AC 27/2/13

Item no. 4.120

UNIVERSITY OF MUMBAI

Syllabus for Sem III and IV Program: M.Sc.(PSCHI) Course: Inorganic Chemistry

Credit based semester and grading system with effect from the academic year 2013-2014

SEMESTER III

Course Code	UNIT	TOPICS	Credit s	L/Week
		1. Solid State Chemistry-I		
		1.1 Descriptive Crystal Chemistry (15		
		Lectures)		
		(a) Simple structures		
		Structures of AB type compounds (PbO and		
		CuO), AB_2 type (β cristobalite, CaC_2 and		
		Cs ₂ O), A_2B_3 type (Cr ₂ O ₃ and Bi ₂ O ₃), AB ₃		
		(ReO ₃ , Li ₃ N), ABO ₃ type, relation between		
		ReO_3 and perovskite $BaTiO_3$ and its		
		polymorphmic forms, Oxide bronzes, ilmenite		
	I	structure, AB_2O_4 type, normal, inverse, and		1
		random spinel structures.		
		(b)Linked Polyhedra		
		(i) Corner sharing: tetrahedral structure		
		(Silicates) and octahedral structure (ReO_3) and		
PSCHI301		rotation of ReO3 resulting in VF3, RhF3 and	4	
		calcite type structures.		
		(ii) Edge sharing: tetrahedral structures (SiS_2)		
		and octahedral structures (BiI ₃ and AlCl ₃).		
		pyrochlores, octahedral tunnel structures and		
		lamellar structures		
		1.2 Imperfection in crystals and Non-		
		Stoichiometry (15 Lectures)		
		(a) Point defects: Point defects in metals and		
		ionic Crystal - Frenkel defect and Schottky		
	П	defect. Thermodynamics formation of these		1
		defects (mathematical derivation to find defect		
		concentration and numerical problems		
		expected); Defects in non-Stoiochiometric		
		compounds, colour centres.		

	(b) Line defects: Edge and Screw	
	Dislocations. Mechanical Properties and	
	Reactivity of Solids.	
	(c) Surface Defects: Grain Boundary and	
	Stacking Fault. Dislocation and Grain	
	Boundaries, Vacancies and Interstitial Space	
	in Non-Stoichiometric Crystals, Defect	
	Clusters, Interchangeable Atoms and	
	Extended Atom Defects.	
	1.3 Inorganic Materials-I: Preparations (15	
	Lectures)	
	(a) Methods of Synthesis: Chemical Method,	
	High Pressure Method, Arc Technique and	
	Skull Method (with examples).	
	(b) Different methods for single crystal	
	growth:	
	(i) Crystal Growth from Melt-: Bridgman and	
	Stockbargar, Czochralski and Vernuil	
	methods.	
111	(ii) Crystal growth from liquid solution: Flux	1
	growth and temperature gradient methods	-
	(iii) Crystal growth from vapor phase: -	
	Epitaxial growth methods.	
	(c) Thin film preparation: Physical and	
	Chemical methods.	
	(d) Solid Solutions: Formation of	
	Substitutional, Interstitial and Complex Solid	
	Solutions; Mechanistic Approach; Study of	
	Solid solutions by X-ray Powder Diffraction	
	and Density Measurement.	
	1.4 Inorganic Materials: Properties-I (15)	
IV	Lectures)	1
	(a) Diffusion in Solids: Fick's Laws of	

	1	Diffusion (numerical machine second 1)		
		Diffusion (numerical problems expected);		
		Kirkendal Effect; Diffusion and Ionic		
		Conductivity; Applications of Diffusion in		
		Carburizing and non-Carburizing Processes in		
		Steel Making.		
		(b) Solid state reactions: General principles		
		and factors influencing reactions of solids,		
		Reactivity of solids.		
		(c) Liquid Crystals: Introduction and		
		classification of thermotropic liquid crystals,		
		Polymorphism in liquid crystal, Properties and		
		applications of liquid crystals.		
		(d) Optical properties: Color Centres and		
		Birefringence; Luminescent and Phosphor		
		Materials; Coordinate Model; Phosphor		
		Model; Anti Stokes Phosphor; Ruby Laser;		
		Neodymium Laser.		
		2 Coordination Chemistry (15 Lectures)		
		2.1 Non-Heme Proteins		
		Coordination geometry of the metal ion and functions.		
		Zn in biological systems: Carbonic anhydrase,		
		protolytic enzymes, e.g. carboxy peptidase, Zinc finger.		1
		Role of metal ions in biological electron transfer processes		1
PSCHI302		Copper containing proteins and enzymes.	4	
		Less common ions in biology e.g. Co, Ni, V		
		Metallothionines Biomineralization.		
		2.2 Inorganic Photochemistry and Stability		
		Constants (15 Lectures)		
	П			1
	11	(a) Inorganic Photochemistry:		'
		(a) Inorganic Photochemistry:(i) Luminescence: Fluorescence and		

