UNIVERSITY OF MUMBAL No.UG/231 of 2009

CIRCULAR:-A reference is invited to the Ordinances, Regulations and syllabi relating to B.Sc. degree course <u>vide</u> Pamphlet No.141 and to this office Circular No.16/94 of 2004, dated 5th March, 2004 and the Principals of the affiliated No. UG/94 Science are hereby informed that the recommendation made by the colleges Board of Studies in Computer Science at its meeting held on 17th April, Ad-hoc been accepted by the Academic Council at its meeting held on 17th April, 2009 has been accepted by the Academic Council at its meeting held on 2009 pas 2009 vide Item No. 4.59 and that, in accordance therewith, the syllabus 21st April, and and that, in accordance therewith, the syllabus in the subject of Computer Science at S.Y.B.Sc. is revised as per Appendix and in the same has been brought into force with effect from the academic year 2009-2010.

MIMBAI-400 032 16th June, 2009

PRINK VENKATARAMANI REGISTRAR

The Principals of the affiliated colleges in Science.

A.C./4.59/21.04.2009

No.UG/231- A of 2009.

MUMBAI-400 032

16th June, 2009

Copy forwarded with compliments for information to: -

1) The Dean, Faculty of Science,

2) The Chairperson, Ad-hoc Board of Studies in Computer Science,

3) The Controller of Examinations,

4) The Co-Ordinator, University Computerization Centre(

(D.H. KATE) PUTY REUIS.
U.G./P.G SECTION DEPUTY REGISTRAR

Copy to: -

The Director, Board of College and University Development, , the Deputy Registrar (Eligibility and Migration Section), the Director of Students Welfare, the Executive Secretary to the Vice-Chancellor, the Pro-Vice-Chancellor, the Registrar and the Assistant Registrar, Administrative sub-center, Ratnagiri for information.

The Controller of Examinations (10 copies), the Finance and Accounts Officer (2 copies), Record Section (5 copies), Ablications Section (5 copies), the Deputy Registrer, Enrolment, Eligibility and Migration Section (3 copies), the Deputy Registrar, Statistical Unit (2 copies), the Deputy Registra (Accounts Section), Vidyanagari (2 copies), the Deputy Registrar, Affiliation Section (2 copies), the Director, Institute of Distance Education, (10 copies) the Director University Computer Center (IDE Building), Vidyanagari, (2 copies) the Deputy Registrar (Special Cell), the Deputy Registrar, (PRO). the Assistant Registrar, Academic Authorities Unit (2 copies) and the Assistant Registrar, Executive Authorities Unit (2 comies) There are requested to tract this as a time to be esolution and

UNIVERSITY OF MUMBAI

Revised Syllabus For the S.Y.B.Sc.

in

Computer Science

(With effect from the academic year 2009-2010)

S.Y.B.Sc. Paper I

Discrete Mathematics and Computer Graphics

Term I [Discrete Mathematics]

UNIT I: Relations: (15 Lectures)

Relations: Definition and examples. Properties of relations, Partial Ordering sets, Linear Hasse Daigrams, Maximum and Minimum at an armond the set of the Relations. Delications of relations, Partial Ordering Hasse Daigrams, Maximum and Minimum elements, Lattices

Recurrence Relation: Definition of recurrence relations, Formulating recurrence Recurrence relations, Solving recurrence relations- Back tracking method, Linear homogeneous relations with constant coefficients. relations, solving method, Linear homogeneous recurrence relations with constant coefficients. Solving linear homogeneous recurrence with constant coefficients of degree to the coefficients of the relations with constant coefficients of degree two when characteristic equation has relations and only one root, Particular solutions of non linear homogeneous distinct roots and Solution of recurrence distinct relation, Solution of recurrence relation by the method of generation recurrence relation by the method of generation functions, Applications- Formulate and solve recurrence relation for Fibonacci numbers, function, Application, Intersection of lines in a plane, Sorting Algorithms.

References:

- (a) Chapter 10.2, 10.3, 10.4, 10.5, 10.7, 10.8 of Elements of Discrete Mathematics: C.L. Liu, Tata McGraw-Hill Edition.
- (b) Chapter 5.1, 5.2. 6.1, 6.6 of Discrete Mathematics and its applications: Kenneth H. Rosen, Third Edition, McGraw-Hill Inc.
- (c) Chapter 1.1, 1.2 of Concrete Mathematics (Foundation for Computer Science): Graham, Knuth, Patashnik Second Edition, Pearson Education.

