MSCCS 1.5

M.Sc.

(Computer Science)
SEMESTER -1

(REVISED SYLLABUS
AS PER NEP 2020)

ROBOTICS

© UNIVERSITY OF MUMBAI

Prin. Dr. Ajay Bhamare
Pro Vice-Chancellor,
University of Mumbai,

Prof. Ravindra Kulkarni
Vice-Chancellor,
University of Mumbai,

Prof. Shivaji Sargar
Director,
CDOE, University of Mumbai,

Course Co-ordinator

Editor

Course Writers

Programme Co-ordinator :

Shri. Mandar Bhanushe
Head, Faculty of Science and Technology,
CDOE, University of Mumbai, Mumbai

: Mr. Sumedh Shejole

Asst. Professor,
CDOE, University of Mumbai, Mumbai

: Vijay Sudhakar Kothawade

Assistant Professor,
Smt. Janakibai Rama Salvi College,
Kalwa Eest

: Anish Shewale

Technology Analyst, Infosys Limited

: Mr. Prashant D. Londhe

Assistant Professor,
Gogate-Jogalekar College, Ratnagiri

: Anish Raut

Manager,
Trassir Sentinel Pvt. Ltd

: Dr. Mitali Shewale

Assistant Professor,
Veermata Jijabai Technological Institute, Mumbai

December 2024, Print - I

Published by . Director,
Centre for Distance and Online Education,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400 098

CONTENTS

Unit No. Title Page No.
1. Introduction to Robotics 01
2. Building Robotics Basic 19
3. Servo Motors 30
4. Robotic Vision and Voice Communication - [49
5. Robotic Vision and Voice Communication - II 58

%
%
%
%

Programme Name: M.Sc. Computer | Course Name: Robotics
Science (Semester |)
Total Credits: 02

Total Marks: 50

College assessment: 25 . .
University assessment: 25

Pre requisite: Knowledge of Basic concepts of IoT.

Course Outcome:

e Leverage the features of the Raspberry Pi OS

e Discover how to configure a Raspberry Pi to build an Al-enabled robot

e Interface motors and sensors with a Raspberry Pi

e Code robot to develop engaging and intelligent robot behavior

e Explore Al behavior such as speech recognition and visual processing
Course Code Course Title Totgl

Credits
PSCS506b Robotics 02

MODULE - | 02

Unit 1:Introduction to Robotics

Introduction to Robotics: What is a robot? Examples of Advanced and
impressive robots, Robots in the home, Robots in industry, Exploring Robot
Building Blocks - Code and Electronics Technical requirements, Introducing the
Raspberry Pi - Starting with Raspbian Technical requirements, Raspberry Pi
controller on a robot

Building Robot Basics Technical requirements: Robot chassis kit with wheels
and motors, a motor controller, Powering the robot, Test fitting the robot,
Assembling the base.

Robot Programming: Programming technique, adding line sensors to our robot,
creating line-sensing behaviour, and Programming RGB Strips in robot.

Unit 2:Servo Motors

Motors:Use and control of servo motors, pan, and tilt mechanism, Distance
sensors, Introduction to distance sensors and their usage Connecting distance
sensors to robot and their testing. Creating a smart object avoidance behaviour.
Creating a menu to select different robot behaviours, Distance and speed
measuring sensors—encoders and odometry

Robot Vision and Voice Communication: Setting up a Raspberry Pi Camera on
the robot (software and hardware), Check the robot vision on a phone or laptop,
Mask images with RGB strips, Colors, masking, and filtering — chasing coloured
objects, detecting faces with Haar cascades, Finding objects in an image, Voice
Communication with a robot

Text Books:

1. Danny Staple, Robotics Programming, Packt Publishing, 2nd edition, Feb 2021
2. Saeed B. Niku, Introduction to Robotics: Analysis, Control, Applications, Wiley, 31
Edition, 2019

Reference Books:

1. D. K. Pratihar, Fundamentals of Robotics. Narosa Publication, 2016
2. Lentin Joseph, Learning Robotics Using Python, Packt Publishing Ltd., May 2015

Module 1

INTRODUCTION TO ROBOTICS

Unit Structure :

1.0 Objectives

1.1 Introduction to Robotics

1.2 What is a robot?

1.3 Examples of Advanced and impressive robots
1.4 Robots in the home

1.5 Robots in industry

1.6 Exploring Robot Building Blocks - Code and Electronics
Technical requirements

1.7 Introducing the Raspberry Pi

1.8 Starting with Raspbian Technical requirements
1.9 Raspberry Pi controller on a robot

1.10 Summary

1.11 List of References

1.12 Unit End Exercises

1.0 OBJECTIVES

e To introduce and get familiar with the concepts of robotics
e To understand the practical use cases of robots

e To get familiar with Raspberry Pi and its association with robotics

1.1 INTRODUCTION TO ROBOTICS

Robotics is an interdisciplinary field that combines aspects of engineering,
computer science, mathematics, and physics to design, create, operate, and
use robots. At its core, robotics aims to develop machines that can perform
tasks autonomously or semi-autonomously, typically in environments that
are hazardous, inaccessible, or simply more efficient with automation.

Robotics

Here's a breakdown of key components in an introduction to robotics:

1.

Mechanical Engineering: Robotics often starts with designing the
physical structure of the robot, including its body, limbs, joints, and
actuators (motors or other devices that enable movement). This
involves considerations of materials, weight distribution, and
durability.

Electrical Engineering: Robots require various electronic
components such as sensors (for detecting the environment),
microcontrollers (for processing data and controlling actions), and
power systems (batteries or other energy sources).

Computer Science: Programming is essential for instructing robots on
how to perform tasks. This involves writing algorithms for navigation,
object recognition, decision-making, and interaction with the
environment or humans. Machine learning and artificial intelligence
techniques are increasingly used to make robots more adaptive and
intelligent.

Control Systems: Robots need mechanisms to interpret sensor data,
make decisions, and actuate their movements accurately. Control
theory is employed to develop algorithms that govern these processes,
ensuring stability, responsiveness, and precision in robot actions.

Sensors and Perception: Robots rely on sensors to gather information
about their surroundings, such as distance, temperature, light, sound,
and more. Perception algorithms enable robots to interpret this sensory
data, understand their environment, and make informed decisions
accordingly.

Kinematics and Dynamics: Understanding how robots move and
interact with their environment is crucial. Kinematics deals with the
geometry of motion, while dynamics considers the forces and torques
involved. These principles help in designing robots that move
efficiently and safely.

Overall, robotics is a dynamic and rapidly evolving field with the potential
to revolutionize how we live and work in the future.

1.2 WHAT IS A ROBOT?

A robot is a programmable machine designed to perform tasks
autonomously or semi-autonomously, typically with a combination of
mechanical, electrical, and computer components. The term "robot"
encompasses a wide range of devices, from simple automated systems to
highly sophisticated machines capable of complex behaviors and
interactions. Here's a detailed exploration of what constitutes a robot:

1.

Physical Structure: A robot typically consists of a physical structure
or body that houses its various components. This structure can vary
widely depending on the robot's intended application. It may include

rigid or flexible materials, joints for movement, and attachments for
specialized tasks.

Actuators and Mechanisms: Actuators are devices that enable
movement in a robot. These can include motors, hydraulics,
pneumatics, or other mechanisms that convert energy into mechanical
motion. Actuators are responsible for driving the robot's limbs,
grippers, wheels, or other moving parts.

Sensors: Sensors are essential for robots to perceive and interact with
their environment. They can detect various stimuli such as light,
sound, temperature, pressure, proximity, and more. Common sensors
used in robotics include cameras, infrared sensors, ultrasonic sensors,
gyroscopes, accelerometers, and tactile sensors.

Control System: The control system of a robot consists of hardware
and software that govern its behavior. This system processes sensory
input, executes programmed instructions, and generates output signals
to control actuators. Control algorithms may involve feedback loops to
adjust behavior based on environmental changes or errors.

Power Source: Robots require energy to operate, which is typically
provided by batteries, power cords, or other energy sources. The
power source must be sufficient to drive the robot's actuators and
electronics for the duration of its intended operation.

Computing and Processing: Robots contain computational hardware
such as microcontrollers, processors, or onboard computers to execute
control algorithms, process sensor data, and make decisions. These
computing systems may also integrate specialized hardware for tasks
like image processing or machine learning.

Programming: Robots are programmed to perform specific tasks or
behaviors. Programming languages and software tools vary depending
on the complexity of the robot and the tasks it is designed to
accomplish. Programmers may use high-level languages like Python or
C++, as well as robot-specific programming languages or graphical
interfaces.

Autonomy and Intelligence: While some robots operate under direct
human control, others possess varying degrees of autonomy.
Autonomous robots can perceive their environment, make decisions,
and adapt their behavior without constant human intervention.
Advanced robots may incorporate artificial intelligence and machine
learning techniques to improve their decision-making capabilities and
adaptability.

Applications

Robots are utilized in a wide range of industries and applications,
including manufacturing, healthcare, agriculture, transportation,
exploration, defense, entertainment, and more. They perform tasks such as

Introduction to
Robotics

Robotics

assembly, welding, pick-and-place operations, surgery, cleaning,
inspection, exploration of hazardous environments, and even
companionship.

Ethical and Social Considerations

As robots become more prevalent in society, ethical and social
implications arise. These include concerns about job displacement,
privacy, safety, accountability, biases in Al algorithms, human-robot
interaction, and the ethical treatment of robots themselves.

In summary, a robot is a multifaceted machine designed to sense, actuate,
and interact with its environment, often with varying degrees of autonomy
and intelligence. Its design and functionality depend on its intended
application, ranging from simple repetitive tasks to complex and adaptive
behaviors.

1.3 EXAMPLES OF ADVANCED AND IMPRESSIVE
ROBOTS

Following are detailed descriptions of some advanced and impressive
robots from various fields:

1. Atlas by Boston Dynamics: Atlas is a humanoid robot developed by
Boston Dynamics, designed to perform a variety of tasks in both
indoor and outdoor environments. It stands approximately 1.5 meters
tall and is equipped with advanced sensors, actuators, and a high
degree of mobility. Atlas is capable of walking, running, jumping, and
even performing backflips. Its dexterity allows it to manipulate objects
and navigate challenging terrain, making it suitable for applications
such as search and rescue, disaster response, and industrial automation.

2. Spot by Boston Dynamics: Spot is a quadruped robot developed by
Boston Dynamics, known for its agility, stability, and versatility. It
features a compact and modular design, with customizable payloads
and accessories for different applications. Spot can traverse rough
terrain, climb stairs, and navigate tight spaces with ease. It is used for
various tasks such as inspection, surveillance, mapping, and research,
across industries including construction, energy, and public safety.

3. Robonaut by NASA: Robonaut is a humanoid robot developed by
NASA to assist astronauts with tasks aboard the International Space
Station (ISS). It is equipped with dexterous manipulators, cameras, and
sensors to perform complex operations in space environments.
Robonaut's advanced capabilities include the ability to handle tools,
operate equipment, and assist with maintenance tasks, thereby
reducing the workload on crew members and enhancing efficiency
during space missions.

4. Sophia by Hanson Robotics: Sophia is a social humanoid robot
created by Hanson Robotics, known for its lifelike appearance and
expressive capabilities. It is equipped with artificial intelligence and

natural language processing algorithms, allowing it to engage in
conversations, recognize faces, and display emotions. Sophia has been
featured in various media outlets and public events, serving as a
platform for exploring the intersection of robotics, Al, and human-
robot interaction.

Da Vinci Surgical System: The Da Vinci Surgical System is a robotic
surgical platform developed by Intuitive Surgical, designed to assist
surgeons with minimally invasive procedures. It consists of robotic
arms equipped with surgical instruments and a high-definition 3D
camera. Surgeons control the system from a console, manipulating the
instruments with precision and accuracy. The Da Vinci system enables
enhanced dexterity, visualization, and control during surgeries, leading
to improved patient outcomes and reduced recovery times.

DJI RoboMaster S1: The RoboMaster S1 is an educational robot
developed by DJI, designed to teach programming, robotics, and Al
concepts to students and enthusiasts. It features a modular design with
customizable components, including motors, sensors, and a camera.
The S1 can be programmed to perform various tasks such as racing,
shooting, and obstacle avoidance, using Python or Scratch
programming languages. It serves as a hands-on learning platform for
exploring robotics principles and developing technical skills.

Pepper by SoftBank Robotics: Pepper is a humanoid robot
developed by SoftBank Robotics, designed for interaction and
assistance in commercial and social settings. It features a sleek and
friendly design, equipped with sensors, cameras, and a touchscreen
interface. Pepper can engage in conversations, recognize emotions,
and provide information or assistance to users. It is used in
applications such as retail, hospitality, education, and healthcare,
where it enhances customer engagement and service delivery.

These examples represent a diverse range of advanced robots with
impressive capabilities, demonstrating the ongoing innovation and
potential of robotics technology across various domains.

1.4 ROBOTS IN THE HOME

Robots in the home have become increasingly prevalent, offering
assistance, entertainment, and automation of various tasks to improve
convenience and efficiency for homeowners. Here's a detailed description
of some of the most common types of robots found in households:

1.

Vacuum Cleaning Robots: Vacuum cleaning robots, such as the
Roomba by iRobot, are designed to autonomously clean floors by
navigating around obstacles, detecting dirt, and vacuuming surfaces.
Equipped with sensors and algorithms, these robots can map the layout
of the home, avoid collisions, and return to their docking stations for
recharging. Some advanced models even offer features like mopping
and self-emptying bins for added convenience.

Introduction to
Robotics

Robotics

2. Lawn Mowing Robots: Lawn mowing robots, like those from
Husqvarna or Robomow, automate the task of maintaining a tidy lawn.
These robots use perimeter wires or GPS technology to define the
boundaries of the lawn and navigate autonomously while cutting grass
to a specified height. They can operate on a schedule and adjust their
mowing patterns based on factors such as grass growth and weather
conditions.

3. Personal Assistants: Personal assistant robots, such as Amazon's
Echo devices with Alexa or Google Home with Google Assistant,
provide voice-activated control over smart home devices, access to
information, entertainment, and various services. These robots can
answer questions, set reminders, play music, control smart appliances,
and integrate with other smart home devices to streamline daily tasks
and routines.

4. Security Robots: Security robots, such as the Ring Always Home
Cam or the Nest Cam IQ, offer surveillance and monitoring
capabilities to enhance home security. Equipped with cameras, motion
sensors, and connectivity features, these robots can detect intruders,
monitor activity, and provide real-time alerts to homeowners via
mobile apps. Some models even include advanced features like facial
recognition and two-way audio communication.

5. Pet Care Robots: Pet care robots, like the Petcube Bites or the Furbo
Dog Camera, cater to the needs of pet owners by providing remote
monitoring, interaction, and entertainment for their pets. These robots
feature cameras, treat dispensers, and two-way audio communication,
allowing owners to check on their pets, dispense treats, and engage in
play or training activities from anywhere via smartphone apps.