		(b) Structure and Bonding	
		Trans Effect	
		Reactions of Coordination Compounds, (vii)	
	IV	Reactions in Absence of Oxygen, (vi)	
		Dissociation of Solid Complexes, (v)	
	IV	Reactions, (iii) Redox Reactions, (iv) Thermal	1
		(i) Addition Reactions, (ii) Substitution	
		(a) Synthesis of Coordination Compounds	
		Stereochemistry (15 Lectures)	
		2.4 Synthesis, Structure and Bonding, and	
		(vii) Frost diagrams	
		(vi) Pourbaix Diagrams	
		(v) Latimer Diagrams	
	111	Aqueous and Solvent Free Media	
		(iv) Redox Reactions in Aqueous, Non-	
		(iii) Pauling and Drago-Wayland Equation	1
		Acids and Bases;	
		(ii) Measures of hardness and Softness of	
		(i) Acidity and Basicity Parameters	
		Reactivity Matrix of Lewis Acids and Bases	
		Lectures)	
-		2.3 Reactivity of Chemical Species (15	
		Complexes.	
		(ii) Stability Constants of Mixed Ligand	
		Problems expected).	
		Potentiometry, and Polarography (Numerical	
		as spectrophotometry, Conductometry,	
		Constants of Coordination Compounds such	
		(i) Methods for Determining Stability	
		(b) Stability Constants:	
		(ii) Prompt and Delayed Reactions	
		Transition Elements.	

		(i) Molecular Orbital Theory for Complexes		
		(i) Molecular Orbital Theory for Complexes		
		with Coordination Number 4 and 5 for the		
		central ion (sigma as well as Pi bonding)		
		(ii) Angular Overlap Model		
		(c) Stereochemistry of Coordination		
		Compounds		
		(i) Chirality and Fluxionality of Coordination		
		Compounds with Higher Coordination		
		Numbers.		
		(ii) Geometries of Coordination Compounds		
		of d^6 to d^9 metal ions.		
		3. Instrumental Methods of Analysis		
		3.1 Diffraction Methods-I (15 Lectures)		
	I	X-Ray Diffraction: Bragg Condition; Miller		
		Indices; Laue Method; Bragg Method; Debye		1
		Scherrer Method of X-Ray Structural Analysis		
		of Crystals		
		3.2 Diffraction Methods-II (15 Lectures)		
		(a) Electron Diffraction: Scattering of		
		electrons, Scattering Intensity versus		
		Scattering Angle, Weirl Measurement		
		Technique, Elucidation of Structures of		
PSCHI303	П	Simple gas Phase Molecules	4	1
		(b) Neutron Diffraction: Scattering of		
		Neutrons: Scattering of neutrons by Solids		
		and Liquids, Magnetic Scattering,		
		Measurement Technique.		
		3.3 Electron Spin Resonance Spectroscopy		
		(15 Lectures)		
	111	(a) Electron behaviour, interaction		
		between electron spin and magnetic		1
		field.		
		(b) Instrumentation : Source, Sample		
		(b) instrumentation : source, sample		

