
 M.Sc. (C. S.) PART I
SEMESTER - I

REVISED SYLLABUS AS PER NEP 2020

PRINCIPLES OF
COMPILER DESIGN

MSCCS 1.3

© UNIVERSITY OF MUMBAI

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		 Head, Faculty of Science and Technology CDOE,
			 Univeristy of Mumbai - 400098

Course Co-ordinator		 : Sumedh Shejole
			 Assistant Professor,

		 CDOE,Univeristy of Mumbai,
		 Vidyanagari, Mumbai - 400 098

Editor		 : Sumedh Shejole
			 Assistant Professor,

		 CDOE,Univeristy of Mumbai,
		 Vidyanagari, Mumbai - 400 098

Course Writers	 :	 Prof. Prachi Abhijeet Surve
			 Assistant Professor,

		 Hindi Vidya Prachar Samiti’s Ramniranjan 		
		 Jhunjhunwala College Of Arts, Science & 		
		 Commerce, Ghatkopar West, Mumbai.

		 :	 Sunil Vijay Palakaparambil
		 Assistant Professor,
		 Model College of Science and commerce,
		 Kalyan East.	

		 :	 Mrs. Pratibha Prashant Londhe
		 Assistant Professor,
		 MKSSS, BCA College of Women,
		 Shirgaon Ratnagiri.

		 :	 Dr Amol joglekar
		 Assistant Professor,
		 Shri SVKM’s Mithibai College of Arts
		 Vile Parle (W), Mumbai.

		 :	 Shri Abhijeet Chandrakant Pawaskar
		 Assistant Professor,
		 Atharva College Of Engineering
		 Malad West, Mumbai

August 2024, Print - 1 	

Prof. Ravindra Kulkarni
Vice Chancellor

University of Mumbai, Mumbai

Professor Shivaji Sargar
Director,

CDOE, University of Mumbai

Prin. (Dr.) Ajay Bhamare
Pro Vice-Chancellor,

University of Mumbai

Published by : Director,
Centre for Distance and Online Education,

University of Mumbai, Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by:
Mumbai University Press, Vidyanagari, Santacruz (E), Mumbai- 400098

CONTENTS

	Chapter No.	 Title	 Page No.

	 1.	 Introduction to Compiler Design... 01

	 2.	 Introduction to Lexical Analysis... 23	

	 3.	 Syntax Analysis... 55

	 4.	 Semantic Analysis.. 73

	 5.	 Intermediate Code Generation .. 93

	 6.	 Code Optimization... 107

	 7.	 Runtime Environments.. 123

	 8.	 Introduction to Compiler Tools.. 151

		

	

 M.SC. (C. S.) PART I
SEMESTER - I

(PRINCIPLES OF COMPILER DESIGN)
SYLLABUS

Page 14 of 48

Programme Name: M.Sc. Computer
Science (Semester I)

Total Credits: 02

College assessment: 25

Course Name: Principles of Compiler Design

Total Marks: 50

University assessment: 25

Prerequisite: Programming Language concepts, Data Structures and Algorithms, Discrete
Mathematics.

Course outcomes:

● Understand the theoretical foundations and concepts underlying the design and
implementation of compilers.

● Acquire knowledge about the different phases of the compilation process
● Learn how to design and implement lexical analyzers and parsers
● Gain hands-on experience in building semantic analyzers
● Understand intermediate code generation and Implement optimization techniques
● Gain practical experience in code generation
● Familiarity with runtime environments and Develop skills in error handling and

debugging
● Explore advanced topics in compiler design and Apply knowledge to practical projects

Course Code Course Title Total
Credits

PSCS505 Principles of Compiler Design 02
MODULE - I
Unit 1: Front end of Compiler
Introduction to Compiler Design: Role and importance of compilers, Phases of
compilation process, Compiler architecture and components
Lexical Analysis: Role of lexical analyzer, Regular expressions and finite
automata, Lexical analyzer generators (e.g., Lex)
Syntax Analysis: Role of parser, Context-free grammars, Top-down parsing (LL
parsing)
Bottom-up parsing (LR parsing), Syntax analyzer generators (e.g., Yacc/Bison)
Semantic Analysis: Role of semantic analyzer, Symbol table management, Type
checking and type systems, Attribute grammars
Intermediate Code Generation: Intermediate representations (IR), Three-
address code generation, Quadruples and triples, Syntax-directed translation

Unit 2: Back end of Compiler
Code Optimization: Data flow analysis, Common subexpression elimination,
Constant folding and propagation, Loop optimization techniques
Code Generation: Code generation techniques, Target machine description,
Register allocation, Instruction selection and scheduling
Runtime Environments: Activation records and stack management. Heap
memory management, Call and return mechanisms, Exception handling
Lexical and Syntax Error Handling: Error recovery strategies Error reporting and
handling
Introduction to Compiler Tools, Techniques and Advanced Topics in
Compiler Design: Lexical and syntax analyzer generators, Code generation
frameworks (e.g., LLVM), Debugging and testing compilers, Just-in-time (JIT)
compilation, Parallel and concurrent programming support, Compiler optimization
frameworks, Domain-specific language (DSL) compilation

02

Page 15 of 48

Text Books:

1. Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman 2nd Edition, Pearson Publication, 2006 ISBN-13: 978-
0321486813

Reference Books:

1. Modern Compiler Implementation in C" by Andrew W. Appel, 3rd Edition, Cambridge
University Press, 2020, ISBN-13: 978-1108426631

2. Principles of Compiler Design" by D. M. Dhamdhere, 2nd Edition Publisher: McGraw-Hill
Education, 2017, ISBN-13: 978-9339204608

Page 14 of 48

Programme Name: M.Sc. Computer
Science (Semester I)

Total Credits: 02

College assessment: 25

Course Name: Principles of Compiler Design

Total Marks: 50

University assessment: 25

Prerequisite: Programming Language concepts, Data Structures and Algorithms, Discrete
Mathematics.

Course outcomes:

● Understand the theoretical foundations and concepts underlying the design and
implementation of compilers.

● Acquire knowledge about the different phases of the compilation process
● Learn how to design and implement lexical analyzers and parsers
● Gain hands-on experience in building semantic analyzers
● Understand intermediate code generation and Implement optimization techniques
● Gain practical experience in code generation
● Familiarity with runtime environments and Develop skills in error handling and

debugging
● Explore advanced topics in compiler design and Apply knowledge to practical projects

Course Code Course Title Total
Credits

PSCS505 Principles of Compiler Design 02
MODULE - I
Unit 1: Front end of Compiler
Introduction to Compiler Design: Role and importance of compilers, Phases of
compilation process, Compiler architecture and components
Lexical Analysis: Role of lexical analyzer, Regular expressions and finite
automata, Lexical analyzer generators (e.g., Lex)
Syntax Analysis: Role of parser, Context-free grammars, Top-down parsing (LL
parsing)
Bottom-up parsing (LR parsing), Syntax analyzer generators (e.g., Yacc/Bison)
Semantic Analysis: Role of semantic analyzer, Symbol table management, Type
checking and type systems, Attribute grammars
Intermediate Code Generation: Intermediate representations (IR), Three-
address code generation, Quadruples and triples, Syntax-directed translation

Unit 2: Back end of Compiler
Code Optimization: Data flow analysis, Common subexpression elimination,
Constant folding and propagation, Loop optimization techniques
Code Generation: Code generation techniques, Target machine description,
Register allocation, Instruction selection and scheduling
Runtime Environments: Activation records and stack management. Heap
memory management, Call and return mechanisms, Exception handling
Lexical and Syntax Error Handling: Error recovery strategies Error reporting and
handling
Introduction to Compiler Tools, Techniques and Advanced Topics in
Compiler Design: Lexical and syntax analyzer generators, Code generation
frameworks (e.g., LLVM), Debugging and testing compilers, Just-in-time (JIT)
compilation, Parallel and concurrent programming support, Compiler optimization
frameworks, Domain-specific language (DSL) compilation

02

1

 1
INTRODUCTION TO COMPILER DESIGN

Unit Structure

1.0 Objective

1.1 Front end of Compiler

1.2 Introduction to Compiler Design:

1.3 Role and importance of compilers

1.4 Phases of compilation process

1.5 Compiler architecture and components

1.6 Summary

1.7 Exercise

1.8 References

1.0 OBJECTIVE

This objective of this chapter is :

● To introduce the compiler.

● To give a high level overview of the structure of a typical compiler,

and discuss the trends in programming languages and machine

architecture that are shaping compilers.

● To include some observations on the relationship between compiler

design and computer-science theory and an outline of the applications

of compiler technology that go beyond compilation.

● To give a brief outline of key programming-language concepts that

will be needed for our study of compilers.

1.1 FRONT END OF COMPILER

All of these phases of a general Compiler are conceptually divided into The

Front-end, and The Back-end. This division is due to their dependence on

either the Source Language or the Target machine. This model is called an

Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on

the Source language and are largely independent on the target machine. For

example, the front-end of the compiler includes Scanner, Parser, Creation

of Symbol table, Semantic Analyzer, and the Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target
machine, and those portions don‘t depend on the Source language, just the
Intermediate language. In this we have different aspects of the Code
Optimization phase, code generation along with the necessary Error

2

Principles of

Compiler Design
handling, and Symbol table operations.

● The front end consists of those phases that depend primarily on source
language and largely independent of the target machine.

● It includes lexical analysis, syntax analysis, semantic analysis,
intermediate code generation and creation of symbol tables.

● Certain amount of code optimization can be done by the front end.

● It includes following phases:

○ Lexical analysis

■ The lexical analyzer is the first phase of the compiler.

■ Its Main task is to read the input characters and produce
as output a sequence of tokens that the parser uses for
syntax analysis.

■ It is implemented by making the lexical analyzer be a
subroutine.

■ Upon receiving a “get next token” command from parser,
the lexical analyzer reads the input character until it can
identify the next token.

■ It may also perform secondary tasks at the user interface.

■ One such task is stripping out from the source program
comments and white space in the form of blanks, tabs, and
newline characters.

■ The scanner is responsible for doing simple task while
lexical analysis does the more complex task

○ Syntax analysis

■ Syntax analysis is also called hierarchical analysis or
parsing.

■ The syntax analyzer checks each line of the code and
spots every tiny mistake that the programmer has
committed while typing the code.

■ If code is error free then syntax analyzer generates the tree

○ Semantic analysis

■ Semantic analyzer determines the meaning of a source
string.

■ For example matching of parentheses in the expression,
or matching of if..else statement or performing arithmetic
operation that are type compatible, or checking the scope
of operation

○ Intermediate code generation

■ The intermediate representation should have two
important properties, it should be easy to produce and
easy to translate into a target program.

3

Introduction to

Compiler Design
■ We consider an intermediate form called “three address

code”.

■ Three address codes consist of a sequence of instructions,

each of which has at most three operands.

○ Creation of symbol table

■ A symbol table is a data structure used by a language

translator such as a compiler or interpreter.

■ It is used to store names encountered in the source

program, along with the relevant attributes for those

names.

■ Information about following entities

■ Variable/Identifier

■ Procedure/function

■ Keyword

■ Constant

■ Class name

■ Label name

1.2 INTRODUCTION TO COMPILER DESIGN

● The software systems that do this translation are called compilers.

● The compiler is software that converts a program written in a high-

level language also known as Source Language to a low-level

language also known as Object/Target/Machine Language/0, 1’s.

● A translator or language processor is a program that translates an input

program written in a programming language into an equivalent

program in another language.

● The compiler is a type of translator, which takes a program written in

a high-level programming language as input and translates it into an

equivalent program in low-level languages such as machine language

or assembly language.

● The program written in a high-level language is known as a source

program, and the program converted into a low-level language is

known as an object (or target) program.

● Without compilation, no program written in a high-level language can

be executed. For every programming language, we have a different

compiler; however, the basic tasks performed by every compiler are

the same.

● The process of translating the source code into machine code involves

several stages, including lexical analysis, syntax analysis,semantic

analysis, code generation, and optimization.

4

Principles of

Compiler Design
● Compiler is an intelligent program as compared to an assembler.

● Compiler verifies all types of limits, ranges, errors , etc.

● Compiler program takes more time to run and it occupies a huge

amount of memory space.

● The speed of the compiler is slower than other system software.

● It takes time because it enters through the program and then does

translation of the full program.

● When the compiler runs on the same machine and produces machine

code for the same machine on which it is running. Then it is called a

self compiler or resident compiler.

● Compiler may run on one machine and produce the machine codes for

other computer then in that case it is called a cross compiler.

The Compiler Toolchain:

● A compiler is one component in a toolchain of programs used to create

executables from source code. Typically, when you invoke a single

command to compile a program, a whole sequence of programs are

invoked in the background.

● Following Figure shows A Typical Compiler Toolchain the

programs typically used in a Unix system for compiling C source code

to assembly code.

● The preprocessor

○ It prepares the source code for the compiler proper.

○ In the C and C++ languages, this means consuming all

directives that start with the # symbol.

○ For example, an #include directive causes the preprocessor to

open the named file and insert its contents into the source code.

○ A #define directive causes the preprocessor to substitute a value

wherever a macro name is encountered. (Not all languages rely

on a preprocessor.)

5

Introduction to

Compiler Design

● The compiler

○ It properly consumes the clean output of the preprocessor.

○ It scans and parses the source code, performs type checking and

other semantic routines, optimizes the code, and then produces

assembly language as the output.

● The assembler

○ It consumes the assembly code and produces object code.

○ Object code is “almost executable” in that it contains raw

machine language instructions in the form needed by the CPU.

○ However, object code does not know the final memory

addresses in which it will be loaded, and so it contains gaps that

must be filled in by the linker.

● The linker

○ It consumes one or more object files and library files and

combines them into a complete, executable program.

○ It selects the final memory locations where each piece of code

and data will be loaded, and then “links” them together by

writing in the missing address information.

○ For example, an object file that calls the printf function does not

initially know the address of the function.

○ An empty (zero) address will be left where the address must be

used.

○ Once the linker selects the memory location of printf, it must go

back and write in the address at every place where printf is

called.

Types of Compiler

● The following are the different types of compilers that are used:

○ Single Pass Compilers

○ Two Pass Compilers

○ Multipass Compilers

○ Just-in-time (JIT) compiler

○ Cross compiler

○ Bytecode compiler

○ Source-to-source compiler

○ Binary compiler:

○ Hardware compiler

6

Principles of

Compiler Design
● Single Pass Compiler

○ When all the phases of the compiler are present inside a single

module, it is simply called a single-pass compiler.

○ It performs the work of converting source code to machine

code.

○ In a single-pass compiler, when a line source is processed it is

scanned and the tokens are extracted.

○ Thus the syntax of the line is inspected and the tree structure

and some tables including data about each token are

constructed.

○ Finally, after the semantic element is tested for correctness, the

code is created. The same process is repeated for each line of

code until the whole program is compiled.

○ Usually, the entire compiler is built around the parser, which

will call procedures that will perform different functions.

● Two Pass Compiler

○ Two-pass compiler is a compiler in which the program is

translated twice, once from the front end and the back from the

back end known as Two Pass Compiler.

7

Introduction to

Compiler Design
● Multipass Compiler

○ When several intermediate codes are created in a program and

a syntax tree is processed many times, it is called a Multipass

Compiler.

○ It breaks codes into smaller programs.

● Just-in-time (JIT) compiler

○ It compiles programs as they are executed. It is faster than

traditional compilers and helps in reducing program size by

elimination of redundant code.

○ This reduced the size of the program and make it more efficient.

○ This helps in performance improvement.

● Cross compiler

○ This is a technology to allow developers to compile and run

codes on various platforms.

○ This type is useful while working on several versions of code

for ensuring that all platforms are being supported.

○ This is useful while working on a new platform to verify

whether the code is working on this platform.

● Bytecode compiler

○ It translates high-level language into machine code which is

executable on the target machine.

○ Such compilers allow developers to write codes in a high-level

language and compile them into machine code.

○ Through this compiler, developers write concise and

comprehensible codes. These compilers should be written in

high-level language.

○ They are not suitable for developing low-level code.

● Source-to-source compiler

○ This software tool translates the source code into executable

code. Such compilers are used to translate source code written

in multiple programming languages.

○ The translation process can be completed in both manual and

automatic methods.

8

Principles of

Compiler Design
○ Compilers translate source code into machine code which is

executed by a target machine.

● Binary compiler

○ This compiler translates the source code file into binary format.

○ This type of format stores the program information in a compact

form that is easily read by computer.

○ Developers use compilers for network programming, database

administration, and web development.

● Hardware compiler

○ Such compilers compile the source code into machine code for

transforming source code into machine code.

○ Post that, the computer executes this code.

○ Such compilers are used in operating systems, embedded

systems, and computer games.

○ Assembler is a type of hardware compiler.

1.3 ROLE AND IMPORTANCE OF COMPILERS

ADVANTAGES OF COMPILER:

● Improved performance:

○ Compiled code tends to run faster than interpreted code because

it has been translated into machine code that can be directly

executed by the computer’s processor.

○ This can be particularly important for performance-critical

applications, such as scientific simulations or real-time systems.

● Portability:

○ Compilers allow programmers to write code in a high-level

programming language that can be easily translated into

machine code for a variety of different platforms.

○ This makes it easier to develop software that can run on

different systems without requiring significant changes to the

source code.

● Increased Security:

○ Compilers can help improve the security of software by

performing a number of checks on the source code, such as

checking for syntax errors and enforcing type safety.

○ This can help prevent certain types of vulnerabilities, such as

buffer overflows and type coercion attacks.

9

Introduction to

Compiler Design

● Debugging support:

○ Most compilers include a number of debugging tools that can
help programmers find and fix errors in their code.

○ These tools can include features such as syntax highlighting,
error messages, and debuggers that allow programmers to step
through their code line by line.

● No dependencies:

○ Your client or anyone else doesn’t need any compiler,
interpreter, or third party program to be installed in their system,
for executing the shared executable file of your source code.

● Compared to machine language, the notation used by programming
languages is closer to the way humans think about problems.

● The compiler can spot some obvious programming mistakes.

● Programs written in a high-level language tend to be shorter than
equivalent programs written in machine language.

● Another advantage of using a high- level language is that the same
program can be compiled to many different machine languages and,
hence, be brought to run on many different machines.

● Compilers offer a number of advantages for software development,
including improved performance, portability, increased security, and
debugging support.

DISADVANTAGES OF COMPILER:

● Compilation time:

○ Depending on the size and complexity of the source code,
compilation can take a significant amount of time.

○ This can be a hindrance to productivity if frequent updates to
the code are required.

● Error detection:

○ Compilers can only detect syntax errors and certain semantic
errors, and may not catch all errors in the source code.

○ This means that the compiled program may not behave as
expected, and debugging may be required to identify and fix the
errors.

● Portability:

○ Programs compiled for a specific platform or architecture may
not be able to run on other platforms or architectures without
being recompiled.

○ This can be a limitation if the program needs to be run on
multiple platforms.

10

Principles of

Compiler Design

● Execution speed:

○ Programs compiled from high-level languages may not be as
fast as programs written in low-level languages, as the compiled
code may include additional instructions for the compiler to
interpret.

● Lack of flexibility:

○ Compilers can limit the flexibility of programs since changes
often require recompilation.

● Resource consumption:

○ Compilers can consume system resources, particularly during
the compilation process, which may affect other tasks on the
machine.

● Compilers can be useful tools in software development, but they may
not be suitable for all situations and may require additional effort to
ensure that the compiled code is correct and efficient.

USES OF COMPILER:

● Ease of programming:

○ High-level programming languages are easier for humans to
read and write than machine code, which is a series of numbers
and symbols that can be difficult for humans to understand.

○ By using a compiler to translate high-level language into
machine code, programmers can write code more quickly and
easily.

● Portability:

○ Compilers allow programmers to write code that can be easily
compiled and run on a wide variety of devices and platforms.

○ This is because the source code is independent of the underlying
hardware and is only translated into machine code when it is
compiled.

● Abstraction:

○ Compilers provide a level of abstraction between the
programmer and the underlying hardware, allowing
programmers to focus on the logic of their programs without
having to worry about the specific details of the hardware.

● Performance:

○ Compilers can optimize the machine code generated from the
source code, resulting in faster and more efficient programs.

● Compilers are an essential tool in software development, as they
allow programmers to write code that is easier to read and write, can
be easily compiled and run on different devices and platforms, and
can be optimized for performance.

11

Introduction to

Compiler Design

● A compiler is a program that translates source code written in a
programming language into machine code that can be executed by a
computer.

● The source code is written by a programmer in a high-level
programming language, such as C++ or Java, which is easier for
humans to read and write.

● The compiler converts the source code into machine code, which is
a low-level language that can be understood and executed by the
computer’s processor.

● There are many different types of compilers, including ones for
general-purpose programming languages and ones for specialized
languages used in specific fields, such as system programming or
database programming.

● They also provide a level of abstraction between the programmer and
the underlying hardware, allowing programmers to focus on the logic
of their programs without having to worry about the specific details
of the hardware.

APPLICATIONS OF COMPILER:

● Software development: Compilers are an essential tool for software
development because they allow programmers to write code in a high-
level language that is easy to understand and debug, and then translate
that code into machine code that can be efficiently executed by the
computer.

● System software: Many operating systems, including Windows,
macOS, and Linux, are written in high-level programming languages
and use compilers to translate the source code into machine code.

● Embedded systems: Compilers are also used to develop software for
embedded systems, which are small, specialized computer systems
that are used in a variety of devices, such as cell phones, automobiles,
and industrial control systems.

● Scientific computing: Compilers are used to develop software for
scientific computing applications, such as simulations, data analysis,
and machine learning.

● Game development: Compilers are used to develop software for
video games, which typically require efficient performance and may
be written in a variety of programming languages.

● Embedded Systems: Compilers are used in embedded systems
development for appliances, IoT devices, and automotive control
systems.

● High-Performance Computing: Compilers play a key role in high-
performance computing clusters for scientific research and data
analysis.

12

Principles of

Compiler Design
● Utility Software: Compilers are used to develop utility software, like

text editors, database management systems, and networking tools.

Operations/Role of Compiler are as follow:

● It breaks source programs into smaller parts.

● It enables the creation of symbol tables and intermediate

representations.

● It helps in code compilation and error detection.

● it saves all codes and variables.

● It analyses the full program and translates it.

● Separate compilation is supported.

● Read the full programme, analyse it, and translate it to a semantically

similar language.

● Depending on the type of machine, converting source code to object

code.

1.4 PHASES OF COMPILATION PROCESS

The following steps are the phases of compiler that are undertaken by it in

order to convert the code to output:

13

Introduction to

Compiler Design
● Lexical analysis:

○ It is the first phase where high-level input program is converted

into a sequence of tokens.

○ This can be implemented with Deterministic finite Automata.

○ The output is the sequence of tokens that are sent to the parser

for syntax analysis.

○ Lexical Analysis is also known as Scanning or Linear Analysis.

○ To begin, the lexical analyzer examines the entire program and

divides it into tokens.

○ The string with meaning is referred to as a token.

○ The input string's class or category is described by the token.

○ Identifiers, Keywords, Constants, and so on.

○ Sentinel refers to the end of the buffer or token.

○ The token is described by a set of rules known as a pattern.

○ Lexemes are the sequence of characters in source code that

correspond to the token pattern.

○ For example int, i , num etc.

○ There are two pointers in Lexical analysis they are Lexeme

pointer and Forward pointer.

○ To recognize a token Regular expressions are used to construct

Finite Automata.

○ Input is the source code and output is the tokens.

○ E.g.

 Input: x= x + y*z*3

 Output: Tokens or table of tokens

14

Principles of

Compiler Design
● Syntax Analysis/ Parsing:

○ It is the second phase of a compiler.

○ In this phase, it verifies the syntactical structure of a given input.

○ To do so, it builds a data structure called Syntax or Parse tree.

○ The parse tree is constructed using pre-defined grammar of

language and input string.

○ If a given input string can be produced using syntax tree, the

input string is found to be in the correct syntax.

○ If it is not correct, the error is reported by syntax analyzer.

○ Syntax analysis, also known as syntactical analysis, parsing, or

hierarchical analysis, is a type of analysis that examines the structure

of a sentence.

○ Syntax is the arranging of words and phrases in a language to produce

well-formed sentences.

○ The tokens generated by the lexical analyzer are put together to form

a less detailed hierarchical structure known as the syntax tree.

○ Input is token and output is syntax tree.

○ Grammatical errors are checked during this phase. Example:

Parenthesis missing, semicolon missing, syntax errors etc.

○ For example:

Input: tokens

15

Introduction to

Compiler Design
Output:

● Semantic analysis:

○ It is the process of interpreting meaning from text.

○ This allows the computer system to understand and interpret

paragraphs, sentences and whole documents.

○ For this purpose, it analyzes the grammatical structure and

identifies relationships between individual words.

○ Semantic analyzer checks the meaning of source program.

Logical errors are checked during this phase. Example: divide

by zero, variable undeclared etc.

○ Example of logical errors

int a;

float b;

char c;

c=a+b;

○ Parse tree refers to the tree having meaningful data.

○ Parse tree is more specified and more detailed.

○ Input is syntax tree and output is parse tree (syntax tree with

meaning) is as follows:

16

Principles of

Compiler Design
● Intermediate code generation:

○ It can translate source programs into machine program.

○ An intermediate code is generated because the compiler cannot

directly generate machine code in one pass.

○ It first converts the source program into intermediate code to

perform efficient generation of machine code.

○ It is represented in postfix notation, directed acyclic graph,

quadruples, and triples.

○ Intermediate code (IC) is code that sits between high-level and

low-level languages, or code that sits between source and target

code.

○ The conversion of intermediate code to target code is simple.

○ Intermediate code functions as a bridge between the front end

and the back end.

○ Three address codes, abstract syntax trees, prefix (polish),

postfix (reverse polish), and other types of intermediate code

exist.

○ The three-address code, which has no more than three operands,

is the most often used intermediate code.

○ Input: Parse tree

○ Output: Three address code

temp1=int to float(2);

temp2=id4*t1;

temp3=id3*t2;

temp4=id2+t3;

temp4=id1;

17

Introduction to

Compiler Design
● Code optimization:

○ It is a program transformation technique.

○ The aim of this phase of compiler is to code improvement by

enabling it to consume fewer resources and deliver high speed.

○ High-level language constructs are replaced with efficient low-

level programming codes.

○ For increasing the speed of a program, unnecessary code strings

are eliminated and a sequence of statements are organized.

○ To increase intermediate code and execution performance, code

optimization is used.

○ It is vital to have code that executes faster or consumes less

memory.

○ There are mainly two ways to optimize the code named

Frontend (Analysis) and Back-end (Synthesis).

○ A programmer or developer can optimize the code in front-end.

○ The compiler can optimize the code on the back-end.

○ Various strategies for code optimization are listed below.

• Compile Time Evaluation

• Constant Folding

• Constant Propagation

• Common SubExpression Elimination

• Variable Propagation

• Code Movement

• Loop Invariant Computation

• Strength Reduction

• Dead Code Elimination

• Code Motion

• Induction Variables and Strength Reduction.

○ Input: Three address code

18

Principles of

Compiler Design
○ Output: : Optimized three address code

 temp1=id4*2.0;

temp2=temp1*id3;

 id1=temp2+id2;

● Target Code Generator:

○ It is the final compilation phase. The generated code is an object

code of lower-level programming languages such as assembly

language.

○ Source code written in higher-level language is converted into

a lower-level language that results in lower-level object code.

○ The main purpose of the Target Code generator is to write code

that the machine can understand and also register allocation,

instruction selection, etc. The output is dependent on the type of

assembler. This is the final stage of compilation.

○ The optimized code is converted into relocatable machine code

which then forms the input to the linker and loader.

THE GROUPING OF PHASES INTO PASSES:

● The discussion of phases deals with the logical organization of a

compiler.

● In an implementation, activities from several phases may be grouped

together into a pass that reads an input file and writes an output file.

● For example, the front-end phases of lexical analysis, syntax analysis,

semantic analysis, and intermediate code generation might be grouped

together into one pass.

● Code optimization might be an optional pass.

● Then there could be a back-end pass consisting of code generation for

a particular target machine.

● Some compiler collections have been created around carefully

designed intermediate representations that allow the front end for a

particular language to interface with the back end for a certain target

machine.

● With these collections, we can produce compilers for different source

languages for one target machine by combining different front ends

with the back end for tha t target machine.

● Similarly, we can produce compilers for different target machines, by

combining a front end with back ends for different target machines.

19

Introduction to

Compiler Design
1.5 COMPILER ARCHITECTURE AND COMPONENTS

As we said earlier , A compiler can broadly be divided into two phases based

on the way they compile as : Analysis and Synthesis phase of compiler.

Analysis Phase

● Known as the front-end of the compiler, the analysis phase of the

compiler reads the source program, divides it into core parts and then

checks for lexical, grammar and syntax errors.

● The analysis phase generates an intermediate representation of the

source program and symbol table, which should be fed to the

Synthesis phase as input.

Synthesis Phase

● Known as the back-end of the compiler, the synthesis phase generates

the target program with the help of intermediate source code

representation and symbol table.

● A compiler can have many phases and passes.

● Pass : A pass refers to the traversal of a compiler through the entire

program.

● Phase :

○ A phase of a compiler is a distinguishable stage, which takes

input from the previous stage, processes and yields output that

can be used as input for the next stage.

○ A pass can have more than one phase.

Both analysis and synthesis are made up of internal phases.

20

Principles of

Compiler Design
Compiler Components:

A typical real-world compiler usually has multiple phases. This increases

the compiler's portability and simplifies retargeting.

● The front end consists of the following phases:

○ scanning:

■ a scanner groups input characters into tokens;

■ Tokenizer (Lexical Analysis): The Tokenizer identifies

and categorizes objects in each line of code, disregarding

white space and comments.

■ For example, consider the line int x = 5;. The Tokenizer

identifies five tokens: "int", "x", "=", "5", and ";".

○ parsing:

■ a parser recognizes sequences of tokens according to

some grammar and generates Abstract Syntax Trees

(ASTs);

○ semantic analysis:

■ performs type checking (ie, checking whether the

variables, functions etc in the source program are used

consistently with their definitions and with the language

semantics) and translates ASTs into IRs;

○ optimization:

■ optimizes IRs.

● The back end consists of the following phases:

○ instruction selection:

■ maps IRs into assembly code;

○ code optimization:

■ optimizes the assembly code using control-flow and data-

flow analyses, register allocation, etc;

○ code emission:

■ generates machine code from assembly code.

● The generated machine code is written in an object file.

● This file is not executable since it may refer to external symbols (such

as system calls).

● The operating system provides the following utilities to execute the

code:

21

Introduction to

Compiler Design
○ linking:

■ A linker takes several object files and libraries as input

and produces one executable object file.

■ It retrieves from the input files (and puts them together in

the executable object file) the code of all the referenced

functions/procedures and it resolves all external

references to real addresses.

■ The libraries include the operating system libraries, the

language-specific libraries, and, maybe, user-created

libraries.

○ loading:

■ A loader loads an executable object file into memory,

initializes the registers, heap, data, etc and starts the

execution of the program.

● Relocatable shared libraries allow effective memory use

when many different applications share the same code.

1.6 SUMMARY

In this chapter we have seen basic fundamentals of compiler, like what is

compiler? What are the role and importance of a compiler? Architecture and

component of compiler.

1.7 EXERCISE

Answer the following:

1. Describe the various phases of compiler with suitable example

2. What is a compiler? Explain.

3. Note down the role and importance of the compiler.

4. Write a short note on components of the compiler.

5. Explain types of compiler.

1.8 REFERENCES

https://docs.google.com/document/d/1vF-JnqFttmBQph9ed61RMrrY-

qBa0OBTuOph9SU1WkE/edit

https://www3.nd.edu/~dthain/compilerbook/compilerbook.pdf

Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Monica

S. Lam, Ravi

https://docs.google.com/document/d/1vF-JnqFttmBQph9ed61RMrrY-qBa0OBTuOph9SU1WkE/edit
https://docs.google.com/document/d/1vF-JnqFttmBQph9ed61RMrrY-qBa0OBTuOph9SU1WkE/edit
https://www3.nd.edu/~dthain/compilerbook/compilerbook.pdf

22

Principles of

Compiler Design
Sethi, and Jeffrey D. Ullman 2nd Edition, Pearson Publication, 2006 ISBN-

13: 978-0321486813

https://www.geeksforgeeks.org/advantages-and-disadvantages-of-

compiler/

https://cs.lmu.edu/~ray/notes/compilerarchitecture/



https://www.geeksforgeeks.org/advantages-and-disadvantages-of-compiler/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-compiler/
https://cs.lmu.edu/~ray/notes/compilerarchitecture/

23

2
INTRODUCTION TO LEXICAL ANALYSIS

Unit Structure

2.0 Objective

2.1 Introduction to Lexical Analysis

2.2 Role of lexical analyzer

2.3 Regular expressions

2.4 Finite automata

2.5 Lexical analyzer generators (e.g., Lex)

2.6 Summary

2.7 Exercise

2.8 References

2.0 OBJECTIVE

This objective of this chapter is :

● To understand how to construct a lexical analyzer.

● To implement a lexical analyzer by hand, it helps to start with a

diagram or other description for the lexemes of each token.

● To identify each occurrence of each lexeme on the input and to return

information about the token identified.

● To produce a lexical analyzer automatically by specifying the lexeme

patterns to a lexical-analyzer generator and compiling those patterns

into code that functions as a lexical analyzer.

● To show how this notation can be transformed, first into

nondeterministic automata and then into deterministic automata.

● To introduce a lexical-analyzer generator called Lex (or Flex in a

more recent embodiment).

2.1 INTRODUCTION TO LEXICAL ANALYSIS

● Lexical-analyzer generators by introducing regular expressions, a

convenient notation for specifying lexeme patterns.

● Lexical Analysis is the first phase of the compiler also known as a

scanner.

● It converts the High level input program into a sequence of Tokens.

24

Principles of

Compiler Design
● Lexical Analysis can be implemented with the Deterministic finite

Automata.

● The output is a sequence of tokens that is sent to the parser for syntax

analysis

What is Lexical Analysis?

Lexical analysis is the starting phase of the compiler.

It gathers modified source code that is written in the form of sentences from

the language preprocessor. The lexical analyzer is responsible for breaking

these syntaxes into a series of tokens, by removing whitespace in the source

code. If the lexical analyzer gets any invalid token, it generates an error.

The stream of character is read by it and it seeks the legal tokens, and then

the data is passed to the syntax analyzer, when it is asked for.

There are three important terminologies used in Lexical Analysis

1. Token :

● It is a sequence of characters that represents a unit of

information in the source code.

● A lexical token is a sequence of characters that can be treated as

a unit in the grammar of the programming languages.

● Example of tokens:

Type token (id, number, real, . . .)

Punctuation tokens (IF, void, return, . . .)

Alphabetic tokens (keywords)

● Example of Non-Tokens: Comments, preprocessor directive,

macros, blanks, tabs, newline, etc.

● One token for each keyword. The pattern for a keyword is the

same as the keyword itself.

25

Introduction to

Lexical Analysis
● Tokens for the1 operators, either individually or in classes such

as the token comparison

● One token representing all identifiers.

● One or more tokens representing constants, such as numbers

and literal strings.

● Tokens for each punctuation symbol, such as left and right

parentheses,comma, and semicolon.

● More examples of token:

2. Pattern: The description used by the token is known as a pattern.

3. Lexeme:

● A sequence of characters in the source code, as per the matching

pattern of a token, is known as lexeme. It is also called the

instance of a token.

26

Principles of

Compiler Design
● The sequence of characters matched by a pattern to form the

corresponding token or a sequence of input characters that

comprises a single token is called a lexeme.

 eg- “float”, “abs_zero_Kelvin”, “=”, “-”, “273”, “;” .

Example 1 : Given C statement

printf (" Total = %d\n", s c o r e);

both printf and score are lexemes matching the pattern for token id, and

"Total = °/,d\n" is a lexeme matching literal.

Example 2 :

The token names and associated attribute values for the Fortran statement

Note that in certain pairs, especially operators, punctuation, and keywords,

there is no need for an attribute value.

In this example, the token number has been given an integer-valued

attribute.

In practice, a typical compiler would instead store a character string

representing the constant and use as an attribute value for number a pointer

to that string.

2.2 ROLE OF LEXICAL ANALYZER

● As the first phase of a compiler, the main task of the lexical analyzer

is to read the input characters of the source program, group them into

lexemes, and produce as output a sequence of tokens for each lexeme

in the source program.

● The stream of tokens is sent to the parser for syntax analysis.

● It is common for the lexical analyzer to interact with the symbol table

as well.

● When the lexical analyzer discovers a lexeme constituting an

identifier, it needs to enter that lexeme into the symbol table.

● In some cases, information regarding the kind of identifier may be

read from the symbol table by the lexical analyzer to assist it in

determining the proper token it must pass to the parser.

27

Introduction to

Lexical Analysis
The lexical analyzer performs the following tasks:

● The lexical analyzer is responsible for removing the white spaces and

comments from the source program.

● It corresponds to the error messages with the source program.

● It helps to identify the tokens.

● The input characters are read by the lexical analyzer from the source

code.

● Stripping out comments and white spaces from the program

● Read the input program and divide it into valid tokens

● Find lexical errors

● Return the Sequence of valid tokens to the syntax analyzer

● When it finds an identifier, it has to make an entry into the symbol

table.

● Figure : Interactions between the lexical analyzer and the parser

● Commonly, the interaction is implemented by having the parser call

the lexical analyzer.

● The call, suggested by the getNextToken command, causes the

lexical analyzer to read characters

● from its input until it can identify the next lexeme and produce for it

the next token, which it returns to the parser.

● Since the lexical analyzer is the part of the compiler that reads the

source text, it may perform certain other tasks besides identification

of lexemes.

● One such task is stripping out comments and whitespace (blank,

newline, tab, and perhaps other characters that are used to separate

tokens in the input).

● Another task is correlating error messages generated by the compiler

with the source program.

● For instance, the lexical analyzer may keep track of the number of

newline characters seen, so it can associate a line number with each

error message.

28

Principles of

Compiler Design
● In some compilers, the lexical analyzer makes a copy of the source

program with the error messages inserted at the appropriate positions.

● If the source program uses a macro-preprocessor, the expansion of

macros may also be performed by the lexical analyzer.

● Sometimes, lexical analyzers are divided into a cascade of two

processes:

a) Scanning consists of the simple processes that do not require

tokenization of the input, such as deletion of comments and

compaction of consecutive whitespace characters into one.

b) Lexical analysis proper is the more complex portion, where the

scanner produces the sequence of tokens as output.

Lexical Analysis Versus Parsing:

● There are a number of reasons why the analysis portion of a compiler

is normally separated into lexical analysis and parsing (syntax

analysis) phases.

● Simplicity of design is the most important consideration.

○ The separation of lexical and syntactic analysis often allows us

to simplify at least one of these tasks.

○ For example, a parser that had to deal with comments and

whitespace as syntactic units would be considerably more

complex than one that can assume comments and whitespace

have already been removed by the lexical analyzer.

○ If we are designing a new language, separating lexical and

syntactic concerns can lead to a cleaner overall language design.

● Compiler efficiency is improved.

○ A separate lexical analyzer allows us to apply specialized

techniques that serve only the lexical task, not the job of

parsing.

○ In addition, specialized buffering techniques for reading input

characters can speed up the compiler significantly.

● Compiler portability is enhanced.

○ Input-device-specific peculiarities can be restricted to the

lexical analyzer.

Advantages Of Lexical Analysis

● Lexical analysis helps the browsers to format and display a web page

with the help of parsed data.

● It is responsible to create a compiled binary executable code.

● It helps to create a more efficient and specialised processor for the

task.

29

Introduction to

Lexical Analysis

DISADVANTAGES OF LEXICAL ANALYSIS

● It requires additional runtime overhead to generate the lexer table and

construct the tokens.

● It requires much effort to debug and develop the lexer and its token

description.

● Much significant time is required to read the source code and partition

it into tokens.

2.3 REGULAR EXPRESSIONS

● Suppose we wanted to describe the set of valid C identifiers.

● It is almost exactly the language described as;

L(L U D)* is the set of all strings of letters and digits beginning with a letter

the only difference is that the underscore is included among the letters.

● In the above Example, we were able to describe identifiers by giving

names to sets of letters and digits and using the language operators

union, concatenation,and closure.

● This process is so useful that a notation called regular expressions has

come into common use for describing all the languages that can be

built from these operators applied to the symbols of some alphabet.

● In this notation, if letter- is established to stand for any letter or the

underscore, and digit- is established to stand for any digit, then we

30

Principles of

Compiler Design
could describe the language of C identifiers by:

● The vertical bar above means union, the parentheses are used to group

subexpressions, the star means "zero or more occurrences of," and the

juxtaposition of letter, with the remainder of the expression signifies

concatenation.

● The regular expressions are built recursively out of smaller regular

expressions, using the rules described below.

● Each regular expression r denotes a language L(r), which is also

defined recursively from the languages denoted by r ' s

subexpressions.

● Here are the rules that define the regular expressions over some

alphabet £ and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1. e is a regular expression, and L(e) is {e}, that is, the language whose

sole member is the empty string.

2. If a is a symbol in E, then a is a regular expression, and L(a) = {a},

that is, the language with one string, of length one, with a in its one

position.

Note that by convention, we use italics for symbols, and boldface for their

corresponding regular expression.

INDUCTION: There are four parts to the induction whereby larger regular

expressions are built from smaller ones. Suppose r and s are regular

expressions denoting languages L(r) and L(s), respectively.

1. (r)|(s) is a regular expression denoting the language L(r) U L(s).

2. (r)(s) is a regular expression denoting the language L(r)L(s).

3. (r)* is a regular expression denoting (L(r))*.

4. (r) is a regular expression denoting L(r). This last rule says that we

can

As defined, regular expressions often contain unnecessary pairs of

parentheses.

We may drop certain pairs of parentheses if we adopt the conventions that:

a) The unary operator * has highest precedence and is left associative.

b) Concatenation has second highest precedence and is left associative.

however, when talking about specific characters from the ASCII

character set, we shall generally use teletype font for both the

character and its regular expression.

c) | has lowest precedence and is left associative.

31

Introduction to

Lexical Analysis
Under these conventions, for example, we may replace the regular

expression (a)|((b)*(c)) by a|b*c. Both expressions denote the set of strings

that are either a single a or are zero or more 6's followed by one c.

Example 3 :

Let £ = {a,6}.

1. The regular expression a|b denotes the language {a, b}.

2. (a|b)(a|b) denotes {aa, ah, ba, bb}, the language of all strings of length

two over the alphabet E. Another regular expression for the same

language is aa|ab|ba|bb.

3. a* denotes the language consisting of all strings of zero or more a's,

that is, { e , a , a a , a a a , . . . }.

4. (a|b)* denotes the set of all strings consisting of zero or more instances

of a or b, that is, all strings of a's and 6's: {e,a, b,aa, ab, ba, bb,aaa,...}.

Another regular expression for the same language is (a*b*)*.

5. a|a*b denotes the language {a, b, ab, aab, aaab,...}, that is, the string

a and all strings consisting of zero or more a's and ending in b.

A language that can be defined by a regular expression is called a regular

set.

If two regular expressions r and s denote the same regular set, we say they

are equivalent and write r = s.

For instance, (a|b) = (b|a). There are a number of algebraic laws for regular

expressions; each law asserts that expressions of two different forms are

equivalent.

Following Figure shows some of the algebraic laws that hold for arbitrary

regular expressions r, s, and t.

Regular Definitions:

For notational convenience, we may wish to give names to certain regular

expressions and use those names in subsequent expressions, as if the names

were themselves symbols.

32

Principles of

Compiler Design
If £ is an alphabet of basic symbols, then a regular definition is a sequence

of definitions of the form:

where:

1. Each di is a new symbol, not in E and not the same as any other of the

cTs, and

2. Each T{ is a regular expression over the alphabet E U {d\,d2,.. . ,

By restricting to E and the previously defined GTS, we avoid recursive

definitions,and we can construct a regular expression over E alone, for each

r$.

We do so by first replacing uses of d\ in r2 (which cannot use any of the d's

except for d\), then replacing uses of d\ and d2 in r-$ by r\ and (the

substituted) r2,and so on.

Finally, in rn we replace each di, for i — 1,2,... ,n — 1, by the substituted

version of r$, each of which has only symbols of E.

Example 4 : C identifiers are strings of letters, digits, and underscores. Here

is a regular definition for the language of C identifiers. We shall

conventionally use italics for the symbols defined in regular definitions.

Example 5 : Unsigned numbers (integer or floating point) are strings such

as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

is a precise specification for this set of strings. That is, an optionalFraction

is either a decimal point (dot) followed by one or more digits, or it is missing

(the empty string). An optionalExponent, if not missing, is the letter E

followed by an optional + or - sign, followed by one or more digits. Note

that at least one digit must follow the dot, so number does not match 1., but

does match 1.0.

33

Introduction to

Lexical Analysis
Extensions of Regular Expressions:

● Since Kleene introduced regular expressions with the basic operators

for union, concatenation, and Kleene closure in the 1950s, many

extensions have been added to regular expressions to enhance their

ability to specify string patterns.

● Here we mention a few notational extensions that were first

incorporated into Unix utilities such as Lex that are particularly useful

in the specification lexical analyzers.

The references to this chapter contain a discussion of some regular

expression variants in use today.

1. One or more instances.

● The unary, postfix operator + represents the positive closure of a

regular expression and its language. That is, if r is a regular

expression, then (r) + denotes the language (L(r)) + .

● The operator + has the same precedence and associativity as the

operator *.

● Two useful algebraic laws, r* = r+\e and r+ = rr* = r*r relate the

Kleene closure and positive closure.

2. Zero or one instance.

● The unary postfix operator ? means "zero or one occurrence."

● That is, r? is equivalent to r|e, or put another way, L(r?) = L(r) U {e}.

● The ? operator has the same precedence and associativity as * and +.

3. Character classes.

● A regular expression aifal • • • \an, where the a^s are each symbols of

the alphabet, can be replaced by the shorthand [aia,2 • • - an].

● More importantly, when 0 1 , 0 2 , . . . , a n f ° r m a logical sequence,

e.g., consecutive uppercase letters, lowercase letters, or digits, we can

replace them by o i - a n , that is, just the first and last separated by a

hyphen.

● Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for a | b | . - -

| z .

Example 6 : Using these shorthands, we can rewrite the regular definition

of Example as:

The regular definition of Example 5 can also be simplified:

34

Principles of

Compiler Design
Below table shows Lex regular expressions:

Following Figure shows: Filename expressions used by the shell

command sh

2.4 FINITE AUTOMATA

We shall now discover how Lex turns its input program into a lexical

analyzer.

At the heart of the transition is the formalism known as finite automata.

These are essentially graphs, like transition diagrams, with a few

differences:

1. Finite automata are recognizers; they simply say "yes" or "no" about

each possible input string.

35

Introduction to

Lexical Analysis
2. Finite automata come in two flavors:

(a) Nondeterministic finite automata (NFA) have no restrictions on

the labels of their edges.

 A symbol can label several edges out of the same state, and e,

the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and

for each symbol of its input alphabet exactly one edge with that

symbol leaving that state.

Both deterministic and nondeterministic finite automata are capable of

recognizing the same languages.

In fact these languages are exactly the same languages, called the regular

languages, that regular expressions can describe.

Figure: Features of Finite Automata

The above figure shows the following features of automata:

1. Input

2. Output

3. States of automata

4. State relation

5. Output relation

A Finite Automata consists of the following:

Q : Finite set of states.

? : set of Input Symbols.

q : Initial state.

F : set of Final States.

? : Transition Function.

Formal specification of machine is { Q, ?, q, F, ? }

36

Principles of

Compiler Design
FA is characterized into two types:

1. Deterministic Finite Automata (DFA)

2. Nondeterministic Finite Automata(NFA)

1) Deterministic Finite Automata (DFA):

DFA consists of 5 tuples {Q, ?, q, F, ?}.

Q : set of all states.

? : set of input symbols. (Symbols which machine takes as input)

q : Initial state. (Starting state of a machine)

F : set of final state.

? : Transition Function, defined as ? : Q X ? --> Q.

In a DFA, for a particular input character, the machine goes to one state

only.

A transition function is defined on every state for every input symbol. Also

in DFA null (or ?) move is not allowed, i.e., DFA cannot change state

without any input character.

For example, construct a DFA which accept a language of all strings ending

with ‘a’.

Given: ? = {a,b}, q = {q0}, F={q1}, Q = {q0, q1}

First, consider a language set of all the possible acceptable strings in order

to construct an accurate state transition diagram.

L = {a, aa, aaa, aaaa, aaaaa, ba, bba, bbbaa, aba, abba, aaba, abaa}

Above is simple subset of the possible acceptable strings there can many

other strings which ends with ‘a’ and contains symbols {a,b}.

Strings not accepted are,

ab, bb, aab, abbb, etc.

State transition table for above automaton,

37

Introduction to

Lexical Analysis
One important thing to note is, there can be many possible DFAs for a

pattern.

A DFA with a minimum number of states is generally preferred.

2) Nondeterministic Finite Automata(NFA):

NFA is similar to DFA except following additional features:

● Null (or ?) move is allowed i.e., it can move forward without reading

symbols.

● Ability to transmit to any number of states for a particular input.

However, these above features don’t add any power to NFA.

If we compare both in terms of power, both are equivalent.

Due to the above additional features, NFA has a different transition

function, the rest is the same as DFA.

?: Transition Function

?: Q X (? U ?) --> 2 ^ Q.

As you can see in the transition function is for any input including null (or

?), NFA can go to any state number of states.

For example, below is an NFA for the above problem.

State Transition Table for above Automaton,

One important thing to note is, in NFA, if any path for an input string leads

to a final state, then the input string is accepted.

For example, in the above NFA, there are multiple paths for the input string

“00”.

Since one of the paths leads to a final state, “00” is accepted by the above

NFA.

38

Principles of

Compiler Design Take Note:

Since all the tuples in DFA and NFA are the same except for one of the

tuples, which is Transition Function (?)

In case of DFA

? : Q X ? --> Q

In case of NFA

? : Q X ? --> 2Q

Now if you observe you’ll find out Q X ? –> Q is part of Q X ? –> 2Q.

On the RHS side, Q is the subset of 2Q which indicates Q is contained in

2Q or Q is a part of 2Q, However, the reverse isn’t true.

So mathematically, we can conclude that every DFA is NFA but not

vice-versa.

Yet there is a way to convert an NFA to DFA, so there exists an equivalent

DFA for every NFA.

Important Points to Remember:

1. Both NFA and DFA have the same power and each NFA can be

translated into a DFA.

2. There can be multiple final states in both DFA and NFA.

3. NFA is more of a theoretical concept.

4. DFA is used in Lexical Analysis in Compiler.

5. If the number of states in the NFA is N then, its DFA can have

maximum 2N number of states.

NONDETERMINISTIC FINITE AUTOMATA (NFA)

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states 5.

2. A set of input symbols E, the input alphabet. We assume that e, which

stands for the empty string, is never a member of E.

3. A transition function that gives, for each state, and for each symbol in

E U {e} a set of next states.

4. A state so from S that is distinguished as the start state (or initial state).

5. A set of states F, a subset of S, that is distinguished as the accepting

states (or final states).

39

Introduction to

Lexical Analysis
We can represent either an NFA or DFA by a transition graph, where the

nodes are states and the labeled edges represent the transition function.

There is an edge labeled from state s to state t if and only if t is one of the

next states for state s and input a. This graph is very much like a transition

diagram, except:

a) The same symbol can label edges from one state to several different

states, and

b) An edge may be labeled by e, the empty string, instead of, or in

addition to, symbols from the input alphabet.

Example : The transition graph for an NFA recognizing the language of

regular expression (a|b)*abb is shown below Fig.

This abstract example, describing all strings of a's and &'s ending in the

particular string abb, will be used throughout this section.

It is similar to regular expressions that describe languages of real interest,

however.

For instance, an expression describing all files whose name ends in .o is

any*.o, where any stands for any printable character.

As per transition diagrams, the double circle around state 3 indicates that

this state is accepting.

Notice that the only ways to get from the start state 0 to the accepting state

is to follow some path that stays in state 0 for a while, then goes to states 1,

2, and 3 by reading abb from the input.

Thus, the only strings getting to the accepting state are those that end in abb.

Transition Tables

We can also represent an NFA by a transition table, whose rows correspond

to states, and whose columns correspond to the input symbols and e.

The entry for a given state and input is the value of the transition function

applied to those arguments. If the transition function has no information

about that state-input pair, we put 0 in the table for the pair.

40

Principles of

Compiler Design
Example : The transition table for the NFA of above Fig. 3.24 is shown

below Fig. 3.25.

The transition table has the advantage that we can easily find the transitions

on a given state and input. Its disadvantage is that it takes a lot of space,

when the input alphabet is large, yet most states do not have any moves on

most of the input symbols.

Acceptance of Input Strings by Automata

An NFA accepts input string x if and only if there is some path in the

transition graph from the start state to one of the accepting states, such that

the symbols along the path spell out x.

Note that e labels along the path are effectively ignored, since the empty

string does not contribute to the string constructed along the path.

Example: The string aabb is accepted by the NFA of Fig. 3 . 2 4 .

The path labeled by aabb from state 0 to state 3 demonstrating this fact is:

Note that several paths labeled by the same string may lead to different

states.

For instance, path is another path from state 0 labeled by the string aabb.

This path leads to state 0, which is not accepting.

However, remember that an NFA accepts a string as long as some path

labeled by that string leads from the start state to an accepting state.

The existence of other paths leading to a nonaccepting state is irrelevant.

The language defined (or accepted) by an NFA is the set of strings labeling

some path from the start to an accepting state.

As was mentioned, the NFA of Fig. 3 . 2 4 defines the same language as

does the regular expression (a|b)*abb,that is, all strings from the alphabet

{a, b} that end in abb. We may use L(A) to stand for the language accepted

by automaton A.

41

Introduction to

Lexical Analysis

Deterministic Finite Automata:

A deterministic finite automaton (DFA) is a special case of an NFA where:

1. There are no moves on input e, and

2. For each state s and input symbol a, there is exactly one edge out of s

If we are using a transition table to represent a DFA, then each entry is a

single state, we may therefore represent this state without the curly braces

that we use to form sets.

While the NFA is an abstract representation of an algorithm to recognize

the strings of a certain language, the DFA is a simple, concrete algorithm

for recognizing strings. It is fortunate indeed that every regular expression

and every NFA can be converted to a DFA accepting the same language,

because it is the DFA that we really implement or simulate when building

lexical analyzers.

The following algorithm shows how to apply a DFA to a string.

Algorithm: Simulating a DFA.

INPUT : An input string x terminated by an end-of-file character eof.

 A DFA D with start state so, accepting states F, and

transition function move.

OUTPUT : Answer "yes" if D accepts x; "no" otherwise.

METHOD : Apply the algorithm in Fig. 3.27 to the input string x.

42

Principles of

Compiler Design The function move(s,c) gives the state to which there is an edge from

state s on input c.

The function next Char returns the next character of the input string x.

Algorithm : The subset construction of a DFA from an NFA.

INPUT : An NFA JV.

OUTPUT A DFA D accepting the same language as N.

METHOD : Our algorithm constructs a transition table Dtran for D.

 Each state of D is a set of NFA states, and we construct

Dtran so D will simulate

 "in parallel" all possible moves N can make on a given

input string.

 Our first problem is to deal with e-transitions of N

properly.

 Note that s is a single state of N, while T is a set of states

of N.

Example 3.19: In Fig. 3.28 we see the transition graph of a DFA accepting

the language (a|b)*abb, the same as that accepted by the NFA of Fig. 3.24.

Given the input string ababb, this DFA enters the sequence of states 0 , 1 ,

2 , 1 , 2 ,3 and returns "yes."

43

Introduction to

Lexical Analysis

Regular Expressions to Automata

● The regular expression is the notation of choice for describing lexical

analyzers and other pattern-processing software.

● However, implementation of that software requires the simulation of

a DFA, as in Algorithm, or perhaps simulation of an NFA.

● Because an NFA often has a choice of move on an input symbol (as

Fig. 3.24 does oh input a from state 0) or on e (as Fig. 3.26 does from

state 0), or even a choice of making a transition on e or on a real input

symbol, its simulation is less straightforward than for a DFA.

● Thus often it is important to convert an NFA to a DFA that accepts

the same language.

● In this section we shall first show how to convert NFA's to DFA's.

● Then, we use this technique, known as "the subset construction," to

give a useful algorithm for simulating NFA's directly, in situations

(other than lexical analysis) where the NFA-to-DFA conversion takes

more time than the direct simulation.

● Next, we show how to convert regular expressions to NFA's, from

which a DFA can be constructed if desired.

● We conclude with a discussion of the time-space tradeoffs inherent in

the various methods for implementing regular expressions, and see

how to choose the appropriate method for your application.

44

Principles of

Compiler Design
Operations on NFA States:

Conversion of an NFA to a DFA

The general idea behind the subset construction is that each state of the

constructed DFA corresponds to a set of NFA states.

An NFA can have zero, one or more than one move from a given state on a

given input symbol.

An NFA can also have NULL moves (moves without input symbol).

On the other hand, DFA has one and only one move from a given state on

a given input symbol.

Steps for converting NFA to DFA:

Step 1: Convert the given NFA to its equivalent transition table

To convert the NFA to its equivalent transition table, we need to list all the

states, input symbols, and the transition rules.

The transition rules are represented in the form of a matrix, where the rows

represent the current state, the columns represent the input symbol, and the

cells represent the next state.

Step 2: Create the DFA’s start state

The DFA’s start state is the set of all possible starting states in the NFA.

This set is called the “epsilon closure” of the NFA’s start state.

The epsilon closure is the set of all states that can be reached from the start

state by following epsilon (?) transitions.

Step 3: Create the DFA’s transition table

The DFA’s transition table is similar to the NFA’s transition table, but

instead of individual states, the rows and columns represent sets of states.

For each input symbol, the corresponding cell in the transition table contains

the epsilon closure of the set of states obtained by following the transition

rules in the NFA’s transition table.

45

Introduction to

Lexical Analysis
Step 4: Create the DFA’s final states

The DFA’s final states are the sets of states that contain at least one final

state from the NFA.

Step 5: Simplify the DFA

The DFA obtained in the previous steps may contain unnecessary states and

transitions.

To simplify the DFA, we can use the following techniques:

● Remove unreachable states: States that cannot be reached from the

start state can be removed from the DFA.

● Remove dead states: States that cannot lead to a final state can be

removed from the DFA.

● Merge equivalent states: States that have the same transition rules for

all input symbols can be merged into a single state.

Step 6: Repeat steps 3-5 until no further simplification is possible

After simplifying the DFA, we repeat steps 3-5 until no further

simplification is possible.

The final DFA obtained is the minimized DFA equivalent to the given NFA.

Example: Consider the following NFA shown in Figure 1.

Following are the various parameters for NFA. Q = { q0, q1, q2 } ? = (a, b)

F = { q2 } ? (Transition Function of NFA)

State a b

q0 q0,q1 q0

q1 q2

q2

Step 1:

Q’ = ?

Step 2:

Q’ = {q0}

Step 3:

For each state in Q’, find the states for each input symbol.

46

Principles of

Compiler Design
Currently, state in Q’ is q0, find moves from q0 on input symbol a and b

using transition function of NFA and update the transition table of DFA. ?’

(Transition Function of DFA)

State a b

q0 {q0,q1} q0

Now { q0, q1 } will be considered as a single state.

As its entry is not in Q’, add it to Q’.

So Q’ = { q0, { q0, q1 } } Now, moves from state { q0, q1 } on different

input symbols are not present in transition table of DFA, we will calculate

it like: ?’ ({ q0, q1 }, a) = ? (q0, a) ? ? (q1, a) = { q0, q1 } ?’ ({ q0, q1

}, b) = ? (q0, b) ? ? (q1, b) = { q0, q2 }

Now we will update the transition table of DFA. ?’ (Transition Function of

DFA)

State a B

q0 {q0,q1} q0

{q0,q1} {q0,q1} {q0,q2}

Now { q0, q2 } will be considered as a single state.

As its entry is not in Q’, add it to Q’. So Q’ = { q0, { q0, q1 }, { q0, q2 } }

Now, moves from state {q0, q2} on different input symbols are not present

in transition table of DFA, we will calculate it like: ?’ ({ q0, q2 }, a) = ? (

q0, a) ? ? (q2, a) = { q0, q1 } ?’ ({ q0, q2 }, b) = ? (q0, b) ? ? (q2, b) =

{ q0 }

Now we will update the transition table of DFA. ?’ (Transition Function of

DFA)

State a B

q0 {q0,q1} q0

{q0,q1} {q0,q1} {q0,q2}

{q0,q2} {q0,q1} q0

As there is no new state generated, we are done with the conversion.

Final state of DFA will be state which has q2 as its component i.e., { q0, q2

}

Following are the various parameters for DFA. Q’ = { q0, { q0, q1 }, { q0,

q2 } } ? = (a, b) F = { { q0, q2 } } and transition function ?’ as shown

above.

47

Introduction to

Lexical Analysis
The final DFA for above NFA has been shown in Figure 2.

Note : Sometimes, it is not easy to convert regular expression to DFA. First

you can convert regular expression to NFA and then NFA to DFA.

Example : The number of states in the minimal deterministic finite

automaton corresponding to the regular expression (0 + 1)* (10) is

____________.

Solution :

First, we will make an NFA for the above expression. To make an NFA for

(0 + 1)*, NFA will be in same state q0 on input symbol 0 or 1.

Then for concatenation, we will add two moves (q0 to q1 for 1 and q1 to q2

for 0) as shown in Figure 3.

48

Principles of

Compiler Design

2.4 LEXICAL ANALYZER GENERATORS LEX:

In this section, we introduce a tool called Lex, or in a more recent

implementation Flex, that allows one to specify a lexical analyzer by

specifying regular expressions to describe patterns for tokens.

The input notation for the Lex tool is referred to as the Lex language and

the tool itself is the Lex compiler.

Behind the scenes, the Lex compiler transforms the input patterns into a

transition diagram and generates code, in a file called l e x . y y . c, that

simulates this transition diagram.

The mechanics of how this translation from regular expressions to transition

diagrams occurs is the subject of the next sections; here we only learn the

Lex language.

LEX

● Lex is a program that generates lexical analyzer.

● It is used with YACC parser generator.

● The lexical analyzer is a program that transforms an input stream into

a sequence of tokens.

● It reads the input stream and produces the source code as output

through implementing the lexical analyzer in the C program.

The function of Lex is as follows:

● Firstly lexical analyzer creates a program lex.1 in the Lex language.

● Then Lex compiler runs the lex.1 program and produces a C program

lex.yy.c.

● Finally C compiler runs the lex.yy.c program and produces an object

program a.out.

● a.out is lexical analyzer that transforms an input stream into a

sequence of tokens.

49

Introduction to

Lexical Analysis
USE OF LEX:

● Below Figure suggests how Lex is used.

Figure: Creating a lexical analyzer with Lex

● An input file, which we call l e x . l , is written in the Lex language

and describes the lexical analyzer to be generated.

● The Lex compiler transforms l e x . 1 to a C program, in a file that is

always named l e x . y y . c.

● The latter file is compiled by the C compiler into a file called a . o u t

, as always.

● The C-compiler output is a working lexical analyzer that can take a

stream of input characters and produce a stream of tokens.

● The normal use of the compiled C program, referred to as a. out in

above Fig.,is as a subroutine of the parser.

● It is a C function that returns an integer, which is a code for one of the

possible token names.

● The attribute value, whether it be another numeric code, a pointer to

the symbol table, or nothing, is placed in a global variable y y l v a l ,

2 which is shared between the lexical analyzer and parser, thereby

making it simple to return both the name and an attribute value of a

token.

Structure of Lex Programs:

● A Lex program has the following form:

● The declarations section includes declarations of variables, manifest

constants (identifiers declared to stand for a constant, e.g., the name

of a token), and regular definitions.

50

Principles of

Compiler Design
● The translation rules each have the form

 Pattern { Action }

● Each pattern is a regular expression, which may use the regular

definitions of the declaration section.

● The actions are fragments of code, typically written in C, although

many variants of Lex using other languages have been created.

● The third section holds whatever additional functions are used in the

actions.

● Alternatively, these functions can be compiled separately and loaded

with the lexical analyzer.

● The lexical analyzer created by Lex behaves in concert with the parser

as follows.

● When called by the parser, the lexical analyzer begins reading its

remaining input, one character at a time, until it finds the longest

prefix of the input that matches one of the patterns Pi.

● It then executes the associated action Ai.