6. Cooking and Food Preparation Robots: Cooking and food
preparation robots, such as the Moley Robotic Kitchen or the June
Intelligent Oven, automate various aspects of meal preparation to
simplify cooking tasks for homeowners. These robots feature robotic
arms, cooking sensors, and pre-programmed recipes to chop, mix,
cook, and even clean up after meals. They offer convenience,
precision, and consistency in preparing a wide range of dishes.

7. Education and Entertainment Robots: Education and entertainment
robots, such as the Anki Vector or the Sony Aibo robot dog, serve as
companions and educational tools for users of all ages. These robots
feature interactive capabilities, expressive behaviors, and Al-powered
learning algorithms to engage users in activities like games,
storytelling, language learning, and STEM education. They provide
entertainment, companionship, and opportunities for skill development
in the home environment.

These examples demonstrate the diverse range of robots designed for use
in homes, offering solutions to various needs and preferences of
homeowners for automation, assistance, security, and entertainment. As
robotics technology continues to advance, we can expect further

innovations and integration of robots into household environments to
enhance quality of life and convenience for users.

1.5 ROBOTS IN INDUSTRY

Robots have transformed industries by automating repetitive, dangerous,
and precise tasks, enhancing productivity, efficiency, and safety in
manufacturing and other sectors. Here's a detailed description of robots in
industry, including their types, applications, and benefits:

Types of Industrial Robots

a.

Articulated Robots: These robots have multiple rotary joints,
resembling a human arm, and are versatile in their movements. They're
commonly used for tasks such as welding, painting, assembly, and
material handling in automotive, electronics, and other industries.

SCARA Robots (Selective Compliance Assembly Robot Arm):
SCARA robots have horizontal and vertical joints, providing fast and
precise movement in a plane. They're ideal for assembly, packaging,
and pick-and-place applications in industries like electronics,
pharmaceuticals, and consumer goods.

Delta Robots: Delta robots feature a parallel-link structure with three
or more arms attached to a common base. They excel in high-speed
and high-precision tasks such as pick-and-place operations, packaging,
and sorting in industries like food and beverage, electronics, and
pharmaceuticals.

Cartesian Robots (Gantry Robots): Cartesian robots use linear
actuators to move along three orthogonal axes, offering simplicity,
stability, and high payload capacity. They're suitable for applications
such as material handling, palletizing, and CNC machining in
industries like logistics, aerospace, and metalworking.

Collaborative Robots (Cobots): Cobots are designed to work
alongside humans safely and efficiently, often without the need for
safety cages. They feature sensors and adaptive control systems to
detect and respond to human presence, making them suitable for tasks
such as assembly, inspection, and packaging in various industries.

Applications of Industrial Robots

a.

Manufacturing and Assembly: Robots are extensively used in
manufacturing and assembly processes to automate tasks such as
welding, soldering, painting, screwdriving, and fastening. They ensure
consistency, precision, and repeatability in production, leading to
improved product quality and reduced cycle times.

Material Handling and Logistics: Robots play a crucial role in
material handling and logistics operations, including loading and
unloading of parts, palletizing, packaging, and warehouse automation.

Introduction to
Robotics

Robotics

They optimize throughput, minimize errors, and streamline supply
chain operations in industries like e-commerce, retail, and distribution.

Quality Inspection and Testing: Robots are deployed for quality
inspection and testing of components, assemblies, and finished
products using sensors, cameras, and measurement devices. They
detect defects, deviations, and anomalies with high accuracy, ensuring
compliance with quality standards and reducing waste and rework.

Welding and Fabrication: Robots are commonly used for welding
and fabrication tasks in industries such as automotive, aerospace, and
metalworking. They perform arc welding, spot welding, laser welding,
and other processes with speed, precision, and consistency, resulting in
improved weld quality and productivity.

Packaging and Palletizing: Robots automate packaging and
palletizing operations by picking, placing, and stacking products or
containers according to predefined patterns. They increase throughput,
reduce labor costs, and optimize warehouse space utilization in
industries like food and beverage, pharmaceuticals, and consumer
goods.

Benefits of Industrial Robots

a.

Improved Productivity: Robots accelerate production processes,
reduce cycle times, and operate 24/7 without fatigue or breaks, leading
to higher output and throughput in manufacturing operations.

Enhanced Quality: Robots ensure consistency, accuracy, and
repeatability in tasks such as welding, assembly, and inspection,
resulting in higher product quality and reduced defects.

Increased Safety: Robots handle hazardous, repetitive, and
ergonomically challenging tasks, reducing the risk of injuries and
accidents for human workers in industrial environments.

Cost Efficiency: While the initial investment in robots may be
significant, they offer long-term cost savings through reduced labor
costs, improved efficiency, and minimized scrap and rework.

Flexibility and Adaptability: Robots can be reprogrammed and
reconfigured to perform different tasks or adapt to changes in
production requirements, providing flexibility and agility in
manufacturing operations.

In summary, industrial robots play a vital role in modern manufacturing
and industry, automating a wide range of tasks to improve productivity,
quality, safety, and efficiency. As robotics technology continues to
advance, we can expect further innovations and integration of robots into
industrial processes, leading to transformative changes in the way goods
are produced and distributed.

1.6 EXPLORING ROBOT BUILDING BLOCKS - CODE
AND ELECTRONICS TECHNICAL
REQUIREMENTS

Exploring robot building blocks involves understanding the technical
requirements related to code and electronics, which are essential for
designing, programming, and operating robots. Here's a detailed
description of these technical aspects:

Code Requirements

a. Programming Languages: Understanding programming languages is
crucial for coding robots. Common languages used in robotics include:

e Python: Widely used for its simplicity and versatility, Python is
suitable for various robotics applications, including control,
navigation, and machine learning.

e (C++: Preferred for its performance and efficiency, C++ is often used
in real-time control systems, motion planning, and computer vision
tasks in robotics.

e Java: Java is popular for developing software frameworks and
applications for robots, providing platform independence and
scalability.

b. Robotics Frameworks and Libraries: Leveraging robotics
frameworks and libraries simplifies robot development by providing
pre-built modules and functions for common tasks. Examples include:

¢ ROS (Robot Operating System): ROS is a widely-used open-source
robotics middleware platform that offers tools, libraries, and
conventions for building complex robot systems.

e OpenCV: OpenCV is a computer vision library used for image
processing, object detection, and machine vision tasks in robotics.

e PyTorch and TensorFlow: These machine learning frameworks are
used for developing and deploying deep learning models in robotics
applications such as perception, planning, and control.

c. Algorithm Design and Implementation: Developing algorithms for
robot perception, navigation, manipulation, and decision-making
requires proficiency in concepts such as:

e Computer Vision: Understanding image processing techniques,
feature extraction, object recognition, and camera calibration for robot
vision systems.

e Path Planning and Control: Implementing algorithms for motion
planning, trajectory generation, and control strategies to navigate
robots in dynamic environments.

Introduction to
Robotics

Robotics

10

e Sensor Fusion: Integrating data from multiple sensors (e.g., cameras,
lidar, IMU) using techniques such as Kalman filtering or sensor fusion
algorithms to improve perception and localization accuracy.

Electronics Requirements:

a. Microcontrollers and Embedded Systems: Microcontrollers serve as
the brain of robots, controlling their behavior and interfacing with
sensors, actuators, and peripherals. Popular microcontroller platforms
include:

e Arduino: Arduino boards are widely used for prototyping and
hobbyist projects due to their ease of use, extensive community
support, and vast ecosystem of compatible sensors and modules.

e Raspberry Pi: Raspberry Pi offers more computational power and
flexibility, making it suitable for advanced robotics applications
requiring higher-level processing and connectivity.

b. Sensors and Actuators: Sensors provide robots with the ability to
perceive and interact with their environment, while actuators enable
them to move and manipulate objects. Common sensors and actuators
used in robotics include:

e Inertial Measurement Units (IMUs): IMUs measure acceleration,
angular velocity, and orientation, providing information for navigation,
stabilization, and motion control.

e Distance Sensors: Ultrasonic, lidar, and infrared sensors are used for
proximity detection, obstacle avoidance, and mapping in robot
navigation systems.

e Motors and Servos: DC motors, stepper motors, and servo motors are
used for locomotion, manipulation, and actuation tasks in robotics.

¢. Communication Interfaces: Robots often require communication
interfaces for exchanging data with external devices, networks, or
other robots. Common communication protocols and interfaces
include:

e Serial Communication: RS-232, UART, and SPI are used for serial
communication between microcontrollers and sensors/actuators.

e Wireless Communication: Wi-Fi, Bluetooth, Zigbee, and LoRa are
wireless protocols used for remote control, telemetry, and data
transmission in robotics.

e Ethernet: Ethernet is used for high-speed communication and network
connectivity in robotics applications such as industrial automation and
distributed control systems.

d. Power Management: Proper power management is essential to ensure
reliable operation and longevity of robotic systems. This involves

selecting appropriate power sources (e.g., batteries, power supplies), Introduction to
voltage regulation, current limiting, and protection circuits to prevent Robotics
damage to electronic components.

Understanding and mastering these technical requirements for code and
electronics are fundamental for building and programming robots
effectively, enabling developers to create sophisticated and functional
robotic systems for various applications.

1.7 INTRODUCING THE RASPBERRY PI

Introducing the Raspberry Pi involves exploring its features, capabilities,
applications, and the ecosystem surrounding this versatile single-board
computer (SBC). Here's a detailed description:

Overview:

e The Raspberry Pi is a series of small, affordable, and credit card-sized
single-board computers developed by the Raspberry Pi Foundation.

e [t was originally designed to promote computer science education and
enable tinkering and experimentation with hardware and software.

e The Raspberry Pi boards are widely used by hobbyists, educators,
makers, and professionals for various projects and applications.

Hardware:

e Raspberry Pi boards feature a system-on-chip (SoC) architecture,
combining a processor, memory, graphics, and I/O peripherals on a
single integrated circuit.

e Key hardware components typically include:

e Processor: ARM-based CPU, with models ranging from single-core to
quad-core variants.

e Memory: RAM (usually between 1GB to 8GB) for running
applications and operating systems.

e Storage: MicroSD card slot for storing the operating system and user
data.

e [/O Ports: HDMI, USB, Ethernet, GPIO (General-Purpose
Input/Output), camera and display interfaces, audio output, and more.

e Wireless Connectivity: Some models include built-in Wi-Fi and
Bluetooth modules for wireless networking.

e Raspberry Pi boards are available in various models and revisions,
each offering different specifications and features to suit different
project requirements.

11

Robotics

12

Operating Systems and Software:

The Raspberry Pi supports various operating systems, including:

Raspberry Pi OS: Formerly known as Raspbian, it is the official
operating system optimized for Raspberry Pi, based on Debian Linux.
It includes pre-installed software, tools, and libraries tailored for
Raspberry Pi.

Ubuntu: Ubuntu Linux distributions have been ported to Raspberry
Pi, offering additional features and compatibility with Ubuntu
software.

Other Linux Distributions: Several other Linux distributions, such as
Arch Linux, Fedora, and CentOS, are available for Raspberry Pi.

Windows 10 IoT Core: Microsoft offers a version of Windows 10
designed for IoT (Internet of Things) development on Raspberry Pi.

A wide range of software and development tools are available for
Raspberry Pi, including programming languages (Python, C/C++,
Java), development environments (IDEs), libraries, and frameworks
for various applications such as IoT, robotics, home automation, and
media centers.

Applications:

Raspberry Pi is used in a diverse range of projects and applications,
including:

Education: Teaching programming, electronics, and computer science
in schools and universities.

DIY Electronics and Robotics: Building projects such as home
automation systems, weather stations, drones, and robots.

IoT (Internet of Things): Creating connected devices and sensor
networks for monitoring and control applications.

Media Centers: Building multimedia streaming and entertainment
systems using software like Kodi or Plex.

Gaming: Running retro gaming emulators, arcade machines, and
game Servers.

Server and Network Applications: Hosting web servers, file servers,
VPNs, and network monitoring tools.

Artificial Intelligence and Machine Learning: Training and
deploying AI models for image recognition, voice recognition, and
other Al applications.

Community and Ecosystem:

Raspberry Pi has a vibrant and active community of enthusiasts,
developers, and educators.

Community resources include official documentation, forums, online
tutorials, and project repositories for sharing ideas, knowledge, and code.

The Raspberry Pi ecosystem includes a wide range of accessories, add-
ons, expansion boards (HATSs), and kits designed to extend the capabilities
of Raspberry Pi and support various projects and applications.

Thus, Raspberry Pi is a versatile and powerful platform for learning,
experimentation, and innovation in computer science, electronics, and
technology. Its affordability, accessibility, and extensive ecosystem make
it an ideal choice for a wide range of projects and applications, from
educational initiatives to commercial products and prototypes.

1.8 STARTING WITH RASPBIAN TECHNICAL
REQUIREMENTS

Starting with Raspbian involves understanding the technical requirements
for setting up and using the Raspberry Pi operating system. Raspbian is
the official operating system for the Raspberry Pi, based on Debian Linux,
and it's specifically optimized for the Raspberry Pi hardware. Here's a
detailed description of the technical requirements:

1. Raspberry Pi Hardware:

e To use Raspbian, you'll need a Raspberry Pi board. Raspbian is
compatible with all models of Raspberry Pi, including Raspberry Pi 1,
2, 3, and 4, as well as Raspberry Pi Zero and Zero W.

e The Raspberry Pi board requires a microSD card for storage. The
recommended minimum size for the microSD card is 8GB, but larger
cards are also supported.

e Additional hardware components such as a power supply, HDMI cable
(for video output), USB keyboard, and USB mouse may be required
for initial setup and operation.

2. Downloading Raspbian:

e Raspbian images can be downloaded from the official Raspberry Pi
website (https://www.raspberrypi.org/downloads/). There are different
versions of Raspbian available, including:

e Raspberry Pi OS Lite: A minimal version of Raspbian without a
graphical user interface (GUI), suitable for headless (no display)
setups and server applications.

Introduction to
Robotics

13

Robotics

14

w

N

N

Raspberry Pi OS Desktop: The full version of Raspbian with a
graphical desktop environment (PIXEL), pre-installed applications,
and tools for general-purpose use.

Raspberry Pi OS with recommended software: A version of
Raspbian Desktop with additional pre-installed software, including
educational tools, programming languages, and productivity
applications.

. Writing Raspbian Image to MicroSD Card:

Once you've downloaded the Raspbian image, you'll need to write it to
the microSD card using imaging software. Popular tools for this
purpose include Etcher, Win32 Disk Imager, and Rufus (Windows),
and dd command (Linux).

Follow the instructions provided by the imaging software to select the
Raspbian image file and write it to the microSD card. This process will
create a bootable Raspbian microSD card.

