University of Mumbai

Website - mu.ac.in Email id - <u>dr.aams@fort.mu.ac.in</u> <u>aams3@mu.ac.in</u>

Academic Authorities, Meetings & Services (AAMS) Room No. 128, M. G. Road, Fort, Mumbai – 400 032. Tel. 022-68320033

Re- accredited with A ++ Grade (CGPA 3.65) by NAAC Category- I University Status awarded by UGC

No. AAMS_UGS/ICD/2024-25/444

Date: 24th March, 2025.

To,
The Director,
Garware Institute of Career Education
and Development,
Vidyanagari
Santacruz (East)
Mumbai – 400 098.

Sub: M. Sc (Biomedical Instrumentation) (Two year) (Sem I & II)

Sir.

With reference to the subject noted above, this is to inform you that the recommendations made by the Advisory Committee & Board of Management of Garware Institute of Career Education & Development at its Meeting held on 4th September, 2023 & resolution passed by the Board of Deans at its meeting held on 9th August,2023 vide Item No. 9.2 have been accepted by the Academic Council at its meeting held on 1st November, 2023 vide Item no. 9.4 (A) 2 (N) and subsequently approved by the Management Council at its meeting held on 5th February, 2024 vide Item No. 3 that in accordance therewith, in exercise of the powers conferred upon the Management Council under Section 74(4) of the Maharashtra Public Universities Act, 2016 (Mah. Act No. VI of 2017) the following program with Ordinance for Title of the Program, Eligibility and Regulation numbers for Duration of Program, Intake Capacity, Scheme of Examinations, Standard of Passing and Credit Structure along with syllabus of M.Sc (Biomedical Instrumentation) (Sem I & II) (Appendix – 'A') have been introduced and the same have been brought into force with effect from the academic year 2023-24.

The New Ordinances & Regulations as per NEP 2020 is as follows :-

Sr. No	Name of the Programme	Ordinance no. for Title	Ordinance no for Eligibility	
Α	P.G Diploma in Biomedical Instrumentation	O.GPA - 3 A	O.GPA - 4 A	
В	M. Sc (Biomedical Instrumentation)	O.GPA - 3 B	O.GPA - 4 B	Two year
С	M.Sc. (Biomedical Instrumentation)	O.GPA - 3 C	O.GPA - 4 C	One year

University of Mumbai

Website - mu.ac.in Email id - <u>dr.aams@fort.mu.ac.in</u> <u>aams3@mu.ac.in</u>

Academic Authorities, Meetings & Services (AAMS) Room No. 128, M. G. Road, Fort, Mumbai – 400 032. Tel. 022-68320033

Re- accredited with A ++ Grade (CGPA 3.65) by NAAC Category- I University Status awarded by UGC

No. AAMS_UGS/ICD/2024-25/444

Date: 24th March, 2025.

: 2:

Regulation Nos						
Duration	R. GPA - 6					
Intake Capacity	R. GPA – 7					
Scheme of examination	R. GPA - 8					
Standard of Passing	R. GPA - 9					
Credit Structure	R. GPA - 10 A					
	R. GPA - 10 B					

(Dr. Prasad Karande) REGISTRAR

A.C/9.4(A)2(N)/01/11/2023 M.C/3/5/2/2024

Copy forwarded with Compliments for information to:-

- 1) The Chairman, Board of Deans
- 2) The Dean, Faculty of Science & Technology.
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,
- 6) The Co-ordinator, MKCL.

Cop	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), dr@eligi.mu.ac.in
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari cap.exam@mu.ac.in
6	The Deputy Registrar, College Affiliations & Development Department (CAD), deputyregistrar.uni@gmail.com
7	The Deputy Registrar, PRO, Fort, (Publication Section), Pro@mu.ac.in
8	The Deputy Registrar, Executive Authorities Section (EA) eau120@fort.mu.ac.in
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), rape@mu.ac.in
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, thanesubcampus@mu.ac.in
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentar@gmail.com
17	The Director, Centre for Distance and Online Education (CDOE), Vidyanagari, director@idol.mu.ac.in
18	Director, Innovation, Incubation and Linkages, Dr. Sachin Laddha pinkumanno@gmail.com
19	Director, Department of Lifelong Learning and Extension (DLLE), dlleuniversityofmumbai@gmail.com

Сор	y for information :-
1	P.A to Hon'ble Vice-Chancellor, vice-chancellor@mu.ac.in
2	P.A to Pro-Vice-Chancellor pvc@fort.mu.ac.in
3	P.A to Registrar, registrar@fort.mu.ac.in
4	P.A to all Deans of all Faculties
5	P.A to Finance & Account Officers, (F & A.O), camu@accounts.mu.ac.in

To,

1	The Chairman, Board of Deans
	pvc@fort.mu.ac.in

2 Faculty of Humanities,

Dean

1. Prof.Anil Singh
Dranilsingh129@gmail.com

Associate Dean

- 2. Dr.Suchitra Naik Naiksuchitra27@gmail.com
- 3.Prof.Manisha Karne mkarne@economics.mu.ac.in

Faculty of Commerce & Management,

Dean

1. Dr.Kavita Laghate kavitalaghate@jbims.mu.ac.in

Associate Dean

- 2. Dr.Ravikant Balkrishna Sangurde Ravikant.s.@somaiya.edu
- 3. Prin.Kishori Bhagat <u>kishoribhagat@rediffmail.com</u>

	Faculty of Science & Technology
	Dean 1. Prof. Shivram Garje ssgarje@chem.mu.ac.in
	Associate Dean
	2. Dr. Madhav R. Rajwade Madhavr64@gmail.com
	3. Prin. Deven Shah sir.deven@gmail.com
	Faculty of Inter-Disciplinary Studies,
	Dean
	1.Dr. Anil K. Singh
	aksingh@trcl.org.in
	Associate Dean
	2.Prin.Chadrashekhar Ashok Chakradeo
	cachakradeo@gmail.com
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation,
	dboee@exam.mu.ac.in
5	The Director, Board of Students Development,
J	dsd@mu.ac.in DSW director@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology,
	director.dict@mu.ac.in

