we can access the elements of a tuple.

1. Indexing:

We can use the index operator [] to access an item in a tuple,
where the index starts from 0.

So, a tuple having 6 elements will have indices from 0 to 5. Trying
to access an index outside of the tuple index range(6,7,... in this example)
will raise an IndexError.

91

The index must be an integer, so we cannot use float or other
types. This will result in TypeError.

Likewise, nested tuples are accessed using nested indexing, as shown in the
example below.

Accessing tuple elements using indexing

tuple = ('a','b','c','d','e','f')

print(tuple[0]) # 'a'

print(tuple[5]) # 'f'

IndexError: list index out of range

print(tuple[6])

Index must be an integer

TypeError: list indices must be integers, not float

tuple[2.0]

nested tuple

tuple = ("color", [6, 4, 2], (1, 2, 3))

nested index

print(tuple[0][3]) # 'o'

print(tuple[1][1]) # 4

Output:
a

f

o

4

2. Negative Indexing:

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the second last item and so on.

Example:

Negative indexing for accessing tuple elements

tuple = ('a','b','c','d','e','f')

92

Output: 'f'

print(tuple[-1])

Output: 'a'

print(tuple[-6])

Output:

f

a

3. Slicing:

We can access the range of items from the tuple by using the
slicing operator colon:

Example:

Accessing tuple elements using slicing

tuple = ('a','b','c','d','e','f','g','h','i')

elements 2nd to 4th

Output: ('b', 'c', 'd')

print(tuple[1:4])

elements beginning to 2nd

Output: ('a', 'b')

print(tuple[:-7])

elements 8th to end

Output: ('h', 'i')

print(tuple[7:])

elements beginning to end

Output: ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i')

print(tuple[:])

Output:
('b', 'c', 'd')

('a', 'b')

93

('h', 'i')

('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i')

7.4 TUPLE ASSIGNMENT

One of the unique syntactic features of the Python language is the
ability to have a tuple on the left side of an assignment statement. This
allows you to assign more than one variable at a time when the left side is
a sequence.

In this example we have a two-element list (which is a sequence)
and assign the first and second elements of the sequence to the variables x
and y in a single statement.

Example:

tuple = ['red', 'blue']

x, y = tuple

Output:
x

'red'

y

'blue'

It is not magic, Python roughly translates the tuple assignment
syntax to be the following:

m = ['red', 'blue']

x = m[0]

y = m[1]

Output:
x

'red'

y

'blue'

7.5 TUPLES AS RETURN VALUES

Functions can return tuples as return values. Now we often want to
know some batsman’s highest and lowest score or we want to know to

94

find the mean and the standard deviation, or we want to know the year, the
month, and the day, or if we’re doing some ecological modeling we may
want to know the number of rabbits and the number of wolves on an island
at a given time. In each case, a function (which can only return a single
value), can create a single tuple holding multiple elements.

For example, we could write a function that returns both the area and the
circumference of a circle of radius.

Example:

def cirlce_info(r):

#Return (circumference, area) of a circle of radius r

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(cirlce_info(10))

Output:

(62.8318, 314.159)

7.6 VARIABLE-LENGTH ARGUMENT TUPLES

Functions can take a variable number of arguments. The parameter
name that begins with the * gather the argument into the tuple. For
example, the print all take any number of the arguments and print them:

def printall(*args):

print args

The gather parameter can have any name you like, but args is
conventional. Here’s how the function works:

The complement of gather is scatter. If you have the sequence of
values and you want to pass it to the function as multiple as arguments,
you can use the * operator. For example, divmod take exactly two
arguments it doesn’t work with the tuple:

t = (7, 3)

divmod(t)

TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

divmod(*t)

95

(2, 1)

Example -Many of the built-in functions are use variable-length argument
tuples. For example, max and min it can take any of number arguments:

max(1,2sum(1,2,3)

TypeError: sum expected at most 2 arguments, got 3,3)

But sum does not.

7.7 BASIC TUPLES OPERATIONS

Now, we will learn the operations that we can perform on tuples in
Python.

1. Membership:

We can apply the ‘in’ and ‘not in’ operator on the items. This tells us whether
they belong to the tuple.

'a' in tuple("string")

Output:

False

'x' not in tuple("string")

Output:
True

2. Concatenation:

Like we’ve previously discussed on several occasions,
concatenation is the act of joining. We can join two tuples using the
concatenation operator ‘+’.

(1,2,3)+(4,5,6)

Output:

(1, 2, 3, 4, 5, 6)

Note: Other arithmetic operations do not apply on a tuple.

3. Logical:

All the logical operators (like >,>=,..) can be applied on a tuple.

(1,2,3)>(4,5,6)

96

Output:

False

(1,2)==('1','2')

Output:

False

4. Identity:

Remember the ‘is’ and ‘is not’ operators we discussed about in our
tutorial on Python Operators? Let’s try that on tuples.

a=(1,2)

(1,2) is a

Output:

That did not make sense, did it? So what really happened? Now, in
Python, two tuples or lists don't have the same identity. In other words,
they are two different tuples or lists. As a result, it returns False.

7.8 CONCATENATION

Now, we will learn 2 different ways to concatenate or join tuples in
the python language with code example. We will use ‘+” operator and a
built-in sum() function to concatenate or join tuples in python.

 How to concatenate tuples into single/nested Tuples using sum():

2.1 Sum() to concatenate tuples into a single tuple:

In our first example, we will use the sum() function to concatenate two
tuples and result in a single tuple.Let us jump to example:

tupleint= (1,2,3,4,5,6)

langtuple = ('C#','C++','Python','Go')

#concatenate the tuple

tuples_concatenate = sum((tupleint, langtuple), ())

print('concatenate of tuples \n =',tuples_concatenate)

Output:

concatenate of tuples

97

= (1, 2, 3, 4, 5, 6, 'C#', 'C++', 'Python', 'Go')

Sum() to concatenate tuple into a nested tuple:

Now let us understand how we can sum tuples to make a nested
tuple.In this program we will use two tuples which are nested tuples,
please note the ‘,’ at the end of each tuples tupleint and langtuple.

let us understand example:

tupleint= (1,2,3,4,5,6),

langtuple = ('C#','C++','Python','Go'),

#concatenate the tuple

tuples_concatenate = sum((tupleint, langtuple), ())

print('concatenate of tuples \n =',tuples_concatenate)

Output:

concatenate of tuples

= ((1, 2, 3, 4, 5, 6), ('C#', 'C++', 'Python', 'Go'))

Concatenate tuple Using ‘+’ operator:

2.1 ‘+’ operator to concatenate two tuples into a single tuple:

In our first example, we will use the “+” operator to concatenate
two tuples and result in a single tuple.In this example we have two tuple
tupleint and langtuple,We are the concatenating these tuples into the single
tuple as we can see in output.

tupleint= (1,2,3,4,5,6)

langtuple = ('C#','C++','Python','Go')

#concatenate the tuple

tuples_concatenate = tupleint+langtuple

print('concatenate of tuples \n =',tuples_concatenate)

Output:

2.2 ‘+’ operator with a comma(,) to concatenate tuples into nested
Tuples:

This example, we have the two tuple tuple int and lang tuple. Now
We are using the comma(,) end of the each tuple to the concatenate them

98

into a nested tuple. We are concatenating these tuples into a nested tuple
as we can see in the resulting output.

comma(,) after tuple to concatenate nested tuple

tupleint= (1,2,3,4,5,6),

langtuple = ('C#','C++','Python','Go'),

#concatenate the tuple into nested tuple

tuples_concatenate = tupleint+langtuple

print('concatenate of tuples \n =',tuples_concatenate)

Output:
concatenate of tuples

= ((1, 2, 3, 4, 5, 6), ('C#', 'C++', 'Python', 'Go'))

7.9 REPETITION

Now, we are going to explain how to use Python tuple repetition
operator with basic syntax and many examples for better understanding.

Python tuple repetition operator (*) is used to the repeat a tuple,
number of times which is given by the integer value and create a new tuple
values.

Syntax:

<tuple_variable_name1> * N

N * <tuple_variable_name1>

Input Parameters:

 tuple_variable_name1 : The tuples that we want to be repeated.

 N : where is the number of times that we want that tuple to be repeated
ex: 1,2,3,……..n

Example:

data=(1,2,3,'a','b')

tuple after repetition

print('New tuple:', data* 2)

99

Output:

New tuple: [1, 2, 3, ‘a’, ‘b’, 1, 2, 3, ‘a’, ‘b’]

In the above Example, using repetition operator (*), we have
repeated ‘data’ tuple variable 2 times by ‘data* 2’ in print statement and
created new tuple as [1, 2, 3, ‘a’, ‘b’, 1, 2, 3, ‘a’, ‘b’].

7.10 IN OPERATOR

The Python in operator lets you loop through all to the members of
the collection and check if there's a member in the tuple that's equal to the
given item.

Example:
my_tuple = (5, 1, 8, 3, 7)
print(8 in my_tuple)

print(0 in my_tuple)

Output:

True

False

Note that in operator against dictionary checks for the presence of
key.

Example:

Output:

True

It can also be used to check the presence of a sequence or substring
against string.

Example:

my_str = "This is a sample string"

print("sample" in string)

Output:

True

It can be uses in the many of other places and how it works in the
those scenarios of varies a lot. This is the how in works in tuples. It start

100

the comparing references of the objects from the first one till it either finds
that the object in the tuple or reaches in the end of the tuple.

7.11 ITERATION

There are many ways to iterate through the tuple object. For
statement in Python has a variant which traverses a tuple till it is
exhausted. It is equivalent to for each statement in Java. Its syntax is –

for var in tuple:

stmt1

stmt2

Example:

T = (10,20,30,40,50)

for var in T:

print (T.index(var),var)

Output:

0 10

1 20

2 30

3 40

4 50

7.12 BUILT-IN TUPLE FUNCTIONS

Tuples support the following build-in functions:

Comparison:

If the elements are of the same type, python performs the
comparison and returns the result. If elements are different types, it checks
whether they are numbers.

If numbers, perform comparison.

If either the element is an number, then the other element is a
returned.

Otherwise, types are sorted alphabetically.

101

If we reached to the end of one of the lists, the longer list is a
"larger." If both are list are same it returns 0.

tuple1 = ('a', 'b', 'c',’d’, 'e')

tuple2 = ('1','2','3')

tuple3 = ('a', 'b', 'c', 'd', 'e')

cmp(tuple1, tuple2)

Out: 1

cmp(tuple2, tuple1)

Out: -1

cmp(tuple1, tuple3)

Out: 0

Tuple Length:

len(tuple1)

Out: 5

Max of a tuple:

The function min returns the item from the tuple with the min value:

min(tuple1)

Out: 'a'

min(tuple2)

Out: '1'

Convert a list into tuple:

The built-in function tuple converts a list into a tuple:

list = [1,2,3,4,5]

tuple(list)

Out: (1, 2, 3, 4, 5)

Tuple concatenation:

Use + to concatenate two tuples:

tuple1 + tuple2

Out: ('a', 'b', 'c',’d’, 'e', '1', '2', '3')

102

7.13 CREATING A DICTIONARY

Creating a Dictionary:

To create the Python dictionary, we need to pass the sequence of
the items inside curly braces {}, and to separate them using a comma (,).
Each item has a key and a value expressed as an "key:value" pair.

The values can belong to the any of data type and they can repeat,
but the keys are must remain the unique.

The following examples are demonstrate how to create the Python
dictionaries:

Creating an empty dictionary:

dict_sample = {}

Creating a dictionary with integer keys:

dict_sample = {1: 'mango', 2: 'pawpaw'}

Creating a dictionary with mixed keys:

dict_sample = {'fruit': 'mango', 1: [4, 6, 8]}

We can also create a dictionary by explicitly calling the Python's dict()
method:
dict_sample = dict({1:'mango', 2:'pawpaw'})

A dictionary can also be created from a sequence as shown below:
Dictionaries can also be nested, which means that we can create a
dictionary inside another dictionary. For example:

dict_sample = {1: {'student1' : 'Nicholas', 'student2' : 'John', 'student3' : 'Mercy'},
2: {'course1' : 'Computer Science', 'course2' : 'Mathematics',
'course3' : 'Accounting'}}

To print the dictionary contents, we can use the Python's print() function
and pass the dictionary name as the argument to the function. For
example:

dict_sample = {
"Company": "Toyota",
"model": "Premio",
"year": 2012

}
print(dict_sample)

Output:
{'Company': 'Toyota', 'model': 'Premio', 'year': 2012}

103

7.14 ACCESSING VALUES IN A DICTIONARY

To access the dictionary items, we need to pass the key inside
square brackets []. For example:

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

x = dict_sample["model"]

print(x)

Output:

Premio

We created a dictionary named dict_sample. A variable named x is
then created and its value is set to be the value for the key "model" in the
dictionary.

7.15 UPDATING DICTIONARY

After adding a value to a dictionary we can then modify the
existing dictionary element. You use the key of the element to change the
corresponding value. For example:

dict_sample = {

"Company": "Toyota",
"model": "Premio",

"year": 2012
}

dict_sample["year"] = 2014

print(dict_sample)

Output:

{'year': 2014, 'model': 'Premio', 'Company': 'Toyota'}

In this example you can see that we have updated the value for the key
"year" from the old value of 2012 to a new value of 2014.

104

7.16 DELETING ELEMENTS FROM DICTIONARY

The removal of an element from a dictionary can be done in
several ways, which we'll discuss one-by-one in this section:

The del keyword can be used to remove the element with the
specified key. For example:

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

del dict_sample["year"]

print(dict_sample)

Output:

{'Company': 'Toyota', 'model': 'Premio'}

We called the del keyword followed by the dictionary name. Inside
the square brackets that follow the dictionary name, we passed the key of
the element we need to delete from the dictionary, which in this example
was "year". The entry for "year" in the dictionary was then deleted.

Another type to delete a key-value pair is to use the pop() method
and pass the key of the entry to be deleted as the argument to the function.
For example:

Output:

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

dict_sample.pop("year")

print(dict_sample)

We invoked that pop() method by appending it with the dictionary
name. And, in this example the entry for "year" in the dictionary will be
deleted.

105

The popitem() method removes the last item of inserted into the
dictionary, without needing to specify the key. Take a look at the
following example:

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

dict_sample.popitem()

print(dict_sample)

Output:

{'Company': 'Toyota', 'model': 'Premio'}

The last entry into the dictionary was "year". It has been removed
after calling the popitem() function.

But what if you want to delete the entire dictionary? It would be
difficult and cumbersome to use one of these methods on every single key.
Instead, you can use the del keyword to delete the entire dictionary. For
example:

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

del dict_sample

print(dict_sample)

Output:

NameError: name 'dict_sample' is not defined

The code returns an error. The reason is we are trying to access the
an dictionary which is doesn't exist since it is has been deleted.

However, your use-case may require you to just remove all
dictionary elements and be left with an empty dictionary. This can be
achieved by calling the clear() function on the dictionary:

106

dict_sample = {

"Company": "Toyota",

"model": "Premio",

"year": 2012

}

dict_sample.clear()

print(dict_sample)

Output:

{}

The code is returns an empty dictionary since all the dictionary elements
have been removed.

7.17 PROPERTIES OF DICTIONARY KEYS

Dictionary values have no restrictions. These can be any of
erratically Python object, either they standard objects or user-defined
objects. However, similar is not true for the keys.

There are two important points to be remember about the
dictionary keys:

(a)More than one of the entry per key not allowed. Which means that no
duplicate key isallowed. When the duplicate keys are encountered during
the assignment, And, the last assignment wins.

For example:

dict = {‘Name’: ‘Zara’, ‘Age’: 7, ‘Name’: ‘Manni’};

print “dict[‘Name’]: “, dict[‘Name’];

Output:

dict[‘Name’]: Manni

dict = {[‘Name’]: ‘Zara’, ‘Age’: 7};

print “dict[‘Name’]: “, dict[‘Name’];

(b) Keys must be immutable. Which mean by you can use strings, And the
numbers or tuples as dictionary keys but something like [‘key’] is not
allowed. Following is a simple:

107

Output:

Traceback (most recent call last):

File “test.py”, line 3, in<module>

dict = {[‘Name’]: ‘Zara’, ‘Age’: 7};

TypeError: list objects are unhashable

7.18 OPERATIONS IN DICTIONARY

Below is a list of common dictionary operations:

create an empty dictionary

x = {}

create a three items dictionary

x = {"one":1, "two":2, "three":3}

access an element

x['two']

get a list of all the keys

x.keys()

get a list of all the value

x.values()

add an entry

x["four"]=4

change an entry

x["one"] = "uno"

delete an entry

del x["four"

make a copy
y = x.copy()

remove all items

108

x.clear()

number of items

z = len(x)

test if has key

z = x.has_key("one")

looping over keys

for item in x.keys(): print item

looping over values

for item in x.values(): print item

using the if statement to get the values

if "one" in x:
print x['one']

if "two" not in x:
print "Two not found"

if "three" in x:
del x['three']

7.18 BUILT-IN DICTIONARY FUNCTIONS

A function is a procedure that can be applied on a construct to get a
value. Furthermore, it doesn’t modify the construct. Python gives us a few
functions that we can apply on a Python dictionary. Take a look.

1. len():

The len() function returns the length of the dictionary in Python.
Every key-value pair adds 1 to the length.

len(dict4)

Output
3

len({})

any({False:False,'':''})

An empty Python dictionary has a length of 0.

109

2. any():

Like it is with lists an tuples, the any() function returns True if
even one key in a dictionary has a Boolean value of True.

Output:

False

Output:

any({True:False,"":""})

True

3

. all():

Unlike the any() function, all() returns True only if all the keys in the
dictionary have a Boolean value of True.

