University of Alumbai

क. वि.प्रा.स.से.(युजी)/आयसीसी/२०२४--२५/४

परिपत्रक:-

सर्व प्राचार्य/संचालक, संलग्नित महाविद्यालय/संस्था. विद्यापीठ शैक्षणिक विभागांचे संचालक / विभाग प्रमुख यांना कळविण्यात येते की, गष्ट्रीय शैक्षणिक धोरण २०२० च्या अमंलबजावणीच्या अनुषंगाने <u>शैक्षणिक वर्ष २०२४—२५</u> पासून एक्झिट पर्याय सह <u>पदवी व</u> पटव्युलर अभ्यासकम विद्यापरिपदेच्या दिनांक २७ डिसंवर, २०२३, ३ फेब्रुवारी, २०२४. २० एप्रिल, २०२४ व २४ में, २०२४ च्या वैडकीमध्ये मंजूर झालेले सर्व अभ्यासकम मुंबई विद्यापीठाच्या www.mu.ac.in या संकेत स्थळावंर NEP २०२० या टॅब वर उपलब्ध करण्यात आलेले आहेत.

मंगई - ४०० ०३२ ११ जन, २०२४ (प्रा. (डॉ.) वळीराम गायकवाड) प्र. क्लसचिव

Cop	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), dr@eligi.mu.ac.in
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari cap.exam@mu.ac.in
6	The Deputy Registrar, College Affiliations & Development Department (CAD), deputyregistrar.uni@gmail.com
7	The Deputy Registrar, PRO, Fort, (Publication Section), Pro@mu.ac.in
8	The Deputy Registrar, Executive Authorities Section (EA) eau120@fort.mu.ac.in
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), rape@mu.ac.in
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, thanesubcampus@mu.ac.in
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentar@gmail.com
17	The Director, Centre for Distance and Online Education (CDOE), Vidyanagari, director@idol.mu.ac.in
18	Director, Innovation, Incubation and Linkages, Dr. Sachin Laddha pinkumanno@gmail.com
19	Director, Department of Lifelong Learning and Extension (DLLE), dlleuniversityofmumbai@gmail.com

Copy	y for information :-
1	P.A to Hon'ble Vice-Chancellor,
	vice-chancellor@mu.ac.in
2	P.A to Pro-Vice-Chancellor
	pvc@fort.mu.ac.in
3	P.A to Registrar,
	registrar@fort.mu.ac.in
4	P.A to all Deans of all Faculties
5	P.A to Finance & Account Officers, (F & A.O),
	camu@accounts.mu.ac.in

To,

1	The Chairman, Board of Deans
	pvc@fort.mu.ac.in
2	Faculty of Humanities,
	Offg. Dean
	1. Prof.Anil Singh
	<u>Dranilsingh129@gmail.com</u>
	Offg. Associate Dean
	2. Prof.Manisha Karne
	mkarne@economics.mu.ac.in
	3. Dr.Suchitra Naik
	Naiksuchitra27@gmail.com
	Faculty of Commerce & Management,
	Offg. Dean,
	1 Prin.Ravindra Bambardekar
	principal@model-college.edu.in
	Offg. Associate Dean
	2. Dr.Kavita Laghate
	kavitalaghate@jbims.mu.ac.in
	3. Dr.Ravikant Balkrishna Sangurde
	Ravikant.s.@somaiya.edu
	4. Prin.Kishori Bhagat
	kishoribhagat@rediffmail.com

	Faculty of Science & Technology
	Offg. Dean 1. Prof. Shivram Garje ssgarje@chem.mu.ac.in
	Offg. Associate Dean
	2. Dr. Madhav R. Rajwade Madhavr64@gmail.com
	3. Prin. Deven Shah sir.deven@gmail.com
	Faculty of Inter-Disciplinary Studies, Offg. Dean
	1.Dr. Anil K. Singh aksingh@trcl.org.in
	Offg. Associate Dean
	2.Prin.Chadrashekhar Ashok Chakradeo <u>cachakradeo@gmail.com</u> 3. Dr. Kunal Ingle
	drkunalingle@gmail.com
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation, dboee@exam.mu.ac.in
5	The Director, Board of Students Development, dsd@mu.ac.in DSW directr@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology, director.dict@mu.ac.in

As Per NEP 2020

University of Mumbai

Title of the program

- A- U.G. Certificate in Physics
- **B-** U.G. Diploma in **Physics**
- C- B.Sc. (Physics)
- **D-** B.Sc. (Hons.) in **Physics**
- **E-** B.Sc. (Hons. with Research) in **Physics**

Syllabus for

Semester - Sem I& II

Ref: GR dated 20thApril, 2023 for Credit Structure of UG

(With effect from the academic year 2024-25 Progressively)

University of Mumbai

(As per NEP 2020)

Sr. No.	Heading		Particulars
1	Title of program		
	O: <u>SU-507A</u>	A	U.G. Certificate in PHYSICS
	O: <u>SU-507B</u>	В	U.G. Diploma in PHYSICS
	O: <u>SU-507C</u>	C	B.Sc. (PHYSICS)
	O: <u>SU-507D</u>	D	B.Sc. (Hons.) in PHYSICS
	O: <u>SU-507 E</u>	E	B.Sc. (Hons. with Research) in PHYSICS
2	Eligibility	A	H.S.C. OR Passed Equivalent Academic Level 4.0
	O: <u>SU-508A</u>		
	O: <u>SU-508B</u>	В	Under Graduate Certificate in Physics OR Passed equivalent Academic Level 4.5
	O: <u>SU-508C</u>	С	Under Graduate Diploma in Physics OR Passed equivalent Academic Level 5.0
	O: <u>SU-508D</u>	D	Bachelors of Science in Physics with minimum CGPA of 7.5 OR Passed equivalent Academic Level 5.5
	O: <u>SU-508E</u>	E	Bachelors of Science in Physics with minimum CGPA of 7.5 OR Passed equivalent Academic Level 5.5
3	Duration of program	A	One Year
	R: <u>SU-516</u>		
		В	Two Years
		C	Three Years
		D	Four Years
		E	Four Years
4	Intake Capacity	100	
	R: <u>SU-517</u>	120 p	er division

	G.I. P.E	NIDD	
5	Scheme of Examination	NEP	Internal
	R: <u>SU-518</u>		External, Semester End Examination
	R. <u>50-516</u>		ridual Passing in Internal and External
			nination
6	R: <u>SU-519</u> Standards of Passing	40%	
7	Credit Structure	Attac	ched herewith
7	Sem. I - R: <u>SU-520 A</u>		
	Sem. II -R: <u>SU-520 B</u>		
	Credit Structure	\dashv	
	Sem. III - R: <u>SU-520 C</u>		
	Sem.IV -R: <u>SU-520 D</u>		
	Credit Structure	_	
	Sem. V - R: <u>SU-520 E</u>		
	Sem.VI-R: <u>SU-520 F</u>		
8	Semesters		Sem I & II
0	Semesters	В	Sem III& IV
		С	Sem V & VI
		D	Sem VII& VIII
		لا ا	Seni viia viii
		Е	Sem VII & VIII
9	Program Academic Level	A	4.5
	1 Togram Academic Level	В	5.0
		С	5.5
		D	6.0
	+	Е	6.0
			0.0
10	Pattern	Seme	ester
11	Status	New	
12	To be implemented from Academic Year Progressively	From	Academic Year: 2024-25

NOTE: This Syllabus is applicable to IDOL students as well, w.e.f. 2025-26

Sign of the BOS

Chairman Name:

Dr.T.N.GHORUDE

BOS in Physics

Sign of the

I/c. Associate Dean

Dr. Madhav R. Rajwade Faculty of Science &

Technology

Sign of the I/c Dean

Prof. Shivram S. Garje Faculty of Science &

Technology

Preamble

1) Introduction:

The revised syllabus in Physics, as per credit based system for the First Year B. Sc. course will be implemented from the academic year 2024 - 2025.

