As Per NEP 2020

University of Mumbai

Syllabus for MDM offered by Automation and Robotics Engineering Vertical – 2

(Not to offer for Automation & Robotics Engg., Mechanical & Automation and Mechatronics Engg. Students)

Faulty of **Engineering**

Board of Studies in Mechanical Engineering

Second Year Programme in Minor (Automation and Robotics Engineering)

Semester		IV
Title of Paper (Theory)	Sem.	Total Credits 4
Basic Elements of Automation	IV	3
Title of Paper (Lab)		Credits
Basic Elements of Automation Lab	IV	1
From the Academic Year		2025-26

Program Structure for MDM offered by Automation and Robotics Engineering UNIVERSITY OF MUMBAI (With Effect from 2025-26)

SEMESTER IV to SEMESTER VII

Course Code	Course Description	(C	Teaching Scheme (Contact Hours)		Credit Assigned			
		Theory	Practical	Tutorial	Theory	Tutorial	Practical	Total Credits
2034211	Basic Elements of Automation	3	1		3	-	-	3
2034212	Basic Elements of Automation Lab	_	2	_	_	_	1	1
2035211	Sensors Actuators and Interfacing	3			3			3
2035212	Sensors Actuators and Interfacing Lab	-	2	-	-	-	1	1
2036211	Robotics and Automation System	3	_		3	_	_	3
2036212	Robotics and Automation System Lab	-	2	-	-	-	1	1
2037211	Automation and AI Lab	-	2*+2				2	2
Total		9	10		9		5	14

^{*} Two hours of practical class to be conducted for full class as demo/discussion #Institute shall offer a course for MDM from other Engineering Boards.

		Examination Scheme							
Course		Interna	l Assess (IAT	sment Test)	End Sem.	End Sem.	Term	Oral	
Code	CourseDescription	IAT-I IAT-II Total Exam Marks IAT-II IAT-II)		Exam Duration (Hrs)	Work (Tw)	& Pract.	Total		
2034211	Basic Elements of	20	20	40	60	2			100
2034211	Automation								100
2034212	Basic Elements of						25		25
2034212	Automation Lab						23		23
2035211	Sensors Actuators and	20	20	40	60	2			100
	Interfacing								100
2035212	Sensors Actuators and						25	25	50
2033212	Interfacing Lab						23	23	30
2036211	Robotics and Automation	20	20	40	60	2			100
2030211	System								100
2036212	Robotics and Automation						25	25	50
2030212	System Lab							25	30
2037211	Automation and AI Lab	1					50	25	75
	Total	60	60	120	180	6	125	75	400

Course Course Name			ching Sche ntact Hou		Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2034211	Basic Elements of Automation	3		-	3		-	3

			Theory					Pract	Total
		Interr	nal Asses	sment	End	Exam	work	/	
		Test	Test	Total	Sem	Duratio		Oral	
		1	2		Exa	n			
					m	(in Hrs)			
2034211	Basic Elements of	20	20	40	60	2			100
2034211	Automation	20	20	40	00	2			100

Rationale:

This subject equips students with foundational knowledge of industrial automation by introducing essential electrical, mechanical, pneumatic components, automation circuits, and PLCs, developing skills crucial for modern automated system design and control.

Course Objectives:

- 1. To study power electronic switches and circuits and their applications.
- 2. To acquaint with basics of analog and digital circuits for the design of mechanical processes control
- 3. **Understand the fundamentals of Boolean Algebra** and apply Boolean laws and theorems to simplify logical expressions
- 4. To understand and design basic automation circuits including motor control with protection and delay features.
- 5. To study the components and working of pneumatic and electro-pneumatic control systems.
- 6. To gain practical knowledge of PLC architecture and programming for industrial automation tasks.

Course Outcomes:

- 1. Illustrate construction, working principles and applications of power electronic switches.
- 2. Identify rectifiers and inverters for dc and ac motor speed control
- 3. Apply Boolean algebra and logic gate knowledge to analyze and simplify logic expressions.
- 4. Design and implement automation circuits for motor control with safety and timing features.
- 5. Explain and apply pneumatic and electro-pneumatic components in automation systems.
- 6. Develop and simulate PLC programs using ladder logic and other programming formats for control applications.

Prerequisite:

Students should have basic knowledge of Physics ,Mathematics, Fundamentals of Electrical and Electronics Measurements

DETAILED SYLLABUS:

Sr. No.	Name of Module	Detailed Content	Hours	CO Mapping
				Mapping
0	Prerequisite	Basic knowledge of Physics ,Mathematics,		
		Fundamentals of Electrical and Electronics		
		Measurements		
I	Semiconductor	Review of diodes, V-I characteristics and	7	CO1
	Devices:	Applications of: rectifier diode, zener diode,		
		LED, photodiode; SCR V-I characteristics, UJT		
		triggering circuit, turning-off of a SCR		
		(preliminary discussion), basics of Gate Turn		