UNIT II: Graphs and Trees: (15 Lectures)

- (a) Graphs: Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs[R6.3] Warshall's algorithm- shortest path, Linked representation of a graph, Operations on graph with algorithms - searching in a graph; Insertion in a graph, Deleting from a graph, Traversing a graph- Breadth-First search and Depth-First search.
- (b) Trees: Definition and elementary results. Ordered rooted tree, Binary trees, Complete and extended binary trees, representing binary trees in memory, traversing binary trees, binary search tree, Algorithms for searching and inserting in binary search trees, Algorithms for deleting in a binary search tree

Reference:

Chapter 8.2, 8.3 8.4, 8.5, 8.6, 8.7 of Data Structures Seymour Lipschutz, Schaum's out lines, McGraw-Hill Inc.

UNIT III: Counting Principles, Languages and Finite State Machine: (15 Lectures)

(a) Permutations and Combinations: Partition and Distribution of objects, Permutation with distinct and indistinct objects, Binomial numbers, Combination with identities: Pascal Identity, Vandermonde's Identity, Pascal triangle, Binomial theorem, Combination with indistinct objects.

(b) Counting Principles: Sum and Product Rules, Tree diagram for solving counting Pigeonhole Principle(without) problems. Pigeonhole Principle(without proof); Simple examples, Inclusion

Exclusion Principle (Sieve formula) (Without proof).

(c) Languages, Grammars and Machines: Languages, regular Expression and Regular languages, Finite state Automata, grammars, Finite state machines, Gödel numbers, Turing machines.

References:

(a) Chapter 4.1, 4.2, 4.3, 4.6, 5.4, of Discrete Mathematics and its applications: Kenneth H. Rosen, Third Edition, McGraw-Hill Inc.

(b) Discrete Mathematics: Semyour Lipschutz, Marc Lipson, Schaum's out lines, McGraw-Hill Inc.

Additional References:

- 1. Norman L. Biggs: Discrete Mathematics, Revised Edition, Clarendon Press Oxford 1989.
- 2. K.D. Joshi: Foundations in Discrete Mathematics, New Age Publication , New Delhi.
- 3. Edward R. Scheinerman, Mathematics, Thompson learning.

Suggested Topics for Assignments

- 1. Examples of partial ordering sets, Hasse diagram.
- 2. Examples on Lattices.
- 3. Formulate and solve recurrence relation.
- 4. Develop Warshall's and Shortest Path algorithm and implement using C.
- 5. Implement operations on graph in C.
- 6. Develop Breadth and Depth First search algorithms and implement using C.
- 7. Create a link list, inserting items into a link list, deleting an item from a link list
- 8. Implement in C for searching and inserting in binary search trees and deleting in a binary search tree.
- 9. Examples based on different counting principles.
- 10. Examples based on Finite state Automata, and Finite state machines.

S.Y.B.Sc. Paper I

Discrete Mathematics and Computer Graphics

Term II [Computer Graphics]

INITIV: Introduction to Graphics Primitives and transformations (15 lectures)

Introduction to Computer Graphics and Display Primitives
a) Journal of Computer graphics and its Introduction to Computer graphics and its applications, Elements of graphics Display 5. Conversion of lines: Digital Differential Analyzer(DDA) algorithm, Breschhams' Line drawing algorithm Breschams' method of Circle drawing, Midpoint Circle Algorithm, Midpoint Ellipse Algorithm. Algorithm to Computer Graphics libraries in C.

b) 2D and 3D Transformation Introduction to Transformation, Transformation and Matrices 2D Transformations: 2D-Scaling, Translation, Reflection and Shearing operations, Rotation about origin Rotation about arbitrary point Combined transformation Introduction to 3D object structure, Homogeneous coordinate system 3D transformations: Scaling, Translation, Reflection, Rotation operation, Projection Transformations: Orthographic Projections, Introduction to Perspective transformations

References:

- 1. Chapter 1.1-1.5, 2.1-2.5 from Procedural elements of Computer Graphics, David F. Rogers, Tata McGraw Hill.
- 2. Chapter 2.1-2.12, 3.1-3.7, 3.9, 3.15 from Mathematical Elements of Computer Graphics, David F. Rogers, Tata McGraw Hill.
- 3. Chapter 3.5-3.6, from Computer Graphics, Donald Hearn, M P. Baker, PHI.

