UNIVERSITY OF MUMBAI No.UG/429 of 2009

CIRCULAR: -

The Directors/Heads of the recognized Science Institutions concerned and the Principals of the affiliated Colleges in Science are hereby informed that the recommendation made by the Faculty of Science at its meeting held on 3rd August, 2009 has been accepted by the Academic Council at its meeting held on 7th August, 2009 vide item No.4.47 and subsequently approved by the Management Council at its meeting held on 21st August, 2009 vide item No.18 and that, in accordance therewith, the Five Year Integrated Course in M.Sc. in Bioanalytical Sciences has been introduced by the University from the academic year 2009-2010.

Further that in exercise of the powers conferred upon the Management Council under Section 54(1) and 55(1) of the Maharashtra Universities Act, 1994, it has made Ordinances 5882 and 5883 and Regulations 8136, 8137, 8138, 8139, 8140, 8141, 8142, 8143, 8144, 8145, 8146, 8147, 8148, 8149 and 8150 including scheme and syllabus relating to the Five Year Integrated Course in M.Sc. in Bioanalytical Sciences is as per Appendix and that the same has been brought into force with effect from the academic year 2009-2010.

MUMBAI-400 032 17th November, 2009

PRIN. K. VENKATARAMANI REGISTRAR

To,

The Directors/Heads of the recognized Science Institutions concerned and the Principals of the affiliated colleges in Science.

<u>A.C./4.47/07.08.2009</u> <u>M.C./18/21.08.2009</u>

k*****

No. UG/429-A of 2009,

MUMBAI-400 032

17th November, 2009

Copy forwarded with compliments for information to:

1) The Dean, Faculty of Science.

2) The Controller of Examinations.

3) The Co-Ordinator, University Computerization Center.

(D. H. KATE)
DEPUTY REGISTRAR
(U.G./P.G.Section)

UNIVERSITY OF MUMBAI

Ordinances & Regulations
Including Scheme & Syllabus Relating to
Five Year Integrated Course in
M.Sc.

In Bio-analytical Sciences

(Introduced w.e.f. the academic year 2009-2010)

FIVE-YEARS INTEGRATED PROGRAMME FOR M.Sc. IN BIOANALYTICAL SCIENCES

with Specialization in Bioanalysis, Bioinformatics and Nutraceutical Sciences.

Preamble

Objectives

1) To impart high quality Science education in a vibrant academic ambience with a faculty of distinguished Teachers and Scientists.

2) To prepare students for the country who will take up challenging research and teaching assignments in colleges, universities and industrial research and development in the field of bioanalysis, bioinformatics and Nutraceuticals.

3) To amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis

Purpose:

The world is evolving and is in a continual state of flux. The application of science to real world problems is becoming more complex, needing a thorough multidisciplinary approach.

In this age of plurality, application of pure science is sine qua non! One dimensional approach is redundant and this holds true in varied areas of scientific endeavour. This is reflected in the field of Astronomy, Biochemistry, Bioinformatics, Environmental Science, Forensic Science, Nanotechnology et al.

Background:

A post graduate course in Bioanalytical Sciences is already being conducted in four colleges and the course has gained credence and acceptability amongst the student community. The industry has responded positively in this regard by absorbing fresh talent in the corporate domain.

Feedback:

Furthermore, the regular interaction with the pharmaceutical industry and research institutes have provided ample evidence to the qualitative changes that have been brought about by the introduction of the course in M Sc Bioanalytical Sciences. The industry is experiencing a paradigm shift, and the gap between expectation and reality has been somewhat bridged to some extent.

Page 2 of 99

But the catch, however, is the absence of academic cohesion at the UG and PG level. The specialization at the graduation level has been purely unidimensional, but the compulsion is multidimensional. This reality bite is our guiding force in conceptualization of the five years integrated programme. For instance, though students of Biology have studied Chemistry and vice versa unto the penultimate year of their graduation, the notion persists that they have specialized in the subject opted for graduation.

This is the raison d'etre for the deep desire to offer a Five Year Integrated Course in Bioanalytical Sciences.

Salient Features:

The uniqueness of this course dovetails a modular learning with credit based evaluation. The program is designed by distinguished professionals and experts drawn from varied professional backgrounds. There have been people of experience from the world of academia, research and industry that forms the integrated triad in contemporary learning process.

The design of the course affirms the conviction that the students passing this course will help meet the demand for reliable and well informed bioanalysts in the areas of Analytical Sciences, Biotechnology, Clinical Research, Immunology, Molecular Biology and Pharmaceutical industry would be met immaculately.

Back to Basics:

The program will encompass the basics of Biology, Chemistry and Computational Sciences together in the First Three years of the Five year Program.

The First Three Years:

The B Sc in Bioanalytical Science vill afford a clear knowledge of the underlying concepts of modern Bioanalytical techniques. It will be backed by the experience in application of these techniques in the field of Biology as well as Chemistry. The course is really designed for the aspirants of PG studies or research, albeit, there is an exit proviso after graduation. The student at the end of the first three years will be confident enough to understand the underlying mélange of the three subject areas. It would propel them to choose Bioinformatics, Biosciences or Nutraceuticals as specialization at the PG level.

Intent:

The program aims to broaden, heighten and deepen the extent and scope of the learner. This course is largely composite and combinative to blend the rigorous study involved in the multifarious disciplines of Biology, Chemistry, Computational Science and Physics. The implicit skill sets needed for operations across the disciplines and the industry wide compulsions will thus be imbibed by the student, through the completion of the five year integrated program.

Vision:

The program envisions the use of modern sophisticated equipment and state of art instrument like HPLC, HPTLC, PCR, DNA sequencer et al. The practical sessions are designed to utilize the advanced instrumentation and to train students in the realm of Analytical Techniques, Applied Practical Analysis, Bioanalytical Techniques, Biopharmaceuticals, Industrial Processes, Quality Systems and Regulatory Affairs of the Food and Pharmaceutical Industries. Furthermore, the allied modules include the Data Analysis, Entrepreneurship, Management of Intellectual Property, Quality Assurance, Quality Control and Research Project. The student will carry out an extensive research project during the fifth year of the course, developing essential practical research skills, strengthening the presentation and communication skills acquired in previous years.

Prospects:

Past placement records of the current MSc course in Bioanalytical Sciences is privy to the abundant employment opportunity that abounds for the students with the M Sc degree in Bioanalytical Sciences. Five years of intensive and all round training will be a definite recipe to find a *job fit* in Analysis, Quality Assurance and R&D. This would further give impetus in the domain of innovation and product development in the core areas of Biotechnology, Food, Health Care, Nutraceutical, and Pharmaceutical industry. There is excellent prospect for the biotechnology and pharmaceutical applications globally.

The end result is forthcoming for Corporates, MNCs' and TNCs' to offer responsible positions to our students' vis-à-vis the holders of traditional PG qualification.

Hence, the need to introduce the Five Year Integrated course in Bioanalytical Sciences with specialization in Bioinformatics, Biosciences and Nutraceutical Sciences with a perspective to serve the student community, academia and the industry in the larger interest of attaining global competency.

The University of Mumbai has been in the vanguard of imparting quality education. And, it is in the fitness of things that the University rises up to the occasion to *raise the bar* of academic progression.

0. -----TITLE

- 1. The degree shall be titled as Five Year Integrated M.Sc. degree Course in Bioanalytical Sciences with specialization in Bioanalysis, Bioinformatics OR Nutraceutical Sciences.
- 2. The B.Sc. degree will be awarded to students in Bioanalytical sciences who will complete a total of 144 credits (24 X 6 semesters) in three years.

The degree of B.Sc in Bioanalytical Sciences be instituted.

Page 4 of 99

3. The M.Sc. degree will be awarded to students in Bioanalytical sciences who will complete a total of 100 credits (25 X 4 semesters) in subsequent two years (a Total of 244 credits in ten semesters). Except practical credits wherever applicable, student may be allowed to complete less courses/credits per semester on a condition that they complete B.Sc. degree in maximum of 4 years and M.Sc. degree in a maximum of three years. This facility will be available subject to the availability of concerned courses in a given semester and with a maximum variation of 18 credits in case of fresh credits) per semester.

The Five Year Integrated M.Sc. Degree in Bioanalytical Sciences be instituted.

- 4. The students completing this course will be eligible for NET/SET examination in life sciences / chemical sciences
- 5. The students will be entitled to a maximum of 24 credits per semester in the first 6 semesters and 25 credits per semester in the last 4 semesters (total of 244 credits in ten semesters).
- 6. Each credit will be equivalent to 15 hours of Theory lectures and 30 hours of Laboratory work.

O. 5833 ELIGIBILITY

A candidate for being eligible for admission to the 5 year Integrated M.Sc. degree course in Bioanalytical Sciences must have passed Standard XII after 10 + 02 schooling (or equivalent) examination from any recognized board in India with minimum of 50% marks for students belonging to general category and 45% marks for students belonging to Reserved Category in aggregate or equivalent grade with Science, subjects- Math and Stats, Biology, Chemistry and Physics.

R. S136- ADMISSION PROCEDURE

- a) Student seeking admission to Five year integrated M.Sc. degree course in Bioanalytical Sciences will first appear for entrance test of two Hours duration, based on Objective type questions, General Knowledge and XIIth Standard syllabus.
- b) Students will be selected for admission strictly on basis of merit list derived on the scores at the entrance examination and as per the reservation policy of the University of Mumbai and the Government of Maharashatra. Students featuring in the merit may be called for an interview and counseling session at the respective institution so that they may be acquainted about the teaching training programme as envisaged in the syllabus.

R. 8137 TERM

1ST Term: 1st August to 30th November 2nd Term 1st January to 30th April

R.8138 DURATION:

The course shall be a full time course. The course shall be covered in Five Years in Ten Semesters.

R. 8139 Fee Structure

Fee as per Undergraduate Biotechnology for first three years and as per Bioanalytical Sciences for the 4th and 5th year.

R.----- NUMBER of STUDENTS

First Year - 60 students.
(NO lateral Entry allowed at ANY POINT)

Practical Batch Size -

First three years – Batch of 20 students each. Fourth and Fifth year – Batch of 10 students each.

R.----- WORK LOAD

Semester I & II:

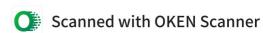
Six lecture periods per week per subject where each period is of One hour duration. Two lecture periods per week for FC.

Practical- two lecture periods per week per subject where each period is of One hour duration.

Semester III & IV

Six lecture periods per week per subject where each period is of One hour duration. Two lecture periods per week for Environmental Science and Technical Communication Skill.

Practical- two lecture periods per week per subject where each period is of One hour duration.


Semester V & VI

Six lecture periods per week for Chemical Sciences where each period is of One hour duration.

Three lecture periods per week for Biological Sciences where each period is of One hour duration.

Three lecture periods per week for Computational Sciences where each period is of One hour duration.

Page 6 of 99

Four lecture periods per week for Entrepreneurship Skills (AC 1) where each period is of One hour duration.

Practical- two lecture periods per week per subject where each period is of One hour duration. Two lecture periods per week for projects/ assignments/ case studies where each period is of One hour duration.

Semester VII & VIII

Four lecture periods per week per subject where each period is of One hour duration.

One lecture period per week for Seminar/field visits where each period is of One hour duration.

Practical- Two lecture periods per week per subject where each period is of One hour duration.

Semester IX & X (Workload is the same for each specialization.)

Four lecture periods per week per subject where each period is of One hour duration.

One lecture period per week for Seminar/field visits where each period is of One hour duration.

Practical- Two lecture periods per week per subject where each period is of One hour duration. Two lecture periods per week for industrial training and two lecture periods per week for project work.

R 8142 STAFFING

The following will be the staffing pattern for the course;

Instrument technician – 01 – B.Sc./ diploma engineer

- 02 - XIIth (Science) Passed Technical Assistant

_ 04 (full time) Lecturers 02 (part - time)

and remaining workload to be completed using

guest faculty.

- 02 SSC passed Lab attendant : - 02 XIIth Passed

Lab Assistant :

Core Faculty

Post-graduate with B+ and NET / SET degree in the subject of Chemistry / Botany / Zoology, Microbiology / Biochemistry / Biotechnology/ Biophysics and life sciences

Visiting Faculty from Industry & Research Institutes

The visiting Faculty will be from a post equivalent to that of Senior Lecturer level with Ph. D and not less than 5 years of research experience or with experience in industry not below Assistant Manager Level in a reputed organization.

R. 8143 **MARK-LIST**

The mark-list of the students must indicate titles of papers in the syllabus

R. 8144 **CONDUCT of THE COURSE**

The conduct of the course will be supervised and coordinated by specific committees as explained below;

Department means University department, College or Institution conducting the course. M.Sc. means five years integrated programme in master of Sciences.

I. Coordination Committee

1. There shall be a Coordination committee for Five years integrated master's program, consisting of at least three Heads of Department teaching the course. One of them will be the chairperson decided by the committee. The coordination committee shall consider suggestions with reference to the overall functioning of the M.Sc. course received from Heads, Faculty, Students and the Examination Section, and shall recommend new rules, modifications in the existing rules or clarifications thereof to the faculty and

2. The duration of Coordination Committee shall be for a maximum of three years.

3. Any issue arising out of the implementation of the M.Sc. course which is of the specific nature relating to any particular department shall be resolved by the concerned Institutional committee and will be reported to the coordination committee for further approval.

II. Institutional Committee

- 1. The Institutional Committee shall consist of
 - All teachers participating in the teaching program at the Institute.
 - one head of the department
 - Chairperson appointed by the Head of the Institution.
- 2. Duties of Institutional Committee

The Institutional committee will

a) Nominate the faculty for each course to be taught in the Institution;

Page 8 of 99

- b) Evolve the norms for evaluating oral examinations whenever necessary in relation to term paper/assignments etc;
- c) Be the board of examination and to nominate the faculty concerned as the paper setter and examiner for the semester-end examination (40 percent component);
- d) Take appropriate decisions in the cases of readmissions of students during transition from old to Revised Syllabus by deciding which credits from the Revised syllabus are equivalent to credits from the old Syllabus
- e) To assist and undertake all actions / procedures for revision of syllabus. To nominate and constitute an examination committee from among faculty members for every academic year where the total existing faculty strength is moiré than ten;

III. General Points

- a) The syllabus may be revised at the undergraduate level and postgraduate level at least every three years but must be revised every five years;
- b) Students will not be allowed to change over from credit system to non-credit or external examination or vice versa.

R. SIAS SCHEME OF EXAMINATION

- 1. Each course will have:
 - 60 % term work / internal assessment and 40 % external / University. Written examination of three hours and Practical examination wherever applicable of six hours duration. All examinations will be held at the end of each semester and will be conducted by the University as per the existing norms.
- 2. Term work (60 %) and University examination (40%) will be separate heads of passing.
- 3. The student has to obtain 40 percent aggregate marks in the term work and University examination taken together subject to 25 percent in each head of passing.
- 4. To pass, a student shall have to get minimum aggregate 40% marks (E and above on grade point scale) in each course.
- 5. If a student misses an internal assessment examination he/she will have a second chance with permission of the Institutional committee. Such a second chance shall not be the right of the students; it will be the discretion of the committee concerned to give or not to give second chance to a student to appear for internal assessment.
- 6. Student failing in semester-end exam may be allowed to appear for the supplementary semester-end exam. The semester end examination will be conducted within one month after declaration of the result. The student will be finally declared as failed if he/she does not pass in all credits within a total period

Page 9 of 99

of two years. After that, such students will have to seek fresh admission as per the admission rules prevailing at that time.

7. A student cannot register for the next semester, if she/he fails to complete 50% credits of the total credits in each subject including Foundation course, Environmental Science and Applied components expected to be ordinarily completed in previous semester.

8. Internal marks will not change. A student cannot repeat Internal Assessment. In case she/he wants to repeat internal she/he can do so only by registering for the said courses as fresh students.

9. There shall be Revaluation of the answer scripts of semester-end examination but not of internal assessment papers as per VCD.

10. Internal Assessment answer books may be shown to the students concerned but

not the end-semester answer books.

- 11. While marks will be given for all examinations, they will be converted into grades. The semester end and final grade sheets and transcripts will have only credits, grades and grade points average.
- 12. In subjects where project work is part of the credits, the project work will consist of not more than 02 credits for B.Sc. per semester and 06 credits for MSc per semester.
- 13. Each credit will have an term work/internal (continuous) assessment of 60% of marks and a teacher must select a variety of procedures for examination such as:
 - i. Mid Term Test:
 - Short Quizzes / Viva / Presentations; ii.
 - iii. Assignments / Seminars / Laboratory Journal Work;
 - iv. Extension/Field/experimental Work;
 - ٧. Research Project by individual students or group of students; or
 - vi. An open Book Test / Review of Research Papers (with the concerned teacher deciding what books / scientific publications / research papers / Chapters from Reference books are to be allowed for this purpose.)
- 14. The system of evaluation will be as follows; Each term work module mentioned above will be evaluated in terms of marks first and then to letters grades as shown in the following table.

Marks Out Of 100	Grade	Grade Point
Greater than or equal to 90	0	10
Greater than or equal to 80 but less than 90	Α	09
Greater than or equal to 70 but less than 80	В	08
Greater than or equal to 60 but less than 70	С	07
Greater than or equal to 55 but less than 60	D	06
Greater than or equal to 50 but less than 55	E	05
Greater than or equal to 40	Р	04
Less than 40	F	C

15. Grade Point Average (GPA) =Total of product of grade points earned and credits hrs for each course divided by total credit hours.

 $\mathsf{GPA} {=} \Sigma \mathsf{G}_k * \mathsf{C}_k / \Sigma \mathsf{C}_k$

16.'D' Grade is equivalent to at least 55% of the marks as per circular No.UGC-1298/[4619] UNI-4 dated December 11,1999.

- 17. The formula for GPA will be based on Weighted Average. The final GPA will not be printed unless a student passes courses equivalent to minimum 72 credits for B.Sc. and 122 credits for M.Sc.
- 18. A ten point grade system [guided by the Government of Maharashtra Resolution No.NGV-1298/[4619]UNI.4 dt. December 11, 1999] will be followed. The corresponding grade table is detailed in 14 above.

19. If the GPA is higher than the indicated upper limit in the three decimal digit then the student be awarded higher final grade (e.g. a student getting GPA of 3.491 be awarded 'B')

20. GPA calculation will be done by the Institute. The existing VCD guidelines will be followed for verification and revaluation. The evaluation result will be adopted if there is a change of at least 10% GPA marks and in the grade of the course.

21. For grade improvement minimum 24 credits (two papers) should be taken by the student for grade improvement. Grade improvement programme will be implemented at the end of the first semester after declaration of the final result. A student can opt for the grade improvement programme only after the declaration of final semester examination.

R. 8146 SYLLABUS

Distribution of Papers

1) First year -Biological Sciences (Two Papers)

Chemical Sciences (Two Papers) Computational Sciences (Two Papers)

Foundation Course

2) Second year - Biological Sciences (Two Papers)

Chemical Sciences (Two Papers)

Computational Sciences (Two Papers)

Foundation Course

Biological Sciences (One Paper) 3) Third Year -

Chemical Sciences (Two Papers)

Computational Sciences (One Paper)

Entrepreneurship Skills

Projects / Assignments / Case Studies

Biological Sciences - Botany, Zoology, Microbiology and Molecular Biology Chemical Sciences - Analytical Chemistry, Physical Chemistry, Organic Chemistry and Biochemistry

Computational Sciences - Mathematics, Biostatistics and Computer Sciences Foundation Course / Environmental Science – As per UGC guidelines. Entrepreneurship Skills - Business Economics, Knowledge Management, Innovation, & Principles of Corporate Management.

4) Fourth Year - 4 papers

- 5) Fifth Year There will be three specializations. There will be two special papers in semester IX and Industrial Training and projects of 12 credits each in Semester X in each specialization. Specialization will be in one of the following:
 - 1) Bioanalysis
 - 2) Bioinformatics or
 - 3) Nutraceuticals

Page 11 of 99

Syllabus In a Nutshell

CHEMICAL SCIENCES

FIRST YEAR

PAPER I

Semester I	Semester II
 Bonding and structure of organic compounds (20 L) IUPAC Nomenclature (10 L) Thermodynamics (15 L) 	 Biomolecules and their interactions (25L) Classical methods of analysis (20 L)

PAPER II

·	Ionic Equilibrium (15 L)
1- (00 1)	O
	Chemical kinetics (15L) Biostatistics in analytical Chemistry
	(15 L)

SECOND YEAR

PAPER III

· Semester II	Semester IV
 Stereochemistry (25 L Reaction mechanism or reactions (20L) 	 Bioorganic chemistry (20L) Spectroscopic methods of analysis, Part I (25 L)

PAPER IV

 Semester III Heterocyclic compounds (25 L) Photochemistry (20 L) 	 Semester IV Metabolism and dietetics (25 L) Electrochemical, thermal and
	radiochemical methods of analysis (20 L)

Page 12 of 99

THIRD YEAR

PAPER V

Semester V	Semester VI
 Chemistry of natural products (20 L) Separation techniques Part I(25 L) 	 Spectroscopic methods of Analysis Part II (10 L) Séparation Techniques Part II (20 L) Pharmaceutical biochemistry (15 L)

PAPER VI

Semester V	Semester VI
Polymers (15 L)	Microanalysis (15 L)
 Coordination compounds and Organometallics (15 L) Biochemical methods of analysis (15 L) 	 Surface analysis (15 L) Hyphenated techniques (15 L)

Chemical Sciences

FIRST YEAR PAPER I Semester 1

Bonding and structure of organic compounds

- 1. <u>lonic bond</u>: Formation of ionic solids, lattice energy, salvation energy, Born-Haber cycle and Kapustinskii's equation (numerical problems expected) structures of some simple ionic solids like alkali halides and stability of ionic structures based on radius ratio rules.
- 2. <u>Covalent bond</u>: Single and multiple bonding, co-ordinate bond, sigma and pibonds. Theory of hybridization, energetics of hybridization: sp. Sp2, sp3, sp3d, sp3d2, sp3d3 with illustration of BeCl2, BF3, SiCl4, PCl5, SF6, IF7, NO-3, CO, CO2, SO2 and SO3.
- 3. Shapes of molecules: V.S.E.P.R. theory for NH3, CIF3, BrF5, ICI-2, TeF-5, PX3 (halides). Structure of group 15 and 16 hydrides.
- 4. Valence bond theory
- 5. Molecular orbital theory
- 6. Chemical bonding
- 7. Molecular symmetry

IUPAC Nomenclature

IUPAC nomenclature of aliphatic polyfunctional compounds, including monocyclic compounds, on the basis of IUPAC priority order

Thermodynamics

1. First law of thermodynamics, internal energy, enthalpy, isothermal and adiabetic processes. Second law of thermodynamics. Carnot's cycle, mechanical efficiency, concept of entropy, entropy changes of system and surroundings for reversible and irreversible processes.