		cavity. Magnet and Modulation coils, Microwave Bridge, Sensitivity.		
		(c) Relaxation processes and Line width in		
		ESR transitions: (i) ESR relaxation and chemical bonding.		
		(i) ESR relaxation and chemical bonding. (ii) Interaction between nuclear spin and		
		electron spin (hyperfine coupling)		
		(iii) Spin polarization for atoms and transition		
		metal ions,		
		(iv) Spin-orbit coupling and significance of g-		
		tensors,		
		(v) Application to transition metal complexes		
		(having one unpaired electron) including		
		biologic al systems and to inorganic free		
		radicals such as PH_{4} , F_2 and BH_3		
		3.4 Mossbauer Spectroscopy (15 Lectures)		
		(a) Introduction to Mossbauer		
		Spectroscopy, Mossbauer theory and		
		parameters.		
		(b) Instrumentation: Drive		
		mechanism, sources, detectors,		
		absorber, cosine effect calibration of		
	IV	instrument, conditions for good		1
		spectrum.		
		(c) Applications: Purity and characterization,		
		detection of structurally different atoms, in		
		polynuclear compounds, solid state		
		decompositions, study of effect of temperature		
		and pressure on Fe compound, bonding		
		properties and structures.		
		4. Applied Chemistry		
PSCHI4304		4.1 Safety in Chemistry Laboratories (15 Lectures)	4	1

		(a) Good Laboratory Practices: Elements of	
		5	
		Operating Procedures; Quality Assurance	
		(b) Handling of Hazardous Materials	
		(i) Toxic Materials (Various types of toxins	
		and their effects on humans)	
		(ii) Explosives and Inflammable Materials	
		(iii) Types of fire extinguishers	
		(iv) Bioactive materials.	
		(c) Recycling and Waste Disposal	
		Management in Chemical Laboratories.	
		(d) Legal provisions regarding Chemical	
		Laboratories.	
		(e) Environment Protection Act, 1986.	
		4.2 Manufacture and Applications of	
		Inorganic Compounds-I (15 Lectures)	
	Ш	(i) Lime, Chlorine and Caustic soda,	
		(ii) Ceramics and refractory	
		materials	1
		(iii) Cement	
		(iv) Inorganic explosives (mercury	
		fulminate, Lead azide)	
		4.3 Manufacture and Applications of	
		Inorganic Compounds-II (15 Lectures)	
		(i) Fertilizers and micronutrients	1
		(ii) Glass	·
		(iii) Paints and Pigments	
-		4.4 Metallurgy (15 Lectures)	
		Occurrence, extraction and	
		metallurgy of Zirconium, Hafnium,	
	IV	Niobium, Tantalum Platinum and	1
		Palladium metals. Physical and	
		chemical properties and applications	
		······································	

	of these metals, compounds of these		
	metals, alloys and their uses.		
PSCHI3P	Practicals		
PSCHI3P1	 Analysis of ores/alloys Analysis of Brass alloy: Cu content by iodometric method, Zn content by complexometric method. Analysis of Mangelium alloy: Al content by gravimetric method as basic succinate, Mg content by complexometric method. Analysis of Bronze alloy: Cu content by complexometric method. Analysis of Bronze alloy: Cu content by complexometric method. Analysis of Bronze alloy: Cu content by complexometric method. Analysis of steel nickel alloy: 	2	4
PSCHI3P2	 Solvent Extraction Separation of Mn and Fe using isoamyl alcohol and estimation of Mn Separation of Co and Ni using n-butyl alcohol and estimation of Co Separation of U and Fe using 8- hydroxyquinoline in chloroform and estimation of U Separation of Fe and Mo using isoamyl alcohol and estimation of Mo Separation of Cu and Fe using n-butyl acetate and estimation of Cu 	2	4
PSCHI3P3	 Inorganic Preparations 1. Preparation of Hg[Co(SCN)₄] 2. Preparation of V(oxinate)₃ 3. Preparation of Sn(IV) Iodide 4. Preparation of Co(α-nitroso-β-naphthol)₃ 5. Preparation of Ni(salicylaldoxime)₂ 6. Hexaamine cobalt (III) chloride 7. Preparation of Trans-bis (glycinato) Cu(II) 	2	4
PSCHI3P4	 Analysis of the following samples 1. Calcium tablet for its calcium content by complexometric titration. 2. Bleaching powder for its available chlorine content by iodometric method. 3. Iron tablet for its iron content colorimetry by 1,10-phenonthroline method. 	2	4

4. Calcium tablet for its calcium content by complexometric titration.	
 5. Bleaching powder for its available chlorine content by iodometric method. 	
 6. Iron tablet for its iron content colorimetry by 1,10-phenonthroline method. 	
7. Nycil powder for its Zn content complexometrically.	

