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Objectives  

1. Enhance and improve the information of the picture for better interpretation and 

understanding  

2. Processing for efficient data storage, transmission over network and extraction of right 

information from the picture. 

1.1 Origin  

The first industry to use digital images was the newspaper industry. The pictures were 

sent by submarine cable between London and New York. 

1.2 Digital Image Processing  

 

The human eye-brain mechanism produces the best imaging system. An image is an 

object or visual which one sees. It is a 2-dimensional function of a 3-dimensional world 

that surrounds us. Basically, images are 2-D light intensity function f(x, y) where x and y 

are spatial or plane co-ordinates and the amplitude at any co-ordinates pair (x, y) is 

defined as the intensity or gray level of the image at that point.  

If x, y and the intensity values are all finite and discrete, then the image is known as a 

digital image. 

The digital image is composed of a finite number of elements which has a particular 

location and value. These elements are called picture elements or pixels or pels. 

 

Digital Image Processing is modification and enhancement of images by applying various 

filtering and enhancement techniques for perceiving better visual information and 

perform various analysis on the images. 
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Image processing accepts images as inputs and generates a modified image as output for 

human perception or the modified image may provide useful information. 

 

1.3 Applications and Examples of Digital Image Processing  

 

To develop a basic understanding of the breadth and length of the applications, the image 

processing applications are categorized according to their sources. 

 

The principal source of energy for images is the electromagnetic energy spectrum. It also 

includes acoustic, ultrasonic, electronic etc.  

Synthetic images used for modelling and visualization are generated in computer. 

The most common applications of digital image processing are  

1. Gamma-ray Imaging  

Imaging based on gamma rays are mostly for nuclear medicine, astronomical 

observations. In this type of imaging, images are produced from the emissions 

collected from gamma-ray detectors. 

2. X-ray Imaging 

X-ray imaging is used mainly for medical diagnostics and industrial imaging. It is 

also used for astronomical applications. 

3. Ultraviolet Imaging  

It is used for lithography, industrial inspection, microscopy, lasers, biological imaging 

and astronomical observations. 

4. Wide applications include  

a. Remote Sensing  

b. Light microscopy 

c. Astronomy 

d. Weather observation and prediction 

e. Visual inspection of manufactured goods 

f. Traffic monitoring and surveillance 

g. License plate character recognition  

h. Currency recognition  

i. Finger-print and face recognition  

j. Radar imaging to explore inaccessible regions of the Earth’s surface. 

k. Mineral and oil exploration 

l. Ultrasound imaging of foetus 

                        The list of applications is limited only for writing here, the applications of digital 

image 

                         processing is wide and the scope is large.  

                         

1.4 Fundamental Steps in Digital Image Processing  
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Fig:1.1 Image Courtesy://Digital Image Processing-Gonzalez; adapted from 

http://bharathuniv.ac.in 

 

1. Image acquisition  

 

The image is captured by a sensor like camera or any analog device and digitized if 

the output of the camera or sensor is not already in digital form, using analogue-to-

digital converter. It involves pre-processing of images. 

2. Image Enhancement  

The process of manipulating an image so that the result is more suitable than the 

original for specific applications. The idea behind enhancement techniques is to bring 

out details that are hidden, or simple to highlight certain features of interest in an image 

3. Image Restoration 

Deals with improving the appearance of an image. 

 Based on mathematical or probabilistic models of image degradation. 

4. Colour Image Processing  

Use the colour of the image to extract features of interest in an image. 

Understand the basics concepts of color models and color processing in digital 

domain. 

5. Wavelets 

Wavelets are the foundation of representing images in various degrees of resolution. 

It is used for image data compression and for representation of images in smaller 

regions. 

6. Compression 

Deals with various techniques used for reducing the storage required to save an image 

in digital form or the bandwidth required to transmit the images. 

7. Morphological Processing  

Deals with tools for extracting image components that are useful in the representation 

and description of shape. In this step, there would be a transition from processes that 

output images, to processes that output image attributes. 

8. Segmentation 

http://bharathuniv.ac.in/
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Segmentation partitions an image into its constituent parts or objects. Autonomous 

segmentation is the most difficult tasks in digital image processing.  

The more accurate the segmentation, the better automated object classification. 

9. Feature extraction 

It consists of feature detection and feature description. Feature detection refers to 

finding a feature in an image, region or boundary. Feature description assigns 

quantitative attributes to the detected features. 

10. Image pattern classification  

The process that assigns a label to an object based on its feature descriptors. There are 

various classification algorithms like correlation, Bayes classifiers to identify and 

predict the class label for the object. 

 

                     

 

 

 

 

 

1.5 Components of an Image Processing Systems 
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                 Fig 1.2: Components of a general-purpose image processing systems (Image courtesy:// 

Digital Image Processing -Fourth Edition) 

 

1. Image Sensors 

Two subsystems are required to acquire digital images. 

The first is the physical device that is sensitive to the energy radiated by the object we 

wish to image (Sensor). The second, called a digitizer, is a device for converting the 

output of the physical sensing device into digital form. The digitizer converts the 

electrical outputs to digital data. 

2. Specialized Image Processing Hardware  

It usually consists of the digitizer, and the hardware that performs other primitive 

operations, such as an arithmetic logic unit (ALU), which performs arithmetic and 

logical operations in parallel on entire images. This type of hardware is called as 

frontend subsystem, and its most distinguishing characteristic is speed. In other words, 

this unit performs functions that require fast data throughputs that the typical main 

computer cannot handle. 

3. Computer  

The computer in an image processing system is a general-purpose computer and can 

range from a PC to a supercomputer. 

4. Image Processing Software  

The software performs tasks with the help of specialized modules. There are many 

softwares available commercially. 

5. Mass Storage 

Digital storage for image processing applications basically is divided into three 

principal categories. 

a) Short-term storage for use during processing  

b) On-line storage for fast recall 

c) Archival storage which is characterized by infrequent access. 

Storage is measured in bytes (Kbytes, Mbytes, Gbytes and Tbytes)  

6. Image Displays 

Monitors are driven by the outputs of the image and graphics display cards that are an 

integral part of a computer system. There are variants in monitor displays. 

7. Hardcopy devices 

Used for recording images, include laser printers, film cameras, heat-sensitive devices, 

inkjet units and digital units, such as optical and CD-ROM disks. 

8. Networking and cloud communication  

Transmission bandwidth has improved due to optical fibre and other cloud 

technologies.  

1.6 Elements of Visual Perception 

Image processing applications produce images that are to be viewed by human observers.  

The Elements of Visual Perception are 
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1) Structure of the Human eye 

2) Image formation in the eye 

3) Brightness adaptation and discrimination 

 

1) Structure of the Human eye  

 

 
Fig 1.3: Simplified diagram of the human eye. (Image Courtesy: nptel) 

 

 

The first part of the visual system is the eye. Its form is nearly spherical and its diameter 

is approximately 20 mm. Its outer cover consists of the ‘cornea' and ‘sclera' 

 

The cornea is a tough transparent tissue in the front part of the eye. The sclera is an 

opaque membrane, which is continuous with cornea and covers the remainder of the 

eye. Directly below the sclera lies the “choroids”, which has many blood vessels. At 

its anterior extreme lies the iris diaphragm. The light enters in the eye through the 

central opening of the iris, whose diameter varies from 2mm to 8mm, according to the 

illumination conditions. Behind the iris is the “lens” which consists of concentric layers 

of fibrous cells and contains up to 60 to 70% of water. Its operation is similar to that 

of the man-made optical lenses. It focuses the light on the “retina” which is the 

innermost membrane of the eye. 

Retina has two kinds of photoreceptors: cones and rods. The cones are highly sensitive 

to color. Their number is 6-7 million and they are mainly located at the central part of 

the retina. Each cone is connected to one nerve end. 

           Cone vision is the photopic or bright light vision. Rods serve to view the general 

picture of the vision field. They are sensitive to low levels of illumination and cannot 

discriminate colors. This is the scotopic or dim-light vision. Their number is 75 to 150 

million and they are distributed over the retinal surface. Several rods are connected to 

a single nerve end. This fact and their large spatial distribution explain their low 

resolution. 

         Both cones and rods transform light to electric stimulus, which is carried through 

the optical nerve to the human brain for the high-level image processing and 

perception. 
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2) Image formation in the eye 

• In the human eye, the distance between the centre of the lens and the imaging 

sensor is fixed 

•  Lens in the eye is flexible 

•  Shape controlled by muscles  

•  To focus on distance objects – Muscles flatten lens  

•  To focus on close objects – Muscles allow lens to thicken 

3) Brightness Adaptation and Discrimination  

 

      • Digital Images are displayed as a discrete set of intensity 

      • Eye’s ability to discriminate intensities at a given adaptation level is an important 

consideration when displaying images. 

• Range of brightness's that can be discriminated simultaneously is small in 

comparison to total adaptation range. 

• For a given set of conditions the current sensitivity level of the visual system 

is called the brightness adaptation level. 

                                                 

                                                  Fig 1.4: Range of subjective brightness adaptation level  

 

 

 

Weber Ratio   The ability of the eye to discriminate between changes in light intensity at      

any specific adaptation level. 

The quantity ΔIc/I, ΔIc is the increment of illumination discriminable 50% of the time 

with background illumination I which is constant, is called the Weber Ratio. 

Small weber ratio- good brightness discrimination  

Large weber ratio-poor brightness discrimination  
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Visual Perception  

Perceived brightness is not a simple function of intensity 

Mach bands- Visual system tends to undershoot or overshoot around the boundaries of 

regions with different intensities. 

Simultaneous Contrast- regions perceived interest does not depend on intensity. 

Optical illusions- Eyes fill in non-existing information or perceives geometry properties 

of objects in an incorrect manner. 

 

1.7 Image Sensing and Acquisition 

Images are generated by the combination of illumination of source and the reflection or 

absorption of energy from that source by element of the scene being imaged. 

 

There are three principal sensor arrangements that can be used to transform incident 

energy into digital images.  

Incoming energy is transformed into a voltage pulses by input electric power and sensor 

response where a digital quantity is obtained by digitizing the response. 

1.7.1 Image Acquisition using a single sensing element  

 

  
1.7.2 Image Acquisition using Line sensor 

 

 
 

 

 

 

 

1.7.3 Image Acquisition using Array sensor  
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Image Acquisition using sensor strips 

The most common sensor is the photodiode constructed of silicon materials and output 

voltage waveform proportional to light. Using a filter in front of the sensor improves its 

selectively. 

In order to generate a 2-D image using a single sensor, there have to be relative 

displacements in both the x- and y-directions between the sensor and the area to be 

imaged. An arrangement used in high precision scanning, where a film negative is 

mounted onto a drum whose mechanical rotation provides displacement in one dimension. 

The single sensor is mounted on a lead screw that provides motion in the perpendicular 

direction. Since mechanical motion can be controlled with high precision, this method is 

an inexpensive (but slow) way to obtain high-resolution images. 

1.8 Image Sampling and Quantization 

        The output of most sensors is a continuous voltage waveform whose amplitude and 

spatial behaviour are related to the physical phenomenon being sensed. To create a digital 

image, it is essential to convert the continuous sensed data into digital form. This involves 

two processes: sampling and quantization. 

1.8.1 Image Sampling  

 An image may be continuous with respect to the x and y coordinates and also 

in amplitude. To convert it into digital form we have to sample the function 

in both coordinates and in amplitudes. 

 Digitalizing the coordinate values is called sampling. 
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 Digitalizing the amplitude values is called quantization. 

There is a continuous image along the line segment AB. To sample this 

function, we take equally spaced samples along line AB. The location of each 

sample is given by a vertical tick back (mark) in the bottom part. The samples 

are shown as block squares superimposed on function the set of these discrete 

locations gives the sampled function. 

 

In order to form a digital image, the gray level values must also be converted 

(quantized) into discrete quantities. So, we divide the gray level scale into 

eight discrete levels ranging from black to white. The vertical tick mark 

assigns the specific value assigned to each of the eight level values. The 

continuous gray levels are quantized simply by assigning one of the eight 

discrete gray levels to each sample. The assignment it made depending on the 

vertical proximity of a simple to a vertical tick mark. 

 

 

                         Fig 1.5: Sampling  

  

                            

                          

                               Fig 1.6: Quantization  
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Example  

 

 
 

 

 

 

 

Digital Image  

 

A digital image f [m, n] described in a 2D discrete space is derived from an analog 

image f (x.y) in a 2D continuous space through a sampling process that is frequently 

referred to as digitization. 

 

The 2D continuous image f (x, y) is divided into N rows and M columns. The 

intersection of a row and a   column   is   termed   a pixel. The   value   assigned   to   

the   integer   coordinates [m, n] with {m=0,1, 2…, M-1}and {n=0,1, 2..., N-1}is F 

[m, n]. 

 

 

1.10 Pixel Relationships 
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Neighbours of a pixel 

 

A pixel p at coordinate (x, y) has four horizontal and vertical neighbour whose 

coordinate can be given by 

 

(x+1, y) (x-1, y) (x ,y + 1) (x, y-1) 

 

This set of pixel is called the 4-neighbours of p and is denoted by  n4(p), Each 

pixel is  at a  unit distance from (x,y)  and some  of the neighbours of P  lie outside 

the digital image or (x,y)  is on the border of the image . 

The four-diagonal neighbour of P have co-ordinates  

 (x+1, y+1), (x+1, y+1), (x-1, y+1), (x-1, y-1) 

And are denoted by nd(p) these points, together with the 4-neighbours are 

called 8 – neighbours of P denoted by n8(p) 

 

Adjacency 

 

Let V be the set of gray–level values used to define adjacency in a binary 

image, if V= {1} we are referencing to adjacency of pixel with value. Three 

types of adjacencies occur 

 

4- Adjacency – two-pixel P and Q with value from V are 4–adjacency if A is in 

the set n4(P) 8- Adjacency – two-pixel P and Q with value from V are 8–

adjacency if A is in the set n8(P) M-adjacency –two-pixel P and Q with value 

from V are m– adjacency if 

• Q is in n4 (p) or 

• Q is in nd (q) and the set N4(p) È N4(q) has no pixel whose values 

are from V Distance measures 

For pixel p, q and z with coordinate (x,y), (s,t) and (v,w) respectively D is a distance 

function or metric if 

D [p.q] ≥ O {D [p.q] = O iff p=q} D 
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[p.q] = D [p.q] and 

D [p.q] ≥ O {D [p.q] +D(q,z) 

 

The Euclidean Distance between p and is 

defined as De (p, q) = I y – t I 

 

The D4 Education Distance between p and 

is defined as De (p, q) = I y – t I 

 

 

 

 

 

Review Questions  

1. Explain Digital Image Processing briefly? 

2. Describe various methods of image sensing and acquisition. 

3. Explain pixel and its relationships with its neighbourhood pixels. 

4. Write a short note on Image Sampling and Quantization. 

 

                                References for in detail study  

1. www.ImageProcessingplace.com 

2. https://nptel.ac.in/courses/106/105/106105032/ 

3. https://nptel.ac.in/courses/117/105/117105079/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.imageprocessingplace.com/
https://nptel.ac.in/courses/106/105/106105032/
https://nptel.ac.in/courses/117/105/117105079/
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 Chapter 2 Intensity Transformations and Spatial filtering  
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2.2 Basics Intensity Transformation functions 

2.3 Histogram Processing  
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2.4.1Smoothing (Low pass) Spatial filters  

2.4.2Sharpening (High pass) Spatial filters 

2.4.3 Using LAPLACIAN- Second derivative for image sharpening  

2.4.4 Unsharp masking and highboost filtering   

2.5 High pass, Band reject and band pass filters 
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Review Questions  

References 

 

Objective  

1. To understand the meaning of spatial domain and apply techniques for intensity-based 

transformations  

2. To know the concept of histogram and use it for image enhancement  

3. To understand the mechanics of spatial filtering and use combination methods or 

enhancing image  

4. Use fuzzy techniques to perform spatial filtering methods  
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2.1 Introduction  

                  

The principal objective of enhancement is to process an image so that the result is more 

suitable than the original image for a specific application. Image enhancement approaches fall 

into two broad categories 

1. Spatial domain methods 

2.  Frequency domain methods 

 

The chapter mainly focusses on Spatial domain methods. All methods and 

techniques covered here are for spatial domain. 

               

              The term spatial domain refers to the image plane itself and approaches in these 

categories are based on direct manipulation of pixel in an image. 

 

 

Spatial domain process is denoted by the expression  

  g (x, y) =T [f (x, y)] 

  f (x, y)- input image, T- operator on f, defined over some neighbourhood of f (x, y) 

                g (x, y)-processed image 

 

The neighbourhood of a point (x, y) can be explained by using as square or rectangular sub 

image area centred at (x, y).  
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Fig 2.1 A 3 x 3 neighbourhood about a point (x0, y0) in an image. The neighbourhood is 

moved from pixel to pixel in the image to generate an output image  

The center of sub image is moved from pixel to pixel starting at the top left corner. The 

operator T   is applied to each location (x, y) to find the output g at that location. The process 

utilizes only the pixel in the area of the image spanned by the neighbourhood. 

 

2.2 Basic Intensity Transformation Functions 

 

 

It is the simplest form of the transformation when the neighbourhood is of size 1 x 1. In this 

case g   depends only on the value of f at (x, y) and T becomes an intensity or gray level 

transformation function of the form 

S=T(r) 

r-Denotes the gray level of f (x, y) 

s-Denotes the gray level of g (x, y) at any point (x, y) 

 

Because enhancement at any point in an image deepens only on the gray level at that point, 

technique in this category is referred to as point processing. 

 

2.2.1 Point Processing 

 

Contract stretching -It produces an image of higher contrast than the original one. 
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The operation is performed by darkening the levels below m and brightening the levels above 

m in the original image. 

 

                                           Fig: 2.2 Contrast Stretching  

In this technique the value of r below m are compressed by the transformation function into a 

narrow range of s towards black. The opposite effect takes place for the values of r above m. 

 

Thresholding function – It is a limiting case where T(r) produces a two levels binary image. 

The values below m are transformed as black and above m are transformed as white. 

 

 

                                          Fig 2.3 Thresholding function  

 

2.2.2 Basic Intensity Level Transformation 

 

These are the simplest image enhancement techniques 

 

 2.2.2.1. Image Negative – The negative of in image with gray level in the range [0, L-1] is 

obtained by using the negative transformation. 
The expression of the transformation is 

 

s= L-1-r 
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Reverting the intensity levels of an image in this manner produces the equivalent of a 

photographic negative. This type of processing is practically suited for enhancing white or gray 

details embedded in dark regions of an image especially when the black areas are dominant in 

size. 

 

 

              Fig 2.4 Basic intensity transformation functions 

 

            2.2.2.2   Log transformations- 

              The general form of log transform is S=c log(1+R) 

       Where R >= 0  

   This transformation maps a narrow range of gray level values in the input image into a wider 

range of output gray levels. The opposite is true for higher values of input levels. These 

transformations are used to expand the values of dark pixels in an image while compressing the 

higher-level values. The opposite is true for inverse log transformation. 

 

The log transformation function has an important characteristic that it compresses the dynamic 

range of images with large variations in pixel values. 
E.g.- Fourier spectrum 
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              Fig 2.5 a) Fourier Spectrum     b) Log transformed Fourier spectrum 

            2.2.2.3 Power law transformation 

Power law transformation has the basic function  

S= c rᵞ 

Where c and ᵞ are positive constants. 

 

Power law curves with fractional values of ᵞ map a narrow range of dark input 

values into a wider range of output values, with the opposite being true for higher 

values of input gray levels. We may get various curves by varying values of ᵞ. 

 

               

            

                              Fig: 2.6 Shape of the curve formed by the gamma equation 
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                 A variety of devices used for image capture, printing and display respond according 

to a power 

law. The process used to correct this power law response phenomenon is called 

gamma                 correction. 

                       For E.g.-CRT devices have intensity to voltage response that is a power function 

 

Gamma correction is important if displaying an image accurately on a computer 

screen is of concern. Images that are not corrected properly can look either bleached 

out or too dark. 

Color phenomenon also uses this concept of gamma correction. It is becoming more 

popular due to use of images over the internet. 

It is important in general purpose contract manipulation.  

To make an image black we use ᵞ >1 and ᵞ <1 for white image. 

 

                 2.2.2.4         Piece wise Linear transformation functions- 

 

The principal advantage of piecewise linear functions is that these 

functions can be arbitrarily complex. But their specification requires 

considerably more user input 

 

Contrast Stretching- 

It is the simplest piecewise linear transformation function. 

We may have various low contrast images and that might result due to various reasons such as 

lack of illumination, problem in imaging sensor or wrong setting of lens aperture during image 

acquisition. 

The idea behind contrast stretching is to increase the dynamic range of gray 

levels in the image being processed. 
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Fig 2.7 Piecewise linear transformation function  

 

The location of points (r1, s1) and (r2, s2) control the shape of the curve 

a) If r1=r2 and s1=s2, the transformation is a linear function that deduces no change in gray 

levels. 

 

b) If r1=s1, s1=0 , and s2=L-1, then the transformation become a 

thresholding function that creates a binary image 

 

c) Intermediate values of (r1, s1) and (r2, s2) produce various degrees of spread in the gray 

value of the output image thus effecting its contract. 

 

Generally, r1≤ r2 and s1 ≤ s2 so that the function is single valued and monotonically 

increasing  

 

Gray Level Slicing- Highlighting a specific range of gray levels in an image is often desirable 

   For example, when enhancing features such as masses of water in satellite image and 

enhancing flaws in x- ray images. 

  There are two ways  

1) This method is to display a high value for all gray level in the range of interest and a low 

value for all other gray level 

2)   Second method is to   brighten the   desired ranges of gray   levels but preserve the 

background and gray level tonalities in the image 
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           Fig 2.8 a) Highlights the range [A, B] b) Highlights the range [A, B] and preserves 

background details 

              

           2.2.2.5 Bit Plane Slicing 

       It is important to highlight the contribution made to the total image appearance by specific 

bits. Suppose that each pixel is represented by 8 bits.  

Imagine that an image is composed of eight 1-bit planes ranging from bit plane 0 for the least 

significant bit to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 

contains all the lowest order bits in the image and plane 7 contains all the high order bits. 

 

 

             

                                      Fig 2.9 Bit-planes of an image  

 

2.3 Histogram Processing  

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete 

function of the form H(rk)=nk 
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where rk is the kth gray level and nk is the number of pixels in the image having the 

level rk.  

A normalized histogram is given by the equation 

 P(rk)=nk/n for k=0,1, 2, . . ., L-1 

 P(rk) gives the estimate of the probability of occurrence of gray level rk. The sum of all 
components of a normalized histogram is equal to 1. 

 

        The histogram plots are simple plots of H(rk)=nk versus rk. 

 

 

 

        Fig 2.10 Four image types and their corresponding histograms. (a) dark; (b) light;          

(c) low contrast;  d) high contrast 

                      

In the dark image the components of the histogram are concentrated on the low (dark) side of 

the gray scale. In case of bright image, the histogram components are biased towards the high 

side of the gray scale. 

The histogram of a low contrast image will be narrow and will be centered towards the middle 

of the gray scale. 

The components of the histogram in the high contrast image cover a broad range of the gray 

scale.  The net effect of this will be an image that shows a great deal of gray levels details and 

has high dynamic range. 

 

 

             2.3.1 Histogram Equalization 

       Histogram equalization is a common technique for enhancing the appearance of images.  

Suppose we have an image which is predominantly dark. Then its histogram would be skewed 
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towards the lower end of the grey scale and all the image detail are compressed into the dark end 

of the histogram. If we could ‘stretch out’ the grey levels at the dark end to produce a more 

uniformly distributed histogram then the image would become much clearer. 
Let there be a continuous function with r being gray levels of the image to be enhanced. 

The range of r is [0, 1] with r=0 repressing black and r=1 representing white. 

 The transformation function is of the form. 
S=T(r) where 0<r<1 

 

         It produces a level s for every pixel value r in the original image. the transformation 

function is assumed to fulfill two condition T(r)) is single valued and monotonically increasing 

in the interval 0<T(r)<1 for 0<r<1 

The transformation function should be single valued so that the inverse transformations should 

exist. Monotonically increasing condition preserves the increasing order from black to white in 

the output image. The second conditions guarantee that the output gray levels  will  be in the 

same range as the input levels. 
The gray levels of the image may be viewed as random variables in the interval [0.1] 

The most fundamental descriptor of a random variable is its probability density function (PDF) 

Pr(r) and Ps(s) denote the probability density functions of random variables r and s respectively. 

Basic results from an elementary probability theory states that if Pr(r) and Tr are known and T-

1 (s) satisfies conditions (a), then the probability density function Ps(s) of the transformed 

variable s is given by the formula- 

Thus, the PDF of the transformed variable s is the determined by the gray levels PDF of the input 

image  

and by the chosen transformations function  

 

 

A transformation function of a particular importance in image processing 

This is the cumulative distribution function of r 
Using this definition of T we see that the derivative of s with respect to r is 

 

Substituting it back in the expression for Ps we may get 

 
An important point here is that Tr depends on Pr(r) but the resulting Ps(s) always is uniform, and 

independent of the form of P(r). 

For discrete values we deal with probability and summations instead of probability density 

functions and integrals. 

 

The probability of occurrence of gray levels rk in an image as approximated 
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Pr(r)=nk/N 

N is the total number of the pixels in an image. nk is the number of the pixels that have gray level 

rk. L is the total number of possible gray levels in the image. The discrete transformation function 

is given by 

 
Thus, a processed image is obtained by mapping each pixel with levels rk in the input image into 

a corresponding pixel with level sk in the output image. 

 

A plot of Pr (rk) versus rk is called a histogram. The transformation function given by the above 

equation is the called histogram equalization or linearization. Given an image the process of 

histogram equalization consists of implementing the transformation function which is based on 

information that can be extracted directly from the given image, without the need for further 

parameter specification. 
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             Fig 2.11 Left column- original images, center column- histogram equalized images and last 

column- histogram of histogram equalized images. 

 

        Equalization automatically determines a transformation function that seeks to produce an 

output image that has a uniform histogram. It is a good approach when automatic enhancement 

is needed. 

                

       2.3.2 Histogram Matching (Specification) 

In some cases, it may be desirable to specify the shape of the histogram that we 

wish the processed image to have. 

Histogram equalization does not allow interactive image enhancement and generates only one 

result: an approximation to a uniform histogram. Sometimes we need to be able to specify 

particular histogram shapes capable of highlighting certain gray-level ranges. The method used 

to generate a processed image that has a specified histogram is called histogram matching or 

histogram specification. 

Algorithm 

1. Compute sk=Pf (k), k = 0, …, L-1, the cumulative normalized histogram of f . 

2. Compute G(k), k = 0, …, L-1, the transformation function, from the given histogram hz 
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3. Compute G-1(sk) for each k = 0, …, L-1 using an iterative method (iterate on z), or in 

effect, directly compute G-1(Pf (k)) 
4. Transform f using G-1(Pf (k)) 

 

 

 

Global and Local enhancement 

In earlier methods pixels were modified by a transformation function based on 

the gray level of an entire image. It is not suitable when enhancement is to be 

done in some small areas of the image. This problem can be solved by local 

enhancement where a transformation function is applied only in the 

neighborhood of pixels in the interested region. 

Define square or rectangular neighborhood (mask) and move the center 

from pixel to pixel. For each neighborhood 

1) Calculate histogram of the points in the neighbourhood 

2) Obtain histogram equalization/specification function 

3) Map gray level of pixel centered in neighbourhood 

4) The center of the neighbourhood region is then moved to an adjacent 

pixel location and the procedure is repeated. 

 

 

Fig 2.12a) Original Image b) Image obtained after global histogram equalization and c) after local 

histogram equalization. 
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d) Result of local enhancement based on local histogram  

 

 

 

2.4 Fundamentals of Spatial filtering  

1. Spatial filtering modifies an image by replacing the value of each pixel by a function of the 

values of the pixel and its neighbours.  

2. If the operation performed on the image pixels is linear, then the filter is called linear spatial 

filter. Otherwise, the filter is a non-linear filter.  

       

      Spatial filtering is an example of neighborhood operations, in this the operations are done on 

the values of the image pixels in the neighborhood and the corresponding value of a sub image 

that has the same dimensions as of the neighborhood. 

This sub image is called a filter, mask, kernel, template or window; the values in the filter sub 

image are referred to as coefficients rather than pixel. Spatial filtering operations are performed 

directly on the pixel values (amplitude/gray scale) of the image. The process consists of moving 

the filter mask from point to point in the image. At each point (x, y) the response is calculated 

using a predefined relationship. 
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Fig 2.13 The mechanics of spatial filtering using a 3 x 3 kernel 

 

 

 

 

For linear spatial filtering the response is given by a sum of products of the filter coefficient and the 

corresponding image pixels in the area spanned by the filter mask. 

The results F (x, y) of linear filtering with the filter mask at point (x, y) in the image is given by 

  

 

        w (-1, -1) f (x-1, y-1) + w (-1,0) f (x-1, y) + ………...+ w (1, 1) f (x + 1, y +1) 

        The coefficient w (0,0) coincides with image value f (x, y) indicating that mask it 

centered at (x, y) when the computation of sum of products takes place. 

For a mask of size M x N, we assume m=2a+1 and n=2b+1, where a and b are 

nonnegative integers. It shows that all the masks are of odd size. 

In the general linear filtering of an image of size f of size M*N with a filter mask of size 

m*m is given by the expression. 
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Where a= (m-1)/2 and b = (n-1)/2 

To generate a complete filtered image this equation must be applied for x=0, 1, 2, -----M-

1 and y=0,1,2---, N-1. Thus, the mask processes all the pixels in the image. 

The process of linear filtering is similar to frequency domain concept called convolution. 

For this reason, linear spatial filtering often is referred to as convolving a mask with an 

image.  Filter mask are sometimes called convolution mask. 

 

Padding the image by adding rows and columns of o’s & of padding by replicating rows 

and columns when the centre of the filter approaches the border of the image. 

 

2.4.1Smoothing Spatial Filters(lowpass) 

          

     These filters are used for blurring and noise reduction blurring is used in preprocessing steps such as 

removal of small details from an image prior to object extraction and bridging of small gaps in lines or 

curves. 

 
Smoothing Linear Filters 

 

The output of a smoothing liner spatial filter is simply the average of the pixel contained in the 

neighborhood of the filter mask. These filters are also called averaging filters or low pass filters. 

Smoothing filters are used in combination with other image enhancement techniques. 

 
The operation is performed by replacing the value of every pixel in the image by the average of   the gray 

levels in the neighborhood defined by the filter mask.  This process reduces sharp transitions in gray levels 

in the image. 

 

A major application of smoothing is noise reduction but because edges are also provided using sharp 

transitions so smoothing filters have the undesirable side effect that they blur edges. It also removes an 

effect false contouring which is caused by using insufficient number of gray levels in the image. 

Irrelevant details can also be removed by filters, irrelevant means which are not of interest. 

 

A spatial averaging filter in which all coefficients are equal is sometimes referred to as a “box filter”. 

 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

 A weighted average filter is the one in which pixel are multiplied by different coefficients. 

 

Order Statistics Filter 

These are nonlinear spatial filter whose response is based on ordering of the pixels contained in the image 

area compressed by the filter and the replacing the value of the center pixel with value determined by the 

ranking result. 

 

The best example of this category is median filter. In this filter the values of the center pixel are replaced 

by median of gray levels in the neighborhood of that pixel.  Median filters are popular because, for certain 

types of random noise, they provide excellent noise-reduction capabilities, with considerably less blurring 

than linear smoothing filters. 



 

Unedited Version: Image Processing 
 
 pg. 31 

 

These filters are particularly effective in the case of impulse or salt and pepper noise.  It is called so 

because of its appearance as white and black dots superimposed on an image. 

 
In order to perform median filtering at a point in an image, we first sort the values of the pixel in the 

question and its neighbors, determine their median and assign this value to that pixel. 

 

Low pass filtering is used for shadow correction, region extraction if used with thresholding. 

2.4.2 Sharpening Spatial Filters (High pass) 

 
    The principal objective of sharpening is to highlight fine details in an image or to enhance details 

   that have been blurred either in error or as a natural effect of particular method for image acquisition. 

 

The applications of image sharpening range from electronic printing and medical imaging to industrial   

inspection and autonomous guidance in military systems. 

As smoothing can be achieved by integration, sharpening can be achieved by spatial differentiation. The 

strength of response of derivative operator is proportional to the degree of discontinuity of    the   image   at   

that point at which the operator is applied. Thus, image differentiation enhances edges and other 

discontinuities and deemphasizes the areas with slow varying grey levels. 

It is a common practice to approximate the magnitude of the gradient by using absolute values instead of 

square and square roots. 

A basic definition of a first order derivative of a one-dimensional function f(x) is the difference 

 

   
 

A second order derivative as the difference 
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  Fig 2.14 A scan line from an image showing ramp, step and constant segments with its first and second 

order derivative   
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2.4.3.Using LAPLACIAN- Second derivative for image sharpening  

 

The second order derivative is calculated using Laplacian. It is simplest isotropic filter. Isotropic filters are 

the ones whose response is independent of the direction of the image to which the operator is applied. 

 

The Laplacian for a two-dimensional function f (x, y) is defined as 

 
         In the x-direction 

 

          
          In the y-direction 

        
 

 

        From the above equation, the discrete Laplacian of two variable is  

 

 
 

       The equation can be represented using any one of the following masks 

 

       
                

            Fig 2.15 Laplacian kernels  

 

 

Laplacian highlights gray-level discontinuities in an image and deemphasize the regions of slow 

varying gray levels. This makes the background a black image. The background texture can be 

recovered by adding the original and Laplacian images. 
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The strength of the response of a derivative operator is propositional to the degree of discontinuity of 

the image at that point at which the operator is applied. Thus, image differentiation enhances eddies 

and other discontinuities and deemphasizes areas with slowly varying gray levels. 

The derivative of a digital function is defined in terms of differences. Any first derivative definition 

(1) Must be zero in flat segments (areas of constant gray level values)  

(2) Must be nonzero at the onset of a gray level step or ramp 
(3) Must be nonzero along ramps. 

 

 Any second derivative definition 

 

(1) Must be zero in flat areas 

(2) Must be nonzero at the onset and end of a gray level step or ramp 
(3) Must be zero along ramps of constant slope. 

 
 
                 

                
 
            Fig 2.16 Example of sharpening from blurred image to sharpened image  
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It is common practice to approximate the magnitude of the gradient by using absolute values instead 

of squares and square roots. 

 
   Roberts Goss gradient operators 

            For implementing the gradient operators 

 

             

Z1 Z2 Z3 

 Z4 Z5 Z6 

Z7 Z8 Z9 

  

 
                 The smallest filter mask is size 3x3 mask  

 

                   

                

 The difference between third and first row a 3x3 mask approximates the derivate in the x-direction and 

difference between the third and first column approximates the derivative in y-direction. These masks are 

called sobel operators. 

 

           2.4.4 Unsharp masking and highboost filtering   

             Unsharp masking means subtracting a blurred version of an image form the image itself. 

                It consists of following steps  

1. Blur the original image  

2. Subtract the blurred image from the original 

3. Add the mask to the original  

                 

                  where we included a weight, k, k () ≥ 0, for generality. When k = 1 we have unsharp  

masking, as defined above. When k > 1, the process is referred to as highboost filtering. 

Choosing k < 1 reduces the contribution of the unsharp mask 

 

-1 0 

 0 1 
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2.5 Highpass, Band reject and Band pass filters from Lowpass filters 

                    

                       Fig 2.17 Low pass, Highpass ,Bandreject and Bandpass filters 

                       

             Spatial and frequency-domain linear filters are classified into four broad categories: lowpass 

and highpass filters, bandpass and bandreject filters.    

            Lowpass filter - A lowpass filters attenuate or delete high frequencies, while passing low 

frequencies. 

              Highpass filter -   A highpass filter deletes or attenuates all frequencies below a cut-off value, 

u0, and passes all frequencies above this value. A highpass filter transfer function is obtained by 

subtracting a lowpass function from 1. This operation is in the frequency domain. 

            Bandreject filter- These filters can be constructed from the sum of a lowpass and a highpass 

function with different cut-off frequencies. They are known as notch filters. 

            Bandpass filter- The bandpass filter transfer function can be obtained by subtracting the 

bandreject function from 1 (a unit impulse in the spatial domain). 

         

 

2.6 Spatial Intensity transformation and filtering methods using fuzzy techniques  

 

Fuzzy sets and its applications are very useful when it comes to image processing 

specially to spatial intensity transformation and filtering. Fuzzy logic proves more 

beneficial and flexible than classical set theory. 
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Fuzzy logic deals with degree of membership in a set and never probabilistic. They 

find application in situation characterized by vagueness and imprecision. 
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Fig: 2.18 Membership functions with respect to their equations  

 

 

            The principal steps followed in the application of rule-based fuzzy logic  

1. Fuzzify the inputs 

2. Perform any required fuzzy logical operations 

3. Apply an implication method  

4. Apply an aggregation method to the fuzzy sets from step 3 

5. Defuzzify the final output fuzzy set  

 

 

The problem specific knowledge can be formalized with the following IF-THEN fuzzy 

rules.  Consider the following rules for a fruit. 

 

R1: IF the color is green, THEN the fruit is verdant  

                          OR  

R2: IF the color is yellow, THEN the fruit is half-mature 

                           OR 

R3: IF the color is red, THEN the fruit is mature  
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              Fig 2.19 Five basic steps used to implement the fuzzy rule-based system 

 

 

             

       Using Fuzzy sets for Intensity Transformation  

       Consider a general problem of contrast enhancement. The following rules can be defined for 

enhancing the contrast in a gray-scale image. 

 

        R1: IF a pixel is dark, THEN make it darker  

        R2: IF a pixel is gray, THEN make it gray 

        R3: IF a pixel is bright, THEN make it brighter 

 

        The concept of dark, gray and bright can be expressed and evaluated using membership 

functions. Fuzzy image processing is computationally intensive because the entire process of 

fuzzification, processing the antecedents of all rules, implication, aggregation and defuzzification 

must be applied to every pixel in the input image. 
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 The output of these fuzzy rules whose output is interpreted as constant intensities are considered as 

singletons which means their membership functions are constant. Singletons greatly reduce the 

computational requirements in fuzzy image processing. Similarly fuzzy rules can be applied for 

spatial filtering. When applying fuzzy sets to spatial filtering, the basic approach is to define the 

neighbourhood properties, that capture the essence of filter are to detect. 

 

 Review Questions  

1. Explain spatial domain processing. 

2. Describe point processing, contrast enhancement. 

3. What are the basic intensity transformations? 

4. What is filtering? What do you understand by the term spatial filtering? 

5. Explain histogram equalization. 

6. Write a short note on smoothing filters. 

7. Write a short note on sharpening filters. 

8. Explain the use of fuzzy techniques in image processing. 

 

  

References  

1. Digital Image Processing, third edition by Gonzalez and Woods. 

2. www.Imageprocessingplace.com 

3. Refer nptel courses on digital image processing for further detail study. 
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UNIT II  

    Chapter 3 Filtering in the Frequency Domain  

3.1        Introduction  

3.2       Sampling and Fourier Transform of sampled functions  

3.3       Discrete Fourier transform of one variable  

3.4       Discrete Fourier transform of two variables  

3.5       Properties of 2D- DFT and IDFT 

3.6       Basics of filtering in the frequency domain  

3.7      Smoothing in Frequency Domain 

3.8      Sharpening in Frequency Domain 

3.9      Selective filtering  

3.10 Fast Fourier Transform 
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3.1 Introduction  

 

Fourier transform named after the French mathematician Jean Baptiste Joseph Fourier is 

one of the most prominent transforms used in Image processing. 

Any function that periodically repeats itself can be expressed as a sum of sines and cosines 

of different frequencies each multiplied by a different coefficient, this sum is called Fourier 

series. Even the functions which are non-periodic but whose area under the curve if finite 

can also be represented in such form; this is now called Fourier transform. 

A function represented in either of these forms and can be completely reconstructed via an 

inverse process with no loss of information. 

 

3.2 Sampling and Fourier transform of sampled functions  

 

Continuous function is converted into a sequence of discrete values before they can be 

processed in a computer, which requires sampling and quantization. 

 

Consider a continuous function f(t) to be sampled at uniform intervals, ΔT of the 

independent variable t. 

The simplest way to sampling is to multiply f(t) by a sampling function equal to the 

train of impulses ΔT units apart. The equation of the sampled function is given by  

 

 
The Fourier Transform of sampled function 

 

Let F(u) denote the Fourier transform of a continuous function f(t). The sampled 

function is a product of f(t) and an impulse train. 

The Fourier transform of the product of the two functions in the spatial domain is the 

convolution of the transforms of the two functions in the frequency domain. 

 

The Fourier transform of the sampled function is given by  

 
where, the given equation below is the Fourier transform of the impulse train. 
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3.3 Discrete Fourier Transform of one variable 

    1-D Fourier Transformation and its Inverse 

    

    Let f(x) be a continuous function of real variable x. The Fourier transform of f(x) is  

  

 
     Where j = √−1         

 

F(u) is composed of an infinite sum of sine and cosine terms and each value of u determines 

the frequency of its corresponding sine-cosine pair where u is a frequency variable. 

 

Given F(u), f(x) can be obtained by the inverse Fourier transform 

)()}({1 xfuF =−

 

                                

3.4 Discrete Fourier Transform of two variables  

2-Dimensional Fourier transform 

Images being 2-dimensional functions, we need to define a 2-D Fourier transform.  

Fourier and Inverse Fourier transform of a two variable continuous function is given by  

dxdyvyuxjyxfvuFyxf )](2exp[),(),()},({ +−== 


−



−



 

dudvvyuxjvuFyxfvuF ])(2exp[),(),()},({1




−



−

− +== 
  

Where u, v are frequency variables. 

Since the work is on digital images, rather than continuous variables discrete Fourier 

transform is more appropriate  

1-D Discrete Fourier Transform 

The discrete Fourier transform of one variable f(x) is given by  

 

F(u) =
1

M
f (x)exp[− j2ux /M]

x= 0

M −1


 

where u = 0,1, 2……, M-1 and  

  


−

−== dxuxjxfuFxf ]2exp[)()()( 




−

= duuxjuF ]2exp[)( 
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 

f (x) = f (u)exp[ j2ux /M]
u= 0

M −1


 

Where x = 0,1, 2……, M – 1 

 To compute F(u) we substitute u=0 in the exponential term and sum for all values of x. 

 Repeating for all M values of u, it takes M*M summations and multiplications to compute   

 discrete fourier transform 

 

F(u) =
1

M
f (x)exp[− j2ux /M]

x= 0

M −1


 

Where u = = 0,1, 2……, M-1 

For discrete functions, the fourier transform and its inverse exist always. 

F(u) is complex, F(u) = R(u) + j I (u) 

Where R is real and I is imaginary 

The Fourier transform of a real function is generally complex and polar coordinates are 

used. 

Magnitude or spectrum of the Fourier transform is given by 

  

Magnitude specifies how much of a certain frequency component is present  

Phase angle or phase spectrum of the Fourier transform is given by  

 

The phase specifies where the frequency component is in the images 

 The square of the spectrum is referred to as the power spectrum of f(x) (spectral density). 

       

     

2-D Discrete Fourier transform 

 The Fourier transform of a 2D discrete function (image) f (x, y) of size Mx N is given by: 

 

where u = 0,1, 2……, M-1 and v = 0,1, 2……, N-1 

The inverse 2-D Discrete Fourier transform is given by  
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where x = = 0,1, 2……, M – 1 and y = 0,1, 2……, N – 1 

The 2D Fourier Spectrum, Phase Spectrum and Power Spectrum can be respectively denoted by 

 

 

 

Properties of 2D Discrete Fourier Transform 

The Periodicity property: F (u, v) in 2D DFT has a period of N in horizontal and M in vertical 

directions. 

 The Symmetry property: The magnitude of the transform is centered on the origin 

 

Fig 3.1 M x N Fourier Spectrum and Spectrum obtained by multiplying f(x,y) by (-1)x+ y  
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Fig 3.2 a) Image b) Spectrum across four corners c) Centred Spectrum d) Log Transformed 

image  

The center value (at the origin) of the Frequency Spectrum corresponds to the ZERO frequency 

component which also referred to as the DC component in an image: Substituting 0,0 to the origin, 

the Fourier transform function yields to the average/DC component value as follows: 

 

F (0,0) is called “dc” component of the spectrum (current of zero frequency) 

The above equation implies that the value of the Fourier transform at the origin is equal to 

the average gray level of the image. 

3.5 Properties of 2D DFT  

1) Fourier transform is conjugate symmetric. 

F (u, v) =F*(-u, -v) 

so |F (u, v) |=|F (-u, -v) | 

 which means that the Fourier spectrum is symmetric. 

2) The relationship between the samples in the spatial and frequency domain 
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       Δu =
1

𝑀∆𝑥
          and     Δv = 

1

𝑁∆𝑦
 

3) Translation and Rotation  

 

Fourier transform pairs are given by  

 

 

 Using the polar coordinates  

 x= r cos𝜃  , y = r sin𝜃      u = 𝜔 cos𝜑   v = 𝜔 sin𝜑  

It results in the following transform pair  

 

which indicates that rotating f(x, y) by an angle 𝜃0  rotates F(u, v) by the same angle. 

4) Periodicity 

 

The 2D Fourier transform and its inverse are infinitely periodic in the u and v directions  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Unedited Version: Image Processing 
 
 pg. 48 

                 *Summary of the DFT pairs  

                  Name       DFT pairs  

                  

 

3.6 Basics of filtering in the frequency domain  

  

Filtering techniques in the frequency domain are based on modifying the Fourier  

transform to achieve a specific objective, and then computing the inverse DFT to get  

us back to the spatial domain. 

 

Basic Steps for Filtering in the Frequency Domain: 

1. Multiply the input image by (-1) x+y to center the transform. 

2. Compute F (u, v), the DFT of the image from (1). 

3. Multiply F (u, v) by a filter function H (u, v). 

4. Compute the inverse DFT of the result in (3). 
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5. Obtain the real part of the result in (4). 

6. Multiply the result in (5) by (-1) x+y 

. 

Given the filter H (u, v) (filter transfer function) in the frequency domain, the Fourier 

transform of the output image (filtered image) is given by: 

 

G (u, v) = H (u, v) F (u, v) 

The filtered image g (x, y) is simply the inverse Fourier transform of G (u, v). 

 

        g (x, y) =  

 

3.7 Smoothing in the Frequency Domain 

Smoothing is a low pass operation in the frequency domain. Smoothing is achieved in the frequency 

domain by high frequency attenuation of a specified range of high frequency components in the 

transform of a given image.  

There are three types of lowpass filters: Ideal, Butterworth, and Gaussian Low pass filters 

1. Ideal Low Pass filter  

A lowpass filter is a filter that “cuts off” all high frequency components of the Fourier transform that 

are at a distance greater than a specified distance D0 from the origin of the transform. However, ILPF 

is not used practically. 

The transfer function of an Ideal Low pass filter is given by  

 

Where D (u, v) is the distance from point (u, v) to the center of frequency rectangle and D0  is the 

nonnegative constant. 