Output:

all({1:2,2:'',"":3})

False

4. sorted():

Like it is with lists and tuples, the sorted() function returns a sorted
sequence of the keys in the dictionary. The sorting is in ascending order,
and doesn’t modify the original Python dictionary.

dict4={3:3,1:1,4:4}

But to see its effect, let’s first modify dict4.
Now, let’s apply the sorted() function on it.

Output:

[1, 3, 4]

As you can see, the original Python dictionary wasn’t modified.

dict4

This function returns the keys in a sorted list. To prove this, let’s see what
the type() function returns.

Output: <class ‘list’>

110

This proves that sorted() returns a list.

{3: 3, 1: 1, 4: 4}

dict4

type(sorted(dict4))

7.19 BUILT-IN DICTIONARY METHODS

A method is a set of the instructions to execute on the construct,
and it may be modify the construct. To do this, the method must be called
on the construct, let’s look at the available the methods for dictionaries.

dict4.keys()

Let’s use dict4 for this example.

1. keys():

dict_keys([3, 1, 4])

The keys() method returns a list of keys in a Python dictionary.
dict4.values()

Output:

2. values():
Likewise, the values() method returns a list of values in the dictionary.

Output:

dict_values([3, 1, 4])

3. items()
This method returns a list of key-value pairs.

Output:

dict_items([(3, 3), (1, 1), (4, 4)])

7.20 SUMMARY

Tuples: In Python, tuples are structured and accessed based on
position. A Tuple is a collection of Python objects separated by commas.
In some ways a tuple is similar to a list in terms of indexing, nested
objects and repetition but a tuple is absolute unlike lists that are variable.
In Python it is an unordered collection of data values, used to store data
values like a map, which unlike other data types that hold only single
value as an element. Tuples are absolute lists. Elements of a list can be
modified, but elements in a tuple can only be accessed, not modified. The

111

name tuple does not mean that only two values can be stored in this data
structure.

Dictionaries: Dictionaries in Python are structured and accessed using
keys and values. Dictionaries are defined in Python with curly braces { } .
Commas separate the key-value pairs that make up the dictionary.
Dictionaries are made up of key and/or value pairs. In Python, tuples are
organized and accessed based on position. The location of a pair of keys
and values stored in a Python dictionary is unrelated. Key value is
provided in the dictionary to make it more optimized. A Python
dictionary is basically a hash table. In some languages, they might be
mentioned to an associative arrays. They are indexed with keys, which
can be any absolute type.

7.21 QUESTIONS

1. Let list = [’a’, ’b’, ’c’,’d’, ’e’, ’f’]. Find a) list[1:3] b) t[:4] c) t[3:]
2. State the difference between lists and dictionary

3. What is the benefit of using tuple assignment in Python?

4. Define dictionary with an example

5. Write a Python program to swap two variables

6. Define Tuple and show it is immutable with an example

7. Create tuple with single element

8. How can you access elements from the dictionary

9. Write a Python program to create a tuple with different data types.

10. Write a Python program to unpack a tuple in several variables

7.22 REFERENCES

1. https://www.geeksforgeeks.org/differences-and-applications-of-list-
tuple-set-and-dictionary-in-python/

2. https://problemsolvingwithpython.com/04-Data-Types-and-
Variables/04.05-Dictionaries-and-Tuples/

3. https://problemsolvingwithpython.com/04-Data-Types-and-
Variables/04.05-Dictionaries-and-Tuples/

4. https://ncert.nic.in/textbook/pdf/kecs110.pdf

5. https://python101.pythonlibrary.org/chapter3_lists_dicts.html

6. https://www.programmersought.com/article/26815189338/

7. https://www.javatpoint.com/python-tuples

8. https://cloudxlab.com/assessment/displayslide/873/python-
dictionaries-and-tuples

9. https://medium.com/@aitarurachel/data-structures-with-lists-tuples-
dictionaries-and-sets-in-python-612245a712af

10. https://www.w3schools.com/python/python_tuples.asp

112

8

FILES AND EXCEPTIONS

Unit Structure
8.1 Objective

8.2 Text Files

8.3 The File Object Attributes

8.4 Directories

8.5 Built-in Exceptions

8.6 Handling Exceptions

8.7 Exception with Arguments

8.8 User-defined Exceptions

8.9 Summary

8.10 Exercise

8.11 References

8.1 OBJECTIVE

1. To understand how python will raise an exception.

2. To create program to catch an exception using a try/except block.

3. To study the Python errors and exceptions.

4. To study creation and use of read and write commands for files.in
python

5. To understand how to open, write and close files in python

8.2 TEXT FILES

Now we will learn about various ways to read text files in Python.

The following shows how to read all texts from the readme.txt file into a
string:

with open('readme.txt') as f:

lines = f.readlines()

Steps for reading a text file in Python:

To read the text file in the Python, you have to follow these steps:

113

Firstly, you have to open the text file for reading by using the
open() method.

Second, you have to read the text from the text file using the file
read(), readline(), or readlines() method of the file object.

Third, you have to close the file using the file close() method.

1) open() function
The open() function has many parameters but you’ll be focusing on the
first two.

open(path_to_file, mode)

The path to the file parameter is specifies the path to the text file.

If the file is in the same folder as is program, you have just need to
specify the file name. Otherwise, you have need to specify the path to the
file.

Specify the path to the file, you have to use the forward-slash ('/')
even if you are working in Windows.

Example, if the file is in the readme.txt stored in the sample folder
as the program, you have need to specify the path to the file as
c:/sample/readme.txt

A mode is in the optional parameter. This is the string that is
specifies the mode in which you want to open the file.

The following table shows available modes for opening a text file:
Mode Description
'r' Open for text file for reading text
'w' Open a text file for writing text
'a' Open a text file for appending text

For example, to open a file whose name is the-zen-of-python.txt stored in
the same folder as the program, you use the following code:

f = open('the-zen-of-python.txt','r')

The open() function returns a file object which you will use to read
text from a text file.

2) Reading text methods:

The file object provides you with three methods for reading text from a
text file:

114

read() – read all text from a file into a string. This method is useful if you
have a small file and you want to manipulate the whole text of that file.

readline() – read the text file line by line and return all the lines as strings.

readlines() – read all the lines of the text file and return them as a list of
strings.

3) close() method:

The file that you open will remain open until you close it using the
close() method.

It’s important to close the file that is no longer in use. If you don’t
close the file, the program may crash or the file would be corrupted.

The following shows how to call the close() method to close the file:

f.close()

To close the file automatically without calling the close() method,
you use the with statement like this:

with open(path_to_file) as f:

contents = f.readlines()

In practice, you’ll use the with statement to close the file
automatically.

Reading a text file examples:

We’ll use the-zen-of-python.txt file for the demonstration.

The following example illustrates how to use the read() method to read all
the contents of the the-zen-of-python.txt file into a string:

with open('the-zen-of-python.txt') as f:

contents = f.read()

print(contents)

Output:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

...

115

The following example uses the readlines() method to read the text file
and returns the file contents as a list of strings:

lines = []

with open('the-zen-of-python.txt') as f:

lines = f.readlines()

count = 0

for line in lines:

count += 1

print(f'line {count}: {line}')

Output:

line 1: Beautiful is better than ugly.

line 2: Explicit is better than implicit.

line 3: Simple is better than complex.

...

8.3 THE FILE OBJECT ATTRIBUTES

Once a file is opened and you have one file object, you can get
various information related to that file. Here is a list of all attributes
related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true
otherwise.

Example

Open a file

fo = open(“foo.txt”, “wb”)

print “Name of the file: “, fo.name

print “Closed or not : “, fo.closed

print “Opening mode : “, fo.mode

print “Softspace flag : “, fo.softspace

116

This produces the following result:

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

8.4 DIRECTORIES

In this Python Directory tutorial, we will import the OS module to
be able to access the methods we will apply.

import os

How to Get Current Python Directory?

To find out which directory in python you are currently in, use the
getcwd() method.

os.getcwd()

Output:

‘C:\\Users\\lifei\\AppData\\Local\\Programs\\Python\\Python36-32’

Cwd is for current working directory in python. This returns the path of
the current python directory as a string in Python.

To get it as a bytes object, we use the method getcwdb().

os.getcwdb()

Output:

b’C:\\Users\\lifei\\AppData\\Local\\Programs\\Python\\Python36-32′

Here, we get two backslashes instead of one. This is because the
first one is to escape the second one since this is a string object.

type(os.getcwd())

<class 'str'>

To render it properly, use the Python method with the print statement.

print(os.getcwd())

117

Output:

Changing Current Python Directory
To change our current working directories in python, we use the chdir()
method.

This takes one argument- the path to the directory to which to change.

Output:

‘unicodeescape’ code can’t decode bytes in position 2-3: truncated
\UXXXXXXXX escape

But remember that when using backward slashes, it is
recommended to escape the backward slashes to avoid a problem.

Output:

How to Create Python Directory?

We can also create new python directories with the mkdir() method. It
takes one argument, that is, the path of the new python directory to create.

os.mkdir('Christmas Photos')

os.listdir()

Output:

[‘Adobe Photoshop CS2.lnk’, ‘Atom.lnk’, ‘Burn Book.txt’, ‘Christmas
Photos’, ‘desktop.ini’, ‘Documents’, ‘Eclipse Cpp Oxygen.lnk’, ‘Eclipse
Java Oxygen.lnk’, ‘Eclipse Jee Oxygen.lnk’, ‘For the book.txt’, ‘Items for
trip.txt’, ‘Papers’, ‘Remember to remember.txt’, ‘Sweet anticipation.png’,
‘Today.txt’, ‘topics.txt’, ‘unnamed.jpg’]

How to Rename Python Directory?:

To rename directories in python, we use the rename() method. It
takes two arguments- the python directory to rename, and the new name
for it.

os.rename('Christmas Photos','Christmas 2017')

os.listdir()

Output:
[‘Adobe Photoshop CS2.lnk’, ‘Atom.lnk’, ‘Burn Book.txt’, ‘Christmas
2017’, ‘desktop.ini’, ‘Documents’, ‘Eclipse Cpp Oxygen.lnk’, ‘Eclipse

118

Java Oxygen.lnk’, ‘Eclipse Jee Oxygen.lnk’, ‘For the book.txt’, ‘Items for
trip.txt’, ‘Papers’, ‘Remember to remember.txt’, ‘Sweet anticipation.png’,
‘Today.txt’, ‘topics.txt’, ‘unnamed.jpg’]

How to Remove Python Directory?

We made a file named ‘Readme.txt’ inside our folder Christmas
2017. To delete this file, we use the method remove().

os.chdir('C:\\Users\\lifei\\Desktop\\Christmas 2017')

os.listdir()

Output:

[‘Readme.txt’]

8.5 BUILT-IN EXCEPTIONS

Illegal operations can raise exceptions. There are plenty of built-in
exceptions in Python that are raised when corresponding errors occur. We
can view all the built-in exceptions using the built-in local() function as

print(dir(locals()['__builtins__']))

follows:

locals()['__builtins__'] will return a module of built-in exceptions,
functions, and attributes. dir allows us to list these attributes as strings.
Some of the common built-in exceptions in Python programming along
with the error that cause them are listed below:

Exception Cause of Error
AssertionError fails. Raised when an assert statement

AttributeError Raised when attribute assignment or reference
fails.

EOFError Raised when the input() function hits end-of-file
condition.

FloatingPointError Raised when a floating point operation fails.
GeneratorExit Raise when a generator's close() method is

called.
ImportError Raised when the imported module is not found.
IndexError Raised when the index of a sequence is out of

range.
KeyError Raised when a key is not found in a dictionary.
KeyboardInterrupt Raised when the user hits the interrupt key

(Ctrl+C or Delete).

119

MemoryError Raised when an operation runs out of memory.
NameError Raised when a variable is not found in local or

global scope.
NotImplementedError Raised by abstract methods.
OSError Raised when system operation causes system

related error.
OverflowError Raised when the result of an arithmetic

operation is too large to be represented.
ReferenceError Raised when a weak reference proxy is used to

access a garbage collected referent.
RuntimeError Raised when an error does not fall under any

other category.
StopIteration Raised by next() function to indicate that there

is no further item to be returned by iterator.
SyntaxError Raised by parser when syntax error is

encountered.
IndentationError Raised when there is incorrect indentation.
TabError Raised when indentation consists of inconsistent

tabs and spaces.
SystemError Raised when interpreter detects internal error.
SystemExit Raised by sys.exit() function.
TypeError Raised when a function or operation is applied

to an object of incorrect type.
UnboundLocalError Raised when a reference is made to a local

variable in a function or method, but no value
has been bound to that variable.

UnicodeError Raised when a Unicode-related encoding or
decoding error occurs.

UnicodeEncodeError Raised when a Unicode-related error occurs
during encoding.

UnicodeDecodeError Raised when a Unicode-related error occurs
during decoding.

UnicodeTranslateError Raised when a Unicode-related error occurs
during translating.

ValueError Raised when a function gets an argument of
correct type but improper value

ZeroDivisionError Raised when the second operand of division or
modulo operation is zero.

8.6 HANDLING EXCEPTIONS

If you have some suspicious code that may raise an exception, you
can defend your program by placing the suspicious code in a try: block.
After the try: block, include an except: statement, followed by a block of
code which handles the problem as elegantly as possible.

Syntax:
Here is simple syntax of try....except...else blocks:

120

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

A single try statement can have multiple except statements. This is
useful when the try block contains statements that may throw different
types of exceptions.

You can also provide a generic except clause, which handles any
exception.

After the except clause(s), you can include an else-clause. The
code in the else-block executes if the code in the try: block does not raise
an exception.

The else-block is a good place for code that does not need the try:
block's protection.

Example:
This example opens a file, writes content in the, file and comes out
gracefully because there is no problem at all:

try:

fh = open("testfile", "w")

fh.write("This is my test file for exception handling!!")

except IOError:

print "Error: can\'t find file or read data"

else:

121

print "Written content in the file successfully"

fh.close()

This produces the following result:

Written content in the file successfully

8.7 EXCEPTION WITH ARGUMENTS

Why use Argument in Exceptions?

Using arguments for Exceptions in Python is useful for the
following reasons:

It can be used to gain additional information about the error encountered.

As contents of an Argument can vary depending upon different
types of Exceptions in Python, Variables can be supplied to the Exceptions
to capture the essence of the encountered errors. Same error can occur of
different causes, Arguments helps us identify the specific cause for an
error using the except clause.

It can also be used to trap multiple exceptions, by using a variable
to follow the tuple of Exceptions.

Arguments in Buil-in Exceptions:

The below codes demonstrates use of Argument with Built-in Exceptions:

Example 1:

try:

b = float(100 + 50 / 0)

except Exception as Argument:

print('This is the Argument\n', Argument)

Output:

This is the Argument

division by zero

Arguments in User-defined Exceptions:

The below codes demonstrates use of Argument with User-defined
Exceptions:

122

Example 1:

create user-defined exception

derived from super class Exception

class MyError(Exception):

Constructor or Initializer

def __init__(self, value):

self.value = value

__str__ is to print() the value

def __str__(self):

return(repr(self.value))

try:

raise(MyError("Some Error Data"))

Value of Exception is stored in error

except MyError as Argument:

print('This is the Argument\n', Argument)

Output:

'This is the Argument

'Some Error data'

8.8 USER-DEFINED EXCEPTIONS

Creating User-defined Exception

Programmers may name their own exceptions by creating a new
exception class. Exceptions need to be derived from the Exception class,
either directly or indirectly. Although not mandatory, most of the
exceptions are named as names that end in “Error” similar to naming of
the standard exceptions in python. For example:

A python program to create user-defined exception

class MyError is derived from super class Exception

class MyError(Exception):

Constructor or Initializer

def __init__(self, value):

123

self.value = value

__str__ is to print() the value

def __str__(self):

return(repr(self.value))

try:

raise(MyError(3*2))

Value of Exception is stored in error

except MyError as error:

print('A New Exception occured: ',error.value)

Ouput:

('A New Exception occured: ', 6)

8.9 SUMMARY

Files: Python supports file handling and allows users to handle files for
example, to read and write files, along with many other file handling
options, to operate on files. The concept of file handling has justified by
various other languages, but the implementation is either difficult.
Python delights file differently as text or binary and this is significant.
Each line of code includes a sequence of characters and they form text
file. Each line of a file is ended with a special character like comma {,}.
It ends the current line and expresses the interpreter a new one has
started. In Python a file is a contiguous set of bytes used to store data.
This data is organized in a precise format and can be anything as simple as
a text file. In the end, these byte files are then translated into
binary 1 and 0 for simple for processing. In Python, a file operation takes
place in the order like Open a file then Read or write and finally close the
file.

Exceptions: Python provides two important features to handle any
unexpected error in Python programs and to add debugging capabilities in
them .In Python, all exceptions must be occurrences of a class that arises
from BaseException. In a try statement with an except clause that
references a particular class, that clause further handles any exception
classes derived from that class .Two exception classes that are not
connected via sub classing are never equal, even if they have the same
name. User code can advance built-in exceptions. This can be used to test
an exception handler and also to report an error condition.

