MSCCS 1.1

M.Sc.
(COMPUTER SCIENCE)
SEMESTER -1

(REVISED SYLLABUS
AS PER NEP 2020)

APPLIED SIGNALAND
IMAGE PROCESSING

© UNIVERSITY OF MUMBAI

Prof. Ravindra Kulkarni
Vice-Chancellor,

University of Mumbai,
Prin. Dr. Ajay Bhamare Prof. Shivaji Sargar
Pro Vice-Chancellor, Director,
University of Mumbai, CDOE, University of Mumbiai,

Programme Co-ordinator : Shri. Mandar Bhanushe
Head, Faculty of Science and Technology,
CDOE, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor,
CDOE, University of Mumbai, Mumbai

Editor : Dr. Rajeshri Pravin Shinkar
Asst. Professor,
SIES Nerul College of Arts, Science and
Commerce (Autonomous)

Course Writers : Prachi Abhijeet Surve
Assistant Professor
Hindi Vidya Prachar Samiti’s Ramniranjan
Jhunjhunwala College Of Arts, Science &
Commerce (Empowered Autonomous)

: Punam Sindhu
Assistant Professor,
Hindi Vidya Prachar Samiti’s Ramniranjan
Jhunjhunwala College OfArts, Science &
Commerce (Empowered Autonomous)

: Sonali Sambare
Assistant Professor,
SIES College of Arts, Science and Commerce
(Autonomous)

: Dr. Mitali Shewale
Assistant Professor,

Veermata Jijabai Technological Institute, Mumbai

November 2024, Print - 1

Published by . Director,
Centre for Distance and Online Education,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400 098

CONTENTS

Unit No. Title Page No.

1. Fundamentals of Digital Signals Processing

2. Fundamentals of Digital Signals Processing - II

3. Image Processing Fundamentals And Pixel Transformation-I

4. Image Processing Fundamentals And Pixel Transformation-II

5. Structural And Morphological Operations

6. Image Processing

7. Advanced Image Processing Operations

8. Image Segmentation

& O O 0
0’0 0.0 0.0 0’0

01

34

77

97

115

136

159

179

Semester- |

Programme Name: M.Sc. Computer Course Name: Applied Signal and Image
Science (Semester |) Processing

Total Credits: 04 Total Marks: 100

College assessment: 50 University assessment: 50

Prerequisite: Fundamental knowledge of mathematics, digital signal processing, programming,

and image processing.

Course Outcome:

e Understand and apply the fundamentals of digital signal processing and frequency

domain operations for image analysis.

e Gain proficiency in image processing techniques such as intensity transformations,

histogram processing, and smoothing.

e Develop skills in edge detection and image segmentation using various algorithm
approaches.

e Utilize morphological operations for image enhancement, feature extraction, and
reduction.

s and

noise

e Apply advanced image processing techniques including feature detection, descriptors,

and segmentation algorithms for complex image analysis and understanding.

Course Code Course Title

Total
Credits

PSCS501 Applied Signal and Image Processing

04

MODULE - |

Unit 1: Fundamentals of Digital Signals Processing

Periodic signals, Spectral decomposition, Signals, Reading and writing Waves,
Spectrums, Wave objects, Signal objects ,Noise: Uncorrelated noise, Integrated
spectrum, Brownian noise, Pink Noise, Gaussian noise; Autocorrelation: Correlation,
Serial correlation, Autocorrelation, Autocorrelation of periodic signals, Correlation as a
dot product Frequency domain Operations: Representing Image as Signals, Sampling
and Fourier Transforms, Discrete Fourier Transform, Convolution and Frequency
Domain Filtering, Smoothing using lowpass filters, Sharpening using high-pass filters.
Fast Fourier Transforms.

Unit 2:Image Processing fundamentals and Pixel Transformation

Definition, Application of Image Processing, Image Processing Pipeline, Tools and
Libraries for Image Processing, Image types and files formats. Intensity
Transformations- Log Transform, Power-law Transform, Contrast Stretching,
Thresholding Histogram Processing- Histogram Equalization and Histogram Matching;
Linear and Non-linear smoothing of Images, Sharpening of images Image Derivative:
Derivatives and gradients, Laplacian, the effect of noise on gradient computation

02

Page 8 of 48

MODULE - I

Unit 3:Structural and Morphological Operations

Edge Detection: Sobel, Canny Prewitt, Robert edge detection techniques, LoG and
DoG filters, Image Pyramids: Gaussian Pyramid, Laplacian Pyramid Morphological
Image Processing: Erosion, Dilation, Opening and closing, Hit-or-Miss Transformation,
Skeletonizing, Computing the convex hull, removing small objects, White and black top-
hats, Extracting the boundary, Grayscale operations

Unit 4: Advanced Image Processing Operations

Extracting Image Features and Descriptors: Feature detector versus descriptors,
Boundary Processing and feature descriptor, Principal Components, Harris Corner
Detector, Blob detector, Histogram of Oriented Gradients, Scale-invariant feature
transforms, Haar-like features Image Segmentation: Hough Transform for detecting
lines and circles, Thresholding and Otsu’s segmentation, Edge-based/regionbased
segmentation Region growing, Region splitting and Merging, Watershed algorithm,
Active Contours, morphological snakes, and GrabCut algorithms

02

Text Books:

1.

Digital Image Processing by Rafael Gonzalez & Richard Woods, Pearson; 4th edition,
2018.

Think DSP: Digital Signal Processing in Python by Allen Downey, O'Reilly Media; 1st
edition (August 16, 2016).

Reference Books:

HwnN

Understanding Digital Image Processing, VipinTyagi, CRC Press, 2018.

Digital Signal and Image Processing by Tamal Bose, John Wiley 2010.

