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INTRODUCTION TO COMPILER DESIGN

Unit Structure
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1.4 Phases of compilation process

1.5 Compiler architecture and components
1.6 Summary

1.7 Exercise

1.8 References

1.0 OBJECTIVE

This objective of this chapter is :
e  Tointroduce the compiler.

e  To give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine
architecture that are shaping compilers.

e  To include some observations on the relationship between compiler
design and computer-science theory and an outline of the applications
of compiler technology that go beyond compilation.

e  To give a brief outline of key programming-language concepts that
will be needed for our study of compilers.

1.1 FRONT END OF COMPILER

All of these phases of a general Compiler are conceptually divided into The
Front-end, and The Back-end. This division is due to their dependence on
either the Source Language or the Target machine. This model is called an
Analysis & Synthesis model of a compiler.

The Front-end of the compiler consists of phases that depend primarily on
the Source language and are largely independent on the target machine. For
example, the front-end of the compiler includes Scanner, Parser, Creation
of Symbol table, Semantic Analyzer, and the Intermediate Code Generator.

The Back-end of the compiler consists of phases that depend on the target
machine, and those portions don‘t depend on the Source language, just the
Intermediate language. In this we have different aspects of the Code
Optimization phase, code generation along with the necessary Error
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handling, and Symbol table operations.

The front end consists of those phases that depend primarily on source
language and largely independent of the target machine.

It includes lexical analysis, syntax analysis, semantic analysis,
intermediate code generation and creation of symbol tables.

Certain amount of code optimization can be done by the front end.

It includes following phases:

O

Lexical analysis

The lexical analyzer is the first phase of the compiler.

Its Main task is to read the input characters and produce
as output a sequence of tokens that the parser uses for
syntax analysis.

It is implemented by making the lexical analyzer be a
subroutine.

Upon receiving a “get next token” command from parser,
the lexical analyzer reads the input character until it can
identify the next token.

It may also perform secondary tasks at the user interface.

One such task is stripping out from the source program
comments and white space in the form of blanks, tabs, and
newline characters.

The scanner is responsible for doing simple task while
lexical analysis does the more complex task

Syntax analysis

Syntax analysis is also called hierarchical analysis or
parsing.

The syntax analyzer checks each line of the code and
spots every tiny mistake that the programmer has
committed while typing the code.

If code is error free then syntax analyzer generates the tree

Semantic analysis

Semantic analyzer determines the meaning of a source
string.

For example matching of parentheses in the expression,
or matching of if..else statement or performing arithmetic
operation that are type compatible, or checking the scope
of operation

Intermediate code generation

The intermediate representation should have two
important properties, it should be easy to produce and
easy to translate into a target program.



n We consider an intermediate form called “three address
code”.

m  Three address codes consist of a sequence of instructions,
each of which has at most three operands.

o Creation of symbol table

m A symbol table is a data structure used by a language
translator such as a compiler or interpreter.

] It is used to store names encountered in the source
program, along with the relevant attributes for those
names.

[ Information about following entities
m  Variable/Identifier

[ Procedure/function

[ Keyword

] Constant

m  Class name

[ Label name

1.2 INTRODUCTION TO COMPILER DESIGN

e  The software systems that do this translation are called compilers.

e  The compiler is software that converts a program written in a high-
level language also known as Source Language to a low-level
language also known as Object/Target/Machine Language/0, 1°’s.

e  Atranslator or language processor is a program that translates an input
program written in a programming language into an equivalent
program in another language.

° The compiler is a type of translator, which takes a program written in
a high-level programming language as input and translates it into an
equivalent program in low-level languages such as machine language
or assembly language.

e  The program written in a high-level language is known as a source
program, and the program converted into a low-level language is
known as an object (or target) program.

e  Without compilation, no program written in a high-level language can
be executed. For every programming language, we have a different
compiler; however, the basic tasks performed by every compiler are
the same.

e  The process of translating the source code into machine code involves
several stages, including lexical analysis, syntax analysis,semantic
analysis, code generation, and optimization.

Introduction to
Compiler Design
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Compiler is an intelligent program as compared to an assembler.
Compiler verifies all types of limits, ranges, errors, etc.

Compiler program takes more time to run and it occupies a huge
amount of memory space.

The speed of the compiler is slower than other system software.

It takes time because it enters through the program and then does
translation of the full program.

When the compiler runs on the same machine and produces machine
code for the same machine on which it is running. Then it is called a
self compiler or resident compiler.

Compiler may run on one machine and produce the machine codes for
other computer then in that case it is called a cross compiler.

The Compiler Toolchain:

Source Preprocessor Preprocessed
{prog.c) (cpp) * Source {ccl)

A compiler is one component in a toolchain of programs used to create
executables from source code. Typically, when you invoke a single
command to compile a program, a whole sequence of programs are
invoked in the background.

Following Figure shows A Typical Compiler Toolchain the
programs typically used in a Unix system for compiling C source code
to assembly code.

Headers
(stdio.h)

¥

Compiler Assembly Assembler

! ™ (prog.s) (as)

Object Code
(prog.o)

L]

. Dynamic Static
Running : Executable .
Pracess iLIIcli-”;E; .‘— {prog) D thrllgfr

Dynamic Libraries LEE{T:_rée}s

{libc.so)

The preprocessor
o It prepares the source code for the compiler proper.

o In the C and C++ languages, this means consuming all
directives that start with the # symbol.

o) For example, an #include directive causes the preprocessor to
open the named file and insert its contents into the source code.

o  A#define directive causes the preprocessor to substitute a value
wherever a macro name is encountered. (Not all languages rely
on a preprocessor.)
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° The compiler
o It properly consumes the clean output of the preprocessor.

o It scans and parses the source code, performs type checking and
other semantic routines, optimizes the code, and then produces
assembly language as the output.

e  The assembler
o It consumes the assembly code and produces object code.

o Object code is “almost executable” in that it contains raw
machine language instructions in the form needed by the CPU.

o  However, object code does not know the final memory
addresses in which it will be loaded, and so it contains gaps that
must be filled in by the linker.

° The linker

o It consumes one or more object files and library files and
combines them into a complete, executable program.

o It selects the final memory locations where each piece of code
and data will be loaded, and then “links” them together by
writing in the missing address information.

o For example, an object file that calls the printf function does not
initially know the address of the function.

o Anempty (zero) address will be left where the address must be
used.

o Once the linker selects the memory location of printf, it must go
back and write in the address at every place where printf is
called.

Types of Compiler

e  The following are the different types of compilers that are used:
o Single Pass Compilers
o  Two Pass Compilers
o Multipass Compilers
o Just-in-time (JIT) compiler
o Cross compiler
o Bytecode compiler
o Source-to-source compiler
o Binary compiler:
o Hardware compiler 5
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Single Pass Compiler

O

When all the phases of the compiler are present inside a single
module, it is simply called a single-pass compiler.

It performs the work of converting source code to machine
code.

In a single-pass compiler, when a line source is processed it is
scanned and the tokens are extracted.

Thus the syntax of the line is inspected and the tree structure
and some tables including data about each token are
constructed.

Finally, after the semantic element is tested for correctness, the
code is created. The same process is repeated for each line of
code until the whole program is compiled.

Usually, the entire compiler is built around the parser, which
will call procedures that will perform different functions.

High Level Language
Lexical Analysis

Syntax Analysis

All phases are
-- in a single
module

Semantic Analysis

Intermediate Code
Generation

Code Optimisation

Target Code Generation

Low Level Language

Two Pass Compiler

o Two-pass compiler is a compiler in which the program is
translated twice, once from the front end and the back from the
back end known as Two Pass Compiler.

Two Pass Complier
IR
Source Code Front End | Back End | Target Code



) Multipass Compiler

o

Source Code

When several intermediate codes are created in a program and
a syntax tree is processed many times, it is called a Multipass
Compiler.

It breaks codes into smaller programs.

Multi Pass Complier

IR IR Machine Code
Front End Middle End Back End

Errors

° Just-in-time (JIT) compiler

o

o

o

It compiles programs as they are executed. It is faster than
traditional compilers and helps in reducing program size by
elimination of redundant code.

This reduced the size of the program and make it more efficient.
This helps in performance improvement.

° Cross compiler

o

This is a technology to allow developers to compile and run
codes on various platforms.

This type is useful while working on several versions of code
for ensuring that all platforms are being supported.

This is useful while working on a new platform to verify
whether the code is working on this platform.

e  Bytecode compiler

o

o

It translates high-level language into machine code which is
executable on the target machine.

Such compilers allow developers to write codes in a high-level
language and compile them into machine code.

Through this compiler, developers write concise and
comprehensible codes. These compilers should be written in
high-level language.

They are not suitable for developing low-level code.

° Source-to-source compiler

o

This software tool translates the source code into executable
code. Such compilers are used to translate source code written
in multiple programming languages.

The translation process can be completed in both manual and
automatic methods.

Introduction to
Compiler Design
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Compilers translate source code into machine code which is
executed by a target machine.

° Binary compiler

O

O

This compiler translates the source code file into binary format.

This type of format stores the program information in a compact
form that is easily read by computer.

Developers use compilers for network programming, database
administration, and web development.

° Hardware compiler

O

O

Such compilers compile the source code into machine code for
transforming source code into machine code.

Post that, the computer executes this code.

Such compilers are used in operating systems, embedded
systems, and computer games.

Assembler is a type of hardware compiler.

1.3 ROLE AND IMPORTANCE OF COMPILERS

ADVANTAGES OF COMPILER:

e  Improved performance:

O

Compiled code tends to run faster than interpreted code because
it has been translated into machine code that can be directly
executed by the computer’s processor.

This can be particularly important for performance-critical
applications, such as scientific simulations or real-time systems.

° Portability:

O

Compilers allow programmers to write code in a high-level
programming language that can be easily translated into
machine code for a variety of different platforms.

This makes it easier to develop software that can run on
different systems without requiring significant changes to the
source code.

° Increased Security:

O

Compilers can help improve the security of software by
performing a number of checks on the source code, such as
checking for syntax errors and enforcing type safety.

This can help prevent certain types of vulnerabilities, such as
buffer overflows and type coercion attacks.



° Debugging support:

o Most compilers include a number of debugging tools that can
help programmers find and fix errors in their code.

o  These tools can include features such as syntax highlighting,
error messages, and debuggers that allow programmers to step
through their code line by line.

e  No dependencies:

o  Your client or anyone else doesn’t need any compiler,
interpreter, or third party program to be installed in their system,
for executing the shared executable file of your source code.

e  Compared to machine language, the notation used by programming
languages is closer to the way humans think about problems.

e  The compiler can spot some obvious programming mistakes.

° Programs written in a high-level language tend to be shorter than
equivalent programs written in machine language.

e  Another advantage of using a high- level language is that the same
program can be compiled to many different machine languages and,
hence, be brought to run on many different machines.

e  Compilers offer a number of advantages for software development,
including improved performance, portability, increased security, and
debugging support.

DISADVANTAGES OF COMPILER:

° Compilation time:

o Depending on the size and complexity of the source code,
compilation can take a significant amount of time.

o  This can be a hindrance to productivity if frequent updates to
the code are required.

° Error detection:

o  Compilers can only detect syntax errors and certain semantic
errors, and may not catch all errors in the source code.

o This means that the compiled program may not behave as
expected, and debugging may be required to identify and fix the
errors.

° Portability:

o Programs compiled for a specific platform or architecture may
not be able to run on other platforms or architectures without
being recompiled.

o  This can be a limitation if the program needs to be run on
multiple platforms.

Introduction to
Compiler Design
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Execution speed:

o Programs compiled from high-level languages may not be as
fast as programs written in low-level languages, as the compiled
code may include additional instructions for the compiler to
interpret.

Lack of flexibility:

o Compilers can limit the flexibility of programs since changes
often require recompilation.

Resource consumption:

o Compilers can consume system resources, particularly during
the compilation process, which may affect other tasks on the
machine.

Compilers can be useful tools in software development, but they may
not be suitable for all situations and may require additional effort to
ensure that the compiled code is correct and efficient.

USES OF COMPILER:

Ease of programming:

o  High-level programming languages are easier for humans to
read and write than machine code, which is a series of numbers
and symbols that can be difficult for humans to understand.

o By using a compiler to translate high-level language into
machine code, programmers can write code more quickly and
easily.

Portability:

o Compilers allow programmers to write code that can be easily
compiled and run on a wide variety of devices and platforms.

o Thisis because the source code is independent of the underlying
hardware and is only translated into machine code when it is
compiled.

Abstraction:

o Compilers provide a level of abstraction between the
programmer and the underlying hardware, allowing
programmers to focus on the logic of their programs without
having to worry about the specific details of the hardware.

Performance:

o Compilers can optimize the machine code generated from the
source code, resulting in faster and more efficient programs.

Compilers are an essential tool in software development, as they
allow programmers to write code that is easier to read and write, can
be easily compiled and run on different devices and platforms, and
can be optimized for performance.



A compiler is a program that translates source code written in a
programming language into machine code that can be executed by a
computer.

The source code is written by a programmer in a high-level
programming language, such as C++ or Java, which is easier for
humans to read and write.

The compiler converts the source code into machine code, which is
a low-level language that can be understood and executed by the
computer’s processor.

There are many different types of compilers, including ones for
general-purpose programming languages and ones for specialized
languages used in specific fields, such as system programming or
database programming.

They also provide a level of abstraction between the programmer and
the underlying hardware, allowing programmers to focus on the logic
of their programs without having to worry about the specific details
of the hardware.

APPLICATIONS OF COMPILER:

Software development: Compilers are an essential tool for software
development because they allow programmers to write code in a high-
level language that is easy to understand and debug, and then translate
that code into machine code that can be efficiently executed by the
compulter.

System software: Many operating systems, including Windows,
macOS, and Linux, are written in high-level programming languages
and use compilers to translate the source code into machine code.

Embedded systems: Compilers are also used to develop software for
embedded systems, which are small, specialized computer systems
that are used in a variety of devices, such as cell phones, automobiles,
and industrial control systems.

Scientific computing: Compilers are used to develop software for
scientific computing applications, such as simulations, data analysis,
and machine learning.

Game development: Compilers are used to develop software for
video games, which typically require efficient performance and may
be written in a variety of programming languages.

Embedded Systems: Compilers are used in embedded systems
development for appliances, 10T devices, and automotive control
systems.

High-Performance Computing: Compilers play a key role in high-
performance computing clusters for scientific research and data
analysis.

Introduction to
Compiler Design
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Utility Software: Compilers are used to develop utility software, like
text editors, database management systems, and networking tools.

Operations/Role of Compiler are as follow:

It breaks source programs into smaller parts.

It enables the creation of symbol tables and intermediate
representations.

It helps in code compilation and error detection.
it saves all codes and variables.

It analyses the full program and translates it.
Separate compilation is supported.

Read the full programme, analyse it, and translate it to a semantically
similar language.

Depending on the type of machine, converting source code to object
code.

1.4 PHASES OF COMPILATION PROCESS

The following steps are the phases of compiler that are undertaken by it in
order to convert the code to output:

12

High Level
Language

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Symbol Table Error Handling

Intermediate Code
Generator

Code Optimiser

Target Code
Generation

Assembly Code

Phases of Compiler



Lexical analysis:

O

It is the first phase where high-level input program is converted
into a sequence of tokens.

This can be implemented with Deterministic finite Automata.

The output is the sequence of tokens that are sent to the parser
for syntax analysis.

token
source Lexical - to semantic
—

Pars -
program Analyzer arset analysis

getNextToken

Symbol
Table

Figure : Lexical Analyzer

Lexical Analysis is also known as Scanning or Linear Analysis.

To begin, the lexical analyzer examines the entire program and
divides it into tokens.

The string with meaning is referred to as a token.

The input string's class or category is described by the token.
Identifiers, Keywords, Constants, and so on.

Sentinel refers to the end of the buffer or token.

The token is described by a set of rules known as a pattern.

Lexemes are the sequence of characters in source code that
correspond to the token pattern.

For example int, i, num etc.

There are two pointers in Lexical analysis they are Lexeme
pointer and Forward pointer.

To recognize a token Regular expressions are used to construct
Finite Automata.

Input is the source code and output is the tokens.
E.g.

Input: X=X + y*z*3

Output: Tokens or table of tokens

X

y

z

Introduction to
Compiler Design
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) Syntax Analysis/ Parsing:

o It is the second phase of a compiler.
o In this phase, it verifies the syntactical structure of a given input.
o  Todo so, it builds a data structure called Syntax or Parse tree.

o  The parse tree is constructed using pre-defined grammar of
language and input string.

¢ If a given input string can be produced using syntax tree, the
input string is found to be in the correct syntax.

¢ If it is not correct, the error is reported by syntax analyzer.

Error Handler

/ K
Retumn Tokens A \
A

> ree
Source Program »| Lexical Analyzer Syntax Analyzer »| Rest of Compiler Target Program

Demand for K

Symbol Table

\

Fig : Lexical and Syntax Analyzer

o  Syntax analysis, also known as syntactical analysis, parsing, or
hierarchical analysis, is a type of analysis that examines the structure
of a sentence.

o  Syntax is the arranging of words and phrases in a language to produce
well-formed sentences.

o  The tokens generated by the lexical analyzer are put together to form
a less detailed hierarchical structure known as the syntax tree.

o Input is token and output is syntax tree.

o  Grammatical errors are checked during this phase. Example:
Parenthesis missing, semicolon missing, syntax errors etc.

o For example:

Input: tokens

+
s

WIN| K




Output:

Introduction to
Compiler Design

VAN
./ N

N
Y /*\

e  Semantic analysis:

o

o

It is the process of interpreting meaning from text.

This allows the computer system to understand and interpret
paragraphs, sentences and whole documents.

For this purpose, it analyzes the grammatical structure and
identifies relationships between individual words.

Semantic analyzer checks the meaning of source program.
Logical errors are checked during this phase. Example: divide
by zero, variable undeclared etc.

Example of logical errors

int a;

float b;

char c;

c=a+b;

Parse tree refers to the tree having meaningful data.
Parse tree is more specified and more detailed.

Input is syntax tree and output is parse tree (syntax tree with
meaning) is as follows:

1d4 mtto float

15
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¢ It can translate source programs into machine program.

o Anintermediate code is generated because the compiler cannot
directly generate machine code in one pass.

¢ It first converts the source program into intermediate code to
perform efficient generation of machine code.

o It is represented in postfix notation, directed acyclic graph,
quadruples, and triples.

o Intermediate code (IC) is code that sits between high-level and
low-level languages, or code that sits between source and target
code.

o  The conversion of intermediate code to target code is simple.

o Intermediate code functions as a bridge between the front end
and the back end.

o  Three address codes, abstract syntax trees, prefix (polish),

postfix (reverse polish), and other types of intermediate code
exist.

Directed Acyclic Graph (DAG) is kind of abstract syntax tree which optimizes repeated expressions in syntax tree.
/: \ 3
/ / \
a + /7
/ *
P
/ \ g %
+ d A

Syntax Tree Directed Acyclic Graph

o  Thethree-address code, which has no more than three operands,
is the most often used intermediate code.

o Input: Parse tree

o  Output: Three address code
templ=int to float(2);
temp2=id4*t1;
temp3=id3*t2;
temp4=id2+t3;

temp4=idl;
16



Code optimization:

O

o

It is a program transformation technique.

The aim of this phase of compiler is to code improvement by
enabling it to consume fewer resources and deliver high speed.

High-level language constructs are replaced with efficient low-
level programming codes.

For increasing the speed of a program, unnecessary code strings
are eliminated and a sequence of statements are organized.

Source Code

Intermediate Code »  Target Code

Y

: '
|

Front-end Back-end

Fig :Code Optimization
To increase intermediate code and execution performance, code
optimization is used.

It is vital to have code that executes faster or consumes less
memory.

There are mainly two ways to optimize the code named
Frontend (Analysis) and Back-end (Synthesis).

A programmer or developer can optimize the code in front-end.
The compiler can optimize the code on the back-end.
Various strategies for code optimization are listed below.
. Compile Time Evaluation

. Constant Folding

. Constant Propagation

. Common SubExpression Elimination

. Variable Propagation

. Code Movement

. Loop Invariant Computation

. Strength Reduction

. Dead Code Elimination

. Code Motion

. Induction Variables and Strength Reduction.

Input: Three address code

Introduction to
Compiler Design
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o Output: : Optimized three address code
templ=id4*2.0;
temp2=temp1*id3;
id1=temp2+id2;

Target Code Generator:

o It is the final compilation phase. The generated code is an object
code of lower-level programming languages such as assembly
language.

o  Source code written in higher-level language is converted into
a lower-level language that results in lower-level object code.

o  The main purpose of the Target Code generator is to write code
that the machine can understand and also register allocation,
instruction selection, etc. The output is dependent on the type of
assembler. This is the final stage of compilation.

o  The optimized code is converted into relocatable machine code
which then forms the input to the linker and loader.

THE GROUPING OF PHASES INTO PASSES:

The discussion of phases deals with the logical organization of a
compiler.

In an implementation, activities from several phases may be grouped
together into a pass that reads an input file and writes an output file.

For example, the front-end phases of lexical analysis, syntax analysis,
semantic analysis, and intermediate code generation might be grouped
together into one pass.

Code optimization might be an optional pass.

Then there could be a back-end pass consisting of code generation for
a particular target machine.

Some compiler collections have been created around carefully
designed intermediate representations that allow the front end for a
particular language to interface with the back end for a certain target
machine.

With these collections, we can produce compilers for different source
languages for one target machine by combining different front ends
with the back end for tha t target machine.

Similarly, we can produce compilers for different target machines, by
combining a front end with back ends for different target machines.



1.5 COMPILER ARCHITECTURE AND COMPONENTS

As we said earlier , A compiler can broadly be divided into two phases based
on the way they compile as : Analysis and Synthesis phase of compiler.

Analysis Phase

° Known as the front-end of the compiler, the analysis phase of the
compiler reads the source program, divides it into core parts and then
checks for lexical, grammar and syntax errors.

e  The analysis phase generates an intermediate representation of the
source program and symbol table, which should be fed to the
Synthesis phase as input.

Front-end Back-end

Analysis Synthesis

Intermediate
Source Code Machine
Code Representation Code

Synthesis Phase

) Known as the back-end of the compiler, the synthesis phase generates
the target program with the help of intermediate source code
representation and symbol table.

e A compiler can have many phases and passes.

° Pass : A pass refers to the traversal of a compiler through the entire
program.

° Phase :

o A phase of a compiler is a distinguishable stage, which takes
input from the previous stage, processes and yields output that
can be used as input for the next stage.

o A pass can have more than one phase.

Both analysis and synthesis are made up of internal phases.

Source Front End Conceptual Back End Target
Code (Analyzer) Representation (Generator) Code
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Compiler Components:

A typical real-world compiler usually has multiple phases. This increases
the compiler's portability and simplifies retargeting.

e  The front end consists of the following phases:

O

O

scanning:
m  ascanner groups input characters into tokens;

] Tokenizer (Lexical Analysis): The Tokenizer identifies
and categorizes objects in each line of code, disregarding
white space and comments.

[ For example, consider the line int x = 5;. The Tokenizer
identifies five tokens: "int", "x", "=", "5", and ";".
parsing:

m a parser recognizes sequences of tokens according to
some grammar and generates Abstract Syntax Trees
(ASTs);

semantic analysis:

n performs type checking (ie, checking whether the
variables, functions etc in the source program are used
consistently with their definitions and with the language
semantics) and translates ASTs into IRs;

optimization:
] optimizes IRs.

e  The back end consists of the following phases:

O

instruction selection:
[ maps IRs into assembly code;
code optimization:

m  optimizes the assembly code using control-flow and data-
flow analyses, register allocation, etc;

code emission:

m  generates machine code from assembly code.

e  The generated machine code is written in an object file.

e  Thisfile is not executable since it may refer to external symbols (such
as system calls).

e  The operating system provides the following utilities to execute the

code:



o linking:

m A linker takes several object files and libraries as input
and produces one executable object file.

[ It retrieves from the input files (and puts them together in
the executable object file) the code of all the referenced
functions/procedures and it resolves all external
references to real addresses.

m  The libraries include the operating system libraries, the
language-specific libraries, and, maybe, user-created
libraries.

o loading:

m A loader loads an executable object file into memory,
initializes the registers, heap, data, etc and starts the
execution of the program.

) Relocatable shared libraries allow effective memory use
when many different applications share the same code.

1.6 SUMMARY

In this chapter we have seen basic fundamentals of compiler, like what is
compiler? What are the role and importance of a compiler? Architecture and
component of compiler.

1.7 EXERCISE

Answer the following:

1.  Describe the various phases of compiler with suitable example

o W N

What is a compiler? Explain.
Note down the role and importance of the compiler.
Write a short note on components of the compiler.

Explain types of compiler.
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INTRODUCTION TO LEXICAL ANALYSIS
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2.6  Summary
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2.0 OBJECTIVE

This objective of this chapter is :

To understand how to construct a lexical analyzer.

To implement a lexical analyzer by hand, it helps to start with a
diagram or other description for the lexemes of each token.

To identify each occurrence of each lexeme on the input and to return
information about the token identified.

To produce a lexical analyzer automatically by specifying the lexeme
patterns to a lexical-analyzer generator and compiling those patterns
into code that functions as a lexical analyzer.

To show how this notation can be transformed, first into
nondeterministic automata and then into deterministic automata.

To introduce a lexical-analyzer generator called Lex (or Flex in a
more recent embodiment).

2.1 INTRODUCTION TO LEXICAL ANALYSIS

Lexical-analyzer generators by introducing regular expressions, a
convenient notation for specifying lexeme patterns.

Lexical Analysis is the first phase of the compiler also known as a
scanner.

It converts the High level input program into a sequence of Tokens.
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) Lexical Analysis can be implemented with the Deterministic finite
Automata.

e  The output is a sequence of tokens that is sent to the parser for syntax

analysis
Read
Characters Token
—  Lexical »  Syntax
oy Analyzer o Analyzer
extra for
Characters token

What is Lexical Analysis?
Lexical analysis is the starting phase of the compiler.

It gathers modified source code that is written in the form of sentences from
the language preprocessor. The lexical analyzer is responsible for breaking
these syntaxes into a series of tokens, by removing whitespace in the source
code. If the lexical analyzer gets any invalid token, it generates an error.
The stream of character is read by it and it seeks the legal tokens, and then
the data is passed to the syntax analyzer, when it is asked for.

There are three important terminologies used in Lexical Analysis
1. Token:

° It is a sequence of characters that represents a unit of
information in the source code.

e  Alexical token is a sequence of characters that can be treated as
a unit in the grammar of the programming languages.

° Example of tokens:

Type token (id, number, real, . . .)
Punctuation tokens (IF, void, return, . . .)
Alphabetic tokens (keywords)

Keywords; Examples-far, while, if etc.

Identifier; Examples-Variable mame, function name, etc.

Operators; Examples "+, '++', "-" etc.

Separators; Examples °, ;| etc

° Example of Non-Tokens: Comments, preprocessor directive,
macros, blanks, tabs, newline, etc.

e  One token for each keyword. The pattern for a keyword is the
same as the keyword itself.



2.

e  Tokens for thel operators, either individually or in classes such
as the token comparison

e  One token representing all identifiers.

e  One or more tokens representing constants, such as numbers
and literal strings.

e  Tokens for each punctuation symbol, such as left and right
parentheses,comma, and semicolon.

° More examples of token:

TOKEN INFORMAL DESCRIPTION SAMPLE LEXEMES
if characters i, f if
else| characters e, 1, s, e else
comparison < or > or <= or »= or == or |= <=, 1=
id letter followed by letters and digits pi, score, D2
number any numeric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by "'s "core dumped"”

Pattern: The description used by the token is known as a pattern.

Keyward while w-h-i-l-e

Relop < <, >, vz, <=, 1=, ==

Integer 7 (0 - 9y*-> Sequence of digits with at least one digit

String "Hi" Characters enclosed by " *

Punctuation | , 7, . letc

Identifier number | A -Z a - z A sequence of characters and numbers initiated by a
character.

Tricky Problems When Recognizing Tokens

Usually, given the pattern describing the lexemes of a token, it is relatively
simple to recognize matching lexemes when they occur on the input. How-
ever, in some languages it is not immediately apparent when we have seen
an instance of a lexeme corresponding to a token. The following example
is taken from Fortran, in the fixed-format still allowed in Fortran 90. In
the statement

oo 51 = 1.25

it is not apparent that the first lexeme is DO0S5I, an instance of the identifier
token, until we see the dot following the 1. Wote that blanks in fixed-format
Fortran are ignored {(an archaic convention}. Had we seen a comina instead
of the dot, we would have had a do-statement

DO 5 1 = 1.25

in which the first lexeme is the keyword DO

Lexeme:

e  Asequence of characters in the source code, as per the matching
pattern of a token, is known as lexeme. It is also called the
instance of a token.
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° The sequence of characters matched by a pattern to form the
corresponding token or a sequence of input characters that
comprises a single token is called a lexeme.

eg_ ‘Lﬂoat,’, “abs_zero_KelVin”’ “:”, C‘_”’ 44273”’ C‘;,’ X

Example 1 : Given C statement
printf (" Total = %d\n",score);

both printf and score are lexemes matching the pattern for token id, and
"Total = °/,d\n" is a lexeme matching literal.

Example 2 :

The token names and associated attribute values for the Fortran statement
E=M* C =*2

are written below as a sequence of pairs.

<id, pointer to symbol-table entry for E>
<assign_op>

<id, pointer to symbol-table entry for M>
<mult_op>

<id, pointer to symbol-table entry for C>
<eip_op>

<number, integer value 2>

Note that in certain pairs, especially operators, punctuation, and keywords,
there is no need for an attribute value.

In this example, the token number has been given an integer-valued
attribute.

In practice, a typical compiler would instead store a character string
representing the constant and use as an attribute value for number a pointer
to that string.

2.2 ROLE OF LEXICAL ANALYZER

e  Asthe first phase of a compiler, the main task of the lexical analyzer
is to read the input characters of the source program, group them into
lexemes, and produce as output a sequence of tokens for each lexeme
in the source program.

° The stream of tokens is sent to the parser for syntax analysis.

° It is common for the lexical analyzer to interact with the symbol table
as well.

e  When the lexical analyzer discovers a lexeme constituting an
identifier, it needs to enter that lexeme into the symbol table.

° In some cases, information regarding the kind of identifier may be
read from the symbol table by the lexical analyzer to assist it in
determining the proper token it must pass to the parser.



The lexical analyzer performs the following tasks:

The lexical analyzer is responsible for removing the white spaces and
comments from the source program.

It corresponds to the error messages with the source program.
It helps to identify the tokens.

The input characters are read by the lexical analyzer from the source
code.

Stripping out comments and white spaces from the program
Read the input program and divide it into valid tokens

Find lexical errors

Return the Sequence of valid tokens to the syntax analyzer

When it finds an identifier, it has to make an entry into the symbol
table.

Figure : Interactions between the lexical analyzer and the parser

Source el Lexical TOke” Rest of compller
program analyzer |q¢——— | Farser | ———-—--------
Get next
token
L
table
Commonly, the interaction is implemented by having the parser call
the lexical analyzer.

The call, suggested by the getNextToken command, causes the
lexical analyzer to read characters

from its input until it can identify the next lexeme and produce for it
the next token, which it returns to the parser.