. Booting Raspbian:
Insert the microSD card with the Raspbian image into the Raspberry
Pi's microSD card slot.
Connect peripherals such as a keyboard, mouse, and HDMI display to
the Raspberry Pi.
Power on the Raspberry Pi by connecting the power supply. Raspbian
will boot from the microSD card, and you'll see the boot messages
displayed on the screen.
Follow the on-screen prompts to complete the initial setup of
Raspbian, including configuring localization settings, setting up the
Wi-Fi network, and expanding the file system to use the full capacity
of the microSD card.

. Accessing Raspbian:

Once Raspbian is booted and configured, you'll have access to the
Raspbian desktop environment (if using the Desktop version) or the
command-line interface (CLI) if using the Lite version.

You can use the graphical desktop environment or the terminal to
install additional software, configure system settings, and perform
other tasks.

. Technical Skills:

While setting up Raspbian doesn't require advanced technical skills,
basic knowledge of operating systems, file systems, and command-line
interfaces can be helpful.

Familiarity with Linux commands and concepts such as package
management (apt), file permissions, and system administration will
also be beneficial for using Raspbian effectively.

By understanding and meeting these technical requirements, you'll be
well-equipped to start using Raspbian on your Raspberry Pi and explore
its features, capabilities, and applications.

1.9 RASPBERRY PI CONTROLLER ON A ROBOT

Integrating a Raspberry Pi as a controller in a robot offers flexibility,
computational power, and a vast ecosystem of software and peripherals.
Here's a detailed description of using a Raspberry Pi as a controller in a
robot:

1. Hardware Configuration:

The Raspberry Pi serves as the brain of the robot, controlling its
behavior, processing sensor data, and executing algorithms.

The Raspberry Pi is typically connected to various hardware
components, including motors, sensors, actuators, and communication
modules, via GPIO pins, USB ports, or other interfaces.

Motor drivers, such as H-bridges or motor controller boards, are used
to interface with DC motors, stepper motors, or servo motors for
locomotion and manipulation tasks.

Sensors such as ultrasonic sensors, infrared sensors, cameras,
encoders, and IMUs (Inertial Measurement Units) provide feedback on
the robot's environment, motion, and orientation.

. Software Development:

Programming the Raspberry Pi involves writing software to control the
robot's behavior, process sensor data, and implement algorithms for
navigation, perception, and decision-making.

Programming languages commonly used with Raspberry Pi include
Python, C/C++, and Java.

Robotics frameworks and libraries such as ROS (Robot Operating
System), OpenCV (Computer Vision Library), and GPIO Zero (Python
library for controlling GPIO pins) provide tools and utilities for
developing robot applications.

Algorithms for tasks such as motor control, obstacle avoidance, path
planning, localization, and SLAM (Simultaneous Localization and
Mapping) are implemented on the Raspberry Pi to enable autonomous
operation and intelligent behavior.

Introduction to
Robotics

15

Robotics

16

. Control Architecture:

The control architecture of the robot determines how the Raspberry Pi
interacts with hardware components and processes sensor data.

The Raspberry Pi may use a centralized or distributed control
architecture, depending on the complexity and requirements of the
robot.

In a centralized architecture, the Raspberry Pi directly controls all
aspects of the robot's behavior, including motor control, sensor
processing, and decision-making.

In a distributed architecture, the Raspberry Pi communicates with
other microcontrollers or embedded systems (such as Arduino boards)
to delegate tasks such as motor control or sensor interfacing, while
focusing on higher-level processing and decision-making.

4. Communication and Networking:

The Raspberry Pi enables communication and networking capabilities
for the robot, allowing it to interact with other devices, exchange data,
and access resources.

Wireless communication interfaces such as Wi-Fi and Bluetooth
enable remote control, telemetry, and data transmission between the
robot and external devices or networks.

Wired communication interfaces such as Ethernet or USB facilitate
connectivity with peripherals, sensors, and actuators, as well as
integration with external systems or controllers.

5. Power Management:

Proper power management is essential to ensure reliable operation and
longevity of the robot's components.

The Raspberry Pi and other electronics in the robot require stable
power sources, such as batteries or power supplies, with voltage
regulation and current limiting to prevent damage.

Power consumption of the Raspberry Pi and connected peripherals
should be carefully managed to optimize battery life and ensure
adequate runtime for the robot.

By leveraging the computational power, flexibility, and ecosystem of the
Raspberry Pi, developers can create versatile and intelligent robots capable
of performing a wide range of tasks, from simple navigation and
manipulation to complex autonomous behaviors and interactions.

1.10 SUMMARY Introduction to
Robotics

Here's a summary of each topic:

1. What is a robot?: A robot is a programmable machine designed to
perform tasks autonomously or semi-autonomously. It combines
mechanical, electrical, and computer components to interact with its
environment, ranging from simple automated systems to sophisticated
machines capable of complex behaviors.

2. Examples of Advanced and Impressive Robots: Advanced robots
include Boston Dynamics' humanoid robot Atlas, NASA's Robonaut
for space missions, and the Da Vinci Surgical System for minimally
invasive surgery. These robots showcase capabilities such as mobility,
manipulation, and intelligence.

3. Robots in the Home: Robots in the home include vacuum cleaning
robots like Roomba, lawn mowing robots, personal assistants like
Amazon Echo, security robots, pet care robots, and cooking/food
preparation robots. They provide assistance, entertainment, and
automation for tasks ranging from cleaning to companionship.

4. Robots in Industry: Industrial robots are used in manufacturing,
logistics, quality inspection, welding, and fabrication. They enhance
productivity, quality, and safety by automating repetitive tasks,
handling materials, and performing precision operations in various
industries.

5. Exploring Robot Building Blocks - Code and Electronics
Technical Requirements: Building robots involves understanding
code and electronics. Technical requirements include knowledge of
programming languages (e.g., Python, C++), robotics frameworks
(e.g., ROS), microcontrollers, sensors, actuators, communication
interfaces, and power management.

6. Introducing the Raspberry Pi: The Raspberry Pi is a series of small,
affordable, and versatile single-board computers used for educational,
hobbyist, and commercial projects. It supports various operating
systems (e.g., Raspbian), programming languages, and applications,
making it ideal for learning, experimentation, and prototyping.

7. Starting with Raspbian Technical Requirements: Starting with
Raspbian requires a Raspberry Pi board, microSD card, imaging
software, peripherals (e.g., keyboard, mouse, display), and basic
technical skills. Raspbian can be downloaded, written to the microSD
card, booted on the Raspberry Pi, and configured for use.

8. Raspberry Pi Controller on a Robot: Integrating a Raspberry Pi as a
controller in a robot involves hardware configuration (e.g., motors,
sensors), software development (e.g., Python, ROS), control
architecture (e.g., centralized or distributed), communication/

17

Robotics

18

networking (e.g., Wi-Fi, Bluetooth), and power management to enable
intelligent behavior and autonomous operation.

These summaries provide an overview of key concepts related to robots,
their applications, and the technical aspects of building and using them in
various contexts.

1.11 LIST OF REFERENCES

1. Danny Staple, Robotics Programming, Packt Publishing, 2nd edition,
Feb 2021

2. Saeed B. Niku, Introduction to Robotics: Analysis, Control,
Applications, Wiley, 3rd Edition, 2019

3. D. K. Pratihar, Fundamentals of Robotics. Narosa Publication, 2016

4. Lentin Joseph, Learning Robotics Using Python, Packt Publishing
Ltd., May 2015

1.12 UNIT END EXERCISES

1. What is a robot?

Give the detailed explanation on the examples of advanced and
impressive robots.

State the application of Robots in the home.

. State the use cases of Robots in industry.

Describe the code and Electronics Technical requirements associated
with building block of robots.

6. Discuss on Raspberry Pi.

7. State thetechnical requirements of Raspbian.

8. Write a note on Raspberry Pi controller on a robot.

O O 0 L0
0‘0 0‘0 0‘0 0‘0

BUILDING ROBOTICS BASIC

Unit Structure :

2.0 Objective

2.1 Building Robot Basics Technical requirements
2.2 Robot Programming

2.3 Summary

2.4 Exercise

2.5 References

2.0 OBJECTIVE

e To explore the Robots building techniques and prerequisite.
e To understand the concept of Robot Programming.

e To understand different types of robots and building technologies

2.1 BUILDING ROBOT BASICS TECHNICAL
REQUIREMENTS

A robot is an automated machine that is capable of carrying out a series of
actions autonomously or semi-autonomously. Robots can be designed to
perform a wide range of tasks, from simple repetitive tasks to complex
operations requiring precision and intelligence. Robot building is not an
easy task which requires following steps:

2.1.1 Choosing a chassis Kkit: -

The chassis, much like the controller, is a crucial component in the design
of a robot. While it is possible to create chassis using 3D printing or by
repurposing toys, the easiest starting point is typically a chassis kit. These
kits provide a set of parts to begin the given robot construction. Although
the chassis can be replaced later, doing so would require rebuilding the
entire robot.

o Size

Following pictures shows chasis sizes compared. Sometimes it is upto 11
cm and it makes difficult to go through controller, power and sensors.

19

Robotics

20

2.1.2 Choosing a motor controller: -

Motor controller is simplest and import part of Robot making. Different
operations and levels are as follows: -

e Integration level

Motor controllers can be as basic as motor power controls driven directly
from GPIO pins, such as the L298. This is a cost-effective solution: a
generic L298N motor controller can be connected to some of the IO pins
on a Raspberry Pi. These controllers are reasonably robust and have been
readily available for a long time. While they offer flexibility, using such
components requires more space and point-to-point wiring, which adds
complexity to the build.

e Powering the robot

The robot requires power for all its components, with two primary power
systems to consider: one for the digital parts, such as the Raspberry Pi and
sensors, and another for the motors.

Motors need their own power system for several reasons. Firstly, they
consume significantly more electrical power than most other components
on the robot. They may also require different voltages, often needing low
voltage and high current capacity supplies. Secondly, motors can cause
interference; they can draw enough power to cause brownouts in other
circuitry, leading to inconsistent operation or resets. This can result in SD
card corruption on a Raspberry Pi. Additionally, motors can introduce
electrical noise into the power line, potentially causing digital components
to malfunction.

¢ Finding product specifications

Product specification is most important thing to identify. One example is
given as follows:

Product details

Colour Name: Black

Product Dimensions: 9.7 x 8x 2.2cm ; 240 g
Boxed-product Weight: 281 g

Delivery information: We cannot deliver certain products outside mainland UK

e Assembling the base

Assembling the base needs a collection of parts covered in a layer of paper
to prevent the plastic from getting scratches, and can be safely removed.
The following diagram shows how to removing the protective backing
from robot parts:

Questions
Answer the following questions, based on the topics covered:
Further reading

Refer to the following book:

2.2 ROBOT PROGRAMMING

Robot programming involves inputting specific instructions for a robot to
perform automated tasks. These instructions are entered into the robot’s
control system, which then directs the motors or actuators on each axis.
The program dictates the robot's actions, enabling it to perform specific
tasks within manufacturing, processing, logistics, or packaging lines.

To program a robot, the most commonly used languages are C/C++,
Python, Java, and C#. Additionally, many robot manufacturers have their
own proprietary programming languages and approaches. As a result,
proficiency with one robot brand's programming language does not
necessarily translate to proficiency with another brand's system.

e How to Program a Robot

Robot programming can be categorized into two key types: online and
offline programming. Here, we explore these categories and their
respective methodologies in more detail.

e Online Robot Programming

Online programming involves moving the robot’s arm through a sequence
of positions, which are recorded and saved in the robot’s system.

Building Robotics
Basic

21

Robotics

22

e Robot Teaching Method

This traditional approach uses a teach pendant, a handheld device (wired
or wireless), to control the robot. The robot is set to learning or teach
mode, and the pendant is used to guide the robot through the desired
positions and paths.

e Coordinate Systems for Programming:

1. Joint Coordinates: Each robot joint is moved independently to achieve
the required position and orientation of the tool.

2. Global Coordinates: The tool center point (TCP) of the robot moves
along the X, Y, or Z axes of the robot’s global coordinate system,
defined at the robot's base.

3. Tool Coordinates: The axes are attached to the TCP and move with it,
facilitating movements at specific angles and straight-line moves.

4. Workpiece Coordinates: Defines a coordinate system within the
robot's working envelope, useful for applications involving multiple
workpieces and tools, such as pallet conveyors or external
manipulators.

e Lead-Through Programming

In this method, the robot is manually moved through tasks by an operator,
who defines the points along the way. While this method has declined in
industrial robots, it remains popular for collaborative robots (cobots) and
painting applications.

e Offline Robot Programming

Offline programming allows the creation of robot programs in a virtual
environment, eliminating the need to use the actual robot for
programming, thus avoiding downtime.

e Benefits of Offline Programming:

1. Virtual Environment: Programs are created using a virtual twin of the
robot, based on CAD models of the parts being processed.

2. Uninterrupted Production: Programming does not interrupt
production, saving significant time and effort when setting up new part

types.

3. Complex Applications: Most beneficial for complex applications that
require extensive manual programming, such as large or intricate parts
or environments with many part types and low volumes.

Robot Programming with AI and Machine Vision Systems

Al and machine vision systems address challenges in offline programming
by ensuring that virtual and real cells align closely.

Process:

1.

3D Model Upload: A 3D model of the part is uploaded from the CAD
system.

. Parameter Selection: The operator selects parameters such as work

and travel angles.

. Automatic Generation: Al algorithms generate robot trajectories

based on mathematical models.

. Real-Time Adaptation: Machine vision scans the real part, and Al

adjusts the trajectories to account for any deviations.

Common Challenges in Robot Programming

1.

Human Interaction: Ensure the program and interfaces are user-
friendly and memorable for staff.

. Flexibility: Programs must accommodate the need for manufacturing

different products economically and efficiently.

. Repeatability and Accuracy: Ensure the robot can perform tasks

reliably and error-free over long periods.

. Communication Between Robots: Ensure seamless and reliable data

transfer between robots.

. Mapping the Work Environment: Program autonomous mobile

robots (AMRSs) to navigate complex environments safely.

. Data Privacy: Adhere to data privacy obligations when handling

sensitive information.

Popular Tools and Languages for Robot Programming

1.

C/C++: Widely used for writing robot programs and developing Robot
Operating System (ROS) packages.

. Python: Popular for its machine learning capabilities.
. Java and C#: Commonly used in robot programming.
. Matlab and Octave: Used for data analysis and interfacing with ROS.

. Raspberry Pi and Arduino: Frequently used for low-level control and

machine vision applications.

Line Sensors and Their Use

Line sensors, such as the TCRT5000 IR sensor, detect the presence of a
line by emitting infrared light and measuring the reflected light levels.
Understanding their operation is crucial for designing and programming
line-following algorithms.

Building Robotics
Basic

23

Robotics

24

By following these guidelines and best practices, you can effectively
program robots to perform various tasks in different environments,
leveraging both traditional and advanced techniques.

Infrared (IR) detection

Line sensors detect the presence of a black line by emitting infrared (IR)
light and detecting the light levels that return to the sensor. They do this
using two components: an emitter and a light sensor (receiver).

Understanding and Using Line Sensors

In the top right-hand corner of the image, there are two circular
components resembling LEDs. The blue component is the IR emitter, and
the black one is the receiver. These devices also feature a potentiometer,
which adjusts the threshold level. One can adjust this threshold by using a
screwdriver to turn the white cross-shaped dial on the left-hand side of the
image.

The device emits IR light, and the sensor captures the reflected light from
the surface below. Line sensors typically offer two types of output: analog
and digital. While not always present, the analog output provides a
continuous reading of the detected light levels. However, analog signals
must be converted to digital signals before they can be used by a
Raspberry Pi. The digital output, on the other hand, results from
comparing the light levels against a threshold set by the potentiometer. If
the reflected light does not exceed the threshold, the digital output is high
(1). Conversely, if the light surpasses the threshold, the pin is set to
low (0).

Initially, this setup might seem counterintuitive, but it makes sense when
you consider that the sensor is designed to detect black lines. A black line
reflects less light, so the output will be high (1) when a black surface is
underneath.

How to Use a Line Sensor

The line sensor has an array of pins, some of which need to be connected
to Raspberry Pi:

e VCC: Connects to a voltage between 3.3 and 5V to power the device.
e GND: The ground pin required to complete the circuit.

e AO: The analog output (not compatible with the Raspberry P1).

o DO: The digital output pin (compatible with the Raspberry Pi).

The VCC pin can handle a range of voltages, so potential dividers are not
necessary.

Using Multiple Sensors

While creating a line-following robot with just one sensor, it is difficult
for the robot to determine the direction to turn if it strays from the line.
Adding a second sensor, positioned on either side of the caster wheel,
solves this problem by providing the necessary information for the robot
to reorient itself and find the line again.

e When the line is centered under the robot, both sensors will output 0
from their digital pins, indicating they are over the white background.

Sensor 1 Sensor 1

If the robot veers to the right, the left sensor will eventually detect the line
and change its output to a 1. When this occurs, the robot should adjust its
course by turning left. Once the left sensor's output returns to 0, it
indicates that the line is centered under the robot again.

Similarly, if the robot turns too far to the left, the right sensor will detect
the line and change its reading to 1. The robot should then turn right to
correct its path.

Building Robotics
Basic

25

Robotics

26

Working of a Line Follower Robot

The concept behind a line follower robot involves the behavior of light on
black-and-white surfaces. White surfaces reflect all the light that falls on
them, while black surfaces absorb the light.

In a line follower robot, IR transmitters and receivers (photodiodes) are
used to send and receive light. When IR rays hit a white surface, they are
reflected back to the IR receiver, causing a change in voltage.

On the other hand, black surfaces absorb infrared radiation and do not
reflect any rays. Consequently, no photons reach the infrared receiver,
resulting in no voltage change.

By using this principle, the line follower robot can differentiate between
black and white surfaces and adjust its movements accordingly to stay on
track.

Programming RGB Strips in Python

LED lights can be used with a robot to debug and give it feedback, so the
code running on the robot can show its state. Colored RGB LEDs let to
mix the red, green, and blue components of light to make many colors,
adding brightness and color to a robot.

In this chapter we will learn the following:

How to choose and buy LED technologies that will work with the
Raspberry Pi and look good on our robot

How to attach them to the robot

How to write lighting code to create dynamic displays

How to integrate them with a behavior and display a rainbow
e Comparing Light Strip Technologies

There are various technologies for light strips, but we will focus on LED
types since incandescent and fluorescent lighting consume more power
and are less suitable for small robots.

e Basic LED Strips

The simplest LED strips consist of lights that turn on when power is
applied. These lights are single-color and are not ideal for displaying
information. To achieve different colors, one would need to purchase
additional strips and connect them to separate outputs.

e Color-Selectable LED Strips

An improvement over basic LED strips are those that allow colour
selection for the entire strip. While one can change the colour to display
information, this requires three IO pins per strip. If multiple colours are
needed simultaneously, many pins would be necessary.

e Addressable RGB LEDs

The most useful type for our purposes, and the focus of this chapter, are
addressable RGB LEDs. Each LED in the strip can be individually set to
different colors, allowing for sequences of colors along the strip. Given
our IO pin limitations, we will use types with built-in controllers that only
require a few pins. However, there are important considerations when
purchasing these.

Addressable LED controllers take a stream of data, processing the red,
green, and blue components needed before passing the remaining data to
the next LED. These can be configured in strips, rings, or matrices, and
come in rigid sticks or flexible strips of varying lengths.

e Alternative Technologies

Alternative technologies include the LED Shim from Pimoroni and color
LED matrices using shift registers. The LED Shim is highly user-friendly
but may be hard to find. Although one won't use it in our examples, its
setup involves simply sliding it over the GPIO pins.

e Synchronous vs. Asynchronous LED Strips

The two main categories of LED strips are synchronous (four-pin) and
asynchronous (three-pin). Both types can be used with a Raspberry Pi, but
the three-pin types have finer timing requirements that may conflict with
motor control and other devices.

e Four-Pin Devices

Four-pin LED devices have separate lines for clock and data. The clock
line is controlled by the Pi, and the data is synchronized with this clock,
eliminating the need for precise timing. The following diagram illustrates
the clock versus a single data line for these LED types:

1 011 01 1 0 1

Clock

Data

Time

Building Robotics
Basic

27

Robotics

28

Understanding RGB Values

Each color component is specified by a value ranging from 0 to 255,
where 0 means the color is completely turned off, and 255 represents full
intensity. By varying these values, one can achieve different levels of
intensity for each color. When the red, green, and blue components are
combined, they create the final color. For example, setting all three colors
to their maximum value (255) will produce white light.

While this theoretically allows for a vast array of colors, in practice, the
differences between high intensity values, such as 250 and 255, may not
be noticeable on most RGB LEDs.

. Attaching the light strip to the Raspberry Pi

Left Right
Wheel <——— Motor Hat ——— > Wheel
Motor Motor

1

Left Line ————> Raspberry Pi <——— Right Line

Sensor Sensor

Level
Shifter

LED
Strip

e Logic levels

To attach an RGB LED strip to the Pi, one need to be aware that the
Raspberry Pi GPIO pins operate at 3.3V, and the majority of these lights
operate with logic at 5V. This logic level voltage applies to the high digital
level. If one try to drive these directly from the Pi, at too low a voltage, the
results may be inconsistent at best. If signalling back to the Pi, too high a
voltage will damage it! This is a process we will need to get familiar with,
as the next few sensors will also require this.

The simple answer to this is to use a logic level converter; the following
photo shows two types of these:

Logic level converters

Four-channel bidirectional converters are relatively common online and
often sold in packs of three to five. Level converters have a low side,
marked as 3V here, also known as low voltage, and a high side, marked as
5V here, known as high voltage. There are ground connections on both
sides, which are connected to each other. The section marked as the
Bidirectional Bus consists of four channels. In this setup, logic levels
presented at a pin on the 3V side of a channel will be output on the other
side of the channel at 5V. Conversely, logic levels presented at the 5V side
of the channel will be output on the 3V side of the channel.

2.3 SUMMARY

This chapter mainly focuses on Robotics programming and techniques

2.4 EXERCISE

Q.1 Why is it a good idea when using multiple Raspberry Pi "hats" or
"bonnets" to look at the pin usage?

Q.2 Why have we chosen to power the Pi separately from the motors?
Q.3 What are the consequences of too small a motor controller?

Q.4 Why do I recommend test fitting before buying any parts?

2.5 REFERENCES

e Danny Staple, Robotics Programming, Packt Publishing, 2nd edition,
Feb 2021

e Saeed B. Niku, Introduction to Robotics: Analysis, Control,
Applications, Wiley, 3™Edition, 2019

e https://learning.oreilly.com/library/view/learn-robotics-
programming/9781789340747/c173aeb8-b4{f-4478-a36d-
bbfb235b059.xhtml

o O O 0
0’0 0.0 0’0 0.0

Building Robotics
Basic

29

30

Module 11

SERVO MOTORS

Unit Structure :

3.0
3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9

Objectives

Introduction

Use and control of servo motors

Pan and tilt mechanism

Introduction to distance sensors and their usage

Connecting distance sensors to robot and their testing
Creating a smart object avoidance behaviour

Creating a menu to select different robot behaviours

Distance and speed measuring sensor-encoders and odometry

Summary

3.10 List of References

3.11 Unit End Exercises

3.0 OBJECTIVES

e To get familiar with the concept of servo motors

e To get acquaint with the use cases of servo motors along with their
association with robots

3.1 INTRODUCTION

Servo motors are essential components in various electromechanical
systems, valued for their precision, efficiency, and versatility. Here's a
detailed description of servo motors:

Servo motors consist of several key components:

1.

Motor: At the core of a servo motor lies an electric motor, usually a
DC motor, although AC motors are also used in some designs. This
motor converts electrical energy into mechanical energy to drive the
output shaft.

Gear Train: Often, servo motors incorporate a gear train to increase
torque and reduce the speed of the output shaft. This gearing
mechanism ensures precise control over the motor's rotation.

Encoder: Most servo motors feature an encoder, either incremental or
absolute, which provides feedback about the motor's position to the
control system. This feedback loop enables accurate positioning and
control.

Control Circuitry: Servo motors include control circuitry that
interprets input signals and adjusts the motor's speed and position
accordingly. This circuitry may be embedded within the motor housing
or externally connected to it.

Working Principle:

The operation of a servo motor relies on a closed-loop control system.
Here's how it works:

1.

Input Signal: The control system receives a command signal
specifying the desired position or speed of the motor. This signal
typically comes from a microcontroller or a specialized servo
controller.

Feedback Loop: The motor's encoder continuously monitors the
actual position of the output shaft and sends this information back to
the control system.

Error Calculation: The control system compares the desired position
from the input signal with the actual position from the feedback
encoder. Any disparity between these values represents an error.

Adjustment: Based on the error signal, the control circuitry adjusts
the motor's power supply or voltage, varying the motor's speed and
direction to minimize the error and bring the shaft to the desired
position.

Stabilization: The control system continuously adjusts the motor's
output until the error is minimized, stabilizing the shaft at the desired
position. This closed-loop feedback mechanism ensures precise
positioning and responsiveness.

Applications:

Servo motors find applications across various industries and domains,
including:

Robotics: Servo motors are ubiquitous in robotic systems, where they
provide precise control over joints and actuators, enabling fluid and
accurate movements.

Servo Motors

31

Robotics

32

e Automation: In industrial automation, servo motors drive conveyor
belts, robotic arms, CNC machines, and other equipment, facilitating
high-speed and high-precision manufacturing processes.

e Aerospace: Servo motors power flight control surfaces, landing gear
mechanisms, and antenna positioning systems in aircraft and
spacecraft, where reliability and precision are critical.

e Consumer Electronics: They are used in cameras, printers, drones,
and other consumer electronics to control focus, aperture, lens
movement, and other functions.

e Automotive: Servo motors control various functions in modern
vehicles, such as power windows, seat adjustments, mirrors, and
engine throttle control.

Types of Servo Motors:
Servo motors come in various types, each suited to different applications:

e DC Servo Motors: These motors use DC power and are suitable for
applications requiring high torque and responsiveness.

e AC Servo Motors: AC servo motors offer higher power efficiency
and are commonly used in industrial applications.

e Brushed vs. Brushless: Servo motors may be brushed or brushless,
with brushless designs offering longer lifespan and better efficiency.

e Analog vs. Digital: Servo motors may use analog or digital control
signals, with digital servos providing higher precision and faster
response times.

Thus, servo motors are indispensable components in electromechanical
systems, offering precise control, high efficiency, and reliability across a
wide range of applications.

3.2 USE AND CONTROL OF SERVO MOTORS

Using and controlling servo motors involves understanding their
capabilities, interfacing them with control systems, and programming
them to perform specific tasks accurately. Here's a detailed description:

1. Understanding Servo Motors:

Before using servo motors, it's crucial to comprehend their specifications,
including torque ratings, speed limits, and feedback mechanisms (such as
encoders). This understanding helps in selecting the appropriate servo
motor for a given application.

2. Interfacing with Control Systems:

Servo motors typically require a control system to manage their operation.
This control system could be a microcontroller, PLC (Programmable
Logic Controller), servo drive, or dedicated servo controller. Interfacing
involves connecting the servo motor to the control system and configuring
communication protocols.

3. Control Signals:

Servo motors receive control signals that specify the desired position or
speed. These signals can be analog (PWM - Pulse Width Modulation) or
digital (such as serial communication protocols like UART or SPI). The
control system generates these signals based on user input or pre-defined
commands.

4. Closed-Loop Control:

Servo motors operate on a closed-loop control system, where feedback
from encoders or sensors is used to adjust the motor's position or speed.
The control system continuously compares the desired position with the
actual position and adjusts the motor's parameters to minimize errors.

5. Programming:

Programming servo motors involves writing code to control their
operation. This code can be developed using programming languages such
as C/C++, Python, or specialized motion control languages. The code
typically includes algorithms for position control, velocity control, and
error correction.

6. Calibration and Tuning:

Before deployment, servo motors often require calibration and tuning to
ensure optimal performance. This process involves adjusting parameters
such as PID (Proportional-Integral-Derivative) gains, acceleration, and
deceleration profiles to achieve desired responsiveness and stability.

7. Safety Considerations:

When using servo motors, safety is paramount. It's essential to follow
proper safety protocols, including installing limit switches to prevent
overtravel, implementing emergency stop mechanisms, and providing
adequate shielding and protection to prevent accidents.

8. Application-Specific Programming:

Depending on the application, servo motors may require custom
programming to perform specific tasks efficiently. For example, in
robotics, servo motors may need kinematic algorithms for inverse
kinematics or trajectory planning for smooth motion.

Servo Motors

33

Robotics

34

9. Integration with Feedback Devices:

Servo motors often utilize feedback devices such as encoders or resolvers
to provide accurate position feedback. Integrating these devices into the
control system requires configuring signal interfaces and processing
feedback data to adjust motor operation accordingly.

10. Maintenance and Troubleshooting:

Regular maintenance is essential to ensure the longevity and reliability of
servo motors. This includes cleaning, lubrication, and periodic inspection
of mechanical components. Troubleshooting may involve diagnosing
electrical faults, sensor errors, or mechanical issues and taking corrective
actions accordingly.

In summary, using and controlling servo motors requires a comprehensive
understanding of their operation, interfacing with control systems,
programming, calibration, and ensuring safety. With proper knowledge
and techniques, servo motors can be effectively utilized in a wide range of
applications across various industries.

3.3 PAN AND TILT MECHANISM

A pan and tilt mechanism are a system that allows for the movement of a
camera or any other device along two axes: horizontal (pan) and vertical
(tilt). Servo motors are often used in such mechanisms due to their precise
control and ability to hold specific positions. Here's a detailed description
of how a pan and tilt mechanism using servo motors typically works:

1. Servo Motors: Servo motors are compact devices that contain a small
DC motor, a gearbox, and a control circuit. They are capable of
rotating to a specific angle and holding that position accurately.

