MSCCS 14

M. SC. COMPUTER SCIENCE

SEMESTER -1
REVISED SYLLABUS AS PER NEP 2020

NoSQL TECHNOLOGIES

© UNIVERSITY OF MUMBAI

Prof. Ravindra Kulkarni

Vice Chancellor
University of Mumbai, Mumbai.
Prin. Dr. Ajay Bhamare Prof. Shivaji Sargar
Pro Vice-Chancellor, Director
University of Mumbai. CDOE, University of Mumbai.
Programe Co-ordinator : Mandar L. Bhanushe

Head, Faculty of Science and Technology,
CODE, University of Mumbai—400098.

Course Coordinator : Sumedh Sejole
Asst. Professor,
CDOE, University of Mumbai

Editor ¢ Dr. Shraddha Sable
Asst. Professor
S. K. College of sci & comm, Nerul, Navi Mumbai

Course Writers : Dr. Rajeshri Pravin Shinkar
Assistant Professor,
SIES.

Rani Podichetty
Assistant Professor,
K.B. College of. Arts and Commerce for Women.

Vijay Kothawade
Assr. Professor,
SJRS College, Kalwa West.

Milind Thorat
Lecturer,
KIJSIT.

August 2024, Print I,

Published by
Director
Centre for Distance and Online Education, University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP COMPOSED AND PRINTED BY
Mumbai University Press,
Vidyanagari, Santacruz (E), Mumbai - 400098.

CONTENTS

Unit No. Title Page No

1. NoSQLTechnologies 1
2. Understanding the Storage Architecture 17
3. Databases Performing Crud Operations 28
4. Querying NoSQL Stores 47
5. Indexing and Ordering Data Sets 69
6. Managing Transactions and Data Integrity 90

L

ELECTIVES

Programme Name: M.Sc. Computer Course Name: NoSQL Technologies
Science (Semester |)

Total Credits: 02

College assessment: 25

Total Marks: 50

University assessment: 25

Prerequisite: Basic understanding of databases, SQL concepts, and familiarity with
programming languages like Java or Python.

Course Outcome:

Upon the successful completion of this course, students will be able to:

Understand NoSQL characteristics, storage types, and advantages/drawbacks.

Interface and interact with MongoDB, Redis, HBase, and Apache Cassandra effectively.
Comprehend storage architecture in NoSQL, including column-oriented, document
stores, and key/value stores.

Perform CRUD operations proficiently, including data creation, access, update, and
deletion.

Query NoSQL stores using MongoDB features, accessing HBase data, and querying
Redis.

Apply indexing and ordering concepts in NoSQL databases like MongoDB, CouchDB,
and Cassandra.

Manage transactions and ensure data integrity in NoSQL, including distributed ACID
systems.

Utilize NoSQL effectively in the cloud, such as Google App Engine Data Store and
Amazon SimpleDB.

Course Code Course Title TOt"’."
Credits
PSCS506a NoSQL Technologies 02
MODULE - | 02

Unit 1: Introduction to NoSQL and Interfacing with NoSQL Data Stores
Basics Introduction to NoSQL: Characteristics of NoSQL, NoSQL Storage
types, Advantages and Drawbacks, NoSQL Products Interfacing and interacting
with NoSQL.: Storing Data in and Accessing Data from MongoDB, Redis, HBase
and Apache Cassandra, Language Bindings for NoSQL Data Stores
Understanding the storage architecture: Working with ColumnOriented
Databases, HBase Distributed Storage Architecture, Document Store Internals,
Understanding Key/Value Stores in Memcached and Redis, Eventually Consistent
Non-relational

Databases Performing CRUD operations: Creating Records, Accessing Data,
Updating and Deleting Data

Unit 2: Querying, Indexing, and Data Management in NoSQL Databases
Querying NoSQL Stores: Similarities Between SQL and MongoDB Query
Features, Accessing Data from Column-Oriented Databases Like HBase,

Querying

Redis Data Stores Indexing and Ordering Data Sets: Essential Concepts Behind
a Database Index, Indexing and Ordering in MongoDB, ouchDB and Apache
Cassandra

Managing Transactions and Data Integrity: RDBMS and ACID, Distributed
ACID Systems, Upholding CAP, Consistency Implementations Using NoSQL in
The Cloud: Google App Engine Data Store, Amazon SimpleDB

Text Books:

1. QL & NoSQL Databases, Andreas Meier - Michael Kaufmann, Springer Vieweg, 2019

2. Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons, Inc, 2011

3. SQL & NoSQL Databases, Andreas Meier - Michael Kaufmann, Springer Vieweg, 2019

4. NoSQL: Database for Storage and Retrieval of Data in Cloud, Ganesh Chandra Deka,
CRC Press, 2017

5. Demystifying NoSQL by Seema Acharya, Wiley, 2020

*kkkk

NoSQL TECHNOLOGIES

Unit Structure

1.0 Objective
1.1 Introduction to NoSQL and Interfacing with NoSQL Data Stores
1.2 Characteristics of NoSQL
1.3 NoSQL Storage types
1.4 Advantages of NoSQL
1.5 Drawbacks of NoSQL.:
1.6 NoSQL Products Interfacing and interacting with NoSQL
1.7 SQL and NoSQL
1.8 Storing Data in and Accessing Data from MongoDB
1.9 SQL Server and MongoDB
1.10 Using the MongoDB Shell
1.11 Redis
1.12 HBase
1.12.1 Storage Mechanism in HBase
1.12.2 HBase and RDBMS
1.12.3 Features of HBase
1.12.4 Applications of HBase
1.13 Apache Cassandra
1.13.1 Data Model
1.13.2 Relational Table and Cassandra Column Family
1.14 Language Bindings or NoSQL Data Stores
1.15 Summary
1.16 Questions
1.17 References
1.0 OBJECTIVE

To study the NoSQL characteristics, storage types and
advantages/drawbacks.

To study MongoDB, HBase, Apache Cassandra.

To understand data storage architecture of NoSQL including column-
oriented, document stores, and key/value pairs.

NoSQL Technologies

1.1 INTRODUCTION TO NOSQL AND INTERFACING
WITH NOSQL DATA STORES

“NoSQL” is “nonSQL” or “not only SQL”, It stores the databases in the
format other than traditional format of RDBMS like relational type of
tables. It is useful for managing and accessing various types of databases
for large volume of data.

Basics Introduction to NoSQL.:

A non-relational database which stores data in a non-tabular manner.

NoSQL database can store data in traditional as well as non-
traditional structural way.

Relational Databases have been only one choice or the default choice
for data storage.

After relational databases, current excitement about NoSQL databases
has come.

The value of relational databases are for two areas of memory a. fast,
small, volatile main memory b. Larger, slower, non - volatile backing
store.

As main memory is volatile to keep data around, for backing store
(File system, Database).

The database allows more flexibility than a file system in storing large
amounts of data in a way that allows an application program to get
information quickly and easily.

A NoSQL database provides a mechanism for storage and retrieval of
data that employs less constrained consistency models than traditional
relational database.

NoSQL systems are also referred to as “NotonlySQL” to emphasize
that they do in fact allow SQL-like query languages to be used.

1.2 CHARACTERISTICS OF NOSQL

1. High Scalability:

NoSQL have higher scalability for the large database.

2. Independent of Schema:

NoSQL have more efficiency to work with the independent of schema
feature i.e. large volume of heterogeneous type of data which requires no
schemas for structuring it.

3. Complex with free working:

NoSQL is very easy to handle than the SQL databases, for storing data in
an semi-structured, unstructured form that requires no tabular format or
arrangement.

4. Flexible to accommodate:

NoSQL have heterogeneous data that does not require any the of structure
format, they are very flexible in terms of their reliability and use.

1.3 NOSQL STORAGE TYPES

A database is an easily accessible collection of organised data or
information kept in a computer system. A Database Management System
often oversees a database (DBMS).

The nontabular data is stored in a non-relational database called NoSQL.
NoSQL is an acronym for Not Only SQL. Document, key-value, column-
oriented, and graphs are the primary types.

It is divided into four different types:
1. Document Database.

2. Key-Value Database.

3. Column-oriented Database.

4. Graph Database.

1. Document Database:

In document database, it stores the data in the form of document. The data
is grouped into the specified files where it is useful for building any
application software.

The most important benefit of document database is it allows to the use to
store the database in a particular format i.e. document format.

It is hierarchical and semi-structured format of NoSQL database it allows
efficient storage for the data. For example user profile it works very well
for storing the data. MongoDb is very good example of NoSQL database.

2. Key -Value Database:

Key-Value database is a type of NoSQL database where it stores the data
in a schema-less manner.

It store the data in key-value format. One data point is assign as a key
while another data point is assign as value for key-value allotment.

Example of Key-Value is the term ‘age’ is assign as key data point while
‘45’ can be termed as value.

NoSQL Technologies

NoSQL Technologies

3. Column-oriented Database:

It stores the data in the form of columns where it segregates the data into
homogenous categories.

User can access the data very easily without retrieving unnecessary
information.

Column-oriented databases works efficiently for data analytics in many
social media networking sites.

This type of databases can accommodate large volume of data, For
filtering the data or information, column-oriented databases are used.
Apache HBase is an example of column-oriented database.

4. Graph Database:

In Graph Database we can store the data in the form of graphical
knowledge and its related element like nodes, edges etc.

Data points are placed very well so that nodes are easily related to the
edges and thus, a connection or network can easily establish.

Graph-based databases focus on the relationship between the elements. It
stores the data in the form of nodes in the database. The connections
between the nodes are called links or relationships.

Key features of graph database:

e In a graph-based database, it is easy to identify the relationship
between the data by using the links.

e The Query’s output is real-time results.

e The speed depends upon the number of relationships among the
database elements.

e Updating data is also easy, as adding a new node or edge to a graph
database is a straightforward task that does not require significant
schema changes.

e For software development Graph database is useful.

e Good example for NoSQL database is Amazon Neptune where it
makes high effective and organized functioning of software. Amazon
Neptune is reliable, fast and graph database service that runs or build
various applications with highly connected databases.

1.4 ADVANTAGES OF NOSQL

e No constraint on the structure of the data to be stored.

e Integration with cloud computing.

e [t can store large volume of data.
e Flexible data model.
e High performance.

e Open Source.

1.5 DRAWBACKS OF NOSQL

Less developed as compared to traditional SQL.

e Improvements are required for cross-platform support.

¢ In NoSQL data inconsistency may occur.

e Large document size

e GUI is not available.

e [t mainly designed for storage but it has very less functionality.

e Backup is one drawback of NoSQL database as some NoSQL
databases like MongoDB, it has no approach for the backup of data in
a consistent manner.

1.6 NOSQL PRODUCTS INTERFACING AND
INTERACTING WITH NOSQL

e MongoDB is an open-source document-oriented database where it is
designed to store a large volume of data and it allows user to work
with the data efficiently. Storage and retrieval of data in MongoDB is
not in the form of tables. It supports the languages like C, C++, C#
and .Net, Java, Node.js, Perl, PHP, Python, Scala etc. User can easily
create an application using any of these languages.

e Examples: There are many companies that uses MongoDB like
Facebook, eBay, Google etc to store large volume of respective data.

1.7 SQL AND NOSQL

SQL NoSQL
It is called as RDBMS or Relational | It is called as Non-Relational or
Database. Distributed Database.
Table-based databases. It can be document based, key-

value pairs, graph databases.

Vertical Scalability. Horizontal Scaliability.
Fixed or Predefined schema. Flexible schema.
It is not suitable for hierarchical data | It is suitable for hierarchical data
storage. storage.

NoSQL Technologies

NoSQL Technologies

Example: Oracle, Microsoft SQL Example: Document: MongoDB,
server, MySQL, PostgreSQL etc. CouchDB
Key-value: Redis and
DynamoDB
Column based: Cassandra and
Hbase
Graph: Neo4j and Amazon
Neptune.

1. 8 STORING DATA IN AND ACCESSING DATA FROM
MONGODB

MongoDB is a cross platform document-oriented database it provides high
performance and availability as well as easy scalability.

MongoDB works on the concept of collection and document.

Database: It is a physical container for the collections. Each database gets
its own set of files on the file system. A single MongoDB server has
multiple interfaces for databases.

Collection: It is a group of MongoDB document. It is an equivalent to
relational database (RDBMS) table. A collection exists within a single
database. Collections do not enforce a schema document. Within a
collection can have different fields?

Document: It is a set of key-value pair. Document have dynamic schema.
Dynamic schema is a document that has same collection, it does not
require to have the same set of fields and structure and common fields in a
collection document may hold different types of data.

1.9 SQL SERVER AND MONGODB

SQL Server MongoDB

Database Database

Table Collection

Index Index

Row Document

Column Field

Joining Linking & Embedding

1.10 USING THE MONGODB SHELL

MongoDB shell is a great tool for navigation, inspection and for
manipulation document data.

User can connect to MongoDB at localhost. Following are the shell
commands.

To create a database

Use aj

To check in which database we are working with
Db

Display list of all databases

Show dbs

[here you will not able to see database aj which you have created as we
have not yet stored anythong]

To insert data in a document
db.user.insert({name:"amol",age:30,address:"thane"})

to drop database

db.dropDatabase() /I will delete current database which is selected;
here aj was used so it will remove aj and all data present in the same.

Create Collection in MongoDB

the data in MongoDB is stored in form of documents. These documents
are stored in Collection and Collection is stored in Database.

Method 1: Creating the Collection in MongoDB on the fly

> db.aj.insert({

.adil,

... hame:"amol",

.. sal:55000

- })

WriteResult({ "nInserted" : 1 })

To check whether the document is successfully inserted
db.aj.find()

to display the list of collections

show collections

Method 2: Creating collection with options before inserting the
documents

db.createCollection("students")
the options that we can provide while creating a collection:

capped: type: boolean.

This parameter takes only true and false. This specifies a cap on the max
entries a collection can have. Once the collection reaches that limit, it
starts overwriting old entries.

The point to note here is that when you set the capped option to true you
also have to specify the size parameter.

NoSQL Technologies

NoSQL Technologies

size: type: number.

This specifies the max size of collection (capped collection) in bytes.
max: type: number.

This specifies the max number of documents a collection can hold.
autoIndexId: type: Boolean

The default value of this parameter is false. If you set it true then it
automatically creates index field id for each document.

> db.createCollection(''teacher", { capped : true, size : 9232768})

This command will create a collection named “teacher” with the max size
of 9232768 bytes. Once this collection reaches that limit it will start
overwriting old entries.

> db.createCollection("emp", {capped:true,size:44554444})

{"ok":1}

In order to remove collection

> db.emp.drop()

true
Insert Multiple Documents in collection

To insert multiple documents in collection, we define an array of
documents and later we use the insert() method on the array variable as
shown in the example below.

var test=

[

{

"sid" : 1,

"sname" : "juhi",
"mks" : 88

¥

{

"sid" : 2,

"sname" : "kajol",
"mks" : 87

s

{

"sid" : 3,

"sname" : "aamir",
"mks" : 78

}

I;

db.student.insert(test);

to see the inserted records
db.student.find()

To print the data in JSON format
db.student.find().forEach(printjson)

or

db.student.find().pretty()

To fetch the data of “juhi” from students collection
> db.student.find({sname:"juhi"}).pretty()

To fetch the details of students having mks > 80

db.student.find({"mks": {$gt:80} }).pretty()

gt—greater than

ne—not equal

It—Iless than

gte—greater than equals

Ite—Iless than equals

to update details

(change kajol to raveena)

> db.student.update({"sname":"kajol"},{$set: {"sname":"raveena"} })
Updating Document using save() method

Here in order to use save() method we need to know unique id of each

document.

If you do not use id then it will consider it as new document and that gets
inserted in the collection.

To get the unique Id for a particular document...

db.student.find({'"'sname" :"aamir"}).pretty()
will provide id for aamir
now lets change his name to salman using save method

db.student.save({" _id'":Objectld(''5c318a49310a8bf25f38dc87")," sid
name'':"salman", "mks":76})

To remove certain document from collection
db.student.remove({*“sid”:3})

here we can have multiple documents containing the same information ; as
id allocation is done by system uniqueness is maintained...

NoSQL Technologies

NoSQL Technologies

10

lets replicate multiple document code here. Create same variable test ...
and copy paste the code.

How to remove only one document matching your criteria?

When there are more than one documents present in collection that
matches the criteria then all those documents will be deleted if you run the
remove command. However there is a way to limit the deletion to only one
document so that even if there are more documents matching the deletion
criteria, only one document will be deleted.
db.student.remove({"mks":87},1)

here assume that there are 2 entries with mks =87; but we want to remove
only 1 entry out of it so by writing 1 we are removing only 1 entry. (this
parameter takes only Boolean value 0 or 1)

to display a particular column only

suppose that we need to display only sid

db.student.find({},{" 1d":0,"sid":1})

Value 1 means show that field and 0 means do not show that field. When
we set a field to 1 in Projection other fields are automatically set to 0,
except id, so to avoid the id we need to specifically set it to 0 in
projection. The vice versa is also true when we set few fields to 0, other
fields set to 1 automatically.

db.student.find({},{" id":0,"sname":0,"mks":0})

here we are keeping id , sname, mks as 0 means do not display those
columns; rest columns which are not mentioned are treated /default as 1

> db.student.find({}, {"" id": 0, "sid" : 0, "mks" : 1})
Error: error: {
"ok : 0,

"errmsg" : '"Projection cannot have a mix of inclusion and
exclusion.",

"code" : 2,
"codeName' : "BadValue'

/

>

Mixing of 0 and 1 is not allowed...
The limit() method in MongoDB

This method limits the number of documents returned in response to a
particular query.

db.student.find({mks: {$gt:80}}).limit(1).pretty()

(It managed to get only one document, which is the first document that
matched the given criteria.)

Here in the example there are 3 students with marks > 80; by using limit()
method we get the 1% record that matches the criteria.

But instead of 1% record we want 2™ record then we can use skip()
method.
MongoDB Skip() Method

db.student.find({mks: {$gt:80} }).limit(1).skip(1).pretty()
{
" id" : Objectld("5¢31947¢310a8bf25f38dc88"),
"sid" : 1,
"sname" : "juhi",
"mks" : 88
b
> db.student.find({mks: {$gt:80} }).limit(1).skip(2).pretty()
{
" id" : Objectld("5¢31947¢310a8bf25f38dc89"),
"sid" : 2,
"sname" : "kajol",
"mks" : 87
h

Sorting of records
db.student.find().sort({"sname":-1})

1.11 REDIS

It is Remote Dictionary Server. It is an open source.

It is used for NoSQL key-value storage for the primary purpose of an
application cache or quick response of the database.

e Redis link resides outside ibm.com which stores data in memory,
rather the our traditional storage like disk of SSD (solid-state drive).

e It helps in delivering the data with high speed, reliable and
performance as well as high availability.

e [t supports the multiple data structures.

NoSQL Technologies

11

NoSQL Technologies

12

1.12 HBASE

HBase is a distributed column-oriented database built on top of the
Hadoop file system. It is an open-source project and is horizontally
scalable.

HBase is a data model that is similar to Google’s big table designed to
provide quick random access to huge amounts of structured data. It
leverages the fault tolerance provided by the Hadoop File System
(HDES).

It is a part of the Hadoop ecosystem that provides random real-time
read/write access to data in the Hadoop File System.

One can store the data in HDFS either directly or through HBase.
Data consumer reads/accesses the data in HDFS randomly using
HBase. HBase sits on top of the Hadoop File System and provides
read and write access.

Fig: 1.12 HBase

1.12.1 Storage Mechanism in HBase:

HBase is a column-oriented database and the tables in it are sorted by
row. The table schema defines only column families, which are the
key value pairs. A table have multiple column families and each
column family can have any number of columns. Subsequent column
values are stored contiguously on the disk. Each cell value of the table
has a timestamp. In short, in an HBase:

Table is a collection of rows.

Row is a collection of column families.

e Column family is a collection of columns.

e Column is a collection of key value pairs.

Given below is an example schema of table in HBase.

Rowid Column Family Column Family

coll col2 col3 coll col2 col3

1.12.2 HBase and RDBMS:

Column Family Column Family

coll col2 col3 coll col2 col3

HBase

RDBMS

It is schema-less.

It is governed by schema.

It doesn’t have the concept of fixed
columns schema, it defines only
column families.

It has structure of tables consist of
rows and columns.

Built for wide tables.

It is useful for small tables.

It is horizontally scalable.

It is hard to scale.

No transactions are there in HBase.

RDBMS is transactional.

De-normalized data.

Normalized data.

It is good for semi-structured as well
as structured data.

It is good for structured data.

1.12.3 Features of HBase:

It is linearly scalable.

It has automatic failure support.

It provides consistent read and writes.

e It provides data replication across cluster.

1.12.4 Applications of HBase:

e Itis used whenever there is a need to write heavy applications.

e HBase is used whenever we need to provide fast random access to

available data.

e Companies such as Facebook, Twitter, Yahoo, and Adobe use HBase

internally.

NoSQL Technologies

13

NoSQL Technologies

14

1.13 APACHE CASSANDRA

Apache Cassandra is a open-source, free, distributed, column-
oriented, NoSQL database management system used to designed for
handling large volume of data on commodity servers.

It provides high availability with no single point of failure.

It offers robust support for clusters with multiple datacentres.

1.13.1 Data Model :

Cluster: Cassandra database is a distributed across several machines
which operate together. The outermost container is known as Cluster.

In Cassandra for failure handling, every node contains a replica and in
case of a node failure, the replica works very well.

Cassandra arranges the nodes in a cluster in the form of ring and
assigns the data to each node.

Key-space: In Cassandra the outermost container of data. The basic
attributes of a key-space in Cassandra are:

Replication factor: It is the number of machines in the cluster.

Replica placement strategy: To place the machines for replica place
in the form of ring.

Column families: Key-space is a container for a list of one or more
column families. A column family is a container of a collection of
rows. Each row contains ordered columns. Column families represent
the structure of your data. It has at least one or more column families.

Column Families: A column family is a container for an ordered
collection of rows. Each row, in turn, is an ordered collection of
columns.

1.13.2 Relational Table and Cassandra Column Family:

The following table lists the points that differentiate a column family from
a table of relational databases.

Relational Table

Cassandra column Family

A Schema in a relational model is
fixed. Once we define certain
columns for a table, while inserting
data, in every row all the columns
must be filled at least with a null
value.

In Cassandra, although the column
families are defined, the columns
are not. User can freely add any
column to any column family at any
time.

Relational tables define only
columns and the user fills in the
table with values.

In Cassandra, a table contains
columns, or can be defined as a
super column family.

1.14 LANGUAGE BINDINGS OR NOSQL DATA STORES NoSQL Technologies

e A NoSQL is a database that provides a mechanism for storage and
retrieval of data, they are used in real-time web applications and big
data and their use are increasing over time.

e Many NoSQL stores compromise consistency in favor of availability,
speed and partition tolerance.

When should NoSQL be used

* When huge amount of data need to be stored and retrieved.

= The relationship between data you store is not that important.

= The data changing over time and is not structured.

= Support of constraint and joins is not required at database level.

= The data is growing continuously and you need to scale the database
regular to handle the data.

= In graph type of NoSQL databases the nodes are navigate as per the
relationships using by language bindings.

1.15 SUMMARY

NoSQL database can store data in traditional as well as non-traditional
structural way. Relational Databases have been only one choice or the
default choice for data storage. After relational databases, current
excitement about NoSQL databases has come. MongoDB is a cross
platform document-oriented database it provides high performance and
availability as well as easy scalability. MongoDB works on the concept of
collection and document. HBase is a distributed column-oriented database
built on top of the Hadoop file system. It is an open-source project and is
horizontally scalable. HBase is a part of the Hadoop ecosystem that
provides random real-time read/write access to data in the Hadoop File
System. In Cassandra, a table contains columns, or can be defined as a
super column family.

Example:

Document: MongoDB, CouchDB
Key-value: Redis and DynamoDB
Column based: Cassandra and Hbase

Graph: Neo4j and Amazon Neptune.

15

NoSQL Technologies

16

1.16 QUESTIONS

Q.1) Define NoSQL and Discuss in detail storage types of NoSQL
Q.2) Discuss about characteristics of NoSQL.
Q.3) Give Advantages and Drawbacks of NoSQL
Q.3) Describe MongoDB in detail.
Q.4) Compare
1. SQL and NoSQL.
2. SQL Server and MongoDB
3. HBase and RDBMS
4. Relational Table and Cassandra column Family.
Q.5) Define Collection and Document
Q.6) Elaborate the concept of HBase.
Q.7) Discuss features and applications of HBase.

Q.8) Explain Apache Cassandra.

1.17 REFERENCES

e AL & NoSQL Databases, Andreas Meier — Michael Kaufmann,
Springer Vieweg, 2019

e Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons,
Inc, 2011

e SQL & NoSQL Databases, Andreas Meier — Michael Kaufmann,
Springer Vieweg- 2019

e NoSQL : Database for Storage and Retrieval of Data in Cloud,
Ganesh Chandra Deka, CRC Press, 2017

e Demystifying NoSQL by Seema Acharya, Wiley, 2020

% 3k %k %k %k

UNDERSTANDING THE STORAGE

ARCHITECTURE

Unit Structure

2.0
2.1
2.2

23

24

Objectives

Introduction

An Overview

2.2.1
222

223

Understanding the storage architecture

What is storage architecture in NoSQL technology?
2.2.2.1Key-Value Stores

2.2.2. 11 Document Stores

2.2.2. 111 Column-family Stores

2.2.2. iv Graph Databases

Working with ColumnOriented Databases
2.2.3. 1: Understanding the Column Model
2.2.3. 1i: Data Modelling

2.2.3. 1ii: Loading Data

2.2.3. 1v: Querying Data

2.2.3. v: Optimizing Performance

2.2.3. vi: Scaling Out

HBase Distributed Storage Architecture

23.1
232
233
234

HMaster

RegionServers

ZooKeeper

Applications of HBase Distributed Storage Architecture
2.3.4.1 Big Data Analytics

2.3.4.11 Time Series Data

2.3.4.1i1 Social Media Analytics
2.3.4.iv Internet of Things (IoT)
2.3.4.v Content Management Systems
2.3.4.vi Recommendation Systems
2.3.4.vii Fraud Detection

2.3.4.viii Online Gaming

Document Store Internals

24.1
242
243

Document Structure
Indexing
Storage Engine

17

NoSQL Technologies

18

2.4.4 Concurrency Control
2.4.5 Replication and Sharing
2.4.6 Query Processing
2.4.7 Durability and ACID Properties
2.5 Understanding Key/Value Stores in Memcached and Redis
2.5.1 Memcached
2.5.2 Redis
2.5.3 Key-Value Stores
2.6 Eventually Consistent Non-relational
2.7 Summary
2.8 References and bibliography
2.9 Questions for practice

2.0 OBJECTIVES

The main goal of learning this unit is:
e Tounderstand how data is stored, organized and retrieved.

e To understand the concepts like distributed systems, sharding,
replication, and consistency models.

e To understand the data distribution strategies for designing and
enhancing databases scalability, performance, and fault tolerance.

2.1 INTRODUCTION

In NoSQL technology, the storage architecture spilt from the traditional
relational databases. It is design to handle or we can say manage large
volumes of unstructured or semi-structured data making the data storage
architecture more flexible and scalable. Instead of using immutable tables
with redefined schemas, NoSQL databases commonly use key-value stores,
document stores, wide-column stores, or graph databases. Let us have a
overview on this technology.

2.2 OVERVIEW

NoSQL, or "Not Only SQL," refers to a broad class of database
management systems (DBMS) that don't adhere strictly to the traditional
relational database management system (RDBMS) model. While relational
databases store data in tables with predefined schemas and support SQL
queries, NoSQL databases offer more flexibility in terms of data models,
scalability.

2.2.1 Understanding the storage architecture:

The storage architecture in NoSQL databases always call for distributed
systems, where the data is spread at many multiple nodes to ensure
scalability and fault tolerance. In this the each node in the cluster may store

a fragment of the data, and replication techniques are used to maintain data
consistency and availability.

In addition the NoSQL technology databases always prioritize horizontal
scalability, allowing for easy expansion by adding more nodes to the cluster.
This is achieved via sharding concepts in which the data is partitioned
across multiple servers based on a certain criteria, such as key range or
hashing algorithms.

Sharding concepts-it is a method in which the data records are stored at
multiple servers’ instances. It takes place through the concept of storage
area networks in which it makes the hardware to perform like a single
server. The NoSQL framework is basically deigned to support automatic
distribution of the data across multiple servers which includes the query
load.

2.2.2 What is storage architecture?

The storage architecture in NoSQL technology spins around the principles
of flexibility, scalability, and performance to manage or handle large
volumes of data which might be unstructured or semi-structured data
whereas in traditional relational databases, which uses structured tables and
schemas, the NoSQL databases engages various data models such as key-
value, document, column-family, or graph-based.

The various concepts used are:
2.2.2. i: Key-Value Stores:

In this the databases stores the data as a collection of key-value pairs. In this
each key is unique in nature and it is associated with a value which can be a
simple string or a complex data structure. Examples: Redis and Amazon
DynamoDB.

2.2.2. ii: Document Stores:

In this the data is stored as a document typically in JSON and BSON
format, and it also allows nested and flexible schemas. This type of model is
suitable for semi-structured data. MongoDB and Couchbase are the most
popular document store databases.

2.2.2. iii: Column-family Stores:

In this the data is manage into columns grouped by the column families
which helps in enabling efficient retrieval of the fragment of columns. This
model is suitable for analytics and time-series data. Examples: Apache
Cassandra and HBase.

2.2.2. iv: Graph Databases:

In this the databases represent the data as nodes, edges, and properties
which helps in allowing for efficient querying of complex relationships.

Examples: Neo4j and Amazon Neptune.

Understanding the Storage
Architecture

19

NoSQL Technologies

20

2.2.3 Working with ColumnOriented Databases:

As working with column oriented databases in NoSQL technology it
involves a unique architecture and features which helps to store and query
data, especially in the scenarios where it requires analytics and aggregation
are common tasks. Some of the concepts used for the interaction with
column-oriented databases are:

2.2.3. i: Understanding the Column Model:

In column oriented databases it stores the data in columns rather than rows
which means that all the values for a particular column are stored together,
it allows for efficient and fast access to specific column during the query
process.

2.2.3. ii: Data Modelling:

When you are working with a column-oriented database, we need to design
the data model with a focus on column families or column groups rather
than tables.

This process involves identifying the columns that are used frequently
during the query process and organizing them into logical groups.

2.2.3. iii: Loading Data:

For executing any query data in column-oriented databases, we need to load
it into the databases first. This process or stage involves importing the data
from various sources, such files or other databases. For this type process
NoSQL column-oriented databases provide tools or APIs.

2.2.3. iv: Querying Data:

While querying data in column-oriented databases, we typically write the
queries which normally target the specific columns or groups of columns.
This actually boosts the query performance especially when we are working
on aggregations or analytics on large datasets.

Some of the column-oriented databases support SQL query languages,
while others make use of APIs

2.2.3. v: Optimizing Performance:

In order to get the best performance out of a column-oriented database, you
may need to optimize your data model, queries and indexing strategies. For
this we need renormalizing the data so to reduce the need for joins, creating
appropriate and tuning database configuration settings.

2.2.3.vi: Scaling Out:

The main goal for designing column-oriented databases was scale out
horizontally across multiple nodes in a cluster. This plays a vital role in
handling larger datasets and higher query loads by adding more nodes to the
cluster.

2.3 HBASE DISTRIBUTED STORAGE ARCHITECTURE Understanding the Storage

Architecture

HBase: it is a distributed, column-oriented database which is built on top of
Hadoop Distributed File System (HDFS). This architecture consists of three
main components that is shown with the help of a diagram given below
figure.1

[HDFS]

A 4 A 4 h 4

HMaster RegionServers ZooKeeper

Figure. 1
2.3.1 HMaster:

HMaster: This component manages the metadata and coordinates the
administrative operations. This is also responsible for coordinating and
managing regions across the cluster, including assigning regions to
RegionServers and handling failover.

2.3.2 RegionServers:

This component handle the data storage and processing. These are
responsible for serving data to clients. Each RegionServers manages
multiple regions, which are horizontal partitions of data stored in HDFS.

2.3.3 ZooKeeper:

This component assists in distributed coordination and management of the
cluster. It helps in maintaining configuration information, providing
synchronization, and handling failover for HBase. The HBase distributes
the data across multiple RegionServers, by allowing for horizontal
scalability and fault tolerance.

This model is actually inspired by Google’s Bigtable, where data is stored
in rows with columns, and rows can have a variable number of columns. It
is highly scalable, fault tolerant, and suitable for real-time read/write
operations on large database.

2.3.4 Applications of HBase Distributed Storage Architecture:

It is often used in the scenarios requiring real-time read/write access to
large datasets such as follows:

2.3.4. i. Big Data Analytics:

HBase is utilized for storing and processing large volumes of data
generated by various sources, enabling real-time analytics and insights.

21

NoSQL Technologies

22

2.3.4. ii. Time Series Data:

It's suitable for storing time-series data like logs, sensor data, financial
data, etc., where data needs to be appended continuously and queried
efficiently.

2.3.4. iii. Social Media Analytics:

HBase can store and process social media data such as user interactions,
posts, comments, and likes, enabling real-time analysis for targeted
advertising, sentiment analysis, etc.

2.3.4. iv. Internet of Things (IoT):

HBase can handle the massive volume of data generated by IoT devices,
providing a scalable and reliable storage solution for sensor data,
telemetry, and device logs.

2.3.4. v. Content Management Systems:

HBase can be used as a backend storage for content management systems
handling large volumes of structured and unstructured data, providing high
availability and scalability.

2.3.4. vi. Recommendation Systems:

HBase can store user profiles, preferences, and historical interactions,
facilitating real-time recommendation generation for e-commerce
platforms, streaming services, etc.

2.3.4. vii. Fraud Detection:

It's utilized for storing and analyzing transactional data in real-time to
detect fraudulent activities and patterns, providing immediate alerts for
proactive measures.

2.3.4. viii. Online Gaming:

HBase can store player profiles, game states, and interactions in online
gaming platforms, enabling real-time updates and personalized gaming
experiences.

2.4 DOCUMENT STORE INTERNALS

The Document Store Internals in NoSQL technology refers to the
mechanisms and structures which is used to manage and data in a
document-oriented database. In document-oriented databases, data is
stored in flexible, semi-structured documents, typically in formats like
JSON or BSON (Binary JSON).

Some of the key aspects of document store internals:
2.4.1 Document Structure:

Documents are the basic unit of data storage. Each document contains
key-value pairs or key-array pairs where the values can be simple data
types, arrays, or nested documents.

2.4.2 Indexing:

Document stores usually utilize indexes to efficiently query and retrieve
data. Indexes can be created on various fields within the documents to
optimize query performance.

2.4.3 Storage Engine:

The storage engine is responsible for managing the storage and retrieval of
documents on disk. Different document stores may use different storage
engines optimized for various use cases, such as memory-mapped storage,
log-structured storage, or LSM (Log-Structured Merge-tree) storage.

2.4.4 Concurrency Control:

Document stores often implement concurrency control mechanisms to
handle multiple concurrent read and write operations. This may involve
techniques such as multi-version concurrency control (MVCC) to ensure
consistency and isolation of transactions.

2.4.5 Replication and Sharing:

To achieve high availability and scalability, document stores typically
support replication and sharding. Replication involves maintaining
multiple copies of data across different nodes for fault tolerance, while
sharding partitions data across multiple nodes to distribute the workload.

2.4.6 Query Processing:

Document stores provide query languages or APIs to query and
manipulate data. Query processing involves parsing, optimizing, and
executing queries efficiently, often leveraging indexes and other
optimization techniques.

2.4.7 Durability and ACID Properties

Document stores may provide durability guarantees to ensure that
committed data is not lost in the event of failures. They may also support
ACID (Atomicity, Consistency, Isolation, Durability) properties to ensure
data consistency and transactional integrity.

2.5 UNDERSTANDING KEY/VALUE STORES IN
MEMCACHED AND REDIS

Understanding key/value stores in Memcached and Redis involves
grasping the fundamental concepts and features of these popular NoSQL
databases.

2.5.1 Memcached:

e Memcached is an in-memory key/value store primarily used for
caching frequently accessed data to improve application performance.

e [t operates as a distributed caching system, allowing multiple

Understanding the Storage
Architecture

23

NoSQL Technologies

24

instances to be deployed across a network.

e Data is stored in the form of key/value pairs, where keys are unique
identifiers and values are arbitrary data.

e Memcached does not support persistence; data is stored only in
memory and is lost when the server restarts or if it runs out of
memory.

e [t employs a simple protocol for client-server communication, making
it lightweight and efficient.

e Memcached is often used in web applications to cache database query
results, session data, and frequently accessed objects.

2.5.2 Redis:

e Redis is an in-memory data store that supports a wide range of data
structures beyond key/value pairs, including strings, hashes, lists, sets,
and sorted sets.

e Like Memcached, Redis operates primarily in memory, but it also
offers optional persistence mechanisms for durability.

e Redis can be used as a caching solution, a message broker, a data
structure server, and more, due to its rich set of features.

e [t supports advanced data manipulation operations, such as atomic
increments/decrements, range queries, and server-side scripting with
Lua.

e Redis can be used as a caching solution, a message broker, a data
structure server, and more, due to its rich set of features.

e [t offers different persistence options, including snapshots (RDB) and
append-only logs (AOF), allowing users to choose the level of
durability they need.

e Redis is often used in scenarios requiring fast data access, real-time
analytics, and pub/sub messaging, and distributed locking.

2.5.3 Key -Value Stores:

In this the databases stores the data as a collection of key-value pairs. In this
each key is unique in nature and it is associated with a value which can be a
simple string or a complex data structure. Examples: Redis and Amazon
DynamoDB.

In summary, while both Memcached and Redis are key/value stores used
for caching and fast data access, Redis offers a broader range of features
and data structures, making it suitable for a wider variety of use cases
beyond simple caching. Understanding the strengths and limitations of

each system is crucial for selecting the appropriate solution for specific
application requirements.

2.6 EVENTUALLY CONSISTENT NON-RELATIONAL

Eventually consistent" refers to a consistency model used in distributed
systems, including many NoSQL databases. In an eventually consistent
system, updates to data will propagate through the system asynchronously,
and eventually, all replicas of the data will converge to the same state.
This model prioritizes availability and partition tolerance over strict
consistency at all times.

In the context of non-relational (NoSQL) databases, eventually consistent
systems often use replication and distribution techniques to achieve
scalability and fault tolerance. Here's how it typically works:

1. Replication:

Data is replicated across multiple nodes in the database cluster to ensure
fault tolerance and high availability. When a write operation occurs, it is
propagated to all replicas asynchronously.

2. Consistently Models:
a. Read your Writes Consistency:

In many eventually consistent systems, a client reading data after
performing a write operation will always see its own writes (read-your-
writes consistency).

b. Monotonic Reads and Writes:

Guarantees that if a client reads a particular version of a data item, any
subsequent reads will not return an older version.

c. Monotonic Writes:

Guarantees that if a client writes a sequence of data values to a data item,
those writes will be observed in the same order by all replicas.

d. Causal Consistency:

Ensures that if one operation causally precedes another, all replicas will
see them in the same order.

3. Conflict Resolution:

In an eventually consistent system, conflicts may arise when concurrent
writes occur to the same data item on different replicas. Conflict resolution
strategies vary depending on the database system and may involve
techniques such as last-write-wins, vector clocks, or application-level
conflict resolution.

Understanding the Storage
Architecture

25

NoSQL Technologies

26

Examples of NoSQL databases that implement an eventually consistent
model include:

1) Amazon DynamoDB:

Offers configurable consistency levels, including eventual consistency and
strong consistency.

2) Cassandra:

Provides tunable consistency, allowing users to choose between eventual
consistency and various levels of strong consistency.

3) Riak:

Implements eventual consistency with support for conflict resolution
strategies.

2.7 SUMMARY

NoSQL (Not Only SQL) is a broad term used to describe a category of
database management systems that differ from traditional relational
databases in their data models, scalability, and flexibility. Here's a
summary of key points about NoSQL technology:

1. Flexible Data Models:

Unlike relational databases, which use structured schemas and tables,
NoSQL databases can handle semi-structured and unstructured data. They
are well-suited for applications with rapidly changing data requirements.

2. Scalability:

NoSQL databases are designed to scale horizontally across multiple
servers, making them suitable for large-scale distributed systems. They
can handle high volumes of data and traffic more efficiently than
traditional databases.

3. High Performance:

Many NoSQL databases are optimized for specific use cases, such as real-
time analytics, content management, or caching. They often offer high-
performance features like in-memory processing, asynchronous
replication, and automatic sharding.

4. Types of NoSQL Databases:
NoSQL databases are categorized into four main types:
a. Document-Oriented Databases:

Store data in flexible, semi-structured documents (e.g, MongoDB,
Couchbase).

Key-value stores:

Store data as key-value pairs, providing fast retrieval based on keys
(e.g., Redis, Amazon DynamoDB).

Column-Family Stores:

Store data in columns rather than rows, suitable for large-scale
distributed systems (e.g., Apache Cassandra, HBase).

Graph Databses:

Optimize for managing relationships between data entities (e.g.,
Neo4j, Amazon Neptune).

Challenges:

While NoSQL databases offer advantages in scalability and
flexibility, they also pose challenges such as data consistency, lack of
standardization, and potentially steep learning curves for developers
accustomed to relational databases.

2.8 REFERENCES AND BIBLIOGRAPHY

https://chatgpt.com/

https://www.google.co.in/

Youtube

2.9 QUESTIONS FOR PRACTICE

Ql.
Q2.
Q3.
Q4.

What is NoSQL?

What is NoSQL used for?
Explain HBase

Explain the use of Hadoop

% %k %k %k %k

Understanding the Storage
Architecture

27

28

3

DATABASES PERFORMING CRUD
OPERATIONS

Unit Structure

3.0 Objective
3.1 Introduction
3.2 Creating Records
3.2.1Creating Records in a Document-Centric Database
3.2.2 Using the Create Operation in Column-Oriented Databases
3.2.3 Using the Create Operation in Key/Value Maps
3.3 Accessing Data
3.3.1 Accessing Documents from MongoDB
3.3.2 Accessing Data from HBase
3.4 Updating and Deleting Data
3.4.1 Updating and Modifying Data in MongoDB, HBase, and Redis
3.4.2 Limited Atomicity and Transactional Integrity
3.5 Summary
3.6 Review Questions
3.0 OBJECTIVES

Detailing the operations of create, read, update, and delete within the
context of data sets in a NoSQL database.

Elaborating on the significance placed on create operations compared
to updates, accompanied by illustrative examples.

Investigating the atomicity and integrity aspects concerning updates in
NoSQL databases.

Clarifying the methods utilized for persisting interconnected data in
NoSQL databases.

3.1 INTRODUCTION

CRUD operations—Create, Read, Update, and Delete—are essential for
interacting with data in any database. These operations are particularly
significant in the realm of NoSQL databases, which encompass a diverse
array of database types rather than a single product or technology.

NoSQL databases vary in how they implement CRUD operations, largely
based on their structure, whether they are document stores, key-value
stores, or column-oriented databases. A common characteristic among
NoSQL databases is the emphasis on create and read operations over

update and delete operations. Sometimes, only create and read operations
are supported.

The upcoming sections will explore how CRUD operations are
implemented in NoSQL databases, focusing on creating records. The
discussion will be structured around different NoSQL database types:
column-oriented, document-centric, and key-value stores.

3.2 CREATING RECORDS

Creating a record involves saving a new entry in the database. It is crucial
to have a unique identifier to distinguish each record and ensure that it
does not already exist in the database. In relational databases, this
identifier is known as the primary key, which uniquely identifies each
record in a table. If a primary key already exists, the record should be
updated rather than recreated.

Relational databases use normalization principles, introduced by E.F.
Codd and refined into the Boyce-Codd Normal Form (BCNF). These
principles aim to minimize data redundancy and ensure data integrity by
organizing data so that each piece of information is stored only once and
referenced as needed.

In a normalized relational database schema, two records with identical
values are considered the same, enforced through primary keys. In object-
oriented programming languages, this concept is often replaced by
reference-based identification, where a unique record is identified by its
memory address.

NoSQL databases, which may resemble traditional tables or object stores,
use either value-based or reference-based semantics for record
identification. Despite these differences, the concept of a unique primary
key remains important across all types of databases.

Many databases provide tools for generating primary keys to ensure their
uniqueness and relevance. For example, MongoDB uses a 12-byte BSON
object ID as the default primary key, which includes a timestamp, machine
ID, process ID, and a counter to ensure uniqueness.

Similarly, HBase, a column-oriented database, uses row keys that are byte
arrays. These keys should be logically meaningful for the application and
are ordered by their byte sequence, affecting how data is accessed and
stored.

In this section, we will cover how to create records in specific NoSQL
databases, using MongoDB for document stores, HBase for column-
oriented databases, and Redis for key-value stores.

MongoDB:

MongoDB, a document-centric database, uses BSON object IDs for record
identification. When creating a new document, MongoDB assigns a

Databases Performing Crud
Operations

29

NoSQL Technologies

30

unique BSON object ID, which includes a timestamp, machine ID, process
ID, and a counter to ensure uniqueness.

HBase:

HBase, a column-oriented database, uses row keys to identify records.
These row keys are byte arrays that should be logically significant for the
application's data model. HBase rows are ordered by these keys,
influencing how data is accessed and queried.

Redis:

Redis, a key-value store, uses simple keys to store values. Each key in
Redis is unique and can be a string or binary data. Redis keys are typically
generated by the application, ensuring they are unique and relevant to the
stored data.

By understanding these different approaches to creating records in NoSQL
databases, we can better appreciate the flexibility and challenges
associated with each model. This knowledge will be further expanded as
we explore read, update, and delete operations in the subsequent sections

3.2.1 Creating Records in a Document-Centric Database:

A typical example used in many relational database examples is that of a
simplified retail system, which creates and manages order records. Each
person’s purchase at this fictitious store is an order. An order consists of a
bunch of line items. Each order line item includes a product (an item)

and number of units of that product purchased. A line item also has a price
attribute, which is calculated by multiplying the unit price of the product
by the number of units purchased. Each order table has an associated
product table that stores the product description and a few other attributes
about the product. Figure 3-1 depicts order, product, and their relationship
table in a traditional entity-relationship diagram.

Order

[orderID
SequenceNG

has

OrderLineltem

ProductID (PK)

OrderID (PK) ‘
Quantity

Product

ProductID
Sequencel0

Figure 3-1

To store this same data in MongoDB, a document store, you would de-
normalize the structure and store each order line item detail with the order
record itself. As a specific case, consider an order of four coffees: one

latte, one cappuccino, and two regular. This coffee order would be stored Databases Performing Crud
in MongoDB as a graph of nested JSON-like documents as follows: Operations

{
order date: new Date(),
“line_items”: [
{
item : {
name: “latte”,
unit_price: 4.00
¥
quantity: 1
s
{
item: {
name: “cappuccino”,
unit_price: 4.25
s
quantity: 1
s
{
item: {
name: “regular”,
unit_price: 2.00
s
quantity: 2
b
]
}

Open a command-line window, change to the root of the MongoDB
folder, and start the MongoDB server as follows: bin/mongod --dbpath
~/data/db

Now, in a separate command window, start a command-line client to
interact with the server: bin/mongo. Use the command-line client to store
the coffee order in the orders collection, within the mydb database.

Although storing the entire nested document collection is advised,
sometimes it’s necessary to store the nested objects separately. When
nested documents are stored separately, it’s your responsibility to join the
record sets together. There is no notion of a database join in MongoDB so

31

NoSQL Technologies you must either manually implement the join operation by using the object
id on the client side or leverage the concept of DBRef.

You can restructure this example in a way that doesn’t store the unit price
data for a product in the nested document but keeps it separately in
another collection, which stores information on products. In the new
format, the item name serves as the key to link between the two
collections. Therefore, the restructured orders data is stored in a collection
called orders2 as follows:

>t2={
order_date: new Date(),

“line_items”: [

{
“item_name”:”latte”,
“quantity”:1

s

{
“item_name”:”’cappuccino”,
“quantity”:1

}s

{
“item_name”:”regular”,
“quantity”:2

}

“order date” : “Sat Oct 30 2010 23:03:31 GMT-0700 (PDT)”,

“line_items” : [

{
“item_name” : “latte”,
“quantity” : 1

¥

{
“item_name” : “cappuccino”,
“quantity” : 1

|2

{

32

29 (13

“item_name” : “regular”,

“quantity” : 2

¥
> db.orders2.save(t2);

To verify that the data is stored correctly, you can return the contents of
the orders2 collection as follows:
> db.orders2.find();

{ “ id” : Objectld(“4ccd06e8d3c7ab3d1941b104”), “order date” : “Sat
Oct 30 2010

23:03:31 GMT-0700 (PDT)”, “line_items” : [
{
“item_name” : “latte”,

“quantity” : 1

1}
Next, save the product data, wherein item name and unit price are stored,
as follows:

>pl={
“_id”: “latte”’
“unit_price”:4
S
{*“ 1d” : “latte”, “unit_price” : 4 }
> db.products.save(pl);
Again, you can verify the record in the products collection with the help of
the find method:
> db.products.find();
{*“ 1d” : “latte”, “unit_price” : 4 }
Now, you could manually link the two collections and retrieve related data
sets like this:
> order1 = db.orders2.findOne();
{
“ id” : Objectld(“4ccd06e8d3c7ab3d1941b104”),
“order date” : “Sat Oct 30 2010 23:03:31 GMT-0700 (PDT)”,

“line_items” : [

Databases Performing Crud
Operations

33

NoSQL Technologies

34

“item_name” : “latte”,

“quantity” : 1

s
“item_name” : “cappuccino”,
“quantity” : 1

s
“item_name” : “regular”,
“quantity” : 2

}

> db.products.findOne({ id: orderl.line items[0].item name });
{“ 1d” : “latte”, “unit_price” : 4 }

Alternatively, part of this manual process can be automated with the help
of DBRef, which is a more formal specification for relating two document
collections in MongoDB. To illustrate DBRef, you rehash the orders
example and establish the relationship by first defining the products and
then setting up a DBRef to products from within the orders collection.

Add latte, cappuccino, and regular, with their respective unit prices, to the
product2 collection as follows:

29 <6

> p4 = {“name”:”’latte”, “unit_price”:4};
“name” : “latte”, “unit_price” : 4 }

>pS=1

... “name”: “cappuccino”,

... “unit_price”:4.25

e }3

{“ 1d” : “cappuccino”, “unit_price” : 4.25 }

>p6=1{

... “name”: “regular”,

... “unit_price”:2

e }3

{“ 1d” : “regular”, “unit_price” : 2 }

> db.products2.save(p4);

> db.products2.save(p5);

> db.products2.save(p6);

Verify that all the three products are in the collection: Databases Performing Crud
Operations

> db.products.find();

{“ 1d” : Objectld(“4ccd1209d3c7ab3d1941b105”), “name” : “latte”,
“unit_price” : 4 }

{ “.id” : Objectld(*4ccd1373d3c7ab3d1941b106”), ‘“name”

“cappuccino”,
“unit_price” : 4.25 }

{*“ 1d” : Objectld(“4ccd1377d3¢c7ab3d1941b107), “name” : “regular”,
“unit_price” : 2 }

Next, define a new orders collection, called orders3, and use DBRef to

establish the relationship between orders3 and products. The orders3
collection can be defined as follows:

t3={
.. order_date: new Date(),
.. “line_items”: [

o
.. “item_name”: new DBRef(‘products2’, p4. id),
.. “quantity:1

et

o
.. “item_name”: new DBRef(‘products2’, p5. id),
.. “quantity”:1

-t

A
.. “item_name”: new DBRef(‘products2’, p6._id),
.. “quantity”:2

.
o]

b

db.orders3.save(t3);

The MongoDB creation process is fairly simple and as you saw, some
aspects of the relationship can also be formally established using DBRef.
Next, the create operation is viewed in the context of column-oriented
databases.

3.3.2 Using the Create Operation in Column-Oriented Databases:

Column-oriented databases, unlike MongoDB, do not incorporate
relational references such as foreign keys or constraints across multiple

35

NoSQL Technologies

36

collections. These databases store data in a de-normalized manner, similar
to a data warehouse fact table that contains extensive transactional
records. In this structure, a row-key uniquely identifies each record, and
all columns within a column-family are stored together.

In column-oriented databases like HBase, data storage includes a time
dimension, making the create or data insert operation crucial while
effectively eliminating the concept of updating records. For example,
consider maintaining a large catalog of various products, with varying
amounts of information on the type, category, characteristics, price, and
source of each product. You might create a table with column-families for
type, characteristics, and source. Each column-family would then contain
individual attributes or fields (referred to as columns).

To start the HBase server, open a command-line window or terminal,
navigate to the HBase installation directory, and start the server in local
standalone mode with the following command:

bin/start-hbase.sh

This command initializes the HBase environment, allowing you to create
and manage your product catalog efficiently within a column-oriented
database structure.

Open another command-line window and connect to the HBase server
using the HBase shell: bin/hbase shell

Next, create the products table:
hbase(main):001:0> create ‘products’, ‘type’, ‘characteristics’, ‘source’
>0 row(s) in 1.1570 seconds

Once the table is created, you can save data in it. HBase uses the put
keyword to denote a data creation operation. The word “put” connotes a
hash map-like operation for data insertion and because HBase under the
hood is like a nested hash map, it’s probably more appropriate than the
create keyword.

To create a record with the following fields:

type:category = “coffee beans”
type:name = “arabica”
type:genus = “Coffea”

b

characteristics: cultivation method = “organic’
characteristics: acidity = “low”
you can put it into the products table like so:

hbase(main):001:0> put ‘products’, ‘productl’, ‘type:category’, ‘coffee
beans’
> 0 row(s) in 0.0710 seconds

hbase(main):002:0> put ‘products’, ‘productl’, ‘type:name’, ‘arabica’ Databases Performing Crud
> 0 row(s) in 0.0020 seconds Operations
hbase(main):003:0> put ‘products’, ‘productl’, ‘type:genus’, ‘Coffea’

> 0 row(s) in 0.0050 seconds

hbase(main):004:0> put ‘products’, ‘productl’,

‘characteristics: cultivation_method’, ‘organic’
> 0 row(s) in 0.0060 seconds

hbase(main):005:0> put ‘products’, ‘productl’, ‘characteristics: acidity’,
‘low’
> 0 row(s) in 0.0030 seconds

Now you can query for the same record to make sure it’s in the data store.
To get the record do the following:

hbase(main):008:0> get ‘products’, ‘productl’

COLUMN CELL

characteristics: acidity timestamp=1288555025970, value=lo
characteristics: cultivatio timestamp=1288554998029,
value=organic

n_method

source: country timestamp=1288555050543, value=yemen
source: terrain timestamp=1288555088136,
value=mountainous

type:category timestamp=1288554892522, value=coffee
beans

type:genus timestamp=1288554961942, value=Coffea
type:name timestamp=1288554934169, value=Arabica

7 row(s) in 0.0190 seconds

What if you put in a value for “type:category” a second time stored as
“beans” instead of its original value of “coffee beans” as follows?

hbase(main):009:0> put ‘products’, ‘productl’, ‘type:category’, ‘beans’
> 0 row(s) in 0.0050 seconds

Now, if you get the record again, the output is as follows:

hbase(main):010:0> get ‘products’, ‘productl’

COLUMN CELL

characteristics: acidity timestamp=1288555025970, value=low
characteristics: cultivatio timestamp=1288554998029,
value=organic

n_method

source: country timestamp=1288555050543, value=yemen
source: terrain timestamp=1288555088136, value=mountainous

37

NoSQL Technologies

38

type:category timestamp=1288555272656, value=beans
type:genus timestamp=1288554961942, value=Coffea
type:name timestamp=1288554934169, value=Arabica

7 row(s) in 0.0370 seconds

You may notice that the value for type: category is now beans instead of
coffee beans. In reality, both values are still stored as different versions of
the same field value and only the latest one of these is returned by default.
To look at the last four versions of the type:category field, run the
following command:

hbase(main):011:0> get ‘products’, ‘productl’, { COLUMN =>
‘type:category’,
VERSIONS =>4 }

COLUMN CELL

type:category timestamp=1288555272656,
value=beans

type:category timestamp=1288554892522, value=coffee
beans

Currently, there are only two versions available, so those are returned.

When dealing with highly structured, limited, and relational data, HBase
might not be the most suitable solution. HBase requires a flattened data
structure, creating a hierarchy only between column-families and their
constituent columns. Additionally, each cell's data is stored along a time
dimension, necessitating the flattening of nested data sets for storage.

Consider a retail order system. In HBase, retail order data can be stored in
a couple of ways:

Flatten All Data Sets:
Store all fields of an order, including product data, in a single row.

Maintain Order Line Items in a Single Row: Store product information in
a separate table and reference the product row-key within the order line
item information.

If you choose the first option of flattening the order data, you might make
the following choices:

Create one column-family for regular line items and another for additional
line items like discounts or rebates.

Within the regular line item column-family, include columns for item or
product name, description, quantity, and price.

When flattening everything, ensure each line item has a unique key to
prevent them from being stored as versions of the same key/value pair. For
instance, instead of naming all product name columns as product name,
use unique identifiers like product name 1, product name 2, etc. This

approach helps maintain data integrity and allows efficient data retrieval
within HBase's flattened structure.

The next example uses Redis to illustrate creating data in a key/value map.
3.2.3 Using the Create Operation in Key/Value Maps:

Redis is a simple, yet powerful, data structure server that lets you store
values as a simple key/value pair or as a member of a collection. Each
key/value pair can be a standalone map of strings or reside in a collection.
A collection could be any of the following types: list, set, sorted set, or
hash.

A standalone key/value string pair is like a variable that can take string
values. You can create a Redis string key/value map like so:

/redis-cli set akey avalue

You can confirm that the value is created successfully with the help of the
get command as follows:

/redis-cli get akey

The response, as expected, is avalue. The set method is the same as the
create or the put method. If you invoke the set method again but this time
set another value for the key, akey, the original value is replaced with the
new one. Try out the following:

/redis-cli set akey another value
/redis-cli get akey

The response, as expected, would be the new value: another value.

The familiar set and get commands for a string can’t be used for Redis
collections, though. For example, using lpush and rpush creates and
populates a list. A nonexistent list can be created along with its first
member as follows:

Jredis-cli Ipush list of books ‘MongoDB.: The Definitive Guide’

You can use the range operation to verify and see the first few members of
the list — list of books — like so:

/redis-cli lrange list_of books 0 -1
1. “MongoDB: The Definitive Guide”

The range operation uses the index of the first element, 0, and the index of
the last element, -1, to get all elements in the list. In Redis, when you
query a nonexistent list, it returns an empty list and doesn’t throw an
exception.

You run a range query for a nonexistent list — mylist — like so: ./redis-cli
lrange mylist 0 -1

Redis returns a message: empty list or set. You can use Ipush much as you
use rpush to add a member to mylist like so:

Databases Performing Crud
Operations

39

NoSQL Technologies

40

Jredis-cli rpush mylist ‘a member’

Now, of course mylist isn’t empty and repeating a range query reveals the
presence of a member. Members can be added to a list, either on the left or
on the right, and can be popped from either direction as well. This allows
you to leverage lists as queues or stacks.

For a set data structure, a member can be added using the SADD
operation. Therefore, you can add ‘a set member’ to aset like so:

Jredis-cli sadd aset ‘a set member’

The command-line program would respond with an integral value of 1
confirming that it’s added to the set. When you rerun the same SADD
command, the member is not added again. You may recall that a set, by
definition, holds a value only once and so once present it doesn’t make
sense to add it again. You will also notice that the program responds with
a 0, which indicates that nothing was added. Like sets, sorted sets store a
member only once but they also have a sense of order like a list.

You can easily add ‘asset member’ to a sorted set, called azset, like so:
Jredis-cli zadd azset 1 ‘a sset member’

The value 1 is the position or score of the sorted set member. You can add
another member, ‘sset member 2°, to this sorted set as follows:

Jredis-cli zadd azset 4 ‘sset member 2’

You could verify that the values are stored by running a range operation,
similar to the one you used for a list. The sorted set range command is
called zrange and you can ask for a range containing the first five values
as follows:

Jredis-cli zrange azset 0 4
1. “a sset member”’
2. “sset member 2"’

What happens when you now add a value at position or score 3 and what
happens when you try and add another value to position or score 4, which
already has a value?

Adding a value to azset at score 3 like so:
Jredis-cli zadd azset 3 ‘member 3’

and running the zrange query like so:
Jredis-cli zrange azset 0 4

reveals:

1. “a sset member”
2. “member 3”

3. “sset member 2

Adding a value at position or score 3 again, like so:
Jredis-cli zadd azset 3 ‘member 3 again’

and running the zrange query like so:
Jredis-cli zrange azset 0 4

reveals that the members have been re-positioned to accommodate the new
member, like so:

1. “a sset member”
2. “member 3”

3. “member 3 again”
4. “sset member 2

Therefore, adding a new member to a sorted set does not replace existing
values but instead re-orders the members as required.

Redis also defines the concept of a hash, in which members could be
added like so:

/redis-cli hset bank accountl 2350
Jredis-cli hset bank account2 4300

You can verify the presence of the member using the hget, or its variant
hgetall, command:

/redis-cli hgetall bank

To store a complicated nested hash, you could create a hierarchical hash
key like so:

/redis-cli hset product.fruits apple 1.35
/redis-cli hset product:fruits banana 2.20

Once data is stored in any of the NoSQL data stores, you need to access
and retrieve it. After all, the entire idea of saving data is to retrieve it and
use it later

3.3 ACCESSING DATA

You have already seen some of the ways to access data. In an attempt to
verify whether records were created, some of the simplest get commands
have already been explored.

3.3.1 Accessing Documents from MongoDB:

MongoDB allows for document queries using syntax and semantics that
closely resemble SQL. Ironic as it may be, the similarity to SQL in a
NoSQL world makes querying for documents easy and powerful in
MongoDB.

You can dive right in to accessing a few nested MongoDB documents.
Once again, you use the orders collection in the database mydb, which was
created earlier in this chapter.

Databases Performing Crud
Operations

41

NoSQL Technologies

42

Start the MongoDB server and connect to it using the mongo JavaScript
shell. Change to the mydb database with the use mydb command. First,
get all the documents in the orders collection like so:

db.orders.find()

Now, start filtering the collection. Get all the orders after October 25,
2010, that is, with order date greater than October 25, 2010. Start by
creating a date object. In the JavaScript shell it would be: var refdate =
new Date(2010, 9, 25);

JavaScript dates have months starting at 0 instead of 1, so the number 9
represents October. In Python the same variable creation could be like so:

from datetime import datetime
refdate = datetime(2010, 10, 25)

and in Ruby it would be like so:
require ‘date’
refdate = Date.new (2010, 10, 25)

Then, pass refdate in a comparator that compares the order date field
values against refdate.

The query is as follows:
db.orders.find({ “order date”: {3gt: refdate}});

MongoDB supports a rich variety of comparators, including less than,
greater than, less than or equal to, greater than or equal to, equal to, and
not equal to. In addition, it supports set inclusion and exclusion logic
operators like contained in and not contained in a given set. The data set is
a nested document so it can be beneficial to query on the basis of a value
of a nested property. In Mongo, doing that is easy. Traversing through the
tree using dot notation could access any nested field. To get all documents
from the orders collection where line item name is latte, you write the
following query:

db.orders.find({ “line_items.item.name” : “latte” })

The dot notation works whether there are single nested values or a list of
them as was the case in the orders collection. MongoDB expression
matching supports regular expressions. Regular expressions can be used in
nested documents the same way they are used with top-level fields. In
relational databases, indexes are the smart way of making queries faster.
In general, the way that works is simple. Indexes provide an efficient
lookup mechanism based on a B-tree-like structure that avoids complete
table scans. Because less data is searched through to find the relevant
records, the queries are faster and more efficient. MongoDB supports the
notion of indexes to speed up queries. By default, all collections are
indexed on the basis of the id value. In addition to this default index,
MongoDB allows you to create secondary indexes. Secondary indexes can
be created at the top field level or at the nested field levels. For example,
you could create an index on the quantity value of a line item as follows:

db.orders.ensurelndex({ “line_items.quantity” : 1 });

Now, querying for all documents where quantity of a line item is 2 can be
fairly fast. Try running the following query:

db.orders.find({ “line_items.quantity” : 2 });
Indexes are stored separate from the table and they use up a namespace.

3.3.2 Accessing Data from HBase:

The most efficient way to query HBase is by using the row-key. Row-keys
in HBase are ordered, and ranges of contiguous row-keys are stored
together. Therefore, querying a row-key involves finding the range where
the starting row-key is less than or equal to the given row-key.

Designing the row-key correctly is crucial for an application's
performance. It's beneficial to relate the row-key semantically to the data.
For instance, the Google Bigtable research paper suggests using inverted
domain names for row-keys to group related content. Similarly, for an
orders table, you might design row-keys using a combination of item or
product name, order date, and category. The sequence depends on the
primary access pattern. For chronological access, use:

<date> + <timestamp> + <category> + <product>

For access by category and product names, use:
<category> + <product> + <date> + <timestamp>

While row-keys provide efficient lookup for vast data amounts, HBase
lacks built-in support for secondary indexes. Queries not leveraging row-
keys result in table scans, which are costly and slow.

3.4 UPDATING AND DELETING DATA

In the relational database world, ACID (Atomicity, Consistency, Isolation,
Durability) semantics ensure database integrity. These principles enforce
various levels of data isolation and modification control. However,
NoSQL databases often deprioritize or even disregard ACID transactions.

Understanding ACID:
Atomicity: A transaction is fully completed or fully rolled back.

Consistency: Every transaction brings the database from one valid state to
another, maintaining database invariants.

Isolation: Transactions do not interfere with each other; the result is as if
transactions were serially executed.

Durability: Once a transaction is committed, it remains so, even in the
event of a system failure.

NoSQL databases, like MongoDB, HBase, and Redis, handle updates and
deletions differently compared to traditional relational databases.

Databases Performing Crud
Operations

43

NoSQL Technologies

44

3.4.1 Updating and Modifying Data in MongoDB, HBase, and Redis

Unlike relational databases, NoSQL databases do not typically use locking
mechanisms. This design choice facilitates sharding and scalability. In
distributed systems, locking can complicate data updates and degrade
performance.

Despite the absence of locking, you can perform atomic updates using
specific techniques. For instance, update the entire document rather than
individual fields to maintain atomicity. Utilize the atomic methods
provided by the database. For MongoDB, available atomic methods
include:

$set: Updates the value of a field.

$inc: Increments the value of a field.

$push: Appends a value to an array field.

$pull: Removes instances of a value from an array field.

$addToSet: Adds a value to an array field if it does not already exist.

These methods help ensure that updates are atomic and consistent, even
without traditional locking mechanisms. By understanding and leveraging
these methods, you can effectively manage updates and deletions in
NoSQL databases, maintaining data integrity and performance.

For example, { $set : { “order date” : new Date(2010, 10, 01) } } updates
the order date in the orders collection in an atomic manner. An
alternative strategy to using atomic operations is to use the update if
current principle. Essentially this involves three steps:

1. Fetch the object.
2. Modify the object locally.

3. Send an update request that says “update the object to this new value
if it still matches its old value.”

The document or row-level locking and atomicity also applies to HBase.
HBase supports a row-level read-write lock. This means rows are locked
when any column in that row is being modified, updated, or created. In
HBase terms the distinction between create and update is not clear. Both
operations perform similar logic. If the value is not present, it’s inserted or
else updated

Therefore, row-level locking is a great idea, unless a lock is acquired on
an empty row and then it’s unavailable until it times out. Redis has a
limited concept of a transaction and an operation can be performed within
the confines of such a transaction. Redis MULTI command initiates a
transactional unit. Calling EXEC after a MULTI executes all the
commands and calling DISCARD rolls back the operations. A simple

example of atomic increment of two keys: keyl and key2 could be as
follows:

>MULTI
OK

> INCR keyl
QUEUED

> INCR key2
QUEUED

>EXEC
1) (integer) 1
2) (integer) 1

3.4.2 Limited Atomicity and Transactional Integrity:

While the specifics of minimal atomic support may differ among
databases, they share many common characteristics. This section delves
into some prevalent concepts surrounding the CAP Theorem and eventual
consistency.

The CAP Theorem posits that at any given time, it's only possible to
maximize two out of three factors:

Consistency — Ensuring that all clients have the same data view.
Availability — Guaranteeing that all clients can read and write.

Partition tolerance — Maintaining system functionality across distributed
networks.

Another important concept often discussed is eventual consistency, which
can be perplexing and frequently misunderstood.

Eventual consistency serves as a consistency model within parallel and
distributed programming domains. It can be interpreted in two primary
ways:

Over a sufficiently extended period without updates, it's anticipated that
all updates will eventually propagate through the system, resulting in
consistency across all replicas.

In the presence of ongoing updates, a given update will eventually reach a
replica or the replica will be retired from service. Eventual consistency
aligns with the principles of Basically Available, Soft State, Eventual
consistency (BASE), contrasting with the principles of ACID discussed
earlier.

Databases Performing Crud
Operations

45

NoSQL Technologies

46

3.5 SUMMARY

This chapter introduced the fundamental operations of create, read, update,
and delete within the framework of NoSQL databases. It delved into these
operations within the context of three types of NoSQL data stores:
document stores, column-oriented databases, and key/value hash maps.
MongoDB serves as an example of a document store, HBase as a column
store, and Redis as a key/value hash map.

Throughout the discussion, it became evident that across all data stores,
the emphasis lies more on data creation or insertion rather than updates. In
certain scenarios, updates are constrained. Towards the conclusion of the
chapter, the discussion extended to cover topics such as updates,
transactional integrity, and consistency.

3.6 REVIEW QUESTIONS

1. How do create, read, update, and delete operations differ in NoSQL
databases compared to traditional relational databases?

2. What are the distinctive characteristics of document stores, column-
oriented databases, and key/value hash maps in the context of NoSQL
databases?

3. How do NoSQL databases reconcile the principles of ACID with the
emphasis on data creation or insertion over updates?

% %k %k %k %k

QUERYING NOSQL STORES

Unit Structure

4.0 Objective

4.1 Introduction

4.2 Similarities Between SQL and MongoDB Query Features
4.2.1 Loading the MovieLens Data
4.2.2. MapReduce in MongoDB

4.3 Accessing Data from Column-Oriented Databases Like HBase
4.3.1 The Historical Daily Market Data

4.4 Querying Redis Data Stores

4.5 Summary

4.6 Review Questions

4.0 OBJECTIVES

e Demonstrating various query mechanisms within NoSQL databases
through examples with sample datasets.

e Exploring querying scenarios specific to MongoDB, HBase, and
Redis.

e Crafting sophisticated and intricate queries in NoSQL environments.

e Leveraging non-SQL alternatives to achieve robust querying
functionalities.

4.1 INTRODUCTION

SQL stands out as one of the simplest yet most potent domain-specific
languages ever devised. Its learning curve is gentle due to a limited
vocabulary, clear grammar, and straightforward syntax. Despite its brevity
and narrow focus, SQL excels at its intended purpose, allowing users to
manipulate structured datasets with precision akin to a skilled ninja.
Through SQL, users effortlessly filter, sort, dissect, and segment data,
harnessing the power of relations to join datasets and create intersections
and unions.

However, SQL's reliance on relational algebra restricts its utility to
relational databases exclusively, as implied by its name — SQL lacks
compatibility with NoSQL databases. Nevertheless, the absence of SQL
doesn't impede querying of datasets, as data storage inherently implies the
potential for retrieval and manipulation. NoSQL databases offer their own
mechanisms for accessing and manipulating data, often straying from
relational constraints.

47

NoSQL Technologies

48

While proponents of NoSQL databases sought alternatives to relational
databases due to structural constraints and the rigidity of ACID
transactions, they didn't necessarily reject SQL outright. Indeed, some still
yearn for SQL's familiarity in the realm of NoSQL, leading to the creation
of query languages bearing resemblance to SQL syntax and style.

In this chapter, you'll delve into numerous tips and tricks for querying
NoSQL stores, exploring various products and technologies under the
broad umbrella of NoSQL.

4.2 EXPLORING SIMILARITIES BETWEEN SQL AND
MONGODB QUERY FEATURES

Despite MongoDB's identity as a document database, its query language
exhibits striking similarities to SQL. With preliminary examples already
presented, the SQL-like query capabilities of MongoDB are self-evident.

To grasp the capabilities of MongoDB's query language and witness its
functionality firsthand, let's load a more substantial dataset into a
MongoDB database. While previous datasets in this book have been
modest in scale to emphasize MongoDB's core features, this chapter
introduces the MovieLens dataset, comprising millions of movie-rating
records.

To begin, visit grouplens.org/node/73 and download the dataset containing
one million movie-rating records. The dataset is available in tar.gz and .zip
formats; choose the appropriate format for your platform. After
downloading, extract the contents to a folder in your file system. Upon
extraction, you should have three files:

o movies.dat
. ratings.dat
o users.dat

The movies.dat data file contains data on the movies themselves. This file
contains 3,952 records, and each line in that file contains one record. The
record is saved in the following format:

<MovielD>::<Title>::<Genres>

The Movield is a simple integral sequence of numbers. The movie title is a
string, which includes the year the movie was released, specified in
brackets appended to its name. The movie titles are the same as those in
IMDB (www.imdb.com). Each movie may be classified under multiple
genres, which are specified in a pipe-delimited format. A sample line from
the file is like so:

1::Toy Story (1995).:Animation|Children’s| Comedy

The ratings.dat file contains the ratings of the 3,952 movies by more than
6,000 users. The ratings file has more than 1 million records. Each line is a
different record that contains data in the following format:

UserID::MovielD::Rating:: Timestamp

UserID and MovielD identify and establish a relationship with the user
and the movie, respectively. The rating is a measure on a 5-point (5-star)
scale. Timestamp captures the time when the ratings were recorded.

The users.dat file contains data on the users who rated the movies. The
information on more than 6,000 users is recorded in the following format:

UserID::Gender::Age::Occupation:: Zip-code
4.2.1 Loading the MovieLens Data:

To simplify the process, let's upload the data into three MongoDB
collections: movies, ratings, and users, with each collection mapping to a
corresponding .dat data file. Unfortunately, the mongoimport utility,
which is typically used for this task, doesn't support the double-colon (::)
delimiter used in the MovieLens data. As an alternative, we'll utilize a
programming language along with a MongoDB driver to parse the text
files and load the dataset into MongoDB collections.

For brevity, we'll use Ruby for this task. However, you could also opt for
Python, Java, PHP, C, or any other supported language. The following
code snippet (Listing 4-1) demonstrates how to extract and load data from
the users, movies, and ratings data files into their respective MongoDB
collections. This code employs basic file-reading and string-splitting
functionalities, coupled with the MongoDB driver to accomplish the task.
While not the most elegant solution and lacking exception handling, it
serves our immediate purpose.

LISTING 4-1: movielens_dataloader.rb

require ‘rubygems’ #can skip this line in Ruby 1.9

require ‘mongo’

field map = {
“users” => %w(_id gender age occupation zip_code),
“movies” => %w(_id title genres),
“ratings” => %w(user_id movie_id rating timestamp)

}
db = Mongo::Connection.new.db(“mydb”)

collection_map = {
“users” => db.collection(“users”),
“movies” => db.collection(“movies”),

“ratings” => db.collection(“ratings”)

Querying NoSQL Stores

49

NoSQL Technologies

50

¥
unless ARGV.length ==

puts “Usage: movielens_dataloader data_filename”
exit(0)

end

class Array
defto_h(key definition)
result hash = Hash.new()
counter =0
key definition.each do |definition|
if not self[counter] == nil then
if self[counter].is_a? Array or self[counter].is_a? Integer then
result _hash[definition] = self[counter]
else
result hash[definition] = self[counter].strip
end
else
Insert the key definition with an empty value.
Because we probably still want the hash to contain the key.
result hash[definition] =
end

For some reason counter.next didn’t work here....
counter = counter + 1
end

return result_hash
end
end

if File.exists?(ARGV[0])

file = File.open(ARGV][0], ‘r’)

data_set = ARGV[0].chomp.split(“.””)[0]
file.each { |line|
field names = field map[data_set]
field values = line.split(“::”").map { |item|
if item.to_i.to_s == item

item = item.to i

else

item

end

}

puts “field values: #{field values}”
#last field value = line.split(*::”").last
last field value = field values.last
puts “last_field value: #{last field value}”
if last _field value.split(*|”).length > 1
field values.pop
field values.push(last field value.split().join(“\n”).split(*|”))
end
field values doc = field values.to h(field names)
collection map[data_set].insert(field values doc)
h
puts “inserted #{collection_map[data_set].count()} records into the
#{collection_map[data_set].to_s} collection”
end

Once the data is loaded into the MongoDB collections, you're ready to
execute queries to manipulate and analyze it. Queries can be executed
from the JavaScript shell or from any supported programming language.
In this example, most queries will be executed using the JavaScript shell,
with a few select queries demonstrated using different programming
languages and their respective drivers. The inclusion of programming
language examples serves to illustrate that nearly all functionalities
available in the JavaScript shell are accessible through the various
language drivers.

To begin querying the MongoDB collections, ensure that the MongoDB
server is running and connect to it using the Mongo shell, which can be
found in the bin folder of your MongoDB installation directory.

In the Mongo JavaScript shell, start by retrieving a count of all the values
in the ratings collection with the following command:

db.ratings.count();

You should receive a response of 1000209, confirming that over a million
ratings were successfully uploaded.

Next, retrieve a sample set of the ratings data using the following
command:

db.ratings.find();

In the shell, you don’t need to explicitly use a cursor to display values
from a collection. The shell automatically limits the display to a maximum
of 20 rows at a time. To view more data, simply type "it" (short for iterate)

Querying NoSQL Stores

51

NoSQL Technologies

52

in the shell. If more records exist beyond the ones already displayed, you'll
see 20 more records along with a label indicating "has more."

The ratings data, for example, { “id” :
Objectld(“4cdctlea5a918708b0000001), “user 1d” : 1, “movie id” :
1193, “rating” : 5, “timestamp” : “978300760” }, makes little intuitive
sense about the movie it relates to because it’s linked to the movie id and
not its name. You can get around this problem by answering the following
questions:

e How can I get all the ratings data for a given movie?
e How do I get the movie information for a given rating?

e How do I put together a list all the movies with the ratings data
grouped by the movies they relate to?

MongoDB, relational data is correlated explicitly outside the server's
scope. MongoDB introduces the concept of a DBRef to establish
relationships between fields in different collections, but this feature has
certain limitations and doesn't offer the same level of functionality as
explicit ID-based linking.

To retrieve all ratings data for a specific movie in MongoDB, you filter the
dataset using the movie ID as the criterion. For instance, to view all
ratings for the renowned Academy Award-winning movie "Titanic," you
first need to find its ID and then use that to filter the ratings collection. If
you're unsure about the exact title string for "Titanic" but confident that
the word "titanic" appears in it, you can perform an approximate, rather
than exact, match with the title strings in the movies collection.

In a relational database management system (RDBMS), under such
circumstances, you might rely on the LIKE expression in a SQL WHERE
clause to retrieve a list of all potential candidates. In MongoDB, although
there's no LIKE expression, there's a more robust feature available: the
ability to define patterns using regular expressions. Thus, to obtain a list of
all records in the movies collection that contain "Titanic" or "titanic" in
their title, you can execute the following query:

db.movies.find({ title: /titanic/i});

This query returns the following set of documents:

{“ad” o 1721, “title” : “Titanic (1997)”, “genres” : [“Drama’,
“Romance” | }

{ “ad” : 2157, “title” : “Chambermaid on the Titanic, The (1998)”,
“genres” : “Romance”

{ “id” : 3403, “title” : “Raise the Titanic (1980)”, ‘“genres” : [
“Drama”, “Thriller”] }

[“ad” : 3404, “title” : “Titanic (1953)”, “genres” : [“Action”,
“Drama”] }

The title field in the MovieLens data set includes the year the movie was
released. Within the title field, the release year is included in parentheses.
So, if you remembered or happen to know that Titanic was released in the
year 1997, you can write a more tuned query expression as follows:

db.movies.find({ title: /titanic. *\(1997\).*/i});
This returns just one document:

[“ad” o 1721, “title” : “Titanic (1997)”, “genres” : [“Drama”,
“Romance” | }

The expression essentially looks for all title strings that have Titanic,
titanic, TitaniC, or TiTAnic in it. In short, it ignores case. In addition, it
looks for the string (1997). It also states that there may be 0 or more
characters between titanic and (1997) and after (1997). The support for
regular expressions is a powerful feature and it is always worthwhile to
gain mastery over them. The range of values for the movie id field of the
ratings collection is defined by the id of the movies collection. So to get
all ratings for the movie Titanic, which has an id of 1721, you could query
like so:

db.ratings.find({ movie id: 1721 });

To find out the number of available ratings for Titanic, you can count
them as follows:

db.ratings.find({ movie id: 1721 }).count();

The response to the count is 1546. The ratings are on a 5-point scale. To

get a list and count of only the 5-star ratings for the movie Titanic you can
further filter the record set like so:

db.ratings.find({ movie id: 1721, rating: 5 });
db.ratings.find({ movie id: 1721, rating: 5 }).count();

DATA-TYPE SENSITIVITY IN QUERY DOCUMENTS:

MongoDB query documents are data-type sensitive. That is, { movie id:
“1721” } and { movie id: 1721 } are not the same, the first one matches a
string and the second one considers the value as a number. When
specifying documents, be sure to use the correct data type. To illustrate
further, the movie id is stored as a number (integer) in the ratings and the
movies collections, so querying for a string match doesn’t return correct
results.

Therefore, the response to db.ratings .find({ movie id: 1721 }); returns up
to a total of 1,546 documents, but the response to db.ratings.find({
movie id: “1721” }); returns none.

If you browse Listing 6-1 carefully, you will notice the following line:
field values = line.split(“::”).map { |item|

if item.to_i.to_s == item

item = item.to_1i

Querying NoSQL Stores

53

NoSQL Technologies

54

else
item
end

/

This bit of code checks to see if the split string holds an integer value and
saves it as an integer, if that’s the case. Making this little extra effort to
save numerical values as numbers has its benefits. Indexing and querying
on numerical records is usually faster and more efficient than on
character-based (string) records.

Next, you may want to get some statistics of all the ratings for Titanic. To
find out the distinct set of ratings by users (from the possible set of
integers between 1 and 5, both inclusive), you could query as follows:

db.runCommand({ distinct: ‘ratings’, key: ‘rating’, query: { movie id:
1721} });

Ratings for Titanic include all possible cases between 1 and 5 (both
inclusive) so the response is like so:

{ “values” : [1,2,3,4,5], “ok”: 1}

runCommand takes the following arguments:
Collection name for the field labeled distinct
Field name for key, whose distinct values would be listed

Query to optionally filter the collection

runCommand is slightly different in pattern than the query style you have
seen so far because the collection is filtered before the distinct values are
searched for. Distinct values for all ratings in the collection can be listed in
a way that you have seen so far, as follows:

db.ratings.distinct(“rating”);

You know from the distinct values that Titanic has all possible ratings
from 1 to 5. To see how these ratings break down by each rating value on
the 5-point scale, you could group the counts like so:

db.ratings.group(

... { key: { rating:true },

... initial: { count:0 },

..cond: { movie id:1721 },

... reduce: function(obj, prev) { prev.count++; }
.

)

The output of this grouping query is an array as follows:

[
{

“rating” : 4, Querying NoSQL Stores

“count” : 500
¥
{
“rating” : 1,
“count” : 100
}s
{
“rating” : 5,
“count” : 389
¥
{
“rating” : 3,
“count” : 381
}s
{
“rating” : 2,
“count” : 176
h

]

This group by function is quite handy for single MongoDB instances but
doesn’t work in sharded deployments. Use MongoDB’s MapReduce
facility to run grouping functions in a sharded MongoDB setup. A
MapReduce version of the grouping function is included right after the
group operation is explained. The group operation takes an object as an
input. This group operation object includes the following fields: key —
The document field to group by. The preceding example has only one
field: rating.

Additional group by fields can be included in a comma-separated list and
assigned as the value of the key field. A possible configuration could be

— key: { fieldA: true, fieldB: true).

initial — Initial value of the aggregation statistic.

In the previous example the initial count is set to 0.
cond — The query document to filter the collection.
reduce — The aggregation function.

keyf (optional) — An alternative derived key if the desired key is not an
existing document field.

55

NoSQL Technologies

56

finalize (optional) — A function that can run on every item that the reduce
function iterates through. This could be used to modify existing items.

Theoretically, the example could easily be morphed into a case where
ratings for each movie are grouped by the rating points by simply using
the following group operation:

db.ratings.group(

.. { key: { movie id:true, rating:true },

.. initial: { count:0 },

.. reduce: function(obj, prev) { prev.count++; }

.y

)y

In real cases, though, this wouldn’t work for the ratings collection of 1
million items. You would be greeted instead with the following error
message:

Fri Nov 12 14:27:03 uncaught exception: group command failed: {

“errmsg” : “exception: group() can’t handle more than 10000 unique
keys”,

“code” : 10043,

“ok” : 0

/

The result is returned as a single BSON object and therefore the collection
over which the group operation is applied should not have more than
10,000 keys. This limitation can also be overcome with the MapReduce
facility.

4.2.2 MapReduce in MongoDB:

MapReduce is a patented software framework developed by Google,
designed to facilitate distributed computing across large clusters of
computers. You can learn more about Google’s MapReduce framework by
referring to the research paper titled ‘“MapReduce: Simplified Data
Processing on Large Clusters,” available online at
http://labs.google.com/papers/mapreduce.html. This framework has
inspired numerous clones and distributed computing frameworks within
the open-source community, including MongoDB's implementation.

Both Google's and MongoDB's MapReduce features draw inspiration from
similar constructs found in the realm of functional programming. In
functional programming, a map function applies a function to each
member of a collection, while a reduce function (or fold function)
aggregates results across the collection.

MongoDB's MapReduce functionality differs from Google's original
framework and is not merely a clone. Hadoop’s MapReduce, on the other
hand, serves as an open-source implementation of Google’s distributed

computing concepts, incorporating infrastructure for both column
databases (like HBase) and MapReduce-based computing.

While grasping the concept of MapReduce can initially seem daunting,
understanding its structure and flow reveals it to be a potent tool for
executing large-scale computations across distributed datasets. Starting
with simple examples and gradually progressing to more complex ones is
an effective approach to mastering this topic.

A basic example of aggregation using MapReduce could involve counting
the occurrences of each item type in a collection. To utilize MapReduce,
you must define both a map function and a reduce function, and then apply
these functions to the collection. The map function applies a specified
function to every member of the collection, emitting a key/value pair for
each member. The output of the map function, in the form of key/value
pairs, is then processed by the reduce function, which aggregates the
results across all key/value pairs to produce an output.

For instance, consider the following map function designed to count the
number of female (F) and male (M) respondents in the users collection:

> var map = function() {

... emit({ gender:this.gender }, { count:1 });
X

This map function emits a key/value pair for each item in the collection
that has a gender property. It counts 1 for each such occurrence. The
reduce function for counting the number of total occurrences of male and
female types among all users is as follows:

> var reduce = function(key, values) {
.. var count = 0;

.. values.forEach(function(v) {

.. count +=v[‘count’];

)

.. return { count:count };
o

A reduce function takes a key/value pair emitted by the map function. In
this particular reduce function, each value in the key/value pair is passed
through a function that counts the number of occurrences of a particular
type. The line count += v[‘count’] could also be written as count +=
v.count because of JavaScript’s ability to access object members and their
values as a hash data structure.

Finally, running this map and reduce function pair against the users
collection leads to an output of the total count of female and male

Querying NoSQL Stores

57

NoSQL Technologies

58

members in the users collection. The mapReduce run and result extraction
commands are as follows:

> var ratings_respondents by gender = db.users.mapReduce(map,
reduce),

> ratings _respondents_by gender

{

“result” : “tmp.mr.mapreduce 1290399924 2,

“timeMillis” : 538,

“counts” : {

“input” : 6040,

“emit” : 6040,

“output” : 2

p

“ok” : 1,

/

> db[ratings respondents by gender.result].find(),

{ad” “gender” : “F”), “value” : { “count” : 1709 }}

{ad” “gender” : “M” }, “value” : { “count” : 4331 }}

To verify the output, filter the users collection for gender values “F” and
“M” and count the number of documents in each filtered sub-collection.
The commands for filtering and counting the users collection for gender
values “F” and “M” is like so:

> db.users.find({ “gender”:"F” }).count(),

1709

> db.users.find({ “gender”:”M” }).count();

4331

Next, you can modify the map function slightly and run the map and
reduce functions against the ratings collection to count the number of each
type of rating (1, 2, 3, 4 or 5) for each movie. In other words, you are
counting the collection grouped by rating value for each movie. Here are
the complete map and reduce function definitions run against the ratings
collection:

> var map = function() {

... emit({ movie_id:this.movie_id, rating:this.rating }, { count:1 });

ol

> var reduce = function(key, values) {

.. var count = 0;
.. values.forEach(function(v) {

.. count +=v[‘count’];

L

.. return { count: count };
w4

> var group by movies by rating = db.ratings.mapReduce(map,
reduce),

> db[group by movies by rating.result].find(),

To get a count of each type of rating for the movie Titanic, identified by
movie id 1721, you simply filter the MapReduce output using nested
property access method like so:

> db[group by movies by rating.result] find({ *“ _id.movie id”’:1721 });
£ dd” o “movie id” : 1721, “rating” : 1}, “value” : { “count” : 100 }
/

{ad” { “movie id” : 1721, “rating” : 2}, “value” : { “count” : 176 }
/

{ad” :{ “movie id” : 1721, “rating” : 3}, “value” : { “count” : 381 }
/

£ dd” o “movie id” : 1721, “rating” : 4}, “value” : { “count” : 500 }
/

£ dd” o “movie id” : 1721, “rating” : 5}, “value” : { “count” : 389 }
/

In the two examples of MapReduce so far, the reduce function is identical
but the map function is different. In each case a count of 1 is established
for a different emitted key/value pair. In one a key/ value pair is emitted
for each document that has a gender property, whereas in the other a
key/value pair is emitted for each document identified by the combination
of a movie id and a rating id. Next, you could calculate the average rating
for each movie in the ratings collection as follows:

> var map = function() {
... emit({ movie_id:this.movie id }, { rating:this.rating, count:1 });

ol

> var reduce = function(key, values) {
... var sum = 0;

... var count = 0;

... values.forEach(function(v) {

... sSum +=v[‘rating’];

Querying NoSQL Stores

59

NoSQL Technologies

60

.. count +=v[‘count’];

Y

... return { average:(sum/count) };
w4y
> var average rating per movie = db.ratings.mapReduce(map, reduce),
> db[average rating per movie.result] find();

MapReduce allows you to write many types of sophisticated aggregation
algorithms, some of which were presented in this section. A few others are
introduced later in the book. By now you have had a chance to understand
many ways of querying MongoDB collections. Next, you get a chance to
familiarize yourself with querying tabular databases. HBase is used to
illustrate the querying mechanism.

4.3 ACCESSING DATA FROM COLUMN-ORIENTED

4.3.1 Databases Like Hbase:

Before delving into querying an HBase data store, it's necessary to first
populate it with data. Similar to MongoDB, you've already gained some
experience with storing and accessing data in HBase and its underlying
file system, often Hadoop Distributed FileSystem (HDFS).

This familiarity with HBase and Hadoop basics will serve as a foundation
for this section. As a practical example, historical daily stock market data
from the New York Stock Exchange (NYSE) spanning from the 1970s to
February 2010 will be loaded into an HBase instance. This dataset,
sourced from original data providers by Infochimp.org, is available for
access at www.infochimps.com/datasets/nyse-daily-1970-2010-open-
close-high-low-and-volume.

4.3.2 The Historical Daily Market Data:

The zipped download of the entire dataset is substantial at 199 MB, yet
relatively small compared to HDFS and HBase standards. The robust
infrastructures of HBase and Hadoop are capable of handling petabytes of
data spread across multiple physical machines. For the purpose of this
example, a manageable dataset was chosen intentionally to avoid
distraction from the complexities of preparing and loading large datasets.

This chapter focuses on query methods in NoSQL stores, particularly on
column-oriented databases. The principles demonstrated with smaller
datasets remain applicable to larger datasets.

The dataset is logically partitioned into three types of fields:

1. Combination of exchange, stock symbol, and date serving as the
unique identifier.

2. Price-related metrics including open, high, low, close, and adjusted Querying NoSQL Stores
close.

3. Daily trading volume.

The row key can be constructed using a combination of the exchange,
stock symbol, and date. For example, 'NYSE, AA, 2008-02-27' could be
structured as 'NYSEAA20080227' to serve as a row key. All price-related
information can be stored in a column family named 'price', while volume
data can reside in a column family named 'volume'.

The table itself is named 'historical daily stock price'. To retrieve the row
data for NYSE, AA, 2008-02-27', you can issue the following query:
get 'historical_daily stock price', 'NYSEAA20080227'

To retrieve the open price:

get ‘historical_daily stock price’, ‘NYSEAA20080227°, ‘price:open’

You could also use a programming language to query for the data. A
sample Java program to get the

open and high price data could be as follows:

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase. HBaseConfiguration;

import org.apache.hadoop.hbase.io.RowResult;

import java.util. HashMap;

import java.util. Map;

import java.io.IOException;

public class HBaseConnector {

public static Map retrievePriceData(String rowKey) throws
IOException {

HTable table = new HTable(new HBaseConfiguration(),
“historical daily stock price”);
Map stockData = new HashMap();
RowResult result = table.getRow(rowKey);
for (byte[] column : result.keySet()) {
stockData.put(new String(column), new
String(result.get(column).getValue()));

}

return stockData;
h

public static void main(String[] args) throws [OException {

61

NoSQL Technologies

62

Map stock data =
HBaseConnector.retrievePriceData(“NYSEAA20080227”);

System.out.println(stock data.get(“price:open”));
System.out.println(stock data.get(“price:high™));
}

h

HBaseConnector.java

HBase includes very few advanced querying techniques beyond what is
illustrated, but its capability to index and query can be extended with the
help of Lucene and Hive

4.4 QUERYING REDIS DATA STORES

You've gained insights into the fundamentals of data storage and access
with Redis. This section delves a bit deeper into querying data within
Redis.

Consistent with the examples provided thus far in this chapter, a sample
dataset is first loaded into a Redis instance. For demonstration purposes,
the NYC Data Mine public raw data on parking spaces, available online at
www.nyc.gov/data, is utilized. The dataset can be downloaded in a
comma-separated text format, named parking_facilities.csv.

Refer to Listing 4-2 for a straightforward Python program that parses this
CSV dataset and loads it into a local Redis store. Remember to initiate
your local Redis server prior to executing the Python script to load the
data. Running the Redis-server program, accessible in the Redis
installation directory, initiates a Redis server instance that, by default,
listens for client connections on port 6379.

LISTING 4-2: Python program to extract NYC parking facilities data

import csv

import redis

99 €C 9

f = open(“parking_facilities.csv”, “r”)
parking_facilities = csv.DictReader(f, delimiter=",)
r = redis.Redis(host="localhost’, port=6379, db=0)

def add parking facility(license number,
facility _type,
entity name,
camis_trade name,
address_bldg,

address_street name,
address_location,
address_city,
address_state,
address_zip code,
telephone number,

number of spaces):

if r.sadd(“parking_facilities set”, license number):
r.hset(“parking_facility:%s” % license number, “facility type”,
facility _type)

r.hset(“parking_facility:%s” % license_number, “entity name”,
entity name)

r.hset(“parking_facility:%s” % license_number, “camis_trade name”,
camis_trade name)

r.hset(“parking_facility:%s” % license_number, “address_bldg”,
address_bldg)

r.hset(“parking_facility:%s” % license_number, “address_street name”,
address_street name)

r.hset(“parking_facility:%s” % license_number, “address_location”,
address location)

r.hset(“parking_facility:%s” % license_number,
“address_city”,address_city)

r.hset(“parking_facility:%s” % license_number, “address_state”,
address_state)
r.hset(“parking_facility:%s” % license_number, “address_zip code”,
address_zip code)
r.hset(“parking_facility:%s” % license number, “telephone_number”,
telephone _number)
r.hset(“parking_facility:%s” % license_number, “number_of spaces”,
number of spaces)

return True
else:

return False

13 2

if name ==%“ main_ ™
for parking_facility hash in parking_facilities:

add_parking_facility(parking_facility hash[‘License
Number’],

Querying NoSQL Stores

63

NoSQL Technologies

64

parking facility hash[‘Facility Type’],
parking facility hash[‘Entity Name’],
parking_facility hash[‘Camis Trade Name’],
parking facility hash[‘Address Bldg’],
parking facility hash[‘Address Street Name’],
parking_facility hash[‘Address Location’],
parking facility hash[‘Address City’],
parking facility hash[‘Address State’],
parking_facility hash[‘Address Zip Code’],
parking facility hash[‘Telephone Number’],
parking facility hash[‘Number of Spaces’])

print “added parking_facility with %s” %
parking_facility hash[‘License Number’]
nyc_parking data_loader.py

The Python program loops through a list of extracted hash records and
saves the values to a Redis instance. Each hash record is keyed using the
license number. All license numbers themselves are saved in a set named
parking facilities_set.

To get a list of all license numbers in the set named parking_facilities list,
connect via another program or simply the command-line client and use
the following command: SMEMBERS parking facilities set All 1,912
license numbers in the set would be printed out. You can run we —/
paking facilities.csv to verify if this number is correct. Each line in the
CSV corresponds to a parking facility so the two numbers should
reconcile.

For each parking facility the attributes are stored in a hash, which is
identified by the key of the form parking facility:<license number>.
Thus, to see all keys in the hash associated with license number 1105006
you can use the following command:

HKFEYS parking facility: 1105006

The response is as follows:

—

“facility_type”

2. ‘“entity name”

3. “camis_trade name”
4. ‘“address bldg”

5. “address street name”

6. ‘“address location”

7. “address_city” Querying NoSQL Stores
8. ‘“address_state”

9. “address zip code”

10. “telephone number”

11. “number of spaces”

The license number 1105006 was first on the list returned by the
SMEMBERS parking facilities set command. However, sets are not
ordered, so rerunning this command may not result in the same license
number on top. If you need the list of members to appear in a certain
order, use the sorted sets instead of the set. All you may need to do to use
a sorted set is to replace the line

if r.sadd(“parking facilities set”, license_number): with the following:

if r.zadd(“parking facilities set”, license_number):

Now, you can query for specific values in the hash, say facility type, as
follows:

HGET parking facility: 1105006 facility type

The response is “Parking Lot”. You can also print out all values using the
HVALS command as follows:

HVALS parking facility:1105006

The response is:

1. “Parking Lot”

2. “CENTRAL PARKING SYSTEM OF NEW YORK, INC”
3.4

4.“41-61”

5. “KISSENA BOULEVARD”

6.
7. “QUEENS”
8. “NY”
9.“11355”

10. “2126296602”
11.808”

65

NoSQL Technologies Of course, it would be much nicer if you could print out all the keys and
the corresponding values in a hash. You can do that using the HGETALL
command as follows:

HGETALL parking facility: 1105006

The response is as follows:

—

. “facility type”

2. “Parking Lot”

3. “entity name”

4. “CENTRAL PARKING SYSTEM OF NEW YORK, INC”
5. “camis_trade name”

6.
7. “address_bldg”

8. “41-61”

9. “address_street name”

10. “KISSENA BOULEVARD”
11. “address_location”

12,

13. “address_city”

14. “QUEENS”

15. “address_state”

16. “NY”

17. “address_zip code”

18. “11355”

19. “telephone_number”

20. “2126296602”

21. “number of spaces”
22.“808”

Sometimes, you may not need all the key/value pairs but just want to print
out the values for a specific set of fields. For example, you may want to
print out only the address_city and the address_zip code as follows:

66

HMGET parking facility: 1105006 address_city address_zip _code
The response is:

1. “QUEENS”

2.“11355”

You could similarly set values for a set of fields using the HMSET
command. To get a count of the number of keys, you can use the HLEN
command as follows:

HLEN parking_facility:1105006

The response is 11. If you wanted to check if address city was one of
these, you can use the

HEXISTS command to verify if it exists as a key. The command is used as
follows:

HEXISTS parking_facility: 1105006 address_city
The response is 1 if the field exists and 0 if it doesn’t.

Going back to the set parking facilities set, you may just want to count
the number of members instead of listing them all using the SCARD
command as follows: SCARD parking facilities set As expected, the
response is 1912. You could verify if a specific member exists in the set
using the SISMEMBER command. To verify if 1005006 is a member of
the set, you could use the following command:

SISMEMBER parking facilities set 1105006

Integral values of 0 and 1 are returned to depict false and true for this
query that verifies if a member exists in a set.

4.5 SUMMARY

In this chapter, several advanced query mechanisms were introduced,
surpassing the complexity of those previously discussed. Querying
concepts were elucidated through practical examples. MongoDB's
querying intricacies were explored using a sample dataset containing
movie ratings. The HBase illustration utilized historical stock market data,
while Redis's querying capabilities were showcased using sample NYC
government data.

It's important to note that the coverage of querying capabilities in this
chapter is not exhaustive and does not encompass all possible use cases.
The examples provided serve as just a glimpse into the myriad
possibilities. However, navigating through these examples should help you
grasp the style and mechanics of querying within NoSQL data stores.

Querying NoSQL Stores

67

NoSQL Technologies

68

4.6 REVIEW QUESTIONS

1.

How do SQL and MongoDB query features compare and what
similarities can be identified between them?

What steps are involved in loading the MovielLens dataset into
MongoDB?

How does MongoDB implement MapReduce functionality, and what
are its advantages?

%k %k %k %k %k

S

INDEXING AND ORDERING DATA SETS

Unit Structure

5.0
5.1
52
53
54

5.5

5.6
5.7
5.8

Objective

Introduction

Essential Concepts Behind a Database Index
Indexing and Ordering in MongoDB
Creating and Using Indexes in MongoDB
5.4.1 Compound and Embedded Keys

5.4.2 Creating Unique and Sparse Indexes
5.4.3 Keyword-based Search and Multi Keys
Indexing and Ordering in CouchDB

5.5.1 The B-tree Index in CouchDB
Indexing in Apache Cassandra

Summary

Review Questions

5.0 OBJECTIVES

Develop indexes to improve query performance.

Create and maintain indexes in document databases and column-

family databases.

Organize NoSQL data sets efficiently.

Make informed design choices to create optimal indexes and ordering

patterns.

5.1 INTRODUCTION

In this chapter, we'll take steps to ensure that your queries are optimized
for speed and efficiency. In relational databases, using indexes is a
common way to enhance query performance. The same concept applies to

NoSQL databases.

Indexes are designed to boost data access performance. They function
similarly to a book's index. When you need to find a specific term or word

in a book, you have two options:

Scan the entire book page by page.

Use the index at the end to locate the pages where the term or word

appears and go directly to those pages.

69

NoSQL Technologies

70

Clearly, using the index is the more efficient choice, saving time and
effort. Similarly, in a database, you can either:

Search through the entire collection or dataset item by item.
Use the index to quickly locate the relevant data.

Again, the index lookup is the preferred method. While the analogy
between book indexes and database indexes is useful, it's important not to
stretch the similarity too far. Book indexes cover a limited subset of terms
based on free text, while database indexes apply to all data sets within a
collection, created on item identifiers or specific properties.

5.2 ESSENTIAL CONCEPTS BEHIND A DATABASE
INDEX

There is no universal formula for creating an index, but the most effective
methods are based on a few common principles. These principles often
involve hash functions and B-tree or B+-tree data structures. This section
explores these concepts to provide a theoretical foundation.

A hash function is a well-defined mathematical function that converts a
large, variable-sized, and complex data value into a single integer or set of
bytes. The output of a hash function is known by various names, such as
hash code, hash value, hash sum, and checksum. Hash codes are often
used as keys for associative arrays, also known as hash maps. Hash
functions are particularly useful for mapping complex database property
values to hash codes for index creation.

A tree data structure organizes values in a hierarchical, tree-like manner,
with links or pointers between certain nodes. A binary tree is a specific
type of tree where each node has at most two children: one on the left and
one on the right. A node can either be a parent, with up to two children, or
a leaf, being the last node in the chain. At the base of the tree is the root
node. Figure 5-1 illustrates a binary tree data structure.

root node

a

left node right node
~ ﬂ
4 { B
. S
leaf node
'd ’_‘\ ™\
1) (3 (5)
Rl O/ N

Figure 5.1

A B-tree is an extension of a binary tree, allowing each parent node to
have more than two child nodes. This structure keeps the data sorted,
enabling efficient search and data access. A B+-tree is a specific variant of
the B-tree, where all records are stored in the leaf nodes, which are
sequentially linked. B+-trees are the most commonly used tree structures
for storing database indexes.

For those interested in learning more about B-trees and B+-trees, consider
the following resources available online:

Wikipedia - B-tree
Semaphore Corporation - B-tree Algorithm
Wikipedia - B+ tree

For a more structured tutorial, you might refer to "Introduction to
Algorithms" by Cormen, Leiserson, Rivest, and Stein, ISBN 0-262-03384-
4.

Although the basic principles of indexing are similar, the implementation
and application vary across different NoSQL products. In the following
sections, we will explore indexing in MongoDB, CouchDB, and Apache
Cassandra. We will also cover effective data sorting, which is closely
related to indexing.

5.3 INDEXING AND ORDERING IN MONGO DB

MongoDB offers a wide array of options for indexing collections to
improve query performance.

By default, it creates an index on the id property for all collections.
Indexing is best understood through examples.

Once set up, you should have three collections: movies, ratings, and users.
To grasp the significance and impact of an index, it's essential to measure
query performance with and without an index. MongoDB provides built-in
tools to explain query plans and identify slow-running queries. A query
plan outlines what the database server needs to do to execute a given
query. To begin, use the explain plan utility to analyze query performance.
For example, to retrieve all items in the ratings collection, you can run a
query like this:

frustrating();

movie lens_indexation

To run explain plan for this query you can run this query:
frustrating().explain();

movielens_indexes.txt

The output of the explain plan would be something like this:

{

Indexing And Ordering Data Sets

71

NoSQL Technologies

72

“cursor” : “BasicCursor”,

“nscanned” : 1000209,

“nscannedObjects” : 1000209,
“n” : 1000209,
“millis” : 1549,
“indexBounds™ : {
}

}

The output indicates that it took 1,549 milliseconds to return 1,000,209
documents, examining 1,000,209 items in the process. It also mentions
that a BasicCursor was used.

The explain function's output is a document with several properties:

cursor: The type of cursor used to return the query result sets. It can be a
basic cursor (indicating a table scan) or a B-tree cursor (indicating an
index was used).

nscanned: The number of entries scanned. When an index is used, this
corresponds to the number of index entries.

nscannedObjects: The number of documents scanned.
n: The number of documents returned.
millis: The time, in milliseconds, taken to execute the query.

indexBounds: The minimum and maximum index keys within which the
query was matched. This field is only relevant when an index is used.

The next example demonstrates how to query a subset of the ratings
collection. This collection contains rankings (on a scale of 1 to 5) for
various movies by different users. To filter the ratings collection to a
subset related to a specific movie, we need to correlate movie IDs in the
ratings collection with names in the movies collection. We'll use the
original Toy Story (Toy Story 1) as an example, but you can choose any
movie.

To retrieve the document related to Toy Story, we can use a regular
expression. To query all documents related to Toy Story in the movies
collection, use the following approach:

db.movies.find({ title: /Toy Story/i })

This query uses a regular expression to match the title field in the movies
collection, ensuring all documents related to Toy Story are retrieved

db.movies.find({title: /Toy Story/i});

movielens_indexes.txt
The output should be as follows:

{ “ad” . 1, “title” : “Toy Story (1995)”, “genres” : [“Animation”,
“Children’s”, “Comedy”] }

{ “1d” : 3114, “title” : “Toy Story 2 (1999)”, “genres” : [“Animation”,
“Children’s”, “Comedy”] }

I guess Toy Story 3 wasn’t released when these ratings were compiled.
That’s why you don’t see that in the list. Next, take the movie ID for “Toy
Story”, which happens to be 1, and use that to find all the relevant ratings
from all the users. Before you do that, though, run the explain plan
function to view how the database ran the regular expression query to find
Toy Story in the movies collection. You can run the explain plan like so:

db.movies.find({title: /Toy Story/i}).explain();
movielens_indexes.txt

The output should be as follows:

{

“cursor” : “BasicCursor”,
“nscanned” : 3883,
“nscannedObjects” : 3883,
“n”: 2,
“millis” : 6,
“indexBounds” : {
}

}

Run a count, using db.movies.count();, on the movies collection to verify
the number of documents and you will observe that it matches with the
nscanned and nscannedObjects value of the query explanation. This means
the regular expression query led to a table scan, which isn’t efficient. The
number of documents was limited to 3,883 so the query still ran fast
enough and took only 6 milliseconds. In a short bit you will see how you
could leverage indexes to make this query more efficient, but for now
return to the ratings collection to get a subset that relates to Toy Story.

To list all ratings that relate to Toy Story (more accurately Toy Story
(1995)) you can query as follows:

db.ratings.find({movie id: 1});
movielens_indexes.txt

To see the query plan for the previous query run explain as follows:

Indexing And Ordering Data Sets

73

NoSQL Technologies

74

db.ratings.find({movie id: 1}).explain();
movielens_indexes.txt

The output should be as follows:

{

“cursor” : “BasicCursor”,
“nscanned” : 1000209,
“nscannedObjects” : 1000209,
“n”: 2077,

“millis” : 484,
“indexBounds” : {

}

}

At this stage it’s evident that the query is not running optimally because
the nscanned and nscannedObjects count reads 1,000,209, which is all the
documents in the collection. This is a good point to introduce indexes and
optimize things.

5.4 CREATING AND USING INDEXES IN MONGODB

The ensurelndex keyword does most of the index creation magic in
MongoDB. The last query filtered the ratings collection based on the
movie id so creating an index on that property should transform the
lookup from table scan to B-tree index traversal. First, verify if the theory
does hold good.

Create the index by running the following command:
db.ratings.ensurelndex({ movie id:1 });
movielens_indexes.txt

This creates an index on movie id and sorts the keys in the index in an
ascending order. To create an index with keys sorted in descending order
use the following:

db.ratings.ensureIndex({ movie id:-1 });
movielens_indexes.txt

Then rerun the earlier query as follows:
db.ratings.find({movie _id: 1});
movielens_indexes.txt

Verify the query plan after that as follows:

db.ratings.find({movie id: 1}).explain();
movielens_indexes.txt

The output should be:
{

“cursor” : “BtreeCursor movie id 17,
“nscanned” : 2077,
“nscannedObjects” : 2077,

“n”: 2077,

“millis” : 2,

“indexBounds” : {

“movie id”: [

}
j

At first glance, it's evident that the number of items (and documents)
looked up has drastically reduced from 1,000,209 (the total number of
documents in the collection) to 2,077 (the number of documents matching
the filter criteria). This improvement signifies a substantial performance
boost. In algorithmic terms, the document search has transitioned from
linear time complexity to constant time complexity. Consequently, the
total time to run the query dropped from 484 milliseconds to just 2
milliseconds, resulting in a reduction of over 99 percent in query
execution time.

The query plan's cursor value indicates that the movie id 1 index was
used. You can experiment by creating an index with keys sorted in
descending order and rerunning the query and the query plan. However,
before executing the query, analyze the list of indexes in the ratings
collection to determine how to force a particular index.

Retrieving a list (or array) of all indexes is straightforward. You can use
the following query

db.ratings.getIndexes();

Assuming there are two indexes on movie _id (one in ascending order and
one in descending order), along with the default id index, the list of
indexes should include these three. The output of getindexes is as follows:

Indexing And Ordering Data Sets

75

NoSQL Technologies

76

]

You have already created an index on movie id using a descending order

“name’, : “_id_”’
“ns” : “mydb.ratings”,
“k LY
ey’ : {
113 idn . 1

}

“ id” : Objectld(“4d02ef30e63c3e6770056361),
“ns” : “mydb.ratings”,
“key” : {

“movie id”: -1

5

“name” : “movie id -1”

“ id” : Objectld(“4d032faee63¢c3e67700563707),
“ns” : “mydb.ratings”,
“key” : {
“movie id”: 1
s

“name” : “movie_id 17

sort using the

following command:

db.ratings.ensureIndex({ movie id:-1 });

movielens_indexes.txt

If required, you could force a query to use a particular index using the hint
method. To force the descending order index on movie id to get ratings

related to “Toy Story (1995)” you can query as follows:

db.ratings.find({ movie _id:1 }).hint({ movie id:-1 });

movielens_indexes.txt

Soon after running this query, you can verify the query plan to see which
index was used and how it performed. A query plan for the last query
using the descending order index on movie id can be accessed as follows:

db.ratings.find({ movie _id:1 }).hint({ movie id:-1 }).explain();
movielens_indexes.txt

The output of the query explain plan is as follows:

{

“cursor” : “BtreeCursor movie id -17,
“nscanned” : 2077,
“nscannedObjects” : 2077,

“n”: 2077,

“millis” : 17,

“indexBounds” : {

“movie id”: [

}

The explain plan output confirms that the descending order index on
movie id, identified by movie id -1, was utilized. It also shows that,
similar to the ascending order index, the descending order index accessed
only 2,077 items.

However, there's an interesting detail in the output. Despite using an index
and scanning only a limited number of documents, it took 17 milliseconds
to return the result set. This is significantly less than the 484 milliseconds
required for a table scan but notably more than the 2 milliseconds taken by
the ascending order index. This discrepancy might be because the
movie_id 1 is at the beginning of the ascending order list, and the results
might have been cached from a previous query.

Ascending order indexes do not always outperform descending order
indexes when accessing documents at the beginning of the list, nor do
descending order indexes consistently outperform ascending order indexes
when accessing documents at the end of the list. Typically, both index
types perform similarly for items near the middle of the list. To verify this,
you can use both indexes to search for ratings for a movie whose movie id
is at the other end.