                 

 

          Fig 3.3 a) Perspective plot of ILPF b) Function as an image c) Radial cross section  

 

 

 

 

 

−1 G(u,v) 
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Fig 3.4 a) Original image b- f) Results of filtering using ILPFs with cut-off frequencies set at radii values   

10, 30, 60, 160, and 460 

 

2) Butterworth Low pass filter 

It has a parameter called the filter order. For high values of filter order, it approaches the form of the ideal 

filter whereas for low filter order values it acts as a Gaussian filter. It may be viewed as a transition 

between two extremes. The transfer function of a Butterworth low pass filter (BLPF) of order n with cut 

off frequency at distance Do from the origin is defined as 

 

 
   A BLPF approaches the sharpness of an ILPF function with considerably less ringing. 

   The kernel corresponding to the BLPF of order 1 has neither ringing nor negative values. The kernel 

corresponding to a BLPF of order 2 shows mild ringing and small negative values. As the remaining 

images show, ringing becomes significant for higher order filters. A BLPF of order 20 has a spatial kernel 

that exhibits ringing characteristics similar to those of the ILPF. 

 

    
 

Fig 3.5 a) Perspective plot of BLPF b) Function as an image c) Radial cross section of order n=1 through 

4  

 



 

Unedited Version: Image Processing 
 
 pg. 51 

 

3) Gaussian Low pass filter  

The transfer function of GLPF is of the form  

 

 

   Where D (u, v)- the distance of point (u, v) from the center of the transform  

     σ = D0- specified cut off frequency 

 

The inverse Fourier transform of a frequency domain Gaussian function is also Gaussian. This means 

that a spatial Gaussian filter kernel, obtained by computing the IDFT, will have no ringing effect. 

 

 
Fig 3.6 a) Perspective plot of GLPF b) Function as an image c) Radial cross section for D0 values. 

 

 

3.8 Sharpening in the Frequency Domain  

Image sharpening can be achieved by a high pass filtering process, which attenuates the 

low-frequency components without disturbing high-frequency information. These are 

radially symmetric and completely specified by a cross section. 

If we have the transfer function of a low pass filter the corresponding high pass filter can 

be obtained using the equation 

HHP (u, v) = 1- HLP (u, v) 

Where HLP (u, v) is the transfer function of the low pass filter. 

1) Ideal High Pass filter  

An ideal highpass filter (IHPF) transfer function is given by 

 

where, D( u, v) is the distance from the center of the frequency rectangle 

 

 

 



 

Unedited Version: Image Processing 
 
 pg. 52 

 

 

 Fig 3.7 Perspective plot , image and radial cross section of ILPF, GLPF and BLPF  

 

2) Butterworth High pass filter  

The transfer function of Butterworth High Pass filter of order n is given by the equation 

 

 
3) Gaussian High Pass filter  

The transfer function of a Gaussian High Pass Filter is given by the equation 
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Homomorphic Filtering  

 

Homomorphic filters are widely used in image processing for compensating the effect of no uniform 

illumination in an image. Pixel intensities in an image represent the light reflected from the 

corresponding points in the objects. As per as image model, image f (x, y) may be characterized by 

two components: (1) the amount of source light incident on the scene being viewed, and (2) the amount 

of light reflected by the objects in the scene. These portions of light are called the illumination and 

reflectance components, and are denoted i (x, y) and r (x , y) respectively. The functions i (x , y) and r 

( x , y) combine multiplicatively to give the image function f ( x , y): 

f (x, y) = i (x, y). r (x, y) (1) 

where 0 < i (x, y) < a and 0 < r (x, y) < 1. Homomorphic filters are used in such situations where the 

image is subjected to the multiplicative interference or noise as depicted in Eq. 1. We cannot easily 

use the above product to operate separately on the frequency components of illumination and reflection 

because the Fourier transform of f (x , y) is not separable; that is 

F [f (x, y)) not equal to F [i (x, y)]. F [r (x, y)]. 

We can separate the two components by taking the logarithm of 

the two sides ln f (x, y) = ln i (x, y) + ln r 

(x, y). 

Taking Fourier transforms on both sides we get, 

F [ln f (x, y)} = F [ln i (x, y)} + F[ln r(x, y)]. 

that is, F (x, y) = I (x, y) + R (x, y), where F, I and R are the Fourier transforms ln f (x, y), ln i (x, y), 

and ln r (x, y). respectively. The function F represents the Fourier transform of the sum of two images: 

a low-frequency illumination image and a high-frequency reflectance image. If we now apply a filter 

with a transfer function that suppresses low- frequency components and enhances high-frequency 

components, then we can suppress the illumination component and enhance the reflectance 

component. Taking the inverse transform of F (x, y) and then anti-logarithm, we get 

                              f’ (x, y) = i’ 

 
Fig 3.8 Steps in Homomorphic filtering  

               

3.9 Selective Filtering  

    Selective filtering is to process specific bands of frequencies or small regions of the 

frequency rectangle. Filters in the first category are called band filters. If frequencies in the band are 

filtered out, the band filter is called a bandreject filter; similarly, if the frequencies are passed, the 

filter is called a bandpass filter. Filters in the second category are called notch filters. They are further 

classified as whether the frequencies in the notch areas are rejected or passed. 
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BANDREJECT AND BANDPASS FILTERS 

 

Bandpass and Bandreject filter transfer functions in the frequency domain can be constructed by 

combining lowpass and highpass filter transfer functions. Lowpass filter transfer functions are the 

basis for forming highpass, bandreject, and bandpass filter functions. A bandpass filter transfer 

function is obtained from a bandreject function. 

 HBP (u, v) = 1 – HBR (u, v) 

 

 

 

 
Fig 3.9 Transfer functions of Bandreject filters  

 

 

NOTCH FILTERS  

 

Notch filters are the most useful of the selective filters. A notch filter rejects (or passes) frequencies 

in a predefined neighbourhood of the frequency rectangle. Zerophase-shift filters must be symmetric 

about the origin (center of the frequency rectangle), so a notch filter transfer function with center at 

(u0, v0) must have a corresponding notch at location (-u0, - v0).Notch reject filter transfer functions are 

constructed as products of highpass filter transfer functions whose centres have been translated to 

the centres of the notches. 

 

3.10 Fast Fourier Transform Algorithm 

 

Discrete Fourier transform and Inverse Discrete Fourier transform takes a lot of computations in 

real time as learnt theoretically. To implement the transform practically, Fast Fourier Transform 

algorithm is used. Fast Fourier transform (FFT), reduces computations to the order of MN log2 MN 

multiplications and additions. 
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        Review questions  

1. Compare and contrast spatial domain and frequency domain  

2. How filtering in frequency domain works? 

3. What are the basic steps of filtering in frequency domain? 

4. What are smoothing filters? Explain the various types of low pass filters. 

5. Explain sharpening in frequency domain. 

6. Write a short note on selective filtering. 

7. Explain homomorphic filtering briefly. 

8. What is FFT? Why FFT is used practically and not DFT? 

9. Mention the properties of DFT. 

       

       References  

1. Digital Image Processing, fourth edition by Gonzalez and Woods. 

2. www.Imageprocessingplace.com 

3. Refer nptel courses on digital image processing for further detail study on FFT and other 

related concepts. 
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UNIT II  

Chapter 4 Image Restoration and Reconstruction  

4.1 Introduction  

4.2 Model of the Image degradation/restoration process 

4.3 Noise models  

4.4 Restoration in Spatial and Noise Reduction in Frequency Domain  

4.5 Inverse Filtering  

4.6 Minimum Mean Square Error (Wiener) Filtering  

4.7 Geometric mean filter 

4.8 Image Reconstruction from projections  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction  
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Restoration attempts to recover an image that has been degraded by using a priori 

knowledge of the degradation phenomenon. Thus, restoration techniques are oriented 

toward modelling the degradation and applying the inverse process in order to recover 

the original image. 

It deals with the characteristics of various noise models used in image processing, and 

how to estimate from image data the parameters that define those models. The chapter 

gives overview of minimum mean-square-error (Wiener) filtering and its advantages over 

direct inverse filtering. 

 

Image Restoration refers to a class of methods that aim to remove or reduce the 

degradations that have occurred while the digital image was being obtained. All-

natural images when displayed have gone through some sort of degradation:  

a) During display mode 

b) Acquisition mode.  

c) Processing mode 

The degradations may be due to 

  a) Sensor noise 
                   b) Blur due to camera mis focus 

                c) Relative object-camera motion 

                           d) Random atmospheric turbulence 

4.2 A model of the Image Degradation/Restoration process 

 

 

Fig 4.1 A model of the Image Degradation/Restoration process 

 

 

 

 

 

 

 

Degradation process operates on a degradation function that operates on an input image with an additive 

noise term. Input image is represented by using the notation f(x,y), noise term can be represented as 
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η(x,y).These two terms when combined gives the result as g(x,y). If we are given g(x,y), some knowledge 

about the  degradation  function  H  or  J  and  some knowledge about the additive noise teem η(x,y), the  

objective  of  restoration  is  to  obtain  an estimate f'(x,y) of the original image. We want the estimate to 

be as close as possible to the original image. The more we know about h and η, the closer f(x,y) will be 

to f'(x,y). 

If it is a linear position invariant process, then degraded image is given in the spatial domain by 
 

g(x,y)=f(x,y)*h(x,y)+η(x,y) 

 
h(x,y) is spatial representation of degradation function and symbol * represents convolution. In 

frequency domain we may write this equation as 

G (u, v) =F (u, v) H (u, v) +N (u, v) 

The terms in the capital letters are the Fourier Transform of the corresponding terms in the spatial 

domain. 

       

4.3 Noise models  

              

             The principal sources of noise in digital images arise during image acquisition and/or transmission. 

For example, in acquiring images with a CCD camera, light levels and sensor temperature are major 

factors affecting the amount of noise in the resulting image. Images are corrupted during 

transmission principally by interference in the transmission channel. For example, an image 

transmitted using a wireless network might be corrupted by lightning or other atmospheric 

disturbance. 

 

Spatial and Frequency properties of Noise  

 

1. When the Fourier spectrum of noise is constant, the noise is called white noise. 

2. Noise is independent of spatial coordinates. Noise is uncorrelated with respect to the image itself 

             Common Noise found in Image Processing applications  

1. Gaussian Noise  

These noise models are used frequently in practices because of its tractability in both spatial   and 

frequency domain. 

The PDF of Gaussian random variable, z, is given by 

    

 

 
 

     where, z represents intensity, z(bar) is the mean (average) value of z and 𝜎 is the standard 

deviation. 

 

 

2. Rayleigh Noise  
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The PDF of Rayleigh noise is given by 

 

 
 

 The mean and variance of z when this random variable is characterized by a Rayleigh PDF 

 

    
 

 

3. Erlang (gamma) noise  

The PDF of Erlang noise is given by  

 

  
 

where the parameters are such that a > b, b is a positive integer, and “!” indicates factorial. The 

mean and variance of z are 

                     

4. Exponential Noise  

 

The PDF of exponential noise is given by 

 
 

 

 

 

 

where a > 0. The mean and variance of z are 



 

Unedited Version: Image Processing 
 
 pg. 60 

 

 
 

5. Uniform Noise  

                     The PDF of uniform noise is 

                      

 

                    The mean and variance of z are                 

                     

6. Salt-and-Pepper Noise  

 

The PDF of salt-and-pepper noise is given by 

 

 

  

                  where V is any integer value in the range 0 < V < 2k – 1  
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        Fig 4.2 Noise Models with their probability density functions  

 

4.4 Restoration in Spatial and Noise Reduction in Frequency Domain  

 

 When an image is degraded only by additive noise, the equation becomes  

g (x, y) = f (x, y) + η (x, y)  

or 

                G (u, v) = F (u, v) + N (u, v) 

 

The noise terms are unknown so subtracting them from g (x, y) or G (u, v) is not a realistic 

approach. In the case of periodic noise it is possible to estimate N(u,v) from the spectrum G(u, 

v). So, N (u, v) can be subtracted from G (u, v) to obtain an estimate of original image.  Spatial 

filtering can be done when only additive noise is present. 

       The following techniques can be used to reduce the noise effect  

           

          Mean Filters  

 

           1)Arithmetic Mean Filters 

         It is the simplest mean filter. Let S xy represents the set of coordinates in the sub image 

of size m*n centered at point (x,y). The arithmetic mean filter computes the average value of 

the corrupted image g(x,y) in the area defined by Sxy. The value of the restored image f at any 

point (x,y) is the arithmetic mean computed using the pixels in the region defined by Sxy  



 

Unedited Version: Image Processing 
 
 pg. 62 

 

 This operation can be using a convolution mask in which all coefficients have value 1/mn 

A mean filter smoothes local variations in image Noise is reduced as a result of blurring. 

2) Geometric mean filters 

An image restored using a geometric mean filter is given by the expression 

 

 
where indicates multiplication. Here, each restored pixel is given by the product of all the 

pixels in the subimage area, raised to the power 1/ mn 

A geometric mean filter achieves smoothing comparable to an arithmetic mean filter, but it 

tends to lose less image detail in the process. 

 

        3)Harmonic mean filter  

      The harmonic mean filter works well for salt noise, but fails for pepper noise. It does well also 

with other types of noise like Gaussian noise. 

The harmonic mean filtering operation is given by the expression 

 

4)Contraharmonic mean filter  

      

       The Contraharmonic mean filter yields a restored image based on the expression 

         
        where Q is called the order of the filter. This filter is well suited for reducing or virtually 

eliminating the effects of salt-and-pepper noise. For positive values of Q, the filter eliminates pepper 

noise. For negative values of Q, it eliminates salt noise. It cannot do both simultaneously. 

The Contraharmonic filter reduces to the arithmetic mean filter if Q = 0, and to the harmonic mean 

filter if Q = −1. 
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ORDER STATISTICS FILTERS 

 

Order statistics filters are spatial filters whose response is based on ordering the pixel contained in the 

image area encompassed by the filter. The response of the filter at any point is determined by the 

ranking result. 

 

    1)    Median Filters 

       These filters replace the value of a pixel by the median of the intensity levels in a predefined 

neighbourhood of that pixel 

      

    where, as before, Sxy is a sub image (neighbourhood) centered on point (x, y). The value of the 

pixel at (x, y) is included in the computation of the median. Median filters provide excellent noise-

reduction capabilities, with considerably less blurring than linear smoothing filters of similar size. 

Median filters are particularly effective in the presence of both bipolar and unipolar impulse noise. 

 

2) Max and Min filters 

Using the l00th percentile of ranked set of numbers is called the max filter and is given by the equation 

 

 
      This filter is useful for finding the brightest points in an image or for eroding dark regions adjacent 

to bright areas 

    The 0th percentile filter is min filter 

 

This filter is useful for flinging the darkest point in image. Also, it reduces salt noise of the min 

operation. 

 

3. Mid-point filter  

The midpoint filter simply computes the midpoint between the maximum and minimum values in the 

area encompassed by the filter 

 

It combines the order statistics and averaging filter. This filter works best for randomly distributed noise 

like Gaussian or uniform noise. 
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4. Alpha-Trimmed mean filter  

A filter formed by averaging these remaining pixels is called an alpha-trimmed mean filter. The 

form of this filter is given by  

 

 
 

where the value of d can range from 0 to mn − 1. When d = 0 the alpha-trimmed filter reduces 

to the arithmetic mean filter. If we choose d mn = − 1, the filter becomes a median filter. 

 

 

Periodic Noise Reduction using frequency domain filtering  

 

The basic idea is that periodic noise appears as concentrated bursts of energy in the Fourier 

transform, at locations corresponding to the frequencies of the periodic interference. The 

approach is to use a selective filter to isolate the noise. In restoration of images corrupted by 

periodic interference, the tool of choice is a notch filter. 

The general form of a notch filter transfer function is 

 
A notch pass filter transfer function is obtained from a notch reject function using the expression 

 

 

4.5 Inverse Filtering  

 

It is a process of restoring an image degraded by a degradation function H. This function can be obtained 

by any method. The simplest approach to restoration is direct, inverse filtering. 

Inverse filtering provides an estimate F(u,v) of the  transform  of  the  original  image  simply  by during 

the transform of the degraded image G(u,v) by the degradation function. 

 

          

       It shows an interesting result that even if we know the depredation function we cannot recover the 

underrated image exactly because N(u,v) is not known . If the degradation value has zero or very small values 

then the ratio N(u,v)/H(u,v) could  easily  dominate the estimate F(u,v). 
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4.6 Minimum Mean Square Error (Wiener) Filtering  

Wiener Filtering is an approach that incorporates both the degradation function and statistical 

characteristics of noise into the restoration process. The method is founded on considering images 

and noise as random variables, and the objective is to find an estimate ˆ f of the uncorrupted image f 

such that the mean square error between them is minimized. This error measure is defined as 

 

        The minimum error function of the above expression is given by the expression 

 

         

      The product of a complex quantity with its conjugate is equal to the magnitude of the complex quantity 

squared. This result is known as the Wiener filter 

     The terms used are as follows  
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4.7 Geometric Mean filter  

The generalized form of Wiener filter is the geometric mean filter. 

 

 
 

where ᾳ and 𝛽 are nonnegative, real constants. The geometric mean filter transfer function consists 

of the two expressions in brackets raised to the powers ᾳ and 1 − ᾳ, respectively. 

 

When ᾳ = 1 the geometric mean filter reduces to the inverse filter. With a = 0 the filter becomes the 

so-called parametric Wiener filter, which reduces to the “standard” Wiener filter when  𝛽 = 1 

 

4.8 Image Reconstruction from projections  

The basic principles of projections apply to other CT imaging modalities, such as SPECT (single photon 

emission tomography), PET (positron emission tomography), MRI (magnetic resonance imaging), and 

some modalities of ultrasound imaging. One can use projections with Radon transform or fan beam 

projections or slice theorem for understanding image reconstruction from projections. 

A filter function can be used for image reconstruction. This approach is appropriately called filtered 

back projection. In practice, the data are discrete, so all frequency domain computations are carried 

out using a 1-D FFT algorithm, 

 

        Review questions  

1. Explain the model of image degradation and reconstruction with a diagram? 

2. What are the different sources of noise? 

3. Explain the various noise models. 

4. Describe the various spatial filters/frequency-based filters used to reconstruct images. 

5. Write a short note on Wiener Filtering. 

 

       References  

1. Digital Image Processing, fourth edition by Gonzalez and Woods. 

2. www.Imageprocessingplace.com 

3. Refer nptel courses on digital image processing for further detail study on FFT and other related 

concepts 
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Unit 5  

Image Segmentation II  

10.1 Introduction  

10.2          Image Segmentation using Snakes 

10.3          Segmentation using Level Sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.1 Introduction 
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Image segmentation is a process of segregating foreground and background of images. Basically, 

canny edge detection algorithms are used in most applications to detect edges. However, in many 

applications like medical image processing and imagery applications, instead of basic algorithms 

active contours known as snakes are used. This chapter focuses on Image segmentation using snakes 

and level sets.  

10.2 Image Segmentation using Snakes  

In image segmentation methods, connectivity and homogeneity are based on image data. In medical 

image segmentation analysis, segmentation depends on anatomy. It is usually difficult to get good 

segmentation. Active contours are used for image segmentation. Prior knowledge is essential to get 

to know the real problem. 

In an active contour framework, object segmentation is achieved by using a closed contour to the 

objects’ boundary. The snake is active as it continuously evolving such that the energy is minimized. 

The energy function for a snake works in two parts, internal and external energies  

Esnake    = Einternal    + Eexternal 

The internal energy depends on its intrinsic properties such as length and curvature. The external 

energy depends on factors such as image structure and constraints the user would have imposed. 

Snakes start with closed curve and minimizes the total energy function to deform until they reach an 

optimal state. The main advantage of active contour is that it results in closed coherent areas with 

smooth boundaries. 

 

             Fig 10.1 Active contour is semi-automatic as it requires the user to mark the initial contour 

              Edge based and region based active contour a) Initial contour b) and c) Intermediate contour 

d) Final contour  
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         Fig 10.2 A snake is a parametric curve  

         A higher-level process or the user initializes any curve close to the object boundary. The snake 

then deforms and moves towards the desired object boundary. In the end, it completely shrink-wraps 

around the object. Deformable models are curves or surfaces defined within an image domain that 

can move under the influence of internal forces, which are defined within the curve itself and external 

forces within the image data. 

 Problems with Image segmentation using snakes  

1. Snakes may over smooth the boundary 

2. Initialization is crucial 

3. Depends on number and spacing of control points 

4. It may not follow topological changes of objects. 

 

10.3 Image Segmentation using Level Sets 

 

Level Set is an alternative representation to closed contours. Level sets fit and track objects of 

interest by modifying the embedding function instead of a curve function. 

 
Fig 10.3 Ultrasound image segmentation without reinitialization using Level Set evolution  

Review questions 

1. What are the disadvantages of image segmentation classical methods? 
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2. Explain image segmentation using active contours. 

3. What are level sets in image segmentation? Explain. 

 

References  

1. https://www.cs.cmu.edu/~galeotti/methods_course/Segmentation2-Snakes.pdf 

2. Medical Image Processing by G.R. Sinha and Bhagwati Charan Patel, PHI publications  

3. http://home.iitj.ac.in/~manpreet.bedi/btp/documents/sar.pdf 

4. https://www.slideshare.net/UlaBac/lec11-active-contour-and-level-set-for-medical-image-

segmentation (Reference to image Fig:10.3) 

5. Credits to Mr. Ulas Bagci, Assist. Prof at UCF, Research center for Computer Vision 

6. https://www.cs.cmu.edu/~galeotti/methods_course/Level_Sets_and_Parametric_Transforms.

pdf 
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Unit 5  

Chapter 11 Feature Extraction 

11.1 Introduction  

11.2 Boundary Preprocessing  

11. 3 Boundary feature descriptors 

11.4 Region feature descriptors 

11.5 Whole-Image features  

11.6 Scale-Invariant Feature Transform (SIFT) 
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11.1 Introduction  

Feature extraction almost always follows the output of a segmentation stage, which usually is raw pixel data, 

constituting either the boundary of a region (i.e., the set of pixels separating one image region from another) 

or all the points in the region itself. Feature extraction consists of feature detection and feature description. 

Feature detection refers to finding the features in an image, region, or boundary. Feature description assigns 

quantitative attributes to the detected features. 

11.2 Boundary Preprocessing  

11.2.1 Boundary Following (Tracing) 

A boundary-following algorithm whose output is an ordered sequence of points. We assume (1) that we are 

working with binary images in which object and background points are labelled 1 and 0, respectively; and (2) 

that images are padded with a border of 0’s to eliminate the possibility of an object merging with the image 

border. 

The following algorithm traces the boundary of a 1-valued region, R, in a binary image. 

 1. Let the starting point, b0, be the uppermost-leftmost point† in the image that is labelled 1. Denote by c0 

the west neighbour of b0. Clearly, c0 is always a background point. Examine the 8-neighbors of b0, starting 

at c0 and proceeding in a clockwise direction. Let b1 denote the first neighbour encountered whose value is 

1, and let c1 be the (background) point immediately preceding b1 in the sequence. Store the locations of b0 

for use in Step 5.  

2. Let b = b0 and c = c0. 

3. Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction, be denoted by n1, n2, …… n8. 

Find the first neighbor labelled 1 and denote it by nk 

4. Let b = nk and c =nk-1. 

5. Repeat Steps 3 and 4 until b =b0. The sequence of b points found when the algorithm stops is the set of 

ordered boundary points 

 

 

Fig 11.1 Illustration of the first few steps in the boundary-following algorithm. The point to be processed 

next is labelled in bold, black; the points yet to be processed are gray; and the points found by the algorithm 

are shaded. Squares without labels are considered background (0) values. 

 



 

Unedited Version: Image Processing 
 
 pg. 73 

 

11.2.2 Chain Codes  

Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified 

length and direction. A chain code representation is based on 4- or 8-connectivity of the segments. The 

direction of each segment is coded by using a numbering scheme. A boundary code formed as a sequence of 

such directional numbers is referred to as a Freeman chain code. 

Digital images usually are acquired and processed in a grid format with equal spacing in the x- and y-

directions, so a chain code could be generated by following a boundary in, say, a clockwise direction and 

assigning a direction to the segments connecting every pair of pixels 

 

Fig 11.2 Direction numbers for 1) 4-directional 2) 8-directional chain code 

 

 

    Fig 11.3 a) Digital boundary with resampling grid b) Resampled grid c) 8-directional chain-coded 

boundary 

 

      Example of 4-directional chain code  
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Consider the given image, the 4-directional chain code is given by  

       0 0 3 0 3 3 2 2 2 1 1 1 

       

        Circular difference = last -first = 0 – 0 = 0  

         Therefore, circular chain code is 0 0 0 3 0 3 3 2 2 2 1 1 1 

 

Shape number - Shape no of a boundary obtained from a chain code is defined as the smallest 

magnitude of the circular first difference. 

11.2.3 Slope Chain codes (SCC) 

Using Freeman chain codes generally requires resampling a boundary to smooth small 

variations, a process that implies defining a grid and subsequently assigning all boundary points 

to their closest neighbours in the grid. The SCC of a 2-D curve is obtained by placing straight-

line segments of equal length around the curve, with the end points of the segments touching 

the curve. Obtaining an SSC requires calculating the slope changes between contiguous line 

segments, and normalizing the changes to the continuous (open) interval ( -1, 1). 

 

      Fig 11.4 (a) An open curve. (b) A straight-line segment. (c) Traversing the curve using 

circumferences to determine slope changes; the dot is the origin (starting point). (d) Range of slope 

changes in the open interval (-1 ,1) 

 

11.2.4 Boundary Approximation using Minimum-Perimeter Polygon 

A digital boundary can be approximated with arbitrary accuracy by a polygon. For a closed curve, the 

approximation becomes exact when the number of segments of the polygon is equal to the number of 
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points in the boundary, so each pair of adjacent points defines a segment of the polygon. A boundary 

can be represented by Minimum-Perimeter Polygon. 

MPP Algorithm 

1. The MPP bounded by a simply connected cellular complex is not self-intersecting.  

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of a boundary is a vertex of 

the MPP. 

3. 3. Every mirrored concave vertex of the MPP is a B vertex, but not every B vertex of a boundary is a 

vertex of the MPP.  

4. All B vertices are on or outside the MPP, and all W vertices are on or inside the MPP.  

5. The uppermost-leftmost vertex in a sequence of vertices contained in a cellular complex is always a 

W vertex of the MPP. 

 

Fig 11.5 a) The Region b) Convex and Concave c) MPP superimposed on concave, convex vertices 

11.2.5 Signatures  

A signature is a 1-D functional representation of a 2-D boundary. Plot the distance from the centroid 

to the boundary as a function of angle. The basic idea of using signatures is to reduce the boundary 

representation to a 1-D function. Though simplicity is the advantage, the disadvantage is scaling of the 

entire function depends on only two values: the minimum and maximum. 

Distance versus angle- Plot the distance from the centroid to the boundary as a function of angles: 

signature = r(θ), θ = 0 ~ 2π 
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Fig 11.6 Distance versus angle signatures  

11.2.6 Skeletons, Medial Axes and Distance transforms  

The skeleton of a region is the set of points in the region that are equidistant from the border of the region. 

The skeleton is obtained using one of two principal approaches: (1) by successively thinning the region (e.g., 

using morphological erosion) while preserving end points and line connectivity (this is called topology-

preserving thinning); or (2) by computing the medial axis of the region via an efficient implementation of the 

medial axis transform (MAT). The skeleton of a region is defined as its medial axis. 

 

Fig 11.7 Medial axes of three simple regions  

The distance transform of a region of foreground pixels in a background of zeros is the distance from 

every pixel to the nearest nonzero valued pixel. 

 

Fig 11.8 An image with its distance transform 

 

 

11.3 Boundary feature descriptors  

11.3.1 Basic Boundary descriptors 

The length of a boundary is one of its simplest descriptors. 

The diameter of a boundary B is defined as 
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where D is a distance measure and pi and pj are points on the boundary. The value of the diameter and 

the orientation of a line segment connecting the two extreme points that comprise the diameter is 

called the major axis (or longest chord) of the boundary. 

The length and orientation of the major axis are given by 

 

 

The minor axis (also called the longest perpendicular chord) of a boundary is defined as the line 

perpendicular to the major axis. 

The curvature of a boundary is defined as the rate of change of slope. 

11.3.2 Fourier descriptors  

It represents the boundary as a sequence of coordinates and treats each coordinate pair as a complex 

number. The discrete Fourier transform (DFT) of s( k) is  

 

Where u = 0,1, 2, …., K-1. The complex coefficients a (u) is called the Fourier descriptors of the 

boundary.  

 

Fig 11.9 Basic properties of Fourier descriptors  

 

11.4 Region Feature Descriptors  

11.4.1 Basic Descriptors  

The area of a region is defined as the number of pixels in the region. 

The perimeter of a region is the length of its boundary. 

Compactness of a region, defined as the perimeter squared over the area 
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Another Dimensionless measure is circularity (also called roundness), defined as 

 

The value of this descriptor is 1 for a circle (its maximum value) and p 4 for a square. 

The eccentricity of a region relative to an ellipse as the eccentricity of an ellipse that has the same 

second central moments as the region. 

 

 

11.4.2 Topological Descriptors 

Topology is the study of properties of a figure that are unaffected by any deformation, provided that 

there is no tearing or joining of the figure (sometimes these are called rubber-sheet distortions). 

Topological property useful for region description is the number of connected components of an 

image. The number of holes H and connected components C in a figure can be used to define the 

Euler number, E. The Euler number is also a topological property. E =C - H 

 

Fig 11.10 (a) A region with two holes. (b) A region with three connected components. 

 

Fig 11.11 Region with Euler number 0 and -1 respectively  
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Fig 11.12 A region with polygonal network  

 

 

11.4.3 Central Moments  

The 2-D moment of order (p + q) of an M N× digital image, f (x, y), is defined as 

 

where p = 0,1,2… and q = 0,1,2 … are integers. 

The central moment of order (p + q) is defined as 

 

where p = 0,1,2… and q = 0,1,2 … are integers 

 

The normalized central moment of order (p + q), is defined as 

 

 Where  

A set of seven, 2-D moment invariants can be derived from the second and third normalized central 

moments 



 

Unedited Version: Image Processing 
 
 pg. 80 

 

 

 

 

11.5 Whole Image features  

The principal feature detection methods are based on detecting corners and the other works with 

entire regions in an image. 

 

The Harris-Stephens Corner Detector 

The basic approach is this: Corners are detected by running a small window over an image.  
The detector window is designed to compute intensity changes 

     
Fig 11.13 Illustration of Harris-Stephens Corner detector  

 

Three scenarios  

(1) Areas of zero (or small) intensity changes in all directions, which happens when the window is 
located in a constant (or nearly constant) region, as in location A. 
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(2) areas of changes in one direction but no (or small) changes in the orthogonal direction, which this 
happens when the window spans a boundary between two regions, as in location B 

(3) areas of significant changes in all directions, a condition that happens when the window contains 
a corner (or isolated points), as in location C. 
 
The HS corner detector is a mathematical formulation that attempts to differentiate between these 
three conditions. 
 
Let f denote an image, and let f (s, t) denote a patch of the image defined by the values of (s, t).  A 
patch of the same size, but shifted by (x, y), is given by f (s + x, t + y). 

        

        The above equation can be written in the form  

          

          Where  

        

        Matrix M is called as Harris matrix. 

11.6 Scale Invariant Feature Transform (SIFT) 

        SIFT is an algorithm developed by Lowe [2004] for extracting invariant features from an 

image. It is called a transform because it transforms image data into scale-invariant 

coordinates relative to local image features. SIFT is by far the most complex feature detection 

and description approach. In the presence of variables such as scale changes, rotation, changes 

in illumination, and changes in viewpoint, methods like SIFT is used. 

    SIFT features (called key points) are invariant to image scale and rotation, and are robust 

across a range of affine distortions, changes in 3-D viewpoint, noise, and changes of 

illumination. The input to SIFT is an image. Its output is an n-dimensional feature vector 

whose elements are the invariant feature descriptors 

   The first stage of the SIFT algorithm is to find image locations that are invariant to scale 

change. This is achieved by searching for stable features across all possible scales, using a 

function of scale known as scale space. The parameter controlling the smoothing is referred 

to as the scale parameter. In SIFT, Gaussian kernels are used to implement smoothing, so the 

scale parameter is the standard deviation. 
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   SIFT subdivides scale space into octaves, with each octave corresponding to a doubling of 𝜎. 

SIFT initially finds the locations of key points using the Gaussian filtered images, then refines 

the locations and validity of those key points using improving the accuracy and eliminating 

edge responses, compute key point orientations and descriptors. 

 

 

 

 

 

 

 

 

 

 

 

Review questions  

1. How can one represent and describe features after extraction? 

2. What are region descriptors? 

3. Explain Fourier descriptors briefly. 

4. What are chain codes? Explain with examples. 

5. Write a short note on signatures  

6. Describe Whole image features. 

7. Explain Harris-Stephens Corner detector algorithm. 

8. Write a short note on SIFT. 
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Chapter 8 Image Segmentation, Edge Detection, Thresholding, and Region Detection 

8.0 Introduction 

8.1 Fundamentals  

8.2Thresholding 

8.3 Segmentation by Region Growing and by Region Splitting and Merging  

8.4 Region Segmentation Using Clustering and Superpixels 

8.5 Region Segmentation Using Graph Cuts 

8.6 Segmentation Using Morphological Watersheds 

8.7 Use of Motion in Segmentation 

8.8 Unit End questions 

8.9 Reference for further reading 

 

8.0 Introduction 

The chapter's segmentation algorithms are based on one of two fundamental properties of image 

intensity values: discontinuity or similarity. In the first category, an image is partitioned into 

regions according to abrupt changes in intensity, such as edges. The second category of approaches 

is based on segmenting an image into regions that are similar based on a set of predefined criteria. 

Methods in this category include thresholding, region growth, and region splitting and merging. 

We demonstrate that by combining methods from disparate categories, such as edge detection and 

thresholding, we can improve segmentation performance. Additionally, we discuss image 

segmentation using clustering and superpixels, as well as an introduction to graph cuts, a technique 

that is well-suited for extracting the image's principal regions. Following that, a discussion of 

image segmentation based on morphology is presented, an approach that combines several of the 

characteristics of segmentation based on techniques. 

After reading this chapter, readers should be able to:  

• Understand the characteristics of different types of edges encountered in exercise. 

• Understand how spatial filtering can be used for edge detection. 

• Familiarize yourself with additional types of edge detection techniques that extend beyond 

spatial filtering. 

• Utilize several different approaches to gain a better understanding of image thresholding. 

• Understand how to optimize segmentation by combining thresholding and spatial filtering. 

• Familiarize yourself with region-based segmentation techniques, such as clustering and 

superpixels. 

• Understand the segmentation techniques used with graph cuts and morphological 

watersheds. 
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• Understand the fundamental techniques for incorporating motion into image segmentation. 

 

8.1 Fundamentals 

Let R denote the the whole spatial region that an image occupies. Segmentation is a process that 

divides the image R into n subregions, R1, R2,..., Rn, in such a way that 

a. ⋃ 𝑅𝑖 = 𝑅𝑛
𝑖−1  

b. 𝑅𝑖is a connected set, for i=0,1,2,3..,n; 

c. 𝑅𝑖 ∩ 𝑅𝑗 = ∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, 𝑖 ≠ 𝑗 

d. 𝑄(𝑅𝑖) = 𝑇𝑅𝑈𝐸 𝑓𝑜𝑟 i = 0,1,2,3. . , n  

e. 𝑄(𝑅𝑖 ∪ 𝑅𝑗) = 𝑇𝑅𝑈𝐸 for any adjacent regions 𝑅𝑖 𝑎𝑛𝑑 𝑅𝑗 

 

P (Rk) signifies a logical predicate described over the points in the set Ri  and ∅ whereas is the 

null set. Condition (a) specifies that the segmentation should be complete; each pixel must be 

contained within a region. Conditions (b)   require that points within a region be connected in 

a predefined way. As indicated by condition (c), the regions must be disjoint. Condition (d) 

specifies the properties that all pixels within a segmented region must satisfy—for example, P 

(Ri) = TRUE if all pixels within Ri have the same grey level. Finally, condition (e) establishes 

that regions Ri and Rj are distinct in terms of the predicate P. 

 

As we can see, the fundamental issue in segmentation is partitioning an image into regions that 

meet the aforementioned criteria. 

Monochrome image segmentation algorithms are typically based on one of two important 

properties of intensity values: discontinuity or similarity. In the first category, we assume that 

region boundaries are sufficiently distinct from one another and from the background to permit 

boundary detection via local intensity discontinuities.  Edge-based segmentation is the primary 

technique used in this category. The second category of Region-based 

segmentation approaches is based on partitioning an image into regions that are similar based 

on a set of predefined criteria. 

 

The prior concepts are illustrated in Figure 8.1. Figure 8.1 (a) depicts a region of constant 

intensity overlaid on a darker, also constant-intensity background. The overall image is 

composed of these two regions. The result of computing the inner region's boundary using 

intensity discontinuities is shown in Figure 8.1 (b). Points on either side of the boundary are 

black (zero) due to the absence of intensity discontinuities in those regions. To segment the 

image, we allocate one level (for example, white) to all pixels on or inside the boundary and 

another level (for example, black) to all points outside the boundary. The result of such a 

procedure is depicted in Figure 8.1 (c). As we can see, this result satisfies conditions (a) 

through (c) stated at the beginning of this section. The predicate of condition (d) is as follows: 

If a pixel is on or within the boundary, it should be labelled white; otherwise, it should be 
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labelled black. As shown in Fig. 8.1 (c), this predicate is TRUE for the point’s labelled black 

or white. Likewise, both segmented regions (object and background) satisfy condition (e) 

 

 
FIGURE 8.1 (a) Image of a constant intensity region. (b) Boundary based on intensity 

discontinuities. (c) Result of segmentation. (d) Image of a texture region. (e) Result of 

intensity discontinuity computations (note the large number of small edges). (f) Result of 

segmentation based on region properties 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The following three images demonstrate segmentation by region. Figure 8.1 (d) is similar to 

Figure 8.1 (a), other than that the inner region's intensities form a textured pattern. The outcome 

of computing intensity discontinuities in this image is shown in Figure 8.1 (e). Because of the 

many spurious intensity changes, it is hard to identify a distinctive boundary for the original 

image, as many of the nonnegative intensity variations are linked to the boundary, making 

edge-based segmentation ineffective. However, because the outer region is consistent, we only 

need a predicate that distinguishes among textured and constant regions to solve this 

segmentation problem. The standard deviation of pixel values is a measure that actually 

achieves this by being greater than zero in areas of the texture region and less than zero in all 

other regions. The result of segmenting the original image into subregions of varying sizes is 

depicted in Figure 8.1 (f). Each subregion was then labelled white if the standard deviation of 

its pixels was positive (i.e., if the predicate was TRUE), and zero if the standard deviation was 

negative. Due to the fact that groups of squares were labelled with the same intensity, the result 

has a "blocky" appearance around the region's perimeter (smaller squares would have given a 

smoother region boundary). Finally, keep in mind that these results also satisfy the five 

segmentation criteria stated at the start of this section. 

Complete v/s partial segmentation 

In complete segmentation 
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• Segmented disjoint regions uniquely correspond to objects in the input image. 

• Cooperation with high computation levels that make use of problem's domain-specific 

knowledge is required. 

          In partial segmentation 

• Segmented regions do not always correspond to the image object. 

Discontinuity-based segmentation 

In a discontinuity-based approach, an image's partitions or sub-divisions are determined by 

abrupt changes in the image's intensity level. We are primarily concerned with identifying 

isolated points, lines, and edges in an image. To do so, we employ the 3 X 3 Mask operation. 

 

Figure 8.2. An image  

 

Figure 8.3. 3X3 Mask 

 

𝑹 = ∑ ∑ 𝑾𝒊,𝒋

𝟏

𝒋=𝟏

𝟏

𝒊=𝟏

𝒇(𝒙 + 𝟏, 𝒚 + 𝟏) 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The discontinuity-based segmentation can be classified into three approaches: (1) Point 

detection, (2) Line detection, and (3) Edge detection. 
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Point, Line, and Edge Detection 

This section discusses segmentation techniques that are relied on detecting sharp, localised 

transformations in intensity. We are focused in three types of image characteristics: isolated 

points, lines, and edges. Edge pixels are pixels where the image's frequency sudden modifies, 

while edges (or edge segments) are collections of connected edge pixels. 

Edge detectors are low-level image processing tools that are used to detect pixel boundaries. 

A line can be thought of as a (typically) thin edge segment where the intensity of the 

background one on each side of the line is significantly greater or lesser than the intensity of 

the line pixels. Indeed, as we will explain shortly, lines outcome in what are referred to as "roof 

edges." Finally, an isolated point can be thought of as a foreground (background) pixel 

surrounded by other foreground (background) pixels. 

 

Point Detection 

In a digital image, the simplest type of discontinuity is a point. The most frequently used 

technique for detecting discontinuities is to apply a (n X n) mask to each point in the image. 

The mask is constructed in the manner depicted in Figure 2. 

 

Figure 8.4. A mask for point detection 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The point is located at the (x, y) coordinates of the mask's centre in an image. If the equivalent 

value of R is 

∥ 𝑅 ∥> 𝑇 

Where R denotes the mask's response at any point within the image and T denotes a non-

negative threshold value. This indicates that an isolated point is detected at the specified value 

(x, y). This formulation is used to calculate the weighted differences between the centre point 

and its neighbours, as an isolated point's grey level will be significantly different than that of 

its neighbours [ ]. As illustrated in Figure 3, the result of the point detection mask is as follows. 
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Figure 8.5. (a) Gray-scale image with a nearly invisible isolated black point (b) Image 

showing the detected point 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Line Detection 

Line detection is the next level of complexity in terms of image discontinuity in the direction 

of the image. A response could be computed for any point in the image that indicates the 

direction with which the point of a line is most closely associated. Two masks ith and jth are 

used for line detection. Following that, there is 

∥ 𝑅𝑖 ∥>∥ 𝑅𝑗 ∥, ∀𝑗 ≠ 𝑖 

It means that the corresponding points is more likely to be associated with a line in the direction 

of the mask i. 

 

Figure 8.6. Line Detector masks in (a) Horizontal direction (b) 45° direction (c) Vertical 

direction (d) - 45° direction 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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The position of a given pixel [] is defined by the greatest response calculation from these 

matrices. Figure 8.7 illustrates the result of the line detection mask. 

 

Figure 8.7. (a) Original Image (b) result showing with horizontal detector (c) with 45° 

detector (d) with vertical detector (e) with -45° detector 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

We can detect lines in a specified direction using lines detector masks. For instance, we're 

interested in locating all lines that are one pixel thick and oriented at -45 degrees. For this, we 

use a digitized (binary) portion of an electronics circuit's wire-bond mask. The outcomes are 

depicted in Figure 8.8. 

 

 

Figure 8.8. (a) Image of a wire-bond mask (b) Result of processing with the -45° detector 

(c) Zoomed view of the top, left region of -45° detector (d) Zoomed view of the bottom, 

right region of -45° detector (e) Absolute value of -45° detector (f) All points whose values 

satisfied the condition g >= T, where g is the image in (e) 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Edge detection 

Due to the peculiarity of isolated points and lines of unitary pixel thickness in most practical 

applications, edge detection is the most frequently used technique for grey level discontinuity 

segmentation. An edge is a line that separates two regions of varying intensity. It is extremely 

useful for detecting discontinuities in images. When an image transitions from darkness to 

lightness or vice versa. Figure 8.9 illustrates the changes in intensity, first-order derivative, and 

second-order derivative. 

 

Figure 8.9. (a) Intensity profile (b) First-order derivatives (c) Second-order derivatives 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

First-order derivatives. 

First-order derivatives respond whenever there is a discontinuity in intensity levels. On the 

leading edge, it's positive, and on the trailing edge, it's negative. An image f(x, y) and the 

gradient operator ∇f are given in the following equation: 

𝑓 = [
𝐺𝑥

𝐺𝑦
]= [

𝛿𝑓

𝛿𝑥
𝛿𝑓

𝛿𝑦

] 

Strength  of   ∇   ⃐     𝑓 is given by  

∇f = magnitude of    ∇   ⃐     𝑓 

= √𝐺𝑥
2 + 𝐺𝑦

2 

≅ ∥ 𝐺𝑥 ∥  +∥ 𝐺𝑦 ∥ 
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It gives the strength of edge at location (x, y) 

𝛼(𝑥, 𝑦) = tan−1
𝐺𝑥

𝐺𝑦
 

 

Figure 8.10. (a) Original Image (b) ∥ 𝑮𝒙 ∥ component of the gradient along x-direction (c) 

∥ 𝑮𝒚 ∥component of the gradient along y-direction (d) Gradient Image ∥ 𝑮𝒙 ∥  +∥ 𝑮𝒚 ∥ 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

It is possible to calculate the gradient of an image in several ways. 

Prewitt Edge operator 

 

Figure 8.11. Masks used for Prewitt Edge operator 

There is a gradient in the horizontal direction, and a gradient in the vertical direction, which is 

found by a mask. The mask also computes the gradient in the horizontal direction, which is 

found by another mask. 𝐺𝑥 and 𝐺𝑦 components can be found at different locations in an image 

by using these two masks. In this way, we can determine the strength and direction of the edge 

at a given location (x, y). 

Sobel Edge operator 
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Figure 8.12. Masks used for Sobel Edge operator 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

It calculates the average value of an image. Image noise has a negative impact on image quality. 

As a result, it is preferable to the prewitt edge operator because it produces a smoothing effect 

and reduces spurious edges caused by noise in the image. 

Second-order derivatives 

It is positive at the darker side and negative at the white side. It is very sensitive to noise present 

in an image. That’s why it is not used for edge detection. But, it is very useful for extracting 

some secondary information i.e. we can find out whether the point lies on the darker side or 

the white side. 

Zero-crossing: It is useful to identify the exact location of the edge where there is gradual 

transition of intensity from dark to bright region and vice-versa. 

The derivative operators have a variety of higher-order relationships: 

Laplacian operator 

The Laplacian mask is given by: 

 

Figure 8.13. Masks used for Laplacian operator 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

∇𝟐=
𝜹𝟐 𝒇

𝜹𝒙𝟐
 +

𝜹𝟐 𝒇

𝜹𝒚𝟐
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If we consider the diagonal elements: 

 

Figure 8.14. Masks used for Laplacian operator using 8-connectivity 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

It is less sensitive to noise, and because of this, it can cause a double edge effect. However, 

extracting secondary information is quite helpful with it. 

To reduce the effect of noise, we first apply a Gaussian operator to smooth the image, and then 

we use the Laplacian operator to refine it. Together, the LoG (Laplacian of Gaussian) operator 

is known as the Laplacian of Gaussian operation. 

 

 

LoG operator 

The LoG mask is given by 

 

Figure 8.15. Masks used for LoG operator 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The Gaussian operator is given by: 

ℎ(𝑥, 𝑦) = exp (−
𝑥2 + 𝑦2

2𝜎2
) 

Where 𝑥2 + 𝑦2 = 𝑟2 
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∇𝟐𝒉 =  (
𝑟2 − 𝜎2

𝜎4
)  𝒆𝒙𝒑 (−

𝑟2

2𝜎2
) 

Canny operator 

It is very important method to find edges by isolating noise from the image before find edges of 

images, without affecting the features of the edges in the image and then applying the tendency to 

find the edges in the image and the critical value for threshold. 