Page 13 of 99

2. Physical significance of entropy, entropy changes for an ideal gas in isothermal, isobaric and isochoric changes. Entropy changes accompanying

fusion vaporization and transition.

3. Helmholtz free energy, Gibbs free energy, Inter-relation between them. Calculation of free energy change with temperature and pressure. Gibb-Helmhottz equation. Chemical potential. Activity and activity coefficient, fugacity. Thermodynamics derivation of equilibrium constant, Kp and Kc and their inter-relation. Van't-Hoff isotherm and Van't-Hoff isochore.

4. Phases in equilibria: Variation in vapour pressure of a liquid with temperature,

Clapeyron equation, Clapeyron – Clausius equation.

5. Colligative properties of solutions: Study of lowering in vapour pressure -Raoult's law (derivation not expected), thermodynamics derivations for elevation in boiling point and depression in freezing point.

6. Partial molal quantities, Gibbs-Dhem equation.

PAPER I Semester II

Biomolecules and their interactions

1. Amino Acids: Building blocks of proteins, structure, classification, physical and chemical properties of amino acids, peptides.

2. Proteins: Physical and chemical properties, levels of structural organization, stability of protein structures, classification, Ramachandran Plot, domains, motif,

- 3. Carbohydrates: classification, Monosaccharides:- isomerism, reactions and derivatives, Disaccharides:- properties, Homoplysaccharides:- structure(starch, inulin, glycogen, cellulose) and functions, Heteropolysaccharides:- examples and functions.
- 4. Nucleic acids: chemistry of nucleic acids, pyrimidines and purines, nucleosides, nucleotides, structure and properties of DNA, stability of nucleic acid structures, Chargaff's rules, Watson and Crick model, structure and function of RNA, types of RNA, Conformations of DNA- A,B,Z forms of DNA.
- 5. Lipids: classification of fatty acids and lipids, physical and chemical properties, functions of fatty acids, glycolipids, phospholipids, cholesterol:- structure and
- 6. Vitamins: definition, nomenclature, classification, provitamins (precursors), occurrence, properties, structure, functions, daily requirements, deficiency diseases.
- 7. Role of Water: Properties of water, law of mass action, dissociation of water, pH, Bronsted theory of acids, ionization of weak acids and bases, Henderson and Hasselbach equation, titration curves, buffering action, pK values, physiological buffers.
- 8. Functional Groups and Chemical Bonding: Major aliphatic and aromatic groups with respect to important biomolecules. Bonding: covalent, dipoles, dipole interactions, ionic bonding, hydrogen bonding, hydrophobic and hydrophilic interactions, bond energies.
- 9.Bioenergetics: Redox reactions, components of ETC- Flowsheet with redox potential values of each carrier sites of ATP formation ad the action of inhibitors and uncouplers. Glycerol-phosphate shuttle, malate- aspartate shuttle. Role of membrane bound ATP synthetase. Substrate level phosphorylation

Classical methods of analysis

1. Volumetric analysis:

Calibration of glass apparatus, weights and analytical balances.

Primary and secondary standards.

Standard solutions: preparation of standard solutions of HCI, H2SO4, phosphoric acid and ammonia from commercial samples.

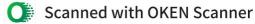
Principles and basic criteria of volumetric analysis, classification of titrations, theoretical aspects of titration curves, choice of indicators and end point determination in acid – base titration viz.

- I. Strong base Vs. strong base
- II. Weak acid Vs. strong base
- III. Strong acid Vs. weak base
- IV. Weak acid Vs. weak base

Titration curves of dibasic acid Vs. strong base and tribasic acid Vs. strong base.

Gravimetric analysis:

Conditions of precipitation, nucleation, particle size, crystal growth, colloidal state, ageing, coprecipitation, precipitation from homogeneous solutions, drying and ignition of precipitate.


PAPER II Semester 1

Reactions of aliphatic and aromatic compounds

- 1. Reactions of alkanes
- 2. Reactions of alkenes and cycloalkenes: Epoxidation, potassium permanganate oxidation, ozonation, halogenation, addition of HX -Markovnikov's rule and peroxide effect (mechanism), formation of halohydrins
- 3. Reactions of alkynes: Acidity of terminal alkynes and formation of metal acetylides, hydration, addition of HX, selective hydrogenation to cis- and trans- alkenes, alkylation of acetylide anions.

Electrodes and electrochemical reactions

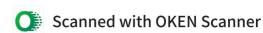
- 1. The nature of electrolytes in solution: Variation of molar conductance with concentration for weak and strong electrolytes (derivation of equation is not expected)
- 2. Kohlrausch's law and its application to determine
 - I. Molar conductance at infinite dilution of a weak electrolyte,
 - II. Dissociation constant of a weak electrolyte,
 - III. Solubility of sparingly soluble salts.
- 3. Migration of ions, ionic mobilities.
- 4. Transport number and its determination by
 - I. Hittorf's method and
 - II. Moving boundary method
- 5. Relation between ionic mobility, ionic conductance and transport number.
- 6. Conversion of chemical energy to electrical energy. Galvanic cells, reversible and irreversible cells.
- 7. Types of reversible electrodes:
 - Electrodes of first type: Metal metal ion electrode
 - II. Electrodes of second type: Metal insoluble salt electrode

Page 15 of 99

- III. Redox electrodes
- IV. Gas electrode
- V. Glass electrode
- 8. Classification of cells Chemical and concentration cells, concentration cells with transference, concentration cells without transference, liquid junction potential, use of salt bridge.
- 9. Determination of thermodynamic parameters from EMF measurements free energy change, enthalpy change, entropy change and equilibrium
- 10. Ionic strength, variation of activity coefficient with concentration, Debye-
- 11. Application of EMF measurements in the determination of:

 - II. pH using quinhydrone and glass electrodes
 - III. solubility and solubility product of sparingly soluble salts using chemical cells and concentration cells
 - IV. formula of Ag-NH3 complex ion.
- 12. Reference electrode:
 - I. Primary standard hydrogen electrode (SHE) and
 - II. Secondary calomel electrode
- 13. Activity and mean activity, activity co-efficient and mean activity co-efficient of electrolytes. Nernst theory of electrode potential. Nernst equation for potential of galvanic cells and for electrode potential.
- 14. Applied aspects: Different types of cells and their uses,

Nuclear Chemistry


- 1.Detection and measurement of nuclear radiation
- 2. Radio active equilibrium and half life period.
- 3. Measurement of Half life period using different relations
- 4. Nuclear transmutation and artificial radioactivity
- 5. Q value in nuclear reactions
- 6. Nuclear fission and Nuclear Fusion.

PAPER II Semester II

lonic Equilibrium

- 1. Basic principles
- 2. Introduction to Ionic equilibrium
- 3. Faraday's Laws,
- 4. Classification of Electrolytes
- 5. Ostwaldi's Dilution Law
- 6. Absolute Velocities and Mobilities of lons
- 7. Activity coefficient
- 8. Strong acids and bases
- 9. Mono and polyprotic acids and bases
- 10. Solubility
- 11. Complex formation and organic complexes
- 12. oxidation and reduction equilibria
- 13. Hydrolysis of salts
- 14.pH and buffer solutions
- 15. Solubility product

Page 16 of 99

Chemical Kinetics

- 1, Rate of Reaction, definition and units of rate constant
- 2. Measurement of reaction rates
- 3. Integrated rate equation for zero, first and second order reactions
- 4. Kinetic characteristics of first and second order reactions
- 5. Pseudo-unimolecular reactions
- 6. Methods of determining order of reaction

Biostatistics in analytical Chemistry

- 1. Outline of basic statistics
- 2. Importance of statistics in Analytical chemistry
- 3. Statistical measures such as mean, variance and standard deviation
- 4. Difference between sample and the population, sampling techniques
- 5. Calculation of errors and definition of residuals
- The normal distribution of random set of data and its implication on data analysis
- 7. Definition of confidence level
- 8. Degree of freedom
- 9. Linear regression and the calibration curve, correlation coefficient
- 10. The regression equation
- 11. Limits of detection
- 12. Q test
- 13. Data evaluation and Comparison
- 14. t-test for comparing the means of different data sets
- 15. F-Test for testing differences between standard deviations of data sets for comparing precision

PAPER III Semester III

Stereochemistry

- 1. Idea of configuration. Stereochemistry of carbon compounds with one and two asymmetric carbon atoms (Wedge-dot formula). Study of enentiomers.
- 2. Diastereoisomers, racemates and meso compounds.
- 3. Diastereoisomerism (Geometrical isomerism) due to restricted rotation around C-C double bond.
- 4. Projection formulae: Fischer, Newman and Sawhorse. The interconversion of the formulae of compounds with two stereogenic centres.
- 5. Diastereomers: Threo, erythro, meso diastereomers. Geometrical isomerism in cycloalkanes (3- and 4- membered) and oximes.
- 6. Absolute configuration: Sequence rules for specification of configuration assigning of stereochemical descriptors R/S to Fischer projection and wedge-dot formulae and E/Z to double bonds.
- 7. Conformation: conformational analysis of ethane and butane.
- 8. Structure of cycloalkanes (upto C=6)
- 9. Molecular chirality and elements of symmetry
- 10. Regioselectivity
- 11. Stereo selectivity and stereo specificity
- 12. Circular dichroism (CD) and optical rotatory dispersion (ORD)

Reaction mechanism of organic reactions

- Electronic effects and tautomerism:
 Basics and effects of the following on the reactivity of organic compounds Inductive effect, electromeric effect, resonance effect, hyperconjugation an tautomerism.
- Reaction intermediates: Structure and stability of the following: carbocation, carbanion and free radical
- 3. Classification of reactions: Kinds of organic reactions: Addition, elimination, substitution, rearrangement; polar, radical – illustrated with suitable examples.
- 4. Methods of generation, and general reactions of the following reactive intermediates: Carbocation, carbanion, carbon free radical.
- 5. Carbenes: Generation, structure and reaction with olefins.
- 6. Methods of determining reaction mechanism product analysis, trapping of intermediates, isotopic labeling, kinetic and stereochemical studies.

PAPER III Semester IV

Bioorganic chemistry

- 1. Enzymes: chemical nature, properties, nomenclature, classification, specific activity, katal, activation energy, mechanism of enzyme action, active site, enzyme specificity, enzyme kinetics, application of Michaelis-Menton equation, line weaver Burk plot, other plots, enzyme activators and inhibitors, types of inhibition, immobilized enzymes, isoenzymes, abzymes, synzymes, ribozymes, applications of enzymes
- 2. Coenzymes: co enzymes in hydrogen transfer reactions- nicotinamide nucleotide, flavin nucleotide, lipoic acid. Co enzymes involved in group transfer- biotin, pyridoxal phosphate, thiamine pyrophosphate, coenzyme A, cobalamine, tetrahydro folic acid.
- Cell signaling: Hormones and plant growth substances: classification of hormones, hormone secreting glands, organization of endocrine system, physiological role of – pancreatic hormones-(insulin, glucagon), thyroxine, glucocorticoids, epinephrine, signal transduction pathways, 2nd messengers, bacterial chemotaxis.
- 4. Chemistry of alkaloids: occurrence, classification, properties, biological functions, biosynthesis of important alkaloids
- 5. Chemistry of plant pigments: structure and functions of chlorophylls, carotenoids, phycobilins, flavanoids, anthocyanins.

Spectroscopic methods of analysis Part I

Interaction of EMR with matter
Nature of radiation, electromagnetic spectrum, energy of moleculeselectronic, vibrational and rotational. Absorption of radiation by molecules.
Beer-Lambert's law, deviation of Beer-Lambert's equation and its
Beer-Lambert's law, deviation of Beer-Lambert's equation and its
limitations. Terms used – absorbance, transmittance and molar absorptivity.
Single beam colorimeter – principle, components and working.

Quantisation of energy, Bohr frequency condition, interconversion of units,
regions of electromagnetic spectrum and process associated with each

region.

- 2. Rotational spectra of diatomic molecules
- 3. Vibrational spectra of diatomic molecules
- 4. Vibration rotation spectra of diatomic molecules
- 5. Raman spectroscopy
- 6. UV-Visible spectroscopy
- 7. IR spectroscopy
- 8. Atomic spectroscopy
- 9. AAS and ICP for elemental analysis
- 10. Scattering of light
- 11. Turbidimetry and nephelometry

PAPER IV Semester III

Heterocyclic compounds

- 1. Introduction, electronic structures, aromaticity, reactivity and general methods of synthesis of - pyrroles, furans, thiophenes and pyridines
- 2. Reactions: Furans: Halogenation, nitration, sulphonation, ring opening, Vilsmeier reaction, Diels-Alder reaction

Thiophenes: Halogenation, nitration, sulphonation, Vilsmeier reaction, Friedal-Crafts reaction.

Pyrroles: Halogenation, nitration, sulphonation, basicity/acidity, Acid catalyzed polymerization, Vilsmeier reaction, Friedal-Crafts reaction. Pyridines: Basicity, Quaternization, reduction, oxidation of alkyl pyridines. Preparation and important reactions of pyridine N-cxide

Photochemistry

- 1. Laws of Photochemistry: Grotthus Draoer law,
- 2. Stark Einstein's law of photochemical equivalence.
- 3. Quantum yield and its determination using actinometer, primary and secondary photochemical reactions, reasons for low and high quantum yields.
- 4. Photochemical reactions:
 - I. Combination of H2 and Cl2
 - II. Dissociation of HI and HBr
- 5. Photosensitised reactions: Photosynthesis
- 6. Photo-physical processes: Fluorescence and
- 7. Phosphorescence, chemiluminescence, photochemical smog, formation and depletion of ozone layer in stratosphere.

PAPER IV Semester IV

Metabolism and dietetics

- 1. Carbohydrate metabolism: Glycolysis, Glycogenesis, Glycogenolysis, Gluconeogenesis, EM Pathway, reactions, characteristics, Fate of carbon, Interconversion of hexoses, pyruvate to acetyl CoA reaction, TCA cycle – detailed reaction, energetics, labeling of carbon, amphibolic pathway, anapleurotic reactions, HMP pathway.
- 2. Lipid metabolism: lipolysis, lipogenesis beta oxidation pathway for fatty acids. energetics, biosynthesis of saturated fatty acids, ketone bodies- acetone, aceto

Page 19 of 99

acetic acid, beta hydroxy butyric acid- their formation, utilization, and physiological significance.

- 3. Protein metabolism: oxidative and non oxidative deamination, reactions, mechanism, examples., transamination, reactions, mechanism, GOT, GPT metabolic significance., decarboxylation reactions and mechanism, formation and transport of ammonia, urea cycle, mechanism and significance, protein synthesis
 - 4. Interconversion of carbohydrates, proteins and lipids
 - 5. Nucleic acid synthesis
 - 6. Regulation of metabolism at cellular level
 - 7. Energy requirements and allowances, RQ, basal metabolism, SDA, quantitative and qualitative requirements of constituents of food, biological value of proteins, Protein quality
- 8 .Nutritional disorders- Marasmus, kwashiorkor, vitamin deficiency disorders Starvation, Obesity.

Electrochemical, thermal and radiochemical methods of analysis

- 1. Basic Electrochemistry
- 2. Conductometry / Conductometric titrations
- 3. Potentiometry and potentiometric titrations
- 4. pH measurements and pH electrode and combination electrode
- 5. Ion selective electrodes
- 6. Polaragraphy / voltametry / coulometry
- 7. Applications, strengths and limitations of electrochemical analysis
- 8. Concepts of thermal analysis and calorimetry
- 9. TGA, DTA, DSC, TMA
- 10. Applications, strengths and limitations of thermal analysis
- 11. Concepts of radiochemistry
- 12. Neutron activation analysis
- 13. Isotope dilution analysis
- 14. Radio immuno assay
- 15. Radiation and safety
- 16. Applications, strengths and limitations of radiochemical analysis

PAPER V Semester V

Chemistry of natural products

- General idea, including classification, structures and commercial importance of terpenes, alkaloids, vitamins, hormones, steroids.
- 2. Structure determination of $-\alpha$ pinine, atropine
- 3. The following commercial synthesis: α pinine to camphor, α pinine to menthol, isopentene to citral, citral to β -ionone, pNA to thyroxine; total sysnthesis (including part synthesis) of α terpeneol, atropine.

Separation techniques Part I

- 1. Separation science and importance of separation in analytical chemistry
- 2. Distillation
- 3. Zone refining, floatation
- 4. Vacuum distillation
- 5. Lyophilisation and freeze drying
- 6. General concept of solvent extraction
- 7. Batch extraction, continuous extraction, counter-current extraction, solid phase

Page 20 of 99

PAPER V Semester VI

Spectroscopic methods of analysis Part II

- Nuclear magnetic resonance and EPR.
 - 1. General Introduction
 - 2. Theory of NMR, Chemical shift, H-H coupling
 - 3. Instrumentation and concept of FT-NMR
 - 4. Applications to Biological and organic compounds
 - 5. Concepts of 2D and 3D NMR
 - 6. Structural elucidation using proton NMR
 - 7. Theory of EPR
 - 8. Para magnetism and absorption of radiation
 - 9. Instrumentation
 - 10. Use of free radicals as probe
 - 11. Imaging of free radicals in biological systems
 - 12. Paramagnetic oxygen and determination of it

X-ray Diffraction(XRD) and X-ray Fluorescence(YRF)

- 1. Theory of XRD and XRF
- 2. Crystal structure of solids and concept of crystallography
- 3. Bragg's law of diffraction
- 4. Instrumentation of powdered XRD
- 5. Application in the determination of polymorphs in pharmaceutical compounds
- 6. Percent crystalanity
- 7. Single crystal XRD
- 8. Determination of the 3D structure
- 9. Wavelength dispersive (WD) and energy dispersive (ED) XRF
- 10. Instrumentation of WD and EDXRF
- 11. Applications of XRF for elemental analysis

Separation techniques part II

- 1. Chromatographic separation techniques
 - a) Definition of chromatography and its importance in Analytical chemistry
 - b History of chromatography
 - c) Classification of chromatographic techniques and their principles
 - d) Theory of chromatography, band broadening, rate and plate theory
 - e) Factors responsible for separation
 - f)) Liquid Chromatography and its development to HPLC and its applications
 - g) HPLC Instrumentation, Pumps, solvent delivery system, isocratic and gradient programming modes, Sample introduction system, Columns, Detectors. Reversed phase and normal phase chromatography
 - h) Gas Chromatography, Gas Solid and Gas liquid Chromatography and its applications

i) Gas Chromatography Instrumentation, Carrier gas supply, Injectors, Columns, Packed and capillary columns, Column oven and temperature programming, different detectors,

j) Thin layer Chromatography (TLC), and High Performance TLC and its applications

j) Other chromatographic techniques like: Ion exchange, Gel permeation or size exclusion chromatography, Super critical fluid chromatography, paper chromatography, counter current chromatography etc.

- Pharmaceutical Biochemistry 1. General pharmacology: types of drugs, dosage forms, routes of administration, factors influencing dosage and drug action, absorption, distribution,
- 2. Biological assays and development of new drug: selection of assay methods,
- 3. Physico chemical properties of drugs: ionization, hydrogen bonding, chelation, redox potential, surface activity.
- 4. Development of drug therapy: Modes of action of anti infective agents, classification of anti microbial drugs, types of bacterial resistance, mechanisms of resistance to antimicrobial drugs, Adverse reactions to anti infective agents, dynamics of combined antibiotic action, indications for combination anti microbial therapy, causes of failure of chemotherapy, antibiotic abuse.
- 5. Drugs acting on CNS: narcotic analgesics, psycho-pharmacological agents, nature of psychosis, neuroleptics, phenothiazines, antidepressantsclassification of depression, hallucinogenic drugs, CNS stimulant, problem of

6. Drugs acting on CVS anti hypertensive drugs (rennin-angiotensinaldosterone), pharmacotherapy of hypertension.

7. Homopoeitic systems: hematinics, anticoagulants, homeostatic agents, mechanism of homeostatis, classification of anti coagulant hypolipidemic

8. Chemotherapy of viral diseases: anti viral agents, anti viral drugsthiosemicarbazones, thymidine inhibitors, anamtadine and derivatives,

9. Chemotherapy of cancer: purine pyrimidine analogues, enzymes, hormones, radioactive isotopes.

PAPER VI Semester I

Polymers

- 1. Introduction: General idea of structure. namings, types of polymers, tacticity, polymerization processes with examples, radical and ionic mechanisms of polymerizations. Characteristic properties of polymers. General ideas of resins, plastics, rubber, idea of plasticizers, stabilizers,
- 2. Structure, preparation and applications of PE (types and Ziegler Natta process), PP, Teflon, PVC, PC, polyacrylates, PAN, Neoprene, Terylene, Nylons, Phenol/Melamine/Urea-formaldehyde Resins, polyurethane, polycarbonate, epoxy resins (structures of the monomers and those of the Page 22 of 99 polymers are expected.