2) Aims and Objectives

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics.

Objectives:

- To develop analytical abilities towards real world problems
- To familiarize with current and recent scientific and technological developments
- To enrich knowledge through problem solving, hands on activities, study visits, projects etc.
- To acquire knowledge of fundamental optics.

3) Learning Outcomes

On successful completion of this course students will be able to:

- 1. Understand the Newton's laws of motion, friction, work, energy and able to solve problems using
- 2. them. Understand the mechanics of multi-particle system using concepts of center of mass and
- 3. conservation laws.
- 4. Study the mechanics of undamped/ (simple harmonic motion, uniform circular motion) and
- 5. damped oscillations (Forced oscillations, two body oscillation) and their implementation in
- 6. physical applications such as torsional, compound, and simple pendulums.
- 7. Understand AC circuit theory in case of pure resistance, inductance, capacitance and series
- 8. combinations of LR, CR and LCR circuits, the working of AC bridges such as Maxwell's
- 9. Inductance bridge, De Sauty's bridge, Wien bridge.
- 10. Comprehend circuit theorems (Ohm's law, Kirchoff's laws, Thevenin's, Norton's, and
- 11. Maximum Power Transfer theorems). Also, understand magnetic properties of matter,
- 12. concepts of magnetic permeability, magnetic forces, magnetic field, magnetization,
- 13. Biot-Savart's law.
- 14. Study the Lens maker's equation, Newton's lens equation and principal foci positions.
- 15. Also, understand Lateral, Longitudinal and Angular magnification, Equivalent focal length
- 16. and power of two thin lenses, Concept of cardinal points and their significance.
- 17. Comprehend Spherical aberration & reduction, chromatic aberration & reduction. Alao,
- 18. understand Fresnel and Fraunhoffer type of diffraction and Fraunhoffer diffraction pattern due
- 19. to a single slit and double slit, Michelson's Interferometer and its Application, Polarization
- 20. and types of Polarization.
- 21. Comprehend the concepts of DC power supply and familiarize with diode and Zener diode

22.	circuits and its applications, Methods of Transistor Biasing, Base Resistor or fixed bias,
23.	Emitter Bias and Voltage Divider Bias Methods.
24.	Understand DC transistors Biasing and α , β (dc and ac) gain. Inherent Variations of

transistor Parameters and Stabilization, Derived Gates NAND, NOR and Ex-OR gate,

26. Including their symbols and truth table.

25.

- 27. Apply the knowledge to design logical circuit using basic gates and its applications.
- 28. Students must be able to work through problems pertaining to the topics covered in the syllabus.

5) Credit Structure of the Program (Sem I, II, III, IV, V & VI)

Under Graduate Certificate in Physics

Credit Structure (Sem. I & II)

	R:		_A							
Level	Semest er			Min or	0	vsc ,	AEC, VEC,	OJT, FP, CEP, CC,	Cu m. Cr./	Degree/ Cun
	er	Mandatory	Elec tive s	or	Е	(VS EC)	IKS, SEC	RP	Sem ·	Cr.
4.5	I	MJ – 1:Introduction to Mechanics (2) MJ – 2: Basic Electricity & Magnetism (2) MJP – 1: Physics Major Practical – I (2)		-	4	VSC:2, Laboratory Equipment Maintenance SEC:2 Basic Instrumentati on-mention skill and Basic mathematical skills for Physics		2	22	UG Certificate
	R:		_B							
	п	MJ – 3: Optics(2) MJ – 4:Fundamentals of Electronics (2) MJP – 2: Physics Major Practical – II (2)		2	4	VSC2: PCB Making SEC2: ICT tools for Physics		2	22	
	Cum Cr.	12		2	8	4+4	4+4+2	4	44	

Exit option: Award of UG Certificate in Major with 40-44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with Major and Minor

Under Graduate Diploma in Physics

Credit Structure (Sem. III & IV)

	R:	C								
5.0	Ш	MJ – 5:Mathematical Methods for Physics (2) MJ – 6: Electrodynamics –I (2) MJP-3: Physics Major Practical – III (2) MJP-4: Physics Major Practical – IV (2)	-			VSC3: Computer Maintenance (2)			22	UG Diploma 88
	R:	D	<u>I</u>							
	IV	MJ-7: Introduction to Quantum Mechanics and Modern Physics (2) MJ-8: Advanced Electronics –I (2) MJP-5: Physics Major Practical – V (2) MJP-6:Physics Major Practical – VI (2)	-			VSC4: Battery and Inverter Testing & Maintenance (2)			22	
	Cum Cr.	28		10	12	6+6	8+4+2	8+4	88	

Exit option; Award of UG Diploma in Major and Minor with 80-88 credits and an additional 4 credits core NSQF course/ Internship OR Continue with Major and Minor

B.Sc. (Physics)

Credit Structure (Sem. V & VI)

V	MI 0. Thomas	FI _ I·		VSC4.		22	114
V	MJ-9: Thermal & Statistical Physics (2) MJ-10: Solid State Physics (2) MJ-11: Atomic & Molecular Physics (2) MJP- 7: Physics Major Practical - VII (2) MJP- 8: Physics Major Practical	EL- I: Electronic Instrumentation –I (2) or Microcontrollers (2) or Numerical Techniques - I (2) ELP – I: Practical of EL I (2)		VSC4: Study of Solar Panel and its Installation (2)		22	U(De 13
R:	MJ – 12: Classical Physics (2) MJ – 13: Nuclear Physics (2) MJ – 14: Special Theory of Relativity (2) MJP – 9: Physics Major	EL –II: Electronic Instrumentation – II (2) or Numerical Techniques – II (2) or Python Programming – I		VSC5: Electrical Energy Auditing (2)		22	
	Practical – IX (2) MJP – 10: Physics Major Practical – X (2)	(2) ELP – II: Practical of EL II (2)					

Exit option: Award of UG Degree in Major with 132 credits OR Continue with Major and Minor

[Abbreviation - OE - Open Electives, VSC - Vocation Skill Course, SEC - Skill Enhancement Course, (VSEC), AEC - Ability Enhancement Course, VEC - Value Education Course, IKS - Indian Knowledge System, OJT - on Job Training, FP - Field Project, CEP - Continuing Education Program, CC - Co-Curricular, RP - Research Project]