1. Convolve image f(r, c) with a Gaussian function to get smooth image g(r, c). 

f(r, c) = f(r, c) * G(r, c) 

2. Apply first difference gradient operator to compute edge strength. 

3. Apply non-maximal or critical suppression to the gradient magnitude. 

4. Apply threshold to the non-maximal suppression image. 

 

The result of all operators are shown 

 
Figure 8.16. (a) Original image (b) Result using with Prewitt operator (c) Result 

using with Roberts operator (d) Result using with Sobel operator (e)Result using 

with LoG operator (f) Result using with Canny operator 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Marr Hildreth Edge Detector (Laplacian of Gaussian) 

 

Neuroscience is one of the sources of inspiration for the Marr Hildreth edge detector. The filter 

Marr developed is a Laplacian filter. The Laplacian filter is especially susceptible to noise. Edge 

detection is commonly done using the Laplacian of an image, which is especially useful for 

revealing regions of rapid intensity change. Before applying the Laplacian filter, we should use a 

Gaussian filter to properly process the image. The associative property of the convolution 

operation applies both to the Gaussian smoothing filter and the Laplacian filter, which allows us 

to first perform the convolution and then do the hybrid filter operation in order to achieve the same 

result. The image to the right shows the results of this experiment. 

 

 

   Figure 8.17 a)  shape of LoG with inverted hat b)  9X9 LoG mask when sigma = 1.4   

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The shape of LoG is somewhat similar to an inverted hat. This image shows the 9X9 LoG mask 

when sigma = 1.4. The LoG of an image can be obtained directly by convolving the mask over the 

image. After obtaining the LoG of an image, what do we do? 
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Source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm 

Figure 8.18 a) intensity variation of an image with a step edge b) LoG of the image 

 

This image illustrates the intensity variation of an image with a step edge as it relates to the x-axis. 

The plot in the right side of this image illustrates the LoG of the image. When there is an edge in 

the image, there is a zero crossing in LoG. Since this is a simple and obvious demonstration, it 

shows that we can determine the edge when a zero crossing occurs. 

 

                                 

Figure 8.19 a) After applying LoG filter                         b) After applying threshold over 

zero crossing 

 

The Canny Edge Detector 

 

A multi-step edge detection algorithm is also known as a "canny edge detector." Detection of 

edges can be achieved by following the steps listed below. 

 

1. Removal of random noise in an input image via Gaussian distribution filter 

2. Gaussian filter is used to calculate the gradient magnitude, which is then used to calculate 

the magnitude of the image pixels along the x and y axes. 

3. Considering a group of neighbors for any curve in a direction perpendicular to the given 

edge, suppress the non-max edge contributor pixel points. 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
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4. Furthermore, use the Hysteresis Thresholding method to protect the pixels that are above 

the gradient magnitude, even if they are only slightly above it, while neglecting the ones 

that are lower threshold value. 

 

Before getting too deep into the techniques below, consider the following three conclusions first 

showed up at by J.K. Canny who created the algorithm: 

 

• Good Detection: To avoid getting a false positive or a false negative, the optimal detector 

must be reliable. 

• Good Localization: The detected edges are considered to be close to true edges. 

• Single Response Constraint: For each edge point, only one point must be returned by the 

detector. 

Steps to follow during Canny Algorithm: 

Noise Reduction 

An edge detector is a type of high pass filter that amplifies high-frequency components while 

suppressing low-frequency ones. Due to the fact that both edges and noise are high-frequency 

components, edge detectors have a tendency to amplify noise. To avoid this, we use a low-pass 

filter to smooth the image. Canny accomplishes this through the use of a Gaussian filter. 

 

Figure 8.20 

While a larger filter reduces noise, it degrades edge localization, and vice versa. In general, a value 

of 55 is a good choice, but this may vary according to the image. 

Finding Intensity Gradient of the Image 

The pixel might not be close to matching up with its neighboring pixels when the noise is present. 

Inappropriate edge detection may occur. In order to avoid having the same issue, we use the 

Gaussian filter, which is applied to the image, then convolved with the image, removing the noise, 

preventing the desired edges in output images. 

Convoluting the Gaussian filter or kernel g(x,y) with an image I is demonstrated in the following 

example. Here, we want to ensure that any given pixel in the output is similar to its neighbors, and 

so we use the matrix [1 1 1] to maintain this similarity and remove noise. 

𝑆 = 𝐼 ∗ 𝑔(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) ∗ 𝐼 
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𝑔(𝑥, 𝑦) =
1

√2𝜋𝜎
 𝑒

−
𝑥2+𝑦2

2𝜎2  

g(x,y)= Gaussian Distribution 

I = input image 

Derivative: 

Calculate the derivative of the filter with respect to the X and Y dimensions and convolve it with 

I to obtain the magnitude of the gradient along the dimensions. Additionally, the image's direction 

can be calculated using the tangent of the angle formed by the two dimensions. 

 

∇𝑆 = ∇(𝑔 ∗ 𝐼) = (∇𝑔) ∗ 𝐼 

∇𝑆 = [
𝑔𝑥

𝑔𝑦
] ∗ 𝐼 = [

𝑔𝑥 ∗ 𝐼
𝑔𝑦 ∗ 𝐼] 

∇𝑆 =

[
 
 
 
𝜕𝑔

𝜕𝑥
𝜕𝑔

𝜕𝑦]
 
 
 

= [
𝑔𝑥

𝑔𝑦
] 

The convolution described above generates a gradient vector with magnitude and direction. 

(𝑆𝑥 ,   𝑆𝑦  ) 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟  

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √(𝑆𝑥
2 + 𝑆𝑦

2) 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝜃 = tan−1
𝑆𝑥  

𝑆𝑦  
 

The following is an illustration of Gaussian Derivatives, which contribute to the edges in output 

images. 

 

Figure 8.21 Gaussian Derivatives 
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Clearly, the edges remain quite blurred or thick. Keep in mind that an edge detector should produce 

a single precise response corresponding to the edge. As a result, we must thin the edges, or in other 

words, locate the largest edge. This is accomplished through the use of Non-max Suppression. 

Non-Max Suppression 

This is a technique for thinning the edges. This checks whether or not a pixel is a local maximum 

in its neighborhood in the direction of the gradient. It is retained as an edge pixel if it is a local 

maximum; otherwise, it is suppressed. 

Neighboring pixels are located in the horizontal, vertical, and diagonal directions (0°, 45°, 90°, 

and 135°) for each pixel. As a result, we must round off the gradient direction at each pixel to one 

of these values, as illustrated below. 

 

Figure 8.22 Neighboring pixels are located in the horizontal, vertical, and diagonal 

directions (0°, 45°, 90°, and 135°) for each pixel. 

After rounding, we'll compare each pixel's value to the gradient direction's two neighboring pixels. 

If that pixel signifies a local maximum, it is managed to retain as an edge pixel; otherwise, it is 

suppressed. Thus, only the most substantial responses will remain. 

Consider the following. 

Assume the gradient direction is 17 degrees for pixel 'A.' we will round to 0 degrees because 17 is 

closer to 0. Then, using the rounded gradient direction, we select neighboring pixels (See B and C 

in below figure). If A has a greater intensity value than B and C, it is retained as an edge pixel; 

otherwise, and it is suppressed. 

 

Figure 8.22 Gradient direction 
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Figure 8.23 a) Gradient  Magnitude  b) Non-max suppression 

Clearly, the edges are thinned, but some are brighter than others. The brighter ones can be 

considered strong edges, while the lighter ones may be true edges or may be noise. 

Hysteresis Thresholding: 

Non-max suppression produces an image with a far more accurate depiction of its real edges. 

However, as can be seen, certain edges are brighter than others. The brighter ones can be 

considered strong edges, whereas the lighter ones may be true edges or may be noise. Canny 

employs hysteresis thresholding to resolve the question of "which edges are truly edges and which 

are not." We define two thresholds in this section: 'High' and 'Low.' 

• Any edges with intensity greater than ‘High’ are the sure edges. 

• Any edges with intensity less than ‘Low’ are sure to be non-edges. 

• The edges between ‘High’ and ‘Low’ thresholds are classified as edges only if they are 

connected to a sure edge otherwise discarded. 

Let’s take an example to understand 

 

 

Figure 8.24 'High' and 'Low threshold 

Here, A and B are sure-edges as they are above ‘High’ threshold. Similarly, D is a sure non-edge. 

Both ‘E’ and ‘C’ are weak edges but since ‘C’ is connected to ‘B’ which is a sure edge, ‘C’ is also 
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considered as a strong edge. Using the same logic ‘E’ is discarded. This way we will get only the 

strong edges in the image. 

 

Figure 8.25 a) Non-max suppression b) Final Output 

 

Local Processing 

In this type of analysis, two primary properties are used to determine the similarity of edge pixels: 

1. The strength of the response of the gradient operator used to generate the edge pixel. 

2. The gradient's direction 

Within a small neighbourhood, for example, 3x3, 5x5, all points with shared properties are 

connected. If both the magnitude and direction criteria are met, a point (x',y') in the vicinity of 

(x,y) is linked to the pixel at (x,y). 

|∇f (x', y') − ∇f (x, y) |≤ Threshold Tm 

|α(x', y') − α(x, y)| ≤ Threshold 

 

Figure 8.26 (a) Original image ; (b) detection result without local processing ; (c) detection 

result with local processing (Tm=0.15 x max(|∇f|) and Td=pi/9 

Global Processing Using the Hough Transform 

The Hough transform can be used to link pixels and identify curves. In the polar coordinate system, 

the straight line denoted by y=mx+c can be expressed as, 
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ρ = xcos(θ)+ ysin(θ) …………………..(i) 

Where, denotes a vector extending from the origin to the point on the straight line y=mx+c that is 

closest to the origin. This vector will be perpendicular to the line from the origin to the point closest 

to the line, as illustrated below.  

 

Figure 8.27 Vector perpendicular to the line from the origin to the point closest to the line 

Any line in the x, y plane pertains to a point in the two-dimensional space defined by the parameter 

and θ. The Hough transform of a straight line in the x,y plane is a particular point in the ρ, θ , 

space, and these points must fulfil the specified equation with the constants x1,y1. Thus, the locus 

of all such lines in the x, y plane corresponds to the location of the particular sinusoidal curve in, 

space. 

Assume we have the edge points xi,yi that are parallel to the straight line with parameters ρ0,θ0. 

Each edge point corresponds to a sinusoidal curve in, space, but these curves must intersect at 

0,ρ0,θ0. Due to the fact that this is a shared line. 

Consider the following equation for a line: y1= ax1+b 

By varying the values of a and b in this equation, an infinite number of lines can pass through this 

point (x1,y1). 

 

 

Figure 8.28 line: y1= ax1+b 

If we rewrite the equation as follows: 

B= -ax1+y1 
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A straight line is obtained if we consider the ab plane instead of the xy plane (xi,yi). This entire 

line in the ab plane is due to a single point in the xy plane and different values of and b. Another 

point (x2, y2) in the xy plane can be considered here. Its slope intercept equation is, 

Y2= ax2+ b………………….(1) 

This is what we get when we write it in terms of the ab plane. 

B= -ax2+y2………………..(2) 

In the ab plane, this is a different line. In the ab plane, these two lines will intersect only if they 

are part of a straight line in the x-axis plane. (a',b') is the coordinates of the point of intersection in 

the ab plane. A slope-intercept equation y=a'x+b' can be written as follows: y=a'x+b'. This line 

passes through the points (x1,y1), and (x2,y2) in the y-axis. 

 

 

Figure 8.29 line passes through the points (x1,y1), and (x2,y2) in the y-axis. 

 

8.2 Thresholding 

In terms of image segmentation, thresholding is the simplest method. Using thresholding to create 

binary images from a grayscale image 

The Basics of Intensity Thresholding 

Assume that the intensity histogram in Fig. 8.30 (a) refers to an image, f(x, y), that is comprised 

of light objects on a dark background, and that the intensity values of the object and background 

pixels are sorted into two dominating modes. One simple method of distinguishing the objects 

from the background is to set a threshold, T, which differentiates the two modes. Then, any point 

(x, y) in the image at which the object is located is referred to as an object point. In any other case, 

the point is referred to as a background point. With another way of saying it, the segmented image, 

indicated by g(x, y), can be represented as 

A coordinate f(x, y) is a measure of the intensity of f. (x, y). 

𝑔(𝑥, 𝑦) = {
1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇

0 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇
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Global thresholding occurs when T is a constant that is applied to a whole image. We use the term 

variable thresholding when the value of T varies over an image. As a result, the value of T at every 

given location (x, y) in an image depends on the features of the neighbourhood of (x, y) (for 

example, the average intensity of the pixels in the neighborhood). The term dynamic 

thresholding  or adaptive thresholding is typically used when T relies on the spatial coordinates (x, 

y). These terms are not used universally. 

Figure 8.30(b) illustrates a more complex and difficult thresholding problem involving a histogram 

with three dominant modes, for example, two types of light objects on a dark background. Multiple 

thresholding categorizes a point (x, y) as relating to the background if f(x,y) <T1 , to one object if 

T1 ≤f(x,y)≤T2 and to the other object class if f(x,y)> T2. That is to say, the segmented image is 

specified by 

𝑔(𝑥, 𝑦) = {

𝑎 if f(x, y)  < T1

𝑏  T1  ≤ f(x, y) ≤ T2

𝑐 f(x, y) >  T2

 

 

FIGURE 8.30 Intensity histograms that can be partitioned (a) by a single threshold, and (b) 

by dual thresholds 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Basic Global Thresholding 

Whenever the intensity distributions of objects and background pixels are substantially distinct it 

is possible to utilize a single (global) threshold that applies to the whole image In many other 

applications, there is typically sufficient variation across images so, even though global 

thresholding is a reasonable method an algorithm capable of predicting the threshold value for 

each image is needed. For this aim, the iterative approach described below can be used: 

1. An initial threshold (T) is selected; this could be accomplished at random or by any other 

method that is preferred. 

2. In the same manner as explained before, the image is segmented into object and 

background pixels, yielding two sets of pixels: 

a. G1 = {f(m,n):f(m,n)>T} (object pixels) 

b. G2 = {f(m,n):f(m,n) T} (background pixels) (note, f(m,n) is the value of the pixel 

located in the mth column, nth row) 

3. The average of each set is computed. 
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a. m1 = average value of G1 

b. m2 = average value of G2 

4.  A new threshold is created that is the average of m1 and m2 

a. T‘ = (m1 + m2)/2 

5. Return to step two, this time using the new threshold computed in step four, and repeat the 

process until the new threshold matches the one before it (i.e., until convergence has been 

achieved). 

Segmentation using the preceding iterative algorithm is illustrated in Figure 8.31. The original 

image is shown in Figure 8.31 (a), and the image histogram, which demonstrates a distinct valley, 

is shown in Figure 8.31(b). The basic global algorithm produced the threshold after three iterations, 

starting with T equal to the image's average intensity, and using Figure 8.31 (c) to segment the 

original image. As expected given the histogram's distinct separation of modes, the segmentation 

of object and background was flawless. 

 

FIGURE 8.31(a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global 

threshold (thin image border added for clarity). (Original image courtesy of the National 

Institute of Standards and Technology.). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Optimum Global Thresholding Using Otsu’s Method 

Let us begin by comprehending Otsu's approach. The method processes the image histogram, 

segmenting the objects based on the class variance minimization. Generally, this technique 

produces the desired results when dealing with bimodal images. The histogram of such an image 

contains two distinct peaks that correspond to distinct ranges of intensity values. 

The fundamental idea is to divide the image histogram into two clusters using a threshold defined 

by the weighted variance of these classes, denoted by 𝜎𝑤
2(𝑡) 

The entire computation equation can be summarized as follows:𝜎𝑤
2(𝑡) = 𝑤1 (𝑡) 𝜎1

2(𝑡) +

 𝑤2 (𝑡) 𝜎2
2(𝑡) , where 𝑤1 (𝑡) and 𝑤2 (𝑡)are the probabilities of the two classes divided by a 

threshold t that is between 0 and 255 inclusively. 
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As demonstrated in Otsu's paper, there are usually two ways to determine the threshold. The first 

objective is to minimize the within-class variance defined above 𝜎𝑤
2(𝑡), while the second objective 

is to maximise the between-class variance using the following expression: 

 𝜎𝑏
2(𝑡) = 𝑤1(𝑡)𝑤2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2Where 𝜇𝑖 denotes the mean of class i. 

The probability P is computed for every pixel value in two distinct clusters C1 and C2 using the 

cluster probability functions  

𝑤1(𝑡) = ∑ 𝑃(𝑖)
𝑡

𝑖=1
 

𝑤2(𝑡) = ∑ 𝑃(𝑖)
𝐼

𝑖=𝑡+1
 

It's important to note that the image can be viewed as an intensity function f(x, y), with gray-level 

values .The number of pixels that have a specified gray-level I is signified by i. The image's as a 

whole pixel count is n. 

Thus, the probability of encountering gray-level I is: 

𝑃(𝑖) =
𝑛𝑖

𝑛
 

The C1 pixel intensity values are in the range [1, t], while the C2 pixel intensity values are in the 

range [t + 1, I], where I is the maximum pixel value (255). 

The following phase is to achieve the means for C1 and C2, which are denoted appropriately by 

𝜇1(𝑡) and 𝜇2(𝑡)): 

𝜇1(𝑡) = ∑
𝑖𝑃(𝑖)

𝑤1(𝑡)

𝑡

𝑖=1
 

𝜇2(𝑡)) = ∑
𝑖𝑃(𝑖)

𝑤2(𝑡)

𝐼

𝑖=𝑡+1
 

Now distinctly remember the above equation for the weighted variance within classes. We will 

determine the remaining components ( 𝜎1
2, 𝜎2

2) by combining all of the above-mentioned 

ingredients: 

 𝜎1
2(𝑡) = ∑ [𝑖 − 𝜇1 (𝑡)]2  

𝑖𝑃(𝑖)

𝑤1(𝑡)

𝑡

𝑖=1
 

 𝜎2
2(𝑡)) = ∑ [𝑖 − 𝜇2 (𝑡)]2

𝑖𝑃(𝑖)

𝑤2(𝑡)

𝐼

𝑖=𝑡+1
 

 

It's important to note that if the threshold is selected wrongly, the variance of certain class will be 

quite large. To obtain the total variance, we essentially have to add the variances within and 
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between classes: 𝜎𝑇
2 =  𝜎𝑤

2(𝑡) +  𝜎𝑏
2(𝑡) , where 𝜎𝑏

2(𝑡) = 𝑤1(𝑡)𝑤2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2. The 

image's total variance (𝜎𝑇
2) is independent of the threshold. 

Thus, the pipeline of the general algorithm for the between-class variance maximization option 

can be represented as follows: 

1. calculate the histogram and intensity level probabilities 

2. initialize 𝑤1(0), 𝜇𝑖(0) 

3. iterate over possible thresholds: t = 0,..., max_intensity 

• update the values of 𝑤𝑖 , 𝜇𝑖, where 𝑤𝑖i is a probability and 𝜇𝑖 is a mean of class i 

• calculate the between-class variance value  𝜎𝑏
2(𝑡) 

4. the final threshold is the maximum  𝜎𝑏
2(𝑡) value 

Otsu’s Binarization Application 

The authors propose an enhanced Otsu's method as one approach for estimating the location of 

underwater landmarks. The advantages of this approach are that it allows for precise real-time 

segmentation of underwater features and has been demonstrated to perform better than threshold 

segmentation methods. Consider its concept in greater detail by examining the side-scan sonar 

(SSS) shipwreck image provided in the article. Modern SSS systems are capable of imaging a large 

area of the sea floor in two dimensions and producing realistic images. Thus, their background 

contains regions of sludge and aquatic animals in the form of spots that are typically equal to 30 

pixels in diameter. 

 

FIGURE 8.32: SSS sea bottom image 

They distort proper image processing because their grey level is similar to that of certain zones of 

foreground objects. As shown below, the segmented image produced by the classical Otsu 

technique contains these artefacts: 
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FIGURE 8.33: SSS sea bottom image 

To address this spot challenge, a technique is based on Otsu's binarization was developed to restrict 

the search range of the suitable segmentation threshold for foreground object division. The 

following is the improved Otsu's method pipeline: 

1. Calculate Otsu's threshold T 

2. Calculate N30 using Canny edge detection 

3. if N30 > 300, calculate final T value. 

As a result, the wrecked ship stands out clearly from the background: 

 

FIGURE 8.34: Improved Otsu’s result 

Using Image Smoothing to Improve Global Thresholding 

The image from Figure 8.35 (a), the histogram is shown in Figure 8.35 (b), and the image is shown 

in Figure 8.35 (c) after it has been thresholded using Otsu's method. Each black point in the white 

region and each white point in the black region represents a thresholding error, indicating that the 

segmentation was a complete failure. The result of smoothing the noisy image with a size 

averaging kernel is shown in Figure 8.35 (d), and the histogram is shown in Figure 8.35 (e). 
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Smoothing improves the shape of the histogram, and we would expect the smoothed image's 

thresholding to be nearly perfect. As illustrated in Figure 8.35 (f), this is the case. The blurring of 

the boundary between object and background resulted in the slight distortion of the object-

background boundary in the segmented, smoothed image. Indeed, the more aggressively we 

smooth an image, the more boundary errors in the segmented result we should anticipate. 

 

FIGURE 8.35 (a) Noisy image (c) and (b) its histogram. (c) Result obtained using Otsu’s 

method. (d) Noisy image smoothed using an averaging kernel and (e) its histogram. (f) Result 

of thresholding using Otsu’s method 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Following that, we examine the effect of significantly shrinking the foreground region in 

comparison to the background. The result is depicted in Figure 8.36 (a). In this image, the noise is 

additive Gaussian with a mean of zero and a standard deviation of ten intensity levels (as opposed 

to 50 in the previous example). As illustrated in Fig. 8.36 (b), the histogram lacks a clear valley, 

implying that segmentation will fail, as confirmed by the result in Fig. 8.36 (c). The image 

smoothed with a size averaging kernel is shown in Figure 8.36 (d), and the corresponding 

histogram is shown in Figure 8.36 (e). As expected, the net effect was to narrow the histogram's 

spread, but the distribution remained unimodal. As illustrated in Fig. 8.36 (f), segmentation failed 

once more. The reason for the failure is that the region is so small that its contribution to the 

histogram is negligible in comparison to the noise-induced intensity spread. In these instances, the 

following section's approach is more likely to succeed. 
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FIGURE 8.36 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu’s method. 

(d) Noisy image smoothed using a averaging kernel and (e) its histogram. (f) Result of 

thresholding using Otsu’s method. Thresholding failed in both cases to extract the object of 

interest 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Using Edges to Improve Global Thresholding 

The foreground and background of an image are a necessary condition for segmenting it using a 

global threshold. There is sufficient space between the histogram peaks, such that by adjusting the 

threshold between the gaps, the foreground can be distinguished from the background. 

OneOkHistograms, or histograms suitable for global threshold segmentation, frequently exhibit 

the following properties: 

• tall 

• narrow 

• symmetric 

• separated by deep valleys 

However the human eye appears to have a high contrast between foreground and background at 

times, segmenting an image with a global threshold is not easy. Determine the threshold 

adaptively, because the foreground or background content is excessive, swamping the contribution 

of the other party to the grayscale histogram. This experiment is designed to address this issue. 

The central idea to solve this problem is Stat histogram only for the place where the foreground 

and the background are adjacent. And to find neighboring places can often be through magnitude 

of gradient of image or Laplacian operator get. 

The following algorithm summarizes the preceding discussion, where f(x, y) denotes the input 

image: 
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1. using any of the methodologies, evaluate an edge image as the magnitude of the gradient or the 

absolute value of the Laplacian of f(x, y). 

2. Enter a value for the threshold, T. 

3. Using T from Step 2, threshold the image from Step 1 to create a binary image, 𝑔𝑇(𝑥, 𝑦) 

This image is used as a mask in the subsequent step to select pixels from f(x, y) that correspond to 

the mask's "strong" edge pixels. 

4. Create a histogram by excluding the pixels in f(x, y) that correspond to the locations of the 1-

valued pixels in 𝑔𝑇(𝑥, 𝑦) 

5. Using the histogram created in Step 4, globally segment f(x, y) using, for example, Otsu's 

method. 

If T is set to a value less than the minimum value of the edge image, it will contain only 1's, 

implying that the image histogram will be computed using all pixels in f(x, y). In this particular 

instance, the previous algorithm performs global thresholding on the original image's histogram. 

It is common practice to specify T as a percentile, which is typically set high (e.g., in the high 90's) 

to ensure that only a small subset of the gradient/Laplacian image pixel is used in the computation. 

The following examples demonstrate the previously discussed concepts. The gradient is used in 

the first example, while the Laplacian is used in the second. Using either approach, similar results 

can be obtained in both examples. 

EXAMPLE 1: Using edge information based on the gradient to improve global thresholding. 

The critical point is the images and histograms in Figures 8.37(a) and (b) correspond to those in 

Figure 8.36. As you saw, smoothing accompanied by thresholding was unable to segment this 

image. The purpose of this example is to demonstrate how to solve a problem using edge 

information. The mask image in Figure 8.37(c) was created using a gradient magnitude image 

thresholded at the 99.7 percentile. The image in Figure 8.37 (d) is the result of multiplying the 

mask by the input image. The histogram in Figure 8.37(e) represents the nonzero elements in 

Figure 8.37(d). Take note that this histogram possesses the critical characteristics discussed 

previously; namely, it contains reasonably symmetrical modes separated by a deep valley. Thus, 

whereas the histogram of the original noisy image did not indicate the possibility of successfully 

thresholding, the histogram in Fig. 8.37(e) indicates that it is possible to successfully threshold the 

small object from the background. As illustrated in Fig. 8.37(f), this is the case. This image was 

created by applying Otsu's to the noisy image in Fig. 8.37 (a) and then applying the Otsu threshold 

globally to the noisy image. The outcome is nearly flawless generate an appropriate derivative 

image. 
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FIGURE 8.37(a) Noisy image from Fig. 8.36(a) and (b) its histogram. (c) Mask image formed 

as the gradient magnitude image thresholded at the 99.7 percentile. (d) Image formed as the 

product of (a) and (c). (e) Histogram of the nonzero pixels in the image in (d). (f) Result of 

segmenting image (a) with the Otsu threshold based on the histogram in (e). The threshold 

was 134, which is approximately midway between the peaks in this histogram 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

EXAMPLE 2: Using edge information based on the Laplacian to improve global 

thresholding. 

We take into account a much more complicated thresholding problem in this example. Figure 8.38 

(a) illustrates an 8-bit image of yeast cells on which we wish to perform global thresholding in 

order to achieve the regions pertaining to the bright spots. As a starting point, Fig. 8.38 (b) depicts 

the image histogram, and Fig. 8.38 (c) depicts the result obtained by applying Otsu's method 

directly to the image. As can be seen, Otsu's method fell short of the original objective of detecting 

bright spots. While the method was successful in isolating several cell regions, several of the 

segmented regions on the right were actually joined. The Otsu method determined a threshold of 

42 and a separability measure of 0.636. 
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FIGURE 8.38 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) with 

Otsu’s method using the histogram in (b). (d) Mask image formed by thresholding the 

absolute Laplacian image. (e) Histogram of the nonzero pixels in the product of (a) and (d). 

(f) Original image thresholded using Otsu’s method based on the histogram in (e). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The mask image 𝑔𝑇(𝑥, 𝑦)is shown in Figure 8.38 (d). It was created by calculating the exact value 

of the Laplacian image and then thresholding it with T set to 115 on an intensity scale ranging 

from 0 to 255. T equals nearly to the 99.5 percentile of the values in the exact Laplacian image, 

and thus thresholding at this level results in a limited set of pixels, as illustrated in Fig. 8.38 (d). 

As anticipated from the previous section, the points cluster close to the edge of the bright spots in 

this image. The histogram in Figure 8.38 (e) represents the nonzero pixels in the product of (a) and 

(b) (d). Finally, Fig. 8.38 (f) illustrates the outcome of dividing the actual image globally using 

Otsu's method based on the histogram in Fig. 8.38 (e). This result is consistent with the locations 

of the image's bright spots. The Otsu method calculated a threshold of 115 and a separability 

measure of 0.762, which are both greater than the values obtained using the original histogram. 

We can even improve the segmentation of complete cell regions by varying the percentile at which 

the threshold is set. For instance, Fig. 8.38 illustrates the result obtained using the same procedure 

as described previously, but with the threshold set to 55, or approximately 5% of the maximum 

value of the absolute Laplacian image. This value is in the 53.9 percentile of the values contained 

in that image. This result is clearly superior to that shown in Fig. 8.38 (c) when Otsu's method is 

used in conjunction with the histogram of the original image. 
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FIGURE 8.39 Image in Fig. 8.38 (a) segmented using the same procedure as explained in 

Figs. 8.38 (d) through (f), but using a lower value to threshold the absolute Laplacian image. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Multiple Thresholds 

We have thus far concentrated on image segmentation via a single global threshold. Otsu's method 

is extensible to an infinite number of thresholds due to the fact that the separability way of 

measuring upon which it is based is also extensible to an infinite number of classes. The between-

class variance generalizes to the expression in the case of K classes. 

𝜎𝐵
2 = ∑ 𝑃𝑘( 𝑚𝑘 − 𝑚𝐺)2

𝑘

𝑘=1

 

Where 

𝑃𝑘 = ∑ 𝑝𝑖

𝑖𝜖𝐶𝑘

 

And  

𝑚𝑘 = ∑ 𝑖𝑝𝑖

𝑖𝜖𝐶𝑘

 

As previously stated, the global mean is 𝑚𝐺 . The K classes are separated by K −1 thresholds 

whose values 𝑘1
∗, 𝑘2 ,

∗ … . , 𝑘𝐾−1
∗  

𝜎𝐵 
2 (𝑘1

∗, 𝑘2 ,
∗ … . , 𝑘𝐾−1

∗ ) = max
0<𝑘1<𝑘2<⋯𝑘𝐾−1<𝐿−1

𝜎𝐵 
2 (𝑘1 , 𝑘2, … , 𝑘𝐾−1) 

Even though this outcome holds true for any number of classes, it ends up losing implying as the 

number of classes increases due to the fact that we have been dealing with a single variable 

(intensity). Indeed, the variance between classes is frequently expressed in terms of multiple 

variables expressed as vectors .In practice, whenever there is reason to assume that the issue can 

be resolved appropriately with two thresholds, multiple global thresholding is considered an 
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appropriate approach. Usually, applications requiring more than two thresholds are solved using a 

combination of intensity values and other parameters. Rather than that, additional descriptors (for 

example, colour) are used, and the application is recast as a pattern recognition problem. 

The between-class variance for three classes consisting of three intensity intervals (separated by 

two thresholds) is given by: 

𝜎𝐵 
2  = 𝑃1( 𝑚1 − 𝑚𝐺)2  + 𝑃2( 𝑚2 − 𝑚𝐺)2 + 𝑃3( 𝑚3 − 𝑚𝐺)2 

Where 

𝑃1 = ∑ 𝑃𝑖

𝑘1

𝑖=0

 

𝑃2 = ∑ 𝑃𝑖

𝑘1

𝑖=𝑘1+1

 

𝑃3 = ∑ 𝑃𝑖

𝐿−1

𝑖=𝑘2+1

 

And  

𝑚1 = 
1

𝑃1
 ∑ 𝑃𝑖

𝑘1

𝑖=0

 

𝑚2 = 
1

𝑃2
∑ 𝑃𝑖

𝑘1

𝑖=𝑘1+1

 

𝑚3 = 
1

𝑃3
 ∑ 𝑃𝑖

𝐿−1

𝑖=𝑘2+1

 

The following relationships also hold: 

𝑃1𝑚1 + 𝑃2𝑚2 + 𝑃3𝑚3 = 𝑚𝐺  

And 

𝑃1 + 𝑃2 + 𝑃3 = 1 

The three classes are separated by two thresholds whose values  𝑘1
∗ and 𝑘2 

∗ maximize 

𝜎𝐵 
2 (𝑘1

∗, 𝑘2 
∗ ) = max

0<𝑘1<𝑘2<𝐿−1
𝜎𝐵 

2 (𝑘1 , 𝑘2) 

Algorithm 
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(1) Let 𝑘1 = 1 

(2) Increment 𝑘2 through all its values greater than 𝑘1 and less than L − 1 

(3) Increment 𝑘1 to its next value and increment 𝑘2 through all its values greater than 𝑘1 and less 

than L −  1 

(4) Repeat until 𝑘1 =  L −  3  

This results in a 2-D array𝜎𝐵 
2 (𝑘1, 𝑘2), after which   𝑘1

∗ and 𝑘2 
∗  that correspond to the maximum 

value in the array, are selected 

Segmentation is as follows: 𝑔(𝑥, 𝑦) = {

𝑎, 𝑖𝑓 𝑓(𝑥, 𝑦) ≤   𝑘1
∗ 

𝑏, 𝑖𝑓 𝑘1
∗ <𝑓(𝑥, 𝑦) ≤

𝑐, 𝑖𝑓   𝑓(𝑥, 𝑦) > 𝑘2 
∗

𝑘2 
∗   

Separability measure           :𝜂(  𝑘1
∗, 𝑘2 

∗ ) =
𝜎𝐵 

2 (𝑘1
∗ ,𝑘2 

∗ )

𝜎𝐺 
2  

 

EXAMPLE 3: Multiple global thresholding 

Figure 8.40 (a) depicts an iceberg. The goal of this example is to segment the image into three 

distinct regions: the dark background, the illuminated portion of the iceberg, and the shadowed 

portion. The image histogram in Fig. 8.40 (b) demonstrates that two thresholds are required to 

resolve this problem. The procedure described previously resulted in the thresholds shown in Fig. 

8.40 (b), which are located near the centres of the two histogram valleys. The segmentation shown 

in Figure 8.40 (c) is the result of using these two thresholds. The measure of separability was 

0.954. The primary reason this example worked so well is that the histogram contains three distinct 

modes separated by fairly large, deep valleys. However, we can do even better by utilizing 

superpixels. 

 

FIGURE 8.40 (a) Image of an iceberg. (b) Histogram. (c) Image segmented into three regions 

using dual Otsu thresholds. 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Variable Thresholding 

Noise and non uniform illumination have a significant impact on the performance of a thresholding 

algorithm. We demonstrated how image smoothing and utilize of edge information can be 

extremely beneficial. However, there are times when this type of preprocessing is either 

impractical or ineffective in addressing the problem, to the point where none of the thresholding 

methods discussed thus far can resolve the problem. In those kind of cases, as we will demonstrate 

in the discussion that follows, the next level of thresholding complexity involves variable 

thresholding. 

Variable Thresholding Based on Local Image Properties 

A fundamental concept to variable thresholding is to calculate a threshold at each point in the 

image, (x, y), depending on one or more required characteristics in the image's neighborhood (x, 

y). While this may appear to be a lengthy process, advanced algorithms and hardware allow rapid 

neighborhood processing, particularly for basic procedures such as logical and arithmetic 

operation. 

The mean and standard deviation of the pixel values in the neighborhood of each point in an image 

are being used to illustrate the method. Since these two quantities are descriptors of average 

intensity and contrast, they are helpful in determining local thresholds. Let 𝑚𝑥𝑦 and 𝜎𝑥𝑦 signify 

the mean and standard deviation of the set of pixel values in an image's neighborhood𝑆𝑥,𝑦, centred 

on the coordinates (x, y). The following are examples of common types of variable thresholds that 

are determined by the local image properties. 

 𝑇𝑥𝑦 = 𝑎𝜎𝑥𝑦 + 𝑏𝑚𝑥𝑦 

Where a and b are denotes nonnegative constants, and 

Take note that T is threshold array also the same size as the image in which it was achieved. The 

threshold value at a particular location in the array (x, y) is used to segment the value of an image 

at that point. 

𝑇𝑥𝑦 = 𝑎𝜎𝑥𝑦 + 𝑏𝑚𝐺 

Where 𝑚𝐺 denotes the mean of the global image. The segmented image is calculated as follows: 

𝑔(𝑥, 𝑦) = {
1 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇𝑥𝑦

0 𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇𝑥𝑦
 

 

Where f(x, y) denotes the input images. This equation is assessed for each pixel point in the image, 

and a different threshold is calculated with each (x, y) location utilizing the pixels in the 

neighborhood𝑆𝑥,𝑦. 
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Significant power could be inserted to variable thresholding (with only a modest improvement in 

calculation) through using predicates based on various parameters calculated in the neighborhood 

of a point (x, y): 

𝑔(𝑥, 𝑦) = {
1 𝑖𝑓 𝑄(𝑙𝑜𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ) 𝑖𝑠 𝑇𝑅𝑈𝐸

      0   𝑖𝑓 𝑄(𝑙𝑜𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) ) 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸
 

Where Q is a predicate depending on parameters calculated from neighbouring pixels. Consider 

the following predicate, which is derived from the local mean and standard deviation: 

𝑄(𝜎𝑥𝑦, 𝑚𝑥𝑦) = {
𝑇𝑅𝑈𝐸 𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑎𝜎𝑥𝑦 𝐴𝑁𝐷 𝑓(𝑥, 𝑦) > 𝑏𝑚𝑥𝑦

𝐹𝐴𝐿𝑆𝐸                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

EXAMPLE 4: Variable thresholding based on local image properties. 

The yeast image is depicted in Figure 8.41 (a). Given that this image contains three distinct 

intensity levels, it is logical to assume that the dual thresholding would be an effective 

segmentation technique. The outcome of applying the dual thresholding method is summarized in 

Figure 8.41 (b). As illustrated in the figure, while it was necessary to distinguish the bright areas 

from the background, the mid-gray portions upon on right side of the image were not correctly 

segregated (i.e., separated). To demonstrate the application of local thresholding, we calculated 

the local standard deviation for all (x, y) values in the input image using a neighborhood of size 

the result is depicted in Figure 8.41 (c). Take note of how the faint outer lines accurately delineate 

the cell boundaries. Following that, we constructed a predicate in the manner, but by using global 

mean rather than When the background is fairly constant and then all the object intensities are 

above or below the background intensity, selecting the global mean usually gets better results. The 

values and have been used to accomplish the specification of the predicate (as is typically the case 

in applications such as this, these parameters were estimated experimentally). After that, the image 

was segmented. As illustrated in Fig. 8.41 (d), segmentation was quite successful. Notably, all 

outer regions have been segmented correctly, and the majority of the inner, brighter regions have 

been isolated correctly. 
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FIGURE 8.41 (a) Image from Fig. 8.40. (b) Image segmented using the dual thresholding 

approach (c) Image of local standard deviations. (d) Result obtained using local thresholding. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Variable Thresholding Based on Moving Averages 

The moving average technique is a variation on the variable threshold processing technique. The 

variable threshold is comparative to the processing of global thresholds. The term "global threshold 

processing" relates to the procedure of determining a fixed threshold based on the entire image. If 

the size of each pixel in the image is greater than this Otherwise, the value is considered to be in 

the background. The variable threshold indicates that each pixel or pixel block in the image has a 

unique threshold. If a pixel exceeds its associated threshold, it is viewed to be in the foreground. 

The moving average method scans the entire image in a linear zigzag pattern, creates a threshold 

at each point, and compares the grey value at that point to the threshold to segment the image. 

Method 

Suppose a 5x5 picture is shown below, aij represents the gray value at position (i, j). 

 

Due to the fact that it is linearly scanned in the z-shape, the two-dimensional matrix must be 

converted to a one-dimensional row matrix. 
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The moving average algorithm makes use of two parameters, n and b. The average of n pixels is 

represented by n, and b is a threshold coefficient. The following one-dimensional matrix could be 

used as a filter to filter and average the image obtained previously. 

 

This allows for the calculation of the average mij at each point. The threshold at this pixel is 

calculated by multiplying the parameter b by mij. 

 

Then you can compare each pixel's grayscale to the threshold to obtain the final segmented image. 

 

FIGURE 8.42 a) Original image b) Moving average processing c) Finally, perform a minimum filter 

on the result 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

8.3 Segmentation by Region Growing and by Region Splitting and Merging 

Region-Based Segmentation: 

Segmentation is used to divide an image into regions. We decided to approach this issue by 

defining regions using discontinuities in grey levels and segmenting them using thresholds based 

on the distribution of pixel properties such as gray-level values or colour. 

Basic Formulation: 

Assume that R is used to represent the entire image region. Segmentation can be thought of as a 

process that divides R into n subregions, R1, R2... Rn, in such a way that 

a. ⋃ 𝑅𝑖 = 𝑅𝑛
𝑖−1  

b. 𝑅𝑖is a connected set, for i=0,1,2,3..,n; 

c. 𝑅𝑖 ∩ 𝑅𝑗 = ∅ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, 𝑖 ≠ 𝑗 

d. 𝑄(𝑅𝑖) = 𝑇𝑅𝑈𝐸 𝑓𝑜𝑟 i = 0,1,2,3. . , n  

e. 𝑄(𝑅𝑖 ∪ 𝑅𝑗) = 𝑇𝑅𝑈𝐸 for any adjacent regions 𝑅𝑖 𝑎𝑛𝑑 𝑅𝑗 
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P (Rk) signifies a logical predicate described over the points in the set Ri  and ∅ whereas is the 

null set. Condition (a) specifies that the segmentation should be complete; each pixel must be 

contained within a region. Conditions (b)   require that points within a region be connected in 

a predefined way. As indicated by condition (c), the regions must be disjoint. Condition (d) 

specifies the properties that all pixels within a segmented region must satisfy—for example, P 

(Ri) = TRUE if all pixels within Ri have the same grey level. Finally, condition (e) establishes 

that regions Ri and Rj are distinct in terms of the predicate P. 

Region Growing: 

 

As the name implies, region growing is a process that groups pixels or subregions accordance with 

the given criteria into larger regions. The fundamental approach is to begin with a collection of 

"seed" points and grow regions from them by attaching to each seed those neighboring pixels that 

share similar properties (such as specific ranges of grey level or color). When no a priori 

information is provided, the operation is to calculate the same set of properties for each pixel that 

will eventually be used to assign pixels to regions during the growing process. If such outcome of 

the these calculations exposes clusters of values, the pixels with properties that put them close to 

the clusters' centroid could be used as seeds. 

The choice of similarity criteria is determined not only by the nature of the problem at hand, but 

also from the type of image data available. For instance, analysis of land-use satellite imagery is 

highly dependent on the use of colour. Without the inherent information contained in colour 

images, this problem would be significantly more difficult, if not impossible, to solve. When 

analyzing monochrome images, region analysis must be performed using a set of descriptors based 

on grey levels and spatial properties (such as moments or texture). 

 

Essentially, region expansion should halt when no additional pixels fulfill the region's inclusion 

criteria. Gray level, texture, and colour are all local in nature and do not take into account the 

region's "history." Additional criteria that enhance the power of a region growing algorithm 

include the concept of size, similarity between a candidate pixel and the pixels grown thus far (for 

example, a comparison of the candidate's grey level to the average grey level of the grown region), 

and the shape of the region being grown. The use of these types of descriptors is predicated on the 

assumption that at least a partial model of expected results is available. 

Let f(x, y) represent an input image; S(x, y) represent a seed array that included 1's at seed point 

locations and 0's elsewhere ; and Q represent a predicate to be implemented at every location (x, 

y). Assume that arrays f and S are of equal size. The following is a simple region-growing 

algorithm based on 8-connectivity. 

1. Identify all connected components in S(x, y) and reduce them to a single pixel; label all such 

pixels found as 1. All other pixels in S are labelled with a value of 0. 

2. Create an image fQ such that at each point (x, y), fQ (x,y)=1 if the input image fulfils a provided 

predicate, Q, and fQ (x,y)=0 otherwise. 
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3. Let g be an image created by adding all the 1-valued points in fQ that are 8-connected to each 

seed point in S. 

4. Assign a unique region label to each connected component in g. (e.g.,integers or letters). This 

is the image segmented as a result of region growing. 

EXAMPLE 5: Segmentation by region growing 

Figure 8.43 (a) illustrates an 8-bit X-ray image of a weld (the horizontal dark region) with multiple 

cracks and porosities (the bright regions running horizontally via the image's centre). By 

segmenting the defective weld regions, we prove use of region growing. These regions could have 

been used for number of purposes, such as weld inspection, archiving historical studies, and 

controlling an automated welding system. 

 

FIGURE 8.43 (a) X-ray image of a defective weld. (b) Histogram. (c) Initial seed image. (d) 

Final seed image (the points were enlarged for clarity). (e) Absolute value of the difference 

between the seed value (255) and (a). (f) Histogram of (e). (g) Difference image thresholded 

using dual thresholds. (h) Difference image thresholded with the smallest of the dual 

thresholds. (i) Segmentation result obtained by region growing 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The first step is to establish the seed points. Because cracks and porosities attenuate X-rays 

significantly less than solid welds, we anticipate the regions probably contains such types of 

defects to be substantially brighter than the remainder of the X-ray image. We can obtain the seed 

points by thresholding the original image with a high percentile threshold. The histogram of the 
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image is shown in Figure 8.43 (b), and the thresholded outcome is shown in Figure 8.43 (c), with 

a threshold equal to the image's 99.9 percentile of intensity values, which in this case was 254. . 

The result of morphologically eroding each connected component in Figure 8.43 (c) to a single 

point is shown in Figure 8.43 (d). 

Following that, we must clearly state a predicate. In this example, we're interested in appending to 

each seed all pixels that are (a) eight-connected to it and (b) "similar" to it. Our predicate is applied 

at each location (x, y) using absolute intensity differences as a measure of similarity. 

𝑄

= {
𝑇𝑅𝑈𝐸  𝑖𝑓 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑎𝑡 (𝑥, 𝑦) 𝑖𝑠 ≤  𝑇

𝐹𝐴𝑆𝐿𝑆𝐸 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

 

Where T denotes a predefined threshold. Whereas this predicate is relied on intensity differences 

as well as contains a particular threshold, we can define more sophisticated methods in which each 

pixel has a distinctive threshold and other properties are used in addition to differences. As the 

remainder of this example demonstrates, the preceding predicate is sufficient to resolve the 

problem. 

As stated previously, all seed values are 255 because the image was thresholded at a value of 254. 

The difference between the seed value (255) and the value in Figure 8.43 (a) is illustrated in Figure 

8.43 (e). The image in Figure 8.43 (e) contains all of the distinctions necessary to compute the 

predicate at each location (x, y). The corresponding histogram is shown in Figure 8.43 (f). We 

require a threshold for establishing similarity in the predicate. Because the histogram contains 

three primary modes, we can begin by applying the dual thresholding technique to the difference 

image. In this case, the resulting two thresholds were and, as we can see, they closely correspond 

to the histogram's valleys. (As a brief aside, the image was segmented using these two thresholds. 

The result in Fig. 8.43 (g) demonstrates that despite the fact that the thresholds are in the deep 

valleys of the histogram, segmenting the defects cannot be accomplished using dual thresholds.) 

The difference image is thresholded in Figure 8.43 (h) using only The black points represent pixels 

for which the predicate was TRUE; the white points represent pixels for which the predicate was 

FALSE. The critical finding here is that the points in the weld's good regions failed the predicate, 

and thus will be excluded from the final result. The region growing algorithm will consider the 

points in the outer region as candidates. Step 3 will, however, reject the outer points because they 

are not connected to the seeds in an 8-way fashion. Indeed, as illustrated in Fig. 8.43 (i), this step 

resulted in the correct segmentation, indicating that connectivity was a necessary condition in this 

case. Finally, note that we used the same value in Step 4 for all regions discovered by the algorithm. 