Coordination compounds and Organometallics

1. Transition metal chemistry and coordination compounds

2. Valance bond theory, ligand field theory and Molecular orbital theory

3. Organometalic compounds in biological sciences

- 4. Nature of carbon metal bond, nomenclature.
- 5. Organolithium compounds

6. Organozine compounds

7. Oxymercuration-demercuration and solvomercuration of alkenes

Biochemical Methods of Analysis

 Biochemical investigations: approaches to biochemical investigations using whole animal and plant, organ, tissue slices, isolated tissue and cell. Cell fractionation, protein purification, membrane separations, use of radioisotopes

2. Isolation, Purification of RNA, DNA, Proteins, Separation methods, analysis,

1D,2D gel electrophoresis, IEF,

3. Cloning, expression of recombinant proteins

- 3. Cloning, expression of recombinant proteins, Gene protein sequencing, Microarray based techniques,
- 4. Isolation, separation, analysis of carbohydrates and lipid molecules,

5. RFLP, RAPD, AFLP techniques.

6. Electrophysiological methods: ECG, PET, MRI, fMRI, CAT.

7. Histochemical and Immunological techniques: Antibody generation, ELISA,

8. Western blot, in situ localization by FISH.

9. Radiolabelling techniques: safety guidelines, RIA, IRMA.

10. Microscopic techniques: fixation, staining, EM, freeze etch, freeze fracture, image processing.

PAPER VI Semester II

Microanalysis

1. Problems associated with trace analysis

2. Special extraction procedures for separating analyte/s from the complex matrix

3. Extraction of organic/inorganic analyte from organic/inorganic matrix

4. Special techniques and care to be taken during micro analysis.

5. importance of automation in micro analysis

Surface analysis

- 1. Surface chemistry, Phenomenon of adsorption, Adsorption isotherms,
- 2. Surface area by BET method
- 3. Pore size distribution
- 4. Particle size analysis
- 5. Catalysis, Heterogeneous and homogenous catalysis
- 6. Other methods of surface analysis at micro level.

Hyphenated techniques

- 1. Introduction to Hyphenated techniques
- 2. History
- 3. Combination of Chromatography Spectroscopy
- 4. Advantages of Hyphenated techniques
- 5. GC-MS and LC-MS and MS/MS
- 6. Speciation techniques
- 7. Other hyphenated technique
- 8. Applications of Hyphenated techniques for bioanlysis

BIOLOGICAL SCIENCES

FIRST YEAR

PAPER I

 Semester I Classification of living systems(15L) Type specimens (15 L) Rat 	 Semester II Overview of organ systems in plants & animals (15 L) Type specimens (15 L)
Sunflower Basic Microbiology (15 L)	o Bacteriophage o E. coli.
David Midrobiology (15 L)	 Pathogenic and other organisms (food and Pharma industry) (15 L)

PAPER II

Semester I	Semester II
 Water – the universal solvent (15 L) 	Macromolecules and their building
Structure and function of cell	blocks (15 L)
organelles in bacteria, plants and animals (15 L)	Electron Transport system (15 L)
animais (15 L)	Physiology (15 L)
 Comparative physiology of prokaryotes and eukaryotes (15 L) 	i injelology (10 L)

SECOND YEAR

PAPER III

Semester III	· .Semester IV
 Comparative Physiology of living systems and Genetics (15 L) 	Comparative account of Circulatory, nervous, and reproductive systems in major phyla of animals. (15 L)
Photosynthesis and	, ,
Photorespiration in plants. (15 L)	 Anabolic, Catabolic and amphibolic pathways (15 L)
 Introduction to central dogma in 	
biology and the genetic code (15 L)	Synthesis of Protein, DNA and RNA (15 L)
	•

Page 25 of 99

Semester III

- Mutations, recombination and gene expression, Study of plasmids and transposons, Gene expression in prokaryotes (15 L)
- Enzymes: classification, kinetics, inhibition, coenzymes. (15 L)
- Hormones, metabolic regulation, chemical signals in microbes like bioluminescence (15 L)

. Semester IV

- Structures and life cycles of bacteriophages, plant and animal viruses (15 L)
- Chemical signals at cellular level
 concept of receptors. (15 L)
- Introduction to immunology concept of antigen, antibody, types of immunity, graft rejection and hypersensitivity (15 L)

THIRD YEAR

PAPER V

Semester V

- Basic Molecular biology concept of Restriction enzymes,
 Vectors and cDNA library. (15 L)
- Techniques of isolation of chromosomal DNA, plasmid DNA and mRNA. (15 L)
- Cloning of genes and application of genetic engineering in bacterial, plant and animal systems with examples like insulin production, pest resistant plant varieties, transgenic animals, etc. (15 L)

Semester VI

- Embryogenesis in animals,
 Development of organ system –
 limb, Developmental signals polarity, differentiation,
 Concepts of ageing and
 regeneration. (15 L)
- Microsporogenesis and megasporogenesis in plants, pollen germination, seed dormancy, plant hormones and development. (15 L)
- Applied techniques In vitro fertilization techniques, Gamate collection and storage, artificial seeds. (15 L)

Page 26 of 99

BIOLOGICAL SCIENCES

First Year:

Paper I: Diversity of Life and Living Systems

SEMESTER I

- Classification of living systems (Classification systems)
 - Concept of Biodiversity and its significance,
 - Classification systems (till Order for Bacteria, plants and animals)
- Evolution of Life
 - Darwinism and Neo-darwinism
 - Chemical and Biochemical evolution
 - Coaccervates and Evidences of evolution
- Type specimens
 - Cockroach and Rat
 - Sunflower and Maize
 - Morphology, anatomy, fruit and seed germination.
- Basic Microbiology
 - Microbes and their environment,
 - Types of microbes,
 - Microscopy and staining techniques,
 - sterilization and disinfection techniques
 - o Pathogenic and other organisms (food and Pharma industry)

SEMESTER II

- · Overview of organ systems in plants & animals
 - Cells to Tissues to Systems in animals
 - Morphology of plants with suitable examples
 - Specialization of cells and tissues.
- Type specimens
 - Bacteriophage
 - E. coli.

- Ecology and Ecosystems
 - Concept of Biosphere, biomes and energy flow
 - Plant communities and Forest types of India.
 - Population Ecology (Natality, Mortality and Migration)
 - Ecological Crisis and its management, Global Warming and the idea of Carbon Credit.

Paper II: Chemistry and functionality of Living Systems

SEMESTER I

- Water the universal solvent
 - Structure and properties of water
 - Role of water in cells and cellular systems
 - Diffusion and osmosis
 - Electrical properties of membrane
- Structure and function of cell organelles in bacteria, plants and animals
 - Types, Gross structure and Ultrastructure, Function and physiology of
 - Plasma membrane, cell wall and cell membrane
 - Mitochondria
 - Chloroplast
 - Golgi bodies
 - ER smooth and rough
 - Lysosomes
 - Nucleus and nucleolus
 - Ribosomes
- Comparative physiology of prokaryotes and eukaryotes:
 - Introduction to basic metabolic pathways ,
 - Catabolism and anabolism restricted to glycolysis and citric acid cycle. Electron Transport system and its bioenergetics.

Page 28 of 99

SEMESTER II

- Macromolecules as building blocks of living systems : Structure and functional relationship
 - o Proteins,
 - Nucleic acids,
 - Carbohydrates and
 - o Lipids.
- Photosynthesis
 - Bacteria
 - Blue green algae
 - **Plants**
- Physiology related to storage of reserved food in plants and animals.
 - Brown Fat and Blubber
 - Storage of carbohydrates
 - Storage compounds in bacteria
 - Oil seeds

Second Year:

Paper III: Comparative Physiology of living systems and Genetics:

SEMESTER III

- Comparative account of the following major phyla of animals;
 - Respiratory,
 - Digestive,
 - and excretory systems.
- Muscle structure, Physiological and biocnemical basis of muscle contraction.
- Photorespiration (C3, C4 plants)
- Introduction to central dogma in biology and the genetic code

SEMESTER IV

- Comparative account of following systems in major phyla of animals.
 - Circulatory system
 - Nervous system
 - Reproductive system
 - Donnan Membrane Equilibrium and Physiology of nerve conduction, Synapse & Synaptic conduction, Nuerotransmittors, Drug addiction, Neuropeptides
 - Haemopoiesis and its regulation
- Anabolic, Catabolic and amphibolic pathways
 - Secondary metabolites in plants- Arabinose, Xylose, Phytosterols, Taxol, etc.
 - Secondary metabolites in Bacteria
 - Polyhydroxy butyric acid
 - Biosurfactants
 - Antibiotics
 - Biopolymers
 - Flavors
 - Vitamins
 - Inborn Metabolic errors with examples

Genetics

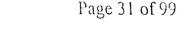
- Cell cycle- G and S Phases, Control of cell cycle
- Concept of genes, chromosomes, Mitosis and Meiosis
- Mendelian and non-Mendelian inheritance, Linkage and crossing over
- Sex determination in animals, sex linked, sex limited and sex influenced genes
- Variations in chromosome number and structure (e.g. Rice, wheat, Brassica, etc. and Syndromes in Human)
- Multiple alleles and pseudoalleles
- o Gene expression in prokaryotes and eukaryotes, Genetics of Cancer.

paper IV: Genetics of prokaryotes, Control, coordination and Homeostasis in living

SEMESTER III

- Mutations
 - Types of mutation Point and gross, Spontaneous and Induced
 - Recombination and gene expression,
 - Study of plasmids and transposons,
 - Gene expression in prokaryotes
- Enzymes:
 - o Classification,
 - Enzyme kinetics,
 - Enzyme inhibition,
 - o coenzymes.
- Chemical regulation
 - o Hormones,
 - metabolic regulation,
 - chemical signals in microbes like bioluminescence

SEMESTER IV


- Structures and life cycles of bacteriophages, plant and animal viruses
- Chemical signals at cellular level concept of receptors, Carrier ions, active and passive transport across cell membrane.
- Introduction to immunology concept of antigen, antibody, types of immunity, graft rejection and hypersensitivity.

Third Year

Paper V: Blue print of Living systems and developmental Biology

SEMESTER V

- Basic Molecular biology -
 - Concept of Restriction enzymes,
 - Vectors and
 - cDNA library.

Molecular Biology Techniques

- $_{\mathcal{O}_{-}}$ Isolation of chromosomal DNA, plasmid DNA and mRNA.
- Recombinant DNA technology
- Gene Therapy
- Stem cells and their applications

Genetic engineering

- Cloning of genes and application of genetic engineering in bacterial, plant and animal systems with examples like insulin production, pest resist plant varieties, transgenic animals, etc.
- Medicinal Botany Ethanobotany and Pharmacognosy

SEMESTER VI

- Gamatogenesis and fertilization
- Embryogenesis in animals,
 - o Development of organ system limb,
 - o Developmental signals -
 - polarity, differentiation, apoptosis
 - o Ageing, regeneration and wound healing.
- · Plant embryology;
 - o Microsporogenesis and megasporogenesis in plants,
 - o Fertilization and embryo development
 - o Pollen morphology, viability and germination
 - o Plant hormones and development,
- Applied techniques
 - o In vitro fertilization techniques,
 - Gamete collection and storage (artificial insemination),
 - Seed dormancy, Artificial seeds.
- Environmental Regulation of living systems
 - Biological Clock and Circadian rhythm;
 - Photoperiodism
 - Vernalization

Page 32 of 99

- Temperature and sex determination (eg. reptiles)
- Hibernation, aestivation, awakning in animals

Computational Sciences

FIRST YEAR PAPER I

Semester I

- Mechanics (10 L)
- Optics I (10 L)
- Optics II (10 L)

Semester II

- Material science & Crystal geometry (10 L)
- Nuclear physics (10 L)
- X -ray techniques (10 L)

PAPER II

Semester I

- System of linear equations and Matrices (10 L)
- Calculus (10 L)
- Ordinary differential equations and applications (10 L)

Semester II

- Data representation and Measures (10 L)
- Probability, standard discrete and continuous distribution (10 L)
- Sampling theory (10 L)

SECOND YEAR PAPER III

Semester III	Semester IV
 Testing of hypothesis (10 L) 	Algorithm (10 L)
 Test of significance (10 L) 	• Graphs (10 L)
 Analysis of variance and correlation 	Numerical methods (10 L)
and regression (10 L)	

PAPER IV

Semester III

- (10 L) Introduction to algorithms and C

Semester IV

- Introduction to computers Computer components and
 - (10 L) organization of computers.
- Arrays, strings, and sorting algorithms (10 L) Pointers and file handling
 - (10 L)

(10 L)

Database management system (10 L)

THIRD YEAR PAPER V

Semester V	· Semester VI
 Introduction to various databases (10 L) 	 Data mining (10 L) Hidden Markov model (10 L)
 Heuristic algorithm (10 L) Taxonomy and phylogeny (10 L) 	Pattern matching (10 L)

FIRST YEAR PAPER I FUNDAMENTALS OF PHYSICS

SEMESTER I

60L

UNIT-1

10L

Applications of Newton's laws of motion, conical pendulum, motion of a particle in Applications a vertical circle, scope of classical physics, conservative and non-conservative

forces.
Elastic module, Poisson's ratio, limiting values of Poisson's ratio, elastic constants and their relationship. and their relationship.

3. Surface tension and surface energy, pressure difference across curved surface film, angle of contact.

UNIT-II

10L

1. Image formation: coaxial system of two thin lenses in contact and separated by a distance, cardinal points and qualitative description of image formation by a thin lens, aberration of optical images (spherical aberration, distortion, chromatic aberration), methods reducing aberrations, Ramsden eyepiece.

2. interference by division of amplitude: interference in thin films (reflected system only) a wedge shaped film in monochromatic light, Newton's rings, determination

of wavelength and the refractive index of a liquid using Newton's rings.

3. Fraunhofer diffraction: expression for the resultant of N simple harmonic vibrations of equal amplitude, the same period and phases increasing in an arithmetic progression, use of this expression to study a single slit, a double slit, and a plane diffraction grating(transmission type), comparison of prism and grating spectra.

UNIT -III

10L

1. Resolving power of optical instrument: Rayleigh's criterion, R.P. of a telescope, a microscope, prism and grating spectrometers.

2. introduction to polarization: pictorial representation of polarized light, polarization by scattering and by reflection, Brester's law, Malus's law, double refraction in calcite and quartz, experimental determination of μ_0 and μ_E of a quartz or a calcite

3. lasers and application: operating principles of laser (resonance, optical pumping/excitation, population inversion, stimulated emission), spectral characteristics of lasers, overview of types of lasers, ruby laser and He-Ne laser,

holography, application of lasers in medicine and industry.

UNIT IV

10L

Material science: classification of materials, organic, inorganic and biological Material sciences and biological materials, semiconductor materials, current trends and advances in materials, materials structure and examination, selection of materials. materials structure and examination, selection of materials

materials structure: description of materials crystal geometry and structure: crystals, single crystal, whiskers, lattice point and anace lattice, unit cell, primitive cell, atomic radius, density of crystal geometry crystal, single crystal, whiskers, lattice point and space lattice, unit cell, primitive cell, atomic radius, density of crystal, direction space lattice, miller indices, interplanar spacing, crystal planes in cubic unit cells, lattice planes in simple cubic structure, Co-ordination number, crystal growth.

UNIT-V

10L

Nuclear properties: Nuclear mass and binding energy, stability of nucleus, mass defect and packing fraction, nuclear size, B/A Vs. A curve, nuclear magnetic moments, electric quadruple moment, nuclear parity.

2. Radioactivity: mean life, successive radioactive transformation A→B→C type, radioactive equilibrium, radioactive series and carbon dating, nuclear radiation detectors(ionization chamber, proportional counter, GM counter, cloud chamber, bubble chamber, single lens magnetic β ray spectrometer, photographic emulsions.

3. Heisenberg's uncertainty principle, its physical justification, uncertainty principle for energy and time, complementary nature of waves and particle aspects.

UNIT -VI

10L

- 1. X-rays: production, continuous and characteristic X- ray spectra, Bragg's law and intensity of X-rays, Mosley's law.
- 2. Compton Effect and its experimental verification, energy dependence of photoelectric effect and Compton Effect.

PAPER II Applied Mathematics

SEMESTER I

60L

<u>UNITI: System of linear equations and Matrices:</u>

10L

- 1. Systems of homogenous and non homogenous linear equation
- 2. Matrices over R, The matrix representation of systems of homogenous and non homogenous linear equation.

3. Finding solutions of homogeneous and non-homogeneous 'm' linear equations in 'n' variables; matrices and its properties.

UNIT II: Calculus

10L

1. Statement of rules for finding limits, sum rule, difference rule, product rule. Constantmultiplerule, quotient rule, Sandwich theorem of limits (without proof), Continuity of a real valued function at a point in terms of limits and two sided limits.

- 2. Definition of derivative of a real valued function at a point, notion of differentiability, geometric interpretation of a derivative of a real valued function at appoint, differentiability of a function over non interval, statement of rules of differentiability, chain rule of finding derivative of composite differentiable functions.
- 3. Applications of derivatives: Mean value theorems: Rolle's Mean Value Theorem, Language Mean Value Theorem, Cauchy's Mean value Theorem (Without proof), Extreme values of function using first and second derivative test for extreme value, graphing functions using first and second derivatives. the second derivative test for concavity, points of inflections

UNIT III: Ordinary Differential Equations and Applications 1. First order differential equations:

10L

- Review of separable differential equations, homogenous and non-homogenous differential equations.
- . Linear differential equations and Bernoulli differential equations.
- Modeling with first order equations. Examples from financial mathematics, chemistry, environmental science, population growth and decay.
- 2. second order linear differential equations:
- The general second order linear differential equation. Existence and uniqueness, theorem for the solutions of a second order initial value problem(statement only)

SEMESTER II Descriptive Statistics

UNIT IV: Data Representation and Measures

10L

- 1. Frequency polygon, histograms, pie diagrams, bar diagrams
- 2. Measure of Central tendency: Arithmetic mean, mode, median
- 3. Measure of Dispersion: Range ,mean deviation, Standard deviation, Variance

UNIT V: Probability, Standard discrete and continuous distributions

10L

- 1. Random variable, Probability distribution
- 2. Important discrete distribution such as Bernouli, Binomial, Uniform, Geometric, Negative binomial, Poisson
- 3. Moments mean, Variance
- 4. Important continuous distribution
 - Uniform, Normal, Exponential, Gamma, Beta, Normal approximation to various distributions.

10L

UNIT VI: Sampling Theory

1. Introduction to Sampling: Population, Sample Random Sampling.

2. Methods of sampling :stratified sampling ;cluster sampling

3. Errors: sampling :stratified sampling ;standard error
4. Statistical approach to biological samples & their Statistical treatment.

SECOND YEAR PAPER III COMPUTATIONAL MATHEMATICS AND STATISTICS SEMESTER III

UNIT I: Testing of Hypothesis

60L

10L

1. Estimation: Point estimation and interval estimation

1. Estimation
2. Null Hypothesis and Alternate hypothesis, Simple and composite hypothesis

4. Type I and type ii errors

5. Critical region

6. Power of the test

7. P-value

UNIT II: Test of significance

1. One sample test:

10L

- 2. Test of Significance of population mean: Z-test and t-test
- 3. Test of significance of population variance 4. Test of significance of two proportions
- 5. Two samples test:
- 6. Test of significance of two means
- 7. Test of significance of two proportions
- 8. Chi square test, contingency table
- 9. Non Parametric test: Sign test, Wilcoxon test, Mann Whitney test, kruskal- wallis,

UNIT III: Analysis of variance and Correlation and regression

10L

- 1. ANOVA:
- 2. One-way classification
- 3. Two way classification model with and without interaction effects, one observation per cell and r observations per cell
- 4. Mutiway classification model
- 5. Correlation and Regression analysis
- 6. Types of Correlation: positive and negative
- 7. Correlation coefficient 'r'
- 8. Regression analysis, its types
- 9. Regression coefficient

SEMESTER IV

<u>UNIT I: Algorithms</u>

10L

1. Definition and characteristics of an algorithm, selection and interactive constructs in peudocode. Data structures like array.

