i University of Flumbai

0. AAMS UGS/ICC/2024-25/ | 05
CIRCULAR:- -

Attention of
Recognized Institutions a
circular No. AAMS_UGS/IC
& PG Syllabus. } :

The; are ‘ﬁereby informed that the recommendations made fy' the Ad-hoc
Board of Studies in Computer Science at its meeting held on 01 July, 2024 and
subsequently passed by the Board of Deans at its meeting held on 10" July, 2024
vide item No. 6.5 (R) have been accepted by the Academic Council at its meeting held
on 12" July, 2024 vide item No.6.5 (R) and that in accordance therewith to correction in
the syllabus 1) on page 10 Subject Table for Sem- I1 ~VSC subject title to be read as Web
Technologies instead of Web designing 2) on page 50 the Title of the VSC subject to be
read as Web Technologies instead of Web Designing for the B.Sc. (Computer Science)
(Sem. I & 1I) as per appendix (NEP 2020) with effect from the academic year 2024-25.

(The circular is available on the University’s website www.mu.ac.in).

ipals of the Affiliated Colleges, Directors of the
ead, University Departments is invited to this office
2024-25/4 dated 11" June, 2024 relating to the NEP UG

MUMBALI - 400 032 (Prof.(Dr) Baliram Gaikwad)
22" August, 2024 [/c Registrar
To

The Principals of the Affiliated Colleges, Directors of the Recognized Institutions
and the Head, University Department.

A.C/6.5(R)/12/07/2024
Copy forwarded with Compliments for information to:-
1) The Chairman, Board of Deans,
2) The Dean, Faculty of Science & Technology.
3) The Chairman, Ad-hoc Board of Studies in Computer Science,
4) The Director, Board of Examinations and Evaluation.
5) The Director, Board of Students Development,
6) The Director, Department of Information & Communication Technology.
7) The Director, Institute of Distance and Open Learning (IDOL Admin),
Vidyanagari.
8) The Deputy Registrar, Admissions, Enrolment, Eligibility & Migration
Department (AEM),

Copy forwarded for information and necessary action to :-

1 The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM),
dr@eligi.mu.ac.in

2 The Deputy Registrar, Result unit, Vidyanagari
drresults@exam.mu.ac.in

3 The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari
dr.verification@mu.ac.in

4 The Deputy Registrar, Appointment Unit, Vidyanagari
dr.appointment@exam.mu.ac.in

5 The Deputy Registrar, CAP Unit, Vidyanagari
cap.exam@mu.ac.in

6 The Deputy Registrar, College Affiliations & Development Department (CAD),
deputyregistrar.uni@gmail.com

7 The Deputy Registrar, PRO, Fort, (Publication Section),
Pro@mu.ac.in

8 The Deputy Registrar, Executive Authorities Section (EA)
eaul20@fort.mu.ac.in
He is requested to treat this as action taken report on the concerned resolution adopted by the
Academic Council referred to the above circular.

9 The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
rapc@mu.ac.in

10 | The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA)
dy.registrar.tau.fort.mu.ac.in
ar.tau@fort.mu.ac.in

11 | The Deputy Registrar, College Teachers Approval Unit (CTA),
concolsection@gmail.com

12 | The Deputy Registrars, Finance & Accounts Section, fort
draccounts@fort.mu.ac.in

13 | The Deputy Registrar, Election Section, Fort
drelection@election.mu.ac.in

14 | The Assistant Registrar, Administrative Sub-Campus Thane,
thanesubcampus@mu.ac.in

15 | The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
ar.seask@mu.ac.in

16 | The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri,

ratnagirisubcentre@gmail.com

mailto:dr@eligi.mu.ac.in
mailto:drresults@exam.mu.ac.in
mailto:dr.verification@mu.ac.in
mailto:dr.appointment@exam.mu.ac.in
mailto:cap.exam@mu.ac.in
mailto:deputyregistrar.uni@gmail.com
mailto:Pro@mu.ac.in
mailto:eau120@fort.mu.ac.in
mailto:rapc@mu.ac.in
mailto:ar.tau@fort.mu.ac.in
mailto:concolsection@gmail.com
mailto:draccounts@fort.mu.ac.in
mailto:drelection@election.mu.ac.in
mailto:thanesubcampus@mu.ac.in
mailto:ar.seask@mu.ac.in
mailto:ratnagirisubcentre@gmail.com

Copy for information :-

1

P.A to Hon’ble Vice-Chancellor,
vice-chancellor@mu.ac.in

P.Ato Pro-Vice-Chancellor
pvc@fort.mu.ac.in

P.A to Registrar,
registrar@fort.mu.ac.in

P.A to all Deans of all Faculties

P.A to Finance & Account Officers, (F & A.O),
camu@accounts.mu.ac.in

The Chairman, Board of Deans

The Dean, Faculty of Humanities,

Chairman, Board of Studies,

The Director, Board of Examinations and Evaluation,
dboee@exam.mu.ac.in

The Director, Board of Students Development,
dsd@mu.ac.in@gmail.com DSW direcotr@dsw.mu.ac.in

The Director, Department of Information & Communication Technology,

The Director, Institute of Distance and Open Learning (IDOL Admin),
Vidyanagari,
director@idol.mu.ac.in

mailto:vice-chancellor@mu.ac.in
mailto:pvc@fort.mu.ac.in
mailto:registrar@fort.mu.ac.in
mailto:camu@accounts.mu.ac.in
mailto:dboee@exam.mu.ac.in
mailto:direcotr@dsw.mu.ac.in
mailto:director@idol.mu.ac.in

AC —12/7/2024
Item No. — 6.5 (R)

As Per NEP 2020

/ University of Mumbal \

”“Hllllu,.

I

%Imnnum..[.,.,

1
|

ety J

L E

Title of the program

A- U.G. Certificate in Computer Science
B- U.G. Diploma in Computer Science

C- B.Sc. (Computer Science)
D- B.Sc. (Hons.) in Computer Science
E- B.Sc. (Hons. with Research) in Computer Science

Syllabus for
Semester — | & 11
Ref: GR dated 20" April, 2023 for Credit Structure of UG

\({ith effect from the academic year 2024-25 progressivey

University of Mumbai

(As per NEP 2020)

Sr. No.

Heading

Particulars

Title of program
O: SU-521A

U.G. Certificate in Computer Science

O: SU-521B

U.G. Diploma in Computer Science

O: SU-521C

B.Sc. (Computer Science)

O: SU-521D

B.Sc. (Hons.) in Computer Science

O: SU-521E

B.Sc. (Hons. with Research) in
Computer Science

Eligibility
O: SU-522A

A candidate for being eligible for
admission must have passed Higher
Secondary School Certificate
Examination (Std. XII) in Science stream
conducted by the Maharashtra State Board
of Secondary and Higher Secondary
Education with Mathematics and
Statistics as one of the subject or its
equivalent. Admission will be on merit,
based on order of preference as follows:
1. Aggregate Marks at H.S.C. or
equivalent.
2. Aggregate Marks in Science Group
(Physics, Chemistry and Mathematics)
3. Marks in Mathematics and Statistics
and Physics. Marks in Mathematics
and Statistics.
OR
Passed Equivalent Academic Level 4.0
with Mathematics and Statistics as one
of the subject

O: SU-522B

Under Graduate Certificate in Computer
Science Academic Level 4.5

O: SU-522C

Under Graduate Diploma in Computer
Science Academic Level 5.0

O: SU-522D

Bachelors of Science in Computer Science
with minimum CGPA of 7.5 Academic
Level 5.5

O: SU-522E

Bachelors of Science in Computer Science
with minimum CGPA of 7.5 Academic
Level 5.5

3 Duration of program
R: SU-551 A One Year
B Two Years
C Three Years
D Four Years
E Four Years
4 Intake Capacity
R: SU-552
5 Scheme of Examination NEP
R: SU-553 40% Internal
60% External, Semester End Examination
Individual Passing in Internal and External
Examination
6 Standards of Passing
R: SU-554 40% in each component
7 Credit Structure Attached herewith
Sem. | - R: SU-555A
Sem. Il -R: SU-555B
Credit Structure
Sem. Il - R: SU-555C
Sem. IV -R: SU-555D
Credit Structure
Sem. V - R: SU-555E
Sem. VI -R: SU-555F
8 Semesters A Sem | & Il
B Sem Il & IV
C SemV & VI
D Sem VIl & VI
E Sem VIl & VI
9 Program Academic Level A 4.5
B 5.0
C 55
D 6.0
E 6.0
10 Pattern Semester
11 Status New
12 To be implemented from Academic

Year Progressively

From Academic Year: 2024-25

This syllabus is applicable to IDOL students as well, w. e. f. 2025-26.

Sign of the BOS Chairman

Dr. Jyotshna Dongardive
Ad-hoc BOS (Computer Science)

Sign of the Offg. Associate Dean

Dr. Madhav R. Rajwade
Faculty of Science & Technology

Sign of Offg. Dean

Prof. Shivram S. Garje
Faculty of Science & Technology

Preamble

1) Introduction

In the era of Information and Communication Technology (ICT), the transformative impact of
computers on society is undeniable. The pervasive applications of computing across diverse fields
have given rise to dynamic industries, evolving in tandem with the swift pace of technological change.
As the landscape of the computing field continues to advance, it becomes imperative for students to
cultivate a robust foundation that not only facilitates their current skills but also empowers them to
adapt to the evolving nature of the field.

In line with the National Education Policy (NEP) 2020, our revised Computer Science program is
designed to instill in students the ability to navigate the ever-changing technological terrain.
Recognizing that specific languages and platforms may undergo transformations, the curriculum
places a strong emphasis on fostering adaptability. Students will not only be exposed to a diverse
array of programming languages, tools, paradigms, and technologies but will also delve into the
fundamental principles that underpin the realm of computer science.

The core of our program encompasses essential courses such as programming languages, data
structures, computer architecture and organization, algorithms, database systems, operating systems,
and software engineering. Complementing these foundational elements are specialized courses in
areas such as artificial intelligence, computer-based communication networks, distributed computing,
information security, graphics, human-computer interaction, multimedia, scientific computing, web
technology, and other cutting-edge topics in computer science.

Key Philosophy of the Program:

e Form Strong Foundations: Lay the groundwork for a comprehensive understanding of Computer
Science.

e Nurture Skills: Develop programming, analytical, and design skills to tackle real-world problems
effectively.

e Introduce Gradually: Familiarize students with emerging trends in a gradual and coherent manner.

e Prepare for Industry Challenges: Groom students to meet the challenges of the ICT industry with
confidence and competence.

In acknowledgement of the evolving aspirations of students, our program not only prepares them for
careers in the industry but also opens doors to research opportunities. The primary goal is to deliver
a modern curriculum that equips graduates with both theoretical depth and practical acumen,
empowering them to excel in the workplace while fostering a mindset of lifelong learning.

This program not only paves the way for a successful career in the software industry but also inspires
students to pursue further studies and research opportunities. Graduates can seamlessly transition into
postgraduate programs in Computer Science, leading to research and development roles, employment
in IT industries, or even a career in business management.

As we unveil this syllabus, we invite students on a journey of exploration, learning, and innovation,
ensuring they are not only prepared for the present but also poised to shape the future of Computer
Science.

2) Aims and Objectives

Understanding and Knowledge Base: Develop a profound understanding and knowledge of the
fundamental theories, systems, and applications that form the bedrock of Computer Science. This
includes establishing a strong foundation in theoretical concepts and cultivating expertise in the
practical application of Computer Science theories.

Analytical Abilities and Problem Solving: Foster essential skills and analytical abilities required
for devising computer-based solutions to real-life problems. This involves developing critical
thinking skills for problem identification and analysis, as well as cultivating the ability to design and
implement effective solutions using computational tools.

Training in Emerging Technologies: Provide training in emergent computing technologies,
facilitating the development of innovative solutions for both industry and academia. This includes
exposing students to cutting-edge technologies and their applications, as well as encouraging
exploration and experimentation with emerging tools and platforms.

Preparation for Post-Graduate Studies: Develop the necessary study skills and knowledge for
students to pursue further post-graduate study in Computer Science or related fields. This involves
equipping students with the academic rigor required for advanced studies and fostering a passion for
continuous learning and research in the field.

Professional Skillset Development: Develop the professional skillset required for a successful
career in an information technology-oriented business or industry. This includes providing practical
exposure to industry-relevant tools and practices, as well as instilling a sense of professional ethics
and responsibility.

Independent and Collaborative Work: Enable students to work independently and collaboratively,
communicate effectively, and become responsible, competent, confident, insightful, and creative
users of computing technology. This involves cultivating independence in problem-solving and
project execution, as well as enhancing communication and collaboration skills for effective
teamwork.

3) Learning Outcomes
At the end of three year Bachelor of Computer Science the students will be able:

e Formulate, model, and design solutions and procedures, utilizing software tools to address real-world
problems effectively.

e Design and develop computer programs and computer-based systems in diverse areas such as
networking, web design, security, cloud computing, 0T, data science, and other emerging

technologies.

e Familiarize themselves with modern-day trends in industry and research-based settings, fostering the
ability to innovate novel solutions to existing problems.

e Apply concepts, principles, and theories related to computer science to new and challenging
situations.

e Demonstrate proficiency in using current techniques, skills, and tools essential for computing
practice.

e Apply standard Software Engineering practices and strategies in real-time software project
development.

e Pursue higher studies of specialization and confidently enter technical employment.

e Work independently or collaboratively as effective team members on substantial software projects,
showcasing project management and teamwork skills.

e Communicate and present their work effectively and coherently, both in oral and written formats.

e Display ethical conduct in the usage of the Internet and Cyber systems, understanding and adhering
to ethical standards in computing practices.

e Engage in independent and life-long learning, adapting to the rapidly changing IT industry and
staying abreast of evolving technologies.

) Credit Structure of the Program (Sem I, 11, 111 & 1V) (Table as per Parishisht 2 with sign of HOD and Dean)

Under Graduate Certificate in Computer Science

R: A
: Cum.
Major AEC OJT, FP
. ' o Cr./
Level Semester Mandat Electi Minor | OE V(%/%ESE)C VEC, CEP, CC, C%er%reg/r
andato ectives T
ry IKS RP Sem.
VSC:2
MJ1: Digital Systems & Introduction to
Architecture (TH) — 2 Programming with
Python — 2
MJ2: Fundamentals of AEC:2,
I Database Systems (TH) —2 - - 2+2 | SEC:2 VEC:2, CC:2 22
Statistics with R IKS:2
MJP1: Computer Science Programming — 2
Practical 1 (PR) -2 OR
6 Linux Operating
System — 2 uG
R: B Certificat
4.5 VSC:2 er L:,Afca e
MJ3: Design & Analysis of erb Technologies
Algorithms (TH) -2 B
. . SEC:2
MJ4: Object Oriented
. Database AEC:2,)
1 Programming (TH) — 2 - 2 2+2 Management VEC-2 CC:2 22
i . Systems using
MJP?. Computer Science PL/SQL — 2
Practical 2 (PR) — 2 OR
6 Advanced Python
Programming — 2
Cum Cr. 12 - 2 8 4+4 4+4+2 4 44

Major and Minor

Exit option: Award of UG Certificate in Major with 40-44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with

Under Graduate Diploma in Computer Science

R: C
j Cum.
Major AEC, | OJT,FP
. : P Cr./
Level Semester Mand Elect Minor| OE V(%/%ESCI:E)C VEC, CEP, CC, r CDuer$]1rece/r
andatory ectives IKS RP Serm.
MJ5: Principles of Operating Systems
(TH) -2
MJ6: Theory of Computation (TH) — 2 VSC:2
. | FP:2CC:2
i MJ7: Data Structures (TH) — 2 i 4 2 | Java , AEC:2 22
Programming —
MJP3: Computer Science Practical 3 2
(PR) -2
8
R: D
_ uG
SEC:2 Diploma
MJ8: Computer Networks (TH) — 2 Mobile 88
. e _ Application
MJ9: Software Engineering (TH) — 2 Development - CEP: 2
5.0 v MJ10: 1oT Technologies (TH) — 2 - 4 2 2 AEC:2 CC:2 22
MJP4: Computer Science Practical 4 OR
(PR) -2 5 MEAN Stack
Development —
2
Cum Cr. 28 - 10 12 6+6 8+4+2 8+4 88
Exit option; Award of UG Diploma in Major and Minor with 80-88 credits and an additional 4 credits core NSQF course/ Internship OR Continue
with Major and Minor

B.Sc. (Computer Science)

R: E
Level |Semester Major Minor| OE \SC, SEC| AEC, OJT, FP,| Cum. Cr.| Degree/
_ (VSEC) | VEC, | CEP,cCC, /| Cum.Cr.
Mandatory Electives IKS RP Sem.
E/Iélllz Artificial Intelligence (TH) MJEL 1: Software Testing &
Quality Assurance (TH) —2
. . OR
g/le‘(]:lljrzlt C{.FS)% I2nf0rmat|on MJEL2: Wireless & Sensor
y Networks (TH) — 2 VSC: 2
\V/ 2/IJ13: Moral & Enhtical Al (TH) - MJELP1: Software Testing & 4 - Ethical - FP/CEP:2 22
Quality Assurance Practical (PR) — Hacking
MJP5: Computer Science Practical 2 -2
5 (PR) - 2 _ OR
MJELP2:Wireless & Sensor
MJP6: Mini Project — I (PR) - 2 Networks Practical (PR) — 2
10 ‘ UG
55 R: F Degree
MJ14: Data Science (TH) — 2 MJELZ3: Information Retrieval 132
(TH) -2
MJ15: Cloud Computing (TH) — 2 OR
MJELA4: Linux Server
MJ16: Software Project Administration (TH) —2
Management (TH) — 2 .
Vi MJELP3: Information Retrieval 4))) 0JT:4 22
MJP7: Computer Science Practical | Practical (PR) — 2
6 (PR) -2 OR
MJELP4: Linux Server
MJP8: Mini Project — Il (PR)—2 | Administration Practical (PR) —2
10 4
CumCr. 48 8 18 12 8+6 8+4+2 8+6+4 132
Exit option: Award of UG Degree in Major with 132 credits OR Continue with Major and Minor

[Abbreviation - OE — Open Electives, VSC - Vocation Skill Course, SEC — Skill Enhancement Course, (VSEC), AEC — Ability Enhancement
Course, VEC - Value Education Course, IKS — Indian Knowledge System, OJT — on Job Training, FP — Field Project, CEP — Continuing Education
Program, CC — Co-Curricular, RP — Research Project]

Semester |

Major
Component - Minor | OE | VSC | SEC | AEC | VEC | IKS | CC | Total
Mandatory | Electives
Credits 2+2+2 — 242 2 2 2 2 2 22
Component Subject Total Credits
Major Digital Systems & Architecture 2
Major Fundamentals of Database Systems 2
Major Computer Science Practical 1 2
VSC Introduction to Programming with Python 2
Statistics with R Programming
SEC (any one) : : 2
Linux Operating System
Semester |1
Major _
Component - Minor | OE | VSC | SEC | AEC | VEC | IKS | CC2 | Total
Mandatory | Electives
Credits 2+2+2 2 242 | 2 2 2 2 22
Component Subject Total Credits
Major Design & Analysis of Algorithms 2
Major Object Oriented Programming using C++ 2
Major Computer Science Practical 2 2
VSC Web Technologies 2
Database Management Systems using PL/SQL
SEC (any one) - 2
Advanced Python Programming

Sem — |

Name of the Course: Digital System and Architecture

Sr. No.

Heading

Particulars

1

Description the course:

Introduction:

The Digital Systems and Architecture course serves as a
foundational exploration into the fundamental principles
governing digital systems and computer architecture.
This course delves into the design and organization of
digital circuits and systems that form the backbone of
modern computing devices.

Relevance:

In the era of rapid technological advancement,
understanding digital systems and architecture is
paramount. From smartphones to supercomputers,
digital systems are pervasive. This course is essential for
anyone aspiring to comprehend the inner workings of
these systems and contribute to their development.
Usefulness:

The course equips students with the knowledge and
skills to design, analyze, and optimize digital systems. It
serves as a gateway for students to explore various
aspects of computer architecture, laying the groundwork
for more advanced studies and applications in the field.
Application:

Knowledge gained in this course finds practical
applications in diverse domains, including embedded
systems, computer networks, signal processing, and
beyond. Students will learn how to translate theoretical
concepts into tangible solutions, bridging the gap
between abstraction and real-world implementation.
Interest:

Digital System and Architecture is an intellectually
stimulating course that captivates students with its blend
of theoretical concepts and hands-on application. The
allure of creating efficient and high-performing digital
systems often sparks curiosity and enthusiasm among
students.

Connection with Other Courses:

This course establishes crucial linkages with other
courses in computer science. It provides a solid
foundation for more advanced courses such as computer
organization, microprocessor systems, and hardware
description languages. The knowledge gained here
forms a seamless continuum in the study of computer
systems.

Demand in the Industry:

As the demand for faster, more efficient computing
systems continues to rise, professionals well-versed in
digital systems and architecture are highly sought after.
Industries ranging from electronics and
telecommunications to automotive and healthcare
actively seek individuals with expertise in designing and
optimizing digital systems.

Job Prospects:

Graduates with proficiency in digital systems and
architecture find themselves well-positioned for a
myriad of career opportunities. Roles may include
digital design engineer, embedded systems developer,
hardware architect, and systems analyst. The skills
acquired in this course open doors to a wide array of
industries where digital technology plays a pivotal role.

Vertical: Major

Type: Theory

Credits: 2 credits

Hours Allotted: 30 Hours

Marks Allotted: 50 Marks

~N[olo b~ wN

Course Objectives(CO):

CO 1. To understand fundamentals of Logic gates, Number system and Flip Flops.

CO 2. To have an understanding of Digital System and Operation of a Digital
Computer.

CO 3. To Learn Different Architecture & Organization of memory system,
processor organization and control unit.

CO 4. Basic understanding of 8085 microprocessor and its applications.

Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. Learn how number system and codes are useful in computer system design.

OC 2. Learn how Flip Flops are useful in memory design and data communication
through CPU and Memory and 1/O devices.

OC 3. Learn about basics of instruction sets and its types.

OC 4. Learn about Processor Internal Architecture and Design.

Modules:-
Module 1 (15 hours):

Fundamentals of Digital Logic: Boolean algebra, Logic Gates, Simplification of
Logic Circuits: Algebraic Simplification, Karnaugh Maps.

Combinational Circuits: Adders, Subtractors, Multiplexer, De-Multiplexer.