Since the lexical analyzer is the part of the compiler that reads the
source text, it may perform certain other tasks besides identification
of lexemes.

One such task is stripping out comments and whitespace (blank,
newline, tab, and perhaps other characters that are used to separate
tokens in the input).

Another task is correlating error messages generated by the compiler
with the source program.

For instance, the lexical analyzer may keep track of the number of
newline characters seen, so it can associate a line number with each
error message.

Introduction to
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In some compilers, the lexical analyzer makes a copy of the source
program with the error messages inserted at the appropriate positions.

If the source program uses a macro-preprocessor, the expansion of
macros may also be performed by the lexical analyzer.

Sometimes, lexical analyzers are divided into a cascade of two
processes:

a)  Scanning consists of the simple processes that do not require
tokenization of the input, such as deletion of comments and
compaction of consecutive whitespace characters into one.

b)  Lexical analysis proper is the more complex portion, where the
scanner produces the sequence of tokens as output.

Lexical Analysis Versus Parsing:

There are a number of reasons why the analysis portion of a compiler
is normally separated into lexical analysis and parsing (Syntax
analysis) phases.

Simplicity of design is the most important consideration.

o  The separation of lexical and syntactic analysis often allows us
to simplify at least one of these tasks.

o For example, a parser that had to deal with comments and
whitespace as syntactic units would be considerably more
complex than one that can assume comments and whitespace
have already been removed by the lexical analyzer.

o If we are designing a new language, separating lexical and
syntactic concerns can lead to a cleaner overall language design.

Compiler efficiency is improved.

o A separate lexical analyzer allows us to apply specialized
techniques that serve only the lexical task, not the job of
parsing.

o In addition, specialized buffering techniques for reading input
characters can speed up the compiler significantly.

Compiler portability is enhanced.

o Input-device-specific peculiarities can be restricted to the
lexical analyzer.

Advantages Of Lexical Analysis

Lexical analysis helps the browsers to format and display a web page
with the help of parsed data.

It is responsible to create a compiled binary executable code.

It helps to create a more efficient and specialised processor for the
task.



DISADVANTAGES OF LEXICAL ANALYSIS

° It requires additional runtime overhead to generate the lexer table and
construct the tokens.

° It requires much effort to debug and develop the lexer and its token
description.

° Much significant time is required to read the source code and partition
it into tokens.

2.3 REGULAR EXPRESSIONS

e  Suppose we wanted to describe the set of valid C identifiers.
° It is almost exactly the language described as;
L(L U D)* is the set of all strings of letters and digits beginning with a letter

the only difference is that the underscore is included among the letters.

Example Let L be the set of letters (A B.... ,Z,a,b,...,z} and let D
be the set of digits {0,1,...9}. We may think of £ and D in two, essentially
equivalent, ways. One way is that L and D are, respectively, the alphabets of
uppercase and lowercase letters and of digits. The second way is that . and D
are languages, all of whose strings happen to be of length one. Here are some
other languages that can be constructed from languages 7 and 7, using the
operators

1. L U D is the set of letters and digits — strictly speaking the language
with 62 strings of length one, each of which strings is either one letter or
one digit.

2. LD is the set of 520 strings of length two, each consisting of one letter
followed by one digit.

3. L' is the set of all 4-letter strings.
4. L* ig the set of all strings of letters, including e, the empty string.

5. L{(L U D)* is the set of all strings of letters and digits beginning with a
letter.

6. D is the set of all strings of one or more digits.

° In the above Example, we were able to describe identifiers by giving
names to sets of letters and digits and using the language operators
union, concatenation,and closure.

° This process is so useful that a notation called regular expressions has
come into common use for describing all the languages that can be
built from these operators applied to the symbols of some alphabet.

° In this notation, if letter- is established to stand for any letter or the
underscore, and digit- is established to stand for any digit, then we
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could describe the language of C identifiers by:
letter- ( letfer- | digit )*

e  The vertical bar above means union, the parentheses are used to group
subexpressions, the star means "'zero or more occurrences of," and the
juxtaposition of letter, with the remainder of the expression signifies
concatenation.

e  The regular expressions are built recursively out of smaller regular
expressions, using the rules described below.

° Each regular expression r denotes a language L(r), which is also
defined recursively from the languages denoted by r ' s
subexpressions.

° Here are the rules that define the regular expressions over some
alphabet £ and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1. eisaregular expression, and L(e) is {e}, that is, the language whose
sole member is the empty string.

2. Ifaisasymbolin E, then a is a regular expression, and L(a) = {a},
that is, the language with one string, of length one, with a in its one
position.

Note that by convention, we use italics for symbols, and boldface for their
corresponding regular expression.

INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular
expressions denoting languages L(r) and L(s), respectively.

1. (n)|(s) is aregular expression denoting the language L(r) U L(s).
2 ((s) is a regular expression denoting the language L(r)L(s).

3. (n*isaregular expression denoting (L(r))*.
4

(r) is a regular expression denoting L(r). This last rule says that we
can

As defined, regular expressions often contain unnecessary pairs of
parentheses.

We may drop certain pairs of parentheses if we adopt the conventions that:
a)  The unary operator * has highest precedence and is left associative.
b)  Concatenation has second highest precedence and is left associative.

however, when talking about specific characters from the ASCII
character set, we shall generally use teletype font for both the
character and its regular expression.

c)| has lowest precedence and is left associative.



Under these conventions, for example, we may replace the regular
expression (a)|((b)*(c)) by ajb*c. Both expressions denote the set of strings
that are either a single a or are zero or more 6's followed by one c.

Example 3 :
Let £ = {a,6}.
1. The regular expression alb denotes the language {a, b}.

2. (ab)(alb) denotes {aa, ah, ba, bb}, the language of all strings of length
two over the alphabet E. Another regular expression for the same
language is aalab|balbb.

3. a* denotes the language consisting of all strings of zero or more a's,
thatis,{e,a,aa,aaa,...}

4.  (alb)* denotes the set of all strings consisting of zero or more instances
of aor b, that is, all strings of a's and 6's: {e,a, b,aa, ab, ba, bb,aaa,...}.

Another regular expression for the same language is (a*b*)*.

5.  ala*b denotes the language {a, b, ab, aab, aaab,...}, that is, the string
a and all strings consisting of zero or more a's and ending in b.

A language that can be defined by a regular expression is called a regular
set.

If two regular expressions r and s denote the same regular set, we say they
are equivalent and write r = s.

For instance, (a|b) = (bla). There are a number of algebraic laws for regular
expressions; each law asserts that expressions of two different forms are
equivalent.

Following Figure shows some of the algebraic laws that hold for arbitrary
regular expressionsr, s, and t.

LAW DESCRIPTION
s = s | is commutative
rysit) = (Fsiif | is associative
Fist) = (rs)t Concatenation is associative
rsit) = Fswt; (siwjp = srir | Concatenation distributes over |
er =re = r e is the identity for concatenation
r* = (rle)* e is guaranteed in a closure
* is idempotent

Regular Definitions:

For notational convenience, we may wish to give names to certain regular
expressions and use those names in subsequent expressions, as if the names
were themselves symbols.
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If £ is an alphabet of basic symbols, then a regular definition is a sequence
of definitions of the form:

di - n

d, -» I,

d, ~ 7
where:

1.  Eachdiisanew symbol, not in E and not the same as any other of the
cTs, and

2. Each T{isaregular expression over the alphabet E U {d\,d2,.. .,

By restricting to E and the previously defined GTS, we avoid recursive
definitions,and we can construct a regular expression over E alone, for each
r$.

We do so by first replacing uses of d\ in r2 (which cannot use any of the d's
except for d\), then replacing uses of d\ and d2 in r-$ by r\ and (the
substituted) r2,and so on.

Finally, in rn we replace each di, for i — 1,2,... ,n — 1, by the substituted
version of r$, each of which has only symbols of E.

Example 4 : C identifiers are strings of letters, digits, and underscores. Here
is a regular definition for the language of C identifiers. We shall
conventionally use italics for the symbols defined in regular definitions.
letter- -+ A|B|---|Z|a|b|---|z]|_
digit > 0j1j*++j9
id —) letter- ( letter- | digit )*

Example 5 : Unsigned numbers (integer or floating point) are strings such
as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

digit 0]1 9

digits  +  digit digit*
optionalFraction Sy . digits | e
optional Exponent (E(+|-|e) digits) | e

mimber > digits  optionalFraction  optionalExponent

is a precise specification for this set of strings. That is, an optionalFraction
is either a decimal point (dot) followed by one or more digits, or it is missing
(the empty string). An optionalExponent, if not missing, is the letter E
followed by an optional + or - sign, followed by one or more digits. Note
that at least one digit must follow the dot, so number does not match 1., but
does match 1.0.




Extensions of Regular Expressions:

Since Kleene introduced regular expressions with the basic operators
for union, concatenation, and Kleene closure in the 1950s, many
extensions have been added to regular expressions to enhance their
ability to specify string patterns.

Here we mention a few notational extensions that were first
incorporated into Unix utilities such as Lex that are particularly useful
in the specification lexical analyzers.

The references to this chapter contain a discussion of some regular
expression variants in use today.

1. One or more instances.

w

The unary, postfix operator + represents the positive closure of a
regular expression and its language. That is, if r is a regular
expression, then (r) + denotes the language (L(r)) + .

The operator + has the same precedence and associativity as the
operator *.

Two useful algebraic laws, r* = r+\e and r+ = rr* = r*r relate the
Kleene closure and positive closure.

. Zero or one instance.

The unary postfix operator ? means "zero or one occurrence."
That is, r? is equivalent to rle, or put another way, L(r?) = L(r) U {e}.
The ? operator has the same precedence and associativity as * and +.

. Character classes.

A regular expression aifal « ¢ « \an, where the a’*s are each symbols of
the alphabet, can be replaced by the shorthand [aia,2 * « - an].

More importantly, when01,02,...,anf°rma logical sequence,
e.g., consecutive uppercase letters, lowercase letters, or digits, we can
replace them by o i - an, that is, just the first and last separated by a
hyphen.

Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand fora |b|. - -
|z.

Example 6 : Using these shorthands, we can rewrite the regular definition
of Example as:

letter. - [A-Za-z ]

digit  ->  [0-9]

g - letter- ( letter ' digit }*

The regular definition of Example 5 can also be simplified:

digit > [0-9]

digits  —>+ digir

number  -»*  digits (. digits)? ( B [+-]1? digits )?
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EXPRESSION MATCHES EXAMPLE

¢ the one non-operator character ¢ a

vV character ¢ literally \¥

light string s literally ekt
any character but newline a. *b
beginning of a line ~abe

$ end of a line abc$

- any one of the characters in string s | [abc]
any one character not in string s [~abe]

r¥ zero or more strings matching » a*

r+ ong or more strings matching at

1? Zero or one r a?

rim, n} between m and » occurrences of r a[l,5]

rir, an M followed by an 7, ab

A an 11 or an 7, alb

(1} same as I (alb)

FifF, 71 when followed by », abe/123

Following Figure shows: Filename expressions used by the shell

command sh

EXPRESSION MATCHES EXAMPLE

v string s literally Y

| character c literally |

= any string * 0

? any character sortl.?

57 any character in s sortl.[cso]
2.4 FINITE AUTOMATA

We shall now discover how Lex turns its input program into a lexical
analyzer.

At the heart of the transition is the formalism known as finite automata.

These are essentially graphs, like transition diagrams, with a few
differences:

1.  Finite automata are recognizers; they simply say "yes" or "no" about
34 each possible input string.



2. Finite automata come in two flavors:

(@)

(b)

Nondeterministic finite automata (NFA) have no restrictions on
the labels of their edges.

A symbol can label several edges out of the same state, and e,
the empty string, is a possible label.

Deterministic finite automata (DFA) have, for each state, and
for each symbol of its input alphabet exactly one edge with that
symbol leaving that state.

Both deterministic and nondeterministic finite automata are capable of
recognizing the same languages.

In fact these languages are exactly the same languages, called the regular
languages, that regular expressions can describe.

Iy Iz In Input
Automata
¢ States of
Automata
Q1,Q2y=e=em- “An
01 02 --------- Dn OUtput

Figure: Features of Finite Automata

The above figure shows the following features of automata:

Input

Output

State relation

1
2
3. States of automata
4
5

Output relation

A Finite Automata consists of the following:

Q : Finite set of states.

? : set of Input Symbols.

g : Initial state.
F : set of Final States.
? : Transition Function.

Formal specification of machineis{Q,?,q,F, ? }
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FA is characterized into two types:
1.  Deterministic Finite Automata (DFA)
2. Nondeterministic Finite Automata(NFA)

1) Deterministic Finite Automata (DFA):

DFA consists of 5 tuples {Q, ?, g, F, ?}.

Q : set of all states.

? . set of input symbols. ( Symbols which machine takes as input )
q : Initial state. ( Starting state of a machine )

F : set of final state.

? : Transition Function, definedas ? : Q X ? --> Q.

In a DFA, for a particular input character, the machine goes to one state
only.

A transition function is defined on every state for every input symbol. Also
in DFA null (or ?) move is not allowed, i.e., DFA cannot change state
without any input character.

For example, construct a DFA which accept a language of all strings ending
with ‘a’.

Given: ? ={a,b}, g = {g0}, F={g1}, Q = {q0, q1}

First, consider a language set of all the possible acceptable strings in order
to construct an accurate state transition diagram.

L = {a, aa, aaa, aaaa, aaaaa, ba, bba, bbbaa, aba, abba, aaba, abaa}

Above is simple subset of the possible acceptable strings there can many
other strings which ends with ‘a’ and contains symbols {a,b}.

a
b

Fig 1. State Transition Diagram for DFA with 7 = {a, b}

Strings not accepted are,
ab, bb, aab, abbb, etc.

State transition table for above automaton,

?State\Svm bol? a b

o ar Qo

o a1 do



One important thing to note is, there can be many possible DFAs for a
pattern.

A DFA with a minimum number of states is generally preferred.
2) Nondeterministic Finite Automata(NFA):

NFA is similar to DFA except following additional features:

° Null (or ?) move is allowed i.e., it can move forward without reading
symbols.

e  Ability to transmit to any number of states for a particular input.

However, these above features don’t add any power to NFA.
If we compare both in terms of power, both are equivalent.

Due to the above additional features, NFA has a different transition
function, the rest is the same as DFA.

?: Transition Function
2.QX(?U?)->2"Q.

As you can see in the transition function is for any input including null (or
?), NFA can go to any state number of states.

For example, below is an NFA for the above problem.

Fig 2. State Transition Diagram for NFA with ? = {a, b}

State Transition Table for above Automaton,

?State\symbol? a b
=i {gp.a1} do
qi ? ?

One important thing to note is, in NFA, if any path for an input string leads
to a final state, then the input string is accepted.

For example, in the above NFA, there are multiple paths for the input string
‘COO,’.

Since one of the paths leads to a final state, “00” is accepted by the above
NFA.
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Take Note:

Since all the tuples in DFA and NFA are the same except for one of the
tuples, which is Transition Function (?)

In case of DFA

?7:QX?-->Q

In case of NFA

?7:QX7?7-->2Q

Now if you observe you’ll find out Q X ? —> Q is part of Q X ? —> 2Q.

On the RHS side, Q is the subset of 2Q which indicates Q is contained in
2Q or Q is a part of 2Q, However, the reverse isn’t true.

So mathematically, we can conclude that every DFA is NFA but not
vice-versa.

Yet there is a way to convert an NFA to DFA, so there exists an equivalent
DFA for every NFA.

Important Points to Remember:

1. Both NFA and DFA have the same power and each NFA can be
translated into a DFA.

There can be multiple final states in both DFA and NFA.
NFA is more of a theoretical concept.

DFA is used in Lexical Analysis in Compiler.

o & W N

If the number of states in the NFA is N then, its DFA can have
maximum 2N number of states.

NONDETERMINISTIC FINITE AUTOMATA (NFA)

A nondeterministic finite automaton (NFA) consists of:
1. Afinite set of states 5.

2. Asetof input symbols E, the input alphabet. We assume that e, which
stands for the empty string, is never a member of E.

3. Atransition function that gives, for each state, and for each symbol in
E U {e} a set of next states.

4.  Astate so from S that is distinguished as the start state (or initial state).

A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).



We can represent either an NFA or DFA by a transition graph, where the
nodes are states and the labeled edges represent the transition function.

There is an edge labeled from state s to state t if and only if t is one of the
next states for state s and input a. This graph is very much like a transition
diagram, except:

a)  The same symbol can label edges from one state to several different
states, and

b)  An edge may be labeled by e, the empty string, instead of, or in
addition to, symbols from the input alphabet.

Example : The transition graph for an NFA recognizing the language of
regular expression (a|b)*abb is shown below Fig.

S‘M(—Sa b b
DO
oo

b
Figure 3.24: A nondeterministic finite automaton

This abstract example, describing all strings of a's and &'s ending in the
particular string abb, will be used throughout this section.

It is similar to regular expressions that describe languages of real interest,
however.

For instance, an expression describing all files whose name ends in .0 is
any*.o, where any stands for any printable character.

As per transition diagrams, the double circle around state 3 indicates that
this state is accepting.

Notice that the only ways to get from the start state O to the accepting state
is to follow some path that stays in state O for a while, then goes to states 1,
2, and 3 by reading abb from the input.

Thus, the only strings getting to the accepting state are those that end in abb.
Transition Tables

We can also represent an NFA by a transition table, whose rows correspond
to states, and whose columns correspond to the input symbols and e.

The entry for a given state and input is the value of the transition function
applied to those arguments. If the transition function has no information
about that state-input pair, we put 0 in the table for the pair.
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Compiler Design below Fig. 3.25.

STATE a b e
0 {0,1} (0} 0
1 0 {2} 0
2 0 {3} 0
3 0 0 0

Figure 3.25: Transition table for the NFA of Fig. 3.24

The transition table has the advantage that we can easily find the transitions
on a given state and input. Its disadvantage is that it takes a lot of space,
when the input alphabet is large, yet most states do not have any moves on
most of the input symbols.

Acceptance of Input Strings by Automata

An NFA accepts input string x if and only if there is some path in the
transition graph from the start state to one of the accepting states, such that
the symbols along the path spell out x.

Note that e labels along the path are effectively ignored, since the empty
string does not contribute to the string constructed along the path.

Example: The string aabb is accepted by the NFA of Fig. 3.2 4.

The path labeled by aabb from state 0 to state 3 demonstrating this fact is:

a a b b
0 . 0 - 1 EN) . 3

Note that several paths labeled by the same string may lead to different
states.

For instance, path is another path from state 0 labeled by the string aabb.

a a b b
0 . 0 . 0 £ 0 ()

This path leads to state 0, which is not accepting.

However, remember that an NFA accepts a string as long as some path
labeled by that string leads from the start state to an accepting state.

The existence of other paths leading to a nonaccepting state is irrelevant.

The language defined (or accepted) by an NFA is the set of strings labeling
some path from the start to an accepting state.

As was mentioned, the NFA of Fig. 3 . 2 4 defines the same language as
does the regular expression (a|b)*abb,that is, all strings from the alphabet
{a, b} that end in abb. We may use L(A) to stand for the language accepted
by automaton A.

40



Example 3.17: Figure 3.26 is an NFA accepting L{aa*|bb¥). String aaa is
accepted because of the path
5] i1 ] a
0 . 1 e 2 L) . 2

Note that e's "disappear" in a concatenation, so the label of the path is aaa.

Deterministic Finite Automata:
A deterministic finite automaton (DFA) is a special case of an NFA where:

a
a
E
start

o

Figure 3.26: NFA accepting aa*|bb*

1.  There are no moves on input e, and
2. For each state s and input symbol a, there is exactly one edge out of s

If we are using a transition table to represent a DFA, then each entry is a
single state, we may therefore represent this state without the curly braces
that we use to form sets.

While the NFA is an abstract representation of an algorithm to recognize
the strings of a certain language, the DFA is a simple, concrete algorithm
for recognizing strings. It is fortunate indeed that every regular expression
and every NFA can be converted to a DFA accepting the same language,
because it is the DFA that we really implement or simulate when building
lexical analyzers.

The following algorithm shows how to apply a DFA to a string.

Algorithm: Simulating a DFA.
INPUT  : Aninput string x terminated by an end-of-file character eof.

A DFA D with start state so, accepting states F, and
transition function move.

OUTPUT : Answer "yes™ if D accepts x; "no" otherwise.

METHOD : Apply the algorithm in Fig. 3.27 to the input string x.

Introduction to
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Compiler Design The function move(s,c) gives the state to which there is an edge from

state s on input c.

The function next Char returns the next character of the input string x.

1) S = e-closure(so);

2) ¢ = nextCharQ;

3) while ( ¢ != eof) {

4) S = e-closure(imove(S,c))
5) c = nextCharQ;

6) }
7) if(5nF !=0) return "yes";
8) else return "no";

Figure 3.37: Simulating an NFA|

Algorithm : The subset construction of a DFA from an NFA.
INPUT - An NFA JV.

OUTPUT A DFA D accepting the same language as N.
METHOD : Our algorithm constructs a transition table Dtran for D.

Each state of D is a set of NFA states, and we construct
Dtran so D will simulate

"in parallel” all possible moves N can make on a given

input string.

Our first problem is to deal with e-transitions of N
properly.

Note that s is a single state of N, while T is a set of states
of N.

Example 3.19: In Fig. 3.28 we see the transition graph of a DFA accepting
the language (alb)*abb, the same as that accepted by the NFA of Fig. 3.24.

Given the input string ababb, this DFA enters the sequence of states 0, 1,
2,1,2 ,3andreturns "yes."
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¢ = nextChar(Q;
while ( ¢ '= eof) {
s =  move(s,c);
c = nextChar(Q;
}

if ( sis in ) return "yes';
else return "no";

Figure 3.27: Simulating a DFA

Figure 3.28: DFA accepting (a|b)*abb

Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical
analyzers and other pattern-processing software.

However, implementation of that software requires the simulation of
a DFA, as in Algorithm, or perhaps simulation of an NFA.

Because an NFA often has a choice of move on an input symbol (as
Fig. 3.24 does oh input a from state 0) or on e (as Fig. 3.26 does from
state 0), or even a choice of making a transition on e or on a real input
symbol, its simulation is less straightforward than for a DFA.

Thus often it is important to convert an NFA to a DFA that accepts
the same language.

In this section we shall first show how to convert NFA's to DFA's.

Then, we use this technique, known as "the subset construction,” to
give a useful algorithm for simulating NFA's directly, in situations
(other than lexical analysis) where the NFA-to-DFA conversion takes
more time than the direct simulation.

Next, we show how to convert regular expressions to NFA's, from
which a DFA can be constructed if desired.

We conclude with a discussion of the time-space tradeoffs inherent in
the various methods for implementing regular expressions, and see
how to choose the appropriate method for your application.
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Operations on NFA States:

OPERATION DESCRIPTION

e-closurefs) Set of NFA states reachable from NFA state s

on e-transitions alene.

e-closure(T) Set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = U, i, T e-closure(s).
move(T, a) Set of NFA states to which there is a transition on

input symbol ¢ from some state s in T,

Conversion of an NFA to a DFA

The general idea behind the subset construction is that each state of the
constructed DFA corresponds to a set of NFA states.

An NFA can have zero, one or more than one move from a given state on a
given input symbol.

An NFA can also have NULL moves (moves without input symbol).

On the other hand, DFA has one and only one move from a given state on
a given input symbol.

Steps for converting NFA to DFA:
Step 1: Convert the given NFA to its equivalent transition table

To convert the NFA to its equivalent transition table, we need to list all the
states, input symbols, and the transition rules.

The transition rules are represented in the form of a matrix, where the rows
represent the current state, the columns represent the input symbol, and the
cells represent the next state.

Step 2: Create the DFA’s start state
The DFA’s start state is the set of all possible starting states in the NFA.
This set is called the “epsilon closure” of the NFA’s start state.

The epsilon closure is the set of all states that can be reached from the start
state by following epsilon (?) transitions.

Step 3: Create the DFA’s transition table

The DFA’s transition table is similar to the NFA’s transition table, but
instead of individual states, the rows and columns represent sets of states.

For each input symbol, the corresponding cell in the transition table contains
the epsilon closure of the set of states obtained by following the transition
rules in the NFA’s transition table.



Step 4: Create the DFA’s final states Introduction to

Lexical Analysis
The DFA’s final states are the sets of states that contain at least one final
state from the NFA.

Step 5: Simplify the DFA

The DFA obtained in the previous steps may contain unnecessary states and
transitions.

To simplify the DFA, we can use the following techniques:

° Remove unreachable states: States that cannot be reached from the
start state can be removed from the DFA.

° Remove dead states: States that cannot lead to a final state can be
removed from the DFA.

e  Merge equivalent states: States that have the same transition rules for
all input symbols can be merged into a single state.

Step 6: Repeat steps 3-5 until no further simplification is possible

After simplifying the DFA, we repeat steps 3-5 until no further
simplification is possible.

The final DFA obtained is the minimized DFA equivalent to the given NFA.

Example: Consider the following NFA shown in Figure 1.

ab

Figure 1

Following are the various parameters for NFA. Q ={q0,q1,92}?=(a, b)
F={92} ? (Transition Function of NFA)

State a b

q0 q0,q1 q0
ql 02
g2

Step 1:

Q=?

Step 2:

Q= {q0}

Step 3:

For each state in Q’, find the states for each input symbol.
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Currently, state in Q’ is q0, find moves from q0 on input symbol a and b
using transition function of NFA and update the transition table of DFA. ?°
(Transition Function of DFA)

State a b
q0 {q0,q1} qo

Now { q0, q1 } will be considered as a single state.
As its entry is not in Q’, add it to Q’.

So Q’={q0, {q0, g1 } } Now, moves from state { g0, g1 } on different
input symbols are not present in transition table of DFA, we will calculate
it like: 27 ( {q0,ql },a)=?(q0,a)??(ql,a)={q0,ql } 22 ({q0,ql
}b)=7(q0,b)??(ql,b)={q0,02}

Now we will update the transition table of DFA. ?’ (Transition Function of
DFA)

State a B
q0 {q0,q1} q0
{q0,q1} {q0,q1} {q0,q2}

Now { q0, g2 } will be considered as a single state.
Asitsentryisnotin Q’,add itto Q. So Q’={q0, { q0,ql }, {q0,q2 } }

Now, moves from state {q0, g2} on different input symbols are not present
in transition table of DFA, we will calculate it like: ?” ( { q0,q2 },a)="?(
q0,a)??(92,a)={q0,q1 } 7 ({q0,92},b)=?(q0,b)??(q2,b)=
{a0}
Now we will update the transition table of DFA. ?° (Transition Function of
DFA)

State a B
q0 {q0,91} qo0
{q0,q1} {q0,q1} {00,92}

{q0,92} {q0,91} qo0

As there is no new state generated, we are done with the conversion.

Final state of DFA will be state which has g2 as its component i.e., { 90, g2
}

Following are the various parameters for DFA. Q” = { q0, { q0, ql }, { q0,
2}y ?7=(a,b)F={{q0,qg2 } } and transition function ?’ as shown
above.



The final DFA for above NFA has been shown in Figure 2.

b

—

a
[

Figure 2

Note : Sometimes, it is not easy to convert regular expression to DFA. First
you can convert regular expression to NFA and then NFA to DFA.

Example : The number of states in the minimal deterministic finite
automaton corresponding to the regular expression (0 + 1)* (10) is

Solution :

First, we will make an NFA for the above expression. To make an NFA for
(0 + 1)*, NFA will be in same state q0 on input symbol 0 or 1.

Then for concatenation, we will add two moves (q0 to g1 for 1 and g1 to g2

for 0) as shown in Figure 3.

K/b /

0.1 Figure 3
1 o
& <
Using above algorithm, we can convert NFA to DFA as shown
in Figure 4
State | 0 1
q0 | 90 |q0.91
40,91 | q0,q2 |q0.q1
go.q2| 90 |q0q1
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2.4 LEXICAL ANALYZER GENERATORS LEX:

In this section, we introduce a tool called Lex, or in a more recent
implementation Flex, that allows one to specify a lexical analyzer by
specifying regular expressions to describe patterns for tokens.

The input notation for the Lex tool is referred to as the Lex language and
the tool itself is the Lex compiler.

Behind the scenes, the Lex compiler transforms the input patterns into a
transition diagram and generates code, in a file called | e X . y y . ¢, that
simulates this transition diagram.

The mechanics of how this translation from regular expressions to transition
diagrams occurs is the subject of the next sections; here we only learn the
Lex language.

LEX
° Lex is a program that generates lexical analyzer.
° It is used with YACC parser generator.

e  The lexical analyzer is a program that transforms an input stream into
a sequence of tokens.

° It reads the input stream and produces the source code as output
through implementing the lexical analyzer in the C program.

The function of Lex is as follows:
° Firstly lexical analyzer creates a program lex.1 in the Lex language.

e  Then Lex compiler runs the lex.1 program and produces a C program
lex.yy.c.

) Finally C compiler runs the lex.yy.c program and produces an object
program a.out.

e aout is lexical analyzer that transforms an input stream into a
sequence of tokens.

Lex Source Lex
lexyyc ———» C . 3 aeut
Compiler
input Sequence of

a.out 4

stream tokens




USE OF LEX:

Below Figure suggests how Lex is used.

Lex source program Lex

lex.y¥.c
lex.1 compiler
lex.vv.c C_ | a.out
compiler
Inpnt stream a. out | Sequence of tokens

Figure: Creating a lexical analyzer with Lex

An input file, which we call 1 e x . |, is written in the Lex language
and describes the lexical analyzer to be generated.

The Lex compiler transforms | e x . 1 to a C program, in a file that is
always named lex.yy.c.

The latter file is compiled by the C compiler into a file calleda.out
, as always.

The C-compiler output is a working lexical analyzer that can take a
stream of input characters and produce a stream of tokens.

The normal use of the compiled C program, referred to as a. out in
above Fig.,is as a subroutine of the parser.

It is a C function that returns an integer, which is a code for one of the
possible token names.

The attribute value, whether it be another numeric code, a pointer to
the symbol table, or nothing, is placed in a global variableyy lval,
2 which is shared between the lexical analyzer and parser, thereby
making it simple to return both the name and an attribute value of a
token.

Structure of Lex Programs:

A Lex program has the following form:

declarations
o7,
translation rules

auxiliary functions

The declarations section includes declarations of variables, manifest
constants (identifiers declared to stand for a constant, e.g., the name
of a token), and regular definitions.
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The translation rules each have the form
Pattern { Action }

Each pattern is a regular expression, which may use the regular
definitions of the declaration section.

The actions are fragments of code, typically written in C, although
many variants of Lex using other languages have been created.

The third section holds whatever additional functions are used in the
actions.

Alternatively, these functions can be compiled separately and loaded
with the lexical analyzer.

The lexical analyzer created by Lex behaves in concert with the parser
as follows.

When called by the parser, the lexical analyzer begins reading its
remaining input, one character at a time, until it finds the longest
prefix of the input that matches one of the patterns Pi.

It then executes the associated action Ai.

Typically, Ai will return to the parser, but if it does not (e.g., because
Pi describes whitespace or comments), then the lexical analyzer
proceeds to find additional lexemes, until one of the corresponding
actions causes a return to the parser.

The lexical analyzer returns a single value, the token name, to the
parser, but uses the shared, integer variable y y I v a | to pass additional
information about the lexeme found, if needed.