SEMESTER IV

Course Code	UNIT	TOPICS	Credit s	L / Week
PSCHI401	I	 1 Solid state chemistry-II 1.1 Inorganic Materials- Properties-II (15 Lectures) Electrical properties of solids: (i) Conductivity: Solid Electrolytes; Fast Ion Conductors; Mechanism of Conductivity; Hopping Conduction. (ii) Other Electrical Properties: Thomson and Seebeck Effects; Thermocouples and their Applications; Hall Effect; Dielectric, Ferroelectric, Piezoelectric and Pyrroelectric Materials and their Inter-relationships and 	4	1
	II	 1.2 Inorganic Materials-Properties-III (15 Lectures) (a) Magnetic Properties: Structure and Properties of Metals and Alloys; Transition Metal Oxides; Spinels; Ilmenites; Perovskite and Magneto plumbites. (b) Thermal Properties: Introduction, Heat Capacitiy and its Temperature Dependance; Thermal Expansion of Metals; Ceramics and 		1

		Polymers and Thermal Stresses.		
		1.3 Applications of group theory- electronic		
		structures (15 Lectures)		
		(a) Molecular Orbital Theory of Inorganic		
		Compounds, Transformation Properties of		
		Atomic Orbitals; sigma and pi- molecular		
	Ш	orbitals for AB, AB ₂ , AB ₃ molecules;		1
		(b) Molecular orbitals for inorganic cage and		
		cluster compounds such as B ₆ H ₆ , metal		
		sandwich compounds such as ferrocene and		
		dibenzene chromium.		
		1.4 Application of Group Theory-Spectral		
		properties (15 Lectures)		
		(a) Ligand Field Theory: Electronic structures of		
		Free Atoms and Ions; Splitting of Levels and		
		Terms in a Chemical Environment;		
		Construction of Energy Level Diagrams;		
		(b) Correlation Diagrams for d^2 ions in		
	IV	octahedral and tetrahedral ligand field; Method		1
		of Descending Symmetry; Hole Formalism.		
		(c) Molecular Vibrations: The Symmetry of		
		Normal Vibrations; Determining the Symmetry		
		Types of the Normal Modes; Selection Rules for		
		Fundamental Vibrational Transitions and		
		Interpretation of IR and Raman Spectra		
		2 Organometallics and main group chemistry		
		(15 Lectures)		
		2.1 Organometallic Chemistry		
PSCHI402	I	(a) Organometallic Chemistry of <i>f</i> - block	4	1
		Elements, (b) Metal-Metal Bonding and Metal		
		Clusters, (c) Electron Count and Structures of		
		Clusters,, (d) Isolobal Analogy and Structures.,		

		(e) Organo Palladium and Organo Platinum		
		Compounds: Synthesis and Applications.		
		Compounds. Synthesis and Applications.		
		2.2 Applications of Organometallic		
		Compounds (15 Lectures)		
		(a) Catalysis-Homogenous and Heterogenous		
		Catalysis: Comparison, Fundamental Reaction		
		Steps.		
	П	(b) Organometallics as Catalysts in Organic		1
		Reactions: (i) Hydrogenation, (ii) Assymetric		
		Hydrogenation, (iii) Hydroamination.		
		(c) Organometallic compounds in medicine and		
		agriculture and their biological and		
		environmental Aspects		
		2.3 Inorganic cluster and cage compounds		
		(15 Lectures)		
	Ш	(i) Introduction, (ii) Bonding in boranes, (iii)		1
		Heteroboranes, (iv) Carboranes, (v) cluster		I
		compounds, (vi) electron precise compounds and their relation to clusters.		
		2.4 Inorganic ring and chain compounds (15		
		Lectures)		
	IV	(a) Silicates, polysilicates and aluminosilicates,		1
	-	(b) Phosphazenes, phosphazene polymers		
		(c) Polyanionic and polycationic compounds		
		3 Instrumental methods of analysis-I		
		3.1 Spectroscopy (15 Lectures)		
		(a) Vibrational Spectroscopy:		
		(i) Symmetry and shapes of AB ₂ , AB ₃ ,		
PSCHI403		AB ₄ , AB ₅ and AB ₆ molecules. (ii) Mode of bonding of ambidentate	4	1
		ligands.		
		(iii) Applications of vibrational and		
		Raman spectroscopy for the study of active sites of metalloproteins.		