2. Sorting and searching algorithms; algoritms on integers, algorithm on matrices, UNIT II: Graphs 10L

1. Introduction to graphs: types of graph(simple graph, multigraph, pseudograph, directed graph, with an example of each), some special simple graphs(complete graph, cycle, wheel in graph, bipartite graph, regular graph),

2. Representing graphs and graph isomorphism;

3. Elementary combinatories: Sets; functions; relations; permutations; combinations; UNIT III: Numerical Methods: 10L

1. Finding roots of equations 2. Finding solutions of linear equations and numerical approximations.

Page 37 of 99

SECOND YEAR PAPER IV COMPUTERS

SEMESTER III

60L 10L

SEMEST

WIT : INTRODUCTION TO COMPUTERS

History of computers and their of History of computers and their classification History of computer system (view of a computer as an integrated system, pasics of machine, block diagram of a computer system) Basics of modeline, block diagram of a computer system)

Neumann machine, block diagram of a computer system)

Neumann machine, decimal, octal, hexadecimal and their inert-conversions)

Number systems (binary addition and subtraction using signed and their inert-conversions) 2. Number systems (binary addition and subtraction using signed magnitude, 1's complement and 2's complement, binary multiplication and division)

Complement and 2's complement, binary multiplication using signed recomplement and are character representation (hexadecimal popular for character representation (hexadecimal popular for character representation)

complement and division)

codes for character representation (hexadecimal, BCD, excess-3, gray code etc)

INIT IICOMPONENTS AND ORGANIZATION OF COMPUTERS Memory- primary, secondary, optical, virtual coat Memory- primary, secondary, optical, virtual, cache

10L

1. Mellion virtual, of Input-output devices (devices, interfaces etc.)
2. Input-output devices (DRAM SDAM SDAM SDAM

2. Input-output.
3. Internal memory (DRAM, SRAM, ROM types, cache, memory principles, elements of cache design etc)

4. External memory (magnetic disk, RAID, optical memory, magnetic tape)

4. Enout-output devices (DMA, I/O processors, I/O modules etc)

UNIT III: DATABASE MANAGEMENT SYSTEM

10L

1. basics of relational model (overview, entity relation model, schema refinement and normal forms)

2. query languages (relational algebra, creating and altering tables, handling data using SQL etc)

3. implementing indexes, views and procedures (file organization and indexing, views, stored procedures, triggers)

SEMESTER IV

UNIT 1: INTRODUCTION TO ALGORITHMS AND C

10L

- 1. Fundamentals of algorithms (notion of an algorithm, pseudo-code conventions like assignment statements and basic control structures)
- 2. Algorithmic problems (develop fundamental algorithms for exchange the values of 2 variables with and without temporary variable, counting positive numbers from a set of integers, summation of set of numbers etc

3. Analysis of algorithms (running time of an algorithm, worst and average case

analysis)

4. Different approaches in programming (procedural approach object oriented approach, event driven approach)

5. Types of operators (arithmetic, relational, logical, compound assignment,

increment and decrement, conditional or ternary etc)

6. Type conversions (automatic and explicit type conversions)

7. Data input and output functions (formatted I/O, printf (), scanf () etc) 8. Iterations (control statements for decision making: branching, looping, jump UNIT II: ARRAYS, STRINGS AND SORTING ALGORITHMS

10L

1. Arrays (declaring array variables, initialization of arrays, accessing array elements) 1. Arrays (declaring and initializing string variables, character and string handling 2. Arrays (declaring and initializing string variables, character and string handling

functions)

functions)
Sorting algorithms (bubble, selection, insertion and merge sort, efficiency of algorithms etc) algorithms (global and local variables, calling a function by value, difference in

functions and macros)

5. Storage classes (automatic variables, external variables etc)

5. Storage class (
Storage cla tower of Hanoi)

7. Structure (declaration of structure, reading and assignment of structure variables, arrays within structures etc)

8. Union (defining and working with union)

UNIT III: POINTERS AND FILE HANDLING

10L

1. Pointers (fundamentals, pointer variables, referencing and de-referencing, pointer arithmetic, chain of pointers, pointers and arrays, pointers and strings, array of pointers etc)

2. File handling (different types of files etc)

3. Linear link lists (representation of link list in memory, algorithms for traversing a link list, insertion into and deletion from a link list)

4. Stacks (definition, array representation of stacks, algorithms for basic operators to

add and delete an element from the stack, implement using C)

5. Queues (representation of queue, algorithms for basic operators to add and delete an element from the queue, implement using C)

THIRD YEAR PAPER V PRINCIPLES OF COMPUTATIONAL BIOLOGY

SEMESTER V

UNIT I

10L

 Introduction to the course. Overview of computational biology and genomics. Introduction to molecular biology for non-biologists: DNA basics, replication, transcription, translation, splicing. DNA sequencing technology. Whole-genome shotgun sequencing strategies.

Major Bioinformatics resources NCBI, EBI, ExPASY

Open access bibliographic resources and literature Databases

Nucleic acid : GeneBank, EMBL, DDBJ

• Protein sequence: SWISS – PROT, TrEML, PIR.

Genome Database at NCBI, EBI, TIGR, SANGER

10L

BLAST algorithms

PSI BLASTalgorithm

FASTA algorithms

Various versions of basic BLAST and FASTA. Online use of the tools and interpretation of the results

Strings and graphs. Sequence alignment. Global and local alignment using the Strings the Smith-Waterman algorithm. PAM matrices. Sequence alignment using the Smith-Waterman algorithm. PAM matrices. Sequence alignment using BLAST Smill-votale sequence alignment using MUMmer. Sequence assembly: shortest superstring, greedy assembly algorithms. Algorithms for sequencing by hybridization

UNIT III • Phylogenetic analysis 10L

Basic concepts in Systematics, taxonomy and phylogeny.

Nature of data used in taxonomy and Phylogeny.

Definition and description of Phylogenetic trees and various methods

Clustering method -UPGMA

- Cladistic method Parsimony
- Phylogenetic Analysis software Phylip,

SEMESTER VI

10L UNIT IV • Concept of Data mining and definition of sequence patterns, motifs, blocks.

· Various types of pattern representation

- Applying Data mining to global database
- Applying Microarray Data

Data warehousing

· Gene finding using HMMs, Markov chains, neural nets, and decision trees Computational gene finding in prokaryotes. Frame shift analysis, database search, identification of ribosome binding sites, terminators, and operon structure

UNIT V

10L

- Applications of HMMs: profile HMMs (HMMer, PFAM).
- Gene finding.

Multiple sequence alignment and ortholog management.

Biological background on the structure of genes: exons, introns, and splicing.

Description of the gene finding problem for prokaryotes and eukaryotes

<u>UNIT VI</u>

10L

- Analysis and design of combinatorial libraries.
- Chemo-informatics tools for drug discovery

Combinatorial chemistry

 Chemical Database Preparation for Compound Acquisition or Virtual Screening

Preparing a Dataset for Compound Acquisition using Similarity and Diversity

FOURTH YEAR

Paper I: Advanced Microbiology, Genomics and Nutraceuticals

·	Semester VII Advanced Microbiology: Concept of microbial contamination and its control in manufacturing (10 L)	Semester VIII DNA Sequencing (10 L) DNA fingerprinting principles and instrumentation (10 L)
•	Culture media and their uses & Cell line and their maintenance (10 L)	Application of Genomics and DNA finger printing (10 L)
•	Nutraceuticals- Basics (10 L)	

SEMESTER VII

Paper I

Advanced Microbiology: Concept of microbial contamination and its control in manufacturing

- o Introduction to microbial nutrition and media in the context of mass production (e.g. Industrial fermentations) Choice of media components like C sources, N sources and its relationship with primary and secondary metabolite production,
- o Sterilization techniques Definition of sterilization, wet and dry sterilization, Death curve of microbial population, Quality of steam, Autoclave and sterilization *in situ*, filter sterilization, Radiation sterilization, terminal sterilization
 - Aseptic filling in pharmaceutical industry, Classification Clean rooms / Clean areas

Culture media and their uses & Cell line and their maintenance

- Introduction to nutritional requirements of plants and animal cells for cultivation in laboratory and on commercial scale,
- Media components and their role in production of metabolites and other products,
- Media for Aerobic and anerobic microbial cultivation, Maintenance and use of type cultures and cell lines.
- Process conditions for cultivation of animal and plant cells, Concept of contamination of cell lines and methods to prevent contamination, Use of cell lines in research and for production of commercially important Products

Page 41 of 99

Nutraceuticals - Basic concepts and ideas.

Introduction to Nutraceuticals science and functional foods: Historical Introduction classification, sources of Nutraceuticals, Relationship of perspective, solution of Nutraceuticals Science with medicine, human physiology, Genetics, Food Technology, Chemistry and Nutrition.

Technology, Techno Functional drugs, Application of herbs as functional foods and Nutraceuticals to food and antioxidants. Nutritive and New York and New to food and antioxidants, Nutritive and Non-nutritive food components with potential health effects, Effect of Processing on nutrients.

Semester VIII

, pNA Sequencing (10 L)

, Principles of DNA sequencing

. DNA & RNA probes

- Concepts of Gene manipulation (briefly only for explaining the basics needed for sequencing)
 - Restriction enzymes & their uses
 - Vectors & their uses
 - Producing Transgenic organisms
 - Polymerase Chain Reaction (PCR)

DNA fingerprinting principles and instrumentation (10 L)

- Principles of Thermal Cycler
- DNA Amplification using PCR technology
- cDNA production & its use
- Gene libraries & their uses

Application of Genomics and DNA finger printing (10 L)

- Production of oligotides.
- DNA fingerprinting in human
- Applications of DNA fingerprinting.

Paper II: Patents, Drug Act and Quality Management

Semester VII	
 Intellectual Property rights I (20L) Drug Act & Regulations(10) 	Semester VIII Output Qc and QA (20 L) Concept of GMP, GLP and GCP (10 L)

SEMESTER VII

Intellectual Property rights I

- Definition and implication of Intellectual Property rights
- Origin of WTO
- WTO, Membership & Its implications for trade and pharmaceutical
- Paris convention, Budapest Convention, PCT
- CITIS, TRIPs & IPR issues in traditional formulations
- Types of intellectual properties other than patents: Trademark and service mark, Logo, Copy right, Geographical Indicator, Trade secret
- Patents: Definition, importance of owning patents, Requirements to be fulfilled for filing of patens, Important patent granting authorities: India, USA, Europe, etc., Patent servicing, challenging and infringement
- Documentation for patent filing
- Secrecy Agreements related to Intellectual Property: Disclosure agreement, Secrecy agreement, employment agreement, Technology Transfer agreement.
- Indian Patent Laws and International patent laws: Introduction
- Issues in registering new ASU drugs?
- Examples of patent infringements and successful litigations: Basmati Rice, Haldi and Neem patents and examples from Pharma drugs

Drug Act & Regulations(10)

- Indian Drugs and Cosmetics Act
- ICMR guidelines
- Registration requirements for a new drug
- Guidelines regarding Bioanalytical studies
- Introduction to foreign guidelines
- CFR 21 part 11

SEMESTER VIII

QC and QA

- Quality Assurance (QA)
 - Introduction
 - o What is QA?
 - o Requirements for implementing QA
 - Guidelines for QA
 - Support work & documentation
 - Audit requirements
 - Personnel Responsibility in QA

Quality Control (QC)

- Introduction
 - o What is QC?
 - Requirements for implementing QC
- Standardizing an Analytical method
 - Preliminary requirements of a discriminatory quantization o Detection of the analyte of interest

 - Separation of analyte form the matrix components Sample preparation for quantitation
- Validation
- Support work & documentation
- Pharmacopeias and their uses
- Packaging standards and their compliances
- Stability Studies: Factors that influence stability of drug formulations, Guidelines on Staoility evaluations

Concept of GMP, GLP and GCP

Good Laboratory Practice (GLP)

- · What is GLP?
- Practicing GLP
- Guidelines to GLP
- Documentation of Laboratory work
- Preparation of SOPs
 - o Calibration records
 - o Validation of methods
 - o Transfer of methods
 - o Documentation of results
- Audits
- Audit reports

Good Manufacturing Practice (GMP)

- What is GMP?
- Requirements of GMP implantation
- Documentation of GMP practices
- Regulatory certification of GMP
- Harmonization of SOP of manufacture
- Audit for GMP compliances

Good Clinical Practice (GCP) -

- What is GCP?,
- Origin of GCP
- Earlier Guidelines for GCP
- Requirements of GCP compliance

Paper III : Tissue Culture Techniques (Plant & Animal) and Toxicology.

707	
Semester VII	Semester VIII
Plant and Animal Tissue culture techniques (10 L) Tissue culture techniques (Hybridoma technology, callus production, micro propagation	 Toxicity and toxicity indices (10 L) Types of toxicity studies (10 L)
etc.) (10 L)	Regulatory toxicology (10 L)
 Applications of Plant & Animal tissue culture techniques (10 L) 	

Semester VII

Plant Tissue culture techniques

- Media and role of plant hormones (Natural and synthetic media)
- Callus Production
- Shooting and rooting
- Hardening and further propagation
- Design and requirements of green house/polyhouse

Animal Tissue culture techniques

- Media and role of serum(Natural and synthetic media)
- Primary and secondary cell lines, Established cell lines
- Trypsinization, evaluation of viability and maintenance of cell lines, CO₂
- Specialized cell lines-HeLa cell line, Mouse cell line, CHK cell Lines, etc.

Tissue culture techniques

- Hybrodoma technology: Historical account including Ben Jones proteins, Production of Hybridoma cells, fusognes, selection techniques (e.g. HGPRT system), Propagation of hybrodoma cells,
- Micropropagation of plants, anther cultures, Culture of Haploid plants, Hairy Root culture, Mass culture of plant cells

Applications of tissue culture technique

- Production of better yielding plants, production of transgenic plants (e.g. B.t. Cotton), Secondary metabolite production, propagation of ornamental species (Floriculture, Orchids),
- Production of Monoclonal antibodies, vaccines, applications in research and diagnostics, Hybrid cell lines (e.g. mouse and human)

Page 45 of 99

Semester VIII

Toxicity and toxicity indices (10 L)

- Introduction, scope and types of toxicological studies. Toxicants, their route of entry, distribution
- Metabolism & elimination of toxicants
- Concept of LD₅₀, ED₅₀, NOEL etc.

Types of toxicity studies (10 L)

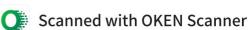
- O Acute, subacute, chronic toxicity studies
- Reproductive, behavioral and toxicity studies
- O Alternatives to animal toxicity studies

Regulatory toxicology (10 L)

- Types of toxicity studies
- Design considerations.
 - · Evaluation of results
 - Extrapolation to man.
 - OECD Guidelines on Toxicological studies
 - Schedule Y and its interpretation.

Paper IV: Proteomics, Bioinformatics and Pharmacokinetics

Semester VII	Semester VIII
Proteomics (10 L)	Immunoassays and ELISA (10 L)
 Enzymes as markers in diagnosis, Application of enzymes in Diagnostics, Drug, food and other industries, (10 L) 	 Bioinformatics : Applications (10 L) Pharmacokinetics (10 L)
 Electrophoresis and its applications (10 L) 	


Proteomics

- Protein separation and identification
- Protein fingerprinting techniques
- Endogenous peptides and concepts of post transitional modifications
- Chemical modification of proteins.

Enzymology

- Enzymes like sGPT, SGOT as markers for diagnosis
- Enzymes used in diagnostics
- Enzymes in drug industry
- Enzymes in food industry and Nutraceutical industry
- Enzymes in dairy, leather and other industries

Electrophoresis and its applications

- Principles of electrophoretic separation
- Equipment and process
- Agarose gel electrophoresis
- PAGE Native & SDS
- Introduction to Capillary Electrophoresis

Immunoassay & ELISA

- Introduction
- Definitions
- . Theory
- · Requirements for immunoassay
- Practical aspects
- Data handling
- · Advantages of immunoassay
- Principles and instrumentation in ELISA
- Applications of ELISA

Bioinformatics

- What is bioinformatics?
- · Databases and Search Tools
- · Different Search Engines
- Applications of bioinformatics
- Using various libraries
- Internet Applications in bioinformatics
- Inter protocols & Search tools
- · Genome & Proteome Analysis

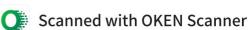
Basic Pharmacokinetics

- Basic concepts of Pharmacokinetes
- Different pharmacokinetic parameters and their meanings
- Basic techniques of evaluating Pharmacokinetic parameters
- Basic types of models in pharmacokinetics

FIFTH YEAR

SPECIALIZATION (BIOANALYSIS)

V: Different Medicinal Systems, Pharmacognosy and Standardization of ASU drugs Semester IX


- Indian systems of Medicines (05 L)
- . Pharmacognacy (05 L) Principles of Extractions
- including Solid Phase Extraction and Isolation of Analytes (20 L)

- Semester X Modern Medicine (05 L)
 - Standardization of Ayurvedic, Unani and Siddha Drugs (10 L)
 - Regulatory issues and Good Manufacturing Practice i (10 L)

SEMESTER IX

- Indian systems of Medicine (ASU)
 - o Principles and practice
 - o Types of Drug Formulation
 - o Methods of Manufacture Raw Material To Finished Product
- Pharmacognacy
 - Introduction, Plants and their medicinal uses
 - Plant identification & Authentication
 - Concepts of ethanobotany
 - Medicinal plants in India, Indian Phyto-geographical regions, Plant collection techniques, Herbaria and its evaluation, Anatomical studies on plant material
 - Anatomical, Raw material characterization, Proximate evaluation
 - Introduction to Cultivation & production of Natural Drug substances
 - Photomicrography
- Principles of Extractions including Solid Phase Extraction and Isolation of Analytes
 - Introduction
 - Physico-chemical properties of drugs and solvents
 - Concept of partition & Partition Coefficient
 - Solvent properties
 - Selection of solvent
 - Extraction efficiency
 - Solid Phase Extraction (SPE)
 - Introduction
 - General properties of bonded silica sorbents
 - Sorbent/analyte interactions

Page 48 of 99

- Sample pretreatment of different biological matrices Developing SPE methods
- Example of an SPE method

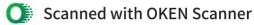
Isolation of analytes

- Ionisation and its effect on the extraction of drugs
- The 'First law of drug metabolism'
- Matrix components & analyte isolation
- Concentration of extracts
- Isolations of fractions
- **Purification of isolates**

SEMESTER X

, Modern Medicine

- Principles and practice
- NCE and its evolution into a Drug Molecule
- . API and concept of its formulation into a dosage form
- . Different types Drug Formulations
- . Excipients in various dosage forms


, Standardization of ASU drugs

- Need of standardization of Ayurvedic drugs
- · What does standardization involve?
- · Bioanalytical tools for standardization
- Clinical studies in Standardization
- Approaches to standardization;
 - Raw materials
 - In-process materials
 - Finished products
- Developing standardized QC methods
- Shelf life studies on finished products

Regulatory Aspects of drugs

- National initiatives for regulation of drugs
- Schedule T and Schedule Y of Drugs and Cosmetics Act
- International initiatives for regulation of traditional medicine with special reference to
 - WHO guidelines on traditional medicine
 - Approaches of US and EU to traditional medicine

Page 49 of 99

paper VI: GMP, GCP, GLP, Method Validation and BA/BE Studies, MS paper VI: GWI, paper Semester IX

Semester X

MS And I

- · GMP, GCP, GLP
- Method Validation (10 L)
- . BA/BE Studies-I(10 L)

- MS applications (10 L)
- Metabolite Studies (10 L)
- Thermal Analysis and Tracer Techniques (10 L)

SEMESTER IX

GMP, GLP and GCP

- Introduction to GMP, GLP and GLP
- Good Manufacturing Practice
 - Requirements of GMP implantation, Documentation of GMP practices,
 - Regulatory certification of GMP, Harmonization of SOP of manufacture,
 - Audit for GMP compliances

Good Laboratory Practice (GLP):

- Practicing GLP, Guidelines to GLP, Documentation of Laboratory work,
- Preparation of SOPs, Calibration records, Validation of methods,
- Transfer of methods, Documentation of results, Audits, Audit reports

Good Clinical Practice (GCP) –

- Origin of GCP, Requirements of GCP compliance, Guidelines for GCP, guidelines of ICH, guidelines of ICMR
- Ensuring GCP, Documentation of GCP practice, Audit of GCP compliance

Method Validation

- Strategies for Method development
- What and Why of method validation
- Regulatory requirements of validation
- IQ, OQ and PQ of analytical instruments
- Use of Reference standards
- Issues of Method transfer
- Intra and inter lab Validation

BA/BE Studies

- What is BA?
- Parameters to evaluate BA of a drug
- Factors that influence BA of a drug
- . Evaluating BA of a drug
- Estimating BA parameters of a drug
- . What is BE?
- Parameters to evaluate BE of a drug
- Factors that influence BE of a drug
- Evaluating BE of a drug
- Estimating BE parameters of a drug

SEMESTER X

MS applications

- Introduction, Inlets, Ion sources
- · Analysers, Detectors
- Data acquisition and processing
- LC/MS Application : Quantification of analyte, Internal standardisation, Developing a quantitative method,
- An example of thermospray LC/MS, Example of API LC/MS,
- Impurity profiling

Metabolite Studies

- Principles of Metabolite identification
- Use of Biological systems for Metabolite studies (Liver homogenate assays, Cell line assays, P450 studies etc.)
- Use of Tandem mass spectrometry (MS-MS)
- Isotopically labeled compounds in metabolite identification
- Practical aspects for the identification of metabolites by mass spectrometry

Thermal Analysis and Tracer Techniques

- Principles of Thermal Analysis
- Instrumentation Requirements
- Applications of Thermal Analysis
- Concept of Radioactivity & Half life
- \circ \propto , β , γ emitters and their biological applications
- Using tracers in assays
- Detectors and counters
- Concept of autoradiography
- Radio labeled probes and their uses

Paper VII: Industrial Training

Paper VIII: Project, report writing and Industrial Visits

SPECIALISATION (NUTRACEUTICALS)

Nutraceuticals and Functional foods, Food as remedy in Human nutrition & Manager Genomics

Semester IX structure, Function and property of Nutraceuticals (10 L) Functional Foods-I (10 L) Human Netrition (10 L)

Semester X

- Functional Foods-II (10 L)
- Nutritional Genomics (10 L)
- Clinical Dietetics (10 L)

SEMESTER IX

structure, Function and property of Nutraceuticals:

Glucosamine, Octacosanol, Lycopene, Carnitine, Melatonin, Ornithine, Alpha Keto glutarate. Use of proanthocyanines, Grape Products, Flaxseed oil as Nutraceuticals

, Functional Foods-I:

Functional solution of isoprenoids, isoflavones, flavonoides, caretonoids, Tocotrioenols, solutions, isoflavones, isof Sources and roots, sphingolipids, lecithin, choline, Terpenoids, Vegetable cereals, milk, polyundaturated fatty as functional foods, Health effects of common because in the com polyundaturated issues as functional foods, Health effects of common beans, Capsicum annum, diry products as functional foods, Health effects of common beans, Capsicum annum, diry products as functional foods, Health effects of common beans, Capsicum annum, diry products as functional foods, Health effects of common beans, Capsicum annum, div Floudistances, Ginseng, garlic, Grapes, Citrusfruuits, fish oil and sea foods.

