As Per NEP 2020

University of Mumbai

Syllabus forMinor Vertical 2

Faculty of Engineering

Board of Studies in Electronics Engineering

Second Year Programme in Minor (<u>Microprocessors and Microcontrollers</u> Subject)

Semes	ter		IV
Title of	Paper (Theory)	Sem.	Total Credits 4
I)	Microprocessors and Microcontrollers	IV	3
Title of	Paper (Lab)		Credits
II)	Microprocessors and Microcontrollers Lab	IV	1
From tl	he Academic Year		2025-26

Sem. - IV

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Microprocessors and Microcontrollers	2	2	-	2	-	-	2	

Course				Theor		Total		
		Internal Assessment (IAT)			End Sem	Exam Duration		
Course Code	Course Name	IAT-	IAT- II	IAT-I + IAT-	Exam	(in Hrs)		
		1	11	II				
				(Total)				
	Microprocessors and Microcontrollers	20	20	40	60	2		100

Course Objectives:

1	To study the concepts and basic architecture of a Microprocessor and Microcontroller.
2	To write Assembly language programs for Microprocessors and Microcontrollersfor various applications
3	To know the importance of different peripheral devices and their interfacing to 8086 and 8051
4	To build Microprocessor and Microcontroller based systems.

Course Outcomes: After the successful completion students should be able to :-

CO1	Explain the architectural features of 16-bit Microprocessors like the 8086 and microcontrollers like the 8051
CO2	Develop Assembly language programs for the 8086 and the 8051
CO3	Design a microprocessor-based system including memory and I/O
CO4	Interface the 8051 to various devices including displays and actuators
CO5	Highlight the differences between basic and advanced microprocessors and microcontrollers

DETAILED SYLLABUS:

Module No.	Unit No.	Topics	References	Hrs.
1	The 8086 Mi	croprocessor		06
	1.1	8086 Architecture	1,2,5	

	1.2	Memory Segmentation	1,2,5	
	1.3	8086 pin description	1,2,5	
	1.4	Interrupts and Interrupts processing	1,2,5	
2	8086 pro	ogramming		06
	2.1	Addressing modes	1,2	
	2.2	Instruction Set and Assembler Directives	1,2	
	2.3	Assembly language programming	1,2	
3	8086 Int	erfacing		06
	3.1	Clock and Reset Circuits of 8086	1,2	
	3.2	8255-PPI: Functional Block Diagram and description, Operating Modes	1,2	
	3.3	System design (including Memory and I/O)	1,2	
4	The 805	1 Microcontroller		08
	4.1	Differences between a Microprocessor and Microcontroller	4,6,7,8	
	4.2	Architecture of 8051	4,6,7,8	
	4.3	Memory Organization of the 8051	4,6,7,8	
	4.4	Addressing modes	4,6,7,8	
	4.5	Instruction set	4,6,7,8	
	4.6	Assembly language programming.	4,6,7,8	
5	8051 Int	erfacing		8
	5.1	I/O port programming	3	
	5.2	Programming 8051 Timers	3	
	5.3	Serial Port Programming	3	

5.4	LCD Interfacing	3	
5.5	Stepper Motor and DC motor Interfacing	3	
Case-Stu	udies		05
6.1	Case Study on Pentium processor (Features and Architecture only)	9	
6.2	Case Study on ARM Cortex cores (Features and Architecture only)	10	
		Total	39
	5.5 Case-Str	5.5 Stepper Motor and DC motor Interfacing Case-Studies 6.1 Case Study on Pentium processor (Features and Architecture only) 6.2 Case Study on ARM Cortex cores	5.5 Stepper Motor and DC motor Interfacing Case-Studies 6.1 Case Study on Pentium processor (Features and Architecture only) 6.2 Case Study on ARM Cortex cores (Features and Architecture only)

Text Books:

- [1]8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education)
- [2] Microprocessor and Interfacing: By Douglas Hall (TMH Publication)
- [3] The 8051 Microcontroller and Embedded Systems Using Assembly and C: By M. A. Mazidi, J.
- C. Mazidi, Rolin D. McKinlay, Pearson Education, 2ndEdition.
- [4] The 8051 Microcontroller: By Kenneth J. Ayala, Cengage Learning India Pvt. Ltd, 3rdEdition Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: By Liu & Gibson (PHI Publication).
- [5] The INTEL Microprocessors, Architecture, Programming and Interfacing: By Barry B. Brey (Pearson Publishers, 8th Edition)
- [6] Microcontrollers: Architecture, Programming, Interfacing and System Design: By RajKamal, Pearson Education, 2005.
- [7] The 8051 Microcontroller Based Embedded Systems: By Manish K Patel, McGraw Hill, 2014.
- [8] Microcontroller Theory And Applications: By Ajay V Deshmukh, Tata Mcgraw Hill
- [9] Don Anderson, Tom Shanley, "Pentium Processor System Architecture", Addison Wesley Professional, 2nd Edition.
- [10] Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Assessment:

Internal Assessment (IA) for 20 marks each:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of the syllabus content must be covered in the IAT-I and the remaining 40% to 50% of the syllabus content must be covered in the IAT-II.

End Semester Theory Examination:

- > Question paper format
 - Question Paper will comprise a total of six questions each carrying 15 marks Q.1 will be compulsory and should cover the maximum contents of the syllabus
 - Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of **four questions** need to be answered

	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
Microprocessors and Microcontrollers Laboratory	-	2	-	-	1	-	1

Course Code	Course Name		Examination Scheme								
		Theory Marks Internal assessment (IAT)			End	Term	Practical/	Total			
		IAT I	IAT-II	IAT-I +IAT-II (Total)	Sem. Exam	Work	Oral	Total			
	Microproce ssors and Microcontr ollers Laboratory					25	25	50			

	1.	To apply assembly language programming for Arithmetic, Logical and control tasks using 8086 and 8051.					
Laboratory Objectives	2	To analyse and implement peripheral interfacing techniques for real world applications.					
	3.	To design and develop hardware-software solutions using Microprocessors and Microcontrollers.					
	After th	e successful completion students should be able to:					
Laboratory	LO 1	Develop and debug Assembly programs for 8086 and 8051.					
Outcomes	LO 2	Interface various peripherals with 8086 and 8051.					
	LO 3	Create Microprocessor and Microcontroller-based solutions for practical applications.					

Suggested List of Laboratory Experiments:

Sr. No.	Title of experiment	Module	Reference
1.	Arithmetic Operations (using 8086)	2	1,2
2.	Logical Operations (using 8086)	2	1,2
3.	BCD Operations (using 8086)	2	1,2
4.	Arrange block of data in Ascending /Descending order (using 8086)	2	1,2
5.	32 Bit multiplication (using 8086)	2	1,2
6.	Password verification (using 8086)	2	1,2
7.	String operations (Reversing of string and Palindrome) (using 8086)	2	1,2
8.	Code conversions (using 8086)	2	1,2
9.	Finding GCD and LCM of Two Numbers (using 8086)	2	1,2
10.	Hexadecimal to ASCII Conversion (using 8086)	2	1,2
11.	Serial port programming of 8051	5	3
12.	Applications of Timers of 8051	5	3
13.	LCD Interfacing (using 8051)	5	3
14.	Sensor interfacing using an ADC (using 8051)	5	3
15.	Generation of different waveforms using DAC (using 8051)	5	3
16.	Speed Control of DC Motor (using PWM) (using 8051)	5	3
17	Stepper Motor Interfacing (using 8051)	5	3
18	Traffic Light Controller Simulation	5	3

Laboratory Assessment:

Assessment:

Term Work: Term Work shall consist of at least 10 to 12 practicals based on the above list. Also, Termwork Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical/ Oral Exam: An Oral examination will be held based on the above syllabus.

Recommended Books:

- [1]8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education)
- [2] Microprocessor and Interfacing: By Douglas Hall (TMH Publication)
- [3] The 8051 Microcontroller and Embedded Systems Using Assembly and C: By M. A. Mazidi, J.
- C. Mazidi, Rolin D. McKinlay, Pearson Education, 2ndEdition.

Sd/-Sd/-Dr. R.N.Awale BoS-Chairman-Electronics Engineering Faculty of Technology

Dr. Deven Shah
Associate Dean
Faculty of Science & Technology

Prof. Shivram S. Garje
Dean
Faculty of Science & Technology