		 (b) NMR spectroscopy of Inorganic compounds (i) The contact and pseudo contact shifts (ii) Factors affecting nuclear relaxation (iii) NMR of metal nuclides with emphasis on ¹⁹⁵Pt and ¹¹⁹ Sn (iv) Measurements of paramagnetic susceptibilities of coordination compounds 		
		(v) Applications for biochemical shifts3.2 Microscopy of Surface Chemistry-I (15)	-	
		Lectures) Introduction to surface spectroscopy, Microscopy, problems of surface analysis, distinction of surface species, sputter etching and depth profile and chemical imaging, instrumentations, Ion Scattering Spectra (ISS), Secondary Ion Mass Spectroscopy (SIMS), Auger Emission Spectroscopy (AES), 3.3 Microscopy of Surface Chemistry-II (15 Lectures) ESCA, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM) and transmission electron microscopy (TEM);		1
		transmission electron microscopy (TEM):		
		Instrumentation and applications.		
	IV	 3.4 Thermal Methods (15 Lectures) (a) Introduction to principles and Instrumentation of thermoanlytical techniques including thermogravimetry (TG), differenctial thermal analysis (DTA), diiferential scanning calorimetry (DSC), thermomechanical analysis (TMA), simultaneous thermal analysis (STA) and evolved gas analysis (EGA). (b) Applications of thermal techniques for the acquisition of rate dependent kinetic parameters such as activation energy, pre-exponential factor, etc. for solid-solid polymorphic transformation 		1

		 and their relevance. (c) Determination of thermodynamic parameters such as heat capacity, standard enthalpy of formation of the compounds and Gibbs free energy change for the reaction employing thermoanalytical measurements. (d) Application of thermal techniques in materials science and industry 		
	I	 4.1 Inorganic Materials (15 Lectures) (a) Classification, manufacture and applications of (i) Inorganic fibers, and (ii) Inorganic fillers. Study of (i) Condensed phosphates, and (ii) Coordination polymers. (b) Preparation, properties and uses of industrially important chemicals – potassium permanganate, sodium thiosulphate, bleaching powder, hydrogen peroxide, potassium dichromate. 		1
PSCHI404	II	 4.2 Nuclear Chemistry and Inorganic Pharmaceuticals (15 Lectures) (a) Nuclear Chemistry : Introduction to of nuclear fuels and separation of fission products from spent fuel rods by PUREX process. Super heavy element:, discovery, preparation, position in the periodic table. (b) Inorganic Pharmaceuticals : Compounds of iron, calcium and lithium, gold antiarithritic drugs, anti- cancer drugs, radiopharmaceuticals containing Tc, Ga and Xe isotopes, contrast agents for X-ray and NMR imaging. 	4	1
	=	 4.3 Advances in Nanomaterials: (15 Lectures) (a) Types of nanomaterials, e.g. nanotubes, nanorods, solid spheres, core-shell nanoparticles, mesoporous materials; General preparative methods for various nanomaterials. 		1

	(b) Some important properties of nanomaterials: optical properties of metal and semiconductor nanoparticles, magnetic properties.(c) Some special nanomaterials: Carbon nanotubes: Types, synthesis using various methods, growth mechanism, electronic structure; Porous silicon: Preparation and mechanism of porous silicon formation, Factors affecting porous structure, properties of porous silicon; Aerogels: Types of aerogels, Properties and applications of aerogels.(d) Applications of nanomaterials in electronics, energy, automobiles, sports and toys, textile, cosmetics, medicine, space and defense.IVii) Isopoly and Hetropoly acids, ii) Isopoly and Hetropoly acids, iii) Inorganic pesticides, and iv) Intercalation compounds		1
PSCHI4P	Practicals		
PSCHI4P1	 Analysis of galena ore: (ii) Pb content as PbCrO₄ by gravimetric method using 5% potassium chromate, (iii) Fe content by colorimetrically using 1, 10- phenonthroline. Analysis of Zinc blend ore: a. Zn content by complexometric method, b. Fe content by colorimetric method, c. Fe content by colorimetric method, b. Fe content by colorimetric method, b. Fe content by colorimetric method, b. Fe content by colorimetric method, c. Analysis of Pyrolusite ore: a. Mn content by complexometric method, b. Acid insoluble residue by gravimetric method, b. Acid insoluble residue by gravimetric method. 	2	4
PSCHI4P2	Coordination Chemistry1. Determination of Stability constant of $[Zn(NH_3)_4]^{2^+}$ by potentiometry	2	4