, Human nutrition

Netraceuticals bridge the gap between food and drugs, role of Nutraceuticals in treatment of manitive decline, arthritis, bronchitis, Circulatory problems, hypoglycemia, Nephralogical disorders, liver disorders, Osteoporosis, Psoriasis, Ulcers, etc. Role of Nutraceuticals rich supplements like bee pollen, caffeine, green tea, Lecithin, Mushroom Extract, chlorophyll, Kelp, Spirulina, etc.

SEMESTER X

· Functional Foods-II:

Soy proteins and soy isoflavones in human health, Role of Nuts in cardiovascular disease Prevention, Functional foods from what and rice and their health effects, Dietary fibersoccurrence, structures and role in disease prevention.

· Nutritional Genomics

Nutritional genomics as a tool for production of Nutraceuticals, Plants as bioreactors, Tailor made carbohydrates and lipids of plant and non-plant origin, Transgenic plants for the large scale production of proteins for pharmaceutical and industrial uses, plants as alternative for biotransformation of rw materials into special chemicals, production technology for recombinant Products using microbes with examples like insulin, growth hormones, erythropoietin, interferons, etc.

Scanned with OKEN Scanner

Clinical Dietetics:

Nutritional metabolism and changed nutritional needs, factors affecting. Basic Motals is a literations. Nutritional metabolism and changed nutritional needs, factors affecting Basic Metabolic Rate in normal and energy requirements for different activities, Nutrient interactions, Nutrien Nutritional metabolism metabolism metabolism metabolism metabolism metabolism. Balanced diet, a in normal metabolism metabolism metabolism metabolism metabolism. Balanced diet, a in normal metabolism metabolism metabolism metabolism metabolism metabolism metabolism metabolism. Balanced diet, a mortification metabolism in notified and energy requirements activities, Nutrient interactions, Nutritional (BMR) and energy requirements for different age, physical activity and sports, special needs before and after requirements, Nutritional requirements of geriatric population, etc. (Bivinements for districtional requirements of geriatric population, etc.

Nutraceuticals: Evaluation, instrumentation, Product Development label paper V. Marketing , Future prospects

Semester IX

- Instrumentation in Nutraceuticals (10 L)
- . Biological testing, organoleptic response and Bioassays (10 L) Preclinical testing and clinical
- trials (10 L)

Semester X

- QA QC and Process control (10
- Product development and label claims and marketing (10 L)
- Future prospects and new technologies in development of Nutraceuticals and foods (10 L)

SEMESTER IX

. Instrumentation for Nutraceuticals:

Evaluation of quality of Nutraceuticals, Centrifugation- Zonal, density gradient, Ultracentrifugation, Electrophoresis- Paper, gel, agarose, Polyacrylamide, isoelectric focusing, 2-D gel, Spectroscopy, Colorimetry, UV_visible, Flame Photometry, IR, NMR, X-Ray diffraction, Radio-isotopic techniques, chromatography, ion-exchange chromatography gel and affinity chromatography, etc.

Biological testing, organoleptic response and Bioassays

Testing in vitro and in vivo, sampling for assays, Laboratory setup for microbiological testing, microbiological assays, microbiological testing for Nutraceuticals, basics of organoleptic responses, evaluation methodologies for taste, aroma, etc.. Evaluation of toxicity and safety of new products, emerging models for testing the claims

Preclinical testing and clinical trials

Need for evaluation of toxicity for Nutraceuticals, acute toxicity studies, multiple exposure studies, pharmacology and pharmaceutical in testing of Nutraceuticals, Phases of clinical trials, Metabolism studies, Clinical trials and regulatory aspects

SEMESTER X

Quality Assurance (QA) & Quality Control (QC)

Introduction, What is QA? Requirements for implementing QA, Guidelines for QA, Support work & documentation, Audit requirements, Personnel Responsibility in QA, Requirements for implementing QC, concept of Validation of Analytical methods Packaging standards and their compliances, Stability Studies Guidelines on Stability evaluations

Page 53 of 99

product development and label claims and marketing
Increasing role of Nutraceuticals in management of health and diseases, concept of
designer foods for chronic diseases, degenerative diseases, sports, Effect of
globalization on food preferences and choice of Nutraceuticals, Overview of packaging
and labeling, Various packaging strategies, need of specific regulation governing dietary
supplements, outline of compliance label review, Nutritional contents claims, health
claims and regulatory agencies' views on label claims. Marketing techniques, consumer
behavior, basics of communication process, advertising and legislation, a the art and
science of consumer persuasion,

Future prospects and new technologies in development of Nutraceuticals:

New technologies for product development like supercritical fluid extraction, membrane technology, bioprocess technology, etc.

Food industries role in promoting Nutraceuticals, Changing federal laws, Role of regulatory agencies, Intellectual property rights, Impact of Chemi-informatics and pharma-inforormatics, biotechnology, etc. on future of Nutraceuticals sciences.

Paper VII: Industrial Training

Paper VIII: Project, report writing and Industrial Visits

SPECIALISATION (BIOINFORMATICS)

PAPER V -Computational Skills and Operating Environments.

Semester IX	'Semester X
(10 L)	• JDBC (10 L)
C++ (10 L) HTML & XML (10 L) Introduction to OOPs concept and	Introduction to Perl and data types (10 L)
, Introduction (10 L)	Regular Expressions in Perl (10 L)
JAVI	

PAPER VI - Molecular Modeling and Drug Design Applications

Semester IX	Semester X
Introduction to Molecular Modeling	 Drug Designing (10 L)
1 *	Drug Delivery systems (10 L)
(10 L) Medical Informatics (10 L)	Orphan receptors and reverse
Medical Information (10 L) Combinatorial Chemistry (10 L)	pharmacology (10 L)
Complitatorial	X.L.

Paper VII: Industrial Training

Paper VIII: Project, report writing and Industrial Visits

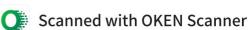
FIFTH YEAR PAPER V

Computational Skills and Operating Environments. SEMESTER IX

60L

UNIT:C++

- Basics of object oriented programming.
- Concept of Object, class, Constructor and Destructors,
- Inheritance, Data encapsulation,
- Polymorphism.
- Virtual function and friend function


10L

10L

UNIT II:HTML & XML

- Introduction to HTML and XML, basic HTML tags:
- Tables, hyperlinks, Image Insertion, marquee image mapping, Frame set,
- HTML forms, Get and Post methods,
- Basics of XML
- XML syntax and semantics
- XML Programming (in Java)
- XML software & its applications

Page 55 of 99

10L

Introduction to OOPs concept and JAVA An introduction to object-oriented programming Object-oriented programming and Java

Introduction to Java basics.

- Working with objects, Arrays, Conditionals and Loops
- Working Classes and Applications in Java, methods Java Applets Basics, Graphics, Fonts and Color

Simple Animation and Threads

Managing Simple Events and Interactivity

Creating User Interfaces with AWT

Modifiers, Access Control and Class Design

Packages and Interfaces

- Exception, Multithreading, Streams and I/O
- Using Native Methods and Libraries

. Using Biojava

SEMESTER X

UNIT I: JDBC

Introduction to JDBC

- Client Server Application
- Java Drivers
- java.sql Package
- Executing SQL Statements

UNIT II: Introduction to Perl and data types

10L

10L

· Introduction: What is Perl? Why use Perl in Bioinformatics? History of Perl, Availability, Support, Basic Concepts

· Scalar Data: What Is Scalar Data?, Numbers, Strings, Scalar Operators, Scalar Variables, Scalar Operators and Functions

- Arrays and List Data: What Is a List or Array? Literal Representation, Variables, Array Operators and Functions, Scalar and List Context
- Control Structures: Statement Blocks, basic I/O.
- Hashes, Hash Variables, Literal Representation of a Hash, using Hashes.
- Subroutines, System and User Functions, The local Operator
- Using Bioperl.

Regular Expressions in Perl

10L

- Concepts of Regular Expressions, Simple Uses of Regular Expressions, metacharacters, quantifiers etc.
- Pattern matching, substitution,

split and join Functions, Formatting Data, Sorting, Transliteration

• Finding a Substring, Extracting and Replacing a Substring, Variable-length Parameter Lists, Notes on Lexical Variables

FIFTH YEAR PAPER VI

Molecular Modeling and Drug Design Applications

SEMESTER IX

60L

10L

JEMESTER OF Molecular Modelling Concepts of Molecular mod " ntrougher of Molecular modeling,

Theory and Practice of Energy minimization, Monte Carlo and Molecular Dynamics simulations.

Protein structure Prediction an overview. Introduction to ab- inito structure

Fold family recognition or threading approaches

. Homology modeling.

UNIT || Medical Informatics

10L

Ethics, patient confidentiality and data protection

Sources of medical data

Populations: ordination and population characterization: error and variance in populations

Clinical data: application of linear based models, search algorithms, ANNs, SVMs to case study data.

UNIT III Combinatorial Chemistry

10L

Analysis and design of combinatorial libraries.

· Chemo-informatics tools for drug discovery

Combinatorial chemistry

 Chemical Database Preparation for Compound Acquisition or Virtual Screening

Preparing a Dataset for Compound Acquisition using Similarity and Diversity

SEMESTER X

UNIT I: Drug Designing

10L

Physicochemical properties of drugs&, Introduction to drug designing.

· Concept of receptor/target site.

· lead identification and structure modification

· Concepts in molecular recognition, Drug like properties and associated empirical rules, structure based drug design

Conformational search technique

identification), based Drug Design (Active site Target structure Characterization of target site.

• Small molecule libraries and the identification of novel drug targets (e.g. via the de-orphanisation of G-protein coupled receptors).

UNIT II Drug Delivery systems

10L

- Types of drug delivery system.
- Dendrimers
- Molecularly imprinted polymers(MIPs), MIPs in Drug delivery,

 Traction to Riomedical micro and a programming delivery, Introduction to Biomedical micro- and nano-technology
- Liposomes: Enzyme-activated, Phototriggering, Thermosensitive

UNIT III Orphan receptors and reverse pharmacology

10L

- Orphan GPCRs
- Identification of Orphan GPCRs
- Reverse Pharmacology
- Reverse Pharmacology for Orphan GPCRs
- Deorphanisation

PRACTICAL

FIRST YEAR - CHEMICAL SCIENCES

CUL	-
• To determine the TER I	- P
to the free on	
ΔG and equilibrate there y change	which the same has
equitorium const.	ge.
ΔG and equilibrium constant – potentiometrically	,
• To day	

- To determine the heat of reaction and heat of neutralization
- To determine the elevation in boiling point and depression in freezing point
- Tutorials in bonding
- Tutorials in IUPAC nomenclature

SEMESTER II

- Titration of HCl against NaOH
- Titration of acetic acid against NaOH, verification of Henderson's equation and hence determination of pKa value of acetic acid
- Estimation of Fe using internal
- Estimation of Cu using lodometry and iodometric method
- Calibration of glass apparatus Burettes, pipettes and standard flasks
- Acid base titrations involving NaOH Vs HCl, NaOH Vs Oxalic acid, HCl Vs
- Estimation of Fe and Ba
- Preparation of osazone from glucose
- Preparation of glucosepenta acetate from glucose
- Estimation of glucose
- Estimation of Vit. C

FIRST YEAR- CHEMICAL SCIENCES

PAPER II

SEMSTER-I

Potentiometry:-

- a) To determine the standard potential E° of a chemical cell (Daniel Cell/Cu-Ag cell)
- b) To determine the amount of Fe(II) and the formal redox potential of Fe (II)- Fe(III) by potentiometric titration of Fe(II) solution against Ceric sulphate/ Potassium dichromate solution.
- c) To determine the standard potential of i) Al/ Al³⁺ and ii) Zn/ Zn²⁺
- d) Demo experiment on GM counter.
- Determination of transport number of Ag and Nitrate ions using Ag electrodes in a solution of AgNO₃
- To determine the partition coefficient of I₂ between water and CCl₄
- Tutorials on reactions of aliphatic and aromatic compounds.

SEMSTER-II

Conductometry:-

- a) To verify Oswald's dilution law using acetic acid.
- b) To determine λα of a strong electrolyte (HCl/ NaCl).
- c) Conductometric titration of HCl against NaOH.
- d) Conductometric titration of Acetic acid against NaOH.

Chemical Kinetics:-

- a) To determine the rate of acid hydrolysis of methyl acetate and determination of order by graphical method.
- b) To determine the order of the acid hydrolysis of methyl acetate by the method of equifractional time.
- Second order reaction between i)
 K₂S₂O₈ and KI (With equi-molar
 concentrations) ii) K₂S₂O₈ and KI
 (With unequal concentrations).

Tutorials in Biostatistics.

Page 60 of 99

SECOND YEAR- CHEMICAL SCIENCES

PAPER III

SEMESTER III

a) Complete identification of an organic compound Identification by micro-scale techniques following – Preliminary tests, solubility, Elemental detection, group tests, Physical constant determination

b) Organic derivative preparation

- Bromination of aniline
- ii) Iodoform of acetone
- iii) 2,4-DNP of benzaldehyde
- Picric acid derivative of naphthalene
- v) Oxidation of benzaldehyde with KMnO₄
- vi) Acetylation of salicylic acid
- vii) Nitration of salicylic acid
- viii) Hydrolysis of Ethyl benzoate
- c) Calibration of polarimeter using glucose/sucrose

SEMESTER IV

- a) To test the validity of the Beer-Lambert's Law (using methylene blue) and to determine
- i) λmax
- ii) molar absorptivity constant
- b) Calibration of spectrophotometer in the visible range, using KMnO₄
- c)Determination of the stability constant of Fe(III)- salicylic acid system by spectrophotometric method
- c)Determination of IR spectra of compounds
- d)Estimation of Fe using AAS
- e)Estimation of caffeine by UV spectrophotometry

Scanned with OKEN Scanner

PAPER IV

SEMESTER III SEMESTER IV Organic synthesis a) Conductometry Nitration of nitrobenzene i) To study the kinetics of saponification of Azo-coupling reaction i) ethyl acetate (Diazotization of 4- Nitro ii) ii) Titration of a mixture of strong acid and aniline with α- naphthol) weak acid against strong base p-Bromoacetanilide from iii) To study the kinetics of saponifaction iii) acetanilide of ethyl acetate Oxime of cyclohexane iv) Reduction of benzophenone to b)Potentiometry v) Benzhydrol i) To determine the standard potential of Cu/Cu ²⁺ or Ag/Ag⁺ b) Tutotials in Photochemistry c)pH-metry i) Identification of an acid by acid-base titration pH-metrically ii) pH titration of sodium carbonate against HCl to demonstrate the selection of indicators for two inflections. d) Quantitative analysis of biological samples

Page 62 of 99

THIRD YEAR - CHEMICAL SCIENCES

SEMESTER - V	SEMESTER - VI
a) Water soluble + Water insoluble (Solid + Solid) b) Water insoluble + Water insoluble (Solid + Solid) c) Volatile liquid + Non-volatile liquid (Liquid + Liquid) by fractional distillation method d) Volatile liquid + Water insoluble solid (Liquid + Solid) by distillation method II) Solvent Extraction a) Determination of Fe and Mg from their mixture	I) Demo experiment on NMR and XRD II) Separation technique A) PAPER CHROMATOGRAPHY

THIRD YEAR- CHEMICAL SCIENCES

PAPER-VI / SEMSTER-V		PAPER-VI / SEMSTER-VI
I. Viscosity measurements:-To determine the molecular weight of polyvinyl alcohol using viscometer. II. Gravimertric Analysis: a) Estimation of Ni and Zn.	1. 11. 111.	Inductively Coupled Plasma demonstratic Particle size analysis of active pharmacer ingredient (API) using pharmacopoeial structure Demonstration of hyphenated techniques i) GC-IR, ii) GC-MS and iii) LC-MS.

SEMESTER-I

Practical I (related to theory paper-Biomolecules and their Interactions)

- 1) Qualitative analysis of Carbohydrates:
 Glucose, fructose, maltose, lactose,
 sucrose, starch, dextrin. Tests:
 Molisch, Anthrone, Iodine, Benedicts,
 Fehlings, Barfeods, Seliwanoffs,
 Osazone formation, etc
- 2) Qualitative analysis of Amino acids: Tests: Xanthoproteic, Millons, Sakaguchi, Hopkin Cole, Lead acetate, Ninhydrin.
- 3) Qualitative analysis of Proteins:
 (Casein, Albumin, Gelatin, Peptone).
 Tests: Biuret, Folin Ciocalteau,
 Coagulation by heat, Precipitation by
 acid, heavy metals, organic solvent,
 salt, SDS treatment, Neumans test,
 Confirmatory tests for proteins.
- 4) Qualitative tests for Nucleic acids: Orcinol, Diphenylamine

SEMESTER-II

- 5) Qualitative analysis of lipids; Tests:
 Bromine water, saponification, etc,
 Estimation of saponification value,
 estimation of acid value
- 6) Qualitative tests for functional groups: Aldehydes, ketones, carboxylic acids, alcohol, phenol, ester, ether, amine, nitro, sulphonyl, sulphydryl, phosphates.
- 7) Preparation of buffers: Acetate, Phosphate buffers.
- 8) Colorimetric methods of estimation of proteins by Biuret method, Folin Lowry method
- Colorimetric method of estimation of Glucose by Folin Wu method and Maltose by DNSA method

FIRST YEAR

1-ZOOLOGY PRACTICAL

PAPER -1 SEMISTER-1	SENAIGE
Classification from Protozoa till Chordata (specimens list will be attached)	SEMISTER-II Animal Tissues-Different type (showing slide)
Dissection of Cockroach showing viscera	 Population Count (with Reference to Daphnia
& Rat showing Viscera and Circulatory System	

FIRST YEAR

PAPER -II- ZOOLOGY PRACTICAL

SEMISTER-I	SEMISTER-II
1)Chemical Properties of water	1)Tests for Carbohydrates, Lipids, Proteins
i. Dissolved O2	2) Physical Properties of Water
ii. CO2	PH and Turbidity
iii. Hardness	2)DNA,RNA Extraction
2)Cell organelles Observation of slides & Describe their structure Mitochondria, Golgi Bodies, ER, Ribosomes, Lysosomes.	

SECOND YEAR

PAPER-III- ZOOLOGY PRACTICAL

SEMISTER-III	SEMISTER-IV
Respiratory - Observation of Gills of Fish,	Circulatory system-
Lungs of Frog, Air sacs of Birds, Lungs of Mammals	 Heart of Fish, Frog, Rat (Comparative Account)
Digestive:-Ruminant Stomach	Nervous system-
Excretory system:-Dissect Rat for Excretory system	 Comparative Brain of Fish, Frog Rat

SECOND YEAR

PAPER -IV- ZOOLOGY PRACTICAL

	SEMISTER-IV
Demonstrate	
1)Amylase Activity with Reference to pH & Temperature	

THIRD YEAR

PAPER -V- ZOOLOGY PRACTICAL

SEMISTER-V	SEMISTER-VI
	1) Slide of limb Bud Development
	2) Study of Chick Embryo

FIRST YEAR

PAPER -I- BOTANY PRACTICAL

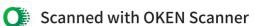
SEMISTER-I	SEMISTER-II -
 Classification of plants (Thallophyta to Angiosperms) 	Morphology of Plants:- i. Root
Type Specimens	ii. Stem
Sunflower(Morphology, Floral formula, T.S	iii. Leaf
of stem and flower, life cycle)	iv. Inflorescence
Maize (Morphology, Floral formula, T.S of stem, infloresecnce, life cycle)	v. Flower
	yi. Fruit
	vii. Seed & seed germination
	Anatomy of Plant Tissues i. Simple
	ii.Complex

FIRST YEAR

JOER -II- BOTANY PRACTICAL

PAPER SEMISTER-I	CELL
Water-Role of Water in cells Plasmolysis Diffusion Osmosis	Photosynthesis -Plants -Photosynthetic pigments in Algae Physiology -storage of carbohydrates -Chemical tests -Structure
	Oil Seeds -Saponification

SECOND YEAR


PAPER -III - BOTANY PRACTICAL

SEMISTER-III * * * * * * * * * * * * * * * * * *	SEMISTER-IV•
	Anabolic ,Catabolic & amphibolic Pathway,S3econdary metabolites in plants -Phytosterol Genetics -Mitosis -Meiosis

THIRD YEAR

PAPER -V- BOTANY PRACTICAL

SEMISTER-V	SEMISTER-VI
Medicinal Botany	Plant Embryology
-Pharmacognosy	-Microsporogenesis
, ,	-Megasporogenesis
	-Pollen Biology
	-Seed dormancy

FIRST YEAR

FR-I- MICROBIOLOGY PRACTICAL

ALI		
APER	SEMISTER-	ı
Mr.		3
	43 MIST SIL	٠

- Staining Techniques Monochrome Staining Differential (Gram, Acid fast)
- Use of Compound Microscope
- physical methods of Control: Heat, Bacteria proof filters, UV rays, Denaturation, Osmotic Pressure
- Chemical methods of Control: Phenolics (phenol coefficient), Oligodynamic action, Surfactant Dyes, Antibiotics, alcohol.
- Study of air, water and soil
- Aseptic techniques and safety in a laboratory .