In this case, it was visually preferable to do so because all of those regions in this application have 

the same physical meaning—they all represent porosities. 

Region Splitting and Merging 



 

Unedited Version: Image Processing 
 

The method described earlier grows regions from seed points. An option available is to at first 

subdivide an image into a series of non - overlapping regions and then merge and/or split the 

regions in order to satisfy the segmentation conditions. Following that, the fundamentals of region 

splitting and merging are mentioned. 

Assume that R represents the entire image region and that a predicate Q is chosen. One method for 

segmenting R is to subdivide it subsequently into smaller and smaller quadrant regions, such that 

we begin with the entire region, R. If the region is split into quadrants. If Q is FALSE for any 

quadrant, that quadrant is divided into sub-quadrants, and so forth. This technique is conveniently 

represented by so-called quadtrees; which is, trees in which each node will have precisely four 

descendants, as illustrated in Fig. 8.44 (the images equivalent to the nodes of a quadtree are 

occasionally referred to as quadregions or quadimages). Take note that the root of the tree 

represents the entire image, while each node represents the subdivision of a node into four 

descendant nodes. Only was subdivided further in this instance. 

 

FIGURE 8.44 (a) Partitioned image. (b) Corresponding quadtree. R represents the entire 

image region. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

When splitting is used exclusively, the final partition typically includes adjacent regions with 

identical properties. This disadvantage can be overcome by permitting for both merging as 

well as splitting. Satisfying segmentation constraints. It involves merging adjacent regions 

with pixels that satisfy the predicate Q. That is, two adjacent regions are merged only if they 

are adjacent. 

The preceding discussion can be summarised as follows: at any step, we  

 1. Split any region Ri into four disjoint quadrants for which 𝑄(𝑅𝑖) = 𝐹𝐴𝐿𝑆𝐸; 

 2. When no further splitting is possible, merge any adjacent regions 𝑅𝑗 and 𝑅𝑘 for which 

𝑄(𝑅𝑖  ∪ 𝑅𝑘) = 𝑇𝑅𝑈𝐸 

 3. Stop when no further merging is possible. 
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Numerous variations are possible on this basic theme. For instance, if we allow the merging of 

any two adjacent regions in Step 2 and each one satisfies the predicate independently, a 

significant simplification occurs. This results in a significantly simpler (and faster) algorithm, 

as predicate testing is restricted to individual quadregions. As demonstrated in the following 

example, this simplification is still capable of producing acceptable segmentation results. 

EXAMPLE 6: Segmentation by region splitting and merging 

The Cygnus Loop supernova is depicted in Figure 8.45 (a) in an X-ray image. The purpose of 

this example is to segment (extract) the "ring" of less dense matter that surrounds the dense 

inner region. The region of importance exhibits several readily apparent characteristics that 

should assist in segmentation. To begin, we recognize that the data in this region are random, 

implying that their standard deviation ought to be greater than that of the background (which 

is close to zero) and the large central region, which is smooth. Likewise, the mean value 

(average intensity) of a region containing outer ring data must be greater than the mean of the 

darker background and less than the mean of the lighter central region. Thus, using the 

following predicate, we should be able to segment the region of interest: 

 

FIGURE 8.45 (a) Image of the Cygnus Loop supernova, taken in the X-ray band by 

NASA’s Hubble Telescope. (b) Through (d) Results of limiting the smallest allowed 

quadregion to be of sizes of and pixels, respectively. (Original image courtesy of NASA.) 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

𝑄 = {
𝑇𝑅𝑈𝐸 𝑖𝑓 𝜎𝑅 > 𝑎 𝐴𝑁𝐷 0 < 𝑚𝑅 < 𝑏

𝐹𝐴𝐿𝑆𝐸 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝜎𝑅  and 𝑚𝑅 denote the standard deviation and mean of the processed region, respectively, 

and a and b denote nonnegative constants. 

Numerous regions within the external area of interest were analyzed, and the mean intensity 

of pixels in those regions was never greater than 125, and the standard deviation was always 

greater than 10. The figures 8.45 (b) through (d) display the results acquired by varying the 

minimum size allowed for quadregions from 32 to 8. White pixels were assigned to 

quadregions that satisfied the predicate; black pixels were assigned to the remainder of the 

region. The optimal result in contexts of obtaining the outer region's shape was achieved by 

using quadregions of size In Fig. 8.45 (d), the small black squares represent quadregions of 

size whose pixels do not satisfy the predicate. By using smaller quadregions, the number of 

such black regions would increase. Using larger regions than those shown here results in a 

more "block-like" segmentation. Not that the segmented region (white pixels) in each case was 

a connected region that completely separated the inner, smoother region from the background. 

Thus, segmentation partitioned the image effectively into three distinct areas that correspond 

to the image's three primary features: background, dense region, and sparse region. Using any 

of the white regions in Fig. 8.45 as a mask would make extracting these regions from the 

original image a relatively simple task. 

8.4 Region Segmentation using Clustering and Superpixels 

We will describe two relevant methods to region segmentation in this section. The first one is 

a more traditional approach based on clustering data according to variables such as intensity 

and color. The second approach is extremely quite advanced and is focused primarily on the 

extraction of "superpixels" from an image via clustering. 

Region Segmentation Using K-Means Clustering 

Clustering is a technique for categorizing a set of data into a predetermined number of groups. 

K-means clustering is a widely used technique. In k-means clustering, a collection of data is 

partitioned into k number groups. 

It divides a given set of data into k distinct clusters. The K-means algorithm is divided into two 

distinct phases. It calculates the k centroid in the first phase and then assigns each point to the 

cluster with the closest centroid to the respective data point in the second phase. There are 

several ways to define the distance to the nearest centroid, with the Euclidean distance being 

one of the most frequently used. Once the grouping is complete, it recalculates the new centroid 

of each cluster and, using that centroid, calculates a new Euclidean distance between each 

centre and each data point, assigning the cluster points with the smallest Euclidean distance to 

the cluster. The partition's clusters are defined by their member objects and centroid. The 

centroid of each cluster is the point to which the sum of the distances between all of the cluster's 
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objects is minimized. Thus, K-means is an iterative algorithm for minimizing the sum of the 

distances between each object and its cluster centroid across all clusters. 

Consider an image with a resolution of x,y that needs to be clustered into k clusters. Let p(x, 

y) denote the clustering of an input pixel to be cluter and ck denote the cluster centres. The k-

means13 clustering algorithm is as follows: 

1. Initialize the cluster k and the centre. 

2. Using the relation given below, calculate the Euclidean distance d between the 

image's centre and each pixel. 

𝑑 =∥ 𝑝(𝑥, 𝑦) − 𝑐𝑘 ∥ 

3. Based on the distance d, assign all pixels to the nearest centre. 

4. Once all pixels have been assigned, recalculate the center's position using the 

relationship shown below. 

𝑐𝑘 =
1

𝑘
∑ ∑ 𝑝(𝑥, 𝑦)

𝑥𝜖𝑐𝑘𝑦𝜖𝑐𝑘

 

5. Repeat the process until the tolerance or error value is satisfied. 

6. Resize the cluster pixels to match the dimensions of the image. 

While k-means has the substantial advantage of being simple to implement, it does have some 

disadvantages. The final clustering results' quality is determined by the randomly chosen initial 

centroid. As a result, if the initial centroid is chosen randomly, the result will be different for 

different initial centres. Thus, the initial centre will be carefully chosen to achieve the segmentation 

we desire. Additionally, computational complexity is a factor to consider when designing the K-

means clustering algorithm. It is dependent on the number of data elements, clusters, and iterations. 

EXAMPLE 7: Using k-means clustering for segmentation 

Figure 8.46 (a) depicts an image of size pixels, while Figure 8.46 (b) depicts the segmentation 

produced by the k-means algorithm, the algorithm extracted all of the image's meaningful regions 

with high accuracy. Compare the quality of the characters in both images, for instance. It is critical 

to understand that the entire segmentation process was carried out using clustering of a single 

variable (intensity). Due to the fact that k-means operates on vector observations in general, its 

ability to discriminate between regions increases as the number of components in vector z 

increases. 
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FIGURE 8.46 (a) Image of size pixels. (b) Image segmented using the k-means algorithm 

with k=3 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Region Segmentation using Superpixels 

A superpixel is a collection of pixels that share certain characteristics (like pixel intensity). 

Superpixels are becoming increasingly useful in a variety of computer vision and image processing 

algorithms, such as image segmentation, semantic labelling, object detection and tracking, and so 

on, because they carry more information than pixels. 

Because pixels belonging to a given superpixel share similar visual properties, superpixels have a 

perceptual meaning. 

They represent images in a convenient and compact manner, which can be extremely useful for 

computationally intensive problems. 

The concept behind superpixels is to replace the conventional pixel grid with primitive regions 

that are more perceptually important than specific pixels. The objective is to decrease 

computational burden and also to strengthen segmentation performance of the algorithm by 

removing superfluous detail. A simple illustration will assist in explaining the fundamental concept 

of superpixel representations. 

Figure 8.47 (a) depicts a 480,000-pixel-wide image with varying degrees of detail that could be 

defined verbally as follows: "This is an image of two large carved figures in the foreground and at 

least three much smaller carved figures resting on a fence behind the large figures." The figures 

are on a beach, against a background of ocean and sky.” Figure 8.47 (b) depicts the identical image 

defined by 4,000 superpixels and their boundaries, while Figure 8.47 (c) depicts the superpixel 

image. Somebody could make the argument that the superpixel image's level of particulars 

outcomes in the same description as the initial, however the the latter contains only 4,000 primitive 

units, compared to the original's 480,000. Whether the superpixel representation is "adequate" is 

application-dependent. Yes, if the objective is to define the image at the level of detail mentioned 

previously. On the other hand, if the primary objective is to identify defects at pixel-level 

resolutions, the answer is obviously no. Consequently, there are applications, such as computerised 

medical diagnosis, where any form of approximate representation is unacceptable. Nonetheless, 

there are numerous application areas, such as image database queries, autonomous navigation, and 

certain branches of robotics, where the cost savings and potential performance improvements far 

outweigh any discernible loss of image detail. 
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FIGURE 8.47(a) Image of size (480,000) pixels. (b) Image composed of 4,000 superpixels (the 

boundaries between superpixels (in white) are superimposed on the superpixel image for 

reference—the boundaries are not part of the data). (c) Superpixel image. (Original image 

courtesy of the U.S. National Park Services.) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Boundaries are one of the most important aspects of any superpixel presentation. That is, 

superpixel images must preserve boundaries between regions of interest. As shown in Fig. 8.47 

(c), this is the case. Note, for instance, how distinguishable the figures are from the background. 

The same is accurate of the ocean-to-sky boundaries and between the beach and the ocean. Other 

features include topological property preservation and, of course, computational efficiency. This 

section's superpixel algorithm meets these criteria. Reduce the difference between a superpixel 

image and its parent image to save storage and computation time. A similar image is shown in Fig. 

8.48 (a), while Fig. 8.48 (b) is a superpixel image made up of 40,000 superpixels. The only visual 

difference between these images is a slight difference in contrast caused by averaging intensities 

in each superpixel region (we will discuss this in more detail later in this section). FIG. 8.48 (c) 

shows an overall difference in contrast, as well as minor differences around sharp edges. 

Remember that the superpixel image has fewer elements than the original and that contrast 

differences can be easily corrected using histogram processing. 

 

FIGURE 8.48 (a) Original image. (b) Image composed of 40,000 superpixels. (c) Difference 

between (a) and (b). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Finally, we show the results of reducing superpixels to 1,000, 500, and 250. Compared to Fig. 8.47 

(a), Fig. 8.49 shows a significant loss of detail, but the first two images contain most of the detail 

relevant to the image description. Two of the three small carvings on the back fence were removed. 

So did the 250-element superpixel image. However, the principal region boundaries and basic 

topology of the images were preserved. 

 

FIGURE 8.49 Top row: Results of using 1,000, 500, and 250 superpixels in the representation 

of Fig. 8.47 (a) . As before, the boundaries between superpixels are superimposed on the 

images for reference. Bottom row: Superpixel images 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

SLIC Superpixel Algorithm 

Simple Linear Iterative Clustering is a state-of-the-art algorithm for segmenting superpixels that 

is computationally efficient. In a nutshell, the algorithm clusters pixels in the consolidated five-

dimensional colour and image plane space to generate compact, nearly uniform superpixels 

efficiently. 

Actually, the approach is quite straightforward. SLIC performs a local clustering of pixels in a 

five-dimensional space defined by the CIELAB colorspace's L, a, and b values and the pixels' x, y 

coordinates. It uses a different distance measurement, which results in more compact and regular 

superpixel shapes, and it can be used on both grayscale and colour images. 

SLIC creates superpixels by clustering pixels according to their colour similarity and image plane 

proximity. Clustering is performed using a five-dimensional [labxy] space. For small colour 

distances, the CIELAB colour space is considered to be eternally uniform. It is not recommended 

to use Euclidean distance alone in 5D space, and thus the authors introduced a new distance 

measure that takes superpixel size into account. 

Distance Measure 
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SLIC accepts an input of a desired number of approximately equal-sized superpixels K. As a result, 

each superpixel will consist of approximately N/K pixels. Thus, for superpixels of equal size, there 

will be a superpixel centre at each grid interval S = √(N/K) 

K cluster centres for superpixels Ck = [lk, ak, bk, xk, yk] where k = [1, K] are chosen at regular grid 

intervals S. Given that any cluster has a spatial extent of approximately S2, it can be believed that 

pixels related with this cluster are located within a 2S x 2S area in the xy plane around the 

superpixel centre. 

For small distances in CIELAB colorspace, Euclidean distances are meaningful. When spatial 

pixel distances exceed this perceptual colour distance threshold, spatial pixel distances begin to 

outweigh pixel colour similarity. 

Distance measure Ds is defined as follows. 

dlab = √( (lk - li)
2 + (ak - ai)

2 + (bk - bi)
2 ) 

dxy = √( (xk - xi)
2 + (yk - yi)

2 ) 

Ds = dlab + (m / S)* dxy 

Ds is the sum of the lab and xy plane distances normalised by the grid interval S. In Ds, we introduce 

the variable m, which allows us to adjust the superpixel's compactness. The larger the value of m, 

the more emphasis is placed on spatial proximity and the cluster becomes more compact. This can 

be any value between [1 and 20]. The algorithm's authors chose m=10 as the starting point. 

Algorithm 

It starts by randomly sampling K frequently spaced cluster centres and relocating them to seed 

locations corresponding to the neighborhood's lowest gradient position. This avoids placing them 

on an edge and minimises the possibility of selecting a noisy pixel. The gradients of an image are 

calculated as 

G(x, y) = || I(x + 1, y) − I(x − 1, y) ||2 + || I(x, y + 1) − I(x, y − 1) ||2 

where I(x, y) denotes the lab vector associated with the pixel at position (x, y), and ||.|| denotes the 

L2 norm. This takes both colour and intensity information into account. 

Each pixel in the image corresponds to the cluster centre closest to it whose search area overlaps 

this pixel. After associating all pixels with the nearest cluster centre, a new centre is computed as 

the average labxy vector of all cluster pixels. 

At the conclusion of this process, a few stray labels may remain, i.e., pixels adjacent to a larger 

segment with the same label but not connected to it. In the final step of the algorithm, it enforces 

connectivity by relabeling disjoint segments with the labels of the largest neighbouring cluster. 

SLIC Algorithm can be summarized as- 

Algorithm 1 Efficient superpixel segmentation 
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1. Initialize cluster centers Ck = [lk, ak, bk, xk, yk]
T by sampling pixels at regular grid steps S. 

2. Perturb cluster centers in an n x n neighborhood* to the lowest gradient position. 

3.  repeat 

4. For each cluster center Ck do 

5. Assign the best matching pixels from a 2S x 2S square neighborhood around the cluster 

center according to the distance measure. 

6. end for 

7. Compute new cluster centers and residual error E { L1 distance between previous centers 

and recomputed centers} 

8. until E < threshold 

9. Enforce connectivity. 

 

FIGURE 8.50 results of implementation (with K = 100 and m = 20) 

 

8.5 Region Segmentation Using Graph Cuts 

This section discusses a technique for dividing an image into regions that involves demonstrating 

the image's pixels as nodes in a graph and then determining the best partition (cut) of the graph 

into groups of nodes. Optimality is defined by criteria that have a high value for members of a 

group (i.e., a region) and a low value for members of other groups. As demonstrated later in this 

section, graph-cut segmentation is capable of generating results that are sometimes superior to 

those obtained using any of the previously studied segmentation methods. The cost of this potential 

benefit is increased implementation complexity, which generally results in slower execution. 

Images as Graphs 

A graph, G, is a mathematical structure comprised of a set V of nodes and an associated set E of 

edges connecting those vertices: 
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Nodes and edges are referred to as vertices and links. 

G= (V, E) 

Where V is a set and Cartesian product V × V 

E ⊆ V × V 

is a collection of elements from V that are ordered pairs. If (u, v) ∈ E Indicates that (v, u) ∈ E the 

graph is stated to be undirected; otherwise, the graph is stated to be directed. For instance, we can 

think of a street map as a graph, with nodes representing street intersections and edges representing 

the streets that connect those intersections. The graph is undirected if all streets are bidirectional 

(meaning that we can travel both ways from any two intersections). Otherwise, the graph is 

directed if at least one street is one-way. 

We are focused in undirected graphs whose edges are even farther characterized by a matrix, W, 

for whom the element w (i, j) represents the weight associated with the edge connecting nodes I 

and j. Due to the fact that the graph is undirected, w (i, j) = w (j, i) indicating that W is a symmetric 

matrix. The weights are chosen so that they are proportional to one or more measures of similarity 

between all pairs of nodes. A weighted graph is a graph whose edges are associated with weights. 

The purpose of this section is to represent an image to be segmented as a weighted, undirected 

graph, with nodes representing the image's pixels and edges connecting each pair of nodes. Each 

edge's weight, w (i, j), is proportional to the similarity between nodes i and j. We then actively 

sought to partition the graph's nodes into disjoint subsets V1, V2… VK, where the resemblance 

between nodes within a subset is high and the resemblance between nodes in different subsets is 

low. The partitioned subsets' nodes correspond to the segmented image's regions. 

Additionally, superpixels are well-suited for use as graph nodes. Thus, when we pertain to "pixels" 

in an image in this section, we are implicitly referring to superpixels. 

By cutting the graph, set V is partitioned into subsets. A graph cut is a division of V into two 

subsets A and B in such a way that 

A ∪ B = V and A ∩ B = ∅ 

Where the cut is accomplished by omitting the edges that connect subgraphs A and B. There are 

two critical aspects to incorporating graph cuts for image segmentation: (1) associating the graph 

with the image; and (2) cutting the graph in such a way that makes sense in terms of partitioning 

the image into background and foreground (object) pixels. 

The simplified approach depicted in Figure 8.51 demonstrates how to generate a graph from an 

image. The nodes of the graph correspond to the pixels in the image, and to simplify the 

explanation, we permit edges only between adjacent pixels via 4-connectivity, which implies that 

neither diagonal edges link the pixels. However, take note that edges are stipulated in between 

each pair of pixels in overall. Weights for edges are usually evaluated using spatial relationships 

(for instance, distance from the vertex pixel) and intensity measures (for example, texture and 

colour), which are consistent with pixel similarity. The degree of similarity among two pixels is 
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described in this simple example as the opposite of the differentiation in their intensities. – i.e., for 

two nodes (pixels) 𝑛𝑖 and 𝑛𝑗 , the weight of the edge between them is𝑤(𝑖, 𝑗) = 1/(|𝐼(𝑛𝑖) −

𝐼(𝑛𝑗)| + 𝑐), where 𝐼(𝑛𝑖) and 𝐼(𝑛𝑗)are the intensities of the two nodes (pixels), and c is a constant  

That can be used to prevent division by zero. Thus, the closer the intensity values between adjacent 

pixels are, the greater the value of w. 

 

 

FIGURE 8.51(a) A 3 × 3 image. (c) A corresponding graph. (d) Graph cut. (c) Segmented 

image. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

While the general form in Fig. 8.51 is what we want to concentrate on in this section, we also 

provide another, more common approach for developing image graphs just for completeness. The 

same graph as shown in Figure 8.52 is shown here, however, two additional nodes, the source and 

sink terminal nodes, are presented in addition to the previous, called here the "source" and "sink" 

terminal nodes, respectively, all of which are connected via unidirectional links called t-links. 

The terminal nodes do not play a part to the image; rather, they simply serve to connect each pixel 

to one of two possible background or foreground states (an object or not). 

Possible outcomes are the t-links' weights. Thickness of each t-link is proportional to the 

probability that the graph node it is connected to is a foreground or background pixel in Figures 

8.52 (c) and (d) (the thicknesses shown are so that the segmentation result would be the same as 

in Fig. 8.51). It is up to the designer to decide which of the two nodes we call "background" or 

"foreground". 
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MINIMUM GRAPH CUTS 

After expressing an image as a graph, the graph is cut  into two or more subgraphs. Each resulting 

subgraph's nodes (pixels) correlate to a region in the segmented image. According to Fig. 8.52, 

methods depend on analysing the graph as a flow network (of pipes, for instance) and determining 

what is generally referred to as a minimum graph cut. This methodology is established on the Max-

Flow, Minimum-Cut Theorem. This theorem states that the maximum volume of flow moving 

from source to sink equals the minimum cut in a flow network. This minimum cut is described as 

the smallest total weight of the edges that, if eliminated, will indeed cause the sink to become 

disconnected from the source: 

 

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤(𝑢, 𝑣)

𝑢∈𝐴,𝑉∈𝐵

 

 

FIGURE 8.52 (a) Same image as in Fig. 8.51 (a). (c) Corresponding graph and terminal 

nodes. (d) Graph cut. (b) Se nted image. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

While the min-cut method is elegant, it can contribute in groupings that favor cutting small groups 

of isolated nodes in a graph, resulting in incorrect segmentation. In Figure 8.53, the two regions 
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of interest are denoted by the tightness of the pixel groupings. Meaningful edge weights will be 

inversely proportional to the distance between two points. However, this would result in smaller 

weights for isolated points, resulting in min cuts such as the one shown in Fig. 8.53. 

 

FIGURE 8.53 An example showing how a min cut can lead to a meaningless segmentation. 

In this example, the similarity between pixels is defined as their spatial proximity, which 

results in two distinct regions 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The normalized cut algorithm calculates the cost of the cut as a fraction of the total number of edge 

connections to all nodes in the graph. 

𝑁𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉)
+

𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉)
 

where 𝑐𝑢𝑡(𝐴, 𝐵) is given by 

𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) = ∑ 𝑤(𝑢, 𝑧)

𝑢∈𝐴,𝑧∈𝑉

 

is the weighted sum of all edges connecting nodes in subgraph A to nodes in the entire graph. 

Similarly, 

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉) = ∑ 𝑤(𝑣, 𝑧)

𝑢∈𝐵,𝑧∈𝑉

 

The total weight of all the edges from all the edges in B, and connecting all the vertices.  As you 

can see, the 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) 𝑖𝑠 the cut of 'A' from the rest of the graph, and in the same way, 

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉)𝑖𝑠  the cut of 'B' from the rest of the graph. 
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We can define a metric for total normalized association within graph partitions if we consider 

concepts with the same basic building blocks. 

𝑁𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐵) =
𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐴)

𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉)
+

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉)
 

Where 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐴) and 𝑎𝑠𝑠𝑜𝑐(𝐵, 𝐵)are the overall weights linking the nodes within A and B. It 

is trivial to demonstrate that  

𝑁𝑐𝑢𝑡(𝐴, 𝐵) = 2 −  𝑁𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐵) 

Which indicates that minimizing 𝑁𝑐𝑢𝑡(𝐴, 𝐵) maximizes 𝑁𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐵) simultaneously. 

8.6 Segmentation Using Morphological Watersheds 

Previously, we discussed segmentation using three primary concepts: edge detection, thresholding, 

and region extraction. All of these methods was found to have some advantages (for example, 

global thresholding is fast) and some disadvantages (for example, the need for post processing, 

such as edge linking, in edge based segmentation). We will discuss a method based on the concept 

of so-called morphological watersheds in this section. Segmentation by watersheds incorporates 

several of the concepts from the other three methods and thus frequently results in more stable 

segmentation results, including connected segmentation boundaries. Additionally, this approach 

establishes a straightforward framework for incorporating knowledge-based constraints into the 

segmentation process. 

Watersheds and catchment basins are well-known concepts in topography. Individual catchment 

basins are divided by watershed lines. Watershed segmentation is a widely used segmentation 

technique that originated in the field of mathematical morphology. Watershed segmentation is a 

powerful and rapid technique that can be used for contour detection as well as region-based 

segmentation. Watershed segmentation is reliant on ridges for proper segmentation, a property that 

is frequently satisfied in contour detection, where the objects' boundaries are expressed as ridges. 

By calculating an image's edge map, it is possible to convert the edges of objects into ridges for 

region-based segmentation. Watershed management is typically accomplished through region-

based growth guided by a set of markers in order to avoid severe over-segmentation. 

In topography, the Watersheds are well-known. It was initially proposed as a technique for image 

segmentation. It is a method of image segmentation that is morphologically based. For the 

watershed transformation, the gradient magnitude of an image is treated as a topographic surface. 

Watershed lines can be located in a variety of ways. The complete division of an image via 

watershed transformation is largely dependent on an accurate estimation of the image gradients. 

The watershed transform result is degraded by the background noise, resulting in the over 

segmentation. Additionally, under segmentation is caused when low-contrast edges generate small 

magnitude gradients, resulting in the erroneous merging of distinct regions. Watershed lines can 

be located in a variety of ways. Different approaches to segmentation based on the watershed 

principle are possible. 
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The image data can be interpreted as a topographic surface with altitudes represented by the 

gradient image grey levels. 

Region boundaries correspond to high watersheds, while the interiors of lowgradient regions 

correspond to catchment basins. 

The catchment basins of the topographic surface are homogeneous in the sense that all pixels 

belonging to the same catchment basin are connected to the basin's region of minimum altitude 

(gray-level) via a simple path of pixels with monotonically decreasing altitude (gray-level) along 

the path. These catchment basins then represent the segments of the segmented image. 

 

FIGURE 8.54 Gray Level profile of image data b) watershed segmentation –Local minima 

of gray level yield catchment basins, local maxima define the watershed lines. 

Two fundamental approaches to segmenting watershed images. The first one begins by 

determining a downstream path from each image pixel to a local minimum of image surface 

altitude. A catchment basin is described as the sum of pixels whose downstream paths all terminate 

at the same altitude minimum. 

Whereas the downstream paths for continuous altitude surfaces can be easily determined by 

measuring the local gradients, there are no rules that define the downstream paths uniquely for 

digital surfaces. 

The second approach is nearly identical to the first; rather than identifying downstream paths, 

catchment basins are filled from the bottom up. Assume that each local minimum has a hole in it 

and that the topographic surface is submerged in water; water begins to fill all catchment basins, 

the minima of which are below the water level. If two catchment basins merge as a result of further 

immersion, a dam is built to the highest surface altitude and serves as a watershed boundary. 

An efficient algorithm begins by sorting the pixels in ascending order of their grey values, followed 

by a flooding step that involves a fast breadth-first scan of all pixels in ascending order of their 

grey levels. 

A brightness histogram is computed during the sorting step. Simultaneously, a list of pointers to 

gray-level h pixels is created and associated with each histogram gray-level, allowing direct access 

to all gray-level pixels. The flooding step makes extensive use of information about the image's 

pixel sorting. 
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Assume that the flooding has reached a level (graylevel, altitude) k. Then, for each pixel with a 

grey value less than or equal to k, a unique catchment basin label has already been assigned. 

Following that, pixels with a grey level of k+1 must be processed. If at least one of its neighbours 

already has this label, a pixel with gray-level k+1 may belong to a labelled catchment basin. 

 

FIGURE 8.55 A geodesic influence zone of a catchment basin 

All pixels with a grey level of k+1 that are within a catchment basin's influence zone are labelled 

l, indicating that the catchment basin is growing. The queued pixels are processed sequentially, 

and any pixels that cannot be assigned to an existing label represent newly discovered catchment 

basins and are assigned new and unique labels. 

Watershed -flooding analogy 

Assume that the grayscale image is a landscape. Allow water to rise from the bottom of each valley, 

i.e. give each valley's water its own label. Construct a dam or a watershed as soon as the water 

from two valleys converges. These watersheds will define the boundaries between the image's 

various regions. The watershed effect can be applied directly to an image, to an edge-enhanced 

image, or to a distance-transformed image. 

Watershed -drop of water analogy 

This grayscale image is presented as a landscape. A drop of water that lands anywhere in the 

landscape will flow down to a local minimum. For each local minimum in the landscape, there is 

a collection of points referred to as the catchment basin from which a drop of water will flow to 

that particular minimum. The watershed is defined by the boundaries between adjacent catchment 

basins. Following are some examples of watersheds directly applied to grey level images. 
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FIGURE 8.56 watershed directly applied on gray level image 

 

FIGURE 8.57 watershed directly applied on gray level image 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Example for seeded watershed 

Each cell contains a nucleus, which can be distinguished using threshold and watershed 

segmentation. Using these nuclei as seeds, it is simple to locate the cytoplasm. 

 

FIGURE 8.58 seeded watershed 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Marker Based Watershed Segmentation 
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There will be two markers. The first is an internal marker, while the second is an external marker. 

Internal markers are being used to restrict the number of regions by specifying the objects of 

interest. For example, seeds can be assigned manually or automatically to regions. Merging regions 

devoid of markers is permitted (no dam is to be built) External markers are pixels that we are 

certain are in the background. Watershed lines are common external markers that denote the 

boundaries of a region. Internal markers can be used to obtain watershed lines for the gradient of 

the segmented image. As external markers, use the obtained watershed lines. 

Each externally defined region contains a single internal marker and a portion of the background. 

The issue is simplified by dividing each region into two sections: an object (which contains internal 

markers) and a single background (containing external markers). The following figure illustrates 

the segmentation of a watershed using markers. 

 

FIGURE 8.59 Marker Based Watershed Segmentation 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

8.7 Use of Motion in Segmentation 

Motion is a powerful tool that is used in a variety of applications, including robotics, autonomous 

motion navigation, and dynamic scene analysis, to retrieve objects of interest from a background 

of undesired detail. The motion is caused by the sensing system's relative displacement from the 

scene being used. There are two distinct methods for applying motion to segmentation, and they 

are as follows. 

1. Spatial domain approach 

2. Frequency domain approach. 

In the following section, we will discuss spatial domain techniques. 

Spatial domain techniques   

Consider the following: There are a number of image frames available, each taken at a different 

point in time. Let f(x, y, t1) and f(x, y, t2) denote the two images taken at times t1 and t2. 

Additionally, assume that the image contains a large number of stationary objects and only one 
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moving object. It is possible to detect the boundary of a moving object in such circumstances. The 

procedure for determining the boundary of a moving object is to find the difference image between 

images taken at various points in time. The image taken at the 0th interval could be used as a 

reference image, and subsequent images could be used to subtract from it, resulting in an image 

that contains only the boundary of the moving object and cancels out all stationary objects. 

 

FIGURE 8.60 (a) Image of a cheque (b) Histogram of the image (c) Segmented image 

The difference image between two images taken at time t1 and t2 may be defined as 

𝑑𝑖,𝑗(𝑥, 𝑦) = {
1 𝑖𝑓|𝑓(𝑥, 𝑦, 𝑡𝑖 ) − 𝑓(𝑥, 𝑦, 𝑡𝑗  )| > 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑎 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where T denotes a nonnegative threshold. Notably, 𝑑𝑖,𝑗(𝑥, 𝑦) has a value of 1 at spatial coordinates 

(x,y)only if the difference in intensity among the two images is meaningfully different at all of 

those coordinates, as defined by T. Consequently, note that the coordinates  (x,y) cover the 

dimensions of the two images, asserting that the difference image is the same size as the sequence's 

images. 

All pixels with value 1 in 𝑑𝑖,𝑗(𝑥, 𝑦) are considered to be the result of object motion. This technique 

is applicable only if the two images are spatially registered and the illumination is relatively 

constant within the bounds defined by T. In practice, noise can also result in 1-valued entries 

in𝑑𝑖,𝑗(𝑥, 𝑦). Typically, these entries are isolated points in the difference image, and removing them 

is as simple as creating four or eight connected regions of 1's in image 𝑑𝑖,𝑗(𝑥, 𝑦) then ignoring any 

region with less than a predefined number of elements. While this approach may result in the 

omission of small and/or slow-moving objects, it increases the likelihood that the remaining entries 

in the difference image are due to motion and not noise. 
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Accumulative Differences 

Consider a series of image frames taken at times t1, t2, t3,..., tn and denoted by the variables f(x, 

y, t1), f(x, y, t2),..., f(x, y, tn) (x, y, tn). Assume that the reference image is the first image frame 

f(x, y, t1). By comparing the reference image in the sequence, an accumulative difference image 

is obtained. Each pixel location in the accumulative image has its count incremented whenever a 

difference between the reference and the image in the sequence occurs at that pixel location. Thus, 

when the kth frame is compared to the reference, the entry in the given pixel of the accumulative 

image indicates the number of times the grey level at that position differed from the reference 

image's corresponding pixel value. The equation is used to calculate the differences. Figure 6.20 

illustrates these concepts. 

Suppose that the intensity values of moving objects are greater than those of the background, three 

types of ADIs are considered. To simplify the notation, let 𝑅(𝑥, 𝑦)denote the reference image and 

k denote tk, such that 𝑓(𝑥, 𝑦, 𝑘) = 𝑓(𝑥, 𝑦, 𝑡𝑘 )We begin by assuming that 𝑅(𝑥, 𝑦)=f(x,y,1) Then, 

for any k > 1, and remembering that the ADI values are counts, we define the following 

accumulative differences for all relevant values of (𝑥, 𝑦): 

𝐴𝑘(𝑥, 𝑦) = {
𝐴𝑘−1(𝑥, 𝑦) + 1 𝑖𝑓|𝑅(𝑥, 𝑦, ) − 𝑓(𝑥, 𝑦, 𝑘 )| > 𝑇

𝐴𝑘−1(𝑥, 𝑦)                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑃𝑘(𝑥, 𝑦) = {
𝑃𝑘−1(𝑥, 𝑦) + 1 𝑖𝑓|𝑅(𝑥, 𝑦, ) − 𝑓(𝑥, 𝑦, 𝑘 )| > 𝑇

𝑃𝑘−1(𝑥, 𝑦)                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑁𝑘(𝑥, 𝑦) = {
𝑁𝑘−1(𝑥, 𝑦) + 1 𝑖𝑓|𝑅(𝑥, 𝑦, ) − 𝑓(𝑥, 𝑦, 𝑘 )| < −𝑇

𝑁𝑘−1(𝑥, 𝑦)                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝐴𝑘(𝑥, 𝑦), 𝑃𝑘(𝑥, 𝑦), and 𝑁𝑘(𝑥, 𝑦)denote the absolute, positive, and negative ADIs computed 

with the kth image in the sequence, respectively. Each of the three ADIs begins with zero counts 

and is the same size as the sequence's images. If the intensity values of the background pixels are 

greater than the values of the moving objects, the order of the inequalities and signs of the 

thresholds in above equation are reversed. 

EXAMPLE: Computation of the absolute, positive, and negative accumulative difference 

images. 

The three ADIs are expressed as intensity images in Figure 8.61 for a rectangular object with a 

dimension of 75 X 50 pixels which is moving southeasterly at a speed of 5 2 pixels per frame. The 

images are 256 X 256 pixels in size. We consider the following into account: (1) The positive 

ADI's nonzero area equals the width of the moving object; (2) the positive ADI's location correlates 

to the location of the moving object in the frame of reference; (3) the positive ADI's count number 

stops growing when the moving object is completely displaced from the same object in the 

reference frame; (4) The absolute ADI encompasses the positive and negative ADI regions; and 

(5) The direction and speed of a moving object can be evaluated by analyzing the entries in the 

absolute and negative ADIs. 
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FIGURE 8.61 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute 

ADI. (b) Positive ADI. (c) Negative ADI. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

8.8 Unit End questions 

1. What are the derivative operators useful in image segmentation? Explain their role in 

segmentation  

2. What is thresholding? Explain about global thresholding  

3. Explain about basic adaptive thresholding process used Understand  in image segmentation 

4. Explain in detail the threshold selection based on boundary characteristics  

5. Explain about region based segmentation.  

6. What are the derivative operators useful in image segmentation? Explain their role in 

segmentation.  

7. Explain about the Global processing via the Hough Transform for edge linking 

8. Explain about the Global processing via graph-theoretic techniques for edge linking  

9. Explain about Region Splitting and Merging with an example. 

10. Write about edge detection  

11. Explain about the Local processing for edge linking  

12. Write short note on Region Growing  

13. Write the mask for prewitt operator 

14. Write the mask for sobel operator  

15. Write the mask for laplacian operator 

8.9 Reference for further reading 

1. Digital Image Processing Gonzalez and Woods Pearson/Prentice Hall Fourth 2018 

2. Fundamentals of Digital Image Processing A K. Jain PHI   

3. The Image Processing Handbook   J. C. Russ CRC Fifth 2010 
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5.0 Introduction  

In image compression, the wavelet transformation plays an extremely important role. Wavelet 

transformation is a more appropriate technique than Fourier for image compression applications. 

Fourier transform is not practical for spectral computing information as all the previous and future 

information on the signal are essential throughout the entire of the time domain and frequencies 

cannot be observed varying in time, as the resulting function is time-independent. The Fourier 

discrete transform is member of an essential class of linear transformations, including Hartley, 

sine, cosine, Walsh-Hadamard, Slant, Haar and the wavelet transform. Such transformations, 

decompose tasks into weighted amounts of orthogonal or biorthogonal functions that can be 

studied with the use of linear algebra tools and functional analysis tools. 

 

5.1 Preliminaries 

In Linear Algebra, A vector space (called as linear space) is a group of objects that can be added 

and multiplied ('scaled') by numbers called scalars. Scalars are sometimes taken by real numbers, 

but there are vector space with scalar multiplication by complex numbers, rational numbers or 

usually any field also exists. Vector addition and scalar multiplication operations must fulfil some 

requirements, known as vector axioms. An inner product is a widespread of the dot product. In a 

vector space, it is a method of multiplying vectors together, the result being a scalar one.  

An inner product <·,·> fulfils four characteristics for a real vector space. Let u, v and w be scalar 

vectors, and α be a scalar, then: 

1. <u+v,w>=<u,w>+<v,w>. 

2. <alphav,w>=α <v,w>. 

3. <v,w>=<w,v>. 

4. <v,v>>=0 and equal if and only if v=0. 

It's known as the positive-definite fourth condition in the above list. Notice that certain authors 

define an inner product could be a function <·,·> that satisfies only the third of the above terms 

with a (weaker) non-degenerated (i.e., when = 0 for all w, then v=0) addition of the (weaker) 

condition. Functions fulfilling all four criteria are usually referred to in such literature as positive-

definite interior products, while internal products that are not defined positively are often referred 

to as uncertain. While subtly, this disparity presents many remarkable phenomena. Inner products 

that are not positive-definite, for example, can create 'standards' under which those vectors (such 

vectors are called spacelike) have imaginary magnitude and cause 'metrics' that are not actual 

metrics. The inner product of Lorentzia is an example of an indefinite inner product. 

An inner product space is called a vector space with an inner product this description also refers 

in any field to an abstract vector space. 
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1. The real numbers  of the inner product 

<x,y>=xy.  

Euclidean space RN is an infinite set of all real N-tuples. 

 eq -1 

 

Where u and v are column vectors 

3.  Unit space through complex C number with inner product function. Inner product spaces over 

the field of complex numbers are sometimes referred to as unitary spaces. 

                eq -2 

where * indicates the complex operation of the conjugate, and u and v are complex values column 

vector  

4. The vector space C[a; b] of all real-valued continuous functions on a closed interval [a; b] is an 

inner product space, whose inner product is defined by 

 

                                                              eq -3 

The norm or length of vector z in all three inner product spaces is as specified 

                                                                                                                        eq -4 

 

Equations  through (5 to 15) are valid for all inner product spaces, including those defined by Eqs. 

(3) to (4) . and the angle between two nonzero vectors z and w is  

Although the meaning must always be considered, the term 'vector' is usually used for abstract 

vectors.  A matrix (e.g., column vector) or a continuous function may be a vector. 
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                                                                                                      eq-5 

If the z norm is 1, z is considered to have been normalized. If it is said that Eq-5, z and w  are 

orthogonal. A natural result of these definitions is that a number of non-zero vectors are jointly or 

equally orthogonal, provided it only 

                                                                                        eq-6 

They constitute an orthogonal basis for the inner product space   .They are an orthonormal basis, 

when the basic vectors are normatively 

                                                                         eq-7 

Similarly, a set of w0, W1, W2, ... vectors and an additional set of dual vectors is said 

to be biorthogonal and biorthogonal basis vector space 

                                                                                            eq-8 

They are a biorthonormal basis if and only if 

                                                                     eq-9 

 

As a method for coherently representing an infinite set of vectors, the foundation of inner product 

space is among the most important principles in linear algebra. The subsequent derivation that 

depends on the orthogonally of the basis vectors is fundamental to the matrix-based 

transformations of the next section. Let W = {} 0 1 {}, w 2,... Be the orthogonal basis of the inner 

product area V, and let z V be supported. The vector z can then be expressed as the following 

linear combination of base vectors. 

                                                                                       eq-10 

whose inner product with basis vector wi is 

                       eq-11 
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Since they are mutually orthogonal the inner products on the right side of Eq. (11) are 0 unless the 

vector subscriptions for which the inner products are computed match [see Eq. (7)]. Thus, the only 

nonzero word is to exclude zero terms and to divide the two sides of the equation by giving 

 

                                                                                                         eq-12 

Which reduces to 

                                                                                  eq-13 

If the basic vector norms are 1 

                                                                                                               eq-14 

And 

                                                                                                               

                                                    eq-15 

 

5.2 Matrix-Based Transforms 

The 1-D discrete Fourier transform is one of a class of significant transformations that can be 

represented in a general relation. The word transform is used in mathematics to describe a change 

in form without any corresponding change in value. 

                                                                                              eq-16 

Where x is a spatial variable, T(u) is the transform of f(x), r(x,u) is a forward transformation kernel, 

and integer u is a transform variable with values in the range Similarly, the inverse transform of 

T(u) is 

                                                                                                  eq-17 
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If s(x,u) is a inverse transformation kernel  and x is a transformation kernel for the range r(x,u), 

and s(x,u) in Eqs.(16) and (17) that only depends on x and u and not on f(x) or T(u) values, then 

the existence of the transform pair that is defined will be determined. 

Graphical equations (17) are shown in Fig.5.1. It should be taken into consideration that the f(x) 

is a weighted total of N inverse (e.g. s(x,u) for) kernel functions and that the T(u) for weight . Each 

N s(x,u) contributes f(x) to each x. Expanding the right side of Eq. (17) 

 

FIGURE 5.1 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

A graphical illustration of Eq. (18) 

                                        eq-18 

It is readily evident which a linear expansion is represented as Eq. (11), with Eq. (18) s(x,u), T(u) 

in place (e.g. the basis of vectors) and Equ. (11). In this case, a linear expansion is immediately 

apparent. When we suppose s(x,u) is orthonormal vectors of a product's inner space in Eq. (18), 

Eq. (13) tells us that 

                                                                                                              eq-

19 
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And T(u) can be calculated for transform through the inner products 

We frequently use subscripts to define the matrix or vector elements. This means the first column 

vector f element, which is f (0), and the first column of column vector element s (0, 3). 

                                                                                                       eq-

20 

 

                                                        eq-21 

 

And 

              

             eq-22 

 

and using them to rewrite Eq. (19) as 

                                       eq-23 

 

Combining the N-base vectors in the transform matrix 
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                                                             eq-24 

Then Eq. (23) is replaced into Eq. (21) and EQ. (1) can be used to achieve 

By using Eq. (1), we assume that real-value vector is the most common case. For complex inner 

product space, equation (2) must be used. 

    eq-25 

Or 

                                                                                                                              eq-26 
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   eq-27 

Where Eqs. (1) and (7) respectively follow the two last steps. Since AAT=I it gives Eq (26) 

premultiplication  by AT and simplification gives f=ATt Eqs. (16) and (17) thus become the matrix-

based pair of transformations. 

                                                                                                   eq-28 

And 

                                                                                                              eq-29 

It is essential to understand that we assumed that the N transform basis vectors (i.e. s u for u =0, 

1….N-1) of the Transformation matrix A were true and orthonormal in the derivations of Eqs (28) 

and (29). In compliance with Eq (7) 

                                                        eq-30 
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The assumed orthonormality makes it possible to calculate forward transforms without explicit 

references to a kernel of forward transformation, i.e. t=Af, when A is a function acts in the reverse 

transformation kernel s(x,u). 

Because of the reality that the base vector A is real and orthonormal, the transform is termed the 

orthogonal transform defined in Eq. (28). It preservatives the inner products is i.e.,  〈f1,f2  〉  =   

〈t1,t2  〉  =   〈A f1,A f2  〉 and therefore, the distances and angles pre and post transformation among 

vectors. The rows and columns of A are orthonormal AAT = ATA = I, so A−1 = AT. The outcome 

in the Eqs. (28)  And Eq(29) are a reversible transform pair  . Substituted by Eq. (29) with (28) 

produces t= Af= AATt=t, while replacing Eq. (28) with (29), f= ATt=ATAF=f gives. 

 

 eq-31 

 

And 

 eq-32 

Where the inverse transformation kernels r(x,y,u,v) and s(x,y,u,v) respectively are forward . 

Transform T(u,v) and invert kernel transformation s(x,y,u,v), respectively, with eq. (32) way to 

set a linear expansions to f(x,y), are regarded as another weighting coefficients and basis vectors . 

Forward transformation kernel r(x,y,u,v) is separable if 

eq-33 

and symmetric if r1is functionally equal to r2so 

 eq-34  

 When the transformation kernels are real and orthonormal; both r and s are distinguishable and 

symmetrical, then the matrix equivalents for Eqs. (6-31) and (6-32) shall be substitute r in Eqs. 

(33) and r in Eqs. (34), respectively, for separable, separable symmetrical inverse kernels. 

                             T=AFAT                                  eq-35 

And 
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      F=ATTA                      eq-36 

When F is a matrix of f(x, y), T is a transform and A is as defined in the Equation (24) Equation. 

The column and row transformations of F are measured according to the F pre and post-

multiplication by A and Eq. (35). This actually breaks the 2-D transformation into two 1-D 

transformations, which mirror the 2-D DFT process. 

EXAMPLE 1 A simple orthogonal transformation. 

Consider the 2-element basis vectors 

 

And note they are orthonormal in accordance with Eq. (30) : 

 

Substitute and transformation matrix in or out of Eq. (6-24). 

   eq-37 

and the transform of matrix 

 

follows from Eq. (35) 
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In accordance with Eq. (36) , the inverse of transform T is 

 

In conclusion, we note that A is an orthogonal transformation matrix for which 

 

Rectangular Arrays 

When rectangular arrays are transformed, Eqs. (35) and (36) are changed. In comparison to square. 

 eq-38 

And 

eq-39 

where F, AM and AN are of size MXN ,MXM,NXN and respectively. Both and are defined in 

accordance with Eq. (24) 

EXAMPLE 2: Computing the transform of a rectangular array. 

A simple transformation in which M and N are 2 and 3, respectively, is 
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Where matrices F, A2 and A3 in the first step of the computation are defined. As expected, 2X3 

the transforming output T is the same as F 

To demonstrate that it is an orthogonal matrix of transformation, and that Eq reverses 

transformation (39) 

Complex Orthonormal Basis Vectors 

An orthonormal basis is the basis of which vectors are orthogonal to each other and have a unit 

norm. 

Orthonormal bases are essential in applications because a vector is especially simple to represent 

on an orthonormal basis, called Fourier expansion. 

We have to be familiar with the concepts of internal product and standard to understand this 

concept. 

Orthonormal sets 

Remember that if the inner product equals zero, two vectors are orthogonal. 

Definition   Let S have an inner product vector space <...>. A set of K vectors S1…Sk Є S, if and 

only if are an orthonormal set. 

 eq-40 

Where * is the complex operation of the conjugate. If vectors of basis (35) and (36) are problematic 

as opposed to real-value, 

T=AFAT      eq-41 

And 

F=A*T TA*   eq-42 

Transformation matrix A is then considered the unitary matrix and the unitary transformation pair 

Eq (41) and Eq(42) is equal. The 1-D counterpart of Eq. (41) and (42) are thus an essential and 

useful property of A: 
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Orthogonal transformations are a unique case wherein the functions of expansion are real-valued. 

Both transforms maintain inner products. 

t=Af            eq-43 

f=A*T t      eq-44 

 

 

EXAMPLE 3: A transform with complex-valued basis vectors. 

The inverse of a unitary transformation matrix, which is the inverse of the transformation matrix, 

is the inverse. 

 eq-45 

is its conjugate transpose. Thus, 

 

Where  the matrix  and where A is a single matrix, which in Eqs (41) can be used 

through eq(44).. It can be shown easily if the base vectors in A satisfy Eq. (40). 

Biorthonormal Basis Vectors 

Expansion functions S0,S1…,SN-1 are biorthonormal in Eq. (24) if there are dual expansion 

functions ~S0, ~S1…,~SN-1 that 
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eq-46 

Even the expansion functions and dual functions do not need to be orthonormal. With a set of 

biorthonormal expansion features, Eqs. (35) and (36) are transformed 

  eq-47 

And 

 eq-48 

Transformation matrix A  remains as described by Eq. (24); dual transformation 

matrix  is an NX N matrix .The dual expansion functions of its rows are 

transposed. When the function of expansion and its duals are identical, i.e. , reduces the 

Equal Eq(47) and Eq(48) respectively to Eq. (35) and Eq(36) are  

 eq-49 

 eq-50 

EXAMPLE 4 : A biorthonormal transform. 

Consider the real biorthonormal transformation matrices 

 

 A and are biorthonormal .The transform of 1-D column vector f=[30 11 210 6] T is  
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And  <t,t>=tTt =65,084 which is  unequal to <f,f> the transformation have not preserve inner 

products. but, reversible: 

 

 

 The forward and inverse transforms are calculated by using Eqs. (49) and (50) , respectively. 

Finally, we mention that the majority of the concepts in this area can be used to extend the form 

continuously. 

 

The coefficients and base vectors for the expansion of the internal product space C([a, b]) by αu  

and Su  for u= for given f(x) and basis su(x) for u= .The appropriate 

coefficients of expansion may be calculated by defining  of Integral Internal Product of the C([a, 

b])-i.e., Eq's -3 and all internal product spaces' general properties, that is, Eqs. (10) by (15). Thus, 

for e.g. su(x) for u= . are orthonormal basis vectors of C([a, b]) 

         eq-52 

EXAMPLE 5: The Fourier series and discrete Fourier transform 

Consider the representation in linear expanding of orthonormal base vectors of the form of the 

continuous periodic function T 

 eq-53 

In accordance with Eqs. (51) and (52) 
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 eq-54 

 

And 

              eq-55 

yields the following discrete counterparts of Eqs. (53) through (55) 

 eq-56 

 eq-57 

And 

eq-58 

The discrete complex basis vectors of Eq. (56) are an orthonormal basis of inner product space CN 

Equations (58) and (59) 

Consider, Eqs (55) and (58), in the calculation of Fourier and the Fourier discrete transform of  

f(x)=2sin(2πx) of period of T=1  are now used . In accordance with Eq. (55) 
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and, in the same way ,α-1= j0.5 hence entire another coefficients are zero, the resultant Fourier 

series is 

 eq-59 

5.3 Correlation 

The correlation of f and g indicated by two continual functions f(x) and g(x) are denoted by 

 , is defined as 

In fact, the term cross correlation should be used when f(x) ≠ g(x) and auto-correlation when 

f(x)=g(x) Equation (61) is valid for both cases 

 eq-61 

Here the final step are follows from Eq. (3) with α =-∞ and α=∞ Sometimes related to as the sliding 

inner product f and g, the correlation tests the similarity of f(x) and g(x) according to their relative 

displacement  △x . if △x =0. 

As the name suggests, sliding inner product, display slide between functions, multiply them and 

compute the area. The functions become increasingly identical as the area increases.   

f ☆ g(0) = < f(x) ,g(x) >   eq-62 

And Eq. (52) defining continuous orthonormal expansion coefficients in Eq. (51) can be written 

as alternatively 

αu = <f ,Su > =f ☆ su (0) 

Thus, the expansion coefficients are correlations of one point, with zero displacement △ . The 

similarity of f(x) and su(x) is measured by αx 
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The discrete equivalents of Eqs. (61) through (63) are Integers n and m, fn indicates the nth element 

in f, and gn+m  implies  the element (n+m) in g. Equation (66) is the result of Equation (65) and 

(23) 

                   eq-64 

 

 f ☆ g(0) =< f,g>   eq-65    

and  

T(u)= <Su ,f> =Su  ☆  f (0) 

Similar comments on Eq (63) and continuous series expansions and continuing transforms in 

Eq (66) may be made. Every orthogonal transformation element and orthogonal transformations 

are discrete. Each orthogonal transformation element. 

 

5.4 Basis Functions in the Time-Frequency Plane 

As Fig.5.2 , which shows the basis vectors of certain commonly encountered transformations, most 

orthogonal basis sets of sinusoids, square waves, ramps and other small waves called wavelets are 

associated with mathematical activity. If h(t) is a vector base and g(t) is the function transformed, 

the transform coefficient is a measure of the similarity between g and h as noted in the previous 

section. The large g ☆ h(0) values show that g and h have significant time and frequency 

characteristics (shape, bandwidth, etc.). Therefore, if h is the ramp shaped base function in figure  

(d), then transform coefficient could be utilized to identify linear gradients of brightness in a line 

of the image. If h is a sinusoidal function, like that of Fig. (a), on the other hand it is possible to 

use g ☆ h(0). Plots such as those in Fig. 5.2 and a similarity measure like this can reveal much 

about transforming the function's time-frequency features 

Independent variables T and F instead of spatial variables x and u are used in the introduction to 

the time frequency plane.  g(t) and h(f) continuous functions are replaced by f(x) and Su(x). 

Although concepts use continuous functions and variables, they also apply to distinct functions 

and variables 
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FIGURE 5.2 Basis vectors (for ) of some commonly encountered transforms: (a) Fourier 

basis (real and imaginary parts), (b) discrete Cosine basis, (c) Walsh-Hadamard basis, (d) 

Slant basis, (e) Haar basis, (f) Daubechies basis, (g) Biorthogonal B-spline basis and its dual, 

and (h) the standard basis, which is included for reference only (i.e., not used as the basis of 

a transform). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The position of h on the plane of time-frequency Fig. 5.3 is a strictly objective descriptor of h and 

therefore g for large values of (a).  let ph =|h(t) |2 / ||h(t)2||2 be a probability density function with 

mean 

In Eq. (67) , every value of t is weighted by ph to calculate  a weighted mean with respect to 

coordinate t 

  eq-67 

 
FIGURE 5.3 

(a) Basis function localization in the time-frequency plane. (b) A standard basis function, 

its spectrum, and location in the time frequency plane. (c) A complex sinusoidal basis 

function (with its real and imaginary parts shown as solid and dashed lines, 

respectively), its spectrum, and location in the time-frequency plane. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

and variance 
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   eq-68 

 

Let pH (f) =|H(F) |2 / ||H(F)2||2  be a probability density function with mean 

  eq -69 

 

and variance 

 

The Fourier transform of H is where f denotes frequency. H(f) (t). Then, as shown in Fig. 5.3(a), 

the energy of base function h is concentrated at (µt ,µf) on the time-frequency plane. In a 

rectangular region called the Heisenberg box or a cell, the majority of the energy comes from such 

an area 4σt σf  

The energy of continuous function h(t) is ∫ |ℎ(𝑡)2 |dt
∞

−∞
 

So if indicated in angular frequency, the constant on the right side of Eq. (71) even with a 

Gaussian base function, whose transform is also a Gaussian feature, equal treatment is feasible. 

𝜎𝑡
2𝜎𝑓

2 ≥
1

16𝜋2   eq-71 

Because a function support can be described as the series of points where the function is non-zero, 

the principle of uncertainty in Heisenberg tells us that a function can't be supported on time and 

on frequency at all. Reveal so that both 𝜎𝑡 and 𝜎𝑓  it can’t be very small.  Hence the basis function 

𝛿(𝑡 − 𝑡0) illustrated in Fig. 5.3(b) is correctly localized with the time[i.e 𝜎𝑡 = 0, hence the width 

of 𝛿(𝑡 − 𝑡0)  is equal to zero], its spectrum is also nonzero  on the whole f-axis. i.e, 

hence 𝜉𝛿(𝑓 − 𝑓0) = exp (−𝑗2𝜋𝑓𝑡0)  and |exp (−𝑗2𝜋𝑓𝑡0)  |=1 for entire f , 𝜎𝑓 = ∞, The output is 

an infinitesimal small, infinitely large Heisenberg cell on the time-frequency plane. Basis 

function exp (2𝜋𝑓0𝑡) of Fig. 5.3(c) , on the other hand, is primarily, nonzero on the broad time 

axis, nonetheless is clearly localized in frequency. Because 𝜉{exp(−𝑗2𝜋𝑓𝑡0) = 𝛿(𝑓 − 𝑓0)} 

spectrum |𝛿(𝑓 − 𝑓0)| is zero at fully frequencies other than  The resultant Heisenberg cell is 

infinitely comprehensive and infinitesimally small in height 𝜎𝜔=0 As Figs. 5.3(b) and (c) illustrate, 

perfect localization in time is accompanied by a loss of localization in frequency and vice versa. 
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Repeating once more to Fig. 5.2, notice the basis for the DFT of Fig. 5.2(a) and the standard basis 

of Fig. 5.2(h) in Fig. 5.3(c) and (b), accordingly, are discrete examples (for N=16) of the impulses 

and complex exponential functions. In the top half of Fig. 5.2, the other basis is both the index u 

frequency and the width or support 16. For a given u, their locations are similar in the time 

frequency plane. This is especially obvious when u is 8 and the basic functions of the Heisenberg 

cells are the same. For all the other u parameters 𝜇𝑡,   𝜎𝑡 .  µt   and 𝜎𝑡 .  of the heisenberg cell and 

their value is similar, where there are slight variations between cosine, ramp or square wave forms. 

Similarly, with exception of the already described standard basis, the basis function of the bottom 

half of Fig. 5.2 is also analogous for a given u. These basis functions are small waves called 

wavelets of form that are scaled and shifted 

The DFT basis functions do not seem to be ordered frequency due to aliases. 

𝜓𝑠,𝑡  (𝑡) = 2𝑠/2 𝜓(2𝑠 𝑡 − 𝜏 ) 

In which s and 𝜏 are integers and mother wavelet 𝜓(𝑡) is a real, square-integrable function having 

a bandpass-like spectrum. Parameter decides the position of 𝜓𝑠,𝑡  (𝑡) on the t-axis, s decided its 

width—that is, how broad or narrow it is along the t-axis, and 2𝑠 manage its amplitude. 

, the functions analogous to in Fig. 5.2 have lowpass spectra and are known as scaling functions. 

Eq (72) generates a basis which is defined by the cells Heisenberg on the right side of Fig. 5.4 

along with a properly constructed mother wavelet 

 

FIGURE 5.4 Time and frequency localization of 128-point Daubechies basis functions. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The proof of Eq. (73) 
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𝔍{𝜓(2𝑡  𝑡)} =
1

2𝑠  Ψ (
𝑓

2𝑠 
 )  Eq -73 

 

And the spectrum is spread for positive s values — each component of the frequency is shifted by 

more than one by factor of 2S. The compressing time expands the spectrum as was the case for a 

rectangular pulse. It is shown in Figs 5.4(b) – (d) graphically. Note that in Fig. 5.4(c), the width of 

the base function is half as in (d) whereas its width of its spectrum is twice that of (d). It is shifted 

by a factor of two higher frequency. The same could be explained in Fig. 5.4(b) in comparison 

to  (c) the base function and spectrum. Halving time support and doubling frequency support, 

Heisenberg cells of different widths and heights are produced with the same area. In addition, each 

cell row to the right of Fig. 5.4 represents a single scale s and frequency range. The cells in a row 

are moved over time in relation to each other. 

𝔍{𝜓(𝑡 − 𝜏) = 𝑒−𝑗2𝜋𝜏𝑓 Ψ(𝑓)          eq-74 

Thus |𝔍{𝜓(𝑡 − 𝜏)| = |Ψ(𝑓)| and the spectra of the time-shifted wavelets are identical. 

 

 

 

 

 

 

5.4 Basis Images 

As the inverse transformation kernel s(x,y,u,v)  in Eq. (32) only retains the indices x,y,u,v, rather 

than f(x,y) or T(u,v), Eq. (32) can also be used as the matrix sum of the kernel 

     eq-75 

 

where F is an matrix  having the elements of f(x, y) and 
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 eq-76 

 

For 𝑢 , 𝑣 = 0, … . , 𝑁 − 1  F is  then clearly defined as a linear combination of 𝑁2 matrices having 

size 𝑁𝑋𝑁 , that is , the 𝑆𝑢.𝑣 for 𝑢 , 𝑣 = 0, … . , 𝑁 − 1 , when  the underlying s(x,y,u,v) are real-

valued, independent, and symmetric  

𝑆𝑢,𝑣=  𝑆𝑢 𝑆𝑣
𝑇 

                                                                                                       Eq-77 

Where Su and Sv defined by Eq. (20) are previously. F is a 2-D image and is called basic images 

in the context of digital image processing. As shown in Fig. 5.5(a), it can be arranged in a array to 

give a concise view of 2-D basis functions they represent. 

EXAMPLE : The basis images of the standard basis. 

In figure 5.2(h), 𝑒𝑛the basis of the NX1column vector, which is 1 in nth and all other elements are 

0, would be a certain instance (N=16) of a standard basis 𝑒𝑜 , 𝑒1 ,….. , 𝑒𝑁−1 . Since it is real 

orthonormal, and the corresponding orthogonal transformation matrix is during the corresponding 

2-D transform.  In other words, the transformation of F on the standard base is F—confident that 

a discrete function is implicitly represented in respect of the standard basis if it is written in vector 

form. 

The basis image of the 2-D size standard base Figure 5.5(b) Just as the 1-D-basis vectores, that are 

non zero at just one moment (or x-value), are not zero at just one point on a xyplane, the basis 

images of Fig. 5.5(b) are nonzero. This is a result of Eq (77) , hence 𝑠𝑢,𝑣  = 𝑒𝑢 𝑒𝑣
𝑇 = 𝐸𝑢,𝑣 where 

𝐸𝑢,𝑣  is a matrix with zeros having a 1 in the uth  row and vth column . in similar way , the DFT  

basis shown in fig 5.6. which follow from Eq. (77) , Eq. (22) , and the defined equation of the 1-

D DFT expansion functions [i.e., Eq. (56) ]. Note the DFT basis image of maximum frequency 

occurs when u and v are 4, just as the 1-D DFT basis function of maximum frequency occurred at 

in Fig. 5.1 
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FIGURE 5.5 (a) Basis image organization and (b) a standard basis of size For clarity, a gray 

border has been added around each basis image. The origin of each basis image (i.e., 𝒙 =

𝒚 = 𝟎) is at its top left 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

 

 

FIGURE 5.6 (a) Tranformation matrix 𝑨𝑭 of the discrete Fourier transform for N=8 where 

𝝎 = 𝒆−𝒋𝟐𝝅/𝟖 𝒐𝒓 (𝟏 − 𝒋)/√𝟐  or (b) and (c)  

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The real and imaginary parts of the DFT basis images of size 8X8 For clarity, a black border has 

been added around each basis image. For 1-D transforms, matrix  𝐴𝐹  is used in conjunction with 

Eqs. (43) and (44) ; for 2-D transforms, it is used with Eqs. (6-41) and (6-42). 
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5.6 Fourier-Related Transforms 

The Fourier real function transformation is highly complex. In this section we discuss three 

transforms associated to Fourier which are real rather than complex: the discrete Hartley transform, 

discrete cosine transform, and discrete sine transform.  All three transforms handle unnecessary 

numbers' computational complexity and can be carried out via fast FFT-like algorithms. 

 

The Discrete Hartley Transform 

A discrete Hartley Transform (DHT) is a Fourier-related transformation of discrete, periodic data 

analogous to the discrete Fourier Transform (DFT), with analogue applications in signal 

processing and associated fields .Its primary difference from DFT would be that it transforms real 

inputs to real outputs without involving complex numbers intrinsically. Much like DFT is the 

discreet analogue of the continuous Fourier transformation (FT), DHT is the discrete analogue of 

the Hartley transform, which Ralph V. L. Hartley introduced in 1942. 

The transformation matrix of the discrete Hartley transform (DHT) is obtained by replacing the 

inverse transformation kernel. 

The function cas, the terminology for the cosine-and-sin function, is defined as 𝑐𝑎𝑠(𝜃) =

cos(𝜃) + sin (𝜃) 

𝑠(𝑥, 𝑢) =
1

√𝑛
 𝑐𝑎𝑠 (

2𝜋𝑢𝑥

𝑁
 ) 

      =
1

√𝑛
[𝑐𝑜𝑠 (

2𝜋𝑢𝑥

𝑁
 ) +  𝑠𝑖𝑛 (

2𝜋𝑢𝑥

𝑁
 )]   eq -78 

Whose divisible 2-D complement is 

We shall not consider the non- divisible form  𝑠(𝑥, 𝑦, 𝑢, 𝑣) =
1

𝑁
 𝑐𝑎𝑠 (

2𝜋(𝑢𝑥+𝑣𝑦)

𝑁
 ) 

𝑠(𝑥, 𝑦, 𝑢, 𝑣)  =[
1

√𝑛
 𝑐𝑎𝑠 (

2𝜋𝑢𝑥

𝑁
 )] [

1

√𝑛
 𝑐𝑎𝑠 (

2𝜋𝑣𝑦

𝑁
 )]     

eq -79 

Meanwhile the resultant DHT transformation matrix—represented 𝑨𝑯𝒀 in Fig. 5.7 —is real, 

orthogonal, and symmetric, 𝑨𝑯𝒀 = 𝑨𝑯𝒀  
𝑻 =  𝑨𝑯𝒀    

−𝟏 𝒂𝒏𝒅  𝑨𝑯𝒀 should be used in the calculation   of 

both forward and inverse transform. For 1-D transforms, 𝐴𝐻𝑌 is used in combination with Eqs. (6-

28) and (29) for 2-D transforms, Eqs. (35) and (36) are used. Since 𝐴𝐻𝑌  is symmetric, the forward 

and inverse transforms are same. 
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FIGURE 5.7 

The transformation matrix and basis images of the discrete Hartley transform for (a) 

Graphical representation of orthogonal transformation matrix 𝑨𝑯𝒀   (b) 𝑨𝑯𝒀 rounded to two 

decimal places, and (c) 2-D basis images.  

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

For 1-D transforms, matrix 𝐴𝐻𝑌 is used in conjunction with Eqs. (28) and (29) ; for 2-D transforms, 

it is used with Eqs. (35) and (36) 

Note the resemblance of the harmonically associated DHT basic functions in Figure. 5.7(a) and 

the real part of the DFT basic functions in Fig. 5.1. It's simple to demonstrate that 

𝑨𝑯𝒀 = 𝑹𝒆𝒂𝒍{𝑨𝑭} − 𝑰𝒎𝒂𝒈{𝑨𝑭}  

                                            =  𝑹𝒆𝒂𝒍{𝟏 + 𝒋 ){𝑨𝑭}                       eq-(80) 

Where 𝑨𝑭 is the unit transformation matrix of the DFT. In addition, given the real part of the 

DFT kernel. 

In Eqs. (81) and (82) , subscripts HY and F are used to represent the Hartley and Fourier kernels, 

respectively. 

𝑅𝑒{𝑠𝐹 (𝑥, 𝑢)} = 𝑅𝑒 {
1

√𝑁
 𝑒

𝑗2𝜋𝑢𝑥
𝑁

   } =
1

√𝑁
 𝑐𝑜𝑠 (

2𝜋𝑢𝑥

𝑁
) 

eq-(81) 

The discrete Hartley kernel can be rewritten using triginometric identity 𝑐𝑎𝑠(𝜃) = √2cos (𝜃 −
𝜋

4
)[see Eq. (78)] as 
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𝑠𝐻  (𝑥, 𝑢) =  √
2

𝑛
  cos (  

2𝜋𝑢𝑥

𝑁
−

𝜋 

4
 ) eq-(82) 

The basic functions of the Fourier and Hartley discrete transformations will be scaled √2 and 

shifted by 𝜋/4, i.e. scaled and shifted by one another. When comparing Figures 5.1 and 5.7, the 

shift is evident (a) 

The Discrete Cosine Transform 

The most frequently found form discrete cosine transform (DCT) is achieved by replacing the 

inverse transformations kernel. There are 8 standard DCT variations and various symmetry 

conditions are assumed. For example, even about a sample or about a point between two samples 

could be assumed to be the entry 

 eq-83 

Where  

  eq-84 

 

5.7 Walsh-Hadamard Transforms 

An orthogonal transformation technique, the Walsh-Hadamard transform breaks down a signal 

into a set of basis functions. It is non-sinusoidal and orthogonal in nature. Walsh functions, that 

are rectangular or square waves with values of +1 or –1, represent as the basis functions for these 

equations. Walsh-Hadamard transforms are also referred to as Hadamard transforms Walsh 

transforms, or Walsh-Fourier transforms, depending on the context. 

 (eq-85) 

This corresponds to the modulo 2 arithmetic operation performed in the exponent of Eq. (85) and 

is the kth bit in the binary representation of z. For example, if  n=3 and z=6 and (110 in binary), 
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and If b0(2) = 0, b1 (z) = 1 and bz (z) = 1  if N=2  the resulting Hadamard-ordered transformation 

matrix is 

 

 

WHTs with Hadamard or natural ordering are denoted by the letter Aw, which stands for Hadamard 

or natural order transformation matrix. Although it is of size 2X2 in this case, it is more commonly 

of size N X N, where N X N is the dimension of the discrete function being transformed. 

where the matrix on the right (without the scalar multiplier) is called a Hadamard matrix of order 

2. Letting HN denote the Hadamard matrix of order N, a simple recursive relationship for 

generating Hadamard-ordered transfomation matrices is 

 

Where  

 

And  
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And  

 

 

 

 

 

5.9 Slant Transform 

The N x N Slant transform matrices are defined by the recursion 
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where N = 2n, IM, denotes an M x M identity matrix, and 

 

The parameters an and bn are defined by the recursions 

 

which solve to give 

 

Using these formulas, the 4 x 4 Slant transformation matrix is obtained as 

 

Properties of the Slant Transform 

(i) The slant transform is real and orthogonal. 

 S = S* 

 S-1 = ST 

(ii) The slant transform is fast, it can be implemented in (N log2N) operations on an N x 1 

vector. 

(iii) The energy deal for images in this transform is rated in very good to excellent range. 
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(iv) The mean vectors for slant transform matrix S are not sequentially ordered for n ≥ 3. 

 

5.9 Haar Transform 

In general, the Haar functions hk(x) are described on the continuum interval x ∈ [0, 1] for k = 

0,...,N—1 for which N = 2n. The integer k could be partitioned in a unique way as follows: 

k= 2P+ q-1 

Where 0≤p≤n-1; q = 0, 1 for p = 0 and 1≤q≤2P for p≠ 0. For example, when N = 4, we have 

 

Representing k by (p ,q), the Haar functions are defined as 

 

In order to produce the Haar transform, it is necessary to allow x take discrete values at m/N, 

where m =0, 1,..., N-1. The Haar transform is defined as follows for N = 8. 

 

Properties of the Haar Transform 

1. The Haar transform is real and orthogonal. Therefore, 

Hr=Hr* 

Hr-1 = HrT 
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2. In computing, the Haar transform is an extremely rapid transformation. If you have a N x 1 

vector, you can do it in O (N) operations, which is quite fast. 

3. The basis vectors of the Haar matrix are ordered in a frequency-ordered manner. 

4. For images, the energy compaction of the Haar transform is weak. 

5.10 Wavelet Transforms 

The wavelet transform is quite close to the Fourier transform (or much more similar to the 

windowed Fourier transform), but it has an entirely different merit function than the Fourier 

transform. The most significant distinction is as follows: On one hand, the Fourier transform 

breaks down the input signal into sines and cosines, i.e., functions that are localised in Fourier 

space; on the other hand, the wavelet transform employs functions that are localised in both real 

and Fourier space. For the most part, the wavelet transform may be stated mathematically using 

the following equation: 

 

where * denotes the complex conjugate symbol and function  ψ denotes a function of some kind. 

This function can be chosen at random, as long as it complies with a few rules. 

 

Because of this, the Wavelet transform is actually an infinite collection of different transforms that 

can be computed depending on the merit function that is employed in its computation. This is the 

primary reason why we can hear the word "wavelet transform" used in a variety of various settings 

and applications, including computer science. There are a variety of methods for categorizing the 

many types of wavelet transformations. We just present the division based on the wavelet 

orthogonally. We can employ orthogonal wavelets for discrete wavelet transform development and 

non-orthogonal wavelets for continuous wavelet transform development while developing discrete 

wavelet transforms, for example. The following are the characteristics of these two 

transformations: 

After performing the discrete wavelet transform, a data vector of the same length as the input is 

returned. In most cases, even in this vector, many data points are close to zero. This corresponds 

to the fact that it decomposes into a set of wavelets (functions) that are orthogonal to the 

translations and scaling of the original image data. As a result, we decompose such a signal into a 

wavelet coefficient spectrum with the same or smaller number of wavelet coefficients as the 

number of signal data points. Because there is no redundant information in a wavelet spectrum of 

this type, it is particularly well suited for signal processing and compression applications. 

Instead, the continuous wavelet transform yields an array that is one dimension bigger than the 

input data. We can obtain an image of the time-frequency plane from a single-dimensional data 

set. We can clearly see the progression of the signal's frequencies over the course of the signal's 
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duration and compare the spectrum to the spectra of other signals. Because the non-orthogonal 

collection of wavelets is utilized in this analysis, the data is strongly correlated, resulting in a 

significant amount of redundancy. This makes it easier to see the outcomes in a more humane 

light. 

Discrete Wavelet Transform 

With the discrete wavelet transform (DWT), you can achieve a more precise implementation of 

the wavelet transform by employing a discrete subset of wavelet scales and translations that adhere 

to certain constraints. For lack of a better term, this transform decomposes the signal into a set of 

wavelets that are mutually orthogonal to one another, which is the primary difference between it 

and the continuous wavelet transform (CWT), or its discrete time series implementation, which is 

sometimes referred to as discrete-time continuous wavelet transform (DT-CWT). 

The wavelet can be generated from a scaling function that explains the scaling qualities of the 

wavelet's scaling properties. The requirement that the scaling functions must be orthogonal to their 

discrete translations imposes some mathematical requirements on them, which are referenced 

throughout the text, for example, the dilation equation, which can be found here. 

 

Color Image Processing 

The utilization of color for image processing is inspired by two key factors. First, color is an 

important descriptor that also simplifies the identification and extraction of objects from the image. 

Color image processing is divided into two main parts: full color and pseudo-color processing. In 

the initial group, the images in question are usually taken with a full-color sensor, such as a color 

TV camera or a color scanner. In the second group, the issue is to assign a color to a specific 

monochrome intensity or set of intensities. Until recently, much of the digital color image 

processing was performed at the pseudo-color level. Even so, over the last decade, color sensors 

and color image processing hardware have become available at affordable prices. As a result, full-

color image processing techniques are now used in a wide variety of applications, including 

publishing, visualization and the Internet. 

• After this chapter is complete, learners can understand color fundamentals and the color 

spectrum. 

• Know many of the color models used in digital image processing. 

• Understand how to implement fundamental techniques, including intensity 

slicing and intensity-to-color transformations in pseudo-color image processing. 

• You know how to decide whether a gray-scale approach can be extended to color pictures. 

• Know how to work with full color images, including color transformations, color add-ons 

and tone/color corrections. 
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• Have to know the effect of noise in the processing of color images. 

• Know how to perform spatial filtering on color images. 

• Understand the benefits of using color in the segmentation of images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.11 Color Fundamentals 

Introducing and discussing the visible light spectrum. A series of component colors includes the 

visible light, also known as white light. The light passes through triangular prism and these colors 

are also observed. Figure : The colors of the white light on the prism – red, orange, yellow, green, 

blue and violet – are separated. Dispersion is defined as the isolation of visible light into its various 

colors. 
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Figure 5.8 Color spectrum seen by passing white light through a prism. 

 

James Clerk Maxwell demonstrated that electromagnetic radiation is a form of light. Radio 

waves, visible light and rays contain this radiation. As a radiation range, which extends beyond 

visible radiation to include one side of the radio wave and the other side of the gamma rays, 

Figure 2 indicates electra-magnetic radiation. A very small part of the electromagnetic spectrum 

occupies the visible light field. The sunlight is visible and stretches beyond the red (infraround 

IR) and ultraviolet (UV) with a maximum of yellow intensity. 

 

Figure 5.9. The electromagnetic spectrum 

Fig.5.9. The electromagnetic spectrum, which encompasses the visible region of light, extends 

from gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave 

lengths of one meter or greater. 

In regard to light as an electromagnetic wave, the spectral signature of a colour can be recognised 

by its wavelength. We perceive the waves as colour, the shorter the wavelength violet and the 

longest wave is red. Visible light is the range of electromagnetic wavelengths to which the eye 

reacts. The human eye is unable to adapt to radiation of longer or shorter wave lengths. 

 



 

Unedited Version: Image Processing 
 
 

 

Figure 5.9.  A wave representation of three different light hues: red, yellow-green and 

violet 

 

Fig 5.9. A wave representation of three different light hues: red, yellow-green and violet, each with 

a different wavelength, which represents the distance between wave crests. 

Fig.5.9 shows three standard waves of visible light. The longitude of the wave is the distance from 

the crest to the next and the lambda,𝜆, is indicated in Greek. Violet light is a 410 nanometer 

wavelength electromagnetic radiation with 680 Nanometers of red light. 

Hundreds of thousands of different colors and intensities can be distinguishable from the human 

visual system, but just about 100 grey shades. Therefore, a lot of additional information can be 

found within an image and this additional information can be used in order to simplify image 

analyses, e.g. object identification and extraction based on color. 

To define a specific color, three separate quantities are used. The color of the wavelength is the 

dominant one. The colors visible on the electromagnetic spectrum range from approximately 

410nm (violet) to 680nm (red), as shown in Figure 3. 

The saturation depends on the purity of excitation and on the amount of white light combined with 

the hue. There is a pure hue completely saturated, i.e. no mixed white light. Hue and saturation 

combined decide the chromaticity of a specified color. Ultimately, the actual amount of light 

determines the intensity with a more intense colors corresponding to the more light. 

Achromatic light has no color - only quantity or intensity is its attribute. Grey level is an intensity 

measurement. The intensity of the energy is determined by the physical quantity. Brightness or 

luminance, on the other hand, is defined by color perception and is also psychological. Blue is 

perceived to be as darker than green, given the intensity of blue and green. Note also that our 

perception of intensity is nonlinear, as normalized intensity variations are considered to be the 

same changes in brightness between 0.1 and 0.11 and 0.5 to 0.55. 

Color mainly depends on the object's reflecting properties. We see the reflected rays, while some 

are absorbed. The color and function of the human visual system must also be taken into 

consideration. For instance, when green but no red light lights it, the object which reflects red or 
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green, appears green, and in the absence of green light, the object appears red. In pure white light, 

it will appear yellow (= red + green). 

Tristimulus theory of color perception 

There are 3 kinds of cones in the human retina. Figure 4 shows the response of each type of cone 

in accordance with the wavelength of the incident light. At 440nm (blue), 545nm (green) and 

580nm the peaks for each curve are (red). Note that the last two in the yellow range of the spectrum 

actually peak. 

 

 

Figure 5.10: Spectral response curves for each cone type. The peaks for each curve are at 

440nm (blue), 545nm (green) and 580nm (red). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

CIE primaries 

The tristimulus color perception theory seems to suggest that a combination of three primaries – 

red, green and blue – can produce any color, while almost all visible colors can be corresponded 

with one another, but some cannot. However, when one of the primary colors, it can be balanced 
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by a combination of the other two, and thus a negative weighting of the primary can be considered 

for this particular one. 

 

In 1931, the Commission Internationale de l'Éclairage (CIE), which could be applied to the shape 

of all visible colors, specified three basic primaries, the names X, Y and Z. The primary Y is 

selected such that the color match function matches the luminous efficiency function of the human 

eye precisely, as shown in figure 2 for the sum of the three curves. 

 

Figure 5.11: The CIE Chromaticity Diagram showing all visible colors. x and y are the 

normalized amounts of the X and Y primaries present, and hence z = 1 - x - y gives the 

amount of the Z primary required. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Both visible colors appear in the CIE Chromaticity Diagram (see Figure 5.11). The x and y axis 

provide normal X and Y primary quantities for a certain color and, therefore, z = 1 – x – y provides 

the necessary amount of Z primary. Chromaticity is independent of the luminous energy and 

depends on dominant wavelength and saturation. Colors of the same chromaticity but differing 

luminance all map in that area to the same point. 

The pure spectrum colors lie on the curved border and a regular white light is determined to be 

close to equivalent energy point x = y = z = 1/3. The endpoints of a line at this point are followed 

by additional colors, that is, colors that add white. Both colors in any line of the chromaticity 

diagram can be achieved by combining the colors of the end points of the line as shown in Figure 

5.12. In addition, the vertices will form all colors in a triangle by mixing colors. 

 

Figure 5.12: Mixing colors on the chromaticity diagram. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

All colors on the line IJ can be obtained by mixing colors I and J, and all colors in the triangle 

IJK can be obtained by mixing colors I, J and K. 

7.2 Color Models 

By specifying a 3D coordinate system and a subspace that includes all constructible colors within 

a particular model, color patterns provide a standard way to specify a particular color. Every color 
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that can be described by a model is a single point within the subspace it defines. The basic hardware 

(RGB, CMY, and YIQ) or image processing applications (HSI) are oriented to each color model. 

The RGB Model 

In the RGB model, an image is composed of 3 independent image levels: red, green and blue. One 

is in each of the primary colors. (As seen in figure 2, the regular wavelengths are for the three 

primaries). The sum of each primary component present is specified in a particular color. The 

geometry for color defined with a Cartesian coordination system for RGB color model is shown 

in Figure 5.13. In the line between the black and white vertices is the greyscale spectrum, i.e. these 

colors made of equal quantities of each primary. 

 

 

Figure 5.13: The RGB colour cube. The greyscale spectrum lies on the line joining the 

black and white vertices. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

It is an additive model, which is to say that the colors present in the light add to new colors and is 

suitable, for example, for mixing colored light. The additive color mix of red, green, and blue 

primaries to form three secondary colors yellow (red + green), cyan (blue + green) and magenta 

(red + blue) and white ((red + green + blue) in the picture on the left of Figure 5.13. 

For the most color displays and video cameras the RGB model is used. 

The pixel depth is termed the number of bits used to display each pixel in RGB space. Consider 

an RGB image, which contains 8-bit images of each red, green, and blue image. Each pixel RGB 

[that is, triplets of values (R, G, B)] is 24 bits in depth under these situations (3 image planes times 

the number of bits per plane). A 24-bit RGB image is sometimes referred to by the term full-color 

image. The total number of possible colors in a 24-bit RGB image is (28)3= 16, 777, 216 . Figure 
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8 illustrate the 24-bit RGB color cube analogous to the diagram in Figure 5.14 Note that the range 

of values in the cube are also scaled to the numbers that represent the number bits in the images 

for digital images. If the key images are 8-bit, the limits of the cube would be [0, 255]. For instance, 

at the point [255, 255, 255] white will be in the cube. 

 

 

Figure 5.14 A 24-bit RGB color cube. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

The CMY and CMYK Color Models 

A subtractive model for absorption of the color, for example because of colored pigments in paints, 

is the CMY (cyan-magenta-yellow) model. While the RGB model determines what's added to 

black to obtain a particular color, the CMY model determines what is subtracted from white. The 

primaries are cyan, magenta and yellow in this case, the secondary color being red, green and blue. 

When the surface is illuminated with a cyan pigment with white light, no red light, including 

magenta, yellow and blue, is reflected. The RGB and CMY model relationship is defined by: 

[
𝐶
𝑀
𝑌

] =  [
1
1
1

] − [
𝑅
𝐺
𝐵

] eq-1 

Most devices, such as color printers and copiers, that store colored pigments on paper need CMY 

data input or make an RGB internal conversion to CMY. The conversion is carried out with simple 

operation (1) where all color values are assumed to be standardized into the [0, 1] range. Equation 
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(1) shows that the light reflected by the pure cyan surface does not contain any red (i.e., C = 1 — 

R in the equation). Likewise, pure magenta is not green and pure yellow is not blue. Equation (1) 

also shows that a collection of CMY values allows RGB values to be easily obtained by deducting 

from 1. Per CMY value. As previously stated, this color model is used for the generation of a 

hardcopy output while image processing, so that it is usually of little practical interest to reverse 

CMY to RGB operation. 

The CMY model is used by printing devices and filters. 

 

Figure 5.15: The figure on the left shows the additive mixing of red, green and blue primaries 

to form the three secondary colors yellow (red + green), cyan (blue + green) and magenta 

(red + blue), and white ((red + green + blue). The figure on the right shows the three 

subtractive primaries, and their pairwise combinations to form red, green and blue, and 

finally black by subtracting all three primaries from white. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

 

The same quantities can contain black in the pigments primaries, cyan, magenta, and purple. The 

combination of these colors in practice makes a black look muddy. 

Thus, a fourth color, black, denoted by the K, will be added to create true black (which then in 

print is the dominant color) which will lead to the color of the CMYK model. The black is applied 

to the measurements needed for true black. So when publishers speak of 'four-color printing,' they 

refer to the 3 CMY colors, plus a slice of black. 

To convert from CMY to CMYK, use the following formula: 

K = min(C, M, Y) eq-2 

C = C K  

M = M K  

Y = Y – K  

If then we have pure black, with no color contributions, from which it follows that 
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C=0 eq-3 

M=0 eq-4 

Y=0 eq-5 

The C, M, and Y on the right side of Eqs. (2) -(5) are in the CMY color system. The C, M, and Y 

on the left of Eqs. (6) -(9) are in the CMYK system. 

Otherwise 

C = (C − K)/(1 − K) eq-6 

M = (M − K)/(1 − K) eq-7 

Y=(Y-K)/(1-K) eq-9 

Where all values are assumed to be in the range [0, 1]. The conversions from CMYK back to 

CMY are: 

C = C * (1 − K) + K eq-10 

M = M * (1 − K) + K eq-11 

Y = Y * (1 − K) + K eq-12 

The C, M, Y, and K on the right side of Eqs. (10) - (12) are in the CMYK color system. The C, 

M, and Y on the left of these equations are in the CMY system 

The HSI Color Model 

The HSI model would improve the RGB model. The color model of the hue saturation intensity 

is closely similar to the color sensing properties of human vision. The method, which transforms 

from RGB to HSI or back, is harder than other color models. I denote the intensity of light, H 

refers to the hue indicating the measure of the purity of colors, S refers to the saturation. If the 

saturation value of a color is high, it indicates that the color is the low white color. 

Three quantities of hue, saturation and intensity may be defined for color. This is the HSI model 

and the whole color space that can be specified is shown in Figure 5.16 



 

Unedited Version: Image Processing 
 
 

 

Figure 5.16: The HSI model with the left HSI, with the right HSI triangle, formed by a 

horizontal slice with a particular intensity through the HSI solid. The color is measured by 

a red, and the distance from the axis is saturated. The colors, i.e. pure colors, on the solid 

surface are fully saturated, and the grey spectrum on the solid axis. Hue is undefined for 

these colors. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

Conversion between the RGB model and the HSI model is quite complicated. The intensity is 

given by 

𝐼 =
𝑅 + 𝐺 + 𝐵

3
 

where the quantities R, G and B are the amounts, normalized to the range [0,1] in the red, green 

and blue components. Therefore the intensity is only an average of the components red, green and 

blue. The saturation is provided through: 

𝑆 = 1 −  
min(𝑅, 𝐺, 𝐵)

𝐼
 = 1 −

3

𝑅 + 𝐺 + 𝐵
 min (𝑅, 𝐺, 𝐵) 

where the min(R,G,B) term is really just indicating the amount of white present. If any of R, G or 

B are zero, there is no white and we have a pure color. 
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Certainly this quantity is easy to measure and interpret. The color model of HSI (hue, saturation, 

intensity) separates the intensity component into a chromatic image from the data that conveys 

colors (hue and saturation). The HSI model is therefore an ideal tool for developing image 

processing algorithms that are natural and intuitive to humans, based on color descriptions. The 

primary colors are divided by 120°. The secondary colors are 60° from the primaries, which means 

that the angle between secondaries is also 120°. Figure 10 shows the same hexagonal shape and 

an arbitrary color point (shown as a dot) 

An angle from a reference point determines the hue of the point. In general a 0° angle of the red 

axis is 0 hue, and the hue from there increases in reverse. The vector length from origin to point is 

the saturation (the distance from the vertical axis). The origin is defined by the vertical intensity 

axis intersection of the color plan. High intensity axis, length of the /vector up to a color point and 

the angle this vector creates with the red axis are the important components of the HSI color spaces. 

 

Figure 5.17 Hue and saturation in the HSI color model. The dot is any color point. The angle 

from the red axis gives the hue. The length of the vector is the saturation. The intensity of all 

colors in any of these planes is given by the position of the plane on the vertical intensity axis. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Figure 5.18 The HSI color model based on (a) triangular, and (b) circular color planes. The 

triangles and circles are perpendicular to the vertical intensity axis. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

Converting colors from RGB to HIS 

Consider RGB values normalized to the range [0; 1]. 

Given an RGB value, H is obtained as follows: 

𝐻 = {
𝜃               𝑖𝑓 𝐵 ≤ 𝐺
360 − 𝜃  𝑖𝑓 𝐵 > 𝐺
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It should be normalized to the range [0; 1] by dividing the quantity computed above by 360 

θ is given by 

𝜃 = 𝑐𝑜𝑠−1  {
1/2[(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2   + (𝑅 − 𝐵)(𝐺 − 𝐵)]2]
} 

θ is measured with respect to red axis of HSI space 

Saturation is given by 

𝑆 = 1 −
3

𝑅 + 𝐺 + 𝐵
 [min (𝑅, 𝐺, 𝐵)] 

Intensity component is given by 

𝐼 =
𝑅 + 𝐺 + 𝐵

3
 

Converting colors from HSI to RGB 

Consider the values of HSI in the interval [0; 1] 

H should be multiplied by 360 (or 2π) to recover the angle; further computation is based on the 

value of H 

RG sector – 0◦ ≤ H < 120◦ 

 

𝐵 = 𝐼(1 − 𝑆) 

𝑅 = 𝐼 [1 +
𝑆 𝑐𝑜𝑠 𝐻

𝑐𝑜𝑠(600 − 𝐻)
]  

𝐺 = 3𝐼 − (𝑅 + 𝐵) 

 

GB sector – 120◦ ≤ H < 240◦ 

𝐻′   = 𝐻 − 1200 

𝑅 = 𝐼(1 − 𝑆) 

𝐺 = 𝐼 [1 +
𝑆 𝑐𝑜𝑠 𝐻′

𝑐𝑜𝑠(600 − 𝐻′)
] 

𝐵 = 3𝐼 − (𝑅 + 𝐺) 

BR sector – 0◦ ≤ H < 360◦ 

𝐻′   = 𝐻 − 2400 
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𝐺 = 𝐼(1 − 𝑆) 

𝐵 = 𝐼 [1 +
𝑆 𝑐𝑜𝑠 𝐻′

𝑐𝑜𝑠(600 − 𝐻′)
] 

𝑅 = 3𝐼 − (𝐺 + 𝐵) 

 

A Device Independent Color Model 

Color model CMYK and RGB are device-dependent, that is to say, on the way a color is translated. 

They point to a particular device, but don't have information about the final person's perception of 

the color. The color with the identical RGB parameters is viewed by us in various ways based on 

the brightness contrast and the sharpness of your computer monitor, ambient light and the angle 

we are looking at the monitors. In a 'CMYK' color model, a person's perception of color depends 

on an even higher variety of conditions (for example glossy paper is more vivid and rich, than a 

matte color), particularly paint, the humidity of the papers dried up and the attributes of the printed 

printing press, etc. 

We append (such as) color profiles to hardware-reliant color patterns to transmit extra dependable 

color information to a person. So each profile includes information about a specific way of human 

color transmission and adapts the last color to the original color settings by adding or removing 

any constituents. For instance, a colored profile is used for printing on glossy foils, 10% Cyan 

cleaning and 5% Yellow adding to the original color, because of the unique attributes of the 

printing press, the film itself and other conditions. However, not all the transfer color problems 

can be solved, even attached profiles. 

Device-independent color models have no information on a person's color transfer. They describe 

color that people with normal colored vision perceive mathematically. 

A device independent color space is one in which the coordinates used to define the color, 

wherever they are applied, produce the same color. The color space CIE L*a*b* is an example of 

a device-dependent color space (known as CIELAB and based on the human visual system). 

The color components are given by the following equations: 

𝐿 ∗= 116. ℎ (
𝑌

𝑌𝑤
) − 16 

𝛼 ∗= 500 [ℎ (
𝑋

𝑋𝑤
) − ℎ (

𝑌

𝑌𝑤
)] 

and 

𝑏 ∗= 200 [ℎ (
𝑌

𝑌𝑤
) − ℎ (

𝑍

𝑍𝑤
)] 

where 
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ℎ(𝑞) = {
√𝑞3                      𝑞 > 0.008856.