As Per NEP 2020

University of Mumbai

Title of the program

A- P.G. Diploma in Biomedical Instrumentation

B- M.Sc. (Biomedical Instrumentation) (Two Year) \(\sum 2023-24 \)

C- M.Sc. (Biomedical Instrumentation) (One Year) - 2027-28

Garware Institute of Career Education and Development

Syllabus for Semester- Semester I and II

Ref: GR dated 16th May,2023 for Credit Structure of PG

UNIVERSITY OF MUMBAI

(AS PER NEP 2020)

Sr. No.	Heading		Particulars
1	Title of program O: <u>GPA-3 A</u>	A	P.G. Diploma in Biomedical Instrumentation
	O: <u>GPA-3 B</u>	В٠	M.Sc. (Biomedical Instrumentation) (Two Year)
	O: <u>GPA-3 C</u>	С	M.Sc. (Biomedical Instrumentation) (One Year)
2	Eligibility O: <u>GPA-4 A</u>	A	Recognized degree of B.Sc. (Biomedical Instrumentation) OR B.Sc. Chemistry/Electronics/Physics/ or its equivalent. [Bridge course of 90 Hours) OR Passed Equivalent Academic Level 5.5 [Bridge course of 90 Hours)
	O: <u>GPA-4 B</u>	В	 The candidate who has successfully completed P.G. Diploma in Biomedical Instrumentation. The candidate whose Post Graduate Diploma credits are 60% equivalent to M.Sc. (Biomedical Instrumentation) & he/she earns minimum 8 Credits from P.G. Diploma in Biomedical Instrumentation. As per NEP criteria on the basis of RPL-Recognition of Prior Learning, Candidate to be admitted to 2nd Year subject to He/she securing minimum 50% in the 1st Year assessment of PGDBI & proof of employment of Minimum 2 Years. With Compulsorily Science At H.S.C. Level. OR Passed Equivalent Academic Level 6.0
	O: <u>GPA-4 C</u>	С	B.Sc. (Biomedical Instrumentation) or B.Sc. Chemistry/Electronics/Physics/ or its equivalent. [Bridge course of 90 Hours) Graduate with 4-year U.G. Degree (Honours / Honours with Research) Or Equivalent Academic Level 6.0
3	Duration of Program	A	1 Year

	R: <u>GPA-6</u>	В	2 Years					
		С	1 Year					
4	R: <u>GPA-7</u>	30						
	Intake Capacity							
5	R: <u>GPA-8</u>	NE	P					
	Scheme of Examination	509	% Internal – Continuous Evaluation					
		1	50% External- Semester End Examination Individual Passing in Internal and External Examination					
		Indi	vidual Passing in Internal and External Examination					
6	Standards of Passing	509	% in each component					
	R: <u>GPA-9</u>							
7	Credit Structure	Atta	ached herewith					
	R: <u>GPA-10 A</u>							
	R : GPA-10 B							
8	Semesters	A	Sem I & II					
		В	Sem I, II, III, & IV					
		С	Sem I & II					
9	Program Academic Level	A	6.0					
	,	В	6.5					
		C	6.5					
10	Pattern	Ser	nester					
11	Status	Ne	w					
12	To be implemented	A	2023-24					
	from Academic Year Progressively	В						
	1 car Flogressively	С	2027-28					
Dr. K	eyurkumar M. Nayak,		Prof. (Dr.) Shivram S. Garje					
Direc	lor,		Dean, Faculty of Science					
UM-(GICED							

Preamble

1. Introduction

This is a post-graduate Master's level Science course in Biomedical Instrumentation. This is an allied health profession course. It is concerned with the advanced level understanding of procurement methods, installation and maintenance of the medical instruments. The course also deals with the collection of information needed, supervision of installation commissioning, testing, reporting and documentation of these instruments. M.Sc. Biomedical Instrumentation Science is two years duration course. The syllabus of the course is divided into two years and is career orienting in nature.

Need for this course:

The college is situated in a hilly area. The three districts namely Sindhudurga, Ratnagiri and Raigad which are the main feed areas. There are approximately 100+ hospitals run by government, public trusts and private ones. Apart from these there are several small setups. For every setup at least one technical person is required who has the basic knowledge of instruments.

The broad goal of this course is to teach the students about the theoretical and practical aspects of advanced techniques in Biomedical Instrumentation. To train the students to apply the knowledge gained to real-life situations in a meaningful way and to train students so that they will be employable in the field of Biomedical Instrumentation.

Advantages of the course:

- 1) The college is attached to a 700 bed multispecialty hospital within the premises.

 So, the students get hands-on experience on the latest technology in Medical field.
- 2) The course is job oriented. Students, who have completed B.Sc. Biomedical Instrumentation have already been placed in reputed hospitals and companies and are earning at par with an Engineering course. This is an advanced level course in the same field where students get to work in research dept., hospitals, laboratories, etc.
- 3) This course is equally adaptive for women employment as it is for men.

2. Program Objective: The aim of this program is:

A) KNOWLEDGE: At the end of the course the students shall be able:

- To understand the concepts of frequency domain representation of signals, design and use of different digital filers, wavelets, cross correlation and auto correlation to bio signals.
- 2. To use software's like MATLAB/OCTAVE/SPSS etc for simulation and analysis of signals in biomedical applications
- 3. To make students familiar with various techniques of digital signal processing.
- 4. To select the appropriate rehabilitation concept for various disabilities.
- 5. To compare the different methods of orthopedic prosthetics and orthotics for rehabilitation.
- 6. To select proper sensory augmentation and substitution.
- 7. To understand and instruct various safety measures while using powered devices.
- 8. To understand to what extent robotic devices are useful in manufacturing artificial devices
- 9. To see the real problems whose solutions might change the current scenario in treatments
- 10. To match the advances in Science and technology to the clinical problems.

3. Learning Outcomes

At the end of the course the students shall be able to:

- 1. To design and use the applications of digital signal processing to the bio- signals.
- 2. Design supporting devices as per the need of the patient.
- 3. Repair and maintain various equipment
- 4. Design and develop orthotic and prosthetic.
- 5. Develop skills as a self-directed learner, recognize continuing educational needs.
- 6. Interact with clinicians and paramedics to improve the quality of technical services.
- 7. Select & use appropriate technical resources.

5) Credit Structure of the program – (Parishisth-1)
M. Sc. (Biomedical Instrumentation) (Course Structure as per NEP 2020)

R: <u>GPA-10 A</u>

Year	Level	Semest er	Major		RM	OJT / FP	RP	Cum. Cr.	Degree
			Mandatory	Electives		:			
I	6.0	Sem I	Digital Image Processing techniques in Biomedical Imaging (4 Credits) Advanced Prosthetics, Orthotics & Rehabilitation Techniques (4 Credits) Biomedical Microsystem (4 Credits) Clinical Instrumentation and Patient Safety (2 Credits)	Project management (4 Credits) OR Product cycle management (4 Credits)	Research Methodolog y (4 Credits)				PG Diploma (after 3 Yr Degree)
			14	4	4	0	0	22	
_		Sem II	Neural networks and Artificial intelligence in Biomedical instrumentation (4 Credits) Biomedical Instrumentation and Design (4 Credits) Robotics in Medicine (2 Credits) Hospital management (2 Credits)	Cyber security law (4 Credits) OR Biorheology (4 Credits)		On Jöb Training / Internshi p (4 Credits)		5	
			12	4	0	4	0	20	
Cum.	Cr. For PC	3 Diploma	26	8	4	4	-	42	

Exit option: PG Diploma (42 Credits) after Three Year UG Degree

R: <u>GPA-10 B</u>

Year	Level	Semester	Major		RM	OJT / FP	RP	Cum. Cr.	Degree
			Mandatory	Electives					
П	6.5	Sem III	Healthcare database management system (4 Credits) Computer networking in Medicine (4 Credits) Biomedical Informatics (2 Credits) IPR Issues, Standards and Bioethics (2 Credits)	Operation research OR Reliability Engineering (4 Credits)			Research Project (4 Credits)		PG Degree After 3- Yr UG Or PG Degree after 4- Yr UG
			12	4			4	20	-
		Sem IV	Rehabilitation Engineering (4 Credits) Management Information System (4 Credits) Human Physiology (4 Credits)	Telemedicin e OR Biomedical Modeling and Simulation (4 Credits)			Research Project (6 Credits)	22	
	m. Cr. Fo Diploma		24	8	_	-	10	42	
1	Cum. Cr. for 2 Yr PG Degree		50	16	4	4	10	84	

2 Years-4 Sem. PG Degree (84 credits) after Three Year UG Degree or 1 Year-2 Sem PG Degree (42 credits) after Four Year UG Degree

Kmrayak

Dr. Keyurkumar M. Nayak, Director,

Prof. (Dr.) Shivram S. Garje Dean, Faculty of Science

M. SC. (BIOMEDICAL INSTRUMENTATION) (TWO YEARS FULL TIME)

	Subject Code	Core Subject	Assess	ment Pattern	S	Teaching Hours			
		Topics	Internal Assessment (50%)	External Assessm ent (50%)	Total Marks (CA) 100	Total Hours	Total Credi t s		
			Mandatory Ma	ijor					
S e m	PGDBIS 1MJP1	Digital image processing techniques in Biomedical Imaging	50	50	100	60	4		
e s	PGDBIS 1MJP2	Clinical Instrumentation and Patient Safety	50	50	100	60	4		
e r	PGDBIS 1MJP3	Advanced Prosthetics, Orthotics & Rehabilitation Techniques	25	25	50	30	2		
Ī	PGDBIS 1MJP4	Biomedical Microsystem	25 ·	25	50	30	2		
			Electives			- n.b.,			
	PGDBIS 1P5A	Project management	50	50	100	60	4		
	PGDBIS 1P5B	Product cycle management	50	. 50	100	. 60	4		
		Research Methodology							
	PGDBIS 1P6	Research Methodology	50	50	100	60	4		
		Total	250	250	500	300	20		

			Semester - I	I						
		14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	Mandator	y Major						
	PGDBIS 2MJP7	Neural networks and Artificial intelligence in Biomedical instrumentation	50	50	100	60	4PG			
S	PGDBIS 2MJP8	Biomedical Instrumentation And Design	50	50	100	60	4			
m e	PGDBIS 2MJP9	Robotics in Medicine	25	25	50	30	- 2			
s t	PGDBIS 2MJP10	Hospital management	25	25	50	30	2			
e			Electives	3						
r -	PGDBIS 2P11A	Cyber security law	50	50	100	60	4			
I I	PGDBIS 2P11B	Biorheology	50	50	100	60	4			
			On Job Trai	ning						
	PGDBIS 2P12	OJT	100		100	60	4			
		Total	300	200	500	300	20			
	Semester - III									
S e m	Mandatory Major									
	MSCBI S3MJP 13	Healthcare database management system	50	50	100	60	4			
e s t e	MSCBI S3MJP 14	Computer networking in Medicine	50	50	100	60	4			
r - I	MSCBI S3MJP 15	Biomedical Informatics	25	25	100	30	2			
I	MSCBI S3MJP 16	IPR Issues, Standards and Bioethics	25	25	100	30	2			
		<u> </u>	Elective	es						
	MSCBI S3P17 A	Operation research	50	50	100	60	4			
	MSCBI S3P17B	Reliability Engineering								
		<u> </u>	Research Pr	oject		1				
	MSCBI S3P18	RP	100		100	120	4			

		Total	300	200	500	360	20		
	Semester - IV								
			Mandatory M	Iajor					
S e m	MSCBI S4MJP 19	Rehabilitation Engineering	50	50	100	60	4		
e s t	MSCBI S4MJP 20	Management Information System	50	50	100	60	4		
r - I V	MSCBI S4MJP 21	Human Physiology	50	50	. 100	60	4		
			Electives	S					
	MSCBI S4P22 A	Telemedicine	50	50	100	60	4		
	MSCBI S4P22B	Biomedical Modeling and Simulation	50	50	100	60	4		
	Research Project								
	MSCBI S4P23	RP	200		200	180	6		
		Total	400	200	600	420	22		

Abbreviations: Yr.: Year; Sem.: Semester; OJT: On Job Training: Internship/

Apprenticeship; FP:
Field projects; RM: Research Methodology; Research Project: RP; Cumulative Credits:

Cum. Cr.

Sem. – I

M.Sc. (Biomedical Instrumentation) First Year Syllabus as per NEP 2020 SEMESER – I

Semester 1	Subject Digital image processing Biomedical Imaging	techniques	in	Category Major	Hours 60	Total Credits 4
---------------	---	------------	----	-------------------	-------------	--------------------

Course Objective:

- · To understand the basics of bio-medical image processing systems.
- · To study the concept of medical images obtained with ionizing and non-ionizing radiation.
- · To develop computer aided diagnosis in analysing and quantifying biomedical data.

Course Outcome:

- · A learner will be able to Apply image processing concepts for medical images.
- · Analyse Morphology, Segmentation techniques and implement them in images.
- Knowledge in the techniques of Digital Image Processing, including Image Enhancement in the Spatial and Frequency Domain, Compression, Morphology and Segmentation.
- · Do quantitative analysis and visualization of medical images of numerous modalities such as
- · PET, MRI, PACS, CT, or Ultrasound.

Unit 1- Introduction and Basics of Image Processing Steps in Digital Image Processing, Components, Elements of Visual Perception, Structure of the human eye, Image formation in the eye Image Sensing and Acquisition, Sampling and Quantization, Image formats	20
Unit-2 Image Enhancement Spatial Domain: Gray level transformations, Histogram processing, Basics of Spatial Filtering, Smoothing and Sharpening Spatial Filtering. Frequency Domain: Introduction to Fourier Transform—Smoothing and Sharpening frequency domain filters—Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.	20
Unit 3 Image Segmentation Basic relationships between pixels - Neighbours, Adjacency, Connectivity, Regions, Boundaries, Distance measures; Detection of discontinuities, Point, Line, Edge detection, Edge linking, Hough transform, Thresholding-based segmentation, Region-based segmentation	20

Text Books:

- 1. J. G. Proakis, D. G. Manolakis: Digital Signal Processing: Principles, Algorithms, and Applications, Prentice Hall, 2007, 4th Edition
- 2. S. K. Mitra: Digital Signal Processing: A Computer Based Approach, McGraw Hill Higher Education, 2006, 3rd edition

- 1. Digital Signal Processing by S. Salivahanan
- 2. Digital Signal Processing By N.G. Palan

Semester 1	Subject Advanced Prosthetics, Orthotics & Rehabilitation Techniques	Category Major	Hours 30	Total Credits 2
disability a To study the To study var organs Course Out A learner w Design supp	tives: role of Rehabilitation Engineering in clinical practice nd its rehabilitation models need of Orthotics, Prosthesis and how it helps in qua- rious design considerations of Artificial devices that s	ality life in an i supports the hu orthotics and Pr cred devices. U	ndividual man senso	ory
Unit 1- Introd Introduction motor rehabil Qualitative as movement, G	duction to Rehabilitation techniques, concepts in sensory relation, emerging trends in Rehabilitation. Indicate quantitative description of the action of muscle in a cycle and Analysis, Various types of joint moveming Filament Theory, Forward and Inverse dynamic	nabilitation, con a relation to the	e human	10
Prosthetics: It Orthotics: Fu prosthetics us Intelligent pr Orthotic knee	hetics, Orthotics And Rehabilitation Robotics introduction, upper, lower and external, internal prostinctional electrical stimulation (FES), ambulatory aid sing Myo-electric signal control. osthetic knee, Hierarchically controlled prosthetic has joint, Battery powered and controlled Orthosis and tem for walking.	ls, aids for dail and, myoelectr	ic .hand,	10
Unit 3-Mobil Types of Mol walking stick Different type Sensorial Pro	ity Aids pility Aids, Walking frames, Parallel bars, Rollators,	•	ripods &	10

Text Books:

1. Rehabilitation Medicine – Dr. S. Sunder Jaypee Medical publications New Delhi

- Physical rehabilitation Susan D. O'Sullivan, Thomas J Smitz. 5th edition
 Rory. A. Cooper- Rehabilitation Engineering Applied to Mobility and Manipulation, First Edition CRC Press, 2010

Semester 1	Subject Biomedical Micro System	Category Major	Hours 30	Total Credits 2
---------------	------------------------------------	-------------------	-------------	-----------------------

Course Objectives:

- To understand various fabrication technologies for MEMS devices.
- To apply the knowledge of MEMS in Biomedical field.
- To understand recent advancements in Biomedical Engineering for a successful career in the area of nanotechnology.

Course Outcome:

• A learner will be able to 1. Use the knowledge of MEMS to develop various miniaturized biomedical devices.

Unit 1: Fabrication techniques in MEMS: Bulk micromachining, Surface micromachining, and LIGA Cleaning processes: RCA, Piranha Deposition processes for metals: e-beam evaporation, thermal evaporation and DC Sputter Deposition processes for dielectrics: Physical (RF Sputter) and Chemical Techniques (CVD: APCVD, LPCVD, PECVD, and HWCVD). Polymers coating techniques: spinning, spraying and electrode position	10
Unit 2:Photolithography: Light sources (UV, DUV, and EUV), photoresist, mask design and fabrication using EBL, dark and bright field photo-mask, different projection systems in lithography, detailed study of lithography process, study of fabrication processes like optical grating structure, SiO2 cantilever, SiNx cantilever and basics of EBL Etching Processes: Dry (RIE, DRIE) and wet etching Doping – ion implantation and diffusion Soft lithography: Micro contact Printing, Imprinting or hot embossing, and Replica Molding Surface characterization techniques: AFM, SEM, Profilometer, Elipsometer, Fluorimeter	10
Unit 3:Drug Delivery Devices and Microsystem packaging Overview of drug delivery systems, Types of drug delivery systems, Different parts of drug delivery system, MEMS based drug delivery systems: Implantable drug delivery systems (IDDS), Micro needles and its fabrication, Micro particles for oral drug delivery	10

Text Books:

- 1. MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering, 2nd Edition Tai-Ran Hsu, ISBN: 978-0-470-08301-7
- 2. MEMS and Microsystems: Design and Manufacture," McGraw-Hill, Boston, 2002 (ISBN 0-07-239391-2). Reference Books: 1. "Fundamentals of Micro fabrication" Marc Madou, by, CRC Press, 1997. Gregory Kovacs, 2. "Fundamentals of BioMEMS and Medical Micro devices", Steven S. Saliterman, (SPIE Press Monograph Vol. PM153 by Wiley Inter science