	 Determination of Stability constant of [Ag(en)]⁺ by potentiometry Determination of Stability constant of [Fe(SCN)]²⁺ by slope ratio method Determination of CFSE values of hexa-aqua complexes of Ti³⁺ and Cr³⁺. Determination of Racah parameters for complex [Ni(H₂O)₆]²⁺ and [Ni(en)₃]²⁺ 		
PSCHI4P3	 Analysis of the following samples Electral powder for Na/K content flame photometrically. Fasting salt for chloride content conductometrically. Sea water for percentage salinity by Volhard's method. Soil for mixed oxide content by gravimetric method. Fertilizer for potassium content by flame photometry. 	2	4
PSCHI4P4	Spectral interpretation	2	4

REFERENCE BOOKS

(Sem-III and IV) for PSCH301 & PSCH401

- 1. L. E. Smart and E. A. Moore, Solid State Chemistry-An introduction, 3rd edition, Taylor and Francis, 2005.
- 2. A.R.West, Solid State Chemistry and Its Applications, John Wiley & sons, 1987.
- 3. C.N.R. Rao and J.Gopalkrishnan New Directons in Solid State Chemistry, 2nd Ed., Combridge University Press. 1997
- 4. L.V. Azaroff, Introductionn to solids, Tata-McGraw Hill Book Ce. New Dehli, 1977.
- 5. D.W. Bruce and Dermont O Hare, Inorganic Chemistry, 2nd Ed., Wiely and sons, New York, 1966.
- 6. J.M. Hollas, Symmetry in Molecules, Chapman adn Hall Ltd., 1972.
- 7. Reboert L carter, Molecular Symmeetry and Group Hohn Wiley

and Sons, New York, 1988.

- 8. Ulrich Muller, Inorganic structural Chemistry, 2nd edition, John Wiley and Sons, Chichester, 1993.
- 9. R.N.Kutty and J.A.K.Tareen, Fundamentals of Crystal Chemistry, Universities Press (India) Ltd., 2001..
- H.V.Keer, Principles of the Solid state, Wiley Eastern Ltd., 1993. Gary L.Miessler and Donald A.Tarr, Inorganic Chemistry, ^{3rd} edition, Pearson Education, Inc., 2004.
- 11. D.K.Chakraborty, Solid State Chemistry, New Age International Publishers, 1996.
- 12. A. Earnshaw, Introduction to Magnetochemistry, Acad. Press, N.Y. (1966)

(Sem-III and IV) for PSCH302 & PSCH402

- 13. Gary Wulfsberg, Inorganic Chemistry ; Viva Books PA Ltd., New Delhi; 2002.
- 14. F.A. Cotton and Wilkinson, Advanced Inorganic Chemistry, 3rd edition.
- 15. James E.Huheey, Inorganic Chemistry, 3rd edition, Harper & Row, Publishers, Asia, Pte Ltd., 1983.
- 16. W.W.Porterfield,*Inorganic Chemistry-An Unified Approach*, Academic press(1993);
- 17. D.F.Shriver, P.W.Atkins and C.H. Langford, Inorganic Chemistry, 3rd edition Oxford University Press, 1999.
- 18. Asim K.Das, *Fundamental Concepts of Inorganic Chemistry*,(Volumes-I,II and III)CBS Pub.(2000)
- 19. N.N.Greenwood and A.Earnshaw, Chemistry of Elements, Pergamon, 1984.
- 20. J.M.Hollas, Symmetry in Chemistry, Chapmanad Hall Ltd., NY, 1972.\
- F.A.Cotton, Chemical Applications of Group Theory, 2nd edition, Wiley Eastern Ltd., New Delhi , 1976
- 22. C.J.Ballhausen and H.B.Gray, Molecular Orbital Theory, MCGraw-Hill, New York, 1965.