Indexing And Ordering Data Sets

77

NoSQL Technologies

78

The movie id field in the ratings collection corresponds to the id field in
the movies collection. The id field, like the movie id field, has integer
values. Therefore, finding the movie id at the top of the descending order
sort is equivalent to finding the maximum value for the id field in the
movies collection. One way to determine the maximum _id value in the
movies collection is to sort it in descending order as follows:

db.movies.find().sort({ id: -1 }).limit(1);

This query sorts the id field in descending order and returns the first
document, which will have the highest id value. You can then use this
movie _id to test the performance of both the ascending and descending
order indexes.

db.movies.find().sort({ id:-1 });
movielens_indexes.txt

The JavaScript console returns only 20 documents at a time so it’s easy to
find the maximum value, which is 3,952, at a quick glance. If you are
running this query using a language API or any other mechanism you may
want to limit the number of items in the result. Because only one item is
required, you could simply run the query like so:

db.movies.find().sort({ id:-1 }).limit(1);
movielens_indexes.txt

The movie id 3952 corresponds to Contender, The (2000). To get ratings
for the movie The Contender, you could use either the ascending or the
descending ordered index on movie id. Because the objective here is to
analyze how both of these indexes perform for an item that satisfies
boundary conditions, you can use both of them one after the other. In both
cases you can also run the query plans. The query and query plan
commands for the ascending order movie_id index are as follows:

db.ratings.find({ movie id:3952 }).hint({ movie id:1 });
db.ratings.find({ movie 1d:3952 }).hint({ movie id:1 }).explain();
movielens_indexes.txt

The output of the query plan is like so:
{

“cursor” : “BtreeCursor movie id 17,
“nscanned” : 388,

“nscannedObjects” : 388,

“n” : 388,

“millis” : 2,

“indexBounds™ : {

“movie id”: [

3952,
3952

}

The query and query plan commands for the descending order movie id
index is as follows:

db.ratings.find({ movie 1d:3952 }).hint({ movie id:-1 });
db.ratings.find({ movie 1d:3952 }).hint({ movie id:-1 }).explain();
{

“cursor” : “BtreeCursor movie id -17,
“nscanned” : 388,
“nscannedObjects” : 388,
“n” : 388,
“millis” : 0,
“indexBounds” : {
“movie id”: [
[
3952,
3952

}

movielens_indexes.txt

From multiple runs of these queries, it seems that values at the extremes
don't consistently benefit from indexes that start at the corresponding end.
However, it's important to remember that the query plan output is not
idempotent. Each execution can yield a different result. For instance,
values might be cached, so the underlying data structures may not be
accessed on subsequent runs. Additionally, for smaller data sets like the
movies collection, the difference is negligible, and extraneous overheads
such as I/O lag can significantly affect response time. Generally, for large
data sets, a sort order that aligns with the queried item should be used.

Indexing And Ordering Data Sets

79

NoSQL Technologies

80

Occasionally, after making numerous modifications to a collection, it can
be beneficial to rebuild indexes. To rebuild all indexes for the ratings
collection, you can run the following command:

db.ratings.relndex();

This command will rebuild all indexes on the ratings collection, ensuring
they are optimized and up-to-date.

db.ratings.relndex();

movielens_indexes.txt

You can alternatively use the runCommand to reindex:
db.runCommand({ relndex:’ratings’ });
movielens_indexes.txt

Rebuilding indexes is not required in most cases unless the size of the
collection has changed in a considerable way or the index seems to be
occupying an unusually large amount of disk space Sometimes, you may
want to drop and create new indexes instead of rebuilding the ones that
exist. Indexes can be dropped with the dropIndex command:

db.ratings.dropIndex({ movie id:-1 });
movielens_indexes.txt

This command drops the descending order movie id index. You can also
drop all indexes if need

be. All indexes (except the one of the id field) can be dropped as follows:
db.ratings.dropIndexes();

movielens_indexes.txt

5.4.1 Compound and Embedded Keys:

You have created indexes on only a single field or property. It is also
possible to create compound indexes, for example, to create an index on
movie id and ratings fields together. The command to create such an
index is:

db.ratings.ensurelndex({ movie id:1, rating:-1 });
movielens_indexes.txt

This creates a compound index on movie id (ascending order) and rating
(descending order). You can create three more indexes out of the four
possible compound indexes involving movie id and rating. The four
possibilities arise due to the potential combinations of ascending and
descending order sorts for the two keys. The order of the sort can impact

queries involving sorting and range queries, so it's important to consider
the order when defining compound indexes for your collection.

A compound index involving movie id and rating can be used to query
documents that match both these keys, as well as for queries that match on
movie_id alone. When using this index to filter documents based on
movie id alone, the behavior is similar to using a single-field index on
movie id. Compound keys are not limited to two keys; you can include as
many keys as needed. For example, to create a compound index for
movie_id, rating, and user_id, you would use the following command:

db.ratings.ensurelndex({ movie id: 1, rating: -1, user id: 1 });
This index can be used to query for the following combinations:
movie_id, rating, and user_id
movie_id and rating
movie id

Compound indexes can also include nested (or embedded) fields. Before
exploring how compound indexes involve nested fields, let's cover how to
create a single index involving a nested field. To illustrate, let's use a
collection of people (named people2). An element of the people2
collection is as follows:

{
“ 1d” : Objectld(“4d0688c6851e434340b173b77),

“name” : “joe”,

“age” : 27,

“address” : {
“city” : “palo alto”,
“state” : “ca”,
“zip” : “94303”,

2

“country” : “us

}

You can create an index on the zip field of the address field as follows:
db.people2.ensurelndex({ “address.zip”:1 });
movielens_indexes.txt

Next, you can create a compound index for the name and address.zip
fields:

db.people2.ensurelndex({ name:1, “address.zip™:1 });

Indexing And Ordering Data Sets

81

NoSQL Technologies

82

movielens_indexes.txt

You can also choose the entire sub-document as the key of an index so
you can create a single index

for the address field:
db.people2.ensurelndex({ address:1 });
movielens_indexes.txt

This indexes the entire document and not just the zip field of the
document. Such an index can be used if an entire document is passed as a
query document to get a subset of the collection. A MongoDB collection
field can also contain an array instead of a document. You can index such
fields as well. Now consider another example of an orders collection to
illustrate how array properties can be indexed. An element of the orders
collection is as follows:

{
“ id” : Objectld(“dcecff35d3c7ab3d1941b1037),

“order date” : “Sat Oct 30 2010 22:30:12 GMT-0700 (PDT)”,

“line_items” : [

{
“item” : {
“name” : “latte”,
“unit_price” : 4
s
“quantity” : 1
s
{
“item” : {
“name” : “cappuccino”,
“unit_price” : 4.25
}s
“quantity” : 1
}s
{

“item” : {
“name” : “regular”,

“unit_price” : 2

“quantity” 12 Indexing And Ordering Data Sets

}

You could index with line items:
db.orders.ensurelndex({ line items:1 });
movielens_indexes.txt

When an indexed field contains an array, each element of the array is
added to the index.

In addition, you could index by the item property of the line items array:
db.orders.ensurelndex({ “line_items.item™:1 });
movielens_indexes.txt

You could go one level further and index it by the name property of the
item document contained in

the line_items array as follows:

db.orders.ensurelndex({ “line_items.item.name”:1 });
movielens_indexes.txt

So, you could query by this nested name field as follows:
db.orders.find({ “line_items.item.name”:”latte” });
movielens_indexes.txt

Run the query plan to confi rm that the cursor value used for the query is
BtreeCursor line_items.item.name 1, which as you know indicates the use
of the nested index.

5.4.2 Creating Unique and Sparse Indexes:

MongoDB offers various options to index documents for efficient query
performance. Indexes can also serve the purpose of imposing constraints.
To create a sparse index, you can explicitly specify it as follows:

db.ratings.ensurelndex({ movie id: 1 }, { sparse: true });

A sparse index means that documents with a missing indexed field are
completely ignored and left out of the index. While this can be desirable,
it's important to note that a sparse index may not reference all documents
in the collection.

MongoDB also supports creating unique indexes. For example, to create a
unique index on the title field of the movies collection, you can use:

83

NoSQL Technologies

84

db.movies.ensurelndex({ title: 1 }, { unique: true });

If two items in the movies collection had the same title, a unique index
would not be created unless you explicitly specified that all duplicates
after the first entry be dropped. This can be done as follows:

db.movies.ensurelndex({ title: 1 }, { unique: true, dropDups: true });

If a document in the collection contains a missing value for the indexed
field, a null value will be inserted in place of the missing value. Unlike a
sparse index, the document will not be skipped. Additionally, if two
documents are missing the indexed field, only the first one is saved; the
rest would be ignored in the collection.

5.4.3 Keyword-based Search and Multikeys:

Keyword-based search and multikeys are other important aspects of
MongoDB indexes. To enhance the query performance of a regular
expression-based search in a text field, you can create an index like so:

db.movies.ensurelndex({ title: "text" });

This index enables a text search on the title field, improving the efficiency
of queries that use regular expressions to search for specific patterns in the
text

db.movies.ensurelndex({ title:1 });

In some cases, though, creating a traditional index may not be enough,
especially when you don’t want to rely on regular expressions and need to
do a full text search. You have already seen that a field that contains an
array of values can be indexed. In such instances, MongoDB creates
multikeys: one for each unique value in the array. For example, you could
save a set of blogposts in a collection, named blogposts, where each
element could be as follows:

{
“ 1d” : Objectld(“4d06bf4c851e434340b173c3”),

“title” : “NoSQL Sessions at Silicon Valley Cloud Computing Meetup in
January

20117,
“creation_date” : “2010-12-06",
“tags” : [

“amazon dynamo”,

“big data”,

“cassandra”,

“cloud”,
“couchdb”,
“google bigtable”,
“hbase”,
“memcached”,
“mongodb”,
“nosql”,
“redis”,
“web scale”

]

§

Now, you could easily create a multikey index on the tags field as follows:
db.blogposts.ensurelndex({ tags:1 });

So far it’s like any other index but next you could search by any one of the
tag values like so:

db.blogposts.find({ tags:”nosql” });

This feature can be used to build out a complete keyword-based search. As
with tags, you would need to save the keywords in an array that could be
saved as a value of a field. The extraction of the keywords itself is not
done automatically by MongoDB. You need to build that part of the
system yourself. Maintaining a large array and querying through numerous
documents that each hold a large array could impose a performance drag
on the database. To identify and preemptively correct some of the slow
queries you can leverage the MongoDB database profiler. In fact, you can
use the profiler to log all the operations.

The profiler lets you define three levels:

0 — Profiler is off

1 — Slow operations (greater than 100 ms) are logged

2 — All operations are logged

To log all operations you can set the profiler level to 2 like so:
db.setProfilingLevel(2);

The profiler logs themselves are available as a MongoDB collection,
which you can view using a

Indexing And Ordering Data Sets

85

NoSQL Technologies

86

query as follows:
db.system.profile.find();

If you have been following along until now, you have theoretically learned
almost everything there is to learn about indexes and sorting in MongoDB.
Next, you use the available tools to tune the query to optimal performance
as you access data from your collections.

5.5 INDEXING AND ORDERING IN COUCHDB

In CouchDB, indexing is automatic and triggered for all changed data sets
when they are first read after the change. This indexing mechanism is
different from MongoDB's, where indexes need to be explicitly created.
CouchDB follows the MapReduce style data manipulation. The map
function emits key/value pairs based on the collection data, which leads to
view results. When these views are accessed for the first time, a B-tree
index is built from this data. Subsequent queries return data from the B-
tree, and the underlying data remains untouched. This means that queries
after the first one benefit from the B-tree index.

5.5.1 The B-tree Index in CouchDB:

A B-tree index scales well for large amounts of data. Despite significant
data growth, the height of a B-tree remains in single digits, enabling fast
data retrieval. In CouchDB, the B-tree implementation has specialized
features such as MultiVersion Concurrency Control (MVCC) and an
append-only design. MVCC allows multiple reads and writes to occur in
parallel without the need for exclusive locking. This is similar to
distributed software version control systems like GitHub, where all writes
are sequenced and reads are not impacted by writes. CouchDB uses a _rev
property to hold the most current revision value. Like optimistic locking,
writes and reads are coordinated based on the rev value. Therefore, each
version is the latest one at the time a client starts reading the data. As
documents are modified or deleted, the index in the view results is
updated.

5.6 INDEXING IN APACHE CASSANDRA

Apache Cassandra is a hybrid between a column-oriented database and a
pure key/value data store, incorporating ideas from Google Bigtable and
Amazon Dynamo. Like column-oriented databases, Cassandra supports
row-key-based order and index by default. In addition, Cassandra also
supports secondary indexes. Secondary indexes support in Cassandra is
explained using a simple example. The same example is revisited to
explain support for secondary indexes.

To follow along, start the Cassandra server using the cassandra program in
the bin directory of the Cassandra distribution. Then connect to Cassandra
using the CLI as follows:

PS C:\applications\apache-cassandra-0.7.4> .\bin\cassandra-cli -host
localhost

Starting Cassandra Client

Connected to: “Test Cluster” on localhost/9160
Welcome to cassandra CLI

Type ‘help;’ or *?° for help. Type ‘quit;’ or ‘exit;’ to quit.

When your setup is complete, make CarDataStore the current keyspace as
follows:

[default@unknown] use CarDataStore;
Authenticated to keyspace: CarDataStore

Use the following command to verify that the data you added earlier exists
in your local Cassandra data store:

[default@CarDataStore] get Cars[‘Prius’];
=> (column=make, value=746179617461, timestamp=1301824068109000)

=> (column=model, value=70726975732033,
timestamp=1301824129807000)

Returned 2 results.

The Cars column-family has two columns: make and model. To make
querying by values in the make column more efficient, create a secondary
index on the values in that column. Since the column already exists,
modify the definition to include an index. You can update the column-
family and column definition as follows:

[default@CarDataStore] update column family Cars with
comparator=UTF8Type

... and column metadata=[{column name: make, validation class:
UTF8Type,

index type: KEYS},

... {column_name: model, validation_ class: UTF8Type}];
9f03d6cb-7923-11e0-aa26-e700f669bcfc

Waiting for schema agreement...

... schemas agree across the cluster

cassandra_secondary index.txt

The update command created an index on the column make. The type of
index created is of type KEYS. Cassandra defi nes a KEYS type index,

Indexing And Ordering Data Sets

87

NoSQL Technologies

88

which resembles a simple hash of key/value pairs. Now, query for all
values that have a make value of toyota. Use the familiar SQL-like syntax
as follows:

[default@CarDataStore] get Cars where make = ‘toyota’;

RowKey: Prius

=> (column=make, value=toyota, timestamp=1301824068109000)
=> (column=model, value=prius 3, timestamp=1301824129807000)
RowKey: Corolla

=> (column=make, value=toyota, timestamp=1301824154174000)
=> (column=model, value=le, timestamp=1301824173253000)

2 Rows Returned.

cassandra_secondary index.txt

Try another query, but this time fi Iter the Cars data by model value of
prius 3 as follows:

[default@CarDataStore] get Cars where model = “prius 3’;
No indexed columns present in index clause with operator EQ
cassandra_secondary index.txt

The query that filters by make works smoothly but the one that fi lters by
model fails. This is because there is an index on make but not on model.
Try another query where you combine both make and model as follows:

[default@CarDataStore] get Cars where model = ‘prius 3’ and make =
‘toyota’;

RowKey: Prius

=> (column=make, value=toyota, timestamp=1301824068109000)
=> (column=model, value=prius 3, timestamp=1301824129807000)
1 Row Returned.

cassandra_secondary index.txt

The index works again because at least one of the filter criteria has an
indexed set of values. The example at hand doesn’t have any numerical
values in its columns so showing a greater-than or less- than filter is not
possible. However, if you did want to leverage a filter for such an

inequality comparator- based query then you are going to be out of luck.
Currently, the KEYS index does not have the capability to perform range
queries. Range queries via indexes may be supported in the future if
Cassandra includes a B-tree, or a similar index type. The rudimentary
KEYS index isn’t sufficient for range queries.

5.7 SUMMARY

In this chapter, you explored the details of indexing documents and their
fields in MongoDB. You also learned about the automatic view indexing
in CouchDB. A prominent theme that emerged was that both databases
support indexes, and these indexes aren't drastically different from those in
relational databases.

You also gained insights into special features, such as how arrays in
MongoDB are indexed as multi-keys, and how CouchDB automatically
indexes all documents that have changed since the last read.

In addition to indexes in document databases, you learned about indexing
capabilities in Apache Cassandra, a popular column-family database.

5.8 REVIEW QUESTIONS

Ql. How does MongoDB index arrays, and what benefit does this
provide?

Q2. Explain the automatic view indexing mechanism in CouchDB and
its impact on query performance.

Q3. What distinguishes Apache Cassandra's indexing capabilities from
other databases, and how does it handle secondary indexes?

% % %k %k %k

Indexing And Ordering Data Sets

&9

90

6

MANAGING TRANSACTIONS AND DATA

INTEGRITY

Unit Structure

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Objective

Introduction

Managing Transactions and Data Integrity

RDBMS and ACID

Distributed ACID Systems

Upholding CAP

Consistency Implementations Using NoSQL in The Cloud
Google App Engine Data Store

Amazon SimpleDB

Summary

6.10 Reference for further reading
6.11 Unit End Exercises

6.0 OBJECTIVE

To understand the concept of RDBMS

To study the Distributed ACID Systems

Exploring ready-to-use NoSQL databases in the cloud
Leveraging Google AppEngine and its scalable data store

Using Amazon SimpleDB

6.1 INTRODUCTION

The NoSQL databases in compact not only SQL are not arranged in
tabular format and store data differently relative to relational tables.

NoSQL databases of various types based on their data model. The

main types are document, key & value, wide & column, and graph.

They give flexible schemas and scale easily with substantial amounts

of data and high user loads.

NoSQL databases are broadly used in real-time web applications and
big data, because their main advantages are high scalability and high

availability.

NoSQL databases are also the selected choice of developers, as they
naturally lend themselves to an agile development paradigm by fast
adapting to changing requirements.

NoSQL databases enable the data to be stored in ways that are more
intuitive and easier to understand, or closer to the use of the data is
used by applications with little transformations required when storing
or retrieving using NoSQL-style APIs.

Moreover, NoSQL databases can take full benefit of the cloud to
deliver zero downtime

6.2

MANAGING TRANSACTIONS AND DATA

INTEGRITY

Transaction management focuses on guaranteeing that transactions
are correctly stored in the database.

The transaction manager is the member of a DBMS that processes
transactions. A transaction is a sequence of behaviors to be taken on
the database such that they must be entirely completed or entirely
aborted.

A transaction is a logical part of work. All its elements must be
processed else the database will be inconsistent.

For example, with a sale of a product, the transaction consists of at
least two parts: an update to the inventory on hand, and an update to
the customer data for the items sold in order to bill the customer after.

Updating only the inventory or only the customer information would
create a database absence of integrity and an inconsistent database.

Transaction managers are designed to achieve the ACID (atomicity,
consistency, isolation, and durability) concept. These attributes are:

1.

Atomicity: If a transaction has two or more single pieces of
information, either all of the pieces are committed or none are.

Consistency: Either a transaction creates a reasonable new database
state or, if any failure occurs, the transaction manager returns the
database to its earlier state.

Isolation: A transaction in process and not now committed must
remain isolated from any other transaction.

Durability: Committed data are saved by the DBMS so that, at the
time of a failure and system recovery, these data are available in their
correct state.

Transaction atomicity needs all transactions to be processed on an all
or nothing basis and that any group of transactions is serializable.

Managing Transactions and Data
Integrity

91

NoSQL Technologies

92

6. When a transaction is executed, either all its changes to the database
are completed, else none of the changes are committed.

7. The entire unit of work must be processed. If a transaction is
terminated before it is completed, the transaction manager must undo
the executed actions to restore the database to its previous state before
the transaction commences.

8. If a transaction is successfully completed, it does not require to be
undone. For efficiency, transactions should be no bigger than
necessary to ensure the integrity of the database.

e For example, in accounting management, a debit and credit would be
a comparable transaction, because this is the minimum amount of
work needed to hold the books in balance.

e Serializability connects to the execution of a set of transactions. An
interleaved execution schedule is serializable if its result is equivalent
to a non interleaved schedule.

e Interleaved operations are frequently used to increase the efficiency of
computing resources, so it is not unusual for the components of
numerous transactions to be interleaved.

e Interleaved transactions cause problems when they involve each other
and, as a result, knows the correctness of the database.

e The ACID concept is essential to concurrent update control and
recovery after a transaction failure.