2. Pan Axis: The pan axis allows for horizontal movement, typically
from left to right or right to left. It enables the camera or device to scan
a wide area horizontally.

3. Tilt Axis: The tilt axis allows for vertical movement, usually from up
to down or vice versa. It enables the camera or device to adjust its
angle of view vertically.

4. Mechanical Structure: The pan and tilt mechanism consist of a
mechanical structure that supports the servo motors and provides the
necessary range of motion. This structure may include gears, linkages,
brackets, and other components.

5. Control System: A control system is required to operate the servo
motors and command the desired pan and tilt angles. This control
system can be manual, where the user directly adjusts the angles using
knobs or joysticks, or it can be automated, where the angles are
controlled by a microcontroller or computer.

6. Feedback Mechanism: Many servo motors include feedback
mechanisms such as potentiometers or encoders to provide positional
feedback. This feedback allows the control system to accurately
determine the current position of the servo motors and adjust them as
needed.

7. Power Supply: Servo motors require a power supply to operate. This
power supply can be a battery pack, a DC power adapter, or any other
suitable power source.

8. Programming or Configuration: If the pan and tilt mechanism is
automated, it may require programming or configuration to define the
desired movement patterns or response to external inputs.

Applications:

Pan and tilt mechanisms are commonly used in various applications such
as surveillance systems, remote-controlled vehicles, photography and
videography, robotic systems, and more.

In summary, a pan and tilt mechanism using servo motors provides precise
control over the horizontal and vertical movement of a camera or device.
It consists of servo motors, mechanical structures, control systems,
feedback mechanisms, power supplies, and may require programming or
configuration depending on the application.

3.4 INTRODUCTION TO DISTANCE SENSORS AND
THEIR USAGE

Distance sensors, also known as proximity sensors or ranging sensors, are
devices used to measure the distance between the sensor and an object.
These sensors are essential in various applications, including robotics,
automation, navigation, and object detection. Here's a detailed description
of distance sensors, including their types, principles of operation, and
applications:

Types of Distance Sensors:

1. Ultrasonic Sensors: Ultrasonic sensors emit ultrasonic waves (sound
waves with frequencies above the audible range) and measure the time
it takes for the waves to bounce off an object and return to the sensor.
By calculating the time delay, the sensor determines the distance to the
object.

2. Infrared (IR) Sensors: Infrared distance sensors work by emitting
infrared light and measuring the intensity of the light reflected from
the object. The intensity of the reflected light is used to calculate the
distance to the object.

3. Laser Distance Sensors: Laser distance sensors use laser beams to
accurately measure distances. They emit a laser beam and measure the
time it takes for the beam to reflect off an object and return to the

Servo Motors

35

Robotics

36

sensor. Laser sensors provide precise distance measurements over
longer ranges compared to ultrasonic or IR sensors.

Time-of-Flight (ToF) Sensors: ToF sensors measure the time taken
by a light or radio signal to travel to an object and back to the sensor.
These sensors typically use infrared light or laser beams and are
capable of providing accurate distance measurements with high-speed
operation.

Capacitive Sensors: Capacitive distance sensors detect changes in
capacitance caused by the presence of an object in close proximity to
the sensor. They are often used for non-contact sensing of various
materials, liquids, and objects.

Inductive Sensors: Inductive sensors detect the presence or absence
of metallic objects by generating an electromagnetic field and
measuring changes in the field caused by the proximity of the object.
They are commonly used in industrial automation applications.

Principles of Operation:

Emission and Reception: Distance sensors emit signals, such as
ultrasonic waves, infrared light, laser beams, or electromagnetic fields,
towards the object being measured. They then receive the reflected
signals or changes in the emitted signals.

Time Measurement: Many distance sensors measure the time it takes
for the signal to travel to the object and back (or the time delay
between emission and reception). Using the speed of the signal (e.g.,
speed of light or sound), they calculate the distance to the object.

Intensity Measurement: Some sensors measure the intensity of the
reflected signal or changes in signal intensity caused by the presence
of an object. They use this information to estimate the distance to the
object.

Applications:

Obstacle Detection: Distance sensors are used in robotics and
autonomous vehicles to detect obstacles and navigate safely in various
environments.

Proximity Sensing: They are employed in industrial automation for
proximity sensing, object detection, and position monitoring in
manufacturing processes.

Level Sensing: Distance sensors are used to measure the level of
liquids or solids in tanks and containers, commonly found in industrial
and agricultural settings.

Gesture Recognition: In consumer electronics, distance sensors
enable gesture recognition in devices such as smartphones, tablets, and
gaming consoles.

Position Control: They are used for precise positioning and control of
machinery and equipment in industries such as automotive
manufacturing, CNC machining, and robotics.

In summary, distance sensors come in various types and operate on
principles such as time measurement, intensity measurement, or changes
in capacitance or inductance. They find widespread use in applications
ranging from obstacle detection and proximity sensing to level sensing and
gesture recognition.

Usage of distance sensors:

Distance sensors find extensive use across a wide range of industries and
applications due to their ability to measure the distance between the sensor
and an object accurately. Here's a detailed description of their usage in
various fields:

1.

Robotics: Distance sensors play a crucial role in robotics for obstacle
detection, navigation, and localization. Robots equipped with distance
sensors can detect objects in their vicinity and navigate around them
autonomously. They are also used for precise positioning and object
manipulation tasks.

Industrial Automation: In industrial automation, distance sensors are
used for proximity sensing, object detection, and position monitoring
in manufacturing processes. They help in ensuring the safety of
machinery, detecting the presence of objects on conveyor belts, and
guiding robotic arms during assembly operations.

Level Sensing: Distance sensors are employed for level sensing in
tanks, silos, and containers containing liquids or solids. They help in
monitoring the level of substances such as water, oil, chemicals,
grains, and powders. Industries such as agriculture, chemical
processing, and water treatment rely on distance sensors for accurate
level measurement.

Traffic Management: Distance sensors are used in traffic
management systems for vehicle detection, speed measurement, and
traffic flow monitoring. They help in controlling traffic signals,
detecting vehicles at intersections, and implementing intelligent
transportation systems (ITS) for efficient traffic management.

Consumer Electronics: In consumer electronics, distance sensors are
used for various purposes, including proximity sensing, gesture
recognition, and touchless control. They enable smartphones, tablets,
and other devices to detect the presence of nearby objects, recognize
hand gestures, and adjust display brightness or volume accordingly.

Security Systems: Distance sensors are integrated into security
systems for perimeter protection, intruder detection, and access
control. They help in detecting unauthorized entry into restricted areas,

Servo Motors

37

Robotics

38

monitoring the movement of individuals or vehicles, and triggering
alarms or alerts in case of suspicious activities.

7. Medical Devices: In the healthcare sector, distance sensors are used in
medical devices for patient monitoring, motion detection, and gesture-
based control. They enable the development of non-contact vital signs
monitors, wearable devices for remote patient monitoring, and
assistive technologies for individuals with disabilities.

8. Navigation Systems: Distance sensors are essential components of
navigation systems used in autonomous vehicles, drones, and mobile
robots. They provide real-time information about the surrounding
environment, including the distance to obstacles, terrain mapping, and
localization, enabling safe and efficient navigation in dynamic
environments.

9. Construction and Mining: Distance sensors are utilized in
construction and mining equipment for collision avoidance, equipment
positioning, and monitoring of excavation activities. They help in
preventing accidents, optimizing the use of heavy machinery, and
ensuring the safety of workers in hazardous environments.

Overall, distance sensors find widespread application in diverse fields,
including robotics, industrial automation, traffic management, consumer
electronics, security systems, healthcare, navigation, and construction.
Their versatility, accuracy, and reliability make them indispensable tools
for a wide range of applications.

3.5 CONNECTING DISTANCE SENSORS TO ROBOT
AND THEIR TESTING

Connecting distance sensors to a robot involves both the physical
connection of the sensor to the robot's hardware and the integration of
sensor data into the robot's control system. Here's a detailed description of
the process, along with testing procedures:

Physical Connection:

1. Identify Sensor Mounting Locations: Determine suitable mounting
locations on the robot where the distance sensors can effectively detect
obstacles or objects in the environment.

2. Mounting: Attach the distance sensors securely to the robot's chassis
or mounting brackets using screws, adhesive mounts, or other
appropriate fasteners. Ensure that the sensors have a clear line of sight
and are positioned at the desired angles for optimal detection.

3. Wiring: Connect the output wires of the distance sensors to the
appropriate input ports on the robot's microcontroller or sensor
interface board. Typically, distance sensors have three wires: power
(VCC), ground (GND), and signal (SIG) or analog/digital output.

4.

Power Supply: Provide power to the distance sensors either from the
robot's main power supply or from a separate power source, depending
on the sensor's power requirements.

Integration with Robot Control System:

1.

Software Configuration: Write or modify the robot's control software
to incorporate the distance sensor data into the decision-making
process. This may involve programming algorithms for obstacle
avoidance, path planning, or object detection based on sensor readings.

Sensor Calibration: Calibrate the distance sensors to ensure accurate
distance measurements and reliable performance. This may involve
adjusting sensor settings such as sensitivity, range, and filtering
parameters to suit the specific requirements of the robot's environment
and operation.

Data Processing: Process the sensor data within the robot's control
software to extract relevant information such as distance to obstacles,
object detection, or proximity alerts. Convert analog sensor readings to
digital values if necessary and apply filtering or smoothing techniques
to reduce noise and improve accuracy.

Feedback and Actuation: Use the sensor data to provide feedback to
the robot's actuators (e.g., motors, servos) for navigation, movement
control, or obstacle avoidance. Implement reactive or proactive control
strategies based on sensor inputs to enable safe and efficient robot
operation.

Testing Procedures:

1.

Functional Testing: Verify that the distance sensors are correctly
connected and powered up. Test the sensor outputs using a multimeter
or oscilloscope to ensure proper signal levels and continuity.

Obstacle Detection: Place obstacles of varying sizes and shapes in the
robot's path and observe the sensor responses. Ensure that the robot
can detect obstacles at different distances and angles and react
accordingly to avoid collisions.

Range Testing: Measure the effective range of the distance sensors by
placing objects at increasing distances from the robot and recording
the sensor readings. Verify that the sensors can accurately detect
objects within their specified range.

Performance Evaluation: Assess the performance of the robot's
obstacle avoidance and navigation algorithms under different
operating conditions and environments. Test the robot's ability to
navigate complex terrain, avoid dynamic obstacles, and adapt to
changes in the environment.

Reliability Testing: Conduct long-duration tests to evaluate the
reliability and robustness of the distance sensors and the overall

Servo Motors

39

Robotics

40

system. Monitor sensor performance over time and under various
environmental conditions to identify any potential issues or failures.

By following these steps for connecting distance sensors to a robot and
conducting thorough testing procedures, you can ensure that the sensors
are properly integrated and functioning correctly, enabling the robot to
navigate safely and effectively in its environment.

3.6 CREATING A SMART OBJECT AVOIDANCE
BEHAVIOUR

Creating a smart object avoidance behavior for a robot involves designing
algorithms and implementing control strategies that enable the robot to
detect and avoid obstacles autonomously while navigating through its
environment. Here's a detailed description of the steps involved in creating
such a behavior:

Sensor Selection and Integration:

1. Choose Suitable Sensors: Select distance sensors (such as ultrasonic,
infrared, or laser sensors) that provide accurate and reliable
measurements of the robot's surroundings.

2. Physical Installation: Mount the sensors on the robot's chassis or
exterior in positions that offer a wide field of view and coverage of the
robot's surroundings.

3. Sensor Calibration: Calibrate the sensors to ensure accurate distance
measurements and consistent performance across different operating
conditions.

Perception and Sensing:

1. Sensor Data Processing: Retrieve sensor readings from the distance
sensors and process the data to extract relevant information about the
robot's surroundings, including the distance and direction of nearby
obstacles.

2. Obstacle Detection: Analyze sensor data to detect the presence of
obstacles within the robot's path. Implement algorithms to identify
obstacles based on predefined thresholds or patterns in the sensor
readings.

Decision Making:

1. Path Planning: Use the detected obstacle positions to generate a
collision-free path for the robot to navigate through its environment.
Employ path planning algorithms, such as potential fields or rapidly
exploring random trees (RRT), to find an optimal route while avoiding
obstacles.

2. Dynamic Obstacle Handling: Develop strategies to handle dynamic
obstacles (e.g., moving objects or other robots) by continuously
updating the robot's trajectory based on real-time sensor feedback.

Motion Control:

1. Velocity Control: Implement velocity control algorithms to adjust the
robot's speed and direction in response to detected obstacles.
Gradually reduce the robot's velocity as it approaches obstacles to
ensure smooth and safe navigation.

2. Obstacle Avoidance Maneuvers: Design avoidance maneuvers, such
as steering away from obstacles or stopping and changing direction, to
prevent collisions while maintaining progress towards the robot's
destination.

Integration and Testing:

1. System Integration: Integrate the object avoidance behavior into the
robot's overall control system, including higher-level navigation and
mission planning modules.

2. Simulation and Testing: Use simulation tools or robot simulation
environments to validate the object avoidance behavior and assess its
performance under various scenarios and environmental conditions.

3. Real-world Testing: Conduct extensive testing of the robot's object
avoidance behavior in real-world environments to evaluate its
effectiveness, robustness, and reliability.

4. Iterative Refinement: Iterate on the design and implementation of the
object avoidance behavior based on testing feedback and performance
evaluations, making adjustments as needed to improve the behavior's
efficacy and adaptability.

By following these steps and incorporating advanced algorithms and
control strategies, you can create a smart object avoidance behavior that
enables the robot to navigate autonomously and safely through complex
environments, avoiding obstacles while achieving its mission objectives.

3.7 CREATING A MENU TO SELECT DIFFERENT
ROBOT BEHAVIOURS

Creating a menu to select different robot behaviors involves designing a
user interface that allows the operator to choose from a list of available
behaviors or modes for the robot to execute. Here's a detailed description
of how to create such a menu:

User Interface Design:

1. Display: Choose a display medium for the menu, such as an LCD
screen, touchscreen interface, LED display, or graphical user interface
(GUI) on a computer or mobile device.

Servo Motors

41

Robotics

42

2.

Menu Structure: Design the menu structure with a hierarchical layout
that categorizes different robot behaviors into logical groups or modes.
Each menu option represents a distinct behavior or mode that the user
can select.

Navigation Controls: Provide navigation controls, such as buttons,
touch gestures, or keyboard inputs, for the user to navigate through the
menu options and make selections.

Behavior Selection:

1.

List of Behaviors: Compile a list of available robot behaviors or
modes that the user can choose from. This may include behaviors for
navigation, object manipulation, obstacle avoidance, surveillance, etc.