124

8.10 QUESTIONS

1. Write a Python program to read an entire text file

2. Write a Python program to append text to a file and display the text

3. Write a Python program to read a file line by line store it into a
variable

4. Write a Python program to count the number of lines in a text file

5. Write a Python program to write a list to a file

6. Write a Python program to extract characters from various text files
and puts them into a list.

7. What are exceptions in Python?

8. When would you not use try-except?

9. When will the else part of try-except-else be executed?

10. How can one block of except statements handle multiple exception? ...

8.11 REFERENCES

1. https://www.learnpython.org/

2. https://www.packtpub.com/tech/python

3. https://www.softcover.io/read/e4cd0fd9/conversational-
python/ch6_files_excepts

4. https://docs.python.org/3/library/exceptions.html

5. https://www.tutorialspoint.com/python/python_exceptions.htm

6. https://www.w3schools.com/python/python_try_except.asp

7. https://www.geeksforgeeks.org/python-exception-handling/

8. https://www.analyticsvidhya.com/blog/2020/04/exception-handling-
python/

9. https://www.programiz.com/python-programming/file-operation

10. https://www.geeksforgeeks.org/file-handling-python/

11. https://realpython.com/read-write-files-python/

12. https://www.guru99.com/reading-and-writing-files-in-python.html

125

UNIT IV

9
REGULAR EXPRESSION

Unit Structure
9.0 Objectives

9.1 Introduction

9.2 Concept of regular expression

9.3 Various types of regular expressions

9.4 Using match function.

9.7 Summary

9.8 Bibliography

9.9 Unit End Exercise

9.0 OBJECTIVES

 Regular expressions are particularly useful for defining filters.
 Regular expressions contain a series of characters that define a

pattern of text to be matched—to make a filter more specialized, or
general.

 The regular expression ^AL[.]* searches for all items beginning with
AL.

9.1 INTRODUCTION

Regular expressions (called REs, or regexes, or regex patterns) are
essentially a tiny, highly specialized programming language embedded
inside Python and made available through the re module. Using this little
language, you specify the rules for the set of possible strings that you want
to match; this set might contain English sentences, or e-mail addresses, or
TeX commands, or anything you like. You can then ask questions such as
“Does this string match the pattern?”, or “Is there a match for the pattern
anywhere in this string?”. You can also use REs to modify a string or to
split it apart in various ways.

Regular expression patterns are compiled into a series of bytecodes
which are then executed by a matching engine written in C. For advanced
use, it may be necessary to pay careful attention to how the engine will
execute a given RE, and write the RE in a certain way in order to produce
bytecode that runs faster. Optimization isn’t covered in this document,
because it requires that you have a good understanding of the matching
engine’s internals.

126

The regular expression language is relatively small and restricted,
so not all possible string processing tasks can be done using regular
expressions. There are also tasks that can be done with regular
expressions, but the expressions turn out to be very complicated. In these
cases, you may be better off writing Python code to do the processing;
while Python code will be slower than an elaborate regular expression, it
will also probably be more understandable.

9.2 CONCEPT OF REGULAR EXPRESSION

You may be familiar with searching for text by pressing ctrl-F and
typing in the words you’re looking for.

Regular expressions go one step further: They allow you to specify a
pattern of text to search for.

Regular expressions are helpful, but not many non-programmers
know about them even though most modern text editors and word
processors, such as Microsoft Word or OpenOffice, have find and find-
and-replace features that can search based on regular expressions.

Regular expressions are huge time-savers, not just for software users but
also for programmers.

Finding Patterns of Text Without Regular Expressions

Say you want to find a phone number in a string.

You know the pattern:
three numbers, a hyphen, three numbers, a hyphen, and four numbers.
example: 415-555-4242.

Regular expressions, called regexes for short, are descriptions for a pattern
of text.

For example, a \d in a regex stands for a digit character— that is, any
single numeral 0 to 9.

The regex \d\d\d-\d\d\d-\d\d\d\d is used by Python to match the same text
the
a string of three numbers, a hyphen, three more numbers, another hyphen,
and four numbers.

Any other string would not match the \d\d\d-\d\d\d-\d\d \d\d regex.

But regular expressions can be much more sophisticated.

127

Example:
adding a 3 in curly brackets ({3}) after a pattern is like saying, “Match this
pattern three times.”

So the slightly shorter regex \d{3}-\d{3}-\d{4} also matches the correct
phone number format.

Symbol and it’s Meaning:

Quantifiers :

9.3 VARIOUS TYPES OF REGULAR EXPRESSIONS

The "re" package provides several methods to actually perform
queries on an input string. We will see the methods of re in Python:

Note: Based on the regular expressions, Python offers two different
primitive operations. The match method checks for a match only at the
beginning of the string while search checks for a match anywhere in the
string.

127

Example:
adding a 3 in curly brackets ({3}) after a pattern is like saying, “Match this
pattern three times.”

So the slightly shorter regex \d{3}-\d{3}-\d{4} also matches the correct
phone number format.

Symbol and it’s Meaning:

Quantifiers :

9.3 VARIOUS TYPES OF REGULAR EXPRESSIONS

The "re" package provides several methods to actually perform
queries on an input string. We will see the methods of re in Python:

Note: Based on the regular expressions, Python offers two different
primitive operations. The match method checks for a match only at the
beginning of the string while search checks for a match anywhere in the
string.

127

Example:
adding a 3 in curly brackets ({3}) after a pattern is like saying, “Match this
pattern three times.”

So the slightly shorter regex \d{3}-\d{3}-\d{4} also matches the correct
phone number format.

Symbol and it’s Meaning:

Quantifiers :

9.3 VARIOUS TYPES OF REGULAR EXPRESSIONS

The "re" package provides several methods to actually perform
queries on an input string. We will see the methods of re in Python:

Note: Based on the regular expressions, Python offers two different
primitive operations. The match method checks for a match only at the
beginning of the string while search checks for a match anywhere in the
string.

128

9.3.1 re.search(): Finding Pattern in Text:

re.search() function will search the regular expression pattern and return
the first occurrence. Unlike Python re.match(), it will check all lines of the
input string. The Python re.search() function returns a match object when
the pattern is found and “null” if the pattern is not found

In order to use search() function, you need to import Python re
module first and then execute the code. The Python re.search() function
takes the "pattern" and "text" to scan from our main string.

The search() function searches the string for a match, and returns
a Match object if there is a match.

If there is more than one match, only the first occurrence of the
match will be returned:

Example:
Search for the first white-space character in the string:

import re

txt = "The rain in Spain"

x = re.search("\s", txt)

print("The first white-space character is located in position:", x.start())

output:

The first white-space character is located in position: 3

9.3.2 The split() Function:

The split() function returns a list where the string has been split at each
match:

Example:

Split at each white-space character:
import re

txt = "The rain in Spain"

x = re.split("\s", txt)

print(x)

output:

[‘The’,‘rain’,‘in’,‘Spain’]

129

9.3.3 re.findall():

findall() module is used to search for “all” occurrences that match
a given pattern. In contrast, search () module will only return the first
occurrence that matches the specified pattern. findall () will iterate over all
the lines of the file and will return all non-overlapping matches of pattern
in a single step.

The findall () function returns a list containing all matches

Example:

Print a list of all matches:
import re

txt = "The rain in Spain"

x = re.findall("ai", txt)

print(x)

output:

[‘ai’ , ‘ai’]

For example, here we have a list of e-mail addresses, and we want
all the e-mail addresses to be fetched out from the list, we use the method
re.findall() in Python. It will find all the e-mail addresses from the list.

9.3.4 The Sub () Function:

The sub() function replaces the matches with the text of your choice:
Replace every white-space character with the number 9:

import re

txt = "The rain in Spain"

x = re.sub("\s", "9", txt)

print(x)

output:

The9rain9in9Spain
You can control the number of replacements by specifying
the count parameter:

Example:
Replace the first 2 occurrences:

130

import re

txt = "The rain in Spain"

x = re.sub("\s", "9", txt, 2)

print(x)

output:
The9rain9inSpain

9.4 USING MATCH FUNCTION

re.match() function of re in Python will search the regular
expression pattern and return the first occurrence. The Python RegEx
Match method checks for a match only at the beginning of the string. So,
if a match is found in the first line, it returns the match object. But if a
match is found in some other line, the Python RegEx Match function
returns null.

Example
Do a search that will return a Match Object:
import re

txt = "The rain in Spain"

x = re.search("ai", txt)

print(x) #this will print an object

output:

<_sre.SRE_Match object; span=(5, 7), match='ai'>

The Match object has properties and methods used to retrieve information
about the search, and the result:

.span() returns a tuple containing the start-, and end positions of the match.

.string returns the string passed into the function

.group() returns the part of the string where there was a match

Example:
Print the string passed into the function:
import re

txt = "The rain in Spain"

x = re.search(r"\bS\w+", txt)

131

print(x.string)

output:
The rain in Spain

Example:

Print the part of the string where there was a match.

The regular expression looks for any words that starts with an upper case

"S":

import re

txt = "The rain in Spain"

x = re.search(r"\bS\w+", txt)

print(x.group())

output:
Spain

Email validation example

validate the Email from file as well from string by using Regular
Expression:

importing the module re

132

9.7 SUMMARY

A regular expression in a programming language is a special text string
used for describing a search pattern. It includes digits and punctuation and
all special characters like $#@!%, etc. Expression can include literal

 Text matching

 Repetition

 Branching

 Pattern-composition etc.

In Python, a regular expression is denoted as RE (REs, regexes or
regex pattern) are embedded through Python re module.

133

9.8 BIBLIOGRAPHY

1. Python for Beginners by Shroff Publishers

2. https://www.w3schools.com/python/python_regex.asp

3. https://www.tutorialspoint.com/python/python_reg_expressions.htm

4. https://www.guru99.com/python-regular-expressions-complete-
tutorial.html

5. https://docs.python.org/3/howto/regex.html

9.9 UNIT END EXERCISES

1) Explain the Regular Expression and Pattern Matching in details

2) Write a code to Validate mobile number by using regular expressions.

3) Write a code to Validate URL by using regular expressions.

4) Write a code to Validate Email by using regular expressions.

134

10

CLASSES AND OBJECTS

Unit Structure
10.0 Objectives

10.1 Overview of OOP

10.2 Class Definition, Creating Objects

10.3 Instances as Arguments, Instances as return values

10.4 Built-in Class Attributes

10.5 Inheritance

10.6 Method Overriding

10.7 Data Encapsulation

10.8 Data Hiding

10.9 Summary

10.10 Unit End Exercise

10.11 Bibliography

10.0 OBJECTIVES

 Classes provide an easy way of keeping the data members and
methods together in one

 Place which helps in keeping the program more organized.

 Using classes also provides another functionality of this object-
oriented programming

 Paradigm, that is, inheritance.

 Classes also help in overriding any standard operator

10.1 OVERVIEW OF OOP

Python is an object-oriented programming language. It allows us to
develop applications using Object Oriented approach. In Python, we can
easily create and use classes and objects.

Major principles of object-oriented programming system are given below

Object

Class

Method

Inheritance

135

Polymorphism

Data Abstraction

Encapsulation

Object:
Object is an entity that has state and behavior. It may be anything. It may
be physical and logical. For example: mouse, keyboard, chair, table, pen
etc.

Class:
Class can be defined as a collection of objects. It is a logical entity that has
some specific attributes and methods.

Inheritance:
Inheritance is a feature of object-oriented programming. It specifies that
one object acquires all the properties and behaviors of parent object. By
using inheritance you can define a new class with a little or no changes to
the existing class. The new class is known as derived class or child class
and from which it inherits the properties is alled base class or parent class.
It provides re-usability of the code.

Polymorphism:
Polymorphism is made by two words "poly" and "morphs". Poly means
many and Morphs means form, shape. It defines that one task can be
performed in different ways.

For example:

You have a class animal and all animals talk. But they talk differently.
Here, the "talk" behavior is polymorphic in the sense and totally depends
on the animal. So, the abstract "animal" concept does not actually "talk",
but specific animals (like dogs and cats) have a concrete implementation
of the action "talk".

Encapsulation:
Encapsulation is also the feature of object-oriented programming. It is
used to restrict access to methods and variables. In encapsulation, code
and data are wrapped together within a single unit from being modified by
accident.

Data Abstraction:

Data abstraction and encapsulation both are often used as synonyms. Both
are nearly synonym because data abstraction is achieved through
encapsulation.

Abstraction is used to hide internal details and show only functionalities.
Abstracting something means to give names to things, so that the name
captures the core of what a function or a whole program does.

136

10.2 CLASS DEFINITION, CREATING OBJECTS

Class:

Class can be defined as a collection of objects. It is a logical entity
that has some specific attributes and methods. For example: if you have an
employee class then it should contain an attribute and method i.e. an email
id, name, age, salary etc.

For example: if you have an employee class then it should contain an
attribute and method i.e. an email id, name, age, salary etc.

Syntax:
class ClassName:
<statement-1>
.
.
.
<statement-N>

Method:

Method is a function that is associated with an object. In Python, method
is not unique to class instances. Any object type can have methods.

Object:

Object is an entity that has state and behavior. It may be anything. It may
be physical and logical. For example: mouse, keyboard, chair, table, pen
etc.

Everything in Python is an object, and almost everything has attributes and
methods. All functions have a built-in attribute __doc__, which returns the
doc string defined in the function source code.

Syntax
class ClassName:
self.instance_variable = value #value specific to instance
class_variable = value #value shared across all class instances
#accessing instance variable
class_instance = ClassName()
class_instance.instance_variable
#accessing class variable
ClassName.class_variable

Example
class Car:
wheels = 4 # class variable
def __init__(self, make):

137

self.make = make #instance variable
newCar = Car("Honda")
print ("My new car is a {}".format(newCar.make))
print ("My car, like all cars, has {%d} wheels".format(Car.wheels))

10.3 INSTANCES AS ARGUMENTS AND INSTANCES
AS RETURN VALUES

Functions and methods can return objects. This is actually nothing
new since everything in Python is an object and we have been returning
values for quite some time. The difference here is that we want to have the
method create an object using the constructor and then return it as the
value of the method.

Suppose you have a point object and wish to find the midpoint
halfway between it and some other target point. We would like to write a
method, call it halfway that takes another Point as a parameter and returns
the Point that is halfway between the point and the target.

Example:
class Point:

def __init__(self, initX, initY):
""" Create a new point at the given coordinates. """
self.x = initX
self.y = initY

def getX(self):
return self.x

def getY(self):
return self.y

def distanceFromOrigin(self):
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

def __str__(self):
return "x=" + str(self.x) + ", y=" + str(self.y)

def halfway(self, target):
mx = (self.x + target.x) / 2
my = (self.y + target.y) / 2
return Point(mx, my)

p = Point(3, 4)
q = Point(5, 12)
mid = p.halfway(q)

print(mid)
print(mid.getX())
print(mid.getY())

138

The resulting Point, mid, has an x value of 4 and a y value of 8.
We can also use any other methods since mid is a Point object.

In the definition of the method halfway see how the requirement to
always use dot notation with attributes disambiguates the meaning of the
attributes x and y: We can always see whether the coordinates of
Point self or target are being referred to.

Instances as return values:

When you call an instance method (e.g. func) from an instance object
(e.g. inst), Python automatically passes that instance object as the
first argument, in addition to any other arguments that were passed in by
the user.

In the example there are two classes Vehicle and Truck, object of class
Truck is passed as parameter to the method of class Vehicle. In method
main() object of Vehicle is created.

Then the add_truck() method of class Vehicle is called and object of Truck
class is passed as parameter.

Example:

class Vehicle:
def __init__(self):

self.trucks = []

def add_truck(self, truck):
self.trucks.append(truck)

class Truck:
def __init__(self, color):

self.color = color

def __repr__(self):
return "{}".format(self.color)

def main():
v = Vehicle()
for t in 'Red Blue Black'.split():

t = Truck(t)
v.add_truck(t)

print(v.trucks)

if __name__ == "__main__":
main()

139

Sample output of above program:

[Red, Blue, Black]

10.4 BUILT-IN CLASS ATTRIBUTES

Every Python class keeps following built-in attributes and they can be
accessed using dot operator like any other attribute −
__dict__ − Dictionary containing the class's namespace.

__doc__ − Class documentation string or none, if undefined.

__name__ − Class name.

__module__ − Module name in which the class is defined. This attribute
is "__main__" in interactive mode.

__bases__ − A possibly empty tuple containing the base classes, in the
order of their occurrence in the base class list.

Example:

For the above class let us try to access all these attributes −
classEmployee:

'Common base class for all employees'

empCount =0

def __init__(self, name, salary):

self.name = name

self.salary = salary

Employee.empCount +=1
def displayCount(self):

print"Total Employee %d"%Employee.empCount

def displayEmployee(self):

print"Name : ",self.name,", Salary: ",self.salary

print"Employee.__doc__:",Employee.__doc__

print"Employee.__name__:",Employee.__name__

print"Employee.__module__:",Employee.__module__

print"Employee.__bases__:",Employee.__bases__

print"Employee.__dict__:",Employee.__dict__

Output:
When the above code is executed, it produces the following result −
Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: ()

Employee.__dict__: {'__module__': '__main__', 'displayCount':

140

<function displayCount at 0xb7c84994>, 'empCount': 2,

'displayEmployee': <function displayEmployee at 0xb7c8441c>,

'__doc__': 'Common base class for all employees',

'__init__': <function __init__ at 0xb7c846bc>}

10.5 INHERITANCE

What is Inheritance?

Inheritance is a feature of Object Oriented Programming. It is used
to specify that one class will get most or all of its features from its parent
class. It is a very powerful feature which facilitates users to create a new
class with a few or more modification to an existing class.

The new class is called child class or derived class and the main
class from which it inherits the properties is called base class or parent
class.

The child class or derived class inherits the features from the
parent class, adding new features to it. It facilitates re-usability of code.

Python Multilevel Inheritance:

Multilevel inheritance is also possible in Python like other Object Oriented
programming languages. We can inherit a derived class from another
derived class, this process is known as multilevel inheritance. In Python,
multilevel inheritance can be done at any depth.