Lex File Format

A Lex program is separated into three sections by %% delimiters. The
formal of Lex source is as follows:

{ definitions }

%%

{rules }

%%

{ user subroutines }

Definitions include declarations of constant, variable and regular
definitions.

Rules define the statement of form pl {actionl} p2 {action2}....pn
{action}.

Where pi describes the regular expression and actionl describes the
actions what action the lexical analyzer should take when pattern pi
matches a lexeme.



Lex And Yacc.

If you want to use Lex with Yacc, note that what Lex writes is a
program named yylex(), the name required by Yacc for its analyzer.

Normally, the default main program on the Lex library calls this
routine, but if Yacc is loaded, and its main program is used, Yacc will

call yylex().

In this case each Lex rule should end with return(token);
where the appropriate token value is returned.

An easy way to get access to Yacc's names for tokens is to compile
the Lex output file as part

of the Yacc output file by placing the line # include "lex.yy.c" in the
last section of Yacc input.

Supposing the grammar to be named “good" and the lexical rules to
be named "better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -1y -11

The Yacc library (-ly) should be loaded before the Lex library, to
obtain a main program which invokes the Yacc parser.

The generations of Lex and Yacc programs can be done in either
order.

Points to Remember:

The general form of a Lex source file is:
{definitions}

%%

{rules}

%%

{user subroutines}

The definitions section contains a combination of:
Definitions, in the form ““name space translation”.
Included code, in the form "“space code".

Included code, in the form
%{

code

%}

Start conditions, given in the form
%S namel name2 ...

Introduction to
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Character set tables, in the form
%T
number space character-string

%T
Changes to internal array sizes, in the form

%X nnn

where nnn is a decimal integer representing an array size and x selects
the parameter as follows:

Letter Parameter
positions

states

tree nodes

transitions

packed character classes
output array size

Ow L0 Sg

Lines in the rules section have the form "“expression action" where
the action may be continued on succeeding lines by using braces to
delimit it.

2.5 SUMMARY

In this chapter we have learn about fundamental of lexical analysis. What is
Lexical analysis And working of it.We discussed Finite automata ,learn the
types if FA. and conversion of DFA and NFA.

Brief Introduction to regular expression is given.

2.6 EXERCISE

Answer the following:

1.

2
3
4.
5

Explain features of DFA and NFA.

Identify the interactions between the lexical analyzer and the parser.
Explain regular expressions with examples.

Explain the role of Lexical analysis

Write the steps to convert Non-Deterministic Finite Automata
(NDFA) into Deterministic Finite Automata (DFA).

Construct its equivalent DFA.

Let M=({q0,q1}, {0,1}, 3, g0, {q1}).
Be NFA where 9(q0,0)={q0,q1}, °(q1,1) = {q1}
5(q1, 0)=¢, ®(q1, 1)={q0, q1}

Convert the given NFA to DFA:



10.

11.
12.
13.
14.
15.

16.
17.

18.

19.
20.

Input/State 0 1

2 q0 {90, g1} q0
ql q2 ql
q2 q3 a3

q3 (final state) ¢ (null character) q2

What is Regular Expression? Write the regular expression for:
a. R=R1+R2 (Union operation)

b. R=R1.R2 (concatenation Operation)

c. R=R1* (Kleen Closure)

d. R=R+ (Positive Clouser)

e. Write a regular expression for a language containing strings which
end with “abb” over X= {a,b}.

f. Construct a regular expression for the language containing all
strings having any number of a’s and b’s except the null string.

Construct Deterministic Finite Automata to accept the regular
expression :

(0+1)* (00+11) (0+1)*

Define regular expression and draw the transition diagram for the
following expression:

a. ab*cbb
b.(0°+1).(01)

Develop the Structure of lex program.

What is NFA? And discuss with examples (a/b)*
Define lex and give its execution steps.

Outline the role of lexical analysis in compiler design.

Discuss in detail about the role of Lexical analyzer with the possible
error recovery schemes.

Describe in detail about issues in lexical analysis.

Define Finite Automata. Differentiate Deterministic Finite Automata
and Non-Deterministic Finite Automata with examples.

Solve the given regular expression into NFA using Thompson
construction

i) (a/b)* abb (a/b)*.
ii) ab*/ab
Create DFA the following regular expression.(a/b)*abb.

Illustrate the algorithm for minimizing the number of states of a DFA.
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21.

22.

23.

24,

25.

26.

27.

28.

Minimize the following states of DFA
b

P Z & N b ¥ . ~ n"‘*@
ol AV S V—e D}
\_/ A A Sl

,\" '}_‘ — 8_'

Define Lex and Lex specifications. How lexical analyzer is
constructed using lex? Give an example.

Explain the lex program for tokens. Describe in detail the tool for
generating lexical analyzer.

Find the NFA for the given regular expression and find the minimized
DFA for the constructed NFA..( a/b)*(a/b)

(i) Create languages denoted by the following regular expressions
a) (alb)*a(alb)(alb)
b) a*ba*ba*ba*

(i) Write regular definitions for the following languages:
a)  All strings of lowercase letters that contain the five
vowels in order.
b)  All strings of lowercase letters in which the letters are in
ascending lexicographic order.

Find transition diagrams for the following regular expression and
regular definition.

a(alb)*a ((ela)b™)*
a.  Allstrings of digits with at most one repeated digit.
b.  Allstrings of a's and b's that do not contain the substring abb.

c.  All strings of a's and b's that do not contain the subsequence
abb.

Explain in detail the tool for generating Lexical-Analyzer with an
example program.

Develop the Lex Program to recognize the identifiers, constants and
operators.

2.7 REFERENCES

Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D. Ullman 2nd Edition, Pearson
Publication, 2006 ISBN-13: 978-0321486813
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3.0 OBJECTIVES

1.

Learn the function of parsers and how to handle and recover from
syntax errors.

Understand the formal definition and usage of context-free grammars
in representing programming language syntax.

Master top-down (LL) and bottom-up parsing methods, including
recursive-descent parsing and reduction processes.
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4.  Gain proficiency in using parser generators like YACC, including
managing translation rules and error recovery.

3.1 INTRODUCTION

We explore how the parser integrates into a standard compiler. Following
that, we examine common grammars used for arithmetic expressions. These
grammars are sufficient to demonstrate the core principles of parsing
because the techniques applicable to expressions extend to most
programming constructs. The section concludes with a discussion on error
handling, highlighting the parser's need to respond appropriately when it
encounters input that cannot be produced by its grammar.

3.2 THE ROLE OF THE PARSER

In our compiler model, the parser receives a sequence of tokens from the
lexical analyzer. It verifies that this sequence can be produced by the
grammar of the source language. The parser is expected to report syntax
errors clearly and recover from common errors to continue processing the
rest of the program. For well-formed programs, the parser conceptually
builds a parse tree and sends it to the rest of the compiler for further
processing. However, the parse tree doesn't need to be explicitly
constructed, as checking and translation actions can occur during parsing.
Consequently, the parser and the rest of the front end could be implemented
as a single module.

token I I

source Lexical - 't parse ' Rest of
™ Parser L-----==1 _ )
program | Analyzer tree ' Front End

intermediate

L

representation

Bei nert
token i

1

Symbol
Table

There are three main types of parsers for grammars: universal, top-down,
and bottom-up. Universal parsing techniques, such as the Cocke-Younger-
Kasami algorithm and Earley's algorithm, can handle any grammar but are
too inefficient for use in production compilers.

Commonly used parsing methods in compilers fall into two categories: top-
down and bottom-up. Top-down parsers build the parse tree from the root
down to the leaves, while bottom-up parsers start from the leaves and build
up to the root. In both methods, the input is processed from left to right, one
symbol at a time.

The most efficient top-down and bottom-up parsing methods are limited to
specific subclasses of grammars, but LL and LR grammars, in particular,
are powerful enough to describe most syntactic constructs found in modern



programming languages. LL grammars are often used in hand-crafted
parsers, such as those using predictive parsing techniques. LR grammar
parsers are typically generated using automated tools

We assume that the parser produces a representation of the parse tree for the
token stream received from the lexical analyzer. In practice, several tasks
might be performed during parsing, such as collecting information about
various tokens into the symbol table, performing type checking and other
semantic analyses, and generating intermediate code.

3.2.1 Syntax Error Handling

Two specific strategies, panic-mode and phrase-level recovery, are
discussed in more detail in relation to specific parsing methods.

If compilers only had to process correct programs, their design and
implementation would be greatly simplified. However, compilers are
expected to help programmers locate and fix errors that inevitably occur
despite their best efforts. Interestingly, few programming languages are
designed with error handling in mind, even though errors are common. Our
world would be vastly different if spoken languages required the same level
of syntactic accuracy as programming languages. Most programming
language specifications do not describe how a compiler should respond to
errors; this is left to the compiler designer. Planning error handling from the
start can simplify the compiler's structure and improve its error-handling
capabilities.

Common programming errors can occur at various levels:

o Lexical errors include misspellings of identifiers, keywords, or
operators (e.g., using “elipseSize" instead of "ellipseSize") and
missing quotes around strings.

o Syntactic errors include misplaced semicolons or extra/missing
braces. For example, a "case" statement without an enclosing "switch"
in C or Java is a syntactic error, though this is often caught later in the
compilation process.

o Semantic errors include type mismatches between operators and
operands, such as returning a value in a Java method with a void return

type.

o Logical errors involve incorrect reasoning by the programmer or
misuse of operators, such as using "=" instead of "=="in C. Although
syntactically correct, this might not reflect the programmer’s intent.

Parsing methods are precise enough to detect syntactic errors efficiently.
Methods like LL and LR detect errors as soon as the token stream cannot
be parsed further according to the grammar. They have the "viable-prefix"
property, meaning they detect errors as soon as an incomplete prefix is
encountered.

Emphasizing error recovery during parsing is crucial because many errors
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appear syntactic and are exposed when parsing cannot continue. While
some semantic errors, like type mismatches, can be detected efficiently,
accurately identifying semantic and logical errors at compile time is
generally difficult.

The error handler in a parser has several key goals:
o Report errors clearly and accurately.
o Recover from errors quickly to detect subsequent errors.

o Minimize overhead when processing correct programs.

Common errors are usually simple, so a straightforward error-handling
mechanism often suffices.

To report errors effectively, the error handler must indicate where the error
was detected in the source program, as the actual error likely occurred
within the previous few tokens. A common strategy is to print the offending
line and point to the error's location.

3.2.2 Error-Recovery Strategies

Once an error is detected, how should the parser recover? Although no
single strategy is universally effective, several methods have broad
applicability. The simplest approach is for the parser to halt with an
informative error message upon detecting the first error. However, more
errors can be identified if the parser can recover to a state where it can
continue processing the input with the hope of providing meaningful
diagnostic information. If errors accumulate excessively, the compiler
should stop after reaching a certain error limit to avoid overwhelming the
user with numerous "spurious” errors.

The following recovery strategies are discussed in detail: panic-mode,
phrase-level, error productions, and global correction.

Panic-Mode Recovery

In this method, upon encountering an error, the parser discards input
symbols one at a time until it finds one of a set of designated synchronizing
tokens. These tokens are usually delimiters, such as semicolons or closing
braces, which have clear and unambiguous roles in the source program. The
choice of synchronizing tokens depends on the source language. While
panic-mode recovery may skip a substantial portion of the input without
checking for additional errors, it is simple and, unlike some other methods,
guarantees not to enter an infinite loop.

Phrase-Level Recovery

When an error is found, the parser performs a local correction on the
remaining input. This involves replacing a prefix of the remaining input
with a string that allows the parser to continue. Typical local corrections
include replacing a comma with a semicolon, deleting an extraneous
semicolon, or inserting a missing semicolon. The choice of correction is left



to the compiler designer. It is crucial to choose replacements that do not
lead to infinite loops, such as always inserting something before the current
input symbol. Phrase-level replacement has been used in several error-
repairing compilers as it can correct any input string. However, its major
drawback is its difficulty in dealing with errors that occurred before the
point of detection.

Error Productions

By anticipating common errors, the grammar for the language can be
augmented with productions that generate erroneous constructs. A parser
built from such an augmented grammar detects anticipated errors when an
error production is used during parsing. The parser can then generate
appropriate error diagnostics about the recognized erroneous construct.

Global Correction

Ideally, a compiler should make as few changes as possible when
processing an incorrect input string. Algorithms exist to choose a minimal
sequence of changes to obtain a globally least-cost correction. Given an
incorrect input string x and a grammar G, these algorithms find a parse tree
for a related string y, minimizing the number of insertions, deletions, and
changes of tokens required to transform x into y. Unfortunately, these
methods are generally too costly to implement in terms of time and space,
so they remain mostly of theoretical interest.

It's important to note that the closest correct program might not align with
the programmer's intent. Nevertheless, the concept of least-cost correction
provides a standard for evaluating error-recovery techniques and has been
used to find optimal replacement strings for phrase-level recovery.

3.3 Context-free Grammars

Grammars are used to systematically describe the syntax of programming
language constructs like expressions and statements. For instance, using a
syntactic variable stmt to denote statements and expr to denote expressions,
the production:

stmt -> if ( expr ) stmt else stmt

specifies the structure of a conditional statement. Other productions then
define precisely what an expr is and what else a stmt can be.

This section reviews the definition of a context-free grammar and
introduces terminology for discussing parsing. The concept of derivations
is particularly useful for understanding the order in which productions are
applied during parsing

3.3.1 The Formal Definition of a Context-Free Grammar

A context-free grammar (or grammar for short) consists of terminals,
nonterminal, a start symbol, and productions.

1.  Terminals are the basic symbols from which strings are formed. They
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are the actual tokens output by the lexical analyzer. For example, in
the context of the if-else statement, the terminals might be the
keywords if and else, and the symbols (and).

2. Nonterminal are syntactic variables that represent sets of strings. They
help define the language generated by the grammar and impose a
hierarchical structure on it. In the if-else statement, stmt and expr are
nonterminals.

3. The start symbol is a distinguished nonterminal whose set of strings
defines the language generated by the grammar. Conventionally, the
productions for the start symbol are listed first.

4. Productions specify how terminals and nonterminals can be combined
to form strings. Each production consists of:

. A nonterminal called the head or left side, which defines some
of the strings denoted by the nonterminal.

o An arrow (-> or ::=) to separate the head from the body.

o The body or right side, which consists of zero or more terminals
and nonterminals. The components of the body describe one
way in which strings of the nonterminal at the head can be
constructed.

For example, in a grammar for simple arithmetic expressions, the terminals
might be id, +, -, *, /, (, and ). The nonterminals might be expression, term,
and factor, with expression as the start symbol.

f:.'f.'jj]"f:#h'fil’!]’.f —} f";{ir.l‘il"f".'l.‘i?f-rl'.l'.l'l + tf:il"]'H.
erpression — expression — term
ff.'l'.'j',ﬂ"ff#.h'fil‘!]’f — Iff)‘"fH.
term —  term * factor
term —  term / factor
term —  factor
factor —  ( expression )
factor — id

Figure: Grammar for simple arithmetic expressions
3.3.2 Notational Conventions

To avoid repetitive statements about terminals, nonterminals, etc., the
following notational conventions for grammars will be used throughout the
remainder of this book:

1.  Terminals:
o Lowercase letters early in the alphabet (a, b, ¢).
o Operator symbols such as +, *, etc.

o Punctuation symbols such as parentheses, comma, etc.



o Digits 0 to 9.

o Boldface strings like id or if, each representing a single terminal
symbol.

2. Nonterminals:
o Uppercase letters early in the alphabet (A, B, C).
o The letter S, usually representing the start symbol.
o Lowercase, italic names like expr or stmt.

o Uppercase letters late in the alphabet (X, Y, Z) represent
grammar symbols (either nonterminals or terminals).

3. Lowercase letters late in the alphabet represent (possibly empty)
strings of terminals.

4.  Lowercase Greek letters (a, B, etc.) represent (possibly empty) strings
of grammar symbols. Thus, a generic production can be written as A
-> o, where A is the head and a is the body.

5. Unless stated otherwise, the head of the production is the start symbol.

Example: With these conventions, the grammar of Example below can
be rewritten concisely

+T | E-T | T
= F

T~
L1l 4

E
T
(E) | id

The notational conventions indicate that E, T, and F are nonterminals, with
E as the start symbol. All other symbols are terminals.

3.3.3 Derivations

The construction of a parse tree can be made precise by adopting a
derivational view, where productions are treated as rewriting rules. Starting
from the start symbol, each step of rewriting replaces a nonterminal with
the body of one of its productions. This view corresponds to the top-down
construction of a parse tree. The precision provided by derivations is
particularly helpful when discussing bottom-up parsing. Bottom-up parsing
is related to a class of derivations known as "rightmost™ derivations, where
the rightmost nonterminal is rewritten at each step.

For example, consider the following grammar with a single nonterminal E,
which adds a production E -> E to the grammar.

E - E+E|E+E| — E| (E)|id
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3.4 TOP-DOWN PARSING ( LL PARSING)

Top-down parsing can be seen as the task of building a parse tree for the
input string, starting from the root and creating the nodes of the parse tree
in preorder. Equivalently, top-down parsing can be viewed as finding a
leftmost derivation for an input string.

For example, the sequence of parse trees in the figure, for the input id + id
*id, represents a top-down parse according to the grammar provided.

E —» TF
E' — +TE]| ¢
T — FT'

T = xFT | ¢
F - (E) | id

This sequence of trees corresponds to a leftmost derivation of the input. At
each step of a top-down parse, the main challenge is to determine the
production to be applied for a nonterminal, say A. Once an A-production is
chosen, the remainder of the parsing process involves matching the terminal
symbols in the production body with the input string.

The section begins with a general form of top-down parsing called
recursive-descent parsing, which may involve backtracking to find the
correct A-production. A special case of recursive-descent parsing is
predictive parsing, where no backtracking is required. Predictive parsing
predicts the correct A-production by looking ahead at the input a fixed
number of symbols, typically just one (i.e., the next input symbol).

E = F = E E E
im / \ I / \ Im / \ Im / \ lm /
T E T B T ! T ! !
7\ 7\ 7\ 'l [ ™
F Tf ‘-lc‘ Tf ‘-lc‘ llrvf i|1:| T; 4+ T 7
id id € id e
= E E = E
b T/ \\ = {rm T/ \\ - {rm T/ \\ -
A1 SN A1 SN A1 SN
FOT 4 T B FoT 4 T B FoT 4 T E
[ VAN [ VAN [ VAN
id € F T id € F T id € F T’
| SN
id id = F
E E = E
I T/ \E {m T/ \EJ {m T/ \E
AN AN S SN T~
FoT 4+ T E FoT 4+ T E FoT 4+ T F
[ SN [ SN [ SN |
id e F T’ id e F T’ id e F T e
S N I N I /1IN
id = 1‘7 T’ id = { '_'.ll"" id = { ’_'.ll""
id id ¢ id ¢

Figure: Top-down parse for id + id * id



For example, consider the top-down parse in the above figure, which
constructs a tree with two nodes labeled E.

The class of grammars for which we can construct predictive parsers
looking k symbols ahead in the input is sometimes called the LL(k) class.
We will focus on the LL(1) class and introduce certain computations called
FIRST and FOLLOW sets. From the FIRST and FOLLOW sets for a
grammar, we can construct "predictive parsing tables,” which explicitly
specify the choice of production during top-down parsing. These sets are
also useful during bottom-up parsing.

3.4.1 recursive-descent parsing

void A() {

1) Choose an A-production, A = X3 Xs - Xy,
2) for [i=1to k) {
3) if { X; is a nonterminal )
4) call procedure Xy();
a) else if [ X; equals the current input symbal a )
6) advance the input to the next symbol;
)

else /* an error has occurred */;

=I

}
}

Figure: A typical procedure for a non-terminal in a top-down parser

A recursive-descent parsing program consists of a set of procedures, one for
each nonterminal. Execution begins with the procedure for the start symbol,
which halts and announces success if its procedure body scans the entire
input string. Note that this pseudo code is nondeterministic because it begins
by choosing the A-production to apply in a manner that is not specified.

General recursive-descent parsing may require backtracking, meaning it
may need to scan over the input repeatedly. However, backtracking is rarely
needed for parsing programming language constructs, so backtracking
parsers are not commonly used. Even for tasks like natural language
parsing, backtracking is not very efficient, and table-based methods like the
dynamic programming algorithm or the Earley method are preferred.

To allow for backtracking, the code needs to be modified. First, we cannot
choose a unique A-production at line (1), so we must try each of several
productions in some order. Then, failure at line (7) does not indicate
ultimate failure, but suggests only that we need to return to line (1) and try
another A-production. Only if there are no more A-productions to try do we
declare that an input error has been found. To try another A-production, we
need to be able to reset the input pointer to where it was when we first
reached line (1). Thus, a local variable is needed to store this input pointer
for future use.

3.4.2 First and Follow

The construction of both top-down and bottom-up parsers is aided by two
functions, FIRST and FOLLOW, associated with a grammar G. During top-
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down parsing, FIRST and FOLLOW allow us to choose which production
to apply based on the next input symbol. During panic-mode error recovery,
sets of tokens produced by FOLLOW can be used as synchronizing tokens.

The function FIRST(X), where X is any string of grammar symbols, is
defined as the set of terminals that begin strings derived from X. If X => ¢,
then ¢ is also in FIRST(X).

For example,
if X =>cY, then cis in FIRST(X).

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions A -> a | B, where FIRST(a) and FIRST(B) are disjoint
sets. We can then choose between these A-productions by looking at the
next input.

AN
a | / L E

Figure Terminal c is in FIRST(A) and a is in FOLLOW (A)

To compute FIRST(X) for all grammar symbols X, apply the following
rules until no more terminals or € can be added to any FIRST set:

1. If Xisaterminal, then FIRST(X) = {X}.

2. If X ->¢gis a production or ¢ is in FIRST(Y) for all symbols Y in B,
then add € to FIRST(X).

3. I X->YLlY2..Ykisa production, then for i = 1 to k:
o Add FIRST(Yi) - {&} to FIRST(X).
. If € 1s not in FIRST(Y1), stop. Otherwise, continue to the next
Yi.
To compute FOLLOW(A) for a nonterminal A, apply the following rules:

1. Add $to FOLLOWY(S), where S is the start symbol of the grammar,
and $ is the special "endmarker" symbol.

2. Foreach production A -> aBp, add FIRST(B) - {¢} to FOLLOW(B).

3. For each production A -> aB or A -> aBf where FIRST(B) contains
¢, add FOLLOW(A) to FOLLOW(B).



Repeat these rules until no more terminals can be added to any FOLLOW
set.

3.5BOTTOM-UP PARSING

A bottom-up parse corresponds to the construction of a parse tree for an
input string beginning at the leaves (the bottom) and working up towards
the root (the top). It is convenient to describe parsing as the process of
building parse trees, although a front end may in fact carry out a translation
directly without building an explicit tree.

id = id Fos oid T % id T % F T E
| | | VAN |
id F F id T « F T
I I I I AR
id id AT' id T * f‘
id I|7' id
id

Figure: A bottom-up parse for id * id

Bottom-up parsing is a parsing technique that constructs a parse tree from
leaves to root. It starts with the input tokens and uses a set of reduction rules
to combine tokens into larger structures until the parse tree is complete. One
common approach to bottom-up parsing is shift-reduce parsing, where the
parser shifts input tokens onto a stack until it can reduce them to higher-
level structures based on a predefined grammar. LR parsing is a type of
shift-reduce parsing that is widely used in practice due to its efficiency and
the availability of automated parser generators that can generate LR parsers
from a given grammar.

3.5.1 Reductions

Bottom-up parsing involves the process of "reducing” a string w to the start
symbol of the grammar. At each reduction step, a specific sub-string
matching the body of a production is replaced by the non-terminal at the
head of that production.

The key decisions during bottom-up parsing revolve around when to reduce
and which production to apply as the parse proceeds.

For example, consider the following snapshots illustrating a sequence of
reductions using the expression grammar. The reductions will be discussed
in terms of the sequence of strings.

id*id; F*id; T*id; T*F; T; E

The strings in this sequence are formed from the roots of all the subtrees in
the snapshots. The sequence starts with the input string "id * id."” The first
reduction produces "F * id" by reducing the leftmost "id" to "F," using the

production F—id. The second reduction produces "T * id" by reducing "F"
to"T."

Now, there is a choice between reducing the string "T," which is the body
of E—T, and the string consisting of the second "id," which is the body of
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F—id. Instead of reducing "T" to "E," the second "id" is reduced to "F,"
resulting in the string "T * F." This string then reduces to "T." The parse
completes with the reduction of "T" to the start symbol E.

By definition, a reduction is the reverse of a step in a derivation (recall that
in a derivation, a nonterminal in a sentential form is replaced by the body
of one of its productions). The goal of bottom-up parsing is therefore to
construct a derivation in reverse.

F=T=T+F=Tsid= F+id = id « id
This derivation is in fact a rightmost derivation
3.5.2 Handle Pruning

Bottom-up parsing, during a left-to-right scan of the input, constructs a
rightmost derivation in reverse. Informally, a "handle” is a substring that
matches the body of a production, and its reduction represents one step
along the reverse of a rightmost derivation.

For example, adding subscripts to the token’s "id" for clarity, the handles
during the parse of

"id1 * id2" according to the expression grammar are as follows:
1.  Starting with "id1 * id2":
. Handle: "id1" is reduced to "F" using the production F—id,
resulting in "F * id2".
2. Continuing with "F * id2":
. Handle: "F" is reduced to "T" using the production T—F,
resulting in "T * id2".
3. Continuing with "T * id2":
. Handle: "id2" is reduced to "F" using the production F—id,
resulting in "T * F".

4.  Finally, "T * F" is reduced to "T" using the production T—TxF,
resulting in the final parse tree.

RiGgHT SENTENTIAL FORM HampLe RepucinG PRODUCTION
F o idy F | T = F
T # ids id. | F—=id
T+ F T = F | T 57T = F
T T | E=>T

Note that although "T" is the body of the production E—T, the symbol "T"
is not a handle in the sentential form "T * id2". If "T" were indeed replaced
by "E", we would get the string "E * id2", which cannot be derived from the
start symbol E. Thus, the leftmost substring that matches the body of some
production need not be a handle.

Figure: Handles during a parse of id1 * id2



3.6 SYNTAX ANALYZER GENERATORS

A parser generator can be used to facilitate the construction of the front end
of a compiler. We shall use the LALR parser generator Yacc as the basis of
our discussion, and it is widely available. Yacc stands for "yet another
compiler-compiler,” reflecting the popularity of parser generators in the
early 1970s when the first version of Yacc was created by S. C. Johnson.
Yacc is available as a command on the UNIX system and has been used to
help implement many production compilers.

3.6.1 Parser Generator YACC

A translator can be constructed using Yacc in the manner illustrated in Fig.
First, a file, say translate.y, containing a Yacc specification of the translator
is prepared. The UNIX system command yacc translate.y transforms the file
translate.y into a C program called y.tab.c using the LALR method outlined
below. The program y.tab.c is a representation of an LALR parser written
in C, along with other C routines that the user may have prepared. The
LALR parsing table is compacted. By compiling y.tab.c along with the ly
library that contains the LR parsing program using the command cc y.tab.c
-ly, we obtain the desired object program a.out that performs the translation
specified by the original Yacc program. If other procedures are needed, they
can be compiled or loaded with y.tab.c, just as with any C program.

A Yacc source program has three parts:

Yacc
ips . Yace
specification———- . —»— y.tab.c
compiler
translate.y
C
y¥.tab.c —— . [——®— a.out
compiler

input — s a.out |[—— output

Figure: Creating an input/output translator with Yacc

declarations

%%

translation rules

%%

supporting C routines

Example : To illustrate how to prepare a Yacc source program, let us
construct a simple desk calculator that reads an arithmetic expression,
evaluates it, and then prints its numeric value. We shall build the desk
calculator starting with the with the following grammar for arithmetic
expressions:

EIE+TjT
TIT*FjF
F1(E)j digit
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The token digit is a single digit between 0 and 9.
The Declarations Part

There are two sections in the declarations part of a Yacc program; both are
optional. In the rst section, we put ordinary C declarations, delimited by %{
and %}. Here we place declarations of any temporaries used by the
translation rules or procedures of the second and third sections. Here, it
contains only the include-statement

#include <ctype.h>

that causes the C pre-processor to include the standard header le <ctype.h>
that contains the predicate is digit.

Also, in the declarations part are declarations of grammar tokens

%token DIGIT

%{

#include<ctype.h>

%}

%token DIGIT

%%

line : expr \n' { printf("%d\n", $1); }
expr : expr '+ term { $$ = $1 + $3; }
| term

term : term "*' factor { $$ = $1 * $3; }
| factor

factor : '("expr')' { $$ = $2; }
| DIGIT

%%

yylex() {

intc;

¢ = getchar();
if (isdigit(c)) {
yylval = c-'0;
return DIGIT;
}

return c;

¥

declares DIGIT to be a token. Tokens declared in this section can then be
used in the second and third parts of the Yacc specification. If Lex is used



to create the lexical analyzer that passes token to the Yacc parser, then these
token declarations are also made available to the analyzer generated by Lex

3.6.2 The Translation Rules Part

In the part of the Yacc specification after the first %% pair, we put the
translation rules. Each rule consists of a grammar production and the
associated semantic action.

In a Yacc production, unquoted strings of letters and digits not declared to
be tokens are taken to be non-terminals. A quoted single character, e.g., 'c',
is taken to be the terminal symbol 'c', as well as the integer code for the
token represented by that character (i.e., Lex would return the character
code for 'c' to the parser, as an integer). Alternative bodies can be separated
by a vertical bar, and a semicolon follows each head with its alternatives
and their semantic actions. The first head is taken to be the start symbol.

A Yacc semantic action is a sequence of C statements. In a semantic action,
the symbol $$ refers to the attribute value associated with the non-terminal
of the head, while $i refers to the value associated with the i'" grammar
symbol (terminal or non-terminal) of the body. The semantic action is
performed whenever we reduce by the associated production, so normally
the semantic action computes a value for $$ in terms of the $i's. In the Yacc
specification, we have written the two E-productions.

EIE+T|T

and their associated semantic actions as:

expr : expr '+’ term { $% = $1 + $3; }
| term

In the Yacc specification, the nonterminal term in the first production is the
third grammar symbol of the body, while + is the second. The semantic
action associated with the first production adds the value of the expr and the
term of the body and assigns the result as the value for the nonterminal expr
of the head. We have omitted the semantic action for the second production
altogether, since copying the value is the default action for productions with
a single grammar symbol in the body. In general, { $$ = $1; } is the default
semantic action.

Notice that we have added a new starting production:
line : expr \n' { printf (" %d\n", $1);}

This production says that an input to the desk calculator is to be an
expression followed by a newline character. The semantic action associated
with this production prints the decimal value of the expression followed by
a newline character.
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3.6.3 Using Yacc with Ambiguous Grammars

Let us now modify the Yacc specification so that the resulting desk
calculator

becomes more useful. First, we shall allow the desk calculator to evaluate a

sequence of expressions, one to a line. We shall also allow blank lines
between

expressions. We do so by changing the first rule to

lines : lines expr ’\n’ { printf ("V%g\n", $2); }
| lines ’\n’
| /* empty */

.
1]

In Yacc, an empty alternative, as the third line is, denotes *. Second, we
shall enlarge the class of expressions to include numbers with a decimal
point instead of single digits and to include the arithmetic operators +, ,
(both binary and unary), *, and /. The easiest way to specify this class of
expressions is to use the ambiguous grammar

E-E+FE | E-FE| ExE | EJE — E | ( E) | number

The grammar in the Yacc specification in above Fig. is ambiguous, which
means that the LALR algorithm will generate parsing-action conflicts. Yacc
reports the number of parsing-action conflicts that are generated. By
invoking Yacc with a -v option, you can obtain a description of the sets of
items and the parsing-action conflicts, as well as a readable representation
of the LR parsing table showing how the conflicts were resolved.

By default, Yacc resolves parsing conflicts using two rules:

1. A reduce/reduce conflict is resolved by choosing the conflicting
production listed first in the Yacc specification.

2. Asshift/reduce conflict is resolved in favor of shift. This rule correctly
resolves the shift/reduce conflict arising from the dangling-else
ambiguity.

To customize the resolution of shift/reduce conflicts, Yacc provides a
mechanism for assigning precedence’s and associativity’s to terminals in
the declarations section. For example:

o %left '+' - makes + and - have the same precedence and be left-
associative.

o %right "' makes ” right-associative.

o %nonassoc '<' makes < a non-associative binary operator.



Tokens are given precedences in the order in which they appear in the
declarations part, lowest first. Tokens in the same declaration have the same
precedence. Yacc resolves shift/reduce conflicts by comparing the
precedence and associativity of the production and the terminal involved in
the conflict. If the precedence of the production is greater than that of the
terminal, or if they have the same precedence and the production is left-
associative, then Yacc reduces; otherwise, it shifts.

You can also force a precedence to a production by appending %prec
terminal to the production. This makes the precedence and associativity of
the production the same as that of the terminal, which is defined in the
declaration section. Yacc does not report shift/reduce conflicts resolved
using this mechanism.

In your specific example,
%right UMINUS

assigns a higher precedence to the token
UMINUS

than that of * and /, and
%prec UMINUS

at the end of the production
expr : - expr

makes the unary-minus operator in this production have a higher precedence
than any other operator

3.6.4 Error Recovery in YACC

In Yacc, error recovery is implemented using error productions. Here's how
it works:

1.  Decision on Error Recovery: The user decides which major
nonterminals will have error recovery associated with them. These are
typically nonterminals generating expressions, statements, blocks,
and functions.

2. Adding Error Productions: The user adds error productions to the
grammar of the form A ! error, where A is a major nonterminal and
error is a Yacc reserved word. These error productions are treated as
ordinary productions by Yacc.

3. Error Handling: When the parser encounters an error, it pops
symbols from its stack until it finds the topmost state whose set of
items includes an item of the form A ! * error. It then shifts a fictitious
token error onto the stack, as if it had seen the token error in the input.

4.  Error Recovery Actions:

o If * is empty, a reduction to A occurs immediately, and the
associated semantic action for A ! error is invoked. The parser
then discards input symbols until it finds an input symbol on
which normal parsing can proceed.
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o If * is not empty, Yacc skips ahead on the input looking for a
substring that can be reduced to *. If * consists entirely of
terminals, it looks for this string of terminals on the input and
reduces them by shifting them onto the stack. The parser will
then reduce error to A and resume normal parsing.

For example, stmt ! Error ; specifies to the parser that it should skip
just beyond the next semicolon on seeing an error and assume that a
statement had been found. The semantic routine for this error
production could generate a diagnostic message and set a flag to inhibit
the generation of object code.

3.7 SUMMARY

The chapter discusses parsing techniques in compiler design, focusing on
top-down and bottom-up parsing. It starts by explaining how parsers
analyze the syntax of a program based on its grammar rules. Top-down
parsing begins at the start symbol and tries to match the input string, while
bottom-up parsing constructs a parse tree starting from the leaves and
working towards the root.

The chapter introduces LL and LR parsing, which are common types of top-
down and bottom-up parsing, respectively. LL parsing is predictive,
meaning it looks ahead at the next input symbol to choose the correct
production. LR parsing uses a more powerful shift-reduce technique to
build a parse tree.

Error recovery is an important aspect of parsing, and Yacc provides
mechanisms for handling errors in the input. Error productions can be added
to the grammar to specify how the parser should recover from errors and
continue parsing.

Overall, the chapter provides a comprehensive overview of parsing
techniques, including their implementation and use in compiler
construction.

3.8 REVIEW QUESTIONS

1. What is the key difference between top-down and bottom-up parsing
techniques?

2. How does Yacc handle error recovery in parsing?

3. Explain the concept of handles in bottom-up parsing and their role in
constructing a parse tree.

ke o o ke o e ke
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Understand the role of a semantic parser in a compiler and its
importance in translating the abstract syntax tree into executable code.

Explore the concept of symbol tables and their management,
including techniques for efficient storage and retrieval of symbols.

Learn about type checking and type systems, including how
expressions, variables, and declarations are type-checked to ensure

program correctness.

Study attribute grammars and their use in compiler design, including
algorithms for attribute computation and their dependence on the

syntax of the language being compiled.
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4.1 INTRODUCTION

The semantic analysis phase of a compiler connects variable definitions to
their uses, checks that each expression has a correct type, and translates the
abstract syntax into a simpler representation suitable for generating machine
code. This phase ensures that the program adheres to the rules of the
programming language, such as type consistency, scope resolution, and the
proper usage of identifiers. Semantic analysis typically involves creating
and maintaining symbol tables that record information about variable
names, function names, and their attributes. It also performs type checking
to ensure that operations in the program are applied to compatible types.
Additionally, this phase can include the generation of intermediate code or
an abstract syntax tree that serves as a bridge between the high-level source
code and the low-level machine code, facilitating further optimization and
code generation phases.

4.2 ROLE OF SEMANTIC PARSER

Semantic analysis in a compiler serves two main purposes: ensuring the
correctness of a program according to the rules of the programming
language and enhancing the efficiency of the translated program. The extent
of semantic analysis required varies significantly among different
languages. For instance, dynamically-typed languages like LISP and
Smalltalk might not require any static semantic analysis, while statically-
typed languages such as Ada have stringent requirements for a program to
be executable. Languages like Pascal and C fall somewhere in between
these extremes, with Pascal being stricter than C but less so than Ada.

The first category of semantic analysis ensures the program adheres to
language rules for proper execution. This includes tasks such as type
checking, scope resolution, and ensuring variables are defined before use.
The second category involves optimization techniques aimed at improving
the execution efficiency of the translated program. Although these
optimization methods are typically discussed under "code generation," the
techniques for ensuring correctness also contribute to generating more
efficient code. However, it's important to note that semantic analysis can
only establish partial correctness of a program, not complete correctness,
but it still significantly enhances the security and robustness of the program.

Implementing semantic analysis algorithms can be more complex than
parsing algorithms due to the timing of the analysis during compilation. If
semantic analysis is deferred until after syntactic analysis and the
construction of an abstract syntax tree, the implementation becomes
simpler, involving a traversal of the syntax tree with specific computations
at each node. This approach is typical in multipass compilers. However, in
single-pass compilers, where all operations, including code generation,
must be performed in a single pass, the implementation becomes more ad
hoc and complex. Fortunately, modern practices increasingly allow for
multiple passes, simplifying the processes of semantic analysis and code
generation.



Despite these challenges, studying attribute grammars and specification
issues is valuable. It helps write clearer, more concise, and less error-prone
code for semantic analysis, making the code easier to understand and
maintain.

4.3 SYMBOL TABLE MANAGEMENT

4.3.1 Symbol Tables

This phase involves maintaining symbol tables (also known as
environments) that map identifiers to their types and locations. As
declarations of types, variables, and functions are processed, these
identifiers are bound to specific meanings within the symbol tables. When
identifiers are used (non-defining occurrences), they are looked up in the
symbol tables. Each local variable in a program has a scope within which it
is visible. For instance, in a Tiger expression let D in E end, all the variables,
types, and functions declared in D are only visible until the end of E. As the
semantic analysis reaches the end of each scope, the local identifier bindings
are discarded.

An environment is a set of bindings denoted by the — arrow. For example,
we could say that the environment o contains the bindings {g — string, a
— int}, meaning the identifier a is an integer variable and g is a string
variable.

Consider a simple example in the Tiger language:

tiger

1 function f(a:int, b:int, c:int) =

2 (print_int(a+c);

3letvarj:=ath

4 var a := "hello"

5 in print(a); print_int(j)

6 end;

7 print_int(b)

8)

If we compile this program in the environment co, the formal parameter
declarations on line 1 extend the table to 61, which is co plus {a — int, b —
int, c — int}. The identifiers in line 2 are looked up in o1. At line 3, the table

o2 is created, which is 61 plus {j — int}. At line 4, o3 is created, which is 62
plus {a — string}.

How does the + operator for tables work when the two environments being
"added" contain different bindings for the same symbol? For instance, when
o2 and {a — string} map a to int and string, respectively? To ensure the
scoping rules work as expected in real programming languages, {a —
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string} should take precedence. Therefore, X + Y for tables is not the same
as Y + X; bindings in the right-hand table override those in the left.

Finally, in line 6, o3 is discarded, and we revert to o1 for looking up the
identifier b in line 7. At line 8, o1 is discarded, and we revert to co.

How should this be implemented? There are two main approaches:

Functional Style: Keep o1 intact while creating 62 and 63. When o1 is needed
again, it remains unchanged and ready to use.

Imperative Style: Modify o1 to become 62, which destructively updates o:.
While o exists, 61 cannot be used. Once done with o2, the modification can
be undone to restore o1. This involves a single global environment ¢ that
transitions through co, 61, 62, 63, 01, Go at different times, along with an
"undo stack™ that tracks and reverses the updates. When a symbol is added
to the environment, it is also added to the undo stack. At the end of a scope
(e.g., line 6 or 8), symbols are popped from the undo stack, removing their
latest bindings from o and restoring their previous bindings.

structure M = struct package M;
structure E = struct class E {
val a = 5; static int a = 5;
end
structure N = struct class N {
val b = 10 static int b = 10;
val a = E.a + b static int a = E.a + b;
end
structure D = struct class D {
val d = E.a + N.a static int d = E.a + H.a;
end }
end

{a) An example in ML (k) An example in Java

Both the functional and imperative styles of environment management can
be used regardless of whether the language being compiled or the
implementation language of the compiler is functional, imperative, or
object-oriented.

4.3.2 Multiple Symbol Tables

In some languages, there can be multiple active environments
simultaneously: each module, class, or record in the program has its own
symbol table, c. Let co be the base environment containing predefined
functions, and let...

g = {a — int}

oz = {E — oy}

oy = {brsint,aw— int}

gy = {N —» o3}

a5 = {d 1+ int}

g = { D 1= o5}

g7 = 03 + 04 + Og



In ML, the module N is compiled using the environment c0+c2 to look up
identifiers; D is compiled using 60+c2+04, resulting in {M—ac7}. In Java,
forward reference is allowed (so inside N the expression D.d would be
legal), thus E, N, and D are all compiled in the environment ¢7; for this
program, the result is still {M—c7}.

4.3.3 Efficient Imperative Symbol Tables

In programs with a large number of unique identifiers, efficient symbol
tables are essential for quick lookup operations. Here is a sample
implementation of a hash table using external chaining to manage
collisions:

struct Bucket {
string key;
void *binding;
struct Bucket *next;
¥

#define SIZE 109
struct Bucket *table[SIZE];

unsigned int hash(char *str) {
unsigned int hashVal = 0;
char *s;
for (s = str; *s; s++)
hashVal = hashVal * 65599 + *s;
return hashVal,

by

struct Bucket *createBucket(string key, void *binding, struct Bucket
*next) {

struct Bucket *b = checked_malloc(sizeof(*b));

b->key = key;

b->binding = binding;

b->next = next;

return b;

¥

void insert(string key, void *binding) {
int index = hash(key) % SIZE;
table[index] = createBucket(key, binding, table[index]);

¥

void *lookup(string key) {
int index = hash(key) % SIZE;
struct Bucket *b;
for (b = table[index]; b; b = b->next)
if (strcmp(b->key, key) == 0) return b->binding;
return NULL,;
}
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void pop(string key) {
int index = hash(key) % SIZE;
table[index] = table[index]->next;

ks

This implementation uses a hash table with external chaining, making it
efficient and supporting easy deletion operations. Each bucket in the hash
table is a linked list of elements whose keys hash to the same index modulo
SIZE.

HENENEEEEN HEAENEEEEE
N 7
\

bat [ 1 camel | 2 mouse| 4

Y
dog | 3

(a) (b)

Hash Tables

When adding a new binding to a key that already exists in the symbol table,
the insert function in the provided hash table implementation leaves the
existing binding in place and adds the new binding to the beginning of the
linked list in the corresponding bucket. For example, if ¢ containsa ! — tl
and a new binding a ! — 12 is added, the table will contain both bindings,
but a ! — 12 will be the first in the list for key a.

Later, when pop(a) is called at the end of a's scope, only the topmost binding
for a (the one added most recently) is removed. This is similar to how a
stack operates, where elements are added and removed in a last-in-first-out
(LIFO) manner. If pop(a) is called again, it will remove a ! — tl, thus
restoring the symbol table to its state before the addition of a ! — 12.

4.3.4 Efficient Functional Symbol Tables

In the functional programming style, updating a symbol table is done by
creating a new table that includes the new binding, rather than modifying
the existing table. This approach ensures that the original table remains
unchanged and available for further lookups. This concept is similar to
adding numbers in arithmetic, where adding 7 and 8 results in a new value
(15), but the original values (7 and 8) remain unchanged.

However, this non-destructive update approach is not efficient for hash
tables. Adding a new binding to a hash table typically involves updating
pointers in the table, which can be done quickly and efficiently. But this
process destroys the previous mapping, making it unavailable for future



lookups. Another approach is to copy the entire array representing the hash
table and then add the new element, but this is inefficient for large arrays
because copying them for each new entry is costly.

Using binary search trees, on the other hand, allows for efficient functional
additions. In a binary search tree, adding a new element involves creating a
new node and adjusting the tree structure, but the original tree remains intact
and available for further operations. This makes binary search trees suitable
for functional updates without sacrificing efficiency.

. v

dog | 3 dog | 3

I — [
bat | 1

! mouse | 4
\ |
camel | 2

\
(a) (b)

Figure: Binary Search Tables.

In a binary search tree representing the mapping ml
={bat—1,camel—2,dog—3}, adding the binding mouse—4 to create the
mapping m2 can be done efficiently without destroying m1. Adding a new
node at depth d in the tree requires creating d new nodes, but the entire tree
does not need to be copied. Therefore, creating a new tree that shares some
structure with the old one can be done as efficiently as looking up an
element, which takes O(logn) time for a balanced tree of n nodes. This
approach demonstrates a persistent data structure, where a persistent red-
black tree can be maintained to ensure logn access time while keeping the
previous mappings intact.

4.3.5 Symbols in the Tiger Compiler

To efficiently handle strings in a hash table, we can convert each string to a
symbol, enabling fast comparison and hashing. The Symbol module
provides functions for creating symbols, accessing symbol names, and
managing symbol tables. By using symbols, we can efficiently compare and
hash strings without repeated string comparisons

/* symbol.h */

typedef struct S_symbol_ *S_symbol;

S_symbol S_Symbol(string);

string S_name(S_symbol);

typedef struct TAB_table_ *S_table;

S_table S_empty(void);

void S_enter(S_table t, S_symbol sym, void *value);
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void *S_look(S_table t, S_symbol sym);
void S_beginScope(S_table t);
void S_endScope(S_table t);

PROGRAM symbol.h, the interface for symbols and symbol tables.

In the Tiger compiler, we use destructive-update environments, where each
symbol is mapped to a binding. The S_empty() function creates a new
symbol table, and S_beginScope() and S_endScope() manage the scope of
the symbols. The S_beginScope() function remembers the current state of
the table, and S_endScope() restores the table to the state before the most
recent beginScope().

The symbol.c file implements the symbol table using a hash table. When a
binding is entered, the corresponding symbol is hashed to an index, and a
Binder object is placed at the head of the linked list for that index. If a
previous binding exists for the same symbol, it is hidden by the new binding.
The table.h file defines generic hash table operations for mapping keys to
values.

Overall, the symbol module provides efficient handling of symbols and
symbol tables, essential for compiler implementation, especially in
managing scopes and mappings

#include <stdio.h>
#include <string.h>
#include "util.h"
#include "symbol.h"

/* Definition of the symbol structure */
struct S_symbol_{

string name;

S_symbol next;

}

/* Helper function to create a new symbol */
static S_symbol mksymbol(string name, S_symbol next) {
S_symbol s = checked_malloc(sizeof(*s));
S->name = name;
s->next = next;
return s;

/* Size of the hash table */
#define SIZE 109

[* Hash function for strings */
static unsigned int hash(char *s0) {
unsigned int h = 0;
char *s;
for(s = s0O; *s; s++)
h =h * 65599 + *s;
return h;

¥



[* Array to hold the hash table */
static S_symbol hashtable[SIZE];

[* Create a symbol from a string */

S _symbol S_Symbol(string name) {
int index = hash(name) % SIZE;
S_symbol syms = hashtable[index], sym;
for(sym = syms; sym; sym = sym->next)

if (0 == strcmp(sym->name, name))
return sym;

sym = mksymbol(name, syms);
hashtable[index] = sym;
return sym;

ks

/* Get the name of a symbol */
string S_name(S_symbol sym) {
return sym->name;

}

[* Create an empty symbol table */
S table S_empty(void) {

return TAB_empty();
}

[* Enter a symbol and its corresponding value into the table */

void S_enter(S_table t, S_symbol sym, void *value) {
TAB_enter(t, sym, value);

}

/* Look up the value associated with a symbol in the table */
void *S_look(S_table t, S_symbol sym) {

return TAB_look(t, sym);
}

/* Begin a new scope in the symbol table */
void S_beginScope(S_table t) {

S_enter(t, &marksym, NULL);
}
/* End the current scope in the symbol table */
void S_endScope(S_table t) {

S_symbol s;

do

s = TAB_pop(t);
while (s = &marksym);

¥

PROGRAM Symbol table (symbol.c) implementation

[* table.h - generic hash table */
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/* Opaque type representing a hash table */
typedef struct TAB_table_ *TAB_table;

/* Create a new empty hash table */
TAB_table TAB_empty(void);

I* Enter a key-value pair into the hash table */
void TAB_enter(TAB_table t, void *key, void *value);

/* Look up the value associated with a key in the hash table */
void *TAB_look(TAB_table t, void *key);

/* Pop the most recent binding from the hash table and return its key */
void *TAB_pop(TAB _table t);

When a new binding x / — b is entered using S_enter(table, x, b), the key x
is hashed to an index i, and a Binder object x / — b is placed at the head of
the linked list for the ith bucket. If the table already contained a binding x !
— b', that previous binding would still be in the bucket, hidden by the new
binding x / — b. This allows for the implementation of undo operations like
beginScope and endScope.

The key x is not a character string, but rather the S_symbol pointer itself.
The table module implements generic pointer hash tables (TAB_table),
mapping a key type (void*) to a binding type (also void*).

To avoid potential programming mistakes due to the use of void*, the
symbol module encapsulates these operations with functions like S_empty,
S_enter, etc., where the key type is S_symbol instead of void*.

Additionally, an auxiliary stack is used to keep track of the order in which
symbols were "pushed" into the symbol table. When a new bindingx ! — b
is entered, X is pushed onto this stack. The beginScope operation pushes a
special marker onto the stack. To implement endScope, symbols are popped
off the stack down to and including the topmost marker. As each symbol is
popped, the head binding in its bucket is removed.

The auxiliary stack can be integrated into the Binder by using a global
variable top that shows the most recent symbol bound in the table.
"Pushing™ is achieved by copying top into the prevtop field of the Binder,
thus threading the "stack" through the binders

4.4 TYPE CHECKING AND TYPE SYSTEMS

4.4.1 Type-Checking Expressions

The Semant module (semant.h, semant.c) performs semantic analysis —
including type-checking — of abstract syntax. It contains four functions
that recur over syntax trees:

struct expty transVar (S_table venv, S_table tenv, A var v);
struct expty transExp (S_table venv, S_table tenv, A_exp a);



void transDec  (S_table venv, S table tenv, A_dec d);
struct Ty ty transTy  ( S _table tenv, A _ty a);

The type-checker is a recursive function of the abstract syntax tree. | will
call it transExp because we will later augment this function not only to type-
check but also to translate the expressions into intermediate code. The
arguments of transExp are a value environment venv, a type environment
tenv, and an expression. The result will be an expty, containing a translated
expression and its Tiger-language type:

struct expty {Tr_exp exp; Ty _ty ty;};
struct expty expTy(Tr_exp exp, Ty ty ty) {
struct expty e; e.exp=exp; e.ty=ty; return e;

}

To avoid discussing intermediate code, we'll define a dummy Translate
module as follows:

typedef void *Tr_exp; and we'll use NULL for every value.

Let's consider a simple case: an addition expression el + e2. In Tiger, both
operands must be integers, which the type-checker must verify. The result
of the addition will also be an integer, as determined by the type-checker.

In many languages, addition is overloaded, meaning the + operator can
represent both integer addition and real (floating-point) addition. If both
operands are integers, the result is an integer. If both operands are real
numbers, the result is real. However, if one operand is an integer and the
other is a real number, the integer is typically implicitly converted to a real
number, and the result is also a real number. This conversion is usually
made explicit in the machine code generated by the compiler.

Implementing Tiger's non-overloaded type-checking for addition is
straightforward.:

struct expty transExp(S_table venv, S_table tenv, A exp a) {
switch (a->kind) {
/I Other cases for different kinds of expressions

case A_opExp: {
A_oper oper = a->u.op.oper;
struct expty left = transExp(venv, tenv, a->u.op.left);
struct expty right = transExp(venv, tenv, a->u.op.right);
if (oper == A_plusOp) {
if (left.ty->kind '= Ty _int)
EM_error(a->u.op.left->pos, "integer required");
if (right.ty->kind != Ty _int)
EM_error(a->u.op.right->pos, "integer required™);
return expTy(NULL, Ty_Int());
}

// Handle other operators similarly

¥
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// Handle other cases for different kinds of expressions

default:
// Handle other cases
assert(0); // should have returned from some clause of the switch

ki
k

The code snippet provided is a part of the function transExp which translates
expressions in the Tiger programming language. The switch statement is
used to handle different kinds of expressions (A_exp). Inside the case
A_0pEXxp, it checks if the operator is A_plusOp, which represents addition.
It then recursively calls transExp for the left and right operands of the
addition.

If the left operand is not an integer, it generates an error message using
EM_error. Similarly, if the right operand is not an integer, it also generates
an error message. Finally, if both operands are integers, it returns an expTy
structure with a Ty _Int type.

The assert(0) statement is a safety measure to ensure that the function
always returns a value. If the function somehow reaches this point, it
indicates a logic error because it should have returned from one of the case
clauses earlier in the function

4.4.2 Type-Checking Variables, Subscripts, and Fields

The transVar function recursively processes A_var expressions in a
manner similar to transExp for A_exp expressions.

struct expty transVar(S_table venv, S_table tenv, A_var v) {
switch(v->kind) {
case A_simpleVar: {
E_enventry x = S_look(venv, v->u.simple);
if (X && x->kind == E_varEntry)
return expTy(NULL, actual _ty(x->u.var.ty));
else {
EM_error(v->pos, "undefined variable %s", S_name(v-
>u.simple));
return expTy(NULL, Ty_Int());
}

case A_fieldVar:
// Handle fieldVar case

.

assert(0); /* should have returned from some clause of the switch */

¥



The transVar function verifies SimpleVar expressions by checking the
environment for the variable's binding. If the identifier is found and is bound
to a VarEntry (not a FunEntry), its type is extracted from the VarEntry.

For function calls, the function identifier is looked up in the environment,
yielding a FunEntry containing a list of parameter types. These types are
then matched against the arguments in the function call expression. The
FunEntry also provides the result type of the function, which becomes the
type of the function call.

Each kind of expression has its own type-checking rules, but those not yet
described follow similar patterns of environment lookup and type matching.

4.4.3 Type-Checking Declarations

Environments are managed and updated by declarations in Tiger, with
declarations appearing exclusively within a let expression. Type-checking
a let expression involves using transDec to translate declarations:

struct expty transExp(S_table venv, S_table tenv, A _exp a) {
switch(a->kind) {

case A_letExp: {
struct expty exp;
A declList d;
S_beginScope(venv);
S_beginScope(tenv);
for (d = a->u.let.decs; d; d = d->tail)

transDec(venv, tenv, d->head);

exp = transExp(venv, tenv, a->u.let.body);
S_endScope(tenv);
S_endScope(venv);
return exp;

k
¥

In this excerpt, transExp sets the current state of the environments using
beginScope(), iterates over the declaration list a->u.let.decs to update the
environments venv and tenv with new declarations, translates the body
expression a->u.let.body, and then reverts the environments to their original
state using endScope().

Variable Declarations

Processing a declaration in Tiger involves augmenting an environment with
a new binding, which is then used in subsequent declarations and
expressions. For instance, processing a variable declaration without a type
constraint, such as var x := exp, is straightforward:

void transDec(S_table venv, S_table tenv, A dec d) {
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struct expty e = transExp(venv, tenv, d->u.var.init);
S_enter(venv, d->u.var.var, E_VarEntry(e.ty));

¥

.-
}

If a type constraint is present, as in var x : type-id := exp, compatibility
between the constraint and the initializing expression must be checked.
Additionally, initializing expressions of type Ty_Nil must be constrained
by a Ty_Record type.

Type Declarations

Nonrecursive type declarations are relatively straightforward:
void transDec(S_table venv, S_table tenv, A_dec d) {

case A_typeDec: {

S_enter(tenv, d->u.type->head->name, transTy(d->u.type->head-
>ty));

k
¥

The transTy function translates type expressions from the abstract syntax
(A _ty) to digested type descriptions (Ty_ty). This translation involves
recursively traversing the structure of an A_ty, converting A_recordTy
into Ty_Record, and so on. During translation, transTy looks up any
symbols it finds in the type environment tenv.

Function Declarations
Function declarations are more complex:

void transDec(S_table venv, S_table tenv, A dec d) {
switch(d->kind) {

case A_functionDec: {
A _fundec f = d->u.function->head,;
Ty _ty resultTy = S_look(tenv, f->result);
Ty_tyList formalTys = makeFormalTyList(tenv, f->params);
S_enter(venv, f->name, E_FunEntry(formalTys, resultTy));
S_beginScope(venv);

A _fieldList I;
Ty tyListt;
for(l = f->params, t = formalTys; [; | = |->tail, t = t->tail)
S_enter(venv, I->head->name, E_VarEntry(t->head));
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transExp(venv, tenv, d->u.function->body);
S_endScope(venv);
break;
}
}
}

This implementation is simplified and handles only single functions with a
result, not handling recursive functions or errors like undeclared type
identifiers. It constructs a FunEntry for the function, enters formal
parameters into the value environment, processes the body, and then
discards the formal parameters from the environment.

Recursive Declarations

For mutually recursive types or functions, headers are first entered into the
environment and then bodies are processed using these headers. Headers for
types are entered as Ty _Name types with empty bindings:

S_enter(tenv, name, Ty_Name(name, NULL));

Subsequently, transTy stops at Ty Name types to prevent errors when
looking up types. lllegal cycles in mutually recursive type declarations
should be detected by the type-checker. Mutually recursive functions are
handled similarly, gathering information about headers in the first pass and
processing bodies in the second pass.

4.5 ATTRIBUTE GRAMMARS

In syntax-directed semantics, attributes are associated directly with the
grammar symbols of the language, including terminals and nonterminals. If
X is a grammar symbol and a is an attribute associated with X, we denote
the value of an associated with X as X.a. This notation is akin to a record
field designator in Pascal or a structure member operation in C. Typically,
attributes are calculated and stored in the nodes of a syntax tree using record
fields or structure members.

For a collection of attributes al, ..., an, the principle of syntax-directed
semantics states that for each grammar rule Xo — X:Xo...X, (where Xo is a
nonterminal and the other X; are arbitrary symbols), the values of the
attributes Xi.a are related to the values of the attributes of the other symbols
in the rule. If the same symbol X; appears multiple times in the rule, each
occurrence must be distinguished from the others by suitable subscripting
to differentiate their attribute values.

Each relationship is specified by an attribute equation or semantic rule of
the form X.a = fjj(Xo.a, X1.a, ..., Xi.a), Where f;; is a mathematical function
of its arguments. An attribute grammar for the attributes al, ..., an consists
of all such equations for all the grammar rules of the language.
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Grammar Rule Semantic Rules

Rule | Associated attribute
equations

Rule n Associated attribute
equations

We proceed immediately to several examples.

While attribute grammars can seem complex, the functions f;; are usually
quite simple in practice. Attributes typically depend on only a few other
attributes, allowing them to be separated into small, independent sets of
interdependent attributes, and attribute grammars can be written separately
for each set.

Attribute grammars are often presented in tabular form, with each grammar
rule listed along with the set of attribute equations or semantic rules
associated with that rule.

The given grammar describes the syntax of unsigned numbers, where each
number is composed of digits (0-9). The grammar has two nonterminals:
number and digit. Each number has an attribute val representing its
numerical value.

1.  For digits, the value is directly computable from the digit itself. For
example, the attribute equation digit.val = 0 represents the value of
digit 0.

2. Fornumbers, if a number consists of a single digit, its value is simply
the value of that digit. This is represented by the equation number.val
= digit.val.

3. If anumber consists of more than one digit, its value is computed by
shifting the value of the leftmost digit one decimal place to the left
and adding the value of the rightmost digit. For example, for the
number 34, the value is calculated as 3 * 10 + 4. This is represented
by the equation number.val = number2.val * 10 + digit.val, where
number2 represents the leftmost digit.

These equations define the relationship between the syntax of numbers and
their semantic value. They are used to compute the value of a number during
semantic analysis, typically by traversing a parse tree of the expression.

The attribute grammar for the val attribute, which shows how the value of
a number is computed based on its digits.

In summary, the attribute grammar provides a way to compute the
numerical value of numbers based on their syntax, enabling semantic
analysis to be performed on arithmetic expressions.



exp
(val = 1302)

term
(val = 31 * 42 = 1302)
{

W

term Jactor
(val = 31} (val = 42)
| |
factor numbar
(vai = 31) (vai = 42}
P RN
{ £x }

D
(val = 34 ~ 3 = 31)

ﬂ-pf//i\\

rerm
{val = 34) {val = 3}
i E
term Jactor
{val = 34) {val = 3}
| |
factar number
{val = 34} (val = 3)
|
number
{val = 34)

The given attribute grammar defines a dtype attribute for variable
declarations in a C-like syntax, where variables can be of type int or float.
The dtype attribute represents the data type of the variables. Here's a
summary of the attribute grammar:

1.  The dtype attribute of the nonterminal type is determined by the token
it represents (int or float), corresponding to the set {integer, real}.

2. Forvariable lists (var-list), each identifier (id) in the list has the same
dtype as the entire list, as per the equations associated with var-list.

3. The dtype of the entire declaration (decl) is the dtype of the var-list,
as per the equation associated with the grammar rule for decl.

4.  There is no equation involving the dtype of the nonterminal decl,
indicating that a declaration need not have a dtype specified.

The attribute equations can be applied to a parse tree to compute the dtype
attribute for each identifier in a variable declaration.

In cases where the grammar allows syntactically correct but semantically
erroneous combinations (e.g., 1890), an additional error value is needed to
handle such cases. This can be done using conditional expressions in the
attribute equations to handle error conditions appropriately.

Overall, the attribute grammar provides a way to determine the data type of
variables in a C-like syntax, enabling semantic analysis of variable
declarations.
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4.5.1 Simplifications and Extensions to Attribute Grammars

The use of an if-then-else expression in attribute equations expands the
range of expressions that can be used, allowing for more flexibility in
defining attribute values. This enhances the metalanguage for attribute
grammars, which is the set of expressions allowed in attribute equations. A
clear and expressive metalanguage is essential to avoid confusion and to
facilitate the translation of attribute equations into working code for a
semantic analyzer.

In addition to arithmetic and logical expressions, the metalanguage may
include other types of expressions, such as if-then-else expressions, and
occasionally case or switch expressions. These features make the
metalanguage closely resemble an actual programming language, which is
beneficial when translating attribute equations into executable code.

Another useful feature is the ability to use functions in attribute equations.
Functions like numval(D) can be used to simplify attribute equations,
especially when dealing with multiple similar cases. The definition of these
functions needs to be provided separately, but they can significantly
improve the readability and conciseness of attribute equations.

It's also mentioned that an ambiguous, but simpler, form of the original
grammar can be used in attribute grammars, as long as the ambiguity has
been resolved by the parser. This allows for more straightforward attribute
definitions, without introducing ambiguity in the resulting attributes.

4.5.2 Algorithms for Attribute Computation

To implement an attribute grammar in a compiler, the attribute equations
are translated into computation rules. Each attribute equation assigns the
value of a functional expression on the right-hand side to the attribute on
the left-hand side. For this assignment to succeed, the values of all attributes
used in the expression must already exist.

In the specification of attribute grammars, the order in which the equations
are written doesn't affect their validity, but in implementation, an order for
evaluating and assigning attributes must be determined. This order is
constrained by the dependencies between attributes, which are made
explicit using dependency graphs. Dependency graphs represent the order
constraints on attribute computation.

Each grammar rule choice in an attribute grammar has an associated
dependency graph. The graph has a node for each attribute of each symbol
in the rule, and there is an edge from each attribute on the right-hand side
of an equation to the attribute on the left-hand side, representing the
dependency. The dependency graph for a legal string in the language is the
union of the dependency graphs for each grammar rule choice along the
parse tree of the string.

When drawing dependency graphs, nodes for each symbol are grouped
together to reflect the structured dependencies around a parse tree. For
example, in the attribute grammar for numbers, each symbol has a single



node for its "val" attribute. The dependency graph for the grammar rule
"number — number, digit" reflects the dependency of "number.val" on
"number2.val" and "digit.val" in the equation "number.val = number2.val *
10 + digit.val™

4.5.3 The Dependence of Attribute Computation on the Syntax

The properties of attributes in an attribute grammar are closely tied to the
structure of the grammar itself. Changes to the grammar that don't affect the
legal strings of the language can significantly impact the computation of
attributes, making it either simpler or more complex.

For example, let's consider the grammar for simple declarations:

decl — type var-list
type — int float
var-list — id, var-list | id

In this grammar, the dtype attribute is inherited. However, if we modify the
grammar slightly as follows:

decl — var-list id
var-list — var-list id, | type
type — int | float

The language accepted by the grammar remains the same, but now the dtype
attribute becomes synthesized. The corresponding attribute grammar is as
follows:

Grammar Rule Semantic Rules

decl — var-list id id.dtype = var-list.dtype

var-list — var-list id, | type var-list.dtype = var-list2.dtype |
type.dtype

type — int | float type.dtype = integer | real

This change affects how the dtype attribute is computed. In the new
grammar, dtype is computed bottom-up (synthesized) rather than top-down
(inherited). The parse tree for the string "float x, y" with attribute values and
dependencies is shown in Figure below. Note that while it may appear that
there are inherited attributes in the figure, these dependencies are actually
to leaves in the parse tree and can be achieved by operations at the
appropriate parent nodes, so they are not considered true inheritances

_decl
vardist  diype = real id  drype = real
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Indeed, while it is theoretically possible to modify a grammar to change
inherited attributes into synthesized attributes, this approach can often lead
to more complex and less understandable grammars and semantic rules. As
a result, it is generally not recommended as a solution for computing
inherited attributes.

However, if the computation of attributes in a grammar becomes overly
complex or difficult, it may indicate that the grammar itself is not well-
suited for attribute computation. In such cases, it may be worthwhile to
consider modifying the grammar to make the attribute computation more
straightforward and manageable.

4.6 SUMMARY

The chapter discusses attribute grammars, which associate attributes with
grammar symbols and use rules to compute these attributes. It explains how
attributes are related to the syntax of a language and how they can be used
to derive meaning from the structure of the language. It introduces the
concept of a metalanguage for writing attribute equations, which includes
arithmetic, logical expressions, and if-then-else statements. The chapter
also discusses the use of functions in attribute equations and how they can
simplify the specification of attributes.

Dependency graphs are introduced as a way to represent the dependencies
between attributes in a grammar. These graphs help determine the order in
which attributes should be computed to ensure that all dependencies are
met. The chapter also discusses how modifications to a grammar can affect
the computation of attributes. While it is possible to change a grammar to
turn inherited attributes into synthesized attributes, this can often lead to
more complex grammars. It suggests that if attribute computation becomes
overly complex, it may be a sign that the grammar needs to be revised for
better attribute computation.

4.7 REVIEW QUESTIONS

1.  How are attributes related to the syntax of a language, and how are
they used to derive meaning from the language's structure?

2. Whatis a metalanguage in the context of attribute grammars, and what
types of expressions are typically allowed in a metalanguage?

3. Howare dependency graphs used in attribute grammars, and what role
do they play in determining the order of attribute computation?

ke o o ke o e ke
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INTERMEDIATE CODE GENERATION

Unit Structure

5.0 Objective

5.1 Intermediate representations (IR)
5.2 Three-address code generation
5.3 Quadruples and triples

5.4 Syntax-directed translation

5.5 Summary

5.6 Exercise

5.7 References

5.0 OBJECTIVE

To explore the Concept of Intermediate Code Generation
To understand the concept of Three Address Code.
To understand different types of representation of Strings.

5.1 INTERMEDIATE REPRESENTATIONS (IR)

In the analysis-synthesis model of a compiler, the front end translates a
source program into an intermediate code that is independent of the
machine, and the back end uses this intermediate code to generate the
target code, which can be understood by the machine. The benefits of
using machine-independent intermediate code include:

Enhanced Portability: Machine-independent intermediate code
significantly improves the portability of the compiler. Without
intermediate code, the compiler would need to translate the source
language directly to the target machine language, requiring a full
native compiler for each new machine. This necessitates
modifications in the compiler according to the specific machine
specifications.

Facilitated Retargeting: Intermediate code allows for easier
adaptation of the compiler to different target machines. Instead of
rewriting the entire compiler, only the back end needs to be adjusted
to accommodate the new machine architecture.

Improved Optimization: Source code optimization becomes more
manageable by modifying the intermediate code. This allows for
better performance improvements in the source code.
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The parser, a crucial component of the compiler's front end, uses a
Context-Free Grammar (CFG) to validate the input string and produce
output for the subsequent phase. The output can be either a parse tree or
an abstract syntax tree. To interleave semantic analysis with the syntax
analysis phase of the compiler, Syntax Directed Translation is employed.
This approach integrates semantic analysis directly into the parsing
process, ensuring that the semantic meaning of the code is analyzed as the
syntax is being processed.

Dependency Evaluation order

Input String —>» Parse tree — "
graph for semantic rules

Definition

Syntax Directed Translation (SDT) enhances grammar rules to facilitate
semantic analysis. It involves passing information through the parse tree in
the form of attributes attached to the nodes, which can be done in a bottom-
up or top-down manner. SDT rules use:

° Lexical values of nodes
° Constants

. Attributes associated with the non-terminals in their definitions

The general approach to Syntax Directed Translation is to construct a parse
tree or syntax tree and compute the values of attributes at the nodes by
visiting them in a specific order. Often, this translation can be accomplished
during parsing without the need to build an explicit tree. This allows for
efficient and integrated semantic analysis during the parsing process.

E->E+T|T
T->T*F|F
F-> INTLIT

This is a grammar to syntactically validate an expression having additions
and multiplications in it.

E->E+T {Eval=E.al+Tval} PR#L

E->T {Ewval=T.val} PR#2
T->T*F {Twval=T.al *F.val} PR#3
T->F {T.wval=F.val} PR#4

F->INTLIT {F.val = INTLIT.lexval } PR#5

To understand translation rules further, consider the Syntax Directed
Translation (SDT) augmented to the production rule [ E -> E + T ]. In this
context, the attribute val is associated with both non-terminals E and T.
The right-hand side of the translation rule corresponds to the attribute
values of the right-side nodes of the production rule, and vice-versa.

Generalizing, SDT involves augmenting rules to a Context-Free Grammar
(CFG) by associating:

o A set of attributes to every node of the grammar.



o A set of translation rules to every production rule, using attributes,
constants, and lexical values.

E

]

E t T

I T
T T * F
I I I
F F 4
I I

2z 3

To evaluate translation rules, we can employ a depth-first search (DFS)
traversal on the parse tree. This is feasible because SDT rules do not impose
a specific order on evaluation, provided that children's attributes are
computed before their parents' attributes in grammars where all attributes
are synthesized. Otherwise, we would need to determine the best traversal
strategy to evaluate all attributes in one or more passes through the parse
tree.

E.value= E.value + T.value = 2+ 12 =14

T.value= T.value * Fvalue = 3*4 = 12

E.value =2 E /\/

T.value=

Evailie=2 T.value=
= T Fvaue=3 | T

Fvalue =4

Fvalue =3

DU |

The diagram above illustrates how semantic analysis occurs. The flow of
information happens bottom-up, with all children's attributes computed
before their parents' attributes, as discussed. Right-hand side nodes are
sometimes annotated with a subscript to distinguish between children and
parents.

Synthesized Attributes are attributes that depend only on the attribute values
of children nodes. For example, in the production rule [E ->E + T { E.val
= E.val + T.val } ], the attribute val of node E is synthesized. If all the
semantic attributes in an augmented grammar are synthesized, a single
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depth-first search traversal in any order is sufficient for the semantic
analysis phase.

Inherited Attributes are attributes that depend on the attributes of parents
and/or siblings. For example, in the production rule [ Ep -> E + T { Ep.val
=E.val + T.val, T.val = Ep.val } ], where E and Ep are the same production
symbols annotated to differentiate between parent and child, val is an
inherited attribute corresponding to node T.

Thus, the flow of semantic analysis for synthesized attributes follows a
straightforward bottom-up traversal, while inherited attributes require
careful consideration of parent and sibling nodes to compute the attribute
values correctly.

Advantages of Syntax Directed Translation:

o Ease of implementation: SDT is a simple and easy-to-implement
method for translating a programming language. It provides a clear
and structured way to specify translation rules using grammar rules.

. Separation of concerns: SDT separates the translation process from
the parsing process, making it easier to modify and maintain the
compiler. It also separates the translation concerns from the parsing
concerns, allowing for more modular and extensible compiler
designs.

. Efficient code generation: SDT enables the generation of efficient
code by optimizing the translation process. It allows for the use of
techniques such as intermediate code generation and code
optimization.

Disadvantages of Syntax Directed Translation:

o Limited expressiveness: SDT has limited expressiveness in
comparison to other translation methods, such as attribute grammars.
This limits the types of translations that can be performed using SDT.

o Inflexibility: SDT can be inflexible in situations where the
translation rules are complex and cannot be easily expressed using
grammar rules.

o Limited error recovery: SDT is limited in its ability to recover
from errors during the translation process. This can result in poor error
messages and may make it difficult to locate and fix errors in the input
program.
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If we generate machine code directly from source code then for n target
machine we will have optimizers and n code generator but if we will have
a machine-independent intermediate code, we will have only one
optimizer. Intermediate code can be either language-specific (e.g.,
Bytecode for Java) or language. independent (three-address code). The
following are commonly used intermediate code representations:

1. Postfix Notation:

Also known as reverse Polish notation or suffix notation.

In the infix notation, the operator is placed between operands,
e.g., a + b. Postfix notation positions the operator at the right
end, as in ab +.

For any postfix expressions el and e2 with a binary
operator (+) , applying the operator yields ele2+.

Postfix notation eliminates the need for parentheses, as the
operator’s position and arity allow unambiguous expression
decoding.

In postfix notation, the operator consistently follows the
operand.

Example 1: The postfix representation of the expression (a +
b)*cis:ab+c™*

Example 2: The postfix representation of the expression (a —
b)*(c+d)+(a—b)is: ab—cd+ *ab -+

2. Three-Address Code:

A three address statement involves a maximum of three
references, consisting of two for operands and one for the
result.

A sequence of three address statements collectively forms a
three address code.
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The typical form of a three address statement is expressed
as x =y op z, where x, y, and z represent memory addresses.

Each variable (x, y, z)in a three address statement is
associated with a specific memory location.

While a standard three address statement includes three
references, there are instances where a statement may contain
fewer than three references, yet it is still categorized as a three
address statement.

Example: The three address code for the expressiona +b * ¢
+d:Tl=b*cT2=a+T1T3=T2+d; T1,T2,T3are
temporary variables.

There are 3 ways to represent a Three-Address Code in compiler design:

i)  Quadruples

i)  Triples

iii) Indirect Triples

3. Syntax Tree:

A syntax tree serves as a condensed representation of a parse
tree.

The operator and keyword nodes present in the parse tree
undergo a relocation process to become part of their respective
parent nodes in the syntax tree. the internal nodes are operators
and child nodes are operands.

Creating a syntax tree involves strategically placing
parentheses within the expression. This technique contributes
to a more intuitive representation, making it easier to discern
the sequence in which operands should be processed.

The syntax tree not only condenses the parse tree but also
offers an improved visual representation of the program’s
syntactic structure,

Example: x=(a+b*c)/(a—b*c)

X 7 @rbre))/@(bre))

Operator Root




Advantages of Intermediate Code Generation:

Easier to implement: Intermediate code generation can simplify
the code generation process by reducing the complexity of the input
code, making it easier to implement.

Facilitates code optimization: Intermediate code generation can
enable the use of various code optimization techniques, leading to
improved performance and efficiency of the generated code.

Platform independence: Intermediate code is platform-
independent, meaning that it can be translated into machine code or
bytecode for any platform.

Code reuse: Intermediate code can be reused in the future to
generate code for other platforms or languages.

Easier debugging: Intermediate code can be easier to debug than
machine code or bytecode, as it is closer to the original source code.

Disadvantages of Intermediate Code Generation:

Increased compilation time: Intermediate code generation can
significantly increase the compilation time, making it less suitable
for real-time or time-critical applications.

Additional memory usage: Intermediate code generation requires
additional memory to store the intermediate representation, which
can be a concern for memory-limited systems.

Increased complexity: Intermediate code generation can increase
the complexity of the compiler design, making it harder to
implement and maintain.

Reduced performance: The process of generating intermediate
code can result in code that executes slower than code generated
directly from the source code.

5.2 THREE ADDRESS CODE IN COMPILER :-

Three-address code is a type of intermediate code that is easy to generate
and can be easily converted to machine code. It uses at most three addresses
and one operator to represent an expression, with the computed value stored
in temporary variables generated by the compiler. The compiler determines
the order of operations given by the three-address code.

Three-Address Code is Used in Compiler Applications:

Optimization: Three-address code is often used as an intermediate
representation during the optimization phases of compilation. It
allows the compiler to analyze the code and perform optimizations
that can improve the performance of the generated code.

Code Generation: During the code generation phase, three-address
code serves as an intermediate representation. This enables the
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compiler to generate code that is specific to the target platform while
ensuring that the generated code is correct and efficient.

o Debugging: Three-address code can be helpful in debugging the code
generated by the compiler. Since it is a low-level language, it is often
easier to read and understand than the final machine code. Developers
can use three-address code to trace the execution of the program and
identify errors or issues.

. Language Translation: Three-address code can also facilitate
translating code from one programming language to another. By
translating code to a common intermediate representation, it becomes
easier to convert the code to multiple target languages.

General Representation
a=bopc

Where a, b or ¢ represents operands like names, constants or compiler
generated temporaries and op represents the operator

Example-1: Convert the expression a * — (b + c) into three address code.

ty=b+c
t> = uminus t4
t3=a*t2

Example-2: Write three address code for following code

for(i = 1; i<=10; i++)
{a[i] =X*5;
¥
i=1
L:ty=x*5
to = &a
t3 = sizeof(int)
ty=tz*i
ts=tytty
“t5 = t4
i=it+1

if i<=10 goto L

5.3 QUADRUPLE AND TRIPLE

There are 3 representations of three address code namely
1. Quadruple

2. Triples

3. Indirect Triples



1. Quadruple — It is a structure which consists of 4 fields namely op,
argl, arg2 and result. op denotes the operator and argl and arg2
denotes the two operands and result is used to store the result of the
expression.

Advantage —
. Easy to rearrange code for global optimization.

. One can quickly access value of temporary variables using
symbol table.

Disadvantage —

. Contain lot of temporaries.

. Temporary variable creation increases time and space
complexity.

Example — Consider expression a =b * — ¢ + b * — c. The three address
code is:

t1 = uminus ¢ (Unary minus operation on c)

t2=b*tl
t3 = uminus ¢ (Another unary minus operation on c)
t4=b*t3
t5=t2+14

a=1t5 (Assignment of t5 to a)

JICTOTIIL

2. Triples — This representation doesn’t make use of extra temporary
variable to represent a single operation instead when a reference to
another triple’s value is needed, a pointer to that triple is used. So, it
consist of only three fields namely op, argl and arg2.

Disadvantage —
. Temporaries are implicit and difficult to rearrange code.

. It is difficult to optimize because optimization involves
moving intermediate code. When a triple is moved, any other
triple referring to it must be updated also. With help of pointer
one can directly access symbol table entry.

Intermediate
Code Generation
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Example — Consider expressiona=b*—-c+b*-c

# Op Arg1 Arg2
(0) uminus C

(1) ) (0) b

(2) uminus C

(3) . (2) b

(4) + (1) (3)

(5) = a (4)

Triples representation
3. Indirect Triples — This representation makes use of pointer to the

listing of all references to computations which is made separately and
stored. Its similar in utility as compared to quadruple representation
but requires less space than it. Temporaries are implicit and easier to
rearrange code.

Example — Consider expressiona=b*-c+b*-c

List of pointers to table

# Op Arg1l | Arg2 #  |statement
(14) | uminus c (0) (14) |
(15) - (14) b (1) (15) |
(16) uminus c (2) (16)
(17) ) (16) b (3) (17)
(18) - (15) (17) (4) (18)
(19) = a (18) 5) (19)

Indirect Triples representation

Question —Write quadruple, triples and indirect triples for following
expression : (X +y) * (Y +2)+ (X +y +2)

Explanation — The three address code is:

Dtl=x+y
2Qt2=y+z
(3 t3=tL*t2
AHtd=tl+z
(B)t5=t3+t4



# Op Arg1 Arg2 | Result
(1) X y t1
(2) y z 2
(3) t1 t2 t3
4) + t1 z t4
) + t3 4 t5
Quadruple representation
# Op Arg1 Arg2
(1) X y
(2) + y z
(3) (1) (2)
(4) (1) z
(5) (3) “)
Triples representation
List of pointers to table
# op | Argl | Arg2 | # [statement
(14) . X y | (14)
(15) + y z (2) (15)
(16) : (14) (15) (3) (16)
(7 + (14) z (4) (17)
(18) * (16) (17) (5) (18)

Indirect Triples representation

5.4 SYNTAXDIRECTED TRANSLATION IN COMPILER
DESIGN

The parser uses a Context-Free Grammar (CFG) to validate the input string
and produce output for the next phase of the compiler. The output can be
either a parse tree or an abstract syntax tree. To interleave semantic analysis
with the syntax analysis phase of the compiler, we use Syntax Directed
Translation (SDT).

Dependency Evaluation order

Input String —>» Parse tree — "
graph for semantic rules

Conceptually, with both syntax-directed definitions and translation
schemes, we parse the input token stream, build the parse tree, and then
traverse the tree as needed to evaluate the semantic rules at the parse tree
nodes. Evaluating the semantic rules may generate code, save information
in a symbol table, issue error messages, or perform other activities. The
translation of the token stream is the result obtained by evaluating these
semantic rules.

Intermediate
Code Generation
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Definition

Syntax Directed Translation has augmented rules to the grammar that
facilitate semantic analysis. SDT involves passing information bottom-up
and/or top-down to the parse tree in form of attributes attached to the nodes.
Syntax-directed translation rules use 1) lexical values of nodes, 2) constants
& 3) attributes associated with the non-terminals in their definitions.

The general approach to Syntax-Directed Translation is to construct a parse
tree or syntax tree and compute the values of attributes at the nodes of the
tree by visiting them in some order. In many cases, translation can be done
during parsing without building an explicit tree.

Example

E->E+T|T
T->T*F|F
F-> INTLIT

E->E+T {E.val=E.val+T.val} PR#1

E->T {Ewval=T.val} PR#2
T->T*F {T.al=T.val *F.val} PR#3
T->F {Twval=F.val} PR#4

F->INTLIT {F.val = INTLIT.lexval } PR#5

Let’s take a string to see how semantic analysis happens — S = 2+3*4. Parse
tree corresponding to S would be

E
—
E I T
I P
T T * F
| | I
- F o4
| |
Z 3

To evaluate translation rules, we can employ one depth-first search traversal
on the parse tree. This is possible only because SDT rules don’t impose any
specific order on evaluation until children’s attributes are computed before
parents for a grammar having all synthesized attributes. Otherwise, we
would have to figure out the best-suited plan to traverse through the parse
tree and evaluate all the attributes in one or more traversals. For better
understanding, we will move bottom-up in the left to right fashion for
computing the translation rules of our example.



E.value= E.value + T.value = 2+ 12 =14 .
Intermediate

Code Generation

T.value= T.value * Fvalue = 3*4 = 12

E.value =2 = /\/‘

Tvalue=

- T.value=
F.value = 2 T

Fvalue =3
F.value = 4

The above diagram shows how semantic analysis could happen. The flow
of information happens bottom-up and all the children’s attributes are
computed before parents, as discussed above. Right-hand side nodes are
sometimes annotated with subscript 1 to distinguish between children and
parents.

5.5 SUMMARY

This chapter mainly focuses on Representation of Strings using Three
Address Code, Syntax Directed Translation and Semantic Analysis

5.6 EXERCISE

Q. 1 Write a short note on Three Address Code.
Q. 2 What do you mean by Semantic Analysis?
Q. 3 Define Quadruple.

Q. 4 What are advantages of Syntax Directed Translation ?
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CODE OPTIMIZATION

Unit Structure
6.0 Objectives
6.1 Introduction

6.2 Overview of Optimization
6.2.1 Code Optimization
6.2.2 Machine Dependent Optimization
6.2.3 Machine Independent Optimization
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6.6 Summary
6.7 Exercise
6.8 References

6.0 OBJECTIVES

e To Examine evaluation time required by compiler to execute program.

e Outline program Readability and Maintainability

e To apply optimization techniques for code improvement.

e To construct the basic architecture of machine model.

e Formulate the need of register and memory allocation needed for
compiler design.

6.1 INTRODUCTION

When we are writing program it is nothing but some kind of specifications
which we are informing to compiler to do computation. After reading these
specifications compiler will generate object code which will have some
other specifications. Depending on the input there are many object
programs which will follow some specifications. Some of the specifications
may take lot of time to execute or they may take more memory. Therefore,
there is a need to optimize code so that one can save memory or execution
time.
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6.2 OVERVIEW OF OPTIMIZATION

Code optimization which is also known as code improvement in compiler
design is a critical phase that focuses on improving the performance and
efficiency of the generated machine code without altering its functionality.
This phase sits strategically after the initial parsing and semantic analysis
stages, where the high-level code is converted into an intermediate
representation (IR), and before the final code generation phase, where the
IR is translated into machine code specific to the target architecture. The
goal of code optimization is to produce a faster, more efficient program that
consumes fewer resources, such as CPU time, memory, power etc.

This phase is optional and it is completely depending on compiler whether
to execute program via this phase or omit this phase. Here code is
transformed into some other form which may be easy to evaluate or process.
Code optimization encompasses a broad spectrum of techniques and
transformation, aimed at enhancing the performance and efficiency of code
without altering its intended functionality. This process, crucial in compiler
design and software development, involves multiple aspects that
collectively contribute to the generation of optimized code. There are three
criteria which can be considered as optimizing transformations:

1. Does the optimization capture most of potential improvement?
2. Does the optimization maintain the original meaning of program?
3. Does optimization reduce time or space of program?

To create an efficient target program a programmer needs more than an
optimizing compiler which can take care of all above aspects. Following are
the options available to programmer and compiler designer for creating
efficient target program.

1.  Criteria for code improving transformation

The transformation must preserve the meaning of program. It should not
change the output by a program. Sometimes after optimization the program
may slow down slightly so it should maintain its average speed.

2.  Getting better performance

Source
program TC
EE—— Front End —» Code Generator ——»

IC

Figure 1 : representation of compiler



Here in this figure the Source program is submitted to front end of compiler
where user can have freedom of using different algorithms, use of different
loops like while, do-while , for and check the complexity of code.

While generating 1C compiler can work on improving loops and memory
address associated with variables. Compiler can be responsible to make
good use of machine resources. Example. Keeping the most heavily used
variable in register can cut down running time of program. In case of C
program there is a provision of using storage class so that one can treat a
memory location as register to speed up the execution process.

3. The organization of an optimizing compiler

Front End Code Optimizer Code Generator

Control Flow Analysis Data Flow Analysis | == Transformation

Figure 2: organizing optimizing compiler

Organizing an optimizing compiler involves structuring its components and
workflow in a manner that efficiently processes source code to produce
optimized machine code. An optimizing compiler typically goes through
several stages, each responsible for different aspects of the translation and
optimization process. The organization of these components is crucial for
achieving effective optimization while maintaining the correctness of the
compiled program. Various techniques are needed to transform program
into a better version.

6.2.1 Code Optimization

Code optimization in the context of compiler design refers to the phase
where the compiler attempts to improve the intermediate or final code it
generates, making it run faster, consume less memory, or otherwise use
system resources more efficiently without changing the semantics of the
program. This optimization can occur at various stages of the compilation
process and can target different aspects of the program'’s performance.

Impact of Code Optimization

Execution Speed: Perhaps the most sought-after result of code
optimization is faster program execution. This can be achieved by
eliminating unnecessary operations, improving the use of CPU caches, or
reducing the overhead of function calls, among other techniques.

Code Optimization
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Resource Usage: Efficiently using memory and other system resources can
not only speed up a program but also reduce its operational costs, especially
in large-scale or embedded systems.

Energy Consumption: For mobile devices and data centers, optimized
code can lead to significant savings in energy consumption, which is both
economically beneficial and environmentally friendly.

User Experience: For end-users, optimizations can lead to more responsive
applications and longer battery life on mobile devices, directly impacting
the perceived quality of the software.

6.2.2 Machine Dependent Optimization

Machine-dependent as a name indicates that optimization is completely
depend on machine model or architecture of machine and its components
used like register, addressing modes etc. i.e. optimization in compiler design
refers to the phase or set of transformations that specifically target the
characteristics and features of the underlying hardware platform for which
the code is being compiled. Unlike machine-independent optimizations that
focus on language-level or algorithmic improvements applicable across
different platforms, machine-dependent optimizations take into account the
specifics of the target architecture to enhance performance. These
optimizations can significantly impact the efficiency and speed of the
compiled program by leveraging the unique capabilities and avoiding the
specific limitations of the hardware.

Following are the examples of machine dependent optimization techniques:
a) Register Allocation

One of the primary machine-dependent optimizations is register allocation.
Registers are the fastest storage available to a CPU, and efficient use of
registers can significantly speed up a program. The compiler decides which
variables or intermediate values should be kept in these limited but fast
storage locations. Advanced register allocation algorithms, like graph
coloring, are used to make these decisions effectively.

Example:

Consider the program fragment in high level language

inta=>5;
intb = 10;
intc=a+b;
intd=c*2;



Without optimization After optimization

MOV [a], 5 ; Move 5 into memory | MOV R1, 5 ; Move 5 directly
location 'a' into register R1 (for 'a")

MOV [b], 10 ; Move 10 into | MOV R2,10 ; Move 10 directly
memory location ‘b’ into register R2 (for 'b")

MOV R1, [a] ; Load 'a’ from | ADD R1, R2 ; Add R1 and R2,
memory into register R1 resultinR1 ('c' ='a' +'b")

MOV R2, [b]; SHLR1,1 ; Multiply R1 by 2

(shift left by 1 bit, for 'd")
ADD R1, R2

MOV [c], R1; Store result from R1
to'c

MOV R3, [c]; Load 'c' from
memory R3

SHL R3, 1 ; shift left by 1 bit

MOV [d], R3; Store result from R3
to memory location 'd'

Without register allocation optimization, the compiler might naively store

a

Il variables in memory and load them into registers only when an operation

is performed. Without register allocation optimization, the compiler might

n
a

aively store all variables in memory and load them into registers only when
n operation is performed.

Advantages :

Fast accessible storage

Allows computations to be performed on them
Deterministic behavior

Reduce memory traffic

Reduces overall computation time

Disadvantages :

Registers are generally available in small amount (BC DE HL in case of
8085 micro processor)

Register sizes are fixed and it varies from one processor to another
Registers are complicated

Need to save and restore changes during context switch and procedure
calls

Code Optimization
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b) Instruction Selection

Different CPUs support different sets of instructions, with some instructions
being more efficient than others for certain tasks. Instruction selection
optimization involves choosing the most efficient machine instructions to
perform operations represented in the intermediate code. This might include
using specialized instructions for certain mathematical operations, memory
access patterns, or data manipulation tasks that are unique to the processor
architecture.

Instruction selection is a crucial machine-dependent optimization process
in compilers, where the compiler chooses the most efficient machine
instructions to implement high-level language constructs. This optimization
ensures that the generated machine code makes optimal use of the target
architecture’s instruction set and features. Example :

Consider program fragment

inta=1;
inth=1;
intc=a+b;
Before optimization After optimization
MOV eax, 5 ; Move 5 into | MOV eax, 5 ; Move 5 into
register eax (a) register eax (a)
MOV ebx, 10 ; Move 10 into | ADD eax, 10 ; Add 10 directly to
register ebx (b) eax (b), result in eax (c)
ADD eax, ebx ; Add a and b,
result in eax (c)

With instruction selection optimization, the compiler can leverage the
specific features of the x86 architecture to produce more efficient code.

c) Instruction Scheduling

The order in which instructions are executed can greatly affect performance,
especially on modern CPUs with complex pipelines and execution units
capable of parallel instruction execution. Instruction scheduling rearranges
the order of instructions to avoid pipeline stalls (waiting states) and to make
efficient use of instruction-level parallelism. This optimization must
consider the CPU's specific pipeline architecture and execution
dependencies.

The pipelined architecture allows multiple instructions to be executed
simultaneously, with different stages of each instruction executed
concurrently in different pipeline stages.



Instruction scheduling aims to reorder instructions to minimize
dependencies and stalls, ensuring that the pipeline operates at maximum
throughput.

The compiler may analyze the dependency between instructions and reorder
them to minimize pipeline stalls caused by data hazards or resource
conflicts.

In the optimized version, the instructions are already in a sequence where
the output of one instruction is not needed immediately by the next,
minimizing stalls and maximizing the pipeline's utilization.

6.2.3 Machine Independent Optimization

Machine-independent optimization in compiler design refers to a set of
optimizations that can be applied to source code regardless of the target
machine architecture. These optimizations focus on improving the
efficiency and performance of programs at a high-level language
representation, such as intermediate code or abstract syntax trees, without
considering specific hardware details.

Example
a)  Elimination of common sub expression

Common Subexpression Elimination (CSE) is a machine-independent
optimization technique that identifies redundant computations within a
program and eliminates them to improve performance. It involves
identifying expressions that are computed multiple times within a program
and replacing them with a single computation, storing the result in a
temporary variable.

Consider the statement cost=2*rate+(start-finish-100)+(start-finish+rate)
Three address code for the above statement is

T1=2*rate

T2=start-finish

T3=T2-100

T4=start-finish

T5=T4+rate

T6=T1+T4

T7=T6+T5

Cost=T7

Here start-finish is repeated so we can eliminate one of the statement and
can optimize the code as follows

Code Optimization
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T1=2*rate
T2=start-finish
T3=T2-100
T4=T3+T1
T5=T2+rate
cost=T5+T4

b) Constant folding

Constant folding is a machine-independent optimization technique where
the compiler evaluates constant expressions at compile time instead of
deferring their evaluation until runtime. It involves replacing expressions
composed entirely of constants with their computed values.

Example:
Consider statement inta = 10 + 5;

In this code, the expression 10 + 5 is a constant expression because both
operands are literals. During compilation, constant folding can be applied
to evaluate the expression 10 + 5 and replace it with its computed value.

After constant folding, the code becomes:
inta=15;
c) Dead code elimination

A piece of code is said to be dead if the results evaluating the code are not
used in the program , such code can be eliminated safely. It helps in
reducing the size of the compiled program and improving runtime
efficiency by eliminating unnecessary computations and memory
allocations.

Example:
A=25 Here ,
{ A=25 is dead since its value is
Lines of code updated so we can improve the
code as follows
A=b+c {_
Lines of code
Lines
A=Db+c
}
Lines
}
A=25




Here x and y are initialized so
{ always x is less than y will be
_ executed and else part will never
INtx =5; going to execute. We can eliminate
inty = 10; the same and code will become
{
if x<y){ intx=>5;
printf("x is less than y\n"); inty = 10;
}else {
printf("x is greater than or | 1f&x<¥){
equal to y\n"); printf("x is less than y\n");
} }
}
}

d) Usage of high operators over low operators
Benefits of Using Addition Instead of Multiplication:

Efficiency: Addition operations are generally faster than multiplication
operations, especially on processors with limited hardware resources.

Simplicity: The code becomes more concise and easier to understand by
replacing multiple addition operations with a single multiplication.

Reduced Overhead: The compiler may optimize the multiplication
operation further, depending on the target architecture, resulting in reduced
overhead.

Similarly, Division operations are generally faster than subtraction
operations on modern processors. Processors are optimized to perform
division efficiently, especially for division by constant values.

6.3 LOOP OPTIMIZATION TECHNIQUES

Before we understand loop optimization techniques let us understand what
is loop in programming language. Loops are nothing but one form of control
structure which allows block of statements to be executed until certain
condition is fulfilled. Loop consists of path from top to bottom. Here top of
loop is known as header(H) and path (P) specifies the route which one needs
to follow till certain conditions are fulfilled denoting as loop(H, P).

Optimizing loops is particularly important in compilation, since loops (inner
loops) account for much of the executions times of many programs. Since
tail-recursive functions are usually also turned into loops, the importance of
loop optimizations is further magnified.

Code Optimization
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Loop is very important place when optimization is necessary, the inner
loops where program tend to spend more time. The running time of program
may be improved if we decrease the number of instructions in an inner loop.
Loop Optimization is the process of increasing execution speed and
reducing the overheads associated with loops. It plays an important role in
improving cache performance and making effective use of parallel
processing capabilities. Most execution time of a scientific program is spent
on loops.

1)  Code Motion (Frequency Reduction)

Here, the amount of code in the loop is decreased. A statement or
expression, which can be moved outside the loop body without affecting the
semantics of the program, is moved outside the loop.

Example:
Before optimization After optimization
while(i<100) t = Sin(x)/Cos(x);
{ while(i<100)
a = Sin(x)/Cos(x) + i; {
i+4: a=t+i
} i++;
}

Here in this example always value of sin(x) and cox(x) will be same so
instead of keeping statement inside loop we can move it outside the loop
i.e. beginning loop to reduce the time required to compute.

2)  Induction Variable Elimination

If the value of any variable in any loop gets changed every time, then such
a variable is known as an induction variable. With each iteration, its value
either gets incremented or decremented by some constant value.

3)  Loop Unrolling

Loop unrolling is a loop transformation technique that helps to optimize the
execution time of a program. We basically remove or reduce iterations.
Loop unrolling increases the program’s speed by eliminating loop control
instruction and loop test instructions.

Before optimization

After optimization

I=1
While(I<=100)

I=1
While(I<=100)



https://www.geeksforgeeks.org/loop-unrolling/

{ {
X[i]=0; X[i]=0;
[++; I++;
} X[i]=0;
I++
}

Here, i<=100 will be performed 100 times but if the body of loop is replaced
then number of times this test is performed could be reduced. Unrolling
makes 2 copies of body so that work can be reduced to 50%.

4)  Loop jamming

Loop jamming is combining two or more loops in a single loop. It reduces
the time taken to compile the many loops.

Before optimization After optimization
for(int i=0; i<5; i++) for(int i=0; i<5; i++)
a=i+5; {
for(int i=0; i<5; i++) a=i+b5h;
b=i+10; b=i+10;
¥

Here, we merge the bodies of loop.

6.4 DATA FLOW ANALYSIS TECHNIQUES

As a name indicates this technique involves the flow of data in control flow
graph, i.e. the study helps us to determine the information regarding the
definition and for what purpose data is used in the program. This method
helps in optimization as flow of the data helps to understand it’s movement.
One can trace the value or variable and can find out how the variable is
changing its value based on instructions written. It is very similar to add a
watch on variables in ‘C’ Program and with the help of F7 key one can find
or trace the variable so that flow and hence logical error can be traced.

In order to implement technique, we can design graph in the form of
flowchart representing node as program statements and edges as flow
between statements. One can use rules and regulations to compute values of
each expression and variables associated with them.

Code Optimization
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Following is a list of some of the common types of data flow analysis

1. Reaching Definitions Analysis:

As the name indicated reaching definition implies whether a variable
or expression can be reached with the help of some logical
programming. If a particular variable is unable to reach it implies we
can remove that variable as it is never going to be the part of program.

Example

A definition D is reaches a point x if there is path from D to x in which D is
not killed, i.e., not redefined.

X=0 this is block 1 where X is initialized to 0
X=X+7 This is block 2 where value of X is updated

Y=X+7 this is block 3 here value from block 1 is not accessible.

2. Live Variable Analysis: This analysis find the points in program
where variable is holding some value which may come from some
computing operations or it is taking part in some computation. If it is not
taking any part of data movement then one can safely eliminate.

Example : A variable is said to be live at some point p if from p to end the
variable is used before it is redefined else it becomes dead.

c=5 b=5

d=C+Ll




3. Available Expressions Analysis:

This analysis can be used to find whether a particular expression is
taking part in evaluating expression which helps in eliminating
common sub expression.

4. Constant Propagation Analysis:

Constants play a vital role in programming and hence to keep a track
of such constants and optimize the work we can use this techniques.
We can track values of constants and find point in the code where they
are used.

6.5 CODE GENERATION TECHNIQUES

Code generation techniques can be the final stage of compiler activity. The
code generation of high level language is nothing but the object code of that
language. For example in case of JAVA we get .class files based on number
of classes present in the program. The .class files are nothing but object
files. Code generation process is very tricky due to its complex operations
as compiler has to deal with various forms of instructions based on
addressing modes. The architectural issues may be discussed with respect
to registers and accumulators. Selecting proper instructions is also an
important feature to optimize code.

They should have following properties:

a.  Itshould preserve the meaning of original problem.

b. It should be efficient with respect to CPU and memory management.
6.5.1 Target Machine description

Target code generation is one of the important aspect in converting
assembly level language to optimized code into machine understandable
format. Target code can be machine readable code or assembly code or X86
instruction format. Here the machine will read each and every line and it
will convert into its corresponding numerical opcode format and the
conversion is always in 1:1 mapping. Like each instruction in X86 format
will have corresponding one code in numerical code format.

While generating code on target machine one should look for following
properties of machine in the form of its design or architecture as most of
time instruction will be using registers as they are the fast in performing
many operations. As registers are the internal part of CPU they are limited
in number and size as well.

1)  Instruction Set

Every X86 supporting languages will have their own design and hence they
are machine dependent and hence their instructions may vary depending
upon what kind of bits they use. Like 8 bit, 16 bit and so on. Variety of
instruction types are available like arithmetic, logical, conditional, data or
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block transfer etc. Some instructions are like increment and decrement
which allows to increase the data of block by 1 or decrease data of block
by 1.

Following table shows some of the instruction based on category.

Format of operations Examples of instructions

Conditional JZ (jump if zero)

JC (jump if carry)

Arithmetic ADD (adds two numbers)

SUB (Subtracts two numbers)

Block transfer/ Data transfer MOV (moves data from source to
destination)

LDA (load data)

Table 1 : examples of operations

Here when we perform any operation always data will come from
accumulator and result will be stored in accumulator.

2)  Addressing Modes

Addressing modes define in what way data will come to system and how it
will get processed by the system. Following are the different modes of
addressing.

Addressing mode Examples

Register to register MOV A, B

Here A and B are registers as they
are oprands.

Immediate MVI A,05H
Here number 5 will be transferred
to register.

Direct LDA A,1000H

Here 1000 is a memory address.
Content from memory address
1000 is extracted and stored in
register A

Table 2: Sample of addressing modes



3)

Instruction Formats Code Optimization

The format of instruction will talk about how one should write instruction
while coding. General format is as follows:

[Label] Opcode [operand/s]

Here label can be optional and used only if there are conditional statements
written.

Operands can be optional as one can use it for auto increment and auto
decrement purpose.

Maximum 2 operands can be specified.

6.5.2 Overview of Assembly Process

The process of converting mnemonics into low level language is nothing
but assembly process in which system performs following operations:

1)  Scan instruction and create tokens based on opcode , operands etc.

2) ldentify symbols/variables and enter them in symbol table.

3) Identify literals if any and put them into literal table.

4)  Keep updating location counter.

5)  Allocate memory to variables

6)  Scan instruction and check whether it is there in opcode table. Check
syntax by mapping character by character. If any error is found reject.

7)  Perform semantic check on instruction.

8)  Extract numerical opcode and extract memory address of variable
defined.

9)  Generate instruction.

Example:

Consider following code

LC Instruction
13 ADS1
25 L1: ADDN
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Assume that there is a declaration statement on line number 13 stating that
declare a block A. Later on line number 25 says that Add variable N.

Assembler will create tokens as
A DS 1

As soon as it detects variable A it will be added in symbol table. When it
fetches instruction from line 25 it will identify there is an instruction ADD.
It will verify the same with the help of Opcode table and extract
corresponding code and generate instruction.

6.6 SUMMARY

Code optimization is a critical process for enhancing the efficiency of
software. It involves a careful trade-off between improving performance
and maintaining other important attributes such as readability and
maintainability. Effective optimization requires a deep understanding of
both the software being written and the hardware on which it will run. It's
also a cooperative process between the programmer and the compiler, each
bringing its strengths to produce the most efficient code possible while
preserving the program's semantics.

6.7 EXERCISE

1. Justify importance of optimization in compiler.

2. Demonstrate any two techniques of machine independent
optimization.

Elaborate loop unrolling and loop jamming techniques.

4. Compare machine dependent and machine independent optimization
techniques.
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7.0 OBJECTIVE

The objectives of this study material are to provide a foundational
understanding of activation records, stack management, and heap memory
management, including dynamic memory allocation and garbage collection
techniques. Learners will master call and return mechanisms, such as
parameter passing and function call conventions, and gain knowledge of
exception handling, including try-catch blocks and stack unwinding.
Additionally, the material aims to equip learners with the skills to identify,
report, and recover from common lexical and syntax errors using
appropriate strategies, enhancing their problem-solving abilities in compiler
design.

7.1 INTRODUCTION

This study material on the principles of compiler design covers key concepts
such as runtime environments, activation records, stack and heap memory
management, call and return mechanisms, and exception handling.
Additionally, it addresses lexical and syntax error handling, providing
strategies for error recovery and reporting. The aim is to equip learners with
a solid foundation in compiler design and practical skills for managing
errors and optimizing performance.

7.2 ACTIVATION RECORDS AND STACK MANAGEMENT

Activation records and stack management are fundamental components in
the execution of function and procedure calls in a program. An activation
record, or stack frame, stores vital information for each active subroutine,
including local variables, return addresses, parameters, and saved registers.
These records are pushed onto the call stack when a function is called and
popped off when the function returns, maintaining the correct state of the
program's execution. Effective stack management involves the careful
allocation and deallocation of stack frames, ensuring that memory is used
efficiently and that the call stack accurately reflects the program's call
history. This mechanism supports function call conventions, such as
parameter passing and return value handling, and is crucial for enabling
recursion and nested function calls. Understanding activation records and
stack management is essential for optimizing program performance,
ensuring efficient memory usage, and facilitating effective debugging and
error handling.

7.2.1 Introduction to Activation Records

Activation records, also known as stack frames, are critical data structures
used by compilers to manage information needed during function or
procedure calls in a program. Each activation record contains essential data
such as the function's local variables, arguments passed to the function, the
return address, and saved registers. When a function is called, an activation
record is created and pushed onto the call stack, and when the function
returns, this record is popped off the stack. This process ensures that each
function's execution context is maintained correctly, allowing for proper



control flow and enabling features like recursion and nested calls.
Understanding activation records is vital for grasping how function calls are
handled, how memory is managed during execution, and how debuggers
track the state of a program.

7.2.1.1 Structure of an activation record

When a procedure gets called, the computer creates an activation record to
store all the information needed to execute that procedure. This information
includes the procedure's arguments, local variables, and return address.
When the operation finishes executing, the computer deletes the activation
record. Activation record is also known as stack frames or function call
frames used by the compiler to manage the execution of a function or
procedure.

(rre—e\
Activation

Record
T

Arguments

Local

Variables

Return

Address

Imagine a scenario where you have a program with multiple functions. A
new activation function gets created whenever one of the functions gets
called. The activation record is stored on the control stack whenever a
process gets executed. The control stack is a runtime stack used to track live
procedure activations. Its primary purpose is to determine which execution
still needs to be completed. As the activation begins, the procedure name is
pushed into the stack and will pop out as the activation ends. If there is a
recursive procedure, then several activations are active at the same time. If
there is a non-recursive procedure, one activation of the function is executed
simultaneously.

void main(){ I
inta; i
a= Fact(5); i
print(a);} ™~
Fact(4)
Void Fact(int n){
e =™ Activation Record of ratum
inta=b; Fact(4) y address
inty = Fact(n-1); »
return a* b;} 6 _/
(
Fact(5) B
. . return
Activation Record of
y address
Fact(5)
S _/
~ , ™
main()
Activation Record of
main()
i =
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Example

Consider a simple example to understand the activation record concept
better. Here in this code, we have taken a function named "addition™ that
returns the result of adding two numbers.

#include <stdio.h>
/I function to perform addition
void addition(int a, int b) {
intresult =a + b;
printf("Result: %d\n", result);
}
//main program
int main() {
intx =2;
inty =8;
addition(x, y);

return O;

Output
Result: 18

Explanation

The 'main' function is the program's starting point. It consists of local
variables like 'x" and 'y'. When the "addition’ function gets called from the
main function, a new activation record gets created for the ‘'addition’
function. The activation record of 'addition’ is initialized with parameters
with 'a" and 'b," which have (2 and 8) values from the calling function. The
result gets stored with the value of 10. Once the "addition’ function work is
completed and reaches its end, then activation records are removed from the
calling stack. Finally, when the 'main' function terminates, its activation
record is removed from the stack.



Components of Activation Records Runtime Environments

C Return Values )
( Parameters )
C Control Link )

C Access Link )

Csaved Machine Status)

( Local Data )

( Temporaries )

a.  Return Address: This address holds the location where the control
should return upon task completion. This feature helps the program
continue executing from the same point it was initially created. It is
used by a calling function that will return a value to the same calling
function.

b.  Parameters: The calling procedure uses it to supply parameters to the
called method. It stores actual parameters used to send input to the
called system. The parameters can be passed by value or reference
and stored in the activation record for the function to access.

c.  Control Link: It points toward the activation record of the caller. It
allows you to return and execute continuously. The system uses it to
store information outside the local scope. The control link connects
the activation record to the activation record of the caller.

class()
{ Activation Record s
student(); forclass
}
Activation Record 1}

for student

For every function thereis a
new activation record is
created. The is a control link
that connects the activation
record for student to
activation record for class
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d. Access Link : It stores the address of the activation record of the
caller function.

class()
{
int marksl, marks2;

Activation Record

student(); for class “
g = marksl, marks2
student()
{
result = marksl + Activation Record
marks2; for student
} uses values marksl,

marks2

The values that are local and
that are not found in the
current activation record can
be accessed by using access
link

e.  Saved Machine Status: The activation record consists of critical
information about the program's state, which is just about to get
called. It stores information like the return address or machine
registers. The saved machine ensures the program can resume
execution once the procedure call gets terminated.

f. Local Data: This field consists of local data for a particular function's
execution. Local data consists of variables that serve the purpose of
quick calculations or storing specific values of a currently used
function.

g.  Temporaries: It refers to the variables or storage locations used to
store intermediate values within the procedure. When a function
executes, it may perform different operations that require temporary
storage. Once the procedure call completes and the control returns to
the calling code, the system deallocates activation records and
releases temporaries.

7.2.1.2 Role in function/procedure call management

In compiler design, the role in function/procedure call management is
critical for translating high-level programming languages into machine code
or intermediate representations. Here are key roles related to
function/procedure call management in compiler design:

a.  Parsing and Syntax Analysis: This role involves parsing the source
code to identify function and procedure calls, along with their



parameters and arguments. Syntax analysis ensures that the calls
follow the grammar and syntactic rules of the programming language.

b.  Symbol Table Management: Managing a symbol table is crucial for
function/procedure call management. The symbol table keeps track of
all declared functions, procedures, variables, and their associated
information (e.g., data types, scope). During function/procedure calls,
the compiler uses the symbol table to resolve identifiers and check for
semantic correctness.

c. Type Checking: Ensuring type compatibility  during
function/procedure calls is another important role. The compiler
checks that the types of arguments passed to functions/procedures
match the expected parameter types, helping to catch type-related
errors early in the compilation process.

d. Intermediate Code Generation: After parsing and semantic
analysis, compilers often generate intermediate code representations.
Function and procedure calls in the source code are translated into
intermediate code instructions, which may involve managing
activation records (stack frames) for each function/procedure call to
handle parameters, local variables, and return addresses.

e.  Optimization: Function/procedure call management plays a role in
optimization strategies. Compilers may optimize function calls by
inlining small functions, eliminating redundant calls, or optimizing
parameter passing mechanisms (e.g., using registers for passing
arguments efficiently).

f.  Code Generation: Finally, during code generation, the compiler
translates the intermediate code or abstract syntax tree into target
machine code or assembly language. Function and procedure calls are
translated into appropriate machine instructions, taking into account
calling conventions, parameter passing mechanisms, and stack
management.

g.  Overall, function/procedure call management in compiler design
encompasses parsing, semantic analysis, symbol table management,
type checking, code generation, and optimization, all aimed at
producing efficient and correct executable code from high-level
programming languages.

7.2.2 Stack Management

In compiler design, stack management plays a crucial role in handling
function calls, local variables, and control flow during program execution.

7.2.2.1 Call stack and its significance

In the context of compiler design, the call stack is a critical concept that
impacts various aspects of program execution and memory management.
Here's how the call stack is significant in compiler design:

Runtime Environments
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Function Calls and Control Flow: When a compiler processes
source code, it generates instructions for function calls and returns.
These instructions manipulate the call stack to manage the flow of
control during program execution.

The call stack ensures that function calls are handled in a structured
manner, with each function call creating a new stack frame and
returning control to the caller upon completion.

Activation Records and Stack Frames: Compiler design involves
defining the structure of activation records (stack frames) for
functions and procedures. This includes specifying the layout of
parameters, local variables, return addresses, and other relevant
information within each activation record.

The compiler generates code to manage stack frames, such as
allocating space for local variables, passing parameters, and
saving/restoring registers as needed.

Parameter Passing Mechanisms: The call stack plays a role in
parameter passing mechanisms defined by the compiler. This includes
strategies like passing parameters via registers, the stack, or a
combination of both, depending on the calling conventions and
architecture targeted by the compiler.

Stack-based parameter passing involves pushing parameters onto the
stack before a function call and accessing them within the function
through the corresponding stack offsets.

Recursion Handling: Compilers must handle recursion efficiently
using the call stack. Recursive function calls create nested stack
frames, allowing recursive algorithms to work correctly without
causing stack overflow errors.

The compiler ensures that recursive calls properly manage stack space
and stack frame layout to prevent excessive memory usage and
maintain program integrity.

Exception Handling and Error Reporting: Compiler-generated
code for exception handling often relies on the call stack. When an
exception occurs, the call stack provides information about the
function call hierarchy, helping to unwind the stack and locate
appropriate exception handlers.

Error reporting mechanisms, such as stack traces, use the call stack to
identify the sequence of function calls leading to an error, aiding
developers in debugging and diagnosing issues in their code.

Optimization Opportunities: Advanced compilers employ stack-
related optimizations to improve program performance. This includes
techniques like stack frame reuse, stack slot allocation optimization,
and tail call optimization to minimize stack overhead and improve
execution efficiency.



7.2.2.2 Stack frame allocation and deallocation

In compiler design, stack allocation is a runtime storage management
technique that uses a last-in, first-out (LIFO) principle for allocations and
deallocations. The compiler calculates how much memory to allocate for
each variable in the program, and the memory is automatically released
when a function call is complete. This automatic deallocation is called stack
unwinding, and it involves adjusting the stack pointer, which is a constant-
time operation

In stack allocation, a contiguous area of memory is reserved for the stack,
and pointers called the stack base (SB) and top of stack (TOS) point to the
first and last entries, respectively. Activation records are pushed and popped
onto the stack as activations begin and end, and each activation record
contains storage for the locals in that call.

Sfack memoty Heap memory
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7.2.2.3 Stack pointer and frame pointer management

In compiler design and low-level programming, managing the stack pointer
(SP) and frame pointer (FP) is crucial for efficient memory allocation and
function call management. Here's how stack pointer and frame pointer
management works and why it's significant:

a.  Stack Pointer (SP): The stack pointer is a register or memory
location that points to the top of the stack, indicating the current
position for stack operations.

When a program starts or a function is called, the stack pointer is
typically initialized to the top of the stack memory region.

Stack operations such as pushing data onto the stack (e.g., function
parameters, return addresses) or popping data off the stack are
performed by adjusting the stack pointer accordingly.

b. Frame Pointer (FP): The frame pointer is another register or
memory location used specifically for accessing variables and data
within the current stack frame (activation record).

Runtime Environments
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Unlike the stack pointer, which moves dynamically during stack
operations, the frame pointer remains fixed within a stack frame once
it's set.

The frame pointer is particularly useful for accessing local variables
and parameters within a function, as it provides a stable reference
point within the stack frame.

c.  Function Call and Stack Frame Setup: When a function is called,
the compiler generates code to set up the stack frame (activation
record) for that function.

d.  This setup process involves adjusting both the stack pointer (SP)
and frame pointer (FP): The stack pointer is moved downward to
allocate space for function parameters, local variables, return address,
and other control information.

The frame pointer is set to the base of the current stack frame,
providing a stable reference for accessing variables within the frame.

e.  Stack Frame Usage: Within a function, the frame pointer is used to
access parameters, local variables, and other data stored in the current
stack frame.

Accessing variables via the frame pointer avoids the need to adjust
the stack pointer dynamically for each variable access, which can be
more efficient in terms of code generation and execution speed.

f. Stack Unwinding and Return: When a function completes its
execution or returns, the compiler generates code to unwind the stack
frame and restore the previous execution context.

This process involves popping the current stack frame off the stack by
adjusting the stack pointer and possibly restoring the previous frame
pointer if necessary.

g.  Optimizations and Efficiency: Efficient management of the stack
pointer and frame pointer is critical for optimizing code size and
execution speed.

Compilers may apply optimizations such as frame pointer omission
(FPO) or using a combination of frame pointer and stack pointer for
efficient variable access and function call management.

h.  Debugging and Stack Traces: Stack pointer and frame pointer
management are essential for debugging tools and stack traces that
provide insights into program execution and function call hierarchies.

Tools like debuggers use the stack pointer and frame pointer information to
display stack frames, local variables, and function call paths during program
debugging.



7.3 HEAP MEMORY MANAGEMENT

Heap memory management in compiler design refers to how dynamically
allocated memory is handled during program execution. Unlike stack
memory, which is used for function calls and local variables, heap memory
is used for dynamic data structures such as arrays, linked lists, objects, and
other data that needs to be allocated and deallocated at runtime.

Here are key points about heap memory management in the context of
compiler design:

a.

Dynamic Memory Allocation: Heap memory allows programs to
allocate memory dynamically at runtime, unlike stack memory where
the size is typically fixed or determined at compile time.

Languages like C, C++, and others use functions like malloc, calloc,
realloc, and free for heap memory management.

Heap Data Structures: Data structures such as arrays, linked lists,
trees, hash tables, and objects are often allocated on the heap.

These data structures can grow and shrink dynamically based on
program needs, making heap memory essential for managing complex
data.

Memory Allocation Algorithms: Heap memory management
involves algorithms for efficient allocation and deallocation of
memory blocks.

Common algorithms include first-fit, best-fit, worst-fit, and buddy
allocation, each with its trade-offs in terms of memory fragmentation,
overhead, and allocation speed.

Heap Fragmentation: Fragmentation can occur in heap memory
when allocated memory blocks become scattered, leading to
inefficient use of memory.

Compilers and memory management libraries often employ strategies
like memory compaction, defragmentation, and memory pooling to
mitigate fragmentation issues.

Memory Leaks: Heap memory management includes handling
memory leaks, which occur when allocated memory is not properly
deallocated after use.

Memory leaks can lead to a gradual increase in memory consumption
over time, potentially causing performance issues and resource
exhaustion.

Garbage Collection (GC): Some programming languages, such as
Java, C#, and Python, use garbage collection to automatically manage
heap memory.

Runtime Environments
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Garbage collection algorithms identify and reclaim unused memory

(garbage) to free up heap space for future allocations.

Manual Memory Management: In languages like C and C++,
developers must manually manage heap memory by allocating and

deallocating memory using functions like malloc and free.

Manual memory management requires careful handling to avoid
memory leaks, dangling pointers, and other memory-related errors.

Compiler Optimizations: Compilers may optimize heap memory
usage by analyzing memory allocation patterns and applying
optimizations such as object pooling, stack allocation for temporary

objects, and optimizing memory access patterns.

Stack Memory
1. Static memory allocation
2. Variables allocated on the stack are
stored directly to the memeory
3.variables cannot be resized
4. Very fast access
5. The stackis always reservedina LIFO
order, the most recently reserved block
is always the next block to be freed.
6. Variables stored in stacks are only
visible to the owner Thread
/. In Recursion calls, the Stack memory
will be quickly filled up compare to
Heap
8. stack mostly contains local variable
which gets wiped off once they lost
scope
9, The stack contains only values for
integral types, primitive types and
references to objects
10. stack memory is used only by one
thread of execution.
11.The moment stack spaceis
exhausted, .NET runtime throws
StackOverflowExcepton.Memory

Vs,

10.

7.3.1 Difference between stack and heap memory

Heap Memory
Dynamic memory allocation
Variables allocated on the heap
have their memory allocated at
run time
variables can be resized
Relatively slower access
You can allocate a block at any
time and free it at any time
objects created in the heap are
visible to all thread
The Heap contains the actual
object
Heap memory is used by all the
parts of the application
NET runtime creates a special
thread that monitors allocations of
heap space called Garbage
collector
Garbage collector only collect
Heap memory since object is only
created in heap

A. Allocation Techniques:

Static Allocation: Memory is allocated at compile time and remains

7.3.2 Dynamic Memory Allocation

Dynamic memory allocation refers to the process of allocating memory for
data structures or variables at runtime, as opposed to static memory
allocation where memory is allocated at compile time. In the context of
compiler design and programming languages, dynamic memory allocation
is a fundamental concept that allows programs to manage memory flexibly
based on runtime requirements.

7.3.2.1 Allocation and deallocation techniques

fixed throughout the program's execution.



Typically used for global variables, constants, and static arrays.
Example: int staticArray[100];

Dynamic Allocation (Heap Allocation): Memory is allocated at
runtime from the heap using functions like malloc, calloc, or new (in
C/C++/C#/C++).

Allows for flexible allocation and deallocation of memory blocks.
Example (in C): int* dynamicArray = malloc(100 * sizeof(int));

Stack Allocation: Memory is allocated on the program's call stack
for function calls and local variables.

Memory allocated on the stack is automatically deallocated when the
function scope ends.

Used for automatic variables and function call frames.
Example: int stackVariable;

Pooled Allocation: Pre-allocates a pool of memory blocks of fixed
sizes.

Used for managing objects or data structures that have predictable
memory usage patterns.

Helps reduce memory fragmentation and overhead.

Example: Object pooling in game development for reusing frequently
used objects like bullets or particles.

Bump Allocation: Allocates memory sequentially from a designated
memory region (bump pointer).

Fast and simple allocation technique but may lead to fragmentation.

Typically used in garbage-collected environments or for short-lived
objects.

Deallocation Techniques:

Manual Deallocation: Memory is deallocated explicitly by the
programmer using functions like free (C), delete (C++), or Dispose
(CH).

Requires careful management to avoid memory leaks and dangling
pointers.

Example (in C): free(dynamicArray);

Reference Counting: Each object keeps track of the number of
references pointing to it.

Runtime Environments
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Memory is deallocated when the reference count drops to zero,
indicating no active references to the object.

Used in some programming languages and libraries but may have
overhead and issues with cyclic references.

Pool Deallocation: Used in pooled allocation techniques.

Memory blocks are returned to the pool for reuse after they are no
longer needed.

Helps minimize allocation and deallocation overhead by reusing pre-
allocated memory blocks.

Scoped Deallocation: Memory is deallocated automatically when it
goes out of scope.

Commonly used in languages with automatic memory management
or smart pointers (e.g., C++'s std::unique_ptr, std::shared_ptr).

7.3.2.2 Garbage collection methods (reference counting, mark-and-
sweep, generational GC)

Garbage collection (GC) methods are techniques used in programming
languages with automatic memory management to reclaim memory
occupied by objects that are no longer in use. Here are three common
garbage collection methods:

a.

Reference Counting:

o Overview: Reference counting is a simple garbage collection
technique that tracks the number of references pointing to each
object.

o How it Works: Each object has a reference count, initially set to
1 for each reference. When a reference is created to the object,
its count is incremented. When a reference is deleted or goes
out of scope, the count is decremented. When the count reaches
zero, the object is considered garbage and can be safely
deallocated.

o Advantages: Immediate deallocation when the last reference is
removed, minimal pause times during execution.

o Disadvantages: Inefficient for cyclic references (objects that
reference each other), overhead for maintaining reference
counts, difficulty in handling weak references (references that
do not contribute to the count).

o Example Language: Python uses reference counting as part of
its garbage collection strategy, combined with other techniques
for handling cyclic references and managing memory
efficiently.



Mark-and-Sweep: Runtime Environments

o Overview: Mark-and-sweep is a classic garbage collection
algorithm that identifies and reclaims unreachable objects by
traversing the object graph.

. How it Works:

o Mark Phase: The algorithm starts from known roots (global
variables, stack, registers) and traverses the object graph,
marking reachable objects as live.

o Sweep Phase: Once all reachable objects are marked, the
algorithm sweeps through the entire heap, deallocating memory
for objects that are not marked (unreachable).

o Advantages: Handles cyclic references efficiently, works well
for languages with complex object relationships, less overhead
compared to reference counting.

. Disadvantages: Can cause noticeable pause times during the
sweep phase, fragmentation can occur if memory is not
compacted after sweeping.

. Example Language: C# and Java use variants of mark-and-
sweep algorithms in their garbage collectors.

Generational Garbage Collection:

o Overview: Generational GC is an enhancement to mark-and-
sweep that divides objects into different generations based on
their age.

. How it Works:

. Young Generation: Newly created objects are placed in the
young generation. A minor collection (often using copying or
semi-space collection) is performed frequently on the young
generation to reclaim short-lived objects.

o Old Generation: Objects that survive multiple minor collections
are promoted to the old generation. A major collection (e.g.,
mark-and-sweep) is performed less frequently on the old
generation to reclaim long-lived objects.

J Advantages: Efficient for programs with a high rate of short-
lived objects (typical in many applications), reduces the
overhead of full garbage collection cycles by focusing on young
objects.

o Disadvantages: More complex to implement and tune, may
require fine-tuning of generation sizes and collection strategies.

o Example Language: Java's HotSpot VM and .NET's CLR use
generational garbage collection as part of their memory
management strategies.
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Each garbage collection method has its strengths and weaknesses, and the
choice of method often depends on factors such as the programming
language, application characteristics (memory usage patterns, object
lifespan), performance requirements, and trade-offs between pause times,
memory overhead, and overall system efficiency.

7.4 CALL AND RETURN MECHANISMS

The call and return mechanisms are fundamental concepts in computer
programming and execution flow. Here's an overview of these mechanisms:

7.4.1 Call Mechanism

. Function Call: When a function or subroutine is called in a program,
the call mechanism handles transferring control from the caller to the
callee (the function being called).

o Parameters: Arguments or parameters may be passed to the function
during the call, providing input data for the function's operation.

. Stack Frame: Typically, a new stack frame (activation record) is
created on the program's call stack to store information such as
parameters, return address, and local variables for the function call.

o Return Address: The return address is saved in the stack frame,
indicating where the control flow should return after the function
completes its execution.

7.4.2 Return Mechanism

. Function Execution: The callee executes its code, performing the
tasks defined within the function.

. Return Value: If the function returns a value, it is computed during
execution and stored in a designated location (e.g., a register or
memory location) for the caller to access.

. Stack Cleanup: After the function completes execution, its stack
frame is typically removed from the stack to free up memory. This
process is known as stack unwinding or stack cleanup.

o Control Transfer: The return mechanism transfers control back to the
caller, using the saved return address from the stack frame to resume
execution at the appropriate instruction.

7.5 EXCEPTION HANDLING

In compiler design, exception handling refers to how the compiler generates
code to handle exceptional conditions or errors that may occur during
program execution. Here's how exception handling is typically addressed in
compiler design:

a. Language Support: Many modern programming languages,
especially high-level languages like Java, C#, Python, and C++,
include built-in support for exception handling.



Compiler designers need to implement mechanisms to support the
syntax, semantics, and runtime behavior of exception handling
constructs defined by the language specification.

Code Generation: During the compilation process, the compiler
translates high-level language constructs, including exception
handling statements (e.g., try-catch blocks), into low-level code that
the target platform can execute.

This involves generating instructions for throwing exceptions,
catching exceptions, and handling cleanup tasks associated with
exceptions.

Exception Propagation: When an exception occurs within a function
or block of code, the compiler generates code to propagate the
exception up the call stack until it is caught and handled by an
appropriate catch block.

Exception propagation may involve unwinding the stack, deallocating
resources, and transferring control to the nearest catch block that
matches the type of the thrown exception.

Stack Unwinding: When an exception is thrown, the compiler
generates code to unwind the call stack, deallocating resources and
executing cleanup tasks as needed.

This process ensures that resources held by functions along the call
chain are properly released, even if an exception interrupts the normal
execution flow.

Exception Types and Handlers: Compiler designers must support
the definition of custom exception types and the declaration of
exception handlers (catch blocks) to handle specific types of
exceptions.

Matching the thrown exception type to the appropriate catch block
requires generating code for runtime type checking and exception
dispatching.

Resource Management: Exception handling in compiler design
often includes generating code to manage resources, such as closing
files, releasing memory, or rolling back transactions, to ensure proper
cleanup in the event of an exception.

Optimizations and Efficiency: Advanced compilers may optimize
exception handling code to minimize overhead and improve runtime
performance.

Techniques such as exception table optimization, lazy exception
handling, and inlining of exception handling code can reduce the
impact of exception handling on program execution speed.

Error Reporting and Debugging: Compiler-generated code for
exception handling may include mechanisms for reporting error
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messages, stack traces, and debugging information to aid developers
in diagnosing and fixing issues related to exceptions.

Exception handling in compiler design is a complex task that involves
translating high-level language constructs into efficient and reliable
code for managing exceptional conditions during program execution.
Compiler designers must ensure that exception handling mechanisms
comply with language specifications, provide robust error handling
capabilities, and optimize performance where possible.

7.6 LEXICAL AND SYNTAX ERROR HANDLING

In compiler design, handling lexical and syntax errors is crucial for
producing reliable and user-friendly compilers. Here's how lexical and
syntax error handling is typically addressed:

7.6.1 Lexical Error Handling

In compiler design, lexical error handling is a critical aspect of the lexical
analysis phase, also known as scanning. Here's a detailed look at lexical
error handling:

7.6.1.1 Introduction to Lexical Errors

Lexical errors are a type of error that occurs during the lexical analysis
phase of compiling source code. This phase is also known as scanning or
lexing. Lexical errors occur when the compiler encounters tokens or
sequences of characters that do not conform to the language's lexical rules.

These errors typically involve invalid tokens, illegal characters, or
malformed lexemes (lexical elements like identifiers, keywords, operators,
and literals).

Common lexical errors (illegal characters, unclosed strings)
a. lllegal Characters:

o Definition: Illegal characters are characters that are not allowed
within the syntax of the programming language. These may
include non-alphanumeric characters, control characters, or
characters with special meanings in the language.

o Example: Using a symbol like @ or $ in an identifier in a
language that only allows letters, digits, and underscores.

o Impact: Illegal characters can lead to immediate lexical errors
because they violate the language's lexical rules.

b.  Unclosed Strings:

o Definition: Unclosed strings occur when a string literal in the
code is not properly terminated with a closing quotation mark.

o Example: string text = "Hello, this is an unclosed string;



Impact: Unclosed strings cause the lexer to interpret everything
following the opening quotation mark as part of the string literal
until it encounters the closing quotation mark or the end of the
line. This can result in syntax errors or unexpected behavior in
the code.

Mismatched Delimiters:

Definition: Mismatched delimiters occur when pairs of
delimiters (such as parentheses, braces, or brackets) are not
correctly matched or nested.

Example: if (condition { /* code block */ }

Impact: Mismatched delimiters can lead to syntax errors or
ambiguity in the code's structure. They may cause the compiler
to misinterpret the intended grouping or hierarchy of code
blocks, leading to compilation errors.

Incomplete Comments:

Definition: Incomplete comments occur when comment
delimiters (e.g., /* ... */ for block comments or // for line
comments) are not properly closed.

Example: /* This is an incomplete comment

Impact: Incomplete comments can cause the lexer to interpret
subsequent code as part of the comment, leading to unexpected
behavior or compilation errors.

Malformed Numbers:

Definition: Malformed numbers are numeric literals that do not
adhere to the syntax rules for numbers in the programming
language. This may include invalid formats, missing digits, or
incorrect use of decimal points.

Example: float number = 3.14.2; (invalid floating-point
number)

Impact: Malformed numbers can result in lexical errors or type
conversion issues during compilation.

7.6.1.2 Error Recovery Strategies

Error recovery strategies in compiler design are essential for handling
syntax errors and other unexpected conditions encountered during parsing.
Here are two common error recovery strategies:

Panic Mode Recovery:

Overview: Panic mode recovery is a robust error recovery
strategy where the parser skips input tokens until it finds a
designated synchronization point. Once the synchronization
point is reached, parsing resumes.
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How it Works: When a syntax error is detected, the parser
enters panic mode and discards input tokens until it finds a
synchronization token or a set of tokens that can serve as a
recovery point.

The synchronization tokens are typically chosen strategically to
help the parser recover and continue parsing from a known valid
state.

Example: In C-like languages, semicolons (;) are often used as
synchronization points. If a syntax error is encountered, the
parser may skip tokens until it finds a semicolon, indicating the
end of a statement, and then resume parsing from that point.

Advantages: Panic mode recovery is straightforward to
implement and can help the parser recover from a wide range of
syntax errors, allowing the compilation process to continue
without halting at the first error.

Disadvantages: It may lead to cascading errors if the parser
skips over essential parts of the code, resulting in multiple error
messages and potential confusion for developers.

Phrase Level Recovery (Local Correction):

Overview: Phrase level recovery, also known as local
correction, involves attempting to correct syntax errors within a
specific phrase or production rule in the grammar.

How it Works: When a syntax error is detected, the parser tries
to identify nearby tokens that can be inserted, deleted, or
substituted to transform the erroneous phrase into a valid phrase
according to the grammar.

The correction process may involve using heuristics, predictive
algorithms, or predefined correction rules based on the grammar
and common syntactic patterns.

Example: If a missing semicolon is detected in a statement, the
parser may attempt to insert the semicolon at the expected
location to correct the error.

Advantages: Phrase level recovery can provide more targeted
and context-sensitive error correction, leading to more accurate
recovery from syntax errors and potentially reducing the
number of cascading errors.

Disadvantages: It requires more sophisticated parsing
techniques and error correction algorithms, making it more
complex to implement compared to panic mode recovery. It
may also be limited in its ability to correct certain types of errors
that involve structural changes beyond the local phrase.



Both panic mode recovery and phrase level recovery are
valuable error recovery strategies in compiler design. The
choice of strategy depends on factors such as the language's
grammar complexity, the desired level of error correction, and
the trade-offs between simplicity and accuracy in error
recovery.

7.6.1.3 Error Reporting and Handling

Error reporting and handling are crucial aspects of compiler design,
ensuring that developers receive clear, informative messages about errors
in their code and providing mechanisms for handling and correcting those
errors. Here are strategies for reporting lexical errors and techniques for
handling and correcting errors in compilers:

A. Reporting Lexical Errors:

Error Messages: When the lexer (lexical analyzer) detects a
lexical error, it generates an error message to inform the
developer about the nature of the error and its location in the
source code.

Error Information: Lexical error messages typically include
details such as the line number, column number, the invalid
token or character sequence encountered, and suggestions for
correcting the error.

Example Lexical Error Message: "Lexical error: Unexpected
token '@" at line 3, column 10. Expected token: Identifier or
keyword."

B. Techniques for Handling and Correcting Errors:

a.  Error Recovery Strategies:

Panic Mode Recovery: The parser skips tokens until it finds a
synchronization point, such as a semicolon or a specific
keyword, to resume parsing.

Phrase Level Recovery: The parser attempts to correct syntax
errors within specific phrases or production rules using
heuristics or predefined correction rules.

b.  Automatic Correction:

Spell Checking: The compiler may perform basic spell checking
on identifiers and keywords to detect typos or misspelled words.

Missing Punctuation: Automatic insertion of missing
punctuation, such as semicolons at the end of statements or
closing braces in code blocks.
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c.  Interactive Suggestions:

o Code Completion: IDEs and code editors offer code completion
features that suggest valid tokens, keywords, or identifiers as
developers type, helping prevent lexical errors.

o Quick Fix Suggestions: IDEs provide quick-fix suggestions for
common errors, allowing developers to apply corrections with
a single click.

d. Syntax Highlighting and Visualization:

o Syntax Highlighting: Highlighting invalid tokens or syntax
errors in the code editor helps developers identify errors
visually.

o Syntax Trees: Displaying syntax trees or parse trees can help
developers understand the structure of their code and identify
potential errors.

e.  Compiler Directives and Flags:

o Warning and Error Flags: Compiler directives allow developers
to control error reporting behavior, such as treating warnings as
errors or ignoring certain types of errors during compilation.

o Debugging Symbols: Including debugging symbols in compiled
code helps developers trace errors back to specific source code
locations during debugging.

o Effective error handling and correction in compilers enhance
developer productivity, improve code quality, and facilitate the
debugging process. By providing clear error messages,
automated correction mechanisms, and interactive tools,
compilers empower developers to write robust and error-free
code more efficiently.

7.6.2 Syntax Error Handling

Syntax error handling is a crucial aspect of compiler design, focused on
detecting and recovering from errors in the syntax of the programming
language.

7.6.2.1 Introduction to Syntax Errors

Syntax errors are fundamental errors that occur when the compiler
encounters code that does not adhere to the grammar rules of the
programming language. These errors indicate deviations from the expected
structure and syntax of the code, making it difficult or impossible for the
compiler to interpret and generate executable code. Here's an introduction
to syntax errors, including common examples such as mismatched
parentheses and missing semicolons:



Mismatched Parentheses:

Description: Mismatched parentheses occur when there is an
imbalance between opening and closing parentheses in
expressions or function calls.

Example: if (condition) { /* code block */ (missing closing
parenthesis)

Impact: Mismatched parentheses can lead to syntax errors, as
the compiler expects balanced parentheses to properly parse and
interpret code blocks, conditions, and function arguments.

Missing Semicolons:

Description: Missing semicolons occur when statements are not
terminated with the required semicolon symbol (;) in languages
that use semicolons to denote the end of statements.

Example: int x = 10 (missing semicolon at the end of the
statement)

Impact: Missing semicolons can cause syntax errors, as the
compiler interprets the absence of a semicolon as an incomplete
statement, leading to unexpected behavior or compilation
failures.

Common Syntax Errors:

Incorrect Operator Usage: Using operators incorrectly or in
unsupported contexts can result in syntax errors. For example,
using arithmetic operators with non-numeric operands.

Invalid Statement Structures: Writing statements that do not
follow the language's syntax rules, such as misplaced keywords
or incorrect use of control structures, can lead to syntax errors.

Mismatched Braces or Brackets: In languages that use braces
({}) or brackets ([]) for code blocks or array indexing,
mismatched or improperly nested braces or brackets can cause
syntax errors.

Incorrect Function Calls: Providing incorrect arguments or
parameters in function calls, missing function declarations, or
using undefined functions can result in syntax errors.

Reserved Keywords: Using reserved keywords as identifiers or
variable names can lead to syntax errors, as these keywords
have specific syntactic meanings in the language.

Impact of Syntax Errors:

Syntax errors prevent the compiler from generating executable
code, as they indicate fundamental issues with the structure and
syntax of the code.
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Fixing syntax errors requires identifying and correcting
deviations from the language's grammar rules, often through
careful review of error messages and code inspection.

7.6.2.2 Error Recovery Strategies

Error recovery strategies in compiler design play a crucial role in handling
syntax errors and ensuring that the compilation process can continue despite
encountering errors. Here's an explanation of panic mode recovery, phrase-
level recovery, and error productions in grammar:

a.

Panic Mode Recovery:

Overview: Panic mode recovery is a robust error recovery
strategy used by parsers to recover from syntax errors by
skipping input tokens until a synchronization point is reached.

How it Works: When a syntax error is detected, the parser enters
panic mode and discards input tokens until it finds a designated
synchronization token or set of tokens.

The synchronization tokens are strategically chosen to help the
parser recover and resume parsing from a known valid state.

Example: In C-like languages, semicolons (;) are often used as
synchronization points. If a syntax error occurs, the parser may
skip tokens until it finds a semicolon, indicating the end of a
statement, and then resume parsing from that point.

Advantages: Panic mode recovery is straightforward to
implement and can help the parser recover from a wide range of
syntax errors, allowing the compilation process to continue
without halting at the first error.

Disadvantages: It may lead to cascading errors if the parser
skips over essential parts of the code, resulting in multiple error
messages and potential confusion for developers.

Phrase Level Recovery (Local Correction):

Overview: Phrase level recovery, also known as local
correction, involves attempting to correct syntax errors within a
specific phrase or production rule in the grammar.

How it Works: When a syntax error is detected, the parser tries
to identify nearby tokens that can be inserted, deleted, or
substituted to transform the erroneous phrase into a valid phrase
according to the grammar.

The correction process may involve using heuristics, predictive
algorithms, or predefined correction rules based on the grammar
and common syntactic patterns.



Example: If a missing semicolon is detected in a statement, the
parser may attempt to insert the semicolon at the expected
location to correct the error.

Advantages: Phrase level recovery can provide more targeted
and context-sensitive error correction, leading to more accurate
recovery from syntax errors and potentially reducing the
number of cascading errors.

Disadvantages: It requires more sophisticated parsing
techniques and error correction algorithms, making it more
complex to implement compared to panic mode recovery. It
may also be limited in its ability to correct certain types of errors
that involve structural changes beyond the local phrase.

C. Error Productions in Grammar:

Definition: Error productions are special rules added to the
grammar to handle specific types of syntax errors gracefully.

How it Works: Error productions define how the parser should
recover from known syntax errors by suggesting possible
corrections or alternative valid structures.

These productions are triggered when the parser encounters a
syntax error matching the conditions specified in the error
production rules.

Example: An error production may define how to recover from
a missing semicolon by inserting the semicolon and continuing
parsing.

Advantages: Error productions provide explicit guidelines for
error recovery, improving the parser's ability to handle common
syntax errors effectively.

Disadvantages: Crafting error productions requires detailed
knowledge of potential syntax errors and their recovery
strategies, adding complexity to the grammar specification.

7.6.2.3 Error Reporting and Handling

A. Reporting Syntax Errors:

Error Messages: When the compiler detects a syntax error
during parsing, it generates an error message to inform the
developer about the nature of the error and its location in the
source code (line number, column).

Error Information: Syntax error messages typically include
details such as the expected token or grammar rule that was
violated, the actual token found, and suggestions for correcting
the error.
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Example Syntax Error Message: "Syntax error: Unexpected
token '} at line 5, column 15. Expected token: *;™

Techniques for Handling and Correcting Syntax Errors:

Panic Mode Recovery:

Overview: The parser skips tokens until it finds a
synchronization point, such as a semicolon or a specific
keyword, to resume parsing.

Usage: Panic mode recovery is particularly effective for
recovering from syntax errors that occur within code blocks or
statements, allowing the compilation process to continue
without halting at the first error.

Phrase Level Recovery (Local Correction):

Overview: The parser attempts to correct syntax errors within
specific phrases or production rules using heuristics or
predefined correction rules.

Usage: Phrase level recovery is beneficial for correcting
common syntax errors such as missing semicolons, mismatched
parentheses, or incorrect operator usage within expressions.

Automatic Correction:

Spell Checking: The compiler may perform basic spell checking
on identifiers, keywords, and syntax constructs to detect typos
or misspelled words.

Missing Punctuation: Automatic insertion of missing
punctuation, such as semicolons at the end of statements or
closing braces in code blocks.

Interactive Suggestions:

Code Completion: Integrated Development Environments
(IDEs) provide code completion features that suggest valid
tokens, keywords, or syntax constructs as developers type,
helping prevent syntax errors.

Quick Fix Suggestions: IDEs offer quick-fix suggestions for
common syntax errors, allowing developers to apply
corrections with a single click or keystroke.

Syntax Highlighting and Visualization:

Syntax Highlighting: IDEs and code editors highlight syntax
errors in the code, making it easier for developers to identify
and correct errors as they write code.



o Syntax Trees: Displaying syntax trees or parse trees can help
developers understand the structure of their code and identify
potential syntax errors.

f. Compiler Directives and Flags:

. Warning and Error Flags: Compiler directives allow developers
to control error reporting behavior, such as treating warnings as
errors or ignoring certain types of errors during compilation.

o Debugging Symbols: Including debugging symbols in compiled
code helps developers trace errors back to specific source code
locations during debugging.

By combining these techniques, compilers can effectively report syntax
errors, provide guidance for error correction, and assist developers in
writing syntactically correct code. IDEs and code editors further enhance
the error handling experience by offering interactive tools and real-time
feedback during code development.

7.7 SUMMARY

The chapter covered key concepts in compiler design, including activation
records and stack management, heap memory management, call and return
mechanisms, exception handling, and lexical and syntax error handling.

a.  Activation Records and Stack Management:

o Activation records organize function calls and manage local
variables, parameters, and return addresses.

. Stack management involves allocating/deallocating stack
frames and managing pointers for function calls on the call
stack.

b. Heap Memory Management:

o Heap memory allows dynamic memory allocation and includes
techniques like allocation/deallocation and garbage collection
methods.

C. Call and Return Mechanisms:

o Call mechanisms handle parameter passing and function call
conventions, while return mechanisms manage return values
and addresses.

d.  Exception Handling:

o Exception handling deals with handling errors during program
execution using try-catch blocks and exception propagation.
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Lexical and Syntax Error Handling:

° Lexical error handling addresses tokenization errors, while
syntax error handling deals with structural errors in the code
using recovery strategies.

o These topics are fundamental to building efficient compilers
and ensuring proper error handling and memory management in
programming languages.

7.8 QUESTIONS FOR PRACTICE

1.

10.

Explain the structure of an activation record and its role in
function/procedure call management.

What are the differences between stack memory and heap memory,
and when would you use each?

Describe dynamic memory allocation techniques and compare their
advantages and disadvantages.

How do garbage collection methods like reference counting, mark-
and-sweep, and generational garbage collection work, and what are
their trade-offs?

What are the different parameter passing methods in function calls,
and how do they impact memory management and performance?

Discuss the concept of try-catch blocks in exception handling and
explain how they help manage errors in code execution.

Compare panic mode recovery and phrase level recovery as error
recovery strategies in compiler design. When would you use each
strategy?

Explain the significance of stack management in compiler design,
including stack frame allocation, deallocation, stack pointer, and
frame pointer management.

How does error reporting and handling differ between lexical errors
and syntax errors in compilers?

Describe the role of error productions in grammar and how they
contribute to error recovery and correction during parsing.
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8.0 OBJECTIVE

The primary objectives are to understand the core components of compilers,
explore advanced technologies like LLVM for code generation, develop
skills for debugging and testing compilers, support modern programming
needs through parallel and concurrent programming, and design and
implement domain-specific languages (DSLS).

8.1 INTRODUCTION

Compilers translate high-level programming languages into machine code,
crucial for software development. This content covers both foundational
and advanced aspects, including lexical and syntax analyzer generators,
LLVM for code generation, and JIT compilation for runtime optimization.
We will also explore debugging and testing best practices, support for
parallel and concurrent programming, and compiler optimization
frameworks. Finally, we delve into DSL compilation, enabling the creation
of specialized languages tailored to specific domains.
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8.2 INTRODUCTION TO COMPILER TOOLS AND
TECHNIQUES

Compiler tools and techniques are essential for transforming high-level
programming languages into machine code that computers can execute.
This section explores the fundamental components and tools used in
compiler construction, providing a comprehensive understanding of how
compilers work and the technologies that support their development.

8.2.1 Overview of Compiler Design

Compiler design is a critical area of computer science that focuses on the
development of compilers, which are programs that translate high-level
source code into machine code, assembly language, or intermediate
representations that a computer can execute. Understanding compiler
design involves examining the various phases of compilation, each with
distinct responsibilities and methodologies.

8.2.1.1 Definition and purpose of a compiler

A compiler is a sophisticated software tool that takes source code written in
high-level programming languages (such as C, Java, or Python) and
converts it into machine code, which is a low-level, binary format that the
computer's processor can execute directly. The primary purposes of a
compiler are:

a.  Translation: Converting high-level language constructs into a form
that the machine can understand and execute.

b.  Optimization: Improving the efficiency of the code to ensure it runs
faster and uses fewer resources.

c.  Error Detection: Identifying and reporting errors in the source code to
help developers correct mistakes.

d.  Abstraction: Allowing programmers to write in high-level languages
that are easier to understand and maintain, rather than in machine
code.

8.2.1.2 Phases of compilation

The compilation process is divided into several key phases, each
responsible for a specific aspect of translating and optimizing the source
code:

a.  Lexical Analysis:

o Purpose: The lexical analyzer (or lexer) processes the input
source code to produce a sequence of tokens. Tokens are the
smallest meaningful units in the code, such as keywords,
operators, identifiers, and literals.



Process: The lexer scans the source code, matching patterns
defined by regular expressions to generate tokens while
ignoring whitespace and comments.

b.  Syntax Analysis:

Purpose: The syntax analyzer (or parser) takes the sequence of
tokens from the lexer and organizes them into a syntax tree (or
parse tree) according to the grammatical rules of the
programming language.

Process: The parser checks for syntactic correctness, ensuring
that the tokens form valid statements and constructs. It reports
syntax errors if the structure is incorrect.

c.  Semantic Analysis:

Purpose: The semantic analyzer verifies the syntax tree for
semantic correctness, ensuring that the code adheres to the rules
of the language, such as type checking and variable scope.

Process: This phase checks for logical errors and validates that
operations and function calls are semantically correct.

d. Optimization:

Purpose: The optimizer enhances the intermediate code's
performance by applying various optimization techniques.

Process: Common optimizations include constant folding, loop
unrolling, dead code elimination, and inlining. The goal is to
improve execution speed and reduce resource consumption.

e. Code Generation:

Purpose: The code generator translates the optimized
intermediate code into machine code or assembly language.

Process: This phase converts high-level constructs into low-
level instructions that the processor can execute, ensuring
efficient use of hardware resources.

Code Optimization:

Purpose: Further refine the generated machine code to enhance
its performance and efficiency.

Process: Techniques such as register allocation, instruction
scheduling, and peephole optimization are applied to produce
highly optimized executable code.

Understanding these phases is crucial for designing efficient and effective
compilers. Each phase plays a vital role in ensuring that the source code is
accurately translated and optimized, resulting in high-performance
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executable programs. The next section will delve into the specific tools used
in compiler construction, which automate and facilitate these processes.

8.2.2 Compiler Construction Tools

Compiler construction tools are essential for automating various phases of
the compilation process, enhancing efficiency, and reducing the complexity
of building compilers. These tools help in generating key components of a
compiler, such as lexical analyzers and syntax analyzers, thereby
streamlining the development process. Below are some of the prominent
tools used in compiler construction.

8.2.2.1 Lexical analyzer generators (e.g., Lex, Flex)

Lexical analyzer generators, such as Lex and Flex, are tools designed to
automate the creation of lexical analyzers (lexers). These tools allow
developers to define regular expressions that describe the tokens of a
programming language. The generator then produces the lexer code, which
scans the source code, matches patterns, and outputs tokens.

a. Lex:

o Overview: Lex is one of the oldest and most widely used tools
for generating lexical analyzers. It is traditionally used in Unix-
based systems.

o Functionality: Developers write a specification file containing
regular expressions and corresponding actions. Lex processes
this file to produce a C source file that implements the lexical
analyzer.

o Usage Example: Lex is often used in conjunction with Yacc
(Yet Another Compiler Compiler) to build complete compilers.

b. Flex:

o Overview: Flex (Fast Lexical Analyzer) is an enhanced version
of Lex, offering better performance and additional features.

o Functionality: Flex processes a specification file similar to Lex
but generates more efficient and faster lexical analyzers. It
provides improved flexibility and performance.

o Usage Example: Flex is commonly used in modern compiler
projects and can be integrated with tools like Bison for syntax
analysis.

8.2.2.2 Syntax analyzer generators (e.g., Yacc, Bison)

Syntax analyzer generators, such as Yacc and Bison, facilitate the creation
of parsers. These tools allow developers to define the grammar of a
programming language using a high-level specification language. The



generator then produces the parser code, which constructs syntax trees and
checks for syntactic correctness.

a.  Yacc (Yet Another Compiler Compiler):

o Overview: Yacc is a traditional tool for generating parsers from
context-free grammars. It is often used in combination with
Lex.

. Functionality: Developers write a specification file that defines
the grammar rules and associated actions. Yacc processes this
file to produce a C source file that implements the parser.

o Usage Example: Yacc is used to build parsers for various
programming languages and can handle complex language
constructs.

b. Bison:

o Overview: Bison is a modern and more flexible alternative to
Yacc. It is compatible with Yacc grammar files but offers
additional features and improvements.

o Functionality: Bison processes grammar specifications to
produce efficient parsers. It supports advanced features like
GLR parsing and can generate parsers in languages other than
C.

. Usage Example: Bison is widely used in both academic and
industrial compiler projects, providing robust and flexible
parsing capabilities.

These tools significantly simplify the development of compilers by
automating the generation of crucial components, allowing compiler
developers to focus on higher-level design and optimization tasks. By
leveraging these tools, developers can build efficient, reliable, and
maintainable compilers.

8.3 LEXICAL AND SYNTAX ANALYZER GENERATORS

Lexical and syntax analyzers are fundamental components of a compiler,
playing crucial roles in the translation of high-level source code into
executable machine code. This section delves into the specifics of these
components and the tools used to generate them.

8.3.1 Lexical Analyzers

Lexical analyzers, or lexers, are a crucial component in the early stages of
the compilation process. They serve as the first line of analysis,
transforming the raw source code into a structured sequence of tokens that
can be more easily processed by subsequent phases of the compiler.
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8.3.1.1 Role of lexical analyzers in compilation

The primary role of a lexical analyzer is to read the source code and convert
it into tokens. Tokens are the smallest meaningful elements in the source
code, such as keywords, operators, identifiers, and literals. This
transformation facilitates the work of the syntax analyzer by reducing the
complexity of the input data.

o Tokenization: The lexical analyzer scans the source code and
identifies sequences of characters that match predefined patterns for
various tokens.

o Whitespace and Comment Removal: Lexers typically ignore
whitespace and comments, focusing only on the meaningful elements
of the source code.

. Error Detection: Lexers detect illegal characters and malformed
tokens, reporting lexical errors that need to be corrected before further
compilation can proceed

8.3.1.2 Tokenization and regular expressions

Tokenization is the process of converting a sequence of characters into a
sequence of tokens. Regular expressions are essential in defining the
patterns that match different types of tokens.

o Regular Expressions: Regular expressions are formal language
constructs used to specify patterns for matching character sequences.
They are a powerful tool for defining the lexical structure of a
programming language.