Behavior Descriptions: Provide brief descriptions or labels for each
behavior to help the user understand its purpose and functionality.

Implementation:

1.

User Input Handling: Write code to handle user input from the
navigation controls and update the menu selection accordingly. This
may involve detecting button presses, touchscreen interactions, or
keyboard commands.

Menu Navigation Logic: Implement logic to navigate through the
menu structure, including moving between menu levels, scrolling
through options, and selecting a behavior.

Behavior Activation: Write code to activate the selected behavior or
mode when the user makes a selection from the menu. This may
involve initializing the corresponding control algorithms, setting
parameters, and transitioning the robot into the selected mode.

Integration with Robot Control System:

1.

Communication Interface: Establish a communication interface
between the user interface and the robot's control system. This may
involve serial communication, wireless protocols (e.g., Bluetooth, Wi-
Fi), or network communication (e.g., TCP/IP).

Command Transmission: Write code to transmit the selected
behavior command or mode selection from the user interface to the
robot's control system. Ensure that the command is received and
processed correctly by the robot.

Testing and Validation:

1.

Unit Testing: Test each component of the menu system, including
user input handling, menu navigation logic, behavior activation, and
communication interface, in isolation to ensure proper functionality.

Integration Testing: Test the integrated menu system with the robot's
control system to verify that menu selections are transmitted and
executed correctly.

User Acceptance Testing: Conduct usability testing with end-users to
evaluate the ease of use, intuitiveness, and effectiveness of the menu
interface in selecting different robot behaviors.

Example Implementation:

Design a touchscreen GUI using a Raspberry Pi or similar embedded
platform.

Write Python code to handle user input and update the menu selection.

Implement behavior activation routines in ROS (Robot Operating
System) or a microcontroller platform.

Test the menu system on the robot platform, ensuring seamless
integration with the control system and reliable behavior selection.

By following these steps and incorporating user-friendly design principles,
you can create a menu interface that allows operators to easily select
different behaviors for the robot to execute, enhancing its versatility and
adaptability in various applications.

Usecase:

To create a menu system for selecting different robot behaviors, we'll
design a simple command-line interface (CLI) using Python. This example
assumes that you have predefined robot behaviors implemented as
functions or modules in your codebase. Here's a step-by-step guide:

Define Robot Behaviors

def behaviorl():

print("Executing Behavior 1")

def behavior2():

print("Executing Behavior 2")

def behavior3():

print("Executing Behavior 3")

Define Menu Functions

def display menu():

print("Robot Behavior Menu:")
print("1. Behavior 1")

print("2. Behavior 2")

Servo Motors

43

Robotics

44

if name ==" main "

print("3. Behavior 3")

print("0. Exit")

def select behavior():

choice = input("Enter the number of the behavior to execute: ")

return choice

Main Program

while True:

display menu()

choice = select _behavior()

if choice == "1":
behaviorl()

elif choice == "2":
behavior2()

elif choice == "3":
behavior3()

elif choice == "0":
print("Exiting...")
break

else:

print("Invalid choice. Please enter a valid option.")

This code creates a simple menu system where the user can select different
behaviors for the robot to execute. Here's how it works:

1. Define Robot Behaviors: Implement functions (e.g., “behaviorl’,

‘behavior2’, ‘behavior3') representing different robot behaviors.
Replace the 'print’ statements with actual behavior implementation
code.

. Define Menu Functions: Create functions (‘display menu’,

“select _behavior') to display the menu options and prompt the user for
behavior selection.

. Main Program: In the main program loop, continuously display the

menu, prompt the user for behavior selection, and execute the
corresponding behavior function based on the user's choice. Use an

infinite loop (‘"while True") to keep the menu system running until the
user chooses to exit.

4. Menu Navigation: Allow the user to select a behavior by entering the
corresponding number. Handle invalid inputs by displaying an error
message and prompting the user to enter a valid option.

To use this menu system, simply run the Python script, and the user will
be prompted to select a behavior from the menu. Depending on the
selected behavior, the corresponding function will be executed, simulating
the robot performing that behavior. You can expand this menu system by
adding more behaviors and enhancing the behavior functions with actual
robot control logic.

3.8 DISTANCE AND SPEED MEASURING SENSOR-
ENCODERS AND ODOMETRY

Distance and speed measuring sensors, encoders, and odometry systems
are essential components in robotics and navigation systems. They provide
information about the robot's movement, position, and velocity, enabling
accurate control and localization. Here's a detailed description of each:

1. Distance and Speed Measuring Sensors:

Distance Sensors: These sensors measure the distance between the robot
and nearby objects. Common types include ultrasonic sensors, infrared
sensors, laser range finders, and time-of-flight sensors. They provide range
information that can be used for obstacle detection, navigation, and
environment mapping.

Speed Sensors: Speed sensors measure the velocity of the robot's
movement. They can be based on various principles, such as wheel
encoders, optical sensors, Hall effect sensors, or Doppler radar. Speed
sensors are crucial for controlling the robot's motion, maintaining a
desired speed, and implementing closed-loop control systems.

2. Encoders:

Wheel Encoders: Wheel encoders are sensors mounted on the robot's
wheels to measure their rotation. They typically consist of a rotary encoder
disk attached to the wheel shaft and sensors (optical or magnetic) that
detect changes in the encoder's position. By counting the number of
encoder pulses, the robot's distance traveled and speed can be calculated.

Motor Encoders: Motor encoders are sensors integrated into the robot's
motors to measure their rotational position and speed. They provide
feedback to the motor control system, enabling precise control of motor
movement and velocity. Motor encoders are commonly used in closed-
loop control systems to achieve accurate positioning and motion control.

Servo Motors

45

Robotics

46

3. Odometry:

Wheel Odometry: Wheel odometry estimates the robot's position and
orientation based on the movement of its wheels. By integrating encoder
measurements over time, wheel odometry calculates the robot's trajectory,
velocity, and changes in position. It's widely used for localization and
navigation in mobile robots, especially in indoor environments with flat
surfaces.

Visual Odometry: Visual odometry uses cameras or other vision sensors
to estimate the robot's motion by tracking features in the environment. It
analyzes successive images to compute the relative displacement and
rotation of the robot between frames. Visual odometry is useful in
environments where wheel odometry may be unreliable, such as uneven or
slippery terrain.

Applications:

Mobile Robotics: Distance sensors, encoders, and odometry systems are
fundamental for mobile robot navigation, obstacle avoidance, and
localization in both indoor and outdoor environments.

Autonomous Vehicles: In autonomous vehicles, these sensors provide
essential feedback for controlling vehicle movement, ensuring safe
navigation, and implementing advanced driver assistance systems
(ADAS).

Industrial Automation: Encoders are widely used in industrial
automation for precise control of robotic arms, conveyor belts, and other
machinery. Distance sensors facilitate object detection and positioning
tasks in manufacturing environments.

Drones and UAVs: Encoders and odometry systems are critical for
stabilizing and controlling the flight of drones and unmanned aerial
vehicles (UAVs). They enable accurate position estimation and trajectory
tracking for aerial navigation.

In summary, distance and speed measuring sensors, encoders, and
odometry systems play a vital role in robotics and navigation applications,
providing essential feedback for controlling movement, estimating
position, and ensuring accurate localization of robots and autonomous
systems.

3.9 SUMMARY

Here's a summary of the key points for each topic:

1. Use and Control of Servo Motors:

e Servo motors are compact devices used for precise control of angular
position.

e They consist of a motor, gearbox, and control circuit, and are
commonly used in robotics, automation, and hobbyist projects.

N

9]

Servo motors are controlled by sending PWM (Pulse Width Servo Motors
Modulation) signals to specify the desired position.

They find applications in various fields such as robotics, RC vehicles,
industrial automation, and aerospace.

. Pan and Tilt Mechanism:

A pan and tilt mechanism allows for horizontal (pan) and vertical (tilt)
movement of a camera or device.

Servo motors are commonly used in pan and tilt mechanisms due to
their precise control.

These mechanisms are used in surveillance systems, photography,
videography, remote-controlled vehicles, and robotic systems.

. Introduction to Distance Sensors and Their Usage:

Distance sensors measure the distance between the sensor and an
object.

Common types include ultrasonic, infrared, laser, and capacitive
Sensors.

They are used for obstacle detection, proximity sensing, level sensing,
gesture recognition, and position control in various applications.

. Connecting Distance Sensors to Robot and Their Testing:

Distance sensors are connected to the robot's control system to provide
feedback on the robot's surroundings.

Testing involves verifying sensor functionality, range, accuracy, and
reliability in real-world conditions.

Sensors may be connected via analog or digital interfaces, and
calibration may be necessary for accurate measurements.

. Creating a Smart Object Avoidance Behaviour:

Object avoidance behavior involves designing algorithms to enable a
robot to detect and avoid obstacles autonomously.

It requires sensor data processing, decision making based on obstacle
detection, and motion control to navigate around obstacles.

Testing involves verifying the effectiveness and reliability of the
avoidance behavior in various environments.

. Creating a Menu to Select Different Robot Behaviours:

A menu system allows users to select different robot behaviors or
modes of operation.

It involves designing a user interface, implementing menu navigation
logic, and integrating behavior selection with the robot's control
system.

47

Robotics

48

Testing ensures the usability and functionality of the menu interface in
selecting and executing desired behaviors.

. Distance and Speed Measuring Sensor-Encoders and Odometry:

Encoders and odometry systems provide information about the robot's
movement, position, and velocity.

Wheel encoders measure wheel rotation to estimate distance traveled
and speed.

Odometry estimates the robot's position based on encoder data or
visual information.

These sensors and systems are crucial for navigation, localization, and
motion control in robotics and autonomous systems.

These topics cover essential aspects of robotics, including sensor
integration, control systems, navigation, and behavior design, contributing
to the development of autonomous and intelligent robots for various

applications.

3.10 LIST OF REFERENCES

1. Danny Staple, Robotics Programming, Packt Publishing, 2nd edition,
Feb 2021

2. Saeed B. Niku, Introduction to Robotics: Analysis, Control,
Applications, Wiley, 3rd Edition, 2019
D. K. Pratihar, Fundamentals of Robotics. Narosa Publication, 2016

4. Lentin Joseph, Learning Robotics Using Python, Packt Publishing

Ltd., May 2015

3.11 UNIT END EXERCISES

A

a

Explain servo motor in detail.

State the use and control of servo motors.
Explain Pan and tilt mechanism.

Write a note on distance sensors and their usage.

Give explanation on connecting distance sensors to robot and their
testing

INustrate an instance of creating a smart object avoidance behaviour.

With the help of a python program create a menu to select different
robot behaviours.

Explain: 1] Distance and speed measuring sensor 2] encoders
3Jodometry

O O 0, L0
0‘0 0‘0 0‘0 0‘0

ROBOTIC VISION AND VOICE
COMMUNICATION -1

Unit Structure :
4.0 Objectives
4.1 Introduction

4.2 Setting up a Raspberry Pi Camera on the robot (software and
hardware)

4.3 Check the robot vision on a phone or laptop
4.4 Mask images with RGB strips

4.5 Summary

4.6 List of References

4.7 Unit End Exercises

4.0 OBJECTIVES

e To understand the fundamentals of robotic vision and voice
communication

e To get acquaint with the concepts of Raspberry Pi

e To dwell into practical implications

4.1 INTRODUCTION

Robotics with vision and voice communication capabilities have become
increasingly sophisticated in recent years, thanks to advancements in
artificial intelligence and sensor technology.

Robotic Vision:

e Robotic vision involves the use of cameras, sensors, and image
processing algorithms to enable robots to perceive and understand
their environment visually.

e (Cameras mounted on robots capture images or video feeds of their
surroundings, which are then analyzed and interpreted by specialized
software.

e Deep learning algorithms, particularly convolutional neural networks
(CNNs), are often used for tasks such as object detection, recognition,
segmentation, and tracking.

e Vision-enabled robots can perform a wide range of tasks, including
navigation, manipulation of objects, quality control in manufacturing,
surveillance, and even medical procedures.

49

Robotics

50

Voice Communication:

e Voice communication allows robots to interact with humans and other
machines using speech.

e Speech recognition technology enables robots to convert spoken
language into text, which can then be processed and understood by the
robot's Al system.

e Natural language processing (NLP) algorithms are used to analyze and
interpret the meaning of spoken commands or queries, allowing robots
to respond appropriately.

e Text-to-speech (TTS) technology enables robots to convert textual
responses into spoken words, allowing for seamless communication
with humans.

e Voice communication enhances human-robot interaction in various
settings, including customer service, home automation, healthcare, and
education.

Integration:

e By combining vision and voice communication capabilities, robots can
perceive their environment visually and interact with humans and
other machines through spoken language, making them more versatile
and intuitive to use.

e For example, a robot equipped with both vision and voice capabilities
could navigate through a crowded space, recognize specific objects or
people, and respond to spoken commands or questions from users.

Overall, the integration of robotic vision and voice communication
technologies is driving significant advancements in robotics, enabling
robots to perform complex tasks autonomously and interact with humans
in more natural and intuitive ways.

4.2 SETTING UP A RASPBERRY PI CAMERA ON THE
ROBOT (SOFTWARE AND HARDWARE)

Setting up a Raspberry Pi Camera on a robot involves both hardware
and software components. Below are the steps to set up the Raspberry Pi
Camera:

Hardware Setup:

1. Connect the Camera Module: Ensure that your Raspberry Pi is
powered off before connecting the camera module. The camera
module connects to the Raspberry Pi's camera connector (located near
the HDMI port). Gently lift the plastic tabs on either side of the
connector, insert the camera ribbon cable (with the metal contacts
facing away from the HDMI port), and then push the plastic tabs back
down to secure the cable.

2. Adjust the Camera Module: The camera module comes with a small
adjustable lens. You can twist the lens to focus it as needed. This step
might require some trial and error to get the focus right for your
application.

3. Secure the Camera: Depending on your robot's design, you may need
to mount the camera module securely to the robot's chassis or frame
using screws, adhesive, or other mounting hardware. Ensure that the
camera has a clear view of the surroundings and is securely attached to
avoid vibrations or movements that could affect image quality.

Software Setup:

1. Enable the Camera Interface: Boot up your Raspberry Pi and make
sure it is connected to the internet. Open a terminal window and run
the following command to launch the Raspberry Pi Configuration tool:

sudo raspi-config

Navigate to "Interfacing Options" and select "Camera." Choose "Yes"
when prompted to enable the camera interface, and then select "Finish" to
exit the configuration tool. Reboot your Raspberry Pi for the changes to
take effect.