● Typically, Ai will return to the parser, but if it does not (e.g., because

Pi describes whitespace or comments), then the lexical analyzer

proceeds to find additional lexemes, until one of the corresponding

actions causes a return to the parser.

● The lexical analyzer returns a single value, the token name, to the

parser, but uses the shared, integer variable y y l v a l to pass additional

information about the lexeme found, if needed.

Lex File Format

● A Lex program is separated into three sections by %% delimiters. The

formal of Lex source is as follows:

{ definitions }

%%

 { rules }

%%

{ user subroutines }

● Definitions include declarations of constant, variable and regular

definitions.

● Rules define the statement of form p1 {action1} p2 {action2}....pn

{action}.

● Where pi describes the regular expression and action1 describes the

actions what action the lexical analyzer should take when pattern pi

matches a lexeme.

51

Introduction to

Lexical Analysis
Lex And Yacc.

● If you want to use Lex with Yacc, note that what Lex writes is a

program named yylex(), the name required by Yacc for its analyzer.

● Normally, the default main program on the Lex library calls this

routine, but if Yacc is loaded, and its main program is used, Yacc will

call yylex().

● In this case each Lex rule should end with return(token);

where the appropriate token value is returned.

● An easy way to get access to Yacc's names for tokens is to compile

the Lex output file as part

● of the Yacc output file by placing the line # include "lex.yy.c" in the

last section of Yacc input.

● Supposing the grammar to be named ``good'' and the lexical rules to

be named ``better'' the UNIX command sequence can just be:

● The Yacc library (-ly) should be loaded before the Lex library, to

obtain a main program which invokes the Yacc parser.

● The generations of Lex and Yacc programs can be done in either

order.

Points to Remember:

● The general form of a Lex source file is:

{definitions}

%%

{rules}

 %%

{user subroutines}

● The definitions section contains a combination of:

● Definitions, in the form ``name space translation''.

● Included code, in the form ``space code''.

● Included code, in the form

%{

code

%}

● Start conditions, given in the form

%S name1 name2 ...

52

Principles of

Compiler Design
● Character set tables, in the form

%T

number space character-string

...

%T

● Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects

the parameter as follows:

● Lines in the rules section have the form ``expression action'' where

the action may be continued on succeeding lines by using braces to

delimit it.

2.5 SUMMARY

In this chapter we have learn about fundamental of lexical analysis. What is

Lexical analysis And working of it.We discussed Finite automata ,learn the

types if FA. and conversion of DFA and NFA.

Brief Introduction to regular expression is given.

2.6 EXERCISE

Answer the following:

1. Explain features of DFA and NFA.

2. Identify the interactions between the lexical analyzer and the parser.

3. Explain regular expressions with examples.

4. Explain the role of Lexical analysis

5. Write the steps to convert Non-Deterministic Finite Automata

(NDFA) into Deterministic Finite Automata (DFA).

6. Construct its equivalent DFA.

7. Convert the given NFA to DFA:

53

Introduction to

Lexical Analysis

8. What is Regular Expression? Write the regular expression for:

a. R=R1+R2 (Union operation)

b. R=R1.R2 (concatenation Operation)

c. R=R1* (Kleen Closure)

d. R=R+ (Positive Clouser)

e. Write a regular expression for a language containing strings which

end with “abb” over Ʃ= {a,b}.

f. Construct a regular expression for the language containing all

strings having any number of a’s and b’s except the null string.

9. Construct Deterministic Finite Automata to accept the regular

expression :

 (0+1)* (00+11) (0+1)*

10. Define regular expression and draw the transition diagram for the

following expression:

a. ab*cbb

b. (0* + 1) . (01*)

11. Develop the Structure of lex program.

12. What is NFA? And discuss with examples (a/b)*

13. Define lex and give its execution steps.

14. Outline the role of lexical analysis in compiler design.

15. Discuss in detail about the role of Lexical analyzer with the possible

error recovery schemes.

16. Describe in detail about issues in lexical analysis.

17. Define Finite Automata. Differentiate Deterministic Finite Automata

and Non-Deterministic Finite Automata with examples.

18. Solve the given regular expression into NFA using Thompson

construction

 i) (a/b)* abb (a/b)*.

ii) ab*/ab

19. Create DFA the following regular expression.(a/b)*abb.

20. Illustrate the algorithm for minimizing the number of states of a DFA.

54

Principles of

Compiler Design

21. Minimize the following states of DFA

22. Define Lex and Lex specifications. How lexical analyzer is
constructed using lex? Give an example.

23. Explain the lex program for tokens. Describe in detail the tool for
generating lexical analyzer.

24. Find the NFA for the given regular expression and find the minimized
DFA for the constructed NFA..(a/b)*(a/b)

25. (i) Create languages denoted by the following regular expressions

a) (a|b)*a(a|b)(a|b)

b) a*ba*ba*ba*

 (ii) Write regular definitions for the following languages:
a) All strings of lowercase letters that contain the five

vowels in order.
b) All strings of lowercase letters in which the letters are in

ascending lexicographic order.

26. Find transition diagrams for the following regular expression and
regular definition.

 a(a|b)*a ((ε|a)b*)*

a. All strings of digits with at most one repeated digit.

b. All strings of a's and b's that do not contain the substring abb.

c. All strings of a's and b's that do not contain the subsequence
abb.

27. Explain in detail the tool for generating Lexical-Analyzer with an
example program.

28. Develop the Lex Program to recognize the identifiers, constants and
operators.

2.7 REFERENCES

Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D. Ullman 2nd Edition, Pearson
Publication, 2006 ISBN-13: 978-0321486813

https://www.javatpoint.com/lex

https://www.geeksforgeeks.org/conversion-from-nfa-to-dfa/



https://www.javatpoint.com/lex
https://www.geeksforgeeks.org/conversion-from-nfa-to-dfa/

55

3
SYNTAX ANALYSIS

Unit Structure

3.0 Objective

3.1 Introduction

3.2 The Role of the Parser

 3.2.1 Syntax Error Handling

 3.2.2 Error-Recovery Strategies

3.3 Context-free Grammars

 3.3.1 The Formal Definition of a Context-Free Grammar

 3.3.2 Notational Conventions

 3.3.3 Derivations

3.4 Top-Down Parsing (LL Parsing)

 3.4.1 recursive-descent parsing

 3.4.2 First and Follow

3.5 Bottom-Up Parsing

 3.5.1 Reductions

 3.5.2 Handle Pruning

3.6 Syntax analyzer generators

 3.6.1 Parser Generator YACC

 3.6.2 The Translation Rules Part

 3.6.3 Using Yacc with Ambiguous Grammars

 3.6.4 Error Recovery in YACC

3.7 Summary

3.8 Review Questions

3.0 OBJECTIVES

1. Learn the function of parsers and how to handle and recover from

syntax errors.

2. Understand the formal definition and usage of context-free grammars

in representing programming language syntax.

3. Master top-down (LL) and bottom-up parsing methods, including

recursive-descent parsing and reduction processes.

56

Principles of

Compiler Design
4. Gain proficiency in using parser generators like YACC, including

managing translation rules and error recovery.

3.1 INTRODUCTION

We explore how the parser integrates into a standard compiler. Following

that, we examine common grammars used for arithmetic expressions. These

grammars are sufficient to demonstrate the core principles of parsing

because the techniques applicable to expressions extend to most

programming constructs. The section concludes with a discussion on error

handling, highlighting the parser's need to respond appropriately when it

encounters input that cannot be produced by its grammar.

3.2 THE ROLE OF THE PARSER

In our compiler model, the parser receives a sequence of tokens from the

lexical analyzer. It verifies that this sequence can be produced by the

grammar of the source language. The parser is expected to report syntax

errors clearly and recover from common errors to continue processing the

rest of the program. For well-formed programs, the parser conceptually

builds a parse tree and sends it to the rest of the compiler for further

processing. However, the parse tree doesn't need to be explicitly

constructed, as checking and translation actions can occur during parsing.

Consequently, the parser and the rest of the front end could be implemented

as a single module.

There are three main types of parsers for grammars: universal, top-down,

and bottom-up. Universal parsing techniques, such as the Cocke-Younger-

Kasami algorithm and Earley's algorithm, can handle any grammar but are

too inefficient for use in production compilers.

Commonly used parsing methods in compilers fall into two categories: top-

down and bottom-up. Top-down parsers build the parse tree from the root

down to the leaves, while bottom-up parsers start from the leaves and build

up to the root. In both methods, the input is processed from left to right, one

symbol at a time.

The most efficient top-down and bottom-up parsing methods are limited to

specific subclasses of grammars, but LL and LR grammars, in particular,

are powerful enough to describe most syntactic constructs found in modern

57

Syntax Analysis programming languages. LL grammars are often used in hand-crafted

parsers, such as those using predictive parsing techniques. LR grammar

parsers are typically generated using automated tools

We assume that the parser produces a representation of the parse tree for the

token stream received from the lexical analyzer. In practice, several tasks

might be performed during parsing, such as collecting information about

various tokens into the symbol table, performing type checking and other

semantic analyses, and generating intermediate code.

3.2.1 Syntax Error Handling

Two specific strategies, panic-mode and phrase-level recovery, are

discussed in more detail in relation to specific parsing methods.

If compilers only had to process correct programs, their design and

implementation would be greatly simplified. However, compilers are

expected to help programmers locate and fix errors that inevitably occur

despite their best efforts. Interestingly, few programming languages are

designed with error handling in mind, even though errors are common. Our

world would be vastly different if spoken languages required the same level

of syntactic accuracy as programming languages. Most programming

language specifications do not describe how a compiler should respond to

errors; this is left to the compiler designer. Planning error handling from the

start can simplify the compiler's structure and improve its error-handling

capabilities.

Common programming errors can occur at various levels:

• Lexical errors include misspellings of identifiers, keywords, or

operators (e.g., using "elipseSize" instead of "ellipseSize") and

missing quotes around strings.

• Syntactic errors include misplaced semicolons or extra/missing

braces. For example, a "case" statement without an enclosing "switch"

in C or Java is a syntactic error, though this is often caught later in the

compilation process.

• Semantic errors include type mismatches between operators and

operands, such as returning a value in a Java method with a void return

type.

• Logical errors involve incorrect reasoning by the programmer or

misuse of operators, such as using "=" instead of "==" in C. Although

syntactically correct, this might not reflect the programmer's intent.

Parsing methods are precise enough to detect syntactic errors efficiently.

Methods like LL and LR detect errors as soon as the token stream cannot

be parsed further according to the grammar. They have the "viable-prefix"

property, meaning they detect errors as soon as an incomplete prefix is

encountered.

Emphasizing error recovery during parsing is crucial because many errors

58

Principles of

Compiler Design
appear syntactic and are exposed when parsing cannot continue. While

some semantic errors, like type mismatches, can be detected efficiently,

accurately identifying semantic and logical errors at compile time is

generally difficult.

The error handler in a parser has several key goals:

• Report errors clearly and accurately.

• Recover from errors quickly to detect subsequent errors.

• Minimize overhead when processing correct programs.

Common errors are usually simple, so a straightforward error-handling

mechanism often suffices.

To report errors effectively, the error handler must indicate where the error

was detected in the source program, as the actual error likely occurred

within the previous few tokens. A common strategy is to print the offending

line and point to the error's location.

3.2.2 Error-Recovery Strategies

Once an error is detected, how should the parser recover? Although no

single strategy is universally effective, several methods have broad

applicability. The simplest approach is for the parser to halt with an

informative error message upon detecting the first error. However, more

errors can be identified if the parser can recover to a state where it can

continue processing the input with the hope of providing meaningful

diagnostic information. If errors accumulate excessively, the compiler

should stop after reaching a certain error limit to avoid overwhelming the

user with numerous "spurious" errors.

The following recovery strategies are discussed in detail: panic-mode,

phrase-level, error productions, and global correction.

Panic-Mode Recovery

In this method, upon encountering an error, the parser discards input

symbols one at a time until it finds one of a set of designated synchronizing

tokens. These tokens are usually delimiters, such as semicolons or closing

braces, which have clear and unambiguous roles in the source program. The

choice of synchronizing tokens depends on the source language. While

panic-mode recovery may skip a substantial portion of the input without

checking for additional errors, it is simple and, unlike some other methods,

guarantees not to enter an infinite loop.

Phrase-Level Recovery

When an error is found, the parser performs a local correction on the

remaining input. This involves replacing a prefix of the remaining input

with a string that allows the parser to continue. Typical local corrections

include replacing a comma with a semicolon, deleting an extraneous

semicolon, or inserting a missing semicolon. The choice of correction is left

59

Syntax Analysis to the compiler designer. It is crucial to choose replacements that do not

lead to infinite loops, such as always inserting something before the current

input symbol. Phrase-level replacement has been used in several error-

repairing compilers as it can correct any input string. However, its major

drawback is its difficulty in dealing with errors that occurred before the

point of detection.

Error Productions

By anticipating common errors, the grammar for the language can be

augmented with productions that generate erroneous constructs. A parser

built from such an augmented grammar detects anticipated errors when an

error production is used during parsing. The parser can then generate

appropriate error diagnostics about the recognized erroneous construct.

Global Correction

Ideally, a compiler should make as few changes as possible when

processing an incorrect input string. Algorithms exist to choose a minimal

sequence of changes to obtain a globally least-cost correction. Given an

incorrect input string x and a grammar G, these algorithms find a parse tree

for a related string y, minimizing the number of insertions, deletions, and

changes of tokens required to transform x into y. Unfortunately, these

methods are generally too costly to implement in terms of time and space,

so they remain mostly of theoretical interest.

It's important to note that the closest correct program might not align with

the programmer's intent. Nevertheless, the concept of least-cost correction

provides a standard for evaluating error-recovery techniques and has been

used to find optimal replacement strings for phrase-level recovery.

3.3 Context-free Grammars

Grammars are used to systematically describe the syntax of programming

language constructs like expressions and statements. For instance, using a

syntactic variable stmt to denote statements and expr to denote expressions,

the production:

stmt -> if (expr) stmt else stmt

specifies the structure of a conditional statement. Other productions then

define precisely what an expr is and what else a stmt can be.

This section reviews the definition of a context-free grammar and

introduces terminology for discussing parsing. The concept of derivations

is particularly useful for understanding the order in which productions are

applied during parsing

3.3.1 The Formal Definition of a Context-Free Grammar

A context-free grammar (or grammar for short) consists of terminals,

nonterminal, a start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. They

60

Principles of

Compiler Design
are the actual tokens output by the lexical analyzer. For example, in

the context of the if-else statement, the terminals might be the

keywords if and else, and the symbols (and).

2. Nonterminal are syntactic variables that represent sets of strings. They

help define the language generated by the grammar and impose a

hierarchical structure on it. In the if-else statement, stmt and expr are

nonterminals.

3. The start symbol is a distinguished nonterminal whose set of strings

defines the language generated by the grammar. Conventionally, the

productions for the start symbol are listed first.

4. Productions specify how terminals and nonterminals can be combined

to form strings. Each production consists of:

• A nonterminal called the head or left side, which defines some

of the strings denoted by the nonterminal.

• An arrow (-> or ::=) to separate the head from the body.

• The body or right side, which consists of zero or more terminals

and nonterminals. The components of the body describe one

way in which strings of the nonterminal at the head can be

constructed.

For example, in a grammar for simple arithmetic expressions, the terminals

might be id, +, -, *, /, (, and). The nonterminals might be expression, term,

and factor, with expression as the start symbol.

Figure: Grammar for simple arithmetic expressions

3.3.2 Notational Conventions

To avoid repetitive statements about terminals, nonterminals, etc., the

following notational conventions for grammars will be used throughout the

remainder of this book:

1. Terminals:

• Lowercase letters early in the alphabet (a, b, c).

• Operator symbols such as +, *, etc.

• Punctuation symbols such as parentheses, comma, etc.

61

Syntax Analysis • Digits 0 to 9.

• Boldface strings like id or if, each representing a single terminal

symbol.

2. Nonterminals:

• Uppercase letters early in the alphabet (A, B, C).

• The letter S, usually representing the start symbol.

• Lowercase, italic names like expr or stmt.

• Uppercase letters late in the alphabet (X, Y, Z) represent

grammar symbols (either nonterminals or terminals).

3. Lowercase letters late in the alphabet represent (possibly empty)

strings of terminals.

4. Lowercase Greek letters (α, β, etc.) represent (possibly empty) strings

of grammar symbols. Thus, a generic production can be written as A

-> α, where A is the head and α is the body.

5. Unless stated otherwise, the head of the production is the start symbol.

Example: With these conventions, the grammar of Example below can

be rewritten concisely

The notational conventions indicate that E, T, and F are nonterminals, with

E as the start symbol. All other symbols are terminals.

3.3.3 Derivations

The construction of a parse tree can be made precise by adopting a

derivational view, where productions are treated as rewriting rules. Starting

from the start symbol, each step of rewriting replaces a nonterminal with

the body of one of its productions. This view corresponds to the top-down

construction of a parse tree. The precision provided by derivations is

particularly helpful when discussing bottom-up parsing. Bottom-up parsing

is related to a class of derivations known as "rightmost" derivations, where

the rightmost nonterminal is rewritten at each step.

For example, consider the following grammar with a single nonterminal E,

which adds a production E -> E to the grammar.

62

Principles of

Compiler Design
3.4 TOP-DOWN PARSING (LL PARSING)

Top-down parsing can be seen as the task of building a parse tree for the

input string, starting from the root and creating the nodes of the parse tree

in preorder. Equivalently, top-down parsing can be viewed as finding a

leftmost derivation for an input string.

For example, the sequence of parse trees in the figure, for the input id + id

* id, represents a top-down parse according to the grammar provided.

This sequence of trees corresponds to a leftmost derivation of the input. At

each step of a top-down parse, the main challenge is to determine the

production to be applied for a nonterminal, say A. Once an A-production is

chosen, the remainder of the parsing process involves matching the terminal

symbols in the production body with the input string.

The section begins with a general form of top-down parsing called

recursive-descent parsing, which may involve backtracking to find the

correct A-production. A special case of recursive-descent parsing is

predictive parsing, where no backtracking is required. Predictive parsing

predicts the correct A-production by looking ahead at the input a fixed

number of symbols, typically just one (i.e., the next input symbol).

Figure: Top-down parse for id + id * id

63

Syntax Analysis For example, consider the top-down parse in the above figure, which

constructs a tree with two nodes labeled E.

The class of grammars for which we can construct predictive parsers

looking k symbols ahead in the input is sometimes called the LL(k) class.

We will focus on the LL(1) class and introduce certain computations called

FIRST and FOLLOW sets. From the FIRST and FOLLOW sets for a

grammar, we can construct "predictive parsing tables," which explicitly

specify the choice of production during top-down parsing. These sets are

also useful during bottom-up parsing.

3.4.1 recursive-descent parsing

Figure: A typical procedure for a non-terminal in a top-down parser

A recursive-descent parsing program consists of a set of procedures, one for

each nonterminal. Execution begins with the procedure for the start symbol,

which halts and announces success if its procedure body scans the entire

input string. Note that this pseudo code is nondeterministic because it begins

by choosing the A-production to apply in a manner that is not specified.

General recursive-descent parsing may require backtracking, meaning it

may need to scan over the input repeatedly. However, backtracking is rarely

needed for parsing programming language constructs, so backtracking

parsers are not commonly used. Even for tasks like natural language

parsing, backtracking is not very efficient, and table-based methods like the

dynamic programming algorithm or the Earley method are preferred.

To allow for backtracking, the code needs to be modified. First, we cannot

choose a unique A-production at line (1), so we must try each of several

productions in some order. Then, failure at line (7) does not indicate

ultimate failure, but suggests only that we need to return to line (1) and try

another A-production. Only if there are no more A-productions to try do we

declare that an input error has been found. To try another A-production, we

need to be able to reset the input pointer to where it was when we first

reached line (1). Thus, a local variable is needed to store this input pointer

for future use.

3.4.2 First and Follow

The construction of both top-down and bottom-up parsers is aided by two

functions, FIRST and FOLLOW, associated with a grammar G. During top-

64

Principles of

Compiler Design
down parsing, FIRST and FOLLOW allow us to choose which production

to apply based on the next input symbol. During panic-mode error recovery,

sets of tokens produced by FOLLOW can be used as synchronizing tokens.

The function FIRST(X), where X is any string of grammar symbols, is

defined as the set of terminals that begin strings derived from X. If X => ε,

then ε is also in FIRST(X).

For example,

if X => cY, then c is in FIRST(X).

For a preview of how FIRST can be used during predictive parsing, consider

two A-productions A -> α | β, where FIRST(α) and FIRST(β) are disjoint

sets. We can then choose between these A-productions by looking at the

next input.

Figure Terminal c is in FIRST(A) and a is in FOLLOW (A)

To compute FIRST(X) for all grammar symbols X, apply the following

rules until no more terminals or ε can be added to any FIRST set:

1. If X is a terminal, then FIRST(X) = {X}.

2. If X -> ε is a production or ε is in FIRST(Y) for all symbols Y in β,

then add ε to FIRST(X).

3. If X -> Y1Y2...Yk is a production, then for i = 1 to k:

• Add FIRST(Yi) - {ε} to FIRST(X).

• If ε is not in FIRST(Yi), stop. Otherwise, continue to the next

Yi.

To compute FOLLOW(A) for a nonterminal A, apply the following rules:

1. Add $ to FOLLOW(S), where S is the start symbol of the grammar,

and $ is the special "endmarker" symbol.

2. For each production A -> αBβ, add FIRST(β) - {ε} to FOLLOW(B).

3. For each production A -> αB or A -> αBβ where FIRST(β) contains

ε, add FOLLOW(A) to FOLLOW(B).

65

Syntax Analysis Repeat these rules until no more terminals can be added to any FOLLOW

set.

3.5 BOTTOM-UP PARSING

A bottom-up parse corresponds to the construction of a parse tree for an

input string beginning at the leaves (the bottom) and working up towards

the root (the top). It is convenient to describe parsing as the process of

building parse trees, although a front end may in fact carry out a translation

directly without building an explicit tree.

Figure: A bottom-up parse for id * id

Bottom-up parsing is a parsing technique that constructs a parse tree from

leaves to root. It starts with the input tokens and uses a set of reduction rules

to combine tokens into larger structures until the parse tree is complete. One

common approach to bottom-up parsing is shift-reduce parsing, where the

parser shifts input tokens onto a stack until it can reduce them to higher-

level structures based on a predefined grammar. LR parsing is a type of

shift-reduce parsing that is widely used in practice due to its efficiency and

the availability of automated parser generators that can generate LR parsers

from a given grammar.

3.5.1 Reductions

Bottom-up parsing involves the process of "reducing" a string w to the start

symbol of the grammar. At each reduction step, a specific sub-string

matching the body of a production is replaced by the non-terminal at the

head of that production.

The key decisions during bottom-up parsing revolve around when to reduce

and which production to apply as the parse proceeds.

For example, consider the following snapshots illustrating a sequence of

reductions using the expression grammar. The reductions will be discussed

in terms of the sequence of strings.

id * id; F * id; T * id; T * F ; T ; E

The strings in this sequence are formed from the roots of all the subtrees in

the snapshots. The sequence starts with the input string "id * id." The first

reduction produces "F * id" by reducing the leftmost "id" to "F," using the

production F→id. The second reduction produces "T * id" by reducing "F"

to "T."

Now, there is a choice between reducing the string "T," which is the body

of E→T, and the string consisting of the second "id," which is the body of

66

Principles of

Compiler Design
F→id. Instead of reducing "T" to "E," the second "id" is reduced to "F,"

resulting in the string "T * F." This string then reduces to "T." The parse

completes with the reduction of "T" to the start symbol E.

By definition, a reduction is the reverse of a step in a derivation (recall that

in a derivation, a nonterminal in a sentential form is replaced by the body

of one of its productions). The goal of bottom-up parsing is therefore to

construct a derivation in reverse.

This derivation is in fact a rightmost derivation

3.5.2 Handle Pruning

Bottom-up parsing, during a left-to-right scan of the input, constructs a

rightmost derivation in reverse. Informally, a "handle" is a substring that

matches the body of a production, and its reduction represents one step

along the reverse of a rightmost derivation.

For example, adding subscripts to the token’s "id" for clarity, the handles

during the parse of

 "id1 * id2" according to the expression grammar are as follows:

1. Starting with "id1 * id2":

• Handle: "id1" is reduced to "F" using the production F→id,

resulting in "F * id2".

2. Continuing with "F * id2":

• Handle: "F" is reduced to "T" using the production T→F,

resulting in "T * id2".

3. Continuing with "T * id2":

• Handle: "id2" is reduced to "F" using the production F→id,

resulting in "T * F".

4. Finally, "T * F" is reduced to "T" using the production T→T∗F,

resulting in the final parse tree.

Note that although "T" is the body of the production E→T, the symbol "T"

is not a handle in the sentential form "T * id2". If "T" were indeed replaced

by "E", we would get the string "E * id2", which cannot be derived from the

start symbol E. Thus, the leftmost substring that matches the body of some

production need not be a handle.

Figure: Handles during a parse of id1 * id2

67

Syntax Analysis 3.6 SYNTAX ANALYZER GENERATORS

A parser generator can be used to facilitate the construction of the front end

of a compiler. We shall use the LALR parser generator Yacc as the basis of

our discussion, and it is widely available. Yacc stands for "yet another

compiler-compiler," reflecting the popularity of parser generators in the

early 1970s when the first version of Yacc was created by S. C. Johnson.

Yacc is available as a command on the UNIX system and has been used to

help implement many production compilers.

3.6.1 Parser Generator YACC

A translator can be constructed using Yacc in the manner illustrated in Fig.

First, a file, say translate.y, containing a Yacc specification of the translator

is prepared. The UNIX system command yacc translate.y transforms the file

translate.y into a C program called y.tab.c using the LALR method outlined

below. The program y.tab.c is a representation of an LALR parser written

in C, along with other C routines that the user may have prepared. The

LALR parsing table is compacted. By compiling y.tab.c along with the ly

library that contains the LR parsing program using the command cc y.tab.c

-ly, we obtain the desired object program a.out that performs the translation

specified by the original Yacc program. If other procedures are needed, they

can be compiled or loaded with y.tab.c, just as with any C program.

A Yacc source program has three parts:

Figure: Creating an input/output translator with Yacc

declarations

%%

translation rules

%%

supporting C routines

Example : To illustrate how to prepare a Yacc source program, let us

construct a simple desk calculator that reads an arithmetic expression,

evaluates it, and then prints its numeric value. We shall build the desk

calculator starting with the with the following grammar for arithmetic

expressions:

 E ! E + T j T

T ! T * F j F

F ! (E) j digit

68

Principles of

Compiler Design
The token digit is a single digit between 0 and 9.

The Declarations Part

There are two sections in the declarations part of a Yacc program; both are

optional. In the rst section, we put ordinary C declarations, delimited by %{

and %}. Here we place declarations of any temporaries used by the

translation rules or procedures of the second and third sections. Here, it

contains only the include-statement

#include <ctype.h>

that causes the C pre-processor to include the standard header le <ctype.h>

that contains the predicate is digit.

Also, in the declarations part are declarations of grammar tokens

%token DIGIT

%{

#include<ctype.h>

%}

%token DIGIT

%%

line : expr '\n' { printf("%d\n", $1); }

;

expr : expr '+' term { $$ = $1 + $3; }

| term

;

term : term '*' factor { $$ = $1 * $3; }

| factor

;

factor : '(' expr ')' { $$ = $2; }

| DIGIT

;

%%

yylex() {

int c;

c = getchar();

if (isdigit(c)) {

yylval = c-'0';

return DIGIT;

}

return c;

}

declares DIGIT to be a token. Tokens declared in this section can then be

used in the second and third parts of the Yacc specification. If Lex is used

69

Syntax Analysis to create the lexical analyzer that passes token to the Yacc parser, then these

token declarations are also made available to the analyzer generated by Lex

3.6.2 The Translation Rules Part

In the part of the Yacc specification after the first %% pair, we put the

translation rules. Each rule consists of a grammar production and the

associated semantic action.

In a Yacc production, unquoted strings of letters and digits not declared to

be tokens are taken to be non-terminals. A quoted single character, e.g., 'c',

is taken to be the terminal symbol 'c', as well as the integer code for the

token represented by that character (i.e., Lex would return the character

code for 'c' to the parser, as an integer). Alternative bodies can be separated

by a vertical bar, and a semicolon follows each head with its alternatives

and their semantic actions. The first head is taken to be the start symbol.

A Yacc semantic action is a sequence of C statements. In a semantic action,

the symbol $$ refers to the attribute value associated with the non-terminal

of the head, while $i refers to the value associated with the ith grammar

symbol (terminal or non-terminal) of the body. The semantic action is

performed whenever we reduce by the associated production, so normally

the semantic action computes a value for $$ in terms of the $i's. In the Yacc

specification, we have written the two E-productions.

E | E + T | T

and their associated semantic actions as:

In the Yacc specification, the nonterminal term in the first production is the

third grammar symbol of the body, while + is the second. The semantic

action associated with the first production adds the value of the expr and the

term of the body and assigns the result as the value for the nonterminal expr

of the head. We have omitted the semantic action for the second production

altogether, since copying the value is the default action for productions with

a single grammar symbol in the body. In general, { $$ = $1; } is the default

semantic action.

Notice that we have added a new starting production:

line : expr '\n' { printf (" %d \n ", $1) ; }

This production says that an input to the desk calculator is to be an

expression followed by a newline character. The semantic action associated

with this production prints the decimal value of the expression followed by

a newline character.

70

Principles of

Compiler Design
3.6.3 Using Yacc with Ambiguous Grammars

Let us now modify the Yacc specification so that the resulting desk

calculator

becomes more useful. First, we shall allow the desk calculator to evaluate a

sequence of expressions, one to a line. We shall also allow blank lines

between

expressions. We do so by changing the first rule to

In Yacc, an empty alternative, as the third line is, denotes *. Second, we

shall enlarge the class of expressions to include numbers with a decimal

point instead of single digits and to include the arithmetic operators +, ,

(both binary and unary), *, and /. The easiest way to specify this class of

expressions is to use the ambiguous grammar

The grammar in the Yacc specification in above Fig. is ambiguous, which

means that the LALR algorithm will generate parsing-action conflicts. Yacc

reports the number of parsing-action conflicts that are generated. By

invoking Yacc with a -v option, you can obtain a description of the sets of

items and the parsing-action conflicts, as well as a readable representation

of the LR parsing table showing how the conflicts were resolved.

By default, Yacc resolves parsing conflicts using two rules:

1. A reduce/reduce conflict is resolved by choosing the conflicting

production listed first in the Yacc specification.

2. A shift/reduce conflict is resolved in favor of shift. This rule correctly

resolves the shift/reduce conflict arising from the dangling-else

ambiguity.

To customize the resolution of shift/reduce conflicts, Yacc provides a

mechanism for assigning precedence’s and associativity’s to terminals in

the declarations section. For example:

• %left '+' '-' makes + and - have the same precedence and be left-

associative.

• %right '^' makes ^ right-associative.

• %nonassoc '<' makes < a non-associative binary operator.

71

Syntax Analysis Tokens are given precedences in the order in which they appear in the
declarations part, lowest first. Tokens in the same declaration have the same
precedence. Yacc resolves shift/reduce conflicts by comparing the
precedence and associativity of the production and the terminal involved in
the conflict. If the precedence of the production is greater than that of the
terminal, or if they have the same precedence and the production is left-
associative, then Yacc reduces; otherwise, it shifts.

You can also force a precedence to a production by appending %prec
terminal to the production. This makes the precedence and associativity of
the production the same as that of the terminal, which is defined in the
declaration section. Yacc does not report shift/reduce conflicts resolved
using this mechanism.

In your specific example,
%right UMINUS

assigns a higher precedence to the token
UMINUS

than that of * and /, and
%prec UMINUS

at the end of the production
expr : '-' expr

makes the unary-minus operator in this production have a higher precedence
than any other operator

3.6.4 Error Recovery in YACC

In Yacc, error recovery is implemented using error productions. Here's how
it works:

1. Decision on Error Recovery: The user decides which major
nonterminals will have error recovery associated with them. These are
typically nonterminals generating expressions, statements, blocks,
and functions.

2. Adding Error Productions: The user adds error productions to the
grammar of the form A ! error, where A is a major nonterminal and
error is a Yacc reserved word. These error productions are treated as
ordinary productions by Yacc.

3. Error Handling: When the parser encounters an error, it pops
symbols from its stack until it finds the topmost state whose set of
items includes an item of the form A ! * error. It then shifts a fictitious
token error onto the stack, as if it had seen the token error in the input.

4. Error Recovery Actions:

• If * is empty, a reduction to A occurs immediately, and the

associated semantic action for A ! error is invoked. The parser
then discards input symbols until it finds an input symbol on
which normal parsing can proceed.

72

Principles of

Compiler Design
• If * is not empty, Yacc skips ahead on the input looking for a

substring that can be reduced to *. If * consists entirely of

terminals, it looks for this string of terminals on the input and

reduces them by shifting them onto the stack. The parser will

then reduce error to A and resume normal parsing.

For example, stmt ! Error ; specifies to the parser that it should skip

just beyond the next semicolon on seeing an error and assume that a

statement had been found. The semantic routine for this error

production could generate a diagnostic message and set a flag to inhibit

the generation of object code.

3.7 SUMMARY

The chapter discusses parsing techniques in compiler design, focusing on

top-down and bottom-up parsing. It starts by explaining how parsers

analyze the syntax of a program based on its grammar rules. Top-down

parsing begins at the start symbol and tries to match the input string, while

bottom-up parsing constructs a parse tree starting from the leaves and

working towards the root.

The chapter introduces LL and LR parsing, which are common types of top-

down and bottom-up parsing, respectively. LL parsing is predictive,

meaning it looks ahead at the next input symbol to choose the correct

production. LR parsing uses a more powerful shift-reduce technique to

build a parse tree.

Error recovery is an important aspect of parsing, and Yacc provides

mechanisms for handling errors in the input. Error productions can be added

to the grammar to specify how the parser should recover from errors and

continue parsing.

Overall, the chapter provides a comprehensive overview of parsing

techniques, including their implementation and use in compiler

construction.

3.8 REVIEW QUESTIONS

1. What is the key difference between top-down and bottom-up parsing

techniques?

2. How does Yacc handle error recovery in parsing?

3. Explain the concept of handles in bottom-up parsing and their role in

constructing a parse tree.



73

4
SEMANTIC ANALYSIS

Unit Structure

4.0 Objective

4.1 Introduction

4.2 Role of Semantic Parser

4.3 Symbol Table Management

 4.3.1 Symbol Tables

 4.3.2 Multiple Symbol Tables

 4.3.3 Efficient Imperative Symbol Tables

 4.3.4 Efficient Functional Symbol Tables

 4.3.5 Symbols in The Tiger Compiler

4.4 Type Checking and Type Systems.

 4.4.1 Type-Checking Expressions

 4.4.2 Type-Checking Variables, Subscripts, And Fields

 4.4.3 Type-Checking Declarations

4.5 Attribute Grammars

 4.5.1 Simplifications and Extensions to Attribute Grammars

 4.5.2 Algorithms for Attribute Computation

 4.5.3 The Dependence of Attribute Computation on The Syntax

4.6 Summary

4.7 Review Questions

4.0 OBJECTIVES

• Understand the role of a semantic parser in a compiler and its

importance in translating the abstract syntax tree into executable code.

• Explore the concept of symbol tables and their management,

including techniques for efficient storage and retrieval of symbols.

• Learn about type checking and type systems, including how

expressions, variables, and declarations are type-checked to ensure

program correctness.

• Study attribute grammars and their use in compiler design, including

algorithms for attribute computation and their dependence on the

syntax of the language being compiled.

74

Principles of

Compiler Design
4.1 INTRODUCTION

The semantic analysis phase of a compiler connects variable definitions to

their uses, checks that each expression has a correct type, and translates the

abstract syntax into a simpler representation suitable for generating machine

code. This phase ensures that the program adheres to the rules of the

programming language, such as type consistency, scope resolution, and the

proper usage of identifiers. Semantic analysis typically involves creating

and maintaining symbol tables that record information about variable

names, function names, and their attributes. It also performs type checking

to ensure that operations in the program are applied to compatible types.

Additionally, this phase can include the generation of intermediate code or

an abstract syntax tree that serves as a bridge between the high-level source

code and the low-level machine code, facilitating further optimization and

code generation phases.

4.2 ROLE OF SEMANTIC PARSER

Semantic analysis in a compiler serves two main purposes: ensuring the

correctness of a program according to the rules of the programming

language and enhancing the efficiency of the translated program. The extent

of semantic analysis required varies significantly among different

languages. For instance, dynamically-typed languages like LISP and

Smalltalk might not require any static semantic analysis, while statically-

typed languages such as Ada have stringent requirements for a program to

be executable. Languages like Pascal and C fall somewhere in between

these extremes, with Pascal being stricter than C but less so than Ada.

The first category of semantic analysis ensures the program adheres to

language rules for proper execution. This includes tasks such as type

checking, scope resolution, and ensuring variables are defined before use.

The second category involves optimization techniques aimed at improving

the execution efficiency of the translated program. Although these

optimization methods are typically discussed under "code generation," the

techniques for ensuring correctness also contribute to generating more

efficient code. However, it's important to note that semantic analysis can

only establish partial correctness of a program, not complete correctness,

but it still significantly enhances the security and robustness of the program.

Implementing semantic analysis algorithms can be more complex than

parsing algorithms due to the timing of the analysis during compilation. If

semantic analysis is deferred until after syntactic analysis and the

construction of an abstract syntax tree, the implementation becomes

simpler, involving a traversal of the syntax tree with specific computations

at each node. This approach is typical in multipass compilers. However, in

single-pass compilers, where all operations, including code generation,

must be performed in a single pass, the implementation becomes more ad

hoc and complex. Fortunately, modern practices increasingly allow for

multiple passes, simplifying the processes of semantic analysis and code

generation.

75

Semantic Analysis Despite these challenges, studying attribute grammars and specification

issues is valuable. It helps write clearer, more concise, and less error-prone

code for semantic analysis, making the code easier to understand and

maintain.

4.3 SYMBOL TABLE MANAGEMENT

4.3.1 Symbol Tables

This phase involves maintaining symbol tables (also known as

environments) that map identifiers to their types and locations. As

declarations of types, variables, and functions are processed, these

identifiers are bound to specific meanings within the symbol tables. When

identifiers are used (non-defining occurrences), they are looked up in the

symbol tables. Each local variable in a program has a scope within which it

is visible. For instance, in a Tiger expression let D in E end, all the variables,

types, and functions declared in D are only visible until the end of E. As the

semantic analysis reaches the end of each scope, the local identifier bindings

are discarded.

An environment is a set of bindings denoted by the → arrow. For example,

we could say that the environment σ₀ contains the bindings {g → string, a

→ int}, meaning the identifier a is an integer variable and g is a string

variable.

Consider a simple example in the Tiger language:

tiger

1 function f(a:int, b:int, c:int) =

2 (print_int(a+c);

3 let var j := a+b

4 var a := "hello"

5 in print(a); print_int(j)

6 end;

7 print_int(b)

8)

If we compile this program in the environment σ₀, the formal parameter

declarations on line 1 extend the table to σ₁, which is σ₀ plus {a → int, b →

int, c → int}. The identifiers in line 2 are looked up in σ₁. At line 3, the table

σ₂ is created, which is σ₁ plus {j → int}. At line 4, σ₃ is created, which is σ₂

plus {a → string}.

How does the + operator for tables work when the two environments being

"added" contain different bindings for the same symbol? For instance, when

σ₂ and {a → string} map a to int and string, respectively? To ensure the

scoping rules work as expected in real programming languages, {a →

76

Principles of

Compiler Design
string} should take precedence. Therefore, X + Y for tables is not the same

as Y + X; bindings in the right-hand table override those in the left.

Finally, in line 6, σ₃ is discarded, and we revert to σ₁ for looking up the

identifier b in line 7. At line 8, σ₁ is discarded, and we revert to σ₀.

How should this be implemented? There are two main approaches:

Functional Style: Keep σ₁ intact while creating σ₂ and σ₃. When σ₁ is needed

again, it remains unchanged and ready to use.

Imperative Style: Modify σ₁ to become σ₂, which destructively updates σ₁.

While σ₂ exists, σ₁ cannot be used. Once done with σ₂, the modification can

be undone to restore σ₁. This involves a single global environment σ that

transitions through σ₀, σ₁, σ₂, σ₃, σ₁, σ₀ at different times, along with an

"undo stack" that tracks and reverses the updates. When a symbol is added

to the environment, it is also added to the undo stack. At the end of a scope

(e.g., line 6 or 8), symbols are popped from the undo stack, removing their

latest bindings from σ and restoring their previous bindings.

Both the functional and imperative styles of environment management can

be used regardless of whether the language being compiled or the

implementation language of the compiler is functional, imperative, or

object-oriented.

4.3.2 Multiple Symbol Tables

In some languages, there can be multiple active environments

simultaneously: each module, class, or record in the program has its own

symbol table, σ. Let σ₀ be the base environment containing predefined

functions, and let...

77

Semantic Analysis In ML, the module N is compiled using the environment σ0+σ2 to look up

identifiers; D is compiled using σ0+σ2+σ4, resulting in {M→σ7}. In Java,

forward reference is allowed (so inside N the expression D.d would be

legal), thus E, N, and D are all compiled in the environment σ7; for this

program, the result is still {M→σ7}.

4.3.3 Efficient Imperative Symbol Tables

In programs with a large number of unique identifiers, efficient symbol

tables are essential for quick lookup operations. Here is a sample

implementation of a hash table using external chaining to manage

collisions:

struct Bucket {

 string key;

 void *binding;

 struct Bucket *next;

};

#define SIZE 109

struct Bucket *table[SIZE];

unsigned int hash(char *str) {

 unsigned int hashVal = 0;

 char *s;

 for (s = str; *s; s++)

 hashVal = hashVal * 65599 + *s;

 return hashVal;

}

struct Bucket *createBucket(string key, void *binding, struct Bucket

*next) {

 struct Bucket *b = checked_malloc(sizeof(*b));

 b->key = key;

 b->binding = binding;

 b->next = next;

 return b;

}

void insert(string key, void *binding) {

 int index = hash(key) % SIZE;

 table[index] = createBucket(key, binding, table[index]);

}

void *lookup(string key) {

 int index = hash(key) % SIZE;

 struct Bucket *b;

 for (b = table[index]; b; b = b->next)

 if (strcmp(b->key, key) == 0) return b->binding;

 return NULL;

}

78

Principles of

Compiler Design

void pop(string key) {

 int index = hash(key) % SIZE;

 table[index] = table[index]->next;

}

This implementation uses a hash table with external chaining, making it

efficient and supporting easy deletion operations. Each bucket in the hash

table is a linked list of elements whose keys hash to the same index modulo

SIZE.

Hash Tables

When adding a new binding to a key that already exists in the symbol table,

the insert function in the provided hash table implementation leaves the

existing binding in place and adds the new binding to the beginning of the

linked list in the corresponding bucket. For example, if σ contains a ! → τ1

and a new binding a ! → τ2 is added, the table will contain both bindings,

but a ! → τ2 will be the first in the list for key a.

Later, when pop(a) is called at the end of a's scope, only the topmost binding

for a (the one added most recently) is removed. This is similar to how a

stack operates, where elements are added and removed in a last-in-first-out

(LIFO) manner. If pop(a) is called again, it will remove a ! → τ1, thus

restoring the symbol table to its state before the addition of a ! → τ2.

4.3.4 Efficient Functional Symbol Tables

In the functional programming style, updating a symbol table is done by

creating a new table that includes the new binding, rather than modifying

the existing table. This approach ensures that the original table remains

unchanged and available for further lookups. This concept is similar to

adding numbers in arithmetic, where adding 7 and 8 results in a new value

(15), but the original values (7 and 8) remain unchanged.

However, this non-destructive update approach is not efficient for hash

tables. Adding a new binding to a hash table typically involves updating

pointers in the table, which can be done quickly and efficiently. But this

process destroys the previous mapping, making it unavailable for future

79

Semantic Analysis lookups. Another approach is to copy the entire array representing the hash

table and then add the new element, but this is inefficient for large arrays

because copying them for each new entry is costly.

Using binary search trees, on the other hand, allows for efficient functional

additions. In a binary search tree, adding a new element involves creating a

new node and adjusting the tree structure, but the original tree remains intact

and available for further operations. This makes binary search trees suitable

for functional updates without sacrificing efficiency.

Figure: Binary Search Tables.

In a binary search tree representing the mapping m1

={bat→1,camel→2,dog→3}, adding the binding mouse→4 to create the

mapping m2 can be done efficiently without destroying m1. Adding a new

node at depth d in the tree requires creating d new nodes, but the entire tree

does not need to be copied. Therefore, creating a new tree that shares some

structure with the old one can be done as efficiently as looking up an

element, which takes O(logn) time for a balanced tree of n nodes. This

approach demonstrates a persistent data structure, where a persistent red-

black tree can be maintained to ensure logn access time while keeping the

previous mappings intact.

4.3.5 Symbols in the Tiger Compiler

To efficiently handle strings in a hash table, we can convert each string to a

symbol, enabling fast comparison and hashing. The Symbol module

provides functions for creating symbols, accessing symbol names, and

managing symbol tables. By using symbols, we can efficiently compare and

hash strings without repeated string comparisons

/* symbol.h */

typedef struct S_symbol_ *S_symbol;

S_symbol S_Symbol(string);

string S_name(S_symbol);

typedef struct TAB_table_ *S_table;

S_table S_empty(void);

void S_enter(S_table t, S_symbol sym, void *value);

80

Principles of

Compiler Design
void *S_look(S_table t, S_symbol sym);

void S_beginScope(S_table t);

void S_endScope(S_table t);

PROGRAM symbol.h, the interface for symbols and symbol tables.

In the Tiger compiler, we use destructive-update environments, where each

symbol is mapped to a binding. The S_empty() function creates a new

symbol table, and S_beginScope() and S_endScope() manage the scope of

the symbols. The S_beginScope() function remembers the current state of

the table, and S_endScope() restores the table to the state before the most

recent beginScope().

The symbol.c file implements the symbol table using a hash table. When a

binding is entered, the corresponding symbol is hashed to an index, and a

Binder object is placed at the head of the linked list for that index. If a

previous binding exists for the same symbol, it is hidden by the new binding.

The table.h file defines generic hash table operations for mapping keys to

values.

Overall, the symbol module provides efficient handling of symbols and

symbol tables, essential for compiler implementation, especially in

managing scopes and mappings

#include <stdio.h>
#include <string.h>
#include "util.h"
#include "symbol.h"

/* Definition of the symbol structure */
struct S_symbol_ {
 string name;
 S_symbol next;
};

/* Helper function to create a new symbol */
static S_symbol mksymbol(string name, S_symbol next) {
 S_symbol s = checked_malloc(sizeof(*s));
 s->name = name;
 s->next = next;
 return s;
}
/* Size of the hash table */
#define SIZE 109

/* Hash function for strings */
static unsigned int hash(char *s0) {
 unsigned int h = 0;
 char *s;
 for(s = s0; *s; s++)
 h = h * 65599 + *s;
 return h;
}

81

Semantic Analysis /* Array to hold the hash table */
static S_symbol hashtable[SIZE];

/* Create a symbol from a string */
S_symbol S_Symbol(string name) {
 int index = hash(name) % SIZE;
 S_symbol syms = hashtable[index], sym;
 for(sym = syms; sym; sym = sym->next)
 if (0 == strcmp(sym->name, name))
 return sym;
 sym = mksymbol(name, syms);
 hashtable[index] = sym;
 return sym;
}

/* Get the name of a symbol */
string S_name(S_symbol sym) {
 return sym->name;
}

/* Create an empty symbol table */
S_table S_empty(void) {
 return TAB_empty();
}

/* Enter a symbol and its corresponding value into the table */
void S_enter(S_table t, S_symbol sym, void *value) {
 TAB_enter(t, sym, value);
}

/* Look up the value associated with a symbol in the table */
void *S_look(S_table t, S_symbol sym) {
 return TAB_look(t, sym);
}

/* Begin a new scope in the symbol table */
void S_beginScope(S_table t) {
 S_enter(t, &marksym, NULL);
}

/* End the current scope in the symbol table */

void S_endScope(S_table t) {

 S_symbol s;

 do

 s = TAB_pop(t);

 while (s != &marksym);

}

PROGRAM Symbol table (symbol.c) implementation

/* table.h - generic hash table */

82

Principles of

Compiler Design
/* Opaque type representing a hash table */

typedef struct TAB_table_ *TAB_table;

/* Create a new empty hash table */

TAB_table TAB_empty(void);

/* Enter a key-value pair into the hash table */

void TAB_enter(TAB_table t, void *key, void *value);

/* Look up the value associated with a key in the hash table */

void *TAB_look(TAB_table t, void *key);

/* Pop the most recent binding from the hash table and return its key */

void *TAB_pop(TAB_table t);

When a new binding x ! → b is entered using S_enter(table, x, b), the key x

is hashed to an index i, and a Binder object x ! → b is placed at the head of

the linked list for the ith bucket. If the table already contained a binding x !

→ b', that previous binding would still be in the bucket, hidden by the new

binding x ! → b. This allows for the implementation of undo operations like

beginScope and endScope.

The key x is not a character string, but rather the S_symbol pointer itself.

The table module implements generic pointer hash tables (TAB_table),

mapping a key type (void*) to a binding type (also void*).

To avoid potential programming mistakes due to the use of void*, the

symbol module encapsulates these operations with functions like S_empty,

S_enter, etc., where the key type is S_symbol instead of void*.

Additionally, an auxiliary stack is used to keep track of the order in which

symbols were "pushed" into the symbol table. When a new binding x ! → b

is entered, x is pushed onto this stack. The beginScope operation pushes a

special marker onto the stack. To implement endScope, symbols are popped

off the stack down to and including the topmost marker. As each symbol is

popped, the head binding in its bucket is removed.

The auxiliary stack can be integrated into the Binder by using a global

variable top that shows the most recent symbol bound in the table.

"Pushing" is achieved by copying top into the prevtop field of the Binder,

thus threading the "stack" through the binders

4.4 TYPE CHECKING AND TYPE SYSTEMS

4.4.1 Type-Checking Expressions

The Semant module (semant.h, semant.c) performs semantic analysis –

including type-checking – of abstract syntax. It contains four functions

that recur over syntax trees:

struct expty transVar (S_table venv, S_table tenv, A_var v);

struct expty transExp (S_table venv, S_table tenv, A_exp a);

83

Semantic Analysis void transDec (S_table venv, S_table tenv, A_dec d);

struct Ty_ty transTy (S_table tenv, A_ty a);

The type-checker is a recursive function of the abstract syntax tree. I will

call it transExp because we will later augment this function not only to type-

check but also to translate the expressions into intermediate code. The

arguments of transExp are a value environment venv, a type environment

tenv, and an expression. The result will be an expty, containing a translated

expression and its Tiger-language type:

struct expty {Tr_exp exp; Ty_ty ty;};

struct expty expTy(Tr_exp exp, Ty_ty ty) {

struct expty e; e.exp=exp; e.ty=ty; return e;

}

To avoid discussing intermediate code, we'll define a dummy Translate

module as follows:

typedef void *Tr_exp; and we'll use NULL for every value.

Let's consider a simple case: an addition expression e1 + e2. In Tiger, both

operands must be integers, which the type-checker must verify. The result

of the addition will also be an integer, as determined by the type-checker.

In many languages, addition is overloaded, meaning the + operator can

represent both integer addition and real (floating-point) addition. If both

operands are integers, the result is an integer. If both operands are real

numbers, the result is real. However, if one operand is an integer and the

other is a real number, the integer is typically implicitly converted to a real

number, and the result is also a real number. This conversion is usually

made explicit in the machine code generated by the compiler.

Implementing Tiger's non-overloaded type-checking for addition is

straightforward.:

struct expty transExp(S_table venv, S_table tenv, A_exp a) {

 switch (a->kind) {

 // Other cases for different kinds of expressions

 case A_opExp: {

 A_oper oper = a->u.op.oper;

 struct expty left = transExp(venv, tenv, a->u.op.left);

 struct expty right = transExp(venv, tenv, a->u.op.right);

 if (oper == A_plusOp) {

 if (left.ty->kind != Ty_int)

 EM_error(a->u.op.left->pos, "integer required");

 if (right.ty->kind != Ty_int)

 EM_error(a->u.op.right->pos, "integer required");

 return expTy(NULL, Ty_Int());

 }

 // Handle other operators similarly

 }

84

Principles of

Compiler Design

 // Handle other cases for different kinds of expressions

 default:

 // Handle other cases

 assert(0); // should have returned from some clause of the switch

 }

}

The code snippet provided is a part of the function transExp which translates

expressions in the Tiger programming language. The switch statement is

used to handle different kinds of expressions (A_exp). Inside the case

A_opExp, it checks if the operator is A_plusOp, which represents addition.

It then recursively calls transExp for the left and right operands of the

addition.

If the left operand is not an integer, it generates an error message using

EM_error. Similarly, if the right operand is not an integer, it also generates

an error message. Finally, if both operands are integers, it returns an expTy

structure with a Ty_Int type.

The assert(0) statement is a safety measure to ensure that the function

always returns a value. If the function somehow reaches this point, it

indicates a logic error because it should have returned from one of the case

clauses earlier in the function

4.4.2 Type-Checking Variables, Subscripts, and Fields

The transVar function recursively processes A_var expressions in a

manner similar to transExp for A_exp expressions.

struct expty transVar(S_table venv, S_table tenv, A_var v) {

 switch(v->kind) {

 case A_simpleVar: {

 E_enventry x = S_look(venv, v->u.simple);

 if (x && x->kind == E_varEntry)

 return expTy(NULL, actual_ty(x->u.var.ty));

 else {

 EM_error(v->pos, "undefined variable %s", S_name(v-

>u.simple));

 return expTy(NULL, Ty_Int());

 }

 }

 case A_fieldVar:

 // Handle fieldVar case

 ...

 }

 assert(0); /* should have returned from some clause of the switch */

}

85

Semantic Analysis The transVar function verifies SimpleVar expressions by checking the

environment for the variable's binding. If the identifier is found and is bound

to a VarEntry (not a FunEntry), its type is extracted from the VarEntry.

For function calls, the function identifier is looked up in the environment,

yielding a FunEntry containing a list of parameter types. These types are

then matched against the arguments in the function call expression. The

FunEntry also provides the result type of the function, which becomes the

type of the function call.

Each kind of expression has its own type-checking rules, but those not yet

described follow similar patterns of environment lookup and type matching.

4.4.3 Type-Checking Declarations

Environments are managed and updated by declarations in Tiger, with

declarations appearing exclusively within a let expression. Type-checking

a let expression involves using transDec to translate declarations:

struct expty transExp(S_table venv, S_table tenv, A_exp a) {

 switch(a->kind) {

 ...

 case A_letExp: {

 struct expty exp;

 A_decList d;

 S_beginScope(venv);

 S_beginScope(tenv);

 for (d = a->u.let.decs; d; d = d->tail)

 transDec(venv, tenv, d->head);

 exp = transExp(venv, tenv, a->u.let.body);

 S_endScope(tenv);

 S_endScope(venv);

 return exp;

 }

 ...

 }

}

In this excerpt, transExp sets the current state of the environments using

beginScope(), iterates over the declaration list a->u.let.decs to update the

environments venv and tenv with new declarations, translates the body

expression a->u.let.body, and then reverts the environments to their original

state using endScope().

Variable Declarations

Processing a declaration in Tiger involves augmenting an environment with

a new binding, which is then used in subsequent declarations and

expressions. For instance, processing a variable declaration without a type

constraint, such as var x := exp, is straightforward:

void transDec(S_table venv, S_table tenv, A_dec d) {

86

Principles of

Compiler Design
 switch(d->kind) {

 case A_varDec: {

 struct expty e = transExp(venv, tenv, d->u.var.init);

 S_enter(venv, d->u.var.var, E_VarEntry(e.ty));

 }

 ...

 }

}

If a type constraint is present, as in var x : type-id := exp, compatibility

between the constraint and the initializing expression must be checked.

Additionally, initializing expressions of type Ty_Nil must be constrained

by a Ty_Record type.

Type Declarations

Nonrecursive type declarations are relatively straightforward:

void transDec(S_table venv, S_table tenv, A_dec d) {

 ...

 case A_typeDec: {

 S_enter(tenv, d->u.type->head->name, transTy(d->u.type->head-

>ty));

 }

}

The transTy function translates type expressions from the abstract syntax

(A_ty) to digested type descriptions (Ty_ty). This translation involves

recursively traversing the structure of an A_ty, converting A_recordTy

into Ty_Record, and so on. During translation, transTy looks up any

symbols it finds in the type environment tenv.

Function Declarations

Function declarations are more complex:

void transDec(S_table venv, S_table tenv, A_dec d) {

 switch(d->kind) {

 ...

 case A_functionDec: {

 A_fundec f = d->u.function->head;

 Ty_ty resultTy = S_look(tenv, f->result);

 Ty_tyList formalTys = makeFormalTyList(tenv, f->params);

 S_enter(venv, f->name, E_FunEntry(formalTys, resultTy));

 S_beginScope(venv);

 {

 A_fieldList l;

 Ty_tyList t;

 for(l = f->params, t = formalTys; l; l = l->tail, t = t->tail)

 S_enter(venv, l->head->name, E_VarEntry(t->head));

87

Semantic Analysis }

 transExp(venv, tenv, d->u.function->body);

 S_endScope(venv);

 break;

 }

 }

}

This implementation is simplified and handles only single functions with a

result, not handling recursive functions or errors like undeclared type

identifiers. It constructs a FunEntry for the function, enters formal

parameters into the value environment, processes the body, and then

discards the formal parameters from the environment.

Recursive Declarations

For mutually recursive types or functions, headers are first entered into the

environment and then bodies are processed using these headers. Headers for

types are entered as Ty_Name types with empty bindings:

S_enter(tenv, name, Ty_Name(name, NULL));

Subsequently, transTy stops at Ty_Name types to prevent errors when

looking up types. Illegal cycles in mutually recursive type declarations

should be detected by the type-checker. Mutually recursive functions are

handled similarly, gathering information about headers in the first pass and

processing bodies in the second pass.

4.5 ATTRIBUTE GRAMMARS

In syntax-directed semantics, attributes are associated directly with the

grammar symbols of the language, including terminals and nonterminals. If

X is a grammar symbol and a is an attribute associated with X, we denote

the value of an associated with X as X.a. This notation is akin to a record

field designator in Pascal or a structure member operation in C. Typically,

attributes are calculated and stored in the nodes of a syntax tree using record

fields or structure members.

For a collection of attributes a1, ..., an, the principle of syntax-directed

semantics states that for each grammar rule X₀ → X₁X₂...Xₙ (where X₀ is a

nonterminal and the other Xᵢ are arbitrary symbols), the values of the

attributes Xᵢ.a are related to the values of the attributes of the other symbols

in the rule. If the same symbol Xᵢ appears multiple times in the rule, each

occurrence must be distinguished from the others by suitable subscripting

to differentiate their attribute values.

Each relationship is specified by an attribute equation or semantic rule of

the form Xᵢ.a = fᵢⱼ(X₀.a, X₁.a, ..., Xₖ.a), where fᵢⱼ is a mathematical function

of its arguments. An attribute grammar for the attributes a1, ..., an consists

of all such equations for all the grammar rules of the language.

88

Principles of

Compiler Design

While attribute grammars can seem complex, the functions fᵢⱼ are usually

quite simple in practice. Attributes typically depend on only a few other

attributes, allowing them to be separated into small, independent sets of

interdependent attributes, and attribute grammars can be written separately

for each set.

Attribute grammars are often presented in tabular form, with each grammar

rule listed along with the set of attribute equations or semantic rules

associated with that rule.

The given grammar describes the syntax of unsigned numbers, where each

number is composed of digits (0-9). The grammar has two nonterminals:

number and digit. Each number has an attribute val representing its

numerical value.

1. For digits, the value is directly computable from the digit itself. For

example, the attribute equation digit.val = 0 represents the value of

digit 0.

2. For numbers, if a number consists of a single digit, its value is simply

the value of that digit. This is represented by the equation number.val

= digit.val.

3. If a number consists of more than one digit, its value is computed by

shifting the value of the leftmost digit one decimal place to the left

and adding the value of the rightmost digit. For example, for the

number 34, the value is calculated as 3 * 10 + 4. This is represented

by the equation number.val = number2.val * 10 + digit.val, where

number2 represents the leftmost digit.

These equations define the relationship between the syntax of numbers and

their semantic value. They are used to compute the value of a number during

semantic analysis, typically by traversing a parse tree of the expression.

The attribute grammar for the val attribute, which shows how the value of

a number is computed based on its digits.

In summary, the attribute grammar provides a way to compute the

numerical value of numbers based on their syntax, enabling semantic

analysis to be performed on arithmetic expressions.

89

Semantic Analysis

The given attribute grammar defines a dtype attribute for variable

declarations in a C-like syntax, where variables can be of type int or float.

The dtype attribute represents the data type of the variables. Here's a

summary of the attribute grammar:

1. The dtype attribute of the nonterminal type is determined by the token

it represents (int or float), corresponding to the set {integer, real}.

2. For variable lists (var-list), each identifier (id) in the list has the same

dtype as the entire list, as per the equations associated with var-list.

3. The dtype of the entire declaration (decl) is the dtype of the var-list,

as per the equation associated with the grammar rule for decl.

4. There is no equation involving the dtype of the nonterminal decl,

indicating that a declaration need not have a dtype specified.

The attribute equations can be applied to a parse tree to compute the dtype

attribute for each identifier in a variable declaration.

In cases where the grammar allows syntactically correct but semantically

erroneous combinations (e.g., 1890), an additional error value is needed to

handle such cases. This can be done using conditional expressions in the

attribute equations to handle error conditions appropriately.

Overall, the attribute grammar provides a way to determine the data type of
variables in a C-like syntax, enabling semantic analysis of variable
declarations.

90

Principles of

Compiler Design
4.5.1 Simplifications and Extensions to Attribute Grammars

The use of an if-then-else expression in attribute equations expands the
range of expressions that can be used, allowing for more flexibility in
defining attribute values. This enhances the metalanguage for attribute
grammars, which is the set of expressions allowed in attribute equations. A
clear and expressive metalanguage is essential to avoid confusion and to
facilitate the translation of attribute equations into working code for a
semantic analyzer.

In addition to arithmetic and logical expressions, the metalanguage may
include other types of expressions, such as if-then-else expressions, and
occasionally case or switch expressions. These features make the
metalanguage closely resemble an actual programming language, which is
beneficial when translating attribute equations into executable code.

Another useful feature is the ability to use functions in attribute equations.
Functions like numval(D) can be used to simplify attribute equations,
especially when dealing with multiple similar cases. The definition of these
functions needs to be provided separately, but they can significantly
improve the readability and conciseness of attribute equations.

It's also mentioned that an ambiguous, but simpler, form of the original
grammar can be used in attribute grammars, as long as the ambiguity has
been resolved by the parser. This allows for more straightforward attribute
definitions, without introducing ambiguity in the resulting attributes.

4.5.2 Algorithms for Attribute Computation

To implement an attribute grammar in a compiler, the attribute equations
are translated into computation rules. Each attribute equation assigns the
value of a functional expression on the right-hand side to the attribute on
the left-hand side. For this assignment to succeed, the values of all attributes
used in the expression must already exist.

In the specification of attribute grammars, the order in which the equations
are written doesn't affect their validity, but in implementation, an order for
evaluating and assigning attributes must be determined. This order is
constrained by the dependencies between attributes, which are made
explicit using dependency graphs. Dependency graphs represent the order
constraints on attribute computation.

Each grammar rule choice in an attribute grammar has an associated
dependency graph. The graph has a node for each attribute of each symbol
in the rule, and there is an edge from each attribute on the right-hand side
of an equation to the attribute on the left-hand side, representing the
dependency. The dependency graph for a legal string in the language is the
union of the dependency graphs for each grammar rule choice along the
parse tree of the string.

When drawing dependency graphs, nodes for each symbol are grouped

together to reflect the structured dependencies around a parse tree. For

example, in the attribute grammar for numbers, each symbol has a single

91

Semantic Analysis node for its "val" attribute. The dependency graph for the grammar rule

"number → number, digit" reflects the dependency of "number.val" on

"number2.val" and "digit.val" in the equation "number.val = number2.val *

10 + digit.val"

4.5.3 The Dependence of Attribute Computation on the Syntax

The properties of attributes in an attribute grammar are closely tied to the

structure of the grammar itself. Changes to the grammar that don't affect the

legal strings of the language can significantly impact the computation of

attributes, making it either simpler or more complex.

For example, let's consider the grammar for simple declarations:

decl → type var-list

type → int float

var-list → id, var-list | id

In this grammar, the dtype attribute is inherited. However, if we modify the

grammar slightly as follows:

decl → var-list id

var-list → var-list id, | type

type → int | float

The language accepted by the grammar remains the same, but now the dtype

attribute becomes synthesized. The corresponding attribute grammar is as

follows:

Grammar Rule Semantic Rules

decl → var-list id id.dtype = var-list.dtype

var-list → var-list id, | type var-list.dtype = var-list2.dtype |

type.dtype

type → int | float type.dtype = integer | real

This change affects how the dtype attribute is computed. In the new

grammar, dtype is computed bottom-up (synthesized) rather than top-down

(inherited). The parse tree for the string "float x, y" with attribute values and

dependencies is shown in Figure below. Note that while it may appear that

there are inherited attributes in the figure, these dependencies are actually

to leaves in the parse tree and can be achieved by operations at the

appropriate parent nodes, so they are not considered true inheritances

92

Principles of

Compiler Design
Indeed, while it is theoretically possible to modify a grammar to change

inherited attributes into synthesized attributes, this approach can often lead

to more complex and less understandable grammars and semantic rules. As

a result, it is generally not recommended as a solution for computing

inherited attributes.

However, if the computation of attributes in a grammar becomes overly

complex or difficult, it may indicate that the grammar itself is not well-

suited for attribute computation. In such cases, it may be worthwhile to

consider modifying the grammar to make the attribute computation more

straightforward and manageable.

4.6 SUMMARY

The chapter discusses attribute grammars, which associate attributes with

grammar symbols and use rules to compute these attributes. It explains how

attributes are related to the syntax of a language and how they can be used

to derive meaning from the structure of the language. It introduces the

concept of a metalanguage for writing attribute equations, which includes

arithmetic, logical expressions, and if-then-else statements. The chapter

also discusses the use of functions in attribute equations and how they can

simplify the specification of attributes.

Dependency graphs are introduced as a way to represent the dependencies

between attributes in a grammar. These graphs help determine the order in

which attributes should be computed to ensure that all dependencies are

met. The chapter also discusses how modifications to a grammar can affect

the computation of attributes. While it is possible to change a grammar to

turn inherited attributes into synthesized attributes, this can often lead to

more complex grammars. It suggests that if attribute computation becomes

overly complex, it may be a sign that the grammar needs to be revised for

better attribute computation.

4.7 REVIEW QUESTIONS

1. How are attributes related to the syntax of a language, and how are

they used to derive meaning from the language's structure?

2. What is a metalanguage in the context of attribute grammars, and what

types of expressions are typically allowed in a metalanguage?

3. How are dependency graphs used in attribute grammars, and what role

do they play in determining the order of attribute computation?



93

5
INTERMEDIATE CODE GENERATION

Unit Structure

5.0 Objective

5.1 Intermediate representations (IR)

5.2 Three-address code generation

5.3 Quadruples and triples

5.4 Syntax-directed translation

5.5 Summary

5.6 Exercise

5.7 References

5.0 OBJECTIVE

• To explore the Concept of Intermediate Code Generation

• To understand the concept of Three Address Code.

• To understand different types of representation of Strings.

5.1 INTERMEDIATE REPRESENTATIONS (IR)

In the analysis-synthesis model of a compiler, the front end translates a

source program into an intermediate code that is independent of the

machine, and the back end uses this intermediate code to generate the

target code, which can be understood by the machine. The benefits of

using machine-independent intermediate code include:

• Enhanced Portability: Machine-independent intermediate code

significantly improves the portability of the compiler. Without

intermediate code, the compiler would need to translate the source

language directly to the target machine language, requiring a full

native compiler for each new machine. This necessitates

modifications in the compiler according to the specific machine

specifications.

• Facilitated Retargeting: Intermediate code allows for easier

adaptation of the compiler to different target machines. Instead of

rewriting the entire compiler, only the back end needs to be adjusted

to accommodate the new machine architecture.

• Improved Optimization: Source code optimization becomes more

manageable by modifying the intermediate code. This allows for

better performance improvements in the source code.

94

Principles of

Compiler Design
The parser, a crucial component of the compiler's front end, uses a

Context-Free Grammar (CFG) to validate the input string and produce

output for the subsequent phase. The output can be either a parse tree or

an abstract syntax tree. To interleave semantic analysis with the syntax

analysis phase of the compiler, Syntax Directed Translation is employed.

This approach integrates semantic analysis directly into the parsing

process, ensuring that the semantic meaning of the code is analyzed as the

syntax is being processed.

Definition

Syntax Directed Translation (SDT) enhances grammar rules to facilitate

semantic analysis. It involves passing information through the parse tree in

the form of attributes attached to the nodes, which can be done in a bottom-

up or top-down manner. SDT rules use:

• Lexical values of nodes

• Constants

• Attributes associated with the non-terminals in their definitions

The general approach to Syntax Directed Translation is to construct a parse

tree or syntax tree and compute the values of attributes at the nodes by

visiting them in a specific order. Often, this translation can be accomplished

during parsing without the need to build an explicit tree. This allows for

efficient and integrated semantic analysis during the parsing process.

E -> E+T | T

T -> T*F | F

F -> INTLIT

This is a grammar to syntactically validate an expression having additions

and multiplications in it.

E -> E+T { E.val = E.val + T.val } PR#1

E -> T { E.val = T.val } PR#2

T -> T*F { T.val = T.val * F.val } PR#3

T -> F { T.val = F.val } PR#4

F -> INTLIT { F.val = INTLIT.lexval } PR#5

To understand translation rules further, consider the Syntax Directed

Translation (SDT) augmented to the production rule [E -> E + T]. In this

context, the attribute val is associated with both non-terminals E and T.

The right-hand side of the translation rule corresponds to the attribute

values of the right-side nodes of the production rule, and vice-versa.

Generalizing, SDT involves augmenting rules to a Context-Free Grammar

(CFG) by associating:

• A set of attributes to every node of the grammar.

95

Intermediate

Code Generation
• A set of translation rules to every production rule, using attributes,

constants, and lexical values.

To evaluate translation rules, we can employ a depth-first search (DFS)

traversal on the parse tree. This is feasible because SDT rules do not impose

a specific order on evaluation, provided that children's attributes are

computed before their parents' attributes in grammars where all attributes

are synthesized. Otherwise, we would need to determine the best traversal

strategy to evaluate all attributes in one or more passes through the parse

tree.

The diagram above illustrates how semantic analysis occurs. The flow of

information happens bottom-up, with all children's attributes computed

before their parents' attributes, as discussed. Right-hand side nodes are

sometimes annotated with a subscript to distinguish between children and

parents.

Synthesized Attributes are attributes that depend only on the attribute values

of children nodes. For example, in the production rule [E -> E + T { E.val

= E.val + T.val }], the attribute val of node E is synthesized. If all the

semantic attributes in an augmented grammar are synthesized, a single

96

Principles of

Compiler Design
depth-first search traversal in any order is sufficient for the semantic

analysis phase.

Inherited Attributes are attributes that depend on the attributes of parents

and/or siblings. For example, in the production rule [Ep -> E + T { Ep.val

= E.val + T.val, T.val = Ep.val }], where E and Ep are the same production

symbols annotated to differentiate between parent and child, val is an

inherited attribute corresponding to node T.

Thus, the flow of semantic analysis for synthesized attributes follows a

straightforward bottom-up traversal, while inherited attributes require

careful consideration of parent and sibling nodes to compute the attribute

values correctly.

Advantages of Syntax Directed Translation:

• Ease of implementation: SDT is a simple and easy-to-implement

method for translating a programming language. It provides a clear

and structured way to specify translation rules using grammar rules.

• Separation of concerns: SDT separates the translation process from

the parsing process, making it easier to modify and maintain the

compiler. It also separates the translation concerns from the parsing

concerns, allowing for more modular and extensible compiler

designs.

• Efficient code generation: SDT enables the generation of efficient

code by optimizing the translation process. It allows for the use of

techniques such as intermediate code generation and code

optimization.

Disadvantages of Syntax Directed Translation:

• Limited expressiveness: SDT has limited expressiveness in

comparison to other translation methods, such as attribute grammars.

This limits the types of translations that can be performed using SDT.

• Inflexibility: SDT can be inflexible in situations where the

translation rules are complex and cannot be easily expressed using

grammar rules.

• Limited error recovery: SDT is limited in its ability to recover

from errors during the translation process. This can result in poor error

messages and may make it difficult to locate and fix errors in the input

program.

97

Intermediate

Code Generation

If we generate machine code directly from source code then for n target

machine we will have optimizers and n code generator but if we will have

a machine-independent intermediate code, we will have only one

optimizer. Intermediate code can be either language-specific (e.g.,

Bytecode for Java) or language. independent (three-address code). The

following are commonly used intermediate code representations:

1. Postfix Notation:

• Also known as reverse Polish notation or suffix notation.

• In the infix notation, the operator is placed between operands,

e.g., a + b. Postfix notation positions the operator at the right

end, as in ab +.

• For any postfix expressions e1 and e2 with a binary

operator (+) , applying the operator yields e1e2+.

• Postfix notation eliminates the need for parentheses, as the

operator’s position and arity allow unambiguous expression

decoding.

• In postfix notation, the operator consistently follows the

operand.

Example 1: The postfix representation of the expression (a +

b) * c is : ab + c *

 Example 2: The postfix representation of the expression (a –

b) * (c + d) + (a – b) is : ab – cd + *ab -+

2. Three-Address Code:

• A three address statement involves a maximum of three

references, consisting of two for operands and one for the

result.

• A sequence of three address statements collectively forms a

three address code.

98

Principles of

Compiler Design
• The typical form of a three address statement is expressed

as x = y op z, where x, y, and z represent memory addresses.

• Each variable (x, y, z) in a three address statement is

associated with a specific memory location.

• While a standard three address statement includes three

references, there are instances where a statement may contain

fewer than three references, yet it is still categorized as a three

address statement.

Example: The three address code for the expression a + b * c

+ d : T1 = b * c T2 = a + T1 T3 = T2 + d; T 1 , T2 , T3 are

temporary variables.

There are 3 ways to represent a Three-Address Code in compiler design:

i) Quadruples

ii) Triples

iii) Indirect Triples

3. Syntax Tree:

• A syntax tree serves as a condensed representation of a parse

tree.

• The operator and keyword nodes present in the parse tree

undergo a relocation process to become part of their respective

parent nodes in the syntax tree. the internal nodes are operators

and child nodes are operands.

• Creating a syntax tree involves strategically placing

parentheses within the expression. This technique contributes

to a more intuitive representation, making it easier to discern

the sequence in which operands should be processed.

• The syntax tree not only condenses the parse tree but also

offers an improved visual representation of the program’s

syntactic structure,

Example: x = (a + b * c) / (a – b * c)

99

Intermediate

Code Generation
Advantages of Intermediate Code Generation:

• Easier to implement: Intermediate code generation can simplify

the code generation process by reducing the complexity of the input

code, making it easier to implement.

• Facilitates code optimization: Intermediate code generation can

enable the use of various code optimization techniques, leading to

improved performance and efficiency of the generated code.

• Platform independence: Intermediate code is platform-

independent, meaning that it can be translated into machine code or

bytecode for any platform.

• Code reuse: Intermediate code can be reused in the future to

generate code for other platforms or languages.

• Easier debugging: Intermediate code can be easier to debug than

machine code or bytecode, as it is closer to the original source code.

Disadvantages of Intermediate Code Generation:

• Increased compilation time: Intermediate code generation can

significantly increase the compilation time, making it less suitable

for real-time or time-critical applications.

• Additional memory usage: Intermediate code generation requires

additional memory to store the intermediate representation, which

can be a concern for memory-limited systems.

• Increased complexity: Intermediate code generation can increase

the complexity of the compiler design, making it harder to

implement and maintain.

• Reduced performance: The process of generating intermediate

code can result in code that executes slower than code generated

directly from the source code.

5.2 THREE ADDRESS CODE IN COMPILER :-

Three-address code is a type of intermediate code that is easy to generate

and can be easily converted to machine code. It uses at most three addresses

and one operator to represent an expression, with the computed value stored

in temporary variables generated by the compiler. The compiler determines

the order of operations given by the three-address code.

Three-Address Code is Used in Compiler Applications:

• Optimization: Three-address code is often used as an intermediate

representation during the optimization phases of compilation. It

allows the compiler to analyze the code and perform optimizations

that can improve the performance of the generated code.

• Code Generation: During the code generation phase, three-address

code serves as an intermediate representation. This enables the

100

Principles of

Compiler Design
compiler to generate code that is specific to the target platform while

ensuring that the generated code is correct and efficient.

• Debugging: Three-address code can be helpful in debugging the code

generated by the compiler. Since it is a low-level language, it is often

easier to read and understand than the final machine code. Developers

can use three-address code to trace the execution of the program and

identify errors or issues.

• Language Translation: Three-address code can also facilitate

translating code from one programming language to another. By

translating code to a common intermediate representation, it becomes

easier to convert the code to multiple target languages.

General Representation

 a = b op c

Where a, b or c represents operands like names, constants or compiler

generated temporaries and op represents the operator

Example-1: Convert the expression a * – (b + c) into three address code.

Example-2: Write three address code for following code

for(i = 1; i<=10; i++)

 {

 a[i] = x * 5;

 }

5.3 QUADRUPLE AND TRIPLE

There are 3 representations of three address code namely

1. Quadruple

2. Triples

3. Indirect Triples

101

Intermediate

Code Generation
1. Quadruple – It is a structure which consists of 4 fields namely op,

arg1, arg2 and result. op denotes the operator and arg1 and arg2

denotes the two operands and result is used to store the result of the

expression.

Advantage –

• Easy to rearrange code for global optimization.

• One can quickly access value of temporary variables using

symbol table.

 Disadvantage –

• Contain lot of temporaries.

• Temporary variable creation increases time and space

complexity.

Example – Consider expression a = b * – c + b * – c. The three address

code is:

t1 = uminus c (Unary minus operation on c)

t2 = b * t1

t3 = uminus c (Another unary minus operation on c)

t4 = b * t3

t5 = t2 + t4

a = t5 (Assignment of t5 to a)

2. Triples – This representation doesn’t make use of extra temporary

variable to represent a single operation instead when a reference to

another triple’s value is needed, a pointer to that triple is used. So, it

consist of only three fields namely op, arg1 and arg2.

 Disadvantage –

• Temporaries are implicit and difficult to rearrange code.

• It is difficult to optimize because optimization involves

moving intermediate code. When a triple is moved, any other

triple referring to it must be updated also. With help of pointer

one can directly access symbol table entry.

102

Principles of

Compiler Design
Example – Consider expression a = b * – c + b * – c

3. Indirect Triples – This representation makes use of pointer to the

listing of all references to computations which is made separately and

stored. Its similar in utility as compared to quadruple representation

but requires less space than it. Temporaries are implicit and easier to

rearrange code.

 Example – Consider expression a = b * – c + b * – c

Question – Write quadruple, triples and indirect triples for following

expression : (x + y) * (y + z) + (x + y + z)

Explanation – The three address code is:

(1) t1 = x + y

(2) t2 = y + z

(3) t3 = t1 * t2

(4) t4 = t1 + z

(5) t5 = t3 + t4

103

Intermediate

Code Generation

5.4 SYNTAX DIRECTED TRANSLATION IN COMPILER

DESIGN

The parser uses a Context-Free Grammar (CFG) to validate the input string

and produce output for the next phase of the compiler. The output can be

either a parse tree or an abstract syntax tree. To interleave semantic analysis

with the syntax analysis phase of the compiler, we use Syntax Directed

Translation (SDT).

Conceptually, with both syntax-directed definitions and translation

schemes, we parse the input token stream, build the parse tree, and then

traverse the tree as needed to evaluate the semantic rules at the parse tree

nodes. Evaluating the semantic rules may generate code, save information

in a symbol table, issue error messages, or perform other activities. The

translation of the token stream is the result obtained by evaluating these

semantic rules.

104

Principles of

Compiler Design
Definition

Syntax Directed Translation has augmented rules to the grammar that

facilitate semantic analysis. SDT involves passing information bottom-up

and/or top-down to the parse tree in form of attributes attached to the nodes.

Syntax-directed translation rules use 1) lexical values of nodes, 2) constants

& 3) attributes associated with the non-terminals in their definitions.

The general approach to Syntax-Directed Translation is to construct a parse

tree or syntax tree and compute the values of attributes at the nodes of the

tree by visiting them in some order. In many cases, translation can be done

during parsing without building an explicit tree.

Example

E -> E+T | T

T -> T*F | F

F -> INTLIT

E -> E+T { E.val = E.val + T.val } PR#1

E -> T { E.val = T.val } PR#2

T -> T*F { T.val = T.val * F.val } PR#3

T -> F { T.val = F.val } PR#4

F -> INTLIT { F.val = INTLIT.lexval } PR#5

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse

tree corresponding to S would be

To evaluate translation rules, we can employ one depth-first search traversal

on the parse tree. This is possible only because SDT rules don’t impose any

specific order on evaluation until children’s attributes are computed before

parents for a grammar having all synthesized attributes. Otherwise, we

would have to figure out the best-suited plan to traverse through the parse

tree and evaluate all the attributes in one or more traversals. For better

understanding, we will move bottom-up in the left to right fashion for

computing the translation rules of our example.

105

Intermediate

Code Generation

The above diagram shows how semantic analysis could happen. The flow

of information happens bottom-up and all the children’s attributes are

computed before parents, as discussed above. Right-hand side nodes are

sometimes annotated with subscript 1 to distinguish between children and

parents.

5.5 SUMMARY

This chapter mainly focuses on Representation of Strings using Three

Address Code, Syntax Directed Translation and Semantic Analysis

5.6 EXERCISE

Q. 1 Write a short note on Three Address Code.

Q. 2 What do you mean by Semantic Analysis?

Q. 3 Define Quadruple.

Q. 4 What are advantages of Syntax Directed Translation ?

5.7 REFERENCES

• Compilers: Principles, Techniques, and Tools" by Alfred V. Aho,

Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman 2nd Edition,

Pearson Publication, 2006 ISBN-13: 978- 0321486813

• Modern Compiler Implementation in C" by Andrew W. Appel, 3rd

Edition, Cambridge University Press, 2020, ISBN-13: 978-

1108426631

106

Principles of

Compiler Design
• Principles of Compiler Design" by D. M. Dhamdhere, 2nd Edition

Publisher: McGraw-Hill Education, 2017, ISBN-13: 978-

9339204608

• https://www.geeksforgeeks.org/syntax-directed-translation-in-

compiler-design/

• https://www.geeksforgeeks.org/three-address-code-compiler/



https://www.geeksforgeeks.org/syntax-directed-translation-in-compiler-design/
https://www.geeksforgeeks.org/syntax-directed-translation-in-compiler-design/
https://www.geeksforgeeks.org/three-address-code-compiler/

107

6
CODE OPTIMIZATION

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Overview of Optimization

 6.2.1 Code Optimization

 6.2.2 Machine Dependent Optimization

 6.2.3 Machine Independent Optimization

6.3 Loop Optimization Techniques

6.4 Data Flow Analysis

6.5 Code Generation Techniques

 6.5.1 Target Machine description

 6.5.2 Overview of Assembly process

 6.5.3 Register Allocation

 6.5.4 Instruction Selection

6.6 Summary

6.7 Exercise

6.8 References

6.0 OBJECTIVES

• To Examine evaluation time required by compiler to execute program.

• Outline program Readability and Maintainability

• To apply optimization techniques for code improvement.

• To construct the basic architecture of machine model.

• Formulate the need of register and memory allocation needed for

compiler design.

6.1 INTRODUCTION

When we are writing program it is nothing but some kind of specifications

which we are informing to compiler to do computation. After reading these

specifications compiler will generate object code which will have some

other specifications. Depending on the input there are many object

programs which will follow some specifications. Some of the specifications

may take lot of time to execute or they may take more memory. Therefore,

there is a need to optimize code so that one can save memory or execution

time.

108

Principles of

Compiler Design
6.2 OVERVIEW OF OPTIMIZATION

Code optimization which is also known as code improvement in compiler

design is a critical phase that focuses on improving the performance and

efficiency of the generated machine code without altering its functionality.

This phase sits strategically after the initial parsing and semantic analysis

stages, where the high-level code is converted into an intermediate

representation (IR), and before the final code generation phase, where the

IR is translated into machine code specific to the target architecture. The

goal of code optimization is to produce a faster, more efficient program that

consumes fewer resources, such as CPU time, memory, power etc.

This phase is optional and it is completely depending on compiler whether

to execute program via this phase or omit this phase. Here code is

transformed into some other form which may be easy to evaluate or process.

Code optimization encompasses a broad spectrum of techniques and

transformation, aimed at enhancing the performance and efficiency of code

without altering its intended functionality. This process, crucial in compiler

design and software development, involves multiple aspects that

collectively contribute to the generation of optimized code. There are three

criteria which can be considered as optimizing transformations:

1. Does the optimization capture most of potential improvement?

2. Does the optimization maintain the original meaning of program?

3. Does optimization reduce time or space of program?

To create an efficient target program a programmer needs more than an

optimizing compiler which can take care of all above aspects. Following are

the options available to programmer and compiler designer for creating

efficient target program.

1. Criteria for code improving transformation

The transformation must preserve the meaning of program. It should not

change the output by a program. Sometimes after optimization the program

may slow down slightly so it should maintain its average speed.

2. Getting better performance

Figure 1 : representation of compiler

109

Code Optimization Here in this figure the Source program is submitted to front end of compiler

where user can have freedom of using different algorithms, use of different

loops like while, do-while , for and check the complexity of code.

While generating IC compiler can work on improving loops and memory

address associated with variables. Compiler can be responsible to make

good use of machine resources. Example. Keeping the most heavily used

variable in register can cut down running time of program. In case of C

program there is a provision of using storage class so that one can treat a

memory location as register to speed up the execution process.

3. The organization of an optimizing compiler

Figure 2: organizing optimizing compiler

Organizing an optimizing compiler involves structuring its components and

workflow in a manner that efficiently processes source code to produce

optimized machine code. An optimizing compiler typically goes through

several stages, each responsible for different aspects of the translation and

optimization process. The organization of these components is crucial for

achieving effective optimization while maintaining the correctness of the

compiled program. Various techniques are needed to transform program

into a better version.

6.2.1 Code Optimization

Code optimization in the context of compiler design refers to the phase

where the compiler attempts to improve the intermediate or final code it

generates, making it run faster, consume less memory, or otherwise use

system resources more efficiently without changing the semantics of the

program. This optimization can occur at various stages of the compilation

process and can target different aspects of the program's performance.

Impact of Code Optimization

Execution Speed: Perhaps the most sought-after result of code

optimization is faster program execution. This can be achieved by

eliminating unnecessary operations, improving the use of CPU caches, or

reducing the overhead of function calls, among other techniques.

110

Principles of

Compiler Design
Resource Usage: Efficiently using memory and other system resources can

not only speed up a program but also reduce its operational costs, especially

in large-scale or embedded systems.

Energy Consumption: For mobile devices and data centers, optimized

code can lead to significant savings in energy consumption, which is both

economically beneficial and environmentally friendly.

User Experience: For end-users, optimizations can lead to more responsive

applications and longer battery life on mobile devices, directly impacting

the perceived quality of the software.

 6.2.2 Machine Dependent Optimization

Machine-dependent as a name indicates that optimization is completely

depend on machine model or architecture of machine and its components

used like register, addressing modes etc. i.e. optimization in compiler design

refers to the phase or set of transformations that specifically target the

characteristics and features of the underlying hardware platform for which

the code is being compiled. Unlike machine-independent optimizations that

focus on language-level or algorithmic improvements applicable across

different platforms, machine-dependent optimizations take into account the

specifics of the target architecture to enhance performance. These

optimizations can significantly impact the efficiency and speed of the

compiled program by leveraging the unique capabilities and avoiding the

specific limitations of the hardware.

Following are the examples of machine dependent optimization techniques:

a) Register Allocation

One of the primary machine-dependent optimizations is register allocation.

Registers are the fastest storage available to a CPU, and efficient use of

registers can significantly speed up a program. The compiler decides which

variables or intermediate values should be kept in these limited but fast

storage locations. Advanced register allocation algorithms, like graph

coloring, are used to make these decisions effectively.

Example:

Consider the program fragment in high level language

int a = 5;

int b = 10;

int c = a + b;

int d = c * 2;

111

Code Optimization Without optimization After optimization

MOV [a], 5 ; Move 5 into memory

location 'a'

MOV [b], 10 ; Move 10 into

memory location 'b'

MOV R1, [a] ; Load 'a' from

memory into register R1

MOV R2, [b];

ADD R1, R2

MOV [c], R1 ; Store result from R1

to 'c'

MOV R3, [c]; Load 'c' from

memory R3

SHL R3, 1 ; shift left by 1 bit

MOV [d], R3; Store result from R3

to memory location 'd'

MOV R1, 5 ; Move 5 directly

into register R1 (for 'a')

MOV R2, 10 ; Move 10 directly

into register R2 (for 'b')

ADD R1, R2 ; Add R1 and R2,

result in R1 ('c' = 'a' + 'b')

SHL R1, 1 ; Multiply R1 by 2

(shift left by 1 bit, for 'd')

Without register allocation optimization, the compiler might naively store

all variables in memory and load them into registers only when an operation

is performed. Without register allocation optimization, the compiler might

naively store all variables in memory and load them into registers only when

an operation is performed.

Advantages :

• Fast accessible storage

• Allows computations to be performed on them

• Deterministic behavior

• Reduce memory traffic

• Reduces overall computation time

Disadvantages :

• Registers are generally available in small amount (BC DE HL in case of

8085 micro processor)

• Register sizes are fixed and it varies from one processor to another

• Registers are complicated

• Need to save and restore changes during context switch and procedure

calls

112

Principles of

Compiler Design
b) Instruction Selection

Different CPUs support different sets of instructions, with some instructions

being more efficient than others for certain tasks. Instruction selection

optimization involves choosing the most efficient machine instructions to

perform operations represented in the intermediate code. This might include

using specialized instructions for certain mathematical operations, memory

access patterns, or data manipulation tasks that are unique to the processor

architecture.

Instruction selection is a crucial machine-dependent optimization process

in compilers, where the compiler chooses the most efficient machine

instructions to implement high-level language constructs. This optimization

ensures that the generated machine code makes optimal use of the target

architecture's instruction set and features. Example :

Consider program fragment

int a = 1;

int b = 1;

int c = a + b;

Before optimization After optimization

MOV eax, 5 ; Move 5 into

register eax (a)

MOV ebx, 10 ; Move 10 into

register ebx (b)

ADD eax, ebx ; Add a and b,

result in eax (c)

MOV eax, 5 ; Move 5 into

register eax (a)

ADD eax, 10 ; Add 10 directly to

eax (b), result in eax (c)

With instruction selection optimization, the compiler can leverage the

specific features of the x86 architecture to produce more efficient code.

c) Instruction Scheduling

The order in which instructions are executed can greatly affect performance,

especially on modern CPUs with complex pipelines and execution units

capable of parallel instruction execution. Instruction scheduling rearranges

the order of instructions to avoid pipeline stalls (waiting states) and to make

efficient use of instruction-level parallelism. This optimization must

consider the CPU's specific pipeline architecture and execution

dependencies.

The pipelined architecture allows multiple instructions to be executed

simultaneously, with different stages of each instruction executed

concurrently in different pipeline stages.

113

Code Optimization Instruction scheduling aims to reorder instructions to minimize

dependencies and stalls, ensuring that the pipeline operates at maximum

throughput.

The compiler may analyze the dependency between instructions and reorder

them to minimize pipeline stalls caused by data hazards or resource

conflicts.

In the optimized version, the instructions are already in a sequence where

the output of one instruction is not needed immediately by the next,

minimizing stalls and maximizing the pipeline's utilization.

6.2.3 Machine Independent Optimization

Machine-independent optimization in compiler design refers to a set of

optimizations that can be applied to source code regardless of the target

machine architecture. These optimizations focus on improving the

efficiency and performance of programs at a high-level language

representation, such as intermediate code or abstract syntax trees, without

considering specific hardware details.

Example

a) Elimination of common sub expression

Common Subexpression Elimination (CSE) is a machine-independent

optimization technique that identifies redundant computations within a

program and eliminates them to improve performance. It involves

identifying expressions that are computed multiple times within a program

and replacing them with a single computation, storing the result in a

temporary variable.

Consider the statement cost=2*rate+(start-finish-100)+(start-finish+rate)

Three address code for the above statement is

T1=2*rate

T2=start-finish

T3=T2-100

T4=start-finish

T5=T4+rate

T6=T1+T4

T7=T6+T5

Cost=T7

Here start-finish is repeated so we can eliminate one of the statement and

can optimize the code as follows

114

Principles of

Compiler Design
T1=2*rate

T2=start-finish

T3=T2-100

T4=T3+T1

T5=T2+rate

cost=T5+T4

b) Constant folding

Constant folding is a machine-independent optimization technique where

the compiler evaluates constant expressions at compile time instead of

deferring their evaluation until runtime. It involves replacing expressions

composed entirely of constants with their computed values.

Example:

Consider statement int a = 10 + 5;

In this code, the expression 10 + 5 is a constant expression because both

operands are literals. During compilation, constant folding can be applied

to evaluate the expression 10 + 5 and replace it with its computed value.

After constant folding, the code becomes:

int a = 15;

c) Dead code elimination

A piece of code is said to be dead if the results evaluating the code are not

used in the program , such code can be eliminated safely. It helps in

reducing the size of the compiled program and improving runtime

efficiency by eliminating unnecessary computations and memory

allocations.

Example:

A=25

{

Lines of code

A=b+c

Lines

}

Here ,

A=25 is dead since its value is

updated so we can improve the

code as follows

{

Lines of code

A=b+c

Lines

}

A=25

115

Code Optimization

{

 int x = 5;

 int y = 10;

 if (x < y) {

 printf("x is less than y\n");

 } else {

 printf("x is greater than or

equal to y\n");

 }

 }

Here x and y are initialized so

always x is less than y will be

executed and else part will never

going to execute. We can eliminate

the same and code will become

{

 int x = 5;

 int y = 10;

 if (x < y) {

 printf("x is less than y\n");

 }

}

d) Usage of high operators over low operators

Benefits of Using Addition Instead of Multiplication:

Efficiency: Addition operations are generally faster than multiplication

operations, especially on processors with limited hardware resources.

Simplicity: The code becomes more concise and easier to understand by

replacing multiple addition operations with a single multiplication.

Reduced Overhead: The compiler may optimize the multiplication

operation further, depending on the target architecture, resulting in reduced

overhead.

Similarly, Division operations are generally faster than subtraction

operations on modern processors. Processors are optimized to perform

division efficiently, especially for division by constant values.

6.3 LOOP OPTIMIZATION TECHNIQUES

Before we understand loop optimization techniques let us understand what

is loop in programming language. Loops are nothing but one form of control

structure which allows block of statements to be executed until certain

condition is fulfilled. Loop consists of path from top to bottom. Here top of

loop is known as header(H) and path (P) specifies the route which one needs

to follow till certain conditions are fulfilled denoting as loop(H, P).

Optimizing loops is particularly important in compilation, since loops (inner

loops) account for much of the executions times of many programs. Since

tail-recursive functions are usually also turned into loops, the importance of

loop optimizations is further magnified.

116

Principles of

Compiler Design
Loop is very important place when optimization is necessary, the inner

loops where program tend to spend more time. The running time of program

may be improved if we decrease the number of instructions in an inner loop.

Loop Optimization is the process of increasing execution speed and

reducing the overheads associated with loops. It plays an important role in

improving cache performance and making effective use of parallel

processing capabilities. Most execution time of a scientific program is spent

on loops.

1) Code Motion (Frequency Reduction)

Here, the amount of code in the loop is decreased. A statement or

expression, which can be moved outside the loop body without affecting the

semantics of the program, is moved outside the loop.

Example:

Before optimization After optimization

while(i<100)

{

 a = Sin(x)/Cos(x) + i;

 i++;

}

t = Sin(x)/Cos(x);

while(i<100)

{

 a = t + i;

 i++;

}

Here in this example always value of sin(x) and cox(x) will be same so

instead of keeping statement inside loop we can move it outside the loop

i.e. beginning loop to reduce the time required to compute.