141

Python Multiple Inheritances:

Python supports multiple inheritance too. It allows us to inherit
multiple parent classes. We can derive a child class from more than one
base (parent) classes.

142

10.6 METHOD OVERRIDING

Method overriding is an ability of any object-oriented
programming language that allows a subclass or child class to provide a
specific implementation of a method that is already provided by one of its
super-classes or parent classes. When a method in a subclass has the same
name, same parameters or signature and same return type(or sub-type) as a
method in its super-class, then the method in the subclass is said
to override the method in the super-class.

The version of a method that is executed will be determined by the
object that is used to invoke it. If an object of a parent class is used to

143

invoke the method, then the version in the parent class will be executed,
but if an object of the subclass is used to invoke the method, then the
version in the child class will be executed. In other words, it is the type of
the object being referred to (not the type of the reference variable) that
determines which version of an overridden method will be executed.

Example:
class Parent():

Constructor
def __init__(self):

self.value = "Inside Parent"

Parent's show method

def show(self):

print(self.value)

Defining child class

class Child(Parent):

Constructor
def __init__(self):

self.value = "Inside Child"

Child's show method

def show(self):

print(self.value)

Driver's code

obj1 = Parent()

obj2 = Child()

obj1.show()

obj2.show()

Output:
Inside Parent

Inside Child

10.7 DATA ENCAPSULATION

Encapsulation is one of the fundamental concepts in object-
oriented programming (OOP). It describes the idea of wrapping data and
the methods that work on data within one unit. This puts restrictions on
accessing variables and methods directly and can prevent the accidental
modification of data. To prevent accidental change, an object’s variable

144

can only be changed by an object’s method. Those types of variables are
known as private variable.

A class is an example of encapsulation as it encapsulates all the
data that is member functions, variables, etc.

Consider a real-life example of encapsulation, in a company, there
are different sections like the accounts section, finance section, sales
section etc. The finance section handles all the financial transactions and
keeps records of all the data related to finance. Similarly, the sales section
handles all the sales-related activities and keeps records of all the sales.
Now there may arise a situation when for some reason an official from the
finance section needs all the data about sales in a particular month. In this
case, he is not allowed to directly access the data of the sales section. He
will first have to contact some other officer in the sales section and then
request him to give the particular data. This is what encapsulation is.

Creating a base class

class Base:

def __init__(self):

Protected member

self._a = 2

Creating a derived class

class Derived(Base):

def __init__(self):

Calling constructor of

Base class

Base.__init__(self)

print("Calling protected member of base class: ")

print(self._a)

obj1 = Derived()

obj2 = Base()

Calling protected member

Outside class will result in

AttributeError

print(obj2.a)

145

Output:

Calling protected member of base class:

2

Traceback (most recent call last):

File "/home/6fb1b95dfba0e198298f9dd02469eb4a.py", line 25, in

print(obj1.a)

AttributeError: 'Base' object has no attribute 'a'

10.8 DATA HIDING

What is Data Hiding?

Data hiding is a part of object-oriented programming, which is
generally used to hide the data information from the user. It includes
internal object details such as data members, internal working. It
maintained the data integrity and restricted access to the class member.
The main working of data hiding is that it combines the data and functions
into a single unit to conceal data within a class. We cannot directly access
the data from outside the class.

This process is also known as the data encapsulation. It is done
by hiding the working information to user. In the process, we declare class
members as private so that no other class can access these data members.
It is accessible only within the class.

Data Hiding in Python:

Python is the most popular programming language as it applies in
every technical domain and has a straightforward syntax and vast libraries.
In the official Python documentation, Data hiding isolates the client from a
part of program implementation. Some of the essential members must be
hidden from the user. Programs or modules only reflected how we could
use them, but users cannot be familiar with how the application works.

Thus it provides security and avoiding dependency as well.

We can perform data hiding in Python using the __ double
underscore before prefix. This makes the class members private and
inaccessible to the other classes.

Example -
class CounterClass:

__privateCount = 0

146

def count(self):

self.__privateCount += 1

print(self.__privateCount)

counter = CounterClass()

counter.count()

counter.count()

print(counter.__privateCount)

Output:
1

2

Traceback (most recent call last):

File "<string>", line 17, in <module>

AttributeError: 'CounterClass' object has no attribute '__privateCount

10.9 SUMMARY

It allows us to develop applications using an Object-Oriented
approach. In Python, we can easily create and use classes and objects. An
object-oriented paradigm is to design the program using classes and
objects. The oops concept focuses on writing the reusable code.

10.10 UNIT END EXERCISE

1) Explain the object oriented concept in details.

2) Explain the instance return values in details

3) Explain the Data hiding and Data encapsulation with examples.

4) Write a python code to create animal class and in it create one instance

variable , and access it through object .

5) Explain multiple and multilevel inheritance with examples

10.11 BIBLIOGRAPHY

1.https://runestone.academy/runestone/books/published/thinkcspy/Classes
Basics/InstancesasrreturnValues.html

2. https://www.tutorialspoint.com/built-in-class-attributes-in-python

3.https://www.pythonlikeyoumeanit.com/Module4_OOP/Methods.html#:~
:text=When%20y
u%20call%20an%20instance,passed%20in%20by%20the%20user.

4. https://www.geeksforgeeks.org/method-overriding-in-python/

5. https://www.javatpoint.com/data-hiding-in-python.

147

11

MULTITHREADED PROGRAMMING

Unit Structure
11.0 Objectives

11.1 Introduction

11.1 Thread Module

11.2 Creating a thread

11.3 Synchronizing threads

11.4 Multithreaded priority queue

11.5 Summary

11.6 Bibliography

11.7 Unit End Exercise

11.0 OBJECTIVES

 To use Multithreading

 To achieve Multithreading

 To use the threading module to create threads

 Address issues or challenges for threads

11.1 INTRODUCTION

What is a Thread in Computer Science?

In software programming, a thread is the smallest unit of execution
with the independent set of instructions. It is a part of the process and
operates in the same context sharing program’s runnable resources like
memory. A thread has a starting point, an execution sequence, and a result.
It has an instruction pointer that holds the current state of the thread and
controls what executes next in what order.

What is multithreading in Computer Science?

The ability of a process to execute multiple threads parallelly is
called multithreading. Ideally, multithreading can significantly improve
the performance of any program. And Python multithreading mechanism
is pretty user-friendly, which you can learn quickly.

148

11.2 THREAD MODULE

It is started with Python 3, designated as obsolete, and can only be
accessed with _thread that supports backward compatibility.

How to find Nth Highest Salary in SQL

Syntax:

thread.start_new_thread (function_name, args[, kwargs])

To implement the thread module in Python, we need to import
a thread module and then define a function that performs some action by
setting the target with a variable.

Example:Thread.py
import thread # import the thread module

import time # import time module

def cal_sqre(num): # define the cal_sqre function

print(" Calculate the square root of the given number")

for n in num:

time.sleep(0.3) # at each iteration it waits for 0.3 time

print(' Square is : ', n * n)

def cal_cube(num): # define the cal_cube() function

print(" Calculate the cube of the given number")

for n in num:

time.sleep(0.3) # at each iteration it waits for 0.3 time

print(" Cube is : ", n * n *n)

arr = [4, 5, 6, 7, 2] # given array

t1 = time.time() # get total time to execute the functions

cal_sqre(arr) # call cal_sqre() function

cal_cube(arr) # call cal_cube() function

print(" Total time taken by threads is :", time.time() -
t1) # print the total time

Output:
Calculate the square root of the given number
Square is: 16
Square is: 25
Square is: 36
Square is: 49

149

Square is: 4
Calculate the cube of the given number
Cube is: 64
Cube is: 125
Cube is: 216
Cube is: 343
Cube is: 8
Total time taken by threads is: 3.005793809890747

11.3 CREATING A THREAD

Threads in python are an entity within a process that can be scheduled for
execution. In simpler words, a thread is a computation process that is to be
performed by a computer. It is a sequence of such instructions within a
program that can be executed independently of other codes.

In python, there are two ways to create a new Thread. In this
article, we will also be making use of the threading module in Python.

Below is a detailed list of those processes:

1. Creating python threads using class:

Below has a coding example followed by the code explanation for creating
new threads using

Classinpython.

imprt the threading module
import threading

class thread(threading.Thread):
def __init__(self, thread_name, thread_ID):

threading.Thread.__init__(self)
self.thread_name = thread_name
self.thread_ID = thread_ID

helper function to execute the threads
def run(self):

print(str(self.thread_name) +" "+ str(self.thread_ID));

thread1 = thread("GFG", 1000)
thread2 = thread("IDOL", 2000);

thread1.start()
thread2.start()

150

print("Exit")

Output:

GFG 1000

IDOL 2000

Exit

2. Creating python threads using function:

The below code shows the creation of new thread using a function:

Example:
from threading import Thread
from time import sleep

function to create threads
def threaded_function(arg):

for i in range(arg):
print("running")

wait 1 sec in between each thread
sleep(1)

if __name__ == "__main__":
thread = Thread(target = threaded_function, args = (10,))
thread.start()
thread.join()
print("thread finished...exiting")

Output:
running

running

running

running

running

running

running

running

running

running

thread finished...exiting

So what we did in the above code,

We defined a function to create a thread.

151

Then we used the threading module to create a thread that invoked the
function as its target.

Then we used start() method to start the Python thread.

11.4 SYNCHRONIZING THREADS

The threading module provided with Python includes a simple-to-
implement locking mechanism that allows you to synchronize threads. A
new lock is created by calling the Lock() method, which returns the new
lock.

The acquire(blocking) method of the new lock object is used to
force threads to run synchronously. The optional blocking parameter
enables you to control whether the thread waits to acquire the lock.

If blocking is set to 0, the thread returns immediately with a 0
value if the lock cannot be acquired and with a 1 if the lock was acquired.
If blocking is set to 1, the thread blocks and wait for the lock to be
released.

The release() method of the new lock object is used to release the lock
when it is no longer

required.

import threading

import time

class myThread (threading.Thread):

def __init__(self, threadID, name, counter):

threading.Thread.__init__(self)

self.threadID = threadID

self.name = name

self.counter = counter

def run(self):

print "Starting " + self.name

Get lock to synchronize threads

threadLock.acquire()

print_time(self.name, self.counter, 3)

Free lock to release next thread

threadLock.release()

def print_time(threadName, delay, counter):

while counter:

time.sleep(delay)

print "%s: %s" % (threadName, time.ctime(time.time()))

counter -= 1

152

threadLock = threading.Lock()

threads = []

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

Add threads to thread list

threads.append(thread1)

threads.append(thread2)

Wait for all threads to complete

for t in threads:

t.join()

print "Exiting Main Thread"

When the above code is executed, it produces the following result −
Starting Thread-1

Starting Thread-2

Thread-1: Thu Mar 21 09:11:28 2013

Thread-1: Thu Mar 21 09:11:29 2013

Thread-1: Thu Mar 21 09:11:30 2013

Thread-2: Thu Mar 21 09:11:32 2013

Thread-2: Thu Mar 21 09:11:34 2013

Thread-2: Thu Mar 21 09:11:36 2013

Exiting Main Thread

11.5 MULTITHREADED PRIORITY QUEUE

The Queue module is primarily used to manage to process large
amounts of data on multiple threads. It supports the creation of a new
queue object that can take a distinct number of items.

The get() and put() methods are used to add or remove items from
a queue respectively.

Below is the list of operations that are used to manage Queue:

get() : It is used to add an item to a queue.

put() : It is used to remove an item from a queue.

qsize() : It is used to find the number of items in a queue.

empty() : It returns a boolean value depending upon whether the queue is

empty or not.

153

full() : It returns a boolean value depending upon whether the queue
is full or not.

A Priority Queue is an extension of the queue with the following
properties:

An element with high priority is dequeued before an element with low
priority.

If two elements have the same priority, they are served according to their
order in the queue.

Below is a code example explaining the process of creating multi-threaded
priority queue:

Example:

import queue
import threading
import time

thread_exit_Flag = 0

class sample_Thread (threading.Thread):
def __init__(self, threadID, name, q):

threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q

def run(self):
print ("initializing " + self.name)
process_data(self.name, self.q)
print ("Exiting " + self.name)

helper function to process data
def process_data(threadName, q):

while not thread_exit_Flag:
queueLock.acquire()
if not workQueue.empty():

data = q.get()
queueLock.release()
print ("% s processing % s" % (threadName, data))

else:
queueLock.release()
time.sleep(1)

thread_list = ["Thread-1", "Thread-2", "Thread-3"]
name_list = ["A", "B", "C", "D", "E"]

154

queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1

Create new threads
for thread_name in thread_list:

thread = sample_Thread(threadID, thread_name, workQueue)
thread.start()
threads.append(thread)
threadID += 1

Fill the queue
queueLock.acquire()
for items in name_list:

workQueue.put(items)

queueLock.release()

Wait for the queue to empty
while not workQueue.empty():

pass

Notify threads it's time to exit
thread_exit_Flag = 1

Wait for all threads to complete
for t in threads:

t.join()
print ("Exit Main Thread")

Output:
initializing Thread-1

initializing Thread-2initializing Thread-3

Thread-2 processing AThread-3 processing B

Thread-3 processing C

Thread-3 processing D

Thread-2 processing E

Exiting Thread-2

Exiting Thread-1

Exiting Thread-3

Exit Main Thread

155

Advantages of Multithreading:

Multithreading can significantly improve the speed of computation
on multiprocessor or multi-core systems because each processor or core
handles a separate thread concurrently.

Multithreading allows a program to remain responsive while one
thread waits for input, and another runs a GUI at the same time. This
statement holds true for both multiprocessor or single processor systems.

All the threads of a process have access to its global variables. If a
global variable changes in one thread, it is visible to other threads as well.
A thread can also have its own local variables.

Disadvantages of Multithreading:

On a single processor system, multithreading won’t hit the speed
of computation. The performance may downgrade due to the overhead of
managing threads.

Synchronization is needed to prevent mutual exclusion while
accessing shared resources. It directly leads to more memory and CPU
utilization.

Multithreading increases the complexity of the program, thus also
making it difficult to debug.

It raises the possibility of potential deadlocks.

It may cause starvation when a thread doesn’t get regular access to
shared resources. The application would then fail to resume its work.

11.6 SUMMARY

In this Python multithreading tutorial, you’ll get to see different
methods to create threads and learn to implement synchronization for
thread-safe operations. Each section of this post includes an example and
the sample code to explain the concept step by step.

By the way, multithreading is a core concept of software
programming that almost all the high-level programming languages
support.

11.7 BIBLIOGRAPHY

1. https://www.javatpoint.com/multithreading-in-python-3

2. https://www.geeksforgeeks.org/how-to-create-a-new-thread-in-
python/

156

3. https://www.tutorialspoint.com/multithreaded-priority-queue-in-
python

4. https://www.techbeamers.com/python-multithreading-concepts/

11.8 UNIT END EXERCISE

1. Explain the differences between multithreading and multiprocessing?

2. Explain different types of multithreading?

3. Explain different types of thread states?

4. Explain the wait () and sleep () methods?

5. Explain different methods for threads?

156

12

MODULE

Unit Structure
12.0 Objectives

12.1 Introduction

12.2 Importing module

12.3 Creating and exploring modules

12.4 Math module

12.5 Random module

12.6 Time module

12.7 Summary

12.8 Bibliography

12.9 Unit End Exercise

12.0 OBJECTIVES

 Modules are simply a 'program logic' or a 'python script' that can be
used for variety of applications or functions.

 We can declare functions, classes etc in a module.

 The focus is to break down the code into different modules so that
there will be no or minimum dependencies on one another

12.1 INTRODUCTION

If you quit from the Python interpreter and enter it again, the
definitions you have made(functions and variables) are lost. Therefore,
if you want to write a somewhat longer program, you are better off
using a text editor to prepare the input for the interpreter and running it
with that file as input instead. This is known as creating a script.

As your program gets longer, you may want to split it into
several files for easier maintenance. You may also want to use a handy
function that you’ve written in several programs without copying its
definition into each program. To support this, Python has a way to put
definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is called a module; definitions from a
module can be imported into other modules or into the main module
(the collection of variables that you have access to in a script executed
at the top level and in calculator mode).

157

12.2 IMPORTING MODULE

Import in python is similar to #include header_file in C/C++.
Python modules can get access to code from another module by
importing the file/function using import.

The import statement is the most common way of invoking the
import machinery, but it is not the only way.

12.2.1 import module_name:

When the import is used, it searches for the module initially in the
local scope by calling __import__() function.

The value returned by the function is then reflected in the
output of the initial code.

Example:
import math
print(math.pi)

Output:
3.141592653589793

12.2.2 import module_name.member_name:

In the above code module, math is imported, and its variables
can be accessed by considering it to be a class and pi as its object.

The value of pi is returned by __import__().

pi as a whole can be imported into our initial code, rather than
importing the whole module.

Example:
from math import pi

Note that in the above example,

we used math.pi. Here we have used

pi directly.

print(pi)

Output:
3.141592653589793

12.2.3 from module_name import * :

In the above code module, math is not imported, rather just pi
has been imported as a variable.

All the functions and constants can be imported using *.

158

Example:
from math import *

print(pi)

print(factorial(6))

Output:
3.141592653589793

720

As said above import uses __import__() to search for the
module, and if not found, it would raise ImportError

Example:
import mathematics

print(mathematics.pi)

Output:
Traceback (most recent call last):

File "C:/Users/GFG/Tuples/xxx.py", line 1, in
import mathematics

ImportError: No module named 'mathematics'

12.3 CREATING AND EXPLORING MODULES

12.3.1 What are modules in Python?

Modules refer to a file containing Python statements and
definitions.