7.787𝑞 +
16

116
   𝑞 ≤  0.008856

 

The reference white tri stimulus values of Xw, YW and Zw are usual white of a diffuser reflective 

of CIE D65 illumination standard (defined by x = 0.3127 and y = 0.3290 in CIE chromaticity 

diagram of Figure 5.11). Figure 5.11: The colors of the L*a*b are colorimetric (i.e. colors that 

match are identically encoded), are perceptually uniform (i.e. the color differences among various 

colors are uniformly perceived - see Mac Adams class paper [1942]). Although the format cannot 

be viewed directly (it is required to convert to another color space), its spectrum covers the whole 

spectrum of viewers and can precisely display, print or print, or input device. Like the L*a*b 

system, it is an excellent intensity decoupled (presented in lightness L*) from the color (presented 

with a* for red minus green and b* for green minus blue), which makes it useful both for the 

manipulation of images (tone and contrast editing) and for image compression application. 

Calibrated imagery systems benefit primarily from interactive, independent correction of tonal and 

color imbalances in two sequence operations. Before irregularities such as colors over and under 

saturated, the problems of the tonal range of the images are resolved. The tonal range of an image, 

also known as its key type concerns its overall color intensity distribution. Most information on 

high-key images are concentrated at high (or light) intensities; colors for low-key images are 

mainly at low intensities; middle-key images lie among them. As in the monochrome case, the 

intensities or the image of color between the highlights and the shadows are often equally desirable. 

The following examples show a range of color transformations for tonal and color balance 

correction. 

5.13 Pseudocolor Image Processing 

Pseudo color processing (also known as false color means assigning colors to grey values, on the 

basis of a given criterion.  The name pseudo or false color is applied to distinguish the color 

assignment process from the process associated with true color for human visualization and 

interpretation of gray-scale events in an image or image sequence. The fact that human beings 

distinguish thousands of colors shades and intensities from only two dozen or so shades of the grey 

is one of the main reasons for coloring. 

Intensity Slicing and Color Coding 

This is a straightforward case for pseudocolor image processing. It is also known as color coding 

or density slicing. 

Imagine a 3D function greyscale image with the intensity of the third dimension. The pixel 

position coordinates would "slice" the image into two parts when placing a plane parallel to the 

horizontal plane. Then different colors can be assigned to different levels. Figure 5.8 shows an 

example of using a plane at f(x, y) = li to slice the image function into two levels. 

If each side of the plane shown in Figure 5.19 is assigned a different color, a pixel whose grey 

level is over the plane is coded in one color, whilst any pixel underneath it is coded in one color. 

One of the two colors may be assigned arbitrarily to the levels on the plane itself. The result is a 
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two-colored picture that can control its relative appearance by moving the sliding plane upward 

and downward. 

The technique can be formulated as continues to follow in particular. The grey scale is [0, L-1], 

and let lo is indicate as black [f(x,y),y) = 0],  and level l L-1the represented white is [f(x,y) =L-1]. 

Assume that P planes are defined in levels l1, l2,....,lp  are perpendicular to the intensity axis. If 0 < 

P < L –1, the grey scale is divided into I1, I2... I p + 1.   

𝑖𝑓𝑓(𝑥, 𝑦)𝜖𝐼𝑘  𝑙𝑒𝑡𝑓(𝑥, 𝑦) = 𝑐𝑘 

Where ck is the color accompanying with the kth intensity interval Ik defined by the partitioning 

planes at l = k - 1 and l = k. 

 

 

Figure 5.19 Geometric interpretation of the intensity slicing technique. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The concept of planes is particularly useful to interpret the intensity-slicing technique in geometric 

terms. Figure displays an alternative image defining the same mapping as in Fig.  Depending on 

whether the mapping function in the figure is above or below the li value, any grey input level is 

assigned one of two colors. The mapping function takes on a staircase form when more levels are 

used. 
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Figure 5.20 An alternative representation of the intensity-slicing technique. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Figure shows a simple yet practical application of intensity slicing. The grayscale image of the 

radiation testing pattern Picker Thyroid Phantom is Figure 5.21 (a) and the intensity slicing of this 

image is divided into eight colors, as shown in Figure 5.21 (b). Regions that occur in the grayscale 

are in fact very variable, as the different colors in the sliced image show. 

The left lobe is a dull grey in the grayscale picture, for example, which makes it difficult to pick 

out changes in intensity. In contrast, 8 regions of constant intensity are clearly visible in the picture, 

one for each of the colors used. With different color numbers and intensity intervals, the 

characteristics of intensity variations in a grayscale image are quickly determined. In situations 

such as the one shown here, the object of interest has a uniform texture with variations in intensity 

which are difficult to analyze visually. 
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Figure 5.21 (a) Grayscale image of the Picker Thyroid Phantom. (b) Result of 

intensity slicing using eight colors. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The above simple example divided the grayscale into intervals and each was given a different 

color, regardless of the significance of the grayscale. In this case, the interest was simply to view 

the various grey levels that make up the image. Intensity slicing plays a much more meaningful 

role when the grayscale is divided according to the physical characteristics of the image Figure 

5.22.(a) shows, for example, the X-ray image of a weld (wide dark horizontal area) with multiple 

cracks and porosities  (the bright streaks running horizontally through the middle of the image). If 

porosity or crack is present in a weld, the full force of X-rays through the object saturates the image 

sensor across the object. Thus, an 8-bit image of intensity values of 255 in such a system implies 

a welding problem automatically. If visual analysis is used to inspect welds  (a widely accepted 

method still now), the inspector can make the work significantly easier with the simple color 

coding which allocates one color to level 255 or another to all other intensity levels. The result is 

displayed in Figure 5.22 (b). The conclusion that if images were presented in the form of Figure 

5.22.(b) no explanation was required that human error rates would be lower in other words, if you 

are looking for an intensity or range of values, intensity slicing is a simple but effective 

visualization aid, especially if many images need to be checked regularly. 
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Figure 5.22 (a) X-ray image of a weld. (b) Result of color coding. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Intensity to Color Transformations 

The idea behind this approach is to carry out three independent grey pixel transformations of any 

input pixel. The three outcomes are then separately fed into a color Television screen's red, green 

and blue channels. This technique generates a composite image whose color contents are amplified 

by the nature of the transformations functions. Mention that the gray-level image values are 

transformations and are not position functions. 

In the intensity slicing, piecewise linear functions of the grey level generate linear functions to 

produce colors. This method can, however, be focused on smooth, nonlinear functions, which give 

significant versatility as might be expected. 
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Figure 5.23 Functional block diagram for pseudocolor 𝑓𝑅 ,𝑓𝐺 𝑎𝑛𝑑 𝑓𝐵 image processing. Images 

and are fed into the corresponding red, green, and blue inputs of an RGB color monitor. 

The type of processing shown just now is very powerful for visualizing events of interest for 

complex images, in particular when they go beyond our normal sensing capabilities. Figure 5.24 

is a very good example. These are Jupiter Moon Io images, shown in pseudo-color, when several 

sensor photos of the Galileo spacecraft are combined, some of which cannot be seen on the eye in 

spectral regions. However, it is possible to combine the sensed image with a meaningful pseudo-

color map by understanding physical and chemical processes that can influence sensors' responses. 

 

Figure 5.24: pseudo color rendition Jupiter Moon Io. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

One way of combining sensed image data is by showing differences in the composition of surface 

chemicals or by modifying the reflected surface sunlight. The pseudo color image, for example, in 

Figure 5.25 shows bright red representing the newly expelled material from Io's active volcano. 

This image provides these features much more easily than would have been possible through 

individual analysis of the component images 
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Figure 5.25: A close-up (Courtesy of NASA) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods 

5.14 Basics of Full-Color Image Processing 

Techniques for full color image processing fall under two categories. In the first category, each 

component image is constructed independently and a composite color image from the individual 

elements is then established. One work directly with color pixels in the second category. Due to 

the at least three color images, color pixels are actually vectors. In the RGB system for example, 

every color point could be interpreted as a vector in the RGB coordinate system extending from 

the source to that point. 

Let c represent an arbitrary vector in RGB color space: 

𝑐 = [
𝐶𝑅

𝐶𝐺

𝐶𝐵

] = [
𝑅
𝐺
𝐵

] 

This equation shows that the components of c are at one point simply the RGB components of a 

color image. When the color components are a coordinate function (x, y), the notation is used 

𝑐 = [

𝐶𝑅(𝑥, 𝑦) 

𝐶𝐺(𝑥, 𝑦)
𝐶𝐵(𝑥, 𝑦)

] = [

𝑅(𝑥, 𝑦)

𝐺(𝑥, 𝑦)
𝐵(𝑥, 𝑦)

] 

MN vectors such as c(x, y), x = 0,1, 1, 2,...,M- l; y = 0,1,2,,...,N- 1, are present on an image of the 

size M X N. 

It should be kept in mind clearly that Eq.(2) represents a vector with spatial variables of x and y 

components. Two conditions have to be met for the equivalence of each color component and 

vector-based processing: First, both vectors and scalars must be covered by this process. Second, 

it must be independent of all other components for each component of the vector. 
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Figure 5.26 Spatial masks for gray-scale and RGB color images. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Figure 5.26 shows grey scale and full-color images for the spatial processing in the neighborhood. 

Assume the process is an average neighborhood. The average grey level of all pixels in the 

neighborhood would be summarized and divided by the total number of pixels in the neighborhood 

in Figure 5.26 (a). In Figure 5.26 (b), an average of all vectors in the neighborhood would be 

summed up and the total number of vectors in the neighborhood would be divided by each 

component. So each component of the average pixel is the sum of the image pixel of the same 

component, which is the same as the result if the average is per color component. 

5.15 Color Transformations 

In the context of a single color model, the color transformation processes the color image 

components. 

Formulation 

As with the techniques of transformation at gray-level of model colour with the expression 

g(x, y)  =  T[f(x, y)]  

Where f(x,y) is an color input image, g(x,y) is a color output  image that's transformed or 

processed, and T has become an operator in f over a space area of f  (x,y). 

The pixel values here are three-fold or quartets from the color space selected to represent the 

images (e. g. groups of three or four values). 

We introduced the basic grayscale transformations similarly to the approach. In this section we 

will focus only on the color changes in the form. 

si =  T( r1, r2, . . . . . . , rn ), i =  1,2, . . . . . . . . , n  
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Where ri and si are variables for notation simplicity which are f(x,y) and g (x,y) at any point (x,y) 

color components, n is the number of color components, and {T1,T1,....,Tn} is a set of functions 

for transformation and color map that operates at the time of ri to produce si. Notice that n 

transformations, Ti, integrate in equation to implement the single transformation function T . The 

color space selected to describe f and g pixels defines the value of n. The red, green, and blue 

components for the image input respectively indicate when the RGB color space is selected, e.g. 

n=3, r1,r2, and r3. When selecting CMYK or its color spaces, n=4 or n=3. 

Figure above shows a color image of a large-size (4' x 5 ') high-resolution color image of a bowl of 

strawberries and cup of coffee that's been digitized. The initial CMYK scan components are in the 

second row of the figure. In these images, 0 is black and 1 color component in each CMYK. This 

is shown by the strawberries, because the images that correspond to the two CMYK components 

are the brightest of the large quantities of magenta and yellow. Black is spare and generally 

contained in the bowl of strawberries in coffee and shadows. The last row or Fig. 7 shows the 

components of Figure 5.27— equated, (2) (4). As expected, a monochrome rendering of the 

original color is the intensity component. Figure 7: components computed using equation, (2) up 

to (4 )are shown in this last row . The intensity component is presumed to be a monochrome version 

of the original full-colour. Moreover the strawberries are relatively pure in colour; they have the 

highest saturation or a minimum dilution of the hues in the image by white light, so finally we find 

it difficult to describe the hue component. 

The challenge is exacerbated by the fact that in a model where 0 and 360o meet, there is a 

discontinuity and that the saturation of the hue is uncertain (— for example for white, black, and 

pure grey). The discontinuity is quite obvious around the strawberries, which are displayed in both 

black (0) and white grey level values (1). 
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Figure 5.27: A full-color image and its various color-space components (Original image 

courtesy Med-data Interactive.) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Equation (2 ) can be used with any colour space components of Figure 5.27 (2). Theory shows 

that any changes in any colour model can be carried out. However, a few other operations are more 

suitable for specific models in practice. The cost of transferring representations into a decision on 

the colour space to implement this must be considered for a given transformation. Suppose, for 

example, we want to change the image intensity using Fig. 7. 

𝑔(𝑥, 𝑦) = 𝑘𝑓(𝑥, 𝑦) 

Where 0 < k < 1 , the simple transformation can be done in the colour space. 

𝑠3 = 𝑘𝑟3 
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Where s1 = r1, and s2 = r2. Only its component intensity r3 is altered. Three components have to 

be changed in the RGB colour space: 

𝑠𝑖 =  𝑘𝑟𝑖  𝑖 = 1,2,3 

Similar linear transformations are required in CMY space: 

𝑠𝑖 =  𝑘𝑟𝑖 + (1 − 𝑘)  𝑖 = 1,2,3 

In the same way, the transformations needed to change the CMYK image intensity are given 

𝑠𝑖  = {
𝑟𝑖     𝑖 = 1,2,3

𝑘𝑟𝑖 + (1 − 𝑘) 𝑖 = 4
 

This equation tells us that we only modify the fourth (K) component to modify the intensity of a 

CMYK image. 

Figure 5.28  shows that the transformations are applied to the full color image . In Figure 5.28  

(c) through (h) the mapping functions are shown graphically. The CMYK mapping function 

consists of two components, the same is the case with HSI; one component is handled by the 

transformations, the other by the rest. As most various transformations have been made, the net 

outcome of modifying the color intensity by a fixed value for everyone has been the identical 

 

Figure 5.28 Adjusting the intensity of an image using color transformations. (a) Original 

image. (b) Result of decreasing its intensity by 30% (i.e., letting ). (c) The required RGB 

mapping function. (d)–(e) The required CMYK mapping functions. (f) The required CMY 

mapping function. (g)–(h) The required HSI mapping functions. 
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(Original image courtesy of MedData Interactive.) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

It must be noted that every transformation represented throughou) varies depending on only one 

component within the space of its colors. The red outcome component, varies depending on only 

the red input and is autonomous of the green and blue inputs. Straightforward and regularly used 

tools for color processing include transformations of this type. As mentioned at the start of our 

discussion, it can be done on a per-color basis. 

We would also evaluate numerous transformations of this type in the remainder of this section and 

discuss the matter wherein the functions for component transformation depend on all the color 

components of the input image and therefore cannot be performed on a single color component 

basis. 

Color Complements 

The colour circle (also known as the colour wheel) shown in Figure 5.29 came from Sir Isaac 

Newton who developed his first position at the end of the colour spectrum in the seventeenth 

century. The colour circle is an image of the colours organized as per their chromatic connection. 

The circle consists of the primary colours being equally distant. The secondary colours are then 

positioned in an equal distance arrangement between both the primary colours. The net outcome 

is that the colour circle is supplemented by hues directly opposite one another. Our interest in 

supplements is due to their analogy with the grayscale negative. 

Color complements are, as with the gray-scale particular instance, effective to enhance the detail 

embedded in the dark regions of a color image notably if the regions dominate. Some of these 

concepts are explained in the following example. 
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Figure 5.29 Color complements on the color circle. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

EXAMPLE: Computing color image complements. 

The full picture of Figure 5.30   and its complement to colour is displayed in Figure 5.30  (a) and 

(c). Figure 5.30  (b) illustrates the RGB transformations used to calculate a complement. They 

correspond to the negative grayscale process. The complement recalls conventional colour film 

negative photographic elements. The cyans in the complement replace the reds of the original 

image. The compliment is white when the original image is black, etc. The colour circle of Figure 

5.30.  allows the original image to be predicted for each hue in the supplement image, and only a 

corresponding input colour functions for each RGB component that is involved in the calculation 

of a complement. 
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Figure 5.30 Color complement transformations. (a) Original image. (b) Complement 

transformation functions. (c) Complement of (a) based on the RGB mapping functions. (d) 

An approximation of the RGB complement using HSI transformations. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Wood 

Color Slicing 

It is useful to highlight a special range of colours in an image to separate objects from their 

environment. The basic idea: (1) demonstrates the colours of interest so they can distinguish 

themselves from the background; or (2) uses a color-defined area as a mask. The simplest approach 

is to extend the techniques of intensity slicing. Even so, since the colour pixel is an n-dimensional 

quantity, the consequent colour transformation functions are more difficult than their counterparts 

in grey scale in figure 3.11. In essence, the necessary transformations seem to be quite complicated 

than that of the originally thought colour component transformations. It is because every practical 

colour slicing method includes the transformed colour components of every pixel as a function of 

all the colour components of the original pixel. 
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One way of "slicing" a color image is to map colors into a nonprominent neutral color after a 

certain range of interest. When a Cube of width W (or hypercube for) is contained in 

interest’s colors, the required transformation set shall be determined through prototypes (e.g. 

average) of color with components. 

𝑠𝑖 = {
0.5  𝑖𝑓 [|𝑟𝑗 − 𝑎𝑗| >

 𝑤  

2
]

𝑟𝑖               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
𝑎𝑛𝑦 1 ≤ 𝑗 ≤ 𝑛 𝑖 = 1,2, … , 𝑛 

Such transformations illustrate the colours surrounding the prototype by forcing all other colours 

to the centre point of the colour space (this is an arbitrarily chosen neutral point). For example, the 

colour space for the RGB is middle gray or colour (0.5, 0.5, 0.5) with an appropriate neutral point. 

Eq.  has become whenever a sphere is used to indicate the colours of interest. 

𝑠𝑖 = {
0.5  𝑖𝑓 ∑(𝑟𝑗 − 𝑎𝑗

𝑛

𝑗=1

)2 > 𝑅2
0

𝑟𝑖               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

𝑖 = 1,2, … , 𝑛 

The enclosed sphere radius (or hypersphere for) and its centre is component (i.e., a prototypical 

colour). Other beneficial variations of Eqs.  and  include the implementation of multiple colour 

prototypes and a reduction of the intensity of colours, rather than a neutral constant. 

5.16 Color Image Smoothing and Sharpening 

  It will be illustrated in this section how the fundamentals of this type of neighbourhood processing 

are applied to the task of smoothing and sharpening colored images. 

Color Image Smoothing 

Using the grayscale picture smoothing technique, one can view of spatial filtering as a spatial 

filtering operation in which the coefficients of the filtering mask are all 1. As the mask is moved 

across the image to be smoothed, each pixel is replaced by the average of the pixels in the 

neighborhood indicated by the mask, resulting in a smoothed image with fewer pixels. The 

application of this principle to the processing of full-color photographs is straightforward. The 

most significant distinction is that, rather than dealing with scalar gray-level values, we must deal 

with component vectors of the form given in Equation (2). 

Assume Sxy is the set of coordinates that define a neighbourhood in an RGB colour image that is 

centred at ( x, y ). In an RGB colour image, The average of the RGB component vectors in this 

neighbourhood is calculated as follows:  

 Equation ( 1 ) 
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It follows from Equation ( 2 ) and the properties of vector addition that 

 Equation ( 2 ) 

 

 

Identify the components of this vector as scalar images that would be created by independently 

smoothing each plane of the beginning RGB image using standard gray-scale neighbourhood 

processing, as shown in the example below. Consequently, we conclude that smoothing by 

neighbourhood averaging can be performed on a per-color plane basis using neighbourhood 

averaging. In this case, the result is identical to the one obtained when the averaging is conducted 

using RGB colour vectors. 
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Figure 5.31 Color Image Smoothing 

Eg:- Consider the color image shown in Figure 5.31 (a). The red, green, and blue planes of this 

image are depicted in Figs, Figure 5.31 (b) through (c) 

The HSI components of the image are depicted in Figures Figure 5.31 (a) through (d). We 

simply smooth each of the RGB colour planes on its own, and then merge the smoothed planes to 

generate a smoothed full-color result by combining the processed planes. 
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Figure 5.32 HSI component of the RGB color image 

Undoubtedly, the most significant advantage of the HSI colour model is that it decouples intensity 

(which is closely related to grey scale) from colour information. The fact that it is suited for various 

gray-scale processing techniques suggests that smoothing simply the intensity component of the 

HSI representation shown in Figure 5.32  may be more efficient than smoothing the entire 

representation. This approach's benefits and/or drawbacks are demonstrated next by smoothing 

only the intensity component, while keeping the hue and saturation components unaffected, and 

converting the result to an RGB image for display. 

Color Image Sharpening 

In this section, we will look into image sharpening with the Laplacian function. Knowing the 

Laplacian of an input vector, we can define it as a vector with components that are identical to the 

Laplacian of each individual scalar component of the input vector. This definition comes from the 

field of vector analysis. The Laplacian of vector c in Equation I corresponds to the RGB colour 

scheme. 

 

In the same way that we learned in the previous section, we can compute the Laplacian of a full-

color image by computing the Laplacian of each component image individually. 

 

Figure 5.33 Image sharpening with the Laplacian. 

Using Equation to compute the Laplacians of the RGB component pictures in Figure 5.30 and 

merging them to generate the sharpened full-color result in Figure 5.33, .This result was obtained 
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by multiplying the Laplacian of the intensity component by the hue and saturation components, 

which remained constant. 

5.17 Using Color in Image Segmentation 

Segmentation is a process that partitions an image into regions. 

Segmentation in HIS color Space 

If we want to segment an image depending on colour, for example, and in this case, Furthermore, 

we wish to carry out the procedure on an individual basis. When it comes to planes, it is reasonable 

to think of the HSI space because the hue picture provides an accessible representation of colour. 

Typically, using saturation as a masking image, you can separate off more information. In the hue 

image, look for areas of interest. The image of intensity is as follows: Because of this, it is 

employed less frequently for colour picture segmentation. It does not contain any colour 

information. The following is an illustration: This is an example of how segmentation is carried 

out in the HSI system. 
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Figure 5.34 Image segmentation in HSI space. (a) Original. (b) Hue. (c) Saturation. (d) 

Intensity. (e) Binary saturation mask (f) Product of (b) and (e). (g) Histogram of (f). (h) 

Segmentation of red components from (a). 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

Figure 5.34 (f) depicts the product of the mask and the hue image, and Figure 5.34 (g) depicts the 

histogram of the product image (note that the grayscale is in the range [0, 1]).   We can observe in 

the histogram that the high values (which correspond to the values of interest) are grouped at the 

very high of the grayscale, close to the value of one. Figure 5.34 (h) depicts the binary image 

produced by thresholding a product image with a threshold value of 0.9 as the outcome of the 

thresholding operation. Using the spatial location of the white spots in this image, we can 

determine which points in the original image have the reddish hue that we are looking for. The 

segmentation approach used here was far from ideal, as there are areas in the original image where 

we would definitely state there is a reddish hue, but which were not identified by this segmentation 

method. The regions depicted in white in Figure 5.34 (h) are, however, the best that this approach 

can accomplish in detecting the reddish components of the original image, as determined by trial 

and comparison. The segmentation method detailed in the following section has the potential to 

produce better outcomes than the previous method. 

Segmentation in RGB vector Space 

Working in HSI space is more intuitive, segmentation is one area in which better results generally 

are obtained by using RGB color vectors. The approach is straightforward. Suppose that the 

objective is to segment objects of a specified color range in an RGB image. Given a set of sample 

color point’s representative of the colors of interest, we obtain an estimate of the “average” color 

that we wish to segment. Let this average color be denoted by the RGB vector a. The objective of 

segmentation is to classify each RGB pixel in a given image as having a color in the specified 

range or not. In order to perform this comparison, it is necessary to have a measure of similarity. 

One of the simplest measures in the Euclidean distance. Let z is similar to a if the distance between 

them is less than a specified threshold, D0. The Euclidean distance between z and a is given by 

 

In this case, the subscripts R, G, and B represent the RGB components of vectors a and z, 

respectively. As shown in the illustration, the locus of points such that D (z, a ) D0 is a solid sphere 

with radius D0, and this is known as the locus of points. Figure 5.34 (a). Points that are contained 

within or on the surface of the object. Points outside the sphere satisfy the provided colour 

condition; spheres that satisfy the specified colour criterion sphere od does not exist. It is necessary 
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to code these two groups of points in the picture. Using, for example, black and white, one can 

create a binary segmented image. 

 

Figure 5.34 Three approaches for regions for RGB vector segmentation.(a->b->c) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

5.18 Noise in Color Images  

It is possible to use color images with the noise models. While the noise content of a color image 

typically has the same properties in each color channel, it is possible for separate color channels 

to be affected differentially by noise in some cases. If the electronics of a particular channel 

malfunction, this is one possibility to consider. Different noise levels, on the other hand, are more 

likely to be produced by changes in the relative amounts of noise. A measure of the amount of 

illumination supplied to each individual color channel using a red filter in a CCD camera, for 

example, can significantly weaken the image. because of the amount of illumination detected by 

the red sensor elements Because CCD sensors are noisier at lower levels of illumination, the 

resulting red light is more intense. In this circumstance, the noise component of an RGB image 

would tend to be louder than the noise components of the other two component images. 

In this example, we explore the impact of noise in colour images. The image in Figure 5.35 (a) 

through (c) depicts the three primary colours in an RGB image with added additive Gaussian noise, 

whereas Figure 5.35 (d) represents the final image after the colours have been mixed together. In 

color images, fine grain noise, such as this, appears less obvious since it is masked by colour. The 

results of converting the RGB image in Figure 5.35 to HSI are shown in Figure 5.35 (a) through 

(c). Consider how much worse the hue and saturation values in the noisy image have gotten when 

compared to the original HSI image. Similarly, the overall image of Figure 5.35 (c) is a little 
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smoother and has less noise than any of the three noisy RGB images. As can be seen in Equation, 

the intensity image is the sum of the RGB images  

 

Figure 5.35 (a)–(c) Red, green, and blue 8-bit component images corrupted by additive 

Gaussian noise of mean 0 and standard deviation of 28 intensity levels. (d) Resulting RGB 

image 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Figure 5.36 HSI components of the noisy color image in Figure 5.35 (d) . (a) Hue. (b) 

Saturation. (c) Intensity. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

When a single RGB channel is damaged by noise, for example, converting to HSI distributes the 

noise among all HSI component images. An illustration of this is shown in Figure 5.36. Figure 

5.36 (a) illustrates an RGB image with a corrupted green component caused by salt and pepper 

noise with a probability of either salt or pepper of 0.05. The HSI component images in Figure 5.36 

(b) through (d) clearly demonstrate how the noise extended from the green RGB channel to all of 

the HSI images. Naturally, this is not surprising, as the HSI components are computed using all 

RGB components. 

 

Figure 5.36 (a) RGB image with green plane corrupted by salt-and-pepper noise. (b) Hue 

component of HSI image. (c) Saturation component. (d) Intensity component 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

5.19 Color Image Compression 
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Due to the fact that the number of bits necessary to represent colour is often three to four times 

that required to represent grey levels, data compression is critical for the storing and transmission 

of colour images. In the previous sections' RGB, CMY(K), and HSI images, the data that are 

compressed are the components of each colour pixel (e.g., the red, green, and blue components of 

the pixels in an RGB image); these are the mechanism by which colour information is given. 

Compression is the process of removing duplicate and/or unneeded data. 

Figure 5.37 (a) depicts a 24-bit RGB full-color representation of an iris, where each of the red, 

green, and blue components is represented by eight bits. Figure 5.37 (b) was created using a 

compressed version of the image in (a) and is thus a compressed and then decompressed 

approximation of it. Although the compressed image cannot be displayed directly on a colour 

monitor—it must be decompressed first—it comprises just one data bit (and hence one storage bit) 

for every 230 bits of data in the original image. Suppose that the image is of size 2000 × 3000 

=6.106 pixels. The image is 24 bits/pixel, so it storage size is 144 ⋅ 106 bits. 

 

Figure 5.37 Color image compression. (a) Original RGB image. (b) Result of compressing, 

then decompressing the image in (a). 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

 

5.20 Unit End questions 

1. Explain the Matrix-Based Transforms. 

2. Explain the basic functions in the Time-Frequency Plane. 

3. Write short note on Discrete Hartley Transform. 

4. Write short note on Slant Transform. 

5. Write short note on Haar Transform. 

6. Write short note on Wavelet Transforms. 

7. Explain the color fundamentals. 

8. Explain the color models. 

9. Explain the Pseudocolor Image Processing 

10. Explain the color image Segmentation. 

11. Explain the noise in the color images. 

12. Explain the Color image compression. 

5.21 Reference for further reading 

1. Digital Image Processing Gonzalez and Woods Pearson/Prentice Hall Fourth 2018 

2. Fundamentals of Digital Image Processing A K. Jain PHI   

3. The Image Processing Handbook   J. C. Russ CRC Fifth 2010 

 



 

Unedited Version: Image Processing 
 

Chapter 6 Image Compression and Watermarking: 

6.0 Introduction 

6.1 Fundamentals  

6.2 Huffman Coding 

6.3 Golomb Coding  

6.4 Arithmetic Coding  

6.5 LZW Coding  

6.6 Run-length Coding  

6.7 Symbol-based Coding  

6.8 8 Bit-plane Coding 

6.9 Block Transform Coding  

6.10 Predictive Coding  

6.11 Wavelet Coding  

6.12 Digital Image Watermarking 

6.13 Unit End questions 

6.14 Reference for further reading  



 

Unedited Version: Image Processing 
 

Introduction 

In recent years multimedia product development and demand have increased more and more, 

contributing to an inadequate network bandwidth and memory storage device. The theory of data 

compression therefore becomes increasingly important in order to reduce the redundancy of data, 

saving more bandwidth and space in hardware. The process of encoding information using fewer 

bits or other information units than an unencoded representation is data compression or source-

coding in computer science and information theory. It helps to reduce costly resource consumption, 

for example, disk space or bandwidth transmission. Theory and practice will be introduced, the 

most commonly used compression techniques examined, and the industry standards described, that 

will help us. This section concludes on the process of introducing visible and invisible data (such 

as information concerning copyright) to images into digital images watermarking. 

6.1 Fundamentals 

Data compression, also known as compaction, the process by which data is reduced, typically 

using encoding techniques, necessary for storage or the transfer of a given information piece. There 

must be a clear distinction between information and data. It's not synonymous with it. Actually, 

data is the means of transmitting information. The same amount of information may be represented 

by different amounts of data. You can see an example in order to understand image redundancy or 

data redundancy in digital image processing. Suppose two people told a story from Ramesh and 

Suresh. In the comparison with Ramesh, Suresh told the story in less words, where Ramesh had 

too many words to tell the same story. Either Ramesh said irrelevant information/data that isn't the 

part of his story, or he repeated his words several times. In other words, it includes data (or words) 

not providing any relevant information or simply restoring what has already been known. This 

means that data redundancy is included 

Data redundancy is a key issue for the compression of digital images. It is not an abstract concept, 

but a quantifiable entity mathematically. If n1 and n2 indicate the number of information-

carrying in two data sets that comprise the same information, the relative data redundancy (RD) of 

the first data set (n1) can be defined as 

𝑅𝐷 = 1 −
1

𝐶𝑅
 

Where CR is commonly referred to as the compression ratio 

𝐶𝑅 =
𝑛1

𝑛2
 

In case n2 = n1, CR = 1, RD = 0 shows that the first representation of the information does not 

contain redundant data (related to the second dataset). In n2 << n1,𝐶𝑅  ⟹ ∞  𝑅𝐷  ⟹ 1 which 

involves considerable compression and highly redundant data. Finally, the second set of data 

contains a lot more than the original representation of 𝑛2   ≫ 𝑛1𝐶𝑅  ⟹ 0  𝑅𝐷  ⟹ ∞, respectively. 

Naturally this is the usually unwanted case of expansion of the data. CR and RD are generally 

intervals (0, ∞) and (-∞, 1), respectively. A useful Compression Ratio, such as 10 (or 10:1), means 

that for each one unit in a second or compressed data set, a first data set contains ten information 
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carrying units (say bits). The corresponding 0.9 redundancy means that 90% of the first data is 

redundant. 

Three fundamental data redundancies could be recognized and used in digital image compression: 

coding redundancy, interpixel redundancy, and psychovisual redundancy. Data compression is 

obtained by reducing or eliminating one or more of these redundancies. 

Coding Redundancy: 

In this we use a wording to demonstrate how an image's grey histogram can also provide a good 

insight into code construction in order to minimise the amount of data used for it. 

Again suppose a discrete random variable rk in interval [0, 1] is the grey levels in the image and 

every rk is likely to occur probability pr (rk). 

𝑝𝑟 (𝑟𝑘) =
𝑛𝑘

𝑛
  𝑘 = 0,1,2, … , 𝐿 − 1 

Where L is the number of grey level, nk is the number that is demonstrated in the image with the 

kth grey level, and n is the total pixel number in the image. If the number of bits used for each rk's 

value is l (rk), the average number of bits needed for each pixel is 

𝐿𝑎𝑣𝑔 = ∑ 𝑙

𝐿−1

𝑘=0

(𝑟𝑘)𝑝𝑟(𝑟𝑘) 

In other words, the average length of the code words allocated to the different grey level values is 

determined by summing up each grey level's number of bits and probability of the grey level 

occurrence. The number of bits needed to code the M X N image is also MNLavg. 

Interpixel Redundancy: 

Take into account the images in Fig. 6.1(a) and (b). These images show almost identical histograms 

as shown in Figs. 6.1(c) and (d). It is also important to note that both histograms are trimodal, and 

that three dominant ranges of grey level values are present. Due to the not equally likely grey 

values of these images, variable length coding can be applied for reducing the redundancy of 

coding resulting from a straight or natural binary pixel coding. Nevertheless, the coding process 

does not affect the correlation level between the pixels in the images. That is, the codes used to 

represent each image's grey levels are not related to the correlation between pixels. 
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Fig.6.1 Two images and their gray-level histograms and normalized autocorrelation 

coefficients along one line. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The autocorrelation coefficient calculated along a line of each picture is shown in Figures 1.1(e) 

and (f). 
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𝛾(∆𝑛) =
𝐴(∆n)

𝐴(0)
 

Where 

𝐴(∆𝑛) =
1

𝑁 − ∆𝑛
 ∑ 𝑓(𝑥, 𝑦)𝑓(𝑥, 𝑦 + ∆𝑛)

𝑁−1−∆𝑛

𝑦=0

 

The above scaling factor is the number of sum terms for each integer value of Δn. This value is 

variable. Naturally, the total of pixels on a line must be Δn strictly lower than N. The variable x is 

the line co-ordinate for the computation used. Notice the shape of functions in Figs. 6.1(e) and (f). 

Their shapes can be associated objectively to the structure in Figs. 6.1(a) and (b). This relationship 

is especially apparent in Fig. 6.1(f), where there is a direct correlation between both the significant 

correlations among both pixels divided into 45 and 90 samples between the vertically oriented 

matches of Fig. 6.1. (b). 

These images represent another significant form of data redundancy – one which is directly related 

to the image's interpixel correlations. The information contained in individual pixels is 

comparatively small because the value of any given pixel could be adequately predicted from the 

value of its neighbours. A great deal of a single pixel's visual contribution to a picture is redundant, 

based on its neighbours' values. A variety of names have been coined to refer to these interpixel 

dependencies, including spatial redundancy, geometric redundancy, and frame redundancy. To 

include all of them we use the term interpixel redundancy. 

The 2D pixel array usually used for human visualization and interpretation should be changed into 

a more effective (but usually nonvisual) format to reduce interpixel redundancies in an image. An 

image may for instance be represented by the differences between adjacent pixels. This type of 

transformations is known as mapping (i.e. those which delete interpixel redundancy). They are 

called reversible mappings if you can reconstruct the original picture components from the 

transformed data package. 

Psychovisual Redundancy: 

The brightness of a region, as the eye perceives, depends not only on the light reflected by that 

region. For instance, variations in intensity (Mach bands) in an area of constant intensity can be 

perceived. Such phenomena arise because the eye does not respond to all visual information with 

equal sensitivity. Some information is simply less important for normal visual processing than 

other information. It is said that this information is psycho-visually redundant. It can be removed 

without adversely affecting the quality of the perception of images. 

It is not surprising that psychovisual redundancies are in place, since human perception of the data 

in an image does not usually require a quantitative analysis of each pixel value in an image. An 

observer usually investigates and psychologically combines characteristics, such as edges and 

textures, into recognizable groups. In order to complete the process of image interpretation the 

brain correlate these groups with previous knowledge. Psycho-visual redundancy differs from the 

previously mentioned redundancies. Psychovisual redundancy is associated with actual or 
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measurable visual information, in contrast to coding and interpixel redundancy. The removal of 

the information is only possible as it is not necessary for the normal visual processing. As the 

removal of redundant psycho-visual data causes the loss of quantitative information, quantization 

is commonly called. 

This terminology corresponds to the ordinary use of the word, usually by mapping a wide range 

of input values to a limited number of output values. The quantization results in loss of data 

compression, since the operation is irreversible (visual information lost). 

Fidelity Criteria 

Realizable or quantitative information is lost due to the removal of psychovisually redundant data. 

Since information relevant is lost, it is highly desirable to use repeatable or reproducible methods 

to quantify the nature and extent of the data loss. As the basis for such an evaluation, there are two 

general classes of criteria: 

A) Objective fidelity criteria and 

B) Subjective fidelity criteria. 

When the information loss level could be described as a function of the original or input image as 

well as the compressed and then decompressed output image, an objective fidelity criterion is 

stated for this. The root-mean-square error (rms) of an input to the output image is a good example. 

That f(x, y) is an image input, and allow f(x, y) to indicate an estimation or approximation of f(x, 

y) which is the result of compression and decompression of the input afterwards. e(x, y) error 

between f (x, y) and 𝑓(𝑥, 𝑦)for any value of x and y can be defined as 

𝑒(𝑥, 𝑦)  =  𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦) 

 

so that the cumulative error among the two images is 

∑ ∑[𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

Where the images are M X N. The root-mean-square error, erms is the square root averaged over 

the M X N array and the errors between f(x, y) and 𝑓(𝑥, 𝑦) 

 

 

𝑒𝑟𝑚𝑠 = [
1

𝑀𝑁
 ∑ ∑[𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

2
𝑁−1

𝑦=0

𝑀−1

𝑥=0

]

1/2

 

The mean-square signal-to-noise ratio of the compressed-decompressed image is a closely linked 

objective fidelity criterion. If𝑓(𝑥, 𝑦) is considered to be the sum of the original image   f(x, y) 

and a noise signal e(x, y), the mean-square signal-to-noise ratio of the output image, denoted 

SNRrms, is 

 



 

Unedited Version: Image Processing 
 

𝑆𝑁𝑅𝑟𝑚𝑠 =
∑ ∑ 𝑓(𝑥, 𝑦)2𝑁−1

𝑦=0
𝑀−1
𝑥=0

1
𝑀𝑁 ∑ ∑ [𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)]

2𝑁−1
𝑦=0

𝑀−1
𝑥=0

 

 

In the square root of Eq. above, the rms value of the signal-to-noise relation, known as the 

SNRrms, is derived. 

While objective fidelity criteria provide a simple and convenient mechanism for assessing loss of 

information, human beings are ultimately viewed the most decompressed images. Therefore, it is 

often more appropriate to measure image quality with a human observer's subjective 

assessments. To this end, a "typical" decompressed image is shown in a corresponding cross 

section of viewers and the evaluations are averaged. The assessments can be carried out using an 

absolute evaluation scale or by comparing f(x, y) and 𝑓(𝑥, 𝑦)side-by-side. 

 

Image compression models 

Fig.6.2 illustrates that there are two different structural blocks of a compression system, one 

encoder and one decoder. The input image f(x,y), which produces a set of symbols from the input 

data, is fed into the encoder. The encoded representation is then fed into the decoder after 

transmission through the channel to produce the revised output 𝑓(𝑥, 𝑦). 𝑓(𝑥, 𝑦)can be an accurate 

f (x, y) replica in general, or not. If so, the system is error-free or information-free; otherwise, the 

reconstructed image contains some degree of distortion. Two relatively independent functions or 

subblocks comprise both the encoder and decoder shown in Fig.6.2. The encoder consists of a 

source encoder that eliminates input redundancies and a channel encoder that enhances the noise 

immunity of the output from the source encoder. As intended, a channel decoder with a source 

decoder is included with the decoder. If there is noise free (not an error) channel between the 

encoder and decoder, the channel encoder and Decoder shall be removed and the specific encoder 

and Decoder shall be respectively the source encoder and decoder. 

 
Fig.6.2 A general compression system model 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

 

The Source Encoder and Decoder: 

The source encoder must reduce or delete any coding, interpixel or psychovisual redundancies in 

the input image. In each case, the particular application and related fidelity criteria determine the 

best encoding method of use. Usually, a series of three independent operations can model this 

approach. As illustrated by Fig. 6.3 (a), one of the three redundancies is reduced by each operation. 

The corresponding source decoder is shown in Figure 6.3 (b). The mapper converts the input data 

into (usually non-visual) format in the first step of the source encoding process so that interpixel 

redundancies are reduced in the input image. Generally, this operation is reversible and can 

decrease the data needed to represent the image directly or not. 
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Fig.6.3 (a) Source encoder and (b) source decoder model 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

Run-length coding is an instance of mapping that leads directly to data compression in this initial 

phase of the whole encoding process. An example of the opposite is the image representation by a 

set of transforming coefficients. This is where the mapper converts the image into a range of 

coefficients, rendering its interpixel redundancies available in later phases of the encoding process 

for compression. 

The second step, or quantizer block in figure 6.3(a), decreases the precision of the output of the 

mapper according to a fidelity criterion pre-established. The psycho-visual redundancies of the 

image are reduced by this stage. This is an irreversible procedure. It is an irreversible operation. 

Therefore, if the compression is required, it must be omitted. 

 

The symbol coder generates a fixed or variable-length code to constitute the quantizer output in 

the third and final phases of the source encoding process and maps the source output to a code. 

The term symbol coder differs from the entire source encoding process. This coding operation is 

the same. In most cases, the mapped and quantized data set is represented by variable-length code. 

It provides the shortest code words to the output values that most often occur and reduces the 

redundancy of the code. Naturally, the operation is reversible. After the symbol coding step is 

completed, each of the three redundancies has been removed by the Image. 

 

Figure 6.3(a) indicates three successive operations in the source encoding process although not all 

three are generally contained in each compression system. Remember, for instance, that if error-

free compression is required, the quantizer must be removed.   

 

Fig.  6.3.(a).  The mapper and quantizer, for example, are often represented in the predictive 

compression systems by a single block, which performs both operations simultaneously.Fig 6.3(b) 

includes only two components in a source decoder: a decoder for symbols and an inverse mapper. 

The inverted operations of the source encoder and mapper blocks are performed on these blocks 

in the reverse order. Since quantizations lead to irreversible loss of information, the general sources 

decoder model shown in Fig. 6.3 (b) does not include reverse quantizing blocks. 
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The Channel Encoder and Decoder: 

 

In the overall encoding -decoding process, a channel encoder and decoder play a significant role 

when the channel in Fig. 6.3 is noisy or susceptible to error. They are intended to decrease channel 

noise by inserting in the source encoded data a controlled form of redundancy. Since the source 

encoder's output is low in redundancy, transmission noise without this controlled redundancy is 

highly sensible. R. W. Hamming developed one of the most effective channel coding methods 

(Hamming [1950]). It is based on adding sufficient bits to the encoded data to ensure that certain 

minimum bits are changed between valid words. (Multi-bit errors can be detected and corrected 

by adding extra redundancy bits.) The Hamming 7-bit number (7, 4) is a 4-bit binary number 

b3b2b1b0, which is h1, h2, h3...., h6, h7. 

 

ℎ1 = 𝑏3  ⊕  𝑏2 ⊕ 𝑏0  

ℎ2 = 𝑏3  ⊕  𝑏1 ⊕ 𝑏0  

ℎ4 = 𝑏2  ⊕  𝑏1 ⊕ 𝑏0  

ℎ3 = 𝑏3 

ℎ5 = 𝑏2 

ℎ6 = 𝑏1 

ℎ7 = 𝑏0 

 

Where X refers to an exclusive OR operation. Please note: bits h1, h2 and h4 are equal parity bits 

respectively for b3 b2 b2, b3b1b0, and b2b1b0. (Recall that a string of binary bits has even parity if 

the number of bits with a value of 1 is even.) The channel decoder must check the coded value for 

an odd parity over the bit fields, even parity, to decode a Hamming encoded result. The non-zero 

word C4c2c1 is a one-bit error. 

𝑐1 = ℎ1⨁ℎ3⨁ℎ5⨁ℎ7 

𝑐2 = ℎ2⨁ℎ3⨁ℎ6⨁ℎ7 

𝑐4 = ℎ4⨁ℎ5⨁ℎ6⨁ℎ7 

 

When a non-zero value is identified, the decoder will simply add the word code bit position that 

is indicated by the word parity. The decoded binary value is then removed as h3h5h6h7 from the 

corrected code word. 

 

Variable-Length Coding: 

The easiest way to compress images without errors is to only minimise coding redundancy. Coding 

redundancy is usually available in any normal grey level binary encoding of a grey scale image. 

The grey levels can be removed by coding. In order to do that, a varying-length code must be 

constructed which assigns the shortest possible code words to the most probable grey levels. Here, 

we look at various optimal and almost optimal methods for building such a code. The techniques 

are expressed in the information theory language. Practically the source symbols may be the grey 

image levels or the output of a mapping process at a grey level (pixel discrepancies, run-lengths 

and so on 

 

6.2 Huffman coding: 
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Huffman is the most popular way to remove coding redundancy (Huffman [1952]). The Huffman 

code provides the smallest number of code symbols per source symbol when independently coding 

the symbols of an information source. The resultant code is optimum for a set value of n in terms 

of the noiseless coding theorem, provided the source symbols are coded one at a time. 

The first step in Huffman's technique is to produce a series of reduced source values by arranging 

the probability of the symbols being considered and combining the lowest probability symbols to 

the next source reduction in a single symbol. This binary coding process can be seen in Figure 6.4 

(K-ary Huffman codes can also be constructed). A hypothesized set of source symbols and their 

probabilities in terms of decreasing probability values can be ordered from top to bottom. To 

decrease the initial source, the 0.06 and 0.04 probabilities of the bottom of the two sources are 

combined with the probability 0.1 of a 'compound symbol.' The compound symbol is placed in the 

first column for reducing source and its associated probability, so that reduced spring probabilities 

are also most likely to be determined. This process is then repeated until a reduced source with 

two symbols (at the far right) is reached. 

 

The second step in the process of Huffman is to code each source that is reduced, beginning with 

the smallest source and returning to the original source. Naturally, symbols 0 and 1. are the 

minimal binary code for a two symbol source. As illustrated in Fig. 4.2, the two symbols were 

allocated to the right (the assignment is arbitrary; reversing the order of the 0 and 1 would work 

just as well). Since the reduced source symbol is 0.6, combining two two symbols in the reduced 

source on the left, the code 0 is now allocated to these two symbols and one symbol 0 and 1 are 

arbitrary appended to each to differentiate between them. For each reduced source, this process 

was repeated until it reaches the initial source. The final code is shown in fig. 6.5 at the far left. 

This code has an average length. 

 

 
Fig.6.4 Huffman source reductions. 
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Fig.6.5 Huffman code assignment procedure. 

 

 

 

Lavg = (0.4)(1) + (0.3)(2) + (0.1)(3) + (0.1)(4) + (0.06)(5) + (0.04)(5) = 2.2 bits/pixel 

 

and the entropy of the source is 2.14 bits/symbol. The resulting Huffman code efficiency is    0.973. 