		Off (GTO), Structure and V-I characteristics of		
		` ''		
		Triac (modes of operation not needed) and Diac,		
		Applications of Triac-Diac circuit;		
		Characteristics of Power BJT, power MOSFET,		
		IGBT; Comparison of SCR, Triac, Power BJT,		
		power MOSFET, IGBT		
II	Phase controlled	Full wave controlled rectifier using SCR's (Semi	6	CO2
	rectifiers and Bridge	controlled, fully controlled) with R load only,		
	inverters:	Block diagram of closed loop speed control of DC		
		motors, Basic principle of single phase and three		
		phase bridge inverters, block diagrams including		
		rectifier and inverter for speed control of AC		
		motors (frequency control only)		
III	Digital logic and	Boolean algebra and logic gates. logic families:	6	CO3
	logic families	Logic Levels, Noise Immunity, Fan Out,	Ü	
	logic families	Propagation Delay, TTL and CMOS logic		
		families, Flip flops: Set Reset(SR), Trigger(T),		
		clocked F/Fs; Registers, Multiplexer and		
***	A	Demultiplexer applications		GO 4
IV	Automation Circuits	Introductory Principles in Designing Automation	6	CO4
		Circuits: Latch, Command Circuits for Motor		
		Operation with Thermal Overload Protection,		
		Machine operation with (a) Fault Indication,		
		(b)Starting Delay (c) Stopping Delay, (d) Automatic or Manual control.		
V	Pneumatics Electro-	Properties of air, Compressors, Filter, Regulator,	7	CO5
v	pneumatics	Lubricator Unit, classification of pneumatic actuators,	,	CO3
	pheumatics	Air control valves, Quick exhaust valves, directional		
		control valves, non-return valves, logic valves,		
		Electro-pneumatic systems, Dominant OFF and		
		Dominant ON circuit, Counting and timing.		
VI	PLC Control	Architecture of PLC, Types of Input & Output	7	CO6
		modules (AI, DI, DO, AO), Wiring diagram, PLC		
		Basic in structions, Timers & Counters, PLC ladder		
		diagram, FBD and IL		
	•	Total	39	

Text Books:

1. "Industrial Automation Hands-On" by Frank Lamb, McGraw-Hill Education 2013

References:

- 1. "Introduction to Industrial Automation" Stamatios Manesis, George Nikolakopoulos CRC Press 2018
- 2. Fluid Power with Applications by Anthony Esposito Pearson Education 2000.

Online References:

Sr. No.	Website Name
1.	https://youtu.be/tN7iAzVEqa0?feature=shared
2.	https://youtu.be/tw-79FiRYKA?feature=shared
3.	https://onlinecourses.nptel.ac.in/noc25_me58/preview

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

 Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 we be compulsory and should cover maximum contents of the syllabus
• Remaining questions will be mixed in nature (part (a) and part (b) of each question me be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
• A total of Three questions need to be answered

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Course Code	Course Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	To tal
2034212	Basic Elements of Automation Lab		2	-		1	-	1

	Course Name		Examination Scheme						
Course Code		Theory Marks Internal assessment			End	Term	Practical/	Total	
		Test	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Oral	Total	
2034212	Basic Elements of Automation Lab	1				25	25	50	

Lab Objectives:

- 1. To study and analyze V-I characteristics and applications of power electronic devices such as SCR, Triac, Diac, and IGBT.
- 2. To implement and test controlled rectifier circuits and inverter configurations for motor control applications.
- 3. To design and verify digital logic circuits using Boolean algebra, logic gates, flip-flops, and multiplexers.
- 4. To design and simulate basic automation circuits such as latching circuits, interlocks, and motor starter circuits with fault indication and time delay features.
- 5. To study the working principles and components of pneumatic systems including compressors, valves, actuators, and FRL units.
- 6. To develop and implement ladder logic for controlling basic automation sequences.

Lab Outcomes:

- 1. To demonstrate the ability to test and interpret the characteristics of power semiconductor devices.
- 2. To develop rectifier and inverter-based control circuits and analyze their performance with various loads.
- 3. To construct and verify digital logic circuits and understand the behavior of different logic families and memory elements.
- 4. To design circuits involving motor starters, latching, interlocks, fault indication, and time delay controls.
- 5. To build working models using pneumatic actuators, directional control valves, and electropneumatic systems integrating electrical control
- 6. To develop and debug ladder logic programs for sequence control, timing, and interlocking operations.

Prerequisite:

To effectively engage with the laboratory sessions covering Fundamentals of Electrical and Electronics Measurements, Measuring Devices and Instruments and, Basics of Automation Systems

List of Experiments.

Sr No	List of Experiments	Hrs
01	V-I Characteristics of Diode, Zener Diode, and LED	2
02	SCR Characteristics and UJT Triggering Circuit	2
03	Triac and Diac Characteristics with Lamp Control Circuit	2
04	Study and Comparison of Power BJT, MOSFET, and IGBT Characteristics	2
05	Full Wave Controlled Rectifier using SCRs with R Load	2
06	Simulation of DC Motor Speed Control using Closed Loop System	2
07	Design and Analysis of Single Phase Inverter using Power Devices	2
08	Implementation of Flip-Flop Circuits (SR, T, Clocked)	2
09	Multiplexer and Demultiplexer Application Circuits	2
10	Design of Start Delay and Stop Delay Circuits	2
11	Study of Electro-Pneumatic Circuit with Solenoid Valve and Limit Switch Control	2
12	Development of Basic PLC Ladder Logic Program for Motor Control	2
13	Implementation of Timers and Counters in PLC	2
14	PLC-Based Automation of Conveyor or Bottle Filling System	2

Sr No	List of Assignments / Tutorials	Hrs
01	Compare and contrast the characteristics and applications of SCR, Triac, MOSFET, IGBT, and Power BJT.	2
02	Design a full-wave controlled rectifier circuit using SCRs and explain its working with waveforms.	2
03	Implement Boolean expressions using basic logic gates and explain the operation of multiplexers and demultiplexers in digital systems.	2
04	Design and simulate (or draw) an automation circuit for motor control using a latch , thermal overload , and start/stop push buttons .	2
05	Explain with diagrams the working of a basic electro-pneumatic circuit including FRL, actuator, DCV, and sensor.	2
06	Develop and simulate a PLC ladder diagram for a conveyor system with start/stop control, timer delay , and fault indication .	2

Assessment:

Term Work: Term Work shall consist of at least 8 to 10 practicals' based on the above list. Also, Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.