A file containing Python code, for example: example.py, is
called a module, and its module name would be example.

We use modules to break down large programs into small
manageable and organized files. Furthermore, modules provide
reusability of code.

We can define our most used functions in a module and import
it, instead of copying their definitions into different programs.

Let us create a module. Type the following and save it as example.py.

Python Module example
def add(a, b):

"""This program adds two

numbers and return the result"""

result = a + b

return result

159

Here, we have defined a function add() inside a module
named example. The function takes in two numbers and returns their
sum.

12.3.2 Importing modules:

We can import the definitions inside a module to another
module or the interactive interpreter in Python.

We use the import keyword to do this. To import our previously
defined module example, we type the following in the Python prompt.

>>> import example

This does not import the names of the functions defined
in example directly in the current symbol table. It only imports the
module name example there.

Using the module name we can access the function using the
dot . operator. For example:

>>> example.add(4,5.5)

9.5

Python has tons of standard modules. You can check out the
full list of Python standard modules and their use cases. These files are
in the Lib directory inside the location where you installed Python.

Standard modules can be imported the same way as we import
our user-defined modules.

12.3.3 Executing a Module as a Script:

Any .py file that contains a module is essentially also a
Python script, and there isn’t any reason it can’t be executed like one.

Here again is mod.py as it was defined above:

mod.py
s = "If Comrade Napoleon says it, it must be right."

a = [100, 200, 300]

def foo(arg):

print(f'arg = {arg}')

class Foo:

pass

This can be run as a script:

C:\Users\john\Documents>python mod.py

C:\Users\john\Documents>

There are no errors, so it apparently worked. Granted, it’s not
very interesting. As it is written, it only defines objects. It
doesn’t do anything with them, and it doesn’t generate any output.

160

Let’s modify the above Python module so it does generate
some output when run as a script:

mod.py
s = "If Comrade Napoleon says it, it must be right."

a = [100, 200, 300]

def foo(arg):

print(f'arg = {arg}')

class Foo:

pass

print(s)

print(a)

foo('quux')

x = Foo()

print(x)

Now it should be a little more interesting:

C:\Users\john\Documents>python mod.py

If Comrade Napoleon says it, it must be right.

[100, 200, 300]

arg = quux

<__main__.Foo object at 0x02F101D0>

Unfortunately, now it also generates output when imported as a
module:

>>>

>>> import mod

If Comrade Napoleon says it, it must be right.

[100, 200, 300]

arg = quux

<mod.Foo object at 0x0169AD50>

This is probably not what you want. It isn’t usual for a module
to generate output when it is imported.

Wouldn’t it be nice if you could distinguish between when the
file is loaded as a module and when it is run as a standalone script?
Ask and ye shall receive.

When a .py file is imported as a module, Python sets the
special dunder variable __name__ to the name of the module.
However, if a file is run as a standalone script, __name__ is
(creatively) set to the string '__main__'. Using this fact, you can
discern which is the case at run-time and alter behavior accordingly:

mod.py
s = "If Comrade Napoleon says it, it must be right."
a = [100, 200, 300]

def foo(arg):

print(f'arg = {arg}')

161

class Foo:

pass

if (__name__ == '__main__'):

print('Executing as standalone script')

print(s)

print(a)

foo('quux')

x = Foo()

print(x)

Now, if you run as a script, you get output:

C:\Users\john\Documents>python mod.py

Executing as standalone script

If Comrade Napoleon says it, it must be right.

[100, 200, 300]

arg = quux

<__main__.Foo object at 0x03450690>

12.4 MATH MODULE

Python math module is defined as the most famous
mathematical functions, which includes trigonometric functions,
representation functions, logarithmic functions, etc. Furthermore, it
also defines two mathematical constants, i.e., Pie and Euler number,
etc.

Pie (n): It is a well-known mathematical constant and defined as the
ratio of circumstance to the diameter of a circle. Its value is
3.141592653589793.

Euler's number(e): It is defined as the base of the natural logarithmic,
and its value is 2.718281828459045.

There are different math modules which are given below:

math.log ()

This method returns the natural logarithm of a given number. It is
calculated to the base e.

Example
HTML Tutorial

import math

number = 2e-7 # small value of of x

print('log(fabs(x), base) is :', math.log(math.fabs(number), 10))

Output:
log(fabs(x), base) is : -6.698970004336019

<

math.log10()

162

This method returns base 10 logarithm of the given number and
called the standard logarithm.

Example
import math

x=13 # small value of of x

print('log10(x) is :', math.log10(x))

Output:
log10(x) is : 1.1139433523068367

math.exp()

This method returns a floating-point number after raising e to the given
number.

Example
import math

number = 5e-2 # small value of of x

print('The given number (x) is :', number)

print('e^x (using exp() function) is :', math.exp(number)-1)

Output:
The given number (x) is : 0.05

e^x (using exp() function) is : 0.05127109637602412

math.pow(x,y)

This method returns the power of the x corresponding to the
value of y. If value of x is negative or y is not integer value than it
raises a ValueError.

Example
import math

number = math.pow(10,2)

print("The power of number:",number)

Output:
The power of number: 100.0

math.floor(x)

This method returns the floor value of the x. It returns the less
than or equal value to x.

Example:
import math

number = math.floor(10.25201)

print("The floor value is:",number)

163

Output:
The floor value is: 10

math.ceil(x)
This method returns the ceil value of the x. It returns the greater than
or equal value to x.

import math

number = math.ceil(10.25201)

print("The floor value is:",number)

Output:
The floor value is: 11

math.fabs(x)

This method returns the absolute value of x.

import math

number = math.fabs(10.001)

print("The floor absolute is:",number)

Output:
The absolute value is: 10.001

math.factorial()

This method returns the factorial of the given number x. If x is
not integral, it raises a ValueError.

Example
import math

number = math.factorial(7)

print("The factorial of number:",number)

Output:
The factorial of number: 5040

math.modf(x)

This method returns the fractional and integer parts of x. It carries the
sign of x is float.

Example
import math

number = math.modf(44.5)

print("The modf of number:",number)

Output:
The modf of number: (0.5, 44.0)

Python provides the several math modules which can perform
the complex task in single-line of code. Here, we have discussed a few
important math modules.

164

12.5 RANDOM MODULE

The Python random module functions depend on a pseudo-
random number generator function random(), which generates the float
number between 0.0 and 1.0.

There are different types of functions used in a random module which
is given below:

random.random()

This function generates a random float number between 0.0 and 1.0.

random.randint()

This function returns a random integer between the specified integers.

random.choice()

This function returns a randomly selected element from a non-empty
sequence.

Example
Hello Java Program for Beginners

importing "random” module.

import random

We are using the choice() function to generate a random number fro
m

the given list of numbers.
print ("The random number from list is : ",end="")

print (random.choice([50, 41, 84, 40, 31]))

Output:
The random number from list is : 84

random.shuffle()

This function randomly reorders the elements in the list.

random.randrange(beg,end,step)

This function is used to generate a number within the range
specified in its argument. It accepts three arguments, beginning
number, last number, and step, which is used to skip a number in the
range.

Consider the following example.

We are using randrange() function to generate in range from 100

to 500. The last parameter 10 is step size to skip

ten numbers when selecting.

import random

print ("A random number from range is : ",end="")

print (random.randrange(100, 500, 10))

165

Output:
A random number from range is : 290

random.seed()

This function is used to apply on the particular random number with
the seed argument. It returns the mapper value. Consider the following
example.

importing "random" module.

import random

using random() to generate a random number

between 0 and 1

print("The random number between 0 and 1 is : ", end="")

print(random.random())

using seed() to seed a random number

random.seed(4)

Output:
The random number between 0 and 1 is : 0.4405576668981033

12.6 TIME MODULE

Python has defined a module, “time” which allows us to handle
various operations regarding time, its conversions and representations,
which find its use in various applications in life. The beginning of time
is started measuring from 1 January, 12:00 am, 1970 and this very
time is termed as “epoch” in Python.

Operations on Time:

1. time (): - This function is used to count the number of seconds
elapsed since the epoch.

2. gmtime(sec) :- This function returns a structure with 9
values each representing a time attribute in sequence. It
converts seconds into time attributes(days, years, months
etc.) till specified seconds from epoch. If no seconds are
mentioned, time is calculated till present. The structure attribute
table is given below.

Index Attributes Values
0 tm_year 2008
1 tm_mon 1 to 12
2 tm_mday 1 to 31
3 tm_hour 0 to 23
4 tm_min 0 to 59
5 tm_sec 0 to 61 (60 or 61 are leap-

seconds)
6 tm_wday 0 to 6
7 tm_yday 1 to 366
8 tm_isdst -1, 0, 1 where -1 means Library

determines DST

166

Python code to demonstrate the working of

time() and gmtime()

importing "time" module for time operations

import time

using time() to display time since epoch

print ("Seconds elapsed since the epoch are : ",end="")

print (time.time())

using gmtime() to return the time attribute structure

print ("Time calculated acc. to given seconds is : ")

print (time.gmtime())

Output:
Seconds elapsed since the epoch are : 1470121951.9536893

Time calculated acc. to given seconds is :

time.struct_time(tm_year=2016, tm_mon=8, tm_mday=2,

tm_hour=7, tm_min=12, tm_sec=31, tm_wday=1,

tm_yday=215, tm_isdst=0)

3. asctime(“time”) :- This function takes a time attributed string
produced by gmtime() and returns a 24 character string denoting
time.

4. ctime(sec) :- This function returns a 24 character time string but
takes seconds as argument and computes time till mentioned
seconds. If no argument is passed, time is calculated till present.

Python code to demonstrate the working of

asctime() and ctime()

importing "time" module for time operations

import time

initializing time using gmtime()

ti = time.gmtime()

using asctime() to display time acc. to time mentioned

print ("Time calculated using asctime() is : ",end="")

print (time.asctime(ti))

using ctime() to display time string using seconds

print ("Time calculated using ctime() is : ", end="")

print (time.ctime())

Output:
Time calculated using asctime() is : Tue Aug 2 07:47:02 2016

Time calculated using ctime() is : Tue Aug 2 07:47:02 2016

5. sleep(sec) :- This method is used to halt the program
execution for the time specified in the arguments.

167

Python

Python code to demonstrate the working of
sleep()

importing "time" module for time operations
import time

using ctime() to show present time
print ("Start Execution : ",end="")
print (time.ctime())

using sleep() to hault execution
time.sleep(4)

using ctime() to show present time
print ("Stop Execution : ",end="")
print (time.ctime())

Python

Python code to demonstrate the working of

sleep()

importing "time" module for time operations

import time

using ctime() to show present time

print ("Start Execution : ",end="")

print (time.ctime())

using sleep() to hault execution

time.sleep(4)

using ctime() to show present time

print ("Stop Execution

Output:
Start Execution : Tue Aug 2 07:59:03 2016

Stop Execution : Tue Aug 2 07:59:07 2016

12.7 SUMMARY

A module is a Python object with arbitrarily named attributes
that you can bind and reference. Simply, a module is a file consisting
of Python code. A module can define functions, classes and variables.
Again, we have seen various in-built module like math, time, random
modules.

168

12.8 UNIT END EXERCISE

1. Explain the concept of Module in detail with examples.

2. Write a python code to execute module as script.

3. Explain the dir () Function in details.

4. What is package? Write a python code to create package of FRUIT
and create two modules APPLE and ORANGE in it and it contains
apple and orange classes respectively. Create test script.py file
access both the module in it.

5. Write short notes:

a) Standard module

b) Intra package references

c) Module search path

12.9 BIBLIOGRAPHY

1. https://docs.python.org/3/tutorial/modules.html

2. https://www.geeksforgeeks.org/import-module-python/

3. https://realpython.com/python-modules-packages/#executing-a-
module-as-a-script

4. https://www.programiz.com/python-programming/modules

5. https://www.javatpoint.com/python-math-module

169

UNIT V

13

CREATING THE GUI FORM
AND ADDING WIDGETS

Unit Structure
13.1 Objectives

13.2 Introduction

13.3 Widgets

1.Label

2.Button

3.Entry Textbox

4.Combobox

5.Check Button

6.Radio Button

7.Scroll bar

8.List box

9.Menubutton

10.Spin Box

11.Paned Window

12.Tk Message Box

13.4 Summary

13.5 Questions
13.6 References

13.1 OBJECTIVES

At the end of this unit, the student will able to

 Design GUI form using any widgets like button, label, checkbutton

 Demonstrate the properties of widget learned in chapter

13.2 INTRODUCTION

1. In python GUI recipes are build using standard built in library of
python known as Tkinter.

2. Tkinter is used for creating desktop application.

3. Steps to install python and environment for Tkinter

170

3.1 Prequisite to have installed python in your machine, but check version
must be above 3.0 to run tkinter properly

3.2 Next download the python IDE known as pycharm from the link
given-https://www.jetbrains.com/pycharm/

3.3 Download Pycharm Community version for trial of 30 days.
3.4 Once the download is complete, run the exe for install pycharm.

The setup wizard should have started. Click Next as shown in figure
below

3.5 On the next screen, change the installation path if required. Click on
Next as shown in figure below

171

3.6 On the Next Screen, you can create a desktop shortcut if you want and
click on “Next”

3.7 Choose the start menu folder. Keep selected Jetbrains and click on
“Install”

172

3.8 Wait for the Installation to finish

3.9 Once installation finished, you should receive a message screen that
pycharm is installed. If you want to go ahead and run it, Click the
“Run Pycharm Community edition” box first and click finish.

173

3.10 After you click on “Finish”, the Following screen will appear

4 An empty Tkinter top-level window can be created by using the
following steps

4.1 import the Tkinter Module

4.2 Create the main application window

4.3 Add the widgets like labels, buttons, frames etc to the window

4.4 Call the main event loop so that the actions can take place on the
users computer screen

174

13.3 WIDGETS

There are various widgets like button, canvas, check button, entry etc. that
are used to build the python GUI application

1 Label

1 A label is a text used to display some message or information about
the other widgets

2 Syntax w= Label(master,options)

3 A list of option are as follows

Sr. No Option Description
1 Anchor It specifies the exact position of the text within

the size provided to the widget. The default
value is CENTER, which is used to center the
text within the specified space

2 bg The background color displayed behind the
widget

3 bitmap It is used to set the bitmap to the graphical object
specified so that, the label can represent the
graphics instead of text.

4 bd It represents the width of the border. The default
is 2 pixels.

5 cursor The mouse pointer will be changed to the type of
the cursor specified, i.e., arrow, dot, etc.

6 font The font type of the text written inside the
widget

7 fg The foreground color of the text written inside
the widget.

8 height The height of the widget
9 image The image that is to be shown as the label
10 justify It is used to represent the orientation of the text

if the text contains multiple lines. It can be set to
LEFT for left justification, RIGHT for right
justification, and CENTER for center
justification

11 Padx The horizontal padding of the text. The default
value is 1

12 Pady The vertical padding of the text. The default
value is 1.

13 Releif The type of the border. The default value is
FLAT.

14 Text This is set to the string variable which may
contain one or more line of text.

15 textvariable The text written inside the widget is set to the
control variable StringVar so that it can be
accessed and changed accordingly.

175

16 underline We can display a line under the specified letter
of the text. Set this option to the number of the
letter under which the line will be displayed.

17 width The width of the widget. It is specified as the
number of characters.

18 Wraplength Instead of having only one line as the label text,
we can break it to the number of lines where
each line has the number of characters specified
to this option.

3 Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Add a title
win.title("Label GUI")
#Adding a label
ttk.Label(win, text="A label").grid(column=0,row=0)
#start GUI
win.mainloop()

After executing this program on pycharm using run command, the output
of above code as shown below

Fig 1 Label Widget

2 Button:

1. The button widget is used to add various types of buttons to the python
application. Python allows the look of the button according to our
requirements.

2. Various options can be set or reset depending upon the requirements.

3. We can also associate a method or function with a button which is
called when the button is pressed.

4 Syntax

W=Button(parent,options)

5. A list of possible options is illustrated in table below

175

16 underline We can display a line under the specified letter
of the text. Set this option to the number of the
letter under which the line will be displayed.

17 width The width of the widget. It is specified as the
number of characters.

18 Wraplength Instead of having only one line as the label text,
we can break it to the number of lines where
each line has the number of characters specified
to this option.

3 Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Add a title
win.title("Label GUI")
#Adding a label
ttk.Label(win, text="A label").grid(column=0,row=0)
#start GUI
win.mainloop()

After executing this program on pycharm using run command, the output
of above code as shown below

Fig 1 Label Widget

2 Button:

1. The button widget is used to add various types of buttons to the python
application. Python allows the look of the button according to our
requirements.

2. Various options can be set or reset depending upon the requirements.

3. We can also associate a method or function with a button which is
called when the button is pressed.

4 Syntax

W=Button(parent,options)

5. A list of possible options is illustrated in table below

175

16 underline We can display a line under the specified letter
of the text. Set this option to the number of the
letter under which the line will be displayed.

17 width The width of the widget. It is specified as the
number of characters.

18 Wraplength Instead of having only one line as the label text,
we can break it to the number of lines where
each line has the number of characters specified
to this option.

3 Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Add a title
win.title("Label GUI")
#Adding a label
ttk.Label(win, text="A label").grid(column=0,row=0)
#start GUI
win.mainloop()

After executing this program on pycharm using run command, the output
of above code as shown below

Fig 1 Label Widget

2 Button:

1. The button widget is used to add various types of buttons to the python
application. Python allows the look of the button according to our
requirements.