SEMISTER-II

- Normal flora of human body
- Aerobic, anaerobic, mícroaerophilic, facultative organisms
- Study of E.coli
- Demonstration of phage plaques
- Viable count with respect to food, soil, milk
- Direct microscopic counts, Breeds count, Hemocytometer

FIRST YEAR

PAPER -II- MICROBIOLOGY PRACTICAL

SEMISTER-I SEMISTER-II Qualitative tests for Proteins, amino acids, · Cell wall staining lipids, nucleic acids, carbohydrates Nuclear staining Cultivation of Blue green algae, Blood staining Photosynthetic bacteria and permanent slides of BGA Media preparation and use Staining of lipids, spore, capsule, Nutrient agar, Sabouraud's agar metachromatic granules in bacteria Mackonkeys agar Blood agar Sugar fermentation by E.coli, yeast

SECOND YEAR

PAPER -III- MICROBIOLOGY PRACTICAL

. SEMISTER-IV
 Isolation and extraction of PHB granule from bacteria
Effect of biosurfactants
 Isolation of antibiotic producers
 Extraction and analysis of biopolymers
 Study of lactobacillus and Streptococcus, in flavor production from curd
Study of growth curve of <i>E.coli</i>
Antibiotic disc- Kirby Bauer Method
Antibiotic spectrum studies

SECOND YEAR

PAPER -IV- MICROBIOLOGY PRACTICAL

SEMISTER-III	` SEMISTER-IV •
 Isolation of UV induced mutants and characterization. Replica Plating Technique Study of different enzymes. Qualitative-Kinetics, inhibition, effect of factors for any one enzyme Study of bioluminescent bacteria 	 Plaque count and morphology Antigen antibody reactions Blood groups, agglutination, precipitation, flocculation reactions Isoagglutinin titre- Widal, VDRL tests Preparation of Antigens Use of diagnostic tests- ELISA, RIA demonstration

THIRD YEAR

PAPER -V- MICROBIOLOGY PRACTICAL

SEMISTER-V	. SEMISTER-VI
Isolation and quantification of chromosomal DNA- plasmid DNA, RNA and characterization	
Demonstration of Transformation conjugation, Restriction enzyme, PCR, Transduction	
 Study of E.coli, Pichia pastoris, Saccharomyces cerevisiae as genetic Systems 	

COMPUTATIONAL BIOLOGY

PRACTICAL I - COMPUTATIONAL BIOLOGY

SEMESTER I	SEMESTER II
Bar pendulum	R.P of telescope.
y by bending	De Sauty's bridge
Cauchy's constant	Band pass filter
_{sigure} of merit	Max power transfer theorem
LCR Parallel resonance	Stefan's law
Low pass filter	Demonstration on unit V and unit VI
High pass filter	
Surface tension	
Cylindrical obstacle	

PRACTICAL II & III - COMPUTATIONAL BIOLOGY

SEMESTER I & III	SEMESTER II & IV
Topics for tutorials and assignment linear equations and Matrices Calculus Ordinary Differential Equations and Applications Second order linear differential equations	Topics for tutorials and assignment Use of statistical packages such as SPSS, metlab etc. Population distribution studies Performing statistical tests such as chi square, ANOVA

PRACTICAL IV - COMPUTATIONAL BIOLOGY

TRACTICAL IV - COMPUTATIONAL BIOLOGY	
SEMESTER III	SEMESTER IV
Introduction and overview of general computer operation (Windows and Linux platforms). Use of various search engines, email etc. Writing programs based on C Finding prime numbers, Fourier series Reading a DNA sequence, Translating into RNA sequence. From DNA or RNA to Polypeptide sequence.	 Use of SQL Server and mySQL, Writing Basic SQL select queries. Creating databases in SQL and Oracle, using various data types and granting privileges.

PRACTICAL V - COMPUTATIONAL BIOLOGY

SEMESTER III

- Different types of search engines & important sites viz NCBI, EBI, Swiss-Prot, PDB etc.
- Biological Databases: Study of different Biological databases (esp. the ones given below), Format, their distinguishing features, Uses and Applications.
- Sequence databases: EMBL, DDBJ, GenBank, Uniprot, PIR, TrEMBL
- Domain database: Prosite, PRINT, Pfam, BLOCK
- Structure database: PDB, use of Rasmol, protein explorer.

Specialized database: KEGG, PUBMED, OMIM

SEMESTER IV

- Use of BLAST and its variants (especially Psi-BLAST) for the identification of very similar and divergent sequences.
- Use of FASTA and its comparison with BLAST.
- Multiple sequence alignment using ClustalW and preparation of simple phylogenetic trees using Tree View etc.

FOURTH YEAR

PRACTICAL I

SEMESTER VII

- Sterility testing (Microbial load) of drug formulations
- Zone of inhibition assay for penicillin (using spiked plasma and formulation)
- Zone of exhibition assay for Vitamin
 B₁₂
- Study of ANY TEN I P monographs and their identification using characteristic features of nutracuetically important plants like; Phyllanthus emlica, Curcuma longa, Ginziber officinalis, Solanaceae (Withania somanifera), Aloe vera, Lilliaceae (Alium sativum), Lamiaceae (Ocimum sanctum), Apiaceae (Coriandrum sps) and Liliaceae (Asparagus sps.) Centella asiatica.
- TLC separation of Plant pigments Curcumin and carotene.

SEMESTER VIII

- Plant DNA extraction and separation using agarose Gel
- PCR (PCR Kit may be used) for Plant DNA and RFLP (RFLP kit may be used) (e.g. Phyllanthus sps.)
- DNA sequencing using sample from a suitable organism
 OR
 Identification of Genetically Modified
 Organism (GMO identification kit may be used)
- Estimation of crude fat contents of foods by Soxhlet's method (Butter, Margarine, edible oil).
- Microbial examination of water -total and coliform count.

PRACTICAL II

SEMESTER VII

- Liquid liquid extraction of a modern drug from plasma and formulations (e.g. Diclofenac _{sodium}, Glimiperide, Aceclofenac, Metformin etc.)
- _o Separation of human serum / plasma proteins / egg white using PAGE (Protein molecular weight determination kit may be used)
- _o IR analysis of a modern drug (e.g. Diclofenac Sodium, etc.)
- o Determination of percentage purity of CaCO₃/MgCO₃ by
 - i)Titrimetry
 - ii) Complexometry iii) IE chromatography

SEMESTER VIII

- Immunoassay for HCG in urine
- HPTLC fingerprinting of Herbal raw material (e.g. Asteracantha longifolia, Ricinus cummunis, Calotropis gigantia)
- Determination of Caffeine from a given sample by i) uv spectrophotometry ii)HPTLC iii)HPLC
- o HPLC separation of modern drugs from their combination formulation (e.g. Diclofenac Sodium & Paracetamol, Metformin & Glimiperide etc.)

PRACTICAL III

SEMESTER VII	SEMESTER VIII
Trypsinisation of suitable Rat / mice	o Gas Chromatograhic separation
tissue and obtaining isolated cells and staining for viable count.	of solvent mixtures (e.g. Menthol
Preparation of calibration graphs for Li,	& Ethanol, Toluene & Methanol
Na, and K by flame Photometry using	etc.)
their solutions of appropriate	
^{concent} rations and studying	LD 50 evaluation using a suitable model The Park is / rise week!)
interference of	(e.g. Daphnia / rice weevil)
i) K in Na estimation	 Mass Fingerprinting of peptides using a suitable sample.
OR	(DEMONSTRATION)
ii) Na in Li estimation	
OR	
iii)Li in K estimation	
	P: ge 73 of 99

Page 73 of 99

PRACTICAL IV

SEMESTER VII

- Prepare specific reagents and conduct qualitative test for the presence of alkaloids, tannins, lignans, steroids and glycosides using TLC. Compare the results using standards (if available).
 - Tertiary structure and function prediction using homology modelling and ab initio method.
 - Validation of predicted structure.
- Visualization of 3D protein structure using Rasmol, VMD
 LC/MS quantitation of a modern drug (e.g. Diclofenac Sodium, Ezetimibe

SEMESTER VIII

- Evaluate the given data of protein and nucleic acid sequence using a global database with appropriate search engine / software (e.g. BIOEDIT).

 Prepare a report stating the steps involved and a brief analysis of the findings.
- Evaluate the given data of peptide sequence using a global database with appropriate search engine / software (e.g. BIOEDIT). Prepare a report stating the steps involved and a brief analysis on the functional annotation of the peptide

FIFTH YEAR PRACTICAL

BIOANALYSIS

PRACTICAL I

SEMESTER IX

preparation of Herbarium of

- following medicinal plants;
 - 1) Asteracantha longifolia
 - Trigonella forename
 - Clitoris ternate
 - 4) Corundum sativa
 - 5) Achyranthus aspera
 - 6) Scoparia dulcis
 - 7) Amaranthus spinosa
 - 8) Phyllanthus amarus
 - 9) Calotropris gigantea
 - 10) Vitex nigundo
- o Individual student must **submit** herbaria of ANY THREE from the above list but in each institution herbarium of all the listed plants must be prepared.
 - o Microscopic evaluation of sections and powders of the following

medicinal plants;

- 1) Emblica officinalis (Amla - dried fruit)
- 2) Glycerrhiza glabra (Yeshtimadhu) - Rhizome
- 3) Vitex nigundo Leaves
- 4) Ricinus communis -Leaves
- 5) Tinospora cordifolia Stem

SEMESTER X

- SPE of a modern drug from formulation (e.g. Atorvastatin, Diclofenac sodium, Sibutramine etc.)
- SPE of a modern drug from plasma (e.g. Atorvastatin, Diclofenac sodium, Sibutramine etc.)
- o Immunoassay of HEPALISA in serum.
- HPTLC separation of a modern drug from plasma and its formulations (e.g. Diclofenac sodium, Glimiperide, Aceclofenac, Metformin etc.)
- HPTLC detection of herbal raw material from its formulations (e.g. Asteracantha longifolia from LUKOL / SPEMAN, Vitex nigundo from PANCHGUN TAILA, Glycerrizha glabra from ANU TAILA)
- DNA fingerprint (Genomic DNA isolation kit may be used) of two bacterial strains (e.g. Resistant and wild strains of E. coli)
- Study of matrix effect on IR spectra using solution IR technique and quantitate the solute from a given

- 6) Asteracantha Longifolia –Whole plant
- 7) Achyranthas aspera -Whole plant
- 8) Calotropis gigantea Leaves
- 9) Colocasia (Arum) Leaves
- 10)*Phyllanthus amarus* Whole plant
- Calculation in terms of percent occurrence of key anatomical characteristics in the powder to be recorded.
- o Individual student must report findings of ANY THREE from the above list but in each institution evaluation on all the listed plants must be carried out.
 - Gas Chromatographic separation of solutes from their matrix (e.g. Diclofenac sodium from its formulation, Methanol from plasma etc.)
- AAS of a suitable Ayurvedic metal bhasma preparation (e.g Tamara bhasma)
- Determination of iron from a given sample / sample solution by
 - i) Redox titration
 - ii)Colorimetry
 - iii)Atomic Absorption Spectroscopy

- sample. Identify solute from a given solution using IR library and carry out quantitative assay.
- IR patterns of an Ayurvedic Bhasma preparation (e.g. calcium containing shanka bhasma comparison with pure CaCO₃ and formulations like Calcium supplement tablets)
- CE separation of a modern drug from plasma and its formulation (e.g. Diclofenac sodium)
- Carry out Friability Test, Hardness test
 & dissolution test on any one tablet
 preparation
 - CE separation of peptides (e.g. erythropoietin as per E.P.)

PRACTICAL II

SEMESTER IX

- HPLC separation of a modern drug from plasma and its formulations (e.g. Diclofenac sodium, Glimiperide, Aceclofenac, Metformin etc.)
- _o HPLC separation of herbal raw material from its formulation (e.g. Asteracantha longifolia from LUKOL / SPEMAN, Phyllanthus amarus from LIV 52, Tribulus terrestris from Ghokshuradi guggul etc.)
- . CCl4 liver dysfunction in rats and evaluation using liver function tests (An experimental comparison using suitable groups of controls, natural recovery and treatment with known hepatoprotectants to be carried out)

SEMESTER X

- BA & BE of a modern drug (Demonstration – witnessing an actual trial)
- LC/MS/MS qunatitation of a modern drug from plasma (e.g. Diclofenac Sodium)
- LC/MS/MS quantitation of meatbilite of a modern drug from plasma (eg. Mycopenolic acid, metabolite of Mycophenolate mofitil)
- GC/MS separation of plant essential oil (Demonstration)

5th Year Specialization (Nutraceutical)

PRACTICAL I

Semester X

Study of following Parasites/Vectors/pests: Identification,

control measures (museum specimens / slides): Entamoeba histolytica, Taenia sps, Ascaris lumbricoides, Ancylostoma dueodenaei, Trichinella spiralis, Trichura trichuris, Mosquito (Culex and Anopheles), House fly, Green bottle fly, Head Louse, Cockroach (Periplanata & Blatta), bed bug, Mus sps. (Mouse) and Rattus sps. (House rat)

- Estimation of crude fiber/pectic substances from plant material.
- Determination of Acid value, Saponification and Iodine number
- Estimation of ascorbic acid from lemon & amla juice by titration
- Estimation of Ca, Na and K in various foodstuffs by flame photometry.
- Detection and estimation of metals ANY ONE from Fe, Cu, Zn, Mg, Se, and ANY ONE from - As, Hg, Pb,
- Assessment of purity and quality using appropriate standard tests for the following;
- Milk and Paneer, Butter/ ghee and hydrogenated fat (Vanaspati Ghee)
- b. Spices and condiments Tea and coffee
- Fruit iuice
- d. Pulses
- Estimation of total Nitrogen of foods by Kjeldahl and Micro Kjeldahl methods.
- To separate the Milk proteins on Native and SDS gels.
- Assessment of quality of beverages -- tea and coffee.
- Microbial Role in production of alcohol (arishta / asavas) .
- Production of industrially important enzymes by microorganisms
- (Protease and amylase).

- Estimation of enzymatic browning in foods.
- Isolation and estimation of Vitamin B2 by HPLC
- HPLC estimation of Eugenol from Clove and clove oil.
- TLC estimation of piperine from Pepper.
- Estimation of choline.

PRACTICAL II

Semester X

- Estimation of total phenols and chlorogenic acid (Phenolic compound) in plant material.
- To estimate cholesterol content in given sample by Lievermann-Burchard method.
- Estimation of preservatives and antioxidants from food sample.
- Fractionation of proteins from given sample (milk / Soya milk / Liver homogenate) using ammonium sulfate precipitation.)
- To study the gluten formation and factors affecting them.
- To study the gelatinization and factors affecting them.
- Detection of food additives (list to be given MSG, Flavours, Colours biological and non-biological etc.) in packaged food products.
- Study of comparative antimicrobial activity of the following: Penicillin and Curcuma / thyme.
 - Microbial production of citric acid by Aspergillus niger.
- Preparation of traditional health products e.g. Satavari kalp, Gulkand, Amla syrup, Bilwa jam.
- Extraction and identification of Isoflavones by TLC.

Page 79 of 99

- Estimation of concentration of starch in a given sample.
- Estimation of volatile substances from food products / beverages using GC.
- Extraction and estimation of total sugars from food products (dairy product, Fruit juices, bread).
- To study nutritional composition (Proteins, carbohydrates, lipids, vitamin C and presence of secondary metabolites) of the following: Bee honey, Mushrooms, dairy products, Beans, Spinach, Carrot, Apple, Amla, Pineapple, Papaya, Lentil and Soya.
- Extraction and estimation of oil or crude fat content in oil seeds.

REPORT OF PROJECTS UNDERTAKEN

- o The project should involve industrial training of 8 to 12 weeks period
- o Project must involve application of knowledge and skills as prescribed in the syllabus and data evaluation must involve application of biostatistics.
- The project report and observations / data generated will be presented and defended before the panel of examiners.

Suggested plan for projects:

- Preparation of Functional food/ Nutraceutical product (Any Four)
- Rich in Vitamins
- Rich in Minerals
- Rich in proteins
- Rich in carotenoias and vitamin A
- Rich in medicinally important secondary metabolites
- Rich in antioxidants
- Prepare a market survey report on the any one Nutraceutical functional food product.
 (Related to Paper IV of 4th year where there is a Project report writing/industrial visit.)

Page 80 of 99

FIFTH YEAR BIOINFORMATICS PRACTICAL I

SEMESTER IX • Preparing a sample	SEMESTER X
 WebPages for self in HTML .(self website) Writing simple programs in Java like finding prime numbers, Fourier series etc. Java applets and servelets. JDBC: connecting to a database (mySQL) 	 Using perl for writing small scripts like Reading a DNA sequence, Translating into RNA sequence.from DNA or RNA to Polypeptide sequence etc. Using Hashes Retrieving and writing to databases (mySQL) using perl database connectivity.

BIOINFORMATICS PRACTICAL II

Microarry and clinical data Design Active site identification,	SEMESTER IX	SEMESTER X
	analysis • Use of ANN or SVM as a	Active site identification,Characterization of target site,Docking

R. 2147 Distribution of Credits (Semester I to X)

paper	Code		Seme	ster – I	Margary II	MINE TO SERVICE	CHEA .		
coundation	FC	30	2	ster – -		则为threets,	Semes	ster – II	计算数面
Course	BS1 BS2	90	6	60		30	2	-	-
Biological Sciences	CH1	90		00	2	90	6	60	2
Chemical Sciences	CH2 CS1	90	6	60	2	90	6	60	2
computational	CS2	60	4	60	2	60		4	
Sciences TOTAL TOTAL CRED	DITS	270	18	180	6	270	4	60	2
TOTAL CREE	,,,,,		2	4		270	18	180 4	6

Paper	Code	Waters	'Seme	ster – III.	12000	Control of the	Semes	iter – IV	
Environmental Studies	ES	30	2	-	-	- -	_		
Technical Communication skills	тс					. 30	2		-
Biological	BS3								
Sciences (Theory and Practical)	BS4	90	6	60	2	80	6	60	2
Chemical	CH3		*						
Sciences (Theory and Practical)	CH4	90	6	60	2	80	6	60	2
Computational	CS3								
Sciences (Theory and Practical)	CS4	60	4	60	2	60	4	60	2
TOTAL		270	18	180	6	250	18	180	6
TOTAL CREDI	TS		24				2		

Paper	Code-	Lectures 45	Semes	ster – V	186.0	The Sales Restore	and Service	A series Virginia	Constitution of the second second
Biological				ist ractical	Credits	e almae	Gredie	Fractical	Credits
(Theory and	BS5	45	3	60	2	45	3	60	2
Chemical	CH5	1							
(Theory and Practical)	СН6	90	6	60	2	90	6	60	2
Computational Sciences (Theory and Practical)	CS5	45	3	60	2	45	3	60	2
Entrepreneurship Skills -	g. P								
(Business Economics, Knowledge Management, Innovation, & Principles of Corporate Management)	AC1	60	4	_	<u>.</u> .	60	4	-	- 11 (MK) (A)
Projects / Assignments / Case Studies	AC2	- 5	-	60	2	-	-	60	2
TOTAL		240	16	240	8	240	16	240	8
TOTAL CREDI	1S		24	1			24		J

Note:	Biologica: Sciences - 16+16+10	= 42 credits
	Chemical Sciences - 16+16+16	= 48 credits
	Computational Sciences – 12 + 12+10	= 34 credits
	FC	= 04 credits
	Environmental Science	= 02 Credits
	Technical Communication Skills	= 02 credits
	Entrepreneurship Skill	= 08 credits
	Projects/Assignments/Case Studies	= 04 credits

Total = 144 credits

Fourth Year / MSc Part I

• Paper	Code	Ledures.	Şemes	ter – VII	i mercena	1 Service man	Semes	ter – VIII	Colonia Erro
Advanced microbiology,	MMG	60	4	-	are Colley	A Rectures	Serent Co	Recourse)	Oyer (S)
molecular biology	Wiivio			60	2	60	4	60	2
Intellectual Property Rights, Drug act, Quality	IPR	60	4	60	2				
management	NITO				2	60	4	60	2
Animal) and Toxicology	NTC	60	4	60	2	60	4	60	2
Proteomics, Bioinformatics, Pharmacokinetics	PBP	60	4	60	2	60	4	60	2
Seminar/Field visits		15	1	-	-	15	1	-	-
TOTAL		255	17	240	8	255	17	240	8
TOTAL CREDITS		25					2		

Fifth Year / MSc Part II (Specialization – Bioanalysis / Nutraceuticals / Bioinformatics)

BIOANALYSIS

	IOAIT	AL I OIO				
001		Semester –		Seme	ster – X···	
Paper	Code*		THE RESERVE	Cicalia	Free dissi	
Different Medicina≬ Systems, Pharmacognosy, Standardization of ASU ·	ASU		120	. 8	120	4
Application of GMP, GCP, GLP, Method Validation, BA/BE, Metabolite isolation and identification, Thermal analysis, Tracer techniques	GMP		120	8	120	4
Industrial Training	INT	12				
Project / Report writing / Industrial visits	PRV	12				
	SEM	01	Semi		01	
Seminar TOTAL CREDITS		25	第二人员的	到多次,则是两个	25	一世 (1997)

Scanned with OKEN Scanner

NUTRACEUTICALS

Paper · ·	Code	Semester – IX	E de la companya de l	Semes	ter – X	13461
Nutraceuticals and functional foods, food as		Joseph Bulling To	Lectures	Credits	Practical	Credits!
remedias	NFF		120	8	120	4
genomicals; Evaluation, Instrumentation,	NPD		120	8	120	4
and lotter	INT	12				
Project / Report writing / Industrial visits	PRV	12				
	SEM	01	Sem	inar	0	1
Seminar TOTAL CREDITS	特別的	25	建筑设施线 公	划将监 查	25	

BIOINFORMATICS

Paper	Code	Semester – IX	Deorures	Semes	ter – X 🕳 🦲	Credits
Concepts in computing	ВСС		120	8	120	4
Bioinformatics						
	BNF		120	8	120	4
Industrial Training	INT	12				
Project / Report writing / Industrial visits	PRV	12				
Seminar	SEM	01	Sem		0	1
TOTAL CREDITS	国民的	25	AREA SECTION SEC		25	在图像的

R. SIMS MINIMUM INFRASTRUCTURE REQUIRED FOR RUNNING THE COURSE

Sr. No.	Item
a.	Laboratory Space & Furniture – of ~ 900 sq ft carpet area with about 6 sq ft table space /student (Batch of 20 students)
b.	Air-conditioned Instrumentation Room for Analytical Equipments
C.	Library Facilities
d.	Computational Facilities
е.	Animal / poly House
f.	Water & Electricity
g.	Instrumental Support

RECOMMENDED EQUIPMENT AND ACCESSORIES

FOR UNDERGARDUATE:

Well equipped Wet Laboratory for Chemistry and Biochemistry.