2. Install the Camera Software: If you're using a fresh installation of
Raspbian or Raspberry Pi OS, the camera software should already be
installed. However, you can ensure it's up to date by running:

sudo apt update
sudo apt install python3-picamera

3. Test the Camera:You can test the camera by running the following
Python script:

from picamera import PiCamera
from time import sleep
Initialize the camera
camera = PiCamera()
Start previewing the camera feed
camera.start preview()
Add a delay to allow the camera to adjust to lighting conditions
sleep(5)
Capture an image and save it to a file
camera.capture('/home/pi/image.jpg")

Stop previewing

Robotic Vision and Voice
Communication - I

51

Robotics

52

camera.stop_preview()
Save this script to a file (e.g., ‘test_camera.py’) and run it using Python:
python3 test camera.py

This script will capture an image from the camera and save it as
‘image.jpg’ in the specified directory.

4. Integrate with Robot Control Software: Once you've verified that
the camera is working, you can integrate it into your robot's control
software. Depending on your application, you may use Python, C++,
or another programming language to control the robot and process
images from the camera.

By following these steps, you can set up a Raspberry Pi Camera on your
robot, enabling it to capture images and videos for various applications
such as navigation, object detection, or surveillance.

4.3 CHECK THE ROBOT VISION ON A PHONE OR
LAPTOP

To check the robot's vision on a phone or laptop, you can set up a
streaming server on the Raspberry Pi and access the camera feed through a
web browser on your phone or laptop. Here's how you can do it:

1. Install Required Software:
e Make sure your Raspberry Pi is connected to the internet.

e Install the 'mjpg-streamer’ package, which provides a simple HTTP
server for streaming MJPEG video:

sudo apt update
sudo apt install mjpg-streamer
2. Start the Streaming Server:

e Once installed, you can start the streaming server with the following
command:

mjpg_streamer -1 "input raspicam.so" -o "output http.so -w
/ust/local/www"

3. Access the Camera Feed:

e The streaming server should now be running, and you can access the
camera feed from a web browser on your phone or laptop.

e Open a web browser and enter the following URL:

http://[RaspberryPi_IP_Address]:8080

Replace ‘[RaspberryPi IP Address]” with the IP address of your
Raspberry Pi. You can find the IP address by running the command
“hostname -I" on the Raspberry Pi.

e You should see the camera feed streaming in real-time on your phone
or laptop.

4. Adjust Settings (Optional):

e You can adjust various settings of the streaming server, such as image
resolution, frame rate, and quality, by modifying the command used to
start the server.

e Refer to the ‘mjpg-streamer’ documentation for more information on
available options.

By following these steps, you can easily check the robot's vision on a
phone or laptop by streaming the camera feed from the Raspberry Pi over
a local network. This setup allows you to remotely monitor the robot's
surroundings and make real-time adjustments as needed.

4.4 MASK IMAGES WITH RGB STRIPS

Masking images with RGB strips is a creative and visually appealing
technique where an image is overlaid with strips of varying colors in the
red, green, and blue (RGB) color channels. This process alters the
appearance of the original image, creating an effect reminiscent of colorful
stripes or bands. Below is a detailed description of how this technique
works and its potential applications:

Understanding the Process:

e Image Loading:The process begins with loading an input image using
image processing libraries such as OpenCV in Python. This image
serves as the base onto which the RGB strips will be overlaid.

e Strip Parameters: Next, parameters for the RGB strips are defined.
These parameters include the width of each strip, the number of strips,
and the dimensions of the input image. These parameters can be
adjusted to achieve different visual effects and tailor the appearance of
the masked image.

e Strip Generation: For each RGB strip, a random color is generated in
the RGB color space. This color is a combination of red, green, and
blue components, each ranging from 0 to 255. The color generation
can be randomized or predefined based on specific requirements.

e Overlaying Strips: The generated RGB color strip is then overlaid
onto the input image. This is done iteratively for each strip, covering
the entire height of the image. The width of each strip is consistent,
while the height is determined by dividing the total image height by
the number of strips.

Robotic Vision and Voice
Communication - I

53

Robotics

54

Potential Applications:

Artistic Rendering: Masking images with RGB strips can be used to
create visually stunning and artistic renditions of photographs. By
overlaying the image with colorful strips, the original composition is
transformed into a vibrant and dynamic artwork.

Data Visualization: In data visualization applications, this technique
can be employed to represent data patterns or trends within images.
Each strip's color may correspond to specific data points or attributes,
allowing for the visualization of complex datasets in a more intuitive
manner.

Aesthetic Effects: RGB strip masking can be used to enhance the
visual appeal of digital content, such as websites, presentations, or
social media posts. The colorful overlays add depth and interest to
images, making them more engaging and memorable to viewers.

Digital Filters: As part of image processing pipelines, RGB strip
masking can serve as a unique digital filter or effect. By applying
different parameters and color schemes, it is possible to create custom
filters that impart distinct visual styles to images.

Educational Tools: In educational settings, this technique can be used
to teach concepts related to image processing, color theory, and
computer graphics. Students can experiment with different parameters
and observe the effects of RGB strip masking in real-time, gaining
hands-on experience with digital image manipulation techniques.

Implementation Considerations:

Performance Optimization: Depending on the size of the input
image and the number of strips, the masking process may require
significant computational resources. Optimizing the implementation
for efficiency can help reduce processing time and improve overall
performance.

Parameter Tuning: Experimenting with different parameters, such as
strip width, number of strips, and color generation methods, allows for
the creation of diverse visual effects. Fine-tuning these parameters
based on specific objectives or aesthetic preferences is essential for
achieving desired results.

Integration with Other Tools: RGB strip masking can be integrated
into existing image processing pipelines or robotics projects to
enhance functionality and visual feedback. Integration with camera
systems, sensors, or robotic vision algorithms enables real-time
application of the masking technique in various domains.

Coding: Robotic Vision and Voice

.) .) . : . Communication - I
Masking images with RGB strips involves overlaying an image with strips

of varying colors to create a visual effect. This can be achieved
programmatically using image processing libraries in Python, such as
OpenCV and NumPy. Below is an example of how you can implement
this:

import cv2
import numpy as np
Load the image
image = cv2.imread('input_image.jpg")
Define the dimensions and properties of the RGB strips
strip_width = 20 # Width of each strip in pixels
num_strips = 10 # Number of RGB strips
image height, image width = image.shape[:2]
Calculate the height of each strip
strip_height = image height // num_strips
Iterate over each strip and create the RGB mask
for i in range(num_ strips):
Calculate the starting and ending y-coordinates of the strip
start y =1 * strip_height
end y=min((i+ 1) * strip_height, image height)
Generate a random RGB color for the strip
color = np.random.randint(0, 256, size=(3,))
Create a solid color strip
strip = np.full((strip_height, image width, 3), color, dtype=np.uint8)
Overlay the strip onto the image
image[start y:end vy, :] = strip
Display the masked image
cv2.imshow('Masked Image', image)
cv2.waitKey(0)

cv2.destroyAllWindows()
55

Robotics

56

Save the masked image
cv2.imwrite('masked image.jpg', image)
In this script:

e We load an input image using OpenCV.

e We define the dimensions and properties of the RGB strips, such as
the strip width, the number of strips, and the image dimensions.

e We iterate over each strip, generate a random RGB color for each
strip, create a solid color strip, and overlay it onto the original image.

¢ Finally, we display and save the masked image.

You can adjust the parameters, such as the strip width, number of strips,
and color generation method, to achieve different visual -effects.
Additionally, you can incorporate this code into your robotics project to
mask images captured by a camera mounted on the robot with RGB strips
for visualization or other purposes.

In summary, masking images with RGB strips is a versatile and creative
image processing technique with numerous applications across art, data
visualization, digital media, education, and more. By overlaying images
with colorful strips, this technique offers endless possibilities for creating
visually captivating and meaningful visual compositions.

4.5 SUMMARY

Setting up a Raspberry Pi Camera on a robot involves both hardware and
software components. Hardware setup includes connecting the camera
module to the Raspberry Pi's camera connector and adjusting the camera
module as needed. Software setup involves enabling the camera interface,
installing camera software packages, and integrating the camera with the
robot's control software. Once set up, the Raspberry Pi Camera enables the
robot to capture images and videos for various applications, such as
navigation, object detection, or surveillance.

To check the robot's vision on a phone or laptop, you can set up a
streaming server on the Raspberry Pi using software like “'mjpg-streamer .
This server allows you to access the camera feed from a web browser on
your phone or laptop. By accessing the camera feed remotely, you can
monitor the robot's surroundings in real-time and make adjustments as
needed, providing a convenient way to visualize the robot's perspective
from a distance.

Masking images with RGB strips is a creative image processing technique
where an image is overlaid with strips of varying colors in the red, green,
and blue color channels. This process alters the appearance of the original
image, creating a visually appealing effect reminiscent of colorful stripes
or bands. The technique involves loading an input image, defining
parameters for the RGB strips, generating random colors for each strip,

and overlaying the strips onto the image. RGB strip masking has various
applications, including artistic rendering, data visualization, aesthetic
effects, digital filters, and educational tools. Fine-tuning parameters and
integrating the technique into existing image processing pipelines or
robotics projects enables customization and real-time application across
different domains.

Thus, setting up a Raspberry Pi Camera on a robot enables image capture
for various robotic applications, while checking the robot's vision on a
phone or laptop provides remote monitoring capabilities. Masking images
with RGB strips offers a creative way to alter the appearance of images
and can be applied in diverse contexts for visual enhancement and data
representation. Together, these techniques contribute to the versatility and
functionality of robotic systems with vision capabilities.

4.6 LIST OF REFERENCES

1. Danny Staple, Robotics Programming, Packt Publishing, 2nd edition,
Feb 2021

2. Saeed B. Niku, Introduction to Robotics: Analysis, Control,
Applications, Wiley, 3rd Edition, 2019

3. D. K. Pratihar, Fundamentals of Robotics. Narosa Publication, 2016

4. Lentin Joseph, Learning Robotics Using Python, Packt Publishing
Ltd., May 2015

4.7 UNIT END EXERCISES

1. What do you understand by robotic vision and voice communication?

2. Explain the process of setting up a Raspberry Pi Camera on the robot
(software and hardware).

3. With the help of coding explain the implementation to check the robot
vision on a phone or laptop.

4. Explain Mask images with RGB strips with suitable code.

L C R C R R (4

o O O 0
* 6 6 o

Robotic Vision and Voice
Communication - I

57

58

ROBOTIC VISION AND VOICE
COMMUNICATION - 11

Unit Structure :

5.0 Objectives

5.1 Introduction

5.2 Colors, masking, and filtering

5.3 Chasing coloured objects

5.4 Detecting faces with Haar cascades
5.5 Finding objects in an image

5.6 Voice Communication with a robot
5.7 Summary

5.8 List of References

5.9 Unit End Exercises

5.0 OBJECTIVES

e To understand the concept of color masking and filtering

e To get familiar with Haar cascades and use case of finding object in an
image

e To understand the concept of voice communication with robot

5.1 INTRODUCTION

Colors are fundamental aspects of our visual perception, enriching our
world with vibrancy and depth. In the realm of digital imaging and design,
understanding colors goes beyond their aesthetic appeal; it delves into
their scientific properties and psychological impact. Colors are defined by
their hue, saturation, and brightness, shaping the mood and conveying
messages in various contexts, from art and design to branding and
communication.

Masks act as selective filters, allowing targeted operations such as
blurring, sharpening, or color adjustment to be applied to designated
regions, thus enabling fine-grained control over image manipulation.
Whether employed in photography, computer vision, or graphic design,
masking empowers creators to shape visual narratives, highlight focal
points, and seamlessly blend elements within the composition.

Filtering in the context of digital image processing refers to the application Robotic Vision and Voice
of mathematical operations to modify or extract information from an Communication - IT
image. By leveraging a diverse array of filters and convolutional kernels,

practitioners can tailor their approach to address specific challenges,

ultimately enriching the visual perception and interpretation of digital

imagery.

Chasing colored objects represents a fascinating application of computer
vision and robotics, where intelligent systems are tasked with detecting
and tracking objects based on their color properties. This process involves
capturing live video feeds, analyzing pixel values to identify regions of
interest corresponding to predefined colors, and continuously updating the
object's position as it moves within the frame.

Haar cascades, a type of classifier trained to identify specific patterns or
features within an image, excel at detecting objects with distinctive visual
characteristics, such as human faces. Leveraging a cascade of classifiers
trained on thousands of positive and negative examples, Haar-based face
detection algorithms can swiftly scan images or video streams, identifying
potential face regions based on predefined criteria and subsequently
refining their predictions to improve accuracy.

5.2 COLORS, MASKING, AND FILTERING

1] Colors

Colors are fascinating phenomena that result from the interaction of light
with our eyes and surroundings. In the context of digital imaging and
design, colors are typically represented using various models such as RGB
(Red, Green, Blue) or CMYK (Cyan, Magenta, Yellow, Black) as shown
in figure 1. Each color model has its advantages and best-use scenarios.

RGB CMYK

Figure 1: RGB and CMYK color model

e RGB Model: This model is additive, meaning colors are created by
combining different intensities of red, green, and blue light. It's
commonly used in digital displays like computer monitors and TVs.

e CMYK Model: This model is subtractive and is used primarily in
printing. Colors are created by subtracting varying amounts of cyan,

magenta, yellow, and black ink from white paper.
59

Robotics

60

Understanding color theory involves grasping concepts like hue,
saturation, and brightness:

e Hue: It refers to the actual color itself, such as red, green, or blue.

e Saturation: This represents the intensity or purity of a color. Highly
saturated colors appear vivid, while desaturated colors are more
muted.

e Brightness: Also known as value or lightness, it determines how light
or dark a color appears.

Colors play crucial roles beyond aesthetics. They evoke emotions, convey
meanings, and serve functional purposes. For instance, in user interfaces,
color choices can influence user behavior and perception. In branding,
colors can communicate brand personality and values. Moreover,
understanding color psychology helps designers make informed decisions
about color usage in various contexts.

2] Masking

Masking is a technique used in digital image processing to selectively
manipulate specific areas of an image while leaving the rest unchanged. It
involves creating a mask, which is essentially a binary image that denotes
which pixels to keep and which to discard or modify.

The process typically involves the following steps:

1. Creation of Mask: This involves defining the regions of interest in
the image. It could be done manually or automatically using
algorithms like thresholding, edge detection, or segmentation.

2. Application of Mask: Once the mask is created, it is applied to the
original image. This is usually done by multiplying each pixel of the
original image with the corresponding pixel value in the mask.

3. Manipulation: After applying the mask, various image processing
operations can be performed on the selected regions. These operations
may include blurring, sharpening, color correction, or even replacing
the selected pixels with content from another image.

Masking finds applications in various fields such as photo editing, medical
imaging, computer vision, and more. It allows for precise control over
image editing and analysis, enabling tasks like object extraction,
background removal, and image compositing.

3] Filtering:

Filtering in the context of digital image processing involves applying
mathematical operations or algorithms to modify or extract information
from an image. Filters are often used to enhance image quality, remove
noise, extract features, or detect patterns.