Hands-On Image Processing with Python by SandipanDey,Packt Publishing, 2018.
Fundamentals of Digital Images Processing by A K Jain, Pearson, 2010

Page 9 of 48

Unit 1

FUNDAMENTALS OF DIGITAL
SIGNALS PROCESSING

Unit Structure :
1.0 Objective
1.1 Fundamentals of Digital Signals Processing
1.1.1 Periodic signals
1.1.2 Spectral decomposition
1.1.3 Signals
1.1.4 Reading and writing Waves
1.1.5 Spectrums
1.1.6 Wave objects
1.1.7 Signal objects
1.2 Noise
1.2.1 Uncorrelated noise
1.2.2 Integrated spectrum
1.2.3 Brownian noise
1.2.4 Pink Noise
1.2.5 Gaussian noise
1.3 Autocorrelation
1.3.1 Correlation
1.3.2 Serial correlation
1.3.3 Autocorrelation
1.3.4 Autocorrelation of periodic signals
1.3.5 Correlation as a dot product
1.4 Summary
1.5 Exercise

1.6 References

Applied Signal and Image
Processing

1.0 OBJECTIVE

In today's digital world we all are connected with all around us with the
help of signals.

Digital Signal Processing (DSP) is a magical tool that uses math and
computers to analyze and improve signals.

In this chapter, we’ll discuss the fundamentals of DSP With a
programming-based approach based on the reference book Think DSP
Digital Signal Processing in Python.

The examples and supporting code for this book are in Python.
The reader knows basic mathematics, including complex numbers.
The objective of this chapter is:

e To understand the basic concepts and techniques for processing signals
and digital signal processing fundamentals.

o To Understand the processes of analog-to-digital and digital-to-analog
conversion and relation between continuous-time and discrete time
signals and systems.

e The impetus is to introduce a few real-world signal processing
applications by analyze sound recordings and other signals, and
generating new sounds.

1.1 FUNDAMENTALS OF DIGITAL SIGNALS
PROCESSING

What is Digital Signal Processing (DSP)?

e Digital Signal Processing (DSP) is an amazing field that uses advanced
math and computers to understand and improve signals.

e Signals are everywhere in our digital world, like music, pictures, and
wireless communication.

e DSP techniques are now used to analyze and process signals and data
arising in many areas of engineering , science, medicine, economics
and the social sciences.

e DSP is concerned with the numerical manipulation (treatment) of
signals and data in sampled form. Using elementary operations as
digital storage, delay, addition, subtraction and multiplication by
constants, we can produce a wide variety of useful functions.

e For example to extract a wanted signal from unwanted noise, to assess
the frequencies presented in a signal.

e The general purpose computer can be used for illustrating DSP theory Fundamentals of Digital
and application. Signals Processing

e However, if high speed real time signal processing is required, it may
use special purpose digital hardware.

e Programmable microprocessors attached to a general purpose host
computer.

e Various terms are used to describe signals in the DSP environment.
Discrete-time signal, we mean a signal which is defined only for a
particular set of instants in time or sampling instants.

Basic DSP system:

-

Digital | 1 Digital

Signal _|

{ DSP | ‘ __Anulng

Analog .
% = Reconstruction | s
Signal

Signal

) . Signal
Sampling ‘ =

Advantages :

e DSP hardware is flexible and programmable

e DSP chips are relatively cheap (easily mass-produced)

e Digital storage is cheap

e Digital information can be encrypted, coded, and compressed
Disadvantages:

e Sampling leads to loss of information

e High-resolution ultra-fast A/D and D/A may be expensive

e Digital processing cannot always be done in real-time

1.1.1 Periodic signals

e Signals that repeat themselves after some period of time are called
periodic signals.

e For example, if you strike a bell, it vibrates and generates sound.

1.0

0.5

0.0

—-0.5

-10 n I L 1 i
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time (s} +7

Applied Signal and Image
Processing

Segment from a recording of a bell
Signal is periodic, but the shape of the signal is more complex.
The shape of a periodic signal is called the waveform.

Most musical instruments produce waveforms more complex than a
sinusoid.

Sinusoid means signal that has the same shape as the trigonometric
sine function.

The shape of the waveform determines the musical timbre, which is
our perception of the quality of the sound.

People usually perceive complex waveforms as rich, warm and more
interesting than sinusoids.

The duration to show three full repetitions of the signal known as
cycles.

The duration of each cycle, called the period, is about 2.3 ms.

The frequency of a signal is the number of cycles per second, which is
the inverse of the period.

The units of frequency are cycles per second, or Hertz, abbreviated
“HZ”,

1.1.2 Spectral decomposition

Spectral decomposition is any signal that can be expressed as the sum
of sinusoids with different frequencies.

The discrete Fourier transform (DFT) takes a signal and produces its
spectrum.

The spectrum is the set of sinusoids that add up to produce the signal.

The Fast Fourier transform (FFT) is an efficient way to compute the
DFT.

In the following figure :
The x-axis is the range of frequencies that make up the signal.

The y-axis shows the strength or amplitude of each frequency
component.

4000

3500+

3000

2500

Amplitude
=
=
=]
=

1500+

1000

5“: ”_JJHII,....._

4] 2000 4000 BO00 B000 10000
Frequency (Hz)

The lowest frequency component is called the fundamental frequency.

The fundamental frequency of this signal is near 440 Hz (actually a
little lower, or “flat”).

Dominant Frequency:In this signal the fundamental frequency has the
largest amplitude, so it is also the dominant frequency. Normally the
perceived pitch of a sound is determined by the fundamental
frequency, even if it is not dominant.

Harmonics:The other spikes in the spectrum are at frequencies 880,
1320, 1760, and 2200, which are integer multiples of the fundamental.
These components are called harmonics because they are musically
harmonious with the fundamental:

880 is the frequency of A5, one octave higher than the fundamental.
An octave is a doubling in frequency.

1320 is approximately E6, which is a perfect fifth above AS.
1760 is A6, two octaves above the fundamental.
2200 is approximately C]7, which is a major third above A6.

These harmonics make up the notes of an A major chord, although not
all in the same octave.

1.1.3 Signals

Signal is anything that carries information.

It can also be defined as a physical quantity that varies with time,
temperature, pressure or with any independent variables such as
speech signal or video signal.