2) Induction Variable Elimination

If the value of any variable in any loop gets changed every time, then such

a variable is known as an induction variable. With each iteration, its value

either gets incremented or decremented by some constant value.

3) Loop Unrolling

Loop unrolling is a loop transformation technique that helps to optimize the

execution time of a program. We basically remove or reduce iterations.

Loop unrolling increases the program’s speed by eliminating loop control

instruction and loop test instructions.

Before optimization After optimization

I=1

While(I<=100)

I=1

While(I<=100)

https://www.geeksforgeeks.org/loop-unrolling/

117

Code Optimization {

X[i]=0;

I++;

}

{

X[i]=0;

I++;

X[i]=0;

I++

}

Here, i<=100 will be performed 100 times but if the body of loop is replaced

then number of times this test is performed could be reduced. Unrolling

makes 2 copies of body so that work can be reduced to 50%.

4) Loop jamming

Loop jamming is combining two or more loops in a single loop. It reduces

the time taken to compile the many loops.

Before optimization After optimization

for(int i=0; i<5; i++)

 a = i + 5;

for(int i=0; i<5; i++)

 b = i + 10;

for(int i=0; i<5; i++)

{

 a = i + 5;

 b = i + 10;

}

Here, we merge the bodies of loop.

6.4 DATA FLOW ANALYSIS TECHNIQUES

As a name indicates this technique involves the flow of data in control flow

graph, i.e. the study helps us to determine the information regarding the

definition and for what purpose data is used in the program. This method

helps in optimization as flow of the data helps to understand it’s movement.

One can trace the value or variable and can find out how the variable is

changing its value based on instructions written. It is very similar to add a

watch on variables in ‘C’ Program and with the help of F7 key one can find

or trace the variable so that flow and hence logical error can be traced.

In order to implement technique, we can design graph in the form of

flowchart representing node as program statements and edges as flow

between statements. One can use rules and regulations to compute values of

each expression and variables associated with them.

118

Principles of

Compiler Design
Following is a list of some of the common types of data flow analysis

1. Reaching Definitions Analysis:

 As the name indicated reaching definition implies whether a variable

or expression can be reached with the help of some logical

programming. If a particular variable is unable to reach it implies we

can remove that variable as it is never going to be the part of program.

Example

A definition D is reaches a point x if there is path from D to x in which D is

not killed, i.e., not redefined.

X=0 this is block 1 where X is initialized to 0

X=X+7 This is block 2 where value of X is updated

Y=X+7 this is block 3 here value from block 1 is not accessible.

2. Live Variable Analysis: This analysis find the points in program

where variable is holding some value which may come from some

computing operations or it is taking part in some computation. If it is not

taking any part of data movement then one can safely eliminate.

Example : A variable is said to be live at some point p if from p to end the

variable is used before it is redefined else it becomes dead.

119

Code Optimization 3. Available Expressions Analysis:

 This analysis can be used to find whether a particular expression is

taking part in evaluating expression which helps in eliminating

common sub expression.

4. Constant Propagation Analysis:

 Constants play a vital role in programming and hence to keep a track

of such constants and optimize the work we can use this techniques.

We can track values of constants and find point in the code where they

are used.

6.5 CODE GENERATION TECHNIQUES

Code generation techniques can be the final stage of compiler activity. The

code generation of high level language is nothing but the object code of that

language. For example in case of JAVA we get .class files based on number

of classes present in the program. The .class files are nothing but object

files. Code generation process is very tricky due to its complex operations

as compiler has to deal with various forms of instructions based on

addressing modes. The architectural issues may be discussed with respect

to registers and accumulators. Selecting proper instructions is also an

important feature to optimize code.

 They should have following properties:

a. It should preserve the meaning of original problem.

b. It should be efficient with respect to CPU and memory management.

6.5.1 Target Machine description

Target code generation is one of the important aspect in converting

assembly level language to optimized code into machine understandable

format. Target code can be machine readable code or assembly code or X86

instruction format. Here the machine will read each and every line and it

will convert into its corresponding numerical opcode format and the

conversion is always in 1:1 mapping. Like each instruction in X86 format

will have corresponding one code in numerical code format.

While generating code on target machine one should look for following

properties of machine in the form of its design or architecture as most of

time instruction will be using registers as they are the fast in performing

many operations. As registers are the internal part of CPU they are limited

in number and size as well.

1) Instruction Set

Every X86 supporting languages will have their own design and hence they

are machine dependent and hence their instructions may vary depending

upon what kind of bits they use. Like 8 bit, 16 bit and so on. Variety of

instruction types are available like arithmetic, logical, conditional, data or

120

Principles of

Compiler Design
block transfer etc. Some instructions are like increment and decrement

which allows to increase the data of block by 1 or decrease data of block

by 1.

Following table shows some of the instruction based on category.

Format of operations Examples of instructions

Conditional JZ (jump if zero)

JC (jump if carry)

Arithmetic ADD (adds two numbers)

SUB (Subtracts two numbers)

Block transfer/ Data transfer MOV (moves data from source to

destination)

LDA (load data)

Table 1 : examples of operations

Here when we perform any operation always data will come from

accumulator and result will be stored in accumulator.

2) Addressing Modes

Addressing modes define in what way data will come to system and how it

will get processed by the system. Following are the different modes of

addressing.

Addressing mode Examples

Register to register MOV A, B

Here A and B are registers as they

are oprands.

Immediate MVI A,05H

Here number 5 will be transferred

to register.

Direct LDA A,1000H

Here 1000 is a memory address.

Content from memory address

1000 is extracted and stored in

register A

Table 2: Sample of addressing modes

121

Code Optimization 3) Instruction Formats

The format of instruction will talk about how one should write instruction

while coding. General format is as follows:

[Label] Opcode [operand/s]

Here label can be optional and used only if there are conditional statements

written.

Operands can be optional as one can use it for auto increment and auto

decrement purpose.

Maximum 2 operands can be specified.

6.5.2 Overview of Assembly Process

The process of converting mnemonics into low level language is nothing

but assembly process in which system performs following operations:

1) Scan instruction and create tokens based on opcode , operands etc.

2) Identify symbols/variables and enter them in symbol table.

3) Identify literals if any and put them into literal table.

4) Keep updating location counter.

5) Allocate memory to variables

6) Scan instruction and check whether it is there in opcode table. Check

syntax by mapping character by character. If any error is found reject.

7) Perform semantic check on instruction.

8) Extract numerical opcode and extract memory address of variable

defined.

9) Generate instruction.

Example:

Consider following code

LC Instruction

.

.

.

13

.

.

.

25

.

.

.

A DS 1

.

.

.

L1: ADD N

122

Principles of

Compiler Design
Assume that there is a declaration statement on line number 13 stating that

declare a block A. Later on line number 25 says that Add variable N.

Assembler will create tokens as

A DS 1

As soon as it detects variable A it will be added in symbol table. When it

fetches instruction from line 25 it will identify there is an instruction ADD.

It will verify the same with the help of Opcode table and extract

corresponding code and generate instruction.

6.6 SUMMARY

Code optimization is a critical process for enhancing the efficiency of

software. It involves a careful trade-off between improving performance

and maintaining other important attributes such as readability and

maintainability. Effective optimization requires a deep understanding of

both the software being written and the hardware on which it will run. It's

also a cooperative process between the programmer and the compiler, each

bringing its strengths to produce the most efficient code possible while

preserving the program's semantics.

6.7 EXERCISE

1. Justify importance of optimization in compiler.

2. Demonstrate any two techniques of machine independent

optimization.

3. Elaborate loop unrolling and loop jamming techniques.

4. Compare machine dependent and machine independent optimization

techniques.

6.8 REFERENCES

• Compilers: Principles, Techniques, and Tools" by Alfred V. Aho,

Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman 2nd Edition,

Pearson Publication, 2006 ISBN-13: 978- 0321486813

• Modern Compiler Implementation in C" by Andrew W. Appel, 3rd

Edition, Cambridge University Press, 2020, ISBN-13: 978-

1108426631

• Principles of Compiler Design" by D. M. Dhamdhere, 2nd Edition

Publisher: McGraw-Hill Education, 2017, ISBN-13: 978-

9339204608

• https://www.geeksforgeeks.org/syntax-directed-translation-in-

compiler-design/

 https://www.geeksforgeeks.org/three-address-code-compiler/



https://www.geeksforgeeks.org/syntax-directed-translation-in-compiler-design/
https://www.geeksforgeeks.org/syntax-directed-translation-in-compiler-design/
https://www.geeksforgeeks.org/three-address-code-compiler/

123

7
RUNTIME ENVIRONMENTS

Unit Structure

7.0 Objective

7.1 Introduction

7.2 Activation Records and Stack Management

 7.2.1 Introduction to Activation Records

 7.2.1.1 Structure of an activation record

 7.2.1.2 Role in function/procedure call management

 7.2.2 Stack Management

 7.2.2.1 Call stack and its significance

 7.2.2.2 Stack frame allocation and deallocation

 7.2.2.3 Stack pointer and frame pointer management

7.3 Heap Memory Management

 7.3.1 Difference between stack and heap memory

 7.3.2 Dynamic Memory Allocation

 7.3.2.1 Allocation and deallocation techniques

 7.3.2.2 Garbage collection methods (reference counting,

 mark-and-sweep, generational GC)

7.4 Call and Return Mechanisms

 7.4.1 Call Mechanism

 7.4.2 Return Mechanism

7.5 Exception Handling

7.6 Lexical and Syntax Error Handling

 7.6.1 Lexical Error Handling

 7.6.1.1 Introduction to Lexical Errors

 7.6.1.2 Error Recovery Strategies

 7.6.1.3 Error Reporting and Handling

 7.6.2 Syntax Error Handling

 7.6.2.1 Introduction to Syntax Errors

 7.6.2.2 Error Recovery Strategies

 7.6.2.3 Error Reporting and Handling

7.7 Summary

7.8 Questions for practice

7.9 References

124

Principles of

Compiler Design
7.0 OBJECTIVE

The objectives of this study material are to provide a foundational

understanding of activation records, stack management, and heap memory

management, including dynamic memory allocation and garbage collection

techniques. Learners will master call and return mechanisms, such as

parameter passing and function call conventions, and gain knowledge of

exception handling, including try-catch blocks and stack unwinding.

Additionally, the material aims to equip learners with the skills to identify,

report, and recover from common lexical and syntax errors using

appropriate strategies, enhancing their problem-solving abilities in compiler

design.

7.1 INTRODUCTION

This study material on the principles of compiler design covers key concepts

such as runtime environments, activation records, stack and heap memory

management, call and return mechanisms, and exception handling.

Additionally, it addresses lexical and syntax error handling, providing

strategies for error recovery and reporting. The aim is to equip learners with

a solid foundation in compiler design and practical skills for managing

errors and optimizing performance.

7.2 ACTIVATION RECORDS AND STACK MANAGEMENT

Activation records and stack management are fundamental components in

the execution of function and procedure calls in a program. An activation

record, or stack frame, stores vital information for each active subroutine,

including local variables, return addresses, parameters, and saved registers.

These records are pushed onto the call stack when a function is called and

popped off when the function returns, maintaining the correct state of the

program's execution. Effective stack management involves the careful

allocation and deallocation of stack frames, ensuring that memory is used

efficiently and that the call stack accurately reflects the program's call

history. This mechanism supports function call conventions, such as

parameter passing and return value handling, and is crucial for enabling

recursion and nested function calls. Understanding activation records and

stack management is essential for optimizing program performance,

ensuring efficient memory usage, and facilitating effective debugging and

error handling.

7.2.1 Introduction to Activation Records

Activation records, also known as stack frames, are critical data structures

used by compilers to manage information needed during function or

procedure calls in a program. Each activation record contains essential data

such as the function's local variables, arguments passed to the function, the

return address, and saved registers. When a function is called, an activation

record is created and pushed onto the call stack, and when the function

returns, this record is popped off the stack. This process ensures that each

function's execution context is maintained correctly, allowing for proper

125

Runtime Environments control flow and enabling features like recursion and nested calls.

Understanding activation records is vital for grasping how function calls are

handled, how memory is managed during execution, and how debuggers

track the state of a program.

7.2.1.1 Structure of an activation record

When a procedure gets called, the computer creates an activation record to

store all the information needed to execute that procedure. This information

includes the procedure's arguments, local variables, and return address.

When the operation finishes executing, the computer deletes the activation

record. Activation record is also known as stack frames or function call

frames used by the compiler to manage the execution of a function or

procedure.

Imagine a scenario where you have a program with multiple functions. A

new activation function gets created whenever one of the functions gets

called. The activation record is stored on the control stack whenever a

process gets executed. The control stack is a runtime stack used to track live

procedure activations. Its primary purpose is to determine which execution

still needs to be completed. As the activation begins, the procedure name is

pushed into the stack and will pop out as the activation ends. If there is a

recursive procedure, then several activations are active at the same time. If

there is a non-recursive procedure, one activation of the function is executed

simultaneously.

126

Principles of

Compiler Design
Example

Consider a simple example to understand the activation record concept

better. Here in this code, we have taken a function named "addition" that

returns the result of adding two numbers.

#include <stdio.h>

// function to perform addition

void addition(int a, int b) {

 int result = a + b;

 printf("Result: %d\n", result);

}

//main program

int main() {

 int x = 2;

 int y = 8;

 addition(x, y);

 return 0;

}

Explanation

The 'main' function is the program's starting point. It consists of local

variables like 'x' and 'y'. When the 'addition' function gets called from the

main function, a new activation record gets created for the 'addition'

function. The activation record of 'addition' is initialized with parameters

with 'a' and 'b,' which have (2 and 8) values from the calling function. The

result gets stored with the value of 10. Once the 'addition' function work is

completed and reaches its end, then activation records are removed from the

calling stack. Finally, when the 'main' function terminates, its activation

record is removed from the stack.

127

Runtime Environments Components of Activation Records

a. Return Address: This address holds the location where the control

should return upon task completion. This feature helps the program

continue executing from the same point it was initially created. It is

used by a calling function that will return a value to the same calling

function.

b. Parameters: The calling procedure uses it to supply parameters to the

called method. It stores actual parameters used to send input to the

called system. The parameters can be passed by value or reference

and stored in the activation record for the function to access.

c. Control Link: It points toward the activation record of the caller. It

allows you to return and execute continuously. The system uses it to

store information outside the local scope. The control link connects

the activation record to the activation record of the caller.

128

Principles of

Compiler Design
d. Access Link : It stores the address of the activation record of the

caller function.

e. Saved Machine Status: The activation record consists of critical

information about the program's state, which is just about to get

called. It stores information like the return address or machine

registers. The saved machine ensures the program can resume

execution once the procedure call gets terminated.

f. Local Data: This field consists of local data for a particular function's

execution. Local data consists of variables that serve the purpose of

quick calculations or storing specific values of a currently used

function.

g. Temporaries: It refers to the variables or storage locations used to

store intermediate values within the procedure. When a function

executes, it may perform different operations that require temporary

storage. Once the procedure call completes and the control returns to

the calling code, the system deallocates activation records and

releases temporaries.

7.2.1.2 Role in function/procedure call management

In compiler design, the role in function/procedure call management is

critical for translating high-level programming languages into machine code

or intermediate representations. Here are key roles related to

function/procedure call management in compiler design:

a. Parsing and Syntax Analysis: This role involves parsing the source

code to identify function and procedure calls, along with their

129

Runtime Environments parameters and arguments. Syntax analysis ensures that the calls

follow the grammar and syntactic rules of the programming language.

b. Symbol Table Management: Managing a symbol table is crucial for

function/procedure call management. The symbol table keeps track of

all declared functions, procedures, variables, and their associated

information (e.g., data types, scope). During function/procedure calls,

the compiler uses the symbol table to resolve identifiers and check for

semantic correctness.

c. Type Checking: Ensuring type compatibility during

function/procedure calls is another important role. The compiler

checks that the types of arguments passed to functions/procedures

match the expected parameter types, helping to catch type-related

errors early in the compilation process.

d. Intermediate Code Generation: After parsing and semantic

analysis, compilers often generate intermediate code representations.

Function and procedure calls in the source code are translated into

intermediate code instructions, which may involve managing

activation records (stack frames) for each function/procedure call to

handle parameters, local variables, and return addresses.

e. Optimization: Function/procedure call management plays a role in

optimization strategies. Compilers may optimize function calls by

inlining small functions, eliminating redundant calls, or optimizing

parameter passing mechanisms (e.g., using registers for passing

arguments efficiently).

f. Code Generation: Finally, during code generation, the compiler

translates the intermediate code or abstract syntax tree into target

machine code or assembly language. Function and procedure calls are

translated into appropriate machine instructions, taking into account

calling conventions, parameter passing mechanisms, and stack

management.

g. Overall, function/procedure call management in compiler design

encompasses parsing, semantic analysis, symbol table management,

type checking, code generation, and optimization, all aimed at

producing efficient and correct executable code from high-level

programming languages.

7.2.2 Stack Management

In compiler design, stack management plays a crucial role in handling

function calls, local variables, and control flow during program execution.

7.2.2.1 Call stack and its significance

In the context of compiler design, the call stack is a critical concept that

impacts various aspects of program execution and memory management.

Here's how the call stack is significant in compiler design:

130

Principles of

Compiler Design
a. Function Calls and Control Flow: When a compiler processes

source code, it generates instructions for function calls and returns.

These instructions manipulate the call stack to manage the flow of

control during program execution.

 The call stack ensures that function calls are handled in a structured

manner, with each function call creating a new stack frame and

returning control to the caller upon completion.

b. Activation Records and Stack Frames: Compiler design involves

defining the structure of activation records (stack frames) for

functions and procedures. This includes specifying the layout of

parameters, local variables, return addresses, and other relevant

information within each activation record.

 The compiler generates code to manage stack frames, such as

allocating space for local variables, passing parameters, and

saving/restoring registers as needed.

c. Parameter Passing Mechanisms: The call stack plays a role in

parameter passing mechanisms defined by the compiler. This includes

strategies like passing parameters via registers, the stack, or a

combination of both, depending on the calling conventions and

architecture targeted by the compiler.

 Stack-based parameter passing involves pushing parameters onto the

stack before a function call and accessing them within the function

through the corresponding stack offsets.

d. Recursion Handling: Compilers must handle recursion efficiently

using the call stack. Recursive function calls create nested stack

frames, allowing recursive algorithms to work correctly without

causing stack overflow errors.

 The compiler ensures that recursive calls properly manage stack space

and stack frame layout to prevent excessive memory usage and

maintain program integrity.

e. Exception Handling and Error Reporting: Compiler-generated

code for exception handling often relies on the call stack. When an

exception occurs, the call stack provides information about the

function call hierarchy, helping to unwind the stack and locate

appropriate exception handlers.

 Error reporting mechanisms, such as stack traces, use the call stack to

identify the sequence of function calls leading to an error, aiding

developers in debugging and diagnosing issues in their code.

f. Optimization Opportunities: Advanced compilers employ stack-

related optimizations to improve program performance. This includes

techniques like stack frame reuse, stack slot allocation optimization,

and tail call optimization to minimize stack overhead and improve

execution efficiency.

131

Runtime Environments 7.2.2.2 Stack frame allocation and deallocation

In compiler design, stack allocation is a runtime storage management

technique that uses a last-in, first-out (LIFO) principle for allocations and

deallocations. The compiler calculates how much memory to allocate for

each variable in the program, and the memory is automatically released

when a function call is complete. This automatic deallocation is called stack

unwinding, and it involves adjusting the stack pointer, which is a constant-

time operation

In stack allocation, a contiguous area of memory is reserved for the stack,

and pointers called the stack base (SB) and top of stack (TOS) point to the

first and last entries, respectively. Activation records are pushed and popped

onto the stack as activations begin and end, and each activation record

contains storage for the locals in that call.

7.2.2.3 Stack pointer and frame pointer management

In compiler design and low-level programming, managing the stack pointer
(SP) and frame pointer (FP) is crucial for efficient memory allocation and
function call management. Here's how stack pointer and frame pointer
management works and why it's significant:

a. Stack Pointer (SP): The stack pointer is a register or memory
location that points to the top of the stack, indicating the current
position for stack operations.

 When a program starts or a function is called, the stack pointer is
typically initialized to the top of the stack memory region.

 Stack operations such as pushing data onto the stack (e.g., function
parameters, return addresses) or popping data off the stack are
performed by adjusting the stack pointer accordingly.

b. Frame Pointer (FP): The frame pointer is another register or
memory location used specifically for accessing variables and data
within the current stack frame (activation record).

132

Principles of

Compiler Design

 Unlike the stack pointer, which moves dynamically during stack
operations, the frame pointer remains fixed within a stack frame once
it's set.

 The frame pointer is particularly useful for accessing local variables
and parameters within a function, as it provides a stable reference
point within the stack frame.

c. Function Call and Stack Frame Setup: When a function is called,
the compiler generates code to set up the stack frame (activation
record) for that function.

d. This setup process involves adjusting both the stack pointer (SP)
and frame pointer (FP): The stack pointer is moved downward to
allocate space for function parameters, local variables, return address,
and other control information.

 The frame pointer is set to the base of the current stack frame,
providing a stable reference for accessing variables within the frame.

e. Stack Frame Usage: Within a function, the frame pointer is used to
access parameters, local variables, and other data stored in the current
stack frame.

 Accessing variables via the frame pointer avoids the need to adjust
the stack pointer dynamically for each variable access, which can be
more efficient in terms of code generation and execution speed.

f. Stack Unwinding and Return: When a function completes its
execution or returns, the compiler generates code to unwind the stack
frame and restore the previous execution context.

 This process involves popping the current stack frame off the stack by
adjusting the stack pointer and possibly restoring the previous frame
pointer if necessary.

g. Optimizations and Efficiency: Efficient management of the stack

pointer and frame pointer is critical for optimizing code size and

execution speed.

 Compilers may apply optimizations such as frame pointer omission

(FPO) or using a combination of frame pointer and stack pointer for

efficient variable access and function call management.

h. Debugging and Stack Traces: Stack pointer and frame pointer

management are essential for debugging tools and stack traces that

provide insights into program execution and function call hierarchies.

Tools like debuggers use the stack pointer and frame pointer information to

display stack frames, local variables, and function call paths during program

debugging.

133

Runtime Environments 7.3 HEAP MEMORY MANAGEMENT

Heap memory management in compiler design refers to how dynamically

allocated memory is handled during program execution. Unlike stack

memory, which is used for function calls and local variables, heap memory

is used for dynamic data structures such as arrays, linked lists, objects, and

other data that needs to be allocated and deallocated at runtime.

Here are key points about heap memory management in the context of

compiler design:

a. Dynamic Memory Allocation: Heap memory allows programs to

allocate memory dynamically at runtime, unlike stack memory where

the size is typically fixed or determined at compile time.

 Languages like C, C++, and others use functions like malloc, calloc,

realloc, and free for heap memory management.

b. Heap Data Structures: Data structures such as arrays, linked lists,

trees, hash tables, and objects are often allocated on the heap.

 These data structures can grow and shrink dynamically based on

program needs, making heap memory essential for managing complex

data.

c. Memory Allocation Algorithms: Heap memory management

involves algorithms for efficient allocation and deallocation of

memory blocks.

 Common algorithms include first-fit, best-fit, worst-fit, and buddy

allocation, each with its trade-offs in terms of memory fragmentation,

overhead, and allocation speed.

d. Heap Fragmentation: Fragmentation can occur in heap memory

when allocated memory blocks become scattered, leading to

inefficient use of memory.

 Compilers and memory management libraries often employ strategies

like memory compaction, defragmentation, and memory pooling to

mitigate fragmentation issues.

e. Memory Leaks: Heap memory management includes handling

memory leaks, which occur when allocated memory is not properly

deallocated after use.

 Memory leaks can lead to a gradual increase in memory consumption

over time, potentially causing performance issues and resource

exhaustion.

f. Garbage Collection (GC): Some programming languages, such as

Java, C#, and Python, use garbage collection to automatically manage

heap memory.

134

Principles of

Compiler Design
 Garbage collection algorithms identify and reclaim unused memory

(garbage) to free up heap space for future allocations.

g. Manual Memory Management: In languages like C and C++,

developers must manually manage heap memory by allocating and

deallocating memory using functions like malloc and free.

 Manual memory management requires careful handling to avoid

memory leaks, dangling pointers, and other memory-related errors.

h. Compiler Optimizations: Compilers may optimize heap memory

usage by analyzing memory allocation patterns and applying

optimizations such as object pooling, stack allocation for temporary

objects, and optimizing memory access patterns.

7.3.1 Difference between stack and heap memory

7.3.2 Dynamic Memory Allocation

Dynamic memory allocation refers to the process of allocating memory for

data structures or variables at runtime, as opposed to static memory

allocation where memory is allocated at compile time. In the context of

compiler design and programming languages, dynamic memory allocation

is a fundamental concept that allows programs to manage memory flexibly

based on runtime requirements.

7.3.2.1 Allocation and deallocation techniques

A. Allocation Techniques:

a. Static Allocation: Memory is allocated at compile time and remains

fixed throughout the program's execution.

135

Runtime Environments Typically used for global variables, constants, and static arrays.

 Example: int staticArray[100];

b. Dynamic Allocation (Heap Allocation): Memory is allocated at

runtime from the heap using functions like malloc, calloc, or new (in

C/C++/C#/C++).

 Allows for flexible allocation and deallocation of memory blocks.

 Example (in C): int* dynamicArray = malloc(100 * sizeof(int));

c. Stack Allocation: Memory is allocated on the program's call stack

for function calls and local variables.

 Memory allocated on the stack is automatically deallocated when the

function scope ends.

 Used for automatic variables and function call frames.

 Example: int stackVariable;

d. Pooled Allocation: Pre-allocates a pool of memory blocks of fixed

sizes.

 Used for managing objects or data structures that have predictable

memory usage patterns.

 Helps reduce memory fragmentation and overhead.

 Example: Object pooling in game development for reusing frequently

used objects like bullets or particles.

e. Bump Allocation: Allocates memory sequentially from a designated

memory region (bump pointer).

 Fast and simple allocation technique but may lead to fragmentation.

 Typically used in garbage-collected environments or for short-lived

objects.

B. Deallocation Techniques:

a. Manual Deallocation: Memory is deallocated explicitly by the

programmer using functions like free (C), delete (C++), or Dispose

(C#).

 Requires careful management to avoid memory leaks and dangling

pointers.

 Example (in C): free(dynamicArray);

b. Reference Counting: Each object keeps track of the number of

references pointing to it.

136

Principles of

Compiler Design
 Memory is deallocated when the reference count drops to zero,

indicating no active references to the object.

 Used in some programming languages and libraries but may have

overhead and issues with cyclic references.

c. Pool Deallocation: Used in pooled allocation techniques.

 Memory blocks are returned to the pool for reuse after they are no

longer needed.

 Helps minimize allocation and deallocation overhead by reusing pre-

allocated memory blocks.

d. Scoped Deallocation: Memory is deallocated automatically when it

goes out of scope.

 Commonly used in languages with automatic memory management

or smart pointers (e.g., C++'s std::unique_ptr, std::shared_ptr).

7.3.2.2 Garbage collection methods (reference counting, mark-and-

sweep, generational GC)

Garbage collection (GC) methods are techniques used in programming

languages with automatic memory management to reclaim memory

occupied by objects that are no longer in use. Here are three common

garbage collection methods:

a. Reference Counting:

• Overview: Reference counting is a simple garbage collection

technique that tracks the number of references pointing to each

object.

• How it Works: Each object has a reference count, initially set to

1 for each reference. When a reference is created to the object,

its count is incremented. When a reference is deleted or goes

out of scope, the count is decremented. When the count reaches

zero, the object is considered garbage and can be safely

deallocated.

• Advantages: Immediate deallocation when the last reference is

removed, minimal pause times during execution.

• Disadvantages: Inefficient for cyclic references (objects that

reference each other), overhead for maintaining reference

counts, difficulty in handling weak references (references that

do not contribute to the count).

• Example Language: Python uses reference counting as part of

its garbage collection strategy, combined with other techniques

for handling cyclic references and managing memory

efficiently.

137

Runtime Environments b. Mark-and-Sweep:

• Overview: Mark-and-sweep is a classic garbage collection

algorithm that identifies and reclaims unreachable objects by

traversing the object graph.

• How it Works:

• Mark Phase: The algorithm starts from known roots (global

variables, stack, registers) and traverses the object graph,

marking reachable objects as live.

• Sweep Phase: Once all reachable objects are marked, the

algorithm sweeps through the entire heap, deallocating memory

for objects that are not marked (unreachable).

• Advantages: Handles cyclic references efficiently, works well

for languages with complex object relationships, less overhead

compared to reference counting.

• Disadvantages: Can cause noticeable pause times during the

sweep phase, fragmentation can occur if memory is not

compacted after sweeping.

• Example Language: C# and Java use variants of mark-and-

sweep algorithms in their garbage collectors.

c. Generational Garbage Collection:

• Overview: Generational GC is an enhancement to mark-and-

sweep that divides objects into different generations based on

their age.

• How it Works:

• Young Generation: Newly created objects are placed in the

young generation. A minor collection (often using copying or

semi-space collection) is performed frequently on the young

generation to reclaim short-lived objects.

• Old Generation: Objects that survive multiple minor collections

are promoted to the old generation. A major collection (e.g.,

mark-and-sweep) is performed less frequently on the old

generation to reclaim long-lived objects.

• Advantages: Efficient for programs with a high rate of short-

lived objects (typical in many applications), reduces the

overhead of full garbage collection cycles by focusing on young

objects.

• Disadvantages: More complex to implement and tune, may

require fine-tuning of generation sizes and collection strategies.

• Example Language: Java's HotSpot VM and .NET's CLR use

generational garbage collection as part of their memory

management strategies.

138

Principles of

Compiler Design
Each garbage collection method has its strengths and weaknesses, and the

choice of method often depends on factors such as the programming

language, application characteristics (memory usage patterns, object

lifespan), performance requirements, and trade-offs between pause times,

memory overhead, and overall system efficiency.

7.4 CALL AND RETURN MECHANISMS

The call and return mechanisms are fundamental concepts in computer

programming and execution flow. Here's an overview of these mechanisms:

7.4.1 Call Mechanism

• Function Call: When a function or subroutine is called in a program,

the call mechanism handles transferring control from the caller to the

callee (the function being called).

• Parameters: Arguments or parameters may be passed to the function

during the call, providing input data for the function's operation.

• Stack Frame: Typically, a new stack frame (activation record) is

created on the program's call stack to store information such as

parameters, return address, and local variables for the function call.

• Return Address: The return address is saved in the stack frame,

indicating where the control flow should return after the function

completes its execution.

7.4.2 Return Mechanism

• Function Execution: The callee executes its code, performing the

tasks defined within the function.

• Return Value: If the function returns a value, it is computed during

execution and stored in a designated location (e.g., a register or

memory location) for the caller to access.

• Stack Cleanup: After the function completes execution, its stack

frame is typically removed from the stack to free up memory. This

process is known as stack unwinding or stack cleanup.

• Control Transfer: The return mechanism transfers control back to the

caller, using the saved return address from the stack frame to resume

execution at the appropriate instruction.

7.5 EXCEPTION HANDLING

In compiler design, exception handling refers to how the compiler generates

code to handle exceptional conditions or errors that may occur during

program execution. Here's how exception handling is typically addressed in

compiler design:

a. Language Support: Many modern programming languages,

especially high-level languages like Java, C#, Python, and C++,

include built-in support for exception handling.

139

Runtime Environments Compiler designers need to implement mechanisms to support the

syntax, semantics, and runtime behavior of exception handling

constructs defined by the language specification.

b. Code Generation: During the compilation process, the compiler

translates high-level language constructs, including exception

handling statements (e.g., try-catch blocks), into low-level code that

the target platform can execute.

 This involves generating instructions for throwing exceptions,

catching exceptions, and handling cleanup tasks associated with

exceptions.

c. Exception Propagation: When an exception occurs within a function

or block of code, the compiler generates code to propagate the

exception up the call stack until it is caught and handled by an

appropriate catch block.

 Exception propagation may involve unwinding the stack, deallocating

resources, and transferring control to the nearest catch block that

matches the type of the thrown exception.

d. Stack Unwinding: When an exception is thrown, the compiler

generates code to unwind the call stack, deallocating resources and

executing cleanup tasks as needed.

 This process ensures that resources held by functions along the call

chain are properly released, even if an exception interrupts the normal

execution flow.

e. Exception Types and Handlers: Compiler designers must support

the definition of custom exception types and the declaration of

exception handlers (catch blocks) to handle specific types of

exceptions.