Sequential Circuits: Flip- Flops (SR, JK & D), Counters: synchronous and
asynchronous Counter.

Computer System: Comparison of Computer Organization & Architecture,
Computer Components and Functions, Interconnection Structures. Bus
Interconnections, Input/ Output: I/O Module Programmed 1/O, Interrupt Driven 1/O,
Direct Memory Access.

Module 2 (15 hours):

Memory System Organization: Classification and design parameters, Memory
Hierarchy, Internal Memory: RAM, SRAM and DRAM, Interleaved and Associative
Memory. Cache Memory: Design Principles, Memory mappings, Replacement
Algorithms, Cache performance, Cache Coherence. Virtual Memory, External
Memory: Magnetic Discs, Optical Memory, Flash Memories, RAID Levels

Instructions: Instruction Formats, Instruction Sets, Addressing Modes, Addressing
Modes Examples with Assembly Language [8085/8086 CPU].

Processor Organization: Structure and Function. Register Organization
[8085/8086 CPU]. Basic Microprocessor operations: Data Transfer (Register /
Memory) Operations, Arithmetic & Logical Operations.

Instruction Cycle, Instruction Pipelining. Introduction to RISC and CISC
Architecture, Instruction Level Parallelism and Superscalar Processors, Design
Issues.

10 Text Books
1. M. Mano, Computer System Architecture 3rd edition, Pearson
2. Carl Hamacher et al., Computer Organization and Embedded Systems, 6
ed., McGraw-Hill 2012
3. R PJain, Modern Digital Electronics, Tata McGraw Hill Education Pvt. Ltd. ,
4th Edition, 2010
11 Reference Books
1. William Stallings (2010), Computer Organization and Architecture-
designing for performance, 8th edition, Prentice Hall, New Jersy.
2. Anrew S. Tanenbaum (2006), Structured Computer Organization, 5th edition,
PearsonEducation Inc,
3. John P. Hayes (1998), Computer Architecture and Organization, 3rd edition,
Tata McGrawHill
4. Ramesh Gaonkar (2013), Microprocessor Architecture, Programming and
Application with 8085, 6" edition, Penram.
12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 Continuous Evaluation through: Evaluation through:

Class Test on Module 1: 10 marks
Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks
Assignment on Module 1: 5 marks
Assignment on Module 2: 5 marks

A Semester End Theory Examination
of 1 hour duration for 30 marks as per
the paper pattern given below.

Total of 2 Assignments: 10 marks
Total: 20 marks

Total: 30 marks

14

Format of Question Paper:

Total Marks: 30

Duration: 1 Hour

Question Based On Options Marks
Q.1 Module 1 Any 2 out of 4 10
Q.2 Module 2 Any 2 out of 4 10
Q.3 Module 1 & 2 | Any 2 out of 4 10

Name of the Course: Fundamentals of Database Systems

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Fundamentals of Database Systems course is a
foundation in the study of information management and
technology. It provides students with a comprehensive
understanding of the principles, design, and implementation
of databases, which are critical components in virtually
every domain where data is utilized.

Relevance:

In today’s data-driven world, the management and retrieval
of information are paramount. This course is highly relevant
as it addresses the core concepts essential for organizing,
storing, and manipulating data efficiently.

Usefulness:

This course is immensely useful for individuals aspiring to
work with data in various capacities. Whether designing
databases, developing applications that interact with
databases, or analyzing data trends, a solid understanding of
database fundamentals is crucial.

Application:

The principles learned in this course find application across
diverse sectors, including business, healthcare, finance, and
technology. Students will gain the skills to model real-
world scenarios, design efficient databases, and implement
systems that store and retrieve information seamlessly.

Interest:

This course often attracts students due to its practical and
tangible applications. The ability to structure and manage
data effectively, ensuring its integrity and accessibility, can
be intellectually stimulating and applicable to numerous
real-world scenarios.

Connection with Other Courses:

This course forms a vital connection with various other
courses in computer science and information technology. It
is foundational to courses like database management, data
warehousing, and data mining. Additionally, it
complements courses related to software development,
ensuring a holistic understanding of system architecture.

Demand in the Industry:

As businesses and organizations amass ever-growing
volumes of data, there is an increasing demand for
professionals versed in database systems. Industries such as
finance, healthcare, e-commerce, and technology actively
seek individuals who can design, implement, and manage
robust databases.

Job Prospects:

Graduates proficient in the fundamentals of database
systems enjoy promising job prospects. Potential roles
include database administrator, data analyst, database
developer, and business intelligence analyst. These
professionals play a pivotal role in ensuring the efficient
and secure management of an organization's data assets.

2 Vertical: Major
3 Type: Theory
4 Credits: 2 credits (1 credit = 15 Hours for Theory)
5 Hours Allotted: 30 Hours
6 Marks Allotted: 50 Marks
7 Course Objectives(CO):
CO 1. To make students aware fundamentals of database system.
CO 2. To give idea how ERD components helpful in database design and
implementation.
CO 3. To experience the students working with database using MySQL.
CO 4. To familiarize the student with normalization, database protection and
different DCL Statements.
CO 5. To make students aware about importance of protecting data from
unauthorized users.
CO 6. To make students aware of granting and revoking rights of data
manipulation.
8 Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. To appreciate the importance of database design.

OC 2. Analyze database requirements and determine the entities involved in the
system and their relationship to one another.

OC 3. Write simple queries to MySQL related to String, Maths and Date Functions.

OC 4. Create tables and insert/update/delete data, and query data in a relational
DBMS using MySQL commands.

OC 5. Understand the normalization and its role in the database design process.

OC 6. Handle data permissions.

OC 7. Create indexes and understands the role of Indexes in optimization search.

Modules
Module 1 (15 hours):

Introduction to DBMS: Database, DBMS — Definition, Overview of DBMS,
Advantages of DBMS, Levels of abstraction, Data independence, DBMS
Architecture

Data models: Client/Server Architecture, Object Based Logical Model, Record
Based Logical Model (relational, hierarchical, network

Entity Relationship Model and ER to Table: Entities, attributes, entity sets,
relations, relationship sets, Additional constraints (key constraints, participation
constraints, weak entities, aggregation / generalization, Conceptual Design using ER
(entities VS attributes, Entity Vs relationship, binary Vs ternary, constraints beyond
ER) Entity to Table, Relationship to tables with and without key constraints.

DDL Statements: Creating Databases, Using Databases, datatypes, Creating Tables
(with integrity constraints — primary key, default, check, not null), Altering Tables,
Renaming Tables, Dropping Tables, Truncating Tables

DML statements: Viewing the structure of a table insert, update, delete, Select all
columns, specific columns, unique records, conditional select, in clause, between
clause, limit, aggregate functions (count, min, max, avg, sum), group by clause,
having clause

Module 2 (15 hours):

Relational data model: Domains, attributes, Tuples and Relations, Relational Model
Notation, Characteristics of Relations, Relational Constraints - primary key,
referential integrity, unique constraint, Null constraint, Check constraint

Functions: String Functions (concat, instr, left, right, mid, length, Icase/lower,
ucase/upper, replace, strcmp, trim, Itrim, rtrim), Math Functions (abs, ceil, floor, mod,
pow, sqgrt, round, truncate) Date Functions(adddate, datediff, day, month, year, hour,
min, sec, Now, reverse)

Joining Tables and Subqueries: inner join, outer join (left outer, right outer, full
outer)

subqueries with IN, EXISTS, subqueries restrictions, Nested subqueries, ANY/ALL
clause, correlated subqueries

Normal forms: Functional dependencies, first, second, third, and BCNF normal
forms based on primary keys, lossless join decomposition.

Database Protection: Security Issues, Threats to Databases, Security Mechanisms,
Role of DBA, Discretionary Access Control, Backing Up and Restoring databases

Views: Creating, altering dropping, renaming and manipulating views

DCL Statements: Creating/dropping users, privileges introduction,
granting/revoking privileges, viewing privileges), Transaction control commands —
Commit, Rollback

10 Text Books
1. Fundamentals of Database System, EImasriRamez, NavatheShamkant, Pearson
Education, Seventh edition, 2017
2. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke,
3rd Edition,2014
3. Murach's MySQL, Joel Murach, 3rd Edition, 3rd Edition, 2019
11 Reference Books
1. Database System Concepts, Abraham Silberschatz, HenryF.Korth, S.Sudarshan,
McGraw Hill,2017
2. MySQL: The Complete Reference, VikramVaswani , McGraw Hill, 2017
3. Learn SQL with MySQL.: Retrieve and Manipulate Data Using SQL Commands
with Ease, Ashwin Pajankar, BPB Publications, 2020
12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 Continuous Evaluation through: Evaluation through:
Class Test on Module 1: 10 marks A Semester End Theory Examination
Class Test on Module 2: 10 marks of 1 hour duration for 30 marks as per
Average of 2 Class Tests: 10 marks the paper pattern given below.
Assignment on Module 1: 5 marks Total: 30 marks
Assignment on Module 2: 5 marks
Total of 2 Assignments: 10 marks
Total: 20 marks
14 Format of Question Paper:

Total Marks: 30

Duration: 1 Hour

Question Based On Options Marks
Q.1 Module 1 Any 2 out of 4 10
Q.2 Module 2 Any 2 out of 4 10
Q.3 Module 1 &2 | Any2outof4 10

Name of the Course: Computer Science Practical 1

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Major Computer Science Practical Course,
encompassing Digital Systems and Architecture as well as
Database Systems, is a comprehensive and hands-on
exploration into the foundational aspects of both hardware
and software that underpin modern computing. This
practical course is designed to provide students with a
holistic understanding of digital systems, computer
architecture, and the effective management of data within
databases.

Relevance:

In an era where seamless integration of hardware and
software is pivotal, the combination of Digital Systems and
Architecture with Database Systems is highly relevant. This
practical course addresses the symbiotic relationship
between the two, offering students a holistic perspective on
building robust computing solutions.

Usefulness:

This course is immensely useful for students aiming to
bridge the gap between hardware and software. By
integrating digital systems with database concepts, students
gain a unique skill set that enables them to design,
implement, and optimize computing systems
comprehensively.

Application:

The skills acquired in this practical course find direct
application in the development of efficient and integrated
computing solutions. Students learn to design digital
systems, optimize hardware performance, and seamlessly
integrate these systems with databases to handle and
manipulate data effectively.

Interest:

The Major Computer Science Practical Course is designed
to spark interest by offering a hands-on approach to both
hardware and software components. Students engage in
practical exercises that involve designing digital circuits,
implementing database solutions, and integrating these
components, fostering a deeper understanding and
appreciation for the intricacies of computing systems.

Connection with Other Courses:

This practical course serves as a nexus, connecting various
other courses in the computer science curriculum. It lays a
foundation for advanced courses in computer organization,
embedded systems, software engineering, and database
management. The integrated approach ensures students
comprehend the synergies between different aspects of
computer science.

Demand in the Industry:

Professionals who can seamlessly navigate both digital
systems and database management are in high demand.
Industries ranging from electronics and telecommunications
to software development and data analytics actively seek
individuals proficient in both hardware and software
aspects, recognizing the practical value of this dual
expertise.

Job Prospects:

Graduates from this practical course enjoy promising job
prospects in roles that require a holistic understanding of
computing systems. Potential job titles include systems
architect, database administrator, embedded systems
developer, and hardware-software integration specialist.
These professionals are well-positioned to contribute to
diverse industries seeking comprehensive computing
solutions.