Fundamentals of Digital
Signals Processing

Applied Signal and Image
Processing

e Signal processing: It is the process of operation in which the
characteristics of a signal are Amplitude, shape,phase,frequency,etc.
undergoes a change.

o In the Python module called thinkdsp.py that contains classes and
functions for working with signals and spectrums.

e To represent signals, thinkdsp provides a class called Signal, which is
the parent class for several signal types, including Sinusoid, which
represents both sine and cosine signals.

thinkdsp provides functions to create sine and cosine signals:

cos_sig = thinkdsp.CosSignal(freq=440, amp=1.0, offset=0)
thinkdsp.SinSignal (freq=880, amp=0.5, offset=0)

sin_sig

freq is frequency in Hz. amp is amplitude in unspecified units where 1.0 is
defined as the largest amplitude we can record or play back.

Signals have an _add method, so you can use the + operator to add
them:

mix = sin_sig + cos_sig

The result is a SumSignal, which represents the sum of two or more
signals.

A Signal is basically a Python representation of a mathematical function.
Most signals are defined for all values of t, from negative infinity to infinity.

e We represent ts and ys using NumPy arrays and encapsulate them in
an object called a Wave.

Where,
ts - taking a sequence of points in time, ts
and ys - computing the corresponding values of the signal, ys

e Frame:A Wave represents a signal evaluated at a sequence of points in
time. Each point in time is called a frame.

e Sample:The measurement itself is called a sample, although “frame”
and “sample” are sometimes used interchangeably.

e Signal provides make wave, which returns a new Wave object:
wave = mix.make wave(duration=0.5, start=0, framerate=11025)
Where,

duration- is the length of the Wave in seconds.

start- is the start time, also in seconds.

framerate- is the (integer) number of frames per second, which is also the
number of samples per second.

1.1.4 Reading and writing Waves

e thinkdsp provides read wave, which reads a WAV file and returns a
Wave:

violin_wave = thinkdsp.read wave('input.wav')
e Wave provides write, which writes a WAV file:
wave.write(filename='output.wav')

® You can listen to the Wave with any media player that plays WAV
files.

e thinkdsp also provides play wave, which runs the media player as a
subprocess:

thinkdsp.play wave(filename='output.wav', player="aplay")

e [t uses aplay by default, but you can provide the name of another
player.

1.1.5 Spectrums

The signal spectrum describes a signal's magnitude and phase
characteristics as a function of frequency.

The system spectrum describes how the system changes signal magnitude
and phase as a function of frequency.

e Wave provides make spectrum, which returns a Spectrum:
spectrum = wave.make spectrum()

e And Spectrum provides plot:

spectrum.plot()

e Spectrum provides three methods that modify the spectrum:

o low pass applies a low-pass filter, which means that components
above a given cutoff frequency are attenuated (that is, reduced in
magnitude) by a factor.

o high pass applies a high-pass filter, which means that it attenuates
components below the cutoff.

o band_stop attenuates components in the band of frequencies between
two cutoffs.

e This example attenuates all frequencies above 600 by 99%:

spectrum.low_pass(cutoff=600, factor=0.01)

Fundamentals of Digital
Signals Processing

Applied Signal and Image
Processing

A low pass filter removes bright, high-frequency sounds, so the result
sounds muffled and darker.

To hear what it sounds like, you can convert the Spectrum back to a
Wave, and then play it.

wave = spectrum.make wave() wave.play(‘temp.wav')

The play method writes the wave to a file and then plays it.

If you use Jupyter notebooks, you can use make audio, which makes
an Audio widget that plays the sound.

1.1.6 Wave objects

In thinkdsp.py most of the functions it provides are thin wrappers
around functions from NumPy and SciPy.

The primary classes in thinkdsp are Signal, Wave, and Spectrum.
Given a Signal, you can make a Wave.
Given a Wave, you can make a Spectrum, and vice versa.

These relationships are shown in following Figure:

Figure : Relationships among the classes in thinkdsp.

1.

A Wave object contains three attributes:
ys is a NumPy array that contains the values in the signal;

ts is an array of the times where the signal was evaluated or sampled;
and

framerate is the number of samples per unit of time.

The unit of time is usually seconds or sometimes it’s days.
Wave also provides three read-only properties:

start,

end, and

duration.

If you modify ts, these properties change accordingly.

To modify a wave, you can access the ts and ys directly.

For example:

wave.ys *=2

wave.ts +=1
The first line scales the wave by a factor of 2, making it louder.
The second line shifts the wave in time, making it start 1 second later.
Wave provides methods that perform many common operations.
For example, the same two transformations could be written:
wave.scale(2)
wave.shift(1)

You can read the documentation of these methods and others at
http://greenteapress.com/thinkdsp.html

1.1.7 Signal objects

Signal is a parent class that provides functions common to all kinds of
signals, like make wave.

Child classes inherit these methods and provide evaluate, which
evaluates the signal at a given sequence of times.

For example, Sinusoid is a child class of Signal, with this definition:

class Sinusoid(Signal):

def init_ (self, freq=440, amp=1.0, offset=0, func=np.sin):

Signal. init (self)

self.freq = freq

self.amp = amp

self.offset = offset

self.func = func

o

O

The parameters of init _ are:
freq: frequency in cycles per second, or Hz.

amp: amplitude. The units of amplitude are arbitrary, usually chosen
so 1.0 corresponds to the maximum input from a microphone or
maximum output to a speaker.

offset: indicates where in its period the signal starts; offset is in units
of radians, for reasons I explain below.

Fundamentals of Digital
Signals Processing

Applied Signal and Image
Processing

10

func: a Python function used to evaluate the signal at a particular point
in time.

It is usually either np.sin or np.cos, yielding a sine or cosine signal.

Like many init methods, this one just tucks the parameters away for
future use.

Signal provides make wave, which looks like this:

def make wave(self, duration=1, start=0, framerate=11025):

n = round(duration * framerate)

ts = start + np.arange(n) / framerate

ys = self.evaluate(ts)

return Wave(ys, ts, framerate=framerate)

Where,

O

start and duration are the start time and duration in seconds.
framerate is the number of frames (samples) per second.
n is the number of samples, and ts is a NumPy array of sample times.