UNIT V: Design and Visualization (15 lectures)

a) Viewing and Clipping Introduction to Viewing and Clipping, Window to Viewport mapping 2D Clipping system: Point clipping, Inside-Outside Test, Introduction to Line Clipping- Mid-Point Subdivision Clipping Algorithm, Cohen-Sutherland Clipping Algorithm. Introduction to Polygon Clipping: Sutherland-Hodgeman Algorithm Character Clipping

Curves and Object design

Curves and Object design

Outros and Modeling of object primitives, Space Curve representation Cubic platfoduction to Modeling of Object Pezier curves, B-Spline curves, comparison of Splines, and B-Spline curves

Bezier curves and B-Spline curves

Bezier curves and Object Design: Wire frame model, Surface of Revolution Surface design, Quadric Curved surfaces.

References:

1. Chapter 3.1-3.3, 3.18-19, 3.22 from Procedural elements of Computer Graphics, David F. Rogers, Tata McGraw Hill.

Chapter 5.1-5.9, 6.1-6.4 from Mathematical Elements of Computer Graphics, David F. Rogers, Tata McGraw Hill.

Chapter 6.1-6.3, from Computer Graphics, Donald Hearn, M.P. Baker, PHI.

UNIT VI: Advanced Computer Graphics (15 lectures)

a) Object Rendering

Visible and Hidden Surfaces: Introduction to hidden lines and surfaces, Image and Object space algorithm, Floating Horizon Algorithm, Painters algorithm, Z-Buffer algorithm

Object Rendering Models: Introduction to object rendering, Illumination Model, Shading Techniques: Gouraund Shading, Phong Shading. Transparency effect, Introduction to shadows, Texture mapping,

b) Animation and Virtual Reality

Animation and Virtual reality: Introduction to Computer Animation and Multimedia systems: Components of Animation system, Keyframing, Kinematics and Inverse Kinematics, Introduction to Morphing Introduction to Virtual Reality and Special Effects

References:

- 1. Chapter 4.1-4.2, 4.9, 5.1-5.3, 5.5-5.12 from Procedural elements of Computer Graphics, David F. Rogers, Tata McGraw Hill.
- 2. Chapter 16.1-16.5 from Computer Graphics, Donald Hearn, M P. Baker, PHI.
- 3. Computer Graphics: A programming Approach, Steven Harrington, McGraw-Hill.

Additional References:

- 1. Computer Graphics: A programming Approach, Steven Harrington, McGraw-Hill.
- 2. Theory and Problems of Computer Graphics, Zhigang Xiang, Roy, plastock, Schaum's outline series, McGraw-Hill.

practical List:

I. Suidy and use of graphics library for drawing primitive images.

L Survey
Write a program to a line using following algorithms
Dioital Differential A

- a. Digital Differential Analyzer (DDA)
- b. Bresenham's Line drawing method

Write a program to draw circle using the following algorithms

- a. Bresenham's circle drawing method
- b. Midpoint circle drawing algorithm
- Write a program to demonstrate the following primitive 2D transformations on a unit square or a triangle
 - a. scaling in X or Y or Both directions
 - b. translation in X or Y or Both directions
 - e. shear transformation
 - d. reflection about an axis
 - e. rotation transformation
- 5. Write a program to rotate a line about an arbitrary point (x,y). [Use shift of origin]
- 6. Write a program to draw an origin centered 3D cube on the screen. (Use shift of origin and bring origin of coordinate at the center of the screen)
- 7. Implement line clipping algorithm using
 - a. Mid-Point Subdivision Clipping Algorithm,
 - b. Cohen-Sutherland Clipping algorithm,
- 8. Write a program to generate a Bezier curve for the N input control points. (take n= 4, 5 and 6).
- 9. Generate cylinder as surface of revolution by rotating a line around an axis. (use delay for better visualization)
- 10. Write a program (a) to implement bouncing ball problem using two balls. (b) to generate an animating clock.(c) to draw animated scenery using primitive structures like points, lines, curves, circles, etc showing rising sun and a wind mill. Other objects in the scene include trees, house, roads etc.