Vertical: Major

Type: Practical

Credits: 2 credits (1 credit = 30 Hours of Practical work in a
semester)

Hours Allotted: 60 hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. To verify the truth tables of various logic gates

CO 2. Develop proficiency in designing and implementing digital circuits.

CO 3. Explore various components of digital systems, including processors,
memory units, and input/output interfaces.

CO 4. Develop skills in designing and creating relational databases.

CO 5. Explore the principles of database querying using SQL.

CO 6. Gain practical knowledge of transaction management and data control in

database systems.

Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. Verify truth tables of various logic gates

OC 2. Simplify given Boolean expressions and implement them using Logisim.

OC 3. Design and validate the operation of various combinational circuits using
Logisim.

OC 4. Understand the behavior and applications of flip-flops in digital systems.

OC 5. Design and implement expressions using multiplexers/demultiplexers in
Logisim.

OC 6. Create and maintain relational databases, applying normalization principles.

OC 7. Write simple queries to MySQL related to String, Maths and Date Functions.

OC 8. Create tables and insert/update/delete data, and query data in a relational
DBMS using MySQL commands.

OC 9. Handle data permissions.

Modules:-
Module 1 (30 hours):

Digital Systems & Architecture — Practical

Logic Gates Truth Table Verification:

Study and verify the truth table of various logic gates (NOT, AND, OR, NAND,
NOR, EX-OR, EX-NOR) using Logisim.

Boolean Expression Simplification:

Simplify given Boolean expressions and realize them using Logisim.
Half/Full Adder Design:

Design and verify the operation of a half/full adder using Logisim.
Half/Full Subtractor Design:

Design and verify the operation of a half/full subtractor using Logisim.
4-Bit Magnitude Comparator:

Design a 4-bit magnitude comparator using combinational circuits in Logisim.
Flip-Flop Implementation:

Verify the operation of flip-flops (e.g., D, JK) using logic gates in Logisim.
Counter Operation Verification:

Verify the operation of a counter using Logisim.

4-Bit Shift Register Operation:

Verify the operation of a 4-bit shift register using Logisim.
Multiplexer/Demultiplexer Design:

Design and implement expressions using multiplexers/demultiplexers in Logisim.

3-Bit Binary Ripple Counter:
Design and implement a 3-bit binary ripple counter using JK flip-flops in Logisim.

The above practical can be performed using any open source simulator (like
Logisim) (Download it from https://sourceforge.net/projects/circuit/)

Module 2 (30 hours):

Fundamentals of Database Systems — Practical

Conceptual Design Using ER Diagrams:

Identify entities, attributes, keys, and relationships. Apply generalization and
specialization.

Database Management Operations:

View all databases, create a database, view all tables in a database, create tables with
and without constraints, perform CRUD operations.

Table Management Operations:

Alter a table, drop/truncate/rename tables, perform backup/restore operations on a
database.

Basic Queries and Aggregate Functions:

Execute simple queries and utilize aggregate functions (e.g., COUNT, SUM, AVG).
Advanced Query Functions:

Utilize date, string, and math functions in queries.

Join Queries:

Execute inner and outer join queries.

Subqueries:

Apply subqueries with IN and EXISTS clauses.

ER Model to Relational Model Conversion and Normalization:

Convert ER model to a relational model and apply normalization up to 3rd Normal
Form.

Views:
Create views with and without check options, drop views, select data from views.
Data Control Language (DCL) Statements:

Implement DCL statements for granting and revoking permissions. Demonstrate
COMMIT and ROLLBACK statements.

These experiments can be implemented using a database management system like
MySQL.

10 Text Books
1. RPJain, Modern Digital Electronics, Tata McGraw Hill Education Pvt. Ltd. ,
4th Edition, 2010
2. Murach's MySQL, Joel Murach, 3rd Edition, 3rd Edition, 2019
11 Reference Books
1. MySQL: The Complete Reference, VikramVaswani , McGraw Hill, 2017
2. Learn SQL with MySQL.: Retrieve and Manipulate Data Using SQL Commands
with Ease, Ashwin Pajankar, BPB Publications, 2020
12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 The internal evaluation will be | A Semester End Practical
determined by the completion of practical | Examination of 2 hours duration for
tasks and the submission of | 30 marks as per the paper pattern given
corresponding write-ups for each session. | below.
Each practical exercise holds a maximum
value of 5 marks. The total evaluation, | Certified Journal is compulsory for
out of 100 marks, should be scaled down | appearing at the time of Practical Exam
to a final score of 20 marks.
Total: 20 marks Total: 30 Marks
14 Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: Introduction to Programming with Python

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

Introduction to Programming with Python Course serves
as an entry point into the world of coding, introducing
learners to the versatile and beginner-friendly Python
language. Python is renowned for its readability and
simplicity, making it an ideal choice for individuals taking
their first steps in programming.

Relevance:

In today’s digital era, programming skills are increasingly
essential across various disciplines. Python, being an
interpreted, high-level language, is relevant for diverse
applications, from web development and data analysis to
artificial intelligence and automation.

Usefulness:

The course provides a foundational understanding of
Python syntax, data structures, and control flow,
empowering learners to write functional and efficient
code. Python’s broad applicability makes the skills
acquired in this course valuable for numerous
programming tasks.

Application:

Upon completion, participants can apply Python to solve
real-world problems, automate repetitive tasks, and create
simple applications. The practical knowledge gained
serves as a stepping stone for more advanced Python
courses or specialization in areas like data science or web
development.

Interest:

Python’s user-friendly syntax and extensive libraries
make it an enjoyable language for beginners. The course
is designed to spark interest by combining theory with
hands-on projects, fostering a passion for coding and
problem-solving.

Connection with Other Courses:

Python is a gateway language that seamlessly integrates
with other programming languages and technologies. The
skills acquired in a Basic Python Programming Course
provide a solid foundation for advanced programming

languages and specialized courses in data science,
machine learning, and more.

Demand in the Industry:

Python’s popularity in the industry is soaring. Its
versatility, readability, and extensive community support
have led to its widespread adoption. Professionals
proficient in Python are in high demand across various
sectors, including technology, finance, healthcare, and
academia.

Job Prospects:

Completion of this Course opens doors to entry-level
positions in software development, quality assurance, data
analysis, and scripting. Python developers are sought after
for their ability to quickly prototype solutions and
contribute to various stages of software development.

Vertical: VSC

w

Type: Practical

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)

Hours Allotted: 60 Hours

(o3}

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. Master Python features, execution, and diverse data types.

CO 2. Demonstrate expertise in if statements, loops, and control statements.

CO 3. Efficiently create and manipulate arrays, strings, and data structures.

CO 4. Apply functions, modules, and strings for versatile programming tasks.

CO 5. Effectively manage files, utilize regular expressions, and work with date
and time.

Course Outcomes (OC):

OC 1. Apply Python features for diverse programming tasks confidently.

OC 2. Implement control flow statements for precise program execution.

OC 3. Manipulate arrays, strings, and data structures with precision and ease.

OC 4. Create modular, efficient code using functions, modules, and strings.

OC 5. Skillfully manage files, utilize regular expressions, and work with date and
time for program efficiency.

Modules:-
Module (30 hours):

Overview and Basic Elements of Python Programming: Features of Python,
Execution of a Python Program, Flavours of Python, Innards of Python, Python
Interpreter, Comments, Docstrings, IDLE, Data types, Dictionary, Sets, Mapping,
Basic Elements of Python, Variables, Input Function, Output Statements, Command
Line Arguments. Operators, Precedence of Operators, Associativity of Operators

Control Statements: The if statement, The if ... else Statement, The if ... elif ...
else Statement, Loop Statement- while loop, for loop, Infinite loop, Nested loop, The
else suite, break statement, continue statement, pass statement, assert statement,
return statement.

Arrays: Creating Arrays, Indexing and Slicing of Arrays, Basic Array Operations,
Arrays Processing, Mathematical Operations on Array, Aliasing Arrays, Slicing and
Indexing in NumPy Arrays, Basic slicing, Advanced Indexing, Dimensions and
Attributes of an Array

Functions: Function definition and call, Returning Results, Returning Multiple
Values from a Function, Built-in Functions, Difference between a Function and a
Method, Pass Value by Object Reference, Parameters and Arguments, Recursive
Functions, Anonymous or Lambda Functions. Modules in Python.

Strings: Creating Strings, Functions of Strings, Working with Strings, Formatting
Strings, Finding the Number of Characters and Words, Inserting Substrings into a
String.

Module (30 hours):

Exploring List, Tuples and Dictionaries: Lists, List Functions and Methods, List
Operations, List Slices, Nested Lists, Tuples, Functions in Tuple.

Working with Dictionaries: Creating a Dictionary, Operators in Dictionary,
Dictionary Methods, Using for Loop with Dictionaries, Operations on Dictionaries

Files in Python: Opening and Closing a File, Working with Text Files, , Working
with Binary Files, The ‘with’ statement, Pickle in Python, The seek() and tell()
Methods, Random Accessing of Binary Files, Zipping and Unzipping Files, Working
with Directories

Regular Expressions: Introduction, Sequence Characters in Regular Expressions,
Special Characters in Regular Expressions, Using Regular Expression on Files,
Retrieving Information from an HTML File

Date And Time in Python: Time, Date, Date and Time Now, combining date and
times, formatting date and time, Finding and comparing dates, Sorting dates,
Knowing the Time taken by a Program, Working with Calendar Module

10

Text Books

1. Practical Programming: An Introduction to Computer Science Using Python 3,
Paul Gries , Jennifer Campbell, Jason Montojo, Pragmatic Bookshelf, 2nd
Edition, 2014

2. Programming through Python, M. T Savaliya, R. K. Maurya & G M Magar,
Sybgen Learning India, 2020

11

Reference Books

1. Python: The Complete Reference, Martin C. Brown, McGraw Hill, 2018

2. Beginning Python: From Novice to Professional, Magnus Lie Hetland, Apress,
2017

3. Programming in Python 3, Mark Summerfield, Pearson Education, 2nd Ed,

2018

4. Python Programming: Using Problem Solving Approach, ReemaThareja,

Oxford Univeristy Press, 2017

5. Let Us Python, Yashwant. B. Kanetkar, BPB Publication, 2019

12

Internal Continuous Assessment: 40%0

Semester End Examination: 60%

13

The internal evaluation will be determined
by the completion of practical tasks and
the submission of corresponding write-ups
for each session. Each practical exercise
holds a maximum value of 5 marks. The
total evaluation, out of 50 marks, should
be scaled down to a final score of 20
marks.

A Semester End Practical
Examination of 2 hours duration for
30 marks as per the paper pattern
given below.

Certified Journal is compulsory for
appearing at the time of Practical Exam

Total: 20 marks

Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: Statistics with R Programming

Sr. No.

Heading

Particulars

1

Description the

course:

Introduction:

This course provides an immersive exploration into the
world of statistical computing and data analysis.
Developed specifically for statistical computing and
graphics, R is an open-source language that has become a
standard tool for professionals in various fields.

Relevance:

In the era of big data and analytics, R programming is
highly relevant. It is widely used for statistical modeling,
data visualization, and machine learning, making it an
indispensable skill for individuals in data-centric roles.

Usefulness:

The course equips participants with the ability to
manipulate data, perform statistical analyses, and create
visualizations. R's versatility makes it valuable for both
beginners entering the field and seasoned professionals
enhancing their analytical toolkit.