- 1. "Microsystem Technology", W. Menz, J. Mohr, 0. Paul, WILEY-VCH, ISBN 3-527-29634-4
- "Electro Mechanical System Design", James J. Allen, Taylor & Francis Group, LLC, ISBN-0-8247-5824-2, 2005
- 3. "MICROSYSTEM DESIGN", Stephen D. Senturia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-
 - 306-47601-06. "Introduction to Micro fabrication", Sami Franssila John Wiley & Sons Ltd, ISBN 0-470- 85106-6

Semester 1	Subject Clinical Instrumentation and Patient Safety	Category Major	Hours 60	Total Credits 4
Course Obje	ectives: erformance to avoid patient injury, achieving efficacion	ous treatment	1	
Course Outo	* * * * * * * * * * * * * * * * * * * *	ous treatment		
• Select the c	clinical suitability to the impact of the device on the eare reliable medical equipment incorporating safety g			
	al Engineering ble Of Clinical Technician			
-	of clinical engineering department in a hospital,	Roles and fund	ctions of	20
-	nnology in a Hospital, General safety rules in clinical			
Patient Safety	y & Risk Management Model			
	ng various medical errors, Clinical Technician: Well	-	* 1	
	analysis (RCA), Health care failure mode analysis	, , , , , , , , , , , , , , , , , , , ,	i i	
	isk management: Its basics & process, Role of cl	inical engineer	in Risk	
management.				
	nt-Hospital And Medical Device Safety Programs			
	model, Process analysis methodology, JCAHO envir	ronment of care	•	20
-	ommittee in Hospitals and its role			20
-	of Hospital safety program isk model(SRM), Description of SRM, Direct and ro	ot cause failure	^	
-	ion model of the proof of order, Direct and to	or cause failure		
• Unit 3:				••
	formation Management System And Advanced Diag	gnostics Clinica	1	20
	on system (CIS)			
	ical monitoring process	.		
	CMS architecture	•		
LAN netw	agnostics using Technical assistance center and			
	~~~			*****
Text Books:	ngineering Handbook, Joseph Dyro, The Biomedical	Enginagring car	ios Elsovi	~

- 1. Clinical Engineering Handbook, Joseph Dyro, The Biomedical Engineering series, Elsevier
- 2. John G. Webster- Medical Instrumentation Applications and Design 3rd edition John Wiley and Sons. Inc. 1999

Semester	Subject	Category	Hours	Total
1	Project Management	Elective	60	Credits
				4
~ ~ ~ ~	. 6			

#### **Course Objectives:**

- · To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and Techniques.
- To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

#### Course Outcome:

- · Apply selection criteria and select an appropriate project from different options.
- · Write a work breakdown structure for a project and develop a schedule based on it.
- · Identify opportunities and threats to the project and decide an approach to deal with them Strategically.
- · Use Earned value technique and determine & predict status of the project.

· Capture lessons learned during project phases and document them for future reference

Unit 1: Defining: Project charter, Project scope, Inclusion and Exclusion, Budget	15
Unit 2: Planning: Resource management, Vendor management, work breakdown structure, risk analysis, project constraints, deliverables, Scheduling	15
Unit 3 Execution monitoring and controlling: Execution and tracking, monitoring deliverables, Risk assessment, gathering and analyzing data, maintain issue log verify and manage changes to the project	15
Unit 4 Closing: Ensure project deliverables confirm to quality standards, types of closures, Resource release, funds closure, archiving, lessons learnt, final closure	15
	í

#### **Text Books**

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7th Ed.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, Wiley India 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Semester	Subject	Category	Hours	Total
1	Product cycle management	Elective	60	Credits
	,			4
~ ~ ~				

#### **Course Objectives:**

- · To familiarize the students with the need, benefits and components of PLM
- · To acquaint students with Product Data Management & PLM strategies
- · To give insights into new product development program and guidelines for designing and developing a product
- · To familiarize the students with Virtual Product Development

#### **Course Outcome:**

- · Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- · Illustrate various approaches and techniques for designing and developing products.
- · Apply product engineering guidelines / thumb rules in designing products for moulding, Machining, sheet metal working etc.
- · Acquire knowledge in applying virtual product development tools for components, machining and

manufacturing plant

indiadotating plant	
Unit 1-Introduction to Product Lifecycle Management (PLM):	
Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases,	
Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance &	20
Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project,	
Starting the PLM Initiative, PLM Applications	
Unit 2- Product Data Management (PDM):	
Product and Product Data, PDM systems and importance, Components of PDM, Reason	^
for implementing a PDM system, financial justification of PDM, barriers to PDM	20
implementation	
Unit 3- Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework	
of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	20
Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	

#### **Text Books:**

- 1. John Stark, —Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano , —Product Design for the environment-A life
  - cycle approachl, Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, Immonen Anselmie, —Product Life Cycle Managementl, Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, —Product Lifecycle Management: Driving the next generation of lean thinking, Tata McGraw Hill, 2006, ISBN: 0070636265

Semester 1	Subject Research Methodology	Category RM	Hours 60	Total Credit s 4
To acquaint To familiar Course Oute Prepare a pr Accurately Present con Review and	and Research and Research Process students with identifying problems for research and offize students with the techniques of data collection, a come: reliminary research design for projects in their subject collect, analyze and report data replex data or situations clearly d analyse research findings	nalysis of data	h strategie and interp	S
Population as Data Presen computation dispersion: c their coefficient		of central to ouped data. M	tendency: easure of	20