2. Various options can be set or reset depending upon the requirements.

3. We can also associate a method or function with a button which is
called when the button is pressed.

4 Syntax

W=Button(parent,options)

5. A list of possible options is illustrated in table below

176

Sr.No Option Description
1. activebackground It represents the background of the button

when the mouse hover the button.
2. activeforeground It represents the font color of the button

when the mouse hover the button.
3. Bd It represents the border width in pixels.
4. Bg It represents the background color of the

button.
5. Command It is set to the function call which is

scheduled when the function is called.
6. Fg Foreground color of the button.
7. Font The font of the button text
8. Height The height of the button. The height is

represented in the number of text lines for
the textual lines or the number of pixels
for the images.

9. HighlightColor The color of the highlight when the
button has the focus.

10. Image It is set to the image displayed on the
button.

11. justify It illustrates the way by which the
multiple text lines are represented. It is
set to LEFT for left justification, RIGHT
for the right justification, and CENTER
for the center.

12. Padx Additional padding to the button in the
horizontal direction.

13. Pady Additional padding to the button in the
vertical direction.

14. Relief It represents the type of the border. It can
be SUNKEN, RAISED, GROOVE, and
RIDGE.

15. State This option is set to DISABLED to make
the button unresponsive. The ACTIVE
represents the active state of the button.

16. Underline Set this option to make the button text
underlined.

17. Width The width of the button. It exists as a
number of letters for textual buttons or
pixels for image buttons.

18. Wraplength If the value is set to a positive number,
the text lines will be wrapped to fit within
this length.

177

6. Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Adding a label that will get modified
a_label=ttk.Label(win,text="A Label")
a_label.grid(column=0,row=0)
#Button click Event Function
def click_me():

action.configure(text="** I have been clicked! **")
a_label.configure(foreground='red')
a_label.configure(text='A Red Label')

#Adding a Button
action=ttk.Button(win, text="Click Me!",command=click_me)
action.grid(column=1,row=0)
#start Gui
win.mainloop()

Here Win is the parent of Button. The output of above code is shown
below

Fig 2 Button Widget
3. Entry TextBox:

1. The Entry widget is used to provide the single line text-box to the user
to accept a value from the user.

2. We can use this widget to accept the text strings from the user. It can
only be used for one line of text from the user.

3. For multiple lines of text, we must use the text widget.

4. Syntax

W=Entry(parent,options)

5. A list of possible options is given below

Sr.No Option Description
1. bg The background color of the widget
2. bd The border width of the widget in

pixels

177

6. Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Adding a label that will get modified
a_label=ttk.Label(win,text="A Label")
a_label.grid(column=0,row=0)
#Button click Event Function
def click_me():

action.configure(text="** I have been clicked! **")
a_label.configure(foreground='red')
a_label.configure(text='A Red Label')

#Adding a Button
action=ttk.Button(win, text="Click Me!",command=click_me)
action.grid(column=1,row=0)
#start Gui
win.mainloop()

Here Win is the parent of Button. The output of above code is shown
below

Fig 2 Button Widget
3. Entry TextBox:

1. The Entry widget is used to provide the single line text-box to the user
to accept a value from the user.

2. We can use this widget to accept the text strings from the user. It can
only be used for one line of text from the user.

3. For multiple lines of text, we must use the text widget.

4. Syntax

W=Entry(parent,options)

5. A list of possible options is given below

Sr.No Option Description
1. bg The background color of the widget
2. bd The border width of the widget in

pixels

177

6. Code:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Adding a label that will get modified
a_label=ttk.Label(win,text="A Label")
a_label.grid(column=0,row=0)
#Button click Event Function
def click_me():

action.configure(text="** I have been clicked! **")
a_label.configure(foreground='red')
a_label.configure(text='A Red Label')

#Adding a Button
action=ttk.Button(win, text="Click Me!",command=click_me)
action.grid(column=1,row=0)
#start Gui
win.mainloop()

Here Win is the parent of Button. The output of above code is shown
below

Fig 2 Button Widget
3. Entry TextBox:

1. The Entry widget is used to provide the single line text-box to the user
to accept a value from the user.

2. We can use this widget to accept the text strings from the user. It can
only be used for one line of text from the user.

3. For multiple lines of text, we must use the text widget.

4. Syntax

W=Entry(parent,options)

5. A list of possible options is given below

Sr.No Option Description
1. bg The background color of the widget
2. bd The border width of the widget in

pixels

178

3. cursor The mouse pointer will be changed to
the cursor type set to the arrow, dot etc.

4. exportselection The text written inside the entry box
will be automatically copied to the
clipboard by default. We can set the
exportselection to 0 to not copy this.

5. fg It represents the color of the text
6. font It represents the font type of the text
7. highlightbackground It represents the color to display in the

traversal highlight region when the
widget does not have the input focus.

8. highlightcolor It represents the color to display in the
traversal highlight region when the
widget does not have the input focus.

9. highlightthickness It represents a non-negative value
indicating the width of the highlight
rectangle to draw around the outside of
the widget when it has the input focus.

10. Insertbackground It represents the color to use as
background in the area covered by the
insertion cursor. This color will
normally override either the normal
background for the widget.

11. insertbackground It represents the color to use as
background in the are covered by the
insertion cursor. This color will
normally override either the normal
background for the widget.

12. justify It specifies how the text is orgranized if
the text contains multiple lines.

13. relief It specifies the type of the border. Its
default value is flat.

14. selectbackground The background color of the selected
text.

15. show It is used to show the entry text of some
other type instead of the string. For
example the password is typed using
stars(*).

16. textvariable It is set to the instance of the Stringvar
to retrieve the text from the entry.

17. Width The width of the displayed text or
image.

18. xscrollcommand The entry widget can be linked to the
horizontal scrollbar if we want the user
to enter more text then the actual width
of the widget.

179

6 Code Snippet:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Modified Button Click Function
def click_me():

action.configure(text='Hello' +name.get())
#changing our label
ttk.Label(win,text="Enter a name:").grid(column=0,row=0)

#Adding a text box Entry Widget
name=tk.StringVar()
name_entered=ttk.Entry(win,width=12,textvariable=name)
name_entered.grid(column=0,row=1)
#adding a Button
action=ttk.Button(win,text="Click Me",command=click_me)
action.grid(column=1,row=0)

#Start GUI
win.mainloop()
Output

Fig 3 Text box Widget

13.4 COMBOBOX

1 code snippet:

179

6 Code Snippet:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Modified Button Click Function
def click_me():

action.configure(text='Hello' +name.get())
#changing our label
ttk.Label(win,text="Enter a name:").grid(column=0,row=0)

#Adding a text box Entry Widget
name=tk.StringVar()
name_entered=ttk.Entry(win,width=12,textvariable=name)
name_entered.grid(column=0,row=1)
#adding a Button
action=ttk.Button(win,text="Click Me",command=click_me)
action.grid(column=1,row=0)

#Start GUI
win.mainloop()
Output

Fig 3 Text box Widget

13.4 COMBOBOX

1 code snippet:

179

6 Code Snippet:

import tkinter as tk
from tkinter import ttk
#create Instance
win=tk.Tk()
#Modified Button Click Function
def click_me():

action.configure(text='Hello' +name.get())
#changing our label
ttk.Label(win,text="Enter a name:").grid(column=0,row=0)

#Adding a text box Entry Widget
name=tk.StringVar()
name_entered=ttk.Entry(win,width=12,textvariable=name)
name_entered.grid(column=0,row=1)
#adding a Button
action=ttk.Button(win,text="Click Me",command=click_me)
action.grid(column=1,row=0)

#Start GUI
win.mainloop()
Output

Fig 3 Text box Widget

13.4 COMBOBOX

1 code snippet:

180

Ouput

Fig 4 output of Combobox

5. Checkbutton:

1. The checkbutton is used to display the checkbutton on the window.

2. It is used to track the user’s choices provided to the application. In
other words, we can say that checkbutton is used to implement the
on/off selections.

3. The checkbutton can obtain the text or images. The checkbutton is
mostly used to provide many choices to the user among which, the
user needs to choose the one. It generally implements many of many
selections.

4. syntax
W=checkbutton(master,options)

5. A list of possible options is given below

Sr.No Option Description
1. bitmap It displays an image (monochrome)

on the button.
2. command It is associated with a function to be

called when the state of the
checkbutton is changed.

3. highlightcolor The color of the focus highlight when
the checkbutton is under focus.

4. justify This specifies the justification of the
text if the text contains multiple lines.

5. offvalue The associated control variable is set
to 0 by default if the button is
unchecked. We can change the state
of an unchecked variable to some
other one.

6. onvalue The associated control variable is set
to 1 by default if the button is
checked. We can change the state of
the checked variable to some other
one.

7. Variable It represents the associated variable
that tracks the state of the checkbutton

8. Width It represents the width of the
checkbutton. It is represented in the
number of characters that are
represented in the form of texts.

180

Ouput

Fig 4 output of Combobox

5. Checkbutton:

1. The checkbutton is used to display the checkbutton on the window.

2. It is used to track the user’s choices provided to the application. In
other words, we can say that checkbutton is used to implement the
on/off selections.

3. The checkbutton can obtain the text or images. The checkbutton is
mostly used to provide many choices to the user among which, the
user needs to choose the one. It generally implements many of many
selections.

4. syntax
W=checkbutton(master,options)

5. A list of possible options is given below

Sr.No Option Description
1. bitmap It displays an image (monochrome)

on the button.
2. command It is associated with a function to be

called when the state of the
checkbutton is changed.

3. highlightcolor The color of the focus highlight when
the checkbutton is under focus.

4. justify This specifies the justification of the
text if the text contains multiple lines.

5. offvalue The associated control variable is set
to 0 by default if the button is
unchecked. We can change the state
of an unchecked variable to some
other one.

6. onvalue The associated control variable is set
to 1 by default if the button is
checked. We can change the state of
the checked variable to some other
one.

7. Variable It represents the associated variable
that tracks the state of the checkbutton

8. Width It represents the width of the
checkbutton. It is represented in the
number of characters that are
represented in the form of texts.

180

Ouput

Fig 4 output of Combobox

5. Checkbutton:

1. The checkbutton is used to display the checkbutton on the window.

2. It is used to track the user’s choices provided to the application. In
other words, we can say that checkbutton is used to implement the
on/off selections.

3. The checkbutton can obtain the text or images. The checkbutton is
mostly used to provide many choices to the user among which, the
user needs to choose the one. It generally implements many of many
selections.

4. syntax
W=checkbutton(master,options)

5. A list of possible options is given below

Sr.No Option Description
1. bitmap It displays an image (monochrome)

on the button.
2. command It is associated with a function to be

called when the state of the
checkbutton is changed.

3. highlightcolor The color of the focus highlight when
the checkbutton is under focus.

4. justify This specifies the justification of the
text if the text contains multiple lines.

5. offvalue The associated control variable is set
to 0 by default if the button is
unchecked. We can change the state
of an unchecked variable to some
other one.

6. onvalue The associated control variable is set
to 1 by default if the button is
checked. We can change the state of
the checked variable to some other
one.

7. Variable It represents the associated variable
that tracks the state of the checkbutton

8. Width It represents the width of the
checkbutton. It is represented in the
number of characters that are
represented in the form of texts.

181

9. Wraplength If this option is set to an integer
number, the text will be broken in to
the number of pieces.

6. Code Snippet:

Output:

Fig 5 Output of checkbutton

6. Radio Button:

1. The Radiobutton is different from a checkbutton. Here the user is
provided with various options and the user can select only one option
among them.

2. It is used to implement one-of-many selection in the python
application. It shows multiple choices to the user out of which, the user
can select only one out of them.

3. We can associate different methods with each of the radiobutton.

4. We can display the multiple line text or images on the radiobuttons.
Each button displays a single value for that particular variable.

5. Syntax
181

9. Wraplength If this option is set to an integer
number, the text will be broken in to
the number of pieces.

6. Code Snippet:

Output:

Fig 5 Output of checkbutton

6. Radio Button:

1. The Radiobutton is different from a checkbutton. Here the user is
provided with various options and the user can select only one option
among them.

2. It is used to implement one-of-many selection in the python
application. It shows multiple choices to the user out of which, the user
can select only one out of them.

3. We can associate different methods with each of the radiobutton.

4. We can display the multiple line text or images on the radiobuttons.
Each button displays a single value for that particular variable.

5. Syntax
181

9. Wraplength If this option is set to an integer
number, the text will be broken in to
the number of pieces.

6. Code Snippet:

Output:

Fig 5 Output of checkbutton

6. Radio Button:

1. The Radiobutton is different from a checkbutton. Here the user is
provided with various options and the user can select only one option
among them.

2. It is used to implement one-of-many selection in the python
application. It shows multiple choices to the user out of which, the user
can select only one out of them.

3. We can associate different methods with each of the radiobutton.

4. We can display the multiple line text or images on the radiobuttons.
Each button displays a single value for that particular variable.

5. Syntax

182

W=Radiobutton(top,options)

6. The list of possible options given below

Sr.No Option Description
1. command This option is set to the procedure

which must be called every-time
when the state of the radiobutton is
changed

2. cursor The mouse pointer is changed to the
specified cursor type. It can be set to
the arrow, dot, etc.

3. font It represents the font type of the
widget text.

4. fg The normal foreground color of the
widget text

5. height The vertical dimension of the
widget. It is specified as the number
of lines (not pixel).

6. highlightcolor It represents the color of the focus
highlight when the widget has the
focus.

7. state It represents the state of the radio
button. The default state of the
Radiobutton is NORMAL.
However, we can set this to
DISABLED to make the
radiobutton unresponsive.

8. text The text to be displayed on the
radiobutton.

9. Textvariable It is of String type that represents
the text displayed by the widget.

10. Value The value of each radiobutton is
assigned to the control variable
when it is turned on by the user.

7. Code snippet:
1. from tkinter import *

2.

3. def selection():

4. selection = "You selected the option " + str(radio.get())

5. label.config(text = selection)

6.

7. top = Tk()

8. top.geometry("300x150")

9. radio = IntVar()

10. lbl = Label(text = "Favourite programming language:")

183

11. lbl.pack()

12. R1 = Radiobutton(top, text="C", variable=radio, value=1,

13. command=selection)

14. R1.pack(anchor = W)

15.

16. R2 = Radiobutton(top, text="C++", variable=radio, value=2,

17. command=selection)

18. R2.pack(anchor = W)

19.

20. R3 = Radiobutton(top, text="Java", variable=radio, value=3,

21. command=selection)

22. R3.pack(anchor = W)

23.

24. label = Label(top)

25. label.pack()

26. top.mainloop()

Output:

Fig 6 Output of radiobutton

13.3.7 Scrollbar:

1 It provides the scrollbar to the user so that the user can scroll the
window up and down.

2 This widget is used to scroll down the content of the other widgets like
listbox, text and canvas. However, we can also create the horizontal
scrollbars to the entry widget.

3 The syntax to use the scrollbar widget is give below
W=Scrollbar(top, options)

4 A list of possible options is given below

184

Sr. No. option Description
1 orient It can be set to HORIZONTAL or

VERTICAL depending upon the orientation
of the scrollbar.

2 jump It is used to control the behavior of the scroll
jump. If it set to 1, then the callback is called
when the user releases the mouse button.

3 repeatdelay This option tells the duration up to which the
button is to be pressed before the slider starts
moving in that direction repeatedly. The
default is 300 ms.

4 takefocus We can tab the focus through this widget by
default. We can set this option to 0 if we don't
want this behavior.

5 troughcolor It represents the color of the trough.
6 width It represents the width of the scrollbar

5. Code snippet:

from tkinter import *

top = Tk()
sb = Scrollbar(top)
sb.pack(side = RIGHT, fill = Y)

mylist = Listbox(top, yscrollcommand = sb.set)

for line in range(30):
mylist.insert(END, "Number " + str(line))

mylist.pack(side = LEFT)
sb.config(command = mylist.yview)

mainloop()

Output:

Fig 7 Output of scrollbar

185

8. Listbox:

1. The listbox widget is used to display a list of options to the user.

2. It is used to display the list items to the user. We can place only text
items in the ListBox and all text items contain the same font and color.

3. The user can choose one or more items from the list depending upon
the configuration.

4. The syntax to use the listbox is given below

W=ListBox(parent,options)

5. A list of possible options is given below

Sr.No Options Description
1 selectbackground The background color that is used to

display the selected text
2 selectmode It is used to determine the number of

items that can be selected from the list. It
can set to BROWSE, SINGLE,
MULTIPLE, EXTENDED.

3 width It represents the width of the widget in
characters.

4 XscrollCommand It is used to let the user scroll the Listbox
horizontally.

5 Yscrollcommand It is used to let the user scroll the Listbox
vertically.

6. Code Snippet:
from tkinter import *
top = Tk()

top.geometry("200x250")

lbl = Label(top,text = "A list of favourite countries...")

listbox = Listbox(top)

listbox.insert(1,"India")

listbox.insert(2, "USA")

listbox.insert(3, "Japan")

listbox.insert(4, "Austrelia")

#this button will delete the selected item from the list

btn = Button(top, text = "delete", command = lambda listbox=listbox: listb
ox.delete(ANCHOR))

186

lbl.pack()

listbox.pack()

btn.pack()
top.mainloop()

output

Fig 8 Listbox button output

Fig 9 After pressing delete button-output

13.3.9 Menubutton:

1. The menubutton is used to display the menu items to the user.

186

lbl.pack()

listbox.pack()

btn.pack()
top.mainloop()

output

Fig 8 Listbox button output

Fig 9 After pressing delete button-output

13.3.9 Menubutton:

1. The menubutton is used to display the menu items to the user.

186

lbl.pack()

listbox.pack()

btn.pack()
top.mainloop()

output

Fig 8 Listbox button output

Fig 9 After pressing delete button-output

13.3.9 Menubutton:

1. The menubutton is used to display the menu items to the user.

187

2. It can be defined as the drop-down menu that is shown to the user all
the time. It is used to provide the user a option to select the appropriate
choice exist within the application.