Application:

R programming finds application across diverse domains,
including finance, healthcare, marketing, and academia.
Participants can apply R to solve real-world problems,
extract insights from data, and make informed decisions.

Interest:

The R programming course often sparks interest due to its
hands-on nature. Participants engage in practical
exercises, exploring datasets, creating visualizations, and
developing statistical models, fostering a deep
understanding of data analytics.

Connection with Other Courses:

This course forms a symbiotic connection with other data-
centric courses. It complements studies in statistics,
machine learning, and data science, providing a
foundation for advanced analytics.

Demand in the Industry:

Professionals with R programming skills are in high
demand. Industries ranging from finance to healthcare
seek individuals who can leverage R for data analysis and

decision-making, contributing to evidence-based
practices.

Job Prospects:

Graduates from an R programming course find diverse job
prospects. Roles may include data analyst, statistician,
business intelligence analyst, and data scientist. These
professionals are sought after for their ability to derive
actionable insights from data.

Vertical: SEC

Type: Practical

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)

Hours Allotted: 60 Hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. Understand R basics, set up R Studio, and customize the environment..

CO 2. Master R expressions, assignments, loops, and decision-making.

CO 3. Develop proficiency in using R data structures: vectors, matrices, lists, and
data frames.

CO 4. Demonstrate expertise in character strings manipulation in R.

CO 5. Apply built-in statistical functions, regression analysis, and distribution
functions fluently.

Course Outcomes (OC):

OC 1. Confidently navigate Studio, R GUI, and manage data in R.

OC 2. Fluent implementation of expressions, assignments, and loops in R.

OC 3. Use R data structures for effective data management.

OC 4. Efficiently manipulate and operate on character strings in R.

OC 5. Apply statistical functions, regression analysis, and distribution functions
with confidence.

Modules:-
Module 1 (30 hours):

Exploring R Language and Setting Up environment: Introduction to R,
Terminologies in R, R Environment, Installing R, Studio, and R Commander,
Customizing Studio, Data Management in Studio, R Graphical User Interface (R
GUI), Working with R Scripts

Implementing ting Expression: Expressions, assignment, Decision making, Loops,
data and time options in R

Essential Data Structures in R: Vectors, Matrix, Arrays, Lists, Data frames,
Functions

Implementing Strings in R: Character strings in R, Character Strings, , Strings and
R objects, String Manipulation: Printing Characters, Basic String Manipulations,
String Operations

Module 2 (30 hours):

Built-in statistical functions in R: mean() function, Median, Standard Deviation,
Some other built-in statistical functions,

Regression Analysis: Regression Analysis-Linear Regression and Multiple
Regression, Normal Distribution- dnorm(),,pnorm(),gnorm(),rnorm()

Binomial Distribution: dbinom(),pbinom(),gbinom(),rbinom() Functions, Time
Series Analysis

Visualizing and analysing Data in R: Tabulation, Contingency Tables, Making R
Contingency Tables, Making R Custom Contingency Tables, Selection of Parts in a
Table Object, Conversion of an Object into the Table, Testing Table Objects, Making
R Complex Tables, Representing data through Cross Tabulation

Graphical Models & analysis: Plots made of Single Plots made of Two Variables ,
Variable, Plots made of Multiple Variables, Special Plots, Storing Graphics

10

Text Books

1. Statistical Programming in R, K.G. Srinivasa G.M. Siddesh,Chetan Shetty ,
Oxford University Press, 2017

2. Learning R: A Language for Data Analytics and Visualization, Sybgen
Learning, R. K. Maurya, 2021

3. Introduction to Statistics and Data Analysis With Exercises, Solutions and
Applications in R: Heumann, Christian, Schomaker, Michael, Shalabh,
Publisher” Springer 2016

11

Reference Books

1. Learning R Programming, Kun Ren, Packt Publishing, 2018

2. R Programming for Statistics and Data Science(Video), 365 Careers, Packt,
2018

3. R Programming Fundamentals, Kaelen Medeiros, Oreily-Packt Publishing

12

Internal Continuous Assessment: 40% | Semester End Examination: 60%o

13

The internal evaluation will be determined | A Semester End Practical

by the completion of practical tasks and | Examination of 2 hours duration for
the submission of corresponding write-ups | 30 marks as per the paper pattern

for each session. Each practical exercise | given below.

holds a maximum value of 5 marks. The
total evaluation, out of 100 marks, should | Certified Journal is compulsory for
be scaled down to a final score of 20 | appearing at the time of Practical Exam
marks.

Total: 20 marks Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30 Duration: 2 Hours
Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: LINUX Operating System

Sr. No. | Heading Particulars
1 Description the Introduction:
course:

The Linux Operating System course is a foundational
exploration into the world of computing, providing
students with essential knowledge about this open-source
and widely used operating system.

Relevance:

Linux is integral to various industries, from server
administration to software development, cybersecurity,
cloud computing, and 10T, making the course highly
relevant in today's digital landscape.

Usefulness:

Linux dominates global server environments, making it a
crucial skill for managing and maintaining servers
efficiently. Many development tools and environments
are Linux-based, enhancing a developer's capabilities.
Linux, well-known for its robust security features, plays a
pivotal role in the field of cybersecurity, making Linux
knowledge invaluable for professionals in this domain.
Popular cloud platforms extensively use Linux, making
familiarity with it beneficial for cloud administrators.
Linux’s prevalence in 10T devices and embedded systems
underscores its importance for professionals working in
these emerging fields.

Application:

The course introduces students to the core principles and
practical applications of Linux, covering areas such as
server administration, software development,
cybersecurity, cloud computing, and 1oT.

Interest:

With its open-source nature and versatile applications,
Linux attracts individuals who appreciate -efficient
command-line tools and those interested in stability,
reliability, and the command-line interface.

Connection with Other Courses:

The course seamlessly integrates with network
administration courses by incorporating essential Linux
commands. It also aligns with various software
development courses, fostering a comprehensive

understanding of computing environments.
Demand in the Industry:

The industry recognizes the stability, security, and cost-
effectiveness of Linux, resulting in a consistently high
demand for professionals with Linux expertise.

Job Prospects:

Graduates of the Linux Operating System course are well-
positioned for diverse roles, including system
administrators, network administrators, DevOps
engineers, cloud administrators, cybersecurity analysts,
and software developers.

Vertical: SEC

Type:

Practical

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

Hours Allotted: 60 Hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1l
CO 2.
CO 3.

CO4.
CO5.

To learn basic concepts of Linux in terms of operating system

To learn use of various shell commands with regular expressions

To set Linux Environment variables and learn setting file

permissions to maintain Linux security implementation

To learn various editors available in Linux OS and learn shell scripting.
To learn installation of compilers and programming using C and
Python languages on Linux platform.

Course Outcomes (OC):

OC1.
ocC2.

OCas.
OC 4.

OC5.

Work with Linux file system structure, Linux Environment
Handle shell commands for scripting, with features of regular
expressions, redirections

Implement file security permissions

Work with vi, sed and awk editors for shell scripting using various
control structures
Install software like compilers and develop programs in C and
Python programming languages on Linux Platform

Modules:-
Module (30 hours):

Introduction to Linux Operating System and Basics: History of Linux, GNU Info
and Utilities, Various Linux Distributions, The Unix/Linux architecture, Features of
Unix/Linux

Installation of Ubuntu Linux Operating System: Booting and Installing from
USB/DVD, Using Ubuntu Software Center / Using Synaptic, Exploring useful

software packages

Becoming an Ubuntu Power User: Administering system and user settings,
Learning Unity keyboard shortcuts, Using the Terminal

Linux Basics: Starting the shell, Shell prompt, Command structure, File Systems
and Directory Structure, man pages, more documentation pages

File System Commands: touch, help, man, more, less, pwd, cd, mkdir, rmdir, Is,
find, etc.

File Handling Commands: cat, cp, rm, mv, more, file, wc, od, cmp, diff, comm,
gzip, gunzip, zip, unzip, tar, In, umask, etc.

General Purpose Utility Commands: cal, date, echo, man, printf, passwd, script,
who, uname, tty, stty, etc.

Linux File Permissions: Understanding Linux file permissions, Using Linux
groups. Decoding file permissions, Changing security settings, chmod, chown, chgrp

Module (30 hours):

Linux Security: Understanding Linux Security, Uses of root, sudo command,
Working with passwords, Understanding ssh

Networking Commands: who, whoami, ping, telnet, ftp, ssh, etc.
Editors: vi, sed, awk

Simple Filters and 1/0O Redirection: head, tail, cut, paste, sort, grep family, tee,
unigq, tr, etc.

Shell Scripting: Defining variables, reading user input, exit and exit status
commands, expr, test, [], if conditional, logical operators, Conditions (for loop, until
loop, and while loop), arithmetic operations, Redirecting input/output in scripts,
creating your own redirection.

Working and Managing Processes: sh, ps, kill, nice, at, batch, etc.
Job scheduling commands: ps, nice, renice, at, batch, cron table

Installation of C/C++/Java/Python Compiler and Environment Setup and Basic
programming using C and Python languages.

10

Text Books

1. Linux Command line and Shell Scripting Bible, Richard Blum, Wiley India.

2. Unix: Concepts and Applications, Sumitabha Das, 4th Edition, McGraw Hill.

3. Official Ubuntu Book, Matthew Helmke& Elizabeth K. Joseph with Jose
Antonio Rey and Philips Ballew, 8th Ed.

11

Reference Books

1. Linux Administration: A Beginner's Guide, Fifth Edition, Wale Soyinka, Tata
McGraw-Hill, 2008.

2. Linux: Complete Reference, Richard Petersen, 6th Edition, Tata McGraw-Hill

3. Beginning Linux Programming, Neil Mathew, 4th Edition, Wiley Publishing,
2008.

12

Internal Continuous Assessment: 40%

Semester End Examination: 60%

13 The internal evaluation will be determined | A Semester End Practical
by the completion of practical tasks and | Examination of 2 hours duration for
the submission of corresponding write-ups | 30 marks as per the paper pattern
for each session. Each practical exercise | given below.
holds a maximum value of 5 marks. The
total evaluation, out of 100 marks, should | Certified Journal is compulsory for
be scaled down to a final score of 20 | appearing at the time of Practical Exam
marks. Total: 30 Marks
Total: 20 marks

14 Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Sem — ||

Name of the Course: Design and Analysis of Algorithms

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Design and Analysis of Algorithms course is a
fundamental exploration into the systematic study of
algorithms, their design principles, and the analysis of
their efficiency. It forms the backbone of computer
science education, providing essential skills for solving
complex computational problems.

Relevance:

In the ever-evolving landscape of computer science, the
Design and Analysis of Algorithms course is highly
relevant. It equips students with the intellectual tools
necessary to address challenges in diverse areas, from
software development to artificial intelligence.

Usefulness:

This course is instrumental in cultivating algorithmic
thinking. Participants learn to devise efficient algorithms,
analyze their correctness, and evaluate their performance,
essential skills for creating optimized solutions in various
computing applications.

Application:

The knowledge gained from this course finds application
in a myriad of scenarios, from developing efficient search
and sorting algorithms to optimizing resource utilization
in network design and artificial intelligence.

Interest:

The course often captivates students due to its intellectual
challenges and problem-solving nature. Participants
engage in dissecting complex problems, devising
algorithmic solutions, and analyzing their efficiency,
fostering a deep appreciation for algorithmic thinking.