S.Y.B.Sc. Paper H

C++ and Java Programming

Term I [C++ Programming]

18 Concept of OOP, Introduction to C++, Functions and Classes & Objects (15 Lectures)

Concept of OOP (EB: 1.3 to 1.6): Procedure Oriented Programming, Object Oriented Programming (OOP), Basic Concept of OOP, Benefits of OOP.

pata Types (EB: 3.5 to 3.7): Basic data types, User defined data types, Derived data types.

pata Types (EB: 3.10 to 3.12): Declaration of variables, Dynamic Initialization of variables, Reference variables. Comments.

Introduction to C++ (TG: 2.1 to 2.4, 2.14, 3.1, 3.5, 4.1): Parts of C++ program, cout and cin objects, #include Directive, Variables and Constants. Comments.

Operators (TG: 2.13, 4.1, 4.10, 3.5 EB: 3.14, 3.16): Arithmetic, Relational & Logical Operators, Type cast Operator, Scope resolution operator, Memory Management Operators.

Control Structures (EB: 3.24): Loops: for, do...while, while, Decision: If...else, switch case.

Functions (EB: 4.3 to 4.9): main function. Function Prototyping, Call by reference, Return by reference, Inline functions. Default arguments, const Arguments, Function Overloading.

Classes & Objects (EB: 5.3 to 5.15): Defining a class, Defining member Functions, making an Outside function Inline, Nesting of Member Functions, Access Specifiers, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friend functions.

Constructors and Destructors (EB: 6.2 to 6.11): Constructors, Parameterized constructors, Multiple constructors in a class, Constructors with default arguments, Dynamic initialization of Objects, Copy constructor, Dynamic Constructors, Constructing Two-dimensional Arrays, const Objects, Destructors.

Manipulators, Operator Overloading, Inheritance, Polymorphism

Manipulators (EB: Chapter-10): C++ Streams, C++ Stream Classes, Unformatted I/O Operations. Formatted Console I/O Operations, Managing O:P with Manipulators Operator Overloading Unary and Binary Operators, Overloading Unary and Binary Operators.

mheritance (EB: 8.1 to 8.11): Introduction, Defining Derived classes, Single, Multilevel, Milliple, Hybrid Inheritance, Virtual Base classes, Abstract class, Constructors in Jerived classes.

polymorphism (EB: chapter-9): Introduction. Pointer to Objects, Pointers to Derived Classes. Virtual Functions.

File handling, Templates, Exceptions, Standard Template Library (15 Lectures)

handling (EB: Chapter-11): Introduction, Classes for File Stream Operations, Opening and Closing a File, Detecting End of File, More about Open(), File pointers and heir Manipulations, Updating a file, Error Handling during File Operations, Command her arguments.

Templates (EB: Chapter-12): Introduction, Class Templates, Class Templates with multiple parameters, Function Templates, Function Templates with multiple parameters, overloading of Template Functions, Member Function Templates, Non-Type Template Arguments.

Exceptions (EB: Chapter-13): Introduction, Basics of Exception Handling, Exception Handling Mechanism, Throwing Mechanism, Catching Mechanism, Re-throwing an Exception. Specifying Exceptions.

Standard Template Library (EB: Chapter-14): Introduction, Components of STL, Containers, Algorithms, Iterators, Applications of Container classes.

Main Reference:

EB: Object Oriented Programming with C++, 2e, E. Balguruswamy, TMH.

TG: Starting out with C++, 3e, T. Gaddis, Dreamtech.

Additional References:

1. Complete Reference C++ H Schildt TMALI

2. Object Oriented Programming with C++, Y. Kanitkar, BPB.

3. Object-Oriented Programming with C++, P Sarang, PHI.

Note: All figures in the bracket refer to articles from main Reference and are mentioned Note: The scope of the article.

Practical List

Write programs that illustrates the simple C++ concepts without classes.

1. Write C++ programs to illustrate the concepts without classes.
2. erloading. overloading.

Write C++ programs to illustrate the concepts: classes, friend functions.

3. Write C++ programs to illustrate the concepts: classes, friend functions.

4. destructors. and destructors.

Write C++ programs to illustrate the concepts: operator overloading (both Unary and Binary).

Write C++ programs to illustrate the concepts: Simple, Multiple, Multiple, Multiple, inheritance.

- 7. Write C++ programs to illustrate the concepts: Polymorphism (Virtual functions, Pure Virtual functions).
- 8. Write programs to illustrate the file handling in C++.
- 9. Write programs to illustrate the templates in C++.
- 10. Write programs to illustrate the exceptions in C++.