 Matching the thrown exception type to the appropriate catch block

requires generating code for runtime type checking and exception

dispatching.

f. Resource Management: Exception handling in compiler design

often includes generating code to manage resources, such as closing

files, releasing memory, or rolling back transactions, to ensure proper

cleanup in the event of an exception.

g. Optimizations and Efficiency: Advanced compilers may optimize

exception handling code to minimize overhead and improve runtime

performance.

 Techniques such as exception table optimization, lazy exception

handling, and inlining of exception handling code can reduce the

impact of exception handling on program execution speed.

h. Error Reporting and Debugging: Compiler-generated code for

exception handling may include mechanisms for reporting error

140

Principles of

Compiler Design
messages, stack traces, and debugging information to aid developers

in diagnosing and fixing issues related to exceptions.

 Exception handling in compiler design is a complex task that involves

translating high-level language constructs into efficient and reliable

code for managing exceptional conditions during program execution.

Compiler designers must ensure that exception handling mechanisms

comply with language specifications, provide robust error handling

capabilities, and optimize performance where possible.

7.6 LEXICAL AND SYNTAX ERROR HANDLING

In compiler design, handling lexical and syntax errors is crucial for

producing reliable and user-friendly compilers. Here's how lexical and

syntax error handling is typically addressed:

7.6.1 Lexical Error Handling

In compiler design, lexical error handling is a critical aspect of the lexical

analysis phase, also known as scanning. Here's a detailed look at lexical

error handling:

 7.6.1.1 Introduction to Lexical Errors

Lexical errors are a type of error that occurs during the lexical analysis

phase of compiling source code. This phase is also known as scanning or

lexing. Lexical errors occur when the compiler encounters tokens or

sequences of characters that do not conform to the language's lexical rules.

These errors typically involve invalid tokens, illegal characters, or

malformed lexemes (lexical elements like identifiers, keywords, operators,

and literals).

Common lexical errors (illegal characters, unclosed strings)

a. Illegal Characters:

• Definition: Illegal characters are characters that are not allowed

within the syntax of the programming language. These may

include non-alphanumeric characters, control characters, or

characters with special meanings in the language.

• Example: Using a symbol like @ or $ in an identifier in a

language that only allows letters, digits, and underscores.

• Impact: Illegal characters can lead to immediate lexical errors

because they violate the language's lexical rules.

b. Unclosed Strings:

• Definition: Unclosed strings occur when a string literal in the

code is not properly terminated with a closing quotation mark.

• Example: string text = "Hello, this is an unclosed string;

141

Runtime Environments • Impact: Unclosed strings cause the lexer to interpret everything

following the opening quotation mark as part of the string literal

until it encounters the closing quotation mark or the end of the

line. This can result in syntax errors or unexpected behavior in

the code.

c. Mismatched Delimiters:

• Definition: Mismatched delimiters occur when pairs of

delimiters (such as parentheses, braces, or brackets) are not

correctly matched or nested.

• Example: if (condition { /* code block */ }

• Impact: Mismatched delimiters can lead to syntax errors or

ambiguity in the code's structure. They may cause the compiler

to misinterpret the intended grouping or hierarchy of code

blocks, leading to compilation errors.

d. Incomplete Comments:

• Definition: Incomplete comments occur when comment

delimiters (e.g., /* ... */ for block comments or // for line

comments) are not properly closed.

• Example: /* This is an incomplete comment

• Impact: Incomplete comments can cause the lexer to interpret

subsequent code as part of the comment, leading to unexpected

behavior or compilation errors.

e. Malformed Numbers:

• Definition: Malformed numbers are numeric literals that do not

adhere to the syntax rules for numbers in the programming

language. This may include invalid formats, missing digits, or

incorrect use of decimal points.

• Example: float number = 3.14.2; (invalid floating-point

number)

• Impact: Malformed numbers can result in lexical errors or type

conversion issues during compilation.

7.6.1.2 Error Recovery Strategies

Error recovery strategies in compiler design are essential for handling

syntax errors and other unexpected conditions encountered during parsing.

Here are two common error recovery strategies:

a. Panic Mode Recovery:

• Overview: Panic mode recovery is a robust error recovery

strategy where the parser skips input tokens until it finds a

designated synchronization point. Once the synchronization

point is reached, parsing resumes.

142

Principles of

Compiler Design
• How it Works: When a syntax error is detected, the parser

enters panic mode and discards input tokens until it finds a

synchronization token or a set of tokens that can serve as a

recovery point.

• The synchronization tokens are typically chosen strategically to

help the parser recover and continue parsing from a known valid

state.

• Example: In C-like languages, semicolons (;) are often used as

synchronization points. If a syntax error is encountered, the

parser may skip tokens until it finds a semicolon, indicating the

end of a statement, and then resume parsing from that point.

• Advantages: Panic mode recovery is straightforward to

implement and can help the parser recover from a wide range of

syntax errors, allowing the compilation process to continue

without halting at the first error.

• Disadvantages: It may lead to cascading errors if the parser

skips over essential parts of the code, resulting in multiple error

messages and potential confusion for developers.

b. Phrase Level Recovery (Local Correction):

• Overview: Phrase level recovery, also known as local

correction, involves attempting to correct syntax errors within a

specific phrase or production rule in the grammar.

• How it Works: When a syntax error is detected, the parser tries

to identify nearby tokens that can be inserted, deleted, or

substituted to transform the erroneous phrase into a valid phrase

according to the grammar.

• The correction process may involve using heuristics, predictive

algorithms, or predefined correction rules based on the grammar

and common syntactic patterns.

• Example: If a missing semicolon is detected in a statement, the

parser may attempt to insert the semicolon at the expected

location to correct the error.

• Advantages: Phrase level recovery can provide more targeted

and context-sensitive error correction, leading to more accurate

recovery from syntax errors and potentially reducing the

number of cascading errors.

• Disadvantages: It requires more sophisticated parsing

techniques and error correction algorithms, making it more

complex to implement compared to panic mode recovery. It

may also be limited in its ability to correct certain types of errors

that involve structural changes beyond the local phrase.

143

Runtime Environments • Both panic mode recovery and phrase level recovery are

valuable error recovery strategies in compiler design. The

choice of strategy depends on factors such as the language's

grammar complexity, the desired level of error correction, and

the trade-offs between simplicity and accuracy in error

recovery.

 7.6.1.3 Error Reporting and Handling

Error reporting and handling are crucial aspects of compiler design,

ensuring that developers receive clear, informative messages about errors

in their code and providing mechanisms for handling and correcting those

errors. Here are strategies for reporting lexical errors and techniques for

handling and correcting errors in compilers:

A. Reporting Lexical Errors:

• Error Messages: When the lexer (lexical analyzer) detects a

lexical error, it generates an error message to inform the

developer about the nature of the error and its location in the

source code.

• Error Information: Lexical error messages typically include

details such as the line number, column number, the invalid

token or character sequence encountered, and suggestions for

correcting the error.

• Example Lexical Error Message: "Lexical error: Unexpected

token '@' at line 3, column 10. Expected token: Identifier or

keyword."

B. Techniques for Handling and Correcting Errors:

a. Error Recovery Strategies:

• Panic Mode Recovery: The parser skips tokens until it finds a

synchronization point, such as a semicolon or a specific

keyword, to resume parsing.

• Phrase Level Recovery: The parser attempts to correct syntax

errors within specific phrases or production rules using

heuristics or predefined correction rules.

b. Automatic Correction:

• Spell Checking: The compiler may perform basic spell checking

on identifiers and keywords to detect typos or misspelled words.

• Missing Punctuation: Automatic insertion of missing

punctuation, such as semicolons at the end of statements or

closing braces in code blocks.

144

Principles of

Compiler Design
c. Interactive Suggestions:

• Code Completion: IDEs and code editors offer code completion

features that suggest valid tokens, keywords, or identifiers as

developers type, helping prevent lexical errors.

• Quick Fix Suggestions: IDEs provide quick-fix suggestions for

common errors, allowing developers to apply corrections with

a single click.

d. Syntax Highlighting and Visualization:

• Syntax Highlighting: Highlighting invalid tokens or syntax

errors in the code editor helps developers identify errors

visually.

• Syntax Trees: Displaying syntax trees or parse trees can help

developers understand the structure of their code and identify

potential errors.

e. Compiler Directives and Flags:

• Warning and Error Flags: Compiler directives allow developers

to control error reporting behavior, such as treating warnings as

errors or ignoring certain types of errors during compilation.

• Debugging Symbols: Including debugging symbols in compiled

code helps developers trace errors back to specific source code

locations during debugging.

• Effective error handling and correction in compilers enhance

developer productivity, improve code quality, and facilitate the

debugging process. By providing clear error messages,

automated correction mechanisms, and interactive tools,

compilers empower developers to write robust and error-free

code more efficiently.

7.6.2 Syntax Error Handling

Syntax error handling is a crucial aspect of compiler design, focused on

detecting and recovering from errors in the syntax of the programming

language.

 7.6.2.1 Introduction to Syntax Errors

Syntax errors are fundamental errors that occur when the compiler

encounters code that does not adhere to the grammar rules of the

programming language. These errors indicate deviations from the expected

structure and syntax of the code, making it difficult or impossible for the

compiler to interpret and generate executable code. Here's an introduction

to syntax errors, including common examples such as mismatched

parentheses and missing semicolons:

145

Runtime Environments a. Mismatched Parentheses:

• Description: Mismatched parentheses occur when there is an

imbalance between opening and closing parentheses in

expressions or function calls.

• Example: if (condition) { /* code block */ (missing closing

parenthesis)

• Impact: Mismatched parentheses can lead to syntax errors, as

the compiler expects balanced parentheses to properly parse and

interpret code blocks, conditions, and function arguments.

b. Missing Semicolons:

• Description: Missing semicolons occur when statements are not

terminated with the required semicolon symbol (;) in languages

that use semicolons to denote the end of statements.

• Example: int x = 10 (missing semicolon at the end of the

statement)

• Impact: Missing semicolons can cause syntax errors, as the

compiler interprets the absence of a semicolon as an incomplete

statement, leading to unexpected behavior or compilation

failures.

c. Common Syntax Errors:

• Incorrect Operator Usage: Using operators incorrectly or in

unsupported contexts can result in syntax errors. For example,

using arithmetic operators with non-numeric operands.

• Invalid Statement Structures: Writing statements that do not

follow the language's syntax rules, such as misplaced keywords

or incorrect use of control structures, can lead to syntax errors.

• Mismatched Braces or Brackets: In languages that use braces

({}) or brackets ([]) for code blocks or array indexing,

mismatched or improperly nested braces or brackets can cause

syntax errors.

• Incorrect Function Calls: Providing incorrect arguments or

parameters in function calls, missing function declarations, or

using undefined functions can result in syntax errors.

• Reserved Keywords: Using reserved keywords as identifiers or

variable names can lead to syntax errors, as these keywords

have specific syntactic meanings in the language.

d. Impact of Syntax Errors:

• Syntax errors prevent the compiler from generating executable

code, as they indicate fundamental issues with the structure and

syntax of the code.

146

Principles of

Compiler Design
• Fixing syntax errors requires identifying and correcting

deviations from the language's grammar rules, often through

careful review of error messages and code inspection.

7.6.2.2 Error Recovery Strategies

Error recovery strategies in compiler design play a crucial role in handling

syntax errors and ensuring that the compilation process can continue despite

encountering errors. Here's an explanation of panic mode recovery, phrase-

level recovery, and error productions in grammar:

a. Panic Mode Recovery:

• Overview: Panic mode recovery is a robust error recovery

strategy used by parsers to recover from syntax errors by

skipping input tokens until a synchronization point is reached.

• How it Works: When a syntax error is detected, the parser enters

panic mode and discards input tokens until it finds a designated

synchronization token or set of tokens.

• The synchronization tokens are strategically chosen to help the

parser recover and resume parsing from a known valid state.

• Example: In C-like languages, semicolons (;) are often used as

synchronization points. If a syntax error occurs, the parser may

skip tokens until it finds a semicolon, indicating the end of a

statement, and then resume parsing from that point.

• Advantages: Panic mode recovery is straightforward to

implement and can help the parser recover from a wide range of

syntax errors, allowing the compilation process to continue

without halting at the first error.

• Disadvantages: It may lead to cascading errors if the parser

skips over essential parts of the code, resulting in multiple error

messages and potential confusion for developers.

b. Phrase Level Recovery (Local Correction):

• Overview: Phrase level recovery, also known as local

correction, involves attempting to correct syntax errors within a

specific phrase or production rule in the grammar.

• How it Works: When a syntax error is detected, the parser tries

to identify nearby tokens that can be inserted, deleted, or

substituted to transform the erroneous phrase into a valid phrase

according to the grammar.

 The correction process may involve using heuristics, predictive

algorithms, or predefined correction rules based on the grammar

and common syntactic patterns.

147

Runtime Environments • Example: If a missing semicolon is detected in a statement, the

parser may attempt to insert the semicolon at the expected

location to correct the error.

• Advantages: Phrase level recovery can provide more targeted

and context-sensitive error correction, leading to more accurate

recovery from syntax errors and potentially reducing the

number of cascading errors.

• Disadvantages: It requires more sophisticated parsing

techniques and error correction algorithms, making it more

complex to implement compared to panic mode recovery. It

may also be limited in its ability to correct certain types of errors

that involve structural changes beyond the local phrase.

c. Error Productions in Grammar:

• Definition: Error productions are special rules added to the

grammar to handle specific types of syntax errors gracefully.

• How it Works: Error productions define how the parser should

recover from known syntax errors by suggesting possible

corrections or alternative valid structures.

 These productions are triggered when the parser encounters a

syntax error matching the conditions specified in the error

production rules.

• Example: An error production may define how to recover from

a missing semicolon by inserting the semicolon and continuing

parsing.

• Advantages: Error productions provide explicit guidelines for

error recovery, improving the parser's ability to handle common

syntax errors effectively.

• Disadvantages: Crafting error productions requires detailed

knowledge of potential syntax errors and their recovery

strategies, adding complexity to the grammar specification.

7.6.2.3 Error Reporting and Handling

A. Reporting Syntax Errors:

• Error Messages: When the compiler detects a syntax error

during parsing, it generates an error message to inform the

developer about the nature of the error and its location in the

source code (line number, column).

• Error Information: Syntax error messages typically include

details such as the expected token or grammar rule that was

violated, the actual token found, and suggestions for correcting

the error.

148

Principles of

Compiler Design
• Example Syntax Error Message: "Syntax error: Unexpected

token '}' at line 5, column 15. Expected token: ';'"

B. Techniques for Handling and Correcting Syntax Errors:

a. Panic Mode Recovery:

• Overview: The parser skips tokens until it finds a

synchronization point, such as a semicolon or a specific

keyword, to resume parsing.

• Usage: Panic mode recovery is particularly effective for

recovering from syntax errors that occur within code blocks or

statements, allowing the compilation process to continue

without halting at the first error.

b. Phrase Level Recovery (Local Correction):

• Overview: The parser attempts to correct syntax errors within

specific phrases or production rules using heuristics or

predefined correction rules.

• Usage: Phrase level recovery is beneficial for correcting

common syntax errors such as missing semicolons, mismatched

parentheses, or incorrect operator usage within expressions.

c. Automatic Correction:

• Spell Checking: The compiler may perform basic spell checking

on identifiers, keywords, and syntax constructs to detect typos

or misspelled words.

• Missing Punctuation: Automatic insertion of missing

punctuation, such as semicolons at the end of statements or

closing braces in code blocks.

d. Interactive Suggestions:

• Code Completion: Integrated Development Environments

(IDEs) provide code completion features that suggest valid

tokens, keywords, or syntax constructs as developers type,

helping prevent syntax errors.

• Quick Fix Suggestions: IDEs offer quick-fix suggestions for

common syntax errors, allowing developers to apply

corrections with a single click or keystroke.

e. Syntax Highlighting and Visualization:

• Syntax Highlighting: IDEs and code editors highlight syntax

errors in the code, making it easier for developers to identify

and correct errors as they write code.

149

Runtime Environments • Syntax Trees: Displaying syntax trees or parse trees can help

developers understand the structure of their code and identify

potential syntax errors.

f. Compiler Directives and Flags:

• Warning and Error Flags: Compiler directives allow developers

to control error reporting behavior, such as treating warnings as

errors or ignoring certain types of errors during compilation.

• Debugging Symbols: Including debugging symbols in compiled

code helps developers trace errors back to specific source code

locations during debugging.

By combining these techniques, compilers can effectively report syntax

errors, provide guidance for error correction, and assist developers in

writing syntactically correct code. IDEs and code editors further enhance

the error handling experience by offering interactive tools and real-time

feedback during code development.

7.7 SUMMARY

The chapter covered key concepts in compiler design, including activation

records and stack management, heap memory management, call and return

mechanisms, exception handling, and lexical and syntax error handling.

a. Activation Records and Stack Management:

• Activation records organize function calls and manage local

variables, parameters, and return addresses.

• Stack management involves allocating/deallocating stack

frames and managing pointers for function calls on the call

stack.

b. Heap Memory Management:

• Heap memory allows dynamic memory allocation and includes

techniques like allocation/deallocation and garbage collection

methods.

c. Call and Return Mechanisms:

• Call mechanisms handle parameter passing and function call

conventions, while return mechanisms manage return values

and addresses.

d. Exception Handling:

• Exception handling deals with handling errors during program

execution using try-catch blocks and exception propagation.

150

Principles of

Compiler Design
e. Lexical and Syntax Error Handling:

• Lexical error handling addresses tokenization errors, while

syntax error handling deals with structural errors in the code

using recovery strategies.

• These topics are fundamental to building efficient compilers

and ensuring proper error handling and memory management in

programming languages.

7.8 QUESTIONS FOR PRACTICE

1. Explain the structure of an activation record and its role in

function/procedure call management.

2. What are the differences between stack memory and heap memory,

and when would you use each?

3. Describe dynamic memory allocation techniques and compare their

advantages and disadvantages.

4. How do garbage collection methods like reference counting, mark-

and-sweep, and generational garbage collection work, and what are

their trade-offs?

5. What are the different parameter passing methods in function calls,

and how do they impact memory management and performance?

6. Discuss the concept of try-catch blocks in exception handling and

explain how they help manage errors in code execution.

7. Compare panic mode recovery and phrase level recovery as error

recovery strategies in compiler design. When would you use each

strategy?

8. Explain the significance of stack management in compiler design,

including stack frame allocation, deallocation, stack pointer, and

frame pointer management.

9. How does error reporting and handling differ between lexical errors

and syntax errors in compilers?

10. Describe the role of error productions in grammar and how they

contribute to error recovery and correction during parsing.

7.9 REFERENCES

https://www.naukri.com/code360/library/activation-record-in-compiler-

design

https://www.guru99.com/stack-vs-heap.html

https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/

https://www.dcs.warwick.ac.uk/report/pdfs/cs-rr-215.pdf



https://www.naukri.com/code360/library/activation-record-in-compiler-design
https://www.naukri.com/code360/library/activation-record-in-compiler-design
https://www.guru99.com/stack-vs-heap.html
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://www.dcs.warwick.ac.uk/report/pdfs/cs-rr-215.pdf

151

8
INTRODUCTION TO COMPILER TOOLS,

TECHNIQUES AND ADVANCED TOPICS

IN COMPILER DESIGN

Unit Structure

8.0 Objective

8.1 Introduction

8.2 Introduction to Compiler Tools and Techniques

 8.2.1 Overview of Compiler Design

 8.2.1.1 Definition and purpose of a compiler

 8.2.1.2 Phases of compilation

 8.2.2 Compiler Construction Tools

 8.2.2.1 Lexical analyzer generators (e.g., Lex, Flex)

 8.2.2.2 Syntax analyzer generators (e.g., Yacc, Bison)

8.3 Lexical and Syntax Analyzer Generators

 8.3.1 Lexical Analyzers

 8.3.1.1 Role of lexical analyzers in compilation

 8.3.1.2 Tokenization and regular expressions

 8.3.2 Syntax Analyzers

 8.3.2.1 Role of syntax analyzers in compilation

 8.3.2.2 Context-free grammars and parsing techniques

8.4 Code Generation Frameworks

 8.4.1 Introduction to Code Generation

 8.4.1.1 Objectives of code generation

 8.4.1.2 Intermediate representations (IR)

 8.4.2 LLVM (Low-Level Virtual Machine)

 8.4.2.1 Overview of LLVM

 8.4.2.2 Architecture and components of LLVM

 8.4.2.3 Using LLVM for code generation

8.5 Debugging and Testing Compilers

 8.5.1 Importance of Compiler Debugging and Testing

 8.5.1.1 Common compiler bugs and issues

 8.5.1.2 Strategies for debugging compilers

152

Principles of

Compiler Design
 8.5.2 Tools and Techniques for Testing Compilers

 8.5.2.1 Unit testing frameworks

 8.5.2.2 Automated testing tools (e.g., Fuzzing)

 8.5.2.3 Debugging tools (e.g., GDB, Valgrind)

8.6. Just-in-Time (JIT) Compilation

 8.6.1 Introduction to JIT Compilation

 8.6.1.1 Difference between JIT and ahead-of-time (AOT)

 compilation

 8.6.1.2 Benefits and challenges of JIT compilation

 8.6.2 JIT Compilation Techniques

 8.6.2.1 Dynamic code generation

 8.6.2.2 Runtime optimization strategies

 8.6.3 Examples of JIT Compilers

 8.6.3.1 Java HotSpot VM

 8.6.3.2 .NET CLR JIT

8.7 Parallel and Concurrent Programming Support

 8.7.1 Introduction to Parallel and Concurrent Programming

 8.7.1.1 Importance in modern computing

 8.7.1.2 Challenges in supporting parallelism and concurrency

 8.7.2 Compiler Techniques for Parallelism

 8.7.2.1 Automatic parallelization

 8.7.2.2 Data dependence analysis

 8.7.2.3 Loop transformations and optimizations

 8.7.3 Tools and Frameworks

 8.7.3.1 OpenMP

 8.7.3.2 MPI

8.8 Compiler Optimization Frameworks

 8.8.1 Introduction to Compiler Optimization

 8.8.1.1 Goals and types of optimizations

 8.8.1.2 Static vs. dynamic optimizations

 8.8.2 Common Optimization Techniques

 8.8.2.1 Loop optimizations (unrolling, fusion)

 8.8.2.2 Inlining, constant folding, and dead code elimination

 8.8.2.3 Register allocation and instruction scheduling

153

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

 8.8.3 Optimization Frameworks

 8.8.3.1 Overview of popular frameworks

 (e.g., LLVM's optimization passes)

 8.8.3.2 How to use and extend these frameworks

8.9 Domain-Specific Language (DSL) Compilation

 8.9.1 Introduction to DSLs

 8.9.1.1 Definition and benefits of DSLs

 8.9.1.2 Examples of domain-specific languages

 8.9.2 Designing a DSL

 8.9.2.1 Key considerations in DSL design

 8.9.2.2 Syntax and semantics of DSLs

 8.9.3 Implementing a DSL Compiler

 8.9.3.1 Parsing techniques for DSLs

 8.9.3.2 Code generation for specific domains

 8.9.3.3 Tools and frameworks for DSL compilation

 (e.g., ANTLR)

8.10 Summary

8.11 Questions for Practice

8.12 References

8.0 OBJECTIVE

The primary objectives are to understand the core components of compilers,

explore advanced technologies like LLVM for code generation, develop

skills for debugging and testing compilers, support modern programming

needs through parallel and concurrent programming, and design and

implement domain-specific languages (DSLs).

8.1 INTRODUCTION

Compilers translate high-level programming languages into machine code,

crucial for software development. This content covers both foundational

and advanced aspects, including lexical and syntax analyzer generators,

LLVM for code generation, and JIT compilation for runtime optimization.

We will also explore debugging and testing best practices, support for

parallel and concurrent programming, and compiler optimization

frameworks. Finally, we delve into DSL compilation, enabling the creation

of specialized languages tailored to specific domains.

154

Principles of

Compiler Design
8.2 INTRODUCTION TO COMPILER TOOLS AND

TECHNIQUES

Compiler tools and techniques are essential for transforming high-level

programming languages into machine code that computers can execute.

This section explores the fundamental components and tools used in

compiler construction, providing a comprehensive understanding of how

compilers work and the technologies that support their development.

8.2.1 Overview of Compiler Design

Compiler design is a critical area of computer science that focuses on the

development of compilers, which are programs that translate high-level

source code into machine code, assembly language, or intermediate

representations that a computer can execute. Understanding compiler

design involves examining the various phases of compilation, each with

distinct responsibilities and methodologies.

8.2.1.1 Definition and purpose of a compiler

A compiler is a sophisticated software tool that takes source code written in

high-level programming languages (such as C, Java, or Python) and

converts it into machine code, which is a low-level, binary format that the

computer's processor can execute directly. The primary purposes of a

compiler are:

a. Translation: Converting high-level language constructs into a form

that the machine can understand and execute.

b. Optimization: Improving the efficiency of the code to ensure it runs

faster and uses fewer resources.

c. Error Detection: Identifying and reporting errors in the source code to

help developers correct mistakes.

d. Abstraction: Allowing programmers to write in high-level languages

that are easier to understand and maintain, rather than in machine

code.

8.2.1.2 Phases of compilation

The compilation process is divided into several key phases, each

responsible for a specific aspect of translating and optimizing the source

code:

a. Lexical Analysis:

• Purpose: The lexical analyzer (or lexer) processes the input

source code to produce a sequence of tokens. Tokens are the

smallest meaningful units in the code, such as keywords,

operators, identifiers, and literals.

155

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

• Process: The lexer scans the source code, matching patterns

defined by regular expressions to generate tokens while

ignoring whitespace and comments.

b. Syntax Analysis:

• Purpose: The syntax analyzer (or parser) takes the sequence of

tokens from the lexer and organizes them into a syntax tree (or

parse tree) according to the grammatical rules of the

programming language.

• Process: The parser checks for syntactic correctness, ensuring

that the tokens form valid statements and constructs. It reports

syntax errors if the structure is incorrect.

c. Semantic Analysis:

• Purpose: The semantic analyzer verifies the syntax tree for

semantic correctness, ensuring that the code adheres to the rules

of the language, such as type checking and variable scope.

• Process: This phase checks for logical errors and validates that

operations and function calls are semantically correct.

d. Optimization:

• Purpose: The optimizer enhances the intermediate code's

performance by applying various optimization techniques.

• Process: Common optimizations include constant folding, loop

unrolling, dead code elimination, and inlining. The goal is to

improve execution speed and reduce resource consumption.

e. Code Generation:

• Purpose: The code generator translates the optimized

intermediate code into machine code or assembly language.

• Process: This phase converts high-level constructs into low-

level instructions that the processor can execute, ensuring

efficient use of hardware resources.

f. Code Optimization:

• Purpose: Further refine the generated machine code to enhance

its performance and efficiency.

• Process: Techniques such as register allocation, instruction

scheduling, and peephole optimization are applied to produce

highly optimized executable code.

Understanding these phases is crucial for designing efficient and effective

compilers. Each phase plays a vital role in ensuring that the source code is

accurately translated and optimized, resulting in high-performance

156

Principles of

Compiler Design
executable programs. The next section will delve into the specific tools used

in compiler construction, which automate and facilitate these processes.

8.2.2 Compiler Construction Tools

Compiler construction tools are essential for automating various phases of

the compilation process, enhancing efficiency, and reducing the complexity

of building compilers. These tools help in generating key components of a

compiler, such as lexical analyzers and syntax analyzers, thereby

streamlining the development process. Below are some of the prominent

tools used in compiler construction.

8.2.2.1 Lexical analyzer generators (e.g., Lex, Flex)

Lexical analyzer generators, such as Lex and Flex, are tools designed to

automate the creation of lexical analyzers (lexers). These tools allow

developers to define regular expressions that describe the tokens of a

programming language. The generator then produces the lexer code, which

scans the source code, matches patterns, and outputs tokens.

a. Lex:

• Overview: Lex is one of the oldest and most widely used tools

for generating lexical analyzers. It is traditionally used in Unix-

based systems.

• Functionality: Developers write a specification file containing

regular expressions and corresponding actions. Lex processes

this file to produce a C source file that implements the lexical

analyzer.

• Usage Example: Lex is often used in conjunction with Yacc

(Yet Another Compiler Compiler) to build complete compilers.

b. Flex:

• Overview: Flex (Fast Lexical Analyzer) is an enhanced version

of Lex, offering better performance and additional features.

• Functionality: Flex processes a specification file similar to Lex

but generates more efficient and faster lexical analyzers. It

provides improved flexibility and performance.

• Usage Example: Flex is commonly used in modern compiler

projects and can be integrated with tools like Bison for syntax

analysis.

8.2.2.2 Syntax analyzer generators (e.g., Yacc, Bison)

Syntax analyzer generators, such as Yacc and Bison, facilitate the creation

of parsers. These tools allow developers to define the grammar of a

programming language using a high-level specification language. The

157

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

generator then produces the parser code, which constructs syntax trees and

checks for syntactic correctness.

a. Yacc (Yet Another Compiler Compiler):

• Overview: Yacc is a traditional tool for generating parsers from

context-free grammars. It is often used in combination with

Lex.

• Functionality: Developers write a specification file that defines

the grammar rules and associated actions. Yacc processes this

file to produce a C source file that implements the parser.

• Usage Example: Yacc is used to build parsers for various

programming languages and can handle complex language

constructs.

b. Bison:

• Overview: Bison is a modern and more flexible alternative to

Yacc. It is compatible with Yacc grammar files but offers

additional features and improvements.

• Functionality: Bison processes grammar specifications to

produce efficient parsers. It supports advanced features like

GLR parsing and can generate parsers in languages other than

C.

• Usage Example: Bison is widely used in both academic and

industrial compiler projects, providing robust and flexible

parsing capabilities.

These tools significantly simplify the development of compilers by

automating the generation of crucial components, allowing compiler

developers to focus on higher-level design and optimization tasks. By

leveraging these tools, developers can build efficient, reliable, and

maintainable compilers.

8.3 LEXICAL AND SYNTAX ANALYZER GENERATORS

Lexical and syntax analyzers are fundamental components of a compiler,

playing crucial roles in the translation of high-level source code into

executable machine code. This section delves into the specifics of these

components and the tools used to generate them.

8.3.1 Lexical Analyzers

Lexical analyzers, or lexers, are a crucial component in the early stages of

the compilation process. They serve as the first line of analysis,

transforming the raw source code into a structured sequence of tokens that

can be more easily processed by subsequent phases of the compiler.

158

Principles of

Compiler Design
8.3.1.1 Role of lexical analyzers in compilation

The primary role of a lexical analyzer is to read the source code and convert

it into tokens. Tokens are the smallest meaningful elements in the source

code, such as keywords, operators, identifiers, and literals. This

transformation facilitates the work of the syntax analyzer by reducing the

complexity of the input data.

• Tokenization: The lexical analyzer scans the source code and

identifies sequences of characters that match predefined patterns for

various tokens.

• Whitespace and Comment Removal: Lexers typically ignore

whitespace and comments, focusing only on the meaningful elements

of the source code.

• Error Detection: Lexers detect illegal characters and malformed

tokens, reporting lexical errors that need to be corrected before further

compilation can proceed

8.3.1.2 Tokenization and regular expressions

Tokenization is the process of converting a sequence of characters into a

sequence of tokens. Regular expressions are essential in defining the

patterns that match different types of tokens.

• Regular Expressions: Regular expressions are formal language

constructs used to specify patterns for matching character sequences.

They are a powerful tool for defining the lexical structure of a

programming language.

• Examples of Token Patterns:

o Keywords: Recognized by fixed patterns, such as if, else, while,

return.

o Identifiers: Typically matched by the pattern [a-zA-Z_][a-zA-

Z0-9_]*, which allows for variable names, function names, etc.

o Literals: Numeric values, string literals, and other constant

values, matched by patterns like [0-9]+ for integers or \".*?\"

for strings.

o Operators and Symbols: Patterns for operators (+, -, *, /) and

punctuation (;, ,, (,)).

By automating the creation of lexical analyzers, tools like Lex and Flex help

streamline the compiler development process, ensuring efficient and

accurate tokenization of source code. This foundational step is critical for

the subsequent stages of compilation, laying the groundwork for effective

syntax analysis and beyond.

159

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

8.3.2 Syntax Analyzers

The syntax analyzer, or parser, is the second phase of the compilation

process. Its primary role is to analyze the sequence of tokens generated by

the lexer and build a syntax tree (or parse tree) based on the grammatical

rules of the programming language.