. Examples of Token Patterns:

0 Keywords: Recognized by fixed patterns, such as if, else, while,
return.

0 Identifiers: Typically matched by the pattern [a-zA-Z_][a-zA-
Z0-9_7*, which allows for variable names, function names, etc.

0 Literals: Numeric values, string literals, and other constant
values, matched by patterns like [0-9]+ for integers or \".*?\"
for strings.

0 Operators and Symbols: Patterns for operators (+, -, *, /) and
punctuation (;, ,, (,)).

By automating the creation of lexical analyzers, tools like Lex and Flex help
streamline the compiler development process, ensuring efficient and
accurate tokenization of source code. This foundational step is critical for
the subsequent stages of compilation, laying the groundwork for effective
syntax analysis and beyond.



8.3.2 Syntax Analyzers

The syntax analyzer, or parser, is the second phase of the compilation
process. Its primary role is to analyze the sequence of tokens generated by
the lexer and build a syntax tree (or parse tree) based on the grammatical
rules of the programming language.

8.3.2.1 Role of syntax analyzers in compilation

a.  Syntax Tree Construction: Organizing tokens into a hierarchical
structure that represents the syntactic structure of the source code.

b.  Syntax Error Detection: Identifying and reporting errors in the
structure of the code, such as missing semicolons or mismatched
parentheses.

8.3.2.2 Context-free grammars and parsing techniques

Context-free grammars (CFGs) are used to define the syntax rules of a
programming language. A CFG consists of a set of production rules that
describe how tokens can be combined to form valid constructs in the
language.

a. Components of a CFG:

1. Non-Terminals: Symbols that can be expanded into sequences
of non-terminals and terminals.

2. Terminals: Symbols that represent actual tokens produced by
the lexer.

3. Production Rules: Rules that define how non-terminals can be
expanded.

4.  Start Symbol: The initial non-terminal from which parsing
begins.

b.  Parsing Techniques:

1.  Top-Down Parsing: Constructs the syntax tree from the top
(start symbol) and works down to the leaves (tokens). Examples
include Recursive Descent Parsing.

2.  Bottom-Up Parsing: Constructs the syntax tree from the leaves
(tokens) and works up to the root (start symbol). Examples
include LR Parsing.

8.4 CODE GENERATION FRAMEWORKS

Code generation frameworks are essential tools in software development,
particularly in compiler design and related fields. They provide a structured
approach to translating high-level source code into executable machine
code or intermediate representations (IR).
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8.4.1 Introduction to Code Generation

Code generation is a crucial part of compiler design where source code
written in a high-level programming language is translated into low-level
code, such as machine code or intermediate representations (IR), that can
be executed by a computer. The main objectives of code generation include
producing efficient and optimized code, minimizing memory usage, and
ensuring correctness and compatibility with the target platform.

8.4.1.1 Objectives of code generation
The objectives of code generation include:

a.  Efficiency: Generating code that executes quickly and consumes
minimal system resources.

b.  Optimization: Applying various optimization techniques to improve
code performance and reduce redundancy.

c.  Correctness: Ensuring that the generated code behaves as expected
and produces accurate results.

d.  Portability: Creating code that can run on different hardware
architectures and operating systems.

e.  Maintainability: Writing code that is easy to understand, modify, and
debug.

8.4.1.2 Intermediate representations (IR)

Intermediate representations (IR) are intermediate forms of code that are
generated during the compilation process. They serve as a bridge between
the high-level source code and the low-level target code. IR allows
compilers to perform optimizations and transformations before generating
the final executable code. Common IR formats include Abstract Syntax
Trees (ASTs), Three-Address Code (TAC), Static Single Assignment (SSA)
form, and LLVM IR.

8.4.2 LLVM (Low-Level Virtual Machine)

LLVM is a widely-used open-source compiler infrastructure project that
provides a set of modular and reusable components for building compilers
and code generation tools. It is designed to support a wide range of
programming languages and target platforms.

8.4.2.1 Overview of LLVM

LLVM stands for Low-Level Virtual Machine, although it's often used
beyond traditional virtual machines. It includes a suite of tools, libraries,
and technologies for optimizing and generating code. LLVM's design
emphasizes modularity, extensibility, and performance.



8.4.2.2 Architecture and components of LLVM

The architecture of LLVM consists of several key components:

a.

Frontend: Converts source code from a high-level programming
language (such as C, C++, or Swift) into LLVM IR.

Optimizer: Applies various optimization techniques to LLVM IR,
improving code performance and efficiency.

Backend: Generates target-specific machine code or assembly
language from optimized LLVM IR.

Target Description: Defines the characteristics and instructions of the
target hardware platform.

JIT Compiler: Allows LLVM to compile and execute code at runtime,
commonly used in dynamic languages and Just-In-Time (JIT)
compilation scenarios.

8.4.2.3 Using LLVM for code generation

LLVM can be used for various code generation tasks, including:

a.

Compilers: Building compilers for programming languages by
integrating LLVM's frontend, optimizer, and backend components.

Code Optimization: Applying LLVM's optimization passes to
improve code performance and reduce executable size.

JIT Compilation: Dynamically compiling and executing code at
runtime, suitable for languages like Python, Ruby, and JavaScript.

Code Analysis: Analyzing and transforming code using LLVM's
intermediate representations for static analysis and program
understanding.

Overall, LLVM offers a powerful and flexible framework for code
generation, optimization, and compilation, making it a popular choice in the
compiler and programming language development communities.

8.5 DEBUGGING AND TESTING COMPILERS

8.5.1 Importance of Compiler Debugging and Testing

Compiler debugging and testing are crucial processes in software
development, especially when working on compilers or language-related
tools. They ensure the correctness, reliability, and performance of the
compiler-generated code.

8.5.1.1 Common compiler bugs and issues

Common issues encountered during compiler development include:

Introduction to Compiler
Tools, Techniques and
Advanced Topics in Compiler
Design

161



Principles of
Compiler Design

162

Parsing Errors: Incorrect parsing of source code due to syntax errors
or ambiguities.

Semantic Errors: Incorrect handling of type checking, symbol
resolution, or scope rules.

Code Generation Errors: Inaccurate translation of high-level
constructs to machine code or intermediate representations.

Optimization Issues: Unexpected behavior or performance
regressions introduced by optimization passes.

Platform-Specific Problems: Compatibility issues on different
hardware architectures or operating systems.

8.5.1.2 Strategies for debugging compilers

Effective strategies for debugging compilers include:

a.

Incremental Development: Building and testing compiler components
step by step to isolate and address issues early.

Debugging Information: Generating and utilizing debugging
information in compiler output to trace code transformations and
optimizations.

Regression Testing: Running test suites to detect regressions caused
by code changes or optimizations.

Static Analysis Tools: Using static code analyzers to identify potential
bugs, code smells, and performance bottlenecks.

Logging and Tracing: Adding logging and tracing mechanisms to
track compiler behavior and identify problematic areas.

8.5.2 Tools and Techniques for Testing Compilers

Various tools and techniques are available for testing compilers to ensure
their correctness and performance.

8.5.2.1 Unit testing frameworks

Unit testing frameworks facilitate the creation and execution of test cases
for individual compiler components, such as:

a.

Test Input Generation: Generating synthetic or real-world source code
inputs to test parsing, type checking, and code generation.

Assertions and Expectations: Checking expected outputs, error
conditions, and compiler behavior against predefined criteria.

Mocking and Stubs: Simulating dependencies or external libraries to
isolate and test specific compiler functionalities.



8.5.2.2 Automated testing tools (e.g., Fuzzing)

Automated testing tools, like fuzzers, help uncover edge cases, corner cases,
and vulnerabilities in compiler implementations:

a.  Fuzz Testing: Injecting random or mutated inputs into the compiler to
trigger unexpected behavior, crashes, or security vulnerabilities.

b.  Coverage Analysis: Measuring code coverage during testing to ensure
thorough testing of all compiler paths and functionalities.

c.  Mutation Testing: Modifying source code or IR to assess the
effectiveness of test cases in detecting compiler bugs or regressions.

8.5.2.3 Debugging tools (e.g., GDB, Valgrind)

Debugging tools assist in identifying and diagnosing compiler issues during
development and testing:

a. GDB (GNU Debugger): Allowing developers to debug compiler
internals, inspect memory, set breakpoints, and analyze program
execution.

b.  Valgrind: Detecting memory leaks, buffer overflows, and other
memory-related errors in compiled programs, aiding in compiler
debugging and optimization.

By incorporating these debugging and testing strategies, along with relevant
tools and techniques, developers can enhance the reliability, performance,
and quality of compilers and language tools.

8.6. JUST-IN-TIME (JIT) COMPILATION

In computing, just-in-time (JIT) compilation (also dynamic translation or
run-time compilations) is compilation (of computer code) during execution
of a program (at run time) rather than before execution. This may consist of
source code translation but is more commonly bytecode translation to
machine code, which is then executed directly. A system implementing a
JIT compiler typically continuously analyses the code being executed and
identifies parts of the code where the speedup gained from compilation or
recompilation would outweigh the overhead of compiling that code.

8.6.1 Introduction to JIT Compilation

8.6.1.1 Difference between JIT and ahead-of-time (AOT) compilation

AOT (Ahead-of-Time) JIT (Just-in-Time)

Compiles code before the Angular|Compiles Code during runtime
application is loaded in the browser. |when the Angular app is launched in
the client’s browser.
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AOT (Ahead-of-Time)

JIT (Just-in-Time)

Generates a production-ready output
with  optimizations, ready for
deployment without additional build
steps.

Requires an additional build for
production, potentially adding extra
time to the deployment process.

AOT produces smaller bundle sizes,
which means faster downloads for
USsers.

Produces larger bundle sizes due to
in-browser compilation, potentially
impacting loading speed.

AOT catches and reports template
errors during the compilation phase,
ensuring more reliable applications
with fewer runtime issues.

Identifies errors during runtime,
which may lead to issues being
discovered after the application is
already in use.

Relatively easier for beginners due
to its build-time error checking and
optimized output.

Can be more complex for beginners,
as errors are discovered during
runtime.

Does not allow dynamic updates in
production, requiring a rebuild for
any changes.

Allows dynamic updates during
development, making it easier to see
immediate results.

Easier to debug in the development
phase with early error detection
during the build.

Debugging is possible during
runtime, which can help identify
issues when they occur.

Better compatibility with older
browsers, ensuring wider

accessibility.

Slightly less compatible with older
browsers compared to AOT.

8.6.1.2 Benefits and challenges of JIT compilation

Benefits:

a. Performance Improvement:

o JIT compilation can optimize code during execution, allowing
for performance enhancements that static compilers can't

achieve.

o It enables hot spot optimization, where frequently executed
paths are heavily optimized.

b.  Dynamic Adaptation:

o JIT compilers can adapt to the actual runtime environment and
usage patterns, optimizing code based on real-time data.

c.  Cross-platform Compatibility:

o JIT allows for platform-independent intermediate code (like
Java bytecode) to be executed efficiently on any platform with
a compatible JIT compiler.




d. Reduced Startup Time:

. Initial startup can be faster since the whole program doesn’t
need to be compiled upfront; instead, parts are compiled as
needed.

Challenges:

a. Complexity:

o Implementing a JIT compiler is more complex than a traditional
ahead-of-time (AOT) compiler, requiring advanced techniques
for runtime code analysis and optimization.

b.  Memory Usage:

. JIT compilation requires additional memory to store both the
compiled code and the JIT compiler itself.

c.  Security Concerns:

. Since JIT compilers generate code at runtime, they can
potentially introduce security vulnerabilities if not carefully
managed.

d. Overhead:

. The process of JIT compilation introduces runtime overhead,
which can affect the initial performance of an application.

8.6.2 JIT Compilation Techniques
8.6.2.1 Dynamic code generation
Definition:

Dynamic code generation refers to the creation of executable code at
runtime. This allows for optimizations based on the current execution
context, such as the specific hardware or the runtime behavior of the
application.

Techniques:

a. Inline Caching:

o Optimizes method calls by caching the target address of
frequently called methods.

b.  Speculative Optimization:

o Assumes certain conditions based on runtime profiling and
optimizes the code accordingly. If assumptions fail,
deoptimization can occur.
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8.6.2.2 Runtime optimization strategies

a.  Adaptive Optimization:

o Continuously profiles the running application and applies
optimizations to hot spots—code sections executed frequently.

b.  Deoptimization:

o Reverts previously applied optimizations if they are determined
to be inefficient or incorrect based on new runtime information.

c.  Garbage Collection Integration:

o Works with the runtime's garbage collector to optimize memory
management, reducing the impact of memory allocation and
deallocation on performance.

8.6.3 Examples of JIT Compilers
8.6.3.1 Java HotSpot VM

Overview:

The HotSpot VM is the JIT compiler used by Java to translate Java bytecode
into native machine code.

Features:
a.  Tiered Compilation:

o Combines both an interpreter and multiple JIT compilers to
balance startup time and peak performance.

b.  Escape Analysis:

o Optimizes object allocation and synchronization by
determining if objects can be safely allocated on the stack
instead of the heap.

8.6.3.2 .NET CLR JIT

Overview:

The .NET Common Language Runtime (CLR) includes a JIT compiler that
translates intermediate language (IL) code into native code for execution.

Features:

a. Code Caching: Caches JIT-compiled code to avoid recompiling
methods on subsequent executions.

b.  Profiling: Integrates with profiling tools to provide insights into
runtime performance and apply appropriate optimizations.



8.7 PARALLEL AND CONCURRENT PROGRAMMING
SUPPORT

Parallel programming involves splitting tasks to run simultaneously on
multiple processors for speed and performance. Concurrent programming
handles multiple tasks at overlapping times, focusing on correct interaction
and efficient resource use, often through threads and synchronization
mechanisms.

8.7.1 Introduction to Parallel and Concurrent Programming

Parallel programming: Executes multiple sub-tasks simultaneously on
different processors to boost performance.

Concurrent programming: Manages overlapping tasks to ensure efficient
and correct execution.

Applications: High-performance computing, real-time systems, web
servers, gaming, and data analysis.

8.7.1.1 Importance in modern computing

Performance Improvements: Parallel and concurrent programming allow
for tasks to be divided and executed simultaneously, which can significantly
reduce overall execution time. This is particularly beneficial for compute-
intensive applications like scientific simulations, data analysis, and complex
calculations.

Scalability: By distributing workloads across multiple processors or cores,
applications can scale more efficiently to handle larger datasets and a
greater number of users. This is crucial for applications in cloud computing,
big data processing, and web services.

Efficiency: Efficient utilization of multi-core processors and multi-
processor systems can lead to better performance and energy efficiency.
This is essential for both high-performance computing and everyday
applications to make the best use of available hardware resources.

Real-time Processing: Many applications, such as video streaming,
gaming, and high-frequency trading, require real-time processing
capabilities. Parallel and concurrent programming enable these applications
to meet strict timing constraints and deliver responsive performance.

8.7.1.2 Challenges in supporting parallelism and concurrency

Complexity: Writing parallel and concurrent programs is more complex
than writing sequential programs. It requires managing multiple execution
threads, ensuring data consistency, and handling synchronization.
Debugging and testing parallel programs are also more challenging.

Race Conditions: Race conditions occur when multiple threads or
processes access shared resources simultaneously, and the outcome depends
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on the sequence of accesses. This can lead to unpredictable behavior and
bugs that are difficult to reproduce and fix.

Deadlocks: Deadlocks occur when two or more processes are waiting
indefinitely for each other to release resources, causing the entire system to
halt. Proper resource management and avoiding circular dependencies are
critical to prevent deadlocks.

Scalability Issues: Not all algorithms and applications scale linearly with
the addition of more processors or cores. Factors such as data dependencies,
communication overhead, and contention for shared resources can limit the
scalability of parallel and concurrent programs.

8.7.2 Compiler Techniques for Parallelism

Compiler techniques for parallelism involve optimizing code to effectively
utilize multiple processors or cores for concurrent execution. Key
techniques include:

a.  Automatic Parallelization: Automatically converting sequential code
into parallel code.

b.  Loop Unrolling: Transforming loops to increase the number of
instructions executed in parallel.

c.  Dependency Analysis: Identifying and resolving data dependencies to
enable parallel execution.

d.  Thread-Level Parallelism: Dividing tasks into threads that can run
concurrently.

e.  Task Scheduling: Efficiently distributing tasks across multiple
processors to balance the load.

f.  Vectorization: Converting operations to use SIMD (Single
Instruction, Multiple Data) instructions.

g. Parallel Libraries and Frameworks: Utilizing libraries and
frameworks that support parallel operations, like OpenMP and MPI.

8.7.2.1 Automatic parallelization

Definition: Automatic parallelization involves the compiler analyzing the
program code to identify opportunities for parallel execution and
transforming the code to exploit these opportunities without requiring
manual intervention from the programmer.

Techniques:
a. Loop Parallelization:

o The compiler identifies loops where iterations are independent
of each other and can be executed in parallel, transforming the
loop to run across multiple threads or processors.



b. Function Parallelization:

. The compiler determines which functions or methods can be
executed concurrently, especially those that do not share state
or have minimal interaction, and schedules them to run in
parallel.

8.7.2.2 Data dependence analysis
Definition:

Data dependence analysis identifies dependencies between different parts
of a program to ensure correct execution order in parallel environments.

Types:

a.  Flow Dependence (True Dependence): Occurs when one statement
produces a result that a subsequent statement uses. Parallel execution
must respect this order to maintain correctness.

b.  Anti-dependence: Occurs when a statement reads a value that is later
overwritten by another statement. The compiler must ensure the read
happens before the write in parallel execution.

c.  Output Dependence: Occurs when two statements write to the same
memory location. Proper synchronization is required to ensure the
correct final value is written.

8.7.2.3 Loop transformations and optimizations

a.  Loop Unrolling: Reduces the overhead of loop control by expanding
the loop body to execute multiple iterations in a single pass. This can
improve performance by decreasing the number of iterations and
increasing instruction-level parallelism.

b. Loop Tiling (Blocking): Divides the loop iterations into smaller
blocks or tiles to improve cache performance by enhancing data
locality. Each tile can be processed independently, potentially in
parallel.

c.  Loop Fusion: Combines adjacent loops that iterate over the same
range into a single loop. This reduces loop overhead and can improve
cache utilization by accessing related data in a more localized manner.

8.7.3 Tools and Frameworks
8.7.3.1 OpenMP
Overview:

OpenMP (Open Multi-Processing) is an API that provides a portable and
scalable model for developing parallel applications in C, C++, and Fortran.
It uses compiler directives, library routines, and environment variables to
specify parallelism.
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Features:

a.  Pragmas: OpenMP uses compiler directives, known as pragmas, to
indicate parallel regions in the code. These pragmas are simple
annotations that guide the compiler to generate parallel code.

b.  Work-sharing Constructs: OpenMP provides constructs like
#pragma omp for to parallelize loops, #pragma omp sections to divide
code into parallel sections, and #pragma omp single to specify code
that should be executed by only one thread.

c.  Synchronization: OpenMP includes mechanisms to manage
synchronization, such as #pragma omp critical to define critical
sections, #pragma omp atomic for atomic operations, and #pragma
omp barrier to synchronize threads at specific points in the program.

8.7.3.2 MPI
Overview:

MPI (Message Passing Interface) is a standardized and portable message-
passing system designed to function on parallel computing architectures. It
is widely used for programming distributed memory systems.

Features:

a.  Point-to-point Communication: MPI provides functions for direct
communication between pairs of processes, such as MPI_Send and
MPI_Recv, enabling explicit message passing.

b.  Collective Communication: MPI includes collective communication
operations like MPI_Bcast to broadcast a message to all processes,
MPI_Scatter and MPI1_Gather for distributing and collecting data, and
MPI_Reduce for combining data from multiple processes.

c.  Synchronization: MPI offers synchronization mechanisms such as
barriers (MPI_Barrier) to coordinate processes and ensure all
processes reach a certain point before continuing, ensuring correct
execution order.

8.8 COMPILER OPTIMIZATION FRAMEWORKS

Compiler optimization frameworks automate code performance
improvements. Examples include LLVM, GCC, Intel Compiler (ICC),
Clang, and Microsoft Visual C++ Compiler. They offer optimizations like
loop optimization, inlining, vectorization, and parallelization for efficient
code execution.

8.8.1 Introduction to Compiler Optimization

Compiler optimization improves code performance by applying
transformations during compilation. Techniques include constant folding,
loop optimization, inlining, data flow analysis, vectorization, register



allocation, and parallelization. Optimization levels and target architectures
impact trade-offs between compilation time, code size, and performance.

8.8.1.1 Goals and types of optimizations
Goals:

a.  Performance Improvement: Optimizations aim to make the
compiled code run faster by reducing the number of instructions
executed, improving cache utilization, and taking advantage of
modern CPU features.

b.  Code Size Reduction: Some optimizations focus on reducing the size
of the generated code, which can be critical for embedded systems
and applications with limited memory.

c. Power Efficiency: Optimizations can also reduce the power
consumption of a program, which is important for mobile and
embedded devices.

d. Maintainability and Readability: While not always a primary goal,
some optimizations strive to make the generated code easier to
understand and maintain.

Types:

a.  Local Optimization: Focuses on optimizing small parts of the code,
typically within a single basic block.

b.  Global Optimization: Extends optimization efforts across multiple
basic blocks or the entire function to improve performance or reduce size.

c. Interprocedural Optimization: Analyzes and optimizes across
function boundaries to improve overall program performance.

8.8.1.2 Static vs. dynamic optimizations

a.  Static Optimizations: Performed at compile time by the compiler.
These optimizations analyze and transform the code without
executing it. Examples include loop unrolling, inlining, and constant
folding.

° Advantages: Can be applied once during the compilation
process, leading to a simpler runtime system.

° Disadvantages: May miss optimization opportunities that only
become apparent at runtime.

b. Dynamic Optimizations:

o Performed at runtime by a Just-In-Time (JIT) compiler or a
runtime optimization system. These optimizations adapt to the
actual execution environment and workload.
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Advantages: Can optimize based on real-time information,
potentially leading to better performance.

Disadvantages: Introduces runtime overhead and complexity.

8.8.2 Common Optimization Techniques

8.8.2.1 Loop optimizations (unrolling, fusion)

a.

Loop Unrolling: Reduces the overhead of loop control by executing
multiple iterations of the loop in a single pass. This can increase
instruction-level parallelism and improve cache performance.

Loop Fusion: Combines adjacent loops that iterate over the same
range into a single loop. This reduces loop overhead and can improve
data locality, leading to better cache performance.

8.8.2.2 Inlining, constant folding, and dead code elimination

a.

Inlining: Replaces a function call with the actual body of the
function. This can reduce the overhead of function calls and enable
further optimizations by exposing more code to the compiler.

Constant Folding: Evaluates constant expressions at compile time
and replaces them with their computed values. This reduces the
number of runtime computations.

Dead Code Elimination: Removes code that does not affect the
program’s output, such as code that is never executed or whose results
are never used. This can reduce code size and improve performance.

8.8.2.3 Register allocation and instruction scheduling

a.

Register Allocation: Assigns variables to machine registers to
minimize the number of memory accesses. Effective register
allocation can significantly improve performance by reducing the
need for slower memory operations.

Instruction Scheduling: Reorders instructions to avoid pipeline
stalls and make better use of CPU resources. This can improve the
instruction throughput of the processor.

8.8.3 Optimization Frameworks

8.8.3.1 Overview of popular frameworks (e.g., LLVM's optimization
passes)

a.

LLVM: LLVM (Low-Level Virtual Machine) is a widely used
compiler infrastructure that provides a set of reusable components for
building compilers. LLVVM includes a rich set of optimization passes
that can be applied to intermediate code representation (IR).

o Optimization Passes: LLVM's optimization passes include
various techniques such as loop unrolling, inlining, constant



folding, dead code elimination, register allocation, and more.
These passes can be combined in different ways to achieve the
desired level of optimization.

b. GCC: The GNU Compiler Collection (GCC) also provides a
comprehensive set of optimization passes. GCC's optimizations can
be fine-tuned using compiler flags, allowing developers to balance
between compilation time and runtime performance.

8.8.3.2 How to use and extend these frameworks

a.  Using Optimization Frameworks: Developers can use optimization
frameworks like LLVM and GCC by applying predefined
optimization passes. For instance, in LLVVM, the opt tool can be used
to run specific optimization passes on LLVM IR code.

Example Command: opt -O2 input.ll -0 output.ll applies the standard
optimization level O2 to the input LLVM IR file.

b.  Extending Optimization Frameworks: Developers can extend these
frameworks by writing custom optimization passes. In LLVM, this
involves subclassing the llvm::FunctionPass or llvm::ModulePass
classes and implementing the required optimization logic.

Example:

Creating a new pass in LLVM involves defining the pass, registering it with
the pass manager, and then integrating it into the compilation pipeline.

8.9. DOMAIN-SPECIFIC LANGUAGE (DSL) COMPILATION

DSL compilation translates code from a domain-specific language (DSL)
into executable code or intermediate representations. It involves parsing,
semantic analysis, code generation, optional optimization, and output
generation. Challenges include balancing expressiveness and performance,
integrating with host languages, and developing appropriate tooling.

8.9.1 Introduction to DSLs
8.9.1.1 Definition and benefits of DSLs

Definition: Domain-Specific Languages (DSLs) are programming
languages designed for specific domains or tasks. They are tailored to
express concepts and operations relevant to a particular problem domain,
making them more expressive and easier to use for domain experts.

Benefits:

a.  Expressiveness: DSLs allow developers to express domain-specific
concepts and operations directly, leading to clearer and more concise
code.
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Abstraction: By focusing on the specific domain, DSLs can hide
lower-level details, reducing complexity and making code more
understandable.

Productivity: Domain experts can work more efficiently with DSLs
as they are designed to match their mental models and workflows.

Verification and Validation: DSLs can enable better verification
and validation of domain-specific rules and constraints, leading to
more robust software.

8.9.1.2 Examples of domain-specific languages

a.

SQL (Structured Query Language): A DSL for database queries,
allowing users to specify operations like selecting, updating, and
manipulating data in a database.

HTML (Hypertext Markup Language): A DSL for creating web
pages, defining the structure and content of web documents using tags
and attributes.

Regular Expressions (Regex): A DSL for pattern matching and text
processing, enabling users to define complex search patterns.

8.9.2 Designing a DSL

Designing a DSL involves defining the domain scope, identifying user
needs, creating intuitive syntax and semantics, balancing expressiveness
with simplicity, integrating with IDEs, deciding on compilation or
interpretation, handling errors effectively, testing and validating, providing
thorough documentation and examples, and fostering community
engagement.

8.9.2.1 Key considerations in DSL design

a.

Domain Understanding: Understanding the target domain is crucial
for designing an effective DSL. This includes identifying domain-
specific concepts, operations, and constraints.

Abstraction Level: Determine the appropriate level of abstraction for
the DSL, balancing between expressiveness and simplicity for domain
users.

Language Features: Choose language features and constructs that
align with the domain's semantics, making it easier for users to write
and understand DSL code.

Tooling and Integration: Consider tooling support and integration
with existing development environments to enhance the usability and
adoption of the DSL.



8.9.2.2 Syntax and semantics of DSLs

a.  Syntax: Define the syntax of the DSL using a formal notation such as
BNF (Backus-Naur Form) or EBNF (Extended Backus-Naur Form).
This specifies the grammar rules for valid DSL expressions.

b.  Semantics: Define the semantics of DSL constructs, including their
behavior, effects, and interactions. This clarifies how DSL code is
interpreted and executed.

8.9.3 Implementing a DSL Compiler
Implementing a DSL compiler involves:
a.  Tokenizing and parsing DSL code into a syntax tree.

b.  Validating syntax and semantics, resolving identifiers, and detecting
errors.

c.  Generating executable code or intermediate representations.

d. Integrating with tooling, testing, debugging, optimizing,
documenting, and deploying the compiler for distribution.

8.9.3.1 Parsing techniques for DSLs

a. Lexer and Parser: Use lexer and parser generators like ANTLR,
Yacc, or Bison to parse DSL code and generate an abstract syntax tree
(AST) representing the code's structure.

b.  Semantic Analysis: Perform semantic analysis on the AST to check
for correctness, resolve references, and enforce domain-specific rules
and constraints.

8.9.3.2 Code generation for specific domains

a. Intermediate Representation (IR): Translate the AST into an
intermediate representation suitable for code generation. This IR
captures the semantics of DSL constructs in a form that can be
transformed into executable code.

b. Code Generation: Generate target code (e.g., machine code,
bytecode, or source code in another language) based on the IR. This
step translates DSL constructs into executable instructions or
operations.

8.9.3.3 Tools and frameworks for DSL compilation (e.g., ANTLR)

a. ANTLR (ANother Tool for Language Recognition): ANTLR is a
powerful parser generator that can be used to create parsers and
translators for DSLs. It supports various target languages and
provides tools for syntax highlighting, code generation, and error
handling.

b.  Other Tools: Other tools and frameworks like JetBrains MPS (Meta
Programming System), Xtext, and Spoofax can also be used for DSL
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development and compilation, offering different features
capabilities for DSL designers and implementers.

and

8.10 SUMMARY

o Compiler Tools and Techniques
Overview of Compiler Design and its phases.
Compiler Construction Tools like Lex, Yacc, and Bison.

o Lexical and Syntax Analyzer Generators
Role of lexical and syntax analyzers in compilation.
Generators like Lex, Flex, Yacc, and Bison.
Tokenization, regular expressions, and parsing techniques.

. Code Generation Frameworks
Introduction to Code Generation and LLVM.
Intermediate Representations (IR) and LLVM architecture.

. Debugging and Testing Compilers

Importance, strategies, and tools for debugging and testing compilers.

o Just-in-Time (JIT) Compilation
Benefits/challenges, techniques, and examples of JIT Compilers.

. Parallel and Concurrent Programming Support

Importance, challenges, and Compiler Techniques for Parallelism.

Tools and Frameworks like OpenMP and MPI.

. Compiler Optimization Frameworks
Goals, types, and common techniques of optimizations.

Overview of popular frameworks like LLVM's optimization passes.

o Domain-Specific Language (DSL) Compilation
Introduction to DSLs, benefits, and examples.

Design considerations, syntax, semantics, and DSL Compiler

implementation.

8.11 QUESTIONS FOR PRACTICE

1.  What are the key phases in compiler design, and what is the purpose

of each phase?

2. How do lexical analyzers and syntax analyzers contribute to the

compilation process?



10.

Can you explain the role of intermediate representations (IR) in code
generation?

What are some common techniques used in compiler optimization,
and how do they improve code performance?

What are the benefits and challenges of Just-in-Time (JIT)
compilation compared to ahead-of-time (AOT) compilation?

Describe the importance of parallel and concurrent programming
support in modern computing, and discuss some challenges in
achieving parallelism.

How do tools like OpenMP and MPI aid in parallel programming, and
what are their key features?

What are the objectives of code generation, and how does LLVM
contribute to this process?

What are domain-specific languages (DSLs), and what are the
benefits of using DSLs for specific tasks?

Explain the key considerations in designing a DSL and implementing
a DSL compiler, including parsing techniques and code generation for
specific domains.
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