Sem. - I

Syllabus B.Sc. (Physics) (Sem.- I)

Name of the Course: F.Y.B.Sc. SEM-I - Paper I - Introduction to Mechanics

Sr.No.	Heading	Particulars						
1	Description the course : Including but Not limited to:	Introduction, relevance, Usefulness, Application, interest, connection with other courses, demand in the industry, job prospects etc.						
2	Vertical:	Major/Minor/Open Elective /Skill Enhancement / Ability Enhancement/Indian Knowledge System						
3	Type:	Theory / Practical						
4	Credits:	2 credits (1 credit = 15 Hours for Theory or 30 Hours of Practical work in a semester)						
5	Hours Allotted :	30 Hours						
6	Marks Allotted:	50 Marks						
7	Course Objectives (CO):						
	After successful comple	tion of this course students will be able to:						
	CO 1. Explain Newton's laws of motion, friction, work, energy and able to solve problems using them.							
	CO 2. Learn the mechan conservation laws.	nics of multi-particle system using concepts of center of mass and						
	•	anics of undamped/ (simple harmonic motion, uniform circular oscillations (Forced oscillations, two body oscillation)						
	CO 4. Describe qualitatively how undamped and damped oscillations are implemented in physical problems such as torsional, compound, and simple pendulums.							
	CO 5. Demonstrate quantitative problem solving skills in all the topics covered in the syllabus.							
8	Course Outcomes (OC)	:						
	After successful complet	ion of this course the learner will be able to:						
	OC 1. Understand Newton problems using them.	on's laws of motion, friction, work, energy and able to solve						
	OC 2. Comprehend Wonumerical.	rk and Energy equivalence and its applications through suitable						

- OC 3. Understand mechanics of multi-particle system using concepts of center of mass and conservation laws.
- OC 4. Understand mechanics of undamped/ (simple harmonic motion, uniform circular motion) and damped oscillations
- OC 5. Understand how undamped and damped oscillations are implemented in physical problems
- OC 6. Demonstrate quantitative problem solving skills in all the topics covered

9 Modules:-Paper 1 – Introduction to Mechanics (30 Hours)

UNIT- I (15 Hours)

- **1. Newton's Laws of Motion:** Newton's first, second and third laws of motion, interpretation and applications, pseudo forces, inertial and non-inertial frames of reference Worked out examples (with friction present). (**HCV: 5.1 to 5.5**)
- **2. Friction:** Advantages & disadvantages of friction in daily life, Friction as the component of Contact force, Kinetic Friction, Static friction, laws of friction, Understanding friction at atomic level. (**HCV: 6.1 to 6.5**)
- 3. Work and Energy: Kinetic Energy, Work and Work-energy theorem, Potential Energy,

Conservative and Non-Conservative Forces, Different forms of Energy: Mass Energy

Equivalence Worked out Examples. (HCV: 8.1, 8.2, 8.5, 8.6, 8.11)

UNIT-II (15 Hours)

1.Many Particles System, Centre of Mass of solid objects, Conservation of momentum in a system of particle, Angular momentum of a particle and system of particle, conservation of angular momentum. (**RH: 7.3, 7.4, 7.5, 10.1, 10.2, 10.4**)

Oscillations: The Simple Harmonic Oscillator, Relation between Simple Harmonic Motion and Uniform Circular Motion, Damped Harmonic Motion, Forced Oscillations and Resonance, Two Body Oscillations.

RH:17.2, 17.6, 17.7, 17.8, 17.9

Examples of Simple Harmonic oscillations: Simple Pendulum,

Simple Pendulum, Torsional Pendulum and Compound pendulum (Qualitative study)

HP: 9.1.1(1,3,4)

10 Text Books

11	Reference	Books
		H.C. Verma, Concepts of Physics-Part I (Second Reprint of 2020) BharatiBhavan ers and Distributers
	2. RH: Res	snick and Halliday: Physics – I, 5 th Edition.
	3. Mechai	nics – H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd ED.).
12	Internal Cont 40% (20Mark	inuous Assessment: Semester End Examination: 60% (30 Marks)
13	Continuous E	valuation through:
		ass Tests, presentation, lay, creative writing, e.(at least 3)
14	Format of Qu	estion Paper: 30 Marks Duration: One Hour
	Unit -I	Q:1 A) Attempt any Two 10Marks
	(15Marks)	i) Theory ii) Theory iii) Theory iv) Theory
		B) Attempt any One 05 Marks
		i) Problem ii) Problrm
	Unit -II	Q:2 A) Attempt any Two 10Marks
	(15Marks)	i) Theory ii) Theory iii) Theory iv) Theory
		B) Attempt any One 05 Marks
		i) Problem
		ii) Problrm

Name of the Course: F.Y.B.Sc. SEM-I Paper – II: Electricity and Magnetism

Sr.No.	Heading	Particulars	
1	Description the course : Including but Not limited to:	Introduction, relevance, Usefulness, Application, interest, connection with other courses, demand in the industry, job prospects etc.	
2	Vertical:	Major/Minor/Open Elective /Skill Enhancement / Ability Enhancement/Indian Knowledge System	
3	Type:	Theory / Practical	
4	Credits:	2 credits (1 credit = 15 Hours for Theory or 30 Hours of Practical work in a semester)	
5	Hours Allotted :	30 Hours	
6	Marks Allotted:	50 Marks	
7	Course Objectives (CO)):	
	After successful complet	ion of this course students will be able to:	
	CO 1. Explain the AC circuit theory in case of pure resistance, inductance, capacitance and series combinations of LR, CR and LCR circuits.		
		dge of AC circuit theory to understand the working of AC bridges tance bridge, De Sauty's bridge, Wien bridge	
	CO 3. Explain basic circuit theorems (Ohm's law, Kirchoff's laws, Thevenin's, Norton's, and Maximum Power Transfer theorems).		
	CO 4. Describe magnetic properties of matter, concepts of magnetic permeability, magnetic forces, magnetic field, magnetization, Biot Savarts law.		
	CO 5. Solve numerical based on the topics that are covered in the syllabus.		
8	Course Outcomes (OC):		
	After successful completion of this course students will be able to:		
	OC 1. Understand AC circuit theory in case of pure resistance, inductance, capacitance and series combinations of LR, CR and LCR circuits.		
	OC 2. Understand the wo Sauty's bridge, Wien brid	orking of AC bridges such as Maxwell's inductance bridge, De dge	