- 23. H. Sisler, Chemistry in Non-aqueous Solvents: New York Reinhold Publ. 1965.
- 24. J.J. Lagowski, The Chemistry of Non-aqueous Solvents, Academic press, New york and London.
- 25. C.M. Day and Joel Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt.Ltd., 1985.
- 26. L.E.Orgel, An Introduction to Ligand Field Theory, Methuen & Co.Ltd., London, 1960.
- 27. F.Basolo and R.G.Pearson, Mechanisms of Inorganic Reactions, Wiley, New York, 1967.
- 28. J.D.Lee, Concise Inorganic Chemistry, 5th ed., Blackwell Science Ltd., 2005.
- 29. R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley-Interscience, New york, 1988.
- G.W.Parshall and S.D.Ittel, Homogeneous Catalysis, 2nd edition, John Wiley & sons, Inc., New York, 1992.
- 31. Gary O. Spessard and Gary L.Miessler, Organometallic Chemistry, Prentice-Hall, (1997).
- 32. R.C.Mehrotra and A.Singh, Organometallic Chemistry-A Unified Approach, 2nd ed., New Age International Pvt.Ltd., 2000.
- B.Douglas, D.H. McDaniel and J.J.Alexander, Concepts and Models of Inorganic Chmistry, 2nd edition, John Wiley & Sons, 1983.
- 34. James E.Huheey, Inoganic Chemistry-Principles of structure and reactivity, edn Harper & Row Publishers (1972).
- 35. F. A. Cotton, G. Wilkinson, C. Murillo and M. Bochmann, Advanced Inorganic Chemistry, 6th ed., John Wiley, New York, 1999.
- 36. F.A. Cotton and R.A.Walton, Multiple Bonds between Metal Atoms, 2nd edition, claranden Press, Oxford, 1993.
- 37. P.L. Soni, Vandana Soni , Ane Books Pvt., Ltd

(Sem-III and IV) for PSCH303 & PSCH403

38. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's

Textbook of Quantitative Chemical Analysis Fifth edition, (1996), ELBS Publication. Chapter 2, 3, 11.

- W.H. Zachariasen. Theory of X-Ray Diffration in Crystals. John Wiley. New York. 1946.
- 40. B.D. Cality, Elements of X-Ray Diffraction Procedures. John Wiley and Sons. New York, 1954.
- 41. R. Reaching, Electron Diffraction, Methuen and Co. London. 1936
- 42. May and Leopold, An Introduction to Mossbauer Spectroscopy, Plenum, New York, 1971.
- 43. H.H. Willard, L.L. Merrit, J.A. Dean and F.A. Settle, Instrumental Methods of Analysis, C.B.S. Publishers and Distributors, New Delhi, 1986.
- 44. P.J. Horne, Nuclear Magnetic Resonance. Oxford University Press, Oxford, 1995.
- 45. Reverts John D., Nuclear Magnetic Resonance, McGraw Hill, New ork, 1959.
- 46. H. Kambe and P.D.Garn. Thermal Analysis, Kondansha Ltd. Toyo, 1974.
- 47. G.W. Ewing, Instrumental Methods, Of Analysis, 4th Ed. McFraw Hill Ltd., 1970.
- 48. N.H. Ring, Inorganic Polymers, Academic Press, New York, 1978
- 49. H.G. Heal, The Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen and Phosphorous, Academic Press, New York, 1980.
- 50. G.T. Seaborg, Man-made Transuranic Elements Preitce- Hall, 1963.
- 51. M.T.R. Series, The Superheavy Elements.
- 52. Haissilsky, Nuclear Chemistry and its Application, 1962.
- 53. S. Glasstone, Sourcebook of Aomic Energy, East-West Publisher, 1969.
- 54. D.Harvey,*Modern Analytical Chemistry*, The McGraw-Hill Pub,1st Edition(2000);
- 55. John H. Block, E.B. Roche, T.P.Soine and Charles O.Wilson, Inorganic Medicinal and Pharmaceutical Chemistry, Lea and

Febiger, 1974.