Well equipped Laboratory for Biology (zoology, Botany and Microbiology, Molecular biology)

Standard Laboratory equipment for Undergraduate Science class.

Well equipped Computation Laboratory with Internet Access.

FOR Post-GRADUATE:

Sr. No	Equipment
1.	Agarose and PAG Electrophoresis systems
2.	Analytical Balance
3.	Autoclave
4.	Capillary Electrophoresis (with PDA & UV detectors)
5.	Computers
6.	Refrigerated Centrifuge
7.	Counter Current Chromatograph
8.	Deep Freezer
9.	Dissolution Test Apparatus
10.	DNA Sequencer
11.	Flame Photometer
12.	Fourier Transform Infrared Spectrometer
13.	Gas Chromatograph
14.	Gel Documentation
15.	HPLC with various detectors (UVNIS, E.C.D, PDA) & software
16.	HPTLC Densitometer with CATS 3.0software
17.	HPTLC Spotter
18.	LC/MS/MS
19.	Low Volume Evaporator
20.	Melting Point Apparatus
21.	pH - meter
22.	Refrigerators
23.	Solid Phase Extractor
24.	Top pan balance
25.	Ultrasonic bath with Temperature control
26.	UV-Vis Scanning Spectrophotometer
27.	Vacuum Concentrator
28.	Water Distillation Apparatus
29.	Water Purification System

Page 37 of 99

R. 9150 LIST OF REFERENCE BOOKS

Basic Books on Chemistry, Statistics, Zoology, Botany, Microbiology and Basic Books are Undergraduate class are mandatory. List of Specialized books are listed below;

CHEMICAL SCIENCES :

Douglas A. Skoog ,Principles of Instrumental Analysis, Saunders College Publishing Allen J.Bard, Electroanalytical Chemistry, A series of Advances Volume –5, Marcel 1.

2.

Allen J.Bard ,Electroanalytical Chemistry,A series of Advances Volume – 12,Marcel 3.

- Allen J.Bard, Electroanalytical Chemistry, A series of Advances Volume 13, Marcel 4.
- I.P.Alimarin,V.I.Fadeeva ,E.N.Dorokhora,Lecture Experiments in Analytical Chemsitry 5.
- William David Cooper, Albert D. Helfrick, Electronic Instrumentation and Measurement 6.
- Hobart H.Williard, Lynne Merritt, John Dean, FrankSettle, Instrumental Methods of 7. Analysis 6th Ed., CBS Publishers and Distributors
- Dale G.Deutsch, Analytical Aspects of Drug Testing, John Wiley and Sons 8.
- Rober D.Brown ,Introduction to Instrumental Analysis ,Mcgraw-Hill International Ed. 9. 10.
- C.M.Earnest ,Thermal Analysis of Clays Minerals and Coal, Perkin Elmer 11.
- Randoll C.Baset ,Advances in Analytical Toxicology Vol 2 ,Year Book Medical Publishers
- Garry D.Christian , Analytical Chemistry 5th ed ,John Wiley and Sons Inc 12.
- Karel Eckschlager ,Klans Danzer,Information Theory in Analytical Chemistry ,John Wiley 13. 14.
- Alice J.Cunningham ,Introduction to Bioanalytical Sensors ,John Wiley and Sons
- Peter Roper, Shaura ,Burke, Richard Lawn,Vicki Barwick andRon Walker,Applications of 15. Royal Society of Chemistry 16.
- Chung Chow Chan ,Y.C.Lee, Analytical Method Validation and Instrumental Performance 17. 18.
- G.Schwedt ,Chromatographic Methods in Inorganic Analysis,Dr.Alfred Huthg Verlag 19.
- Tatsuya Sekine, Yuko ,Hasegawa, Dr.V.Mshinde ,Solvent Extraction Chemistry Fundamentals and Applications , Marcel Dekker Inc 20.
- Robert White, Chromatography / Fourier Transform Infrared Spectroscopy and its Applications , Marcel Dekker Inc 21.
- Roy M.Harrison ,Spyridon Rapsomanikis ,Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy ,Ellis Horwood Ltd 22.
- Dr.P.D.Sethi ,Identification of Drugs in Pharmaceutical Formulations by Thin Layer Chromatography ,CBS Publishers and Distributors 23.
- D.Cagniant ,Complexation Chromatography ,Marcel Dekker Inc 24.
- B.Ravindranath ,Principles and Practice of Chromatography , Ellis Horwood Ltd 25.
- G.Subramanian ,Preparative and Process Scale Liquid Chromatography ,Ellis Horwood 26.
- Jack Cazes ,Chromatographic Analysis of Pharmaceuticals ,Marcel Dekker Inc 27.
- Heman J.cortes ,Multidimensional Chromatography Techniques and Applications ,Marcel 28.
- Norberto A.Guzman ,Capillary Electrophoresis Technology ,Marcel Dekker Inc 29. K.Robards ,Principles and Practice of Modern Chromatographic Methods ,Academic
- 30.
- Walter D. Conway , Countercurrewnt Chromatography , VCH 31.
- Alian P.Foucault ,Centrifugal Partition Chromatography ,Marcel Dekker Inc

- Yoichiro Ito ,Welter D. Conway ,High Speed Countercurrent Chromatography ,John Wiley 32.
- Dr.P.D.Sethi ,HPTLC High Performance Thin Layer Chromatography 33.
- Raymond P.W.Scott ,Chromatographic Detectors Design Function Function and 34.
- Larry T.Taylor ,Supercritical Fluid Extraction ,John Wiley and Sons 35.
- John A.Adam ,Chromatographic Analysis of Pharmaceuticals 2nd ed ,Marcel Dekker Inc 36. 37.
- W.M.A.Niessen ,Liquid Chromatography Mass Spectrometry 2nd ed ,Marcel Dekker Inc 38.
- P.D.Sethi ,Dilip Charegaokar ,Identification of Drugs in Pharmaceutical Formulations by Thin Layer Chromatography, CBS Publishers and Distributors
- Dale R Baker ,Capillary Electrophoresis ,John Wiley and Sons 39.
- H.E.Schwartz, R.H.Palmieri ,Introduction to Capillary Electrophoresis of Proteins and 40.
- Kelvin Altria and Manus Rogan Introduction of Quantitative Applications of C.E in 41.
- Margaret D.Le Compte, Wendy L.Millroy ,Judith Preissle ,The Handbook of Qualitative 42.
- Bohdan O.Szuprouiez ,Multimedia Networking, McGraw Hill 43.
- Margaret D.Le Compte ,Wendy L.Millroy,Judith Preissle ,The Handbook of Qualitative 44. Research in Eductaion ,Academic Press
- Richard Friary, Jobs in the Drug Industry, Academic Press 45.
- Jonathan Anderson ,Millicent Poole ,Assignment and Thesis Writing ,John Wiley and 46.
- WHO ,Specification for the Identity and Purity of some enzymes and certain other 47.
- S.F.Bloomfield, R.Baird, R.E.Leak, R.Leech, Microbial Quality Assurance in 48. Pharmaceuticals, Cosmetics and Toiletries, Ellis Horwood
- William Hewitt ,Stephen Vincent ,Theory and Application of Microbiology Assay,Academic 49.
- Michael Pelczar ,E.C.G Chan, Noel R.Krieg ,Microbiology ,McGraw Hill 50.
- Randall C.Baselt Piological Monitoring Methods for Industrial Chemicals Biomedical 51.
- Ronald M.Atlas ,Lawrence C.Parks ,Handbook of Microbiological Media ,CRC Press 52.
- Lily Y.Young, Microbial Transformation and Degradation of Toxic, Dermot Diamond, John 53. Wiley & Sons
- Simon Benita , Microencapsulation Methods and Industria! Applications , Marcel Dekker 54.
- R.K.Dart , Microbiology for the Analytical Chemist , The Royal Soc 55.
- John E.Ladbury ,Babur Chowdhry ,Biocalorimetry Applications of Calorimetry in the 56. Biological Sciences, John WileyAnd Sons 57.
- Dermot Diamond , Principles of Chemical and Biological Sensors , John Wiley & Sons 58.
- Aspi F.Golwalla ,Sharukh A.Golwalla ,ABC of Medicine ,A.F.Golwalla 59.
- Richard A. Guarino, New Drug Approval Process, Marcel Dekker 60.
- M.D.B.Stephens , Detection of New Adverse Drug Reactions, Macmillan Publisher 61.
- Lisbeth Illum ,Stanley S.Davis ,Polymers in Controlled Drug Delivery,Wright IOP 62.
- John E.Conte ,Steven L.Barriere ,Manual of Antibiotics and Infectious Disease 6th ed Lea & Febiger 63.
- Ivan H.Stockley ,Drug Interactions -A Source Book of Adverse Interactionstheir Mechanisms Clinical Importance & Management, Blackwell Scientific Publications 64.
- John B. Taylor ,Peter D. Kennewell ,Modern Medicinal Chemistry, Ellis Horwood 65.
- Jens T. Carstensen ,Drug Stability Principles & Practices 2nd e.d.,Marcel Dekker 66.
- Gene S. Gilbert , Drug Safety Assessment in Clinical Trials , Marcel Dekker 67.
- F.D.King , Medicinal Chemistry Principles and Practice, The Royal Soc. Of Chem 68. Alex Gringauz ,Introduction to Medicinal Chemistry ,Wiley VCH
- 69. Camille George Wermuth ,The Practice of Medicinal Chemistry 2nd ed.,Academic Press 70.
- James W.Robinson ,Practical Handbook of Spectroscopy,Crc Press 71.
- R.W.Hannah ,J.S.Swinehart ,Experiments in Techniques of Infrared Spectroscopy ,Perkin Elmer

Page 89 of 99

- Patrick Hendra , Catherine Jones , Gavin Warnes , Fourier Transform Raman 72. Spectroscopy Instrumentation and Chemical Applications, Ellis Horwood
- G.L.Moore Introduction to Inductively Coupled Plasma Atomic Emission 73.
- Gordon M.Barrow ,Introduction to Molecular Spectroscopy ,McGraw Hill 74.
- Stephen G.Schulman ,Molecular Luminescence Spectroscopy Methods and Applications 75.
- George G.Guilbault ,Practical Fluorescence ,Marcel Dekker 76.
- B.J.Clark, T.Frost ,M.A.Russell ,UV Spectroscopy Techniques Instrumentation Data 77. Handling.Chapman and Hall
- W.O.George, H.A.Willis ,Computer Methods in UV Visible and IR Spectroscopy ,Royal 78. Society of Chemistry
- Richard D Beaty ,Concepts, Instrumentation and Techniques in AtomicAbsorption 79. Spectrophotometry., Pekin-Elmer
- A-Knowles, C.Burgess, Practical Absorption Spectrometry, Chapman & Hall 80.
- Takekiyo Matsoo ,Richard M.Capridi ,Michael L.Gross ,Yousuke Seyama ,Biological 81. Mass Spectrometry Present and Future ,John Wiley and Sons
- Barbara Stuart , Modern Infrared Spectroscopy ACOL , John Wiley and Sons 82.
- George Turrell ,Jacques Corset ,Raman Microscopy Developments and Applications 83. ,Academic Press
- Irving Sunshine ,Handbook of Spectrophotometric Data of Drugs ,CRC Press 84.
- Codric M.Smith, Alan M.Reynard ,Textbook of Pharmacology ,W.B.Saunders Comp. 85.
- Umesh V.Banakar ,Pharmaceutical Dissolution Testing ,Marcel Dekker 86.
- Howard C.Ansel ,Introduction to Pharmaceutical Dosage Forms 4th ed., Lea & Febiger 87.
- H.J.Roth, A.Kleemann , Pharmaceutical Chemistry Vol 1 , Ellis Horwood 88.
- P.Johnson ,J.G.Lloyd-Jones ,Drug Delivery Systems Fundamentals and Techniques ,Ellis 89. Horwood
- M.H.Rubinstein ,Pharmaceutical Technology Controlled Drug Release Vol 1 ,Ellis 90.
- Michael G.Palfregman ,Peter McCann ,Walter Lovenberg ,Joseph G.Temple ,Albert 91. Sioerdsrna Enzymes as Targets for Drug Design, Academic Press
- Milo Gibaldi, Biopharmaceutics and Clinical Pharmacokinetics 4th ed., Lea and Febiger 92.
- David B.Jack, Handbook of Clinical Pharmacokinetic Data, Macmillan Publisher 93.
- Betram G.Katzung, Basic and Clinical Pharamcology 4th ed., Prentice-Hall 94.
- Kenneth A.Connors, Gordon L.Amidon, Valentino J.Stella, Chemical Stability of 95. Pharmaceuticals, John Wiley & Sons
- Hamed M.Abdon, Dissolution Bioavailbaility and Bioequivalence, MACK Publishers 96.
- Varro E.Tyler, Lynn R.Brody, James E.Robbers, Pharmacognosy 9th ed., Lea and 97. Febiger
- James I.Wells, Pharmaceutical Preformulation the Physicochemical Properties of Drug 98. Substances, Ellis Horwood
- B.Widdop, Therapeutic Drug Monitoring, Churchill & Livingstone 99.
- Peter G.Welling, Pharmacokinetics, Marcel Dekker 100.
- D.R.Karsa, R.A.Stephenson, Excipients & Delivery Systems for Pharmaceutical 101. Formulations, The Royal Society of Chemistry
- R.S.Iyer, Schedule M and Beyond Good Manufacturing Practices, Indian Drug 102. Manufacturers Association
- Takeru Higuchi, Einar Brochmann, Hanffen Hanssen, Pharmaceutical Analysis, CBS 103.
- H.Jackson Knight, Patent Strategy for Researchers and Research Managers 2nd ed, 104. John Wiley and Sons
- David Lee, Pharmaceutical analysis, CRC Press 105.
- A.F.Rudole Hoernle, Vaidya Bhagwan Dash, Studies in the Medicine of Ancient India, 106.
- Concept Publisher Co. J.F.Royle, Antiquity of Hindoo Medicine, Wm.H.Allen and Co 107.

Page 90 of 99

- prof.(Mrs) Asima Chatterjee, Dr.Satyesh Chandra Prakash, The Treatise on Indian Prof. (MIS) Formation Prakas Medicinal Plants Vol 1, Publications & Information Direct Medicine - The Art and W
- Medicinal Plants Vol. Medicine The Art and the Science, American Chemical soc Richard P.Steiner, Richard P.Steiner, American Chemical soc Roberto Chiej, The Macdeonald Encyclopedia of Medicinal Plants, Macdonald and co Roberto Chiej, The Macdonald and consoler, R. Hansel, Chandler, Adverse Effects of Herbal Drugs-1, 110. Springer Verlag 111.

Springer Veriag

Springer Veriag

W.Tang, G.Eisenbrand, Chinese Drugs of Plant Origin, Springer Verlag

W.Tang, Drugs From Naturall Products Phormacount 112.

W.Tang, G.Lissington, Springer Verlag
Alan Harvey, Drugs From Naturall Products Pharmaceuticals and Agrochemicals, Ellis 113.

Dr.R.O.B.Wijesekera, The Medicinal Plant Industry 114.

V.V.Sivarajan, Indira Balachandran, Ayurvedic Drugs and Their Plant Sources, Oxford 115. Dr.V.B.Athavale, Bala-Veda Pediatrics and Ayurveda 116.

Dr.V.B.Athavale, Bastivijnyana Urology in Ayurveda, 117.

- L.D.Kapoor, Handbook of Ayurvedic Medicinal Plants, CRP Press 118. 119.
- Chandra Chakraberty, An Interpretation of Ancient Hindu Medicine, Neeraj Publishing 120.
- S.K.Ramcachandra Rao, Encyclopedia of Indian Medicine Vol 1, Popular Prakashan
- H.Wagner, S.Bladt , Zgainski, Plant Drug Analysis A Thin Layer Chromatography Atlas,
- Govind Kelkar, Directory of Herbal Health Care Products, Chemexcil
- S.T.Han, Research Guidelines For Evaluating the Safety Andefficacy of Herbal
- 124. Govt. Of India Ministry of Health & Family Welfare National Formlary of Unani Medicine -
- 125. Govt.Of India Ministry of Health & Family Welfare The Ayurvedic Formulary of India Part I
- 126. Govt. Of India Ministry of Health & Family Welfare The Ayurvedic Pharmacopoeia of India
- 127. Prof.Dr.F.C.Czygan, D.Frohne, C.Hohxel, A.Nagell, H.J., Pfainder, G.Willuhn, W.Buff, Herbal Drugs and Phytopharmaceuticals, CRC Press
- 128. A.Vinaya Kumar, Principles of Ayurvedic Therapeutics, Sri Satguru Publisher
- Dr.C.R.Karnick, Pharmacopoeial Standards of Herbal Plants Vol I, Sri Satguru Publisher Dr.C.R.Karnick, Pharmacopoeial Standards Of Herbal Plants Vol II, Sri Satguru Publisher
- Dr.V.Rajpal, Standardization of Botanicals Vol I, Eastern Publishers
- Regional Research Lab & IDMA, Indian Herbal Pharmacoepoeia Vol II, Regional
- World Trade Centre, Export Potential of Herbal and Ayurvedic Drugs, Quest Publications 134. P.C. Sharma, M.B. Yelne, T.J. Dennis, Database on Medicinal Plants use in Ayurveda
- Vol. 1 Vol. 5, Central Council for, Research in Ayurved and Siddha
- 135. Edward Johnson, Robert Stevenson, Basic Liquid Chromatography, Varian Associate W.M.A.Niessen, J.Van der Greef, Liquid Chromatography Mass Spectrometry, Marcel
- Thomas M. Vickrey, Liquid Chromatography Detectors,
- L.R.Snyder, J.J.Kirkland, Introduction to Modern Liquid Chromatography 2nd ed., John
- W.R.Day, An Introduction to Liquid Chromatography (L.C), Water Associates
- Willaim V. Willis, Laboratory Experiments in Liquid Chromatography, CRC Press A. Zlatkia, D. B. Laver Chromatography, Electric Laver Chromatography, Electr A.Zlatkis, R.E.Kaiser, HPTLC High Performance Thin Layer Chromatography, Elsevier
- Nelu Grinberg, Modern Thin-Layer Chromatography, Marcel Dekker W. Bertsch, 2007, Modern Thin-Layer Chromatography, Marcel Dekker W.Bertsch, S.S.Hama, R.E.Kaiser, A.Zlatkis, Instrumentelle HPTLC, Dr.Alfred Huthig
- A.M.Krstulovic, Chiral Separations by HPLC, Lloyd R.Snyder, Joseph L.Glajch, Joseph J.Krikland, Practical HPLC Method D_{evelopment}

Ante M.Krstulovic, Reversed-Phase High Performance Liquid Chromatography - Theory 146. practice and District Properties of the Performance Liquid Chromatography in Biotechnology, Johnsond Sons

147.