OC 3. Comprehend circuit theorems (Ohm's law, Kirchoff's laws, Thevenin's, Norton's, and Maximum Power Transfer theorems). OC 4. Understand magnetic properties of matter, concepts of magnetic permeability, magnetic forces, magnetic field, magnetization, Biot-Savarts law. OC 5. Students learn to apply their knowledge to solve problems related to the topics that are covered in the syllabus. 9 Paper 2 – Electricity and Magnetism (30 Hours) UNIT-I (15 Hours) 1. Alternating current theory: (Review: Concept of L, R, and C) AC circuit containing pure R, pure L and pure C, representation of sinusoids by complex numbers, Series L-R, C-R and LCR circuits, Resonance in LCR circuit (series), Q-Factor. (TT: 11.29, 11.30, 11.32, 12.5, 12.6, 13.1, 13.7, 13.9, 13.10, 13.11, 13.12, 13.13, 13.14, 13.17). 2. AC bridges: General AC Bridge, Maxwell's Inductance Bridge, Maxwell's L/C Bridge, De Sauty Bridge, Wien Bridge. (Bridge diagram, balancing condition derivation, applications). (TT: 16.1, 16.2, 16.3, 16.9, 16.11, 16.12). UNIT-II (15 Hours) 1.Circuit Theorems: (Review: Ohm's law, Kirchhoff's laws) Ideal Current and Voltage Sources, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem. Problems related to circuit analysis using the above theorems. (TT: 2.15, 2.16, 2.18, 2.25, 2.30) (Coulomb's Law, The Electric Field for Review) Magnetic properties of matter: Introduction, Magnetic Permeability, Magnetization (Chapter 9: 1, 2, 3) SOP: Solid State Physics, S.O Pillai (5th Edition), New Age International Limited. Magnetostatics: Magnetic Fields, Magnetic forces, Currents The Biot-Savart Law: Steady Currents, The Magnetic Field of a Steady Current (DJG: 5.1.1, 5.1.2, 5.1.3, 5.2, 5.2.1, 5.2.2) **Text Books** 10 11 **References:** 1. TT: B.L, Theraja and A.K. Theraja, A Textbook of Electrical Technology Vol. I, S. **Chand Publication** 2. DJG: Introduction to Electrodynamics 3rd Edn by D. Griffith

Internal Cont 40% (20 Mar	inuous Assessment: ks)	Semester End Examination: 60% (30 Marks)	
Continuous E	Evaluation through:		
-	lass Tests, presentation, lay, creative writing, c.(at least 3)		
Format of Qu	Format of Question Paper: 30 Marks Duration One Hour		
Unit -I	Q:1 A) Attempt any Two	10Marks	
(15Marks)	i) Theory ii) Theory iii) Theory iv) Theory		
	B) Attempt any One i) Problem ii) Problem	05 Marks	
Unit -II	Q:2 A) Attempt any Two	10Marks	
(15Marks)	i) Theory ii) Theory iii) Theory iv) Theory		
	B) Attempt any One i) Problem ii) Problem	05 Marks	

SEMESTER I

PHYSICS PRACTICAL COURSE -USPHP1

INSTRUCTIONS:

- 1) All the measurements and readings should be written with proper units in SI system only.
- 2) After completing all the required number of experiments in the semester and recording them in journal, student will have to get their journal certified and produce the certified journal at the time of practical examination.
- 3) While evaluating practical, weightage should be given to circuit/ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result.
- 4) Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.

Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activities.

- Collect the information of at least five Physicists with their work or any three events on physics, report that in journal.
- Execute a mini project to the satisfaction of teacher in-charge of practical.
- Participate in a study tour or visit & submit a study tour report.
- For practical examinations, the learner will be examined in **ONE** experiment (from any group).
- A Minimum 4 from each group and in all minimum 8 experiments must be reported in journal.
- All the skill experiments are required to be completed compulsorily. Students are required to report all these experiments in the journal. Evaluation in viva voce will be based on regular experiments and skill experiments.

A learner will be allowed to appear for the semester and practical examination only if he submits a certified journal of Physics or a certificate that the learner has completed the practical course of Physics Semester I as per the minimum requirements.

A. Regular Experiment:

Sr No	Name of the Experiment		
	GROUPA		
1	Torsional Oscillation: To determine modulus of rigidity η of a material of wire by Torsional oscillations		
2	Bifilar Pendulum: Determination of moment of inertia of rectangular and cylindrical bar about an axis passing through its centre of gravity		
3	Moment of inertial of Flywheel		
4	Young's Modulus of a wire material by method of vibrations		
5	Bar Pendulum- determination of g		
6	LDR Characteristics: To study the dependence of LDR resistance on intensity of light		
	GROUPB		
7	Frequency of AC Mains: To determine frequency of AC mains (Sonometer wire)		
8	To study Thermistor characteristics: Resistance Vs Temperature		
9	To determine capacitance in AC circuits using R and C		
10	To determine Inductance in AC circuits using L and C		
11	To determine the horizontal component of Earth's magnetic field(H) in the laboratory using deflection and vibration magnetometer		
12	To determine the self-inductance of a coil with Anderson's Bridge		
	GROUP C:Skill Experiment		
1	Use of Vernier Callipers, Micrometer Screw Gauge and Travelling Microscope		
2	Graph plotting (Plot BE/A verses A graph for 30 atoms, Plot Packing Fraction graph for 30 atoms)		
3	Spectrometer: Schuster's Method		
4	To determine the Resistance & Capacitance using Color code/Number & verify using Multimeter (Analog/Digital).		
5	Use of digital multimeter		
6	Absolute and relative error calculation		

Note: Minimum **8** experiments (Four From each group) and **4** Skill experiments should be completed and reported in the journal, in the first semester. **Certified Journal is a must,** to be eligible to appear for the semester end practical examination.

Semester End Practical Examination:

Scheme of Examination: 50 Marks Duration: TWO Hours

There will be no internal assessment for practical. A candidate will be allowed to appear for the semester end practical examination only if the candidate submits a certified journal at the time of practical examination of the semester or a certificate from the Head of the Department /Institute to the effect that the candidate has completed the practical course of that semester of F.Y.B.Sc. Physics as per the minimum requirement. The duration of the practical examination will be two hours per experiment. There will be two experiments (one from each group) through which the candidate will be examined in practical. The questions on slips for the same should be framed in such a way that candidate will be able to complete the task and should be evaluated for its skill and understanding of physics.

Physics (Vocational Skill Course)

Course code: USPHPVSC1

Title: - Laboratory Equipment Maintenance

Course Objectives

After successful completion of this course students will be able to:

- 1. learn to identify and testing of electronic components.
- 2. Detecting faults in circuits and troubleshooting them.
- 3. Repair of different types of laboratory power supplies.
- 4. Learn Maintenance of basic laboratory equipment's.

Course Objectives practical's:

After successful completion of this course students will be able to:

- 1. Identify different types of wires, power cables, probes, fuses etc.
- 2. Identify, measure and testing of various types passive components and semiconductor devices.
- 3. Understand Soldering and desoldering given circuit on PCB and testing
- 4. Learn about of A.C & D.C. power supply & troubleshooting

Course Outcomes

After successful completion of this course students will be able to:

- 1. Gain knowledge of the different electronic components
- 2. Establish a basis for honing their practical electronics skills
- 3. Develop a lucrative and advanced profession in electronics.
- 4. Understand maintenance of basic laboratory equipment's

Course Outcomes Practicals:

After successful completion of this course students will be able to:

- 1. Comprehend to identify and testing of electronic components.
- 2. Understand to identify faulty components and troubleshoot circuits
- 3. Acquire skills of circuit Soldering and desoldering of electronic components in a given circuit
- 4. Comprehend hands on experience in handling and maintaining laboratory/electronic equipment.