Connection with Other Courses:

The Design and Analysis of Algorithms course
establishes vital connections with other computer science
disciplines. It forms the basis for advanced courses in data
structures, algorithmic complexity, and computational
theory, providing a holistic understanding of computation.

Demand in the Industry:

Professionals well-versed in algorithm design and
analysis are in high demand. Industries ranging from
technology and finance to healthcare actively seek
individuals who can develop efficient algorithms to solve
complex problems and enhance system performance.

Job Prospects:

Graduates from a Design and Analysis of Algorithms
course find themselves well-positioned for various roles,
including software engineer, algorithm developer, data
scientist, and research scientist. These professionals are
valued for their ability to devise elegant and efficient
solutions to computational challenges.

Vertical: Major

Type: Theory

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)

Hours Allotted: 30 Hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. To make students understand the basic principles of algorithm design

CO 2. To give idea to students about the theoretical background of the basic data
structures

CO 3. To familiarize the students with fundamental problem-solving strategies like
searching, sorting, selection, and recursion and help them to evaluate
efficiencies of various algorithms.

CO 4. To teach students the important algorithm design paradigms and how they
can be used to solve various real world problems

Course Outcomes (OC):

OC 1. Students should be able to understand and evaluate efficiency of the
programs that they write based on performance of the algorithms used.

OC 2. Students should be able to appreciate the use of various data structures as
per need

OC 3. To select, decide and apply appropriate design principle by understanding
the requirements of any real life problems.

Modules:-
Module 1 (15 hours):

Introduction to algorithms - What is algorithm, analysis of algorithm, Types of
complexity, Running time analysis, How to Compare Algorithms, Rate of Growth,
Types of Analysis, Asymptotic Notation, Big-O Notation, Omega-Q Notation,
Theta-® Notation, Asymptotic Analysis, Performance characteristics of algorithms,

Estimating running time / number of steps of executions on paper, Idea of
Computability

Introduction to Data Structures - What is data structure, types, Introduction to
Array(1-d & 2-d), Stack and List data structures, operations on these data structures,
advantages disadvantages and applications of these data structures like solving linear
equations, Polynomial Representation, Infix-to-Postfix conversion.

Recursion - What is recursion, Recursion vs Iteration, recursion applications like
Factorial of a number, Fibonacci series & their comparative analysis with respect to
iterative version, Tower of Hanoi problem.

Basic Sorting Techniques - Bubble, Selection and Insertion Sort & their
comparative analysis

Module 2 (15 hours):

Searching Techniques - Linear Search and its types, Binary Search and their
comparative analysis, Selection Techniques - Selection by Sorting, Partition-based
Selection Algorithm, Finding the Kth Smallest Elements in Sorted Order & their
comparative analysis, String Algorithms - Pattern matching in strings, Brute Force
Method & their comparative analysis

Algorithm Design Techniques - Introduction to various types of
classifications/design criteria and design techniques, Greedy Technique - Concept,
Advantages & Disadvantages, Applications, Implementation using problems like -
file merging problem. Divide-n-Conquer - Concept, Advantages & Disadvantages,
Applications, Implementation using problems like - merge sort, Strassen's Matrix
Multiplication

Dynamic Programming - Concept, Advantages & Disadvantages, Applications,
Implementation using problems like - Fibonacci series, Factorial of a number,
Longest Common subsequence

Backtracking Programming - Concept, Advantages & Disadvantages,
Applications, Implementation using problems like N-Queen Problem
10 Text Books
1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India
Edition, 2016.
2. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,
CareerMonk Publications, 2016.
3. Introduction to Algorithms, Thomas H. Cormen, 3rd Edition, PHI.
11 Reference Books

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin, Pearson,
3rd Edition, 2011.
2. Design and Analysis of Algorithms, S. Sridhar, Oxford University Press, 2014.

12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 Continuous Evaluation through: Evaluation through:
Class Test on Module 1: 10 marks A Semester End Theory
Class Test on Module 2: 10 marks Examination of 1 hour duration for
Average of 2 Class Tests: 10 marks 30 marks as per the paper pattern
Assignment on Module 1: 5 marks given below.
Assignment on Module 2: 5 marks Total: 30 marks
Total of 2 Assignments: 10 marks
Total: 20 marks
14 Format of Question Paper:

Total Marks: 30

Duration: 1 Hour

Question Based On Options Marks
Q.1 Module 1 Any 2 out of 4 10
Q.2 Module 2 Any 2 out of 4 10
Q.3 Module1 &2 | Any2outof4 10

Name of the Course: Introduction to OOP using C++

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Introduction to Object-Oriented Programming (OOP)
using C++ course is a foundational exploration into the
principles of object-oriented programming, using the C++
programming language. This course serves as a gateway
for students to understand and apply key concepts in
software design and development.

Relevance:

In the contemporary software development landscape,
understanding OOP principles is crucial. The C++
language, with its strong support for object-oriented
features, is widely used in building robust and efficient
software systems. This course is, therefore, highly
relevant to the needs of modern programming.

Usefulness:

The course is instrumental in imparting essential
programming paradigms such as encapsulation,
inheritance, and polymorphism. Participants gain
valuable skills in designing modular and reusable code,
contributing to the creation of scalable and maintainable
software solutions.

Application:

The concepts learned in this course find direct application
in software development. Participants learn to structure
code using classes and objects, facilitating the creation of
efficient and well-organized programs.

Interest:

The course often captivates students due to its practical
and creative aspects. Through hands-on projects,
participants engage in designing and implementing
solutions using OOP principles, fostering a deep interest
in software design and development.

Connection with Other Courses:

This course establishes strong connections with other
programming and software engineering courses. It lays
the groundwork for advanced studies in software
architecture, design patterns, and application
development, providing a seamless transition to more

complex programming concepts.
Demand in the Industry:

Professionals with a solid understanding of OOP using
C++ are in high demand. Industries ranging from software
development to embedded systems actively seek
individuals who can leverage OOP principles to create
efficient, modular, and maintainable code.

Job Prospects:

Students completing this course may find diverse job
prospects. Roles may include software developer, systems
analyst, application architect, and embedded systems
engineer. These professionals are valued for their ability
to contribute to the creation of robust and scalable
software solutions.

Vertical: Major

Type: Theory

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)

Hours Allotted: 30 Hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. To make learner understand the concepts of OOP

CO 2. To make learner understand the design of OOP through UML
CO 3. To make learner familiar with the syntax of C++

CO 4. To make learner Analyze and implement concepts of OOP
CO 5. To make learner create programs relating to OOP concepts

Course Outcomes (OC):

OC 1. The learner will be able to understand, remember, demonstrate, explain and
describe concept of OOP

OC 2. The learner will be able to design UML based diagrams

OC 3. The learner will be able to illustrate the different types of control
statements in C++

OC 4. The learner will be able to analyze and implement concept of OOP

OC 5. The learner will be able to write and create programs relating to OOP
concepts

Modules:-
Module 1 (15 hours):

Introduction to Programming Concepts: Object oriented programming paradigm,
basic concepts of object oriented programming, benefits of object oriented
programming, object oriented languages, applications of object oriented
programming.Tokens-keywords, identifiers, constants-integer, real, character and
string constants, backslash constants, features of C++ and its basic structure, simple

C++ program without class, compiling and running C++ program.

Data Types, Data Input Output and Operators: Basic data types,variables, rules
for naming variables, programming constants, the type cast operator, implicit and
explicit type casting, cout and cin statements,operators, precedence of operators.

Decision Making, Loops, Arrays and Strings: Conditional statements-if,if...else,
switch loops- while, do...while, for, types of arrays and string and string
manipulations

Unified Modeling Language (UML): Introduction to UML & class diagrams.

Classes, Abstraction & Encapsulation: Classes and objects, Dot Operator, data
members, member functions, passing data to functions, scope and visibility of
variables in function.

Constructors and Destructors: Default constructor, parameterized constructor,
copy constructor, private constructor, destructors.

Working with objects: Accessor - mutator methods, static data and static function,
access specifiers, array of objects.

Module 2 (15 hours):

Polymorphism - Binding-static binding & overloading, constructor overloading
function overloading, operator overloading, overloading unary and binary operators.

Modelling Relationships in Class Diagrams: Association, Aggregation-
Composition and examples covering these principles

Inheritance: Defining base class and its derived class, access specifiers, types of
inheritance-single, multiple, hierarchical, multilevel, hybrid inheritance, friend
function and friend class, constructors in derived classes.

Modelling Relationships: Generalization-Specialization and examples covering
these principles

Run time Polymorphism - Dynamic Binding, Function overriding, virtual
function, pure virtual function, virtual base class, abstract class.

Pointers: Introduction to pointers, * and & operators, assigning addresses to
pointer variables, accessing values using pointers, pointers to objects & this pointer,
pointers to derived classes

File Handling: File Stream classes, opening and closing file-file opening modes,
text file handling, binary file handling.

Applying OOP to solve real life applications: To cover case studies like library
management, order management etc. to design classes covering all relationships

10

Text Books

1. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,
McGraw Hill Education India.

2. UML & C++: A Practical Guide to Object Oriented Development,
Lee/Tepfenhart, Pearson Education, 2nd Edition2015

11 Reference Books
1. Mastering C++ by Venugopal, Publisher: McGraw-Hill Education, 2017
2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020
3. Object Oriented Analysis and Design by Timothy Budd TMH, 2001
12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 Continuous Evaluation through: Evaluation through:
Class Test on Module 1: 10 marks A Semester End Theory
Class Test on Module 2: 10 marks Examination of 1 hour duration for
Average of 2 Class Tests: 10 marks 30 marks as per the paper pattern
Assignment on Module 1: 5 marks given below.
Assignment on Module 2: 5 marks Total: 30 marks
Total of 2 Assignments: 10 marks
Total: 20 marks
14 Format of Question Paper:

Total Marks: 30

Duration: 1 Hour

Question Based On Options Marks
Q.1 Module 1 Any 2 out of 4 10
Q.2 Module 2 Any 2 out of 4 10
Q.3 Module1 &2 | Any2outof4 10

Name of the Course: Computer Science Practical 2

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Computer Science Practical Course covering Design
and Analysis of Algorithms and Object-Oriented
Programming (OOP) using C++ is a comprehensive
exploration into fundamental computer science concepts
and practical programming skills. It integrates the study
of algorithmic design with hands-on application using the
C++ programming language.

Relevance:

In the dynamic field of computer science, the integration
of algorithmic design and object-oriented programming is
highly relevant. This course equips students with essential
skills to solve complex problems, design efficient
algorithms, and implement practical solutions using the
OOP paradigm in C++.

Usefulness:

The course is invaluable for developing a strong
foundation in algorithmic thinking and software design.
Students learn to analyze algorithm efficiency, apply OOP
principles for code modularity, and create robust software
solutions, enhancing their overall programming
proficiency.

Application:

The concepts acquired in this practical course find direct
application in real-world scenarios. Students engage in
hands-on projects where they design and implement
algorithms, analyze their performance, and develop
software applications using object-oriented principles in
C++.

Interest:

The practical nature of the course often captivates
students. Through project-based learning, participants
apply algorithmic strategies, design class hierarchies, and
implement solutions in C++, fostering a deep interest in
problem-solving and software development.

Connection with Other Courses:

This practical course establishes a strong connection with
other computer science courses. It lays the groundwork
for advanced studies in algorithmic complexity, data
structures, software engineering, and advanced topics in
object-oriented programming, providing a well-rounded
education.

