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 1 
INTRODUCTION TO COMPILER DESIGN 

Unit Structure 

1.0  Objective 

1.1  Front end of Compiler  

1.2 Introduction to Compiler Design: 

1.3  Role and importance of compilers 

1.4  Phases of compilation process 

1.5  Compiler architecture and components 

1.6  Summary  

1.7  Exercise 

1.8  References 

1.0 OBJECTIVE 

This objective of this chapter is : 

● To introduce the compiler. 

● To give a high level overview of the structure of a typical compiler, 

and discuss the trends in programming languages and machine 

architecture that are shaping compilers.  

● To include some observations on the relationship between compiler 

design and computer-science theory and an outline of the applications 

of compiler technology that go beyond compilation.  

● To give a brief outline of key programming-language concepts that 

will be needed for our study of compilers. 

1.1 FRONT END OF COMPILER 

All of these phases of a general Compiler are conceptually divided into The 

Front-end, and The Back-end. This division is due to their dependence on 

either the Source Language or the Target machine. This model is called an 

Analysis & Synthesis model of a compiler. 

The Front-end of the compiler consists of phases that depend primarily on 

the Source language and are largely independent on the target machine. For 

example, the front-end of the compiler includes Scanner, Parser, Creation 

of Symbol table, Semantic Analyzer, and the Intermediate Code Generator. 

The Back-end of the compiler consists of phases that depend on the target 
machine, and those portions don‘t depend on the Source language, just the 
Intermediate language. In this we have different aspects of the Code 
Optimization phase, code generation along with the necessary Error 
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handling, and Symbol table operations. 

● The front end consists of those phases that depend primarily on source 
language and largely independent of the target machine. 

● It includes lexical analysis, syntax analysis, semantic analysis, 
intermediate code generation and creation of symbol tables. 

● Certain amount of code optimization can be done by the front end. 

● It includes following phases: 

○ Lexical analysis 

■ The lexical analyzer is the first phase of the compiler. 

■ Its Main task is to read the input characters and produce 
as output a sequence of tokens that the parser uses for 
syntax analysis. 

■ It is implemented by making the lexical analyzer be a 
subroutine. 

■ Upon receiving a “get next token” command from parser, 
the lexical analyzer reads the input character until it can 
identify the next token. 

■ It may also perform secondary tasks at the user interface. 

■ One such task is stripping out from the source program 
comments and white space in the form of blanks, tabs, and 
newline characters. 

■ The scanner is responsible for doing simple task while 
lexical analysis does the more complex task 

○ Syntax analysis 

■ Syntax analysis is also called hierarchical analysis or 
parsing. 

■ The syntax analyzer checks each line of the code and 
spots every tiny mistake that the programmer has 
committed while typing the code. 

■ If code is error free then syntax analyzer generates the tree 

○ Semantic analysis 

■ Semantic analyzer determines the meaning of a source 
string. 

■ For example matching of parentheses in the expression, 
or matching of if..else statement or performing arithmetic 
operation that are type compatible, or checking the scope 
of operation 

○ Intermediate code generation 

■ The intermediate representation should have two 
important properties, it should be easy to produce and 
easy to translate into a target program. 
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■ We consider an intermediate form called “three address 

code”. 

■ Three address codes consist of a sequence of instructions, 

each of which has at most three operands. 

○ Creation of symbol table 

■ A symbol table is a data structure used by a language 

translator such as a compiler or interpreter. 

■ It is used to store names encountered in the source 

program, along with the relevant attributes for those 

names. 

■ Information about following entities 

■ Variable/Identifier 

■ Procedure/function 

■ Keyword 

■ Constant 

■ Class name 

■ Label name 

1.2 INTRODUCTION TO COMPILER DESIGN 

● The software systems that do this translation are called compilers. 

● The compiler is software that converts a program written in a high-

level language also known as Source Language to a low-level 

language also known as Object/Target/Machine Language/0, 1’s.  

● A translator or language processor is a program that translates an input 

program written in a programming language into an equivalent 

program in another language.  

● The compiler is a type of translator, which takes a program written in 

a high-level programming language as input and translates it into an 

equivalent program in low-level languages such as machine language 

or assembly language.  

● The program written in a high-level language is known as a source 

program, and the program converted into a low-level language is 

known as an object (or target) program.  

● Without compilation, no program written in a high-level language can 

be executed. For every programming language, we have a different 

compiler; however, the basic tasks performed by every compiler are 

the same.  

● The process of translating the source code into machine code involves 

several stages, including lexical analysis, syntax analysis,semantic 

analysis, code generation, and optimization. 
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● Compiler is an intelligent program as compared to an assembler.  

● Compiler verifies all types of limits, ranges, errors , etc.  

● Compiler program takes more time to run and it occupies a huge 

amount of memory space.  

● The speed of the compiler is slower than other system software.  

● It takes time because it enters through the program and then does 

translation of the full program.  

● When the compiler runs on the same machine and produces machine 

code for the same machine on which it is running. Then it is called a 

self compiler or resident compiler.  

● Compiler may run on one machine and produce the machine codes for 

other computer then in that case it is called a cross compiler. 

The Compiler Toolchain: 

● A compiler is one component in a toolchain of programs used to create 

executables from source code. Typically, when you invoke a single 

command to compile a program, a whole sequence of programs are 

invoked in the background.  

● Following Figure shows A Typical Compiler Toolchain the 

programs typically used in a Unix system for compiling C source code 

to assembly code.  

 

● The preprocessor  

○ It prepares the source code for the compiler proper.  

○ In the C and C++ languages, this means consuming all 

directives that start with the # symbol.  

○ For example, an #include directive causes the preprocessor to 

open the named file and insert its contents into the source code.  

○ A #define directive causes the preprocessor to substitute a value 

wherever a macro name is encountered. (Not all languages rely 

on a preprocessor.)  
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● The compiler  

○ It properly consumes the clean output of the preprocessor.  

○ It scans and parses the source code, performs type checking and 

other semantic routines, optimizes the code, and then produces 

assembly language as the output.  

● The assembler  

○ It consumes the assembly code and produces object code.  

○ Object code is “almost executable” in that it contains raw 

machine language instructions in the form needed by the CPU.  

○ However, object code does not know the final memory 

addresses in which it will be loaded, and so it contains gaps that 

must be filled in by the linker. 

● The linker  

○ It consumes one or more object files and library files and 

combines them into a complete, executable program.  

○ It selects the final memory locations where each piece of code 

and data will be loaded, and then “links” them together by 

writing in the missing address information.  

○ For example, an object file that calls the printf function does not 

initially know the address of the function.  

○ An empty (zero) address will be left where the address must be 

used.  

○ Once the linker selects the memory location of printf, it must go 

back and write in the address at every place where printf is 

called. 

Types of Compiler 

● The following are the different types of compilers that are used: 

○ Single Pass Compilers 

○ Two Pass Compilers 

○ Multipass Compilers 

○ Just-in-time (JIT) compiler 

○ Cross compiler  

○ Bytecode compiler 

○ Source-to-source compiler 

○ Binary compiler:  

○ Hardware compiler 
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● Single Pass Compiler 

○ When all the phases of the compiler are present inside a single 

module, it is simply called a single-pass compiler.  

○ It performs the work of converting source code to machine 

code. 

○ In a single-pass compiler, when a line source is processed it is 

scanned and the tokens are extracted.  

○ Thus the syntax of the line is inspected and the tree structure 

and some tables including data about each token are 

constructed.  

○ Finally, after the semantic element is tested for correctness, the 

code is created. The same process is repeated for each line of 

code until the whole program is compiled.  

○ Usually, the entire compiler is built around the parser, which 

will call procedures that will perform different functions. 

 

● Two Pass Compiler 

○ Two-pass compiler is a compiler in which the program is 

translated twice, once from the front end and the back from the 

back end known as Two Pass Compiler. 
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● Multipass Compiler 

○ When several intermediate codes are created in a program and 

a syntax tree is processed many times, it is called a Multipass 

Compiler.  

○ It breaks codes into smaller programs. 

 

● Just-in-time (JIT) compiler  

○ It compiles programs as they are executed. It is faster than 

traditional compilers and helps in reducing program size by 

elimination of redundant code.  

○ This reduced the size of the program and make it more efficient.  

○ This helps in performance improvement.  

● Cross compiler  

○ This is a technology to allow developers to compile and run 

codes on various platforms.  

○ This type is useful while working on several versions of code 

for ensuring that all platforms are being supported.  

○ This is useful while working on a new platform to verify 

whether the code is working on this platform.  

● Bytecode compiler  

○ It translates high-level language into machine code which is 

executable on the target machine.  

○ Such compilers allow developers to write codes in a high-level 

language and compile them into machine code.  

○ Through this compiler, developers write concise and 

comprehensible codes. These compilers should be written in 

high-level language.  

○ They are not suitable for developing low-level code. 

● Source-to-source compiler  

○ This software tool translates the source code into executable 

code. Such compilers are used to translate source code written 

in multiple programming languages.  

○ The translation process can be completed in both manual and 

automatic methods.  



   

 
8 

Principles of  

Compiler Design 
○ Compilers translate source code into machine code which is 

executed by a target machine. 

● Binary compiler  

○ This compiler translates the source code file into binary format.  

○ This type of format stores the program information in a compact 

form that is easily read by computer.  

○ Developers use compilers for network programming, database 

administration, and web development. 

● Hardware compiler  

○ Such compilers compile the source code into machine code for 

transforming source code into machine code.  

○ Post that, the computer executes this code.  

○ Such compilers are used in operating systems, embedded 

systems, and computer games.  

○ Assembler is a type of hardware compiler. 

1.3 ROLE AND IMPORTANCE OF COMPILERS 

ADVANTAGES OF COMPILER: 

● Improved performance:  

○ Compiled code tends to run faster than interpreted code because 

it has been translated into machine code that can be directly 

executed by the computer’s processor.  

○ This can be particularly important for performance-critical 

applications, such as scientific simulations or real-time systems. 

● Portability:  

○ Compilers allow programmers to write code in a high-level 

programming language that can be easily translated into 

machine code for a variety of different platforms.  

○ This makes it easier to develop software that can run on 

different systems without requiring significant changes to the 

source code. 

● Increased Security:  

○ Compilers can help improve the security of software by 

performing a number of checks on the source code, such as 

checking for syntax errors and enforcing type safety.  

○ This can help prevent certain types of vulnerabilities, such as 

buffer overflows and type coercion attacks. 
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● Debugging support:  

○ Most compilers include a number of debugging tools that can 
help programmers find and fix errors in their code.  

○ These tools can include features such as syntax highlighting, 
error messages, and debuggers that allow programmers to step 
through their code line by line. 

● No dependencies:  

○ Your client or anyone else doesn’t need any compiler, 
interpreter, or third party program to be installed in their system, 
for executing the shared executable file of your source code. 

● Compared to machine language, the notation used by programming 
languages is closer to the way humans think about problems.  

● The compiler can spot some obvious programming mistakes.  

● Programs written in a high-level language tend to be shorter than 
equivalent programs written in machine language.  

● Another advantage of using a high- level language is that the same 
program can be compiled to many different machine languages and, 
hence, be brought to run on many different machines. 

● Compilers offer a number of advantages for software development, 
including improved performance, portability, increased security, and 
debugging support. 

DISADVANTAGES OF COMPILER: 

● Compilation time:  

○ Depending on the size and complexity of the source code, 
compilation can take a significant amount of time.  

○ This can be a hindrance to productivity if frequent updates to 
the code are required. 

● Error detection:  

○ Compilers can only detect syntax errors and certain semantic 
errors, and may not catch all errors in the source code.  

○ This means that the compiled program may not behave as 
expected, and debugging may be required to identify and fix the 
errors. 

● Portability:  

○ Programs compiled for a specific platform or architecture may 
not be able to run on other platforms or architectures without 
being recompiled.  

○ This can be a limitation if the program needs to be run on 
multiple platforms. 
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● Execution speed:  

○ Programs compiled from high-level languages may not be as 
fast as programs written in low-level languages, as the compiled 
code may include additional instructions for the compiler to 
interpret. 

● Lack of flexibility:  

○ Compilers can limit the flexibility of programs since changes 
often require recompilation. 

● Resource consumption:  

○ Compilers can consume system resources, particularly during 
the compilation process, which may affect other tasks on the 
machine. 

● Compilers can be useful tools in software development, but they may 
not be suitable for all situations and may require additional effort to 
ensure that the compiled code is correct and efficient. 

USES OF COMPILER: 

● Ease of programming:  

○ High-level programming languages are easier for humans to 
read and write than machine code, which is a series of numbers 
and symbols that can be difficult for humans to understand.  

○ By using a compiler to translate high-level language into 
machine code, programmers can write code more quickly and 
easily. 

● Portability:  

○ Compilers allow programmers to write code that can be easily 
compiled and run on a wide variety of devices and platforms.  

○ This is because the source code is independent of the underlying 
hardware and is only translated into machine code when it is 
compiled. 

● Abstraction:  

○ Compilers provide a level of abstraction between the 
programmer and the underlying hardware, allowing 
programmers to focus on the logic of their programs without 
having to worry about the specific details of the hardware. 

● Performance:  

○ Compilers can optimize the machine code generated from the 
source code, resulting in faster and more efficient programs. 

● Compilers are an essential tool in software development, as they 
allow programmers to write code that is easier to read and write, can 
be easily compiled and run on different devices and platforms, and 
can be optimized for performance. 
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● A compiler is a program that translates source code written in a 
programming language into machine code that can be executed by a 
computer.  

● The source code is written by a programmer in a high-level 
programming language, such as C++ or Java, which is easier for 
humans to read and write.  

● The compiler converts the source code into machine code, which is 
a low-level language that can be understood and executed by the 
computer’s processor. 

● There are many different types of compilers, including ones for 
general-purpose programming languages and ones for specialized 
languages used in specific fields, such as system programming or 
database programming. 

● They also provide a level of abstraction between the programmer and 
the underlying hardware, allowing programmers to focus on the logic 
of their programs without having to worry about the specific details 
of the hardware. 

APPLICATIONS OF COMPILER: 

● Software development: Compilers are an essential tool for software 
development because they allow programmers to write code in a high-
level language that is easy to understand and debug, and then translate 
that code into machine code that can be efficiently executed by the 
computer. 

● System software: Many operating systems, including Windows, 
macOS, and Linux, are written in high-level programming languages 
and use compilers to translate the source code into machine code. 

● Embedded systems: Compilers are also used to develop software for 
embedded systems, which are small, specialized computer systems 
that are used in a variety of devices, such as cell phones, automobiles, 
and industrial control systems. 

● Scientific computing: Compilers are used to develop software for 
scientific computing applications, such as simulations, data analysis, 
and machine learning. 

● Game development: Compilers are used to develop software for 
video games, which typically require efficient performance and may 
be written in a variety of programming languages. 

● Embedded Systems: Compilers are used in embedded systems 
development for appliances, IoT devices, and automotive control 
systems. 

● High-Performance Computing: Compilers play a key role in high-
performance computing clusters for scientific research and data 
analysis. 



   

 
12 

Principles of  

Compiler Design 
● Utility Software: Compilers are used to develop utility software, like 

text editors, database management systems, and networking tools. 

Operations/Role of Compiler are as follow: 

● It breaks source programs into smaller parts. 

● It enables the creation of symbol tables and intermediate 

representations. 

● It helps in code compilation and error detection. 

● it saves all codes and variables. 

● It analyses the full program and translates it. 

● Separate compilation is supported. 

● Read the full programme, analyse it, and translate it to a semantically 

similar language. 

● Depending on the type of machine, converting source code to object 

code. 

1.4 PHASES OF COMPILATION PROCESS 

The following steps are the phases of compiler that are undertaken by it in 

order to convert the code to output: 
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● Lexical analysis:  

○ It is the first phase where high-level input program is converted 

into a sequence of tokens.  

○ This can be implemented with Deterministic finite Automata.  

○ The output is the sequence of tokens that are sent to the parser 

for syntax analysis. 

 

○ Lexical Analysis is also known as Scanning or Linear Analysis. 

○ To begin, the lexical analyzer examines the entire program and 

divides it into tokens.  

○ The string with meaning is referred to as a token.  

○ The input string's class or category is described by the token.  

○ Identifiers, Keywords, Constants, and so on. 

○ Sentinel refers to the end of the buffer or token. 

○ The token is described by a set of rules known as a pattern. 

○ Lexemes are the sequence of characters in source code that 

correspond to the token pattern.  

○ For example int, i , num etc. 

○ There are two pointers in Lexical analysis they are Lexeme 

pointer and Forward pointer.  

○ To recognize a token Regular expressions are used to construct 

Finite Automata.  

○ Input is the source code and output is the tokens. 

○ E.g.  

 Input: x= x + y*z*3 

 Output: Tokens or table of tokens 
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● Syntax Analysis/ Parsing:  

○ It is the second phase of a compiler.  

○ In this phase, it verifies the syntactical structure of a given input.  

○ To do so, it builds a data structure called Syntax or Parse tree.  

○ The parse tree is constructed using pre-defined grammar of 

language and input string.  

○ If a given input string can be produced using syntax tree, the 

input string is found to be in the correct syntax.  

○ If it is not correct, the error is reported by syntax analyzer.   

 

○ Syntax analysis, also known as syntactical analysis, parsing, or 

hierarchical analysis, is a type of analysis that examines the structure 

of a sentence.  

○ Syntax is the arranging of words and phrases in a language to produce 

well-formed sentences. 

○ The tokens generated by the lexical analyzer are put together to form 

a less detailed hierarchical structure known as the syntax tree. 

○ Input is token and output is syntax tree. 

○ Grammatical errors are checked during this phase. Example: 

Parenthesis missing, semicolon missing, syntax errors etc. 

○ For example:  

Input: tokens 
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Output: 

 

● Semantic analysis:  

○ It is the process of interpreting meaning from text.  

○ This allows the computer system to understand and interpret 

paragraphs, sentences and whole documents.  

○ For this purpose, it analyzes the grammatical structure and 

identifies relationships between individual words. 

○ Semantic analyzer checks the meaning of source program. 

Logical errors are checked during this phase. Example: divide 

by zero, variable undeclared etc. 

○ Example of logical errors 

int a; 

float b; 

char c; 

c=a+b; 

○ Parse tree refers to the tree having meaningful data.  

○ Parse tree is more specified and more detailed. 

○ Input is syntax tree and output is parse tree (syntax tree with 

meaning) is as follows:  

 



   

 
16 

Principles of  

Compiler Design 
● Intermediate code generation:  

○ It can translate source programs into machine program.  

○ An intermediate code is generated because the compiler cannot 

directly generate machine code in one pass.  

○ It first converts the source program into intermediate code to 

perform efficient generation of machine code.  

○ It is represented in postfix notation, directed acyclic graph, 

quadruples, and triples. 

○ Intermediate code (IC) is code that sits between high-level and 

low-level languages, or code that sits between source and target 

code.  

○ The conversion of intermediate code to target code is simple.  

○ Intermediate code functions as a bridge between the front end 

and the back end.  

○ Three address codes, abstract syntax trees, prefix (polish), 

postfix (reverse polish), and other types of intermediate code 

exist. 

 

○ The three-address code, which has no more than three operands, 

is the most often used intermediate code.  

○ Input: Parse tree  

○ Output: Three address code  

temp1=int to float(2);  

temp2=id4*t1;  

temp3=id3*t2;  

temp4=id2+t3;  

temp4=id1; 
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● Code optimization:  

○ It is a program transformation technique.  

○ The aim of this phase of compiler is to code improvement by 

enabling it to consume fewer resources and deliver high speed.  

○ High-level language constructs are replaced with efficient low-

level programming codes.  

○ For increasing the speed of a program, unnecessary code strings 

are eliminated and a sequence of statements are organized.  

 

○ To increase intermediate code and execution performance, code 

optimization is used.  

○ It is vital to have code that executes faster or consumes less 

memory.  

○ There are mainly two ways to optimize the code named 

Frontend (Analysis) and Back-end (Synthesis). 

○ A programmer or developer can optimize the code in front-end.  

○ The compiler can optimize the code on the back-end. 

○ Various strategies for code optimization are listed below. 

•  Compile Time Evaluation  

•  Constant Folding  

•  Constant Propagation  

•  Common SubExpression Elimination  

•  Variable Propagation  

•  Code Movement  

•  Loop Invariant Computation  

•  Strength Reduction  

•  Dead Code Elimination  

•  Code Motion 

•  Induction Variables and Strength Reduction. 

○ Input: Three address code 



   

 
18 

Principles of  

Compiler Design 
○ Output: : Optimized three address code 

 temp1=id4*2.0; 

temp2=temp1*id3; 

 id1=temp2+id2; 

● Target Code Generator: 

○ It is the final compilation phase. The generated code is an object 

code of lower-level programming languages such as assembly 

language.  

○ Source code written in higher-level language is converted into 

a lower-level language that results in lower-level object code.  

○ The main purpose of the Target Code generator is to write code 

that the machine can understand and also register allocation, 

instruction selection, etc. The output is dependent on the type of 

assembler. This is the final stage of compilation.  

○ The optimized code is converted into relocatable machine code 

which then forms the input to the linker and loader. 

THE GROUPING OF PHASES INTO PASSES: 

● The discussion of phases deals with the logical organization of a 

compiler.  

● In an implementation, activities from several phases may be grouped 

together into a pass that reads an input file and writes an output file.  

● For example, the front-end phases of lexical analysis, syntax analysis, 

semantic analysis, and intermediate code generation might be grouped 

together into one pass.  

● Code optimization might be an optional pass.  

● Then there could be a back-end pass consisting of code generation for 

a particular target machine. 

● Some compiler collections have been created around carefully 

designed intermediate representations that allow the front end for a 

particular language to interface with the back end for a certain target 

machine.  

● With these collections, we can produce compilers for different source 

languages for one target machine by combining different front ends 

with the back end for tha t target machine. 

● Similarly, we can produce compilers for different target machines, by 

combining a front end with back ends for different target machines. 
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1.5 COMPILER ARCHITECTURE AND COMPONENTS 

As we said earlier , A compiler can broadly be divided into two phases based 

on the way they compile as : Analysis and Synthesis phase of compiler. 

Analysis Phase 

● Known as the front-end of the compiler, the analysis phase of the 

compiler reads the source program, divides it into core parts and then 

checks for lexical, grammar and syntax errors. 

● The analysis phase generates an intermediate representation of the 

source program and symbol table, which should be fed to the 

Synthesis phase as input. 

  

Synthesis Phase 

● Known as the back-end of the compiler, the synthesis phase generates 

the target program with the help of intermediate source code 

representation and symbol table. 

● A compiler can have many phases and passes. 

● Pass : A pass refers to the traversal of a compiler through the entire 

program. 

● Phase :  

○ A phase of a compiler is a distinguishable stage, which takes 

input from the previous stage, processes and yields output that 

can be used as input for the next stage.  

○ A pass can have more than one phase. 

Both analysis and synthesis are made up of internal phases. 
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Compiler Components: 

A typical real-world compiler usually has multiple phases. This increases 

the compiler's portability and simplifies retargeting.  

● The front end consists of the following phases: 

○ scanning:  

■ a scanner groups input characters into tokens; 

■ Tokenizer (Lexical Analysis): The Tokenizer identifies 

and categorizes objects in each line of code, disregarding 

white space and comments.  

■ For example, consider the line int x = 5;. The Tokenizer 

identifies five tokens: "int", "x", "=", "5", and ";". 

○ parsing:  

■ a parser recognizes sequences of tokens according to 

some grammar and generates Abstract Syntax Trees 

(ASTs); 

○ semantic analysis:  

■ performs type checking (ie, checking whether the 

variables, functions etc in the source program are used 

consistently with their definitions and with the language 

semantics) and translates ASTs into IRs; 

○ optimization:  

■ optimizes IRs. 

● The back end consists of the following phases: 

○ instruction selection:  

■ maps IRs into assembly code; 

○ code optimization:  

■ optimizes the assembly code using control-flow and data-

flow analyses, register allocation, etc; 

○ code emission:  

■ generates machine code from assembly code. 

● The generated machine code is written in an object file.  

● This file is not executable since it may refer to external symbols (such 

as system calls).  

● The operating system provides the following utilities to execute the 

code: 
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○ linking:  

■ A linker takes several object files and libraries as input 

and produces one executable object file.  

■ It retrieves from the input files (and puts them together in 

the executable object file) the code of all the referenced 

functions/procedures and it resolves all external 

references to real addresses.  

■ The libraries include the operating system libraries, the 

language-specific libraries, and, maybe, user-created 

libraries. 

○ loading:  

■ A loader loads an executable object file into memory, 

initializes the registers, heap, data, etc and starts the 

execution of the program. 

● Relocatable shared libraries allow effective memory use 

when many different applications share the same code. 

1.6 SUMMARY  

In this chapter we have seen basic fundamentals of compiler, like what is 

compiler? What are the role and importance of a compiler? Architecture and 

component of compiler. 

1.7 EXERCISE 

Answer the following: 

1. Describe the various phases of compiler with suitable example 

2. What is a compiler? Explain. 

3. Note down the role and importance of the compiler. 

4. Write a short note on components of the compiler. 

5. Explain types of compiler.  
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INTRODUCTION TO LEXICAL ANALYSIS 

Unit Structure 

2.0  Objective 

2.1  Introduction to Lexical Analysis 

2.2  Role of lexical analyzer 

2.3  Regular expressions  

2.4  Finite automata 

2.5  Lexical analyzer generators (e.g., Lex) 

2.6  Summary  

2.7  Exercise 

2.8 References 

2.0 OBJECTIVE 

This objective of this chapter is : 

● To understand how to construct a lexical analyzer.  

● To implement a lexical analyzer by hand, it helps to start with a 

diagram or other description for the lexemes of each token.  

● To identify each occurrence of each lexeme on the input and to return 

information about the token identified. 

● To produce a lexical analyzer automatically by specifying the lexeme 

patterns to a lexical-analyzer generator and compiling those patterns 

into code that functions as a lexical analyzer. 

● To show how this notation can be transformed, first into 

nondeterministic automata and then into deterministic automata.  

● To introduce a lexical-analyzer generator called Lex (or Flex in a 

more recent embodiment). 

2.1 INTRODUCTION TO LEXICAL ANALYSIS 

● Lexical-analyzer generators by introducing regular expressions, a 

convenient notation for specifying lexeme patterns.  

● Lexical Analysis is the first phase of the compiler also known as a 

scanner.  

● It converts the High level input program into a sequence of Tokens. 
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● Lexical Analysis can be implemented with the Deterministic finite 

Automata. 

● The output is a sequence of tokens that is sent to the parser for syntax 

analysis 

 

What is Lexical Analysis? 

Lexical analysis is the starting phase of the compiler.  

It gathers modified source code that is written in the form of sentences from 

the language preprocessor. The lexical analyzer is responsible for breaking 

these syntaxes into a series of tokens, by removing whitespace in the source 

code. If the lexical analyzer gets any invalid token, it generates an error. 

The stream of character is read by it and it seeks the legal tokens, and then 

the data is passed to the syntax analyzer, when it is asked for. 

There are three important terminologies used in Lexical Analysis 

1. Token :  

● It is a sequence of characters that represents a unit of 

information in the source code. 

● A lexical token is a sequence of characters that can be treated as 

a unit in the grammar of the programming languages.  

● Example of tokens: 

Type token (id, number, real, . . . ) 

Punctuation tokens (IF, void, return, . . . ) 

Alphabetic tokens (keywords) 

 

● Example of Non-Tokens: Comments, preprocessor directive, 

macros, blanks, tabs, newline, etc. 

● One token for each keyword. The pattern for a keyword is the 

same as the keyword itself. 
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● Tokens for the1 operators, either individually or in classes such 

as the token comparison  

● One token representing all identifiers. 

● One or more tokens representing constants, such as numbers 

and literal strings. 

● Tokens for each punctuation symbol, such as left and right 

parentheses,comma, and semicolon. 

● More examples of token: 

 

2. Pattern: The description used by the token is known as a pattern. 

 

 

3. Lexeme:  

● A sequence of characters in the source code, as per the matching 

pattern of a token, is known as lexeme. It is also called the 

instance of a token. 
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● The sequence of characters matched by a pattern to form the 

corresponding token or a sequence of input characters that 

comprises a single token is called a lexeme.  

 eg- “float”, “abs_zero_Kelvin”, “=”, “-”, “273”, “;” .  

Example 1 : Given  C statement 

printf ( " Total = %d\n", s c o r e ); 

both printf and score are lexemes matching the pattern for token id, and 

"Total = °/,d\n" is a lexeme matching literal.  

Example 2 : 

The token names and associated attribute values for the Fortran statement 

 

Note that in certain pairs, especially operators, punctuation, and keywords, 

there is no need for an attribute value.  

In this example, the token number has been given an integer-valued 

attribute.  

In practice, a typical compiler would instead store a character string 

representing the constant and use as an attribute value for number a pointer 

to that string. 

2.2 ROLE OF LEXICAL ANALYZER 

● As the first phase of a compiler, the main task of the lexical analyzer 

is to read the input characters of the source program, group them into 

lexemes, and produce as output a sequence of tokens for each lexeme 

in the source program. 

● The stream of tokens is sent to the parser for syntax analysis.  

● It is common for the lexical analyzer to interact with the symbol table 

as well.  

● When the lexical analyzer discovers a lexeme constituting an 

identifier, it needs to enter that lexeme into the symbol table.  

● In some cases, information regarding the kind of identifier may be 

read from the symbol table by the lexical analyzer to assist it in 

determining the proper token it must pass to the parser. 
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The lexical analyzer performs the following tasks: 

● The lexical analyzer is responsible for removing the white spaces and 

comments from the source program. 

● It corresponds to the error messages with the source program. 

● It helps to identify the tokens. 

● The input characters are read by the lexical analyzer from the source 

code. 

● Stripping out comments and white spaces from the program 

● Read the input program and divide it into valid tokens 

● Find lexical errors 

● Return the Sequence of valid tokens to the syntax analyzer 

● When it finds an identifier, it has to make an entry into the symbol 

table. 

● Figure : Interactions between the lexical analyzer and the parser 

 

● Commonly, the interaction is implemented by having the parser call 

the lexical analyzer.  

● The call, suggested by the getNextToken command, causes the 

lexical analyzer to read characters 

● from its input until it can identify the next lexeme and produce for it 

the next token, which it returns to the parser. 

● Since the lexical analyzer is the part of the compiler that reads the 

source text, it may perform certain other tasks besides identification 

of lexemes.  

● One such task is stripping out comments and whitespace (blank, 

newline, tab, and perhaps other characters that are used to separate 

tokens in the input).  

● Another task is correlating error messages generated by the compiler 

with the source program.  

● For instance, the lexical analyzer may keep track of the number of 

newline characters seen, so it can associate a line number with each 

error message.  
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● In some compilers, the lexical analyzer makes a copy of the source 

program with the error messages inserted at the appropriate positions.  

● If the source program uses a macro-preprocessor, the expansion of 

macros may also be performed by the lexical analyzer. 

● Sometimes, lexical analyzers are divided into a cascade of two 

processes: 

a)  Scanning consists of the simple processes that do not require 

tokenization of the input, such as deletion of comments and 

compaction of consecutive whitespace characters into one. 

b)  Lexical analysis proper is the more complex portion, where the 

scanner produces the sequence of tokens as output. 

Lexical Analysis Versus Parsing: 

● There are a number of reasons why the analysis portion of a compiler 

is normally separated into lexical analysis and parsing (syntax 

analysis) phases. 

● Simplicity of design is the most important consideration.  

○ The separation of lexical and syntactic analysis often allows us 

to simplify at least one of these tasks.  

○ For example, a parser that had to deal with comments and 

whitespace as syntactic units would be considerably more 

complex than one that can assume comments and whitespace 

have already been removed by the lexical analyzer.  

○ If we are designing a new language, separating lexical and 

syntactic concerns can lead to a cleaner overall language design. 

● Compiler efficiency is improved.  

○ A separate lexical analyzer allows us to apply specialized 

techniques that serve only the lexical task, not the job of 

parsing.  

○ In addition, specialized buffering techniques for reading input 

characters can speed up the compiler significantly. 

● Compiler portability is enhanced.  

○ Input-device-specific peculiarities can be restricted to the 

lexical analyzer. 

Advantages Of Lexical Analysis 

● Lexical analysis helps the browsers to format and display a web page 

with the help of parsed data. 

● It is responsible to create a compiled binary executable code. 

● It helps to create a more efficient and specialised processor for the 

task. 
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DISADVANTAGES OF LEXICAL ANALYSIS 

● It requires additional runtime overhead to generate the lexer table and 

construct the tokens. 

● It requires much effort to debug and develop the lexer and its token 

description. 

● Much significant time is required to read the source code and partition 

it into tokens. 

2.3 REGULAR EXPRESSIONS 

● Suppose we wanted to describe the set of valid C identifiers.  

● It is almost exactly the language described as;  

L(L U D)* is the set of all strings of letters and digits beginning with a letter 

the only difference is that the underscore is included among the letters. 

 

● In the above Example, we were able to describe identifiers by giving 

names to sets of letters and digits and using the language operators 

union, concatenation,and closure.  

● This process is so useful that a notation called regular expressions has 

come into common use for describing all the languages that can be 

built from these operators applied to the symbols of some alphabet.  

● In this notation, if letter- is established to stand for any letter or the 

underscore, and digit- is established to stand for any digit, then we 
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could describe the language of C identifiers by: 

 

● The vertical bar above means union, the parentheses are used to group 

subexpressions, the star means "zero or more occurrences of," and the 

juxtaposition of letter, with the remainder of the expression signifies 

concatenation. 

● The regular expressions are built recursively out of smaller regular 

expressions, using the rules described below.  

● Each regular expression r denotes a language L(r), which is also 

defined recursively from the languages denoted by r ' s 

subexpressions.  

● Here are the rules that define the regular expressions over some 

alphabet £ and the languages that those expressions denote. 

BASIS: There are two rules that form the basis: 

1.  e is a regular expression, and L(e) is {e}, that is, the language whose 

sole member is the empty string. 

2.  If a is a symbol in E, then a is a regular expression, and L(a) = {a}, 

that is, the language with one string, of length one, with a in its one 

position. 

Note that by convention, we use italics for symbols, and boldface for their 

corresponding regular expression. 

INDUCTION: There are four parts to the induction whereby larger regular 

expressions are built from smaller ones. Suppose r and s are regular 

expressions denoting languages L(r) and L(s), respectively. 

1.  (r)|(s) is a regular expression denoting the language L(r) U L(s). 

2.  (r)(s) is a regular expression denoting the language L(r)L(s). 

3.  (r)* is a regular expression denoting (L(r))*. 

4.  (r) is a regular expression denoting L(r). This last rule says that we 

can 

As defined, regular expressions often contain unnecessary pairs of 

parentheses. 

We may drop certain pairs of parentheses if we adopt the conventions that: 

a)  The unary operator * has highest precedence and is left associative. 

b)  Concatenation has second highest precedence and is left associative. 

however, when talking about specific characters from the ASCII 

character set, we shall generally use teletype font for both the 

character and its regular expression. 

c) |  has lowest precedence and is left associative. 
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Under these conventions, for example, we may replace the regular 

expression (a)|((b)*(c)) by a|b*c. Both expressions denote the set of strings 

that are either a single a or are zero or more 6's followed by one c. 

Example 3 :  

Let £ = {a,6}. 

1. The regular expression a|b denotes the language {a, b}. 

2. (a|b)(a|b) denotes {aa, ah, ba, bb}, the language of all strings of length 

two over the alphabet E. Another regular expression for the same 

language is aa|ab|ba|bb. 

3. a* denotes the language consisting of all strings of zero or more a's, 

that is, { e , a , a a , a a a , . . . }. 

4. (a|b)* denotes the set of all strings consisting of zero or more instances 

of a or b, that is, all strings of a's and 6's: {e,a, b,aa, ab, ba, bb,aaa,...}. 

Another regular expression for the same language is (a*b*)*. 

5. a|a*b denotes the language {a, b, ab, aab, aaab,...}, that is, the string 

a and all strings consisting of zero or more a's and ending in b. 

A language that can be defined by a regular expression is called a regular 

set.  

If two regular expressions r and s denote the same regular set, we say they 

are equivalent and write r = s.  

For instance, (a|b) = (b|a). There are a number of algebraic laws for regular 

expressions; each law asserts that expressions of two different forms are 

equivalent.  

Following Figure shows some of the algebraic laws that hold for arbitrary 

regular expressions r, s, and t. 

 

Regular Definitions: 

For notational convenience, we may wish to give names to certain regular 

expressions and use those names in subsequent expressions, as if the names 

were themselves symbols.  
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If £ is an alphabet of basic symbols, then a regular definition is a sequence 

of definitions of the form: 

 

where: 

1.  Each di is a new symbol, not in E and not the same as any other of the 

cTs, and 

2.  Each T{ is a regular expression over the alphabet E U {d\,d2,.. . , 

By restricting to E and the previously defined GTS, we avoid recursive 

definitions,and we can construct a regular expression over E alone, for each 

r$.  

We do so by first replacing uses of d\ in r2 (which cannot use any of the d's 

except for d\), then replacing uses of d\ and d2 in r-$ by r\ and (the 

substituted) r2,and so on.  

Finally, in rn we replace each di, for i — 1,2,... ,n — 1, by the substituted 

version of r$, each of which has only symbols of E. 

Example 4 : C identifiers are strings of letters, digits, and underscores. Here 

is a regular definition for the language of C identifiers. We shall 

conventionally use italics for the symbols defined in regular definitions. 

 

Example 5 : Unsigned numbers (integer or floating point) are strings such 

as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition 

 

is a precise specification for this set of strings. That is, an optionalFraction 

is either a decimal point (dot) followed by one or more digits, or it is missing 

(the empty string). An optionalExponent, if not missing, is the letter E 

followed by an optional + or - sign, followed by one or more digits. Note 

that at least one digit must follow the dot, so number does not match 1., but 

does match 1.0. 
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Extensions of Regular Expressions: 

● Since Kleene introduced regular expressions with the basic operators 

for union, concatenation, and Kleene closure in the 1950s, many 

extensions have been added to regular expressions to enhance their 

ability to specify string patterns. 

● Here we mention a few notational extensions that were first 

incorporated into Unix utilities such as Lex that are particularly useful 

in the specification lexical analyzers.  

The references to this chapter contain a discussion of some regular 

expression variants in use today. 

1.  One or more instances.  

● The unary, postfix operator + represents the positive closure of a 

regular expression and its language. That is, if r is a regular 

expression, then ( r ) + denotes the language (L(r)) + .  

● The operator + has the same precedence and associativity as the 

operator *.  

● Two useful algebraic laws, r* = r+\e and r+ = rr* = r*r relate the 

Kleene closure and positive closure. 

2.  Zero or one instance.  

● The unary postfix operator ? means "zero or one occurrence."  

● That is, r? is equivalent to r|e, or put another way, L(r?) = L(r) U {e}.  

● The ? operator has the same precedence and associativity as * and +. 

3. Character classes.  

● A regular expression aifal • • • \an, where the a^s are each symbols of 

the alphabet, can be replaced by the shorthand [aia,2 • • - an].  

● More importantly, when 0 1 , 0 2 , . . . , a n f ° r m a logical sequence, 

e.g., consecutive uppercase letters, lowercase letters, or digits, we can 

replace them by o i - a n , that is, just the first and last separated by a 

hyphen.  

● Thus, [abc] is shorthand for a|b|c, and [a-z] is shorthand for a | b | . - - 

| z . 

Example 6 : Using these shorthands, we can rewrite the regular definition 

of Example as: 

 

The regular definition of Example 5 can also be simplified: 
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Below table shows Lex regular expressions: 

 

Following Figure shows: Filename expressions used by the shell 

command sh 

 

2.4 FINITE AUTOMATA 

We shall now discover how Lex turns its input program into a lexical 

analyzer. 

At the heart of the transition is the formalism known as finite automata.  

These are essentially graphs, like transition diagrams, with a few 

differences: 

1.  Finite automata are recognizers; they simply say "yes" or "no" about 

each possible input string. 
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2.  Finite automata come in two flavors: 

(a)  Nondeterministic finite automata (NFA) have no restrictions on 

the labels of their edges.  

 A symbol can label several edges out of the same state, and e, 

the empty string, is a possible label. 

(b)  Deterministic finite automata (DFA) have, for each state, and 

for each symbol of its input alphabet exactly one edge with that 

symbol leaving that state. 

Both deterministic and nondeterministic finite automata are capable of 

recognizing the same languages.  

In fact these languages are exactly the same languages, called the regular 

languages, that regular expressions can describe. 

 

Figure: Features of Finite Automata 

The above figure shows the following features of automata: 

1. Input 

2. Output 

3. States of automata 

4. State relation 

5. Output relation 

A Finite Automata consists of the following:  

Q : Finite set of states. 

? : set of Input Symbols. 

q : Initial state. 

F : set of Final States. 

? : Transition Function. 

Formal specification of machine is { Q, ?, q, F, ? } 
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FA is characterized into two types:  

1. Deterministic Finite Automata (DFA) 

2. Nondeterministic Finite Automata(NFA) 

1) Deterministic Finite Automata (DFA): 

DFA consists of 5 tuples {Q, ?, q, F, ?}.  

Q : set of all states. 

? : set of input symbols. ( Symbols which machine takes as input ) 

q : Initial state. ( Starting state of a machine ) 

F : set of final state. 

? : Transition Function, defined as ? : Q X ? --> Q. 

In a DFA, for a particular input character, the machine goes to one state 

only.  

A transition function is defined on every state for every input symbol. Also 

in DFA null (or ?) move is not allowed, i.e., DFA cannot change state 

without any input character.  

For example, construct a DFA which accept a language of all strings ending 

with ‘a’. 

Given:  ? = {a,b}, q = {q0}, F={q1}, Q = {q0, q1} 

First, consider a language set of all the possible acceptable strings in order 

to construct an accurate state transition diagram. 

L = {a, aa, aaa, aaaa, aaaaa, ba, bba, bbbaa, aba, abba, aaba, abaa} 

Above is simple subset of the possible acceptable strings there can many 

other strings which ends with ‘a’ and contains symbols {a,b}. 

 

Strings not accepted are, 

ab, bb, aab, abbb, etc. 

State transition table for above automaton, 
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One important thing to note is, there can be many possible DFAs for a 

pattern.  

A DFA with a minimum number of states is generally preferred.  

2) Nondeterministic Finite Automata(NFA):  

NFA is similar to DFA except following additional features:  

● Null (or ?) move is allowed i.e., it can move forward without reading 

symbols.  

● Ability to transmit to any number of states for a particular input.  

However, these above features don’t add any power to NFA.  

If we compare both in terms of power, both are equivalent.  

Due to the above additional features, NFA has a different transition 

function, the rest is the same as DFA.  

?: Transition Function 

?:  Q X (? U ? ) --> 2 ^ Q.  

As you can see in the transition function is for any input including null (or 

?), NFA can go to any state number of states.  

For example, below is an NFA for the above problem.  

 

State Transition Table for above Automaton, 

 

One important thing to note is, in NFA, if any path for an input string leads 

to a final state, then the input string is accepted.  

For example, in the above NFA, there are multiple paths for the input string 

“00”.  

Since one of the paths leads to a final state, “00” is accepted by the above 

NFA.  
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Since all the tuples in DFA and NFA are the same except for one of the 

tuples, which is Transition Function (?)  

In case of DFA 

? : Q X ? --> Q 

In case of NFA 

? : Q X ? --> 2Q 

Now if you observe you’ll find out Q X ? –> Q is part of Q X ? –> 2Q. 

On the RHS side, Q is the subset of 2Q which indicates Q is contained in 

2Q or Q is a part of 2Q, However, the reverse isn’t true.  

So mathematically, we can conclude that every DFA is NFA but not 

vice-versa.  

Yet there is a way to convert an NFA to DFA, so there exists an equivalent 

DFA for every NFA.  

Important Points to Remember: 

1. Both NFA and DFA have the same power and each NFA can be 

translated into a DFA.  

2. There can be multiple final states in both DFA and NFA.  

3. NFA is more of a theoretical concept.  

4. DFA is used in Lexical Analysis in Compiler.  

5. If the number of states in the NFA is N then, its DFA can have 

maximum 2N number of states. 

NONDETERMINISTIC FINITE AUTOMATA (NFA) 

A nondeterministic finite automaton (NFA) consists of: 

1.  A finite set of states 5. 

2.  A set of input symbols E, the input alphabet. We assume that e, which 

stands for the empty string, is never a member of E. 

3.  A transition function that gives, for each state, and for each symbol in 

E U {e} a set of next states. 

4.  A state so from S that is distinguished as the start state (or initial state). 

5.  A set of states F, a subset of S, that is distinguished as the accepting 

states (or final states). 
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We can represent either an NFA or DFA by a transition graph, where the 

nodes are states and the labeled edges represent the transition function.  

There is an edge labeled from state s to state t if and only if t is one of the 

next states for state s and input a. This graph is very much like a transition 

diagram, except: 

a)  The same symbol can label edges from one state to several different 

states, and 

b)  An edge may be labeled by e, the empty string, instead of, or in 

addition to, symbols from the input alphabet. 

Example : The transition graph for an NFA recognizing the language of 

regular expression (a|b)*abb is shown below Fig.  

 

This abstract example, describing all strings of a's and &'s ending in the 

particular string abb, will be used throughout this section.  

It is similar to regular expressions that describe languages of real interest, 

however.  

For instance, an expression describing all files whose name ends in .o is 

any*.o, where any stands for any printable character. 

As per transition diagrams, the double circle around state 3 indicates that 

this state is accepting.  

Notice that the only ways to get from the start state 0 to the accepting state 

is to follow some path that stays in state 0 for a while, then goes to states 1, 

2, and 3 by reading abb from the input.  

Thus, the only strings getting to the accepting state are those that end in abb. 

Transition Tables 

We can also represent an NFA by a transition table, whose rows correspond 

to states, and whose columns correspond to the input symbols and e.  

The entry for a given state and input is the value of the transition function 

applied to those arguments. If the transition function has no information 

about that state-input pair, we put 0 in the table for the pair. 
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Example : The transition table for the NFA of above Fig. 3.24 is shown 

below Fig. 3.25.  

 

The transition table has the advantage that we can easily find the transitions 

on a given state and input. Its disadvantage is that it takes a lot of space, 

when the input alphabet is large, yet most states do not have any moves on 

most of the input symbols. 

Acceptance of Input Strings by Automata 

An NFA accepts input string x if and only if there is some path in the 

transition graph from the start state to one of the accepting states, such that 

the symbols along the path spell out x.  

Note that e labels along the path are effectively ignored, since the empty 

string does not contribute to the string constructed along the path. 

Example: The string aabb is accepted by the NFA of Fig. 3 . 2 4 .  

The path labeled by aabb from state 0 to state 3 demonstrating this fact is: 

 

Note that several paths labeled by the same string may lead to different 

states. 

For instance, path is another path from state 0 labeled by the string aabb.  

 

This path leads to state 0, which is not accepting.  

However, remember that an NFA accepts a string as long as some path 

labeled by that string leads from the start state to an accepting state.  

The existence of other paths leading to a nonaccepting state is irrelevant. 

The language defined (or accepted) by an NFA is the set of strings labeling 

some path from the start to an accepting state.  

As was mentioned, the NFA of Fig. 3 . 2 4 defines the same language as 

does the regular expression (a|b)*abb,that is, all strings from the alphabet 

{a, b} that end in abb. We may use L(A) to stand for the language accepted 

by automaton A. 
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Deterministic Finite Automata: 

A deterministic finite automaton (DFA) is a special case of an NFA where: 

 

1.  There are no moves on input e, and 

2.  For each state s and input symbol a, there is exactly one edge out of s 

If we are using a transition table to represent a DFA, then each entry is a 

single state, we may therefore represent this state without the curly braces 

that we use to form sets. 

While the NFA is an abstract representation of an algorithm to recognize 

the strings of a certain language, the DFA is a simple, concrete algorithm 

for recognizing strings. It is fortunate indeed that every regular expression 

and every NFA can be converted to a DFA accepting the same language, 

because it is the DFA that we really implement or simulate when building 

lexical analyzers. 

The following algorithm shows how to apply a DFA to a string. 

Algorithm: Simulating a DFA. 

INPUT      : An input string x terminated by an end-of-file character eof.  

                   A DFA D with start state so, accepting states F, and 

transition function move. 

OUTPUT  : Answer "yes" if D accepts x; "no" otherwise. 

METHOD : Apply the algorithm in Fig. 3.27 to the input string x.  
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state s on input c. 

The function next Char returns the next character of the input string x. 

                     

 

Algorithm : The subset construction of a DFA from an NFA. 

INPUT         : An NFA JV. 

OUTPUT      A DFA D accepting the same language as N. 

METHOD   : Our algorithm constructs a transition table Dtran for D.  

                        Each state of D is a set of NFA states, and we construct 

Dtran so D will simulate  

                        "in parallel" all possible moves N can make on a given 

input string.  

                        Our first problem is to deal with e-transitions of N 

properly. 

                        Note that s is a single state of N, while T is a set of states 

of N. 

 

Example 3.19: In Fig. 3.28 we see the transition graph of a DFA accepting 

the language (a|b)*abb, the same as that accepted by the NFA of Fig. 3.24. 

Given the input string ababb, this DFA enters the sequence of states 0 , 1 , 

2 , 1 , 2 ,3 and returns "yes." 
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Regular Expressions to Automata 

● The regular expression is the notation of choice for describing lexical 

analyzers and other pattern-processing software.  

● However, implementation of that software requires the simulation of 

a DFA, as in Algorithm, or perhaps simulation of an NFA.  

● Because an NFA often has a choice of move on an input symbol (as 

Fig. 3.24 does oh input a from state 0) or on e (as Fig. 3.26 does from 

state 0), or even a choice of making a transition on e or on a real input 

symbol, its simulation is less straightforward than for a DFA.  

● Thus often it is important to convert an NFA to a DFA that accepts 

the same language. 

● In this section we shall first show how to convert NFA's to DFA's.  

● Then, we use this technique, known as "the subset construction," to 

give a useful algorithm for simulating NFA's directly, in situations 

(other than lexical analysis) where the NFA-to-DFA conversion takes 

more time than the direct simulation. 

● Next, we show how to convert regular expressions to NFA's, from 

which a DFA can be constructed if desired.  

● We conclude with a discussion of the time-space tradeoffs inherent in 

the various methods for implementing regular expressions, and see 

how to choose the appropriate method for your application. 
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Operations on NFA States: 

 

Conversion of an NFA to a DFA 

The general idea behind the subset construction is that each state of the 

constructed DFA corresponds to a set of NFA states.  

An NFA can have zero, one or more than one move from a given state on a 

given input symbol.  

An NFA can also have NULL moves (moves without input symbol).  

On the other hand, DFA has one and only one move from a given state on 

a given input symbol.  

Steps for converting NFA to DFA: 

Step 1: Convert the given NFA to its equivalent transition table 

To convert the NFA to its equivalent transition table, we need to list all the 

states, input symbols, and the transition rules.  

The transition rules are represented in the form of a matrix, where the rows 

represent the current state, the columns represent the input symbol, and the 

cells represent the next state.  

Step 2: Create the DFA’s start state 

The DFA’s start state is the set of all possible starting states in the NFA.  

This set is called the “epsilon closure” of the NFA’s start state.  

The epsilon closure is the set of all states that can be reached from the start 

state by following epsilon (?) transitions. 

Step 3: Create the DFA’s transition table 

The DFA’s transition table is similar to the NFA’s transition table, but 

instead of individual states, the rows and columns represent sets of states.  

For each input symbol, the corresponding cell in the transition table contains 

the epsilon closure of the set of states obtained by following the transition 

rules in the NFA’s transition table. 
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Step 4: Create the DFA’s final states 

The DFA’s final states are the sets of states that contain at least one final 

state from the NFA. 

Step 5: Simplify the DFA 

The DFA obtained in the previous steps may contain unnecessary states and 

transitions.  

To simplify the DFA, we can use the following techniques: 

● Remove unreachable states: States that cannot be reached from the 

start state can be removed from the DFA. 

● Remove dead states: States that cannot lead to a final state can be 

removed from the DFA. 

● Merge equivalent states: States that have the same transition rules for 

all input symbols can be merged into a single state. 

Step 6: Repeat steps 3-5 until no further simplification is possible 

After simplifying the DFA, we repeat steps 3-5 until no further 

simplification is possible.  

The final DFA obtained is the minimized DFA equivalent to the given NFA. 

Example: Consider the following NFA shown in Figure 1.  

 

Following are the various parameters for NFA. Q = { q0, q1, q2 } ? = (a, b) 

F = { q2 } ? (Transition Function of NFA)  

State a b 

q0 q0,q1 q0 

q1  q2 

q2   

Step 1:  

Q’ = ?  

Step 2:  

Q’ = {q0}  

Step 3:  

For each state in Q’, find the states for each input symbol.  
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Currently, state in Q’ is q0, find moves from q0 on input symbol a and b 

using transition function of NFA and update the transition table of DFA. ?’ 

(Transition Function of DFA) 

State a b 

q0 {q0,q1} q0 

 

Now { q0, q1 } will be considered as a single state.  

As its entry is not in Q’, add it to Q’.  

So Q’ = { q0, { q0, q1 } } Now, moves from state { q0, q1 } on different 

input symbols are not present in transition table of DFA, we will calculate 

it like: ?’ ( { q0, q1 }, a ) = ? ( q0, a ) ? ? ( q1, a ) = { q0, q1 } ?’ ( { q0, q1 

}, b ) = ? ( q0, b ) ? ? ( q1, b ) = { q0, q2 }  

Now we will update the transition table of DFA. ?’ (Transition Function of 

DFA)  

State a B 

q0 {q0,q1} q0 

{q0,q1} {q0,q1} {q0,q2} 

Now { q0, q2 } will be considered as a single state.  

As its entry is not in Q’, add it to Q’. So Q’ = { q0, { q0, q1 }, { q0, q2 } }  

Now, moves from state {q0, q2} on different input symbols are not present 

in transition table of DFA, we will calculate it like: ?’ ( { q0, q2 }, a ) = ? ( 

q0, a ) ? ? ( q2, a ) = { q0, q1 } ?’ ( { q0, q2 }, b ) = ? ( q0, b ) ? ? ( q2, b ) = 

{ q0 }  

Now we will update the transition table of DFA. ?’ (Transition Function of 

DFA)  

State a B 

q0 {q0,q1} q0 

{q0,q1} {q0,q1} {q0,q2} 

{q0,q2} {q0,q1} q0 

As there is no new state generated, we are done with the conversion.  

Final state of DFA will be state which has q2 as its component i.e., { q0, q2 

}  

Following are the various parameters for DFA. Q’ = { q0, { q0, q1 }, { q0, 

q2 } } ? = ( a, b ) F = { { q0, q2 } } and transition function ?’ as shown 

above.  
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The final DFA for above NFA has been shown in Figure 2.  

 

Note : Sometimes, it is not easy to convert regular expression to DFA. First 

you can convert regular expression to NFA and then NFA to DFA. 

 

Example : The number of states in the minimal deterministic finite 

automaton corresponding to the regular expression (0 + 1)* (10) is 

____________.  

 

Solution :  

First, we will make an NFA for the above expression. To make an NFA for 

(0 + 1)*, NFA will be in same state q0 on input symbol 0 or 1.  

Then for concatenation, we will add two moves (q0 to q1 for 1 and q1 to q2 

for 0) as shown in Figure 3.  
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2.4 LEXICAL ANALYZER GENERATORS LEX: 

In this section, we introduce a tool called Lex, or in a more recent 

implementation Flex, that allows one to specify a lexical analyzer by 

specifying regular expressions to describe patterns for tokens.  

The input notation for the Lex tool is referred to as the Lex language and 

the tool itself is the Lex compiler.  

Behind the scenes, the Lex compiler transforms the input patterns into a 

transition diagram and generates code, in a file called l e x . y y . c, that 

simulates this transition diagram.  

The mechanics of how this translation from regular expressions to transition 

diagrams occurs is the subject of the next sections; here we only learn the 

Lex language. 

LEX 

● Lex is a program that generates lexical analyzer.  

● It is used with YACC parser generator. 

● The lexical analyzer is a program that transforms an input stream into 

a sequence of tokens. 

● It reads the input stream and produces the source code as output 

through implementing the lexical analyzer in the C program. 

The function of Lex is as follows: 

● Firstly lexical analyzer creates a program lex.1 in the Lex language.  

● Then Lex compiler runs the lex.1 program and produces a C program 

lex.yy.c. 

● Finally C compiler runs the lex.yy.c program and produces an object 

program a.out. 

● a.out is lexical analyzer that transforms an input stream into a 

sequence of tokens. 
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USE OF LEX: 

● Below Figure suggests how Lex is used.  

 

Figure: Creating a lexical analyzer with Lex 

● An input file, which we call l e x . l , is written in the Lex language 

and describes the lexical analyzer to be generated. 

● The Lex compiler transforms l e x . 1 to a C program, in a file that is 

always named l e x . y y . c.  

● The latter file is compiled by the C compiler into a file called a . o u t 

, as always.  

● The C-compiler output is a working lexical analyzer that can take a 

stream of input characters and produce a stream of tokens. 

● The normal use of the compiled C program, referred to as a. out in 

above Fig.,is as a subroutine of the parser.  

● It is a C function that returns an integer, which is a code for one of the 

possible token names.  

● The attribute value, whether it be another numeric code, a pointer to 

the symbol table, or nothing, is placed in a global variable y y l v a l , 

2 which is shared between the lexical analyzer and parser, thereby 

making it simple to return both the name and an attribute value of a 

token. 

Structure of Lex Programs: 

● A Lex program has the following form: 

 

● The declarations section includes declarations of variables, manifest 

constants (identifiers declared to stand for a constant, e.g., the name 

of a token), and regular definitions. 
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● The translation rules each have the form 

 Pattern { Action } 

● Each pattern is a regular expression, which may use the regular 

definitions of the declaration section.  

● The actions are fragments of code, typically written in C, although 

many variants of Lex using other languages have been created. 

● The third section holds whatever additional functions are used in the 

actions. 

● Alternatively, these functions can be compiled separately and loaded 

with the lexical analyzer. 

● The lexical analyzer created by Lex behaves in concert with the parser 

as follows.  

● When called by the parser, the lexical analyzer begins reading its 

remaining input, one character at a time, until it finds the longest 

prefix of the input that matches one of the patterns Pi.  

● It then executes the associated action Ai.  

● Typically, Ai will return to the parser, but if it does not (e.g., because 

Pi describes whitespace or comments), then the lexical analyzer 

proceeds to find additional lexemes, until one of the corresponding 

actions causes a return to the parser.  

● The lexical analyzer returns a single value, the token name, to the 

parser, but uses the shared, integer variable y y l v a l to pass additional 

information about the lexeme found, if needed. 

Lex File Format 

● A Lex program is separated into three sections by %% delimiters. The 

formal of Lex source is as follows: 

{ definitions }    

%%   

 { rules }    

%%    

{ user subroutines }   

● Definitions include declarations of constant, variable and regular 

definitions. 

● Rules define the statement of form p1 {action1} p2 {action2}....pn 

{action}. 

● Where pi describes the regular expression and action1 describes the 

actions what action the lexical analyzer should take when pattern pi 

matches a lexeme. 
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Lex And Yacc. 

● If you want to use Lex with Yacc, note that what Lex writes is a 

program named yylex(), the name required by Yacc for its analyzer. 

● Normally, the default main program on the Lex library calls this 

routine, but if Yacc is loaded, and its main program is used, Yacc will 

call yylex().  

● In this case each Lex rule should end with return(token); 

where the appropriate token value is returned.  

● An easy way to get access to Yacc's names for tokens is to compile 

the Lex output file as part 

● of the Yacc output file by placing the line # include "lex.yy.c" in the 

last section of Yacc input. 

● Supposing the grammar to be named ``good'' and the lexical rules to 

be named ``better'' the UNIX command sequence can just be:  

 

● The Yacc library (-ly) should be loaded before the Lex library, to 

obtain a main program which invokes the Yacc parser.  

● The generations of Lex and Yacc programs can be done in either 

order.  

Points to Remember: 

● The general form of a Lex source file is:  

{definitions}  

%%  

{rules} 

 %%  

{user subroutines}  

● The definitions section contains a combination of: 

● Definitions, in the form ``name space translation''.  

●  Included code, in the form ``space code''.  

●  Included code, in the form  

%{  

code  

%}  

● Start conditions, given in the form  

%S name1 name2 ...   
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● Character set tables, in the form  

%T  

number space character-string  

...  

%T  

● Changes to internal array sizes, in the form  

%x nnn  

where nnn is a decimal integer representing an array size and x selects 

the parameter as follows:  

 

● Lines in the rules section have the form ``expression action'' where 

the action may be continued on succeeding lines by using braces to 

delimit it. 

2.5 SUMMARY  

In this chapter we have learn about fundamental of lexical analysis. What is 

Lexical analysis And working of it.We discussed Finite automata ,learn the 

types if FA. and conversion of DFA and NFA. 

Brief Introduction to regular expression is given.  

2.6 EXERCISE 

Answer the following: 

1. Explain  features of DFA and NFA. 

2. Identify the interactions between the lexical analyzer and the parser. 

3. Explain regular expressions with examples. 

4. Explain the role of Lexical analysis 

5. Write the steps to convert Non-Deterministic Finite Automata 

(NDFA) into Deterministic Finite Automata (DFA). 

6. Construct its equivalent DFA. 

 

7. Convert the given NFA to DFA:  
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8. What is Regular Expression? Write the regular expression for:  

a. R=R1+R2 (Union operation)  

b. R=R1.R2 (concatenation Operation)  

c. R=R1* (Kleen Closure)  

d. R=R+ (Positive Clouser)  

e. Write a regular expression for a language containing strings which 

end with “abb” over Ʃ= {a,b}.  

f. Construct a regular expression for the language containing all 

strings having any number of a’s and b’s except the null string.  

9. Construct Deterministic Finite Automata to accept the regular 

expression :  

 (0+1)* (00+11) (0+1)* 

10. Define regular expression and draw the transition diagram for the 

following expression: 

a. ab*cbb              

b. (0* + 1 ) . (01*) 

11. Develop the Structure of lex program. 

12. What is NFA? And discuss with examples (a/b)* 

13. Define lex and give its execution steps. 

14. Outline the role of lexical analysis in compiler design. 

15. Discuss in detail about the role of Lexical analyzer with the possible 

error recovery schemes. 

16. Describe in detail about issues in lexical analysis.  

17. Define Finite Automata. Differentiate Deterministic Finite Automata 

and Non-Deterministic Finite Automata with examples.  

18. Solve the given regular expression into NFA using Thompson 

construction 

 i) (a/b)* abb (a/b)*.  

ii) ab*/ab  

19. Create DFA the following regular expression.(a/b)*abb. 

20. Illustrate the algorithm for minimizing the number of states of a DFA. 
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21. Minimize the following states of DFA  

  

22. Define Lex and Lex specifications. How lexical analyzer is 
constructed using lex? Give an example.  

23. Explain the lex program for tokens. Describe in detail the tool for 
generating lexical analyzer.  

24. Find the NFA for the given regular expression and find the minimized 
DFA for the constructed NFA..( a/b)*(a/b)  

25. (i) Create languages denoted by the following regular expressions  

a) (a|b)*a(a|b)(a|b)  

b) a*ba*ba*ba*  

 (ii)  Write regular definitions for the following languages:  
a) All strings of lowercase letters that contain the five 

vowels in order. 
b) All strings of lowercase letters in which the letters are in 

ascending lexicographic order.  

26. Find transition diagrams for the following regular expression and 
regular definition.  

 a(a|b)*a ((ε|a)b*)*  

a. All strings of digits with at most one repeated digit.  

b. All strings of a's and b's that do not contain the substring abb.  

c. All strings of a's and b's that do not contain the subsequence 
abb.  

27.  Explain in detail the tool for generating Lexical-Analyzer with an 
example program.  

28.  Develop the Lex Program to recognize the identifiers, constants and 
operators. 
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SYNTAX ANALYSIS 

Unit Structure 

3.0  Objective 

3.1  Introduction 

3.2  The Role of the Parser 

 3.2.1 Syntax Error Handling 

 3.2.2 Error-Recovery Strategies 

3.3  Context-free Grammars 

 3.3.1 The Formal Definition of a Context-Free Grammar 

 3.3.2 Notational Conventions 

 3.3.3 Derivations 

3.4  Top-Down Parsing (LL Parsing) 

 3.4.1  recursive-descent parsing 

 3.4.2 First and Follow 

3.5  Bottom-Up Parsing 

 3.5.1 Reductions 

 3.5.2 Handle Pruning 

3.6  Syntax analyzer generators 

 3.6.1 Parser Generator YACC 

 3.6.2 The Translation Rules Part 

 3.6.3 Using Yacc with Ambiguous Grammars 

 3.6.4 Error Recovery in YACC 

3.7  Summary 

3.8  Review Questions 

3.0 OBJECTIVES 

1. Learn the function of parsers and how to handle and recover from 

syntax errors. 

2. Understand the formal definition and usage of context-free grammars 

in representing programming language syntax. 

3. Master top-down (LL) and bottom-up parsing methods, including 

recursive-descent parsing and reduction processes. 
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4. Gain proficiency in using parser generators like YACC, including 

managing translation rules and error recovery. 

3.1 INTRODUCTION 

We explore how the parser integrates into a standard compiler. Following 

that, we examine common grammars used for arithmetic expressions. These 

grammars are sufficient to demonstrate the core principles of parsing 

because the techniques applicable to expressions extend to most 

programming constructs. The section concludes with a discussion on error 

handling, highlighting the parser's need to respond appropriately when it 

encounters input that cannot be produced by its grammar. 

3.2 THE ROLE OF THE PARSER 

In our compiler model, the parser receives a sequence of tokens from the 

lexical analyzer. It verifies that this sequence can be produced by the 

grammar of the source language. The parser is expected to report syntax 

errors clearly and recover from common errors to continue processing the 

rest of the program. For well-formed programs, the parser conceptually 

builds a parse tree and sends it to the rest of the compiler for further 

processing. However, the parse tree doesn't need to be explicitly 

constructed, as checking and translation actions can occur during parsing. 

Consequently, the parser and the rest of the front end could be implemented 

as a single module. 

 

There are three main types of parsers for grammars: universal, top-down, 

and bottom-up. Universal parsing techniques, such as the Cocke-Younger-

Kasami algorithm and Earley's algorithm, can handle any grammar but are 

too inefficient for use in production compilers. 

Commonly used parsing methods in compilers fall into two categories: top-

down and bottom-up. Top-down parsers build the parse tree from the root 

down to the leaves, while bottom-up parsers start from the leaves and build 

up to the root. In both methods, the input is processed from left to right, one 

symbol at a time. 

The most efficient top-down and bottom-up parsing methods are limited to 

specific subclasses of grammars, but LL and LR grammars, in particular, 

are powerful enough to describe most syntactic constructs found in modern 
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parsers, such as those using predictive parsing techniques. LR grammar 

parsers are typically generated using automated tools 

We assume that the parser produces a representation of the parse tree for the 

token stream received from the lexical analyzer. In practice, several tasks 

might be performed during parsing, such as collecting information about 

various tokens into the symbol table, performing type checking and other 

semantic analyses, and generating intermediate code. 

3.2.1 Syntax Error Handling 

Two specific strategies, panic-mode and phrase-level recovery, are 

discussed in more detail in relation to specific parsing methods. 

If compilers only had to process correct programs, their design and 

implementation would be greatly simplified. However, compilers are 

expected to help programmers locate and fix errors that inevitably occur 

despite their best efforts. Interestingly, few programming languages are 

designed with error handling in mind, even though errors are common. Our 

world would be vastly different if spoken languages required the same level 

of syntactic accuracy as programming languages. Most programming 

language specifications do not describe how a compiler should respond to 

errors; this is left to the compiler designer. Planning error handling from the 

start can simplify the compiler's structure and improve its error-handling 

capabilities. 

Common programming errors can occur at various levels: 

• Lexical errors include misspellings of identifiers, keywords, or 

operators (e.g., using "elipseSize" instead of "ellipseSize") and 

missing quotes around strings. 

• Syntactic errors include misplaced semicolons or extra/missing 

braces. For example, a "case" statement without an enclosing "switch" 

in C or Java is a syntactic error, though this is often caught later in the 

compilation process. 

• Semantic errors include type mismatches between operators and 

operands, such as returning a value in a Java method with a void return 

type. 

• Logical errors involve incorrect reasoning by the programmer or 

misuse of operators, such as using "=" instead of "==" in C. Although 

syntactically correct, this might not reflect the programmer's intent. 

Parsing methods are precise enough to detect syntactic errors efficiently. 

Methods like LL and LR detect errors as soon as the token stream cannot 

be parsed further according to the grammar. They have the "viable-prefix" 

property, meaning they detect errors as soon as an incomplete prefix is 

encountered. 

Emphasizing error recovery during parsing is crucial because many errors 
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appear syntactic and are exposed when parsing cannot continue. While 

some semantic errors, like type mismatches, can be detected efficiently, 

accurately identifying semantic and logical errors at compile time is 

generally difficult. 

The error handler in a parser has several key goals: 

• Report errors clearly and accurately. 

• Recover from errors quickly to detect subsequent errors. 

• Minimize overhead when processing correct programs. 

Common errors are usually simple, so a straightforward error-handling 

mechanism often suffices. 

To report errors effectively, the error handler must indicate where the error 

was detected in the source program, as the actual error likely occurred 

within the previous few tokens. A common strategy is to print the offending 

line and point to the error's location. 

3.2.2 Error-Recovery Strategies 

Once an error is detected, how should the parser recover? Although no 

single strategy is universally effective, several methods have broad 

applicability. The simplest approach is for the parser to halt with an 

informative error message upon detecting the first error. However, more 

errors can be identified if the parser can recover to a state where it can 

continue processing the input with the hope of providing meaningful 

diagnostic information. If errors accumulate excessively, the compiler 

should stop after reaching a certain error limit to avoid overwhelming the 

user with numerous "spurious" errors. 

The following recovery strategies are discussed in detail: panic-mode, 

phrase-level, error productions, and global correction. 

Panic-Mode Recovery 

In this method, upon encountering an error, the parser discards input 

symbols one at a time until it finds one of a set of designated synchronizing 

tokens. These tokens are usually delimiters, such as semicolons or closing 

braces, which have clear and unambiguous roles in the source program. The 

choice of synchronizing tokens depends on the source language. While 

panic-mode recovery may skip a substantial portion of the input without 

checking for additional errors, it is simple and, unlike some other methods, 

guarantees not to enter an infinite loop. 

Phrase-Level Recovery 

When an error is found, the parser performs a local correction on the 

remaining input. This involves replacing a prefix of the remaining input 

with a string that allows the parser to continue. Typical local corrections 

include replacing a comma with a semicolon, deleting an extraneous 

semicolon, or inserting a missing semicolon. The choice of correction is left 
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lead to infinite loops, such as always inserting something before the current 

input symbol. Phrase-level replacement has been used in several error-

repairing compilers as it can correct any input string. However, its major 

drawback is its difficulty in dealing with errors that occurred before the 

point of detection. 

Error Productions 

By anticipating common errors, the grammar for the language can be 

augmented with productions that generate erroneous constructs. A parser 

built from such an augmented grammar detects anticipated errors when an 

error production is used during parsing. The parser can then generate 

appropriate error diagnostics about the recognized erroneous construct. 

Global Correction 

Ideally, a compiler should make as few changes as possible when 

processing an incorrect input string. Algorithms exist to choose a minimal 

sequence of changes to obtain a globally least-cost correction. Given an 

incorrect input string x and a grammar G, these algorithms find a parse tree 

for a related string y, minimizing the number of insertions, deletions, and 

changes of tokens required to transform x into y. Unfortunately, these 

methods are generally too costly to implement in terms of time and space, 

so they remain mostly of theoretical interest. 

It's important to note that the closest correct program might not align with 

the programmer's intent. Nevertheless, the concept of least-cost correction 

provides a standard for evaluating error-recovery techniques and has been 

used to find optimal replacement strings for phrase-level recovery. 

3.3 Context-free Grammars 

Grammars are used to systematically describe the syntax of programming 

language constructs like expressions and statements. For instance, using a 

syntactic variable stmt to denote statements and expr to denote expressions, 

the production: 

stmt -> if ( expr ) stmt else stmt 

specifies the structure of a conditional statement. Other productions then 

define precisely what an expr is and what else a stmt can be. 

This section reviews the definition of a context-free grammar and 

introduces terminology for discussing parsing. The concept of derivations 

is particularly useful for understanding the order in which productions are 

applied during parsing 

3.3.1 The Formal Definition of a Context-Free Grammar 

A context-free grammar (or grammar for short) consists of terminals, 

nonterminal, a start symbol, and productions. 

1. Terminals are the basic symbols from which strings are formed. They 
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are the actual tokens output by the lexical analyzer. For example, in 

the context of the if-else statement, the terminals might be the 

keywords if and else, and the symbols (and). 

2. Nonterminal are syntactic variables that represent sets of strings. They 

help define the language generated by the grammar and impose a 

hierarchical structure on it. In the if-else statement, stmt and expr are 

nonterminals. 

3. The start symbol is a distinguished nonterminal whose set of strings 

defines the language generated by the grammar. Conventionally, the 

productions for the start symbol are listed first. 

4. Productions specify how terminals and nonterminals can be combined 

to form strings. Each production consists of: 

• A nonterminal called the head or left side, which defines some 

of the strings denoted by the nonterminal. 

• An arrow (-> or ::=) to separate the head from the body. 

• The body or right side, which consists of zero or more terminals 

and nonterminals. The components of the body describe one 

way in which strings of the nonterminal at the head can be 

constructed. 

For example, in a grammar for simple arithmetic expressions, the terminals 

might be id, +, -, *, /, (, and ). The nonterminals might be expression, term, 

and factor, with expression as the start symbol. 

 

Figure: Grammar for simple arithmetic expressions 

3.3.2 Notational Conventions 

To avoid repetitive statements about terminals, nonterminals, etc., the 

following notational conventions for grammars will be used throughout the 

remainder of this book: 

1. Terminals: 

• Lowercase letters early in the alphabet (a, b, c). 

• Operator symbols such as +, *, etc. 

• Punctuation symbols such as parentheses, comma, etc. 
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• Boldface strings like id or if, each representing a single terminal 

symbol. 

2. Nonterminals: 

• Uppercase letters early in the alphabet (A, B, C). 

• The letter S, usually representing the start symbol. 

• Lowercase, italic names like expr or stmt. 

• Uppercase letters late in the alphabet (X, Y, Z) represent 

grammar symbols (either nonterminals or terminals). 

3. Lowercase letters late in the alphabet represent (possibly empty) 

strings of terminals. 

4. Lowercase Greek letters (α, β, etc.) represent (possibly empty) strings 

of grammar symbols. Thus, a generic production can be written as A 

-> α, where A is the head and α is the body. 

5. Unless stated otherwise, the head of the production is the start symbol. 

Example: With these conventions, the grammar of Example below can 

be rewritten concisely 

 

The notational conventions indicate that E, T, and F are nonterminals, with 

E as the start symbol. All other symbols are terminals. 

3.3.3 Derivations 

The construction of a parse tree can be made precise by adopting a 

derivational view, where productions are treated as rewriting rules. Starting 

from the start symbol, each step of rewriting replaces a nonterminal with 

the body of one of its productions. This view corresponds to the top-down 

construction of a parse tree. The precision provided by derivations is 

particularly helpful when discussing bottom-up parsing. Bottom-up parsing 

is related to a class of derivations known as "rightmost" derivations, where 

the rightmost nonterminal is rewritten at each step. 

For example, consider the following grammar with a single nonterminal E, 

which adds a production E -> E to the grammar. 
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3.4 TOP-DOWN PARSING ( LL PARSING) 

Top-down parsing can be seen as the task of building a parse tree for the 

input string, starting from the root and creating the nodes of the parse tree 

in preorder. Equivalently, top-down parsing can be viewed as finding a 

leftmost derivation for an input string. 

For example, the sequence of parse trees in the figure, for the input id + id 

* id, represents a top-down parse according to the grammar provided. 

 

This sequence of trees corresponds to a leftmost derivation of the input. At 

each step of a top-down parse, the main challenge is to determine the 

production to be applied for a nonterminal, say A. Once an A-production is 

chosen, the remainder of the parsing process involves matching the terminal 

symbols in the production body with the input string. 

The section begins with a general form of top-down parsing called 

recursive-descent parsing, which may involve backtracking to find the 

correct A-production. A special case of recursive-descent parsing is 

predictive parsing, where no backtracking is required. Predictive parsing 

predicts the correct A-production by looking ahead at the input a fixed 

number of symbols, typically just one (i.e., the next input symbol). 

 
Figure: Top-down parse for id + id * id 
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constructs a tree with two nodes labeled E. 

The class of grammars for which we can construct predictive parsers 

looking k symbols ahead in the input is sometimes called the LL(k) class. 

We will focus on the LL(1) class and introduce certain computations called 

FIRST and FOLLOW sets. From the FIRST and FOLLOW sets for a 

grammar, we can construct "predictive parsing tables," which explicitly 

specify the choice of production during top-down parsing. These sets are 

also useful during bottom-up parsing. 

3.4.1  recursive-descent parsing 

 
Figure: A typical procedure for a non-terminal in a top-down parser 

A recursive-descent parsing program consists of a set of procedures, one for 

each nonterminal. Execution begins with the procedure for the start symbol, 

which halts and announces success if its procedure body scans the entire 

input string. Note that this pseudo code is nondeterministic because it begins 

by choosing the A-production to apply in a manner that is not specified. 

General recursive-descent parsing may require backtracking, meaning it 

may need to scan over the input repeatedly. However, backtracking is rarely 

needed for parsing programming language constructs, so backtracking 

parsers are not commonly used. Even for tasks like natural language 

parsing, backtracking is not very efficient, and table-based methods like the 

dynamic programming algorithm or the Earley method are preferred. 

To allow for backtracking, the code needs to be modified. First, we cannot 

choose a unique A-production at line (1), so we must try each of several 

productions in some order. Then, failure at line (7) does not indicate 

ultimate failure, but suggests only that we need to return to line (1) and try 

another A-production. Only if there are no more A-productions to try do we 

declare that an input error has been found. To try another A-production, we 

need to be able to reset the input pointer to where it was when we first 

reached line (1). Thus, a local variable is needed to store this input pointer 

for future use. 

3.4.2 First and Follow 

The construction of both top-down and bottom-up parsers is aided by two 

functions, FIRST and FOLLOW, associated with a grammar G. During top-
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down parsing, FIRST and FOLLOW allow us to choose which production 

to apply based on the next input symbol. During panic-mode error recovery, 

sets of tokens produced by FOLLOW can be used as synchronizing tokens. 

The function FIRST(X), where X is any string of grammar symbols, is 

defined as the set of terminals that begin strings derived from X. If X => ε, 

then ε is also in FIRST(X).  

For example,  

if X => cY, then c is in FIRST(X). 

For a preview of how FIRST can be used during predictive parsing, consider 

two A-productions A -> α | β, where FIRST(α) and FIRST(β) are disjoint 

sets. We can then choose between these A-productions by looking at the 

next input. 

 

 

Figure Terminal c is in FIRST(A) and a is in FOLLOW (A) 

To compute FIRST(X) for all grammar symbols X, apply the following 

rules until no more terminals or ε can be added to any FIRST set: 

1. If X is a terminal, then FIRST(X) = {X}. 

2. If X -> ε is a production or ε is in FIRST(Y) for all symbols Y in β, 

then add ε to FIRST(X). 

3. If X -> Y1Y2...Yk is a production, then for i = 1 to k: 

• Add FIRST(Yi) - {ε} to FIRST(X). 

• If ε is not in FIRST(Yi), stop. Otherwise, continue to the next 

Yi. 

To compute FOLLOW(A) for a nonterminal A, apply the following rules: 

1. Add $ to FOLLOW(S), where S is the start symbol of the grammar, 

and $ is the special "endmarker" symbol. 

2. For each production A -> αBβ, add FIRST(β) - {ε} to FOLLOW(B). 

3. For each production A -> αB or A -> αBβ where FIRST(β) contains 

ε, add FOLLOW(A) to FOLLOW(B). 
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set. 

3.5 BOTTOM-UP PARSING 

A bottom-up parse corresponds to the construction of a parse tree for an 

input string beginning at the leaves (the bottom) and working up towards 

the root (the top). It is convenient to describe parsing as the process of 

building parse trees, although a front end may in fact carry out a translation 

directly without building an explicit tree. 

 
Figure: A bottom-up parse for id * id 

Bottom-up parsing is a parsing technique that constructs a parse tree from 

leaves to root. It starts with the input tokens and uses a set of reduction rules 

to combine tokens into larger structures until the parse tree is complete. One 

common approach to bottom-up parsing is shift-reduce parsing, where the 

parser shifts input tokens onto a stack until it can reduce them to higher-

level structures based on a predefined grammar. LR parsing is a type of 

shift-reduce parsing that is widely used in practice due to its efficiency and 

the availability of automated parser generators that can generate LR parsers 

from a given grammar. 

3.5.1 Reductions 

Bottom-up parsing involves the process of "reducing" a string w to the start 

symbol of the grammar. At each reduction step, a specific sub-string 

matching the body of a production is replaced by the non-terminal at the 

head of that production. 

The key decisions during bottom-up parsing revolve around when to reduce 

and which production to apply as the parse proceeds. 

For example, consider the following snapshots illustrating a sequence of 

reductions using the expression grammar. The reductions will be discussed 

in terms of the sequence of strings. 

id * id; F * id; T * id; T * F ; T ; E 

The strings in this sequence are formed from the roots of all the subtrees in 

the snapshots. The sequence starts with the input string "id * id." The first 

reduction produces "F * id" by reducing the leftmost "id" to "F," using the 

production F→id. The second reduction produces "T * id" by reducing "F" 

to "T." 

Now, there is a choice between reducing the string "T," which is the body 

of E→T, and the string consisting of the second "id," which is the body of 
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F→id. Instead of reducing "T" to "E," the second "id" is reduced to "F," 

resulting in the string "T * F." This string then reduces to "T." The parse 

completes with the reduction of "T" to the start symbol E. 

By definition, a reduction is the reverse of a step in a derivation (recall that 

in a derivation, a nonterminal in a sentential form is replaced by the body 

of one of its productions). The goal of bottom-up parsing is therefore to 

construct a derivation in reverse. 

 

This derivation is in fact a rightmost derivation 

3.5.2 Handle Pruning 

Bottom-up parsing, during a left-to-right scan of the input, constructs a 

rightmost derivation in reverse. Informally, a "handle" is a substring that 

matches the body of a production, and its reduction represents one step 

along the reverse of a rightmost derivation. 

For example, adding subscripts to the token’s "id" for clarity, the handles 

during the parse of 

 "id1 * id2" according to the expression grammar are as follows: 

1. Starting with "id1 * id2": 

• Handle: "id1" is reduced to "F" using the production F→id, 

resulting in "F * id2". 

2. Continuing with "F * id2": 

• Handle: "F" is reduced to "T" using the production T→F, 

resulting in "T * id2". 

3. Continuing with "T * id2": 

• Handle: "id2" is reduced to "F" using the production F→id, 

resulting in "T * F". 

4. Finally, "T * F" is reduced to "T" using the production T→T∗F, 

resulting in the final parse tree. 

 

Note that although "T" is the body of the production E→T, the symbol "T" 

is not a handle in the sentential form "T * id2". If "T" were indeed replaced 

by "E", we would get the string "E * id2", which cannot be derived from the 

start symbol E. Thus, the leftmost substring that matches the body of some 

production need not be a handle. 

Figure: Handles during a parse of id1 * id2 
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A parser generator can be used to facilitate the construction of the front end 

of a compiler. We shall use the LALR parser generator Yacc as the basis of 

our discussion, and it is widely available. Yacc stands for "yet another 

compiler-compiler," reflecting the popularity of parser generators in the 

early 1970s when the first version of Yacc was created by S. C. Johnson. 

Yacc is available as a command on the UNIX system and has been used to 

help implement many production compilers. 

3.6.1 Parser Generator YACC 

A translator can be constructed using Yacc in the manner illustrated in Fig. 

First, a file, say translate.y, containing a Yacc specification of the translator 

is prepared. The UNIX system command yacc translate.y transforms the file 

translate.y into a C program called y.tab.c using the LALR method outlined 

below. The program y.tab.c is a representation of an LALR parser written 

in C, along with other C routines that the user may have prepared. The 

LALR parsing table is compacted. By compiling y.tab.c along with the ly 

library that contains the LR parsing program using the command cc y.tab.c 

-ly, we obtain the desired object program a.out that performs the translation 

specified by the original Yacc program. If other procedures are needed, they 

can be compiled or loaded with y.tab.c, just as with any C program. 

A Yacc source program has three parts: 

 

Figure: Creating an input/output translator with Yacc 

declarations 

%% 

translation rules 

%% 

supporting C routines 

Example : To illustrate how to prepare a Yacc source program, let us 

construct a simple desk calculator that reads an arithmetic expression, 

evaluates it, and then prints its numeric value. We shall build the desk 

calculator starting with the with the following grammar for arithmetic 

expressions: 

 E ! E + T j T 

T ! T * F j F 

F ! ( E ) j digit 
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The token digit is a single digit between 0 and 9. 

The Declarations Part 

There are two sections in the declarations part of a Yacc program; both are 

optional. In the rst section, we put ordinary C declarations, delimited by %{ 

and %}. Here we place declarations of any temporaries used by the 

translation rules or procedures of the second and third sections. Here, it 

contains only the include-statement 

#include <ctype.h> 

that causes the C pre-processor to include the standard header le <ctype.h> 

that contains the predicate is digit. 

Also, in the declarations part are declarations of grammar tokens 

%token DIGIT 

%{ 

#include<ctype.h> 

%} 

%token DIGIT 

%% 

line : expr '\n' { printf("%d\n", $1); } 

; 

expr : expr '+' term { $$ = $1 + $3; } 

| term 

; 

term : term '*' factor { $$ = $1 * $3; } 

| factor 

; 

factor : '(' expr ')' { $$ = $2; } 

| DIGIT 

; 

%% 

yylex() { 

int c; 

c = getchar(); 

if (isdigit(c)) { 

yylval = c-'0'; 

return DIGIT; 

} 

return c; 

} 

declares DIGIT to be a token. Tokens declared in this section can then be 

used in the second and third parts of the Yacc specification. If Lex is used 
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token declarations are also made available to the analyzer generated by Lex 

3.6.2 The Translation Rules Part 

In the part of the Yacc specification after the first %% pair, we put the 

translation rules. Each rule consists of a grammar production and the 

associated semantic action. 

In a Yacc production, unquoted strings of letters and digits not declared to 

be tokens are taken to be non-terminals. A quoted single character, e.g., 'c', 

is taken to be the terminal symbol 'c', as well as the integer code for the 

token represented by that character (i.e., Lex would return the character 

code for 'c' to the parser, as an integer). Alternative bodies can be separated 

by a vertical bar, and a semicolon follows each head with its alternatives 

and their semantic actions. The first head is taken to be the start symbol. 

A Yacc semantic action is a sequence of C statements. In a semantic action, 

the symbol $$ refers to the attribute value associated with the non-terminal 

of the head, while $i refers to the value associated with the ith grammar 

symbol (terminal or non-terminal) of the body. The semantic action is 

performed whenever we reduce by the associated production, so normally 

the semantic action computes a value for $$ in terms of the $i's. In the Yacc 

specification, we have written the two E-productions. 

E | E + T | T 

and their associated semantic actions as: 

 

In the Yacc specification, the nonterminal term in the first production is the 

third grammar symbol of the body, while + is the second. The semantic 

action associated with the first production adds the value of the expr and the 

term of the body and assigns the result as the value for the nonterminal expr 

of the head. We have omitted the semantic action for the second production 

altogether, since copying the value is the default action for productions with 

a single grammar symbol in the body. In general, { $$ = $1; } is the default 

semantic action. 

Notice that we have added a new starting production: 

line : expr  '\n'  { printf ( " %d \n ", $1 ) ; } 

This production says that an input to the desk calculator is to be an 

expression followed by a newline character. The semantic action associated 

with this production prints the decimal value of the expression followed by 

a newline character. 
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3.6.3 Using Yacc with Ambiguous Grammars 

Let us now modify the Yacc specification so that the resulting desk 

calculator 

becomes more useful. First, we shall allow the desk calculator to evaluate a 

sequence of expressions, one to a line. We shall also allow blank lines 

between 

expressions. We do so by changing the first rule to 

 

In Yacc, an empty alternative, as the third line is, denotes *. Second, we 

shall enlarge the class of expressions to include numbers with a decimal 

point instead of single digits and to include the arithmetic operators +, , 

(both binary and unary), *, and /. The easiest way to specify this class of 

expressions is to use the ambiguous grammar 

 

The grammar in the Yacc specification in above Fig. is ambiguous, which 

means that the LALR algorithm will generate parsing-action conflicts. Yacc 

reports the number of parsing-action conflicts that are generated. By 

invoking Yacc with a -v option, you can obtain a description of the sets of 

items and the parsing-action conflicts, as well as a readable representation 

of the LR parsing table showing how the conflicts were resolved. 

By default, Yacc resolves parsing conflicts using two rules: 

1. A reduce/reduce conflict is resolved by choosing the conflicting 

production listed first in the Yacc specification. 

2. A shift/reduce conflict is resolved in favor of shift. This rule correctly 

resolves the shift/reduce conflict arising from the dangling-else 

ambiguity. 

To customize the resolution of shift/reduce conflicts, Yacc provides a 

mechanism for assigning precedence’s and associativity’s to terminals in 

the declarations section. For example: 

• %left '+' '-' makes + and - have the same precedence and be left-

associative. 

• %right '^' makes ^ right-associative. 

• %nonassoc '<' makes < a non-associative binary operator. 
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declarations part, lowest first. Tokens in the same declaration have the same 
precedence. Yacc resolves shift/reduce conflicts by comparing the 
precedence and associativity of the production and the terminal involved in 
the conflict. If the precedence of the production is greater than that of the 
terminal, or if they have the same precedence and the production is left-
associative, then Yacc reduces; otherwise, it shifts. 

You can also force a precedence to a production by appending %prec 
terminal to the production. This makes the precedence and associativity of 
the production the same as that of the terminal, which is defined in the 
declaration section. Yacc does not report shift/reduce conflicts resolved 
using this mechanism. 

In your specific example,  
%right UMINUS  

assigns a higher precedence to the token  
UMINUS  

than that of * and /, and  
%prec UMINUS  

at the end of the production  
expr : '-' expr  

makes the unary-minus operator in this production have a higher precedence 
than any other operator 

3.6.4 Error Recovery in YACC 

In Yacc, error recovery is implemented using error productions. Here's how 
it works: 

1. Decision on Error Recovery: The user decides which major 
nonterminals will have error recovery associated with them. These are 
typically nonterminals generating expressions, statements, blocks, 
and functions. 

2. Adding Error Productions: The user adds error productions to the 
grammar of the form A ! error, where A is a major nonterminal and 
error is a Yacc reserved word. These error productions are treated as 
ordinary productions by Yacc. 

3. Error Handling: When the parser encounters an error, it pops 
symbols from its stack until it finds the topmost state whose set of 
items includes an item of the form A ! * error. It then shifts a fictitious 
token error onto the stack, as if it had seen the token error in the input. 

4. Error Recovery Actions: 

• If * is empty, a reduction to A occurs immediately, and the 

associated semantic action for A ! error is invoked. The parser 
then discards input symbols until it finds an input symbol on 
which normal parsing can proceed. 
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• If * is not empty, Yacc skips ahead on the input looking for a 

substring that can be reduced to *. If * consists entirely of 

terminals, it looks for this string of terminals on the input and 

reduces them by shifting them onto the stack. The parser will 

then reduce error to A and resume normal parsing. 

For example, stmt ! Error ; specifies to the parser that it should skip 

just beyond the next semicolon on seeing an error and assume that a 

statement had been found. The semantic routine for this error 

production could generate a diagnostic message and set a flag to inhibit 

the generation of object code. 

3.7 SUMMARY 

The chapter discusses parsing techniques in compiler design, focusing on 

top-down and bottom-up parsing. It starts by explaining how parsers 

analyze the syntax of a program based on its grammar rules. Top-down 

parsing begins at the start symbol and tries to match the input string, while 

bottom-up parsing constructs a parse tree starting from the leaves and 

working towards the root. 

The chapter introduces LL and LR parsing, which are common types of top-

down and bottom-up parsing, respectively. LL parsing is predictive, 

meaning it looks ahead at the next input symbol to choose the correct 

production. LR parsing uses a more powerful shift-reduce technique to 

build a parse tree. 

Error recovery is an important aspect of parsing, and Yacc provides 

mechanisms for handling errors in the input. Error productions can be added 

to the grammar to specify how the parser should recover from errors and 

continue parsing. 

Overall, the chapter provides a comprehensive overview of parsing 

techniques, including their implementation and use in compiler 

construction. 

3.8 REVIEW QUESTIONS 

1.  What is the key difference between top-down and bottom-up parsing 

techniques? 

2.  How does Yacc handle error recovery in parsing? 

3.  Explain the concept of handles in bottom-up parsing and their role in 

constructing a parse tree. 

 
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SEMANTIC ANALYSIS 

Unit Structure 

4.0  Objective 

4.1  Introduction 

4.2  Role of Semantic Parser 

4.3  Symbol Table Management 

 4.3.1 Symbol Tables 

 4.3.2 Multiple Symbol Tables 

 4.3.3 Efficient Imperative Symbol Tables 

 4.3.4 Efficient Functional Symbol Tables 

 4.3.5 Symbols in The Tiger Compiler 

4.4  Type Checking and Type Systems. 

 4.4.1 Type-Checking Expressions 

 4.4.2 Type-Checking Variables, Subscripts, And Fields 

 4.4.3 Type-Checking Declarations 

4.5  Attribute Grammars 

 4.5.1 Simplifications and Extensions to Attribute Grammars 

 4.5.2 Algorithms for Attribute Computation 

 4.5.3 The Dependence of Attribute Computation on The Syntax 

4.6 Summary 

4.7  Review Questions 

4.0 OBJECTIVES 

• Understand the role of a semantic parser in a compiler and its 

importance in translating the abstract syntax tree into executable code. 

• Explore the concept of symbol tables and their management, 

including techniques for efficient storage and retrieval of symbols. 

• Learn about type checking and type systems, including how 

expressions, variables, and declarations are type-checked to ensure 

program correctness. 

• Study attribute grammars and their use in compiler design, including 

algorithms for attribute computation and their dependence on the 

syntax of the language being compiled. 
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4.1 INTRODUCTION 

The semantic analysis phase of a compiler connects variable definitions to 

their uses, checks that each expression has a correct type, and translates the 

abstract syntax into a simpler representation suitable for generating machine 

code. This phase ensures that the program adheres to the rules of the 

programming language, such as type consistency, scope resolution, and the 

proper usage of identifiers. Semantic analysis typically involves creating 

and maintaining symbol tables that record information about variable 

names, function names, and their attributes. It also performs type checking 

to ensure that operations in the program are applied to compatible types. 

Additionally, this phase can include the generation of intermediate code or 

an abstract syntax tree that serves as a bridge between the high-level source 

code and the low-level machine code, facilitating further optimization and 

code generation phases. 

4.2 ROLE OF SEMANTIC PARSER 

Semantic analysis in a compiler serves two main purposes: ensuring the 

correctness of a program according to the rules of the programming 

language and enhancing the efficiency of the translated program. The extent 

of semantic analysis required varies significantly among different 

languages. For instance, dynamically-typed languages like LISP and 

Smalltalk might not require any static semantic analysis, while statically-

typed languages such as Ada have stringent requirements for a program to 

be executable. Languages like Pascal and C fall somewhere in between 

these extremes, with Pascal being stricter than C but less so than Ada. 

The first category of semantic analysis ensures the program adheres to 

language rules for proper execution. This includes tasks such as type 

checking, scope resolution, and ensuring variables are defined before use. 

The second category involves optimization techniques aimed at improving 

the execution efficiency of the translated program. Although these 

optimization methods are typically discussed under "code generation," the 

techniques for ensuring correctness also contribute to generating more 

efficient code. However, it's important to note that semantic analysis can 

only establish partial correctness of a program, not complete correctness, 

but it still significantly enhances the security and robustness of the program. 

Implementing semantic analysis algorithms can be more complex than 

parsing algorithms due to the timing of the analysis during compilation. If 

semantic analysis is deferred until after syntactic analysis and the 

construction of an abstract syntax tree, the implementation becomes 

simpler, involving a traversal of the syntax tree with specific computations 

at each node. This approach is typical in multipass compilers. However, in 

single-pass compilers, where all operations, including code generation, 

must be performed in a single pass, the implementation becomes more ad 

hoc and complex. Fortunately, modern practices increasingly allow for 

multiple passes, simplifying the processes of semantic analysis and code 

generation. 
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Semantic Analysis Despite these challenges, studying attribute grammars and specification 

issues is valuable. It helps write clearer, more concise, and less error-prone 

code for semantic analysis, making the code easier to understand and 

maintain. 

4.3 SYMBOL TABLE MANAGEMENT 

4.3.1 Symbol Tables 

This phase involves maintaining symbol tables (also known as 

environments) that map identifiers to their types and locations. As 

declarations of types, variables, and functions are processed, these 

identifiers are bound to specific meanings within the symbol tables. When 

identifiers are used (non-defining occurrences), they are looked up in the 

symbol tables. Each local variable in a program has a scope within which it 

is visible. For instance, in a Tiger expression let D in E end, all the variables, 

types, and functions declared in D are only visible until the end of E. As the 

semantic analysis reaches the end of each scope, the local identifier bindings 

are discarded. 

An environment is a set of bindings denoted by the → arrow. For example, 

we could say that the environment σ₀ contains the bindings {g → string, a 

→ int}, meaning the identifier a is an integer variable and g is a string 

variable. 

Consider a simple example in the Tiger language: 

tiger 

1 function f(a:int, b:int, c:int) = 

2 (print_int(a+c); 

3 let var j := a+b 

4 var a := "hello" 

5 in print(a); print_int(j) 

6 end; 

7 print_int(b) 

8 ) 

If we compile this program in the environment σ₀, the formal parameter 

declarations on line 1 extend the table to σ₁, which is σ₀ plus {a → int, b → 

int, c → int}. The identifiers in line 2 are looked up in σ₁. At line 3, the table 

σ₂ is created, which is σ₁ plus {j → int}. At line 4, σ₃ is created, which is σ₂ 

plus {a → string}. 

How does the + operator for tables work when the two environments being 

"added" contain different bindings for the same symbol? For instance, when 

σ₂ and {a → string} map a to int and string, respectively? To ensure the 

scoping rules work as expected in real programming languages, {a → 
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string} should take precedence. Therefore, X + Y for tables is not the same 

as Y + X; bindings in the right-hand table override those in the left. 

Finally, in line 6, σ₃ is discarded, and we revert to σ₁ for looking up the 

identifier b in line 7. At line 8, σ₁ is discarded, and we revert to σ₀. 

How should this be implemented? There are two main approaches: 

Functional Style: Keep σ₁ intact while creating σ₂ and σ₃. When σ₁ is needed 

again, it remains unchanged and ready to use. 

Imperative Style: Modify σ₁ to become σ₂, which destructively updates σ₁. 

While σ₂ exists, σ₁ cannot be used. Once done with σ₂, the modification can 

be undone to restore σ₁. This involves a single global environment σ that 

transitions through σ₀, σ₁, σ₂, σ₃, σ₁, σ₀ at different times, along with an 

"undo stack" that tracks and reverses the updates. When a symbol is added 

to the environment, it is also added to the undo stack. At the end of a scope 

(e.g., line 6 or 8), symbols are popped from the undo stack, removing their 

latest bindings from σ and restoring their previous bindings. 

 

Both the functional and imperative styles of environment management can 

be used regardless of whether the language being compiled or the 

implementation language of the compiler is functional, imperative, or 

object-oriented. 

4.3.2 Multiple Symbol Tables 

In some languages, there can be multiple active environments 

simultaneously: each module, class, or record in the program has its own 

symbol table, σ. Let σ₀ be the base environment containing predefined 

functions, and let... 
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Semantic Analysis In ML, the module N is compiled using the environment σ0+σ2 to look up 

identifiers; D is compiled using σ0+σ2+σ4, resulting in {M→σ7}. In Java, 

forward reference is allowed (so inside N the expression D.d would be 

legal), thus E, N, and D are all compiled in the environment σ7; for this 

program, the result is still {M→σ7}. 

4.3.3 Efficient Imperative Symbol Tables 

In programs with a large number of unique identifiers, efficient symbol 

tables are essential for quick lookup operations. Here is a sample 

implementation of a hash table using external chaining to manage 

collisions: 

struct Bucket { 

    string key; 

    void *binding; 

    struct Bucket *next; 

}; 

 

#define SIZE 109 

struct Bucket *table[SIZE]; 

 

unsigned int hash(char *str) { 

    unsigned int hashVal = 0; 

    char *s; 

    for (s = str; *s; s++) 

        hashVal = hashVal * 65599 + *s; 

    return hashVal; 

} 

 

struct Bucket *createBucket(string key, void *binding, struct Bucket 

*next) { 

    struct Bucket *b = checked_malloc(sizeof(*b)); 

    b->key = key;  

    b->binding = binding;  

    b->next = next; 

    return b; 

} 

 

void insert(string key, void *binding) { 

    int index = hash(key) % SIZE; 

    table[index] = createBucket(key, binding, table[index]); 

} 

 

void *lookup(string key) { 

    int index = hash(key) % SIZE; 

    struct Bucket *b; 

    for (b = table[index]; b; b = b->next) 

        if (strcmp(b->key, key) == 0) return b->binding; 

    return NULL; 

} 
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void pop(string key) { 

    int index = hash(key) % SIZE; 

    table[index] = table[index]->next; 

} 

This implementation uses a hash table with external chaining, making it 

efficient and supporting easy deletion operations. Each bucket in the hash 

table is a linked list of elements whose keys hash to the same index modulo 

SIZE. 

 

Hash Tables 

When adding a new binding to a key that already exists in the symbol table, 

the insert function in the provided hash table implementation leaves the 

existing binding in place and adds the new binding to the beginning of the 

linked list in the corresponding bucket. For example, if σ contains a ! → τ1 

and a new binding a ! → τ2 is added, the table will contain both bindings, 

but a ! → τ2 will be the first in the list for key a. 

Later, when pop(a) is called at the end of a's scope, only the topmost binding 

for a (the one added most recently) is removed. This is similar to how a 

stack operates, where elements are added and removed in a last-in-first-out 

(LIFO) manner. If pop(a) is called again, it will remove a ! → τ1, thus 

restoring the symbol table to its state before the addition of a ! → τ2. 

4.3.4 Efficient Functional Symbol Tables 

In the functional programming style, updating a symbol table is done by 

creating a new table that includes the new binding, rather than modifying 

the existing table. This approach ensures that the original table remains 

unchanged and available for further lookups. This concept is similar to 

adding numbers in arithmetic, where adding 7 and 8 results in a new value 

(15), but the original values (7 and 8) remain unchanged. 

However, this non-destructive update approach is not efficient for hash 

tables. Adding a new binding to a hash table typically involves updating 

pointers in the table, which can be done quickly and efficiently. But this 

process destroys the previous mapping, making it unavailable for future 
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Semantic Analysis lookups. Another approach is to copy the entire array representing the hash 

table and then add the new element, but this is inefficient for large arrays 

because copying them for each new entry is costly. 

Using binary search trees, on the other hand, allows for efficient functional 

additions. In a binary search tree, adding a new element involves creating a 

new node and adjusting the tree structure, but the original tree remains intact 

and available for further operations. This makes binary search trees suitable 

for functional updates without sacrificing efficiency. 

 

Figure: Binary Search Tables. 

In a binary search tree representing the mapping m1

={bat→1,camel→2,dog→3}, adding the binding mouse→4 to create the 

mapping m2 can be done efficiently without destroying m1. Adding a new 

node at depth d in the tree requires creating d new nodes, but the entire tree 

does not need to be copied. Therefore, creating a new tree that shares some 

structure with the old one can be done as efficiently as looking up an 

element, which takes O(logn) time for a balanced tree of n nodes. This 

approach demonstrates a persistent data structure, where a persistent red-

black tree can be maintained to ensure logn access time while keeping the 

previous mappings intact. 

4.3.5 Symbols in the Tiger Compiler 

To efficiently handle strings in a hash table, we can convert each string to a 

symbol, enabling fast comparison and hashing. The Symbol module 

provides functions for creating symbols, accessing symbol names, and 

managing symbol tables. By using symbols, we can efficiently compare and 

hash strings without repeated string comparisons 

/* symbol.h */ 

typedef struct S_symbol_ *S_symbol; 

S_symbol S_Symbol(string); 

string S_name(S_symbol); 

typedef struct TAB_table_ *S_table; 

S_table S_empty(void); 

void S_enter(S_table t, S_symbol sym, void *value); 
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void *S_look(S_table t, S_symbol sym); 

void S_beginScope(S_table t); 

void S_endScope(S_table t); 

PROGRAM symbol.h, the interface for symbols and symbol tables. 

In the Tiger compiler, we use destructive-update environments, where each 

symbol is mapped to a binding. The S_empty() function creates a new 

symbol table, and S_beginScope() and S_endScope() manage the scope of 

the symbols. The S_beginScope() function remembers the current state of 

the table, and S_endScope() restores the table to the state before the most 

recent beginScope(). 

The symbol.c file implements the symbol table using a hash table. When a 

binding is entered, the corresponding symbol is hashed to an index, and a 

Binder object is placed at the head of the linked list for that index. If a 

previous binding exists for the same symbol, it is hidden by the new binding. 

The table.h file defines generic hash table operations for mapping keys to 

values. 

Overall, the symbol module provides efficient handling of symbols and 

symbol tables, essential for compiler implementation, especially in 

managing scopes and mappings 

#include <stdio.h> 
#include <string.h> 
#include "util.h" 
#include "symbol.h" 
 
/* Definition of the symbol structure */ 
struct S_symbol_ { 
    string name; 
    S_symbol next; 
}; 
 
/* Helper function to create a new symbol */ 
static S_symbol mksymbol(string name, S_symbol next) { 
    S_symbol s = checked_malloc(sizeof(*s)); 
    s->name = name; 
    s->next = next; 
    return s; 
} 
/* Size of the hash table */ 
#define SIZE 109 
 
/* Hash function for strings */ 
static unsigned int hash(char *s0) { 
    unsigned int h = 0; 
    char *s; 
    for(s = s0; *s; s++) 
        h = h * 65599 + *s; 
    return h; 
} 
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Semantic Analysis /* Array to hold the hash table */ 
static S_symbol hashtable[SIZE]; 
 
/* Create a symbol from a string */ 
S_symbol S_Symbol(string name) { 
    int index = hash(name) % SIZE; 
    S_symbol syms = hashtable[index], sym; 
    for(sym = syms; sym; sym = sym->next) 
        if (0 == strcmp(sym->name, name)) 
            return sym; 
    sym = mksymbol(name, syms); 
    hashtable[index] = sym; 
    return sym; 
} 
 
/* Get the name of a symbol */ 
string S_name(S_symbol sym) { 
    return sym->name; 
} 
 
/* Create an empty symbol table */ 
S_table S_empty(void) { 
    return TAB_empty(); 
} 
 
/* Enter a symbol and its corresponding value into the table */ 
void S_enter(S_table t, S_symbol sym, void *value) { 
    TAB_enter(t, sym, value); 
} 
 
/* Look up the value associated with a symbol in the table */ 
void *S_look(S_table t, S_symbol sym) { 
    return TAB_look(t, sym); 
} 
 
/* Begin a new scope in the symbol table */ 
void S_beginScope(S_table t) { 
    S_enter(t, &marksym, NULL); 
} 

/* End the current scope in the symbol table */ 

void S_endScope(S_table t) { 

    S_symbol s; 

    do 

        s = TAB_pop(t); 

    while (s != &marksym); 

} 

 

PROGRAM Symbol table (symbol.c) implementation 

 

/* table.h - generic hash table */ 
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/* Opaque type representing a hash table */ 

typedef struct TAB_table_ *TAB_table; 

 

/* Create a new empty hash table */ 

TAB_table TAB_empty(void); 

 

/* Enter a key-value pair into the hash table */ 

void TAB_enter(TAB_table t, void *key, void *value); 

 

/* Look up the value associated with a key in the hash table */ 

void *TAB_look(TAB_table t, void *key); 

 

/* Pop the most recent binding from the hash table and return its key */ 

void *TAB_pop(TAB_table t); 

When a new binding x ! → b is entered using S_enter(table, x, b), the key x 

is hashed to an index i, and a Binder object x ! → b is placed at the head of 

the linked list for the ith bucket. If the table already contained a binding x ! 

→ b', that previous binding would still be in the bucket, hidden by the new 

binding x ! → b. This allows for the implementation of undo operations like 

beginScope and endScope. 

The key x is not a character string, but rather the S_symbol pointer itself. 

The table module implements generic pointer hash tables (TAB_table), 

mapping a key type (void*) to a binding type (also void*). 

To avoid potential programming mistakes due to the use of void*, the 

symbol module encapsulates these operations with functions like S_empty, 

S_enter, etc., where the key type is S_symbol instead of void*. 

Additionally, an auxiliary stack is used to keep track of the order in which 

symbols were "pushed" into the symbol table. When a new binding x ! → b 

is entered, x is pushed onto this stack. The beginScope operation pushes a 

special marker onto the stack. To implement endScope, symbols are popped 

off the stack down to and including the topmost marker. As each symbol is 

popped, the head binding in its bucket is removed. 

The auxiliary stack can be integrated into the Binder by using a global 

variable top that shows the most recent symbol bound in the table. 

"Pushing" is achieved by copying top into the prevtop field of the Binder, 

thus threading the "stack" through the binders 

4.4 TYPE CHECKING AND TYPE SYSTEMS 

4.4.1 Type-Checking Expressions 

The Semant module (semant.h, semant.c) performs semantic analysis – 

including type-checking – of abstract syntax. It contains four functions 

that recur over syntax trees: 

struct expty transVar (S_table venv,  S_table tenv, A_var v); 

struct expty transExp (S_table venv,  S_table tenv, A_exp a); 
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Semantic Analysis void transDec (S_table venv,  S_table tenv, A_dec d); 

struct Ty_ty transTy  (    S_table tenv, A_ty a);  

The type-checker is a recursive function of the abstract syntax tree. I will 

call it transExp because we will later augment this function not only to type-

check but also to translate the expressions into intermediate code. The 

arguments of transExp are a value environment venv, a type environment 

tenv, and an expression. The result will be an expty, containing a translated 

expression and its Tiger-language type: 

struct expty {Tr_exp exp; Ty_ty ty;}; 

struct expty expTy(Tr_exp exp, Ty_ty ty) { 

struct expty e; e.exp=exp; e.ty=ty; return e; 

} 

To avoid discussing intermediate code, we'll define a dummy Translate 

module as follows: 

typedef void *Tr_exp; and we'll use NULL for every value. 

Let's consider a simple case: an addition expression e1 + e2. In Tiger, both 

operands must be integers, which the type-checker must verify. The result 

of the addition will also be an integer, as determined by the type-checker. 

In many languages, addition is overloaded, meaning the + operator can 

represent both integer addition and real (floating-point) addition. If both 

operands are integers, the result is an integer. If both operands are real 

numbers, the result is real. However, if one operand is an integer and the 

other is a real number, the integer is typically implicitly converted to a real 

number, and the result is also a real number. This conversion is usually 

made explicit in the machine code generated by the compiler. 

Implementing Tiger's non-overloaded type-checking for addition is 

straightforward.: 

struct expty transExp(S_table venv, S_table tenv, A_exp a) { 

    switch (a->kind) { 

        // Other cases for different kinds of expressions 

         

        case A_opExp: { 

            A_oper oper = a->u.op.oper; 

            struct expty left = transExp(venv, tenv, a->u.op.left); 

            struct expty right = transExp(venv, tenv, a->u.op.right); 

            if (oper == A_plusOp) { 

                if (left.ty->kind != Ty_int) 

                    EM_error(a->u.op.left->pos, "integer required"); 

                if (right.ty->kind != Ty_int) 

                    EM_error(a->u.op.right->pos, "integer required"); 

                return expTy(NULL, Ty_Int()); 

            } 

            // Handle other operators similarly 

        } 
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        // Handle other cases for different kinds of expressions 

         

        default: 

            // Handle other cases 

            assert(0); // should have returned from some clause of the switch 

    } 

} 

The code snippet provided is a part of the function transExp which translates 

expressions in the Tiger programming language. The switch statement is 

used to handle different kinds of expressions (A_exp). Inside the case 

A_opExp, it checks if the operator is A_plusOp, which represents addition. 

It then recursively calls transExp for the left and right operands of the 

addition. 

If the left operand is not an integer, it generates an error message using 

EM_error. Similarly, if the right operand is not an integer, it also generates 

an error message. Finally, if both operands are integers, it returns an expTy 

structure with a Ty_Int type. 

The assert(0) statement is a safety measure to ensure that the function 

always returns a value. If the function somehow reaches this point, it 

indicates a logic error because it should have returned from one of the case 

clauses earlier in the function 

4.4.2 Type-Checking Variables, Subscripts, and Fields 

The transVar function recursively processes A_var expressions in a 

manner similar to transExp for A_exp expressions. 

struct expty transVar(S_table venv, S_table tenv, A_var v) { 

    switch(v->kind) { 

        case A_simpleVar: { 

            E_enventry x = S_look(venv, v->u.simple); 

            if (x && x->kind == E_varEntry) 

                return expTy(NULL, actual_ty(x->u.var.ty)); 

            else { 

                EM_error(v->pos, "undefined variable %s", S_name(v-

>u.simple)); 

                return expTy(NULL, Ty_Int()); 

            } 

        } 

        case A_fieldVar: 

        // Handle fieldVar case 

        ... 

    } 

    assert(0); /* should have returned from some clause of the switch */ 

} 
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Semantic Analysis The transVar function verifies SimpleVar expressions by checking the 

environment for the variable's binding. If the identifier is found and is bound 

to a VarEntry (not a FunEntry), its type is extracted from the VarEntry. 

For function calls, the function identifier is looked up in the environment, 

yielding a FunEntry containing a list of parameter types. These types are 

then matched against the arguments in the function call expression. The 

FunEntry also provides the result type of the function, which becomes the 

type of the function call. 

Each kind of expression has its own type-checking rules, but those not yet 

described follow similar patterns of environment lookup and type matching. 

4.4.3 Type-Checking Declarations 

Environments are managed and updated by declarations in Tiger, with 

declarations appearing exclusively within a let expression. Type-checking 

a let expression involves using transDec to translate declarations: 

struct expty transExp(S_table venv, S_table tenv, A_exp a) { 

    switch(a->kind) { 

        ... 

        case A_letExp: { 

            struct expty exp; 

            A_decList d; 

            S_beginScope(venv); 

            S_beginScope(tenv); 

            for (d = a->u.let.decs; d; d = d->tail) 

                transDec(venv, tenv, d->head); 

            exp = transExp(venv, tenv, a->u.let.body); 

            S_endScope(tenv); 

            S_endScope(venv); 

            return exp; 

        } 

        ... 

    } 

} 

In this excerpt, transExp sets the current state of the environments using 

beginScope(), iterates over the declaration list a->u.let.decs to update the 

environments venv and tenv with new declarations, translates the body 

expression a->u.let.body, and then reverts the environments to their original 

state using endScope(). 

Variable Declarations 

Processing a declaration in Tiger involves augmenting an environment with 

a new binding, which is then used in subsequent declarations and 

expressions. For instance, processing a variable declaration without a type 

constraint, such as var x := exp, is straightforward: 

void transDec(S_table venv, S_table tenv, A_dec d) { 
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    switch(d->kind) { 

        case A_varDec: { 

            struct expty e = transExp(venv, tenv, d->u.var.init); 

            S_enter(venv, d->u.var.var, E_VarEntry(e.ty)); 

        } 

        ... 

    } 

} 

If a type constraint is present, as in var x : type-id := exp, compatibility 

between the constraint and the initializing expression must be checked. 

Additionally, initializing expressions of type Ty_Nil must be constrained 

by a Ty_Record type. 

Type Declarations 

Nonrecursive type declarations are relatively straightforward: 

void transDec(S_table venv, S_table tenv, A_dec d) { 

    ... 

    case A_typeDec: { 

        S_enter(tenv, d->u.type->head->name, transTy(d->u.type->head-

>ty)); 

    } 

} 

The transTy function translates type expressions from the abstract syntax 

(A_ty) to digested type descriptions (Ty_ty). This translation involves 

recursively traversing the structure of an A_ty, converting A_recordTy 

into Ty_Record, and so on. During translation, transTy looks up any 

symbols it finds in the type environment tenv. 

Function Declarations 

Function declarations are more complex: 

void transDec(S_table venv, S_table tenv, A_dec d) { 

    switch(d->kind) { 

        ... 

        case A_functionDec: { 

            A_fundec f = d->u.function->head; 

            Ty_ty resultTy = S_look(tenv, f->result); 

            Ty_tyList formalTys = makeFormalTyList(tenv, f->params); 

            S_enter(venv, f->name, E_FunEntry(formalTys, resultTy)); 

            S_beginScope(venv); 

            { 

                A_fieldList l; 

                Ty_tyList t; 

                for(l = f->params, t = formalTys; l; l = l->tail, t = t->tail) 

                    S_enter(venv, l->head->name, E_VarEntry(t->head)); 
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            transExp(venv, tenv, d->u.function->body); 

            S_endScope(venv); 

            break; 

        } 

    } 

} 

This implementation is simplified and handles only single functions with a 

result, not handling recursive functions or errors like undeclared type 

identifiers. It constructs a FunEntry for the function, enters formal 

parameters into the value environment, processes the body, and then 

discards the formal parameters from the environment. 

Recursive Declarations 

For mutually recursive types or functions, headers are first entered into the 

environment and then bodies are processed using these headers. Headers for 

types are entered as Ty_Name types with empty bindings: 

S_enter(tenv, name, Ty_Name(name, NULL)); 

Subsequently, transTy stops at Ty_Name types to prevent errors when 

looking up types. Illegal cycles in mutually recursive type declarations 

should be detected by the type-checker. Mutually recursive functions are 

handled similarly, gathering information about headers in the first pass and 

processing bodies in the second pass. 

4.5 ATTRIBUTE GRAMMARS 

In syntax-directed semantics, attributes are associated directly with the 

grammar symbols of the language, including terminals and nonterminals. If 

X is a grammar symbol and a is an attribute associated with X, we denote 

the value of an associated with X as X.a. This notation is akin to a record 

field designator in Pascal or a structure member operation in C. Typically, 

attributes are calculated and stored in the nodes of a syntax tree using record 

fields or structure members. 

For a collection of attributes a1, ..., an, the principle of syntax-directed 

semantics states that for each grammar rule X₀ → X₁X₂...Xₙ (where X₀ is a 

nonterminal and the other Xᵢ are arbitrary symbols), the values of the 

attributes Xᵢ.a are related to the values of the attributes of the other symbols 

in the rule. If the same symbol Xᵢ appears multiple times in the rule, each 

occurrence must be distinguished from the others by suitable subscripting 

to differentiate their attribute values. 

Each relationship is specified by an attribute equation or semantic rule of 

the form Xᵢ.a = fᵢⱼ(X₀.a, X₁.a, ..., Xₖ.a), where fᵢⱼ is a mathematical function 

of its arguments. An attribute grammar for the attributes a1, ..., an consists 

of all such equations for all the grammar rules of the language. 
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While attribute grammars can seem complex, the functions fᵢⱼ are usually 

quite simple in practice. Attributes typically depend on only a few other 

attributes, allowing them to be separated into small, independent sets of 

interdependent attributes, and attribute grammars can be written separately 

for each set. 

Attribute grammars are often presented in tabular form, with each grammar 

rule listed along with the set of attribute equations or semantic rules 

associated with that rule. 

The given grammar describes the syntax of unsigned numbers, where each 

number is composed of digits (0-9). The grammar has two nonterminals: 

number and digit. Each number has an attribute val representing its 

numerical value. 

1. For digits, the value is directly computable from the digit itself. For 

example, the attribute equation digit.val = 0 represents the value of 

digit 0. 

2. For numbers, if a number consists of a single digit, its value is simply 

the value of that digit. This is represented by the equation number.val 

= digit.val. 

3. If a number consists of more than one digit, its value is computed by 

shifting the value of the leftmost digit one decimal place to the left 

and adding the value of the rightmost digit. For example, for the 

number 34, the value is calculated as 3 * 10 + 4. This is represented 

by the equation number.val = number2.val * 10 + digit.val, where 

number2 represents the leftmost digit. 

These equations define the relationship between the syntax of numbers and 

their semantic value. They are used to compute the value of a number during 

semantic analysis, typically by traversing a parse tree of the expression. 

The attribute grammar for the val attribute, which shows how the value of 

a number is computed based on its digits. 

In summary, the attribute grammar provides a way to compute the 

numerical value of numbers based on their syntax, enabling semantic 

analysis to be performed on arithmetic expressions. 
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The given attribute grammar defines a dtype attribute for variable 

declarations in a C-like syntax, where variables can be of type int or float. 

The dtype attribute represents the data type of the variables. Here's a 

summary of the attribute grammar: 

1. The dtype attribute of the nonterminal type is determined by the token 

it represents (int or float), corresponding to the set {integer, real}. 

2. For variable lists (var-list), each identifier (id) in the list has the same 

dtype as the entire list, as per the equations associated with var-list. 

3. The dtype of the entire declaration (decl) is the dtype of the var-list, 

as per the equation associated with the grammar rule for decl. 

4. There is no equation involving the dtype of the nonterminal decl, 

indicating that a declaration need not have a dtype specified. 

The attribute equations can be applied to a parse tree to compute the dtype 

attribute for each identifier in a variable declaration. 

In cases where the grammar allows syntactically correct but semantically 

erroneous combinations (e.g., 1890), an additional error value is needed to 

handle such cases. This can be done using conditional expressions in the 

attribute equations to handle error conditions appropriately. 

Overall, the attribute grammar provides a way to determine the data type of 
variables in a C-like syntax, enabling semantic analysis of variable 
declarations. 
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4.5.1 Simplifications and Extensions to Attribute Grammars 

The use of an if-then-else expression in attribute equations expands the 
range of expressions that can be used, allowing for more flexibility in 
defining attribute values. This enhances the metalanguage for attribute 
grammars, which is the set of expressions allowed in attribute equations. A 
clear and expressive metalanguage is essential to avoid confusion and to 
facilitate the translation of attribute equations into working code for a 
semantic analyzer. 

In addition to arithmetic and logical expressions, the metalanguage may 
include other types of expressions, such as if-then-else expressions, and 
occasionally case or switch expressions. These features make the 
metalanguage closely resemble an actual programming language, which is 
beneficial when translating attribute equations into executable code. 

Another useful feature is the ability to use functions in attribute equations. 
Functions like numval(D) can be used to simplify attribute equations, 
especially when dealing with multiple similar cases. The definition of these 
functions needs to be provided separately, but they can significantly 
improve the readability and conciseness of attribute equations. 

It's also mentioned that an ambiguous, but simpler, form of the original 
grammar can be used in attribute grammars, as long as the ambiguity has 
been resolved by the parser. This allows for more straightforward attribute 
definitions, without introducing ambiguity in the resulting attributes. 

4.5.2 Algorithms for Attribute Computation 

To implement an attribute grammar in a compiler, the attribute equations 
are translated into computation rules. Each attribute equation assigns the 
value of a functional expression on the right-hand side to the attribute on 
the left-hand side. For this assignment to succeed, the values of all attributes 
used in the expression must already exist. 

In the specification of attribute grammars, the order in which the equations 
are written doesn't affect their validity, but in implementation, an order for 
evaluating and assigning attributes must be determined. This order is 
constrained by the dependencies between attributes, which are made 
explicit using dependency graphs. Dependency graphs represent the order 
constraints on attribute computation. 

Each grammar rule choice in an attribute grammar has an associated 
dependency graph. The graph has a node for each attribute of each symbol 
in the rule, and there is an edge from each attribute on the right-hand side 
of an equation to the attribute on the left-hand side, representing the 
dependency. The dependency graph for a legal string in the language is the 
union of the dependency graphs for each grammar rule choice along the 
parse tree of the string. 

When drawing dependency graphs, nodes for each symbol are grouped 

together to reflect the structured dependencies around a parse tree. For 

example, in the attribute grammar for numbers, each symbol has a single 
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"number → number, digit" reflects the dependency of "number.val" on 

"number2.val" and "digit.val" in the equation "number.val = number2.val * 

10 + digit.val" 

4.5.3 The Dependence of Attribute Computation on the Syntax 

The properties of attributes in an attribute grammar are closely tied to the 

structure of the grammar itself. Changes to the grammar that don't affect the 

legal strings of the language can significantly impact the computation of 

attributes, making it either simpler or more complex. 

For example, let's consider the grammar for simple declarations: 

decl → type var-list 

type → int float 

var-list → id, var-list | id 

In this grammar, the dtype attribute is inherited. However, if we modify the 

grammar slightly as follows: 

decl → var-list id 

var-list → var-list id, | type 

type → int | float 

The language accepted by the grammar remains the same, but now the dtype 

attribute becomes synthesized. The corresponding attribute grammar is as 

follows: 

Grammar Rule                             Semantic Rules 

decl → var-list id                       id.dtype = var-list.dtype 

var-list → var-list id, | type           var-list.dtype = var-list2.dtype | 

type.dtype 

type → int | float                       type.dtype = integer | real 

This change affects how the dtype attribute is computed. In the new 

grammar, dtype is computed bottom-up (synthesized) rather than top-down 

(inherited). The parse tree for the string "float x, y" with attribute values and 

dependencies is shown in Figure below. Note that while it may appear that 

there are inherited attributes in the figure, these dependencies are actually 

to leaves in the parse tree and can be achieved by operations at the 

appropriate parent nodes, so they are not considered true inheritances  
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Indeed, while it is theoretically possible to modify a grammar to change 

inherited attributes into synthesized attributes, this approach can often lead 

to more complex and less understandable grammars and semantic rules. As 

a result, it is generally not recommended as a solution for computing 

inherited attributes. 

However, if the computation of attributes in a grammar becomes overly 

complex or difficult, it may indicate that the grammar itself is not well-

suited for attribute computation. In such cases, it may be worthwhile to 

consider modifying the grammar to make the attribute computation more 

straightforward and manageable. 

4.6 SUMMARY 

The chapter discusses attribute grammars, which associate attributes with 

grammar symbols and use rules to compute these attributes. It explains how 

attributes are related to the syntax of a language and how they can be used 

to derive meaning from the structure of the language. It introduces the 

concept of a metalanguage for writing attribute equations, which includes 

arithmetic, logical expressions, and if-then-else statements. The chapter 

also discusses the use of functions in attribute equations and how they can 

simplify the specification of attributes. 

Dependency graphs are introduced as a way to represent the dependencies 

between attributes in a grammar. These graphs help determine the order in 

which attributes should be computed to ensure that all dependencies are 

met. The chapter also discusses how modifications to a grammar can affect 

the computation of attributes. While it is possible to change a grammar to 

turn inherited attributes into synthesized attributes, this can often lead to 

more complex grammars. It suggests that if attribute computation becomes 

overly complex, it may be a sign that the grammar needs to be revised for 

better attribute computation. 

4.7 REVIEW QUESTIONS 

1. How are attributes related to the syntax of a language, and how are 

they used to derive meaning from the language's structure? 

2. What is a metalanguage in the context of attribute grammars, and what 

types of expressions are typically allowed in a metalanguage? 

3. How are dependency graphs used in attribute grammars, and what role 

do they play in determining the order of attribute computation? 

 
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INTERMEDIATE CODE GENERATION 

Unit Structure 

5.0     Objective 

5.1     Intermediate representations (IR) 

5.2     Three-address code generation 

5.3     Quadruples and triples 

5.4     Syntax-directed translation 

5.5     Summary 

5.6     Exercise 

5.7    References 

5.0 OBJECTIVE 

• To explore the Concept of Intermediate Code Generation  

• To understand the concept of Three Address Code. 

• To understand different types of representation of Strings. 

5.1 INTERMEDIATE REPRESENTATIONS (IR) 

In the analysis-synthesis model of a compiler, the front end translates a 

source program into an intermediate code that is independent of the 

machine, and the back end uses this intermediate code to generate the 

target code, which can be understood by the machine. The benefits of 

using machine-independent intermediate code include: 

• Enhanced Portability: Machine-independent intermediate code 

significantly improves the portability of the compiler. Without 

intermediate code, the compiler would need to translate the source 

language directly to the target machine language, requiring a full 

native compiler for each new machine. This necessitates 

modifications in the compiler according to the specific machine 

specifications. 

• Facilitated Retargeting: Intermediate code allows for easier 

adaptation of the compiler to different target machines. Instead of 

rewriting the entire compiler, only the back end needs to be adjusted 

to accommodate the new machine architecture. 

• Improved Optimization: Source code optimization becomes more 

manageable by modifying the intermediate code. This allows for 

better performance improvements in the source code. 
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The parser, a crucial component of the compiler's front end, uses a 

Context-Free Grammar (CFG) to validate the input string and produce 

output for the subsequent phase. The output can be either a parse tree or 

an abstract syntax tree. To interleave semantic analysis with the syntax 

analysis phase of the compiler, Syntax Directed Translation is employed. 

This approach integrates semantic analysis directly into the parsing 

process, ensuring that the semantic meaning of the code is analyzed as the 

syntax is being processed. 

 

Definition 

Syntax Directed Translation (SDT) enhances grammar rules to facilitate 

semantic analysis. It involves passing information through the parse tree in 

the form of attributes attached to the nodes, which can be done in a bottom-

up or top-down manner. SDT rules use: 

• Lexical values of nodes 

• Constants 

• Attributes associated with the non-terminals in their definitions 

The general approach to Syntax Directed Translation is to construct a parse 

tree or syntax tree and compute the values of attributes at the nodes by 

visiting them in a specific order. Often, this translation can be accomplished 

during parsing without the need to build an explicit tree. This allows for 

efficient and integrated semantic analysis during the parsing process.  

E -> E+T | T 

T -> T*F | F 

F -> INTLIT  

This is a grammar to syntactically validate an expression having additions 

and multiplications in it.  

E -> E+T     { E.val = E.val + T.val }   PR#1 

E -> T       { E.val = T.val }           PR#2 

T -> T*F     { T.val = T.val * F.val }   PR#3 

T -> F       { T.val = F.val }           PR#4 

F -> INTLIT  { F.val = INTLIT.lexval }   PR#5 

To understand translation rules further, consider the Syntax Directed 

Translation (SDT) augmented to the production rule [ E -> E + T ]. In this 

context, the attribute val is associated with both non-terminals E and T. 

The right-hand side of the translation rule corresponds to the attribute 

values of the right-side nodes of the production rule, and vice-versa. 

Generalizing, SDT involves augmenting rules to a Context-Free Grammar 

(CFG) by associating: 

• A set of attributes to every node of the grammar. 
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• A set of translation rules to every production rule, using attributes, 

constants, and lexical values.  

 

To evaluate translation rules, we can employ a depth-first search (DFS) 

traversal on the parse tree. This is feasible because SDT rules do not impose 

a specific order on evaluation, provided that children's attributes are 

computed before their parents' attributes in grammars where all attributes 

are synthesized. Otherwise, we would need to determine the best traversal 

strategy to evaluate all attributes in one or more passes through the parse 

tree.  

 

The diagram above illustrates how semantic analysis occurs. The flow of 

information happens bottom-up, with all children's attributes computed 

before their parents' attributes, as discussed. Right-hand side nodes are 

sometimes annotated with a subscript to distinguish between children and 

parents. 

Synthesized Attributes are attributes that depend only on the attribute values 

of children nodes. For example, in the production rule [ E -> E + T { E.val 

= E.val + T.val } ], the attribute val of node E is synthesized. If all the 

semantic attributes in an augmented grammar are synthesized, a single 
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depth-first search traversal in any order is sufficient for the semantic 

analysis phase. 

Inherited Attributes are attributes that depend on the attributes of parents 

and/or siblings. For example, in the production rule [ Ep -> E + T { Ep.val 

= E.val + T.val, T.val = Ep.val } ], where E and Ep are the same production 

symbols annotated to differentiate between parent and child, val is an 

inherited attribute corresponding to node T. 

Thus, the flow of semantic analysis for synthesized attributes follows a 

straightforward bottom-up traversal, while inherited attributes require 

careful consideration of parent and sibling nodes to compute the attribute 

values correctly. 

Advantages of Syntax Directed Translation: 

• Ease of implementation: SDT is a simple and easy-to-implement 

method for translating a programming language. It provides a clear 

and structured way to specify translation rules using grammar rules. 

• Separation of concerns: SDT separates the translation process from 

the parsing process, making it easier to modify and maintain the 

compiler. It also separates the translation concerns from the parsing 

concerns, allowing for more modular and extensible compiler 

designs. 

• Efficient code generation: SDT enables the generation of efficient 

code by optimizing the translation process. It allows for the use of 

techniques such as intermediate code generation and code 

optimization. 

Disadvantages of Syntax Directed Translation: 

• Limited expressiveness: SDT has limited expressiveness in 

comparison to other translation methods, such as attribute grammars. 

This limits the types of translations that can be performed using SDT. 

• Inflexibility: SDT can be inflexible in situations where the 

translation rules are complex and cannot be easily expressed using 

grammar rules. 

• Limited error recovery: SDT is limited in its ability to recover 

from errors during the translation process. This can result in poor error 

messages and may make it difficult to locate and fix errors in the input 

program. 
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If we generate machine code directly from source code then for n target 

machine we will have optimizers and n code generator but if we will have 

a machine-independent intermediate code, we will have only one 

optimizer. Intermediate code can be either language-specific (e.g., 

Bytecode for Java) or language. independent (three-address code). The 

following are commonly used intermediate code representations: 

1. Postfix Notation: 

• Also known as reverse Polish notation or suffix notation. 

• In the infix notation, the operator is placed between operands, 

e.g., a + b. Postfix notation positions the operator at the right 

end, as in ab +. 

• For any postfix expressions e1 and e2 with a binary 

operator (+) , applying the operator yields e1e2+. 

• Postfix notation eliminates the need for parentheses, as the 

operator’s position and arity allow unambiguous expression 

decoding. 

• In postfix notation, the operator consistently follows the 

operand. 

Example 1: The postfix representation of the expression (a + 

b) * c is : ab + c * 

 Example 2: The postfix representation of the expression (a – 

b) * (c + d) + (a – b) is :   ab – cd + *ab -+ 

2. Three-Address Code: 

• A three address statement involves a maximum of three 

references, consisting of two for operands and one for the 

result. 

• A sequence of three address statements collectively forms a 

three address code. 
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• The typical form of a three address statement is expressed 

as x = y op z, where x, y, and z represent memory addresses. 

• Each variable (x, y, z) in a three address statement is 

associated with a specific memory location. 

• While a standard three address statement includes three 

references, there are instances where a statement may contain 

fewer than three references, yet it is still categorized as a three 

address statement. 

Example: The three address code for the expression a + b * c 

+ d : T1 = b * c T2 = a + T1 T3 = T2 + d; T 1 , T2 , T3 are 

temporary variables. 

There are 3 ways to represent a Three-Address Code in compiler design:  

i)  Quadruples 

ii)  Triples 

iii)  Indirect  Triples 

3. Syntax Tree: 

• A syntax tree serves as a condensed representation of a parse 

tree. 

• The operator and keyword nodes present in the parse tree 

undergo a relocation process to become part of their respective 

parent nodes in the syntax tree. the internal nodes are operators 

and child nodes are operands. 

• Creating a syntax tree involves strategically placing 

parentheses within the expression. This technique contributes 

to a more intuitive representation, making it easier to discern 

the sequence in which operands should be processed. 

• The syntax tree not only condenses the parse tree but also 

offers an improved visual representation of the program’s 

syntactic structure, 

Example: x = (a + b * c) / (a – b * c) 
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Advantages of Intermediate Code Generation: 

• Easier to implement: Intermediate code generation can simplify 

the code generation process by reducing the complexity of the input 

code, making it easier to implement. 

• Facilitates code optimization: Intermediate code generation can 

enable the use of various code optimization techniques, leading to 

improved performance and efficiency of the generated code. 

• Platform independence: Intermediate code is platform-

independent, meaning that it can be translated into machine code or 

bytecode for any platform. 

• Code reuse: Intermediate code can be reused in the future to 

generate code for other platforms or languages. 

• Easier debugging: Intermediate code can be easier to debug than 

machine code or bytecode, as it is closer to the original source code. 

Disadvantages of Intermediate Code Generation: 

• Increased compilation time: Intermediate code generation can 

significantly increase the compilation time, making it less suitable 

for real-time or time-critical applications. 

• Additional memory usage: Intermediate code generation requires 

additional memory to store the intermediate representation, which 

can be a concern for memory-limited systems. 

• Increased complexity: Intermediate code generation can increase 

the complexity of the compiler design, making it harder to 

implement and maintain. 

• Reduced performance: The process of generating intermediate 

code can result in code that executes slower than code generated 

directly from the source code. 

5.2 THREE ADDRESS CODE IN COMPILER :- 

Three-address code is a type of intermediate code that is easy to generate 

and can be easily converted to machine code. It uses at most three addresses 

and one operator to represent an expression, with the computed value stored 

in temporary variables generated by the compiler. The compiler determines 

the order of operations given by the three-address code. 

Three-Address Code is Used in Compiler Applications: 

• Optimization: Three-address code is often used as an intermediate 

representation during the optimization phases of compilation. It 

allows the compiler to analyze the code and perform optimizations 

that can improve the performance of the generated code. 

• Code Generation: During the code generation phase, three-address 

code serves as an intermediate representation. This enables the 
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compiler to generate code that is specific to the target platform while 

ensuring that the generated code is correct and efficient. 

• Debugging: Three-address code can be helpful in debugging the code 

generated by the compiler. Since it is a low-level language, it is often 

easier to read and understand than the final machine code. Developers 

can use three-address code to trace the execution of the program and 

identify errors or issues. 

• Language Translation: Three-address code can also facilitate 

translating code from one programming language to another. By 

translating code to a common intermediate representation, it becomes 

easier to convert the code to multiple target languages. 

General Representation 

 a = b op c  

Where a, b or c represents operands like names, constants or compiler 

generated temporaries and op represents the operator  

Example-1: Convert the expression a * – (b + c) into three address code. 

 

Example-2: Write three address code for following code 

for(i = 1; i<=10; i++) 

 { 

  a[i] = x * 5;                                        

 }  

 

5.3 QUADRUPLE AND TRIPLE 

There are 3 representations of three address code namely 

1. Quadruple 

2. Triples 

3. Indirect Triples 
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1.  Quadruple – It is a structure which consists of 4 fields namely op, 

arg1, arg2 and result. op denotes the operator and arg1 and arg2 

denotes the two operands and result is used to store the result of the 

expression.  

Advantage – 

• Easy to rearrange code for global optimization. 

• One can quickly access value of temporary variables using 

symbol table. 

 Disadvantage – 

• Contain lot of temporaries. 

• Temporary variable creation increases time and space 

complexity. 

Example – Consider expression a = b * – c + b * – c. The three address 

code is: 

t1 = uminus c   (Unary minus operation on c) 

t2 = b * t1  

t3 = uminus c (Another unary minus operation on c) 

t4 = b * t3  

t5 = t2 + t4  

a = t5  (Assignment of t5 to a) 

 

2.  Triples – This representation doesn’t make use of extra temporary 

variable to represent a single operation instead when a reference to 

another triple’s value is needed, a pointer to that triple is used. So, it 

consist of only three fields namely op, arg1 and arg2.  

 Disadvantage – 

• Temporaries are implicit and difficult to rearrange code. 

• It is difficult to optimize because optimization involves 

moving intermediate code. When a triple is moved, any other 

triple referring to it must be updated also. With help of pointer 

one can directly access symbol table entry. 
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Example – Consider expression a = b * – c + b * – c  

  

3.  Indirect Triples – This representation makes use of pointer to the 

listing of all references to computations which is made separately and 

stored. Its similar in utility as compared to quadruple representation 

but requires less space than it. Temporaries are implicit and easier to 

rearrange code.  

 Example – Consider expression a = b * – c + b * – c  

  

Question – Write quadruple, triples and indirect triples for following 

expression : (x + y) * (y + z) + (x + y + z) 

Explanation – The three address code is: 

(1) t1 = x + y 

(2) t2 = y + z 

(3) t3 = t1 * t2 

(4) t4 = t1 + z 

(5) t5 = t3 + t4 
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5.4  SYNTAX DIRECTED TRANSLATION IN COMPILER 

DESIGN 

The parser uses a Context-Free Grammar (CFG) to validate the input string 

and produce output for the next phase of the compiler. The output can be 

either a parse tree or an abstract syntax tree. To interleave semantic analysis 

with the syntax analysis phase of the compiler, we use Syntax Directed 

Translation (SDT). 

 

Conceptually, with both syntax-directed definitions and translation 

schemes, we parse the input token stream, build the parse tree, and then 

traverse the tree as needed to evaluate the semantic rules at the parse tree 

nodes. Evaluating the semantic rules may generate code, save information 

in a symbol table, issue error messages, or perform other activities. The 

translation of the token stream is the result obtained by evaluating these 

semantic rules. 
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Definition 

Syntax Directed Translation has augmented rules to the grammar that 

facilitate semantic analysis. SDT involves passing information bottom-up 

and/or top-down to the parse tree in form of attributes attached to the nodes. 

Syntax-directed translation rules use 1) lexical values of nodes, 2) constants 

& 3) attributes associated with the non-terminals in their definitions.  

The general approach to Syntax-Directed Translation is to construct a parse 

tree or syntax tree and compute the values of attributes at the nodes of the 

tree by visiting them in some order. In many cases, translation can be done 

during parsing without building an explicit tree.  

Example  

E -> E+T | T 

T -> T*F | F 

F -> INTLIT  

  

E -> E+T     { E.val = E.val + T.val }   PR#1 

E -> T       { E.val = T.val }           PR#2 

T -> T*F     { T.val = T.val * F.val }   PR#3 

T -> F       { T.val = F.val }           PR#4 

F -> INTLIT  { F.val = INTLIT.lexval }   PR#5 

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse 

tree corresponding to S would be  

 

To evaluate translation rules, we can employ one depth-first search traversal 

on the parse tree. This is possible only because SDT rules don’t impose any 

specific order on evaluation until children’s attributes are computed before 

parents for a grammar having all synthesized attributes. Otherwise, we 

would have to figure out the best-suited plan to traverse through the parse 

tree and evaluate all the attributes in one or more traversals. For better 

understanding, we will move bottom-up in the left to right fashion for 

computing the translation rules of our example.  
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Intermediate  

Code Generation 

 

The above diagram shows how semantic analysis could happen. The flow 

of information happens bottom-up and all the children’s attributes are 

computed before parents, as discussed above. Right-hand side nodes are 

sometimes annotated with subscript 1 to distinguish between children and 

parents.  

5.5 SUMMARY 

This chapter mainly focuses on Representation of Strings using Three 

Address Code, Syntax Directed Translation and Semantic Analysis 

5.6 EXERCISE 

Q. 1 Write a short note on Three Address Code. 

Q. 2  What do you mean by Semantic Analysis? 

Q. 3 Define Quadruple.  

Q. 4 What are advantages of Syntax Directed Translation ? 

5.7  REFERENCES 

• Compilers: Principles, Techniques, and Tools" by Alfred V. Aho, 

Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman 2nd Edition, 

Pearson Publication, 2006 ISBN-13: 978- 0321486813 

• Modern Compiler Implementation in C" by Andrew W. Appel, 3rd 

Edition, Cambridge University Press, 2020, ISBN-13: 978-

1108426631 
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Publisher: McGraw-Hill Education, 2017, ISBN-13: 978-

9339204608 

• https://www.geeksforgeeks.org/syntax-directed-translation-in-

compiler-design/ 

• https://www.geeksforgeeks.org/three-address-code-compiler/ 
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6 
CODE OPTIMIZATION  

Unit Structure 

6.0 Objectives 

6.1  Introduction 

6.2  Overview of Optimization 

 6.2.1 Code Optimization 

 6.2.2 Machine Dependent Optimization 

 6.2.3 Machine Independent Optimization 

6.3  Loop Optimization Techniques 

6.4  Data Flow Analysis 

6.5  Code Generation Techniques 

 6.5.1 Target Machine description 

 6.5.2 Overview of Assembly process 

 6.5.3 Register Allocation 

 6.5.4 Instruction Selection 

6.6  Summary  

6.7 Exercise 

6.8  References 

6.0 OBJECTIVES  

• To Examine evaluation time required by compiler to execute program. 

• Outline program Readability and Maintainability 

• To apply optimization techniques for code improvement. 

• To construct the basic architecture of machine model. 

• Formulate the need of register and memory allocation needed for 

compiler design. 

6.1 INTRODUCTION 

When we are writing program it is nothing but some kind of specifications 

which we are informing to compiler to do computation. After reading these 

specifications compiler will generate object code which will have some 

other specifications. Depending on the input there are many object 

programs which will follow some specifications. Some of the specifications 

may take lot of time to execute or they may take more memory. Therefore, 

there is a need to optimize code so that one can save memory or execution 

time. 
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6.2  OVERVIEW OF OPTIMIZATION 

Code optimization which is also known as code improvement in compiler 

design is a critical phase that focuses on improving the performance and 

efficiency of the generated machine code without altering its functionality. 

This phase sits strategically after the initial parsing and semantic analysis 

stages, where the high-level code is converted into an intermediate 

representation (IR), and before the final code generation phase, where the 

IR is translated into machine code specific to the target architecture. The 

goal of code optimization is to produce a faster, more efficient program that 

consumes fewer resources, such as CPU time, memory, power etc. 

This phase is optional and it is completely depending on compiler whether 

to execute program via this phase or omit this phase. Here code is 

transformed into some other form which may be easy to evaluate or process. 

Code optimization encompasses a broad spectrum of techniques and 

transformation, aimed at enhancing the performance and efficiency of code 

without altering its intended functionality. This process, crucial in compiler 

design and software development, involves multiple aspects that 

collectively contribute to the generation of optimized code. There are three 

criteria which can be considered as optimizing transformations: 

1. Does the optimization capture most of potential improvement? 

2. Does the optimization maintain the original meaning of program? 

3. Does optimization reduce time or space of program? 

To create an efficient target program a programmer needs more than an 

optimizing compiler which can take care of all above aspects. Following are 

the options available to programmer and compiler designer for creating 

efficient target program. 

1. Criteria for code improving transformation 

The transformation must preserve the meaning of program. It should not 

change the output by a program. Sometimes after optimization the program 

may slow down slightly so it should maintain its average speed. 

2. Getting better performance 

   

Figure 1 : representation of compiler  
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Code Optimization Here in this figure the Source program is submitted to front end of compiler 

where user can have freedom of using different algorithms, use of different 

loops like while, do-while , for and check the complexity of code. 

While generating IC compiler can work on improving loops and memory 

address associated with variables. Compiler can be responsible to make 

good use of machine resources. Example. Keeping the most heavily used 

variable in register can cut down running time of program. In case of C 

program there is a provision of using storage class so that one can treat a 

memory location as register to speed up the execution process. 

3. The organization of an optimizing compiler 

 

Figure 2: organizing optimizing compiler  

Organizing an optimizing compiler involves structuring its components and 

workflow in a manner that efficiently processes source code to produce 

optimized machine code. An optimizing compiler typically goes through 

several stages, each responsible for different aspects of the translation and 

optimization process. The organization of these components is crucial for 

achieving effective optimization while maintaining the correctness of the 

compiled program. Various techniques are needed to transform program 

into a better version. 

6.2.1 Code Optimization 

Code optimization in the context of compiler design refers to the phase 

where the compiler attempts to improve the intermediate or final code it 

generates, making it run faster, consume less memory, or otherwise use 

system resources more efficiently without changing the semantics of the 

program. This optimization can occur at various stages of the compilation 

process and can target different aspects of the program's performance. 

Impact of Code Optimization 

Execution Speed: Perhaps the most sought-after result of code 

optimization is faster program execution. This can be achieved by 

eliminating unnecessary operations, improving the use of CPU caches, or 

reducing the overhead of function calls, among other techniques. 
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Resource Usage: Efficiently using memory and other system resources can 

not only speed up a program but also reduce its operational costs, especially 

in large-scale or embedded systems. 

Energy Consumption: For mobile devices and data centers, optimized 

code can lead to significant savings in energy consumption, which is both 

economically beneficial and environmentally friendly. 

User Experience: For end-users, optimizations can lead to more responsive 

applications and longer battery life on mobile devices, directly impacting 

the perceived quality of the software. 

 6.2.2 Machine Dependent Optimization 

Machine-dependent as a name indicates that optimization is completely 

depend on machine model or architecture of machine and its components 

used like register, addressing modes etc. i.e. optimization in compiler design 

refers to the phase or set of transformations that specifically target the 

characteristics and features of the underlying hardware platform for which 

the code is being compiled. Unlike machine-independent optimizations that 

focus on language-level or algorithmic improvements applicable across 

different platforms, machine-dependent optimizations take into account the 

specifics of the target architecture to enhance performance. These 

optimizations can significantly impact the efficiency and speed of the 

compiled program by leveraging the unique capabilities and avoiding the 

specific limitations of the hardware. 

Following are the examples of machine dependent optimization techniques: 

a) Register Allocation 

One of the primary machine-dependent optimizations is register allocation. 

Registers are the fastest storage available to a CPU, and efficient use of 

registers can significantly speed up a program. The compiler decides which 

variables or intermediate values should be kept in these limited but fast 

storage locations. Advanced register allocation algorithms, like graph 

coloring, are used to make these decisions effectively. 

Example: 

Consider the program fragment in high level language 

int a = 5; 

int b = 10; 

int c = a + b; 

int d = c * 2; 
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Code Optimization Without optimization After optimization 

MOV [a], 5  ; Move 5 into memory 

location 'a' 

MOV [b], 10  ; Move 10 into 

memory location 'b' 

MOV R1, [a] ; Load 'a' from 

memory into register R1 

MOV R2, [b];  

ADD R1, R2        

MOV [c], R1 ; Store result from R1 

to 'c' 

MOV R3, [c]; Load 'c' from 

memory R3 

SHL R3, 1 ; shift left by 1 bit 

MOV [d], R3; Store result from R3 

to memory location 'd' 

MOV R1, 5        ; Move 5 directly 

into register R1 (for 'a') 

MOV R2, 10       ; Move 10 directly 

into register R2 (for 'b') 

ADD R1, R2       ; Add R1 and R2, 

result in R1 ('c' = 'a' + 'b') 

SHL R1, 1        ; Multiply R1 by 2 

(shift left by 1 bit, for 'd') 

Without register allocation optimization, the compiler might naively store 

all variables in memory and load them into registers only when an operation 

is performed. Without register allocation optimization, the compiler might 

naively store all variables in memory and load them into registers only when 

an operation is performed. 

Advantages : 

• Fast accessible storage 

• Allows computations to be performed on them 

• Deterministic behavior 

• Reduce memory traffic 

• Reduces overall computation time 

Disadvantages : 

• Registers are generally available in small amount (BC DE HL in case of 

8085 micro processor) 

• Register sizes are fixed and it varies from one processor to another 

• Registers are complicated 

• Need to save and restore changes during context switch and procedure 

calls 
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b) Instruction Selection 

Different CPUs support different sets of instructions, with some instructions 

being more efficient than others for certain tasks. Instruction selection 

optimization involves choosing the most efficient machine instructions to 

perform operations represented in the intermediate code. This might include 

using specialized instructions for certain mathematical operations, memory 

access patterns, or data manipulation tasks that are unique to the processor 

architecture.  

Instruction selection is a crucial machine-dependent optimization process 

in compilers, where the compiler chooses the most efficient machine 

instructions to implement high-level language constructs. This optimization 

ensures that the generated machine code makes optimal use of the target 

architecture's instruction set and features. Example : 

Consider program fragment 

int a = 1; 

int b = 1; 

int c = a + b; 

Before optimization After optimization 

MOV eax, 5      ; Move 5 into 

register eax (a) 

MOV ebx, 10     ; Move 10 into 

register ebx (b) 

ADD eax, ebx    ; Add a and b, 

result in eax (c) 

MOV eax, 5      ; Move 5 into 

register eax (a) 

ADD eax, 10     ; Add 10 directly to 

eax (b), result in eax (c) 

 

With instruction selection optimization, the compiler can leverage the 

specific features of the x86 architecture to produce more efficient code. 

c) Instruction Scheduling 

The order in which instructions are executed can greatly affect performance, 

especially on modern CPUs with complex pipelines and execution units 

capable of parallel instruction execution. Instruction scheduling rearranges 

the order of instructions to avoid pipeline stalls (waiting states) and to make 

efficient use of instruction-level parallelism. This optimization must 

consider the CPU's specific pipeline architecture and execution 

dependencies. 

The pipelined architecture allows multiple instructions to be executed 

simultaneously, with different stages of each instruction executed 

concurrently in different pipeline stages. 
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Code Optimization Instruction scheduling aims to reorder instructions to minimize 

dependencies and stalls, ensuring that the pipeline operates at maximum 

throughput. 

The compiler may analyze the dependency between instructions and reorder 

them to minimize pipeline stalls caused by data hazards or resource 

conflicts. 

In the optimized version, the instructions are already in a sequence where 

the output of one instruction is not needed immediately by the next, 

minimizing stalls and maximizing the pipeline's utilization. 

6.2.3 Machine Independent Optimization 

Machine-independent optimization in compiler design refers to a set of 

optimizations that can be applied to source code regardless of the target 

machine architecture. These optimizations focus on improving the 

efficiency and performance of programs at a high-level language 

representation, such as intermediate code or abstract syntax trees, without 

considering specific hardware details. 

Example 

a) Elimination of common sub expression 

Common Subexpression Elimination (CSE) is a machine-independent 

optimization technique that identifies redundant computations within a 

program and eliminates them to improve performance. It involves 

identifying expressions that are computed multiple times within a program 

and replacing them with a single computation, storing the result in a 

temporary variable. 

Consider the statement cost=2*rate+(start-finish-100)+(start-finish+rate) 

Three address code for the above statement is 

T1=2*rate 

T2=start-finish 

T3=T2-100 

T4=start-finish 

T5=T4+rate 

T6=T1+T4 

T7=T6+T5 

Cost=T7 

Here start-finish is repeated so we can eliminate one of the statement and 

can optimize the code as follows 
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T1=2*rate 

T2=start-finish 

T3=T2-100 

T4=T3+T1 

T5=T2+rate 

cost=T5+T4 

b) Constant folding 

Constant folding is a machine-independent optimization technique where 

the compiler evaluates constant expressions at compile time instead of 

deferring their evaluation until runtime. It involves replacing expressions 

composed entirely of constants with their computed values. 

Example: 

Consider statement int a = 10 + 5; 

In this code, the expression 10 + 5 is a constant expression because both 

operands are literals. During compilation, constant folding can be applied 

to evaluate the expression 10 + 5 and replace it with its computed value. 

After constant folding, the code becomes: 

int a = 15; 

c) Dead code elimination 

A piece of code is said to be dead if the results evaluating the code are not 

used in the program , such code can be eliminated safely. It helps in 

reducing the size of the compiled program and improving runtime 

efficiency by eliminating unnecessary computations and memory 

allocations. 

Example: 

A=25 

{ 

Lines of code 

 

A=b+c 

 

Lines 

} 

Here , 

A=25 is dead since its value is 

updated so we can improve the 

code as follows 

{ 

Lines of code 

 

A=b+c 

 

Lines 

} 

A=25 
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{ 

    int x = 5; 

    int y = 10; 

     

    if (x < y) { 

        printf("x is less than y\n"); 

    } else { 

        printf("x is greater than or 

equal to y\n"); 

    } 

     

    } 

Here x and y are initialized so 

always x is less than y will be 

executed and else part will never 

going to execute. We can eliminate 

the same and code will become 

{ 

    int x = 5; 

    int y = 10; 

     

    if (x < y) { 

        printf("x is less than y\n"); 

    } 

} 

 

d) Usage of high operators over low operators 

Benefits of Using Addition Instead of Multiplication: 

Efficiency: Addition operations are generally faster than multiplication 

operations, especially on processors with limited hardware resources. 

Simplicity: The code becomes more concise and easier to understand by 

replacing multiple addition operations with a single multiplication. 

Reduced Overhead: The compiler may optimize the multiplication 

operation further, depending on the target architecture, resulting in reduced 

overhead. 

Similarly, Division operations are generally faster than subtraction 

operations on modern processors. Processors are optimized to perform 

division efficiently, especially for division by constant values. 

6.3 LOOP OPTIMIZATION TECHNIQUES 

Before we understand loop optimization techniques let us understand what 

is loop in programming language. Loops are nothing but one form of control 

structure which allows block of statements to be executed until certain 

condition is fulfilled. Loop consists of path from top to bottom. Here top of 

loop is known as header(H) and path (P) specifies the route which one needs 

to follow till certain conditions are fulfilled denoting as loop(H, P). 

Optimizing loops is particularly important in compilation, since loops (inner 

loops) account for much of the executions times of many programs. Since 

tail-recursive functions are usually also turned into loops, the importance of 

loop optimizations is further magnified. 



   

 
116 

Principles of  

Compiler Design 
Loop is very important place when optimization is necessary, the inner 

loops where program tend to spend more time. The running time of program 

may be improved if we decrease the number of instructions in an inner loop. 

Loop Optimization is the process of increasing execution speed and 

reducing the overheads associated with loops. It plays an important role in 

improving cache performance and making effective use of parallel 

processing capabilities. Most execution time of a scientific program is spent 

on loops.  

1) Code Motion (Frequency Reduction) 

Here, the amount of code in the loop is decreased. A statement or 

expression, which can be moved outside the loop body without affecting the 

semantics of the program, is moved outside the loop.  

Example: 

Before optimization After optimization 

while(i<100) 

{ 

 a = Sin(x)/Cos(x) + i; 

 i++; 

} 

t = Sin(x)/Cos(x); 

while(i<100) 

{ 

 a = t + i; 

 i++; 

} 

Here in this example always value of sin(x) and cox(x) will be same so 

instead of keeping statement inside loop we can move it outside the loop 

i.e. beginning loop to reduce the time required to compute. 

2) Induction Variable Elimination 

If the value of any variable in any loop gets changed every time, then such 

a variable is known as an induction variable. With each iteration, its value 

either gets incremented or decremented by some constant value.  

3) Loop Unrolling 

Loop unrolling is a loop transformation technique that helps to optimize the 

execution time of a program. We basically remove or reduce iterations. 

Loop unrolling increases the program’s speed by eliminating loop control 

instruction and loop test instructions. 

Before optimization After optimization 

I=1 

While(I<=100) 

I=1 

While(I<=100) 

https://www.geeksforgeeks.org/loop-unrolling/
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X[i]=0; 

I++; 

} 

 

{ 

X[i]=0; 

I++; 

X[i]=0; 

I++ 

 

} 

 

Here, i<=100 will be performed 100 times but if the body of loop is replaced 

then number of times this test is performed could be reduced. Unrolling 

makes 2 copies of body so that work can be reduced to 50%. 

4) Loop jamming 

Loop jamming is combining two or more loops in a single loop. It reduces 

the time taken to compile the many loops.  

Before optimization After optimization 

for(int i=0; i<5; i++) 

    a = i + 5; 

for(int i=0; i<5; i++) 

    b = i + 10; 

for(int i=0; i<5; i++) 

{ 

 a = i + 5; 

 b = i + 10; 

} 

Here, we merge the bodies of loop. 

6.4 DATA FLOW ANALYSIS TECHNIQUES 

As a name indicates this technique involves the flow of data in control flow 

graph, i.e. the study helps us to determine the information regarding the 

definition and for what purpose data is used in the program. This method 

helps in optimization as flow of the data helps to understand it’s movement. 

One can trace the value or variable and can find out how the variable is 

changing its value based on instructions written. It is very similar to add a 

watch on variables in ‘C’ Program and with the help of F7 key one can find 

or trace the variable so that flow and hence logical error can be traced.  

In order to implement technique, we can design graph in the form of 

flowchart representing node as program statements and edges as flow 

between statements. One can use rules and regulations to compute values of 

each expression and variables associated with them. 
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Following is a list of some of the common types of data flow analysis  

1. Reaching Definitions Analysis:   

 As the name indicated reaching definition implies whether a variable 

or expression can be reached with the help of some logical 

programming. If a particular variable is unable to reach it implies we 

can remove that variable as it is never going to be the part of program. 

Example 

A definition D is reaches a point x if there is path from D to x in which D is 

not killed, i.e., not redefined.  

X=0              this is block 1 where X is initialized to 0 

X=X+7             This is block 2 where value of X is updated 

Y=X+7         this is block 3 here value from block 1 is not accessible. 

 

2. Live Variable Analysis: This analysis find the points in program 

where variable is holding some value which may come from some 

computing operations or it is taking part in some computation. If it is not 

taking any part of data movement then one can safely eliminate. 

Example : A variable is said to be live at some point p if from p to end the 

variable is used before it is redefined else it becomes dead.                                       
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 This analysis can be used to find whether a particular expression is 

taking part in evaluating expression which helps in eliminating 

common sub expression. 

4. Constant Propagation Analysis:  

 Constants play a vital role in programming and hence to keep a track 

of such constants and optimize the work we can use this techniques. 

We can track values of constants and find point in the code where they 

are used. 

6.5 CODE GENERATION TECHNIQUES 

Code generation techniques can be the final stage of compiler activity. The 

code generation of high level language is nothing but the object code of that 

language. For example in case of JAVA we get .class files based on number 

of classes present in the program. The .class files are nothing but object 

files. Code generation  process is very tricky due to its complex operations 

as compiler has to deal with various forms of instructions based on 

addressing modes. The architectural issues may be discussed with respect 

to registers and accumulators. Selecting proper instructions is also an 

important feature to optimize code. 

 They should have following properties: 

a. It should preserve the meaning of original problem. 

b. It should be efficient with respect to CPU and memory management. 

6.5.1 Target Machine description 

Target code generation is one of the important aspect in converting 

assembly level language to optimized code into machine understandable 

format. Target code can be machine readable code or assembly code or X86 

instruction format. Here the machine will read each and every line and it 

will convert into its corresponding numerical opcode format and the 

conversion is always in 1:1 mapping. Like each instruction in X86 format 

will have corresponding one code in numerical code format.  

While generating code on target machine one should look for following 

properties of machine in the form of its design or architecture as most of 

time instruction will be using registers as they are the fast in performing 

many operations. As registers are the internal part of CPU they are limited 

in number and size as well.  

1) Instruction Set 

Every X86 supporting languages will have their own design and hence they 

are machine dependent and hence their instructions may vary depending 

upon what kind of bits they use. Like 8 bit, 16 bit and so on. Variety of 

instruction types are available like arithmetic, logical, conditional, data or 
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block transfer etc. Some instructions are like increment and decrement 

which allows to increase the data of block by 1 or decrease data of block  

by 1. 

Following table shows some of the instruction based on category. 

Format of operations Examples of instructions 

Conditional JZ (jump if zero) 

JC (jump if carry) 

Arithmetic ADD (adds two numbers) 

SUB (Subtracts two numbers) 

Block transfer/ Data transfer MOV (moves data from source to 

destination) 

LDA (load data) 

Table 1 : examples of operations 

Here when we perform any operation always data will come from 

accumulator and result will be stored in accumulator. 

2) Addressing Modes 

Addressing modes define in what way data will come to system and how it 

will get processed by the system. Following are the different modes of 

addressing. 

Addressing mode Examples  

Register to register MOV A, B 

Here A and B are registers as they 

are oprands. 

Immediate  MVI A,05H 

Here number 5 will be transferred 

to register. 

Direct  LDA A,1000H 

Here 1000 is a memory address. 

Content from memory address 

1000 is extracted and stored in 

register A 

 

Table 2: Sample of addressing modes 

 



 

 
121 

 

Code Optimization 3) Instruction Formats 

The format of instruction will talk about how one should write instruction 

while coding. General format is as follows: 

[Label] Opcode   [operand/s] 

Here label can be optional and used only if there are conditional statements 

written. 

Operands can be optional as one can use it for auto increment and auto 

decrement purpose. 

Maximum 2 operands can be specified. 

6.5.2 Overview of Assembly Process 

The process of converting mnemonics into low level language is nothing 

but assembly process in which system performs following operations: 

1) Scan instruction and create tokens based on opcode , operands etc. 

2) Identify symbols/variables and enter them in symbol table. 

3) Identify literals if any and put them into literal table. 

4) Keep updating location counter. 

5) Allocate memory to variables 

6) Scan instruction and check whether it is there in opcode table. Check 

syntax by mapping character by character. If any error is found reject. 

7) Perform semantic check on instruction. 

8) Extract numerical opcode and extract memory address of variable 

defined. 

9) Generate instruction. 

Example: 

Consider following code 

LC Instruction 

. 

. 

. 

13 

. 

. 

. 

25 

. 

. 

. 

A DS 1 

. 

. 

. 

L1: ADD N 
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Assume that there is a declaration statement on line number 13 stating that 

declare a block A. Later on line number 25 says that Add variable N. 

Assembler will create tokens as  

A DS 1 

As soon as it detects variable A it will be added in symbol table. When it 

fetches instruction from line 25 it will identify there is an instruction ADD. 

It will verify the same with the help of Opcode table and extract 

corresponding code and generate instruction. 

6.6 SUMMARY 

Code optimization is a critical process for enhancing the efficiency of 

software. It involves a careful trade-off between improving performance 

and maintaining other important attributes such as readability and 

maintainability. Effective optimization requires a deep understanding of 

both the software being written and the hardware on which it will run. It's 

also a cooperative process between the programmer and the compiler, each 

bringing its strengths to produce the most efficient code possible while 

preserving the program's semantics. 

6.7  EXERCISE 

1. Justify importance of optimization in compiler. 

2. Demonstrate any two techniques of machine independent 

optimization. 

3. Elaborate loop unrolling and loop jamming techniques. 

4. Compare machine dependent and machine independent optimization 

techniques. 
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RUNTIME ENVIRONMENTS 

Unit Structure 

7.0  Objective 

7.1  Introduction 

7.2   Activation Records and Stack Management 

 7.2.1   Introduction to Activation Records 

  7.2.1.1  Structure of an activation record 

  7.2.1.2  Role in function/procedure call management 

 7.2.2   Stack Management 

  7.2.2.1  Call stack and its significance  

  7.2.2.2  Stack frame allocation and deallocation 

  7.2.2.3  Stack pointer and frame pointer management 

7.3   Heap Memory Management 

 7.3.1 Difference between stack and heap memory 

 7.3.2  Dynamic Memory Allocation 

  7.3.2.1 Allocation and deallocation techniques 
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7.0 OBJECTIVE 

The objectives of this study material are to provide a foundational 

understanding of activation records, stack management, and heap memory 

management, including dynamic memory allocation and garbage collection 

techniques. Learners will master call and return mechanisms, such as 

parameter passing and function call conventions, and gain knowledge of 

exception handling, including try-catch blocks and stack unwinding. 

Additionally, the material aims to equip learners with the skills to identify, 

report, and recover from common lexical and syntax errors using 

appropriate strategies, enhancing their problem-solving abilities in compiler 

design. 

7.1 INTRODUCTION 

This study material on the principles of compiler design covers key concepts 

such as runtime environments, activation records, stack and heap memory 

management, call and return mechanisms, and exception handling. 

Additionally, it addresses lexical and syntax error handling, providing 

strategies for error recovery and reporting. The aim is to equip learners with 

a solid foundation in compiler design and practical skills for managing 

errors and optimizing performance. 

7.2 ACTIVATION RECORDS AND STACK MANAGEMENT 

Activation records and stack management are fundamental components in 

the execution of function and procedure calls in a program. An activation 

record, or stack frame, stores vital information for each active subroutine, 

including local variables, return addresses, parameters, and saved registers. 

These records are pushed onto the call stack when a function is called and 

popped off when the function returns, maintaining the correct state of the 

program's execution. Effective stack management involves the careful 

allocation and deallocation of stack frames, ensuring that memory is used 

efficiently and that the call stack accurately reflects the program's call 

history. This mechanism supports function call conventions, such as 

parameter passing and return value handling, and is crucial for enabling 

recursion and nested function calls. Understanding activation records and 

stack management is essential for optimizing program performance, 

ensuring efficient memory usage, and facilitating effective debugging and 

error handling. 

7.2.1 Introduction to Activation Records 

Activation records, also known as stack frames, are critical data structures 

used by compilers to manage information needed during function or 

procedure calls in a program. Each activation record contains essential data 

such as the function's local variables, arguments passed to the function, the 

return address, and saved registers. When a function is called, an activation 

record is created and pushed onto the call stack, and when the function 

returns, this record is popped off the stack. This process ensures that each 

function's execution context is maintained correctly, allowing for proper 
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Runtime Environments control flow and enabling features like recursion and nested calls. 

Understanding activation records is vital for grasping how function calls are 

handled, how memory is managed during execution, and how debuggers 

track the state of a program. 

7.2.1.1  Structure of an activation record 

When a procedure gets called, the computer creates an activation record to 

store all the information needed to execute that procedure. This information 

includes the procedure's arguments, local variables, and return address. 

When the operation finishes executing, the computer deletes the activation 

record. Activation record is also known as stack frames or function call 

frames used by the compiler to manage the execution of a function or 

procedure. 

 

Imagine a scenario where you have a program with multiple functions. A 

new activation function gets created whenever one of the functions gets 

called. The activation record is stored on the control stack whenever a 

process gets executed. The control stack is a runtime stack used to track live 

procedure activations. Its primary purpose is to determine which execution 

still needs to be completed. As the activation begins, the procedure name is 

pushed into the stack and will pop out as the activation ends. If there is a 

recursive procedure, then several activations are active at the same time. If 

there is a non-recursive procedure, one activation of the function is executed 

simultaneously. 
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Example 

Consider a simple example to understand the activation record concept 

better. Here in this code, we have taken a function named "addition" that 

returns the result of adding two numbers. 

#include <stdio.h> 

// function to perform addition  

void addition(int a, int b) { 

    int result = a + b; 

    printf("Result: %d\n", result); 

} 

//main program 

int main() { 

    int x = 2; 

    int y = 8; 

    addition(x, y); 

    return 0; 

} 

 

 

Explanation 

The 'main' function is the program's starting point. It consists of local 

variables like 'x' and 'y'. When the 'addition' function gets called from the 

main function, a new activation record gets created for the 'addition' 

function. The activation record of 'addition' is initialized with parameters 

with 'a' and 'b,' which have (2 and 8) values from the calling function. The 

result gets stored with the value of 10. Once the 'addition' function work is 

completed and reaches its end, then activation records are removed from the 

calling stack. Finally, when the 'main' function terminates, its activation 

record is removed from the stack. 
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a. Return Address: This address holds the location where the control 

should return upon task completion. This feature helps the program 

continue executing from the same point it was initially created. It is 

used by a calling function that will return a value to the same calling 

function. 

b. Parameters: The calling procedure uses it to supply parameters to the 

called method. It stores actual parameters used to send input to the 

called system. The parameters can be passed by value or reference 

and stored in the activation record for the function to access. 

c. Control Link: It points toward the activation record of the caller. It 

allows you to return and execute continuously. The system uses it to 

store information outside the local scope. The control link connects 

the activation record to the activation record of the caller. 

 



   

 
128 

Principles of  

Compiler Design 
d. Access Link : It stores the address of the activation record of the 

caller function. 

 

e. Saved Machine Status: The activation record consists of critical 

information about the program's state, which is just about to get 

called. It stores information like the return address or machine 

registers. The saved machine ensures the program can resume 

execution once the procedure call gets terminated. 

f. Local Data: This field consists of local data for a particular function's 

execution. Local data consists of variables that serve the purpose of 

quick calculations or storing specific values of a currently used 

function. 

g. Temporaries: It refers to the variables or storage locations used to 

store intermediate values within the procedure. When a function 

executes, it may perform different operations that require temporary 

storage. Once the procedure call completes and the control returns to 

the calling code, the system deallocates activation records and 

releases temporaries. 

7.2.1.2  Role in function/procedure call management 

In compiler design, the role in function/procedure call management is 

critical for translating high-level programming languages into machine code 

or intermediate representations. Here are key roles related to 

function/procedure call management in compiler design: 

a. Parsing and Syntax Analysis: This role involves parsing the source 

code to identify function and procedure calls, along with their 
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Runtime Environments parameters and arguments. Syntax analysis ensures that the calls 

follow the grammar and syntactic rules of the programming language. 

b. Symbol Table Management: Managing a symbol table is crucial for 

function/procedure call management. The symbol table keeps track of 

all declared functions, procedures, variables, and their associated 

information (e.g., data types, scope). During function/procedure calls, 

the compiler uses the symbol table to resolve identifiers and check for 

semantic correctness. 

c. Type Checking: Ensuring type compatibility during 

function/procedure calls is another important role. The compiler 

checks that the types of arguments passed to functions/procedures 

match the expected parameter types, helping to catch type-related 

errors early in the compilation process. 

d. Intermediate Code Generation: After parsing and semantic 

analysis, compilers often generate intermediate code representations. 

Function and procedure calls in the source code are translated into 

intermediate code instructions, which may involve managing 

activation records (stack frames) for each function/procedure call to 

handle parameters, local variables, and return addresses. 

e. Optimization: Function/procedure call management plays a role in 

optimization strategies. Compilers may optimize function calls by 

inlining small functions, eliminating redundant calls, or optimizing 

parameter passing mechanisms (e.g., using registers for passing 

arguments efficiently). 

f. Code Generation: Finally, during code generation, the compiler 

translates the intermediate code or abstract syntax tree into target 

machine code or assembly language. Function and procedure calls are 

translated into appropriate machine instructions, taking into account 

calling conventions, parameter passing mechanisms, and stack 

management. 

g. Overall, function/procedure call management in compiler design 

encompasses parsing, semantic analysis, symbol table management, 

type checking, code generation, and optimization, all aimed at 

producing efficient and correct executable code from high-level 

programming languages. 

7.2.2   Stack Management 

In compiler design, stack management plays a crucial role in handling 

function calls, local variables, and control flow during program execution. 

7.2.2.1  Call stack and its significance  

In the context of compiler design, the call stack is a critical concept that 

impacts various aspects of program execution and memory management. 

Here's how the call stack is significant in compiler design: 
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a. Function Calls and Control Flow: When a compiler processes 

source code, it generates instructions for function calls and returns. 

These instructions manipulate the call stack to manage the flow of 

control during program execution. 

 The call stack ensures that function calls are handled in a structured 

manner, with each function call creating a new stack frame and 

returning control to the caller upon completion. 

b. Activation Records and Stack Frames: Compiler design involves 

defining the structure of activation records (stack frames) for 

functions and procedures. This includes specifying the layout of 

parameters, local variables, return addresses, and other relevant 

information within each activation record. 

 The compiler generates code to manage stack frames, such as 

allocating space for local variables, passing parameters, and 

saving/restoring registers as needed. 

c. Parameter Passing Mechanisms: The call stack plays a role in 

parameter passing mechanisms defined by the compiler. This includes 

strategies like passing parameters via registers, the stack, or a 

combination of both, depending on the calling conventions and 

architecture targeted by the compiler. 

 Stack-based parameter passing involves pushing parameters onto the 

stack before a function call and accessing them within the function 

through the corresponding stack offsets. 

d. Recursion Handling: Compilers must handle recursion efficiently 

using the call stack. Recursive function calls create nested stack 

frames, allowing recursive algorithms to work correctly without 

causing stack overflow errors. 

 The compiler ensures that recursive calls properly manage stack space 

and stack frame layout to prevent excessive memory usage and 

maintain program integrity. 

e. Exception Handling and Error Reporting: Compiler-generated 

code for exception handling often relies on the call stack. When an 

exception occurs, the call stack provides information about the 

function call hierarchy, helping to unwind the stack and locate 

appropriate exception handlers. 

 Error reporting mechanisms, such as stack traces, use the call stack to 

identify the sequence of function calls leading to an error, aiding 

developers in debugging and diagnosing issues in their code. 

f. Optimization Opportunities: Advanced compilers employ stack-

related optimizations to improve program performance. This includes 

techniques like stack frame reuse, stack slot allocation optimization, 

and tail call optimization to minimize stack overhead and improve 

execution efficiency. 
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In compiler design, stack allocation is a runtime storage management 

technique that uses a last-in, first-out (LIFO) principle for allocations and 

deallocations. The compiler calculates how much memory to allocate for 

each variable in the program, and the memory is automatically released 

when a function call is complete. This automatic deallocation is called stack 

unwinding, and it involves adjusting the stack pointer, which is a constant-

time operation 

In stack allocation, a contiguous area of memory is reserved for the stack, 

and pointers called the stack base (SB) and top of stack (TOS) point to the 

first and last entries, respectively. Activation records are pushed and popped 

onto the stack as activations begin and end, and each activation record 

contains storage for the locals in that call. 

 

7.2.2.3  Stack pointer and frame pointer management 

In compiler design and low-level programming, managing the stack pointer 
(SP) and frame pointer (FP) is crucial for efficient memory allocation and 
function call management. Here's how stack pointer and frame pointer 
management works and why it's significant: 

a. Stack Pointer (SP): The stack pointer is a register or memory 
location that points to the top of the stack, indicating the current 
position for stack operations. 

 When a program starts or a function is called, the stack pointer is 
typically initialized to the top of the stack memory region. 

 Stack operations such as pushing data onto the stack (e.g., function 
parameters, return addresses) or popping data off the stack are 
performed by adjusting the stack pointer accordingly. 

b. Frame Pointer (FP): The frame pointer is another register or 
memory location used specifically for accessing variables and data 
within the current stack frame (activation record). 
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 Unlike the stack pointer, which moves dynamically during stack 
operations, the frame pointer remains fixed within a stack frame once 
it's set. 

 The frame pointer is particularly useful for accessing local variables 
and parameters within a function, as it provides a stable reference 
point within the stack frame. 

c. Function Call and Stack Frame Setup: When a function is called, 
the compiler generates code to set up the stack frame (activation 
record) for that function. 

d. This setup process involves adjusting both the stack pointer (SP) 
and frame pointer (FP): The stack pointer is moved downward to 
allocate space for function parameters, local variables, return address, 
and other control information. 

 The frame pointer is set to the base of the current stack frame, 
providing a stable reference for accessing variables within the frame. 

e. Stack Frame Usage: Within a function, the frame pointer is used to 
access parameters, local variables, and other data stored in the current 
stack frame. 

 Accessing variables via the frame pointer avoids the need to adjust 
the stack pointer dynamically for each variable access, which can be 
more efficient in terms of code generation and execution speed. 

f. Stack Unwinding and Return: When a function completes its 
execution or returns, the compiler generates code to unwind the stack 
frame and restore the previous execution context. 

 This process involves popping the current stack frame off the stack by 
adjusting the stack pointer and possibly restoring the previous frame 
pointer if necessary. 

g. Optimizations and Efficiency: Efficient management of the stack 

pointer and frame pointer is critical for optimizing code size and 

execution speed. 

 Compilers may apply optimizations such as frame pointer omission 

(FPO) or using a combination of frame pointer and stack pointer for 

efficient variable access and function call management. 

h. Debugging and Stack Traces: Stack pointer and frame pointer 

management are essential for debugging tools and stack traces that 

provide insights into program execution and function call hierarchies. 

Tools like debuggers use the stack pointer and frame pointer information to 

display stack frames, local variables, and function call paths during program 

debugging. 
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Heap memory management in compiler design refers to how dynamically 

allocated memory is handled during program execution. Unlike stack 

memory, which is used for function calls and local variables, heap memory 

is used for dynamic data structures such as arrays, linked lists, objects, and 

other data that needs to be allocated and deallocated at runtime. 

Here are key points about heap memory management in the context of 

compiler design: 

a. Dynamic Memory Allocation: Heap memory allows programs to 

allocate memory dynamically at runtime, unlike stack memory where 

the size is typically fixed or determined at compile time. 

 Languages like C, C++, and others use functions like malloc, calloc, 

realloc, and free for heap memory management. 

b. Heap Data Structures: Data structures such as arrays, linked lists, 

trees, hash tables, and objects are often allocated on the heap. 

 These data structures can grow and shrink dynamically based on 

program needs, making heap memory essential for managing complex 

data. 

c. Memory Allocation Algorithms: Heap memory management 

involves algorithms for efficient allocation and deallocation of 

memory blocks. 

 Common algorithms include first-fit, best-fit, worst-fit, and buddy 

allocation, each with its trade-offs in terms of memory fragmentation, 

overhead, and allocation speed. 

d. Heap Fragmentation: Fragmentation can occur in heap memory 

when allocated memory blocks become scattered, leading to 

inefficient use of memory. 

 Compilers and memory management libraries often employ strategies 

like memory compaction, defragmentation, and memory pooling to 

mitigate fragmentation issues. 

e. Memory Leaks: Heap memory management includes handling 

memory leaks, which occur when allocated memory is not properly 

deallocated after use. 

 Memory leaks can lead to a gradual increase in memory consumption 

over time, potentially causing performance issues and resource 

exhaustion. 

f. Garbage Collection (GC): Some programming languages, such as 

Java, C#, and Python, use garbage collection to automatically manage 

heap memory. 
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 Garbage collection algorithms identify and reclaim unused memory 

(garbage) to free up heap space for future allocations. 

g. Manual Memory Management: In languages like C and C++, 

developers must manually manage heap memory by allocating and 

deallocating memory using functions like malloc and free. 

 Manual memory management requires careful handling to avoid 

memory leaks, dangling pointers, and other memory-related errors. 

h. Compiler Optimizations: Compilers may optimize heap memory 

usage by analyzing memory allocation patterns and applying 

optimizations such as object pooling, stack allocation for temporary 

objects, and optimizing memory access patterns. 

7.3.1  Difference between stack and heap memory 

 

7.3.2  Dynamic Memory Allocation 

Dynamic memory allocation refers to the process of allocating memory for 

data structures or variables at runtime, as opposed to static memory 

allocation where memory is allocated at compile time. In the context of 

compiler design and programming languages, dynamic memory allocation 

is a fundamental concept that allows programs to manage memory flexibly 

based on runtime requirements. 

7.3.2.1 Allocation and deallocation techniques 

A. Allocation Techniques: 

a. Static Allocation: Memory is allocated at compile time and remains 

fixed throughout the program's execution. 
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 Example: int staticArray[100]; 

b. Dynamic Allocation (Heap Allocation): Memory is allocated at 

runtime from the heap using functions like malloc, calloc, or new (in 

C/C++/C#/C++). 

 Allows for flexible allocation and deallocation of memory blocks. 

 Example (in C): int* dynamicArray = malloc(100 * sizeof(int)); 

c. Stack Allocation: Memory is allocated on the program's call stack 

for function calls and local variables. 

 Memory allocated on the stack is automatically deallocated when the 

function scope ends. 

 Used for automatic variables and function call frames. 

 Example: int stackVariable; 

d. Pooled Allocation: Pre-allocates a pool of memory blocks of fixed 

sizes. 

 Used for managing objects or data structures that have predictable 

memory usage patterns. 

 Helps reduce memory fragmentation and overhead. 

 Example: Object pooling in game development for reusing frequently 

used objects like bullets or particles. 

e. Bump Allocation: Allocates memory sequentially from a designated 

memory region (bump pointer). 

 Fast and simple allocation technique but may lead to fragmentation. 

 Typically used in garbage-collected environments or for short-lived 

objects. 

B. Deallocation Techniques: 

a. Manual Deallocation: Memory is deallocated explicitly by the 

programmer using functions like free (C), delete (C++), or Dispose 

(C#). 

 Requires careful management to avoid memory leaks and dangling 

pointers. 

 Example (in C): free(dynamicArray); 

b. Reference Counting: Each object keeps track of the number of 

references pointing to it. 



   

 
136 

Principles of  

Compiler Design 
 Memory is deallocated when the reference count drops to zero, 

indicating no active references to the object. 

 Used in some programming languages and libraries but may have 

overhead and issues with cyclic references. 

c. Pool Deallocation: Used in pooled allocation techniques. 

 Memory blocks are returned to the pool for reuse after they are no 

longer needed. 

 Helps minimize allocation and deallocation overhead by reusing pre-

allocated memory blocks. 

d. Scoped Deallocation: Memory is deallocated automatically when it 

goes out of scope. 

 Commonly used in languages with automatic memory management 

or smart pointers (e.g., C++'s std::unique_ptr, std::shared_ptr). 

7.3.2.2 Garbage collection methods (reference counting, mark-and-

sweep, generational GC) 

Garbage collection (GC) methods are techniques used in programming 

languages with automatic memory management to reclaim memory 

occupied by objects that are no longer in use. Here are three common 

garbage collection methods: 

a. Reference Counting: 

• Overview: Reference counting is a simple garbage collection 

technique that tracks the number of references pointing to each 

object. 

• How it Works: Each object has a reference count, initially set to 

1 for each reference. When a reference is created to the object, 

its count is incremented. When a reference is deleted or goes 

out of scope, the count is decremented. When the count reaches 

zero, the object is considered garbage and can be safely 

deallocated. 

• Advantages: Immediate deallocation when the last reference is 

removed, minimal pause times during execution. 

• Disadvantages: Inefficient for cyclic references (objects that 

reference each other), overhead for maintaining reference 

counts, difficulty in handling weak references (references that 

do not contribute to the count). 

• Example Language: Python uses reference counting as part of 

its garbage collection strategy, combined with other techniques 

for handling cyclic references and managing memory 

efficiently. 
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• Overview: Mark-and-sweep is a classic garbage collection 

algorithm that identifies and reclaims unreachable objects by 

traversing the object graph. 

• How it Works: 

• Mark Phase: The algorithm starts from known roots (global 

variables, stack, registers) and traverses the object graph, 

marking reachable objects as live. 

• Sweep Phase: Once all reachable objects are marked, the 

algorithm sweeps through the entire heap, deallocating memory 

for objects that are not marked (unreachable). 

• Advantages: Handles cyclic references efficiently, works well 

for languages with complex object relationships, less overhead 

compared to reference counting. 

• Disadvantages: Can cause noticeable pause times during the 

sweep phase, fragmentation can occur if memory is not 

compacted after sweeping. 

• Example Language: C# and Java use variants of mark-and-

sweep algorithms in their garbage collectors. 

c. Generational Garbage Collection: 

• Overview: Generational GC is an enhancement to mark-and-

sweep that divides objects into different generations based on 

their age. 

• How it Works: 

• Young Generation: Newly created objects are placed in the 

young generation. A minor collection (often using copying or 

semi-space collection) is performed frequently on the young 

generation to reclaim short-lived objects. 

• Old Generation: Objects that survive multiple minor collections 

are promoted to the old generation. A major collection (e.g., 

mark-and-sweep) is performed less frequently on the old 

generation to reclaim long-lived objects. 

• Advantages: Efficient for programs with a high rate of short-

lived objects (typical in many applications), reduces the 

overhead of full garbage collection cycles by focusing on young 

objects. 

• Disadvantages: More complex to implement and tune, may 

require fine-tuning of generation sizes and collection strategies. 

• Example Language: Java's HotSpot VM and .NET's CLR use 

generational garbage collection as part of their memory 

management strategies. 
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Each garbage collection method has its strengths and weaknesses, and the 

choice of method often depends on factors such as the programming 

language, application characteristics (memory usage patterns, object 

lifespan), performance requirements, and trade-offs between pause times, 

memory overhead, and overall system efficiency. 

7.4 CALL AND RETURN MECHANISMS 

The call and return mechanisms are fundamental concepts in computer 

programming and execution flow. Here's an overview of these mechanisms: 

7.4.1 Call Mechanism 

• Function Call: When a function or subroutine is called in a program, 

the call mechanism handles transferring control from the caller to the 

callee (the function being called). 

• Parameters: Arguments or parameters may be passed to the function 

during the call, providing input data for the function's operation. 

• Stack Frame: Typically, a new stack frame (activation record) is 

created on the program's call stack to store information such as 

parameters, return address, and local variables for the function call. 

• Return Address: The return address is saved in the stack frame, 

indicating where the control flow should return after the function 

completes its execution. 

7.4.2 Return Mechanism 

• Function Execution: The callee executes its code, performing the 

tasks defined within the function. 

• Return Value: If the function returns a value, it is computed during 

execution and stored in a designated location (e.g., a register or 

memory location) for the caller to access. 

• Stack Cleanup: After the function completes execution, its stack 

frame is typically removed from the stack to free up memory. This 

process is known as stack unwinding or stack cleanup. 

• Control Transfer: The return mechanism transfers control back to the 

caller, using the saved return address from the stack frame to resume 

execution at the appropriate instruction. 

7.5 EXCEPTION HANDLING 

In compiler design, exception handling refers to how the compiler generates 

code to handle exceptional conditions or errors that may occur during 

program execution. Here's how exception handling is typically addressed in 

compiler design: 

a. Language Support: Many modern programming languages, 

especially high-level languages like Java, C#, Python, and C++, 

include built-in support for exception handling. 
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syntax, semantics, and runtime behavior of exception handling 

constructs defined by the language specification. 

b. Code Generation: During the compilation process, the compiler 

translates high-level language constructs, including exception 

handling statements (e.g., try-catch blocks), into low-level code that 

the target platform can execute. 

 This involves generating instructions for throwing exceptions, 

catching exceptions, and handling cleanup tasks associated with 

exceptions. 

c. Exception Propagation: When an exception occurs within a function 

or block of code, the compiler generates code to propagate the 

exception up the call stack until it is caught and handled by an 

appropriate catch block. 

 Exception propagation may involve unwinding the stack, deallocating 

resources, and transferring control to the nearest catch block that 

matches the type of the thrown exception. 

d. Stack Unwinding: When an exception is thrown, the compiler 

generates code to unwind the call stack, deallocating resources and 

executing cleanup tasks as needed. 

 This process ensures that resources held by functions along the call 

chain are properly released, even if an exception interrupts the normal 

execution flow. 

e. Exception Types and Handlers: Compiler designers must support 

the definition of custom exception types and the declaration of 

exception handlers (catch blocks) to handle specific types of 

exceptions. 

 Matching the thrown exception type to the appropriate catch block 

requires generating code for runtime type checking and exception 

dispatching. 

f. Resource Management: Exception handling in compiler design 

often includes generating code to manage resources, such as closing 

files, releasing memory, or rolling back transactions, to ensure proper 

cleanup in the event of an exception. 

g. Optimizations and Efficiency: Advanced compilers may optimize 

exception handling code to minimize overhead and improve runtime 

performance. 

 Techniques such as exception table optimization, lazy exception 

handling, and inlining of exception handling code can reduce the 

impact of exception handling on program execution speed. 

h. Error Reporting and Debugging: Compiler-generated code for 

exception handling may include mechanisms for reporting error 
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messages, stack traces, and debugging information to aid developers 

in diagnosing and fixing issues related to exceptions. 

 Exception handling in compiler design is a complex task that involves 

translating high-level language constructs into efficient and reliable 

code for managing exceptional conditions during program execution. 

Compiler designers must ensure that exception handling mechanisms 

comply with language specifications, provide robust error handling 

capabilities, and optimize performance where possible. 

7.6 LEXICAL AND SYNTAX ERROR HANDLING 

In compiler design, handling lexical and syntax errors is crucial for 

producing reliable and user-friendly compilers. Here's how lexical and 

syntax error handling is typically addressed: 

7.6.1 Lexical Error Handling 

In compiler design, lexical error handling is a critical aspect of the lexical 

analysis phase, also known as scanning. Here's a detailed look at lexical 

error handling: 

 7.6.1.1 Introduction to Lexical Errors 

Lexical errors are a type of error that occurs during the lexical analysis 

phase of compiling source code. This phase is also known as scanning or 

lexing. Lexical errors occur when the compiler encounters tokens or 

sequences of characters that do not conform to the language's lexical rules. 

These errors typically involve invalid tokens, illegal characters, or 

malformed lexemes (lexical elements like identifiers, keywords, operators, 

and literals). 

Common lexical errors (illegal characters, unclosed strings) 

a. Illegal Characters: 

• Definition: Illegal characters are characters that are not allowed 

within the syntax of the programming language. These may 

include non-alphanumeric characters, control characters, or 

characters with special meanings in the language. 

• Example: Using a symbol like @ or $ in an identifier in a 

language that only allows letters, digits, and underscores. 

• Impact: Illegal characters can lead to immediate lexical errors 

because they violate the language's lexical rules. 

b. Unclosed Strings: 

• Definition: Unclosed strings occur when a string literal in the 

code is not properly terminated with a closing quotation mark. 

• Example: string text = "Hello, this is an unclosed string; 
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following the opening quotation mark as part of the string literal 

until it encounters the closing quotation mark or the end of the 

line. This can result in syntax errors or unexpected behavior in 

the code. 

c. Mismatched Delimiters: 

• Definition: Mismatched delimiters occur when pairs of 

delimiters (such as parentheses, braces, or brackets) are not 

correctly matched or nested. 

• Example: if (condition { /* code block */ } 

• Impact: Mismatched delimiters can lead to syntax errors or 

ambiguity in the code's structure. They may cause the compiler 

to misinterpret the intended grouping or hierarchy of code 

blocks, leading to compilation errors. 

d. Incomplete Comments: 

• Definition: Incomplete comments occur when comment 

delimiters (e.g., /* ... */ for block comments or // for line 

comments) are not properly closed. 

• Example: /* This is an incomplete comment 

• Impact: Incomplete comments can cause the lexer to interpret 

subsequent code as part of the comment, leading to unexpected 

behavior or compilation errors. 

e. Malformed Numbers: 

• Definition: Malformed numbers are numeric literals that do not 

adhere to the syntax rules for numbers in the programming 

language. This may include invalid formats, missing digits, or 

incorrect use of decimal points. 

• Example: float number = 3.14.2; (invalid floating-point 

number) 

• Impact: Malformed numbers can result in lexical errors or type 

conversion issues during compilation. 

7.6.1.2 Error Recovery Strategies 

Error recovery strategies in compiler design are essential for handling 

syntax errors and other unexpected conditions encountered during parsing. 

Here are two common error recovery strategies: 

a. Panic Mode Recovery: 

• Overview: Panic mode recovery is a robust error recovery 

strategy where the parser skips input tokens until it finds a 

designated synchronization point. Once the synchronization 

point is reached, parsing resumes. 
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• How it Works: When a syntax error is detected, the parser 

enters panic mode and discards input tokens until it finds a 

synchronization token or a set of tokens that can serve as a 

recovery point. 

• The synchronization tokens are typically chosen strategically to 

help the parser recover and continue parsing from a known valid 

state. 

• Example: In C-like languages, semicolons (;) are often used as 

synchronization points. If a syntax error is encountered, the 

parser may skip tokens until it finds a semicolon, indicating the 

end of a statement, and then resume parsing from that point. 

• Advantages: Panic mode recovery is straightforward to 

implement and can help the parser recover from a wide range of 

syntax errors, allowing the compilation process to continue 

without halting at the first error. 

• Disadvantages: It may lead to cascading errors if the parser 

skips over essential parts of the code, resulting in multiple error 

messages and potential confusion for developers. 

b. Phrase Level Recovery (Local Correction): 

• Overview: Phrase level recovery, also known as local 

correction, involves attempting to correct syntax errors within a 

specific phrase or production rule in the grammar. 

• How it Works: When a syntax error is detected, the parser tries 

to identify nearby tokens that can be inserted, deleted, or 

substituted to transform the erroneous phrase into a valid phrase 

according to the grammar. 

• The correction process may involve using heuristics, predictive 

algorithms, or predefined correction rules based on the grammar 

and common syntactic patterns. 

• Example: If a missing semicolon is detected in a statement, the 

parser may attempt to insert the semicolon at the expected 

location to correct the error. 

• Advantages: Phrase level recovery can provide more targeted 

and context-sensitive error correction, leading to more accurate 

recovery from syntax errors and potentially reducing the 

number of cascading errors. 

• Disadvantages: It requires more sophisticated parsing 

techniques and error correction algorithms, making it more 

complex to implement compared to panic mode recovery. It 

may also be limited in its ability to correct certain types of errors 

that involve structural changes beyond the local phrase. 
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Runtime Environments • Both panic mode recovery and phrase level recovery are 

valuable error recovery strategies in compiler design. The 

choice of strategy depends on factors such as the language's 

grammar complexity, the desired level of error correction, and 

the trade-offs between simplicity and accuracy in error 

recovery. 

 7.6.1.3 Error Reporting and Handling 

Error reporting and handling are crucial aspects of compiler design, 

ensuring that developers receive clear, informative messages about errors 

in their code and providing mechanisms for handling and correcting those 

errors. Here are strategies for reporting lexical errors and techniques for 

handling and correcting errors in compilers: 

A. Reporting Lexical Errors: 

• Error Messages: When the lexer (lexical analyzer) detects a 

lexical error, it generates an error message to inform the 

developer about the nature of the error and its location in the 

source code. 

• Error Information: Lexical error messages typically include 

details such as the line number, column number, the invalid 

token or character sequence encountered, and suggestions for 

correcting the error. 

• Example Lexical Error Message: "Lexical error: Unexpected 

token '@' at line 3, column 10. Expected token: Identifier or 

keyword." 

B. Techniques for Handling and Correcting Errors: 

a.  Error Recovery Strategies: 

• Panic Mode Recovery: The parser skips tokens until it finds a 

synchronization point, such as a semicolon or a specific 

keyword, to resume parsing. 

• Phrase Level Recovery: The parser attempts to correct syntax 

errors within specific phrases or production rules using 

heuristics or predefined correction rules. 

b.  Automatic Correction: 

• Spell Checking: The compiler may perform basic spell checking 

on identifiers and keywords to detect typos or misspelled words. 

• Missing Punctuation: Automatic insertion of missing 

punctuation, such as semicolons at the end of statements or 

closing braces in code blocks. 
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c.  Interactive Suggestions: 

• Code Completion: IDEs and code editors offer code completion 

features that suggest valid tokens, keywords, or identifiers as 

developers type, helping prevent lexical errors. 

• Quick Fix Suggestions: IDEs provide quick-fix suggestions for 

common errors, allowing developers to apply corrections with 

a single click. 

d.  Syntax Highlighting and Visualization: 

• Syntax Highlighting: Highlighting invalid tokens or syntax 

errors in the code editor helps developers identify errors 

visually. 

• Syntax Trees: Displaying syntax trees or parse trees can help 

developers understand the structure of their code and identify 

potential errors. 

e.  Compiler Directives and Flags: 

• Warning and Error Flags: Compiler directives allow developers 

to control error reporting behavior, such as treating warnings as 

errors or ignoring certain types of errors during compilation. 

• Debugging Symbols: Including debugging symbols in compiled 

code helps developers trace errors back to specific source code 

locations during debugging. 

• Effective error handling and correction in compilers enhance 

developer productivity, improve code quality, and facilitate the 

debugging process. By providing clear error messages, 

automated correction mechanisms, and interactive tools, 

compilers empower developers to write robust and error-free 

code more efficiently. 

7.6.2 Syntax Error Handling 

Syntax error handling is a crucial aspect of compiler design, focused on 

detecting and recovering from errors in the syntax of the programming 

language. 

 7.6.2.1 Introduction to Syntax Errors 

Syntax errors are fundamental errors that occur when the compiler 

encounters code that does not adhere to the grammar rules of the 

programming language. These errors indicate deviations from the expected 

structure and syntax of the code, making it difficult or impossible for the 

compiler to interpret and generate executable code. Here's an introduction 

to syntax errors, including common examples such as mismatched 

parentheses and missing semicolons: 
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Runtime Environments a. Mismatched Parentheses: 

• Description: Mismatched parentheses occur when there is an 

imbalance between opening and closing parentheses in 

expressions or function calls. 

• Example: if (condition) { /* code block */ (missing closing 

parenthesis) 

• Impact: Mismatched parentheses can lead to syntax errors, as 

the compiler expects balanced parentheses to properly parse and 

interpret code blocks, conditions, and function arguments. 

b. Missing Semicolons: 

• Description: Missing semicolons occur when statements are not 

terminated with the required semicolon symbol (;) in languages 

that use semicolons to denote the end of statements. 

• Example: int x = 10 (missing semicolon at the end of the 

statement) 

• Impact: Missing semicolons can cause syntax errors, as the 

compiler interprets the absence of a semicolon as an incomplete 

statement, leading to unexpected behavior or compilation 

failures. 

c.  Common Syntax Errors: 

• Incorrect Operator Usage: Using operators incorrectly or in 

unsupported contexts can result in syntax errors. For example, 

using arithmetic operators with non-numeric operands. 

• Invalid Statement Structures: Writing statements that do not 

follow the language's syntax rules, such as misplaced keywords 

or incorrect use of control structures, can lead to syntax errors. 

• Mismatched Braces or Brackets: In languages that use braces 

({}) or brackets ([]) for code blocks or array indexing, 

mismatched or improperly nested braces or brackets can cause 

syntax errors. 

• Incorrect Function Calls: Providing incorrect arguments or 

parameters in function calls, missing function declarations, or 

using undefined functions can result in syntax errors. 

• Reserved Keywords: Using reserved keywords as identifiers or 

variable names can lead to syntax errors, as these keywords 

have specific syntactic meanings in the language. 

d. Impact of Syntax Errors: 

• Syntax errors prevent the compiler from generating executable 

code, as they indicate fundamental issues with the structure and 

syntax of the code. 
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• Fixing syntax errors requires identifying and correcting 

deviations from the language's grammar rules, often through 

careful review of error messages and code inspection. 

7.6.2.2 Error Recovery Strategies 

Error recovery strategies in compiler design play a crucial role in handling 

syntax errors and ensuring that the compilation process can continue despite 

encountering errors. Here's an explanation of panic mode recovery, phrase-

level recovery, and error productions in grammar: 

a. Panic Mode Recovery: 

• Overview: Panic mode recovery is a robust error recovery 

strategy used by parsers to recover from syntax errors by 

skipping input tokens until a synchronization point is reached. 

• How it Works: When a syntax error is detected, the parser enters 

panic mode and discards input tokens until it finds a designated 

synchronization token or set of tokens. 

• The synchronization tokens are strategically chosen to help the 

parser recover and resume parsing from a known valid state. 

• Example: In C-like languages, semicolons (;) are often used as 

synchronization points. If a syntax error occurs, the parser may 

skip tokens until it finds a semicolon, indicating the end of a 

statement, and then resume parsing from that point. 

• Advantages: Panic mode recovery is straightforward to 

implement and can help the parser recover from a wide range of 

syntax errors, allowing the compilation process to continue 

without halting at the first error. 

• Disadvantages: It may lead to cascading errors if the parser 

skips over essential parts of the code, resulting in multiple error 

messages and potential confusion for developers. 

b. Phrase Level Recovery (Local Correction): 

• Overview: Phrase level recovery, also known as local 

correction, involves attempting to correct syntax errors within a 

specific phrase or production rule in the grammar. 

• How it Works: When a syntax error is detected, the parser tries 

to identify nearby tokens that can be inserted, deleted, or 

substituted to transform the erroneous phrase into a valid phrase 

according to the grammar. 

 The correction process may involve using heuristics, predictive 

algorithms, or predefined correction rules based on the grammar 

and common syntactic patterns. 
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Runtime Environments • Example: If a missing semicolon is detected in a statement, the 

parser may attempt to insert the semicolon at the expected 

location to correct the error. 

• Advantages: Phrase level recovery can provide more targeted 

and context-sensitive error correction, leading to more accurate 

recovery from syntax errors and potentially reducing the 

number of cascading errors. 

• Disadvantages: It requires more sophisticated parsing 

techniques and error correction algorithms, making it more 

complex to implement compared to panic mode recovery. It 

may also be limited in its ability to correct certain types of errors 

that involve structural changes beyond the local phrase. 

c. Error Productions in Grammar: 

• Definition: Error productions are special rules added to the 

grammar to handle specific types of syntax errors gracefully. 

• How it Works: Error productions define how the parser should 

recover from known syntax errors by suggesting possible 

corrections or alternative valid structures. 

 These productions are triggered when the parser encounters a 

syntax error matching the conditions specified in the error 

production rules. 

• Example: An error production may define how to recover from 

a missing semicolon by inserting the semicolon and continuing 

parsing. 

• Advantages: Error productions provide explicit guidelines for 

error recovery, improving the parser's ability to handle common 

syntax errors effectively. 

• Disadvantages: Crafting error productions requires detailed 

knowledge of potential syntax errors and their recovery 

strategies, adding complexity to the grammar specification. 

7.6.2.3 Error Reporting and Handling 

A. Reporting Syntax Errors: 

• Error Messages: When the compiler detects a syntax error 

during parsing, it generates an error message to inform the 

developer about the nature of the error and its location in the 

source code (line number, column). 

• Error Information: Syntax error messages typically include 

details such as the expected token or grammar rule that was 

violated, the actual token found, and suggestions for correcting 

the error. 
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• Example Syntax Error Message: "Syntax error: Unexpected 

token '}' at line 5, column 15. Expected token: ';'" 

B.  Techniques for Handling and Correcting Syntax Errors: 

a.  Panic Mode Recovery: 

• Overview: The parser skips tokens until it finds a 

synchronization point, such as a semicolon or a specific 

keyword, to resume parsing. 

• Usage: Panic mode recovery is particularly effective for 

recovering from syntax errors that occur within code blocks or 

statements, allowing the compilation process to continue 

without halting at the first error. 

b. Phrase Level Recovery (Local Correction): 

• Overview: The parser attempts to correct syntax errors within 

specific phrases or production rules using heuristics or 

predefined correction rules. 

• Usage: Phrase level recovery is beneficial for correcting 

common syntax errors such as missing semicolons, mismatched 

parentheses, or incorrect operator usage within expressions. 

c.  Automatic Correction: 

• Spell Checking: The compiler may perform basic spell checking 

on identifiers, keywords, and syntax constructs to detect typos 

or misspelled words. 

• Missing Punctuation: Automatic insertion of missing 

punctuation, such as semicolons at the end of statements or 

closing braces in code blocks. 

d.  Interactive Suggestions: 

• Code Completion: Integrated Development Environments 

(IDEs) provide code completion features that suggest valid 

tokens, keywords, or syntax constructs as developers type, 

helping prevent syntax errors. 

• Quick Fix Suggestions: IDEs offer quick-fix suggestions for 

common syntax errors, allowing developers to apply 

corrections with a single click or keystroke. 

e.  Syntax Highlighting and Visualization: 

• Syntax Highlighting: IDEs and code editors highlight syntax 

errors in the code, making it easier for developers to identify 

and correct errors as they write code. 
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Runtime Environments • Syntax Trees: Displaying syntax trees or parse trees can help 

developers understand the structure of their code and identify 

potential syntax errors. 

f.  Compiler Directives and Flags: 

• Warning and Error Flags: Compiler directives allow developers 

to control error reporting behavior, such as treating warnings as 

errors or ignoring certain types of errors during compilation. 

• Debugging Symbols: Including debugging symbols in compiled 

code helps developers trace errors back to specific source code 

locations during debugging. 

By combining these techniques, compilers can effectively report syntax 

errors, provide guidance for error correction, and assist developers in 

writing syntactically correct code. IDEs and code editors further enhance 

the error handling experience by offering interactive tools and real-time 

feedback during code development. 

7.7 SUMMARY 

The chapter covered key concepts in compiler design, including activation 

records and stack management, heap memory management, call and return 

mechanisms, exception handling, and lexical and syntax error handling. 

a. Activation Records and Stack Management: 

• Activation records organize function calls and manage local 

variables, parameters, and return addresses. 

• Stack management involves allocating/deallocating stack 

frames and managing pointers for function calls on the call 

stack. 

b. Heap Memory Management: 

• Heap memory allows dynamic memory allocation and includes 

techniques like allocation/deallocation and garbage collection 

methods. 

c. Call and Return Mechanisms: 

• Call mechanisms handle parameter passing and function call 

conventions, while return mechanisms manage return values 

and addresses. 

d. Exception Handling: 

• Exception handling deals with handling errors during program 

execution using try-catch blocks and exception propagation. 

 



   

 
150 

Principles of  

Compiler Design 
e. Lexical and Syntax Error Handling: 

• Lexical error handling addresses tokenization errors, while 

syntax error handling deals with structural errors in the code 

using recovery strategies. 

• These topics are fundamental to building efficient compilers 

and ensuring proper error handling and memory management in 

programming languages. 

7.8 QUESTIONS FOR PRACTICE 

1. Explain the structure of an activation record and its role in 

function/procedure call management. 

2. What are the differences between stack memory and heap memory, 

and when would you use each? 

3. Describe dynamic memory allocation techniques and compare their 

advantages and disadvantages. 

4. How do garbage collection methods like reference counting, mark-

and-sweep, and generational garbage collection work, and what are 

their trade-offs? 

5. What are the different parameter passing methods in function calls, 

and how do they impact memory management and performance? 

6. Discuss the concept of try-catch blocks in exception handling and 

explain how they help manage errors in code execution. 

7. Compare panic mode recovery and phrase level recovery as error 

recovery strategies in compiler design. When would you use each 

strategy? 

8. Explain the significance of stack management in compiler design, 

including stack frame allocation, deallocation, stack pointer, and 

frame pointer management. 

9. How does error reporting and handling differ between lexical errors 

and syntax errors in compilers? 

10. Describe the role of error productions in grammar and how they 

contribute to error recovery and correction during parsing. 
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8.0 OBJECTIVE 

The primary objectives are to understand the core components of compilers, 

explore advanced technologies like LLVM for code generation, develop 

skills for debugging and testing compilers, support modern programming 

needs through parallel and concurrent programming, and design and 

implement domain-specific languages (DSLs). 

8.1 INTRODUCTION 

Compilers translate high-level programming languages into machine code, 

crucial for software development. This content covers both foundational 

and advanced aspects, including lexical and syntax analyzer generators, 

LLVM for code generation, and JIT compilation for runtime optimization. 

We will also explore debugging and testing best practices, support for 

parallel and concurrent programming, and compiler optimization 

frameworks. Finally, we delve into DSL compilation, enabling the creation 

of specialized languages tailored to specific domains. 
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8.2 INTRODUCTION TO COMPILER TOOLS AND 

TECHNIQUES 

Compiler tools and techniques are essential for transforming high-level 

programming languages into machine code that computers can execute. 

This section explores the fundamental components and tools used in 

compiler construction, providing a comprehensive understanding of how 

compilers work and the technologies that support their development. 

8.2.1 Overview of Compiler Design 

Compiler design is a critical area of computer science that focuses on the 

development of compilers, which are programs that translate high-level 

source code into machine code, assembly language, or intermediate 

representations that a computer can execute. Understanding compiler 

design involves examining the various phases of compilation, each with 

distinct responsibilities and methodologies. 

8.2.1.1 Definition and purpose of a compiler 

A compiler is a sophisticated software tool that takes source code written in 

high-level programming languages (such as C, Java, or Python) and 

converts it into machine code, which is a low-level, binary format that the 

computer's processor can execute directly. The primary purposes of a 

compiler are: 

a. Translation: Converting high-level language constructs into a form 

that the machine can understand and execute. 

b. Optimization: Improving the efficiency of the code to ensure it runs 

faster and uses fewer resources. 

c. Error Detection: Identifying and reporting errors in the source code to 

help developers correct mistakes. 

d. Abstraction: Allowing programmers to write in high-level languages 

that are easier to understand and maintain, rather than in machine 

code. 

8.2.1.2 Phases of compilation 

The compilation process is divided into several key phases, each 

responsible for a specific aspect of translating and optimizing the source 

code: 

a. Lexical Analysis: 

• Purpose: The lexical analyzer (or lexer) processes the input 

source code to produce a sequence of tokens. Tokens are the 

smallest meaningful units in the code, such as keywords, 

operators, identifiers, and literals. 
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• Process: The lexer scans the source code, matching patterns 

defined by regular expressions to generate tokens while 

ignoring whitespace and comments. 

b. Syntax Analysis: 

• Purpose: The syntax analyzer (or parser) takes the sequence of 

tokens from the lexer and organizes them into a syntax tree (or 

parse tree) according to the grammatical rules of the 

programming language. 

• Process: The parser checks for syntactic correctness, ensuring 

that the tokens form valid statements and constructs. It reports 

syntax errors if the structure is incorrect. 

c. Semantic Analysis: 

• Purpose: The semantic analyzer verifies the syntax tree for 

semantic correctness, ensuring that the code adheres to the rules 

of the language, such as type checking and variable scope. 

• Process: This phase checks for logical errors and validates that 

operations and function calls are semantically correct. 

d. Optimization: 

• Purpose: The optimizer enhances the intermediate code's 

performance by applying various optimization techniques. 

• Process: Common optimizations include constant folding, loop 

unrolling, dead code elimination, and inlining. The goal is to 

improve execution speed and reduce resource consumption. 

e. Code Generation: 

• Purpose: The code generator translates the optimized 

intermediate code into machine code or assembly language. 

• Process: This phase converts high-level constructs into low-

level instructions that the processor can execute, ensuring 

efficient use of hardware resources. 

f. Code Optimization: 

• Purpose: Further refine the generated machine code to enhance 

its performance and efficiency. 

• Process: Techniques such as register allocation, instruction 

scheduling, and peephole optimization are applied to produce 

highly optimized executable code. 

Understanding these phases is crucial for designing efficient and effective 

compilers. Each phase plays a vital role in ensuring that the source code is 

accurately translated and optimized, resulting in high-performance 
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executable programs. The next section will delve into the specific tools used 

in compiler construction, which automate and facilitate these processes. 

8.2.2  Compiler Construction Tools 

Compiler construction tools are essential for automating various phases of 

the compilation process, enhancing efficiency, and reducing the complexity 

of building compilers. These tools help in generating key components of a 

compiler, such as lexical analyzers and syntax analyzers, thereby 

streamlining the development process. Below are some of the prominent 

tools used in compiler construction. 

8.2.2.1 Lexical analyzer generators (e.g., Lex, Flex) 

Lexical analyzer generators, such as Lex and Flex, are tools designed to 

automate the creation of lexical analyzers (lexers). These tools allow 

developers to define regular expressions that describe the tokens of a 

programming language. The generator then produces the lexer code, which 

scans the source code, matches patterns, and outputs tokens. 

a. Lex: 

• Overview: Lex is one of the oldest and most widely used tools 

for generating lexical analyzers. It is traditionally used in Unix-

based systems. 

• Functionality: Developers write a specification file containing 

regular expressions and corresponding actions. Lex processes 

this file to produce a C source file that implements the lexical 

analyzer. 

• Usage Example: Lex is often used in conjunction with Yacc 

(Yet Another Compiler Compiler) to build complete compilers. 

b. Flex: 

• Overview: Flex (Fast Lexical Analyzer) is an enhanced version 

of Lex, offering better performance and additional features. 

• Functionality: Flex processes a specification file similar to Lex 

but generates more efficient and faster lexical analyzers. It 

provides improved flexibility and performance. 

• Usage Example: Flex is commonly used in modern compiler 

projects and can be integrated with tools like Bison for syntax 

analysis. 

8.2.2.2 Syntax analyzer generators (e.g., Yacc, Bison) 

Syntax analyzer generators, such as Yacc and Bison, facilitate the creation 

of parsers. These tools allow developers to define the grammar of a 

programming language using a high-level specification language. The 



 

 
157 

 

Introduction to Compiler 

Tools, Techniques and 

Advanced Topics in Compiler 
Design 

generator then produces the parser code, which constructs syntax trees and 

checks for syntactic correctness. 

a. Yacc (Yet Another Compiler Compiler): 

• Overview: Yacc is a traditional tool for generating parsers from 

context-free grammars. It is often used in combination with 

Lex. 

• Functionality: Developers write a specification file that defines 

the grammar rules and associated actions. Yacc processes this 

file to produce a C source file that implements the parser. 

• Usage Example: Yacc is used to build parsers for various 

programming languages and can handle complex language 

constructs. 

b. Bison: 

• Overview: Bison is a modern and more flexible alternative to 

Yacc. It is compatible with Yacc grammar files but offers 

additional features and improvements. 

• Functionality: Bison processes grammar specifications to 

produce efficient parsers. It supports advanced features like 

GLR parsing and can generate parsers in languages other than 

C. 

• Usage Example: Bison is widely used in both academic and 

industrial compiler projects, providing robust and flexible 

parsing capabilities. 

These tools significantly simplify the development of compilers by 

automating the generation of crucial components, allowing compiler 

developers to focus on higher-level design and optimization tasks. By 

leveraging these tools, developers can build efficient, reliable, and 

maintainable compilers. 

8.3 LEXICAL AND SYNTAX ANALYZER GENERATORS 

Lexical and syntax analyzers are fundamental components of a compiler, 

playing crucial roles in the translation of high-level source code into 

executable machine code. This section delves into the specifics of these 

components and the tools used to generate them. 

8.3.1 Lexical Analyzers 

Lexical analyzers, or lexers, are a crucial component in the early stages of 

the compilation process. They serve as the first line of analysis, 

transforming the raw source code into a structured sequence of tokens that 

can be more easily processed by subsequent phases of the compiler. 
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8.3.1.1 Role of lexical analyzers in compilation 

The primary role of a lexical analyzer is to read the source code and convert 

it into tokens. Tokens are the smallest meaningful elements in the source 

code, such as keywords, operators, identifiers, and literals. This 

transformation facilitates the work of the syntax analyzer by reducing the 

complexity of the input data. 

• Tokenization: The lexical analyzer scans the source code and 

identifies sequences of characters that match predefined patterns for 

various tokens. 

• Whitespace and Comment Removal: Lexers typically ignore 

whitespace and comments, focusing only on the meaningful elements 

of the source code. 

• Error Detection: Lexers detect illegal characters and malformed 

tokens, reporting lexical errors that need to be corrected before further 

compilation can proceed 

8.3.1.2 Tokenization and regular expressions 

Tokenization is the process of converting a sequence of characters into a 

sequence of tokens. Regular expressions are essential in defining the 

patterns that match different types of tokens. 

• Regular Expressions: Regular expressions are formal language 

constructs used to specify patterns for matching character sequences. 

They are a powerful tool for defining the lexical structure of a 

programming language. 

• Examples of Token Patterns: 

o Keywords: Recognized by fixed patterns, such as if, else, while, 

return. 

o Identifiers: Typically matched by the pattern [a-zA-Z_][a-zA-

Z0-9_]*, which allows for variable names, function names, etc. 

o Literals: Numeric values, string literals, and other constant 

values, matched by patterns like [0-9]+ for integers or \".*?\" 

for strings. 

o Operators and Symbols: Patterns for operators (+, -, *, /) and 

punctuation (;, ,, (, )). 

By automating the creation of lexical analyzers, tools like Lex and Flex help 

streamline the compiler development process, ensuring efficient and 

accurate tokenization of source code. This foundational step is critical for 

the subsequent stages of compilation, laying the groundwork for effective 

syntax analysis and beyond. 
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8.3.2  Syntax Analyzers 

The syntax analyzer, or parser, is the second phase of the compilation 

process. Its primary role is to analyze the sequence of tokens generated by 

the lexer and build a syntax tree (or parse tree) based on the grammatical 

rules of the programming language. 

8.3.2.1 Role of syntax analyzers in compilation 

a. Syntax Tree Construction: Organizing tokens into a hierarchical 

structure that represents the syntactic structure of the source code. 

b. Syntax Error Detection: Identifying and reporting errors in the 

structure of the code, such as missing semicolons or mismatched 

parentheses. 

8.3.2.2 Context-free grammars and parsing techniques 

Context-free grammars (CFGs) are used to define the syntax rules of a 

programming language. A CFG consists of a set of production rules that 

describe how tokens can be combined to form valid constructs in the 

language. 

a. Components of a CFG: 

1. Non-Terminals: Symbols that can be expanded into sequences 

of non-terminals and terminals. 

2. Terminals: Symbols that represent actual tokens produced by 

the lexer. 

3. Production Rules: Rules that define how non-terminals can be 

expanded. 

4. Start Symbol: The initial non-terminal from which parsing 

begins. 

b. Parsing Techniques: 

1. Top-Down Parsing: Constructs the syntax tree from the top 

(start symbol) and works down to the leaves (tokens). Examples 

include Recursive Descent Parsing. 

2. Bottom-Up Parsing: Constructs the syntax tree from the leaves 

(tokens) and works up to the root (start symbol). Examples 

include LR Parsing. 

8.4  CODE GENERATION FRAMEWORKS 

Code generation frameworks are essential tools in software development, 

particularly in compiler design and related fields. They provide a structured 

approach to translating high-level source code into executable machine 

code or intermediate representations (IR). 
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8.4.1 Introduction to Code Generation 

Code generation is a crucial part of compiler design where source code 

written in a high-level programming language is translated into low-level 

code, such as machine code or intermediate representations (IR), that can 

be executed by a computer. The main objectives of code generation include 

producing efficient and optimized code, minimizing memory usage, and 

ensuring correctness and compatibility with the target platform. 

8.4.1.1 Objectives of code generation 

The objectives of code generation include: 

a. Efficiency: Generating code that executes quickly and consumes 

minimal system resources. 

b. Optimization: Applying various optimization techniques to improve 

code performance and reduce redundancy. 

c. Correctness: Ensuring that the generated code behaves as expected 

and produces accurate results. 

d. Portability: Creating code that can run on different hardware 

architectures and operating systems. 

e. Maintainability: Writing code that is easy to understand, modify, and 

debug. 

8.4.1.2 Intermediate representations (IR) 

Intermediate representations (IR) are intermediate forms of code that are 

generated during the compilation process. They serve as a bridge between 

the high-level source code and the low-level target code. IR allows 

compilers to perform optimizations and transformations before generating 

the final executable code. Common IR formats include Abstract Syntax 

Trees (ASTs), Three-Address Code (TAC), Static Single Assignment (SSA) 

form, and LLVM IR. 

8.4.2  LLVM (Low-Level Virtual Machine) 

LLVM is a widely-used open-source compiler infrastructure project that 

provides a set of modular and reusable components for building compilers 

and code generation tools. It is designed to support a wide range of 

programming languages and target platforms. 

8.4.2.1 Overview of LLVM 

LLVM stands for Low-Level Virtual Machine, although it's often used 

beyond traditional virtual machines. It includes a suite of tools, libraries, 

and technologies for optimizing and generating code. LLVM's design 

emphasizes modularity, extensibility, and performance. 
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8.4.2.2 Architecture and components of LLVM 

The architecture of LLVM consists of several key components: 

a. Frontend: Converts source code from a high-level programming 

language (such as C, C++, or Swift) into LLVM IR. 

b. Optimizer: Applies various optimization techniques to LLVM IR, 

improving code performance and efficiency. 

c. Backend: Generates target-specific machine code or assembly 

language from optimized LLVM IR. 

d. Target Description: Defines the characteristics and instructions of the 

target hardware platform. 

e. JIT Compiler: Allows LLVM to compile and execute code at runtime, 

commonly used in dynamic languages and Just-In-Time (JIT) 

compilation scenarios. 

8.4.2.3 Using LLVM for code generation 

LLVM can be used for various code generation tasks, including: 

a. Compilers: Building compilers for programming languages by 

integrating LLVM's frontend, optimizer, and backend components. 

b. Code Optimization: Applying LLVM's optimization passes to 

improve code performance and reduce executable size. 

c. JIT Compilation: Dynamically compiling and executing code at 

runtime, suitable for languages like Python, Ruby, and JavaScript. 

d. Code Analysis: Analyzing and transforming code using LLVM's 

intermediate representations for static analysis and program 

understanding. 

Overall, LLVM offers a powerful and flexible framework for code 

generation, optimization, and compilation, making it a popular choice in the 

compiler and programming language development communities. 

8.5 DEBUGGING AND TESTING COMPILERS 

8.5.1 Importance of Compiler Debugging and Testing 

Compiler debugging and testing are crucial processes in software 

development, especially when working on compilers or language-related 

tools. They ensure the correctness, reliability, and performance of the 

compiler-generated code. 

8.5.1.1 Common compiler bugs and issues 

Common issues encountered during compiler development include: 
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a. Parsing Errors: Incorrect parsing of source code due to syntax errors 

or ambiguities. 

b. Semantic Errors: Incorrect handling of type checking, symbol 

resolution, or scope rules. 

c. Code Generation Errors: Inaccurate translation of high-level 

constructs to machine code or intermediate representations. 

d. Optimization Issues: Unexpected behavior or performance 

regressions introduced by optimization passes. 

e. Platform-Specific Problems: Compatibility issues on different 

hardware architectures or operating systems. 

8.5.1.2 Strategies for debugging compilers 

Effective strategies for debugging compilers include: 

a. Incremental Development: Building and testing compiler components 

step by step to isolate and address issues early. 

b. Debugging Information: Generating and utilizing debugging 

information in compiler output to trace code transformations and 

optimizations. 

c. Regression Testing: Running test suites to detect regressions caused 

by code changes or optimizations. 

d. Static Analysis Tools: Using static code analyzers to identify potential 

bugs, code smells, and performance bottlenecks. 

e. Logging and Tracing: Adding logging and tracing mechanisms to 

track compiler behavior and identify problematic areas. 

8.5.2 Tools and Techniques for Testing Compilers 

Various tools and techniques are available for testing compilers to ensure 

their correctness and performance. 

8.5.2.1 Unit testing frameworks 

Unit testing frameworks facilitate the creation and execution of test cases 

for individual compiler components, such as: 

a. Test Input Generation: Generating synthetic or real-world source code 

inputs to test parsing, type checking, and code generation. 

b. Assertions and Expectations: Checking expected outputs, error 

conditions, and compiler behavior against predefined criteria. 

c. Mocking and Stubs: Simulating dependencies or external libraries to 

isolate and test specific compiler functionalities. 
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8.5.2.2 Automated testing tools (e.g., Fuzzing) 

Automated testing tools, like fuzzers, help uncover edge cases, corner cases, 

and vulnerabilities in compiler implementations: 

a. Fuzz Testing: Injecting random or mutated inputs into the compiler to 

trigger unexpected behavior, crashes, or security vulnerabilities. 

b. Coverage Analysis: Measuring code coverage during testing to ensure 

thorough testing of all compiler paths and functionalities. 

c. Mutation Testing: Modifying source code or IR to assess the 

effectiveness of test cases in detecting compiler bugs or regressions. 

8.5.2.3 Debugging tools (e.g., GDB, Valgrind) 

Debugging tools assist in identifying and diagnosing compiler issues during 

development and testing: 

a. GDB (GNU Debugger): Allowing developers to debug compiler 

internals, inspect memory, set breakpoints, and analyze program 

execution. 

b. Valgrind: Detecting memory leaks, buffer overflows, and other 

memory-related errors in compiled programs, aiding in compiler 

debugging and optimization. 

By incorporating these debugging and testing strategies, along with relevant 

tools and techniques, developers can enhance the reliability, performance, 

and quality of compilers and language tools. 

8.6. JUST-IN-TIME (JIT) COMPILATION 

In computing, just-in-time (JIT) compilation (also dynamic translation or 

run-time compilations) is compilation (of computer code) during execution 

of a program (at run time) rather than before execution. This may consist of 

source code translation but is more commonly bytecode translation to 

machine code, which is then executed directly. A system implementing a 

JIT compiler typically continuously analyses the code being executed and 

identifies parts of the code where the speedup gained from compilation or 

recompilation would outweigh the overhead of compiling that code. 

8.6.1 Introduction to JIT Compilation 

8.6.1.1 Difference between JIT and ahead-of-time (AOT) compilation 

AOT (Ahead-of-Time) JIT (Just-in-Time) 

Compiles code before the Angular 

application is loaded in the browser. 

Compiles Code during runtime 

when the Angular app is launched in 

the client’s browser. 
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AOT (Ahead-of-Time) JIT (Just-in-Time) 

Generates a production-ready output 

with optimizations, ready for 

deployment without additional build 

steps. 

Requires an additional build for 

production, potentially adding extra 

time to the deployment process. 

AOT produces smaller bundle sizes, 

which means faster downloads for 

users. 

Produces larger bundle sizes due to 

in-browser compilation, potentially 

impacting loading speed. 

AOT catches and reports template 

errors during the compilation phase, 

ensuring more reliable applications 

with fewer runtime issues. 

Identifies errors during runtime, 

which may lead to issues being 

discovered after the application is 

already in use. 

Relatively easier for beginners due 

to its build-time error checking and 

optimized output. 

Can be more complex for beginners, 

as errors are discovered during 

runtime. 

Does not allow dynamic updates in 

production, requiring a rebuild for 

any changes. 

Allows dynamic updates during 

development, making it easier to see 

immediate results. 

Easier to debug in the development 

phase with early error detection 

during the build. 

Debugging is possible during 

runtime, which can help identify 

issues when they occur. 

Better compatibility with older 

browsers, ensuring wider 

accessibility. 

Slightly less compatible with older 

browsers compared to AOT. 

8.6.1.2 Benefits and challenges of JIT compilation 

Benefits: 

a. Performance Improvement: 

• JIT compilation can optimize code during execution, allowing 

for performance enhancements that static compilers can't 

achieve. 

• It enables hot spot optimization, where frequently executed 

paths are heavily optimized. 

b. Dynamic Adaptation: 

• JIT compilers can adapt to the actual runtime environment and 

usage patterns, optimizing code based on real-time data. 

c. Cross-platform Compatibility: 

• JIT allows for platform-independent intermediate code (like 

Java bytecode) to be executed efficiently on any platform with 

a compatible JIT compiler. 
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d. Reduced Startup Time: 

• Initial startup can be faster since the whole program doesn’t 

need to be compiled upfront; instead, parts are compiled as 

needed. 

Challenges: 

a. Complexity: 

• Implementing a JIT compiler is more complex than a traditional 

ahead-of-time (AOT) compiler, requiring advanced techniques 

for runtime code analysis and optimization. 

b. Memory Usage: 

• JIT compilation requires additional memory to store both the 

compiled code and the JIT compiler itself. 

c. Security Concerns: 

• Since JIT compilers generate code at runtime, they can 

potentially introduce security vulnerabilities if not carefully 

managed. 

d. Overhead: 

• The process of JIT compilation introduces runtime overhead, 

which can affect the initial performance of an application. 

8.6.2  JIT Compilation Techniques 

8.6.2.1 Dynamic code generation 

Definition: 

Dynamic code generation refers to the creation of executable code at 

runtime. This allows for optimizations based on the current execution 

context, such as the specific hardware or the runtime behavior of the 

application. 

Techniques: 

a. Inline Caching: 

• Optimizes method calls by caching the target address of 

frequently called methods. 

b. Speculative Optimization: 

• Assumes certain conditions based on runtime profiling and 

optimizes the code accordingly. If assumptions fail, 

deoptimization can occur. 
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8.6.2.2 Runtime optimization strategies 

a. Adaptive Optimization: 

• Continuously profiles the running application and applies 

optimizations to hot spots—code sections executed frequently. 

b. Deoptimization: 

• Reverts previously applied optimizations if they are determined 

to be inefficient or incorrect based on new runtime information. 

c. Garbage Collection Integration: 

• Works with the runtime's garbage collector to optimize memory 

management, reducing the impact of memory allocation and 

deallocation on performance. 

8.6.3  Examples of JIT Compilers 

8.6.3.1 Java HotSpot VM 

Overview: 

The HotSpot VM is the JIT compiler used by Java to translate Java bytecode 

into native machine code. 

Features: 

a. Tiered Compilation: 

• Combines both an interpreter and multiple JIT compilers to 

balance startup time and peak performance. 

b. Escape Analysis: 

• Optimizes object allocation and synchronization by 

determining if objects can be safely allocated on the stack 

instead of the heap. 

8.6.3.2 .NET CLR JIT 

Overview: 

The .NET Common Language Runtime (CLR) includes a JIT compiler that 

translates intermediate language (IL) code into native code for execution. 

Features: 

a. Code Caching: Caches JIT-compiled code to avoid recompiling 

methods on subsequent executions. 

b. Profiling: Integrates with profiling tools to provide insights into 

runtime performance and apply appropriate optimizations. 
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8.7 PARALLEL AND CONCURRENT PROGRAMMING 

SUPPORT 

Parallel programming involves splitting tasks to run simultaneously on 

multiple processors for speed and performance. Concurrent programming 

handles multiple tasks at overlapping times, focusing on correct interaction 

and efficient resource use, often through threads and synchronization 

mechanisms. 

8.7.1 Introduction to Parallel and Concurrent Programming 

Parallel programming: Executes multiple sub-tasks simultaneously on 

different processors to boost performance. 

Concurrent programming: Manages overlapping tasks to ensure efficient 

and correct execution. 

Applications: High-performance computing, real-time systems, web 

servers, gaming, and data analysis. 

8.7.1.1 Importance in modern computing 

Performance Improvements: Parallel and concurrent programming allow 

for tasks to be divided and executed simultaneously, which can significantly 

reduce overall execution time. This is particularly beneficial for compute-

intensive applications like scientific simulations, data analysis, and complex 

calculations. 

Scalability: By distributing workloads across multiple processors or cores, 

applications can scale more efficiently to handle larger datasets and a 

greater number of users. This is crucial for applications in cloud computing, 

big data processing, and web services. 

Efficiency: Efficient utilization of multi-core processors and multi-

processor systems can lead to better performance and energy efficiency. 

This is essential for both high-performance computing and everyday 

applications to make the best use of available hardware resources. 

Real-time Processing: Many applications, such as video streaming, 

gaming, and high-frequency trading, require real-time processing 

capabilities. Parallel and concurrent programming enable these applications 

to meet strict timing constraints and deliver responsive performance. 

8.7.1.2 Challenges in supporting parallelism and concurrency 

Complexity: Writing parallel and concurrent programs is more complex 

than writing sequential programs. It requires managing multiple execution 

threads, ensuring data consistency, and handling synchronization. 

Debugging and testing parallel programs are also more challenging. 

Race Conditions: Race conditions occur when multiple threads or 

processes access shared resources simultaneously, and the outcome depends 
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on the sequence of accesses. This can lead to unpredictable behavior and 

bugs that are difficult to reproduce and fix. 

Deadlocks:  Deadlocks occur when two or more processes are waiting 

indefinitely for each other to release resources, causing the entire system to 

halt. Proper resource management and avoiding circular dependencies are 

critical to prevent deadlocks. 

Scalability Issues: Not all algorithms and applications scale linearly with 

the addition of more processors or cores. Factors such as data dependencies, 

communication overhead, and contention for shared resources can limit the 

scalability of parallel and concurrent programs. 

8.7.2 Compiler Techniques for Parallelism 

Compiler techniques for parallelism involve optimizing code to effectively 

utilize multiple processors or cores for concurrent execution. Key 

techniques include: 

a. Automatic Parallelization: Automatically converting sequential code 

into parallel code. 

b. Loop Unrolling: Transforming loops to increase the number of 

instructions executed in parallel. 

c. Dependency Analysis: Identifying and resolving data dependencies to 

enable parallel execution. 

d. Thread-Level Parallelism: Dividing tasks into threads that can run 

concurrently. 

e. Task Scheduling: Efficiently distributing tasks across multiple 

processors to balance the load. 

f. Vectorization: Converting operations to use SIMD (Single 

Instruction, Multiple Data) instructions. 

g. Parallel Libraries and Frameworks: Utilizing libraries and 

frameworks that support parallel operations, like OpenMP and MPI. 

8.7.2.1 Automatic parallelization 

Definition: Automatic parallelization involves the compiler analyzing the 

program code to identify opportunities for parallel execution and 

transforming the code to exploit these opportunities without requiring 

manual intervention from the programmer. 

Techniques: 

a. Loop Parallelization: 

• The compiler identifies loops where iterations are independent 

of each other and can be executed in parallel, transforming the 

loop to run across multiple threads or processors. 
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b. Function Parallelization: 

• The compiler determines which functions or methods can be 

executed concurrently, especially those that do not share state 

or have minimal interaction, and schedules them to run in 

parallel. 

8.7.2.2 Data dependence analysis 

Definition: 

Data dependence analysis identifies dependencies between different parts 

of a program to ensure correct execution order in parallel environments. 

Types: 

a. Flow Dependence (True Dependence): Occurs when one statement 

produces a result that a subsequent statement uses. Parallel execution 

must respect this order to maintain correctness. 

b. Anti-dependence: Occurs when a statement reads a value that is later 

overwritten by another statement. The compiler must ensure the read 

happens before the write in parallel execution. 

c. Output Dependence: Occurs when two statements write to the same 

memory location. Proper synchronization is required to ensure the 

correct final value is written. 

8.7.2.3 Loop transformations and optimizations 

a. Loop Unrolling: Reduces the overhead of loop control by expanding 

the loop body to execute multiple iterations in a single pass. This can 

improve performance by decreasing the number of iterations and 

increasing instruction-level parallelism. 

b. Loop Tiling (Blocking): Divides the loop iterations into smaller 

blocks or tiles to improve cache performance by enhancing data 

locality. Each tile can be processed independently, potentially in 

parallel. 

c. Loop Fusion: Combines adjacent loops that iterate over the same 

range into a single loop. This reduces loop overhead and can improve 

cache utilization by accessing related data in a more localized manner. 

8.7.3  Tools and Frameworks 

8.7.3.1 OpenMP 

Overview: 

OpenMP (Open Multi-Processing) is an API that provides a portable and 

scalable model for developing parallel applications in C, C++, and Fortran. 

It uses compiler directives, library routines, and environment variables to 

specify parallelism. 
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Features: 

a. Pragmas: OpenMP uses compiler directives, known as pragmas, to 

indicate parallel regions in the code. These pragmas are simple 

annotations that guide the compiler to generate parallel code. 

b. Work-sharing Constructs: OpenMP provides constructs like 

#pragma omp for to parallelize loops, #pragma omp sections to divide 

code into parallel sections, and #pragma omp single to specify code 

that should be executed by only one thread. 

c. Synchronization: OpenMP includes mechanisms to manage 

synchronization, such as #pragma omp critical to define critical 

sections, #pragma omp atomic for atomic operations, and #pragma 

omp barrier to synchronize threads at specific points in the program. 

8.7.3.2 MPI 

Overview: 

MPI (Message Passing Interface) is a standardized and portable message-

passing system designed to function on parallel computing architectures. It 

is widely used for programming distributed memory systems. 

Features: 

a. Point-to-point Communication: MPI provides functions for direct 

communication between pairs of processes, such as MPI_Send and 

MPI_Recv, enabling explicit message passing. 

b. Collective Communication: MPI includes collective communication 

operations like MPI_Bcast to broadcast a message to all processes, 

MPI_Scatter and MPI_Gather for distributing and collecting data, and 

MPI_Reduce for combining data from multiple processes. 

c. Synchronization: MPI offers synchronization mechanisms such as 

barriers (MPI_Barrier) to coordinate processes and ensure all 

processes reach a certain point before continuing, ensuring correct 

execution order. 

8.8 COMPILER OPTIMIZATION FRAMEWORKS 

Compiler optimization frameworks automate code performance 

improvements. Examples include LLVM, GCC, Intel Compiler (ICC), 

Clang, and Microsoft Visual C++ Compiler. They offer optimizations like 

loop optimization, inlining, vectorization, and parallelization for efficient 

code execution. 

8.8.1 Introduction to Compiler Optimization 

Compiler optimization improves code performance by applying 

transformations during compilation. Techniques include constant folding, 

loop optimization, inlining, data flow analysis, vectorization, register 
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allocation, and parallelization. Optimization levels and target architectures 

impact trade-offs between compilation time, code size, and performance. 

8.8.1.1 Goals and types of optimizations 

Goals: 

a. Performance Improvement: Optimizations aim to make the 

compiled code run faster by reducing the number of instructions 

executed, improving cache utilization, and taking advantage of 

modern CPU features. 

b. Code Size Reduction: Some optimizations focus on reducing the size 

of the generated code, which can be critical for embedded systems 

and applications with limited memory. 

c. Power Efficiency: Optimizations can also reduce the power 

consumption of a program, which is important for mobile and 

embedded devices. 

d. Maintainability and Readability: While not always a primary goal, 

some optimizations strive to make the generated code easier to 

understand and maintain. 

Types: 

a. Local Optimization: Focuses on optimizing small parts of the code, 

typically within a single basic block. 

b. Global Optimization: Extends optimization efforts across multiple 

basic blocks or the entire function to improve performance or reduce size. 

c. Interprocedural Optimization: Analyzes and optimizes across 

function boundaries to improve overall program performance. 

8.8.1.2 Static vs. dynamic optimizations 

a. Static Optimizations: Performed at compile time by the compiler. 

These optimizations analyze and transform the code without 

executing it. Examples include loop unrolling, inlining, and constant 

folding. 

• Advantages: Can be applied once during the compilation 

process, leading to a simpler runtime system. 

• Disadvantages: May miss optimization opportunities that only 

become apparent at runtime. 

b. Dynamic Optimizations: 

• Performed at runtime by a Just-In-Time (JIT) compiler or a 

runtime optimization system. These optimizations adapt to the 

actual execution environment and workload. 
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• Advantages: Can optimize based on real-time information, 

potentially leading to better performance. 

• Disadvantages: Introduces runtime overhead and complexity. 

8.8.2 Common Optimization Techniques 

8.8.2.1 Loop optimizations (unrolling, fusion) 

a. Loop Unrolling: Reduces the overhead of loop control by executing 

multiple iterations of the loop in a single pass. This can increase 

instruction-level parallelism and improve cache performance. 

b. Loop Fusion: Combines adjacent loops that iterate over the same 

range into a single loop. This reduces loop overhead and can improve 

data locality, leading to better cache performance. 

8.8.2.2 Inlining, constant folding, and dead code elimination 

a. Inlining: Replaces a function call with the actual body of the 

function. This can reduce the overhead of function calls and enable 

further optimizations by exposing more code to the compiler. 

b. Constant Folding: Evaluates constant expressions at compile time 

and replaces them with their computed values. This reduces the 

number of runtime computations. 

c. Dead Code Elimination: Removes code that does not affect the 

program’s output, such as code that is never executed or whose results 

are never used. This can reduce code size and improve performance. 

8.8.2.3 Register allocation and instruction scheduling 

a. Register Allocation: Assigns variables to machine registers to 

minimize the number of memory accesses. Effective register 

allocation can significantly improve performance by reducing the 

need for slower memory operations. 

b. Instruction Scheduling: Reorders instructions to avoid pipeline 

stalls and make better use of CPU resources. This can improve the 

instruction throughput of the processor. 

8.8.3 Optimization Frameworks 

8.8.3.1 Overview of popular frameworks (e.g., LLVM's optimization 

passes) 

a. LLVM: LLVM (Low-Level Virtual Machine) is a widely used 

compiler infrastructure that provides a set of reusable components for 

building compilers. LLVM includes a rich set of optimization passes 

that can be applied to intermediate code representation (IR). 

• Optimization Passes: LLVM's optimization passes include 

various techniques such as loop unrolling, inlining, constant 
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folding, dead code elimination, register allocation, and more. 

These passes can be combined in different ways to achieve the 

desired level of optimization. 

b. GCC: The GNU Compiler Collection (GCC) also provides a 

comprehensive set of optimization passes. GCC's optimizations can 

be fine-tuned using compiler flags, allowing developers to balance 

between compilation time and runtime performance. 

8.8.3.2 How to use and extend these frameworks 

a. Using Optimization Frameworks: Developers can use optimization 

frameworks like LLVM and GCC by applying predefined 

optimization passes. For instance, in LLVM, the opt tool can be used 

to run specific optimization passes on LLVM IR code. 

 Example Command: opt -O2 input.ll -o output.ll applies the standard 

optimization level O2 to the input LLVM IR file. 

b. Extending Optimization Frameworks: Developers can extend these 

frameworks by writing custom optimization passes. In LLVM, this 

involves subclassing the llvm::FunctionPass or llvm::ModulePass 

classes and implementing the required optimization logic. 

Example: 

Creating a new pass in LLVM involves defining the pass, registering it with 

the pass manager, and then integrating it into the compilation pipeline. 

8.9. DOMAIN-SPECIFIC LANGUAGE (DSL) COMPILATION 

DSL compilation translates code from a domain-specific language (DSL) 

into executable code or intermediate representations. It involves parsing, 

semantic analysis, code generation, optional optimization, and output 

generation. Challenges include balancing expressiveness and performance, 

integrating with host languages, and developing appropriate tooling. 

8.9.1 Introduction to DSLs 

8.9.1.1 Definition and benefits of DSLs 

Definition: Domain-Specific Languages (DSLs) are programming 

languages designed for specific domains or tasks. They are tailored to 

express concepts and operations relevant to a particular problem domain, 

making them more expressive and easier to use for domain experts. 

Benefits: 

a. Expressiveness: DSLs allow developers to express domain-specific 

concepts and operations directly, leading to clearer and more concise 

code. 
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b. Abstraction: By focusing on the specific domain, DSLs can hide 

lower-level details, reducing complexity and making code more 

understandable. 

c. Productivity: Domain experts can work more efficiently with DSLs 

as they are designed to match their mental models and workflows. 

d. Verification and Validation: DSLs can enable better verification 

and validation of domain-specific rules and constraints, leading to 

more robust software. 

8.9.1.2 Examples of domain-specific languages 

a. SQL (Structured Query Language): A DSL for database queries, 

allowing users to specify operations like selecting, updating, and 

manipulating data in a database. 

b. HTML (Hypertext Markup Language): A DSL for creating web 

pages, defining the structure and content of web documents using tags 

and attributes. 

c. Regular Expressions (Regex): A DSL for pattern matching and text 

processing, enabling users to define complex search patterns. 

8.9.2 Designing a DSL 

Designing a DSL involves defining the domain scope, identifying user 

needs, creating intuitive syntax and semantics, balancing expressiveness 

with simplicity, integrating with IDEs, deciding on compilation or 

interpretation, handling errors effectively, testing and validating, providing 

thorough documentation and examples, and fostering community 

engagement. 

8.9.2.1 Key considerations in DSL design 

a. Domain Understanding: Understanding the target domain is crucial 

for designing an effective DSL. This includes identifying domain-

specific concepts, operations, and constraints. 

b. Abstraction Level: Determine the appropriate level of abstraction for 

the DSL, balancing between expressiveness and simplicity for domain 

users. 

c. Language Features: Choose language features and constructs that 

align with the domain's semantics, making it easier for users to write 

and understand DSL code. 

d. Tooling and Integration: Consider tooling support and integration 

with existing development environments to enhance the usability and 

adoption of the DSL. 
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8.9.2.2 Syntax and semantics of DSLs 

a. Syntax: Define the syntax of the DSL using a formal notation such as 

BNF (Backus-Naur Form) or EBNF (Extended Backus-Naur Form). 

This specifies the grammar rules for valid DSL expressions. 

b. Semantics: Define the semantics of DSL constructs, including their 

behavior, effects, and interactions. This clarifies how DSL code is 

interpreted and executed. 

8.9.3 Implementing a DSL Compiler 

Implementing a DSL compiler involves: 

a. Tokenizing and parsing DSL code into a syntax tree. 

b. Validating syntax and semantics, resolving identifiers, and detecting 

errors. 

c. Generating executable code or intermediate representations. 

d. Integrating with tooling, testing, debugging, optimizing, 

documenting, and deploying the compiler for distribution. 

8.9.3.1 Parsing techniques for DSLs 

a. Lexer and Parser: Use lexer and parser generators like ANTLR, 

Yacc, or Bison to parse DSL code and generate an abstract syntax tree 

(AST) representing the code's structure. 

b. Semantic Analysis: Perform semantic analysis on the AST to check 

for correctness, resolve references, and enforce domain-specific rules 

and constraints. 

8.9.3.2 Code generation for specific domains 

a. Intermediate Representation (IR): Translate the AST into an 

intermediate representation suitable for code generation. This IR 

captures the semantics of DSL constructs in a form that can be 

transformed into executable code. 

b. Code Generation: Generate target code (e.g., machine code, 

bytecode, or source code in another language) based on the IR. This 

step translates DSL constructs into executable instructions or 

operations. 

8.9.3.3 Tools and frameworks for DSL compilation (e.g., ANTLR) 

a. ANTLR (ANother Tool for Language Recognition): ANTLR is a 

powerful parser generator that can be used to create parsers and 

translators for DSLs. It supports various target languages and 

provides tools for syntax highlighting, code generation, and error 

handling. 

b. Other Tools: Other tools and frameworks like JetBrains MPS (Meta 

Programming System), Xtext, and Spoofax can also be used for DSL 
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development and compilation, offering different features and 

capabilities for DSL designers and implementers. 

8.10 SUMMARY 

• Compiler Tools and Techniques 

Overview of Compiler Design and its phases. 

 Compiler Construction Tools like Lex, Yacc, and Bison. 

• Lexical and Syntax Analyzer Generators 

 Role of lexical and syntax analyzers in compilation. 

 Generators like Lex, Flex, Yacc, and Bison. 

 Tokenization, regular expressions, and parsing techniques. 

• Code Generation Frameworks 

 Introduction to Code Generation and LLVM. 

 Intermediate Representations (IR) and LLVM architecture. 

• Debugging and Testing Compilers 

 Importance, strategies, and tools for debugging and testing compilers. 

• Just-in-Time (JIT) Compilation 

Benefits/challenges, techniques, and examples of JIT Compilers. 

• Parallel and Concurrent Programming Support 

 Importance, challenges, and Compiler Techniques for Parallelism. 

 Tools and Frameworks like OpenMP and MPI. 

• Compiler Optimization Frameworks 

 Goals, types, and common techniques of optimizations. 

 Overview of popular frameworks like LLVM's optimization passes. 

• Domain-Specific Language (DSL) Compilation 

 Introduction to DSLs, benefits, and examples. 

Design considerations, syntax, semantics, and DSL Compiler 

implementation. 

8.11 QUESTIONS FOR PRACTICE  

1. What are the key phases in compiler design, and what is the purpose 

of each phase? 

2. How do lexical analyzers and syntax analyzers contribute to the 

compilation process? 
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3. Can you explain the role of intermediate representations (IR) in code 

generation? 

4. What are some common techniques used in compiler optimization, 

and how do they improve code performance? 

5. What are the benefits and challenges of Just-in-Time (JIT) 

compilation compared to ahead-of-time (AOT) compilation? 

6. Describe the importance of parallel and concurrent programming 

support in modern computing, and discuss some challenges in 

achieving parallelism. 

7. How do tools like OpenMP and MPI aid in parallel programming, and 

what are their key features? 

8. What are the objectives of code generation, and how does LLVM 

contribute to this process? 

9. What are domain-specific languages (DSLs), and what are the 

benefits of using DSLs for specific tasks? 

10. Explain the key considerations in designing a DSL and implementing 

a DSL compiler, including parsing techniques and code generation for 

specific domains. 
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