Unit-I (7 Hours)

Testing of Passive Electronic Components using Digital Multimeter (DMM)

Passive components - resistors, capacitors, inductors, failures in fixed resistors, testing of

resistors, variable resistors, variable resistor as potentiometer, measuring resistors using color codes.

Testing of various types of capacitors & inductors.

Unit-II (8 Hours)

Testing of semiconductor devices, soldering and troubleshooting.

Semiconductor devices: diode, bipolar junction transistors etc, causes & types of failures in semiconductor devices.

Basics of soldering: soldering alloy, soldering iron, soldering & desoldering, dry soldering and good contact.

Laboratory Power supplies – basic testing and troubleshooting.

List of Experiment

- 1. To identify different types of Wires, power cables, probes, fuses used in the laboratory and check their continuity using DMM
- 2. Identification of various types passive components resistors, capacitors and inductors used in laboratory.
- 3. Measurement of resistors using colour codes & DMM and testing of capacitors and inductors.
- 4. Identification of various types of semiconductor devices: diode, bipolar junction transistors, Field effect transistors etc.
- 5. Testing of semiconductor devices: diode, bipolar junction transistors, Field effect transistors etc.
- 6. Soldering and desoldering of electronic components in a given circuit
- 7. Mounting simple circuit on PCB and testing.
- 8. Troubleshooting a given circuit.
- 9. Study of a.c power supply & troubleshooting
- 10. Study of d.c power supply and troubleshooting

Reference Books

- 1. Text book of Electrical Technology, by B.L. Theraja and A.K. Theraja
- 2. Modern Electronic Equipment: Troubleshooting, Repair and Maintenance by Khandpur, TMH 2006
- 3. Electronic Instruments and Systems: Principles, Maintenance and Troubleshooting by R. G. Gupta Tata McGraw Hill Edition 2001
- 4. Student Reference Manual for Electronic Instrumentation Laboratories by Stanley Wolf, and

Richard F. M. Smith, Prentice Hall of India Pvt. Ltd. New Delhi

- 5. Consumer Electronics by S. P. Bali, Pearson
- 6. Troubleshooting and Maintenance of Electronic Equipment by K. Sudeep Singh

Reference Books Practical's:

- 1. Modern Electronic Equipment: Troubleshooting, Repair and Maintenance by Khandpur, TMH 2006
- 2. Student Reference Manual for Electronic Instrumentation Laboratories by Stanley Wolf, and Richard F. M. Smith, Prentice Hall of India Pvt. Ltd. New Delhi
- 3. Consumer Electronics by S. P. Bali, Pearson
- 4. Troubleshooting and Maintenance of Electronic Equipment by K. Sudeep Singh

Internal Continuous Assessment: 40% (20 Marks)	Semester End Examination: 60% (30 Marks)
Continuous Evaluation through:	
Practical's	

Format of Question Paper: 30 Marks Duration: One Hour

VSC: 2 credits

VSC of 2 credits, Duration: 45Hrs, Total marks: 50

(30 Marks for Theory paper + 20 Marks for Practical Exam.)

Semester End Theory Examination:	Internal Semester End Practical
60% (30 Marks)	Examination:
	40 % (20 Marks)
As per paper pattern attached	As per practical exam. pattern attached
	_

Theory Paper Pattern for 30 marks Semester End Theory Examination:

1. Duration - These examinations shall be of **one hours** duration

Duration: 1 Hrs Total Marks -30

Que -1	Attempt any Three (on Unit- I)	Total Marks 15
a)		5
b)		5

c)		5
d)		5
e)		5
Que -2	Attempt any Three(on Unit- II)	Total Marks 15
a)		5
b)		5
c)		5
d)		5
e)		5

Internal Practical Examination Pattern for 20 marks Semester End Examination:

1. Duration - These examinations shall be of **Two hours** duration in laboratory

Sr. No.		Total 20 Marks
1	One Experiment	15 Marks
2	Certified Journal	3 Marks
3	Vi-va	2 Marks

Physics (Skill Enhancement Course) - 2 credits Course code: USPHSEC1

Title: - Basic Instrumentation skills and Basic Mathematical Skills for Physics

Sr.	Course Objective	Course Outcome
No.	-	
1.	Generate awareness among students	Accomplish desired skills to handle different
	about handling different laboratory	laboratory instruments scientifically.
	instruments scientifically.	
2.	Develop concepts of accuracy	Acquire knowledge about precision and
	precision, resolution, range and	accuracy in measurements.
	errors/uncertainty in measurement.	
3.	Understand various types of	Develop basic electronic circuit using different
	electronic components and devices	techniques.
	so as to construct simple circuits	
4.	Expose students to systematic of	Develop confidence to use scientific calculator
	scientific calculator.	systematically.
5.	Illustrate necessary mathematical	Apply mathematical tools to understand
	concepts to develop corresponding	theoretical concepts of physics.
	skills	
6.	Develop the problem solving	Demonstrate problem-solving skills for all the
	among learners	topics covered.

This course is designed for learners to get exposure with various aspects of instruments arnd their usage through hands-on mode.

Unit 1: Basic Instrumentation skills

(**30** Hours)

- 1.1. Study and use of Vernier Callipers & Micrometer Screw Gauge
- 1.2. Study and use of Travelling Microscope.
- 1.3. Study and use of Spectrometer.
- 1.4. Study and determination of Focal length of a convex lens.
- 1.5. Fundamentals of Electronic Component- Resistor, potentiometer, Capacitor, Inductor, Diode, Transistor, LED, Zener diode.
- 1.6. Use of Multimeter (analog, Digital), Voltmeter, Ammeter.
- 1.7. Use of CRO voltage (AC, DC), Frequency and Phase measurement.
- 1.8. Different types of power supplies.
- 1.9. Logic gate IC Testing.
- 1.10. Soldering electronic circuits.
- 1.11. Study and use of Thevenin's theorem.
- 1.12. Building Electronic Circuits using Breadboard.
- 1.13. Graph plotting plotting of graphs and finding slope and intercept.
- 1.14. Graph plotting semi log graph paper.
- 1.15. Theory of errors and calculating-Error for given data

Unit 2: Basic Mathematical Skills

(**30** Hours)

- 2.1 Use of scientific Calculator
- 2.2 Basic trigonometry and its applications in physics
- 2.3 Concept of logarithm and its application to Physics
- 2.4 Concept of derivatives and its application to Physics
- 2.5 Concept of integration and its application to Physics
- 2.6 Concept of differential equations (1st order) and its application to Physics

Sem. – II

Syllabus B.Sc. (Physics) (Sem.- II)