Demand in the Industry:

Professionals with proficiency in algorithmic design and
object-oriented programming in C++ are in high demand.
Industries spanning software development, technology,
and finance actively seek individuals who can apply these
skills to create efficient and scalable software solutions.
Job Prospects:

Graduates from this practical course have diverse job
prospects. Roles may include software engineer,
algorithm developer, systems analyst, or application
developer. These professionals are valued for their ability
to contribute to algorithmically optimized, modular, and
maintainable software.

Vertical:

Major

Type:

Practical

Credits:

2 credits (1 credit = 30 Hours of Practical work in a
semester)

Hours Allotted:

60 Hours

Marks Allotted:

50 Marks

Course Objectives(CO):

CO1.
CO 2.
CO3.
CO 4.
CO5S.
CO6.
CO7.
CO 8.
CO09.

Analyze and implement algorithms for common computational problems.
Implement algorithms using divide and conquer strategies.

Apply dynamic programming techniques to solve optimization problems.
Implement and analyze algorithms based on greedy strategies.
Comprehend the principles of object-oriented programming.

Design and implement classes and objects in C++.

Implement single, multiple, and hierarchical inheritance.

Implement operator overloading for user-defined types.

Understand the impact of access specifiers on class members.

Course Outcomes (OC):

OC L
ocC 2.
OCas.
OC 4.
OC5.
OcCe6.
OCT.
OCS8.
OCo.

Design and implement algorithms for various problem domains.
Evaluate and compare the time and space complexities of algorithms.
Apply divide and conquer strategies to solve computational problems.
Utilize dynamic programming techniques for optimization problems.
Implement and analyze algorithms based on greedy strategies.

Design and implement classes and objects in C++.

Apply inheritance and polymorphism concepts in program development.
Implement operator overloading for enhanced class functionality.
Utilize advanced features like friend functions, inline functions, and this

pointer.

OC 10.

Understand the impact of scope specifiers on class members.

Modules:-
Module 1 (30 hours):

Design & Analysis of Algorithms — Practical

Array Operations:

Implement programs for 1-d arrays, Implement programs for 2-d arrays.
List-Based Stack Operations:

Create a list-based stack and perform stack operations.

Linear and Binary Search:

Implement linear and binary search algorithms on a list.

Sorting Algorithms:

Implement sorting algorithms (e.g., bubble, selection, insertion).

Nth Max/Min Element:

Implement algorithms to find Nth Max/Min element in a list.

String Pattern Matching:

Implement algorithms to find a pattern in a given string.

Recursion:

Implement recursive algorithms (e.g., factorial, Fibonacci, Tower of Hanoi).
Greedy Algorithm:

Solve problems like file merging and coin change using the Greedy Algorithm.
Divide and Conquer:

Implement algorithms like merge sort and Strassen's Matrix Multiplication.
Dynamic Programming:

Implement algorithms for Fibonacci series and Longest Common Subsequence
using dynamic programming.

Module 2 (30 hours):

OOPs using C++ — Practical

Introduction to Classes:

Create a simple class with data members and member functions.

Demonstrate the use of class instances to access data and invoke member functions.
Branching and Looping with Classes:

Implement programs utilizing branching and looping statements within class
methods.

Arrays and Classes:

Develop a program that employs one and two-dimensional arrays within a class.
Illustrate how classes can handle array-based data structures.

Scope Resolution Operator:

Use the scope resolution operator to declare variables at different scope levels.
Display and compare the values of variables with different scopes.
Constructors and Destructors:

Implement programs showcasing various types of constructors and destructors.
Explore default, parameterized, copy constructors, and destructor functionalities.
Access Specifiers:

Demonstrate the use of public, protected, and private scope specifiers within a
class.

Understand the impact of different access specifiers on class members.
Inheritance:

Implement classes to demonstrate single and multilevel inheritance scenarios.
Showcase how derived classes inherit properties from the base class.
Develop programs illustrating multiple and hierarchical inheritance.

Create programs that demonstrate the interaction between inheritance and derived
class constructors.

Understand the order of constructor invocation in the inheritance hierarchy.
Advanced Concepts:

Implement programs showcasing friend functions, inline functions, and the use of
the this pointer within classes.

Function Overloading and Overriding:

Develop programs to demonstrate function overloading and overriding within
classes.

Pointers and File Handling:

Explore the use of pointers within classes, emphasizing dynamic memory
allocation.

Develop programs for both text and binary file handling within a class context.

10

Text Books

1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India
Edition, 2016.

2. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,
McGraw Hill Education India.

11

Reference Books

1. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,

CareerMonk Publications, 2016.

2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020

12

Internal Continuous Assessment: 40%

Semester End Examination: 60%

13

The internal evaluation will be determined
by the completion of practical tasks and
the submission of corresponding write-ups
for each session. Each practical exercise
holds a maximum value of 5 marks. The
total evaluation, out of 100 marks, should
be scaled down to a final score of 20
marks.

A Semester End Practical
Examination of 2 hours duration for
30 marks as per the paper pattern
given below.

Certified Journal is compulsory for
appearing at the time of Practical Exam

Total: 20 marks

Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: Web Technologies

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Web Technologies Course is an immersive
exploration into the core technologies that drive the visual
and interactive aspects of the web. Covering HTML, CSS,
Javascript, XML, and PHP, this course equips individuals
with the skills needed to create dynamic and aesthetically
pleasing websites.

Relevance:

In the digital age, web design is paramount. The course
remains highly relevant as it introduces participants to the
fundamental languages and technologies that form the
backbone of modern web development.

Usefulness:

The course is invaluable for anyone interested in creating
responsive, user-friendly, and visually appealing
websites. Participants gain practical skills in structuring
web content, styling layouts, and implementing
interactive features.

Application:

The concepts learned in this course find direct application
in real-world web development projects. Participants
design and build websites, applying HTML for structure,
CSS for styling, Javascript for interactivity, XML for data
representation, and PHP for server-side scripting.

Interest:

The creative and hands-on nature of web design often
captivates students. Through practical exercises,
participants engage in designing and developing websites,
fostering a deep interest in creating visually engaging
online experiences.

Connection with Other Courses:

This course establishes strong connections with various
other courses in the field of web development and
computer science. It provides a foundation for advanced
studies in full-stack development, database management,
and server-side scripting.

Demand in the Industry:

Professionals with strong web designing skills are in high
demand. Industries spanning e-commerce, technology,
and media actively seek individuals who can create user-
friendly and visually appealing websites to enhance online
presence and user engagement.

Job Prospects:

Graduates from a Web Designing Course find diverse job
prospects. Roles may include web designer, front-end
developer, UI/UX designer, and web content manager.
These professionals are sought after for their ability to
create visually stunning and functional web interfaces.

Vertical: VSC

w

Type: Practical

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)

Hours Allotted: 60 Hours

(o3}

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. To understand the concept of Web Technologies

CO 2. To understand the concepts of Hyper Text Markup Language and
Cascading Style Sheets.

CO 3. To learn JavaScript for creating dynamic websites.

CO 4. To learn various operations performed on data among web
applications using XML

CO 5. To learn Server-Side Programming using PHP

Course Outcomes (OC):

OC 1. Design valid, well-formed, scalable, and meaningful pages using emerging
technologies.

OC 2. Understand the various platforms, devices, display resolutions,

viewports, and browsers that render websites

OC 3. Develop and implement client-side and server-side scripting language
programs.

OC 4. Develop and implement Database Driven Websites.

OC 5. Design and apply XML to create a markup language for data and document
centric applications.

Modules:-
Module 1 (30 hours):

HTML.: Fundamental Elements of HTML, Formatting Text in HTML, Organizing
Text in HTML, List Tags, Links and URLs in HTML, Tables in HTML, Images on
a Web Page, Image Formats, Image Maps, Colors, Navigation across multiple pages,
Forms in HTML, Interactive Elements, Working with Multimedia - Audio and Video
File Formats, HTML elements for inserting Audio / Video on a web page

CSS: Understanding the Syntax of CSS, CSS Selectors, Inserting CSS in an HTML
Document, CSS properties to work with background of a Page, CSS properties to
work with Fonts and Text Styles, CSS properties for positioning an element.

JavaScript: Using JavaScript in an HTML Document, Programming, Fundamentals
of JavaScript — Variables, Operators, Control Flow Statements, Popup Boxes,
Functions — Defining and Invoking a Function, Defining Function arguments,
defining a return Statement, Calling Functions with Timer, JavaScript Objects -
String, RegExp, Math, Date, Browser Objects - Window, Navigator, History,
Location, Document, Cookies, Document Object Model, Form Validation using
JavaScript

Module 2 (30 hours):

XML: Comparing XML with HTML, Advantages and Disadvantages of XML,
Structure of an XML Document, XML Entity References, with Internal / External
DTD, XSLT Elements and Attributes

AJAX: AJAX Web Application Model, How AJAX Works, XMLHttpRequest
Object — Properties and Methods, Handling asynchronous requests using AJAX e.g.
Mouseover, button click,

PHP: Variables and Operators, Retrieving data from HTML forms, Program Flow,
Arrays, working with Files and Directories, working with Databases, Working with
Cookies, Sessions, and Headers

10 Text Books
1. HTML 5 Black Book, Covers CSS 3, JavaScript, XML, XHTML, AJAX, PHP
and jQuery, 2ed, Dreamtech Press, 2016
2. Web Programming and Interactive Technologies, scriptDemics, StarEdu
Solutions India, 2018
3. PHP: A Beginners Guide, Vikram Vaswani, TMH
11 Reference Books
1. HTML, XHTML, and CSS Bible Fifth Edition, Steven M. Schafer, WILEY,
2011
2. Learning PHP, MySQL, JavaScript, CSS & HTMLJ5, Robin Nixon, O’Reilly,
2018
3. PHP, MySQL, JavaScript & HTML5 All-in-one for Dummies, Steve Suehring,
Janet VValade Wiley, 2018
12 Internal Continuous Assessment: 40% | Semester End Examination: 60%
13 The internal evaluation will be determined | A Semester End Practical

by the completion of practical tasks and the | Examination of 2 hours duration for
submission of corresponding write-ups for | 30 marks as per the paper pattern
each session. Each practical exercise holds | given below.

a maximum value of 5 marks. The total | Certified Journal is compulsory for
evaluation, out of 50 marks, should be | appearing at the time of Practical
scaled down to a final score of 20 marks. | Exam

Total: 20 marks Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: Database Management Systems Using PL/SQL

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Database Management Systems (DBMS) Using
PL/SQL course is a comprehensive exploration into the
principles and practices of managing databases using the
powerful PL/SQL language. This course provides
participants with the skills needed to design, implement,
and maintain robust database systems.

Relevance:

In the era of information technology, databases serve as
the backbone of applications. The course is highly
relevant as it delves into PL/SQL, a procedural language
designed for seamless interaction with Oracle databases,
one of the most widely used database management
systems.

Usefulness:

The course is invaluable for individuals seeking
proficiency in database management. Participants learn to
harness the capabilities of PL/SQL for efficient data
storage, retrieval, and manipulation, enhancing the
functionality and performance of database systems.

Application:

The concepts learned in this course find direct application
in real-world scenarios. Participants design and
implement database structures, write PL/SQL scripts for
data manipulation, and optimize database performance,
ensuring the efficient operation of data-centric
applications.

