AC - 28/03/2025 Item No. - 6.2 (N) (3b) Sem. IV

As Per NEP 2020

University of Mumbai

Syllabus for Basket of OE Vertical 3

Vertical 3		
Faculty of Science		
Board of Studies in Data Science		
Second Year Programme		
Semester	IV	
Title of Paper	Credits	
TensorFlow	2	
From the Academic Year	2025-26	

Title of Paper: TensorFlow

Sr. No.	Heading	Particulars		
1	Description of the course:	The TensorFlow practical covers a hands-on		
	Including but not limited to	approach to learning TensorFlow, providing		
	Including but not limited to:	fundamental concepts, model building, training, and		
		deployment. TensorFlow is designed for data scientists, engineers, and researchers who want to		
		build production-ready systems. By the end of the		
		course, the learners will have a solid foundation in		
		TensorFlow, ready to tackle real-world data		
		challenges and enhance your big data processing		
2	Vertical:	skills. Open Elective		
		'		
3	Type:	Practical		
4	Credit:	2 credits (1 credit = 15 Hours for Theory or 30		
5	Hours Allotted:	Hours of Practical work in a semester) 60 Hours		
6	Marks Allotted:	50 Marks		
7	Course Objectives (CO):			
		cal context and basics of TensorFlow including setting		
	up the environment and working with tensors. CO2: To construct a deep learning model using TensorFlow's Keras Sequential API.			
	-	els and evaluate their performance.		
	CO3. Train deep learning models and evaluate their performance. CO4: Improve model performance using callbacks and regularization techniques.			
	CO5: Apply TensorFlow skills to develop an image classification model.			
8	Course Outcomes (OC):			
	OC1: Introduction TensorFlow: Understand the TensorFlow basics fundamentals.			
	OC2: TensorFlow and Machine learning fundamentals: Install TensorFlow on			
	computer machine and diving deep into Tensoflow API.			
	OC3: Computation of Graph: Execute different types of joins and unions on Data- Frames to combine and analyze data from multiple sources.			
	OC4: Building Model: Identify problem, collect data, Explore the data, Preprocess			
	the data, Build the model, Set up the layers, Compile the Model, Train the Model,			
	Feed the Model.			

9	Modules:	
	Module 1:	30 Hrs
	Introduction to TensorFlow and Setup: Introduction to TensorFlow, Strength of TensorFlow, Challenges of TensorFlow, Structure and Objective of TensorFlow, New feature of TensorFlow, anaconda Navigator, Classification with Iris dataset.	
	Installation: Installing Visual Studio, Python 3, Installing TensorFlow, Installing Keras, Jupyter notebook and Matplotlib, Testing of all installations working, Perform a simple "Hello World" TensorFlow program, Perform basic TensorFlow operations.	
	TensorFlow Basics and Computation Graphs: Introduction to computation graphs, Defining Computation Graphs in TensorFlow, Building your first computation graph in TensorFlow, Understanding Tensors, Operations and data flow, Variables, Placeholders, and constants, Graphs, Create and manage computation graphs, Basic TensorFlow programs	
	Basic classification: Classify images of clothing: Import the Fashion MNIST dataset, Explore the data, Preprocess the data, Build the model, Set up the layers, Compile the Model, Train the Model, Feed the Model.	
	Basic text classification: Sentiment Analysis: Download and explore the IMDB dataset, Load the dataset, prepare the dataset for training, Configure the dataset for performance, Create model, Loss function and optimizer, Train the Model, Evaluate the Model, Create plot of accuracy and loss overtime, Export model	
	Text classification with TensorFlow Hub: Movie reviews: Download and explore the IMDB dataset, Load the dataset, prepare the dataset for training, Configure the dataset for performance, Create model, Loss function and optimizer, Train the Model, Evaluate the Model, Create plot of accuracy and loss overtime, Export model.	
	Module 2:	30 Hrs
	Building Neural Networks with TensorFlow: Common Components and Operations of Neural Networks, Training a Neural Network with TensorFlow, Implement a simple neural network for MNIST classification using gradient descent optimization	
	Basic regression: Predict fuel efficiency: Download and explore the Auto MPG dataset, Get the data, Load the dataset, prepare the dataset for training, Configure the dataset for performance, Inspect the data, Split	

features from labels, Normalization, Linear Regression with one variable, Linear Regression with multiple inputs, Regression with a Deep Neural Network (DNN), Regression using a DNN with single input, Regression using a DNN and multiple inputs, performance, make predictions. Overfit and underfit: Download and explore the Higgs dataset, Load the dataset, prepare the dataset for training, Demonstrate overfitting, Training procedure, Tiny, Small, Medium, Large Model, Plot the training and validation losses **Building Object Recognition and Classification:** Convolutional Neural Networks (CNN), Introduction to Convolutional Neural Network, convolution layer, MNIST with CNN, Training CNN on MNIST and CIFAR-10, Implementing CNNs from scratch in TensorFlow, Visualizing model performance Recurrent Neural Networks (RNN) and NLP Applications: Study sequence data and time series, Introduction to RNNs, LSTM Training an RNN for text generation, Implementing LSTM based sentiment analysis Textbooks: 1. Learning TensorFlow A Guide to Building Deep Learning Systems by Tom Hope, Yehezkel S. Resheff & Itay Lieder, 1st Edition, O'Reilly 2. Beginning Application Development with TensorFlow and Keras, by Luis Capelo, 1st Edition, Packt Publication, 2018. 3. Mastering TensorFlow 2.x, Implement Powerful Neural Nets across structured, unstructured datasets and Time Series by Rajdeep Dua, BPB publication. **Reference Books:** 1. Beginning with Deep Learning Using Tensorflow: A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principles and Applications. 2. TensorFlow for Machine Intelligence A Hands-On Introduction to Learning Algorithms Sam Abrahams Danijar Hafner Erik Erwitt.

3. https://www.tensorflow.org/tutorials/keras/classification#compile_the_

Semester End Examination: 60%

10

11

12

model.

Internal Continuous Assessment: 40%

13	Continuous Evaluation through:	30 marks practical exam of 2 hours	
	Students are expected to attend each	duration	
	practical and submit the written practical of		
	the previous session. Performing Practical		
	and writeup submission will be continuous		
	internal evaluation. 2.5 marks can be		
	awarded for each practical performance and		
	writeup submission totaling to 50 marks and		
	can be converted to 20 marks.		
14	Format of Question Paper:		
	Practical Slip:		
	Q1. From Module 1 13 marks		
	Q2. From Module 2 12marks		
	Q3. Journal and Viva 05 marks		

Sd/-Sign of the BOS Chairman Dr. Srivaramangai R BOS in Data Science Sd/Sign of the Offg.
Associate Dean
Dr. Madhav R. Rajwade
Faculty of Science &
Technology

Sd/-Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology