
NOSQL TECHNOLOGIES

M. SC. COMPUTER SCIENCE
SEMESTER - I

REVISED SYLLABUS AS PER NEP 2020

MSCCS 1.4



© UNIVERSITY OF MUMBAI

August 2024, Print I,

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
CODE,  University of Mumbai – 400098.

Course Coordinator :  Sumedh Sejole
Asst. Professor,
CDOE, University of Mumbai

Editor : Dr. Shraddha Sable
Asst. Professor
S. K. College of sci & comm, Nerul,  Navi Mumbai

Course Writers : Dr. Rajeshri Pravin Shinkar

Assistant Professor,

SIES.

: Rani Podichetty

Assistant Professor,

K.B. College of. Arts and Commerce for Women.

: Vijay Kothawade

Assr. Professor,

SJRS College, Kalwa West.

: Milind Thorat

Lecturer,

KJSIT.

Published by
Director

Centre for Distance and Online Education, University of Mumbai,
Vidyanagari, Mumbai - 400 098.

 DTP COMPOSED AND PRINTED BY
Mumbai University Press,

Vidyanagari, Santacruz (E), Mumbai - 400098.

Prof. Shivaji Sargar
Director

CDOE, University of Mumbai.

Prof. Ravindra Kulkarni
Vice Chancellor

University of Mumbai, Mumbai.

Prin. Dr. Ajay Bhamare
Pro Vice-Chancellor,
University of Mumbai.



1. NoSQL Technologies 1

2. Understanding the Storage Architecture 17

3. Databases Performing Crud Operations 28

4. Querying NoSQL Stores 47

5. Indexing and Ordering Data Sets 69

6. Managing Transactions and Data Integrity 90

*****

CONTENTS

Unit No. Title Page No



ELECTIVES 

Programme Name:   M.Sc. Computer 

Science (Semester I) 

Total Credits: 02 

College assessment: 25 

Course Name:  NoSQL Technologies 

 

Total Marks: 50 

University assessment: 25   

 

Prerequisite: Basic understanding of databases, SQL concepts, and familiarity with 

programming languages like Java or Python. 

Course Outcome: 

Upon the successful completion of this course, students will be able to: 

 Understand NoSQL characteristics, storage types, and advantages/drawbacks. 

 Interface and interact with MongoDB, Redis, HBase, and Apache Cassandra effectively. 

 Comprehend storage architecture in NoSQL, including column-oriented, document 

stores, and key/value stores. 

 Perform CRUD operations proficiently, including data creation, access, update, and 

deletion. 

 Query NoSQL stores using MongoDB features, accessing HBase data, and querying 

Redis. 

 Apply indexing and ordering concepts in NoSQL databases like MongoDB, CouchDB, 

and Cassandra. 

 Manage transactions and ensure data integrity in NoSQL, including distributed ACID 

systems. 

 Utilize NoSQL effectively in the cloud, such as Google App Engine Data Store and 

Amazon SimpleDB. 

Course Code Course Title 
Total 

Credits 

PSCS506a NoSQL Technologies 02 

MODULE - I 
Unit 1: Introduction to NoSQL and Interfacing with NoSQL Data Stores 
Basics Introduction to NoSQL: Characteristics of NoSQL, NoSQL Storage 
types, Advantages and Drawbacks, NoSQL Products Interfacing and interacting 
with NoSQL: Storing Data in and Accessing Data from MongoDB, Redis, HBase 
and Apache Cassandra, Language Bindings for NoSQL Data Stores 
Understanding the storage architecture: Working with ColumnOriented 
Databases, HBase Distributed Storage Architecture, Document Store Internals, 
Understanding Key/Value Stores in Memcached and Redis, Eventually Consistent 
Non-relational  
Databases Performing CRUD operations: Creating Records, Accessing Data, 
Updating and Deleting Data 
 
Unit 2: Querying, Indexing, and Data Management in NoSQL Databases 
Querying NoSQL Stores: Similarities Between SQL and MongoDB Query 
Features, Accessing Data from Column-Oriented Databases Like HBase, 
Querying  
 

02  



Redis Data Stores Indexing and Ordering Data Sets: Essential Concepts Behind 
a Database Index, Indexing and Ordering in MongoDB, ouchDB and Apache 
Cassandra  
Managing Transactions and Data Integrity: RDBMS and ACID, Distributed 
ACID Systems, Upholding CAP, Consistency Implementations Using NoSQL in 
The Cloud: Google App Engine Data Store, Amazon SimpleDB 

 

Text Books: 

1. QL & NoSQL Databases, Andreas Meier · Michael Kaufmann, Springer Vieweg, 2019  

2. Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons, Inc, 2011  

3. SQL & NoSQL Databases, Andreas Meier · Michael Kaufmann, Springer Vieweg, 2019 

4. NoSQL: Database for Storage and Retrieval of Data in Cloud, Ganesh Chandra Deka, 

CRC Press, 2017 

5. Demystifying NoSQL by Seema Acharya, Wiley, 2020 

*****



   1 

1 
NoSQL TECHNOLOGIES 

Unit Structure 

1.0  Objective 

1.1  Introduction to NoSQL and Interfacing with NoSQL Data Stores 

1.2  Characteristics of NoSQL 

1.3  NoSQL Storage types 

1.4  Advantages of NoSQL 

1.5  Drawbacks of NoSQL: 

1.6  NoSQL Products Interfacing and interacting with NoSQL  

1.7  SQL and NoSQL 

1.8  Storing Data in and Accessing Data from MongoDB 

1.9  SQL Server and MongoDB 

1.10  Using the MongoDB Shell 

1.11  Redis 

1.12  HBase 

 1.12.1 Storage Mechanism in HBase 

 1.12.2 HBase and RDBMS 

 1.12.3 Features of HBase 

 1.12.4 Applications of HBase 

1.13  Apache Cassandra 

 1.13.1 Data Model 

1.13.2 Relational Table and Cassandra Column Family 

1.14  Language Bindings or NoSQL Data Stores 

1.15  Summary 

1.16  Questions  

1.17  References  

1.0 OBJECTIVE 

 To study the NoSQL characteristics, storage types and 
advantages/drawbacks. 

 To study MongoDB, HBase, Apache Cassandra. 

 To understand data storage architecture of NoSQL including column-
oriented, document stores, and key/value pairs. 

 

 



 

 

NoSQL Technologies 

2 

1.1 INTRODUCTION TO NOSQL AND INTERFACING 
WITH NOSQL DATA STORES 

“NoSQL” is “nonSQL” or “not only SQL”, It stores the databases in the 
format other than traditional format of RDBMS like relational type of 
tables. It is useful for managing and accessing various types of databases 
for large volume of data. 

Basics Introduction to NoSQL:  

 A non-relational database which stores data in a non-tabular manner.  

 NoSQL database can store data in traditional as well as non-
traditional structural way. 

 Relational Databases have been only one choice or the default choice 
for data storage. 

 After relational databases, current excitement about NoSQL databases 
has come. 

 The value of relational databases are for two areas of memory a. fast, 
small, volatile main memory b. Larger, slower, non - volatile backing 
store. 

 As main memory is volatile to keep data around, for backing store 
(File system, Database). 

 The database allows more flexibility than a file system in storing large 
amounts of data in a way that allows an application program to get 
information quickly and easily. 

 A NoSQL database provides a mechanism for storage and retrieval of 
data that employs less constrained consistency models than traditional 
relational database. 

 NoSQL systems are also referred to as “NotonlySQL” to emphasize 
that they do in fact allow SQL-like query languages to be used. 

1.2 CHARACTERISTICS OF NOSQL 

1. High Scalability:   

 NoSQL have higher scalability for the large database.  

2.  Independent of Schema: 

NoSQL have more efficiency to work with the independent of schema 
feature i.e. large volume of heterogeneous type of data which requires no 
schemas for structuring it. 

 



 

 

NoSQL Technologies 

3 

3. Complex with free working: 

NoSQL is very easy to handle than the SQL databases, for storing data in 
an semi-structured, unstructured form that requires no tabular format or 
arrangement. 

4. Flexible to accommodate: 

NoSQL have heterogeneous data that does not require any the of structure 
format, they are very flexible in terms of their reliability and use. 

1.3 NOSQL STORAGE TYPES 

A database is an easily accessible collection of organised data or 
information kept in a computer system. A Database Management System 
often oversees a database (DBMS). 

The nontabular data is stored in a non-relational database called NoSQL. 
NoSQL is an acronym for Not Only SQL. Document, key-value, column-
oriented, and graphs are the primary types. 

It is divided into four different types: 

1. Document Database. 

2. Key-Value Database. 

3. Column-oriented Database. 

4. Graph Database. 

1. Document Database: 

In document database, it stores the data in the form of document. The data 
is grouped into the specified files where it is useful for building any 
application software. 

The most important benefit of document database is it allows to the use to 
store the database in a particular format i.e. document format. 

It is hierarchical and semi-structured format of NoSQL database it allows 
efficient storage for the data. For example user profile it works very well 
for storing the data. MongoDb is very good example of NoSQL database. 

2. Key -Value Database: 

Key-Value database is a type of NoSQL database where it stores the data 
in a schema-less manner. 

It store the data in key-value format. One data point is assign as a key 
while another data point is assign as value for key-value allotment. 

Example of Key-Value is the term ‘age’ is assign as key data point while 
‘45’ can be termed as value. 



 

 

NoSQL Technologies 

4 

3. Column-oriented Database: 

It stores the data in the form of columns where it segregates the data into 
homogenous categories. 

User can access the data very easily without retrieving unnecessary 
information. 

Column-oriented databases works efficiently for data analytics in many 
social media networking sites.  

This type of databases can accommodate large volume of data, For 
filtering the data or information, column-oriented databases are used. 
Apache HBase is an example of column-oriented database. 

4. Graph Database: 

In Graph Database we can store the data in the form of graphical 
knowledge and its related element like nodes, edges etc. 

Data points are placed very well so that nodes are easily related to the 
edges and thus, a connection or network can easily establish. 

Graph-based databases focus on the relationship between the elements. It 
stores the data in the form of nodes in the database. The connections 
between the nodes are called links or relationships. 

Key features of graph database: 

 In a graph-based database, it is easy to identify the relationship 
between the data by using the links. 

 The Query’s output is real-time results. 

 The speed depends upon the number of relationships among the 
database elements.     

 Updating data is also easy, as adding a new node or edge to a graph 
database is a straightforward task that does not require significant 
schema changes. 

 For software development Graph database is useful. 

 Good example for NoSQL database is Amazon Neptune where it 
makes high effective and organized functioning of software.  Amazon 
Neptune is reliable, fast and graph database service that runs or build 
various applications with highly connected databases. 

1.4 ADVANTAGES OF NOSQL 

 No constraint on the structure of the data to be stored. 

 Integration with cloud computing. 



 

 

NoSQL Technologies 

5 

 It can store large volume of data. 

 Flexible data model. 

 High performance. 

 Open Source. 

1.5 DRAWBACKS OF NOSQL  

 Less developed as compared to traditional SQL. 

 Improvements are required for cross-platform support. 

 In NoSQL data inconsistency may occur. 

 Large document size 

 GUI is not available. 

 It mainly designed for storage but it has very less functionality. 

 Backup is one drawback of NoSQL database as some NoSQL 
databases like MongoDB, it has no approach for the backup of data in 
a consistent manner. 

1.6 NOSQL PRODUCTS INTERFACING AND 
INTERACTING WITH NOSQL  

 MongoDB is an open-source document-oriented database where it is 
designed to store a large volume of data and it allows user to work 
with the data efficiently. Storage and retrieval of data in MongoDB is 
not in the form of tables. It supports the languages like C, C++, C# 
and .Net, Java, Node.js, Perl, PHP, Python, Scala etc. User can easily 
create an application using any of these languages. 

 Examples: There are many companies that uses MongoDB like 
Facebook, eBay, Google etc to store large volume of respective data.  

1.7 SQL AND NOSQL 

SQL NoSQL 

It is called as RDBMS or Relational 
Database. 

It is called as Non-Relational or 
Distributed Database. 

Table-based databases. It can be document based, key-
value pairs, graph databases. 

Vertical Scalability. Horizontal Scaliability. 

Fixed or Predefined schema. Flexible schema. 

It is not suitable for hierarchical data 
storage. 

It is suitable for hierarchical data 
storage. 



 

 

NoSQL Technologies 

6 

Example: Oracle, Microsoft SQL 
server, MySQL, PostgreSQL etc. 

Example: Document: MongoDB, 
CouchDB 

Key-value: Redis and 
DynamoDB 

Column based: Cassandra and 
Hbase 

Graph: Neo4j and Amazon 
Neptune. 

 

1. 8 STORING DATA IN AND ACCESSING DATA FROM 
MONGODB 

MongoDB is a cross platform document-oriented database it provides high 
performance and availability as well as easy scalability.  

MongoDB works on the concept of collection and document. 

Database: It is a physical container for the collections. Each database gets 
its own set of files on the file system. A single MongoDB server has 
multiple interfaces for databases. 

Collection: It is a group of MongoDB document. It is an equivalent to 
relational database (RDBMS) table. A collection exists within a single 
database. Collections do not enforce a schema document. Within a 
collection can have different fields? 

Document: It is a set of key-value pair. Document have dynamic schema. 
Dynamic schema is a document that has same collection, it does not 
require to have the same set of fields and structure and common fields in a 
collection document may hold different types of data. 

1.9 SQL SERVER AND MONGODB 

SQL Server MongoDB 

Database Database 

Table Collection 

Index Index 

Row Document 

Column Field 

Joining Linking & Embedding 

 

1.10 USING THE MONGODB SHELL 

MongoDB shell is a great tool for navigation, inspection and for 
manipulation document data. 

User can connect to MongoDB at localhost. Following are the shell 
commands. 



 

 

NoSQL Technologies 

7 

To create a database  

Use aj 

To check in which database we are working with  

Db 

Display list of all databases  

Show dbs 

[ here you will not able to see database aj which you have created as we 
have not yet stored anythong] 

To insert data in a document 

db.user.insert({name:"amol",age:30,address:"thane"}) 

to drop database 

db.dropDatabase()        // will delete current database which is selected; 
here aj was used so it will remove aj and all data present in the same. 

Create Collection in MongoDB 

the data in MongoDB is stored in form of documents. These documents 
are stored in Collection and Collection is stored in Database.  

Method 1: Creating the Collection in MongoDB on the fly 

> db.aj.insert({ 

... id:1, 

... name:"amol", 

... sal:55000 

... }) 

WriteResult({ "nInserted" : 1 }) 

To check whether the document is successfully inserted 

db.aj.find() 

to display the list of collections 

show collections 

Method 2: Creating collection with options before inserting the 
documents 

db.createCollection("students") 

the options that we can provide while creating a collection: 
capped: type: boolean. 

This parameter takes only true and false. This specifies a cap on the max 
entries a collection can have. Once the collection reaches that limit, it 
starts overwriting old entries. 

The point to note here is that when you set the capped option to true you 
also have to specify the size parameter. 



 

 

NoSQL Technologies 

8 

size: type: number. 

This specifies the max size of collection (capped collection) in bytes. 

max: type: number. 

This specifies the max number of documents a collection can hold. 

autoIndexId: type: Boolean 

The default value of this parameter is false. If you set it true then it 
automatically creates index field _id for each document. 

> db.createCollection("teacher", { capped : true, size : 9232768} ) 

This command will create a collection named “teacher” with the max size 
of 9232768 bytes. Once this collection reaches that limit it will start 
overwriting old entries. 

> db.createCollection("emp",{capped:true,size:44554444}) 

{ "ok" : 1 } 

In order to remove collection 

> db.emp.drop()  

true 

Insert Multiple Documents in collection 

To insert multiple documents in collection, we define an array of 
documents and later we use the insert() method on the array variable as 
shown in the example below. 

var test= 

[ 

 { 

 "sid" : 1, 

 "sname" : "juhi", 

 "mks" : 88 

 }, 

 { 

 "sid" : 2, 

 "sname" : "kajol", 

 "mks" : 87 

 }, 

 { 

 "sid" : 3, 

 "sname" : "aamir", 

 "mks" : 78 



 

 

NoSQL Technologies 

9 

 } 

 ]; 

db.student.insert(test); 

to see the inserted records 

db.student.find() 

To print the data in JSON format  

db.student.find().forEach(printjson) 

or 

db.student.find().pretty() 

To fetch the data of “juhi” from students collection 

> db.student.find({sname:"juhi"}).pretty() 

To fetch the details of students having mks > 80  

db.student.find({"mks":{$gt:80}}).pretty() 

gt—greater than 

ne—not equal 

lt—less than  

gte—greater than equals 

lte—less than equals 

to update details 

(change kajol to raveena) 

> db.student.update({"sname":"kajol"},{$set:{"sname":"raveena"}}) 

Updating Document using save() method 

Here in order to use save() method we need to know unique id of each 
document. 

If you do not use id then it will consider it as new document and that gets 
inserted in the collection. 

To get the unique Id for a particular document…  

db.student.find({"sname":"aamir"}).pretty() 

will provide id for aamir 

now lets change his name to salman using save method 

db.student.save({"_id":ObjectId("5c318a49310a8bf25f38dc87"),"sid 
name":"salman",  "mks":76}) 

To remove certain document from collection  

db.student.remove({“sid”:3}) 

here we can have multiple documents containing the same information ; as 
id allocation is done by system uniqueness is maintained… 



 

 

NoSQL Technologies 

10 

lets replicate multiple document code here. Create same variable test … 
and copy paste the code. 

How to remove only one document matching your criteria? 

When there are more than one documents present in collection that 
matches the criteria then all those documents will be deleted if you run the 
remove command. However there is a way to limit the deletion to only one 
document so that even if there are more documents matching the deletion 
criteria, only one document will be deleted. 

db.student.remove({"mks":87},1) 

here assume that there are 2 entries with mks =87; but we want to remove 
only 1 entry out of it so by writing 1 we are removing only 1 entry. ( this 
parameter takes only Boolean value 0 or 1) 

to display a particular column only 

suppose that we need to display only sid  

db.student.find({},{"_id":0,"sid":1})   

Value 1 means show that field and 0 means do not show that field. When 
we set a field to 1 in Projection other fields are automatically set to 0, 
except _id, so to avoid the _id we need to specifically set it to 0 in 
projection. The vice versa is also true when we set few fields to 0, other 
fields set to 1 automatically. 

db.student.find({},{"_id":0,"sname":0,"mks":0}) 

here we are keeping id , sname, mks as 0 means do not display those 
columns; rest columns which are not mentioned are treated /default as 1 

> db.student.find({}, {"_id": 0, "sid" : 0, "mks" : 1}) 

Error: error: { 

        "ok" : 0, 

        "errmsg" : "Projection cannot have a mix of inclusion and 
exclusion.", 

        "code" : 2, 

        "codeName" : "BadValue" 

} 

> 

Mixing of 0 and 1 is not allowed… 

The limit() method in MongoDB 

This method limits the number of documents returned in response to a 
particular query. 

 
db.student.find({mks:{$gt:80}}).limit(1).pretty() 



 

 

NoSQL Technologies 

11 

(It managed to get only one document, which is the first document that 
matched the given criteria.) 

Here in the example there are 3 students with marks > 80; by using limit() 
method we get the 1st record that matches the criteria. 

But instead of 1st record we want 2nd record then we can use skip() 
method. 

MongoDB Skip() Method 

db.student.find({mks:{$gt:80}}).limit(1).skip(1).pretty() 

{ 

        "_id" : ObjectId("5c31947c310a8bf25f38dc88"), 

        "sid" : 1, 

        "sname" : "juhi", 

        "mks" : 88 

} 

> db.student.find({mks:{$gt:80}}).limit(1).skip(2).pretty() 

{ 

        "_id" : ObjectId("5c31947c310a8bf25f38dc89"), 

        "sid" : 2, 

        "sname" : "kajol", 

        "mks" : 87 

} 

Sorting of records 

db.student.find().sort({"sname":-1}) 

1.11 REDIS 

It is Remote Dictionary Server. It is an open source. 

It is used for NoSQL key-value storage for the primary purpose of an 
application cache or quick response of the database. 

 Redis link resides outside ibm.com which stores data in memory, 
rather the our traditional storage like disk of SSD (solid-state drive). 

 It helps in delivering the data with high speed, reliable and 
performance as well as high availability. 

 It supports the multiple data structures. 

 

 



 

 

NoSQL Technologies 

12 

1.12 HBASE 

 HBase is a distributed column-oriented database built on top of the 
Hadoop file system. It is an open-source project and is horizontally 
scalable. 

 HBase is a data model that is similar to Google’s big table designed to 
provide quick random access to huge amounts of structured data. It 
leverages the fault tolerance provided by the Hadoop File System 
(HDFS). 

 It is a part of the Hadoop ecosystem that provides random real-time 
read/write access to data in the Hadoop File System. 

 One can store the data in HDFS either directly or through HBase. 
Data consumer reads/accesses the data in HDFS randomly using 
HBase. HBase sits on top of the Hadoop File System and provides 
read and write access. 

 

Fig: 1.12 HBase 

1.12.1 Storage Mechanism in HBase: 

 HBase is a column-oriented database and the tables in it are sorted by 
row. The table schema defines only column families, which are the 
key value pairs. A table have multiple column families and each 
column family can have any number of columns. Subsequent column 
values are stored contiguously on the disk. Each cell value of the table 
has a timestamp. In short, in an HBase: 

 Table is a collection of rows. 

 Row is a collection of column families. 



 

 

NoSQL Technologies 

13 

 Column family is a collection of columns. 

 Column is a collection of key value pairs. 

 

1.12.2 HBase and RDBMS: 

HBase RDBMS 

It is schema-less. It is governed by schema. 

It doesn’t have the concept of fixed 
columns schema, it defines only 
column families. 

It has structure of tables consist of 
rows and columns. 

Built for wide tables. It is useful for small tables. 

It is horizontally scalable. It is hard to scale. 

No transactions are there in HBase. RDBMS is transactional. 

De-normalized data. Normalized data. 

It is good for semi-structured as well 
as structured data. 

It is good for structured data. 

 

1.12.3 Features of HBase: 

 It is linearly scalable. 

 It has automatic failure support. 

 It provides consistent read and writes. 

 It provides data replication across cluster. 

1.12.4 Applications of HBase: 

 It is used whenever there is a need to write heavy applications. 

 HBase is used whenever we need to provide fast random access to 
available data. 

 Companies such as Facebook, Twitter, Yahoo, and Adobe use HBase 
internally. 

 

 



 

 

NoSQL Technologies 

14 

1.13 APACHE CASSANDRA 

 Apache Cassandra is a open-source, free, distributed, column-
oriented, NoSQL database management system used to designed for 
handling large volume of data on commodity servers. 

 It provides high availability with no single point of failure. 

 It offers robust support for clusters with multiple datacentres. 

1.13.1 Data Model : 

 Cluster: Cassandra database is a distributed across several machines 
which operate together. The outermost container is known as Cluster.  

 In Cassandra for failure handling, every node contains a replica and in 
case of a node failure, the replica works very well. 

 Cassandra arranges the nodes in a cluster in the form of ring and 
assigns the data to each node. 

 Key-space: In Cassandra the outermost container of data. The basic 
attributes of a key-space in Cassandra are: 

 Replication factor: It is the number of machines in the cluster. 

 Replica placement strategy: To place the machines for replica place 
in the form of ring.  

 Column families: Key-space is a container for a list of one or more 
column families. A column family is a container of a collection of 
rows. Each row contains ordered columns. Column families represent 
the structure of your data. It has at least one or more column families. 

 Column Families: A column family is a container for an ordered 
collection of rows. Each row, in turn, is an ordered collection of 
columns.  

1.13.2 Relational Table and Cassandra Column Family: 

The following table lists the points that differentiate a column family from 
a table of relational databases. 

Relational Table Cassandra column Family 

A Schema in a relational model is 
fixed. Once we define certain 
columns for a table, while inserting 
data, in every row all the columns 
must be filled at least with a null 
value. 

In Cassandra, although the column 
families are defined, the columns 
are not. User can freely add any 
column to any column family at any 
time. 

Relational tables define only 
columns and the user fills in the 
table with values. 

In Cassandra, a table contains 
columns, or can be defined as a 
super column family. 

 



 

 

NoSQL Technologies 

15 

1.14 LANGUAGE BINDINGS OR NOSQL DATA STORES 

 A NoSQL is a database that provides a mechanism for storage and 
retrieval of data, they are used in real-time web applications and big 
data and their use are increasing over time. 

 Many NoSQL stores compromise consistency in favor of availability, 
speed and partition tolerance. 

When should NoSQL be used 

 When huge amount of data need to be stored and retrieved. 

 The relationship between data you store is not that important. 

 The data changing over time and is not structured. 

 Support of constraint and joins is not required at database level. 

 The data is growing continuously and you need to scale the database 
regular to handle the data. 

 In graph type of NoSQL databases the nodes are navigate as per the 
relationships using by language bindings. 

1.15 SUMMARY 

NoSQL database can store data in traditional as well as non-traditional 
structural way. Relational Databases have been only one choice or the 
default choice for data storage. After relational databases, current 
excitement about NoSQL databases has come. MongoDB is a cross 
platform document-oriented database it provides high performance and 
availability as well as easy scalability. MongoDB works on the concept of 
collection and document. HBase is a distributed column-oriented database 
built on top of the Hadoop file system. It is an open-source project and is 
horizontally scalable. HBase is a part of the Hadoop ecosystem that 
provides random real-time read/write access to data in the Hadoop File 
System. In Cassandra, a table contains columns, or can be defined as a 
super column family.  

Example:  

Document: MongoDB, CouchDB 

Key-value: Redis and DynamoDB 

Column based: Cassandra and Hbase 

Graph: Neo4j and Amazon Neptune. 

 

 



 

 

NoSQL Technologies 

16 

1.16 QUESTIONS  

Q.1)  Define NoSQL and Discuss in detail storage types of NoSQL 

Q.2)  Discuss about characteristics of  NoSQL. 

Q.3)  Give Advantages and Drawbacks of NoSQL 

Q.3)  Describe MongoDB in detail. 

Q.4)  Compare  

1. SQL and NoSQL. 

2. SQL Server and MongoDB 

3. HBase and RDBMS 

4. Relational Table and Cassandra column Family. 

Q.5)  Define Collection and Document  

Q.6)  Elaborate the concept of HBase. 

Q.7)  Discuss features and applications of HBase. 

Q.8)  Explain Apache Cassandra. 

1.17 REFERENCES  

 AL & NoSQL Databases, Andreas Meier – Michael Kaufmann, 
Springer Vieweg, 2019 

 Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons, 
Inc, 2011 

 SQL & NoSQL Databases, Andreas Meier – Michael Kaufmann, 
Springer Vieweg- 2019 

 NoSQL : Database for Storage and Retrieval of Data in Cloud, 
Ganesh Chandra Deka, CRC Press, 2017 

 Demystifying NoSQL by Seema Acharya, Wiley, 2020 

 

 

 

***** 

 

 



   17 

 

2 
UNDERSTANDING THE STORAGE 

ARCHITECTURE 

Unit Structure 

2.0  Objectives 

2.1  Introduction 

2.2  An Overview  

      2.2.1    Understanding the storage architecture 

          2.2.2    What is storage architecture in NoSQL technology? 

 2.2.2. i Key-Value Stores 

  2.2.2. ii Document Stores 

  2.2.2. iii Column-family Stores 

  2.2.2. iv Graph Databases 

2.2.3    Working with ColumnOriented Databases  

               2.2.3. i: Understanding the Column Model 

                      2.2.3. ii: Data Modelling 

                    2.2.3. iii: Loading Data 

                      2.2.3. iv: Querying Data 

                   2.2.3. v: Optimizing Performance 

                2.2.3. vi: Scaling Out  

2.3      HBase Distributed Storage Architecture 

2.3.1    HMaster 

2.3.2    RegionServers 

2.3.3    ZooKeeper 

2.3.4    Applications of HBase Distributed Storage Architecture 

                         2.3.4.i Big Data Analytics 

                        2.3.4.ii Time Series Data 

                        2.3.4.iii Social Media Analytics 

                        2.3.4.iv Internet of Things (IoT) 

                        2.3.4.v Content Management Systems 

                        2.3.4.vi Recommendation Systems 

                        2.3.4.vii Fraud Detection 

                        2.3.4.viii Online Gaming 

2.4       Document Store Internals 

2.4.1    Document Structure  

2.4.2    Indexing 

2.4.3    Storage Engine 



 

 

NoSQL Technologies 

18 

2.4.4    Concurrency Control 

2.4.5    Replication and Sharing 

2.4.6    Query Processing 

2.4.7    Durability and ACID Properties     

2.5       Understanding Key/Value Stores in Memcached and Redis 

2.5.1    Memcached 

2.5.2    Redis 

2.5.3    Key-Value Stores 

2.6 Eventually Consistent Non-relational 

2.7 Summary  

2.8 References and bibliography 

2.9 Questions for practice  

2.0 OBJECTIVES 

The main goal of learning this unit is: 

 To understand how data is stored, organized and retrieved. 

 To understand the concepts like distributed systems, sharding, 
replication, and consistency models. 

 To understand the data distribution strategies for designing and 
enhancing databases scalability, performance, and fault tolerance. 

2.1 INTRODUCTION 

In NoSQL technology, the storage architecture spilt from the traditional 
relational databases. It is design to handle or we can say manage large 
volumes of unstructured or semi-structured data making the data storage 
architecture more flexible and scalable. Instead of using immutable tables 
with redefined schemas, NoSQL databases commonly use key-value stores, 
document stores, wide-column stores, or graph databases. Let us have a 
overview on this technology. 

2.2 OVERVIEW 

NoSQL, or "Not Only SQL," refers to a broad class of database 
management systems (DBMS) that don't adhere strictly to the traditional 
relational database management system (RDBMS) model. While relational 
databases store data in tables with predefined schemas and support SQL 
queries, NoSQL databases offer more flexibility in terms of data models, 
scalability. 

2.2.1 Understanding the storage architecture: 

The storage architecture in NoSQL databases always call for distributed 
systems, where the data is spread at many multiple nodes to ensure 
scalability and fault tolerance. In this the each node in the cluster may store 



 

 

Understanding the Storage 
Architecture 

 

19 

a fragment of the data, and replication techniques are used to maintain data 
consistency and availability. 

In addition the NoSQL technology databases always prioritize horizontal 
scalability, allowing for easy expansion by adding more nodes to the cluster. 
This is achieved via sharding concepts in which the data is partitioned 
across multiple servers based on a certain criteria, such as key range or 
hashing algorithms. 

Sharding concepts-it is a method in which the data records are stored at 
multiple servers’ instances. It takes place through the concept of storage 
area networks in which it makes the hardware to perform like a single 
server. The NoSQL framework is basically deigned to support automatic 
distribution of the data across multiple servers which includes the query 
load. 

2.2.2 What is storage architecture? 

The storage architecture in NoSQL technology spins around the principles 
of flexibility, scalability, and performance to manage or handle large 
volumes of data which might be unstructured or semi-structured data 
whereas in traditional relational databases, which uses structured tables and 
schemas, the NoSQL databases engages various data models such as key-
value, document, column-family, or graph-based. 

The various concepts used are: 

2.2.2. i: Key-Value Stores:  

In this the databases stores the data as a collection of key-value pairs. In this 
each key is unique in nature and it is associated with a value which can be a 
simple string or a complex data structure. Examples: Redis and Amazon 
DynamoDB. 

2.2.2. ii: Document Stores:  

In this the data is stored as a document typically in JSON and BSON 
format, and it also allows nested and flexible schemas. This type of model is 
suitable for semi-structured data. MongoDB and Couchbase are the most 
popular document store databases. 

2.2.2. iii: Column-family Stores:  

In this the data is manage into columns grouped by the column families 
which helps in enabling efficient retrieval of the fragment of columns. This 
model is suitable for analytics and time-series data. Examples: Apache 
Cassandra and HBase. 

2.2.2. iv: Graph Databases: 

In this the databases represent the data as nodes, edges, and properties 
which helps in allowing for efficient querying of complex relationships. 

Examples: Neo4j and Amazon Neptune. 



 

 

NoSQL Technologies 

20 

2.2.3 Working with ColumnOriented Databases: 

As working with column oriented databases in NoSQL technology it 
involves a unique architecture and features which helps to store and query 
data, especially in the scenarios where it requires analytics and aggregation 
are common tasks. Some of the concepts used for the interaction with 
column-oriented databases are: 

2.2.3. i: Understanding the Column Model: 

In column oriented databases it stores the data in columns rather than rows 
which means that all the values for a particular column are stored together, 
it allows for efficient and fast access to specific column during the query 
process. 

2.2.3. ii: Data Modelling:  

When you are working with a column-oriented database, we need to design 
the data model with a focus on column families or column groups rather 
than tables.  

This process involves identifying the columns that are used frequently 
during the query process and organizing them into logical groups. 

2.2.3. iii: Loading Data:  

For executing any query data in column-oriented databases, we need to load 
it into the databases first. This process or stage involves importing the data 
from various sources, such files or other databases. For this type process 
NoSQL column-oriented databases provide tools or APIs. 

2.2.3. iv: Querying Data:  

While querying data in column-oriented databases, we typically write the 
queries which normally target the specific columns or groups of columns. 
This actually boosts the query performance especially when we are working 
on aggregations or analytics on large datasets. 

Some of the column-oriented databases support SQL query languages, 
while others make use of APIs 

2.2.3. v: Optimizing Performance:  

In order to get the best performance out of a column-oriented database, you 
may need to optimize your data model, queries and indexing strategies. For 
this we need renormalizing the data so to reduce the need for joins, creating 
appropriate and tuning database configuration settings. 

2.2.3.vi: Scaling Out: 

The main goal for designing column-oriented databases was scale out 
horizontally across multiple nodes in a cluster. This plays a vital role in 
handling larger datasets and higher query loads by adding more nodes to the 
cluster. 



 

 

Understanding the Storage 
Architecture 

 

21 

2.3 HBASE DISTRIBUTED STORAGE ARCHITECTURE 

HBase:  it is a distributed, column-oriented database which is built on top of 
Hadoop Distributed File System (HDFS). This architecture consists of three 
main components that is shown with the help of a diagram given below 
figure.1  

 

Figure. 1 

2.3.1 HMaster: 

HMaster:  This component manages the metadata and coordinates the 
administrative operations. This is also responsible for coordinating and 
managing regions across the cluster, including assigning regions to 
RegionServers and handling failover. 

2.3.2 RegionServers: 

This component handle the data storage and processing. These are 
responsible for serving data to clients. Each RegionServers manages 
multiple regions, which are horizontal partitions of data stored in HDFS. 

2.3.3 ZooKeeper: 

This component assists in distributed coordination and management of the 
cluster. It helps in maintaining configuration information, providing 
synchronization, and handling failover for HBase. The HBase distributes 
the data across multiple RegionServers, by allowing for horizontal 
scalability and fault tolerance. 

This model is actually inspired by Google’s Bigtable, where data is stored 
in rows with columns, and rows can have a variable number of columns. It 
is highly scalable, fault tolerant, and suitable for real-time read/write 
operations on large database. 

2.3.4 Applications of HBase Distributed Storage Architecture: 

It is often used in the scenarios requiring real-time read/write access to 
large datasets such as follows: 

2.3.4. i. Big Data Analytics:  

HBase is utilized for storing and processing large volumes of data 
generated by various sources, enabling real-time analytics and insights. 

 

HDFS 

HMaster RegionServers ZooKeeper 
 



 

 

NoSQL Technologies 

22 

2.3.4. ii. Time Series Data: 

It's suitable for storing time-series data like logs, sensor data, financial 
data, etc., where data needs to be appended continuously and queried 
efficiently. 

2.3.4. iii. Social Media Analytics: 

HBase can store and process social media data such as user interactions, 
posts, comments, and likes, enabling real-time analysis for targeted 
advertising, sentiment analysis, etc. 

2.3.4. iv. Internet of Things (IoT):   

HBase can handle the massive volume of data generated by IoT devices, 
providing a scalable and reliable storage solution for sensor data, 
telemetry, and device logs. 

2.3.4. v. Content Management Systems: 

HBase can be used as a backend storage for content management systems 
handling large volumes of structured and unstructured data, providing high 
availability and scalability. 

2.3.4. vi. Recommendation Systems: 

HBase can store user profiles, preferences, and historical interactions, 
facilitating real-time recommendation generation for e-commerce 
platforms, streaming services, etc. 

2.3.4. vii. Fraud Detection: 

It's utilized for storing and analyzing transactional data in real-time to 
detect fraudulent activities and patterns, providing immediate alerts for 
proactive measures. 

2.3.4. viii. Online Gaming: 

HBase can store player profiles, game states, and interactions in online 
gaming platforms, enabling real-time updates and personalized gaming 
experiences. 

2.4 DOCUMENT STORE INTERNALS 

The Document Store Internals in NoSQL technology refers to the 
mechanisms and structures which is used to manage and data in a 
document-oriented database. In document-oriented databases, data is 
stored in flexible, semi-structured documents, typically in formats like 
JSON or BSON (Binary JSON).  

Some of the key aspects of document store internals: 

2.4.1 Document Structure: 

Documents are the basic unit of data storage. Each document contains 
key-value pairs or key-array pairs where the values can be simple data 
types, arrays, or nested documents. 



 

 

Understanding the Storage 
Architecture 

 

23 

2.4.2 Indexing: 

Document stores usually utilize indexes to efficiently query and retrieve 
data. Indexes can be created on various fields within the documents to 
optimize query performance. 

2.4.3 Storage Engine: 

The storage engine is responsible for managing the storage and retrieval of 
documents on disk. Different document stores may use different storage 
engines optimized for various use cases, such as memory-mapped storage, 
log-structured storage, or LSM (Log-Structured Merge-tree) storage. 

2.4.4 Concurrency Control: 

Document stores often implement concurrency control mechanisms to 
handle multiple concurrent read and write operations. This may involve 
techniques such as multi-version concurrency control (MVCC) to ensure 
consistency and isolation of transactions. 

2.4.5 Replication and Sharing: 

To achieve high availability and scalability, document stores typically 
support replication and sharding. Replication involves maintaining 
multiple copies of data across different nodes for fault tolerance, while 
sharding partitions data across multiple nodes to distribute the workload. 

2.4.6 Query Processing: 

Document stores provide query languages or APIs to query and 
manipulate data. Query processing involves parsing, optimizing, and 
executing queries efficiently, often leveraging indexes and other 
optimization techniques. 

2.4.7 Durability and ACID Properties     

Document stores may provide durability guarantees to ensure that 
committed data is not lost in the event of failures. They may also support 
ACID (Atomicity, Consistency, Isolation, Durability) properties to ensure 
data consistency and transactional integrity. 

2.5 UNDERSTANDING KEY/VALUE STORES IN 
MEMCACHED AND REDIS 

Understanding key/value stores in Memcached and Redis involves 
grasping the fundamental concepts and features of these popular NoSQL 
databases. 

2.5.1 Memcached: 

 Memcached is an in-memory key/value store primarily used for 
caching frequently accessed data to improve application performance. 

 It operates as a distributed caching system, allowing multiple 



 

 

NoSQL Technologies 

24 

instances to be deployed across a network. 

 Data is stored in the form of key/value pairs, where keys are unique 
identifiers and values are arbitrary data. 

 Memcached does not support persistence; data is stored only in 
memory and is lost when the server restarts or if it runs out of 
memory. 

 It employs a simple protocol for client-server communication, making 
it lightweight and efficient. 

 Memcached is often used in web applications to cache database query 
results, session data, and frequently accessed objects. 

2.5.2 Redis: 

 Redis is an in-memory data store that supports a wide range of data 
structures beyond key/value pairs, including strings, hashes, lists, sets, 
and sorted sets. 

 Like Memcached, Redis operates primarily in memory, but it also 
offers optional persistence mechanisms for durability. 

 Redis can be used as a caching solution, a message broker, a data 
structure server, and more, due to its rich set of features. 

 It supports advanced data manipulation operations, such as atomic 
increments/decrements, range queries, and server-side scripting with 
Lua. 

 Redis can be used as a caching solution, a message broker, a data 
structure server, and more, due to its rich set of features. 

 It offers different persistence options, including snapshots (RDB) and 
append-only logs (AOF), allowing users to choose the level of 
durability they need. 

 Redis is often used in scenarios requiring fast data access, real-time 
analytics, and pub/sub messaging, and distributed locking.                

2.5.3 Key -Value Stores: 

In this the databases stores the data as a collection of key-value pairs. In this 
each key is unique in nature and it is associated with a value which can be a 
simple string or a complex data structure. Examples: Redis and Amazon 
DynamoDB. 

In summary, while both Memcached and Redis are key/value stores used 
for caching and fast data access, Redis offers a broader range of features 
and data structures, making it suitable for a wider variety of use cases 
beyond simple caching. Understanding the strengths and limitations of 



 

 

Understanding the Storage 
Architecture 

 

25 

each system is crucial for selecting the appropriate solution for specific 
application requirements. 

2.6 EVENTUALLY CONSISTENT NON-RELATIONAL 

Eventually consistent" refers to a consistency model used in distributed 
systems, including many NoSQL databases. In an eventually consistent 
system, updates to data will propagate through the system asynchronously, 
and eventually, all replicas of the data will converge to the same state. 
This model prioritizes availability and partition tolerance over strict 
consistency at all times. 

In the context of non-relational (NoSQL) databases, eventually consistent 
systems often use replication and distribution techniques to achieve 
scalability and fault tolerance. Here's how it typically works: 

1. Replication:  

Data is replicated across multiple nodes in the database cluster to ensure 
fault tolerance and high availability. When a write operation occurs, it is 
propagated to all replicas asynchronously. 

2. Consistently Models:  

a. Read your Writes Consistency:  

In many eventually consistent systems, a client reading data after 
performing a write operation will always see its own writes (read-your-
writes consistency). 

b. Monotonic Reads and Writes:  

Guarantees that if a client reads a particular version of a data item, any 
subsequent reads will not return an older version. 

c. Monotonic Writes:  

Guarantees that if a client writes a sequence of data values to a data item,  
those writes will be observed in the same order by all replicas. 

d. Causal Consistency:   

Ensures that if one operation causally precedes another, all replicas will 
see them in the same order. 

3. Conflict Resolution: 

In an eventually consistent system, conflicts may arise when concurrent 
writes occur to the same data item on different replicas. Conflict resolution 
strategies vary depending on the database system and may involve 
techniques such as last-write-wins, vector clocks, or application-level 
conflict resolution. 



 

 

NoSQL Technologies 

26 

Examples of NoSQL databases that implement an eventually consistent 
model include: 

1) Amazon DynamoDB: 

Offers configurable consistency levels, including eventual consistency and 
strong consistency. 

2) Cassandra: 

Provides tunable consistency, allowing users to choose between eventual 
consistency and various levels of strong consistency. 

3) Riak: 

Implements eventual consistency with support for conflict resolution 
strategies. 

2.7 SUMMARY  

NoSQL (Not Only SQL) is a broad term used to describe a category of 
database management systems that differ from traditional relational 
databases in their data models, scalability, and flexibility. Here's a 
summary of key points about NoSQL technology: 

1. Flexible Data Models:  

Unlike relational databases, which use structured schemas and tables, 
NoSQL databases can handle semi-structured and unstructured data. They 
are well-suited for applications with rapidly changing data requirements. 

2. Scalability: 

NoSQL databases are designed to scale horizontally across multiple 
servers, making them suitable for large-scale distributed systems. They 
can handle high volumes of data and traffic more efficiently than 
traditional databases. 

3. High Performance: 

Many NoSQL databases are optimized for specific use cases, such as real-
time analytics, content management, or caching. They often offer high-
performance features like in-memory processing, asynchronous 
replication, and automatic sharding. 

4. Types of NoSQL Databases: 

NoSQL databases are categorized into four main types: 

a. Document-Oriented Databases: 

    Store data in flexible, semi-structured documents (e.g, MongoDB, 
Couchbase). 

 



 

 

Understanding the Storage 
Architecture 

 

27 

b. Key-value stores: 

Store data as key-value pairs, providing fast retrieval based on keys 
(e.g., Redis, Amazon DynamoDB). 

c. Column-Family Stores: 

       Store data in columns rather than rows, suitable for large-scale 
distributed systems (e.g., Apache Cassandra, HBase). 

d. Graph Databses:  

Optimize for managing relationships between data entities (e.g., 
Neo4j, Amazon Neptune). 

e. Challenges: 

While NoSQL databases offer advantages in scalability and 
flexibility, they also pose challenges such as data consistency, lack of 
standardization, and potentially steep learning curves for developers 
accustomed to relational databases. 

2.8 REFERENCES AND BIBLIOGRAPHY 

 https://chatgpt.com/ 

 https://www.google.co.in/ 

 Youtube  

2.9 QUESTIONS FOR PRACTICE 

Q1.  What is NoSQL? 

Q2.  What is NoSQL used for? 

Q3.  Explain HBase 

Q4.  Explain the use of Hadoop 

 

***** 



  28 

3 
DATABASES PERFORMING CRUD 

OPERATIONS 

Unit Structure 

3.0  Objective 

3.1  Introduction 

3.2  Creating Records 

3.2.1Creating Records in a Document-Centric Database 

 3.2.2 Using the Create Operation in Column-Oriented Databases 

 3.2.3 Using the Create Operation in Key/Value Maps 

3.3  Accessing Data  

 3.3.1 Accessing Documents from MongoDB  

 3.3.2 Accessing Data from HBase  

3.4  Updating and Deleting Data  

 3.4.1 Updating and Modifying Data in MongoDB, HBase, and Redis  

 3.4.2 Limited Atomicity and Transactional Integrity  

3.5  Summary  

3.6 Review Questions 

3.0 OBJECTIVES 

 Detailing the operations of create, read, update, and delete within the 
context of data sets in a NoSQL database.  

 Elaborating on the significance placed on create operations compared 
to updates, accompanied by illustrative examples.  

 Investigating the atomicity and integrity aspects concerning updates in 
NoSQL databases.  

 Clarifying the methods utilized for persisting interconnected data in 
NoSQL databases. 

3.1 INTRODUCTION 

CRUD operations—Create, Read, Update, and Delete—are essential for 
interacting with data in any database. These operations are particularly 
significant in the realm of NoSQL databases, which encompass a diverse 
array of database types rather than a single product or technology. 

NoSQL databases vary in how they implement CRUD operations, largely 
based on their structure, whether they are document stores, key-value 
stores, or column-oriented databases. A common characteristic among 
NoSQL databases is the emphasis on create and read operations over 



 

 

Databases Performing Crud 
Operations 

 

29 

update and delete operations. Sometimes, only create and read operations 
are supported. 

The upcoming sections will explore how CRUD operations are 
implemented in NoSQL databases, focusing on creating records. The 
discussion will be structured around different NoSQL database types: 
column-oriented, document-centric, and key-value stores. 

3.2 CREATING RECORDS 

Creating a record involves saving a new entry in the database. It is crucial 
to have a unique identifier to distinguish each record and ensure that it 
does not already exist in the database. In relational databases, this 
identifier is known as the primary key, which uniquely identifies each 
record in a table. If a primary key already exists, the record should be 
updated rather than recreated. 

Relational databases use normalization principles, introduced by E.F. 
Codd and refined into the Boyce-Codd Normal Form (BCNF). These 
principles aim to minimize data redundancy and ensure data integrity by 
organizing data so that each piece of information is stored only once and 
referenced as needed. 

In a normalized relational database schema, two records with identical 
values are considered the same, enforced through primary keys. In object-
oriented programming languages, this concept is often replaced by 
reference-based identification, where a unique record is identified by its 
memory address. 

NoSQL databases, which may resemble traditional tables or object stores, 
use either value-based or reference-based semantics for record 
identification. Despite these differences, the concept of a unique primary 
key remains important across all types of databases. 

Many databases provide tools for generating primary keys to ensure their 
uniqueness and relevance. For example, MongoDB uses a 12-byte BSON 
object ID as the default primary key, which includes a timestamp, machine 
ID, process ID, and a counter to ensure uniqueness. 

Similarly, HBase, a column-oriented database, uses row keys that are byte 
arrays. These keys should be logically meaningful for the application and 
are ordered by their byte sequence, affecting how data is accessed and 
stored. 

In this section, we will cover how to create records in specific NoSQL 
databases, using MongoDB for document stores, HBase for column-
oriented databases, and Redis for key-value stores. 

MongoDB:  

MongoDB, a document-centric database, uses BSON object IDs for record 
identification. When creating a new document, MongoDB assigns a 



 

 

NoSQL Technologies 

30 

unique BSON object ID, which includes a timestamp, machine ID, process 
ID, and a counter to ensure uniqueness. 

HBase:  

HBase, a column-oriented database, uses row keys to identify records. 
These row keys are byte arrays that should be logically significant for the 
application's data model. HBase rows are ordered by these keys, 
influencing how data is accessed and queried. 

Redis:  

Redis, a key-value store, uses simple keys to store values. Each key in 
Redis is unique and can be a string or binary data. Redis keys are typically 
generated by the application, ensuring they are unique and relevant to the 
stored data. 

By understanding these different approaches to creating records in NoSQL 
databases, we can better appreciate the flexibility and challenges 
associated with each model. This knowledge will be further expanded as 
we explore read, update, and delete operations in the subsequent sections 

3.2.1 Creating Records in a Document-Centric Database: 

A typical example used in many relational database examples is that of a 
simplified retail system, which creates and manages order records. Each 
person’s purchase at this fictitious store is an order. An order consists of a 
bunch of line items. Each order line item includes a product (an item)  
and number of units of that product purchased. A line item also has a price 
attribute, which is calculated by multiplying the unit price of the product 
by the number of units purchased. Each order table has an associated 
product table that stores the product description and a few other attributes 
about the product.  Figure 3-1 depicts order, product, and their relationship 
table in a traditional entity-relationship diagram. 

 

Figure 3-1 

To store this same data in MongoDB, a document store, you would de-
normalize the structure and store each order line item detail with the order 
record itself. As a specific case, consider an order of four coffees: one 



 

 

Databases Performing Crud 
Operations 

 

31 

latte, one cappuccino, and two regular. This coffee order would be stored 
in MongoDB as a graph of nested JSON-like documents as follows: 

{ 

 order_date: new Date(), 

 “line_items”: [ 

  { 

   item : { 

  name: “latte”, 

  unit_price: 4.00 

}, 

quantity: 1 

  }, 

  { 

   item: { 

    name: “cappuccino”, 

    unit_price: 4.25 

  }, 

  quantity: 1 

  }, 

  { 

   item: { 

    name: “regular”, 

    unit_price: 2.00 

  }, 

  quantity: 2 

  } 

 ] 

} 

Open a command-line window, change to the root of the MongoDB 
folder, and start the MongoDB server as follows: bin/mongod --dbpath 
~/data/db  

Now, in a separate command window, start a command-line client to 
interact with the server: bin/mongo. Use the command-line client to store 
the coffee order in the orders collection, within the mydb database.  

Although storing the entire nested document collection is advised, 
sometimes it’s necessary to store the nested objects separately. When 
nested documents are stored separately, it’s your responsibility to join the 
record sets together. There is no notion of a database join in MongoDB so 



 

 

NoSQL Technologies 

32 

you must either manually implement the join operation by using the object 
id on the client side or leverage the concept of DBRef. 

You can restructure this example in a way that doesn’t store the unit price 
data for a product in the nested document but keeps it separately in 
another collection, which stores information on products. In the new 
format, the item name serves as the key to link between the two 
collections. Therefore, the restructured orders data is stored in a collection 
called orders2 as follows: 

> t2 = { 

...  order_date: new Date(), 

...  “line_items”: [ 

...   { 

...    “item_name”:”latte”, 

...    “quantity”:1 

...   }, 

...   { 

...    “item_name”:”cappuccino”, 

...    “quantity”:1 

...   }, 

...   { 

...    “item_name”:”regular”, 

...    “quantity”:2 

...   } 

...  ] 

... }; 

 

{ 

 “order_date” : “Sat Oct 30 2010 23:03:31 GMT-0700 (PDT)”, 

 “line_items” : [ 

  { 

   “item_name” : “latte”, 

   “quantity” : 1 

  }, 

  { 

   “item_name” : “cappuccino”, 

   “quantity” : 1 

  }, 

  { 



 

 

Databases Performing Crud 
Operations 

 

33 

   “item_name” : “regular”, 

   “quantity” : 2 

  } 

 ] 

} 

> db.orders2.save(t2); 

To verify that the data is stored correctly, you can return the contents of 
the orders2 collection as follows: 

> db.orders2.find(); 

{ “_id” : ObjectId(“4ccd06e8d3c7ab3d1941b104”), “order_date” : “Sat 
Oct 30 2010 

23:03:31 GMT-0700 (PDT)”, “line_items” : [ 

 { 

  “item_name” : “latte”, 

  “quantity” : 1 

 }, 

... 

] } 

Next, save the product data, wherein item name and unit price are stored, 
as follows: 

> p1 = { 

...  “_id”: “latte”, 

...  “unit_price”:4 

... }; 

{ “_id” : “latte”, “unit_price” : 4 } 

> db.products.save(p1); 

Again, you can verify the record in the products collection with the help of 
the find method: 

> db.products.find(); 

 { “_id” : “latte”, “unit_price” : 4 } 

Now, you could manually link the two collections and retrieve related data 
sets like this: 

> order1 = db.orders2.findOne(); 

{ 

 “_id” : ObjectId(“4ccd06e8d3c7ab3d1941b104”), 

 “order_date” : “Sat Oct 30 2010 23:03:31 GMT-0700 (PDT)”, 

 “line_items” : [ 



 

 

NoSQL Technologies 

34 

  { 

   “item_name” : “latte”, 

   “quantity” : 1 

  }, 

  { 

   “item_name” : “cappuccino”, 

   “quantity” : 1 

  }, 

  { 

   “item_name” : “regular”, 

   “quantity” : 2 

  } 

 ] 

} 

> db.products.findOne( { _id: order1.line_items[0].item_name } ); 

   { “_id” : “latte”, “unit_price” : 4 } 

Alternatively, part of this manual process can be automated with the help 
of DBRef, which is a more formal specification for relating two document 
collections in MongoDB. To illustrate DBRef, you rehash the orders 
example and establish the relationship by first defining the products and 
then setting up a DBRef to products from within the orders collection. 

Add latte, cappuccino, and regular, with their respective unit prices, to the 
product2 collection as follows: 

> p4 = {“name”:”latte”, “unit_price”:4}; 

 { “name” : “latte”, “unit_price” : 4 } 

> p5 = { 

... “name”: “cappuccino”, 

... “unit_price”:4.25 

... }; 

{ “_id” : “cappuccino”, “unit_price” : 4.25 } 

> p6 = { 

... “name”: “regular”, 

... “unit_price”:2 

... }; 

{ “_id” : “regular”, “unit_price” : 2 } 

> db.products2.save(p4); 

> db.products2.save(p5); 

> db.products2.save(p6); 

 



 

 

Databases Performing Crud 
Operations 

 

35 

Verify that all the three products are in the collection: 

> db.products.find(); 

{ “_id” : ObjectId(“4ccd1209d3c7ab3d1941b105”), “name” : “latte”, 

 “unit_price” : 4 } 

{ “_id” : ObjectId(“4ccd1373d3c7ab3d1941b106”), “name” : 
“cappuccino”, 

 “unit_price” : 4.25 } 

{ “_id” : ObjectId(“4ccd1377d3c7ab3d1941b107”), “name” : “regular”, 

 “unit_price” : 2 } 

Next, define a new orders collection, called orders3, and use DBRef to 
establish the relationship between orders3 and products. The orders3 
collection can be defined as follows: 

t3 = { 

 ... order_date: new Date(), 

 ... “line_items”: [ 

... { 

 ... “item_name”: new DBRef(‘products2’, p4._id), 

 ... “quantity:1 

... }, 

... { 

 ... “item_name”: new DBRef(‘products2’, p5._id), 

 ... “quantity”:1 

... }, 

... { 

 ... “item_name”: new DBRef(‘products2’, p6._id), 

 ... “quantity”:2 

... } 

 ... ] 

... }; 

db.orders3.save(t3); 

The MongoDB creation process is fairly simple and as you saw, some 
aspects of the relationship can also be formally established using DBRef. 
Next, the create operation is viewed in the context of column-oriented 
databases. 

3.3.2 Using the Create Operation in Column-Oriented Databases: 

Column-oriented databases, unlike MongoDB, do not incorporate 
relational references such as foreign keys or constraints across multiple 



 

 

NoSQL Technologies 

36 

collections. These databases store data in a de-normalized manner, similar 
to a data warehouse fact table that contains extensive transactional 
records. In this structure, a row-key uniquely identifies each record, and 
all columns within a column-family are stored together. 

In column-oriented databases like HBase, data storage includes a time 
dimension, making the create or data insert operation crucial while 
effectively eliminating the concept of updating records. For example, 
consider maintaining a large catalog of various products, with varying 
amounts of information on the type, category, characteristics, price, and 
source of each product. You might create a table with column-families for 
type, characteristics, and source. Each column-family would then contain 
individual attributes or fields (referred to as columns). 

To start the HBase server, open a command-line window or terminal, 
navigate to the HBase installation directory, and start the server in local 
standalone mode with the following command: 

bin/start-hbase.sh 

This command initializes the HBase environment, allowing you to create 
and manage your product catalog efficiently within a column-oriented 
database structure. 

Open another command-line window and connect to the HBase server 
using the HBase shell: bin/hbase shell 

Next, create the products table: 

hbase(main):001:0> create ‘products’, ‘type’, ‘characteristics’, ‘source’ 

> 0 row(s) in 1.1570 seconds 

Once the table is created, you can save data in it. HBase uses the put 
keyword to denote a data creation operation. The word “put” connotes a 
hash map-like operation for data insertion and because HBase under the 
hood is like a nested hash map, it’s probably more appropriate than the 
create keyword. 

To create a record with the following fields: 

type:category = “coffee beans” 

type:name = “arabica” 

type:genus = “Coffea” 

characteristics: cultivation_method = “organic” 

characteristics: acidity = “low” 

you can put it into the products table like so: 

hbase(main):001:0> put ‘products’, ‘product1’, ‘type:category’, ‘coffee 
beans’ 

>  0 row(s) in 0.0710 seconds 



 

 

Databases Performing Crud 
Operations 

 

37 

hbase(main):002:0> put ‘products’, ‘product1’, ‘type:name’, ‘arabica’ 

>  0 row(s) in 0.0020 seconds 

hbase(main):003:0> put ‘products’, ‘product1’, ‘type:genus’, ‘Coffea’ 

>  0 row(s) in 0.0050 seconds 

hbase(main):004:0> put ‘products’, ‘product1’, 

‘characteristics: cultivation_method’, ‘organic’ 

>  0 row(s) in 0.0060 seconds 

hbase(main):005:0> put ‘products’, ‘product1’, ‘characteristics: acidity’, 
‘low’ 

>  0 row(s) in 0.0030 seconds 

Now you can query for the same record to make sure it’s in the data store. 
To get the record do the following: 

hbase(main):008:0> get ‘products’, ‘product1’ 

COLUMN     CELL 

characteristics: acidity   timestamp=1288555025970, value=lo 

characteristics: cultivatio   timestamp=1288554998029, 
value=organic 

n_method 

source: country    timestamp=1288555050543, value=yemen 

source: terrain    timestamp=1288555088136, 
value=mountainous 

type:category    timestamp=1288554892522, value=coffee 
beans 

type:genus    timestamp=1288554961942, value=Coffea 

type:name    timestamp=1288554934169, value=Arabica 

7 row(s) in 0.0190 seconds 

What if you put in a value for “type:category” a second time stored as 
“beans” instead of its original value of “coffee beans” as follows? 

hbase(main):009:0> put ‘products’, ‘product1’, ‘type:category’, ‘beans’ 

> 0 row(s) in 0.0050 seconds 

Now, if you get the record again, the output is as follows: 

hbase(main):010:0> get ‘products’,  ‘product1’ 

COLUMN     CELL 

characteristics: acidity   timestamp=1288555025970, value=low 

characteristics: cultivatio   timestamp=1288554998029, 
value=organic 

n_method 

source: country   timestamp=1288555050543, value=yemen 

source: terrain   timestamp=1288555088136, value=mountainous 



 

 

NoSQL Technologies 

38 

type:category    timestamp=1288555272656, value=beans 

type:genus    timestamp=1288554961942, value=Coffea 

type:name    timestamp=1288554934169, value=Arabica 

7 row(s) in 0.0370 seconds 

You may notice that the value for type: category is now beans instead of 
coffee beans. In reality, both values are still stored as different versions of 
the same field value and only the latest one of these is returned by default. 
To look at the last four versions of the type:category field, run the 
following command: 

hbase(main):011:0> get ‘products’, ‘product1’, { COLUMN => 
‘type:category’, 

VERSIONS => 4 } 

COLUMN     CELL 

type:category     timestamp=1288555272656, 
value=beans 

type:category    timestamp=1288554892522, value=coffee 
beans 

Currently, there are only two versions available, so those are returned. 

When dealing with highly structured, limited, and relational data, HBase 
might not be the most suitable solution. HBase requires a flattened data 
structure, creating a hierarchy only between column-families and their 
constituent columns. Additionally, each cell's data is stored along a time 
dimension, necessitating the flattening of nested data sets for storage. 

Consider a retail order system. In HBase, retail order data can be stored in 
a couple of ways: 

Flatten All Data Sets:  

Store all fields of an order, including product data, in a single row. 

Maintain Order Line Items in a Single Row: Store product information in 
a separate table and reference the product row-key within the order line 
item information. 

If you choose the first option of flattening the order data, you might make 
the following choices: 

Create one column-family for regular line items and another for additional 
line items like discounts or rebates. 

Within the regular line item column-family, include columns for item or 
product name, description, quantity, and price. 

When flattening everything, ensure each line item has a unique key to 
prevent them from being stored as versions of the same key/value pair. For 
instance, instead of naming all product name columns as product_name, 
use unique identifiers like product_name_1, product_name_2, etc. This 



 

 

Databases Performing Crud 
Operations 

 

39 

approach helps maintain data integrity and allows efficient data retrieval 
within HBase's flattened structure. 

The next example uses Redis to illustrate creating data in a key/value map.  

3.2.3 Using the Create Operation in Key/Value Maps: 

Redis is a simple, yet powerful, data structure server that lets you store 
values as a simple key/value pair or as a member of a collection. Each 
key/value pair can be a standalone map of strings or reside in a collection. 
A collection could be any of the following types: list, set, sorted set, or 
hash. 

A standalone key/value string pair is like a variable that can take string 
values. You can create a Redis string key/value map like so:  

./redis-cli set akey avalue 

You can confirm that the value is created successfully with the help of the 
get command as follows: 

./redis-cli get akey 

The response, as expected, is avalue. The set method is the same as the 
create or the put method. If you invoke the set method again but this time 
set another value for the key, akey, the original value is replaced with the 
new one. Try out the following: 

./redis-cli set akey another value 

./redis-cli get akey 

The response, as expected, would be the new value: another value. 

The familiar set and get commands for a string can’t be used for Redis 
collections, though. For example, using lpush and rpush creates and 
populates a list. A nonexistent list can be created along with its first 
member as follows: 

./redis-cli lpush list_of_books ‘MongoDB: The Definitive Guide’ 

You can use the range operation to verify and see the first few members of 
the list — list_of_ books — like so: 

./redis-cli lrange list_of_books 0 -1 

1. “MongoDB: The Definitive Guide” 

The range operation uses the index of the first element, 0, and the index of 
the last element, -1, to get all elements in the list.  In Redis, when you 
query a nonexistent list, it returns an empty list and doesn’t throw an 
exception. 

You run a range query for a nonexistent list — mylist — like so: ./redis-cli 
lrange mylist 0 -1 

Redis returns a message: empty list or set. You can use lpush much as you 
use rpush to add a member to mylist like so: 



 

 

NoSQL Technologies 

40 

./redis-cli rpush mylist ‘a member’ 

Now, of course mylist isn’t empty and repeating a range query reveals the 
presence of a member. Members can be added to a list, either on the left or 
on the right, and can be popped from either direction as well. This allows 
you to leverage lists as queues or stacks. 

For a set data structure, a member can be added using the SADD 
operation. Therefore, you can add ‘a set member’ to aset like so:  

./redis-cli sadd aset ‘a set member’ 

The command-line program would respond with an integral value of 1 
confirming that it’s added to the set. When you rerun the same SADD 
command, the member is not added again. You may recall that a set, by 
definition, holds a value only once and so once present it doesn’t make 
sense to add it again. You will also notice that the program responds with 
a 0, which indicates that nothing was added. Like sets, sorted sets store a 
member only once but they also have a sense of order like a list.  

You can easily add ‘asset member’ to a sorted set, called azset, like so: 

./redis-cli zadd azset 1 ‘a sset member’ 

The value 1 is the position or score of the sorted set member. You can add 
another member, ‘sset member 2’, to this sorted set as follows: 

./redis-cli zadd azset 4 ‘sset member 2’ 

You could verify that the values are stored by running a range operation, 
similar to the one you used for a list. The sorted set range command is 
called zrange and you can ask for a range containing the first five values 
as follows: 

./redis-cli zrange azset 0 4 

1. “a sset member” 

2. “sset member 2” 

What happens when you now add a value at position or score 3 and what 
happens when you try and add another value to position or score 4, which 
already has a value? 

Adding a value to azset at score 3 like so: 

./redis-cli zadd azset 3 ‘member 3’ 

and running the zrange query like so: 

./redis-cli zrange azset 0 4 

reveals: 

1. “a sset member” 

2. “member 3” 

3. “sset member 2” 

 



 

 

Databases Performing Crud 
Operations 

 

41 

Adding a value at position or score 3 again, like so: 

./redis-cli zadd azset 3 ‘member 3 again’ 

and running the zrange query like so: 

./redis-cli zrange azset 0 4 

reveals that the members have been re-positioned to accommodate the new 
member, like so: 

1. “a sset member” 

2. “member 3” 

3. “member 3 again” 

4. “sset member 2” 

Therefore, adding a new member to a sorted set does not replace existing 
values but instead re-orders the members as required. 

Redis also defines the concept of a hash, in which members could be 
added like so: 

./redis-cli hset bank account1 2350 

./redis-cli hset bank account2 4300 

You can verify the presence of the member using the hget, or its variant 
hgetall, command: 

./redis-cli hgetall bank 

To store a complicated nested hash, you could create a hierarchical hash 
key like so: 

./redis-cli hset product:fruits apple 1.35 

./redis-cli hset product:fruits banana 2.20 

Once data is stored in any of the NoSQL data stores, you need to access 
and retrieve it. After all, the entire idea of saving data is to retrieve it and 
use it later 

3.3 ACCESSING DATA 

You have already seen some of the ways to access data. In an attempt to 
verify whether records were created, some of the simplest get commands 
have already been explored.  

3.3.1 Accessing Documents from MongoDB: 

MongoDB allows for document queries using syntax and semantics that 
closely resemble SQL. Ironic as it may be, the similarity to SQL in a 
NoSQL world makes querying for documents easy and powerful in 
MongoDB. 

You can dive right in to accessing a few nested MongoDB documents. 
Once again, you use the orders collection in the database mydb, which was 
created earlier in this chapter. 



 

 

NoSQL Technologies 

42 

Start the MongoDB server and connect to it using the mongo JavaScript 
shell. Change to the mydb database with the use mydb command. First, 
get all the documents in the orders collection like so: 

db.orders.find() 

Now, start filtering the collection. Get all the orders after October 25, 
2010, that is, with order_date greater than October 25, 2010. Start by 
creating a date object. In the JavaScript shell it would be: var refdate = 
new Date(2010, 9, 25); 

JavaScript dates have months starting at 0 instead of 1, so the number 9 
represents October. In Python the same variable creation could be like so:  

from datetime import datetime 

refdate = datetime(2010, 10, 25) 

and in Ruby it would be like so: 

require ‘date’ 

refdate = Date.new(2010, 10, 25) 

Then, pass refdate in a comparator that compares the order_date field 
values against refdate. 

The query is as follows: 

db.orders.find({“order_date”: {$gt: refdate}}); 

MongoDB supports a rich variety of comparators, including less than, 
greater than, less than or equal to, greater than or equal to, equal to, and 
not equal to. In addition, it supports set inclusion and exclusion logic 
operators like contained in and not contained in a given set. The data set is 
a nested document so it can be beneficial to query on the basis of a value 
of a nested property. In Mongo, doing that is easy. Traversing through the 
tree using dot notation could access any nested field. To get all documents 
from the orders collection where line item name is latte, you write the 
following query: 

db.orders.find({ “line_items.item.name” : “latte” }) 

The dot notation works whether there are single nested values or a list of 
them as was the case in the orders collection. MongoDB expression 
matching supports regular expressions. Regular expressions can be used in 
nested documents the same way they are used with top-level fields. In 
relational databases, indexes are the smart way of making queries faster. 
In general, the way that works is simple. Indexes provide an efficient 
lookup mechanism based on a B-tree-like structure that avoids complete 
table scans. Because less data is searched through to find the relevant 
records, the queries are faster and more efficient. MongoDB supports the 
notion of indexes to speed up queries. By default, all collections are 
indexed on the basis of the _id value. In addition to this default index, 
MongoDB allows you to create secondary indexes. Secondary indexes can 
be created at the top field level or at the nested field levels. For example, 
you could create an index on the quantity value of a line item as follows: 

db.orders.ensureIndex({ “line_items.quantity” : 1 }); 



 

 

Databases Performing Crud 
Operations 

 

43 

Now, querying for all documents where quantity of a line item is 2 can be 
fairly fast. Try running the following query: 

db.orders.find({ “line_items.quantity” : 2 }); 

Indexes are stored separate from the table and they use up a namespace. 

3.3.2 Accessing Data from HBase: 

The most efficient way to query HBase is by using the row-key. Row-keys 
in HBase are ordered, and ranges of contiguous row-keys are stored 
together. Therefore, querying a row-key involves finding the range where 
the starting row-key is less than or equal to the given row-key. 

Designing the row-key correctly is crucial for an application's 
performance. It's beneficial to relate the row-key semantically to the data. 
For instance, the Google Bigtable research paper suggests using inverted 
domain names for row-keys to group related content. Similarly, for an 
orders table, you might design row-keys using a combination of item or 
product name, order date, and category. The sequence depends on the 
primary access pattern. For chronological access, use: 

<date> + <timestamp> + <category> + <product> 

For access by category and product names, use: 

<category> + <product> + <date> + <timestamp> 

While row-keys provide efficient lookup for vast data amounts, HBase 
lacks built-in support for secondary indexes. Queries not leveraging row-
keys result in table scans, which are costly and slow. 

3.4 UPDATING AND DELETING DATA 

In the relational database world, ACID (Atomicity, Consistency, Isolation, 
Durability) semantics ensure database integrity. These principles enforce 
various levels of data isolation and modification control. However, 
NoSQL databases often deprioritize or even disregard ACID transactions. 

Understanding ACID: 

Atomicity: A transaction is fully completed or fully rolled back. 

Consistency: Every transaction brings the database from one valid state to 
another, maintaining database invariants. 

Isolation: Transactions do not interfere with each other; the result is as if 
transactions were serially executed. 

Durability: Once a transaction is committed, it remains so, even in the 
event of a system failure. 

NoSQL databases, like MongoDB, HBase, and Redis, handle updates and 
deletions differently compared to traditional relational databases. 

 



 

 

NoSQL Technologies 

44 

3.4.1 Updating and Modifying Data in MongoDB, HBase, and Redis 

Unlike relational databases, NoSQL databases do not typically use locking 
mechanisms. This design choice facilitates sharding and scalability. In 
distributed systems, locking can complicate data updates and degrade 
performance. 

Despite the absence of locking, you can perform atomic updates using 
specific techniques. For instance, update the entire document rather than 
individual fields to maintain atomicity. Utilize the atomic methods 
provided by the database. For MongoDB, available atomic methods 
include: 

$set: Updates the value of a field. 

$inc: Increments the value of a field. 

$push: Appends a value to an array field. 

$pull: Removes instances of a value from an array field. 

$addToSet: Adds a value to an array field if it does not already exist. 

These methods help ensure that updates are atomic and consistent, even 
without traditional locking mechanisms. By understanding and leveraging 
these methods, you can effectively manage updates and deletions in 
NoSQL databases, maintaining data integrity and performance. 

For example, { $set : { “order_date” : new Date(2010, 10, 01) } } updates 
the order_ date in the orders collection in an atomic manner. An 
alternative strategy to using atomic operations is to use the update if 
current principle. Essentially this involves three steps: 

1.  Fetch the object. 

2.  Modify the object locally. 

3.  Send an update request that says “update the object to this new value 
if it still matches its old value.” 

The document or row-level locking and atomicity also applies to HBase. 
HBase supports a row-level read-write lock. This means rows are locked 
when any column in that row is being modified, updated, or created. In 
HBase terms the distinction between create and update is not clear. Both 
operations perform similar logic. If the value is not present, it’s inserted or 
else updated 

Therefore, row-level locking is a great idea, unless a lock is acquired on 
an empty row and then it’s unavailable until it times out. Redis has a 
limited concept of a transaction and an operation can be performed within 
the confines of such a transaction. Redis MULTI command initiates a 
transactional unit. Calling EXEC after a MULTI executes all the 
commands and calling DISCARD rolls back the operations. A simple 



 

 

Databases Performing Crud 
Operations 

 

45 

example of atomic increment of two keys: key1 and key2 could be as 
follows: 

> MULTI 

OK 

> INCR key1 

QUEUED 

> INCR key2 

QUEUED 

> EXEC 

1) (integer) 1 

2) (integer) 1 

3.4.2 Limited Atomicity and Transactional Integrity: 

While the specifics of minimal atomic support may differ among 
databases, they share many common characteristics. This section delves 
into some prevalent concepts surrounding the CAP Theorem and eventual 
consistency. 

The CAP Theorem posits that at any given time, it's only possible to 
maximize two out of three factors: 

Consistency – Ensuring that all clients have the same data view. 

Availability – Guaranteeing that all clients can read and write. 

Partition tolerance – Maintaining system functionality across distributed 
networks. 

Another important concept often discussed is eventual consistency, which 
can be perplexing and frequently misunderstood. 

Eventual consistency serves as a consistency model within parallel and 
distributed programming domains. It can be interpreted in two primary 
ways: 

Over a sufficiently extended period without updates, it's anticipated that 
all updates will eventually propagate through the system, resulting in 
consistency across all replicas. 

In the presence of ongoing updates, a given update will eventually reach a 
replica or the replica will be retired from service. Eventual consistency 
aligns with the principles of Basically Available, Soft State, Eventual 
consistency (BASE), contrasting with the principles of ACID discussed 
earlier. 

 

 



 

 

NoSQL Technologies 

46 

3.5 SUMMARY 

This chapter introduced the fundamental operations of create, read, update, 
and delete within the framework of NoSQL databases. It delved into these 
operations within the context of three types of NoSQL data stores: 
document stores, column-oriented databases, and key/value hash maps. 
MongoDB serves as an example of a document store, HBase as a column 
store, and Redis as a key/value hash map. 

Throughout the discussion, it became evident that across all data stores, 
the emphasis lies more on data creation or insertion rather than updates. In 
certain scenarios, updates are constrained. Towards the conclusion of the 
chapter, the discussion extended to cover topics such as updates, 
transactional integrity, and consistency. 

3.6 REVIEW QUESTIONS 

1. How do create, read, update, and delete operations differ in NoSQL 
databases compared to traditional relational databases? 

2. What are the distinctive characteristics of document stores, column-
oriented databases, and key/value hash maps in the context of NoSQL 
databases? 

3. How do NoSQL databases reconcile the principles of ACID with the 
emphasis on data creation or insertion over updates? 

 

***** 



   47 

4 
QUERYING NOSQL STORES 

Unit Structure 

4.0  Objective 

4.1  Introduction 

4.2  Similarities Between SQL and MongoDB Query Features 

 4.2.1 Loading the MovieLens Data  

 4.2.2. MapReduce in MongoDB  

4.3  Accessing Data from Column-Oriented Databases Like HBase  

 4.3.1 The Historical Daily Market Data  

4.4  Querying Redis Data Stores  

4.5  Summary 

4.6  Review Questions 

4.0 OBJECTIVES 

 Demonstrating various query mechanisms within NoSQL databases 
through examples with sample datasets.  

 Exploring querying scenarios specific to MongoDB, HBase, and 
Redis.  

 Crafting sophisticated and intricate queries in NoSQL environments.  

 Leveraging non-SQL alternatives to achieve robust querying 
functionalities. 

4.1 INTRODUCTION 

SQL stands out as one of the simplest yet most potent domain-specific 
languages ever devised. Its learning curve is gentle due to a limited 
vocabulary, clear grammar, and straightforward syntax. Despite its brevity 
and narrow focus, SQL excels at its intended purpose, allowing users to 
manipulate structured datasets with precision akin to a skilled ninja. 
Through SQL, users effortlessly filter, sort, dissect, and segment data, 
harnessing the power of relations to join datasets and create intersections 
and unions. 

However, SQL's reliance on relational algebra restricts its utility to 
relational databases exclusively, as implied by its name — SQL lacks 
compatibility with NoSQL databases. Nevertheless, the absence of SQL 
doesn't impede querying of datasets, as data storage inherently implies the 
potential for retrieval and manipulation. NoSQL databases offer their own 
mechanisms for accessing and manipulating data, often straying from 
relational constraints. 



 

 

NoSQL Technologies 

48 

While proponents of NoSQL databases sought alternatives to relational 
databases due to structural constraints and the rigidity of ACID 
transactions, they didn't necessarily reject SQL outright. Indeed, some still 
yearn for SQL's familiarity in the realm of NoSQL, leading to the creation 
of query languages bearing resemblance to SQL syntax and style. 

In this chapter, you'll delve into numerous tips and tricks for querying 
NoSQL stores, exploring various products and technologies under the 
broad umbrella of NoSQL. 

4.2 EXPLORING SIMILARITIES BETWEEN SQL AND 
MONGODB QUERY FEATURES 

Despite MongoDB's identity as a document database, its query language 
exhibits striking similarities to SQL. With preliminary examples already 
presented, the SQL-like query capabilities of MongoDB are self-evident. 

To grasp the capabilities of MongoDB's query language and witness its 
functionality firsthand, let's load a more substantial dataset into a 
MongoDB database. While previous datasets in this book have been 
modest in scale to emphasize MongoDB's core features, this chapter 
introduces the MovieLens dataset, comprising millions of movie-rating 
records. 

To begin, visit grouplens.org/node/73 and download the dataset containing 
one million movie-rating records. The dataset is available in tar.gz and .zip 
formats; choose the appropriate format for your platform. After 
downloading, extract the contents to a folder in your file system. Upon 
extraction, you should have three files: 

 movies.dat 

 ratings.dat 

 users.dat 

The movies.dat data file contains data on the movies themselves. This file 
contains 3,952 records, and each line in that file contains one record. The 
record is saved in the following format: 

<MovieID>::<Title>::<Genres> 

The MovieId is a simple integral sequence of numbers. The movie title is a 
string, which includes the year the movie was released, specified in 
brackets appended to its name. The movie titles are the same as those in 
IMDB (www.imdb.com). Each movie may be classified under multiple 
genres, which are specified in a pipe-delimited format. A sample line from 
the file is like so: 

1::Toy Story (1995)::Animation|Children’s|Comedy 



 

 

Querying NoSQL Stores 

49 

The ratings.dat file contains the ratings of the 3,952 movies by more than 
6,000 users. The ratings file has more than 1 million records. Each line is a 
different record that contains data in the following format: 

UserID::MovieID::Rating::Timestamp 

UserID and MovieID identify and establish a relationship with the user 
and the movie, respectively. The rating is a measure on a 5-point (5-star) 
scale. Timestamp captures the time when the ratings were recorded. 

The users.dat file contains data on the users who rated the movies. The 
information on more than 6,000 users is recorded in the following format: 

UserID::Gender::Age::Occupation::Zip-code 

4.2.1 Loading the MovieLens Data: 

To simplify the process, let's upload the data into three MongoDB 
collections: movies, ratings, and users, with each collection mapping to a 
corresponding .dat data file. Unfortunately, the mongoimport utility, 
which is typically used for this task, doesn't support the double-colon (::) 
delimiter used in the MovieLens data. As an alternative, we'll utilize a 
programming language along with a MongoDB driver to parse the text 
files and load the dataset into MongoDB collections. 

For brevity, we'll use Ruby for this task. However, you could also opt for 
Python, Java, PHP, C, or any other supported language. The following 
code snippet (Listing 4-1) demonstrates how to extract and load data from 
the users, movies, and ratings data files into their respective MongoDB 
collections. This code employs basic file-reading and string-splitting 
functionalities, coupled with the MongoDB driver to accomplish the task. 
While not the most elegant solution and lacking exception handling, it 
serves our immediate purpose. 

LISTING 4-1:   movielens_dataloader.rb 

require ‘rubygems’ #can skip this line in Ruby 1.9 

require ‘mongo’ 

field_map = { 

 “users” => %w(_id gender age occupation zip_code), 

 “movies” => %w(_id title genres), 

 “ratings” => %w(user_id movie_id rating timestamp) 

} 

db = Mongo::Connection.new.db(“mydb”) 

collection_map = { 

 “users” => db.collection(“users”), 

 “movies” => db.collection(“movies”), 

 “ratings” => db.collection(“ratings”) 



 

 

NoSQL Technologies 

50 

} 

unless ARGV.length == 1 

 puts “Usage: movielens_dataloader data_filename” 

 exit(0) 

end 

class Array 

    def to_h(key_definition) 

 result_hash = Hash.new() 

 counter = 0 

 key_definition.each do |definition| 

     if not self[counter] == nil then 

  if self[counter].is_a? Array or self[counter].is_a? Integer then 

   result_hash[definition] = self[counter] 

  else 

   result_hash[definition] = self[counter].strip 

  end 

     else 

  # Insert the key definition with an empty value. 

  # Because we probably still want the hash to contain the key. 

  result_hash[definition] = “” 

     end 

     # For some reason counter.next didn’t work here.... 

     counter = counter + 1 

 end 

 return result_hash 

    end 

end 

if File.exists?(ARGV[0]) 

 file = File.open(ARGV[0], ‘r’) 

 data_set = ARGV[0].chomp.split(“.”)[0] 

  file.each { |line| 

  field_names = field_map[data_set] 

  field_values = line.split(“::”).map { |item| 

  if item.to_i.to_s == item 

   item = item.to_i 

  else 

   item 



 

 

Querying NoSQL Stores 

51 

  end 

 } 

 puts “field_values: #{field_values}” 

 #last_field_value = line.split(“::”).last 

 last_field_value = field_values.last 

 puts “last_field_value: #{last_field_value}” 

 if last_field_value.split(“|”).length > 1 

  field_values.pop 

  field_values.push(last_field_value.split().join(‘\n’).split(“|”)) 

 end 

 field_values_doc = field_values.to_h(field_names) 

 collection_map[data_set].insert(field_values_doc) 

 } 

 puts “inserted #{collection_map[data_set].count()} records into the 

#{collection_map[data_set].to_s} collection” 

end 

Once the data is loaded into the MongoDB collections, you're ready to 
execute queries to manipulate and analyze it. Queries can be executed 
from the JavaScript shell or from any supported programming language. 
In this example, most queries will be executed using the JavaScript shell, 
with a few select queries demonstrated using different programming 
languages and their respective drivers. The inclusion of programming 
language examples serves to illustrate that nearly all functionalities 
available in the JavaScript shell are accessible through the various 
language drivers. 

To begin querying the MongoDB collections, ensure that the MongoDB 
server is running and connect to it using the Mongo shell, which can be 
found in the bin folder of your MongoDB installation directory.  

In the Mongo JavaScript shell, start by retrieving a count of all the values 
in the ratings collection with the following command: 

db.ratings.count();  

You should receive a response of 1000209, confirming that over a million 
ratings were successfully uploaded. 

Next, retrieve a sample set of the ratings data using the following 
command: 

db.ratings.find();  

In the shell, you don’t need to explicitly use a cursor to display values 
from a collection. The shell automatically limits the display to a maximum 
of 20 rows at a time. To view more data, simply type "it" (short for iterate) 



 

 

NoSQL Technologies 

52 

in the shell. If more records exist beyond the ones already displayed, you'll 
see 20 more records along with a label indicating "has more." 

The ratings data, for example, { “_id” : 
ObjectId(“4cdcf1ea5a918708b0000001”), “user_ id” : 1, “movie_id” : 
1193, “rating” : 5, “timestamp” : “978300760” }, makes little intuitive 
sense about the movie it relates to because it’s linked to the movie id and 
not its name. You can get around this problem by answering the following 
questions:  

 How can I get all the ratings data for a given movie?  

 How do I get the movie information for a given rating? 

 How do I put together a list all the movies with the ratings data 
grouped by the movies they relate to? 

MongoDB, relational data is correlated explicitly outside the server's 
scope. MongoDB introduces the concept of a DBRef to establish 
relationships between fields in different collections, but this feature has 
certain limitations and doesn't offer the same level of functionality as 
explicit ID-based linking.  

To retrieve all ratings data for a specific movie in MongoDB, you filter the 
dataset using the movie ID as the criterion. For instance, to view all 
ratings for the renowned Academy Award-winning movie "Titanic," you 
first need to find its ID and then use that to filter the ratings collection. If 
you're unsure about the exact title string for "Titanic" but confident that 
the word "titanic" appears in it, you can perform an approximate, rather 
than exact, match with the title strings in the movies collection. 

In a relational database management system (RDBMS), under such 
circumstances, you might rely on the LIKE expression in a SQL WHERE 
clause to retrieve a list of all potential candidates. In MongoDB, although 
there's no LIKE expression, there's a more robust feature available: the 
ability to define patterns using regular expressions. Thus, to obtain a list of 
all records in the movies collection that contain "Titanic" or "titanic" in 
their title, you can execute the following query: 

db.movies.find({ title: /titanic/i}); 

This query returns the following set of documents: 

{ “_id” : 1721, “title” : “Titanic (1997)”, “genres” : [ “Drama”, 
“Romance” ] } 

{ “_id” : 2157, “title” : “Chambermaid on the Titanic, The (1998)”, 
“genres” : “Romance” } 

{ “_id” : 3403, “title” : “Raise the Titanic (1980)”, “genres” : [ 
“Drama”, “Thriller” ] } 

{ “_id” : 3404, “title” : “Titanic (1953)”, “genres” : [ “Action”, 
“Drama” ] } 



 

 

Querying NoSQL Stores 

53 

The title field in the MovieLens data set includes the year the movie was 
released. Within the title field, the release year is included in parentheses. 
So, if you remembered or happen to know that Titanic was released in the 
year 1997, you can write a more tuned query expression as follows: 
db.movies.find({ title: /titanic.*\(1997\).*/i}); 

This returns just one document: 

{ “_id” : 1721, “title” : “Titanic (1997)”, “genres” : [ “Drama”, 
“Romance” ] } 

The expression essentially looks for all title strings that have Titanic, 
titanic, TitaniC, or TiTAnic in it. In short, it ignores case. In addition, it 
looks for the string (1997). It also states that there may be 0 or more 
characters between titanic and (1997) and after (1997). The support for 
regular expressions is a powerful feature and it is always worthwhile to 
gain mastery over them. The range of values for the movie_id field of the 
ratings collection is defined by the _id of the movies collection. So to get 
all ratings for the movie Titanic, which has an id of 1721, you could query 
like so: 

db.ratings.find({ movie_id: 1721 }); 

To find out the number of available ratings for Titanic, you can count 
them as follows: 

db.ratings.find({ movie_id: 1721 }).count(); 

The response to the count is 1546. The ratings are on a 5-point scale. To 
get a list and count of only the 5-star ratings for the movie Titanic you can 
further filter the record set like so: 

db.ratings.find({ movie_id: 1721, rating: 5 }); 

db.ratings.find({ movie_id: 1721, rating: 5 }).count(); 

DATA-TYPE SENSITIVITY IN QUERY DOCUMENTS: 

MongoDB query documents are data-type sensitive. That is, { movie_id: 
“1721” } and { movie_id: 1721 } are not the same, the first one matches a 
string and the second one considers the value as a number. When 
specifying documents, be sure to use the correct data type. To illustrate 
further, the movie_id is stored as a number (integer) in the ratings and the 
movies collections, so querying for a string match doesn’t return correct 
results.  

Therefore, the response to db.ratings .find({ movie_id: 1721 }); returns up 
to a total of 1,546 documents, but the response to db.ratings.find({ 
movie_id: “1721” }); returns none.  

If you browse Listing 6-1 carefully, you will notice the following line:  

field_values = line.split(“::”).map { |item|  

if item.to_i.to_s == item  

 item = item.to_i 



 

 

NoSQL Technologies 

54 

else 

 item 

end 

} 

This bit of code checks to see if the split string holds an integer value and 
saves it as an integer, if that’s the case. Making this little extra effort to 
save numerical values as numbers has its benefits. Indexing and querying 
on numerical records is usually faster and more efficient than on 
character-based (string) records. 

Next, you may want to get some statistics of all the ratings for Titanic. To 
find out the distinct set of ratings by users (from the possible set of 
integers between 1 and 5, both inclusive), you could query as follows: 

db.runCommand({ distinct: ‘ratings’, key: ‘rating’, query: { movie_id: 
1721} }); 

Ratings for Titanic include all possible cases between 1 and 5 (both 
inclusive) so the response is like so: 

{ “values” : [ 1, 2, 3, 4, 5 ], “ok” : 1 } 

runCommand takes the following arguments:  

Collection name for the field labeled distinct 

Field name for key, whose distinct values would be listed 

Query to optionally filter the collection 

runCommand is slightly different in pattern than the query style you have 
seen so far because the collection is filtered before the distinct values are 
searched for. Distinct values for all ratings in the collection can be listed in 
a way that you have seen so far, as follows: 

db.ratings.distinct(“rating”); 

You know from the distinct values that Titanic has all possible ratings 
from 1 to 5. To see how these ratings break down by each rating value on 
the 5-point scale, you could group the counts like so: 

db.ratings.group( 

... { key: { rating:true }, 

... initial: { count:0 }, 

... cond: { movie_id:1721 }, 

... reduce: function(obj, prev) { prev.count++; } 

... } 

... ); 

The output of this grouping query is an array as follows: 

[ 

{ 



 

 

Querying NoSQL Stores 

55 

 “rating” : 4, 

 “count” : 500 

}, 

{ 

 “rating” : 1, 

 “count” : 100 

}, 

{ 

 “rating” : 5, 

 “count” : 389 

}, 

{ 

 

 “rating” : 3, 

 “count” : 381 

}, 

{ 

 “rating” : 2, 

 “count” : 176 

} 

] 

This group by function is quite handy for single MongoDB instances but 
doesn’t work in sharded deployments. Use MongoDB’s MapReduce 
facility to run grouping functions in a sharded MongoDB setup. A 
MapReduce version of the grouping function is included right after the 
group operation is explained. The group operation takes an object as an 
input. This group operation object includes the following fields: key — 
The document field to group by.  The preceding example has only one 
field: rating.  

Additional group by fields can be included in a comma-separated list and 
assigned as the value of the key field. A possible configuration could be  

– key: { fieldA: true, fieldB: true}. 

initial — Initial value of the aggregation statistic.  

In the previous example the initial count is set to 0.  

cond — The query document to filter the collection. 

reduce — The aggregation function. 

keyf (optional) — An alternative derived key if the desired key is not an 
existing document field. 



 

 

NoSQL Technologies 

56 

finalize (optional) — A function that can run on every item that the reduce 
function iterates through. This could be used to modify existing items. 

Theoretically, the example could easily be morphed into a case where 
ratings for each movie are grouped by the rating points by simply using 
the following group operation: 

db.ratings.group( 

... { key: { movie_id:true, rating:true }, 

... initial: { count:0 }, 

... reduce: function(obj, prev) { prev.count++; } 

... } 

... ); 

In real cases, though, this wouldn’t work for the ratings collection of 1 
million items. You would be greeted instead with the following error 
message: 

Fri Nov 12 14:27:03 uncaught exception: group command failed: { 

“errmsg” : “exception: group() can’t handle more than 10000 unique 
keys”, 

“code” : 10043, 

“ok” : 0 

} 

The result is returned as a single BSON object and therefore the collection 
over which the group operation is applied should not have more than 
10,000 keys. This limitation can also be overcome with the MapReduce 
facility.  

4.2.2 MapReduce in MongoDB: 

MapReduce is a patented software framework developed by Google, 
designed to facilitate distributed computing across large clusters of 
computers. You can learn more about Google’s MapReduce framework by 
referring to the research paper titled “MapReduce: Simplified Data 
Processing on Large Clusters,” available online at 
http://labs.google.com/papers/mapreduce.html. This framework has 
inspired numerous clones and distributed computing frameworks within 
the open-source community, including MongoDB's implementation. 

Both Google's and MongoDB's MapReduce features draw inspiration from 
similar constructs found in the realm of functional programming. In 
functional programming, a map function applies a function to each 
member of a collection, while a reduce function (or fold function) 
aggregates results across the collection. 

MongoDB's MapReduce functionality differs from Google's original 
framework and is not merely a clone. Hadoop’s MapReduce, on the other 
hand, serves as an open-source implementation of Google’s distributed 



 

 

Querying NoSQL Stores 

57 

computing concepts, incorporating infrastructure for both column 
databases (like HBase) and MapReduce-based computing. 

While grasping the concept of MapReduce can initially seem daunting, 
understanding its structure and flow reveals it to be a potent tool for 
executing large-scale computations across distributed datasets. Starting 
with simple examples and gradually progressing to more complex ones is 
an effective approach to mastering this topic. 

A basic example of aggregation using MapReduce could involve counting 
the occurrences of each item type in a collection. To utilize MapReduce, 
you must define both a map function and a reduce function, and then apply 
these functions to the collection. The map function applies a specified 
function to every member of the collection, emitting a key/value pair for 
each member. The output of the map function, in the form of key/value 
pairs, is then processed by the reduce function, which aggregates the 
results across all key/value pairs to produce an output. 

For instance, consider the following map function designed to count the 
number of female (F) and male (M) respondents in the users collection: 

> var map = function() { 

... emit({ gender:this.gender }, { count:1 }); 

... }; 

This map function emits a key/value pair for each item in the collection 
that has a gender property. It counts 1 for each such occurrence. The 
reduce function for counting the number of total occurrences of male and 
female types among all users is as follows: 

> var reduce = function(key, values) { 

... var count = 0; 

... values.forEach(function(v) { 

... count += v[‘count’]; 

... }); 

... 

... return { count:count }; 

... }; 

A reduce function takes a key/value pair emitted by the map function. In 
this particular reduce function, each value in the key/value pair is passed 
through a function that counts the number of occurrences of a particular 
type. The line count += v[‘count’] could also be written as count += 
v.count because of JavaScript’s ability to access object members and their 
values as a hash data structure.  

Finally, running this map and reduce function pair against the users 
collection leads to an output of the total count of female and male 



 

 

NoSQL Technologies 

58 

members in the users collection. The mapReduce run and result extraction 
commands are as follows: 

> var ratings_respondents_by_gender = db.users.mapReduce(map, 
reduce); 

> ratings_respondents_by_gender 

{ 

“result” : “tmp.mr.mapreduce_1290399924_2”, 

“timeMillis” : 538, 

“counts” : { 

“input” : 6040, 

“emit” : 6040, 

“output” : 2 

}, 

“ok” : 1, 

} 

> db[ratings_respondents_by_gender.result].find(); 

{ “_id” : { “gender” : “F” }, “value” : { “count” : 1709 } } 

{ “_id” : { “gender” : “M” }, “value” : { “count” : 4331 } } 

To verify the output, filter the users collection for gender values “F” and 
“M” and count the number of documents in each filtered sub-collection. 
The commands for filtering and counting the users collection for gender 
values “F” and “M” is like so: 

> db.users.find({ “gender”:”F” }).count(); 

1709 

> db.users.find({ “gender”:”M” }).count(); 

4331 

Next, you can modify the map function slightly and run the map and 
reduce functions against the ratings collection to count the number of each 
type of rating (1, 2, 3, 4 or 5) for each movie. In other words, you are 
counting the collection grouped by rating value for each movie. Here are 
the complete map and reduce function definitions run against the ratings 
collection: 

> var map = function() { 

... emit({ movie_id:this.movie_id, rating:this.rating }, { count:1 }); 

... }; 

 

> var reduce = function(key, values) { 



 

 

Querying NoSQL Stores 

59 

... var count = 0; 

... values.forEach(function(v) { 

... count += v[‘count’]; 

... }); 

... 

... return { count: count }; 

... }; 

> var group_by_movies_by_rating = db.ratings.mapReduce(map, 
reduce); 

> db[group_by_movies_by_rating.result].find(); 

To get a count of each type of rating for the movie Titanic, identified by 
movie_id 1721, you simply filter the MapReduce output using nested 
property access method like so: 

> db[group_by_movies_by_rating.result].find({ “_id.movie_id”:1721 }); 

{ “_id” : { “movie_id” : 1721, “rating” : 1 }, “value” : { “count” : 100 } 
} 

{ “_id” : { “movie_id” : 1721, “rating” : 2 }, “value” : { “count” : 176 } 
} 

{ “_id” : { “movie_id” : 1721, “rating” : 3 }, “value” : { “count” : 381 } 
} 

{ “_id” : { “movie_id” : 1721, “rating” : 4 }, “value” : { “count” : 500 } 
} 

{ “_id” : { “movie_id” : 1721, “rating” : 5 }, “value” : { “count” : 389 } 
} 

In the two examples of MapReduce so far, the reduce function is identical 
but the map function is different. In each case a count of 1 is established 
for a different emitted key/value pair. In one a key/ value pair is emitted 
for each document that has a gender property, whereas in the other a 
key/value pair is emitted for each document identified by the combination 
of a movie id and a rating id.  Next, you could calculate the average rating 
for each movie in the ratings collection as follows: 

> var map = function() { 

... emit({ movie_id:this.movie_id }, { rating:this.rating, count:1 }); 

... }; 

> var reduce = function(key, values) { 

... var sum = 0; 

... var count = 0; 

... values.forEach(function(v) { 

... sum += v[‘rating’]; 



 

 

NoSQL Technologies 

60 

... count += v[‘count’]; 

... }); 

... 

... return { average:(sum/count) }; 

... }; 

> var average_rating_per_movie = db.ratings.mapReduce(map, reduce); 

> db[average_rating_per_movie.result].find(); 

MapReduce allows you to write many types of sophisticated aggregation 
algorithms, some of which were presented in this section. A few others are 
introduced later in the book. By now you have had a chance to understand 
many ways of querying MongoDB collections. Next, you get a chance to 
familiarize yourself with querying tabular databases. HBase is used to 
illustrate the querying mechanism. 

4.3 ACCESSING DATA FROM COLUMN-ORIENTED 

4.3.1 Databases Like Hbase: 

Before delving into querying an HBase data store, it's necessary to first 
populate it with data. Similar to MongoDB, you've already gained some 
experience with storing and accessing data in HBase and its underlying 
file system, often Hadoop Distributed FileSystem (HDFS).  

This familiarity with HBase and Hadoop basics will serve as a foundation 
for this section. As a practical example, historical daily stock market data 
from the New York Stock Exchange (NYSE) spanning from the 1970s to 
February 2010 will be loaded into an HBase instance. This dataset, 
sourced from original data providers by Infochimp.org, is available for 
access at www.infochimps.com/datasets/nyse-daily-1970-2010-open-
close-high-low-and-volume. 

4.3.2 The Historical Daily Market Data: 

The zipped download of the entire dataset is substantial at 199 MB, yet 
relatively small compared to HDFS and HBase standards. The robust 
infrastructures of HBase and Hadoop are capable of handling petabytes of 
data spread across multiple physical machines. For the purpose of this 
example, a manageable dataset was chosen intentionally to avoid 
distraction from the complexities of preparing and loading large datasets.  

This chapter focuses on query methods in NoSQL stores, particularly on 
column-oriented databases. The principles demonstrated with smaller 
datasets remain applicable to larger datasets. 

The dataset is logically partitioned into three types of fields: 

1. Combination of exchange, stock symbol, and date serving as the 
unique identifier. 



 

 

Querying NoSQL Stores 

61 

2. Price-related metrics including open, high, low, close, and adjusted 
close. 

3. Daily trading volume. 

The row key can be constructed using a combination of the exchange, 
stock symbol, and date. For example, 'NYSE, AA, 2008-02-27' could be 
structured as 'NYSEAA20080227' to serve as a row key. All price-related 
information can be stored in a column family named 'price', while volume 
data can reside in a column family named 'volume'. 

The table itself is named 'historical_daily_stock_price'. To retrieve the row 
data for 'NYSE, AA, 2008-02-27', you can issue the following query: 

get 'historical_daily_stock_price', 'NYSEAA20080227'  

To retrieve the open price: 

get ‘historical_daily_stock_price’, ‘NYSEAA20080227’, ‘price:open’ 

You could also use a programming language to query for the data. A 
sample Java program to get the 

open and high price data could be as follows: 

import org.apache.hadoop.hbase.client.HTable; 

import org.apache.hadoop.hbase.HBaseConfiguration; 

import org.apache.hadoop.hbase.io.RowResult; 

import java.util.HashMap; 

import java.util.Map; 

import java.io.IOException; 

public class HBaseConnector { 

 public static Map retrievePriceData(String rowKey) throws 
IOException { 

  HTable table = new HTable(new HBaseConfiguration(), 

   “historical_daily_stock_price”); 

Map stockData = new HashMap(); 

RowResult result = table.getRow(rowKey); 

for (byte[] column : result.keySet()) { 

 stockData.put(new String(column), new 

 String(result.get(column).getValue())); 

  } 

 return stockData; 

 } 

public static void main(String[] args) throws IOException { 



 

 

NoSQL Technologies 

62 

Map stock_data = 
HBaseConnector.retrievePriceData(“NYSEAA20080227”); 

System.out.println(stock_data.get(“price:open”)); 

System.out.println(stock_data.get(“price:high”)); 

} 

} 

HBaseConnector.java 

HBase includes very few advanced querying techniques beyond what is 
illustrated, but its capability to index and query can be extended with the 
help of Lucene and Hive 

4.4 QUERYING REDIS DATA STORES 

You've gained insights into the fundamentals of data storage and access 
with Redis. This section delves a bit deeper into querying data within 
Redis. 

Consistent with the examples provided thus far in this chapter, a sample 
dataset is first loaded into a Redis instance. For demonstration purposes, 
the NYC Data Mine public raw data on parking spaces, available online at 
www.nyc.gov/data, is utilized. The dataset can be downloaded in a 
comma-separated text format, named parking_facilities.csv. 

Refer to Listing 4-2 for a straightforward Python program that parses this 
CSV dataset and loads it into a local Redis store. Remember to initiate 
your local Redis server prior to executing the Python script to load the 
data. Running the Redis-server program, accessible in the Redis 
installation directory, initiates a Redis server instance that, by default, 
listens for client connections on port 6379. 