Name of the Course: F.Y.B.Sc. SEM-II- Paper – I: Optics

Sr.No.	Heading	Particulars
1	Description the	Introduction, relevance, Usefulness, Application, interest,
	course:	connection with other courses, demand in the industry, job
	Including but Not	prospects etc
	limited to:	
2	Vertical:	Major/Minor/Open Elective /Skill Enhancement / Ability
		Enhancement/Indian Knowledge System
2	T	The arm / Due die al
3	Type:	Theory / Practical
4	Credits:	2 credits (1 credit = 15 Hours for Theory or 30 Hours of Practical work in a semester)
5	Hours Allotted :	30 Hours
6	Marks Allotted:	50 Marks
7	Course Objectives (CO	
/	•	ion of this course students will be able to:
	· ·	nclature used in lenses, lens equations for single convex lenses, and
	_	
	sign convention. lens maker's equation, Newton's lens equation and principal foci positions.	
	CO 2. Describe Lateral, Longitudinal and Angular magnification, Equivalent focal length	
	and power of two thin lenses, Concept of cardinal points and their significance	
		ively Spherical aberration & reduction, chromatic aberration &
	reduction.	
	CO 4. Study of Fresnel	and Fraunhoffer type of diffraction and Fraunhoffer diffraction
	pattern due to a single sl	it and double slit,
	CO 5. Learn Michelson'	s Interferometer and its Applications
	CO 6. Describe Polarizat	tion and types of Polarization
		o apply their knowledge to solve problems that are covered in the
	all syllabus.	apply than the weeks to serve proceeding that the severes in the
	uii sylluous.	
8	Course Outcomes (OC)	:
	After successful completion of this course students will be able to:	
	OC 1.Understand the nomenclature used in lenses, lens equations for single convex lenses,	
	and sign convention. lens maker's equation, Newton's lens equation and principal foci	
	positions.	
	OC 2.To Understand Lateral, Longitudinal and Angular magnification, Equivalent focal	
		thin lenses, Concept of cardinal points and their significance
		ualitatively Spherical aberration & reduction, chromatic aberration
	& reduction.	dantatively opinition abortation a reduction, enformatic abortation
		and and Evouph offer type of diffraction and Evouph offer differentian
		and Fraunhoffer type of diffraction and Fraunhoffer diffraction
	pattern due to a single sl	it and double siit,

	OC 5. To understand Michelson's Interferometer and its Applications	
	OC 6.To understand Polarization and types of Polarization	
	OC 7.Students should be able to solve problems related to the topics that are covered in the	
	syllabus.	
	Synabus.	
9	Paper – I: Optics (30 Hours)	
	UNIT-I (15 Hours)	
	1. Lenses and Lens Maker's Equation: Introduction to lenses, Terminology and sign	
	conventions, Introduction to Thin lenses and Lens equation for single convex lens,	
	Lens maker's equation: Positions of the Principal Foci and Newton's Lens equation.	
	(SBA: 4.1, 4.2, 4.3, 4.7, 4.8, 4.9, 4.10, 4.10.1, 4.11)	
	2. Magnification by a lens and power of lens: Lateral, Longitudinal and Angular	
	magnification, Deviation by a thin lens and its power, Equivalent focal length of two	
	thin lenses, Focal length of the equivalent lens & power of two thin lenses, Concept of	
	cardinal points and their significance (SBA: 4.12, 4.12.1, 4.12.2, 4.12.3, 4.15, 4.16,	
	4.17, 4.17.1, 4.17.2, 4.17.3, 4.17.4, 5.2)	
	3. Introduction to Aberration in lenses: Spherical aberration & reduction, chromatic	
	aberration & reduction (Qualitative). SBA: 9.2, 9.5, 9.5.1, 9.10 Suitable numerical with appropriate difficulty level.	
	UNIT-II (15 Hours)	
	1. Fresnel diffraction: Introduction, Huygens-Fresnel's theory, Fresnel's assumptions,	
	Distinction between interference and diffraction, Fresnel and Fraunhoffer types of	
	diffraction, (SBA: 17.1, 17.2, 17.3, 17.6, 17.7)	
	2. Fraunhoffer diffraction: Introduction, Fraunhoffer diffraction at a single slit, intensity	
	distribution in diffraction pattern due to a single slit, Fraunhoffer diffraction at double	
	slit (Qualitative), Distinction between single slit and double slit diffraction patterns.	
	(SBA: 18.1, 18.2, 18.2.1, 18.4, 18.4.2)	
	3. Michelson's Interferometer: Principle, construction, working, Applications of	
	Michelson Interferometer: a) Measurement of wavelength b) Determination of the	
	difference in the wavelength of two waves c) Determination of the refractive index of	
	gases. (SBA: 15.7, 15.7.1 to 15.7.3, 15.8, 15.8.1, 15.8.2, 15.8.4)	
	4. Polarization: Introduction, Polarization, Types of Polarization	
	(SBA: 20.1, 20.2, 20.5,20.5.1, 20.5.2, 20.5.3)	
10	Text Books	
11	Reference Books Dr. N. Subrhmanyam, Brijlal, and Dr. M. N. Avadhanulu, A Textbook of Optics, 25th	
	Revised Edition (2012) S. Chand.	

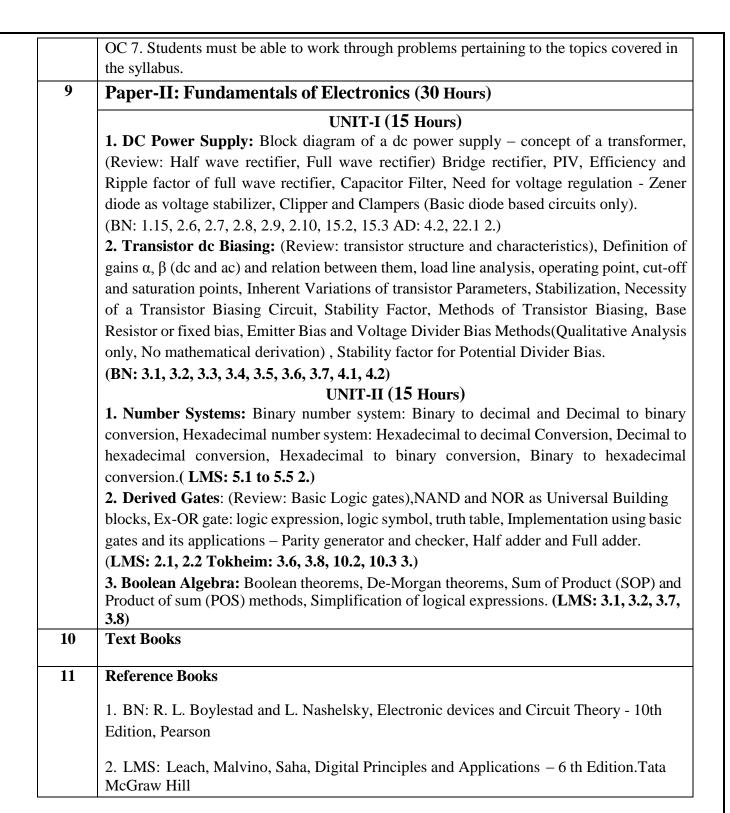
Internal Continuous Assessment: 40% (20 Marks)	Semester End Examination: 60% (30 Marks)
Continuous Evaluation through:	
Quizzes, Class Tests, presentation, project, role play, creative writing, assignment etc.(at least 3)	