S.Y.B.Sc. Paper II

C++ and Java Programming

Term II [Java Programming]

Unit IV: Introduction to Java Programming (15 lectures)

Introduction: History of Java, Java features, different types of Java programs, Differentiate Java with C and C++, JVM, JIT and JRE.

Java Basics: Variables and data types, declaring variables, literals: numeric, Boolean, character and string literals, keywords, type conversion and casting. Standard default values.

Java Operators: Arithmetic, relational, logical, assignment, increment and decrement, conditional, bitwise, precedence and order of evaluation, statement and expressions, string arithmetic.

Loops and Controls: Control statements for decision making: select statements (if statement, if ... else ... if ... statement, switch statement), goto statement, looping (while loop, do ... while loop and for loop), nested loops, breaking out of loops (break and continue statements), labeled loops.

Arrays and Strings: one and two -dimensional array, creating an array, strings, stringbuffer.

Introduction to Classes: Defining a class, creating instance and class members: creating object of a class, accessing instance variables of a class, creating methods, naming methods of a class, accessing methods of a class, constructor, parameterized constructor, this keyword, garbage collection, finalize() method, methods overloading, constructor overloading, nested and inner classes, static member.

Visibility control: public access, friendly access, protected access, private access, private access, private access.

Unit V: Inheritance, Interface and Packages (15 lectures)

Inheritance: Various types of inheritance, super and subclasses, keywords- 'extends', 'super', constructor chaining, method overriding, final variables and methods, final classes, abstract method and classes, dynamic method dispatch.

Interface: Defining interfaces, extending interfaces, implementing interfaces

packages: System packages, using system package, naming conventions, creating packages, accessing a package, using a package, adding a class to a package

Exception Handling: Exception-handling fundamentals, Exception types, Uncaught exceptions, Using try and catch. Multiple catch clauses, Nested try statements, use of throw, throws and finally keywords, Java's Built-in exceptions, User defined exception, Chained Exception.

Streams and File I/O: Concept of streams, stream classes, byte stream classes: InputStream, and OutputStream, character stream classes: Reader and Writer, Difference between byte stream classes and character stream classes, other I/O classes, File class, Reading/writing bytes/characters, random access file, serialization.

Unit VI: Java Applets and Graphics Programming (15 lectures)

Applets: Difference of applet and application, creating applets, applet life cycle, passing parameters to applets.

Graphics, Fonts and Color: The graphics class, painting, repainting and updating an applet, sizing graphics. Font class, draw graphical figures - lines and rectangle, circle and drawing arcs, drawing polygons. Working with Colors: Color methods, setting the paint mode.

AWT package: Window fundamentals: Component, Container, Panel, Window, Frame, AwT Canvas. AWT Controls: labels, buttons, textfield, textarea, checkboxes, and checkboxgroup, choice, and list. Layout Managers: FlowLayout, BorderLayout, GridLayout.

Event Handling: The Delegation Event Model, Event classes (ActionEvent, FocusEvent, InputEvent, ItemEvent, KeyEvent, MouseEvent, MouseWheelEvent, TextEvent, WindowEvent) and various listener interfaces (ActionListener, FocusListener, WindowFocusListener, MouseMotionListener, MouseWheelListener, ItemListener, WindowFocusListener, WindowListener)

Main References:

- 1) Chapters 6-8, 10, 17, 19 22, Java2: The Complete Reference Tata McGraw Hill, Fifth edition
- 2) Chapters 2-7, 9,10, 11, 16, 20, 21, 22 of **Programming with Java A primer**, by E. Balagurusamy 3rd Edition

Other References:

- 1) Programming in Java, Schaum Series.
- 2) Java2 Programming Black Book, Dreamtech Press.

Practical List

- 1. Write a Java program to create a Java class: (a) without instance variables and methods, (b) with instance variables and without methods, (c) without instance variables and with methods. (d) with instance variables and methods.
- 2. Write a Java program that illustrates the concepts of selection statement, looping, nested loops, breaking out of loop.
- 3. Write a Java program that illustrates the concepts of one, two dimension arrays and strings.
- 4. Write a Java program that illustrates the concepts of Java class that includes (a) constructor with and without parameters. (b) Overloading methods. (c) Overriding methods
- 5. Write a Java program to demonstrate inheritance by creating suitable classes.
- 6. Create a Java package, interface and implement in Java program.
- 7. Write a program that illustrates the error handling using exception handling.
- 8. Write a program that illustrates the concepts of stream classes.
- 9. Write a Java applet to demonstrate graphics, Font and Color classes.
- 10. Write a Java program to illustrate AWT package, Event classes and listeners.