3. The Menubutton is used to implement various types of menus in the
python application. A Menu is associated with the menubutton that can
display the choices of the menubutton when clicked by the user.

4. The syntax to use the python tkinter menubutton is given below
W=Menubutton(Top,options)

5. code snippet
from tkinter import *

top = Tk()

top.geometry("200x250")

menubutton = Menubutton(top, text = "Language", relief = FLAT)

menubutton.grid()

menubutton.menu = Menu(menubutton)

menubutton["menu"]=menubutton.menu

menubutton.menu.add_checkbutton(label = "Hindi", variable=IntVar())

menubutton.menu.add_checkbutton(label = "English", variable = IntVar())

menubutton.pack()

top.mainloop()

output

Fig 10 Output -Menubutton

187

2. It can be defined as the drop-down menu that is shown to the user all
the time. It is used to provide the user a option to select the appropriate
choice exist within the application.

3. The Menubutton is used to implement various types of menus in the
python application. A Menu is associated with the menubutton that can
display the choices of the menubutton when clicked by the user.

4. The syntax to use the python tkinter menubutton is given below
W=Menubutton(Top,options)

5. code snippet
from tkinter import *

top = Tk()

top.geometry("200x250")

menubutton = Menubutton(top, text = "Language", relief = FLAT)

menubutton.grid()

menubutton.menu = Menu(menubutton)

menubutton["menu"]=menubutton.menu

menubutton.menu.add_checkbutton(label = "Hindi", variable=IntVar())

menubutton.menu.add_checkbutton(label = "English", variable = IntVar())

menubutton.pack()

top.mainloop()

output

Fig 10 Output -Menubutton

187

2. It can be defined as the drop-down menu that is shown to the user all
the time. It is used to provide the user a option to select the appropriate
choice exist within the application.

3. The Menubutton is used to implement various types of menus in the
python application. A Menu is associated with the menubutton that can
display the choices of the menubutton when clicked by the user.

4. The syntax to use the python tkinter menubutton is given below
W=Menubutton(Top,options)

5. code snippet
from tkinter import *

top = Tk()

top.geometry("200x250")

menubutton = Menubutton(top, text = "Language", relief = FLAT)

menubutton.grid()

menubutton.menu = Menu(menubutton)

menubutton["menu"]=menubutton.menu

menubutton.menu.add_checkbutton(label = "Hindi", variable=IntVar())

menubutton.menu.add_checkbutton(label = "English", variable = IntVar())

menubutton.pack()

top.mainloop()

output

Fig 10 Output -Menubutton

188

13.3.10 Spinbox:

1 It is an entry widget used to select from options of values.

2. The Spinbox widget is an alternative to the Entry widget. It provides
the range of values to the user, out of which, the user can select the
one.

3. It is used in the case where a user is given some fixed number of
values to choose from.

4. We can use various options with the Spinbox to decorate the widget.
The syntax to use the Spinbox is given below

5. Syntax

W=spinbox(top, options)

6. Code snippet

from tkinter import *

top = Tk()

top.geometry("200x200")

spin = Spinbox(top, from_= 0, to = 25)

spin.pack()

top.mainloop()

Fig 11 Menubutton

189

13.3.11 PanedWindow:

1 It is like a container widget that contains horizontal or vertical panes.

2 The PanedWindow widget acts like a Container widget which contains
one or more child widgets (panes) arranged horizontally or vertically.
The child panes can be resized by the user, by moving the separator
lines known as sashes by using the mouse.

3 Each pane contains only one widget. The PanedWindow is used to
implement the different layouts in the python applications.

4 The syntax to use the PanedWindow is given below

W=PanedWindow(master,options)

5 Code Snippet

from tkinter import *

def add():

a = int(e1.get())

b = int(e2.get())

leftdata = str(a+b)
left.insert(1,leftdata)

w1 = PanedWindow()
w1.pack(fill = BOTH, expand = 1)

left = Entry(w1, bd = 5)
w1.add(left)

w2 = PanedWindow(w1, orient = VERTICAL)
w1.add(w2)
e1 = Entry(w2)
e2 = Entry(w2)
w2.add(e1)
w2.add(e2)
bottom = Button(w2, text = "Add", command = add)
w2.add(bottom)
mainloop()

Output:

Fig 12 PanedWindow

190

13.3.13. TkMessagebox:

1. This module is used to display the message-box in the desktop based
applications

2. The messagebox module is used to display the message boxes in the
python applications. There are the various functions which are used to
display the relevant messages depending upon the application
requirements.

3. The syntax to use the messagebox is given below.

Messagebox.function_name(title,message,[,options])

4. Parameter explanation

4.1 function_name-It represents an appropriate message box functions

4.2 title-It is a string which is shown as a title of a messagebox

4.3 message-It is the string to be displayed as a message on the
massagebox

4.4 Options- There are various options which can be used to
configure the message dialog box.

5. Code Snippet
from tkinter import *

from tkinter import messagebox

top = Tk()

top.geometry("100x100")

messagebox.askquestion("Confirm","Are you sure?")

top.mainloop()

Output:

Fig 12 Output-Tkmessagebox

191

13.4 SUMMARY

1 In this chapter we discussed about various widgets used in python for
handling GUI in python programming.

2 This chapter also revising the concept of each widget with its syntax,
options, methods, code and output

3 In this chapter, one section is briefed about installation of pycharm
required to handle the python tkinter for GUI purpose

13.6 QUESTIONS

Q1 Design a calculator using widget of python

Q2 Design a pendulum clock

Q3 Design a PingPong game in tkinter

Q4 List down the various options of button widget

Q5 Compare and contrast between the listbox and combobox

13.5 REFERENCES

1. Python GUI programming Cookbook-Burkahard A Meier, Packt
Publication, 2nd Edition

Useful Links

1. https://www.javatpoint.com/python-tkinter

192

14

LAYOUT MANAGEMENT & LOOK
& FEEL CUSTOMIZATION

Unit structure
14.1 Objectives

14.2 Introduction

14.3 Layout Management-Designing GUI Application with proper layout
Management features

14.4 Look & Feel customization- Enhancing look & feel of GUI using
different appearances of widgets.

14.5 Summary

14.6 Questions

14.7 References

14.1 OBJECTIVES

At the end of this unit, the student will be able to

 Demonstrate the appearance of Label widget

 Illustrate how widgets dynamically expand the GUI

 Use the grid layout manager

 Describe about the message box, progress bar, canvas widget etc.

14.2 INTRODUCTION

1. In this chapter we will explore how to manage widgets within widgets
to create our python GUI.

2. Learning the fundamentals of GUI layout design will enable us to
create great-looking GUI’s

3. There are certain techniques that will help us in achieving this layout
design better.

4. The grid layout manager is one of the most important layout tools built
in to tkinter that will be used in this chapter.

5. In this chapter we also going to learn how to customize some of the
widgets in our GUI by changing some of their properties.

193

14.3 LAYOUT MANAGEMENT-DESIGNING GUI
APPLICATION WITH PROPER LAYOUT
MANAGEMENT FEATURES

1 Arranging several labels within a label frame widget

1.1 The LabelFrame widget allows us to design our GUI in an organized
fashion. We are still using the grid layout manager as our main layout
design tool, but by using LabelFrame widgets, will get much more
control over our GUI design.

1.2 Pseudocode for LabelFrame is

If we run the above pseudo code the output will simulated as

Fig 1 Output -Label Frame

1.3 We can easily align the labels vertically by changing our code, as
shown below in pseudocode

194

Fig 2 Output of GUI Label Frame

2. Using padding to add space around widgets:

1.4 The procedural way of adding space around widgets is shown here
and then use of loop is done to achieve the same thing in a much
better way.

1.5 buttons_frame.grid(column=0,row=7,padx=20,pady=40), with this
statement labelFrame gets some breathing space.

Fig 3 LabelFrame output

1.6 In tkinter, adding space horizontally and vertically is done by using
built-in properties named padx and pady. These can be used to add
space around many widgets, improving horizontal and vertical
alignments, respectively. We hardcoded 20 pixels of space to the left
and right of LabelFrame, and we added 40 pixels to the top and
bottom of the frame. Now our LabelFrame stands out better than it
did before.

1.7 We can use a loop to add space around the labels contained within
LabelFrame

195

Pseudocode for adding space around the labels

Fig 4 Label Frame widget with Space

1.8 The grid_configure() function enables us to modify the UI elements
before the main loop displays them. So, instead of hardcoding values
when we first create a widget, we can work on our layout and then
arrange spacing towards the end of our file, just before the GUI is
created.

1.9 The winfo_children() function returns a list of all the children
belonging to the buttons_frame variable. This enables us to loop
through them and assign the padding to each label.

3. How widgets dynamically expand the GUI:

1.10 Java introduced the concept of dynamic GUI layout management. In
comparison, visual development IDEs, such as VS.NET, layout the
GUI in a visual manner and basically hardcode the x and y
coordinates of the UI elements.

1.11 Using tkinter, this dynamic capability creates both an advantage and a
little bit of a challenge because sometimes our GUI dynamically
expands when we would rather it not be so dynamic.

1.12 We are using the grid layout manager widget and it lays out our
widgets in a zero based grid. This is very similar to an excel
spreadsheet on a data base table.

1.13 The following is an example of a grid layout manager with two rows
and three columns

196

Row0,Col0 Row 0, Col 1 Row 0, Col2
Row 1, Col 0 Row 1, Col 1 Row 1, Col2

1.14 Using the grid layout manager, what happens is that the width of any
given column is determined by the longest name or widget in that
column. This affects all the rows.

1.15 By adding our LabelFrame widget and giving it a title that is longer
than some hardcoded size widget, such as the top-left label and the
text entry below it, we dynamically move those widgets to the center
of column 0, adding space on the left- and right-hand side of those
widgets.

1.16 The following code can be added to Label frame code shown above
and then placed labels in to his frame

4. Aligning the GUI widgets by embedding frames within frames:

1.17 The dynamic behavior of Python and its GUI modules can create a
little bit of a challenge to really get our GUI looking the way we
want. Here, we will embed frames within frames to get more control
of our layout. This will establish a stronger hierarchy among the
different UI elements, making the visual appearance easier to achieve.

1.18 Here, we will create a top-level frame that will contain other frames
and widgets. This will help us get our GUI layout just the way we
want.

1.19 In order to do so, we will have to embed our current controls within a
central frame called ttk.LabelFrame. This frame ttk.LabelFrame is the
child of the main parent window and all controls will be the children
of this ttk.LabelFrame.

1.20 We will only assign LabelFrame to our main window and after that,
we will make this LabelFrame the parent container for all the widgets.

Fig 5 Hierarchy Layout in GUI

197

In the diagram shown above, win is the variable that holds a
reference to our main GUI tkinter window frame, mighty is the variable
that holds a reference to our LabelFrame and is a child of the main
window frame (win), and Label and all other widgets are now placed into
the LabelFrame container (mighty).

Next, we will modify the following controls to use mighty as the parent,
replacing win. Here is an example of how to do this

Fig 6 Output of above code

5. Creating Menu bars:

1 We will add a menu bar to our main window, add menus to the menu
bar, and then add menu items to the menus.

2 We are creating a Menuitem for functionalities like File, Exit and
Help.

198

3 We have to import the Menu class from tkinter. Add the following line
of code to the top of the python module, where the import statement
live as shown below in pseudocode

Next, we will create the menu bar, Add the following code towards the
bottom of the module, just above where we create the main event loop

In order to make above code in workable condition, we also have to add
the menu bar and give it a label.

Fig 7 Menu item with File option

Next, we will add a second menu item to the first menu that we
added to the menu bar

199

Fig 8 Menu item with Exit option

Next, we will add a help functionalities to our existing menu

200

Fig 9 Menu item with Help option

Next, we will add menu bar exit functionalities

6. Creating tabbed widgets:

1.21 We will create tabbed widgets to further organize our expanding
GUI written in tkinter

1.22 Pseudocode for Same

201

Fig 10 Tabbed GUI

7. Using the grid layout manager

1.23 The grid layout manager is one of the most useful layout tools.

1.24 Pseudocode to add grid layout in any python GUI code

Tkinter automatically adds the missing row where we did not specify any
particular row.

14.4 Look & Feel customization- Enhancing look & feel of
GUI using different appearances of widgets

1. Creating message boxes-information warning and error

1.1 A message box is a pop-up window that gives feedback to the user. It
can be informational, hinting at potential problems as well as
catastrophic errors.

1.2 Using python to create message boxes is very easy.

1.3 Add the following line of code to the top of the module where the
import statement live

Next, create a callback function that will display a message box.
We have to locate the code of the call back above the code where we
attach the callback to the menu item, because this is still procedural and
not OOP code.

202

Add the following code just above the lines where we create the
help menu

Fig 11 A Help Message box

Next, transform the above code in to a warning message box pop-up
window, instead.

Fig 12 A warning Message

Next we will add error message code to show error message box

203

Fig 13 A error message box

2. How to create independent message boxes:

1.4 We will create out tkinter message boxes as stand-alone top-level GUI
windows.

1.5 So, why would we wish to create an independent message box? One
reason is that we might customize our message boxes and reuse them
in several of our GUIs. Instead of having to copy and paste the same
code in to every python GUI we design.

Fig 14 Undesired Output of Message box

1.6 We still need a title and we definitely want to get rid of this
unnecessary second window. The second window is caused by a
windows event loop. We can get rid of it by suppressing it.

204

Fig 15 Independent Message window got by adding withdraw()
in code

2. How to create the title of a tkinter window form:

1.6 The principle of changing the title of a tkinter main root window is the
same as what discussed in topic presented above.

1.7 Here we create the main root window and give it a title

Fig 16 GUI title

3. Changing the icon of the main root window:

1.8 We will use an icon that ships with python but you can use any icon
you find useful.

1.9 Place the following code somewher above the main event loop

Fig 17 Icon added to the main root window

205

4. Using a Spin box control:

1.10 We will use a spinbox widget and we will also bind the Enter key on
the keyboard to one of our widget.

1.11 We will use tabbed GUI code and will add further a spinbox widget
above the scrolledtext control. This simply requires us to increment
the ScrolledText row value by one and to insert our new spinbox
control in the row above the entry widget.

1.12 First, we add the Spinbox control. Place the following code above
the ScrolledText widget

Fig 18 SpinBox Control

Next, we will reduce the sixe of the spinbox widget, by adding following
code snippet

spin=spinbox(mighty, from=0,to=10,width=5)

Fig 19 Spin box control with reduce size

206

Next, we add another property to customize our widget further, bd is
short-hand notation for the borderwidth property

spin=Spinbox(mighty, from=0, to=0,width-5, bd=8)

Fig 20 Spin box with border

Here, we add functionality to the widget by creating a callback and linking
it to the control

Fig 21 spinbox with small borderwidth

Instead of using a range, we can also specify a set of values

207

Fig 22 Spinbox with small border width

5. Relief, Sunken and raised appearance of widgets

1.10 We can control the appearance of our spinbox widgets by using a
property that makes them appear in different sunken or raised
formats.

1.11 We will add one more spinbox control to demonstrate the available
appearance of widgets using the relief property of the spinbox
control

Fig 23 Two Sunken Spinbox

208

3.8 Here are the available relief property options that can be set

tk.SUNKEN tk.RAISED tk.FLAT tk.GROOVE tk.RIDGE

By assigning the different available options to the relief property,
we can create different appearances for this widget. Assigning the
tk.RIDGE relief and reducing the border width to the same value as our
first spinbox widget results in the following GUI

Fig 24 spinbox with two ridge

8. Creating tooltips using python:

1.12 We will be adding more useful functionality to our GUI.
Surprisingly, adding a tooltip to our controls should be simple, but
it is not as simple as we would wish it to be .

1.13 In order to achieve this desired functionality, we will place our
tooltip code in to its own OOP class

209

In an object oriented programming (OOP) approach, we create a
new class in our python module. Python allows us to place more than one
class in to same pyhton module and it also enables us to mix-and-match
classes and regular functions in the same module.

In our tooltip code, we declare a Python class and explicitly make
it inherit from object, which is the foundation of all Python classes. We
can also leave it out, as we did in the AClass code example, because it is
the default for all Python classes.

After all the necessary tooltip creation code that occirs within the
Tooltip class, we switch over to non-OOP python programming by
creating a function just below it

We can add a tooltip for our Spinbox widget, as follows
#Add a Tooltip

Create_ToolTip(spin, ‘This is a spin control’)

We could do the same for all of our other GUI widgets in the very
same manner. We just have to pass in a reference to the widget we wish to
have a tooltip, displaying some extra information. For our ScrolledText
widget, we made the scrol variable point to it, so this is what we pass into
the constructor of our tooltip creation function:

210

Fig 25 ToolTip Output

9. Adding a Progressbar to the GUI

7.1 Progressbar is typically used to show the current status of a long-
running process.

7.2 Add four buttons in to Label frame and set the label frame text
property to progressbar.

7.3 We connect each of our four new buttons to a new callback function,
which we assign to their command property

211

Fig 26 Progress Bar

10. How to use the Canvas Widget:

1.11.1 First, we will create a third tab in our GUI in order to isolate our
new code

1.12 Here is the code to create the new third tab

Next, we use another built-in widget of tkinter:canvas. A lot of
people like this widget as it has powerful capabilities

212

Fig 27 Canvas output

14.5 SUMMARY

 In this chapter we discuss how to add messagebox, tooltip, progress
bar, grid layout and other layout management and customized GUI
features.