Format of Question Paper: 30 Marks Duration: ONE Hour

Unit -I	Q:1 A) Attempt any Two 10Marks	
(15Marks)	v) Theory	
	vi) Theory	
	vii) Theory	
	viii) Theory	
	B) Attempt any One 05 Marks	
	iii) Problem	
	iv) Problrm	
Unit -II	Q:2 A) Attempt any Two 10Marks	
(15Marks)	v) Theory	
	vi) Theory	
	vii) Theory	
	viii) Theory	
	B) Attempt any One 05 Marks	
	ii) Problem	
	ii) Problrm	

Name of the Course: F.Y.B.Sc. SEM-II, Paper-II: Fundamentals of Electronics

Sr.No.	Heading	Particulars	
1	Description the	Introduction, relevance, Usefulness, Application, interest,	
	course:	connection with other courses, demand in the industry, job	
	Including but Not	prospects etc	
	limited to:		
2	Vertical:	Major/Minor/Open Elective /Skill Enhancement / Ability	
		Enhancement/Indian Knowledge System	
2	Torre	The own / Dresstine!	
3	Type:	Theory / Practical 2 credits (1 credit = 15 Hours for Theory or 30 Hours of	
4	Credits:	Practical work in a semester)	
5	Hours Allotted :	30 Hours	
6	Marks Allotted:	50 Marks	
7	Course Objectives(CO)		
,	•	ion of this course students will be able to:	
	7 inter successful complete	non of this course students will be uble to.	
	CO 1. Explain the concep	ots of DC power supply and familiarize with diode and Zener diode	
	circuits and its application	ons.	
	CO 2. Describe DC trans	sistors Biasing and α , β (dc and ac) gain, Inherent Variations of	
	transistor Parameters and Stabilization,		
	CO 3. Explain qualitatively methods of Transistor Biasing, Base Resistor or fixed bias,		
	Emitter Bias and Voltage Divider Bias Methods.		
	CO 4. Describe concepts of Number Systems and convert the numbers from one system to		
	another.		
	CO 5. Design and explain NAND, NOR and Ex-OR gate using basic gates, including		
	their symbols and truth t		
	<u> </u>	cuit using basic gates and its applications	
		blems pertaining to the topics covered in the syllabus.	
8	Course Outcomes (OC)		
	After successful complete	cion of this course students will be able to:	
	OC 1. Comprehend the c	oncepts of DC power supply and familiarize with diode and Zener	
	diode circuits and its app		
		ansistors Biasing and α , β (dc and ac) gain, Inherent Variations of	
	transistor Parameters and		
		·	
	OC 3. Comprehend qualitatively methods of Transistor Biasing, Base Resistor or fixed bias,		


OC 4. Demonstrate the ability to convert from one number system to another

OC 5. Understand Derived Gates NAND, NOR and Ex-OR gate, including their symbols

OC 6. Apply the knowledge to design logical circuit using basic gates and its applications

Emitter Bias and Voltage Divider Bias Methods.

and truth table.

Format of Question Paper: 30 Marks Duration: One Hour

Unit -I	Q:1 A) Attempt any Two	10Marks
(15Marks)	ix) Theory	
	x) Theory	
	xi) Theory	
	xii) Theory	
	B) Attempt any One	05 Marks
	v) Problem	
	vi) Problrm	
Unit -II	Q:2 A) Attempt any Two	10Marks
(15Marks)	ix) Theory	
	x) Theory	
	xi) Theory	
	xii) Theory	
	B) Attempt any One	05 Marks
	iii) Proble	em
	ii) Probl	rm

SEMESTER - II

PHYSICS PRACTICAL COURSE -USPHP2

INSTRUCTIONS:

- 1) All the measurements and readings should be written with proper units in SI system only.
- 2) After completing all the required number of experiments in the semester and recording them in journal, student will have to get their journal certified and produce the certified journal at the time of practical examination.
- 3) While evaluating practical, weightage should be given to circuit/ray diagram, observations, tabular representation, experimental skills and procedure, graph, calculation and result.
- 4) Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.

Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activities.

- > Collect the information of at least five Physicists with their work or any three events on physics, report that in journal.
- Execute a mini project to the satisfaction of teacher in-charge of practical.
- Participate in a study tour or visit & submit a study tour report.
- > For practical examinations, the learner will be examined in **ONE** experiment (one from any group).
- ➤ A Minimum 4 from each group and in all minimum 8 experiments must be reported in journal.

All the skill experiments are required to be completed compulsorily. Students are required to report all these experiments in the journal. Evaluation in viva voce will be based on regular experiments and skill experiments.

A learner will be allowed to appear for the semester and practical examination only if he submits a certified journal of Physics or a certificate that the learner has completed the practical course of Physics Semester II as per the minimum requirements.

A. Regular Experiment:

Sr No	Name of the Experiments	
GROUPA		
1	Study of LASER Beam Divergence	
2	Spectrometer: To determine of angle of Prism	
3	Spectrometer: To determine refractive index of prism material	
4	Combination of Lenses: To determine equivalent focal length of a lens system by magnification method	
5	Newton's Rings: To determine radius of curvature of a given convex lens using Newton's rings.	
6	Determination of diameter of thin wire using Wedge Shaped Film	
	GROUP B	
7	Study of Logic gates & To verify De Morgan's Theorems	
8	To study EX-OR Gate and verify its truth table	
9	To study half adder and full adder and verify their truth table Ex-OR Gate	
10	To study load regulation of a Bridge Rectifier	
11	To study Zener Diode as Regulator	
12	Transistor configurations : CB/CE/CC (study of input-output characteristics)	
	GROUP C: DEMONSTRATION EXPERIMENT	
1	Radius of ball bearings (single pan balance)	
2	Use of Oscilloscope: Wave forms at output of half wave, bridge rectifiers with and without Capacitor filter, Ripple	
3	Use of PC for graph plotting	
4	I-V Characteristics of LED	
5	Testing of components (Resistors , Diode , Transistor , capacitor)	
6	Study of I-V characteristics of solar cell	

Note: Minimum **8** experiments (Four From each group) and **4** Demo experiments should be completed and reported in the journal, in the first semester. **Certified Journal is a must,** to be eligible to appear for the semester end practical examination.

Semester End Practical Examination:

Scheme of Examination: 50 Marks Duration: TWO Hours

There will be no internal assessment for practical. A candidate will be allowed to appear for the semester end practical examination only if the candidate submits a certified journal at the time of practical examination of the semester or a certificate from the Head of the Department /Institute to the effect that the candidate has completed the practical course of that semester of F.Y.B.Sc. Physics as per the minimum requirement. The duration of the practical examination will be two hours experiment. There will be **ONE** experiment (one from any group) through which the candidate will be examined in practical. The questions on slips for the same should be framed in such a way that candidate will be able to complete the task and should be evaluated for its skill and understanding of physics.

SEMESTER-II

Physics (Vocational Skill Course) Course code: USPHPVSC2

Title: - PCB Making

Learning Objectives:

- 1. Learn techniques required for soldering of electronic components.
- 2. Learn to create effective PCB layouts.

Learning Outcomes:

On successful completion of this course students will be able to:

- 1. Solder basic electronic components on a PCB.
- 2. Devolope schematic electronic circuit designing skills.
- 3. Devope PCBs.