To compute the ys, make wave invokes evaluate, which is provided
by Sinusoid:

def evaluate(self, ts):

phases = PI2 * self.freq * ts + self.offset

ys = self.amp * self.func(phases)

return ys

e Let’s unwind this function one step at time:

1. self.freq is frequency in cycles per second, and each element of ts is a
time in seconds, so their product is the number of cycles since the start
time.

2. PI2 is a constant that stores 2m. Multiplying by PI2 converts from
cycles to phase. You can think of phase as “cycles since the start time”
expressed in radians. Each cycle is 2x radians.

3. self.offset is the phase when t is ts[0]. It has the effect of shifting the
signal left or right in time.

4. If self.func is np.sin or np.cos, the result is a value between —1 and +1.

5. Multiplying by self.amp yields a signal that ranges from -self.amp to

+self.amp.

In math notation, evaluate is written like this:
y = A cos(2nf t + ¢0)

where

o A is amplitude,

o fis frequency,

o tistime, and

o 0 is the phase offset.

e [t may seem like I wrote a lot of code to evaluate one simple
expression, but as we’ll see, this code provides a framework for
dealing with all kinds of signals, not just sinusoids.

1.2 NOISE

In signal processing, noise is a general term for unwanted (and, in general,
unknown) modifications that a signal may suffer during capture, storage,
transmission, processing, or conversion.

1.2.1 Uncorrelated noise

o The simplest way to understand noise is to generate it, and the simplest
kind to generate is uncorrelated uniform noise (UU noise).

e “Uniform” means the signal contains random values from a uniform
distribution.

e That is, every value in the range is equally likely.

o “Uncorrelated” means that the values are independent.

e That is, knowing one value provides no information about the others.
e Here’s a class that represents UU noise:

class UncorrelatedUniformNoise(_Noise):

def evaluate(self, ts):

ys = np.random.uniform(-self.amp, self.amp, len(ts))

return ys

Where,

UncorrelatedUniformNoise inherits from Noise, which inherits from
Signal.

The evaluate function takes ts, the times when the signal should be
evaluated.

Fundamentals of Digital
Signals Processing

11

Applied Signal and Image
Processing

12

It uses np.random.uniform, which generates values from a uniform
distribution.

In this example, the values are in the range between -amp to amp.

e The following example generates UU noise with duration 0.5 seconds
at 11,025 samples per second.

signal = thinkdsp.UncorrelatedUniformNoise()
wave = signal.make wave(duration=0.5, framerate=11025)

e I[f you play this wave, it sounds like the static you hear if you tune a
radio between channels.

e Following Figure shows what the waveform looks like.

® As expected, it looks pretty random.

1.0

0.00 0.02 0.04 0.06 0.08 0.10
Tima <}

Figure: Waveform of uncorrelated uniform noise.
e The spectrum:
spectrum = wave.make spectrum()
spectrum.plot_power()

o Spectrum.plot power is similar to Spectrum.plot, except that it plots
power instead of amplitude.

o Power is the square of amplitude.

o We switch from amplitude to power here because it is more
conventional in the context of noise.

14000

12000

10000

Power

2000

| 1
0 J.LLUJ..L.I .J.u‘ulu“ldl.lh du:.\.hllluh .-ﬂ‘ll..lhl..hiihh 1 XMJJILL:L“ML Al
[} 1000 2000 3000 4000 5000
Frequency (Hz)

Figure : Power spectrum of uncorrelated uniform noise
e There are at least three things about a noise signal or its spectrum:

1. Distribution: The distribution of a random signal is the set of possible
values and their probabilities.

For example, in the uniform noise signal, the set of values is the range
from -1 to 1, and all values have the same probability.

An alternative is Gaussian noise, where the set of values is the range from
negative to positive infinity, but values near 0 are the most likely, with
probability that drops off according to the Gaussian or “bell” curve.

2. Correlation: Each value in UU noise is independent.
Brownian noise is an alternative.

It is where each value is the sum of the previous value and a random
“Step”.

So if the value of the signal is high at a particular point in time, we expect
it to stay high, and if it is low, we expect it to stay low.

3. Relationship between power and frequency: In the spectrum of UU
noise, the power at all frequencies is drawn from the same distribution.

That is, the average power is the same for all frequencies.

An alternative is pink noise, where power is inversely related to
frequency.

That is, the power at frequency f is drawn from a distribution whose mean
is proportional to 1/f.

1.2.2 Integrated spectrum

e Integrated spectrum is used for UU noise so we can see the
relationship between power and frequency more clearly.

Fundamentals of Digital
Signals Processing

13

Applied Signal and Image
Processing

14

e [t is a function of frequency, f, that shows the cumulative power in the
spectrum up to f.

e Spectrum provides a method that computes the IntegratedSpectrum:
def make integrated spectrum(self):

cs = np.cumsum(self.power)

cs /=cs[-1]

return IntegratedSpectrum(cs, self.fs)

where,

self.power is a NumPy array containing power for each frequency.
np.cumsum computes the cumulative sum of the powers.

e Dividing through by the last element normalizes the integrated
spectrum so it runs from 0 to 1.

e The result is an IntegratedSpectrum.
e Here is the class definition:

class IntegratedSpectrum(object):

def init_ (self, cs, fs):

self.cs = cs

self.fs = fs

e Like Spectrum, IntegratedSpectrum provides plot power, so we can
compute and plot the integrated spectrum like this:

integ = spectrum.make_integrated spectrum()
integ.plot_power()

e The result, shown in the following Figure, is a straight line, which
indicates that power at all frequencies is constant, on average.

0.8

0.6}

Cumulative fraction of total power

o
n-\.

0.0

1000 2000 3000 4000 5000
Frequency {Hz)

Figure: Integrated spectrum of uncorrelated uniform noise.

Noise with equal power at all frequencies is called white noise by
analogy with light, because an equal mixture of light at all visible
frequencies is white.

1.2.3 Brownian noise

UU noise is uncorrelated, which means that each value does not
depend on the others.

ive 1 wni ise, in whi value 1 u
An alternative is Brownian noise, in which each value is the sum of the
previous value and a random “step”.

It is called “Brownian” by analogy with Brownian motion, in which a
particle suspended in a fluid moves apparently at random, due to
unseen interactions with the fluid.

Brownian motion is often described using a random walk, which is a
mathematical model of a path where the distance between steps is
characterized by a random distribution.

In a one-dimensional random walk, the particle moves up or down by
a random amount at each time step.

The location of the particle at any point in time is the sum of all
previous steps.

This observation suggests a way to generate Brownian noise: generate
uncorrelated random steps and then add them up.

Here is a class definition that implements this algorithm:
class BrownianNoise(_Noise):
def evaluate(self, ts):
dys = np.random.uniform(-1, 1, len(ts))
ys = np.cumsum(dys)
ys = normalize(unbias(ys), self.amp)

return ys

Where,

evaluate uses np.random.uniform to generate an uncorrelated signal and

np.cumsum to compute their cumulative sum.

Since the sum is likely to escape the range from -1 to 1, we have to use
unbias to shift the mean to 0, and normalize to get the desired
maximum amplitude.

Here’s the code that generates a BrownianNoise object and plots the
waveform.

Fundamentals of Digital
Signals Processing

15

Applied Signal and Image
Processing

16

signal = thinkdsp.BrownianNoise()

wave = signal.make wave(duration=0.5, framerate=11025)

wave.plot()

Following Figure shows the result.

900000 - - . T 10°

800000 | 10°
700000 10*
600000 | i 10°

500000 | 1072

Power

400000 10!
300000 10"
200000 | 1 1o

100000 | | 102

0 10 T -
0 1000 2000 3000 4000 5000 10° 10 10°

Frequency (Hz) Frequency (Hz)

Figure: Spectrum of Brownian noise on a linear scale (left) and log-log

scale (right).

The waveform wanders up and down, but there is a clear correlation
between successive values.

When the amplitude is high, it tends to stay high, and vice versa.

If you plot the spectrum of Brownian noise on a linear scale, as in
above Figure (left), it doesn’t look like much.

Nearly all of the power is at the lowest frequencies; the higher
frequency components are not visible.

To see the shape of the spectrum more clearly, we can plot power and
frequency on a log-log scale.

Here’s the code:

import matplotlib.pyplot as plt

spectrum = wave.make spectrum()

spectrum.plot_power(linewidth=1, alpha=0.5)

plt.xscale('log") plt.yscale('log")

The result is in the above Figure (right).

The relationship between power and frequency is noisy, but roughly
linear.

Spectrum provides estimate slope, which uses SciPy to compute a
least squares fit to the power spectrum:

#class Spectrum Fundamentals of Digital
Signals Processing

def estimate_slope(self):

x = np.log(self.fs[1:])

y = np.log(self.power[1:])

t = scipy.stats.linregress(X,y)

return t

e [t discards the first component of the spectrum because this component
corresponds to f =0, and log 0 is undefined.

e cstimate slope returns the result from scipy.stats.linregress which is an
object that contains the estimated slope and intercept, coefficient of
determination (R2), p-value, and standard error.

e For our purposes, we only need the slope.

e For Brownian noise, the slope of the power spectrum is -2, so we can
write this relationship:

logP=k—-2logf

where,

P is power,

fis frequency, and

k is the intercept of the line, which is not important for our purposes.
e Exponentiating both sides yields:

P =K/f?

where,

Kise®, but still not important.

More relevant is that power is proportional to 1/f %, which is characteristic
of Brownian noise.

e Brownian noise is also called red noise, for the same reason that white
noise is called “white”.

e If you combine visible light with power proportional to 1/f? , most of
the power would be at the low-frequency end of the spectrum, which is
red.

e Brownian noise is also sometimes called “brown noise”.
1.2.4 Pink Noise

e For red noise, the relationship between frequency and power is
17

Applied Signal and Image
Processing

18

P =K/f?
e There is nothing special about exponent 2.
e We can synthesize noise with any exponent, 3.

P=K/fP

o

When B = 0, power is constant at all frequencies, so the result is white
noise.

o

When B = 2 the result is red noise.

o

When f is between 0 and 2, the result is between white and red noise,
so it is called pink noise.

There are several ways to generate pink noise.

The simplest is to generate white noise and then apply a low-pass filter
with the desired exponent.

e thinkdsp provides a class that represents a pink noise signal:
class PinkNoise(_Noise):

def init (self, amp=1.0, beta=1.0):

self.amp = amp

self.beta = beta

Where,

amp is the desired amplitude of the signal.

beta is the desired exponent.

e PinkNoise provides make wave, which generates a Wave.
def make wave(self, duration=1, start=0, framerate=11025):
signal = UncorrelatedUniformNoise()

wave = signal.make wave(duration, start, framerate)
spectrum = wave.make spectrum()

spectrum.pink _filter(beta=self.beta)

wave2 = spectrum.make wave()

wave2.unbias()

wave?2.normalize(self.amp)

return wave2

Where,

o

O

duration is the length of the wave in seconds.

start is the start time of the wave; it is included so that make wave has
the same interface for all types of signal, but for random noise, start
time is irrelevant.

And framerate is the number of samples per second.

make wave creates a white noise wave, computes its spectrum, applies
a filter with the desired exponent, and then converts the filtered
spectrum back to a wave.

Then it unbiases and normalizes the wave.
Spectrum provides pink_filter:

def pink _filter(self, beta=1.0):

denom = self.fs ** (beta/2.0)

denom[0] =1

self.hs /= denom

Where,

pink_filter divides each element of the spectrum by P .

Since power is the square of amplitude, this operation divides the power at
each component by f b

It treats the component at f = 0 as a special case, partly to avoid dividing
by 0, and partly because this element represents the bias of the signal,
which we are going to set to 0 anyway.

Following Figure shows the resulting waveform.

10t
0.5

oop I

-05F

-1.0
0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

Figure : Waveform of pink noise with = 1.

Like Brownian noise, it wanders up and down in a way that suggests
correlation between successive values, but at least visually, it looks more
random.

Fundamentals of Digital
Signals Processing

19

Applied Signal and Image Finally, the following Figure shows a spectrum for white, pink, and red
Processing noise on the same log-log scale.The relationship between the exponent, f3,
and the slope of the spectrum is apparent in this figure.

10°

white
F
10% b pink
s — red
-
10°} e S
\\;\\ A
107} . \f\ AV
Y
. \
1
Z 10}
a
10° +
107
107
10'3 n L
10° 10! 102

Frequency (Hz)
Figure : Spectrum of white, pink, and red noise on a log-log scale.
1.2.5 Gaussian noise

e In uncorrelated uniform (UU) noise it showed that, because its
spectrum has equal power at all frequencies, on average, UU noise is
white.

e But, more often they mean uncorrelated Gaussian (UG) noise.
e thinkdsp provides an implementation of UG noise:

class UncorrelatedGaussianNoise(_Noise):

def evaluate(self, ts):

ys = np.random.normal(0, self.amp, len(ts))

return ys

Where,

np.random.normal returns a NumPy array of values from a Gaussian
distribution.

e In this case with mean 0 and standard deviation self.amp.

e In theory the range of values is from negative to positive infinity, but
we expect about 99% of the values to be between -3 and 3.

e UG noise is similar in many ways to UU noise.

e The spectrum has equal power at all frequencies, on average, so UG is
also white.

20

e It has one other interesting property: the spectrum of UG noise is also
UG noise.

e The real and imaginary parts of the spectrum are uncorrelated
Gaussian values.

e We can generate the spectrum of UG noise and then generate a
“normal probability plot”, which is a graphical way to test whether a
distribution is Gaussian.

signal = thinkdsp.UncorrelatedGaussianNoise()

wave = signal.make wave(duration=0.5, framerate=11025)
spectrum = wave.make spectrum()
thinkstats2.NormalProbabilityPlot(spectrum.real)
thinkstats2.NormalProbabilityPlot(spectrum.imag)

e NormalProbabilityPlot is provided by thinkstats2, which is included in
the repository.

e Following Figure shows the results.

200 200 /.f 1
vp)
o
»
100 100
@
-]
El
= 0 0
E
<
=100} 1 =100
- g
/
—200} model || _5q0 model |}
— real — imag
-4 =3 =2 =1 0 1 2 3 4 -4 =3 =2 =1 i} 1 2 3 4
Normal sample Normal sample

Figure : Normal probability plot for the real and imaginary parts of the
spectrum of Gaussian noise.

e The gray lines show a linear model fit to the data; the dark lines show
the data.

e A straight line on a normal probability plot indicates that the data
come from a Gaussian distribution.

e Except for some random variation at the extremes, these lines are
straight, which indicates that the spectrum of UG noise is UG noise.

e The spectrum of UU noise is also UG noise, at least approximately.

Fundamentals of Digital
Signals Processing

21

Applied Signal and Image
Processing

22

e By the Central Limit Theorem, the spectrum of almost any
uncorrelated noise is approximately Gaussian, as long as the
distribution has finite mean and standard deviation, and the number of
samples is large.

1.3 AUTOCORRELATION

Autocorrelation, sometimes known as serial correlation in the discrete
time case, is the correlation of a signal with a delayed copy of itself as a
function of delay. Informally, it is the similarity between observations of a
random variable as a function of the time lag between them.

1.3.1 Correlation

e Correlation between variables means that if you know the value of
one, you have some information about the other.

e There are several ways to quantify correlation, but the most common is
the Pearson product-moment correlation coefficient, usually denoted p.

e For two variables, x and y, that each contain N values:

_ i@ —) (i — 1)

No,o,

Where,

i and py are the means of x and y, and

ox and oy are their standard deviations.

e Pearson’s correlation is always between -1 and +1 (including both).

e If p is positive, we say that the correlation is positive, which means
that when one variable is high, the other tends to be high.

e If p is negative, the correlation is negative, so when one variable is
high, the other tends to be low.

o The magnitude of p indicates the strength of the correlation.

e I[fpis 1 or-1, the variables are perfectly correlated, which means that
if you know one, you can make a perfect prediction about the other.

e If p is near zero, the correlation is probably weak, so if you know one,
it doesn’t tell you much about the others.

e | say “probably weak” because it is also possible that there is a
nonlinear relationship that is not captured by the coefficient of
correlation.

e Nonlinear relationships are often important in statistics, but less often
relevant for signal processing, so I won’t say more about them here.

e Python provides several ways to compute correlations.

e np.corrcoef takes any number of variables and computes a correlation
matrix that includes correlations between each pair of variables.

e [’ll present an example with only two variables.

e First, I define a function that constructs sine waves with different
phase offsets:

def make sine(offset):

signal = thinkdsp.SinSignal(freq=440, offset=offset)

wave = signal.make wave(duration=0.5, framerate=10000)
return wave

e Next [instantiate two waves with different offsets:
wavel = make sine(offset=0)

wave2 = make sine(offset=1)

e Following Figure shows what the first few periods of these waves look
like.

1.0f .]
- wavel

- Wavez2

0.5+

0.0F

=05}

-1.0} v] y .
0.000 0.002 0.004 0.006 0.008 0.010
Time (s)

Figure: Two sine waves that differ by a phase offset of 1 radian; their
coefficient of correlation is 0.54.

e When one wave is high, the other is usually high, so we expect them to
be correlated.

>>> corr_matrix = np.corrcoef(wavel.ys, wave2.ys, ddof=0) [[1. 0.54] [
0.541.1]

e The option ddof=0 indicates that corrcoef should divide by N, as in the
equation above, rather than use the default, N — 1.

Fundamentals of Digital
Signals Processing

23

Applied Signal and Image
Processing

24

The result is a correlation matrix:

The first element is the correlation of wavel with itself, which is
always 1.

The last element is the correlation of wave2 with itself.

The off-diagonal elements contain the value we’re interested in, the
correlation of wavel and wave2.

The value 0.54 indicates that the strength of the correlation is
moderate.