 

The procedure of Huffman generates optimum code for a number of symbols and probabilities that 

are restricted from the coding of the symbols one at a time. Once the code is generated, it is easy 

to encode and/or decode in a lookup table way. The code as a whole is a block code that can be 

decoded instantly. A block code is named as the code is mapped to a fixed sequence of code 

symbols for each source symbol. It's immediate because every word of code can be decoded into 

a series of symbols without referring to the following symbols. It is unique in that every code string 

can be decoded in one way only. Thus any Huffman string of encoded symbols can be decoded by 

examining left-to-right at the individual string symbols. The left to the right scan of the 

010100111100 encoded string shows that the initial word code of the Fig. 6.5 binary code is 01010, 

which is the symbol code a3. The next valid code is 011, which is symbol a1. The completely 

decoded message to be a3a1a2a2a6 is revealed in this way. 

 

6.3 Golomb Coding 

 

A Golomb code is a variable-length code similar to Huffman; but, unlike Huffman, it is based on 

a simple concept of the likelihood of the values (which are explicitly treated as natural numbers 

rather than abstract symbols): small values are more likely than large ones. The precise relation 

between size and probability is captured in a parameter, the divisor. 

 

To Golomb-code a number, find the divisor's quotient and remainder. The quotient should be 

written in unary notation, followed by the remainder in truncated binary notation. In practise, a 

stop bit is required following the quotient: if the quotient is expressed as a succession of zeroes, 

the stop bit is a one (or vice versa - and people do seem to prefer to write their unary numbers with 

ones, which is Wrong). The remainder's length can be calculated by the divisor. 

 

A Golomb-Rice code is a Golomb code with a power of two as the divisor, allowing for more 

efficient implementation via shifts and masks rather than division and modulo. 
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For example, here's the Golomb-Rice code with divisor 4, for numbers up to 15: 

 
 

The source of information A generates the symbols {A0, A1, A2, A3 and A4} with the 

corresponding probabilities {0.4, 0.3, 0.15, 0.1 and 0.05}. Encoding the source symbols using 

binary encoder and Golomb encoder gives: 

 

Source Symbol Pi Binary Code Golomb Code Source Symbol 

A0 0.4 000 0 A0 

A1 0.3 001 10 A1 

A2 0.15 010 110 A2 

A3 0.1 011 1110 A3 

A4 0.05 100 1111 A4 

Lavg H = 2.0087 3 2.05 L 
avg 

 

The Entropy of the source is 

 
Since we have 5 symbols (5<8=23), we need 3 bits at least to represent each symbol in binary 

(fixed-length code). Hence the average length of the binary code is\ 
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Thus the efficiency of the binary code is 

 
 

The average length of the Golomb code is 

 

 
Thus the efficiency of the Golomb code is 

 

 
This example demonstrates that the efficiency of the Golomb encoder is much higher than 

that of the binary encoder. 

 

6.4Arithmetic coding: 

 

Unlike previously mentioned variable-length codes, nonblock codes are created by arithmetic 

coding. There is no single correspondence between the source symbols and the code words of 

arithmetic coding that can be traced back to Elias's work. A single arithmetic code word is instead 

assigned to a whole sequence of source symbols (or message). The word code describes an interval 

between 0 and 1 of real numbers. With the increase in the number of symbols in the message, the 

range for representing it becomes smaller and the number of units of information necessary for 

representing the range is larger. The size of the interval is reduced by each message symbol 

according to its probability. Since the technique requires that each source symbol does not translate 

into an integral number of coding symbols (that is, coding the symbols one by one at a time) as is 

the approach of Huffman, it reaches (but only in theory) the boundary of noiseless coding theorem. 
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Fig.6.6 Arithmetic coding procedure 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The fundamental arithmetic coding procedure is illustrated in Fig.6.6. A five-symbol or message 

sequence, a1a2a3a3a4, is coded in this section from a four-symbol source. The message is 

supposed to occupy the complete half-open interval [0, 1) at the beginning of the coding process. 

As shown in table 5.2, this interval was originally divided into four regions, depending on each 

source symbol's probabilities. For instance, the symbol ax, is related to the sub-interval [0, 0.2). 

The message interval is originally restricted to [0, 0.2] because the message is the first symbol of 

the coded message. Thus Fig.6.6 [0, 0.2] extends the figure to its full height, with the end points 

marked with the narrowing range values. 

 

 
 

Table 6.1 Arithmetic coding example 

 

Symbol a2 reduces the subinterval by [0.04, 0.08), and a3 closes it by [0.056, 0.072), respectively. 

A special end-of-message indicator should be reserved for the final message symbol, and the range 

is narrowed by [0.06752, 0.0688). Naturally, any number can be used to represent the message 

within this subinterval—for example, 0.068. 
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Three decimal digits represent the five-symbol message in the arithmetically coded message of 

Fig.6.6. It is evaluated in 3/5 or 0.6 decimal digits by source symbol with entropy, which is 0.58 

decimal digits or 10-ary units/symbol. 

The resulting arithmetical code reaches the limit introduced by the noiseless coding theorem, as 

the length of the coded sequence increases. 

In practice two factors lead to the coding performance being less than limited (1) by adding the 

end-of-message indicator required to separate one message from the other; and (2) by applying 

finite arithmetic precision. The latter issue is addressed in practical implementations of arithmetic 

coding with a scaling strategy and a rounding strategy (Langdon and Rissanen [1981]). The scaling 

strategy renormalizes every [0, 1] subinterval before splitting it into the probabilities of the 

symbols. The rounding strategy ensures that finite precision arithmetic truncation does not prevent 

correctly representing coding subintervals. 

 

6.5 LZW Coding: 

 

The Lempel Ziv-Welch (LZW) coding method applies fixed-long coding words to variable 

sequences of source symbols but does not require a priori knowledge of the probability of encoding 

symbols occurring. LZW compression has been built into a number of mainstream image file 

formats, such as the interchange format (GIF), tagged image file format (TIFF), and the portable 

document format (PDF). 

Conceptually, LZW coding is very straightforward. A codebook or "dictionary" is created at the 

beginning of the coding process that contain the source symbols to be coded. The first 256 words 

in the dictionary are given to grey values 0, 1, 2... And 255 for 8-bit monochrome images. The 

gray-level sequences not included in the dictionary are algorithmically determined (for example 

the next unused) locations when an encoder sequences the image pixels consecutively examines. 

If, for example, the two first pixels of an image are white, sequence "255-255," the address below 

is reserved for grey levels 0 to 255, and can be assigned to position 256. The next time two white 

pixels of the following number are encountered, the code word 256 is used to represent them with 

the location address, which contains sequence 255-255. If in the code process a 9-bit, 512-word 

dictionary is used, a single 9-bit code word replaces the original bits (8 + 8) used to represent two 

pixels. Cleary, a major system parameter is the size of the dictionary. If it is too small, it is less 

likely to detect corresponding grey level sequences; if it is too large, the size of the code words 

affects the performance of the compression. 

 

Consider the following 4 x 4, 8-bit image of a vertical edge: 

 
 

The steps involved in coding 16 pixels will be described in Table 6.2. The following starting 

content is supposed to include a 512 words dictionary: 
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Initially unused are locations 256 through 511. It is encoded with a left-to-right, top-to-bottom 

processing of its pixels. The variable — column 1 of Table 6.2 — known as the currently 

recognised sequence is linked to each successive Gray Level value. This variable is null or empty 

at the start, as can be seen. The dictionary will be searched for each concatenated sequence and the 

newly concatenated and accepted sequence (i.e. located in the dictionary) will replace the 

dictionary as it has in the first row of the table. This has been done in row 2 column 1. 

 

There is no generation of output codes or alteration of the dictionary. If, however, the concatenated 

sequence cannot be identified, the current sequence is output as the next encoded value, a 

concatenated but unknown sequence is added to the dictionary, and the current pixel value is 

started in the sequence currently recognized. This was done in table row 2. The last two columns 

provide a detailed gray-level sequence when the whole 4 x 4 image is scanned. There are defined 

nine extra words of code. The dictionary includes 265 code words and a number of repetitive gray-

level sequences were successfully identified by the LZW algorithm—which uses them in order to 

reduce the original 128-bit image to 90 bits (i.e., 10 9-bit codes). Reading the third column from 

top to bottom produces the encoded result. The compression ratio resulting is 1.42:1. 

 

One special feature of LZW coding that has just been demonstrated is that while the data is 

encoded, the code dictionary or book is created. Noteworthy, the LZW decoder produces the same 

decompression dictionary as it decodes the encoded data stream simultaneously. While this 

example does not require a strategy for handling dictionary overflow, most useful applications 

require a strategy. A convenient way is to flush or reset the dictionary when complete and continue 

to code with a new initialized dictionary. A more complicated way is to monitor compression and 

flush the dictionary in bad or unacceptable circumstances. Instead it is easy to track and replace 

the least used dictionary entries if necessary. 
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Table 6.3 LZW coding example 

 

 

 

6.6 Run-Length Coding 

Repeating intensity images on their rows (or columns) may also be compressed by showing the 

same intensity runs as run-length pairs, where a new intensity starts with each run-length pair and 

the number of consecutive pixels with that intensity. In the 1950s the technique, known as Run-

Length Encoding (RLE) was developed and became the traditional compression method in 

facsimile coding, along with its 2-D extensions. Compression is accomplished by elimination of a 

simple type of spatial redundancy – the same-intensity groups. When there are few (or no) runs of 

identical pixels, run-length encoding results in data expansion. 
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Run Length Encoding (RLE) is not a technique used too commonly these days, but it is an excellent 

way of making a sense of some of the compression problems. 

Imagine that we have a simple black and white image. 

 

 

One way a computer can store this image in binary is to use the format of '0' in white, and '1' in 

black (this is a "bitmap," since pixels have been mapped to bits). The above picture would be 

shown as follows using this method: 

011000010000110 

100000111000001 

000001111100000 

000011111110000 

000111111111000 

001111101111100 

011111000111110 

111110000011111 

011111000111110 

001111101111100 

000111111111000 

000011111110000 

000001111100000 

100000111000001 

011000010000110 

The main question in compression is whether or not the same image can be represented in fewer 

bits so that the original image can still be reconstructed. 

We can prove it. There are various ways to do this, but we concentrate on a way called run length 

encoding in this section. 
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Imagine reading the above bits to someone who copied them... you might tell things like "five 

zeroes" earlier on rather than "zero zero zero zero c zero." That is the basic concept behind run 

time encoding (RLE), used in the storage of digital images to save space. In run length encoding, 

each row is replaced by numbers that indicate how many consecutive pixels the same colour is, 

often beginning with the number of white pixels. For instance, the first line in the above image 

contains one white, two black and four white, one black, four white and two black pixel. 

011000010000110 

This could be represented as follows. 

1, 2, 4, 1, 4, 2, 1 

For the second row, since we have to say the number of white pixels before saying black, we 

have to tell specifically that there is zero at the beginning of the row. 

100000111000001 

You may ask why we must first say the number of white pixels that was zero in this case. The 

explanation is that if we had no clear rule, the computer would not know which colour was what 

when the picture in this form was shown.0, 1, 5, 3, 5, 1 

The third row contains five whites, five blacks, five whites. 

000001111100000 

This is coded as: 

5, 5, 5 

That means we get the following representation for the first three rows. 

1, 2, 4, 1, 4, 2, 1 

0, 1, 5, 3, 5, 1 

5, 5, 5 

You can work out what the other rows would be following this same system. 

Representation for the remaining rows 

The remaining rows are 

4, 7, 4 

3, 9, 3 

2, 5, 1, 5, 2 

1, 5, 3, 5, 1 

0, 5, 5, 5 
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1, 5, 3, 5, 1 

2, 5, 1, 5, 2 

3, 9, 3 

4, 7, 4 

5, 5, 5 

0, 1, 5, 3, 5, 1 

1, 2, 4, 1, 4, 2, 1 

Converting run length encoding back to the original representation  

Just to ensure that we can reverse the compression process, have a go at finding the original 

representation (zeroes and ones) of this (compressed) image. 

 

4, 11, 3 

4, 9, 2, 1, 2 

4, 9, 2, 1, 2 

4, 11, 3 

4, 9, 5 

4, 9, 5 

5, 7, 6 

0, 17, 1 

1, 15, 2 

The CCITT (consultative committee of the international telegraph and telephone) and run-length 

coding are CCITT standards for encoding a binary and gray-level image. With this method, images 

are scanned row by row and identifies the run . The output vector run-length pixel value and run 

length is defined. 

Hrun-length = ( H0 + H1)/ (L0 +L1) 

H0 = entropy of the black run 

H1 = entropy of white run 

L0 = average value of black run 

L1 = average value of white run 
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6.7 Symbol-Based Coding 

It is also referred to as token-based coding in some circles. A symbol is a collection of sub images 

that appear frequently in a given context. Each symbol is stored in a symbol dictionary, and the 

image is coded as an asset of the triplet (x1, y1, t1), (x2, y2, t2), etc., where the location of the 

symbol is specified by the triplet (xi, yi) , where ti is the token, which is a reference to the symbol 

in the dictionary, and each triplet represents an instance of the dictionary symbol in the image. 

Consider the straightforward bilevel image shown in Fig. 6.7 (a). It includes only one word, 

banana, which is made up of three distinct symbols: a b, three a's, and two n's.   Given that the 

letter b is the initial symbol recognized during the coding process, its 9 X 7 bitmap is stored at 

location 0 of the symbol dictionary, as shown in the following diagram. As illustrated in Fig. 6.7 

(b), the token identifying the b bitmap is the number 0. To illustrate how this works, the first triplet 

in the encoded image's representation [see Figure 6.8.7(c) ] is (0, 2, 0,] denoting that the upper-left 

corner (an optional convention) of the rectangular bitmap indicating the b symbol is to be placed 

at the location (0, 2) in the decoded image. It is possible to encode the remaining portion of an 

image with five extra triplets after the bitmaps for   n symbols have been detected and added to the 

dictionary, as shown in the following example. Compression occurs as long as the six triplets 

required to locate the symbols in the image, as well as the three bitmaps required to define them, 

are lower in size than the original image. It is assumed that each triplet is formed of three bytes in 

this example, and that the starting picture has or 459 bits. In this case, the compressed 

representation has or 285 bits and the compression ratio c=1.61 is obtained by multiplying the 

starting image by (6 3 8 + [(9 7) + (6 7) + (6 6)]. For example, to decode the symbol-based 

representation shown in Figure 6.7 (c), you simply read the bitmaps of the symbols given in the 

triplets from the symbol dictionary and arrange them in the appropriate positions at the spatial 

coordinates specified in the respective triplets. 

 

FIGURE 6.7 (a) bi-level document, (b) symbol dictionary, and (c) the triplets used to locate 

the symbols in the document. 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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In the beginning of the 1970s, Symbol-based compression was suggested, but only recently 

became practical. Improvements in symbol matching and enhanced CPU processing speeds have 

enabled both dictionary symbols to be selected and to see where they can be found in an image in 

time. And symbol-based decoding is definitely faster than encoding, as with many other 

compression methods. At last, we observe that to further improve the compression performance, 

both the bitmaps symbols which are stored in the dictionary and the three versions used for the 

reference themselves can be encoded. If the resulting compression is lossless as in fig. 6.7, only 

exact symbol matches are permitted. If small differences are allowed, there will be some level for 

the reconstruction error. 

6.8 8 Bit-Plane Coding: 

An effective approach to reduce the redundancy of the interpixels of an image is to independently 

process the image bit planes. The technique, called Bit Plane Coding (bitplane coding), is based 

on the principle of decomposing multilevel (monochromatic or color-based) images into a series 

of binary images. 

Bit-plane decomposition: 

 

A m-bit grey image in the form of the base 2 polynomial could be displaying the grey levels 

 

𝑎𝑚−12𝑚−1 + 𝑎𝑚−12𝑚−1 + ⋯ + 𝑎121 + 𝑎020 

 

Based on this property, the m coefficients of the polynomial into 1-bit bits is a simple way of 

decomposing the image into a series of binary images. The By collecting the a0 bits of each pixel 

the zero-order bit plane is formed, while (m - 1) the bit bit plane contains am-1, bits or coefficients. 

Generally, the number of every bit plane from 0 to m-1 is determined by setting its pixels to equal 

the values of each pixel of the respective bits and polynomial coefficients of the original image. 

The inherent drawback is that small changes in the grey level can have a considerable effect on the 

complexity of bit planes. When the 127 (01111111) intensity pixel is neighboring to the 128 

(10000000), for example, the corresponding 0 to1 (or 1 to 0) transitioning shall be included on 

every bit plane. As the two binary codes for 127 and 128 are different most important bits, for 

example, Bit plane 7 will have a zero-valued  pixel next to a pixel value 1, which will create a 

transition between 0 to 1 (or 1 to 0) at this point. 

 

𝑔𝑖 = 𝑎𝑖⨁ 𝑎𝑖+1  0 ≤ 𝑖 ≤ 𝑚 − 2 

𝑔𝑚−1 =  𝑎𝑚−1 

 

A different approach to decomposition (which eliminates the influence of small variations in grey 

levels) is to first image representation with the m-bit Gray code.  From Here, X denotes the 

exclusive  OR operation: The m-Bit Gray Code gm-1... g2g1g0 which corresponds to the 

polynomial in Eq. above. The only feature of this code is that the following words differ only in 

one bit. Small grey level changes are also unlikely to affect all mbit levels. For instance, only the 

7th bit plane can contain transitions of 0 to 1 when grey level 127 and 128 are next to each other, 

because the Gray codes of 127 and 128, respectively, are 11000000 and 01000000. 

 

6.9 Transform Coding: 
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Both predictive coding methods work directly on the image pixels and are also spatial domain 

methods. In this code, the techniques of compression based on modification of the image 

transformation are considered. A reversible, linear transform (such as a Fourier transform) is used 

in transform codification to map the image into a set of coefficients that are then quantified and 

coded. For most natural images, many of the coefficients have small dimensions and can be 

quantified grossly (or completely discarded) with a small distortion in the image. A number of 

transformations can be used to convert image data, including the discrete Fourier transform (DFT). 

 

 
Fig. 6.8 A transform coding system: (a) encoder; (b)  decoder. 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

A standard transform coding system is shown in Figure 10. The decoder implements the inverse 

phase sequence of the encoder, which carries out four fairly straightforward operation (with 

exception of the quantification function): decomposition of the subimages, transformation, and 

quantification and coding. An image N X N is first divided up into sub-images of size n X n, then 

transformed into sub-image transforms (N/N) 2 of each size n X n. The aim of the process of 

transformation is to decorrelate the pixels of any subimage or to place as little information as 

possible in the transforming coefficients. 

 

These coefficients have the least effect on the consistency of the subimage. The encryption process 

finishes the quantified coefficients by coding (usually with a variable length code). Any or all of 

these processing stages of transformative encoding may be adapted to local image contents or fixed 

for all sub-images, known as non-adaptive transform encodings. 

 

 

 

6.10 Predictive Coding 

 

Lossless Predictive Coding: 

 

The error-free method of compression does not require an image to be decomposed into a group 

of bit planes. The technique, also known as loss-predictive coding, consists of removing the 

redundancy of interpixel pixel by collecting the latest information in each pixel and encoding the 

new information only. The new pixel information is defined as the difference between the actual 

and predicted pixel value. 
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The essential elements of the lossless predictive coding system are shown in Figure 8.1. The 

system is made up of an encoder and a decoder with the same predictor. The predictor creates the 

expected pixel value depend on a set of previous inputs, when each pixel of the input image, 

denoting fn is introduced to the encoder. The predictor's output then is rounded to the 

nearest  integer, denoted 𝑓(𝑛), and used to form a differential or prediction error coding the 

following element in the compressed data stream using variable-length (by the symbol encoder). 

 

𝑒(𝑛) = 𝑓(𝑛) −  𝑓(𝑛) 

 

 
Fig. 6.9 A lossless predictive coding model: (a) encoder; (b) decoder 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The decoder of received variable-length code words is rebuilt from Fig. 8.1(b) and inverse 

operations are performed to decompress or recreate the original input sequence. 

 

𝑓(𝑛) = 𝑒(𝑛) +  𝑓(𝑛) 

 

Various techniques for 𝑓(𝑛) generation may be used local, global and adaptive. Furthermore, a 

linear combination of m of previous pixels forms in most cases a prediction. In other words, 

 

𝑓(𝑛) = 𝑟𝑜𝑢𝑛𝑑 [∑ 𝛼𝑖𝑓(𝑛 − 𝑖)

𝑚

𝑖=1

] 

 

Where m is a linear predictor order, round is a function used to indicate an operation of the 

rounding or nearest integer, and αi, for i = 1,2,...,m are coefficients of prediction. The subscript n 

indexes predictor outputs according to their occurrence time in raster scan applications. In Eqns. 

above, the most explicit notations f (t), 𝑓(𝑡) and e (t) could be replaced, where t represents time. 

In Eqns. In all cases, n shall is being used as an index on the spatial coordinates  and/or frame 

number of an image (in a time sequence). For example, Eq. above can be written as 1-D linear 

predictive coding 
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𝑓(𝑥, 𝑦) = 𝑟𝑜𝑢𝑛𝑑 [∑ 𝛼𝑖𝑓(𝑥, 𝑦 − 𝑖)

𝑚

𝑖=1

] 

 

While each of the subscripted variable's function of spatial coordinates x and y are expressed 

explicitly. The Eq. says the linear 1-D prediction f(x, y) is the function alone on the current line of 

the previous pixels. In 2-D predictive coding, the prediction depends on the previous pixels in a 

top to bottom left-to-right image scan. In the 3D case, these pixels and prior pixels of earlier frames 

are the basis of this case. For the first m pixel of each line, the equal above cannot be evaluated, 

so these pixels must be coded by other methods (e.g. Huffman code) and considered as an overhead 

of the predictive coding process. 

 

 

Lossy Predictive Coding: 

 

within this types of coding, a quantizer is added to the lossless prediction models and the resulting 

balance between reconstruction precision and compression performance is evaluated. As Fig.9 

illustrates, between the symbol encoder as well as the position during which the prediction error 

was created, the quantizer that captures the nearest integer of the error-free encoder would be 

inserted. It maps the prediction error into a limited range of �̂�(𝑛) outputs, which determine the 

compression and distortion associated with the lossy predictive coding. 

 

 
 

Fig. 6.10 A lossy predictive coding model: (a) encoder and (b)  decoder. 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The error-free figure encoder should be modified to accommodate the insertion of the quantization 

step, so that the encoder and decoder produce predictions equivalent. As shown in fig. 9 (a), the 

the lossy encoder's predictor is placed within a feedback loop, where its input (referred to 

as     𝑓(𝑛)̇ ) is produced in function of previous predictions and the corresponding quantified errors. 

The results are obtained.  

 

     𝑓(𝑛)̇  =        𝑒(𝑛)̇ +  𝑓(𝑛) 
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This configuration of the closed loop avoids error building in the output of the decoder. Fig. 9(b) 

shows that the decoder output is also provided by the Eqn above. 

 

Optimal predictors: 

 

The optimal predictor used by most predictive coding applications limits the mean- 

square prediction error of the encoder . The notation 𝐸{. }denotes the statistical expectation 

operator. 

 

𝐸{𝑒2(𝑛)} = 𝐸 {[𝑓(𝑛) −  𝑓(𝑛)]
2

} 

 

subject to the constraint that 

 

�̇�(𝑛) = �̇�(𝑛) + 𝑓(𝑛) ≈ 𝑒(𝑛) + 𝑓(𝑛) = 𝑓(𝑛) 

 

That is,  the optimization criterion is chosen in order to minimize the mean-square  prediction 

error, it is assumed that the quantization error is minimal [�̇�(𝑛) ≈ 𝑒(𝑛)] and the prediction is 

restricted to a linear combination of m of previous pixels. 1 These constraints are not necessary, 

but at the same time they greatly simplify analysis and reduce the computational complexity of the 

predictor. The resulting predictive coding method is called the differential pulse code modulation 

(DPCM) 

 

 

6.11 Wavelet Coding: 

The coding of the wavelet is based on the assumption that the coefficients of a transform that 

decorrelates an image's pixels can be coded better than the originals. If most important visual 

information are packaged into a small number of coefficients as the basis for the transformation, 

the remainder of the coefficients which be quantized coarsely  or truncated to zero with a little 

distortion of the image. 

The standard wavelet coding system is shown in Figure 11. For the encoding of a 2J X 2J image, 

a wavelet analysisΨ, — a minimum decomposition level (J - P) are chosen for the purpose of 

calculating the discrete transformation of the image wavelet. The fast wavelet transform can be 

used when the wavelet contains an additional scaling function ̈. In both instances, the computed 

transforms a significant part of the original image with a zero mean and laplacian distribution to 

horizontal, vertical and diagonal decomposition coefficients. 
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Fig. 6.11 A wavelet coding system: (a) encoder; (b) decoder. 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Since several of the measured coefficients have little visual detail, intercoefficient and coding 

redundancies can be reduced and quantified. In addition, quantization could be adapted to take 

advantage of any positional correlation over the P decomposition levels. One or 

more lossless coding techniques can be used in the final symbol coding step including run-length, 

Huffman coding, arithmetic and bit plane coding. Decoding is done by inverting encoding – with 

exception of quantization, which cannot be precisely reversed. 

The major difference between the wavelet system and the transform coding system is that the 

subimage processing phases of the transform coder are not supported. Due to its computational 

efficiency as well as its intrinsically local existence (e.g. its base functions are restricted in 

duration), it is needless to subdivide the original image. 

Wavelet Selection 

In Fig. 6.11 all aspects of wavelet coding systems and performance are affected by the wavelets 

selected as a base for forward and reverse transformation. They have a direct impact on the 

complex computation of the transforms and, less directly, on the system's ability to recompress 

acceptable error images. The number of filter taps equal to the number of non-zero wavelet 

coefficients and scaling of the vector coefficients can be applied as a digital filter sequence if the 

transforming tap has a supplementary scaling function. The wavelet's capacity to pack information 

in a small number of transforming coefficients determines its performance in compression and 

reconstruction. Daubechies waves and biorthogonal waves are the most widely used expansion 

functions for wavelet-based compression. The latter allow useful analytical properties such as the 

number of disappearances that can be incorporated in the decomposition filters, while important 

synthesis properties such as smooth reconstruction are incorporated in the reconstruction filters. 

The four discrete wavelengths in Figure 6 1.2 are shown. In Fig 6 1.2(a) Haar wavelets have been 

used as expansion or base functions, the simplest and only discontinuous wavelets considered in 

this example. Wavlets from Daubechies, one of the most widely used imagery wavelets, were 

employed in Fig. 6 1.2(b), and Daubechies waves with increased symmetry symmetry were 

extended to Fig. 6 1.2(c) The Cohen-Daubechies-Feauveau-wavelets in illustration of biorthogonal 

wavelets used in Fig. 6 1.2(d) are included. Like previous results, the subordinate structure was 

visible with a coefficient of intensity 128 corresponding to coefficient value 0 by scaling all 

detailed coefficients. 
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FIGURE 6.12 

Three-scale wavelet transforms with respect to (a) Haar wavelets, (b) Daubechies wavelets, 

(c) symlets, and (d) Cohen-Daubechies-Feauveau biorthogonal wavelets. 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

As illustrated in Table 6.2 , the number of operations required to compute the transforms in Fig. 

6.12 grows from four to twenty-eight multiplications and adds each coefficient (for each 

decomposition level) as you move from Fig. 6.12(a) to (d). Each of the four transformations was 

computed using a fast wavelet transform formulation (i.e., filter bank). Notably, as computational 

complexity (i.e., the amount of filter taps) rises, so does the performance of information packing. 

When Haar wavelets are used and detail coefficients less than 1.5 are cancelled out, 33.8 percent 
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of the entire transform is zeroed out. With more sophisticated biorthogonal wavelets, the 

percentage of zeroes coefficients increases to 42.1 percent, nearly doubling the possible 

compression. 

TABLE 6.2 

Wavelet transform filter taps and zeroed coefficients when truncating the transforms in Fig. 8.43 

below 1.5 

 

6.12 Digital Image Watermarking 

The techniques and protocols make it possible to distribute images (in the form of photographs or 

videos) via digital media and the Internet. Regrettably, the images distributed in this manner can 

be reproduced frequently and without error, jeopardizing the rights of their owners. Even when 

images are encrypted for distribution, they are rendered vulnerable upon decryption. To deter 

unauthorized duplication, one method is to embed one or more pieces of information, generally 

called to as a watermark, into highly vulnerable images in such a manner so the watermarks 

become indistinguishable from the images themselves. They defend the rights of their owners in a 

variety of ways as important aspects of the watermarked images, including the following: 

1. Copyright identification. When an owner's rights are violated, watermarks can provide 

information that serves as proof of ownership. 

2. Identification or fingerprinting of the user. Legal users' identities can be embedded in 

watermarks and used to track down the sources of unauthorized copies. 

3. Authenticity determination. A watermark can serve as a guarantee that an image has not been 

altered, provided the watermark is designed to be destroyed upon image modification. 

4. Automated monitoring. Watermarks can be tracked by systems that keep track of when and 

where images are used (for example, programmes that scan the Web for images embedded in Web 

sites). Monitoring is beneficial for collecting royalties and/or locating unauthorized users. 

5. Copy protection. Watermarks can be used to set usage and copying restrictions on images (e.g., 

to DVD players) 

In this section, we will discuss digital image watermarking, which is the technique of embedding 

data into an image in such a way that it may be utilized to make a assertion about the image. The 

methods outlined have no resemblance to the compression techniques discussed previously 

(although they do involve the coding of information). Indeed, watermarking and compression are 

diametrically opposed in several aspects. While compression aims to reduce the amount of data 

Wavelet Filter Taps (Scaling + Wavelet) Zeroed Coefficients 

Haar 2+2 33.3% 

Daubechies 8+8 40.9% 

Symlet 8+8 41.2% 

Biorthogonal 17+11 42.1% 
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used to represent images, watermarking aims to enhance them by adding information and data (i.e., 

watermarks).  Watermarks can be visible or invisible. 

A visible watermark is a subimage or image that is opaque or semi-transparent and is superimposed 

on another image (i.e., the image being watermarked) to make it clear to the observer. Television 

networks frequently include visible watermarks (modelled after their logos) in the top or lower 

right-hand corner of the screen. As illustrated in the following example, visible watermarking is 

often accomplished in the spatial domain. 

The image in Fig. 6.13(b) is the image's lower right quadrant with a scaled-down version of the 

watermark in Fig. 6.13 (a) superimposed on top. Using fw the watermarked image as a starting 

point, we may represent it as a linear combination of the unmarked image f and the watermark w. 

 

 
FIGURE 6.13 

A simple visible watermark: (a) watermark; (b) the watermarked image; and (c) the difference 

between the watermarked image and the original (non-watermarked) image 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

𝑓𝑤 = (1 − 𝛼)𝑓 + 𝛼𝑤 

 

Wherein constant determines the watermark's relative visibility to the underlying image. If α is 1, 

the watermark is transparent and fully obscures the underlying image. As the value approaches 0, 

more than just the underlying image is seen and less of the watermark. In general, 0<α<1, as shown 

in Fig. 6.13(b),α=0.3. The computed difference (intensity-scaled) between the watermarked image 

in Fig. 6.13 (b) and the unmarked image is shown in Figure 6.13(c). Intensity 128, on the other 

hand, represents a difference of 0. It's worth noting that the underlying image is visible through 

the "semi transparent" watermark. Both Fig. 6.13(b) and the difference image in Fig. 6.13 (c) 

demonstrate this . 
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Invisible watermarks, in contrast to the visible watermark in the previous example, cannot be seen 

with the human eye. They are invisible yet recoverable with the use of a proper decoding algorithm. 

By introducing them as visually redundant information [information that the human eye ignores 

or cannot perceive], their invisibility is ensured. The example in Figure 6.14 (a) is simple. Due to 

the fact that the least significant bits of an 8-bit image have little effect on our perception of it, the 

watermark from Fig. 6.14 (a) was put or "hidden" in the image's two least significant bits. Using 

the notation presented previously, let us say 

 

 

 

𝑓𝑤 = 4 (
𝑓

4
) +

𝑤

64
 

 

and conduct the computations using unsigned integer arithmetic. By dividing and multiplying by 

4, the two least significant bits of f are set to 0, by dividing w by 64, the two most significant bits 

of w are shifted into the two least significant bit positions, and by adding the two results, the LSB 

watermarked image is generated. Note that in Fig. 6.14(a), the embedded watermark is not visible. 

However, by zeroing the image's most significant six bits and scaling the remaining values to the 

entire intensity range, the watermark can be retrieved as shown in Fig. 6.14. (b) 

 

 



 

Unedited Version: Image Processing 
 

FIGURE 6.14 A simple invisible watermark: (a) watermarked image; (b) the extracted 

watermark; (c) the watermarked image after high quality JPEG compression and 

decompression; and (d) the extracted watermark from (c). 

Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

A critical aspect of invisible watermarks is their resistance to removal attempts, both accidental 

and purposeful. Weak invisible watermarks are removed when the images in which they are 

embedded are modified. This is a useful quality in some applications, such as image authentication. 

As illustrated in Figures 6.14 (c) and (d), the LSB watermarked image in Figure 6.14 (a) has a 

delicate invisible watermark. The watermark is deleted if the image in (a) is compressed and 

decompressed using lossy JPEG. The outcome of compressing and decompressing Figure 6.14 (a) 

is shown in Figure 6.14 (c); the rms error is 2.1 bits. When we use the same procedure as in (b) to 

extract the watermark from this image, the outcome is incoherent [see Fig. 6.14 (d) ]. While lossy 

compression and decompression saved the image's critical visual information, they obliterated the 

image's delicate watermark. 

Robust invisible watermarks are meant to withstand image modification, whether accidental or 

purposeful. Lossy compression, linear and nonlinear filtering, cropping, rotation, and resampling 

are all examples of common accidental attacks. Intentional attacks can take the form of printing 

and rescanning, as well as the insertion of extra watermarks and/or noise. Naturally, it is 

superfluous to endure attacks that render the image unusable. 

 

6.13 Unit End questions 

1. What is data compression? 

2. Write a short note on  

a) Coding Redundancy b) Interpixel Redundancy c) Psychovisual Redundancy 

3. What is a Fidelity Criteria? 

4. Explain the Huffman coding with an example. 

5. Explain the Golomb Coding with an example. 

6. Explain the Arithmetic Coding with an example. 

7. Explain the LZW Coding with an example. 

8. Explain the Run-length Coding with an example. 

9. Explain the Symbol-based Coding with an example. 

10.  Write a short note on Block Transform Coding. 

11.  Write a short note on Predictive Coding. 

12. Write a short note on Wavelet Coding.  

13. Write a short note on Digital Image Watermarking. 

6.14 Reference for further reading 

 

1. Digital Image Processing Gonzalez and Woods Pearson/Prentice Hall Fourth 2018 

2. Fundamentals of Digital Image Processing A K. Jain PHI   

3. The Image Processing Handbook   J. C. Russ CRC Fifth 2010 
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Chapter 7:  Morphological Image Processing 

7.0 Objective 

7.1 Preliminaries,  

7.2 Erosion and Dilation  

7.3 Opening and Closing,  

7.4 The Hit-or-Miss Transform 

7.5 Morphological Algorithms 

7.6 Morphological Reconstruction 

7.7 Morphological Operations on Binary Images 

7.8 Grayscale Morphology 

7.8 Unit End questions 

7.9 Reference for further reading 

7.0 Objective 

Upon the completion of this chapter, the readers will know  

• This section defines a number of important concepts related to the subject of mathematical 

morphology and how the method is extensively applied in digital image processing. 

• A variety of tools have been used for binary image morphology, incorporating erosion, 

dilation, opening, closing, and the techniques can also be combined them to generate more 

complex tools. 

• Capable of developing binary image morphology based algorithms for the performance of 

tasks including morphological smoothing, edge-detection and skeletonisation 

• Learn how binary image morphology to gray scale images can be expanded. 

• Will be able to develop grey scale image processing algorithms for tasks like textural 

segmentation, granulometry, gray-scale gradient computing and others 

7.1 Preliminaries 

Morphological image processing is a set of non-linear image processing relevant to the shape or 

morphology of the image features. As per Wikipedia, morphological operations only depend on 

the specific ordering of the values of the pixels, not the numerical values therein. Morphological 

operations may also be used in grayscale images such that the light transfer functions of the 

grayscale are uncertain and their absolute pixel values are either of no or minor concern. 

Morphological techniques evaluate an image called a structural element with a small shape or 

template. The structuring element is placed anywhere in the image and compared with the 

corresponding pixel neighborhood. In some operations, the element is tested if it "fits" in the 

neighborhood, while others test if it "hits" or crosses it: 
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Figure 7.1 Probing of an image with a structuring element 

(white and grey pixels have zero and non-zero values, respectively). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

A morphology operation on a binary image produces a new binary image with a pixel value not 

zero only, if the test at that location in the input image is successful. 

A small binary image is the structuring element, i.e. a small matrix of pixels, each with its own 

zero or one value: 

• The sizes of the structuring element indicate the matrix dimensions. 

• The pattern and zeroes specify the structure element shape. 

• One of its pixels typically originates from a structuring element, but the origin can usually 

be outside the structuring element. 

 

The odd dimensions of the structuring matrix and of the origin identified as the core of the matrix 

is a standard procedure. In morphological images, Structuring elements play the same role in linear 

image filtering as convolution kernels. 

If a structuring element is positioned in a binary image, each pixel of the structuring element is 

associated with the corresponding pixel of the neighborhood. The structuring element should 

match the image if the corresponding image pixel is 1 for each of its pixels also set to 1. Likewise, 
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if the corresponding image pixel is also 1. For at least one of their pixels set to 1, a structuring 

element is said to hit or intersect an image. 

 

Figure 7.2 Fitting and hitting of a binary image with structuring elements s1 and s2. 

 

7.2 Erosion and dilation 

Erosion 

Erosion is the alternative to dilation. If dilation expands an image, erosion shrinks it. The structural 

element determines how the image is shrunk. Typically, the structural element is smaller than the 

image, measuring 3 x 3 size. 

This results in a faster computation time as compared to using larger structural elements. Almost 

identical to dilation, erosion will move the structural element from left to right and top to bottom. 

At the center position, denoted by the structuring element's centers, the procedure checks to see if 

there is complete overlap with the structuring element or not. 

If no complete overlapping occurs, the center pixel given by the structural element's center will be 

set to white or 0. Assume that X represents the reference binary image and B represents the 

structuring element. The equation for erosion is as follows: 

 

𝑋 ⊖ 𝐵 =  {𝑧|�̂�𝑧 ∈ 𝑋}   

According to the equation, the outcome element z is only evaluated if the structuring element is a 

subset of or equal to the binary picture X. Fig. b illustrates this process. Again, the white square 

represents O, whereas the black square represents 1. 

At position •, the erosion process begins. There is no total overlap in this case, and hence the pixel 

at location • remains white. 

After shifting the structural element to the right, the identical condition is seen. Because there is 

no complete overlapping at position u, the black square designated with • • will be converted white. 

The structural element is then relocated further to the point shown by •• •. Here, we observe that 

the overlapping is complete, since all of the structuring element's black squares overlap with the 

image's black squares. 



 

Unedited Version: Image Processing 
 

As a result, the image's structuring element's center will be black. The result is seen in Figure 7.3 

b after the structuring element reaches the final pixel. Erosion is a thinning operator that causes an 

image to become smaller. By eroding an image, it is possible to eliminate narrow sections while 

thinning out wider ones.  

 

 

Figure 7.3 Erosion 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Dilation 

As the binary image is expanded from its original shape, dilation is defined as the technique of 

expanding a binary image from one shape to another. The structural element determines how the 

binary picture is expanded and how it is displayed. 

This structuring element is smaller in size when compared to the image itself, and the size that is 

typically used for the structuring element is 3 × 3 pixels in size. 

Dilation is similar to convolution in that the structuring element is mirrored and shifted left to right 

and top to bottom; at each shift, the process looks for any overlapping identical pixels between the 

structuring element and the binary image. 

If there is an overlap, the pixels beneath the structuring element's center position will be set to 1 

or black. 

Assume that X represents the reference image and B represents the structuring element. Equation 

defines the dilation operation. 

   𝑋 ⨁ 𝐵 =  {𝑧|[(�̂�)𝑧 ⋂ 𝑋]  ∈ 𝑋}    

Where B is the rotation of the image B about the origin. The equation indicates that when the 

structuring element B dilates the image X, the outcome element z is that at least one element in B 

intersects with an element in X. 
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Whether this is the case, the position of the structural element within the image will be set to 'ON'. 

This procedure is depicted in Fig. 7.4 a. I is represented by the black square, and 0 is represented 

by the white square. 

At first, the structuring element's center is aligned at position •. There is no overlap between the 

black squares of B and the black squares of X at this point; so, the square will remain white at 

position •. 

After that, the structural element will be transferred to the right. At position **, one of B's black 

squares overlaps or intersects with X's black square. 

As a result, the square at position • • will be turned to black. Consequently, the structural element 

B is shifted left to right and top to bottom on picture X to produce the dilated image shown in Fig. 

7.4 a. 

The dilation operator is a binary object enlargement operator. Dilation has a variety of applications, 

but the most common is bridging gaps in an image, as B expands the features of X. 

 

 

Figure 7.4 Dilation 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

7.3 Opening and Closing 

Apart from the two major operations of erosion and dilation, there are two secondary operations 

that are critical in the processing of morphological images: opening and its opposite, closing. We 

are primarily concerned in opening, while the properties of closing are usually equivalent via 

complementation. While opening is defined in terms of erosion and dilation, it has a more 

geometric formulation in regards of structuring element fits, which serves as the basis for its 

implementation. 

Opening 

The opening of image A by image B is denoted by ∘ and is defined as the result of erosion and 

dilation by  

𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵 
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The functional symbol for opening is 𝛾𝐵(𝐴). To illustrate the role of opening in processing, we 

use the following corresponding formulation: 

𝐴 ∘ 𝐵 = ⋃{𝐵𝑥: 𝐵𝑥  ⊂ 𝐴} 

The opening is determined in this case by union all translations of the structural element that fit 

within the input image. Each fit is identified, and the opening is determined by adding the 

translations of the structural elements to each identified location. Indeed, this is exactly what 

eroding and eventually dilating refers to. 

In Fig. 7.5, a rectangle is eroded and then dilated by a disks to demonstrate how opening is 

expressed as erosion followed by dilation. Additionally, the fitting effect  can be discerned: 

opening the rectangle has resulted in it being rounded from the inside, this rounding being caused 

by the method in which the disks was "rolled around" inside the rectangle in order to establish a 

union of the fits. If the structural element had been a small square with a horizontal base, no 

rounding occurred and the opened image remained identical to the original. 

In Fig. 7.5, we have two instances of opening. By opening with a disc, you create a filter that 

smooth from the inside out; in other words, it rounds corners that extend into the background. With 

a square structural element, the impression is significantly different. 

Rather than viewing the opened image as the processing's final output, we might use an alternative 

approach. Consider subtracting the opening from the input image using set theory. This operator 

is referred to as the opening top-hat: 

 

Figure 7.5 (a) Structuring element, (b) input image, (c) erosion, (d) opening. 
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Figure 7.6. (a) Structuring element, (b) input image, (c) opening, (d) opening top-hat. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The opening top-hat in Fig. 7.5 comprises of protruding input-image corners into the background 

and can be used for recognition purposes. Figure 7.6 illustrates another application of the opening 

top-hat to detect gear teeth. Although the disk is frequently used because its shape effect is 

rotationally unchangeable, there are numerous circumstances when it is advantageous to use other 

types of structuring elements. 

 

Figure 7.7 (a) Structuring element, (b) input image, (c) dilation, (d) closing 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Closing 

Closing is a complementary procedure to opening, which is described as a dilation followed by an 

erosion. The closing of A by B is indicated by 𝐴 ∙ B and defined by 

𝐴 ∙ 𝐵 = (𝐴⨁𝐵) ⊝ 𝐵 

In functional notation, closing is also denoted by∅𝐵(𝐴). Closing is depicted in Figure 7.7. The 

effect is visible in the way the closing has been filtered from the outside, smoothing only the 

protruding corners into the image. 

Because closing is the dual operator of the opening, 

𝐴 ∙ 𝐵 = (𝐴𝐶  °�̆�)𝐶 

Because closing is synonymous with opening, opening is synonymous with closing: yields that 

complement one another 

𝐴°𝐵 = (𝐴𝐶  ∙ �̆�)𝐶 

 How the structuring element from the closing is reflected. If the object is a disc or any other 

symmetrical shape, reflection is irrelevant. We might use duality in conjunction with the union 

formulation of opening, thus fitting, or "rolling the ball," around the image's perimeter. With the 

use of an asymmetrical structuring element, Figure 7.8 depicts the duality between open and close. 
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Due to the fact that the closing contains the input image, subtracting the input image from the 

closing yields the closing top-hat operator: 

𝐴 ∙̂ 𝐵 = (𝐴 ∙ 𝐵) − 𝐴 

Figure 7.9 illustrates the closing and the closing top-hat in the application. A shape's convex hull 

is approximated by closing it with a large disk, and its convex hull inadequacies are approximated 

by closing it with a top-hat. Due to their strong discriminant property, these defects are frequently 

exploited in character recognition. 

 

Figure 7.8 Duality between open and close with a nonsymmetrical structuring element. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

 

Figure 7.9 (a) Input image, (b) closing by a disk, (d) closing top-hat. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Consider the image and structural element, with the opening and closing represented. Opening, as 

a filter, has cleaned the boundary by removing minor extrusions; however, it has done so much 

more precisely than erosion, with the result that the opened image is a far more accurate duplicate 

of the original than the eroded image. Similar remarks apply to the closing, with the exception of 

minor invasions being filled. Notably, while the origin's position in relation to the structuring 

element influences both erosion and dilation, it has no effect on opening and shutting. 

 

Figure 7.10 (a) Input image, (b) structuring element, (c) opening, (d) closing. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

7.4 The Hit-or-Miss Transform 

The hit-and-miss transform is a basic binary morphological operation that can be used to inspect 

an image for specific patterns of foreground and background pixels. It is, in fact, the fundamental 

operation of binary morphology, as it is the source of practically all other binary morphological 

operators. As is the case with other binary morphological operators, it accepts a binary image and 

a structuring element as input and outputs another binary image. 

The hit-or-miss transformation of an image A by B is denoted by A ⊛B. 

B is a structural element pair B=(B1,B2).. Instead of a single element,  

B1: the collection of B elements associated with a certain object 

B2 A collection of B elements that relate to the background 

As follows is the definition of the hit-or-miss transform: 

𝐴 ⊛ 𝐵 = (𝐴 ⊝ 𝐵1)⋂(𝐴𝐶 ⊝ 𝐵2) 

This transform is important for locating all pixel configurations that correspond to the B1 structure 

(i.e. a match) but not to the B2 structure (i.e. a miss). As a result, the hit-or-miss transform is used 

to detect shapes. 

Using the two structural elements B1 and B2, use the hit-or-miss transform to determine the 

locations of the following shape pixel configuration in the image below. 
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Solution: 
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The figure below illustrates how the hit-or-miss transform is applied to the image from the 

preceding example. 

 

Figure 7.11 (a) Binary image. (b) Result of applying hit-or-miss transform. 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

7.5 Morphological Algorithms 

Morphology's primary application is to extract image components that are useful for representing 

and describing shape. Boundary extraction, skeletonization (i.e. extracting the skeleton of an 

object), and thinning are all performed using morphological algorithms. 