6.3 RDBMS AND ACID

e RDBMS stands for Relational Database Management System.
RDBMS is the justification for SQL, and for all latest database
systems like MS SQL Server, IBM DB2, Oracle, MySQL, and
Microsoft Access.

e A Relational database management system (RDBMS) is a database
management system (DBMS) that depends on the relational model as
introduced by E. F. Codd in 1970.

e The data in an RDBMS is stored in database is called the tables. This
table is mainly a collection of associated data entries and its collection
of numerous columns and rows.

e Every table is divided up into smaller entities called fields. A field is a
column in a table that is developed to maintain specific information
about every record in the table.

e Example CUSTOMERS table consists of different fields like id,
name, age, Salary, City and Country.

A record means a row of data is each individual entry that found in a
table. For example, there are seven records in the above
CUSTOMERS table.

A column is a vertical unit or entity in a table that contains all
information related with a specific field in a table.

A NULL value in a table is a value in a field that appears to be blank
or does not exist, which means a field with a NULL value is the same
as a field with no value.

Constraints are the rules mandatory on data columns on a table. These
are used to restrict the type of data that can go into a table. This makes
sure the accuracy and reliability of the data in the database.

S.No. | Constraints

1. NOT NULL Constraint
Ensures that a column cannot have a NULL value.

2. DEFAULT Constraint
Provides a default value for a column when none is
specified.

3. UNIQUE Key
Ensures that all the values in a column are different.

4. PRIMARY Key
Uniquely identifies each row/record in a database table.

5. FOREIGN Key
Uniquely identifies a row/record in any another database
table.

6. CHECK Constraint
Ensures that all values in a column satisfy certain
conditions.

7. INDEX Constraint
Used to create and retrieve data from the database very
quickly.

Data Integrity:

The following categories of data integrity exist with each RDBMS —

Entity Integrity This ensures that there are no duplicate rows in a
table.

Domain Integrity | Enforces valid entries for a given column by
restricting the type, the format, or the range of
values.

Managing Transactions and Data
Integrity

93

NoSQL Technologies

94

Referential Rows cannot be deleted, which are used by other
integrity records

User-Defined Enforces some specific business rules that do not
Integrity fall into entity, domain or referential integrity.

Database Normalization:

Decomposition of Relation

Conditions

Database normalization is the process of competently organizing data
in a database. There are two explanations for this normalization
process.

Removing redundant data, for example, storing the same data on
multiple tables.

It means that data dependencies make sense.

Both these explanations are worthy objective as they reduce the
amount of space or size a database consumes and ensures that data is
logically stored.

Normalization collection of a series of guidelines that help direct you
in creating a good database structure.

Normalization guidelines are separated into normal forms, think of a
form as the format or the way a database structure is planned.

The main aim of normal forms is to organize or store the database
structure, so that it complies with the rules of first normal form, then
second normal form and in the end the third normal form.

It is our choice to take it ahead and go to the Fourth Normal Form,
Fifth Normal Form and so on, but in general, the Third Normal Form
is more than sufficient for a normal database Application.

INF 2NF SNF 4NF 5NF

R R, R, R,, R,
R, R,, R, R,,
23 R33 R45
Ry, Ras
R

Eliminate Eliminate Partial Eleminate Eliminate Eliminate

Repeating Functional Transitive Multi-values Join
Groups Dependency Dependency Dependency Dependency

Fig. 1 Normalization

ACID Properties:

A transaction is a very small part of a program and it may aim to contain
several low level tasks. A transaction in a database system must preserve
Atomicity, Consistency, Isolation, and Durability jointly known as ACID
properties in order to ensure accuracy, completeness, and data integrity.

1. Atomicity:

e This property defines that a transaction must be treated as an atomic
unit, that is, either all of its operations are executed or none.

e There must be no state in a database where a transaction remains
partially completed.

e States should be defined either advance the execution of the
transaction or after the execution or abortion or failure of the
transaction.

N

. Consistency:

e The database must remain in a consistent state after a particular
transaction.

e No transaction should have any negative effect on the data residing in
the database.

e If the database was in a compatible state before the execution of any
transaction, it must also remain consistent after the execution of the
transaction.

w

. Durability:

e The database should be durable enough to hold all its latest updates
even if the system is unsuccessful or restarts.

e [f a transaction updates a chunk of data in a database and commits,
then the database will hold the altered data.

e [fatransaction commits / succeeds but the system fails / aborts before
the data could be written on to the disk, then that data will be updated
once the system springs back into action.

N

. Isolation:

e In a database system where multiple transactions are being executed
simultaneously and in parallel, the property of isolation defines that
all the transactions will be carried out and executed as if it is the only
transaction in the system.

e No transaction will influence the existence of any other transaction.

Managing Transactions and Data
Integrity

95

NoSQL Technologies

96

Atomicity

All or nothing '

&

i commit all
e S
| s 0B

Consistency

Preserving database invariants

‘ consistent state A ’
|

Transa?ctions
I

v
[consistent state B }

Transaction
el | U ——
-

Isolation Durability
o : 7 Data is persisted after transaction is
Concurrent transactions are ! committed even in a system failure
isolated from each other i S TR S e R R C R

) i transaction |

i i N T ’

| write 1 1.commit

| Twrite2 ~-~o

| Transaction A “ Tt~ N

|——————— isolated _w i i TN ‘

: write 3 GJ =7 i . 2.regllcated 2.rep\||ciated

| - - DB i ! A SA |

| writed | @ @ |

/| Transaction B i i _ i |

[S i i replicaa replicab |
_

Fig. 2 ACID

6.4 DISTRIBUTED ACID SYSTEMS

e Distributed ACID transactions are ACID compliant transactions that
alter multiple rows in more than one fragment usually distributed

across multiple nodes.

e A transaction is a unit of work performed within a part of a database,

often consisting of multiple operations.

e Like all forms of ACID, a distributed ACID transaction has four key

properties:

o Atomicity: All operations in a transaction are consider as a one

atomic unit. All are performed or none of them are performed.

o Consistency: The database is always in a consistent state or an

internal state.

o Isolation: find how and when changes made by one transaction
become visible to others.

o Durability: Enables all transaction results to permanently remain in
the system. Any modifications or changes must continue even in case
of power loss or system failures.

e There are various types of distributed databases. The most commonly
used distributed databases consist of common NoSQL databases like
Apache Cassandra, and distributed SQL databases, like YugabyteDB.

e Few distributed databases support ACID transactions in a limited
trend, while others fully assist distributed ACID transactions. ACID
transactions can be classified into three types:

1. Single row ACID
2. Single shard ACID
3. Distributed ACID transactions

e Only distributed ACID transactions are fully distributed and are the
default transaction for distributed SQL databases

6.5 UPHOLDING CAP

e CAP Theorem is a idea that a distributed database system can only
have 2 of the 3: Consistency, Availability and Partition Tolerance.

Consistency

CA™ ﬁ

f \

.
P AP Partition
Availability Nl |
\ / Tolerance
-:_'#'.."’.
Fig. 3 CAP

e CAP Theorem is very essential in the Big Data world, mainly when
we need to make trade offs between the three, based on our special
use case.

Managing Transactions and Data
Integrity

97

NoSQL Technologies Partition Tolerance:

Malfunctioning
Node

Fig. 4 Partition Tolerance

e This condition shows that the system continues to run, regardless of
the number of messages being delayed by the network between two
nodes.

e A system that is partition tolerant can encourage any amount of
network failure that doesn’t result in a failure of the entire network.

e Data records are properly replicated across combinations of nodes and
networks to keep the system up through fitful outages.

e When trading with modern distributed systems, Partition Tolerance is
not an option. It’s a necessity. For this we have to trade between
Consistency and Availability.

High Consistency:

Output
{“record” : "Pickachu”

Input
{"record”; "Pikachu” ,
“timestamp”: 1:03}

All nodes NOT
highly available

Input
{"record”: “Bulbasaur”,
“timestamp”: 1:02}

Fig. 5 High Consistency

98

This condition defines that all nodes show the same data at the same
time.

Simply put, performing a read operation will return the value of the
most recent write operation affecting all nodes to return the same data.

A system has stability if a transaction starts with the system in a
consistent state, and ends with the system in a consistent state.

In this model, a system can shift into an inconsistent state during a
transaction, but the entire transaction gets rolled back if there is a
problem or error during any stage in the process.

In Fig.5 , we have 2 different records (“Bulbasaur” and “Pikachu”) at
different timestamps.

The output on the third partition is “Pikachu”, the latest input. but, the
nodes will need time to update and will not be Available on the
network as frequently.

High Availability:

Output

{“record”: “Pikachu”}

{"record™: 777

Input

All nodes
highly available

Input
{"record”: “Bulbasaur”}

Fig. 6 High Availability

This condition defines that every request gets a response on success or
failure.

Achieving availability in a distributed system requires that the system
remains working 100% of the time.

Every client gots a response, regardless of the state of any individual
node in the system.

This metric is trivial to calculate, either can submit read/write
commands, or cannot.

Managing Transactions and Data
Integrity

99

NoSQL Technologies

100

Hence, the databases are time free as the nodes need to be present
online at all times.

This means that, dissimilar to the previous example, we do not know
if “Pikachu” or “Bulbasaur” was added first.

The output could be one. Hence why, high availability isn’t viable
when analyzing streaming data at high frequency.

6.6 CONSISTENCY IMPLEMENTATIONS USING
NOSQL IN THE CLOUD

The Most current age popular applications, like Google and Amazon,
have achieved high availability and the ability to concurrently service
millions of users by scaling out horizontally among multiple
machines, lay out across multiple data centers.

Success stories of large-scale web applications like those from Google
and Amazon have manifested that in horizontally scaled
environments, NoSQL solutions tend to shine over their relational
counterparts.

Horizontally scaled environments available on-demand / needs and
provisioned as required have been christened as the “cloud.”

If scalability and availability is a priority, NoSQL in the cloud is
maybe the ideal setup.

Many cloud service enablers exist and multiple NoSQL products are
available. In many instances, like Amazon EC2 (Elastic Compute
Cloud), you have the choice to install any NoSQL product you want
to use.

Google revolutionized the cloud computing landscape by developing
a services-ready, easy-to-use infrastructure. However, Google wasn’t
the first to launch cloud contributions. Amazon EC2 was already an
established player in the market when Google first made its service
public.

Google’s model was so suitable, though, that its cloud platform, the
Google App Engine (GAE), has seen universal and rapid adoption in a
short time frame. The app engine isn’t without its share of limitations.

Its sandboxed environment and lack of support for long-running
processes are surrounded by a few of its aspects that are much
execrable.

6.7 GOOGLE APP ENGINE DATA STORE

The Google App Engine (GAE) provides a sandboxed deployment
environment for applications, which are written using either the

Python programming language or a language that can run on a Java
Virtual Machine (JVM).

Google provides developers with a set of rich APIs and an SDK to
build applications for the app engine.

To explain the data store features and the available APIs for data
modeling, I first cover all that relates to the Python SDK for the app
engine.

GAE Python SDK: Installation, Setup, and Getting Started:

To get started you need to install Python and the GAE Python SDK.
You can download Python from python.org and the GAE Python
SDK is available online at
http://code.google.com/appengine/downloads.html#Google App Eng
ine_ SDK for Python. Detailed installation instructions are beyond
the scope of this chapter but installation of both Python and GAE
Python SDK on all supported environments is fairly easy and
straightforward.

If you still run into trouble while setting up your environment, just
Google for a solution to your problem and like most developers you
won’t be disappointed.

Although this chapter exclusively focuses on the GAE data store, you
will benefit from understanding the essentials of application
development on the app engine.

For the Python SDK, spend a little while reading through the tutorial
titled “Getting Started: Python,” which is available online at
http://code.google.com/appengine/docs/python/gettingstarted/.
Applications built on GAE are web applications. The getting started
tutorial explains the following:

Task Manager: A Sample Application:

Consider a simple task management application in which a user can
define a task, track its status, and check it as done once completed.

To define a task, the user needs to give it a name and a description.

Tags can be added to categorize it and start, and expected due dates
could be specified. Once completed, the end date can be recorded.

Tasks belong to a user and in the first version of the application they
are not shared with anyone other than the owner.

To model a task, it would be helpful to list the properties, specify the
data type for each property, state whether it’s required or optional,
and mention whether it is single or multiple valued.

Managing Transactions and Data
Integrity

101

NoSQL Technologies Table 1 lists a task’s properties and its characteristics.

PROPERTY NAME DATA TYPE REQUIRED SINGLE OR MULTIPLE VALUED
Name String Yes Single
Description String No Single
start_date Date Yes Single
due_date Date No Single
end date Date Mo Single
Tags array (list collection) No Multipie

Table. 1 Properties of a Task

Here, the Task class is modified to specify constraints:

import datetime

from google.appengine.ext import db
class Task(db.Model):

name = db.StringProperty(required=True)
description = db.StringProperty()
start_date = db.DateProperty(required=True)
due date = db.DateProperty()

end date = db.DateProperty()

tags = db.StringListProperty()
taskmanager GAE project

Available for

download on

Wrox.com

Available for

download on

Wrox.com

e ORM, or Object-Relational Mapping, provides a bridge between the
object- oriented programming and the relational database worlds. A
number of wvalidation options are available. For example,
required=True makes a property value mandatory. The argument
choices=set([“choicel”,“choice2”, “choice3”, “choice4”]) restricts the
value to members of the defined set. Custom validation logic defined
in a function can be passed as a value to the validator argument of a
particular property class.

e GAE uses Google’s Bigtable as the data store. Bigtable is a sorted,
ordered, distributed sparse column-family-oriented map, which

102

imposes little restrictions on the number or types of columns in a
column-family or the data type of the values stored in these columns.
Also, Bigtable allows sparse data sets to be saved effectively, thereby
allowing two rows in a table to have completely different sets of
columns. It also permits different value types for the same columns.
In other words, in a single data store, two entities of the same kind
(for example, Task) can have different sets of properties or two
entities of the same kind can have a property (identified by the same
name) that can contain different types of data. The data modeling API
provides a level of structure on top of the more accommodating
Bigtable. The data modeling API provides an application-level
restriction on the property data types, its values sets, and the
relationship among them. In the simple example that depicts a “Task”
entity, a Python class named Task defines the data model

The GAE data store can be thought of as an object store where each
entity is an object. That means data store entities or members could be
instances of a Python class, like Task. The class name, Task,
translates to an entity kind.

6.8 AMAZON SIMPLEDB

Amazon SimpleDB is a ready-to-run database alternative to the app
engine data store. It’s elastic and is a fully managed database in the
cloud.

The two data stores app engine data store and SimpleDB are quite
different in their API as well as the internal fabric but both provide
you a highly scalable and grow-as-you-use model to a data store.

Enabling SimpleDB service for AWS account:

Once you have successfully set up an AWS account, you must follow
these steps to enable the SimpleDB service for your account:

1.
2.

Log in to your AWS account.

Navigate to the SimpleDB home page—
http://aws.amazon.com/simpledb/.

Click on the Sign Up For Amazon SimpleDB button on the right side
of the page.

Provide the requested credit card information and complete the signup
process.

You have now successfully set up your AWS account and enabled it
for SimpleDB.

All communication with SimpleDB or any of the Amazon web
services must be through either the SOAP interface or the
Query/ReST interface. The request messages sent through either of
these interfaces are digitally signed by the sending user in order to

Managing Transactions and Data
Integrity

103

NoSQL Technologies

104

ensure that the messages have not been tampered within transit, and
that they really originate from the sending user. Requests that use the
Query/ReST interface will use the access keys for signing the request,
whereas requests to the SOAP interface will use the x.509 certificates.

Your new AWS account is associated with the following items:

A unique 12-digit AWS account number for identifying your account.

AWS Access Credentials are used for the purpose of authenticating
requests made by you through the ReST Request API to any of the
web services provided by AWS. An initial set of keys is automatically
generated for you by default. You can regenerate the Secret Access
Key at any time if you like. Keep in mind that when you generate a
new access key, all requests made using the old key will be rejected.

An Access Key ID identifies you as the person making requests to a
web service.

A Secret Access Key is used to calculate the digital signature when
you make requests to the web service.

Be careful with your Secret Access Key, as it provides full access to
the account, including the ability to delete all of your data.

All requests made to any of the web services provided by AWS using
the SOAP protocol use the X.509 security certificate for
authentication. There are no default certificates generated
automatically for you by AWS. You must generate the certificate by
clicking on the Create a new Certificate link, then download them to
your computer and make them available to the machine that will be
making requests to AWS.

Public and private key for the x.509 certificate. You can either upload
your own x.509 certificate if you already have one, or you can just
generate a new certificate and then download it to your computer.

Query API and authentication:

There are two interfaces to SimpleDB. The SOAP interface uses the
SOAP protocol for the messages, while the ReST Requests uses
HTTP requests with request parameters to describe the various
SimpleDB methods and operations.

In this book, we will be focusing on using the ReST Requests for
talking to SimpleDB, as it is a much simpler protocol and utilizes
straightforward ~HTTP-based requests and responses for
communication, and the requests are sent to SimpleDB using either a
HTTP GET or POST method.

The ReST Requests need to be authenticated in order to establish that
they are originating from a valid SimpleDB user, and also for
accounting and billing purposes.

This authentication is performed using your access key identifiers.

Every request to SimpleDB must contain a request signature
calculated by constructing a string based on the Query API and then
calculating an RFC 2104-compliant HMAC-SHA1 hash, using the
Secret Access Key.

The basic steps in the authentication of a request by SimpleDB are:

You construct a request to SimpleDB.

You use your Secret Access Key to calculate the request signature, a
Keyed-Hashing for Message Authentication code (HMAC) with an
SHAT hash function.

You send the request data, the request signature, timestamp, and your
Access Key ID to AWS.

AWS uses the Access Key ID in the request to look up the associated
Secret Access Key.

AWS generates a request signature from the request data using the
retrieved Secret Access Key and the same algorithm you used to
calculate the signature in the request.

If the signature generated by AWS matches the one you sent in the
request, the request is considered to be authentic. If the signatures are
different, the request is discarded, and AWS returns an error response.
If the timestamp is older than 15 minutes, the request is rejected.

6.9 SUMMARY

Transaction management focuses on ensuring that transactions are
correctly recorded in the database.

Transaction atomicity requires that all transactions are processed on
an all-or-nothing basis and that any collection of transactions is
serializable.

RDBMS stands for Relational Database Management System.
RDBMS is the basis for SQL, and for all modern database systems
like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft
Access.

Database normalization is the process of efficiently organizing data in
a database. There are two reasons for this normalization process.A
transaction is a unit of work performed within a database, often
composed of multiple operations.

Most current-generation popular applications, like Google and
Amazon, have achieved high availability and the ability to
concurrently service millions of users by scaling out horizontally
among multiple machines, spread across multiple data centers.

Managing Transactions and Data
Integrity

105

NoSQL Technologies 6.10 REFERENCE FOR FURTHER READING

e QL & NoSQL Databases, Andreas Meier - Michael Kaufmann,
Springer Vieweg, 2019

e Professional NoSQL by Shashank Tiwari, Wrox-John Wiley & Sons,
Inc, 2011

6.11 UNIT END EXERCISES

1. Write a short note on RDBMS and ACID.
2. What do you understand about NoSQL?
3. Explain the Distributed ACID Systems?
4. Write a short note on Upholding CAP?

% % %k %k %k

106