As the phase offset increases, this correlation decreases until the waves
are 180 degrees out of phase, which yields correlation -1.

Then it increases until the offset differs by 360 degrees.
At that point we have come full circle and the correlation is 1.

Following Figure shows the relationship between correlation and
phase offset for a sine wave.

1.0

0.5

0.0

Correlation

-1.0

Offset (radians)

Figure: The correlation of two sine waves as a function of the phase offset

between them. The result is a cosine.
The shape of that curve should look familiar; it is a cosine.

thinkdsp provides a simple interface for computing the correlation
between waves:

>>> wavel.corr(wave2) 0.54

1.3.2 Serial correlation

Signals often represent measurements of quantities that vary in time.

For example, the sound signals we’ve worked with represent
measurements of voltage (or current), which correspond to the changes
in air pressure we perceive as sound.

e Measurements like this almost always have serial correlation, which is
the correlation between each element and the next (or the previous).

e To compute serial correlation, we can shift a signal and then compute
the correlation of the shifted version with the original.

def serial corr(wave, lag=1):

n = len(wave)

yl = wave.ys[lag:]

y2 = wave.ys|:n-lag]

corr = np.corrcoef(yl, y2, ddof=0)[0, 1]
return corr

e scrial corr takes a Wave object and lag, which is the integer number of
places to shift the wave.

e [t computes the correlation of the wave with a shifted version of itself.

e We expect UU noise to be uncorrelated, based on the way it’s
generated (not to mention the name):

signal = thinkdsp.UncorrelatedGaussianNoise()
wave = signal.make wave(duration=0.5, framerate=11025)
serial corr(wave)

e When I ran this example, I got 0.006, which indicates a very small
serial correlation.

e You might get a different value when you run it, but it should be
comparably small.

e In a Brownian noise signal, each value is the sum of the previous value
and a random “step”, so we expect a strong serial correlation:

signal = thinkdsp.BrownianNoise()

wave = signal.make wave(duration=0.5, framerate=11025)
serial _corr(wave)

e Sure enough, the result I got is greater than 0.999.

e Since pink noise is in some sense between Brownian noise and UU
noise, we might expect an intermediate correlation:

signal = thinkdsp.PinkNoise(beta=1)
wave = signal.make wave(duration=0.5, framerate=11025)

serial _corr(wave)

Fundamentals of Digital
Signals Processing

25

Applied Signal and Image
Processing

26

With parameter B = 1, I got a serial correlation of 0.851.

As we vary the parameter from = 0, which is uncorrelated noise, to 3
= 2, which is Brownian, serial correlation ranges from 0 to almost 1, as
shown in following Figure.

1.0}

0.8

0.6

Serial correlation

0.2

0.0 0.5 1.0 1.5 2.0
Pink noise parameter,

Figure: Serial correlation for pink noise with a range of parameters.

1.3.3 Autocorrelation

In the previous section we computed the correlation between each
value and the next, so we shifted the elements of the array by 1.

But we can easily compute serial correlations with different lags.

You can think of serial corr as a function that maps from each value
of lag to the corresponding correlation, and we can evaluate that
function by looping through values of lag: def autocorr(wave):

lags = range(len(wave.ys)//2)
corrs = [serial_corr(wave, lag) for lag in lags]
return lags, corrs

autocorr takes a Wave object and returns the autocorrelation function
as a pair of sequences: lags is a sequence of integers from 0 to half the
length of the wave;

corrs is the sequence of serial correlations for each lag.

Following Figure shows autocorrelation functions for pink noise with
three values of f.

Correlation

0 200 400 600 800 1000
Lag

Figure : Autocorrelation functions for pink noise with a range of
parameters.

For low wvalues of [, the signal is less correlated, and the
autocorrelation function drops off to zero quickly.

For larger values, serial correlation is stronger and drops off more
slowly.

With B = 1.7 serial correlation is strong even for long lags; this
phenomenon is called long-range dependence, because it indicates that
each value in the signal depends on many preceding values.

1.3.4 Autocorrelation of periodic signals

The autocorrelation of pink noise has interesting mathematical
properties.

The autocorrelation of pink noise has limited applications.
The autocorrelation of periodic signals is more useful.

As an example, I downloaded from freesound.org a recording of
someone singing a chirp; the repository for this book includes the file:
28042 bcjordan voicedownbew.wav.

Following Figure shows the spectrogram of this wave.

4000 !

3so0t
3000 L
2500

2000

Frequency (Hz)

1500}

1000}

500 | S——

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s]

Figure: Spectrogram of a vocal chirp.

Fundamentals of Digital
Signals Processing

27

Applied Signal and Image
Processing

28

The fundamental frequency and some of the harmonics show up
clearly.

The chirp starts near 500 Hz and drops down to about 300 Hz, roughly
from C5 to E4.

To estimate pitch at a particular point in time, we could use the
spectrum, but it doesn’t work very well.

To see why not, I’ll take a short segment from the wave and plot its
spectrum:

duration = 0.01

segment = wave.segment(start=0.2, duration=duration)

spectrum = segment.make spectrumy()

spectrum.plot(high=1000)

Following Figure shows its spectrum,where the segment starts at 0.2
seconds and lasts 0.01 seconds..

Figure 5.6: Spectrum of a segment from a vocal chirp.

Amplitude

60

50

B
o

W
o

(=]
(=]
T

10+

0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

Figure : Spectrum of a segment from a vocal chirp.

There is a clear peak near 400 Hz, but it is hard to identify the pitch
precisely.

The length of the segment is 441 samples at a framerate of 44100 Hz,
so the frequency resolution is 100 Hz (see Section 3.5).

That means the estimated pitch might be off by 50 Hz; in musical
terms, the range from 350 Hz to 450 Hz is about 5 semitones.