Boundary Extraction 

The boundary of a set A, indicated by β(A), can be determined in the following manner: 

β(A) − A − (A ⊝ B) 

where B denotes the structuring element. 

The figure below illustrates how to extract an object's boundary from a binary image. 

 

Figure 7.12 (a) Binary image. (b) Object boundary extracted using the previous equation 

and 3×3 square structuring element. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Due to the fact that the structuring element is 3x3 pixels in size, the resulting boundary is one pixel 

thick. Thus, utilizing the 5x5 structuring element results in a boundary that is between 2 and 3 

pixels thick, as illustrated in the following figure. 
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Figure 7.13 Object boundary extracted using 5×5 square structuring element 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

 

Thinning 

Thinning is the process of reducing binary objects or shapes in an image to single-pixel width 

strokes. The definition of thinning a set A by a structuring element B is as follows: 

𝐴 ⊗ 𝐵 = 𝐴 − (𝐴 ⊛ 𝐵) = 𝐴⋂(𝐴 ⊛ 𝐵)𝑐 

Because we are simply matching the pattern (shape) to the structuring elements, there is no need 

for a background operation in the hit-or-miss transform. 

B is a sequence of structuring elements in this case: 

{𝐵} = {𝐵1  , 𝐵2  , 𝐵3  , . . , 𝐵𝑛  } 

where Bi denotes Bi-1's rotation. Thus, the following can be expressed as the thinning equation: 

𝐴 ⊗ {𝐵} = ((. . ((𝐴 ⊗ 𝐵1) ⊗ 𝐵2 ). . ) ⊗ 𝐵𝑛  ) 

 

The entire procedure is repeated until no additional modifications are required. The following 

figure illustrates how to thinning the fingerprint ridges to a thickness of one pixel. 
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Figure 7.14 (a) Original fingerprint image. (b) Image thinned once. (c) Image thinned 

twice. (d) Image thinned until stability (no changes occur). 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Figure 7.15 (a) illustrates a set of structural elements that are usually used for thinning (notice that 

Bi is equivalent Bi-1 to rotated clockwise by 45o and Fig. 7.15 (b) illustrates a set A that is to be 

thinned using the approach mentioned before. The result of thinning A with a single pass of B1 to 

obtain A1 depicted in Figure 7.15 (c). The result of thinning A1 with B2 is depicted in Figure 7.15 

(c), and the outcomes of passes with the other structural components are depicted in Figures 7.15 

(e) through (k) (there were no changes from A7to A8or from  A9 to A11). Convergence occurred 

following the second pass of B6 Figure 7.15 (l), which depicts the thinned result. Finally, Fig. 7.15 

(m) illustrates the converted m-connectivity of the thinned set. 
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FIGURE 7.15 (a) Structuring elements. (b) Set A. (c) Result of thinning A B1 with (shaded). 

(d) Result of thinning with A1 and B2(e)–(i) Results of thinning with the next six SEs. (There 

was no change between A7andA8 (j)–(k) Result of using the first four elements again. (l) 

Result after convergence. (m) Result converted to m-connectivity. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Thickening 

Thickening is the morphological polar opposite of thinning, defined by the expression 

  
𝐴 ⊙ 𝐵 = 𝐴 ⋃(𝐴 ⊛ 𝐵) 

where B is a thickening structuring element. As with thinning, thickening is a sequential process: 

𝐴 ⊙ {𝐵} = ((. . ((𝐴 ⊙ 𝐵1) ⊙ 𝐵2 ). . ) ⊙ 𝐵𝑛  ) 
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The structural components utilised for thickening are identical to those illustrated in Fig. 7.16 (a), 

except that both 1's and 0's have been changed. However, in practise, a separate algorithm for 

thickening is rarely utilised. Rather than that, the conventional approach is to thin the background 

of the set in question and then to complement the outcome. In other words, to thicken a set A, we 

first form Ac a thin Ac set and then complement it to achieve the thickened set A. This approach is 

illustrated in Figure 7.16. As previously stated, we display only set A and picture I, not the padded 

version of image I. 

 

FIGURE 7.16 (a) Set A. (b) Complement of A. (c) Result of thinning the complement. (d 

Thickened set obtained by complementing (c). (e) Final result, with no disconnected points. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Convex hull 

If the straight line segment connecting any two points in A lies entirely within A, the set is called 

to be convex. The smallest convex set containing an arbitrary set S is called the convex hull H. 

The difference between H and S is referred to as the convex deficiency of S. Convex hull and 

convex deficient are useful for describing objects. 

Assume that Bi, i=1,2,3,4 are the four structural elements. The approach entails implementing the 

following equation: 

𝑋𝑘
𝑖 = (𝑋𝑘−𝑖 ⊗ 𝐵𝑖) ∪ 𝐴       𝑖 = 1,2,3,4  𝑘 = 1,2,3,4 

with X0 = A 

When the procedure converges (𝑋𝑘
𝑖 = 𝑋𝑘

𝑖 − 1), we let Di = 𝑋𝑘
𝑖 . The convex hull of A is then 

𝐶(𝐴) = ⋃ 𝐷𝑖

4

𝑖−1
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As an outcome, the procedure entails repeatedly applying the hit-or-miss transform to A with B1; 

once no further changes take place, the union with A is conducted and the outcome is denoted by 

D. Repeat the technique with B2 (applied to A) until no additional changes occur, and so forth... 

The convex hull of A is formed by the union of the four resultant Ds. 

 

Figure 7.17 Convex hull 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

One disadvantage of the approach is that the convex hull can become larger than the minimum 

dimensions necessary to ensure convexity. One straightforward way to mitigate this effect is to 

constrain growth to the vertical and horizontal dimensions of the initial collection. 

Hole filling 

A hole is defined as a region of background pixels that is encircled by a connected border of 

foreground pixels. 

Assume that A is a set containing eight connected boundaries, each boundary covering a 

background region (a hole). The purpose is to fill all holes with ones given a point in each hole 

(for binary images). We begin by creating an array X0 of zeros (of the same size as the array 

containing A), except the locations in X0 that correspond to the given point in each hole, which 

are set to one. The following process then replaces all of the holes with ones: 

 

𝑋𝑘 = (𝑋𝑘−1 ⊕ 𝐵) ∩  𝐴𝑐  k=1,2,3 



 

Unedited Version: Image Processing 
 

 

where A is the symmetric structuring element 

If Xk = Xk-1, the algorithm stops at iteration step k. Thus, the set Xk contains all filled holes, while 

the union of Xk and A includes all filled holes and their boundaries. 

 

If left unchecked, the dilatation could fill the entire region. However, the intersection with the 

complement of A at each step restricts the result to the region of interest. This is an illustration of 

how a morphological process might be conditioned in order to achieve a desired property. In the 

current context, it is referred to as a conditional dilation. 

 

Figure 7.18 Hole filling 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

An image that could result from thresholding to 2 levels a scene containing polished spheres (ball 

bearings). Dark spots could be results of reflections. The objective is to eliminate reflections by 

hole filling… 

A (white) point selected Result of filling that Result of filling all inside one sphere the spheres. A 

(white) point was selected as the result of filling all the spheres within one sphere. 
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Pruning 

Pruning techniques are critical for thinning and skeletonizing algorithms, as these operations 

frequently leave parasitic elements that must be "cleaned up" in post-processing. We begin with a 

pruning problem and work our way up to a morphological solution. A popular approach to 

automated character recognition is to evaluate the shape of each character's skeleton. These 

skeletons are frequently defined by "spurs" (parasitic components). Spurs are formed during 

erosion as a result of inconsistencies in the strokes that comprise the characters. We propose a 

morphological technique for resolving this issue, presuming that the length of a parasitic 

component does not exceed a predefined number of pixels. 

 

Figure 7.19 Pruning 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The method is focused on gradually deleting a parasitic branch's termination point. Additionally, 

this reduces (or eliminates) the length of other branches in the character. In the absence of 

additional structural information, any branch with three or less pixels should be deleted. Thinning 

an input set A by the use of a sequence of structural components aimed at detecting. 

Let 

𝑋𝑖 = 𝐴 ∘ {𝐵} 

where {B} denotes the order of the structural elements. This sequence is made up of two distinct 

structures, each of which is rotated by 900 degrees to create a total of 8 pieces. 

After applying the equation 3 times, the set X1 is obtained, and the character is "restored" to its 

original form but with the parasitic branches eliminated. 

To begin, we create a set X2 that contains all of the end points in X1: 
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𝑋2 = ⋃(𝑋1

8

𝑘−1

 ⨂𝐵𝑘) 

where Bk denotes the identical structural parts. The following step is to dilate the end points three 

times using set A as a delimiter: 

𝑋3 = (𝑋2 ⨁𝐻) ∩ 𝐴 

where H is a three-dimensional three-dimensional structuring element composed of ones and the 

intersection with A as applied after each step. This type of conditional dilation prevents non-zero 

elements from appearing outside of the region of interest. 

 

Finally, by combining X3 and X1, the desired result is obtained: 

𝑋4 = 𝑋1 ∪ 𝑋3 

X3 occasionally includes the "tips" of some parasitic branches in more complex circumstances. 

This can occur when the branches' termination sites are close to the skeleton. Although these 

elements may be deleted in X1, they may reappear during the dilation because they are legitimate 

points in A. Because parasitic elements are typically brief in comparison to legitimate strokes, they 

are rarely picked up again. As they are disconnected regions, their detection and eradication are 

simple. 

Skeletonization 

Skeletonization is a technique for decreasing foreground regions in a binary image to a skeletal 

residue that retains the majority of the original region's extent and connectivity while discarding 

the majority of the original foreground pixels. To understand how this operates, consider that the 

foreground regions of the input binary image are composed of a uniformly slow-burning material. 

Simultaneously light flames along the region's boundary and observe the fire spread towards the 

interior. The fire will extinguish itself at spots when it crosses two distinct borders, and these points 

are referred to as the 'quench line'. This is the skeleton line. It is obvious from this definition that 

thinning results in the formation of a skeleton. 

 

Figure 7.20: Skeletonization, Medial axis transform. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 
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Another approach to see the skeleton is as the loci of the centres of bi-tangent circles that 

completely encompass the foreground region under consideration. This is illustrated in Figure 7.21 

for a rectangular shape. 

 

Figure 7.21: Skeleton of a rectangle defined in terms of bi-tangent circles. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Although the terms medial axis transform (MAT) and skeletonization are frequently used 

interchangeably, we shall make a subtle distinction between them. The skeleton is nothing more 

than a binary image of a simple skeleton. On the other hand, the MAT is a grayscale image in 

which each point on the skeleton has an intensity that corresponds to its distance from an object 

border. 

A set A's skeleton S(A) can be thought of as: 

a) If z is a point in S(A) and (D)z is the largest disk centred on z and included within A, no larger 

disks(not necessarily centred on z) containing (D)z and contained within A can be found. A 

maximal disks is denoted by the disk(D)z. 

b) The disk (D)z makes two or more distinct contacts with the boundary of A. 

A's skeleton can be described in terms of erosions and openings as follows: 

𝑆(𝐴) = ⋃ 𝑠𝑘

𝑘

𝑘=0

(𝐴) 

Sk(A) = (A ⊖ B ) − (A ⊖ kB) ∘B 

where B is a structural element that (A ⊖ kB) denotes k sequential erosions beginning with A; i. 

e., A is eroded first by B, followed by the result by B, and so on: 

(A ⊖ kB) = ((…((A ⊖ B ) ⊖ B ) ⊖ …) ⊖ B ) 

K is the last iterative step before A erodes to an empty set: 

K = max{k |(A ⊖ kB ) ≠ ∅ } 

S(A) can be obtained as the union of the skeleton subsets Sk(A), k = 0, 1, 2, …,K .A can be 

reconstructed from these subsets: 
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𝐴 = ⋃(𝑆𝑘 (𝐴) ⊕ 𝑘𝐵

𝑘

𝑘=0

) 

Where (𝑆𝑘 (𝐴) ⊕ 𝑘𝐵)  denotes a series of k sequential dilations, beginning with Sk(A) 

(𝑆𝑘 (A) ⊕ kB ) = ((…((𝑆𝑘 (𝐴) ⊕ B ) ⊕ B) ⊕ …) ⊕ B ) 

 

 

FIGURE 7.22 (a) Set A. (b) Various positions of maximum disks whose centers partially 

define the skeleton of A. (c) Another maximum disk, whose center defines a different segment 

of the skeleton of A. (d) Complete skeleton (dashed) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

7.6 Morphological Reconstruction 

Reconstruction is a morphological operation that entails the transformation of two images and a 

structural factor (instead of a single image and structuring element). The change begins with a 

single image, the marker. The second image, the mask, serves as a constraint on the transformation. 

Connectivity is defined by the structuring element used. We will use 8-connectivity (the default), 

which indicates that B is a 3 × 3 * matrix of 1s in the following discussion, with the center defined 

at coordinates (2, 2). 

If G is the mask and F is the marker, the reconstruction of G from F, denoted RG(F), is defined by 

the following iterative procedure: 

1. Initialize h1 to be the marker image, F. 

2. Create the structuring element: B = ones(3). 

3. Repeat 



 

Unedited Version: Image Processing 
 

ℎ𝑘+1 = (ℎ𝑘⨁𝐵) ∩ 𝐺 

              until  ℎ𝑘+1 = ℎ𝑘 

4. RG(F)=   ℎ𝑘+1 

Marker F must be a subset of G: 

𝐹 ⊆ 𝐺 

The prior iterative approach is illustrated in Figure 10.21. While this iterative formulation is 

conceptually sound, there are far quicker computational approaches available. 

 

FIGURE 7.23 Morphological reconstruction. (a) Original image (the mask). (b) Marker 

image. (c)–(e) Intermediate result after 100, 200, and 300 iterations, respectively. (f) Final 

result. (The outlines of the objects in the mask image are superimposed on (b)–(e) as visual 

references.) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Geodesic Dilation and Erosion 

Geodesic dilation and erosion are key procedures in the field of morphological reconstruction. 

Additionally, these processes add a new dimension to conventional dilation and erosion. They 

allow us to rebuild certain shapes within an image. 

Nevertheless, we are still working with binary images in this case. If you're unfamiliar with binary 

images, they are images that contain either black or white pixels. In other words, we may divide 

these images into two groups: one foreground and one background. 

The unique aspect of these two methods is that we employ two images instead of one for each. 

Likewise to the simple versions, we require an image to which we can apply dilation or erosion. 
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Along with this image, we'll need a masking image to control the resultant image's growth and 

shrinkage. 

We must obtain the intersection of the masked picture and the dilated image using geodesic 

dilation. As previously stated, masking the image will constrain the growth of subsequent dilations. 

Let denote the marker image and the mask image, F⊆G. The geodesic dilation of size 1 of the 

marker image with respect to the mask, denoted by 𝐷𝐺
(1)(𝐹) 

𝐷𝐺
(1)(𝐹) = (𝐹 ⊕ 𝐵) ∩ 𝐺 

The geodesic dilation of size of the marker image with respect to, denoted by 𝐷𝐺
(𝑛)(𝐹) is defined 

as 

𝐷𝐺
(𝑛)(𝐹) = 𝐷𝐺

(1)(𝐹)(𝐷𝐺
(𝑛−1)(𝐹)) 

 

 

FIGURE 7.24 Illustration of a geodesic dilation of size 1. Note that the marker image contains 

a point from the object in G. If continued, subsequent dilations and maskings would 

eventually result in the object contained in G. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The geodesic erosion of marker F's size 1 in relation to mask G is defined as 

𝐸𝐺
(1)(𝐹) = (𝐹 ⊖ 𝐵) ∪ 𝐺 

Where ∪ represents a predefined union (or logical OR operation). Geodesic erosion of F with 

regard to G of size n is defined as 

𝐸𝐺
(𝑛)(𝐹) = 𝐸𝐺

(1)(𝐹)(𝐸𝐺
(𝑛−1)(𝐹)) 
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Where n≥1 is a positive number 𝑎𝑛𝑑 𝐸𝐺
(0)(𝐹) = 𝐹 and at each step, the set union ensures that the 

geodesic erosion of an image keeps greater than or equal to its mask image. As the forms, Indicate, 

geodesic dilation and erosion are duals in terms of set complementation. Figure 7.25 illustrates a 

geodesic erosion of size one. The steps depicted are a direct application. 

 

FIGURE 7.25 Illustration of a geodesic erosion of size 1. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Geodesic dilation and erosion coincide over a finite number of repetitive steps as the mask restricts 

the marker image's propagation or shrinkage. 

Morphological Reconstruction by Dilation and by Erosion 

On the basis of previous notions, morphological reconstruction by dilation of a marker image F 

with respect to a mask image G, indicated 𝑅𝐺
𝐷(𝐹), is defined as iterative geodesic dilation of F 

with respect to G until stability is obtained; that is, 

𝑅𝐺
𝐷(𝐹) = 𝐷𝐺

(𝑘)(𝐹) 

with k such that   

𝐷𝐺
(𝑘)(𝐹) = 𝐷𝐺

(𝑘+1)(𝐹) 

Reconstruction by dilation is seen in Figure 7.26. The process initiated in Figure 7.26  is continued 

in Figure 7.26 (a). After acquiring𝐷𝐺
(1)(𝐹) this result, the next stage in reconstruction is to dilate it 

and then AND it with mask G 𝐷𝐺
(2)(𝐹) , as shown in Fig. 7.26 (b). Following that, dilation of 

𝐷𝐺
(2)(𝐹) and masking with G produces 𝐷𝐺

(3)(𝐹)and so on. This approach is continued until the 

system reaches a state of stability. Adding one additional step to this example results 𝐷𝐺
(5)(𝐹) =

𝐷𝐺
(6)(𝐹) in the image, morphologically reconstructed via dilation, being provided by 𝑅𝐺

(𝐷)(𝐹) =

𝐷𝐺
(5)(𝐹) as illustrated. As expected, the reconstructed image is identical to the mask. 
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FIGURE 7.26 Illustration of morphological reconstruction by dilation. Sets 𝑫𝑮
(𝟏)(𝑭),G, B and 

F are from Fig. 7.24 . The mask (G) is shown dotted for reference. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Similarly, the morphological reconstruction by erosion of a marker image F with regard to a mask 

image G, indicated 𝑅𝐺
(𝐷)(𝐹), is specified as the iterative geodesic erosion of F with respect to G; 

that is, 

𝑅𝐺
𝐸(𝐹) = 𝐸𝐺

(𝑘)(𝐹) 

with k such that 

𝐸𝐺
(𝑘)(𝐹) = 𝐸𝐺

(𝑘+1)(𝐹) 

 Create a figure similar to Fig 7.26a.m. for erosion-based morphological reconstruction. In terms 

of set complementation, reconstruction through dilation and erosion are duals. 

Opening by Reconstruction 

In morphological opening (𝐴 ⊖ 𝐵) ⊕ 𝐵, the erosion operation eliminates objects smaller than 

structuring element B, and the dilation operation recovers the size and shape of the remaining 

objects. However, restoration precision is greatly dependent on the type of structural element and 

the form of the restored objects during the dilation operation. The opening by reconstruction 

method allows for a more comprehensive restoration of items following erosion. It is defined as 

the reconstruction of n erosions of F by B in relation to using geodesic dilation. 

𝑂𝑅
(𝑛)(𝐹) = 𝑅𝐹

(𝐷)(𝐹 ⊖ 𝑛𝐵) 

Where  𝐹 ⊖ 𝑛𝐵 is a marker image and F is a mask image used in morphological reconstruction 

via dilation. 
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𝑅𝐹 
𝐷 [(𝐹 ⊖ 𝑛𝐵)] = 𝐷𝐹

(𝑘)
[(𝐹 ⊖ 𝑛𝐵)] D represents geodesic dilation with k iterations until stability 

is reached, i.e. 

𝐷𝐹 
(𝑘)

[(𝐹 ⊖ 𝑛𝐵)] = 𝐷𝐹
(𝑘−1)

[(𝐹 ⊖ 𝑛𝐵)] . Hence 𝐷𝐹 
(1)[(𝐹 ⊖ 𝑛𝐵)] = ([(𝐹 ⊖ 𝑛𝐵)] ⊕ 𝐵) ∩ 𝐹 

Because the mask image constrains the marker image within the growth region, the dilation 

operation on the marker image will not extend outside the mask image. The marker image is thus 

a subset of the mask image. [(𝐹 ⊖ 𝑛𝐵)] ⊆ 𝐹 

The images below demonstrate a straightforward opening-by-reconstruction procedure for 

extracting vertical strokes from an input text image. Due to the fact that the original image was 

transformed from grayscale to binary, it contains a few distortions in some characters, resulting in 

identical characters having differing vertical lengths. The structural element in this example is an 

8-pixel vertical line that is used during the erosion operation to locate things of interest. 

Additionally, morphological reconstruction by dilatation 𝑅𝐹 
𝐷 [(𝐹 ⊖ 𝑛𝐵)] = 𝐷𝐹

(𝑘)
[(𝐹 ⊖ 𝑛𝐵)] 

iterates k=9 times until the resulting image converges. 

 

FIGURE 7.27 Original image for opening by reconstruction 

 

FIGURE 7.28 Marker image 

 

FIGURE 7.29 Result of opening by reconstruction 
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(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Automatic Algorithm for Filling Holes 

We devised an algorithm for filling holes based on the knowledge of a hole's starting place. We 

present a fully automated approach for morphological reconstruction. Assume that I(x, y) is a 

binary image, and that we create a marker image F that is 0 everywhere except at the image 

boundary. 

𝐹(𝑥, 𝑦) = {
1 − 𝐼(𝑥, 𝑦)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑛 𝑏𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝐼 

Only those dark pixels of I(x,y) that are adjacent to the boundary have a value of 1 in F(x,y). 

The binary image that contains all regions (holes) is given by: 𝐻 = [𝑅𝐼𝑐
(𝐷)

 (𝐹)]𝑐 

 

We seek to fill the hole by image I. 

The complement surrounds the hole with a wall. 

The marker image F is one at the border except for the original image's border pixels. 

 

FIGURE 7.29.1Hole filling using morphological reconstruction. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

The marker F dilates inward starting at the boundary. 

The complement acts as an AND mask, preventing any foreground pixels (including the wall) from 

altering throughout iterations. 
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Only the hole points are provided by the final procedure. 

A more practical illustration is shown in Figure 7.30. The complement of the text image in Figure 

7.30 (a) is shown in Figure 7.30 (b), and the marker image, F, produced is shown in Figure 7.30 

(c). This image is entirely black with a white (1's) border, except for areas corresponding to 1's in 

the original image's border (the border values are difficult to identify visually at the magnification 

exhibited, and also since the page is practically white). Finally, Fig. 7.30 (d) illustrates the image 

after all holes have been filled. 

 

FIGURE 7.30 (a) Text image of size pixels. (b) Complement of (a) for use as a mask image. 

(c) Marker image. (d) Result of hole-filling 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Border Clearing 

Object extraction from images is a critical problem in automated image analysis. A procedure for 

deleting items that touch (are connected) the image boundary is advantageous since it leaves only 

complete objects for subsequent processing. it indicates that only a portion of an object remains 

visible in the field of view. 

As a mask, the original image is used. The image of the marker is 

𝐹(𝑥, 𝑦) = {
1 − 𝐼(𝑥, 𝑦)

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖𝑓 (𝑥, 𝑦)𝑖𝑠 𝑜𝑛 𝑏𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝐼 

The border clearing algorithm calculates a morphological reconstruction first 𝑅𝐼
𝐷(𝐹), which 

essentially extracts the items that touch the boundary, and then generates a new image with no 

objects touching the borders 𝐼 − 𝑅𝐼
𝐷(𝐹). 

Examine the original text image from Fig. 7.31 (a) once again. Figure 7.31 (a) illustrates the 

reconstruction 𝑅𝐼
𝐷(𝐹)generated by employing a 1's 3x3 structural element. The objects that contact 

the original image's border can be seen on the right side of Fig. 7.31 (a). The image X in Figure 

7.31 (b) was produced. If the task at hand is automated character recognition, obtaining an image 
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in which no characters contact the border is extremely beneficial because it avoids the difficulty 

of recognizing partial characters (at best a challenging work). 

 

FIGURE 7.31 (a) Reconstruction by dilation of marker image. (b) Image with no objects 

touching the border. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

7.6 Summary of Morphological Operations on Binary Images 

The structure elements employed in the various binary morphological approaches covered thus far 

are summarized in Figure 7.32. The shaded elements represent foreground values (which are 

normally denoted by 1's in numerical arrays), the white elements represent background values 

(which are typically denoted by 0's), and the x's represent "don't care" elements. 

 

FIGURE 7.32 Five basic types of structuring elements used for binary morphology 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Grayscale Morphology 

Grayscale morphology's structuring components provide the same primary role as their binary 

counterparts: they act as "probes" to evaluate a given image for specific properties. In grayscale 

morphology, structural features fall into one of two categories: nonflat and flat. Each is illustrated 

in Figure 7.33. The image in Figure 7.33 (a) depicts a hemispherical grayscale SE, while Figure 

7.33 (c) depicts a horizontal intensity profile through its center. Figure 7.33 (b) depicts a flat 

structuring element in the shape of a disk, while Figure 7.33 (d) depicts the element's equivalent 

intensity profile.  To facilitate understanding, the elements in Fig. 7.33 are depicted as continuous 

quantities; their computer implementation is based on digital approximations. Grayscale nonflat 
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SEs are not widely utilized in practice due to a variety of issues. The erosion of an image f caused 

by a SE b at any point (x,y) is defined as the image's minimum value in the region coinciding with 

b when b's origin is at (x,y): 

 

FIGURE 7.33 Nonflat and flat structuring elements, and corresponding horizontal intensity 

profiles through their centers. All examples in this section are based on flat SEs. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Grayscale Erosion and Dilation 

The grayscale erosion of f caused by a flat structuring element b at locations (x, y) is defined as 

the image's least value in the region coincident with b(x, y) when b's origin is at (x, y) . The erosion 

of an image f by a structuring element b at (x, y) is expressed in equation form as 

[𝑓 ⊖ 𝑏](𝑥, 𝑦) = min
(𝑠,𝑡)∈𝑏

{𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)} 

A similar concept can be applied to spatial correlation, in which the coordinates x and y are 

incremented through all possible values to arrive at the origin of b, which then visits every pixel 

in f. That is, we locate the structural element at every pixel location in the image, and use that as 

the starting point to find the erosion of f by b. Erosion happens only at the locations that have a 

minimum value of f with respect to b. For example, if b is a square structuring element of size 3X3 

and a point has the minimum value of f in the region that it spans, then finding the erosion at that 

point requires locating the minimum of the nine values of f that are located within the defined 

region that is spanned by b when its origin is at that point. 

 

Correspondingly, the grayscale dilation of f via a flat structuring element b at any point on the 

coordinate plane (x, y) is determined by the maximum value of the image in the window spanned 

by �̂� when the origin of �̂� is at (x, y). That is, 
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[𝑓 ⊕ 𝑏](𝑥, 𝑦) = max
(𝑠,𝑡)∈�̂�

{𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)} 

Whereas in grayscale erosion with a flat SE, each neighbourhood of (x, y) containing a coincident 

of b computes the minimum intensity value of f in the neighbourhood, we expect that the eroded 

image will be darker than the original. It also follows that bright features will be reduced in size, 

while dark features will be enlarged. In Fig. 7.34 (b), erosion is demonstrated by using a disk SE 

with a radius of 2 pixels and a height of 2 pixels. What we're seeing here is obvious: the effects 

that have been described are apparent in the eroded image. Consider, for example, the extent to 

which the intensities of the small bright dots in Fig. 7.34 (b) were reduced, which caused them to 

barely be visible. At the same time, the dark features in the figure grew in thickness. The erosion 

is slightly darker in general compared to the original image's background. 

 

FIGURE 7.34 (a) Gray-scale X-ray image of size pixels. (b) Erosion using a flat disk SE with 

a radius of 2 pixels. (c) Dilation using the same SE 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

As shown in Fig. 7.34 (c), this was the outcome of dilation of the same SE . Erosion does the 

opposite of creating these effects. To make the features more apparent, the light ones were 

thickened and the darker ones were made less noticeable. In Fig. 7.34 (a) lacks the visible of thin 

black connecting wires located in the left, middle, and right bottom. However, unlike the eroded 

small white dots in Fig. 7.34 (b), the dark dots in the dilated image are still obvious. As it turns 

out, the reason the black dots are larger than the white dots is because the black dots were initially 

larger than the white dots in terms of their size relative to the SE. Finally, compare the dilated and 

non-dilated images in Fig. 7.34 (a) 

The erosion of image f by a nonflat SE bN is defined as: 

[𝑓 ⊖ 𝑏](𝑥, 𝑦) = min
(𝑠,𝑡)∈𝑏𝑁

{𝑓(𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑏𝑁(𝑠, 𝑡)} 

The dilation of image f by a nonflat SE bN is defined as: 

 

[𝑓 ⊕ 𝑏𝑁](𝑥, 𝑦) = max
(𝑠,𝑡)∈𝑏�̂�

{𝑓(𝑥 − 𝑠, 𝑦 − 𝑡) + 𝑏�̂�(𝑠, 𝑡)} 
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When the SE is flat, the equations become identical to previous ones, as long as they do not 

contain a constant. 

When dual operations like erosion and dilation are taken into consideration, one's functions and 

abilities can be complemented and reflected. 

[𝑓 ⊖ 𝑏]𝑐(𝑥, 𝑦) = [𝑓𝑐 ⊕ �̂�](𝑥, 𝑦) 

Similarly, 

[𝑓 ⊕ 𝑏]𝑐(𝑥, 𝑦) = [𝑓𝑐⨁�̂�](𝑥, 𝑦) 

 

 

 

Grayscale Opening and Closing 

The opening of image f by SE b is: 

𝑓 ∘ 𝑏 = (𝑓 ⊝ 𝑏)⨁ 𝑏 

Opening is merely f being eroded of f by b, followed by being dilated  the result  by b. Likewise, 

the grayscale closing of f by b is signified by 𝑓 ⋅ 𝑏 

𝑓 ⋅ 𝑏 = (𝑓⨁𝑏) ⊝  𝑏 

Grayscale images' opening and closing are duals in terms of complementation and SE reflection: 

7.35 And  

(𝑓 ∘  𝑏)𝑐 = 𝑓𝑐  ⋅ �̂� 

The concept is illustrated in one dimension in Figure 7.35. Assume the curve in Fig. 7.35 (a) 

represents an image's intensity profile along a single row. In Figure 7.35 (b), a flat structuring 

element is shown in so many positions, pushed up against the curve's bottom. The thick curve in 

Fig. 7.35 (c) represents the entire opening. So because structuring element is too large to fit 

completely inside the upward peaks of the curve, the opening clips the tops of the peaks, with the 

amount clipped proportional to the structuring element's reach into the peak. In general, openings 

are used to eliminate small, bright details while maintaining the overall intensity levels and larger 

bright features. 
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FIGURE 7.35 Grayscale opening and closing in one dimension. (a) Original 1-D signal. (b) 

Flat structuring element pushed up underneath the signal (c) Opening. (d) Flat structuring 

element pushed down along the top of the signal. (e) Closing 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Closing is depicted graphically in Figure 7.35 (d). Take note of how the structuring element is 

pushed down onto the curve as it is translated to all regions. The closing, as illustrated in Fig. 7.35 

(e), is formed by determining the lowest points achieved by every part of the structuring element 

since it slides against the curve's upper side. The grayscale opening compliance with the following 

requirements: 

a. 𝑓°𝑏 ↲ 𝑓 

b. 𝑖𝑓 𝑓1 ↲ 𝑓2   𝑡ℎ𝑒𝑛 𝑓1°𝑏 ↲ 𝑓2°𝑏 

c. (𝑓°𝑏) ∘ 𝑏= 𝑓°𝑏 

 

The notation 𝑞 ↲ 𝑟 is being used to denote that the domain of q is a subset of the domain of r, as 

well as that any (x, y) in the domain of q is also a subset of the domain of r. 

 

Likewise, the closing operation meets the following requirements: 

 

a. 𝑓 ↲  𝑓 ⋅ 𝑏 

b. 𝑖𝑓 𝑓1 ↲ 𝑓2   𝑡ℎ𝑒𝑛 𝑓1 ⋅ 𝑏 ↲ 𝑓2 ⋅ 𝑏 

c. (𝑓 ⋅ 𝑏) ⋅ 𝑏= 𝑓 ⋅ 𝑏 

 

Example 1 Grayscale opening and closing. 
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Figure 7.36 broadens the one-dimensional concepts illustrated in Figure 7.36 to two dimensions. 

7.35 The image in Figure 7.36 (a) is identical to the one and Fig. 7.36 (b) is the opening created 

by a disk structuring element with a height of one pixel and a radius of three pixels. As expected, 

the intensity of all bright features decreased in proportion to their sizes relative to the SE. When 

compared to Fig. 7.36 (b), we see that, in contrast to erosion, opening had a negligible effect on 

the image's dark features and a negligible effect on the background. Likewise, Fig. 7.36 (c) 

illustrates the image being closed with a disc of radius 5 (because the small round black dots are 

larger than the small white dots, a larger disc was required to achieve comparable results to the 

opening). The bright details and background in this image were largely unaffected, but the dark 

features were attenuated, with the degree of attenuation dependent on the features' relative sizes to 

the SE. 

 

FIGURE 7.36 (a) A grayscale X-ray image of size pixels. (b) Opening using a disk SE with a 

radius of  pixels. (c) Closing using an SE of radius 5. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

7.8 Some Basic Grayscale Morphological Algorithms 

Numerous grayscale morphological techniques have been developed on the basis of the grayscale 

morphological concepts introduced thus far. The following discussion illustrates several of these 

algorithms. 

Due to the fact that opening inhibits bright details smaller than the predefined SE while removing 

dark details fairly unaffected and closing has the opposite effect, these two operations are 

frequently combined as morphological filters for image smoothing and noise removal. Consider 

Fig. 7.37 (a), which depicts an X-ray image of the Cygnus Loop supernova. Suppose again for 

purpose of this study that the central light region is the objective and that the smaller components 

are noise. Our goal is to eliminate noise. The result of opening the original image with a flat disk of 

radius 1 and then closing it with a SE of the same size is shown in Figure 7.37 (b). The figures 7.37 

(c) and (d) illustrate the same operation with SEs of 3 and 5 radii, respectively. As expected, this 

sequence demonstrates progressive elimination of small components as SE size increases. The 

final result demonstrates that noise has been largely eliminated. The noise components on the 
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lower right side of the image could not be completely removed due to their size being larger than 

the other successfully removed image elements. 

 

 

FIGURE 7.37 (a) image of the Cygnus Loop supernova, taken in the X-ray band by NASA’s 

Hubble Telescope. (b)–(d) Results of performing opening and closing sequences on the 

original image with disk structuring elements of radii, 1, 3, and 5, respectively 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Morphological Gradient 

Dilation and erosion, in conjunction with image subtraction, can be used to obtain the 

morphological gradient, g, of a grayscale image f in the following manner: 

𝑔 = (𝑓⨁𝑏) − (𝑓 ⊖ 𝑏) 

Where b denotes an appropriate structuring element. The cumulative consequence of this equation 

is that dilation thickens and erosion shrinks regions in an image. Their distinction highlights the 

divisions between regions. Because homogenous regions are unaffected (as long as the SE is not 

too large in relation to the image's resolution), the subtraction operation seeks to eliminate them. 

As a result, an image is created in which the edges are enhanced and the homogeneous areas are 

suppressed, creating a "derivative like" (gradient) effect. 

An illustration of this is shown in Figure 7.38. Figure 7.38 (a) depicts a CT scan of the head, while 

the following two figures depict the opening and closing with a flat SE of 1's. Take note of the 

aforementioned thickening and shrinking. The morphological gradient obtained is depicted in 

Figure 7.38 (d). As expected of a 2-D derivative image, the boundaries between regions are clearly 

defined. 
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FIGURE 7.38 (a) image of a head CT scan. (b) Dilation. (c) Erosion. (d) Morphological 

gradient, computed as the difference between (b) and (c) 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Top-Hat and Bottom-Hat Transformations 

Combining image subtraction with open and closed operations yields a top-hat transform and a 

bottom-hat transform. A grayscale image f's top-hat transformation is defined as f minus its 

opening. 

𝑇ℎ𝑎𝑡(𝑓) = 𝑓 − (𝑓 ⋅ 𝑏) 

Similarly, the bottom-hat transformation of f is defined as the closing of f minus f : 

𝐵ℎ𝑎𝑡(𝑓) = (𝑓 ⋅ 𝑏) − 𝑓 

These transformations have a variety of applications, one of which is the removal of objects from 

images using an element that opens or closes instead of resizing the object that was removed. After 

that, the difference operation produces an image that contains only the component that was deleted. 

In the case of bright objects on a dark background, the top-hat transform is used, whereas the 

bottom-hat transform is used in the case of the opposite. The white top hat transform and the black 

bottom-hat transform are two common names for these transformations. 

Take, for example, Fig. 7.39 (a), which depicts a grain of rice in various states of development. In 

this image, nonuniform lighting was used to create the image, as evidenced by the darker area in 

the bottom rightmost portion of the image. As shown in Figure 7.39 (b), thresholding was 

performed with the Otsu method, which is an optimal thresholding method . When nonuniform 

illumination is used in conjunction with a nonuniform image, the result is segmentation errors in 

the dark area (where several grains of rice were not obtained from the background) and in the top 

left portion, where parts of the background were interpreted as rice. Figure 7.39 (c) depicts the 
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image being opened by a disk with a radius of 40 degrees. This SE was large enough that it could 

not be accommodated in any of the objects. A result of this was that the objects were removed, 

having left only a close estimate of the background to be seen. In this image, the shading pattern 

is clearly visible. It is expected that the background will become more uniform as a result of 

subtracting this image from the original (i.e., applying a top-hat transformation). As illustrated in 

Fig. 7.39 (d), this is indeed the case. Although the background is not perfectly uniform, the 

differences between light and dark extremes are less extreme, and this was sufficient to produce a 

correct thresholding result, in which all of the rice grains were properly extracted using Otsu's 

method, as shown in Fig. 7.39 (e). 

 

FIGURE 7.39 Using the top-hat transformation for shading correction. (a) Original image 

of size pixels. (b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-

hat transformation (the image minus its opening). (e) Thresholded top-hat image. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Granulometry 

Granulometry is a branch of science that is concerned with determining the size distribution of 

particles in an image by analysing the image. It is difficult to count particles when they are not 

neatly separated, which makes counting based on individual particle identification a difficult task. 
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It is possible to estimate particle size distribution indirectly using morphology, without having to 

identify and measure individual particles, by using morphology. 

The technique is simple and clear. When dealing with particles that have regular shapes and are 

lighter in color than the background, the technique comprises in implementing openings with SEs 

that grow in size as the particle size increases. The underlying concept is that opening operations 

of a specific size should have the greatest impact on regions of the input image that contain 

particles of similar size to the opening operation. We compute the sum of the pixel values for each 

image that results from an opening in the window. Because, as we discussed earlier, openings 

reduce the intensity of light features in an image, this sum, which is referred to as the surface area, 

decreases as the SE size increases. In this case, the procedure produces a 1-D array, with each 

element corresponding to a single pixel in the opening for the size SE corresponding to that 

particular location in the array. For the purpose of highlighting the differences between successive 

openings, we compute the difference between adjacent elements of the one-dimensional array. If 

the differences are plotted, the peaks in the plot are indicative of the size distributions of the 

particles in the image that are most prevalent in the image. 

Consider the image of wood dowel plugs in Fig. 7.40 (a), which depicts two dominant sizes of 

wood dowel plugs. Due to the possibility of variations in the openings caused by the wood grain 

in the dowels, smoothing the openings is a sensible preprocessing step. Figure 7.40 (b) depicts an 

image that has been smoothed using the morphological smoothing filter discussed previously, with 

a disk radius of 5. Figures 7.40 (c) through (f) depict image openings created by disks with radii of 

10, 20, 25, and 30 degrees, respectively. The small dowels' contribution to the intensity 

contribution in Fig. 7.40 (d) has been nearly eliminated, as can be seen in the figure. The 

contribution of the large dowels has been significantly reduced in Fig. 7.40 (e), and it has been 

reduced even further in Fig. 7.40 (f). Because it is smaller in size than the other larger dowels, the 

large dowel near the top right corner of the image is much darker than the others in Fig. 7.40 (e). 

If we had been attempting to detect faulty dowels, this would have been useful information to have. 
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FIGURE 7.40 (a) image of wood dowels. (b) Smoothed image. (c)–(f) Openings of (b) with 

disks of radii equal to 10, 20, 25, and 30 pixels, respectively. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

A plot of the difference array is depicted in Figure 7.41. As stated earlier, we assume statistically 

significant differences (peaks in the plot) across radii at which the SE is significant enough to 

accommodate a collection of particles with approximately the same diameter as the particle . The 

result shown in Fig. 7.41 has 2 different peaks, which indicates that there are two dominant object 

sizes in the image. 

 

FIGURE 7.41 Differences in surface area as a function of SE disk radius, r. The two peaks 

indicate that there are two dominant particle sizes in the image. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

Textural Segmentation 

Figure 7.42 (a) depicts a image of dark blobs overlaid on a light background, which is a noisy 

image. The image is divided into two textural regions: a region on the right that is composed of 

large blobs, and a region on the left that is composed of smaller blobs. Finding a boundary between 

two regions depending on their textural content, although in this scenario is dictated by the sizes 

and spatial distribution of the blobs. The process of dividing an image into regions is referred to 

as segmentation. 
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FIGURE 7.42 Textural segmentation. (a) A image consisting of two types of blobs. (b) Image 

with small blobs removed by closing (a). (c) Image with light patches between large blobs 

removed by opening (b). (d) Original image with boundary between the two regions in (c) 

superimposed. The boundary was obtained using a morphological gradient. 

(Reference from "Digital Image Processing fourth edition by Rafael C. Gonzalez and 

Richard E. Woods) 

As we can see, the objects of interest are darker than the background, and thus we know that if we 

close the image with a structural element that is larger than the small, distracting blobs, the blobs 

will be erased. Fig. 7.42 (b), which shows the outcome of closing the input image with a disk with 

a radius of 30 pixels, demonstrates that this is in fact the case. It is around 25 pixels in radius for 

the smallest blobs. As a result, we have an image of large, dark blobs on a light background at this 

stage. We can achieve a similar result by opening this image with a structuring element that is 

large in comparison to the separation between these blobs. The net outcome must be an image 

wherein the light patches between both the blobs are erased, leaving the dark blobs and the newly 

dark patches between these blobs. A disk with a radius of 60 is used to obtain the goals shown in 

Figure 7.42 (c). 

Grayscale Morphological Reconstruction 

Grayscale morphological reconstruction is based on the same principles as binary images. The 

marker and mask pictures, respectively, are denoted by the f and g. We will consider that the both 

images are grayscale images of the same size, which means that the intensity of f at any point in 

the image will be smaller than the intensity of g at that point in the image. With respect to g, the 

geodesic dilation of f of size 1 is seen and is defined as. 

𝐷𝑔
(1)(𝑓) = (𝑓 ⊕ 𝑏)⋀ 𝑔 
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where ∧ Represents the point-wise minimum operator and b is a valid structuring element.  The 

geodesic dilation of size 1 is obtained by computing the dilation of f by b first, then choosing the 

minimum between the result and g at each location (x, y) 

The geodesic dilation of size n of f with respect to g is defined as 

𝐷𝑔
(𝑛)(𝑓) = 𝐷𝑔

(1)
(𝐷𝑔

(𝑛−1)
𝑓) 

With 𝐷𝑔
(0)(𝑓) = 𝑓  

Similarly, the geodesic erosion of size 1 of f  with respect to g is defined as 

𝐸𝑔
(1)(𝑓) = (𝑓 ⊖ 𝑏)⋁ 𝑔 

where denotes the point-wise maximum operator. The geodesic erosion of size n is defined as 

𝐸𝑔
(𝑛)(𝑓) = 𝐸𝑔

(1)
(𝐸𝑔

(𝑛−1)
𝑓) 

With 𝐸𝑔
(0)(𝑓) = 𝑓 

The morphological reconstruction by dilation of a grayscale mask image, g, by a grayscale marker 

image, f, indicated by is described as the geodesic dilation of f with respect to g, iterated until 

stability is achieved;  

𝑅𝑔
(𝐷)(𝑓) = 𝐷𝑔

(𝑘)
(𝑓) 

 

With k such that𝐷𝑔
(𝑘)

(𝑓) = 𝐷𝑔
(𝑘+1)

(𝑓) 

The morphological reconstruction caused by erosion of g by f, defined by 𝑅𝑔
(𝐸)

(𝑓) is similarly 

defined as 

𝑅𝑔
(𝐸)(𝑓) = 𝐸𝑔

(𝑘)
(𝑓)  

With k such that 𝐸𝑔
(𝑘)(𝑓) = 𝐸𝑔

(𝑘+1)
(𝑓)  

For the same reasons as in the binary case, opening by reconstruction of grayscale images begins 

with eroding the input image and using it as a marker, and then utilizes that image as the mask. 

The opening through reconstruction of size n of an image f is represented by dilation of the erosion 

of size n of f with respect to f; that is,  

𝑂𝑅
(𝑛)(𝑓) = 𝑅𝑓

(𝐷)(𝑓 ⊖ 𝑛𝑏) 

Where  𝑓 ⊖ 𝑛𝑏 denotes n successive erosions by b, starting with f , 

Furthermore, the closing of an image f by reconstruction of size n is defined as the reconstruction 

by erosion of the dilation of size n of f with respect to f; that is,  
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𝐶𝑅
(𝑛)(𝑓) = 𝑅𝑓

(𝐸)(𝑓 ⊕ 𝑛𝑏) 

In this case, represent n the number of successive dilations by b, starting from the letter f. Because 

of duality, it is possible to achieve the closing by reconstruction of an image by complementing 

the image, acquiring the opening by reconstruction, and then complementing the outcome.  As a 

final point, as demonstrated in the following example, an important method known as top-hat by 

reconstruction involves subtracting with an image the opening created by reconstruction. 

 

7.8 Unit End questions 

1. What is a Morphological image processing? 

2. Write a short note on Erosion and Dilation. 

3. Write a short note on opening and closing. 

4. Explain the Hit-or-Miss Transform. 

5. Write a short note on Boundary Extraction. 

6. Write a short note on Thinning and Thickening.  

7. Write a short note on Convex hull and Hole filling. 

8. Write a short note on Pruning and Skeletonization. 

9. Explain the Geodesic Dilation and Erosion. 

10. Explain the Morphological Reconstruction by Dilation and by Erosion. 

11. Write a short note on Opening by Reconstruction. 

12. State the algorithm for filling holes. 

13. Explain the Grayscale Morphology. 

14. Write a short note on Grayscale Erosion and Dilation. 

15. Explain the Grayscale Opening and Closing. 

16. Explain the Morphological Smoothing. 

17. Explain the Morphological Gradient. 

18. Write a short note on Top-Hat and Bottom-Hat Transformations. 

19. What is a Granulometry? 

20. What is a Textural Segmentation? 

 

 

7.9 Reference for further reading 

1. Digital Image Processing Gonzalez and Woods Pearson/Prentice Hall Fourth 2018 

2. Fundamentals of Digital Image Processing A K. Jain PHI   

3. The Image Processing Handbook   J. C. Russ CRC Fifth 2010 
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