Correlation, Method, Kar co-efficient, Properties of SAMPLING Sampling and TESTS OF S of Hypothesi Tail and two Small Samp	regression co-efficient.  TECHNIQUES: Sample, Population, Sampling, d Non-Sampling errors.  GIGNIFICANCE: Introduction, Null Hypothesis, Alters, Type -I and Type-II Errors, Level of Significance, I tail test, standard error.  le Test: Student's t-test, F-Test, Chi square test of two Attributes, Homogeneity, One way and	man's Rank Control  Methods of Structure Hypoth Degree of Free  t for Goodnes	orrelation gressions, Sampling, esis, Test dom, One as of Fit,	20
Unit 3- Rese MS EXCEL Introduction R-Soft softw Introduction and charts. I Calculation i	arch Tools and R-Soft software: to MS-EXCEL and R-Soft software, statistical funct are. R Programming language, Drawing Graphs, Working Data Analysis using MS Excel such as graphs, statist n Excel.	g with Data, Pi	vot tables	20
2.Biostatisti Series in Reference B 1. Introducti	ntals of Biostatistics by Irfan Ali Khan and Atiya Khanics: A Foundation for Analysis in The Health Scient Probability and Statistic.	nce by Wayne	W Danie	•

# Sem. – II

Semester 2	Subject Neural networks and Artificial intelligence in Biomedical instrumentation	Category Major	Hours 60	Total Credits
<ul> <li>Course Objective:         <ul> <li>To understand the basic concepts of artificial neural network (ANN)</li> <li>To study the various ANN Models, study single layer and multilayer feed forward neur networks, familiarize about the support vector machine and adaptive resonance theory,</li> <li>To study the basic concepts of Fuzzy sets and system, learn ANN in biomedical applications</li> <li>Course Outcome:</li> <li>A Learner will be able to apply concepts of ANN in Biomedical applications, apply concepts of Biomedical applications</li> </ul> </li> </ul>			ations	
Introduction Types of me Characteristic Classification Fundamental	uction to Neural Networks: Humans and Computers, Organization of the Bra dical and biological data, Objective of Neural es of ANN, Historical Developments, Potential of neural networks of Artificial Neural Networks: Artificial Neuron Neuron Neuron Activation Function, ANN Architectucs.	networks, B Applications  fodel, McCul	iological, of ANN.	20
Unit 2 Artificial Intelligence: Definition, Intelligent machines, Foundation & history of artificial intelligence, Intelligent Agents, Benefits & risks of AI. Fuzzy System: Introduction, Fuzzy rule, Fuzzy inference Engine: Left and Right hand side of computation, Mamdani-style inference, Sugeno-style inference, Type 1 and Type 2 fuzzy system, Fuzzy C Mean clustering, Application of fuzzy logic in biomedical engineering.			20	
Hybrid Intell Adaptive New Genetic Algo- genetic algor	ine Learning ypes of Learning: Supervised, Unsupervised, Active, igent Systems, Natural Expert System, Neuro — Fu uro — Fuzzy Inference System, Evolutionary, neural a prithm: Introduction to optimization, Principle of na ithm, Operators and parameters, Crossover, encoding	zzy System, z and fuzzy syst atural selection	ANFIS – em n, Simple	20
<ol> <li>Text Books:         <ol> <li>Artificial Intelligence: A Guide to Intelligent Systems by Michael Negnevitsky, Pub: A Wesley</li> <li>Reference Books</li> <li>Artificial Intelligence: A Modern Approach By: Stuart J. Russell and Peter Norvig. Publi Prentice Hall</li> <li>Understanding Machine Learning By: Shai Shalev-Shwartz Shai Ben-David. Pu Cambridge</li></ol></li></ol>			blisher:	
	3. Machine Learning by Tom M. Mitchell, Pub: McGraw-Hill			

Semester Subject Category Biomedical Instrumentation And Design Major	Hours 60	Total Credits 4
-----------------------------------------------------------------------	-------------	-----------------------

#### **Course objectives:**

- To make students understand various types of medical instruments, their working principles, and applications.
- To teach the students design concepts of some of the medical equipment.
- To make students know instruments used in ICU, ICCU units. Instruments used for diagnosis of various disorders in body.
- To understand concepts of telemedicine

#### **Course Outcome:**

· Students can design electro diagnostic instruments, understand use of medical equipment in various departments in the hospital and instrument's used for diagnostic, therapeutic, diagnosis, monitoring purposes

monitoring purposes	
Unit-1	20
Classification on the basis of applications and their working principles, techniques of blood	
pressure measurement, measurement of heart rate, measurement techniques for body	
temperature, respiration rate meter, Apnea detector. Specifications and design of ECG,	
EMG, EEG, PPG amplifiers and filters.	
Unit-2	20
Intensive and coronary care units: Special care units, ICU/CCU equipment, bedside	
monitors circuits, central monitoring consoles, physiological telemetry 8 4 Emergency	•
equipment: Introduction and design concepts of cardiac pacemaker and defibrillator, types	
and application techniques, analysis of pacemaker and defibrillator waveform, Respiratory	
and pulmonary function monitoring equipment, clinical lab equipment	
Unit-3	20
Therapeutic and general equipment: Ultrasound therapy, short wave therapy, nerve and	
muscle stimulator, infant incubator, haemodialysis machine, heart lung machine, cobalt	
therapy 8 6 Analysis and processing of biosignals, suppression of artifacts in bio signals,	
extracting features of in bio signals, telemedicine	
Olivino Ing. Tenton Co. M. C.C. C.	

#### Text Books 1.

- 1. John G. Webster- Medical Instrumentation Applications and Design 3rd edition John Wiley and Sons. Inc. 1999
- 2. Joseph J Carr, Joseph M. Brown- Introduction to Biomedical equipment technology, Pearson Education. Inc. 4h edition, 2008

Semester 2	Subject Robotics in Medicine	Category Major	Hours 30	Total Credits 2
Robotic An  Learn the  Course Outce  It helps the Application  Identify the  Classify th  Unit – 1  Robotics, Ba control system	and Control of actuators in Robotic Mechanisms, robotics ome: learner to design a Robot for various applications like	e Surgery, ther omous robots acteristics, Di	rapy and cl	tics of
Unit – 2 Sensors and vision systems: Transducers and sensors, Tactile sensors Proximity and range sensors, vision systems, Image processing and analysis, image data reduction, segmentation feature extraction, Object recognition.			10	
Unit – 3 End effects, type Mechanical grippers, vacuum cups magnetic grippers, robot end effectors interface software for industrial robots. Positive stop program, point to point program and continuous path program. Applications of robots in biomedical field.			10	