S.Y.B.Sc. Paper III

Data Base Management Systems -I and Software Engineering

Term I [Data Base Management Systems -I]

UNIT 1: Relational Model (15 Lectures)

(a) Overview: Overview of database management system, limitations of data processing Overview. database approach, data independence, three level of abstraction,

(b) Entity Relation Model: Entity, attributes, keys, relations, cardinality, participation, Entity entities, ER diagram, Generalization, Specialization and aggregation, weak some with ER model, entity versus attribute, entity versus relationship, binary versus ternary relationship, aggregate versus ternary relationship.

(c) Relational Structure: Introduction to relational model, integrity constraints over

(d) Schema refinement and Normal forms: Functional dependencies, first, second, third, and BCNF normal forms based on primary keys, lossless join decomposition.

UNIT II : Query Languages (15 Lectures)

(a) Relational Algebra: select and projection, Set operations like union, intersection, difference, cross product, Joins - conditional, equi join and natural joins, division, examples. Overview of relational Calculus.

(b) Creating and altering tables: Conversion of ER to relations with and without constraints; CREATE statement with constraints like KEY, CHECK, DEFAULT,

ALTER and DROP statement.

(c) Handling data using SQL: selecting data using SELECT statement, FROM clause, WHERE clause, IIAVING clause, ORDER BY, GROUP BY, DISTINCT and ALL predicates, Adding data with INSERT statement, changing data with UPDATE statement, removing data with DELETE statement

(d) Functions: Aggregate functions-AVG, SUM, MIN, MAX and COUNT, Date functions-DATEADD().DATEDIFF(),GETDATE().DATENAME()YEAR, MONTH, WEEK, DAY, String functions- LOWER(), UPPER(), TRIM(), RTRIM(),

PATINDEX(), REPLICATE(), REVERSE(), RIGHT(), LEFT()

(e) Joining tables: Inner, outer and cross joins, union.

(f) Sub queries: sub queries with IN, EXISTS, sub queries restrictions, Nested sub queries, correlated sub queries, queries with modified comparison operations, SELECT INTO operation, UNION operation. Sub queries in the HAVING clause.

Unit III: Implementing Indexes, Views and procedures (15 Lectures)

Organization and Indexing: Cluster, Primary and secondary indexing, Index

(a) File Organization and Tree based indexing, Comparison of the Structure: hash and Tree based indexing, Comparison of the Structure o File Organice: hash and Tree based indexing, Comparison of file organization: cost data structure. data structure. Heap files, sorted files, clustered files. Creating, dropping and maintaining square using SQL. indexes using SQL. indexes using of view, Data independence provided by views, creating, altering (b) views; renaming and manipulating views using SOI

views: renaming and manipulating views using SQL.

(c) Stored procedures: Types and benefits of stored procedures, creating stored stored using SQL, executing stored procedures; creating stored procedures altering stored procedures altering stored procedures viewing stored procedures, altering stored procedures, viewing stored procedures.

procedures. Concept of triggers. Implements. procedures, viewing stored procedures.

[d] Triggers: Concept of triggers, Implementing triggers in SQL: creating triggers, delete, and update triggers, nested triggers

Triggers.

Triggers, and update triggers, nested triggers, viewing, deleting and modifying lasert, and enforcing data integrity through the Insert, unless, and enforcing data integrity through triggers, vitriggers, and enforcing data integrity through triggers.

References:

(a) Chapters 1.4,1.5.1.8,2.0-2.5,3.1, 3.2, 3.6, 3.7, 4.2, 4.3, 5.8, 8.2-8.4, 19.1-19.6 of Database Management Systems- Ramakrishnam, Gehrke, McGraw-Hill.

(b) Chapters 1, 2,3,4,9 of SQL, PL/SQL The Programming language of Oracle-

Bayross, B.P.B. Publications.

(c) Chapters 4-10 of Professional SQL server 2000 Programming – Rob Vieira, Wrox Press Ltd, Shroff.

Additional References:

(a) Elsmasri and Navathe, "Fundamentals of Database Systems", Pearson Education.

(b) Peter Rob and Coronel, "Database Systems, Design, Implementation and Management", Thomson Learning

(c) C.J.Date, Longman, "Introduction to database Systems", Pearson Education.

(d) Jeffrey D. Ullman, Jennifer Widom, "A First Course in Database Systems", Pearson Education.

(e) SQL server 2000 black book- Patrick Dalton and Paul Whitehead, Dreamtech

(f) Martin Gruber, "Understanding SQL", B.P.B. Publications.

Practical List:

1. Creating a single table without constraints and firing queries.

2. Queries containing aggregate, string and date functions fired on a single table.

3. Creating single table with constraints and executing queries.

4. Updating tables, altering table structure and deleting table Creating and altering a single table and executing queries.

5. Joining tables and processing queries.

6. For given scenario draw E-R diagram and convert entities and relationships to table. Write relational algebra queries and convert entities and relational algebra queries and convert to SQL queries on these tables.

7. Creating, dropping and maintaining indexes.

8. Create and manage views and process queries on views.

9. Creating stored procedures, executing procedures, deleting procedures.

10. Creating with or without enforcing data integrity through triggers, nested triggers, viewing, modifying and deleting triggers.

S.Y.B.Sc. Paper III

Data Base Management Systems - I and Software Engineering

Term II [Software Engineering]

UNIT IV: Introduction to Software Engineering

[15 lectures]

What is software? Types of software, Software Quality factors, What is software engineering? Introduction to Soft Eng & its objectives, The general systems approach to problem solving. The three approaches to software systems development - The Structured approach, the Object Oriented Approach and the Information Engineering Approach. Software Process: SDLC -Requirement Analysis, Software design, coding, testing. maintenance etc.

Software Development Life Cycle Models - Waterfall Model, Prototyping Model, RAD Model, Incremental Model, Spiral Model, Component Based Model, Their features, strengths, weaknesses and differences between them, Fourth Generation Techniques Project Management Process, Role of metrics & models in project management

Project Feasibility Study - Operational, Technical, Economic, Organizational and Cultural feasibility. Defining project costs and project benefits. Cost/Benefit Analysis for

Unit References:

- 1. Software Engineering A Practitioner's Approach 6th Edition, Roger Pressman. McGraw Hill (Ch. 2, 3, 5, 7).
- 2. Integrated Approach to Software Engineering (3rd Edition) Pankaj Jalote (Narosa) (Ch. 1, 2, 3)
- 3. System Analysis & Design in a Changing World, Satzinger, Jackson, Burd -Thompson Learning (Ch. 2, 3).

Investigating System Requirements – Software Requirement Specification Document, Need of SRS, Characteristics & Components of SRS, Stakeholders, Identifying requirements using various techniques (such as Questionnaires, reviewing reports/forms, interviews, workflows etc.), building prototypes, Structured Walkthroughs,

Modeling System Requirements -Conceptual modeling

pata Modeling - Data entities, Attributes, Relationships, Cardinality, ERD

process Modeling - Developing Data Flow Diagrams, Level of abstraction, Context diagram. Top level DFD, DFD fragments, Physical and Logical DFD, Data Dictionary, Events, Event Table

Logic Modeling- Decision Tables, Decision Trees, Structured English & Pseudo-code Object Oriented Modeling: Object Model, Elements of Object Model, Basic Principles of OO Approach, Association, Generalization, Specialization, Aggregation

UML: Basics of UML, Types of UML Diagrams, Use Case Diagram, Class Diagram, Object Diagram, Sequence diagram & Collaboration diagram, State Transition & State chart diagrams

Unit References:

- 1. Software Engineering A Practitioner's Approach 6th Edition, Roger Pressman. McGraw Hill (Ch. 7, 8)
- 2. Integrated Approach to Software Engineering (3rd Edition) Pankaj Jalote (Narosa) (Ch. 3. 6. 7)
- 3. Instant UML, Pierre-Alain Muller Wrox/SPD (Ch. 3).
- 4. System Analysis & Design in a Changing World, Satzinger, Jackson, Burd Thompson Learning. (Ch. 3,4,5,6, 7,10)

UNIT VI: System Design & Coding

[15 lectures]

System Design - Problem partitioning, Abstraction, Top-down & Bottom-up Design, Function-Oriented & Object-oriented Design, Problem Partitioning, Abstraction & its type(Data & Function), Modularity, Coupling, Cohesion, Drawing Structure Charts & Flow charts,

UML Activity Diagram, Component Diagram, Package & Deployment Diagram

Designing Databases: Converting ERD to Databases, Introduction to OO Databases. Object-Relational Databases,

User Interface Design - Designing System Input, output, User Interface, Characteristics of good interfaces

Coding - Top down VS Bottom up strategies, structured programming & object oriented programming. Information hiding, programming styles, Internal documentation

Verification & Validation: What is V&V, Types of V&V activities such as inspection, review, walkthrough, V&V with respect to requirements, system analysis, system design & coding.