Interest:

The hands-on and problem-solving nature of working
with databases and PL/SQL often captivates students.
Through practical exercises, participants engage in
creating and managing databases, fostering a deep interest
in efficient data storage and retrieval.

Connection with Other Courses:

This course establishes strong connections with other
courses in the field of database management, data
analytics, and software development. It provides a
foundation for advanced studies in database optimization,

data warehousing, and application development.
Demand in the Industry:

Professionals proficient in database management using
PL/SQL are in high demand. Industries spanning finance,
healthcare, and e-commerce actively seek individuals
who can design and manage databases to ensure data
integrity, security, and optimal performance.

Job Prospects:

Graduates from a DBMS Using PL/SQL course find
diverse job prospects. Roles may include database
administrator, SQL developer, data analyst, and database
architect. These professionals are valued for their ability
to create and manage databases critical to organizational

success.
2 Vertical: SEC
3 Type: Practical
4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of
Practical work in a semester)
5 Hours Allotted: 60 Hours
6 Marks Allotted: 50 Marks
7 Course Objectives(CO):
CO 1. To develop understanding of concepts and techniques for data
management
CO 2. To learn about widely used systems for implementation and usage
CO 3. To develop understanding of Transaction management and crash recovery.
8 Course Outcomes (OC):
OC 1. Master concepts of stored procedure, functions, cursors and triggers and its
use.
OC 2. Learn about using PL/SQL for data management.
OC 3. Use efficiently Collections and records.
OC 4. Understand concepts and implementations of transaction management and
crash recovery.
9 Modules:-

Module 1 (30 hours):

Overview of PL/SQL: Advantages of PL/SQL, Main Features of PL/SQL,
Architecture of PL/SQL

Fundamentals of PL/SQL.: Character Sets, Lexical Units, Declarations, References
to Identifiers, Scope and Visibility of Identifiers, Assigning Values to Variables,
Expressions, Error-Reporting Functions, Data Types., Control Statements:
Conditional Selection Statements, LOOP Statements, Sequential Control Statements,
GOTO, and NULL Statements.

Sequences: creating sequences, referencing, altering, and dropping a sequence.

Stored Procedures and Functions: Procedures: Types and benefits of stored
procedures, creating stored procedures, executing stored procedures, altering stored
procedures, viewing stored procedures. Functions: Calling function and recursion
function.

Collections and Records: Associative Arrays, Varrays (Variable-Size Arrays),
Nested Tables, Collection Constructors, Assigning Values to Collection Variables,
Multidimensional Collections, Collection Comparisons, Collection Methods,
Collection Types Defined in Package Specifications, Record Variables, Assigning
Values to Record Variables.

Error Handling: Compile-Time Warnings, Overview of Exception Handling,
Internally Defined Exceptions, Predefined Exceptions, User- Defined Exceptions,
Redeclared Predefined Exceptions, Raising Exceptions Explicitly, Exception
Propagation, Unhandled Exceptions.

Module 2 (30 hours):

Cursors: Overview of Cursor, Types of cursors, Invalid cursor Exception.

Static SQL.: Description of Static SQL, Cursors Overview, Processing Query Result
Sets, Cursor Variables, CURSOR Expressions,

Transaction Processing and Control: Autonomous Transactions, Commit
Protocol, Concurrency Control, Lock Management, Read-Write Locks, Deadlocks
Handling,

Dynamic SQL: Native Dynamic SQL, DBMS_SQL Package, SQL Injection.

Triggers: Overview of Triggers, implementing triggers — creating triggers, Insert,
delete, and update triggers, nested triggers, viewing, deleting, and modifying
triggers, enforcing data integrity through triggers.

Packages: Overview of a Package. Need of Packages, Package Specification,
Package Body, Package Instantiation, and Initialization. Create nested tables and
work with nested tables.

10 Text Books
1. Mastering PL/SQL Through Illustrations: From Learning Fundamentals to
Developing Efficient PL/SQL Blocks, Dr. B. Chandra, BPB Publication, 2020
2. Oracle PI/SQL Training Guide., Training guide, BPB Publications, 2016
3. Raghu Ramakrishnam, Gehrke, Database Management Systems,
McGraw- Hill,3rd Edition, 2014
4. Abraham Silberschatz, Henry F. Korth,S. Sudarshan , Database System
Concepts, 6th Edition 2019
11 Reference Books

1. lvan Bayross, SQL, PL/SQL -The Programming language of Oracle, B.P.B.
Publications 2009

2. Ramez Elmasri & Shamkant B.Navathe, Fundamentals of Database Systems,
Pearson Education, 2008

12

Internal Continuous Assessment: 40%

Semester End Examination: 60%

13

The internal evaluation will be determined
by the completion of practical tasks and
the submission of corresponding write-ups
for each session. Each practical exercise
holds a maximum value of 5 marks. The
total evaluation, out of 50 marks, should
be scaled down to a final score of 20

marks.

A Semester End Practical
Examination of 2 hours duration for
30 marks as per the paper pattern
given below.

Certified Journal is compulsory for
appearing at the time of Practical Exam

Total: 20 marks

Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Name of the Course: Advanced Python Programming

Sr. No.

Heading

Particulars

1

Description the
course:

Introduction:

The Advanced Python Programming Course is designed
to elevate coding skills to a more sophisticated level,
offering participants a deeper understanding of Python's
advanced features and capabilities. Building upon the
foundations laid in basic Python courses, this advanced
course delves into complex programming concepts and
techniques.

Relevance:

As technology advances, the relevance of Python
continues to grow. The Advanced Python Programming
Course is a response to the increasing demand for skilled
Python developers who can tackle intricate challenges in
various domains, including software development, data
science, artificial intelligence, and more.

Usefulness:

This course goes beyond basic syntax and introduces
participants to advanced Python topics such as
decorators, generators, metaclasses, and asynchronous
programming. Learners gain valuable insights into
optimizing code performance, enhancing code
readability, and solving complex problems efficiently.

Application:

Graduates of this course can apply their advanced
Python skills to tackle more complex programming
tasks, develop scalable applications, and contribute to
large-scale software projects. The course's emphasis on
practical applications ensures that participants are well-
equipped for real-world programming challenges.

Interest:

The course maintains an engaging learning experience,
balancing theoretical concepts with hands-on projects
that challenge participants to apply their knowledge
creatively. This approach fosters a continued interest in
Python programming and encourages learners to explore
advanced topics with enthusiasm.

Connection with Other Courses:

The knowledge gained in the Advanced Python

Programming Course establishes a strong foundation for
further specialization in advanced Python libraries,
frameworks, and application domains. This course acts
as a bridge to more specialized fields such as machine
learning, web development, and data engineering.

Demand in the Industry:

Professionals with advanced Python skills are highly
sought after in the industry. The ability to leverage
Python's advanced features for efficient problem-
solving, code optimization, and system architecture
places graduates of this course in high demand across
diverse sectors.

Job Prospects:

Completing the Advanced Python Programming Course
opens doors to advanced positions in software
development, data engineering, scientific computing,
and research. Job prospects include roles such as Python
developer, data scientist, machine learning engineer, and
backend developer, among others.

Vertical: SEC

Type: Practical

Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours
of Practical work in a semester)

Hours Allotted: 60 Hours

Marks Allotted: 50 Marks

Course Objectives(CO):

CO 1. Master OOPs principles, solving real-world problems.

CO 2. Create robust Python classes, transfer members efficiently.

CO 3. Understand and implement inheritance, utilize advanced polymorphism..
CO 4. Implement abstract classes, leverage interfaces for flexible code.

CO 5. Create and synchronize threads, mitigate deadlock issues.

Course Outcomes (OC):

OC 1. Demonstrate comprehensive OOPs proficiency, apply principles
effectively.

OC 2. Develop efficient, reusable classes, successfully transfer members.

OC 3. Ability to implement inheritance and apply advanced polymorphism.

OC 4. Ability to implement abstract classes, demonstrate flexibility through
interfaces.

OC 5. Ability to thread creation, synchronization, and effective deadlock
resolution.

9 Modules:-
Module 1 (30 hours):
OOPs In Python: Introduction to OOPs, Problems in Procedure Oriented
Approach, Features of Object Oriented Programming System (OOPS),
Constructors and Destructors,
Classes and Objects- Creating a Class, Self-Variable, Types of Variables, Types
of Methods, Passing Members of One Class to Another Class
Inheritance and Polymorphism: Types of Inheritance, Constructors in
Inheritance, Overriding Super Class Constructors and Methods, super() method,
Polymorphism, Duck Typing , Operator Overloading, Method Overloading,
Method Overriding
Abstract Classes and Interfaces: Abstract Class, Abstract Method, Interfaces in
Python
Threads in Python: Creating Threads in Python, Single Tasking and Multitasking,
Thread Synchronisation, Deadlock in Threads
Module 2 (30 hours):
Working with Databases: DBMS, working with MySQL Database-retrieving,
inserting, deleting, updating rows from table, Creating Database Tables through
Python
Exceptions: Errors in a Python Program, Exceptions and Exceptions handling,
User Defined Exceptions, Logging Exceptions,
Networking: TCP/IP Protocol Architecture, , User Datagram Protocol (UDP), FTP
Architecture, Web Page Operations, Sending a Simple Mail
Graphical User Interface: Creating a GUI in Python, Widget classes, Layout
Manager, Event Handling
Data Science Tools: Introduction to NumPy, Matplotlib, pandas, Scipy,
10 Text Books
1. Practical Programming: An Introduction to Computer Science Using Python
3, Paul Gries , Jennifer Campbell, Jason Montojo, Pragmatic Bookshelf, 2nd
Edition, 2014
2. Programming through Python, M. T Savaliya, R. K. Maurya& G M Magar,
Sybgen Learning India, 2020
11 Reference Books

1. Python: The Complete Reference, Martin C. Brown, McGraw Hill, 2018

2. Beginning Python: From Novice to Professional, Magnus Lie Hetland,
Apress, 2017

3. Programming in Python 3, Mark Summerfield, Pearson Education, 2nd Ed,
2018

12

Internal Continuous Assessment: 40%

Semester End Examination: 60%

13

The internal evaluation will be
determined by the completion of practical
tasks and the submission of
corresponding write-ups for each session.
Each practical exercise holds a maximum
value of 5 marks. The total evaluation,
out of 50 marks, should be scaled down
to a final score of 20 marks.

A Semester End Practical
Examination of 2 hours duration for
30 marks as per the paper pattern
given below.

Certified Journal is compulsory for
appearing at the time of Practical
Exam

Total: 20 marks

Total: 30 Marks

14

Format of Question Paper:

Total Marks: 30

Duration: 2 Hours

Question Practical Question Based On Marks
Q.1 Module 1 12
Q.2 Module 2 12
Q.3 Viva 06

Letter Grades and Grade Points:

Alpha-Sign/ Gradin
9.00 - 10.00 90.0 — 100 O (Outstanding) 10
8.00 - <9.00 80.0-<90.0 A+ (Excellent) 9
7.00-<8.00 70.0 -<80.0 A (Very Good) 8
6.00 - <7.00 60.0 - < 70.0 B+ (Good) 7
5.50-<6.00 55.0-<60.0 B (Above Average) 6
5.00-<5.50 50.0 - <55.0 C (Average) 5
4.00 - <5.00 40.0-<50.0 P (Pass) 4
Below 4.00 Below 40.0 F (Fail) 0
Ab (Absent) Ab (Absent) 0