 Codes for every widget is covered with output.

14.6 QUESTIONS

Q1 Design a calculator with proper grid layout

Q2 Change the title of main screen. Write a small code for that

Q3 Discuss how to change the border width of the spin box

Q4 Difference between spinbox and combo box

Q5 Create a Menu driven program for addition, substraction,
multiplication and division using Menu bar

14.7 REFERENCES

1. Python GUI programming Cookbook -Burkahard A Meier, Packt
Publication, 2nd Edition.

213

15

STORING DATA IN OUR MYSQL
DATABASE VIA OUR GUI

Unit Structure
15.0 Objectives

15.1 Introduction

15.2 Connecting to a MySQL database from Python

15.3 Configuring the MySQL connection, Designing the Python GUI
database

15.4 Using the INSERT command

15.5 Using the UPDATE command

15.6 Using the DELETE command

15.7 Storing and retrieving data from MySQL database.

15.8 Summary

15.9 Questions

15.10 References

15.0 OBJECTIVES

At the end of this unit, the learner will be able to

● Demonstrate the steps for connecting python code to MySQL.

● Implement the Insert command

● Implement the Update command

● Implement the Delete command

15.1 INTRODUCTION

1. Before we can connect to a MySQL server, we have to have access to
a MySQL server. The first thing in this chapter will show you how to
install the free MySQL Server Community Edition.

2. After successfully connecting to a running instance of our MySQL
server, we will design and create a database that will accept a book
title, which could be our own journal or a quote we found somewhere
on the Internet. We will require a page number for the book, which
could be blank, and then we will insert the quote we like from a
book, journal, website or friend into our MySQL database using our
GUI built in Python

3. We will insert, modify, delete and display our favorite quotes using
our Python GUI to issue these SQL commands and to display the data.

214

4. CRUD is a database term you might come across that abbreviates the
four basic SQL commands and stands for Create , Read, Update, and
Delete.

15.2 CONNECTING TO A MYSQL DATABASE FROM
PYTHON

1. Before we can connect to a MySQL database, we have to connect to
the MySQL server.

2. In order to do this, we need to know the IP address of the MySQL
server as well as the port it is listening on.

3. We also have to be a registered user with a password in order to get
authenticated by the MySQL server.

4. You will need to have access to a running MySQL server instance and
you also need to have administrator privileges in order to create
databases and tables.

5. There is a free MySQL Community Edition available from the official
MySQL website. You can download and install it on your local PC
from h:ttp://dev.mysql.com/downloads/.

6. In order to connect to MySQL, we first need to install a special Python
connector driver. This driver will enable us to talk to the MySQL
server from Python.

7. The driver is freely available on the MySQL website and comes with a
very nice online tutorial. You can install it from:

8. http://dev.mysql.com/doc/connector-python/en/index.html

9. There is currently a little bit of a surprise at the end of the installation
process. When we start the .msi installer we briefly see a MessageBox
showing the progress of the installation, but then it disappears. We get
no confirmation that the installation actually succeeded.

10. One way to verify that we installed the correct driver, that lets Python
talk to MySQL, is by looking into the Python site-packages directory.

11. If your site-packages directory looks similar to the following
screenshot and you see some new files that
havemysql_connector_python in their name, well, then we did indeed
install something…

12. The official MySQL website mentioned above comes with a tutorial, at the
following URL:http://dev.mysql.com/doc/connector-python/en/connector-
python- tutorials.html

13. import mysql.connector as mysql

conn = mysql.connect(user=<adminUser>, password=<adminPwd>, host='127.0.0.1')

print(conn)

conn.close()

215

If running the preceding code results in the following output printed to
the console, then we are good.

14. If you are not able to connect to the MySQL server, then something
probably went wrong during the installation. If this is the case, try
uninstalling MySQL, reboot your PC, and then run the MySQL
installation again. Double-check that you downloaded the MySQL
installer to match your version of Python. If you have more than one
version of Python installed, that sometimes leads to confusion as the
one you installed last gets prepended to the Windows path
environmental variable and some installers just use the first Python
version they can find in this location.

15. In order to connect our GUI to a MySQL server, we need to be able to
connect to the server with administrative privileges if we want to
create our own database.

16. If the database already exists, then we just need the authorization
rights to connect, insert, update, and delete data.

Fig. 1 Place of MySQL in drive folder

Fig. 2 After Installation of MysQL

216

15.3 CONFIGURING THE MYSQL CONNECTION,
DESIGNING THE PYTHON GUI DATABASE

1. We used the shortest way to connect to a MySQL server by hard-
coding the credentials required for authentication into the connection
method. While this is a fast approach for early development, we
definitely do not want to expose our MySQL server credentials to
anybody unless we grant permission to databases, tables, views, and
related database commands to specific users.

2. A much safer way to get authenticated by a MySQL server is by
storing the credentials in a configuration file, which is what we will do
in this recipe.

3. We will use our configuration file to connect to the MySQL server and
then create our own database on the MySQL server.

4. First, we create a dictionary in the same module of thMe ySQL.py
code.

a. # create dictionary to

hold connection info

dbConfig = {

b. 'user': <adminName>, # use your admin

name 'password': <adminPwd>, # use

your admin password 'host': '127.0.0.1',

IP address of

localhost

c. }

5. Next, in the connection method, we unpack the dictionary values.
Instead of writing,

a. mysql.connect('user': <adminName>, 'password':

<adminPwd>, 'host': '127.0.0.1')

6. we use(**dbConfig) , which does the same as above but is much
shorter.

a. import

mysql.connector

as mysql #

unpack

dictionary

credentials

conn

= mysql.connect(*

217

*dbConfig)

print(conn)

7. This results in the same successful connection to the MySQL server,
but the difference is that the connection method no longer exposes any
mission-critical information.

8. Now, placing the same username, password, database, and so on into a
dictionary in the same Python module does not eliminate the risk of
having the credentials seen by any one per using the code.

9. In order to increase database security, we first move the dictionary into
its own Python module. Let's call the new Python modulG
euiDBConfig.py .

10. We then import this module and unpack the credentials, as we did
before.

11. import GuiDBConfig

as guiConf # unpack

dictionary credentials

conn =

mysql.connect(**guiConf.dbConfig)

print(conn)

12. Now that we know how to connect to MySQL and have administrator
privileges, we can create our own database by issuing the following
commands:

13. GUIDB = 'GuiDB'

unpack dictionary credentials

conn =

mysql.connect(**guiConf.dbCon

fig) cursor = conn.cursor()

try:

cursor.execute("CREATE DATABASE {} DEFAULT CHARACTER
SET 'utf8'".

format(GUIDB))

except mysql.Error as err:

print("Failed to create DB: {}".format(err))

conn.close()

14. In order to execute commands to MySQL, we create a cursor object
from the connection object.

A cursor is usually a place in a specific row in a database table, which

218

we move up or down the table, but here we use it to create the database
itself.

15. We wrap the Python code into tary…except block and use the built-in
error codes of MySQL to tell us if anything went wrong.

16. We can verify that this block works by executing the database-creating
code twice. The first time, it will create a new database in MySQL,
and the second time it will print out an error message stating that this
database already exists.

17. We can verify which databases exist by executing the following
MySQL command using the very same cursor object syntax.

18. Instead of issuing the CREATE DATABASE command, we create a
cursor and use it to execute the SHOW DATABASE command, the
result of which we fetch and print to the console output.

19..import mysql.connector

as mysql import

GuiDBConfig as

guiConf

unpack dictionary credentials

conn = mysql.connect(**guiConf.dbConfig)

cursor = conn.cursor()

cursor.execute("SHOW
DATABASES")

print(cursor.fetchall())

conn.close()

20. Running this code shows us which databases currently exist in our
MySQL server instance. As we can see from the output, MySQL ships
with several built-in databases, such as information_schema , and so
on. We have successfully created our owuidb database, which is
shown in the output. All other databases illustrated come shipped with
MySQL.

15.4 USING THE INSERT COMMAND

1. Creating New databases
1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google")

4. #creating the cursor object

219

5. cur = myconn.cursor()

6. try:

7. dbs = cur.execute("show databases")

8. except:

9. myconn.rollback()

10. for x in cur:

11. print(x)

12. myconn.close()

Output

Fig 3 Already Existing Output

1. 2. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #creating a new database

8. cur.execute("create database PythonDB2")

9. #getting the list of all the databases which will now include the new
database PythonDB

10. dbs = cur.execute("show databases")

11. except:

12. myconn.rollback()

220

13. for x in cur:

14. print(x)

15. myconn.close()

output:

Fig 4 Created new database

3 Creating the table:

1. We will create the new table Employee. We have to mention the
database name while establishing the connection object.

2. We can create the new table by using the CREATE TABLE
statement of SQL. In our database PythonDB, the table Employee will
have the four columns, i.e., name, id, salary, and department_id initially.

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #Creating a table with name Employee having four columns i.e., na
me, id, salary, and department id

8. dbs = cur.execute("create table Employee(name varchar(20) not null, i
d int(20) not null primary key, salary float not null, Dept_id int not nul
l)")

221

9. except:

10. myconn.rollback()

11. myconn.close()

Fig 5 Output of create Table

3. Insert Operation:

1. The INSERT INTO statement is used to add a record to the table. In
python, we can mention the format specifier (%s) in place of values.

2. We provide the actual values in the form of tuple in the execute()
method of the cursor

3. Consider the Following example

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. sql = "insert into Employee(name, id, salary, dept_id, branch_name) v
alues (%s, %s, %s, %s, %s)"

7. #The row values are provided in the form of tuple

221

9. except:

10. myconn.rollback()

11. myconn.close()

Fig 5 Output of create Table

3. Insert Operation:

1. The INSERT INTO statement is used to add a record to the table. In
python, we can mention the format specifier (%s) in place of values.

2. We provide the actual values in the form of tuple in the execute()
method of the cursor

3. Consider the Following example

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. sql = "insert into Employee(name, id, salary, dept_id, branch_name) v
alues (%s, %s, %s, %s, %s)"

7. #The row values are provided in the form of tuple

221

9. except:

10. myconn.rollback()

11. myconn.close()

Fig 5 Output of create Table

3. Insert Operation:

1. The INSERT INTO statement is used to add a record to the table. In
python, we can mention the format specifier (%s) in place of values.

2. We provide the actual values in the form of tuple in the execute()
method of the cursor

3. Consider the Following example

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. sql = "insert into Employee(name, id, salary, dept_id, branch_name) v
alues (%s, %s, %s, %s, %s)"

7. #The row values are provided in the form of tuple

222

8. val = ("John", 110, 25000.00, 201, "Newyork")

9. try:

10. #inserting the values into the table

11. cur.execute(sql,val)

12. #commit the transaction

13. myconn.commit()

14. except:

15. myconn.rollback()

16. print(cur.rowcount,"record inserted!")

17. myconn.close()

Fig 6 Insert Operation Output

3.1 Insert Multiple rows

1. We can also insert multiple rows at once using the python script. The
multiple rows are mentioned as the list of various tuples.

2. Each element of the list is treated as one particular row, whereas each
element of the tuple is treated as one particular column value
(attribute).

 import mysql.connector

222

8. val = ("John", 110, 25000.00, 201, "Newyork")

9. try:

10. #inserting the values into the table

11. cur.execute(sql,val)

12. #commit the transaction

13. myconn.commit()

14. except:

15. myconn.rollback()

16. print(cur.rowcount,"record inserted!")

17. myconn.close()

Fig 6 Insert Operation Output

3.1 Insert Multiple rows

1. We can also insert multiple rows at once using the python script. The
multiple rows are mentioned as the list of various tuples.

2. Each element of the list is treated as one particular row, whereas each
element of the tuple is treated as one particular column value
(attribute).

 import mysql.connector

222

8. val = ("John", 110, 25000.00, 201, "Newyork")

9. try:

10. #inserting the values into the table

11. cur.execute(sql,val)

12. #commit the transaction

13. myconn.commit()

14. except:

15. myconn.rollback()

16. print(cur.rowcount,"record inserted!")

17. myconn.close()

Fig 6 Insert Operation Output

3.1 Insert Multiple rows

1. We can also insert multiple rows at once using the python script. The
multiple rows are mentioned as the list of various tuples.

2. Each element of the list is treated as one particular row, whereas each
element of the tuple is treated as one particular column value
(attribute).

 import mysql.connector

223

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",pass
wd = "google",database = "PythonDB")

#creating the cursor object
cur = myconn.cursor()

sql = "insert into Employee(name, id, salary, dept_id, branch_name) value
s (%s, %s, %s, %s, %s)"
val = [("John", 102, 25000.00, 201, "Newyork"),("David",103,25000.00,2
02,"Port of spain"),("Nick",104,90000.00,201,"Newyork")]

try:
#inserting the values into the table
cur.executemany(sql,val)

#commit the transaction
myconn.commit()
print(cur.rowcount,"records inserted!")

except:
myconn.rollback()
myconn.close()

Fig 7 Multiple Insertion Output

223

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",pass
wd = "google",database = "PythonDB")

#creating the cursor object
cur = myconn.cursor()

sql = "insert into Employee(name, id, salary, dept_id, branch_name) value
s (%s, %s, %s, %s, %s)"
val = [("John", 102, 25000.00, 201, "Newyork"),("David",103,25000.00,2
02,"Port of spain"),("Nick",104,90000.00,201,"Newyork")]

try:
#inserting the values into the table
cur.executemany(sql,val)

#commit the transaction
myconn.commit()
print(cur.rowcount,"records inserted!")

except:
myconn.rollback()
myconn.close()

Fig 7 Multiple Insertion Output

223

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",pass
wd = "google",database = "PythonDB")

#creating the cursor object
cur = myconn.cursor()

sql = "insert into Employee(name, id, salary, dept_id, branch_name) value
s (%s, %s, %s, %s, %s)"
val = [("John", 102, 25000.00, 201, "Newyork"),("David",103,25000.00,2
02,"Port of spain"),("Nick",104,90000.00,201,"Newyork")]

try:
#inserting the values into the table
cur.executemany(sql,val)

#commit the transaction
myconn.commit()
print(cur.rowcount,"records inserted!")

except:
myconn.rollback()
myconn.close()

Fig 7 Multiple Insertion Output

224

15.5 USING THE UPDATE COMMAND

The UPDATE-SET statement is used to update any column inside the
table. The following SQL query is used to update a column.

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #updating the name of the employee whose id is 110

8. cur.execute("update Employee set name = 'alex' where id = 110")

9. myconn.commit()

10. except:

11. myconn.rollback()

12. myconn.close()

Fig 8 Update command output

224

15.5 USING THE UPDATE COMMAND

The UPDATE-SET statement is used to update any column inside the
table. The following SQL query is used to update a column.

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #updating the name of the employee whose id is 110

8. cur.execute("update Employee set name = 'alex' where id = 110")

9. myconn.commit()

10. except:

11. myconn.rollback()

12. myconn.close()

Fig 8 Update command output

224

15.5 USING THE UPDATE COMMAND

The UPDATE-SET statement is used to update any column inside the
table. The following SQL query is used to update a column.

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #updating the name of the employee whose id is 110

8. cur.execute("update Employee set name = 'alex' where id = 110")

9. myconn.commit()

10. except:

11. myconn.rollback()

12. myconn.close()

Fig 8 Update command output

225

15.6 USING THE DELETE COMMAND

The DELETE FROM statement is used to delete a specific record
from the table. Here, we must impose a condition using WHERE clause
otherwise all the records from the table will be removed.

The following SQL query is used to delete the employee detail whose id is
110 from the table.

import mysql.connector

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",pass
wd = "google",database = "PythonDB")

#creating the cursor object
cur = myconn.cursor()
try:

#Deleting the employee details whose id is 110
cur.execute("delete from Employee where id = 110")
myconn.commit()

except:

myconn.rollback()
myconn.close()

15.7 STORING AND RETRIEVING DATA FROM
MYSQL DATABASE.

1. The SELECT statement is used to read the values from the databases.
We can restrict the output of a select query by using various clause in
SQL like where, limit, etc.

2. Python provides the fetchall() method returns the data stored inside the
table in the form of rows. We can iterate the result to get the individual
rows.

import mysql.connector

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",pass
wd = "google",database = "PythonDB")

#creating the cursor object
cur = myconn.cursor()

try:
#Reading the Employee data
cur.execute("select * from Employee")

226

#fetching the rows from the cursor object
result = cur.fetchall()
#printing the result

for x in result:
print(x);

except:
myconn.rollback()

myconn.close()

2 Reading specific column

1 We can read the specific columns by mentioning their names instead
of using star (*)

1. import mysql.connector

2. #Create the connection object

3. myconn = mysql.connector.connect(host = "localhost", user = "root",p
asswd = "google",database = "PythonDB")

4. #creating the cursor object

5. cur = myconn.cursor()

6. try:

7. #Reading the Employee data

8. cur.execute("select name, id, salary from Employee")

9. #fetching the rows from the cursor object

10. result = cur.fetchall()

11. #printing the result

12. for x in result:

13. print(x);

14. except:

15. myconn.rollback()

16. myconn.close()

Fig 9 Select operation Output

227

15.8 SUMMARY

● In this chapter, CRUD (Create,Read, Update, Delete) operation is
disccused along with example.

● Also chapter discusses the installation steps and configuring steps of
MYSQL in python

15.9 QUESTIONS

1. Create a Library data base, perform CRUD Operations?

2. Discuss the steps of installation of Mysql in python

3. Why there is need to configure the Python Mysql Data base?

15.10 REFERENCES

1.Python GUI programming Cookbook -Burkahard A Meier, Packt
Publication, 2nd Edition.