Unit I: Circuit Prototyping Skills

(07 Hours)

- 1. Soldering electronic components
- 2. Circuit assembly on general purpose board
 - A. Bridge rectifier with capacitor filter and regulator
 - B. Second order active Filter
 - C. Wheatstone bridge for temperature measurement
 - D. 555 based LED flasher
- 3. Testing
- 4. Soldering of surface mount devices

Unit II: PCB Design Software

(08 Hours)

- 1. Schematic circuit entry software
- 2. PCB Layout
 - A. Footprint assignment

Creating board outlines for various layers: Bottom routing, Solder mask bottom, Legend or silk screen Top, Drill layer

- B. Placement on the board
- C. Routing
- D. Post processing, Assembly and testing

List of Experiments:

- 1. Single side PCB
- 2. Double side PCB
- 3. Multy-layer PCB
- 4. Schematic / Components design review.
- 5. Determine what footprints are required to be built, and build them incorporating.
- 6. Component placement.
- 7. Power and Ground Plane assignment.
- 8. Critical net routing.

Reference:

1. Electronic Product Design Vol. I Basic for PCB Design – by Er. Mehta S.D.

- 2. Printed circuit boards: Design fabrication , Assmbly and testing- R S Khandpur.
- 3. PCB Design and Layout Fundamentals by Roger Hu
- 4. PCB Design and Technology by Walter C Bosehart

Internal Continuous Assessment: 40% (20 Marks)	Semester End Examination: 60% (30 Marks)
Continuous Evaluation through:	
Practical's	

Format of Question Paper:

VSC: 2 credits

 $VSC\ of\ 2\ credits, Duration: 45\ Hrs$, Total marks: 50

(30 Marks for Theory paper + 20 Marks for Practical Exam.)

Semester End Theory Examination:	Internal Semester End Practical
60% (30 Marks)	Examination:
	40 % (20 Marks)
As per paper pattern attached	As per practical exam. pattern attached

Theory Paper Pattern for 30 marks Semester End Theory Examination:

Duration - These examinations shall be of **one hours** duration

Duration: 1 Hrs Total Marks -30

Que -1	Attempt any Three (on Unit- I)	Total Marks 15
a)		5
b)		5
c)		5
d)		5
e)		5
Que -2	Attempt any Three(on Unit- II)	Total Marks 15
a)		5
b)		5
c)		5

d)	5
e)	5

Internal Practical Examination Pattern for 20 marks Semester End Examination:

2. Duration - These examinations shall be of **Two hours** duration in laboratory

Sr. No.		Total 20 Marks
1	One Experiment	15 Marks
2	Certified Journal	3 Marks
3	Vi-va	2 Marks

Physics (Skill Enhancement Course) - 2 credits Course code: USPHSEC2

Title: - ICT tools for Physics

Learning Objectives:

- 1. To know how to use the most common Microsoft Office programs.
- 2. To be able to create documents for printing and sharing.
- 3. To be able to create and share presentations.
- 4. To be able to manage and store data in a spreadsheet.

Learning Outcomes:

On successful completion of this course students will be able to

- 1. Create a word document, save the word document and print the word document.
- 2. Demonstrate various insert features and mail merge feature of a word document.
- 3. Create, edit, save, format and print presentations.
- 4. Create and manipulate simple slide shows.
- 5. Create, open, view, edit, save and print a workbook.
- 6. Learn to use functions, formulas, charts and graphs.

Unit 1: MS-Word and MS

(15 Hours)

- 1. Introduction to MS Word, starting word, creating a Document, Saving and Printing a document, Move and Copy Text, Cut and Paste, Finding Text, Replace Command, Checking Spelling and Grammar
- 2. Inserting Picture, Formatting Text, fonts, Using Bullets and Numbering in Paragraphs, Inserting equations and symbols
- 3. Page Setup, Inserting Page Breaks, Using Headers and Footers in the Document, inserting page numbering, Print Preview, Print Options
- 4. Creating Tables, Formatting a Table
- 5. Using Mail Merge.
- 6. Introduction to power point presentation, creating a blank presentation, adding new slides, saving a presentation, printing options
- 7. Designing a presentation
- 8. Animation and transition, Slide show

Unit 2: MS-EXCEL

(15 Hours)

- 1. Creating spreadsheet and adding information to it, different data types
- 2. Moving data values, editing data values, inserting/ deleting rows and columns
- 3. Data editing: find & replace, spell check,
- 4. Data formatting techniques
- 5. Working with different mathematical, text, date and time formulae
- 6. Page layout options, adding header, footer and page numbering
- 7. Working with sort and filter functions
- 8. Working with multiple spreadsheets.

All the above topics to be covered through Hands on sessions.

Reference:

- 1. Mastering MS Office (ebook) by Bittu Kumar
- 2. Excel 2010 Bible by John Walkenbach, John Wiley & Sons

Letter Grades and Grade Points:

Semester GPA/ Programme	% of Marks	Alpha-Sign/	Grading
CGPA Semester/ Programme		Letter Grade Result	Point
9.00 - 10.00	90.0 - 100	O (Outstanding)	10
8.00 - < 9.00	80.0 - < 90.0	A+ (Excellent)	9
7.00 - < 8.00	70.0 - < 80.0	A (Very Good)	8
6.00 - < 7.00	60.0 - < 70.0	B+ (Good)	7
5.50 - < 6.00	55.0 - < 60.0	B (Above	6
		Average)	
5.00 - < 5.50	50.0 - < 55.0	C (Average)	5
4.00 - < 5.00	40.0 - < 50.0	P (Pass)	4
Below 4.00	Below 40.0	F (Fail)	0
Ab (Absent)	-	Ab (Absent)	0

Justification for B.Sc. (PHYSICS)

1.	Necessity for starting the course:	The necessity for starting the B.Sc. (Physics) course lies in its role as a foundational, interdisciplinary, and practical program that prepares students for higher education, diverse career opportunities and active participation in addressing scientific and societal challenges.
2.	Whether the UGC has recommended the course:	Yes
3.	Whether all the courses have commenced from the academic year 2023-24	The course has already commenced in the university and in the academic year 24-25, it is restructured under NEP 2020
4.	The courses started by the University are self-financed, whether adequate number of eligible permanent faculties are available:	This course is aided/self-financed based on sanction given by University of Mumbai to affiliated colleges time to time.
5.	To give details regarding the duration of the Course and is it possible to compress the course?	The duration of the program is three years (6 semesters). It is not possible to compress the course.
6.	The intake capacity of each course and no. of admissions given in the current academic year:	The intake capacity is variable from the college to college based on sections received from the University.
7.	Opportunities of Employability / Employment available after undertaking these courses:	B.Sc. (Physics) graduates are versatile and can adapt their skills to various industries, make them valuable assets in the workforce. Additionally, continuous learning and staying updated on industry trends can enhance career prospects and open up new opportunities.

Sign of the BOS Chairman

Name:

Dr.T.N.GHORUDE BOS in Physics Sign of the I/c. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the I/c Dean Prof. Shivram S. Garje Faculty of Science & Technology