There are several types of filters, each serving different purposes:

e Spatial Filters: These filters operate directly on the pixels of the
image. Examples include blurring filters (e.g., Gaussian blur),
sharpening filters (e.g., Laplacian filter), and edge detection filters
(e.g., Sobel filter).

e Frequency Domain Filters: These filters operate on the frequency
components of the image, usually after performing a Fourier
transform. They are used for tasks like noise removal and image
compression.

e Linear Filters: These filters apply linear transformations to the image
pixels. They are characterized by convolution operations, where a
kernel or mask is applied to each pixel to produce the filtered output.

Filters are essential tools in various applications such as image
enhancement, feature extraction, object recognition, and more. They
enable practitioners to preprocess images, extract meaningful information,
and improve the performance of computer vision algorithms.

5.3 CHASING COLOURED OBJECTS

Chasing colored objects in robotics involves the integration of computer
vision and control algorithms to enable robots to detect, track, and interact
with objects based on their color. This capability allows robots to navigate
dynamic environments, manipulate objects, and perform tasks such as
object retrieval, sorting, or following specific objects of interest.

The process of chasing colored objects in robotics typically involves the
following steps:

1. Sensing and Perception: The robot uses sensors such as cameras or
color sensors to capture images or data from its surroundings. These
sensors enable the robot to perceive the environment and identify
objects based on their color properties.

2. Color Segmentation: Once the sensory data is acquired, the robot
processes it to segment or isolate regions of interest corresponding to
the desired color. Color segmentation involves analyzing the pixel
values in the image or sensor data to identify regions that match
predefined color criteria. Various techniques, including thresholding,
clustering, or histogram-based methods, can be used for color
segmentation.

3. Object Detection: After segmenting the colored regions, the robot
detects and identifies objects of interest within these regions. This step
may involve additional processing to differentiate between different
objects or filter out noise and artifacts.

4. Object Tracking: Once the objects are detected, the robot tracks their
movement over time. Tracking algorithms continuously update the

Robotic Vision and Voice
Communication - II

61

Robotics

62

position and trajectory of the objects as they move within the robot's
field of view. Techniques such as Kalman filtering, particle filtering,
or correlation-based tracking may be employed to estimate the object's
motion and predict its future position.

5. Decision Making and Control: Based on the tracked object's position
and trajectory, the robot generates control commands to navigate
towards or interact with the object. These control commands may
involve adjusting the robot's locomotion, manipulating its end effector
(e.g., gripper or arm), or performing other actions to engage with the
object effectively.

6. Feedback and Adaptation: As the robot interacts with the object, it
continuously receives feedback from its sensors and monitors the
object's behavior. This feedback loop enables the robot to adapt its
actions and responses in real-time, ensuring robust and reliable
performance in dynamic environments.

Chasing colored objects in robotics has numerous practical applications
across various domains, including:

e Industrial Automation: Robots can chase and manipulate colored
objects in manufacturing and assembly processes, facilitating tasks
such as part sorting, packaging, or quality control.

e Logistics and Warehousing: Autonomous robots can navigate
warehouses and fulfillment centers, retrieving items based on their
color-coded labels or packaging.

e Agriculture: Robots equipped with color sensors can assist in tasks
such as fruit harvesting or weed detection, identifying and interacting
with crops based on their color characteristics.

e Search and Rescue: Unmanned aerial vehicles (UAVs) or ground
robots can search for and locate survivors or objects in disaster
scenarios by chasing colored markers or signals.

Overall, chasing colored objects in robotics showcases the integration of
perception, cognition, and control to enable robots to interact effectively
with their environment based on visual cues, opening up a wide range of
practical applications in various industries and domains.

5.4 DETECTING FACES WITH HAAR CASCADES

Detecting faces with Haar cascades in robotics is a valuable technique that
enables robots to identify and interact with human faces in their
environment. This capability is crucial for various applications, including
human-robot interaction, social robotics, surveillance, and security.

Here's a detailed explanation of how detecting faces with Haar cascades
works in robotics:

Training the Classifier: The process starts with training a Haar
cascade classifier using a large dataset of positive and negative
examples. Positive examples are images containing human faces,
while negative examples are images without faces. During training, the
classifier learns to distinguish between features present in faces and
those that are not, using a method called AdaBoost (Adaptive
Boosting). AdaBoost selects a set of simple, weak classifiers, typically
based on Haar-like features, and combines them into a strong
classifier.

Haar-like Features: Haar-like features are simple rectangular patterns
that capture local intensity variations in an image. These features are
calculated at different positions and scales across the image. For face
detection, Haar-like features may capture characteristics such as edges,
lines, or changes in texture that are common in human faces.

Face Detection: Once the classifier is trained, it can be used to detect
faces in real-time images or video streams captured by the robot's
cameras. The detection process involves scanning the image with a
sliding window of varying sizes and positions and applying the trained
classifier to each window. If the features within a window match those
of a human face, the window is classified as containing a face.

False Positive Reduction: After face detection, post-processing
techniques may be applied to reduce false positives and improve
detection accuracy. This may include filtering out small or spurious
detections, applying non-maximum suppression to eliminate
overlapping detections, or using additional contextual information to
refine the detection results.

Integration with Robot Control: Once faces are detected, the robot
can use this information to interact with humans or perform specific
tasks. For example, the robot may track the detected faces to maintain
visual contact with humans, navigate towards them, or engage in social
interactions such as making eye contact or following their movements.

Applications in Robotics: Face detection with Haar cascades has
numerous applications in robotics. In service robotics, robots can use
face detection to identify and greet users, provide personalized
assistance, or adapt their behavior based on the detected emotions of
users. In surveillance and security robotics, robots can monitor crowds
and identify individuals of interest based on their faces. Additionally,
face detection can be used in human-robot collaboration scenarios,
where robots work alongside humans in shared workspaces.

Overall, detecting faces with Haar cascades in robotics enables robots to
perceive and interact with humans in their environment, facilitating natural
and intuitive human-robot interaction and enabling a wide range of
practical applications across various domains.

Robotic Vision and Voice
Communication - II

63

Robotics

64

5.5 FINDING OBJECTS IN AN IMAGE

Finding objects in an image in robotics is a crucial task that enables robots
to perceive and interact with their environment effectively. This capability
allows robots to identify and localize various objects of interest,
facilitating tasks such as object manipulation, navigation, and scene
understanding. Here's a detailed explanation of how finding objects in an
image works in robotics:

1.

Image Acquisition: The process begins with capturing images of the
robot's environment using onboard cameras or sensors. These images
provide visual data that the robot will analyze to detect and localize
objects.

Preprocessing: Before object detection can occur, the captured
images often undergo preprocessing to enhance their quality and
extract relevant features. This may include operations such as noise
reduction, color normalization, resizing, and image enhancement.

Feature Extraction: Once the images are preprocessed, the next step
is to extract features that characterize the objects of interest. Features
may include edges, corners, textures, colors, or other visual descriptors
that distinguish one object from another. Various feature extraction
techniques, such as Histogram of Oriented Gradients (HOG), Scale-
Invariant Feature Transform (SIFT), or Convolutional Neural
Networks (CNNs), may be used depending on the application
requirements.

Object Detection: With the extracted features, the robot performs
object detection to locate instances of specific objects within the
image. Object detection algorithms analyze the image and identify
regions or bounding boxes that likely contain the objects of interest.
These algorithms may utilize machine learning techniques, such as
Haar cascades, Histogram of Oriented Gradients (HOG), or deep
learning-based approaches like Faster R-CNN, YOLO (You Only
Look Once), or SSD (Single Shot MultiBox Detector).

Classification and Localization: After detecting objects, the robot
may perform classification to determine the type or category of each
detected object. This step involves assigning a label or category to
each object based on its visual appearance. Additionally, the robot may
refine the localization of objects by accurately estimating their
position, orientation, and scale within the image.

Integration with Robot Control: Once objects are detected and
localized, the robot can use this information to plan and execute its
actions autonomously. For example, in a pick-and-place task, the robot
can use object detection to locate target objects, plan a grasping
strategy, and manipulate objects using its robotic arm or gripper.

Feedback and Adaptation: As the robot interacts with the
environment, it continuously receives feedback from its sensors and

monitors the status of detected objects. This feedback loop enables the Robotic Vision and Voice
robot to adapt its actions and responses in real-time, ensuring robust Communication - II
and reliable performance in dynamic environments.

8. Applications in Robotics: Finding objects in images has numerous
applications in robotics, including but not limited to:

e Autonomous navigation and obstacle avoidance
e Object recognition and manipulation in industrial automation
e Object tracking and surveillance in security robotics

e Scene understanding and augmented reality applications

Overall, finding objects in an image plays a critical role in enabling robots
to perceive, understand, and interact with their environment
autonomously, paving the way for a wide range of practical applications in
robotics and automation.

5.6 VOICE COMMUNICATION WITH A ROBOT

Voice communication with a robot involves enabling the robot to
understand spoken commands or queries from humans and respond
appropriately using synthesized speech or other forms of feedback. This
capability is a key aspect of human-robot interaction (HRI) and allows for
intuitive and natural communication between humans and robots. Here's a
detailed explanation of how voice communication with a robot works:

1. Speech Recognition: The process begins with the robot's system
listening for and recognizing spoken words or phrases. This involves
converting the analog audio signal from a microphone into digital form
and processing it using speech recognition algorithms. These
algorithms analyze the audio input to identify the words spoken by the
user.

2. Natural Language Understanding (NLU): Once the speech is
recognized, the robot's system interprets the meaning of the spoken
words using natural language understanding techniques. NLU allows
the robot to understand the user's intent and extract relevant
information from the spoken commands or queries.

3. Intent Recognition: Intent recognition is a crucial step in NLU where
the system identifies the user's intention behind the spoken words. This
involves mapping the user's input to predefined actions or tasks that
the robot can perform. For example, if a user says, "Turn on the
lights," the system recognizes the intent to control the lights and
triggers the corresponding action.

4. Dialog Management: Dialog management involves managing the
interaction between the user and the robot over the course of a
conversation. This includes keeping track of the context of the
conversation, handling multiple turns in the dialog, and providing
appropriate responses based on the current context and the user's input.

65

Robotics

66

Knowledge Representation: In some cases, the robot may need
access to external knowledge bases or databases to provide
informative responses or fulfill user requests. Knowledge
representation techniques enable the robot to store, retrieve, and reason
about relevant information, allowing it to answer questions, provide
recommendations, or perform tasks based on its knowledge of the
world.

Response Generation: Once the user's intent is recognized, the robot
generates a response to communicate with the user. This response can
take various forms, including synthesized speech, visual displays, or
actions performed by the robot. For example, if the user asks for the
weather forecast, the robot can respond by speaking the current
weather conditions or displaying them on a screen.

Speech Synthesis: In cases where the robot needs to respond using
speech, speech synthesis techniques are used to convert text into
spoken words. This allows the robot to communicate verbally with the
user, providing information, feedback, or instructions as needed.

Feedback and Confirmation: After responding to the user's request,
the robot may provide feedback or ask for confirmation to ensure that
the user's needs are met. This feedback loop helps to clarify any
misunderstandings and improve the overall effectiveness of the
interaction.

Applications in Robotics: Voice communication with a robot has
numerous applications in robotics, including but not limited to:

Personal assistant robots that can help with tasks such as setting
reminders, making calls, or managing schedules.

Service robots in retail or hospitality settings that can assist customers
with inquiries or provide information about products and services.

Educational robots that can help teach language skills or assist with
learning activities.

Healthcare robots that can provide assistance to patients or caregivers.

Overall, voice communication with a robot enhances the user experience
and enables more natural and intuitive interactions between humans and
robots, making robots more accessible and easier to use in a variety of
applications.

5.7 SUMMARY

Exploring the intricacies of color theory unveils a spectrum of
possibilities, guiding artists, designers, and scientists alike in harnessing
the power of colors to evoke emotions, communicate ideas, and create
immersive experiences.In the realm of digital image processing, masking
serves as a powerful technique for isolating specific regions of interest
within an image while suppressing unwanted areas. By applying masks,

which are binary images defining the areas to be kept or discarded, Robotic Vision and Voice
practitioners can manipulate, enhance, or extract features with precision Communication - IT
and efficiency.

Filters act as transformative tools, altering the spatial or frequency domain
characteristics of an image to enhance its quality, extract relevant features,
or suppress noise and artifacts. From simple operations like smoothing and
sharpening to more sophisticated techniques such as edge detection and
texture analysis, filtering plays a pivotal role in tasks ranging from image
enhancement and segmentation to pattern recognition and machine vision.

By implementing algorithms such as color segmentation and motion
tracking, robotic systems can autonomously pursue and interact with
colored objects in dynamic environments, opening avenues for
applications in surveillance, automation, and interactive entertainment.

Detecting faces with Haar cascades exemplifies the prowess of machine
learning algorithms, particularly in the domain of object detection and
recognition.Widely employed in applications like biometrics, surveillance,
and augmented reality, Haar cascades offer robust and efficient solutions
for face detection tasks in diverse real-world scenarios.

Finding objects in an image encapsulates the essence of computer vision,
where algorithms are tasked with discerning and localizing various entities
within visual data. This process involves leveraging a myriad of
techniques, ranging from traditional feature extraction and template
matching to advanced deep learning-based approaches such as
convolutional neural networks (CNNs). By analyzing pixel values, texture
patterns, and spatial relationships, object detection algorithms can identify
and delineate objects of interest, facilitating tasks like image
categorization, scene understanding, and content-based retrieval. Whether
applied in autonomous navigation, medical imaging, or industrial
inspection, the ability to find objects in images empowers machines to
perceive and interpret their visual surroundings, paving the way for
intelligent automation and decision-making.

Voice communication with a robot epitomizes the convergence of
artificial intelligence and human-computer interaction, enabling seamless
dialogue and collaboration between humans and intelligent machines. This
capability hinges on robust speech recognition and natural language
processing algorithms, which transform spoken utterances into actionable
commands or queries. By leveraging techniques such as automatic speech
recognition (ASR), language modeling, and dialogue management, robots
can comprehend and respond to user inputs in real-time, facilitating
intuitive and efficient communication. Whether deployed in personal
assistants, service robots, or industrial automation systems, voice
communication fosters intuitive interaction paradigms, enriching user
experiences and broadening the horizons of human-robot collaboration.

67

Robotics

68

5.8 LIST OF REFERENCES

1.

Danny Staple, Robotics Programming, Packt Publishing, 2nd edition,
Feb 2021

Saced B. Niku, Introduction to Robotics: Analysis, Control,
Applications, Wiley, 3rd Edition, 2019

D. K. Pratihar, Fundamentals of Robotics. Narosa Publication, 2016

Lentin Joseph, Learning Robotics Using Python, Packt Publishing
Ltd., May 2015

5.9 UNIT END EXERCISES

1) Describe the concept of Colors along with the different color models.

2) Explain the terms: maskingand filtering.

3) Write a note on chasing-coloured objects.

4) Describe the process of detecting faces with Haar cascades.

5) Write a note on finding objects in an image.

6) Explain the concept of: Voice Communication with a robot.

o O O 0
0.0 0.0 0.0 0.0