Unit References:

- Software Engineering A Practitioner's Approach 6th Edition, Roger Pressman, McGraw Hill (Chapter 9, 11, 12)
- 2. Integrated Approach to Software Engineering (3rd edition) Pankaj Jalote (Narosa)
 (Ch. 3, 6, 7, 8, 9)
- 3. System Analysis & Design in a Changing World, Satzinger, Jackson, Burd Thompson Learning (Ch. 9,10, 11, 12).
- 4. Instant UML, Pierre-Alain Muller Wrox/SPD (Chapter 3).

Additional References:

UML User's Guide – By Grady Booch, Ivar Jacobson, James Rambaugh
 OO Modeling & Design with UML. Hnd Edition, Blaha, Rambaugh, Pearson

Practical List

Recommended Case Studies: (To be solved in group of max of 3 to 4 students)

Developing the system for the following with SSAD and OOAD approach

- a. Library System,
- b. Reservation System.
- c. Inventory System,
- d. Hospital management System
- e. Any other system

Note: - Multiple sessions may be required for completing a practical

- Problem Definition Identifying & Understanding the system, its functions, desired inputs, outputs etc.
- 2. Conducting Feasibility Study Deciding S/W, H/W requirements, Type of system (Single-User/Multi-user etc), Limitations of current system, Benefits of the proposed system etc.
- 3. Requirement Analysis, Interviews, Questionnaire, Creating SRS
- 4. Drawing ERD & converting to tables
- 5. Drawing Context Diagram, DFDs for understanding process flow

brawing Use Case Diagram
Class, Object D. Drawing Class, Object Diagrams, Drawing Sequence & Collaboration

7. Drawing Sequence & Collaboration Diagrams,
8. Drawing State Transition, State chart diagrams,

g. prawing State Transition, State chart diagrams, prawing Activity, Component, Package D.

9. Drawing Activity, Component, Package Diagrams

Evaluation Scheme and Paper Pattern

Theory (Examination duration per paper 2 hours) Title Examination duration per paper 2 hours)						
	Discrete Mathematics	Examination	Maximum Marks	Maximum Marks after conversion		
	Discrete iviatilentaties	First Term	60	30		
Paper I	Computer Graphics C++ Programming	Second Term	60	30		
11	Controgramming	First Term	60	30		
paper II	Java Programming Database Management Systems	Second Term	60	30		
Ш	Database Wallagement Systems	First Term	60	30		
Paper III	Software Engineering	Second Term	60	30		

Practical Examination (Duration per paper 3 hours)

	Title	Examination	Maximum Marks	Maximum Marks after conversion
Paper I	Discrete Mathematics and Computer Graphics	Annual Practical	30	30
Paper II	C++ and Java Programming	Annual Practical	30	30
Paper III	Database Management Systems I and Software Engineering	Annual Practical	30	30
Certified Journal	Paper I, II and III	Annual	15 (5 marks per paper)	15
Viva-voce	Paper I, II and III	Annual	15 (5 marks per paper)	15

_{Paper} Pattern (For Paper I, H and III)

All questions are compulsory.

Questions	Term I	Term II	Maximum Marks*
Q1.	Based on Unit 1, 2 & 3	Based on Unit 4, 5 & 6	15
Q2	Based on Unit 1	Based on Unit 4	15
Q3	Based on Unit 2	Based on Unit 5	15
Q4	Based on Unit 3	Based on Unit 6	15
	Total		60

 $^{}_{^4\text{In}}$ each question; maximum marks with options should be set for 22 or 23 marks with internal options.

General Guidelines

- Each paper is divided into six equal units. First 3 units of each paper are expected
 to be taught during first term and next 3 units are expected to be taught during
 second term. The lectures allocated for the respected units are suggestive.
- Minimum 75 % practicals from each paper are required to be completed and written in the journal.

Scanned with OKEN Scanner