integrated Approach,	D. Klafter, Thomas A. Chmiclewski and Michael M. Prentice-Hall India, India, 2003. R. C. Gonzalez and C. S. G. Lee, —Robotics: Control,		_	C

# McGraw IIill, Singapore, 1987. **Reference Books:**

- 1. Robert J. Schilling, —Fundamentals of Robotics: Analysis and Control, Prentice-Hall India, India, 2005.
- 2. Saeed B. Niku, —Introduction to Robotics: Analysis, Systems, Applications, Pearson, India, 2003.
- 3. John J. Craig, —Introduction to Robotics: Mechanics and Control, Third Edition, Pearson, India , 2009.

Semester 2	Subject	Category	Hours	Total
	Hospital Management	Major	30	Credits
				2

#### **Course Objective:**

- · To understand various features like hospital management, planning and design of various divisions in a hospital.
- Also emphasize is given on patient safety and certain Legal aspects

#### **Course Outcome:**

- The leaner will be able to understand the complete designing of the hospital, its safety for patients, Also helps in understanding the supporting units in a hospital and hoe to deal various legal matters in a hospital
- Maintain various medical records and waste management.
- Identify various activities of departments like out/in patient and nursing.

Unit 1 - Hospital Management System		
Role of Hospitals in Health Care, Hospital Planning and Design, Effective Hospital	,	
Management, Planning, Organizing, Controlling, Financial Management		
The Role of Hospital Administrator, Medical Records, Hospital Utilization Statistics,		
Materials Management, Marketing of Health		
Services, Evaluation of Hospital Services, Ethical and Legal Aspects of Hospital		
Administration, Disaster Management		
Unit 2- Hospital Services & Information System:		
Biomedical department service, Radiology and Imaging Services, Laboratory Services	10	
Operation Theatre Suite, Pharmacy, Central Sterile Supply Department (CSSD)Hospital		
Linen and Laundry Service., Outpatient Services, The Nursing Unit and Nursing services		
Unit 3- Biomedical Waste Management:		
Hospital Waste & Effect of Hospital Waste on Environment and Health Generation and	10	
Segregation Transport and Storage		
Treatment and Disposal of Waste		
Assignments		

#### **Text Books:**

- 1. Electrical safety in Healthcare facility H. H. Roth
- 2. Hospital Planning, Design and Management-Kunders

- 1. Biomedical Ethics for Engineers- Domiel A Vallero
- 2. Computer in Medicine R. D. Lele

Semester 2	Subject Cyber security law	Category Elective	Hours 60	Total Credits
Course Objectives:  To understand and identify different types cybercrime and cyber law To recognized Indian IT Act 2008 and its latest amendments To learn various types of security standards compliances Course Outcome:  Understand the concept of cybercrime and its effect on outside world Interpret and apply IT law in various legal issues Distinguish different aspects of cyber law Apply Information Security Standards compliance during software design and development			nt.	
Unit1: Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.  Cyber offenses & Cybercrime: Social Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones.			20	
Unit 2: Tools and M Spywares, V Buffer Over Indian IT Ac	Tethods Used in Cyberline: Phishing, Password Cracirus and Worms, Steganography, DoS and DDoS A Flow, Attacks on Wireless Networks, Phishing, Identit: Cyber Crime and Criminal Justice: Penalties, Ad	Attacks, SQL I ity Theft.	njection,	20
Unit 3: The Concept of Cyberspace: E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law			20	
Information PCI.  Text Books:	Security Standard compliances: SOX, GLBA, HIPA	A, ISO, FISMA	, NERC,	

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.

- 1. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 2. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 3. Kennetch J. Knapp, Cyber Security &Global Information Assurance Information Science Publishing.

Semester 2	Subject Biorheology	Category Elective	Hours 60	Total Credits 4
types of vi · Also how ti	and various characteristics of tissue scosity and Stress strain characteristics can be modelled will be unde	stics of tissue.	sticity and	also
Course Out	come:			
· From the te	rms elasticity, plasticity and viscosi ieved.	ity, and using Stress Strain Curv	e ,tissue m	odelling

Unit1: Introduction to rheology and recap of basic equations of continuum mechanics (kinematics of deformation and stress analysis). Constitutive equations: General theory of constitutive equations	
Tissue and cell elasticity: Continuum approach (linear theory, nonlinear theory, strain energy function, prestress; examples) b. Tissue and cell elasticity: Microstructural approach (microstructural models of living tissues), statistical approach (thermodynamics of elastic deformation, rubber elasticity), examples	20
Unit 2:	
Tissue and cell viscoelasticity: Phenomenological approach (stress relaxation, creep, hysteresis, frequency and temperature effects), examples.	
Linear viscoelasticity: Continuum approach, lumped models, empirical models (power law, fractional calculus), structural damping, examples. Microstructural and molecular approach, polymer chain dynamics, examples	20
Unit 3:	
Elements of nonlinear viscoelasticity: Examples of empirical, semi empirical and molecular approaches in studies of living tissues	20
Elements of tissue plasticity and viscoplasticity:(permanent deformation, hysteresis, yield stress), empirical and lumped models of plastic and viscopalstic behaviour of living tissues.	40

#### **Text Books:**

- 1. Fung, Y. C. Biomechanics Mechanical Properties of Living Tissues, 2nd edition, Springer: New York, 1993.
- 2. Fung, Y. C. Biomechanics Motion, Flow and Growth, Springer: New York, 1990.
- 3. Fung, Y. C. Bio dynamics Circulation, Springer, 1984.

- 1. M. R. King (editor). Principles of Cellular Engineering: Understanding the Bio molecular Interface. Elsevier Academic Press, 2006.
- 2. Abé, H., K. Hayashi, and M. Sato (editors). Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, Springer: Tokyo, 1996.

#### PASSING PERFORMANCE GRADING:

The Performance Grading of the learner shall be on ten point scale be adopted uniformly.

#### Letter Grades and Grade Point

Semester GPA/ Program CGPA Semester / Program	% of Marks	Alpha-Sign/Letter Grade Result	Grading Point
9.00 – 10.00	90.0 - 100	O (Outstanding)	10