8.3.2.1 Role of syntax analyzers in compilation

a. Syntax Tree Construction: Organizing tokens into a hierarchical

structure that represents the syntactic structure of the source code.

b. Syntax Error Detection: Identifying and reporting errors in the

structure of the code, such as missing semicolons or mismatched

parentheses.

8.3.2.2 Context-free grammars and parsing techniques

Context-free grammars (CFGs) are used to define the syntax rules of a

programming language. A CFG consists of a set of production rules that

describe how tokens can be combined to form valid constructs in the

language.

a. Components of a CFG:

1. Non-Terminals: Symbols that can be expanded into sequences

of non-terminals and terminals.

2. Terminals: Symbols that represent actual tokens produced by

the lexer.

3. Production Rules: Rules that define how non-terminals can be

expanded.

4. Start Symbol: The initial non-terminal from which parsing

begins.

b. Parsing Techniques:

1. Top-Down Parsing: Constructs the syntax tree from the top

(start symbol) and works down to the leaves (tokens). Examples

include Recursive Descent Parsing.

2. Bottom-Up Parsing: Constructs the syntax tree from the leaves

(tokens) and works up to the root (start symbol). Examples

include LR Parsing.

8.4 CODE GENERATION FRAMEWORKS

Code generation frameworks are essential tools in software development,

particularly in compiler design and related fields. They provide a structured

approach to translating high-level source code into executable machine

code or intermediate representations (IR).

160

Principles of

Compiler Design
8.4.1 Introduction to Code Generation

Code generation is a crucial part of compiler design where source code

written in a high-level programming language is translated into low-level

code, such as machine code or intermediate representations (IR), that can

be executed by a computer. The main objectives of code generation include

producing efficient and optimized code, minimizing memory usage, and

ensuring correctness and compatibility with the target platform.

8.4.1.1 Objectives of code generation

The objectives of code generation include:

a. Efficiency: Generating code that executes quickly and consumes

minimal system resources.

b. Optimization: Applying various optimization techniques to improve

code performance and reduce redundancy.

c. Correctness: Ensuring that the generated code behaves as expected

and produces accurate results.

d. Portability: Creating code that can run on different hardware

architectures and operating systems.

e. Maintainability: Writing code that is easy to understand, modify, and

debug.

8.4.1.2 Intermediate representations (IR)

Intermediate representations (IR) are intermediate forms of code that are

generated during the compilation process. They serve as a bridge between

the high-level source code and the low-level target code. IR allows

compilers to perform optimizations and transformations before generating

the final executable code. Common IR formats include Abstract Syntax

Trees (ASTs), Three-Address Code (TAC), Static Single Assignment (SSA)

form, and LLVM IR.

8.4.2 LLVM (Low-Level Virtual Machine)

LLVM is a widely-used open-source compiler infrastructure project that

provides a set of modular and reusable components for building compilers

and code generation tools. It is designed to support a wide range of

programming languages and target platforms.

8.4.2.1 Overview of LLVM

LLVM stands for Low-Level Virtual Machine, although it's often used

beyond traditional virtual machines. It includes a suite of tools, libraries,

and technologies for optimizing and generating code. LLVM's design

emphasizes modularity, extensibility, and performance.

161

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

8.4.2.2 Architecture and components of LLVM

The architecture of LLVM consists of several key components:

a. Frontend: Converts source code from a high-level programming

language (such as C, C++, or Swift) into LLVM IR.

b. Optimizer: Applies various optimization techniques to LLVM IR,

improving code performance and efficiency.

c. Backend: Generates target-specific machine code or assembly

language from optimized LLVM IR.

d. Target Description: Defines the characteristics and instructions of the

target hardware platform.

e. JIT Compiler: Allows LLVM to compile and execute code at runtime,

commonly used in dynamic languages and Just-In-Time (JIT)

compilation scenarios.

8.4.2.3 Using LLVM for code generation

LLVM can be used for various code generation tasks, including:

a. Compilers: Building compilers for programming languages by

integrating LLVM's frontend, optimizer, and backend components.

b. Code Optimization: Applying LLVM's optimization passes to

improve code performance and reduce executable size.

c. JIT Compilation: Dynamically compiling and executing code at

runtime, suitable for languages like Python, Ruby, and JavaScript.

d. Code Analysis: Analyzing and transforming code using LLVM's

intermediate representations for static analysis and program

understanding.

Overall, LLVM offers a powerful and flexible framework for code

generation, optimization, and compilation, making it a popular choice in the

compiler and programming language development communities.

8.5 DEBUGGING AND TESTING COMPILERS

8.5.1 Importance of Compiler Debugging and Testing

Compiler debugging and testing are crucial processes in software

development, especially when working on compilers or language-related

tools. They ensure the correctness, reliability, and performance of the

compiler-generated code.

8.5.1.1 Common compiler bugs and issues

Common issues encountered during compiler development include:

162

Principles of

Compiler Design
a. Parsing Errors: Incorrect parsing of source code due to syntax errors

or ambiguities.

b. Semantic Errors: Incorrect handling of type checking, symbol

resolution, or scope rules.

c. Code Generation Errors: Inaccurate translation of high-level

constructs to machine code or intermediate representations.

d. Optimization Issues: Unexpected behavior or performance

regressions introduced by optimization passes.

e. Platform-Specific Problems: Compatibility issues on different

hardware architectures or operating systems.

8.5.1.2 Strategies for debugging compilers

Effective strategies for debugging compilers include:

a. Incremental Development: Building and testing compiler components

step by step to isolate and address issues early.

b. Debugging Information: Generating and utilizing debugging

information in compiler output to trace code transformations and

optimizations.

c. Regression Testing: Running test suites to detect regressions caused

by code changes or optimizations.

d. Static Analysis Tools: Using static code analyzers to identify potential

bugs, code smells, and performance bottlenecks.

e. Logging and Tracing: Adding logging and tracing mechanisms to

track compiler behavior and identify problematic areas.

8.5.2 Tools and Techniques for Testing Compilers

Various tools and techniques are available for testing compilers to ensure

their correctness and performance.

8.5.2.1 Unit testing frameworks

Unit testing frameworks facilitate the creation and execution of test cases

for individual compiler components, such as:

a. Test Input Generation: Generating synthetic or real-world source code

inputs to test parsing, type checking, and code generation.

b. Assertions and Expectations: Checking expected outputs, error

conditions, and compiler behavior against predefined criteria.

c. Mocking and Stubs: Simulating dependencies or external libraries to

isolate and test specific compiler functionalities.

163

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

8.5.2.2 Automated testing tools (e.g., Fuzzing)

Automated testing tools, like fuzzers, help uncover edge cases, corner cases,

and vulnerabilities in compiler implementations:

a. Fuzz Testing: Injecting random or mutated inputs into the compiler to

trigger unexpected behavior, crashes, or security vulnerabilities.

b. Coverage Analysis: Measuring code coverage during testing to ensure

thorough testing of all compiler paths and functionalities.

c. Mutation Testing: Modifying source code or IR to assess the

effectiveness of test cases in detecting compiler bugs or regressions.

8.5.2.3 Debugging tools (e.g., GDB, Valgrind)

Debugging tools assist in identifying and diagnosing compiler issues during

development and testing:

a. GDB (GNU Debugger): Allowing developers to debug compiler

internals, inspect memory, set breakpoints, and analyze program

execution.

b. Valgrind: Detecting memory leaks, buffer overflows, and other

memory-related errors in compiled programs, aiding in compiler

debugging and optimization.

By incorporating these debugging and testing strategies, along with relevant

tools and techniques, developers can enhance the reliability, performance,

and quality of compilers and language tools.

8.6. JUST-IN-TIME (JIT) COMPILATION

In computing, just-in-time (JIT) compilation (also dynamic translation or

run-time compilations) is compilation (of computer code) during execution

of a program (at run time) rather than before execution. This may consist of

source code translation but is more commonly bytecode translation to

machine code, which is then executed directly. A system implementing a

JIT compiler typically continuously analyses the code being executed and

identifies parts of the code where the speedup gained from compilation or

recompilation would outweigh the overhead of compiling that code.

8.6.1 Introduction to JIT Compilation

8.6.1.1 Difference between JIT and ahead-of-time (AOT) compilation

AOT (Ahead-of-Time) JIT (Just-in-Time)

Compiles code before the Angular

application is loaded in the browser.

Compiles Code during runtime

when the Angular app is launched in

the client’s browser.

164

Principles of

Compiler Design
AOT (Ahead-of-Time) JIT (Just-in-Time)

Generates a production-ready output

with optimizations, ready for

deployment without additional build

steps.

Requires an additional build for

production, potentially adding extra

time to the deployment process.

AOT produces smaller bundle sizes,

which means faster downloads for

users.

Produces larger bundle sizes due to

in-browser compilation, potentially

impacting loading speed.

AOT catches and reports template

errors during the compilation phase,

ensuring more reliable applications

with fewer runtime issues.

Identifies errors during runtime,

which may lead to issues being

discovered after the application is

already in use.

Relatively easier for beginners due

to its build-time error checking and

optimized output.

Can be more complex for beginners,

as errors are discovered during

runtime.

Does not allow dynamic updates in

production, requiring a rebuild for

any changes.

Allows dynamic updates during

development, making it easier to see

immediate results.

Easier to debug in the development

phase with early error detection

during the build.

Debugging is possible during

runtime, which can help identify

issues when they occur.

Better compatibility with older

browsers, ensuring wider

accessibility.

Slightly less compatible with older

browsers compared to AOT.

8.6.1.2 Benefits and challenges of JIT compilation

Benefits:

a. Performance Improvement:

• JIT compilation can optimize code during execution, allowing

for performance enhancements that static compilers can't

achieve.

• It enables hot spot optimization, where frequently executed

paths are heavily optimized.

b. Dynamic Adaptation:

• JIT compilers can adapt to the actual runtime environment and

usage patterns, optimizing code based on real-time data.

c. Cross-platform Compatibility:

• JIT allows for platform-independent intermediate code (like

Java bytecode) to be executed efficiently on any platform with

a compatible JIT compiler.

165

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

d. Reduced Startup Time:

• Initial startup can be faster since the whole program doesn’t

need to be compiled upfront; instead, parts are compiled as

needed.

Challenges:

a. Complexity:

• Implementing a JIT compiler is more complex than a traditional

ahead-of-time (AOT) compiler, requiring advanced techniques

for runtime code analysis and optimization.

b. Memory Usage:

• JIT compilation requires additional memory to store both the

compiled code and the JIT compiler itself.

c. Security Concerns:

• Since JIT compilers generate code at runtime, they can

potentially introduce security vulnerabilities if not carefully

managed.

d. Overhead:

• The process of JIT compilation introduces runtime overhead,

which can affect the initial performance of an application.

8.6.2 JIT Compilation Techniques

8.6.2.1 Dynamic code generation

Definition:

Dynamic code generation refers to the creation of executable code at

runtime. This allows for optimizations based on the current execution

context, such as the specific hardware or the runtime behavior of the

application.

Techniques:

a. Inline Caching:

• Optimizes method calls by caching the target address of

frequently called methods.

b. Speculative Optimization:

• Assumes certain conditions based on runtime profiling and

optimizes the code accordingly. If assumptions fail,

deoptimization can occur.

166

Principles of

Compiler Design
8.6.2.2 Runtime optimization strategies

a. Adaptive Optimization:

• Continuously profiles the running application and applies

optimizations to hot spots—code sections executed frequently.

b. Deoptimization:

• Reverts previously applied optimizations if they are determined

to be inefficient or incorrect based on new runtime information.

c. Garbage Collection Integration:

• Works with the runtime's garbage collector to optimize memory

management, reducing the impact of memory allocation and

deallocation on performance.

8.6.3 Examples of JIT Compilers

8.6.3.1 Java HotSpot VM

Overview:

The HotSpot VM is the JIT compiler used by Java to translate Java bytecode

into native machine code.

Features:

a. Tiered Compilation:

• Combines both an interpreter and multiple JIT compilers to

balance startup time and peak performance.

b. Escape Analysis:

• Optimizes object allocation and synchronization by

determining if objects can be safely allocated on the stack

instead of the heap.

8.6.3.2 .NET CLR JIT

Overview:

The .NET Common Language Runtime (CLR) includes a JIT compiler that

translates intermediate language (IL) code into native code for execution.

Features:

a. Code Caching: Caches JIT-compiled code to avoid recompiling

methods on subsequent executions.

b. Profiling: Integrates with profiling tools to provide insights into

runtime performance and apply appropriate optimizations.

167

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

8.7 PARALLEL AND CONCURRENT PROGRAMMING

SUPPORT

Parallel programming involves splitting tasks to run simultaneously on

multiple processors for speed and performance. Concurrent programming

handles multiple tasks at overlapping times, focusing on correct interaction

and efficient resource use, often through threads and synchronization

mechanisms.

8.7.1 Introduction to Parallel and Concurrent Programming

Parallel programming: Executes multiple sub-tasks simultaneously on

different processors to boost performance.

Concurrent programming: Manages overlapping tasks to ensure efficient

and correct execution.

Applications: High-performance computing, real-time systems, web

servers, gaming, and data analysis.

8.7.1.1 Importance in modern computing

Performance Improvements: Parallel and concurrent programming allow

for tasks to be divided and executed simultaneously, which can significantly

reduce overall execution time. This is particularly beneficial for compute-

intensive applications like scientific simulations, data analysis, and complex

calculations.

Scalability: By distributing workloads across multiple processors or cores,

applications can scale more efficiently to handle larger datasets and a

greater number of users. This is crucial for applications in cloud computing,

big data processing, and web services.

Efficiency: Efficient utilization of multi-core processors and multi-

processor systems can lead to better performance and energy efficiency.

This is essential for both high-performance computing and everyday

applications to make the best use of available hardware resources.

Real-time Processing: Many applications, such as video streaming,

gaming, and high-frequency trading, require real-time processing

capabilities. Parallel and concurrent programming enable these applications

to meet strict timing constraints and deliver responsive performance.

8.7.1.2 Challenges in supporting parallelism and concurrency

Complexity: Writing parallel and concurrent programs is more complex

than writing sequential programs. It requires managing multiple execution

threads, ensuring data consistency, and handling synchronization.

Debugging and testing parallel programs are also more challenging.

Race Conditions: Race conditions occur when multiple threads or

processes access shared resources simultaneously, and the outcome depends

168

Principles of

Compiler Design
on the sequence of accesses. This can lead to unpredictable behavior and

bugs that are difficult to reproduce and fix.

Deadlocks: Deadlocks occur when two or more processes are waiting

indefinitely for each other to release resources, causing the entire system to

halt. Proper resource management and avoiding circular dependencies are

critical to prevent deadlocks.

Scalability Issues: Not all algorithms and applications scale linearly with

the addition of more processors or cores. Factors such as data dependencies,

communication overhead, and contention for shared resources can limit the

scalability of parallel and concurrent programs.

8.7.2 Compiler Techniques for Parallelism

Compiler techniques for parallelism involve optimizing code to effectively

utilize multiple processors or cores for concurrent execution. Key

techniques include:

a. Automatic Parallelization: Automatically converting sequential code

into parallel code.

b. Loop Unrolling: Transforming loops to increase the number of

instructions executed in parallel.

c. Dependency Analysis: Identifying and resolving data dependencies to

enable parallel execution.

d. Thread-Level Parallelism: Dividing tasks into threads that can run

concurrently.

e. Task Scheduling: Efficiently distributing tasks across multiple

processors to balance the load.

f. Vectorization: Converting operations to use SIMD (Single

Instruction, Multiple Data) instructions.

g. Parallel Libraries and Frameworks: Utilizing libraries and

frameworks that support parallel operations, like OpenMP and MPI.

8.7.2.1 Automatic parallelization

Definition: Automatic parallelization involves the compiler analyzing the

program code to identify opportunities for parallel execution and

transforming the code to exploit these opportunities without requiring

manual intervention from the programmer.

Techniques:

a. Loop Parallelization:

• The compiler identifies loops where iterations are independent

of each other and can be executed in parallel, transforming the

loop to run across multiple threads or processors.

169

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

b. Function Parallelization:

• The compiler determines which functions or methods can be

executed concurrently, especially those that do not share state

or have minimal interaction, and schedules them to run in

parallel.

8.7.2.2 Data dependence analysis

Definition:

Data dependence analysis identifies dependencies between different parts

of a program to ensure correct execution order in parallel environments.

Types:

a. Flow Dependence (True Dependence): Occurs when one statement

produces a result that a subsequent statement uses. Parallel execution

must respect this order to maintain correctness.

b. Anti-dependence: Occurs when a statement reads a value that is later

overwritten by another statement. The compiler must ensure the read

happens before the write in parallel execution.

c. Output Dependence: Occurs when two statements write to the same

memory location. Proper synchronization is required to ensure the

correct final value is written.

8.7.2.3 Loop transformations and optimizations

a. Loop Unrolling: Reduces the overhead of loop control by expanding

the loop body to execute multiple iterations in a single pass. This can

improve performance by decreasing the number of iterations and

increasing instruction-level parallelism.

b. Loop Tiling (Blocking): Divides the loop iterations into smaller

blocks or tiles to improve cache performance by enhancing data

locality. Each tile can be processed independently, potentially in

parallel.

c. Loop Fusion: Combines adjacent loops that iterate over the same

range into a single loop. This reduces loop overhead and can improve

cache utilization by accessing related data in a more localized manner.

8.7.3 Tools and Frameworks

8.7.3.1 OpenMP

Overview:

OpenMP (Open Multi-Processing) is an API that provides a portable and

scalable model for developing parallel applications in C, C++, and Fortran.

It uses compiler directives, library routines, and environment variables to

specify parallelism.

170

Principles of

Compiler Design
Features:

a. Pragmas: OpenMP uses compiler directives, known as pragmas, to

indicate parallel regions in the code. These pragmas are simple

annotations that guide the compiler to generate parallel code.

b. Work-sharing Constructs: OpenMP provides constructs like

#pragma omp for to parallelize loops, #pragma omp sections to divide

code into parallel sections, and #pragma omp single to specify code

that should be executed by only one thread.

c. Synchronization: OpenMP includes mechanisms to manage

synchronization, such as #pragma omp critical to define critical

sections, #pragma omp atomic for atomic operations, and #pragma

omp barrier to synchronize threads at specific points in the program.

8.7.3.2 MPI

Overview:

MPI (Message Passing Interface) is a standardized and portable message-

passing system designed to function on parallel computing architectures. It

is widely used for programming distributed memory systems.

Features:

a. Point-to-point Communication: MPI provides functions for direct

communication between pairs of processes, such as MPI_Send and

MPI_Recv, enabling explicit message passing.

b. Collective Communication: MPI includes collective communication

operations like MPI_Bcast to broadcast a message to all processes,

MPI_Scatter and MPI_Gather for distributing and collecting data, and

MPI_Reduce for combining data from multiple processes.

c. Synchronization: MPI offers synchronization mechanisms such as

barriers (MPI_Barrier) to coordinate processes and ensure all

processes reach a certain point before continuing, ensuring correct

execution order.

8.8 COMPILER OPTIMIZATION FRAMEWORKS

Compiler optimization frameworks automate code performance

improvements. Examples include LLVM, GCC, Intel Compiler (ICC),

Clang, and Microsoft Visual C++ Compiler. They offer optimizations like

loop optimization, inlining, vectorization, and parallelization for efficient

code execution.

8.8.1 Introduction to Compiler Optimization

Compiler optimization improves code performance by applying

transformations during compilation. Techniques include constant folding,

loop optimization, inlining, data flow analysis, vectorization, register

171

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

allocation, and parallelization. Optimization levels and target architectures

impact trade-offs between compilation time, code size, and performance.

8.8.1.1 Goals and types of optimizations

Goals:

a. Performance Improvement: Optimizations aim to make the

compiled code run faster by reducing the number of instructions

executed, improving cache utilization, and taking advantage of

modern CPU features.

b. Code Size Reduction: Some optimizations focus on reducing the size

of the generated code, which can be critical for embedded systems

and applications with limited memory.

c. Power Efficiency: Optimizations can also reduce the power

consumption of a program, which is important for mobile and

embedded devices.

d. Maintainability and Readability: While not always a primary goal,

some optimizations strive to make the generated code easier to

understand and maintain.

Types:

a. Local Optimization: Focuses on optimizing small parts of the code,

typically within a single basic block.

b. Global Optimization: Extends optimization efforts across multiple

basic blocks or the entire function to improve performance or reduce size.

c. Interprocedural Optimization: Analyzes and optimizes across

function boundaries to improve overall program performance.

8.8.1.2 Static vs. dynamic optimizations

a. Static Optimizations: Performed at compile time by the compiler.

These optimizations analyze and transform the code without

executing it. Examples include loop unrolling, inlining, and constant

folding.

• Advantages: Can be applied once during the compilation

process, leading to a simpler runtime system.

• Disadvantages: May miss optimization opportunities that only

become apparent at runtime.

b. Dynamic Optimizations:

• Performed at runtime by a Just-In-Time (JIT) compiler or a

runtime optimization system. These optimizations adapt to the

actual execution environment and workload.

172

Principles of

Compiler Design
• Advantages: Can optimize based on real-time information,

potentially leading to better performance.

• Disadvantages: Introduces runtime overhead and complexity.

8.8.2 Common Optimization Techniques

8.8.2.1 Loop optimizations (unrolling, fusion)

a. Loop Unrolling: Reduces the overhead of loop control by executing

multiple iterations of the loop in a single pass. This can increase

instruction-level parallelism and improve cache performance.

b. Loop Fusion: Combines adjacent loops that iterate over the same

range into a single loop. This reduces loop overhead and can improve

data locality, leading to better cache performance.

8.8.2.2 Inlining, constant folding, and dead code elimination

a. Inlining: Replaces a function call with the actual body of the

function. This can reduce the overhead of function calls and enable

further optimizations by exposing more code to the compiler.

b. Constant Folding: Evaluates constant expressions at compile time

and replaces them with their computed values. This reduces the

number of runtime computations.

c. Dead Code Elimination: Removes code that does not affect the

program’s output, such as code that is never executed or whose results

are never used. This can reduce code size and improve performance.

8.8.2.3 Register allocation and instruction scheduling

a. Register Allocation: Assigns variables to machine registers to

minimize the number of memory accesses. Effective register

allocation can significantly improve performance by reducing the

need for slower memory operations.

b. Instruction Scheduling: Reorders instructions to avoid pipeline

stalls and make better use of CPU resources. This can improve the

instruction throughput of the processor.

8.8.3 Optimization Frameworks

8.8.3.1 Overview of popular frameworks (e.g., LLVM's optimization

passes)

a. LLVM: LLVM (Low-Level Virtual Machine) is a widely used

compiler infrastructure that provides a set of reusable components for

building compilers. LLVM includes a rich set of optimization passes

that can be applied to intermediate code representation (IR).

• Optimization Passes: LLVM's optimization passes include

various techniques such as loop unrolling, inlining, constant

173

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

folding, dead code elimination, register allocation, and more.

These passes can be combined in different ways to achieve the

desired level of optimization.

b. GCC: The GNU Compiler Collection (GCC) also provides a

comprehensive set of optimization passes. GCC's optimizations can

be fine-tuned using compiler flags, allowing developers to balance

between compilation time and runtime performance.

8.8.3.2 How to use and extend these frameworks

a. Using Optimization Frameworks: Developers can use optimization

frameworks like LLVM and GCC by applying predefined

optimization passes. For instance, in LLVM, the opt tool can be used

to run specific optimization passes on LLVM IR code.

 Example Command: opt -O2 input.ll -o output.ll applies the standard

optimization level O2 to the input LLVM IR file.

b. Extending Optimization Frameworks: Developers can extend these

frameworks by writing custom optimization passes. In LLVM, this

involves subclassing the llvm::FunctionPass or llvm::ModulePass

classes and implementing the required optimization logic.

Example:

Creating a new pass in LLVM involves defining the pass, registering it with

the pass manager, and then integrating it into the compilation pipeline.

8.9. DOMAIN-SPECIFIC LANGUAGE (DSL) COMPILATION

DSL compilation translates code from a domain-specific language (DSL)

into executable code or intermediate representations. It involves parsing,

semantic analysis, code generation, optional optimization, and output

generation. Challenges include balancing expressiveness and performance,

integrating with host languages, and developing appropriate tooling.

8.9.1 Introduction to DSLs

8.9.1.1 Definition and benefits of DSLs

Definition: Domain-Specific Languages (DSLs) are programming

languages designed for specific domains or tasks. They are tailored to

express concepts and operations relevant to a particular problem domain,

making them more expressive and easier to use for domain experts.

Benefits:

a. Expressiveness: DSLs allow developers to express domain-specific

concepts and operations directly, leading to clearer and more concise

code.

174

Principles of

Compiler Design
b. Abstraction: By focusing on the specific domain, DSLs can hide

lower-level details, reducing complexity and making code more

understandable.

c. Productivity: Domain experts can work more efficiently with DSLs

as they are designed to match their mental models and workflows.

d. Verification and Validation: DSLs can enable better verification

and validation of domain-specific rules and constraints, leading to

more robust software.

8.9.1.2 Examples of domain-specific languages

a. SQL (Structured Query Language): A DSL for database queries,

allowing users to specify operations like selecting, updating, and

manipulating data in a database.

b. HTML (Hypertext Markup Language): A DSL for creating web

pages, defining the structure and content of web documents using tags

and attributes.

c. Regular Expressions (Regex): A DSL for pattern matching and text

processing, enabling users to define complex search patterns.

8.9.2 Designing a DSL

Designing a DSL involves defining the domain scope, identifying user

needs, creating intuitive syntax and semantics, balancing expressiveness

with simplicity, integrating with IDEs, deciding on compilation or

interpretation, handling errors effectively, testing and validating, providing

thorough documentation and examples, and fostering community

engagement.

8.9.2.1 Key considerations in DSL design

a. Domain Understanding: Understanding the target domain is crucial

for designing an effective DSL. This includes identifying domain-

specific concepts, operations, and constraints.

b. Abstraction Level: Determine the appropriate level of abstraction for

the DSL, balancing between expressiveness and simplicity for domain

users.

c. Language Features: Choose language features and constructs that

align with the domain's semantics, making it easier for users to write

and understand DSL code.

d. Tooling and Integration: Consider tooling support and integration

with existing development environments to enhance the usability and

adoption of the DSL.

175

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

8.9.2.2 Syntax and semantics of DSLs

a. Syntax: Define the syntax of the DSL using a formal notation such as

BNF (Backus-Naur Form) or EBNF (Extended Backus-Naur Form).

This specifies the grammar rules for valid DSL expressions.

b. Semantics: Define the semantics of DSL constructs, including their

behavior, effects, and interactions. This clarifies how DSL code is

interpreted and executed.

8.9.3 Implementing a DSL Compiler

Implementing a DSL compiler involves:

a. Tokenizing and parsing DSL code into a syntax tree.

b. Validating syntax and semantics, resolving identifiers, and detecting

errors.

c. Generating executable code or intermediate representations.

d. Integrating with tooling, testing, debugging, optimizing,

documenting, and deploying the compiler for distribution.

8.9.3.1 Parsing techniques for DSLs

a. Lexer and Parser: Use lexer and parser generators like ANTLR,

Yacc, or Bison to parse DSL code and generate an abstract syntax tree

(AST) representing the code's structure.

b. Semantic Analysis: Perform semantic analysis on the AST to check

for correctness, resolve references, and enforce domain-specific rules

and constraints.

8.9.3.2 Code generation for specific domains

a. Intermediate Representation (IR): Translate the AST into an

intermediate representation suitable for code generation. This IR

captures the semantics of DSL constructs in a form that can be

transformed into executable code.

b. Code Generation: Generate target code (e.g., machine code,

bytecode, or source code in another language) based on the IR. This

step translates DSL constructs into executable instructions or

operations.

8.9.3.3 Tools and frameworks for DSL compilation (e.g., ANTLR)

a. ANTLR (ANother Tool for Language Recognition): ANTLR is a

powerful parser generator that can be used to create parsers and

translators for DSLs. It supports various target languages and

provides tools for syntax highlighting, code generation, and error

handling.

b. Other Tools: Other tools and frameworks like JetBrains MPS (Meta

Programming System), Xtext, and Spoofax can also be used for DSL

176

Principles of

Compiler Design
development and compilation, offering different features and

capabilities for DSL designers and implementers.

8.10 SUMMARY

• Compiler Tools and Techniques

Overview of Compiler Design and its phases.

 Compiler Construction Tools like Lex, Yacc, and Bison.

• Lexical and Syntax Analyzer Generators

 Role of lexical and syntax analyzers in compilation.

 Generators like Lex, Flex, Yacc, and Bison.

 Tokenization, regular expressions, and parsing techniques.

• Code Generation Frameworks

 Introduction to Code Generation and LLVM.

 Intermediate Representations (IR) and LLVM architecture.

• Debugging and Testing Compilers

 Importance, strategies, and tools for debugging and testing compilers.

• Just-in-Time (JIT) Compilation

Benefits/challenges, techniques, and examples of JIT Compilers.

• Parallel and Concurrent Programming Support

 Importance, challenges, and Compiler Techniques for Parallelism.

 Tools and Frameworks like OpenMP and MPI.

• Compiler Optimization Frameworks

 Goals, types, and common techniques of optimizations.

 Overview of popular frameworks like LLVM's optimization passes.

• Domain-Specific Language (DSL) Compilation

 Introduction to DSLs, benefits, and examples.

Design considerations, syntax, semantics, and DSL Compiler

implementation.

8.11 QUESTIONS FOR PRACTICE

1. What are the key phases in compiler design, and what is the purpose

of each phase?

2. How do lexical analyzers and syntax analyzers contribute to the

compilation process?

177

Introduction to Compiler

Tools, Techniques and

Advanced Topics in Compiler
Design

3. Can you explain the role of intermediate representations (IR) in code

generation?

4. What are some common techniques used in compiler optimization,

and how do they improve code performance?

5. What are the benefits and challenges of Just-in-Time (JIT)

compilation compared to ahead-of-time (AOT) compilation?

6. Describe the importance of parallel and concurrent programming

support in modern computing, and discuss some challenges in

achieving parallelism.

7. How do tools like OpenMP and MPI aid in parallel programming, and

what are their key features?

8. What are the objectives of code generation, and how does LLVM

contribute to this process?

9. What are domain-specific languages (DSLs), and what are the

benefits of using DSLs for specific tasks?

10. Explain the key considerations in designing a DSL and implementing

a DSL compiler, including parsing techniques and code generation for

specific domains.

8.12 REFERENCES

https://www.prepbytes.com/blog/computer-fundamentals/phases-of-a-

compiler/

https://tinman.cs.gsu.edu/~raj/4330/slides/c04.pdf

https://www.monarch-innovation.com/aot-vs-jit-compiler-in-

angular#:~:text=There%20are%20two%20main%20options,larger%20pro

jects%20or%20production%20environments.

https://oxylabs.io/blog/concurrency-vs-parallelism

https://subscription.packtpub.com/book/programming/9781782160304/1/c

h01lvl1sec09/implementing-a-dsl



https://www.prepbytes.com/blog/computer-fundamentals/phases-of-a-compiler/
https://www.prepbytes.com/blog/computer-fundamentals/phases-of-a-compiler/
https://tinman.cs.gsu.edu/~raj/4330/slides/c04.pdf
https://www.monarch-innovation.com/aot-vs-jit-compiler-in-angular#:~:text=There%20are%20two%20main%20options,larger%20projects%20or%20production%20environments
https://www.monarch-innovation.com/aot-vs-jit-compiler-in-angular#:~:text=There%20are%20two%20main%20options,larger%20projects%20or%20production%20environments
https://www.monarch-innovation.com/aot-vs-jit-compiler-in-angular#:~:text=There%20are%20two%20main%20options,larger%20projects%20or%20production%20environments
https://oxylabs.io/blog/concurrency-vs-parallelism
https://subscription.packtpub.com/book/programming/9781782160304/1/ch01lvl1sec09/implementing-a-dsl
https://subscription.packtpub.com/book/programming/9781782160304/1/ch01lvl1sec09/implementing-a-dsl

	Principles of Compiler Design starting pages
	01 Introduction to Compiler Design
	02 Introduction to Lexical Analysis
	03 Syntax Analysis
	04 Semantic Analysis
	05 Intermediate Code Generation
	06 CODE OPTIMIZATION
	07 Runtime Environments
	08 Introduction to Compiler Tools