Wiley and Sons Dennis J. Runser, Maintaining and Troubleshooting HPLC Systems, John Wiley and 148. Sons I.N.Papadoyannis, HPLC in Clinical Chemistry, Marcel Dekker Inc

149.

- I.N.Papadoydina., Roger M.Smith, Gas and Liquid Chromatography in Analytical Chemistry, John Wiley and 150.
- J.B.Pattison, A Programmed Introduction to Gas Liquid Chromatography, Heyden & Sons D.J.David, Gas Chromatographic Detectors, John Wiley & Sons 151.

152. H.M.McNair, Basic Gas Chromatography,

- John W.Dolan, Lloyd R.Snyder, Troubleshooting LC Systems, Human Press 153. 154.
- Fulton G.Kitson, Barbara S.Larsen, Gas Chromatography and Mass Spectrometry A 155.
- George Lunn, HPLC Methods for Pharmaceutical Analysis Vol 2 (A-D), John Wiley and 156.
- George Lunn, HPLC Methods for Pharmaceutical Analysis Vol 3 (E-O), John Wiley & 157.
- George Lunn, HPLC Methods for Pharmaceutical Analysis Vol 4 (P-Z) 158.
- Eric Reid, Ian D.Wilson, Analysis for Drugs and Metabolites, Royal Society of Chemistry 159. 160.
- Malcolm R.Smyth, Chemical Analysis in Complex Matrices, Ellis Horwood Ltd
- J.P.Hart, Electroanalysis of Biologically Important Compounds, Ellis Horwood 161.
- Quanyun A.Xu, Lawrence A.Trissel, Stability Indicating HPLC Methods for Drug Analysis, Pharmaceutical Press
- A.Fajgelj, A.Ambrus, Principles and Practices of Method Validation, Royal Society of
- ED Metcalfe, Atomic Absorption and Emission Spectroscopy, John Wiley & Sons 164.
- 165. Rey Davis, Martin Frearson, Mass Spectrometry, John Wiley & Sons
- 166. Brian W. Woodget, Derek Cooper, Samples and Standards, John Wiley & Sons
- Richard Anderson, Sample Pretreatment and Separation, John Wiley & Sons 167.
- James W.Dodd, Kenneth H.Tonge, Thermal Methods, John Wiley & Sons
- James F.Lawrence, Trace Analysis Vol 1, Academic Press
- 170. Ronald C.Denney, Ray Sinclair, Visible and Ultraviolet Spectroscopy, John Wiley & Sons
- 171. Clive Whiston, X-ray Methods, John Wiley & Sons
- 172. David Hawcroft, Diagnostic Enymology, John Wiley & Sons
- Judith W.Zyskind, Sanford Bernstein, Recombinant DNA Laboratory Manual, Academic Press, INC
- Mark D.Adams, Automated DNA Sequencing and Analysis, Academic Press, INC
- A.T.Rhys Williams, Iuoroimmunoassay, Perkin-Elmer
- Edouard Kurstak, Enyme Immunodiagnosis, Academic Press Inc
- David T.Plummer, An Introduction to Practical Biochemistry 2nd ed., Tata McGraw-Hill
- H.Robert Horton, Laurence Moran, Raymond S.Ochs, J.David Rawn, K.Gray Scrimgeour, Principles of Biochemistry, Neil Patterson
- Martin Vanderlaan, Larry H.Stanker, Bruce Watkins, Dean, Roberts, Immunoassays for Trace Chemical Analysis, American Chemical Society
- Rodney E.Longman, The Immune System, Academic Press Inc
- Quentin Myrvik, Russell S.Welser, Fundamentals of Immunology 2nd ed, Lea & Febiger
- Julia M.Polak, Susan Van Noorden, Immunocy to Chemistry 2nd ed, Wright Bristol
- Terry M.Phillips, Analytical Techniques in Immunochemistry, Marcel Dekker Inc
- Radiommunoassay Ria in Theory and Practice, Pakard S.Lam, G.Malikin, Analytical Applications of Immobilized Enzyme Reactors, Blackie
- Academic and Professional
- Richard F. Venn, Principles and Practice of Bioanalysis, CBS Publishers
- Voltrath Mahan, College Chemistry, Addison Wesley P.Co
- Voltrath Hopp, Ingo Hennig, Handbook of Applied Chemistry, McGraw-Hill Book Co.


Page 92 of 99

V. Semishin, Laboratory Exercises in General Chemistry, Peace Publishers K.M. Gokhale, R.G. Limaye, D.A. Bhagwat, Y.R. Wani, A Textbook of Industrial Chemistry, Pragati Agencies

BIOLOGICAL SCIENCES:

1. Liebler, Daniel c .Introduction to proteomics ,Humana press

- 2. Hooman, rashidi; lukas, Buehler, bioinformatics basics applications in biological science and medicine, CRC press
- 3. Stephen, misener; steph, krawetz, Bioinformatics: methods and protocols: methods in molecular biology, Humana press
- 4. Licinio, julio, ma-liwang ,Pharmacogenomics : the search for individualized therapies, wiley
- 5. Rastogi, s.c.; mendiratta, namita; rastogi, parag., Bioinformatics concepts, skills and applications, cbs publishers and distributors
- 6. Bird r. Curtis; smith, Bruce f. Genetic library construction and screening, Springer
- 7. Schlick Tamar, Molecular modeling and simulation , Springer
- 8. Guru, a.k.; Shrivastava, Pankaj, Recent advances in forensic hiology, Anmol publications Pvt. Ltd.
- g. Crommelin, daan j.a.; sindelar, Robert d., Pharmaceutical biotechnology, 2nd edition, Routledge
- 10. Kar, ashutosh, Pharmacognosy and Pharmacobiotechnology new age international publishers
- 11. Janson jan-christer; ryden, lares, Protein Purification
- 12. Dougherty, thomas j.; projan, steven j. Microbial genomics and drug discovery Marcel dekker, inc.
- 13. Fulekar, m.h, Bioinformatics : applications in life and environmental sciences capital publishing company
- 14. Baselt Randail c. Analytical procedures for therapeutic drug monitoring and emergency toxicology second edition, PSG publishing company
- 15. world health organization, Toxicological evaluation of some food colors enzymes flavor enhancers, thickening agents, and certain other food additives,
- 16. Poole a.; Leslie g.b.a Practical approach to toxicological investigations Cambridge university press
- 17. world health organization, Toxicological evaluations of some enzymes, modified starches and certain other substances
- 18. Glaister john r. Principles of toxicological pathology, Taylor and Francis
- 19. Beselt Randall c.; Cravey, Robert h .Disposition of toxic drugs and chemicals in man third edition, year book medical publishers
- 20. Hayes a. Wallace Principles and methods of toxicology third edition raven press
- 21. Ballantyne Bryan; mars timothy; turner Paul General and applied toxicology abridgeo edition, Macmillan
- 22. Duffs john h.; worth Howard g. J. Fundamental toxicology for chemists the royal society of chemistry
- 23. Hayes a. Wallace, Principles and methods of toxicology second edition Raven press
- ²⁴. Shaw Ian c.; Chadwick john, **Principles of environmental toxicology** Taylor and Francis
- 25. Vanden heuvel john p .PCR protocols in molecular toxicology CRC press

- 26. Cupp melanic johns toxicology and clinical pharmacology of herbal products
- 27. Gad Shayne c. Drug safety evaluation ,Wiley Interscience
- 28. Jacobson-kram David ; Keller kit a. Toxicology testing handbook principles, applications, and data interpretation ,Marcel Dekker,
- 29. Fischer, Anna ; dr. Ram Prakash, Metals essentiality, toxicity and selectivity, Abd publishers
- 30. Prakash, Ram; Sood, Prem, Toxicity of xenobiotics, abd publishers
- 31. Gad, Shayne Cox, Preclinical development handbook : toxicology, Wiley -Interscience
- 32. Gad, Shayne Cox, Preclinical development handbook : adme and biopharmaceutical properties, Wiley-Interscience Fawcett, don w;
- 33. newberne, James w, Workshop on cellular and molecular toxicology, Williams and Wilkins

Books on Botany

- 1. Vashishta B.R., Algae-part I,,S.Chand & Company Ram Nagar, New Delhi-110055
- 2. Vashishta B.R, Fungi-Part II (7th edition), S.Chand & Company Ram Nagar, New Delhi-110055, 1978
- 3. Smith G.M., Cryptogrammic Botany Vol- I (Algae & Fungi), 2nd Edition Tata McGraw Hill Publishing Company Ltd., New Delhi1955
- 4. Gangulee Hirendra C., College Botany vol -I, New Central Book Agency, 8/1 Chintamoni Das Lane, Calcatta-9 (India), 1972
- 5. Smith G.M., Cryptogamic Botany vol -II (Bryophytes & Pteridophytes) -2nd Edition, McGraw Hill Book Company, Inc. (New York, Toronto, London)1955
- 6. Gangulee Hirendra C, College Botany, New Central Book Agency, 8/1 Chintamoni Das Lane, Calcatta-9 (India), 1972
- 7. Gangulee Hirendra C, College Botany, New Central Book Agency, 8/1 Chintamoni Das Lane, Calcatta-9 (India), 1972
- 8. Hole R.S., 7. manual of Indian forests, Printwell, Rupa Books Pvt. Ltd., S-12, Shopping Complex, Tilak Nagar, Jaipur -302 004 (India), 1995
- 9. Core, Earl L. Plant Taxonomy, Prentice hall, Inc., 1955
- 10. Chandurkar P.J., Plant Anatomy, M. Nagni & Co., 1962
- 11. Satyanarayana, U, Biochemistry, Books & Allied Pvt. Ltd.,8/1 Chintamoni Das Lane, Kolkata-700009 (India), 2004
- 12. Conn & Stumpf, Outlines of Biochemistry, Oxford & IBH, 1985 Salisbury & Ross, Plant Physiology, Prentice Hall of India Pvt. Ltd., M -97, Connaught Circus, New Delhi-110001, 1977
- 13. Noggle & Fritz, Introductory Plant Physiology, Prentice Hall of India Pvt. Ltd., M -97, Connaugnt Circus, New Delhi-110001, 1977
- 14. Gupta P.K., Ynka, Genetics, Rastogi Publication, Meerut- 250002 (India)
- 15. Russell P.J., Genetics (5th Edition), The Benjamin/Cummings Publishing Company, Inc., 2725 Sand Hill Road, Menlo Park, California-19025 1998
- 16. Winchester A.M., Genetics (3rd Edition), Oxford & IBH Publishing Co. Pvt.Ltd, 66 Janpath, New Delhi-110 001 (Calcutta)1966
- 17. Freifelder David, Molecular Biology, Himalaya Publishing, 2002

Page 94 of 99

- 18. Hole R.S., A manual of Indian forests, Printwell, Rupa Books Pvt. Ltd., S-12, Shopping Complex, Tilak Nagar, Jaipur -302 004(India)1995
- 19. Sagreiya K.P., Forests & Forestry (5th Edition), National Book Trust, India, A-5 Green
- 20. Kokate, C.K, A.P. Purohit, S.B.Gokhale, Pharmacognosy (18 th Edition)
- 21. Harborne, J.B., Phytochemical Methods Chapman & Hall,11 New Fetter Lane, London, 1973
- 22. Maheshwari P. An Introduction to the Embryology of Angiosperions Tata McGraw Hill Publishing Company Ltd., 4/12 Asaf Ali Road, New Delhi-110 002 1996
- 23. Bhojwani S.S., Embryology of Angiosperions, Vikas Publishing House Pvt.Ltd., 5 Ansari Road, New Delhi-110 002 (Bombay, Bangalore, Calcutta, Kanpur), 1978
- 24. Nair P.K.K., Essentials of Palynology, Asia Publishing House, (Bombay, Calcutta, New Delhi, Madras, Lucknow) 1966
- 25. Prasad, S, U. Kumar, Principles of Horticulture, Agro Botanica, Bikaner
 - 26. .Apsangikar S.D & Dr.V.V.Golatkar, Introductory Biology for std,XI New Popular Prakashn, Surat 2004
 - 27. Kalyan Kumar De, An Introduction to: Plant Tissue Culture, New Central Book Agency Pvt. Ltd., 8 / 1 Chintamoni Das Lane, Calcatta-700 009 (India) 2004
 - 28. Mukherjee, S.K College Botany Vol-3, New Central Book Agency Pvt. Lte., 8/1 Chintamoni Das Lane, Kolkata- 700 009 (India) 2006
 - 29. Trease & Evans, Pharmacognosy Elsevier, A division of Reed Elsevier India Private Limited, 17-A/1, Main Ring Road, Lajpat Nagar IV, New Delhi-110 024(India), 2005

Medicinal plant

- 1. Hoffmann Frank, Martin Manning, Herbal Medicine & Botanical Medical Fads, Viva Books Private Limited (2005), First Indian Edition
- 2. Panda H., Hand Book on Herbal Medicines, Asia Pacific Business Press Inc.
- 3. PDR for Herbal Medicines, 3rd ed, Thomson PDR at Montvale, (2004)
- 4. Panda, H., Hand Book On Medicinal Herbs with uses, Asia Pacific Business Press Inc.
- 5. Panda, H., Medicinal Plants Cultivation & their uses, Asia Pacific Business Press Inc.
- 6. Trivedi ,P. C, Medicinal Plants Traditional Knowledge, I.K.International Publishing House Pvt. Ltd., (2006)
- 7. Ben-Erik Van Wyk, Michael Wink, Medicinal Plants of the World, Briza Publications. (2004)
- 8. Ross Ivan A, "Medicinal Plants Of the World Vol-3, Humana Press ,(2005)
- 9. Daniel, M. Medicinal Plants Chemistry and Properties Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd., S-155, Panchsheela Park, New Delhi-110 017.2006
- 10. Snyder bloyd R, Joseph J. Kirkland, Joseph L. Glajch, Practical HPLC Method development (2nd Ed) A Wiley-Interscience Publication. John Wiley & Sons, Inc.(1997)

Scanned with OKEN Scanner

Books for Microbiology

- Salle a. j. 'Fundamental Principles of Bacteriology' (2005) Tata McGraw Publishing Company Limited.
- Pelczar Michel Jr; 'Microbiology Pelczar's' (5th Edition; 35th reprinting 2007)
- Stanier Roger.Y. 'General Microbiology' (5th Edition) McMillan Publishers
- Prescott ; 'Prescott & Dunn's Industrial Microbiology' (7th Edition) McMillan Publishers 1983
- Tortora; 'Microbiology An Introduction' Low Price Edition Pearson Education (2008)
- Frobisher; 'Fundamentals of Microbiology' (9th Edition); Saunder's College Publishing Philadelphia.
- 7. Brock; 'Biology of Micro-organisms' (10th Edition); Prentice Hall International Inc (2003).
- 8. Prescott; 'Microbiology' McGraw Inter0national edition (2005)

Books Computational Science

Paper I

Fundamental of Physics

- 1. H.C. Verma Concepts of physics volume 1, bharati bhavan publishers & distributors.
- 2. DS mathur Elements of properties of metter, reprint 2001, S. chand and Co. Ltd.
- 3. BK mathur and T.P. Pandya Principles of optics, Gopal Printing press, kanpur.
- 4. F.A. Jenkins and H.E Fundamentals of optics, Whitte, 4e, 1981, Mc-Graw . HillInternational.
- 5. A, Ghtak Optics, 2e, 1992, TMH.
- 6. A.B. Gupta and D. Gosh ,Atomic and nuclear physics, Books and Allied Pvt.Ltd. 2e,1999.
- S B Singh, MK Bagde and Kamal Singh Quantum Mechanics, S Chand & Co.Ltd.Reprint 2000.
- 8. D.G. Tayal Nuclear physics. Himalaya Publishers.
- 9. S.B.Patel Nuclear physics, New age international Pvt.Ltd.publishers.
- 10. semant and Albright, atomic and nuclear physics. Chapman and hall

SECOND YEAR

PAPER IV

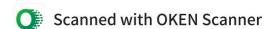
COMPUTERS

- 1. William Stallings, computer organization and architecture:, PHI, sixth edition 2. M. Moris Mano, computer system architecture:, PHI, sixth tion
- 3. M. Moris Mano, computer system architecture: PHI, sixth ition
- 4. William Stallings, computer organization and architecture: PHI, sixth edition 5. Ramkrishnam, Gehrke, Database management systems- McGraw Hill
- 6. Bayross, SQL, PL/SQL The Programming Language of Oracle- B.P.B Publications 7. Rob Vieira, Professional SQL server 2000 programming- Wrox press ltd, Shroff
- 8. Cormen, Llierson, Rivest, Stein, Introduction to algorithms (second edition): PHI
- 9. Seymour ,Data structures (Schaum's outline series in computers): Lipschutz McGraw Hill 10. E. Balaguruswamy ,Programming in ANSI C (Third edition): TMH

PAPER II,III

Applied Mathematics & Statistics

- 1. G.F.Simmons, Differential Equations with Applications and Historical notes, Mc Gra hill and chapter1, Sections 1,2,3 of Elements of Partial Differential
- 2. Serge Lang, Introduction to Linear Algebra, , Springer Verlag, Kenneth H. Rosen
- 3. E. Balaguruswamy. Discrete Mathematics and its applications, Numerical Methods, Tata mC Graw Hills
- 4. Ewens Warren J. and Grant Gregory R.(2004): Statistical Methods in Bioinformatics, Sringer.
- 5. Gene H. Golub, Chaless F. Van Loan(1996): Matrix Computation, 3rd Ed.
- 6. James Stewart(2001): Calculus: Early Transcendent
- 7. Ben hui Liu (2007): Statistical Genomics: linkage, Mapping & QTL Analysis
- 8. Lange Kenneth (2003): Mathematical and Statistical Methods for Genetic Analysis, 2nd Edition, Springer
- 9. Lange Kenneth (2005): Applied Probability,1^{:t} Edition, Springer.
- 10. Durrett Rick (2001): Essentials of stochastic Processes, Springer.
- 11. Higgins James J.and Keller-McNulty Sallie(1995): Concepts in Probability and Stochastic modeling, Duxbury.
- 12. Wackerly, Dennis D. and Mendenhall III William and Scheaffer Richard L. (2002): Mathematical statistics with Applications,6th Edition,Duxbury.


THIRD YEAR

PAPER V

PRINCIPLES OF COMPUTATIONAL BIOLOGY

- 1. G. Thomas (2000) Medicinal Chemistry: An Introduction, Wiley
- 2. Morgan Kaufmann Series in Evolutionary Computation, Morgan Kaufmann
- 3. Kenneth W. Goodman (1998) Ethics, Computing and Medicine: Informatics and the Transformation of Health Care. Cambridge University Press.
- 4. R. B. Silverman (2004) The Organic Chemistry of Drug Design and Drug Action, 2nd Edition, Academic Press.

- 5. Investigating Biological System using Modeling: Strategies and siftware, Meryl E. Wastney
- 6. Dale G.Deutsch, Analytical Aspects of Drug Testing, John Wiley and Sons
- 7. Karel Eckschlager ,Klans Danzer,Information Theory in Analytical Chemistry, John Wiley and Sons
- 8. Schultz, G. E., and Schirmer, R. H. Dr. Shakti Sahi, Principles of Protein structure,

Fifth year Paper V

- 1. Westhead, D.R., Parish, J.H. & Twyman, R.M., Instant Notes: Bioinformatics, 2002, BIOS
- 2. Higgs, P.G & Attwood. T.K., Bioinformatics and Molecular Evolution, 2005, Blackwell Publishing.
- 3. Campbell, A.M & Heyer, L.J., Discovering genomics, proteomics and bioinformatics, 2003, Benjamin Cummings.
- 4. Mount, D.W., Bioformatics sequence and genome analysis, 2nd Ed., 2004 Cold Spring Harbour Laboratory Press.
- 5. M. Lesk. (2002) Introduction to Bioinformatics Oxford University Press
- 6. G.B Fogel D.W Corne (2002) Evolutionary Computation in Bioinformatics

Fifth year Paper VI

- 1. TE Creighton, Proteins: Structures and Moiecular Principles (2d ed.),
- 2. David W. Mount, Bioinformatics: Sequence and Genome Analysis, Sequence
- 3. Scott Markel, Darryl Leon. Analysis in a Nutshell: A Guide to Common Tools and Databases,
- Tao Jiang, Ying Xu, Current Topics in Computational Molecular Biology (Computational Molecular Biology), Michael Zhang (Editors),
- Andreas D. Baxevanis, B. F. Francis Ouellette., Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Second Edition,
- 6. Bioinformatics: Sequence, Structure and Databanks: A Practical Approach (The Practical Approach Series, 236), Des Higgins (Editor), Willie Taylor (Editor).
- 7. Dan E. Krane Michael L. Raymer , Fundamental Concepts of Bioinformatics,
- 8. Neil C. Jones, Pavel Pevzner, Introduction to Bioinformatics Algorithms.
- 9. Mitra, Sushmita Acharya, Tinku, Data Mining: Multimedia, Soft Computing, and Bioinformatics,
- 10. Warren Ewens, Gregory Grant, Statistical Methods in Bioinformatics: An Introduction (Statistics for Biology and Health), ,
- Isaac S. Kohane, Alvin Kho, Atul J. Butte, Micro arrays for an Integrative Genomics
 (Computational Molecular Biology),
 Page 98 of 99