8.00 - < 9.00	80.0 < 90.0	A+ (Excellent)	9
7.00 - < 8.00	70.0 < 80.0	A (Very Good)	8
6.00 = < 7.00	60.0 < 70.0	B+ (Good)	7
5.50 - < 6.00	55.0 < 60.0	B (Average)	6
5.00 - < 5.50	50.0 < 55.0	C (Pass)	5
Below 5.00	Below 50	F (Fail)	0
AB (Absent)		Absent	

NOTE: VC: Vocational Courses, SEC: Skill Enhancement Courses, AEC: Ability Enhancement Courses,

VEC: Value Education Courses, VSC: Vocational Skill Course, IKS: Indian Knowledge System, OJT:

On The Job Training, FP: Field Projects.

The performance grading shall be based on the aggregate performance of Internal Assessment and Semester End Examination.

The Semester Grade Point Average (SGPA) will be calculated in the following manner: SGPA =  $\Box$ CG /  $\Box$ C for a semester, where C is Credit Point and G is Grade Point for the Course/Subject.

The Cumulative Grade Point Average (CGPA) will be calculated in the following manner:  $CGPA = \Box CG / \Box C$  for all semesters taken together.

#### **PASSING STANDARD:**

Passing 50% in each subject /Course separate Progressive Evaluation (PE)/Internal Evaluation and Semester-End/Final Evaluation (FE) examination.

- A. Carry forward of marks in case of learner who fails in the Internal Assessments and/ or Semester-end examination in one or more subjects (whichever component the learner has failed although passing is on total marks).
- B. A learner who PASSES in the Internal Examination but FAILS in the Semester-end Examination of the Course shall reappear for the Semester-End Examination of that

- Course. However, his/her marks of internal examinations shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.
- C. A learner who PASSES in the Semester-end Examination but FAILS in the Internal Assessment of the course shall reappear for the Internal Examination of that Course. However, his/her marks of Semester-End Examination shall be carried over and he/she shall be entitled for grade obtained by him/her on passing

#### ALLOWED TO KEEP TERMS (ATKT)

- A. A learner shall be allowed to keep term for Semester II irrespective of the number of heads/courses of failure in the Semester I.
- B. A learner shall be allowed to keep term for Semester III wherever applicable if he/she passes each of Semester I and Semester II.

#### OR

- C. A learner shall be allowed to keep term for Semester III wherever applicable irrespective of the number of heads/courses of failure in the Semester I & Semester II.
- D. A learner shall be allowed to keep term for Semester IV wherever applicable if he/she passes each of Semester I, Semester II and Semester III.

#### OR

E. A learner shall be allowed to keep term for Semester IV wherever applicable irrespective of number of heads/courses of failure in the Semester I, Semester II, and Semester III

*************

# Syllabus M.SC. (Biomedical Instrumentation)

## (Semester I and II) Team of Creation of Syllabus Dt. 26th June, 2023

Name	College Name	Sign
Dr. Keyurkumar M.	Director, University of Mumbai's	* # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Nayak	Garware Institute of Career	MYTTO CHASE
Ivayak	Education and Development,	
	BOS Chairman	· ·
Dr. Neha Deshpande	Associate Professor, A. G. College,	\$450 g ( \$450 )
	Pune	Moglar
	Chairperson, Executive Committee,	
	SVJCT's SEI	,
Mr. Mandar Joshi	Course coordinator, SVJCT	M.V.TOMI
Ms. Pradnya Gokhale	Assistant Prof., SVJCT's SEI	(Mady)
_		×33edq
Dr. Niranjan Khambete	Manager, Clinical Engineering,	1
	Dinnanath Mangeshkar Hospital and	
	Research center ,Pune	() (b Lambet
Dr. A. D. Shaligram	Emirates Professor, Dept. of	
	Electronic science, SPPU, CEO,	
	Research Park Foundation, SPPU	
Dr. Gourish Naik	Professor, School of Physical and	
	Applied sciences, Goa University	- Cold
Prof. Dr. Damayanti	Head, Dept. of Electronic science,	nada a mana ang ang ang ang ang ang ang ang ang
Gharpure	SPPU	D. C.Chapus
*		
Mr. Rajanish Waghasiya	Industry Expert	•
wagnasiya	middstry Expert	Ramid
		•
Mr. Hariom Wable	Alumni Student, SVJCT	
		G Jan
Mr. Shubham Ranim	Alumni Student, SVJCT	
	, , , , , , , , , , , , , , , , , , , ,	Fine.
		J

Dr. Keyurkumar M. Nayak,

Director, UM-GICED Prof. (Dr.) Shivram S. Garje Dean, Faculty of Science

#### Justification for (M.Sc. Biomedical Instrumentation Science)

1.	Necessity for starting the course	The University of Mumbai's Garware Institute of Career Education & Development plans to introduce two years Full time M.Sc. (Biomedical Instrumentation). The training course in the field of Medical area is designed to give the students a comprehensive knowledge of the advanced level understanding of procurement methods, installation and maintenance of the medical instruments. The course also deals with the collection of information needed, supervision of installation commissioning, testing, reporting and documentation of these instruments.
2.	Whether the UGC has recommended the course:	Yes, UGC has recommended the course as per gazette no. DL(N)-04/0007/2003-05 dated 11th July 2014. UGC encourages the incorporation of skill oriented and valueadded courses to develop skilled manpower.
3.	Whether all the courses have commenced from the academic year 2023-2024	Yes, it would be commencing from the Academic year 2023-24 as per NEP 2020. However, the course was launched in the year 2017.
4.	The courses started by the University are self-financed, whether adequate number of eligible permanent faculties are available?	Yes, this course is self-financed. The expert visiting faculty from industries come to teach this course.
5.	To give details regarding the duration of the Course and is it possible to compress the course?	The duration of the course in Two years (Four Semester). It cannot be further compressed
6.	The intake capacity of each course and no. of admissions given in the current academic year:	The intake capacity of this course is 30 students. The admission procedure is still ongoing.
7.	Opportunities of Employability/ Employment available after undertaking these courses:	The students completing this course have career opportunities as Hospital Administrator, Laboratory instrument technical assistant, Technology manager, Laboratory manager, Research associate, Medical record technician, Laboratory assistant, etc. This is primarily because careers in the Medical industry require a lot of special skills

Dr. Keyurkumar M. Navak Director

**UM-GICED** 

Prof. (Dr.) Shivram S. Garje Dean, Faculty of Science