LISTING 4-2: Python program to extract NYC parking facilities data 

import csv 

import redis 

 

f = open(“parking_facilities.csv”, “r”) 

parking_facilities = csv.DictReader(f, delimiter=’,’) 

r = redis.Redis(host=’localhost’, port=6379, db=0) 

def add_parking_facility(license_number, 

    facility_type, 

    entity_name, 

    camis_trade_name, 

    address_bldg, 



 

 

Querying NoSQL Stores 

63 

    address_street_name, 

    address_location, 

    address_city, 

    address_state, 

    address_zip_code, 

    telephone_number, 

    number_of_spaces): 

if r.sadd(“parking_facilities_set”, license_number): 

r.hset(“parking_facility:%s” % license_number, “facility_type”, 

facility_type) 

r.hset(“parking_facility:%s” % license_number, “entity_name”, 

entity_name) 

r.hset(“parking_facility:%s” % license_number, “camis_trade_name”, 

camis_trade_name) 

r.hset(“parking_facility:%s” % license_number, “address_bldg”, 

address_bldg) 

r.hset(“parking_facility:%s” % license_number, “address_street_name”, 

address_street_name) 

r.hset(“parking_facility:%s” % license_number, “address_location”, 

address_location) 

r.hset(“parking_facility:%s” % license_number, 
“address_city”,address_city) 

r.hset(“parking_facility:%s” % license_number, “address_state”, 

address_state) 

r.hset(“parking_facility:%s” % license_number, “address_zip_code”, 

address_zip_code) 

r.hset(“parking_facility:%s” % license_number, “telephone_number”, 

telephone_number) 

r.hset(“parking_facility:%s” % license_number, “number_of_spaces”, 

number_of_spaces) 

      return True 

else: 

      return False 

if __name__ == “__main__”: 

 for parking_facility_hash in parking_facilities: 

  add_parking_facility(parking_facility_hash[‘License 
Number’], 



 

 

NoSQL Technologies 

64 

parking_facility_hash[‘Facility Type’], 

parking_facility_hash[‘Entity Name’], 

parking_facility_hash[‘Camis Trade Name’], 

parking_facility_hash[‘Address Bldg’], 

parking_facility_hash[‘Address Street Name’], 

parking_facility_hash[‘Address Location’], 

parking_facility_hash[‘Address City’], 

parking_facility_hash[‘Address State’], 

parking_facility_hash[‘Address Zip Code’], 

parking_facility_hash[‘Telephone Number’], 

parking_facility_hash[‘Number of Spaces’]) 

  print “added parking_facility with %s” % 
parking_facility_hash[‘License Number’] 

nyc_parking_data_loader.py 

The Python program loops through a list of extracted hash records and 
saves the values to a Redis instance. Each hash record is keyed using the 
license number. All license numbers themselves are saved in a set named 
parking_facilities_set. 

To get a list of all license numbers in the set named parking_facilities_list, 
connect via another program or simply the command-line client and use 
the following command: SMEMBERS parking_facilities_set All 1,912 
license numbers in the set would be printed out. You can run wc –l 
paking_facilities.csv to verify if this number is correct. Each line in the 
CSV corresponds to a parking facility so the two numbers should 
reconcile. 

For each parking facility the attributes are stored in a hash, which is 
identified by the key of the form parking_facility:<license_number>. 
Thus, to see all keys in the hash associated with license number 1105006 
you can use the following command: 

HKEYS parking_facility:1105006 

The response is as follows: 

1.  “facility_type” 

2.  “entity_name” 

3.  “camis_trade_name” 

4.  “address_bldg” 

5.  “address_street_name” 

6.  “address_location” 



 

 

Querying NoSQL Stores 

65 

7.  “address_city” 

8.  “address_state” 

9.  “address_zip_code” 

10.  “telephone_number” 

11.  “number_of_spaces” 

The license number 1105006 was first on the list returned by the 
SMEMBERS parking_facilities_ set command. However, sets are not 
ordered, so rerunning this command may not result in the same license 
number on top. If you need the list of members to appear in a certain 
order, use the sorted sets instead of the set. All you may need to do to use 
a sorted set is to replace the line  

if r.sadd(“parking_facilities_set”, license_number): with the following: 

if r.zadd(“parking_facilities_set”, license_number): 

Now, you can query for specific values in the hash, say facility type, as 
follows: 

HGET parking_facility:1105006 facility_type 

The response is “Parking Lot”. You can also print out all values using the 
HVALS command as follows: 

HVALS parking_facility:1105006 

The response is: 

1. “Parking Lot” 

2. “CENTRAL PARKING SYSTEM OF NEW YORK, INC” 

3. “” 

4. “41-61” 

5. “KISSENA BOULEVARD” 

6. “” 

7. “QUEENS” 

8. “NY” 

9. “11355” 

10. “2126296602” 

11. “808” 

 



 

 

NoSQL Technologies 

66 

Of course, it would be much nicer if you could print out all the keys and 
the corresponding values in a hash. You can do that using the HGETALL 
command as follows:  

HGETALL parking_facility:1105006 

The response is as follows: 

1. “facility_type” 

2. “Parking Lot” 

3. “entity_name” 

4. “CENTRAL PARKING SYSTEM OF NEW YORK, INC” 

5. “camis_trade_name” 

6. “” 

7. “address_bldg” 

8. “41-61” 

9. “address_street_name” 

10. “KISSENA BOULEVARD” 

11. “address_location” 

12. “” 

13. “address_city” 

14. “QUEENS” 

15. “address_state” 

16. “NY” 

17. “address_zip_code” 

18. “11355” 

19. “telephone_number” 

20. “2126296602” 

21. “number_of_spaces” 

22. “808” 

Sometimes, you may not need all the key/value pairs but just want to print 
out the values for a specific set of fields. For example, you may want to 
print out only the address_city and the address_zip_code as follows: 

 



 

 

Querying NoSQL Stores 

67 

HMGET parking_facility:1105006 address_city address_zip_code 

The response is: 

1. “QUEENS” 

2. “11355” 

You could similarly set values for a set of fields using the HMSET 
command. To get a count of the number of keys, you can use the HLEN 
command as follows: 

HLEN parking_facility:1105006 

The response is 11. If you wanted to check if address_city was one of 
these, you can use the 

HEXISTS command to verify if it exists as a key. The command is used as 
follows: 

HEXISTS parking_facility:1105006 address_city 

The response is 1 if the field exists and 0 if it doesn’t. 

Going back to the set parking_facilities_set, you may just want to count 
the number of members instead of listing them all using the SCARD 
command as follows: SCARD parking_facilities_set As expected, the 
response is 1912. You could verify if a specific member exists in the set 
using the SISMEMBER command. To verify if 1005006 is a member of 
the set, you could use the following command: 

SISMEMBER parking_facilities_set 1105006 

Integral values of 0 and 1 are returned to depict false and true for this 
query that verifies if a  member exists in a set. 

4.5 SUMMARY 

In this chapter, several advanced query mechanisms were introduced, 
surpassing the complexity of those previously discussed. Querying 
concepts were elucidated through practical examples. MongoDB's 
querying intricacies were explored using a sample dataset containing 
movie ratings. The HBase illustration utilized historical stock market data, 
while Redis's querying capabilities were showcased using sample NYC 
government data. 

It's important to note that the coverage of querying capabilities in this 
chapter is not exhaustive and does not encompass all possible use cases. 
The examples provided serve as just a glimpse into the myriad 
possibilities. However, navigating through these examples should help you 
grasp the style and mechanics of querying within NoSQL data stores. 

 

 



 

 

NoSQL Technologies 

68 

4.6 REVIEW QUESTIONS 

1. How do SQL and MongoDB query features compare and what 
similarities can be identified between them? 

2. What steps are involved in loading the MovieLens dataset into 
MongoDB? 

3. How does MongoDB implement MapReduce functionality, and what 
are its advantages? 

 

***** 

 



   69 

5 
INDEXING AND ORDERING DATA SETS 

Unit Structure 

5.0  Objective 

5.1  Introduction 

5.2  Essential Concepts Behind a Database Index  

5.3  Indexing and Ordering in MongoDB  

5.4  Creating and Using Indexes in MongoDB  

5.4.1 Compound and Embedded Keys  

5.4.2 Creating Unique and Sparse Indexes  

 5.4.3 Keyword-based Search and Multi Keys  

5.5  Indexing and Ordering in CouchDB  

 5.5.1 The B-tree Index in CouchDB  

5.6  Indexing in Apache Cassandra  

5.7 Summary 

5.8  Review Questions  

5.0 OBJECTIVES 

 Develop indexes to improve query performance. 

 Create and maintain indexes in document databases and column-
family databases. 

 Organize NoSQL data sets efficiently. 

 Make informed design choices to create optimal indexes and ordering 
patterns. 

5.1 INTRODUCTION 

In this chapter, we'll take steps to ensure that your queries are optimized 
for speed and efficiency. In relational databases, using indexes is a 
common way to enhance query performance. The same concept applies to 
NoSQL databases. 

Indexes are designed to boost data access performance. They function 
similarly to a book's index. When you need to find a specific term or word 
in a book, you have two options: 

Scan the entire book page by page. 

Use the index at the end to locate the pages where the term or word 
appears and go directly to those pages. 

 



 

 

NoSQL Technologies 

70 

Clearly, using the index is the more efficient choice, saving time and 
effort. Similarly, in a database, you can either: 

Search through the entire collection or dataset item by item. 

Use the index to quickly locate the relevant data. 

Again, the index lookup is the preferred method. While the analogy 
between book indexes and database indexes is useful, it's important not to 
stretch the similarity too far. Book indexes cover a limited subset of terms 
based on free text, while database indexes apply to all data sets within a 
collection, created on item identifiers or specific properties. 

5.2 ESSENTIAL CONCEPTS BEHIND A DATABASE 
INDEX 

There is no universal formula for creating an index, but the most effective 
methods are based on a few common principles. These principles often 
involve hash functions and B-tree or B+-tree data structures. This section 
explores these concepts to provide a theoretical foundation. 

A hash function is a well-defined mathematical function that converts a 
large, variable-sized, and complex data value into a single integer or set of 
bytes. The output of a hash function is known by various names, such as 
hash code, hash value, hash sum, and checksum. Hash codes are often 
used as keys for associative arrays, also known as hash maps. Hash 
functions are particularly useful for mapping complex database property 
values to hash codes for index creation. 

A tree data structure organizes values in a hierarchical, tree-like manner, 
with links or pointers between certain nodes. A binary tree is a specific 
type of tree where each node has at most two children: one on the left and 
one on the right. A node can either be a parent, with up to two children, or 
a leaf, being the last node in the chain. At the base of the tree is the root 
node. Figure 5-1 illustrates a binary tree data structure. 

 

Figure 5.1 

 



 

 

Indexing And Ordering Data Sets 

 

71 

A B-tree is an extension of a binary tree, allowing each parent node to 
have more than two child nodes. This structure keeps the data sorted, 
enabling efficient search and data access. A B+-tree is a specific variant of 
the B-tree, where all records are stored in the leaf nodes, which are 
sequentially linked. B+-trees are the most commonly used tree structures 
for storing database indexes. 

For those interested in learning more about B-trees and B+-trees, consider 
the following resources available online: 

Wikipedia - B-tree 

Semaphore Corporation - B-tree Algorithm 

Wikipedia - B+ tree 

For a more structured tutorial, you might refer to "Introduction to 
Algorithms" by Cormen, Leiserson, Rivest, and Stein, ISBN 0-262-03384-
4. 

Although the basic principles of indexing are similar, the implementation 
and application vary across different NoSQL products. In the following 
sections, we will explore indexing in MongoDB, CouchDB, and Apache 
Cassandra. We will also cover effective data sorting, which is closely 
related to indexing. 

5.3 INDEXING AND ORDERING IN MONGO DB 

MongoDB offers a wide array of options for indexing collections to 
improve query performance.  

By default, it creates an index on the _id property for all collections. 
Indexing is best understood through examples.  

Once set up, you should have three collections: movies, ratings, and users. 
To grasp the significance and impact of an index, it's essential to measure 
query performance with and without an index. MongoDB provides built-in 
tools to explain query plans and identify slow-running queries. A query 
plan outlines what the database server needs to do to execute a given 
query. To begin, use the explain plan utility to analyze query performance. 
For example, to retrieve all items in the ratings collection, you can run a 
query like this: 

frustrating(); 

movie lens_indexation 

To run explain plan for this query you can run this query: 

frustrating().explain(); 

movielens_indexes.txt 

The output of the explain plan would be something like this: 

{ 



 

 

NoSQL Technologies 

72 

 “cursor” : “BasicCursor”, 

 “nscanned” : 1000209, 

 

 “nscannedObjects” : 1000209, 

 “n” : 1000209, 

 “millis” : 1549, 

 “indexBounds” : { 

 } 

} 

The output indicates that it took 1,549 milliseconds to return 1,000,209 
documents, examining 1,000,209 items in the process. It also mentions 
that a BasicCursor was used. 

The explain function's output is a document with several properties: 

cursor: The type of cursor used to return the query result sets. It can be a 
basic cursor (indicating a table scan) or a B-tree cursor (indicating an 
index was used). 

nscanned: The number of entries scanned. When an index is used, this 
corresponds to the number of index entries. 

nscannedObjects: The number of documents scanned. 

n: The number of documents returned. 

millis: The time, in milliseconds, taken to execute the query. 

indexBounds: The minimum and maximum index keys within which the 
query was matched. This field is only relevant when an index is used. 

The next example demonstrates how to query a subset of the ratings 
collection. This collection contains rankings (on a scale of 1 to 5) for 
various movies by different users. To filter the ratings collection to a 
subset related to a specific movie, we need to correlate movie IDs in the 
ratings collection with names in the movies collection. We'll use the 
original Toy Story (Toy Story 1) as an example, but you can choose any 
movie. 

To retrieve the document related to Toy Story, we can use a regular 
expression. To query all documents related to Toy Story in the movies 
collection, use the following approach: 

db.movies.find({ title: /Toy Story/i }) 

This query uses a regular expression to match the title field in the movies 
collection, ensuring all documents related to Toy Story are retrieved 

db.movies.find({title: /Toy Story/i}); 



 

 

Indexing And Ordering Data Sets 

 

73 

movielens_indexes.txt 

The output should be as follows: 

{ “_id” : 1, “title” : “Toy Story (1995)”, “genres” : [ “Animation”, 
“Children’s”, “Comedy” ] } 

{ “_id” : 3114, “title” : “Toy Story 2 (1999)”, “genres” : [ “Animation”, 
“Children’s”, “Comedy” ] } 

I guess Toy Story 3 wasn’t released when these ratings were compiled. 
That’s why you don’t see that in the list. Next, take the movie ID for “Toy 
Story”, which happens to be 1, and use that to find all the relevant ratings 
from all the users. Before you do that, though, run the explain plan 
function to view how the database ran the regular expression query to find 
Toy Story in the movies collection. You can run the explain plan like so:  

db.movies.find({title: /Toy Story/i}).explain(); 

movielens_indexes.txt 

The output should be as follows: 

{ 

 “cursor” : “BasicCursor”, 

 “nscanned” : 3883, 

 “nscannedObjects” : 3883, 

 “n” : 2, 

 “millis” : 6, 

 “indexBounds” : { 

 } 

} 

Run a count, using db.movies.count();, on the movies collection to verify 
the number of documents and you will observe that it matches with the 
nscanned and nscannedObjects value of the query explanation. This means 
the regular expression query led to a table scan, which isn’t efficient. The 
number of documents was limited to 3,883 so the query still ran fast 
enough and took only 6 milliseconds. In a short bit you will see how you 
could leverage indexes to make this query more efficient, but for now 
return to the ratings collection to get a subset that relates to Toy Story.  

To list all ratings that relate to Toy Story (more accurately Toy Story 
(1995)) you can query as follows: 

db.ratings.find({movie_id: 1}); 

movielens_indexes.txt 

To see the query plan for the previous query run explain as follows: 



 

 

NoSQL Technologies 

74 

db.ratings.find({movie_id: 1}).explain(); 

movielens_indexes.txt 

The output should be as follows: 

{ 

“cursor” : “BasicCursor”, 

“nscanned” : 1000209, 

“nscannedObjects” : 1000209, 

“n” : 2077, 

“millis” : 484, 

“indexBounds” : { 

} 

} 

At this stage it’s evident that the query is not running optimally because 
the nscanned and nscannedObjects count reads 1,000,209, which is all the 
documents in the collection. This is a good point to introduce indexes and 
optimize things. 

5.4 CREATING AND USING INDEXES IN MONGODB 

The ensureIndex keyword does most of the index creation magic in 
MongoDB. The last query filtered the ratings collection based on the 
movie_id so creating an index on that property should transform the 
lookup from table scan to B-tree index traversal. First, verify if the theory 
does hold good. 

Create the index by running the following command: 

db.ratings.ensureIndex({ movie_id:1 }); 

movielens_indexes.txt 

This creates an index on movie_id and sorts the keys in the index in an 
ascending order. To create an index with keys sorted in descending order 
use the following: 

db.ratings.ensureIndex({ movie_id:-1 }); 

movielens_indexes.txt 

Then rerun the earlier query as follows: 

db.ratings.find({movie_id: 1}); 

movielens_indexes.txt 

Verify the query plan after that as follows: 



 

 

Indexing And Ordering Data Sets 

 

75 

db.ratings.find({movie_id: 1}).explain(); 

movielens_indexes.txt 

The output should be: 

{ 

“cursor” : “BtreeCursor movie_id_1”, 

“nscanned” : 2077, 

“nscannedObjects” : 2077, 

“n” : 2077, 

“millis” : 2, 

“indexBounds” : { 

 “movie_id” : [ 

  [ 

   1, 

   1 

  ] 

 ] 

} 

} 

At first glance, it's evident that the number of items (and documents) 
looked up has drastically reduced from 1,000,209 (the total number of 
documents in the collection) to 2,077 (the number of documents matching 
the filter criteria). This improvement signifies a substantial performance 
boost. In algorithmic terms, the document search has transitioned from 
linear time complexity to constant time complexity. Consequently, the 
total time to run the query dropped from 484 milliseconds to just 2 
milliseconds, resulting in a reduction of over 99 percent in query 
execution time. 

The query plan's cursor value indicates that the movie_id_1 index was 
used. You can experiment by creating an index with keys sorted in 
descending order and rerunning the query and the query plan. However, 
before executing the query, analyze the list of indexes in the ratings 
collection to determine how to force a particular index. 

Retrieving a list (or array) of all indexes is straightforward. You can use 
the following query 

db.ratings.getIndexes(); 

Assuming there are two indexes on movie_id (one in ascending order and 
one in descending order), along with the default _id index, the list of 
indexes should include these three. The output of getIndexes is as follows: 



 

 

NoSQL Technologies 

76 

[ 

 { 

  “name” : “_id_”, 

  “ns” : “mydb.ratings”, 

  “key” : { 

   “_id” : 1 

   } 

  }, 

 { 

  “_id” : ObjectId(“4d02ef30e63c3e677005636f”), 

  “ns” : “mydb.ratings”, 

  “key” : { 

   “movie_id” : -1 

  }, 

  “name” : “movie_id_-1” 

 }, 

 { 

  “_id” : ObjectId(“4d032faee63c3e6770056370”), 

  “ns” : “mydb.ratings”, 

  “key” : { 

   “movie_id” : 1 

  }, 

  “name” : “movie_id_1” 

 } 

] 

You have already created an index on movie_id using a descending order 
sort using the 

following command: 

db.ratings.ensureIndex({ movie_id:-1 }); 

movielens_indexes.txt 

If required, you could force a query to use a particular index using the hint 
method. To force the descending order index on movie_id to get ratings 
related to “Toy Story (1995)” you can query as follows: 

db.ratings.find({ movie_id:1 }).hint({ movie_id:-1 }); 

movielens_indexes.txt 



 

 

Indexing And Ordering Data Sets 

 

77 

Soon after running this query, you can verify the query plan to see which 
index was used and how it performed. A query plan for the last query 
using the descending order index on movie_id can be accessed as follows: 

db.ratings.find({ movie_id:1 }).hint({ movie_id:-1 }).explain(); 

movielens_indexes.txt 

The output of the query explain plan is as follows: 

{ 

 “cursor” : “BtreeCursor movie_id_-1”, 

 “nscanned” : 2077, 

 “nscannedObjects” : 2077, 

 “n” : 2077, 

 “millis” : 17, 

 “indexBounds” : { 

  “movie_id” : [ 

   [ 

    1, 

    1 

   ] 

  ] 

 } 

} 

The explain plan output confirms that the descending order index on 
movie_id, identified by movie_id_-1, was utilized. It also shows that, 
similar to the ascending order index, the descending order index accessed 
only 2,077 items. 

However, there's an interesting detail in the output. Despite using an index 
and scanning only a limited number of documents, it took 17 milliseconds 
to return the result set. This is significantly less than the 484 milliseconds 
required for a table scan but notably more than the 2 milliseconds taken by 
the ascending order index. This discrepancy might be because the 
movie_id 1 is at the beginning of the ascending order list, and the results 
might have been cached from a previous query. 

Ascending order indexes do not always outperform descending order 
indexes when accessing documents at the beginning of the list, nor do 
descending order indexes consistently outperform ascending order indexes 
when accessing documents at the end of the list. Typically, both index 
types perform similarly for items near the middle of the list. To verify this, 
you can use both indexes to search for ratings for a movie whose movie_id 
is at the other end. 



 

 

NoSQL Technologies 

78 

The movie_id field in the ratings collection corresponds to the _id field in 
the movies collection. The _id field, like the movie_id field, has integer 
values. Therefore, finding the movie_id at the top of the descending order 
sort is equivalent to finding the maximum value for the _id field in the 
movies collection. One way to determine the maximum _id value in the 
movies collection is to sort it in descending order as follows: 

db.movies.find().sort({ _id: -1 }).limit(1); 

This query sorts the _id field in descending order and returns the first 
document, which will have the highest _id value. You can then use this 
movie_id to test the performance of both the ascending and descending 
order indexes. 

db.movies.find().sort({ _id:-1 }); 

movielens_indexes.txt 

The JavaScript console returns only 20 documents at a time so it’s easy to 
find the maximum value, which is 3,952, at a quick glance. If you are 
running this query using a language API or any other mechanism you may 
want to limit the number of items in the result. Because only one item is 
required, you could simply run the query like so: 

db.movies.find().sort({ _id:-1 }).limit(1); 

movielens_indexes.txt 

The movie_id 3952 corresponds to Contender, The (2000). To get ratings 
for the movie The Contender, you could use either the ascending or the 
descending ordered index on movie_id. Because the objective here is to 
analyze how both of these indexes perform for an item that satisfies 
boundary conditions, you can use both of them one after the other. In both 
cases you can also run the query plans. The query and query plan 
commands for the ascending order movie_id index are as follows: 

db.ratings.find({ movie_id:3952 }).hint({ movie_id:1 }); 

db.ratings.find({ movie_id:3952 }).hint({ movie_id:1 }).explain(); 

movielens_indexes.txt 

The output of the query plan is like so: 

{ 

 “cursor” : “BtreeCursor movie_id_1”, 

 “nscanned” : 388, 

 “nscannedObjects” : 388, 

 “n” : 388, 

 “millis” : 2, 

 “indexBounds” : { 



 

 

Indexing And Ordering Data Sets 

 

79 

  “movie_id” : [ 

   [ 

    3952, 

    3952 

   ] 

  ] 

 } 

} 

The query and query plan commands for the descending order movie_id 
index is as follows: 

db.ratings.find({ movie_id:3952 }).hint({ movie_id:-1 }); 

db.ratings.find({ movie_id:3952 }).hint({ movie_id:-1 }).explain(); 

{ 

 “cursor” : “BtreeCursor movie_id_-1”, 

 “nscanned” : 388, 

 “nscannedObjects” : 388, 

 “n” : 388, 

 “millis” : 0, 

 “indexBounds” : { 

  “movie_id” : [ 

   [ 

    3952, 

    3952 

   ] 

  ] 

 } 

} 

movielens_indexes.txt 

From multiple runs of these queries, it seems that values at the extremes 
don't consistently benefit from indexes that start at the corresponding end. 
However, it's important to remember that the query plan output is not 
idempotent. Each execution can yield a different result. For instance, 
values might be cached, so the underlying data structures may not be 
accessed on subsequent runs. Additionally, for smaller data sets like the 
movies collection, the difference is negligible, and extraneous overheads 
such as I/O lag can significantly affect response time. Generally, for large 
data sets, a sort order that aligns with the queried item should be used. 



 

 

NoSQL Technologies 

80 

Occasionally, after making numerous modifications to a collection, it can 
be beneficial to rebuild indexes. To rebuild all indexes for the ratings 
collection, you can run the following command: 

db.ratings.reIndex(); 

This command will rebuild all indexes on the ratings collection, ensuring 
they are optimized and up-to-date. 

: 

db.ratings.reIndex(); 

movielens_indexes.txt 

You can alternatively use the runCommand to reindex: 

db.runCommand({ reIndex:’ratings’ }); 

movielens_indexes.txt 

Rebuilding indexes is not required in most cases unless the size of the 
collection has changed in a considerable way or the index seems to be 
occupying an unusually large amount of disk space Sometimes, you may 
want to drop and create new indexes instead of rebuilding the ones that 
exist. Indexes can be dropped with the dropIndex command:  

db.ratings.dropIndex({ movie_id:-1 }); 

movielens_indexes.txt 

This command drops the descending order movie_id index. You can also 
drop all indexes if need 

be. All indexes (except the one of the _id field) can be dropped as follows: 

db.ratings.dropIndexes(); 

movielens_indexes.txt 

5.4.1 Compound and Embedded Keys: 

You have created indexes on only a single field or property. It is also 
possible to create compound indexes, for example, to create an index on 
movie_id and ratings fields together. The command to create such an 
index is: 

db.ratings.ensureIndex({ movie_id:1, rating:-1 }); 

movielens_indexes.txt 

This creates a compound index on movie_id (ascending order) and rating 
(descending order). You can create three more indexes out of the four 
possible compound indexes involving movie_id and rating. The four 
possibilities arise due to the potential combinations of ascending and 
descending order sorts for the two keys. The order of the sort can impact 



 

 

Indexing And Ordering Data Sets 

 

81 

queries involving sorting and range queries, so it's important to consider 
the order when defining compound indexes for your collection. 

A compound index involving movie_id and rating can be used to query 
documents that match both these keys, as well as for queries that match on 
movie_id alone. When using this index to filter documents based on 
movie_id alone, the behavior is similar to using a single-field index on 
movie_id. Compound keys are not limited to two keys; you can include as 
many keys as needed. For example, to create a compound index for 
movie_id, rating, and user_id, you would use the following command: 

db.ratings.ensureIndex({ movie_id: 1, rating: -1, user_id: 1 }); 

This index can be used to query for the following combinations: 

    movie_id, rating, and user_id 

    movie_id and rating 

    movie_id 

Compound indexes can also include nested (or embedded) fields. Before 
exploring how compound indexes involve nested fields, let's cover how to 
create a single index involving a nested field. To illustrate, let's use a 
collection of people (named people2). An element of the people2 
collection is as follows: 

{ 

 “_id” : ObjectId(“4d0688c6851e434340b173b7”), 

 “name” : “joe”, 

 “age” : 27, 

 “address” : { 

  “city” : “palo alto”, 

  “state” : “ca”, 

  “zip” : “94303”, 

  “country” : “us” 

 } 

} 

You can create an index on the zip field of the address field as follows: 

db.people2.ensureIndex({ “address.zip”:1 }); 

movielens_indexes.txt 

Next, you can create a compound index for the name and address.zip 
fields: 

db.people2.ensureIndex({ name:1, “address.zip”:1 }); 



 

 

NoSQL Technologies 

82 

movielens_indexes.txt 

You can also choose the entire sub-document as the key of an index so 
you can create a single index 

for the address field: 

db.people2.ensureIndex({ address:1 }); 

movielens_indexes.txt 

This indexes the entire document and not just the zip field of the 
document. Such an index can be used if an entire document is passed as a 
query document to get a subset of the collection. A MongoDB collection 
field can also contain an array instead of a document. You can index such 
fields as well. Now consider another example of an orders collection to 
illustrate how array properties can be indexed. An element of the orders 
collection is as follows: 

{ 

“_id” : ObjectId(“4cccff35d3c7ab3d1941b103”), 

“order_date” : “Sat Oct 30 2010 22:30:12 GMT-0700 (PDT)”, 

 “line_items” : [ 

  { 

   “item” : { 

    “name” : “latte”, 

    “unit_price” : 4 

   }, 

   “quantity” : 1 

  }, 

  { 

   “item” : { 

    “name” : “cappuccino”, 

    “unit_price” : 4.25 

   }, 

   “quantity” : 1 

  }, 

  { 

   “item” : { 

    “name” : “regular”, 

    “unit_price” : 2 

   }, 



 

 

Indexing And Ordering Data Sets 

 

83 

   “quantity” : 2 

  } 

 ] 

} 

You could index with line_items: 

db.orders.ensureIndex({ line_items:1 }); 

movielens_indexes.txt 

When an indexed field contains an array, each element of the array is 
added to the index. 

In addition, you could index by the item property of the line_items array: 

db.orders.ensureIndex({ “line_items.item”:1 }); 

movielens_indexes.txt 

You could go one level further and index it by the name property of the 
item document contained in 

the line_items array as follows: 

db.orders.ensureIndex({ “line_items.item.name”:1 }); 

movielens_indexes.txt 

So, you could query by this nested name field as follows: 

db.orders.find({ “line_items.item.name”:”latte” }); 

movielens_indexes.txt 

Run the query plan to confi rm that the cursor value used for the query is 
BtreeCursor line_items.item.name_1, which as you know indicates the use 
of the nested index. 

5.4.2 Creating Unique and Sparse Indexes: 

MongoDB offers various options to index documents for efficient query 
performance. Indexes can also serve the purpose of imposing constraints. 
To create a sparse index, you can explicitly specify it as follows: 

db.ratings.ensureIndex({ movie_id: 1 }, { sparse: true }); 

A sparse index means that documents with a missing indexed field are 
completely ignored and left out of the index. While this can be desirable, 
it's important to note that a sparse index may not reference all documents 
in the collection. 

MongoDB also supports creating unique indexes. For example, to create a 
unique index on the title field of the movies collection, you can use: 



 

 

NoSQL Technologies 

84 

db.movies.ensureIndex({ title: 1 }, { unique: true }); 

If two items in the movies collection had the same title, a unique index 
would not be created unless you explicitly specified that all duplicates 
after the first entry be dropped. This can be done as follows: 

db.movies.ensureIndex({ title: 1 }, { unique: true, dropDups: true }); 

If a document in the collection contains a missing value for the indexed 
field, a null value will be inserted in place of the missing value. Unlike a 
sparse index, the document will not be skipped. Additionally, if two 
documents are missing the indexed field, only the first one is saved; the 
rest would be ignored in the collection. 

5.4.3 Keyword-based Search and Multikeys: 

Keyword-based search and multikeys are other important aspects of 
MongoDB indexes. To enhance the query performance of a regular 
expression-based search in a text field, you can create an index like so: 

db.movies.ensureIndex({ title: "text" }); 

This index enables a text search on the title field, improving the efficiency 
of queries that use regular expressions to search for specific patterns in the 
text  

db.movies.ensureIndex({ title:1 }); 

In some cases, though, creating a traditional index may not be enough, 
especially when you don’t want to rely on regular expressions and need to 
do a full text search. You have already seen that a field that contains an 
array of values can be indexed. In such instances, MongoDB creates 
multikeys: one for each unique value in the array. For example, you could 
save a set of blogposts in a collection, named blogposts, where each 
element could be as follows: 

{ 

“_id” : ObjectId(“4d06bf4c851e434340b173c3”), 

“title” : “NoSQL Sessions at Silicon Valley Cloud Computing Meetup in 
January 

2011”, 

“creation_date” : “2010-12-06”, 

“tags” : [ 

 “amazon dynamo”, 

 “big data”, 

 “cassandra”, 



 

 

Indexing And Ordering Data Sets 

 

85 

 “cloud”, 

 “couchdb”, 

 “google bigtable”, 

 “hbase”, 

 “memcached”, 

 “mongodb”, 

 “nosql”, 

 “redis”, 

 “web scale” 

] 

} 

Now, you could easily create a multikey index on the tags field as follows: 

db.blogposts.ensureIndex({ tags:1 }); 

So far it’s like any other index but next you could search by any one of the 
tag values like so: 

db.blogposts.find({ tags:”nosql” }); 

This feature can be used to build out a complete keyword-based search. As 
with tags, you would need to save the keywords in an array that could be 
saved as a value of a field. The extraction of the keywords itself is not 
done automatically by MongoDB. You need to build that part of the 
system yourself. Maintaining a large array and querying through numerous 
documents that each hold a large array could impose a performance drag 
on the database. To identify and preemptively correct some of the slow 
queries you can leverage the MongoDB database profiler. In fact, you can 
use the profiler to log all the operations. 

The profiler lets you define three levels: 

0 — Profiler is off 

1 — Slow operations (greater than 100 ms) are logged 

2 — All operations are logged 

To log all operations you can set the profiler level to 2 like so: 

db.setProfilingLevel(2); 

The profiler logs themselves are available as a MongoDB collection, 
which you can view using a 



 

 

NoSQL Technologies 

86 

query as follows: 

db.system.profile.find(); 

If you have been following along until now, you have theoretically learned 
almost everything there is to learn about indexes and sorting in MongoDB. 
Next, you use the available tools to tune the query to optimal performance 
as you access data from your collections. 

5.5 INDEXING AND ORDERING IN COUCHDB 

In CouchDB, indexing is automatic and triggered for all changed data sets 
when they are first read after the change. This indexing mechanism is 
different from MongoDB's, where indexes need to be explicitly created. 
CouchDB follows the MapReduce style data manipulation. The map 
function emits key/value pairs based on the collection data, which leads to 
view results. When these views are accessed for the first time, a B-tree 
index is built from this data. Subsequent queries return data from the B-
tree, and the underlying data remains untouched. This means that queries 
after the first one benefit from the B-tree index. 

5.5.1 The B-tree Index in CouchDB: 

A B-tree index scales well for large amounts of data. Despite significant 
data growth, the height of a B-tree remains in single digits, enabling fast 
data retrieval. In CouchDB, the B-tree implementation has specialized 
features such as MultiVersion Concurrency Control (MVCC) and an 
append-only design. MVCC allows multiple reads and writes to occur in 
parallel without the need for exclusive locking. This is similar to 
distributed software version control systems like GitHub, where all writes 
are sequenced and reads are not impacted by writes. CouchDB uses a _rev 
property to hold the most current revision value. Like optimistic locking, 
writes and reads are coordinated based on the _rev value. Therefore, each 
version is the latest one at the time a client starts reading the data. As 
documents are modified or deleted, the index in the view results is 
updated. 

5.6 INDEXING IN APACHE CASSANDRA 

Apache Cassandra is a hybrid between a column-oriented database and a 
pure key/value data store, incorporating ideas from Google Bigtable and 
Amazon Dynamo. Like column-oriented databases, Cassandra supports 
row-key-based order and index by default. In addition, Cassandra also 
supports secondary indexes. Secondary indexes support in Cassandra is 
explained using a simple example. The same example is revisited to 
explain support for secondary indexes. 

To follow along, start the Cassandra server using the cassandra program in 
the bin directory of the Cassandra distribution. Then connect to Cassandra 
using the CLI as follows:  



 

 

Indexing And Ordering Data Sets 

 

87 

PS C:\applications\apache-cassandra-0.7.4> .\bin\cassandra-cli -host 
localhost 

Starting Cassandra Client 

Connected to: “Test Cluster” on localhost/9160 

Welcome to cassandra CLI. 

Type ‘help;’ or ‘?’ for help. Type ‘quit;’ or ‘exit;’ to quit. 

When your setup is complete, make CarDataStore the current keyspace as 
follows: 

[default@unknown] use CarDataStore; 

Authenticated to keyspace: CarDataStore 

Use the following command to verify that the data you added earlier exists 
in your local Cassandra data store: 

[default@CarDataStore] get Cars[‘Prius’]; 

=> (column=make, value=746f796f7461, timestamp=1301824068109000) 

=> (column=model, value=70726975732033, 
timestamp=1301824129807000) 

Returned 2 results. 

The Cars column-family has two columns: make and model. To make 
querying by values in the make column more efficient, create a secondary 
index on the values in that column. Since the column already exists, 
modify the definition to include an index. You can update the column-
family and column definition as follows: 

[default@CarDataStore] update column family Cars with 
comparator=UTF8Type 

... and column_metadata=[{column_name: make, validation_class: 
UTF8Type, 

index_type: KEYS}, 

... {column_name: model, validation_class: UTF8Type}]; 

9f03d6cb-7923-11e0-aa26-e700f669bcfc 

Waiting for schema agreement... 

... schemas agree across the cluster 

cassandra_secondary_index.txt 

The update command created an index on the column make. The type of 
index created is of type KEYS. Cassandra defi nes a KEYS type index, 



 

 

NoSQL Technologies 

88 

which resembles a simple hash of key/value pairs. Now, query for all 
values that have a make value of toyota. Use the familiar SQL-like syntax 
as follows: 

[default@CarDataStore] get Cars where make = ‘toyota’; 

------------------- 

RowKey: Prius 

=> (column=make, value=toyota, timestamp=1301824068109000) 

=> (column=model, value=prius 3, timestamp=1301824129807000) 

RowKey: Corolla 

=> (column=make, value=toyota, timestamp=1301824154174000) 

=> (column=model, value=le, timestamp=1301824173253000) 

2 Rows Returned. 

cassandra_secondary_index.txt 

Try another query, but this time fi lter the Cars data by model value of 
prius 3 as follows: 

[default@CarDataStore] get Cars where model = ‘prius 3’; 

No indexed columns present in index clause with operator EQ 

cassandra_secondary_index.txt 

The query that filters by make works smoothly but the one that fi lters by 
model fails. This is because there is an index on make but not on model. 
Try another query where you combine both make and model as follows: 

 [default@CarDataStore] get Cars where model = ‘prius 3’ and make = 
‘toyota’; 

------------------- 

RowKey: Prius 

=> (column=make, value=toyota, timestamp=1301824068109000) 

=> (column=model, value=prius 3, timestamp=1301824129807000) 

1 Row Returned. 

cassandra_secondary_index.txt 

The index works again because at least one of the filter criteria has an 
indexed set of values. The example at hand doesn’t have any numerical 
values in its columns so showing a greater-than or less- than filter is not 
possible. However, if you did want to leverage a filter for such an 



 

 

Indexing And Ordering Data Sets 

 

89 

inequality comparator- based query then you are going to be out of luck. 
Currently, the KEYS index does not have the capability to perform range 
queries. Range queries via indexes may be supported in the future if 
Cassandra includes a B-tree, or a similar index type. The rudimentary 
KEYS index isn’t sufficient for range queries. 

5.7 SUMMARY 

In this chapter, you explored the details of indexing documents and their 
fields in MongoDB. You also learned about the automatic view indexing 
in CouchDB. A prominent theme that emerged was that both databases 
support indexes, and these indexes aren't drastically different from those in 
relational databases. 

You also gained insights into special features, such as how arrays in 
MongoDB are indexed as multi-keys, and how CouchDB automatically 
indexes all documents that have changed since the last read. 

In addition to indexes in document databases, you learned about indexing 
capabilities in Apache Cassandra, a popular column-family database. 

5.8 REVIEW QUESTIONS 

Q1.  How does MongoDB index arrays, and what benefit does this 
provide? 

Q2.  Explain the automatic view indexing mechanism in CouchDB and 
its impact on query   performance. 

Q3.  What distinguishes Apache Cassandra's indexing capabilities from 
other databases, and how does it handle secondary indexes? 

 

***** 



  90 

6   
MANAGING TRANSACTIONS AND DATA 

INTEGRITY 

Unit Structure 

6.0 Objective 

6.1  Introduction 

6.2  Managing Transactions and Data Integrity  

6.3  RDBMS and ACID  

6.4  Distributed ACID Systems 

6.5  Upholding CAP 

6.6  Consistency Implementations Using NoSQL in The Cloud 

6.7  Google App Engine Data Store  

6.8  Amazon SimpleDB 

6.9  Summary 

6.10  Reference for further reading 

6.11  Unit End Exercises 

6.0 OBJECTIVE 

 To understand the concept of RDBMS  

 To study the Distributed ACID Systems 

 Exploring ready-to-use NoSQL databases in the cloud 

 Leveraging Google AppEngine and its scalable data store 

 Using Amazon SimpleDB 

6.1 INTRODUCTION 

 The NoSQL databases in compact not only SQL are not arranged in 
tabular format and store data differently relative to  relational tables.  

 NoSQL databases of various types based on their data model. The 
main types are document, key & value, wide & column, and graph.  

 They give flexible schemas and scale easily with substantial amounts 
of data and high user loads.  

 NoSQL databases are broadly used in real-time web applications and 
big data, because their main advantages are high scalability and high 
availability. 



 

 

Managing Transactions and Data 
Integrity 

 

91 

 NoSQL databases are also the selected choice of developers, as they 
naturally lend themselves to an agile development paradigm by fast 
adapting to changing requirements.  

 NoSQL databases enable the data to be stored in ways that are more 
intuitive and easier to understand, or closer to the use of the data is 
used by applications with little transformations required when storing 
or retrieving using NoSQL-style APIs.  

 Moreover, NoSQL databases can take full benefit of the cloud to 
deliver zero downtime 

6.2 MANAGING TRANSACTIONS AND DATA 
INTEGRITY  

 Transaction management focuses on guaranteeing that transactions 
are correctly stored in the database.  

 The transaction manager is the member of a DBMS that processes 
transactions. A transaction is a sequence of behaviors to be taken on 
the database such that they must be entirely completed or entirely 
aborted.  

 A transaction is a logical part of work. All its elements must be 
processed else the database will be inconsistent.  

 For example, with a sale of a product, the transaction consists of at 
least two parts: an update to the inventory on hand, and an update to 
the customer data for the items sold in order to bill the customer after.  

 Updating only the inventory or only the customer information would 
create a database absence of integrity and an inconsistent database. 

Transaction managers are designed to achieve the ACID (atomicity, 
consistency, isolation, and durability) concept. These attributes are: 

1. Atomicity: If a transaction has two or more single pieces of 
information, either all of the pieces are committed or none are. 

2. Consistency: Either a transaction creates a reasonable new database 
state or, if any failure occurs, the transaction manager returns the 
database to its earlier state. 

3. Isolation: A transaction in process and not now committed must 
remain isolated from any other transaction. 

4. Durability: Committed data are saved by the DBMS so that, at the 
time of a failure and system recovery, these data are available in their 
correct state. 

5. Transaction atomicity needs all transactions to be processed on an all 
or nothing basis and that any group of transactions is serializable.  



 

 

NoSQL Technologies 

92 

6. When a transaction is executed, either all its changes to the database 
are completed, else none of the changes are committed.  

7. The entire unit of work must be processed. If a transaction is 
terminated before it is completed, the transaction manager must undo 
the executed actions to restore the database to its previous state before 
the transaction commences. 

8. If a transaction is successfully completed, it does not require to be 
undone. For efficiency, transactions should be no bigger than 
necessary to ensure the integrity of the database.  

 For example, in accounting management, a debit and credit would be 
a comparable transaction, because this is the minimum amount of 
work needed to hold the books in balance. 

 Serializability connects to the execution of a set of transactions. An 
interleaved execution schedule is serializable if its result is equivalent 
to a non interleaved schedule. 

 Interleaved operations are frequently used to increase the efficiency of 
computing resources, so it is not unusual for the components of 
numerous transactions to be interleaved. 

 Interleaved transactions cause problems when they involve each other 
and, as a result, knows the correctness of the database. 

 The ACID concept is essential to concurrent update control and 
recovery after a transaction failure. 

6.3 RDBMS AND ACID 

 RDBMS stands for Relational Database Management System. 
RDBMS is the justification for SQL, and for all latest database 
systems like MS SQL Server, IBM DB2, Oracle, MySQL, and 
Microsoft Access. 

 A Relational database management system (RDBMS) is a database 
management system (DBMS) that depends on the relational model as 
introduced by E. F. Codd in 1970. 

 The data in an RDBMS is stored in database is called the tables. This 
table is mainly a collection of associated data entries and its collection 
of numerous columns and rows. 

 Every table is divided up into smaller entities called fields. A field is a 
column in a table that is developed to maintain specific information 
about every record in the table. 

 Example CUSTOMERS table consists of different fields like id, 
name, age, Salary, City and Country. 



 

 

Managing Transactions and Data 
Integrity 

 

93 

 A record means a row of data is each individual entry that found in a 
table. For example, there are seven records in the above 
CUSTOMERS table. 

 A column is a vertical unit or entity in a table that contains all 
information related with a specific field in a table. 

 A NULL value in a table is a value in a field that appears to be blank 
or does not exist, which means a field with a NULL value is the same 
as a field with no value. 

 Constraints are the rules mandatory on data columns on a table. These 
are used to restrict the type of data that can go into a table. This makes 
sure the accuracy and reliability of the data in the database. 

S.No. Constraints 

1. NOT NULL Constraint 
Ensures that a column cannot have a NULL value. 

2. DEFAULT Constraint 
Provides a default value for a column when none is 
specified. 

3. UNIQUE Key 
Ensures that all the values in a column are different. 

4. PRIMARY Key 
Uniquely identifies each row/record in a database table. 

5. FOREIGN Key 
Uniquely identifies a row/record in any another database 
table. 

6. CHECK Constraint 
Ensures that all values in a column satisfy certain 
conditions. 

7. INDEX Constraint 
Used to create and retrieve data from the database very 
quickly. 

 
Data Integrity: 

The following categories of data integrity exist with each RDBMS − 

Entity Integrity This ensures that there are no duplicate rows in a 
table. 

Domain Integrity Enforces valid entries for a given column by 
restricting the type, the format, or the range of 
values. 



 

 

NoSQL Technologies 

94 

Referential 
integrity 

Rows cannot be deleted, which are used by other 
records 

User-Defined 
Integrity 

Enforces some specific business rules that do not 
fall into entity, domain or referential integrity. 

 
Database Normalization: 

 Database normalization is the process of competently organizing data 
in a database. There are two explanations for this normalization 
process. 

 Removing redundant data, for example, storing the same data on 
multiple tables. 

 It means that data dependencies make sense. 

 Both these explanations are worthy objective as they reduce the 
amount of space or size a database consumes and ensures that data is 
logically stored.  

 Normalization collection of a series of guidelines that help direct you 
in creating a good database structure. 

 Normalization guidelines are separated into normal forms, think of a 
form as the format or the way a database structure is planned.  

 The main aim of normal forms is to organize or store the database 
structure, so that it complies with the rules of first normal form, then 
second normal form and in the end the third normal form. 

 It is our choice to take it ahead and go to the Fourth Normal Form, 
Fifth Normal Form and so on, but in general, the Third Normal Form 
is more than sufficient for a normal database Application. 

 

Fig. 1 Normalization 

 



 

 

Managing Transactions and Data 
Integrity 

 

95 

ACID Properties: 

A transaction is a very small part of a program and it may aim to contain 
several low level tasks. A transaction in a database system must preserve 
Atomicity, Consistency, Isolation, and Durability jointly known as ACID 
properties in order to ensure accuracy, completeness, and data integrity. 

1. Atomicity: 

 This property defines that a transaction must be treated as an atomic 
unit, that is, either all of its operations are executed or none.  

 There must be no state in a database where a transaction remains 
partially completed.  

 States should be defined either advance the execution of the 
transaction or after the execution or abortion or failure of the 
transaction. 

2. Consistency: 

 The database must remain in a consistent state after a particular 
transaction. 

 No transaction should have any negative effect on the data residing in 
the database. 

 If the database was in a compatible state before the execution of any 
transaction, it must also remain consistent after the execution of the 
transaction. 

3. Durability: 

 The database should be durable enough to hold all its latest updates 
even if the system is unsuccessful or restarts.  

 If a transaction updates a chunk of data in a database and commits, 
then the database will hold the altered data.  

 If a transaction commits / succeeds but the system fails / aborts before 
the data could be written on to the disk, then that data will be updated 
once the system springs back into action. 

4. Isolation: 

 In a database system where multiple transactions are being executed 
simultaneously and in parallel, the property of isolation defines that 
all the transactions will be carried out and executed as if it is the only 
transaction in the system.  

 No transaction will influence the existence of any other transaction. 

 



 

 

NoSQL Technologies 

96 

 

Fig. 2 ACID 

6.4 DISTRIBUTED ACID SYSTEMS 

 Distributed ACID transactions are ACID compliant transactions that 
alter multiple rows in more than one fragment usually distributed 
across multiple nodes.  

 A transaction is a unit of work performed within a part of a database, 
often consisting of multiple operations. 

 Like all forms of ACID, a distributed ACID transaction has four key 
properties: 

o Atomicity: All operations in a transaction are consider as a one 
atomic unit . All are performed or none of them are performed. 

o Consistency: The database is always in a consistent state or an 
internal state. 



 

 

Managing Transactions and Data 
Integrity 

 

97 

o Isolation: find how and when changes made by one transaction 
become visible to others. 

o Durability: Enables all transaction results to permanently remain in 
the system. Any modifications or changes must continue even in case 
of power loss or system failures. 

 There are various types of distributed databases. The most  commonly 
used distributed databases consist of common NoSQL databases like 
Apache Cassandra, and distributed SQL databases, like YugabyteDB. 

 Few distributed databases support ACID transactions in a limited 
trend, while others fully assist distributed ACID transactions. ACID 
transactions can be classified into three types: 

1. Single row ACID 

2. Single shard ACID 

3. Distributed ACID transactions 

 Only distributed ACID transactions are fully distributed and are the 
default transaction for distributed SQL databases 

6.5 UPHOLDING CAP 

 CAP Theorem is a idea that a distributed database system can only 
have 2 of the 3: Consistency, Availability and Partition Tolerance. 

 

Fig. 3 CAP 

 CAP Theorem is very essential in the Big Data world, mainly when 
we need to make trade offs between the three, based on our special 
use case.  

 



 

 

NoSQL Technologies 

98 

Partition Tolerance: 

 

Fig. 4 Partition Tolerance 

 This condition shows that the system continues to run, regardless of 
the number of messages being delayed by the network between two 
nodes.  

 A system that is partition tolerant can encourage any amount of 
network failure that doesn’t result in a failure of the entire network.  

 Data records are properly replicated across combinations of nodes and 
networks to keep the system up through fitful outages.  

 When trading with modern distributed systems, Partition Tolerance is 
not an option. It’s a necessity. For this we have to trade between 
Consistency and Availability. 

High Consistency: 

 

Fig. 5 High Consistency 



 

 

Managing Transactions and Data 
Integrity 

 

99 

 This condition defines that all nodes show the same data at the same 
time.  

 Simply put, performing a read operation will return the value of the 
most recent write operation affecting all nodes to return the same data.  

 A system has stability if a transaction starts with the system in a 
consistent state, and ends with the system in a consistent state.  

 In this model, a system can shift into an inconsistent state during a 
transaction, but the entire transaction gets rolled back if there is a 
problem or error during any stage in the process.  

 In Fig.5 , we have 2 different records (“Bulbasaur” and “Pikachu”) at 
different timestamps.  

 The output on the third partition is “Pikachu”, the latest input. but, the 
nodes will need time to update and will not be Available on the 
network as frequently. 

High Availability: 

 

Fig. 6 High Availability 

 This condition defines that every request gets a response on success or 
failure.  

 Achieving availability in a distributed system requires that the system 
remains working 100% of the time.  

 Every client gots a response, regardless of the state of any individual 
node in the system. 

 This metric is trivial to calculate, either can submit read/write 
commands, or cannot.  



 

 

NoSQL Technologies 

100 

 Hence, the databases are time free as the nodes need to be present 
online at all times.  

 This means that, dissimilar to the previous example, we do not know 
if “Pikachu” or “Bulbasaur” was added first.  

 The output could be one. Hence why, high availability isn’t viable 
when analyzing streaming data at high frequency. 

6.6 CONSISTENCY IMPLEMENTATIONS USING 
NOSQL IN THE CLOUD 

 The Most current age popular applications, like Google and Amazon, 
have achieved high availability and the ability to concurrently service 
millions of users by scaling out horizontally among multiple 
machines, lay out across multiple data centers.  

 Success stories of large-scale web applications like those from Google 
and Amazon have manifested that in horizontally scaled 
environments, NoSQL solutions tend to shine over their relational 
counterparts.  

 Horizontally scaled environments available on-demand / needs and 
provisioned as required have been christened as the “cloud.”  

 If scalability and availability is a priority, NoSQL in the cloud is 
maybe the ideal setup. 

 Many cloud service enablers exist and multiple NoSQL products are 
available. In many instances, like Amazon EC2 (Elastic Compute 
Cloud), you have the choice to install any NoSQL product you want 
to use.  

 Google revolutionized the cloud computing landscape by developing 
a services-ready, easy-to-use infrastructure. However, Google wasn’t 
the first to launch cloud contributions. Amazon EC2 was already an 
established player in the market when Google first made its service 
public.  

 Google’s model was so suitable, though, that its cloud platform, the 
Google App Engine (GAE), has seen universal and rapid adoption in a 
short time frame. The app engine isn’t without its share of limitations.  

 Its sandboxed environment and lack of support for long-running 
processes are surrounded by a few of its aspects that are much 
execrable. 

6.7 GOOGLE APP ENGINE DATA STORE 

 The Google App Engine (GAE) provides a sandboxed deployment 
environment for applications, which are written using either the 



 

 

Managing Transactions and Data 
Integrity 

 

101 

Python programming language or a language that can run on a Java 
Virtual Machine (JVM).  

 Google provides developers with a set of rich APIs and an SDK to 
build applications for the app engine. 

 To explain the data store features and the available APIs for data 
modeling, I first cover all that relates to the Python SDK for the app 
engine. 

GAE Python SDK: Installation, Setup, and Getting Started: 

 To get started you need to install Python and the GAE Python SDK. 
You can download Python from python.org and the GAE Python 
SDK is available online at 
http://code.google.com/appengine/downloads.html#Google_App_Eng
ine_SDK_for_Python. Detailed installation instructions are beyond 
the scope of this chapter but installation of both Python and GAE 
Python SDK on all supported environments is fairly easy and 
straightforward.  

 If you still run into trouble while setting up your environment, just 
Google for a solution to your problem and like most developers you 
won’t be disappointed. 

 Although this chapter exclusively focuses on the GAE data store, you 
will benefit from understanding the essentials of application 
development on the app engine.  

 For the Python SDK, spend a little while reading through the tutorial 
titled “Getting Started: Python,” which is available online at 
http://code.google.com/appengine/docs/python/gettingstarted/. 
Applications built on GAE are web applications. The getting started 
tutorial explains the following: 

Task Manager: A Sample Application: 

 Consider a simple task management application in which a user can 
define a task, track its status, and check it as done once completed.  

 To define a task, the user needs to give it a name and a description.  

 Tags can be added to categorize it and start, and expected due dates 
could be specified. Once completed, the end date can be recorded.  

 Tasks belong to a user and in the first version of the application they 
are not shared with anyone other than the owner. 

 To model a task, it would be helpful to list the properties, specify the 
data type for each property, state whether it’s required or optional, 
and mention whether it is single or multiple valued.  

 



 

 

NoSQL Technologies 

102 

Table 1 lists a task’s properties and its characteristics. 

 

Table. 1 Properties of a Task 

Here, the Task class is modified to specify constraints: 

import datetime 

from google.appengine.ext import db 

class Task(db.Model): 

name = db.StringProperty(required=True) 

description = db.StringProperty() 

start_date = db.DateProperty(required=True) 

due_date = db.DateProperty() 

end_date = db.DateProperty() 

tags = db.StringListProperty() 

taskmanager GAE project 

Available for 

download on 

Wrox.com 

Available for 

download on 

Wrox.com 

 

 ORM, or Object-Relational Mapping, provides a bridge between the 
object- oriented programming and the relational database worlds. A 
number of validation options are available. For example, 
required=True makes a property value mandatory. The argument 
choices=set([“choice1”,“choice2”, “choice3”, “choice4”]) restricts the 
value to members of the defined set. Custom validation logic defined 
in a function can be passed as a value to the validator argument of a 
particular property class. 

 GAE uses Google’s Bigtable as the data store. Bigtable is a sorted, 
ordered, distributed sparse column-family-oriented map, which 



 

 

Managing Transactions and Data 
Integrity 

 

103 

imposes little restrictions on the number or types of columns in a 
column-family or the data type of the values stored in these columns. 
Also, Bigtable allows sparse data sets to be saved effectively, thereby 
allowing two rows in a table to have completely different sets of 
columns. It also permits different value types for the same columns. 
In other words, in a single data store, two entities of the same kind 
(for example, Task) can have different sets of properties or two 
entities of the same kind can have a property (identified by the same 
name) that can contain different types of data. The data modeling API 
provides a level of structure on top of the more accommodating 
Bigtable. The data modeling API provides an application-level 
restriction on the property data types, its values sets, and the 
relationship among them. In the simple example that depicts a “Task” 
entity, a Python class named Task defines the data model 

 The GAE data store can be thought of as an object store where each 
entity is an object. That means data store entities or members could be 
instances of a Python class, like Task. The class name, Task, 
translates to an entity kind.  

6.8 AMAZON SIMPLEDB 

 Amazon SimpleDB is a ready-to-run database alternative to the app 
engine data store. It’s elastic and is a fully managed database in the 
cloud.  

 The two data stores app engine data store and SimpleDB are quite 
different in their API as well as the internal fabric but both provide 
you a highly scalable and grow-as-you-use model to a data store. 

Enabling SimpleDB service for AWS account: 

Once you have successfully set up an AWS account, you must follow 
these steps to enable the SimpleDB service for your account: 

1. Log in to your AWS account. 

2. Navigate to the SimpleDB home page—
http://aws.amazon.com/simpledb/. 

3. Click on the Sign Up For Amazon SimpleDB button on the right side 
of the page. 

4. Provide the requested credit card information and complete the signup 
process. 

You have now successfully set up your AWS account and enabled it 
for SimpleDB. 

 All communication with SimpleDB or any of the Amazon web 
services must be through either the SOAP interface or the 
Query/ReST interface. The request messages sent through either of 
these interfaces are digitally signed by the sending user in order to 



 

 

NoSQL Technologies 

104 

ensure that the messages have not been tampered within transit, and 
that they really originate from the sending user. Requests that use the 
Query/ReST interface will use the access keys for signing the request, 
whereas requests to the SOAP interface will use the x.509 certificates. 

Your new AWS account is associated with the following items: 

 A unique 12-digit AWS account number for identifying your account. 

 AWS Access Credentials are used for the purpose of authenticating 
requests made by you through the ReST Request API to any of the 
web services provided by AWS. An initial set of keys is automatically 
generated for you by default. You can regenerate the Secret Access 
Key at any time if you like. Keep in mind that when you generate a 
new access key, all requests made using the old key will be rejected. 

o An Access Key ID identifies you as the person making requests to a 
web service. 

o A Secret Access Key is used to calculate the digital signature when 
you make requests to the web service. 

o Be careful with your Secret Access Key, as it provides full access to 
the account, including the ability to delete all of your data. 

 All requests made to any of the web services provided by AWS using 
the SOAP protocol use the X.509 security certificate for 
authentication. There are no default certificates generated 
automatically for you by AWS. You must generate the certificate by 
clicking on the Create a new Certificate link, then download them to 
your computer and make them available to the machine that will be 
making requests to AWS.  

o Public and private key for the x.509 certificate. You can either upload 
your own x.509 certificate if you already have one, or you can just 
generate a new certificate and then download it to your computer. 

Query API and authentication: 

 There are two interfaces to SimpleDB. The SOAP interface uses the 
SOAP protocol for the messages, while the ReST Requests uses 
HTTP requests with request parameters to describe the various 
SimpleDB methods and operations.  

 In this book, we will be focusing on using the ReST Requests for 
talking to SimpleDB, as it is a much simpler protocol and utilizes 
straightforward HTTP-based requests and responses for 
communication, and the requests are sent to SimpleDB using either a 
HTTP GET or POST method. 

 The ReST Requests need to be authenticated in order to establish that 
they are originating from a valid SimpleDB user, and also for 
accounting and billing purposes.  



 

 

Managing Transactions and Data 
Integrity 

 

105 

 This authentication is performed using your access key identifiers.  

 Every request to SimpleDB must contain a request signature 
calculated by constructing a string based on the Query API and then 
calculating an RFC 2104-compliant HMAC-SHA1 hash, using the 
Secret Access Key. 

The basic steps in the authentication of a request by SimpleDB are: 

 You construct a request to SimpleDB. 

 You use your Secret Access Key to calculate the request signature, a 
Keyed-Hashing for Message Authentication code (HMAC) with an 
SHA1 hash function. 

 You send the request data, the request signature, timestamp, and your 
Access Key ID to AWS. 

 AWS uses the Access Key ID in the request to look up the associated 
Secret Access Key. 

 AWS generates a request signature from the request data using the 
retrieved Secret Access Key and the same algorithm you used to 
calculate the signature in the request. 

 If the signature generated by AWS matches the one you sent in the 
request, the request is considered to be authentic. If the signatures are 
different, the request is discarded, and AWS returns an error response. 
If the timestamp is older than 15 minutes, the request is rejected. 

6.9 SUMMARY 

 Transaction management focuses on ensuring that transactions are 
correctly recorded in the database. 

 Transaction atomicity requires that all transactions are processed on 
an all-or-nothing basis and that any collection of transactions is 
serializable. 

 RDBMS stands for Relational Database Management System. 
RDBMS is the basis for SQL, and for all modern database systems 
like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft 
Access. 

 Database normalization is the process of efficiently organizing data in 
a database. There are two reasons for this normalization process.A 
transaction is a unit of work performed within a database, often 
composed of multiple operations. 

 Most current-generation popular applications, like Google and 
Amazon, have achieved high availability and the ability to 
concurrently service millions of users by scaling out horizontally 
among multiple machines, spread across multiple data centers. 



 

 

NoSQL Technologies 

106 

6.10 REFERENCE FOR FURTHER READING 

 QL & NoSQL Databases, Andreas Meier · Michael Kaufmann, 
Springer Vieweg, 2019 

 Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons, 
Inc, 2011 

6.11 UNIT END EXERCISES 

1. Write a short note on RDBMS and ACID. 

2. What do you understand about NoSQL? 

3. Explain the Distributed ACID Systems? 

4. Write a short note on Upholding CAP? 

 

 

***** 