- R. S. Drago, Physical Methods in Inorganic Chemistry, John-Wiley Pub., 1975
- 57. R. S. Drago, Physical Methods in Chemistry,
- 58. M. Drescher an G. Jeschke, (Eds), EPR Spetroscopy: Applications in Chemistry and Biology, Springer-Verlag Berlin, Heidelberg 2012
- 59. Graham Smith; David Keeble.Introduction to Modern EPR Spectroscopy CRC Press 2013.
- 60. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Pess, N.Y. (1963)
- 61. K. Veera Reddy, Symmetry and Spectroscopy,
- 62. Paul Gabbott Principles and Applications of Thermal Analysis Wiley-Blackwell; edition (2007)

63. Richard Vernon Paris<u>h</u>, NMR, NQR, EPR, and Mössbauer spectroscopy in inorganic chemistry, Publisher,E,.Horwood,(1990) (Sem-III and IV) for PSCH304 & PSCH404

- 64. G.M.Masters, Introduction to Environmental Engineering and Science, Prentice-Hall of India Pvt. Ltd. New Delhi, 1995.
- 65. Sulabha K. Kulkarni, Nanotechnology-Principles and Practices, Capital Publishing Co., 2007.
- 66. K. R. Mahadik and B. S. Kuchekar, Concise Inorganic Pharmaceutical Chemistry, Nirali Prakashan, Pune, 19
- 67. D. A. Skoog, D. M. West, and F. J. Holler, *Fundamentals of Analytical Chemistry*, 7th *Edition*, (printed in India in 2001), ISBN Publication.
- 68. B.Douglas, D.H. McDaniel and J.J.Alexander, Concepts and Models of Inorganic Chmistry, 2nd edition, John Wiley & Sons, 1983.

Scheme of examination for M. Sc Inorganic Chemistry Semester III and IV. Internal Theory examination (40 Marks)

1. One seminar based on curriculum / publication of a research paper/ presentation of a research paper in seminar or conference (to be assessed by teacher of the institution teaching PG learners).

A. Selection of the topic, introduction, write up, references-	15 marks.
B. Presentation	15 marks.

- 2. Active participation in routine class instructional deliveries. **05 Marks**
- 3. Overall conduct as a responsible learner, communication and leadership qualities in organizing related academic activities. **05 Marks**

There will not be any internal assessment for practicals.

Paper	Time allotted in hours	Maximum marks
PSCHI3P1/4P1	2.5	60
PSCHI3P2/4P2	2.5	60
PSCHI3P3/4P3	2.5	60
PSCHI3P4/4P4	2.5	60

External Theory Examination (60 Marks)

It is recommended that a total of five questions be set, based on the syllabus with due weightage to the number of lectures allotted per topic. The candidates are expected to answer all five questions. Question 5 will be based on all four units and the remaining questions will be based on the units as indicated below :

	Semester- III	Semester-IV
Q.1	Unit-I	Unit-I
Q.2	Unit-II	Unit-II
Q.3	Unit-III	Unit-III
Q.4	Unit-IV	Unit-IV
Q.5	From all four units	From all four units

Semester End Practical Examination (50 Marks)

Laboratory Work	40 Marks
Journal	05 Marks
Viva	05 Marks

Practical

The practical examination will be held for two days as described below. The candidates will be examined practically and orally on each day.

Papers	Day	Experiment	Time duration (hours)	Maximum marks
Paper I	Day -1 M	1	3.5	50
Paper I	Day-1 E	1	3.5	50
Paper I	Day-II M	1	3.5	50
Paper I	Day-II E	1	3.5	50

- 1. Credit based semester and grading system with effect from the academic year 2013-2014.
- 2. As per the credit system directives each credit will correspond to 15 hours of lectures or 30 hours of practical work.
- 3. Each student is expected to take 4 credits per theory paper and 2 credits per practical per semester.
- 4. At the end of each semester each student will be examined both in the theory and in the practical.
- 5. For the award of first class, the candidate must obtain at least 50% marks in the theory papers at the Semester I, II, III and IV of the M. Sc. examination taken together, in addition to the marks prescribed for the first class and the other rules of passing in the concerned regulation of the standard of passing.
- 6. The candidate is expected to submit a journal certified by the Head of the Department / institution at the time of the practical examination.
- 7. A candidate will not be allowed to appear for the practical examination unless he / she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- 8. Use of non-programmable calculator is allowed both at the theory and the practical examination.