We could get better frequency resolution by taking a longer segment,
but since the pitch is changing over time, we would also get “motion
blur”; that is, the peak would spread between the start and end pitch of
the segment.

e We can estimate pitch more precisely using autocorrelation.

e If a signal is periodic, we expect the autocorrelation to spike when the
lag equals the period.

e To show why that works, I'll plot two segments from the same
recording.

import matplotlib.pyplot as plt

def plot_shifted(wave, offset=0.001, start=0.2):
segment]l = wave.segment(start=start, duration=0.01)
segmentl .plot(linewidth=2, alpha=0.8)
segment2 = wave.segment(start=start-offset, duration=0.01)
segment2.shift(offset)
segment2.plot(linewidth=2, alpha=0.4)
corr = segment].corr(segment2)
text = r'$\rho =$ %.2¢g' % corr
plt.text(segmentl.start+0.0005, -0.8, text)
plt.xlabel("Time (s)")

e Following Figure 5.7 shows the result of One segment starts at 0.2
seconds; the other starts 0.0023 seconds later.

1.0f

0.5}F

0.0F

=05}

p= 0.99

-1.0}))) B
0.200 0.202 0.204 0.206 0.208 0.210

Figure : Two segments from a chirp, one starting 0.0023
seconds after the other

e The segments are similar, and their correlation is 0.99.

e This result suggests that the period is near 0.0023 seconds, which
corresponds to a frequency of 435 Hz.

Fundamentals of Digital
Signals Processing

29

Applied Signal and Image
Processing

30

For this example, I estimated the period by trial and error.

To automate the process, we can use the autocorrelation function.
lags, corrs = autocorr(segment)

plt.plot(lags, corrs)

Following Figure shows the autocorrelation function for the segment
starting at t = 0.2 seconds.

1.0

05

0.0

Correlation

—]..0 L L i L L
0 50 100 150 200
Lag (index)

Figure : Autocorrelation function for a segment from a chirp.

Here,the first peak occurs at lag=101.

We can compute the frequency that corresponds to that period like
this:

period = lag / segment.framerate

frequency = 1 / period

The estimated fundamental frequency is 437 Hz.

To evaluate the precision of the estimate, we can run the same
computation with lags 100 and 102, which correspond to frequencies
432 and 441 Hz.

The frequency precision using autocorrelation is less than 10 Hz,
compared with 100 Hz using the spectrum.

In musical terms, the expected error is about 30 cents (a third of a
semitone).

1.3.5 Correlation as a dot product

We started with this definition of Pearson’s correlation coefficient:

_ > ilms — pa)lys — ig)

No,o,

Then I used p to define serial correlation and autocorrelation.

e That’s consistent with how these terms are used in statistics, but in the
context of signal processing, the definitions are a little different.

e In signal processing, we are often working with unbiased signals,
where the mean is 0, and normalized signals, where the standard
deviation is 1.

e In that case, the definition of p simplifies to:

= % Z 23Y;

e And it is common to simplify even further:
r = E Ty,
i

e This definition of correlation is not “standardized”, so it doesn’t
generally fall between -1 and 1.

e But it has other useful properties. If you think of x and y as vectors,
you might recognize this formula as the dot product, x - y.

e The dot product indicates the degree to which the signals are similar. If
they are normalized so their standard deviations are 1,

X-y=cos9
where 0 is the angle between the vectors.

e And that explains why the following Figure is a cosine curve.

1.0

0.5

0.0

Correlation

Offset (radians)

Figure : The correlation of two sine waves as a function of
the phase offset between them. The result is a cosine.

1.4 SUMMARY

In this chapter we have discussed:

Fundamental concepts and techniques for processing signals and digital
signal processing, Process of conversion of analog to digital as well as
digital to analog conversion, Digital Signal Processing (DSP): Digital
Signal Processing (DSP) is an amazing field that uses advanced math and

Fundamentals of Digital
Signals Processing

31

Applied Signal and Image
Processing

32

computers to understand and improve signals. Signals are everywhere in
our digital world, like music, pictures, and wireless communication.
Applications of real -world signal processing problems.

Periodic signals: Signals that repeat themselves after some period of time
are called periodic signals. For example, if you strike a bell, it vibrates and
generates sound.

Noise: In signal processing, noise is a general term for unwanted (and, in
general, unknown) modifications that a signal may suffer during capture,
storage, transmission, processing, or conversion. The simplest way to
understand noise is to generate it, and the simplest kind to generate is
uncorrelated uniform noise (UU noise).

Spectrum: The spectrum is the set of sinusoids that add up to produce the
signal.

Autocorrelation: sometimes known as serial correlation in the discrete
time case, is the correlation of a signal with a delayed copy of itself as a
function of delay. Informally, it is the similarity between observations of a
random variable as a function of the time lag between them.

Correlation: Correlation between variables means that if you know the
value of one, you have some information about the other.

1.5 EXERCISE

Answer the following:
1. What is Digital Signal Processing (DSP)? Explain.

2. Define Digital Signal Processing (DSP). Draw basic DSP system. Note
down the advantages and disadvantages of DSP.

3. Write a short note on Periodic signals.

4. Explain following terms about Periodic signals:

a. Periodic signals

b. Waveform

c. Sinusoid

d. Cycles

e. Period

f. Frequency

What is Spectral decomposition? Explain.

What is Spectral decomposition? Explain Harmonics in detail.

Write a short note on the signal.

e A

What is signal and signal processing? Explain the term SumSignal.

10.
1.
12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.

Explain following term for signal:

a. Signal

b. Signal processing

c. SumsSignal

d. Frame

e. Sample

f. wave

What is spectrum? Explain three methods that modify the spectrum.
Write a short note on a wave object.

Write a short note on : Signal objects. Explain The parameters of
__init_ .
What is noise? Explain Uncorrelated noise.

What is the spectrum in noise ? Explain following three things about a
noise signal or its spectrum :

a. Distribution

b. Correlation

c. Relationship between power and frequency
Write a short note on: Integrated spectrum.
What is Brownian noise? Explain in detail.
What is Pink Noise? Explain in detail.

What is Gaussian noise? Explain.

Write a short note on :Correlation.

Write a short note on :Serial correlation.
Write a short note on: Autocorrelation.
Explain: Autocorrelation of periodic signals.

Explain: Correlation as a dot product

1.6 REFERENCES

Text Books/Reference Books:

1. Think DSP: Digital Signal Processing in Python by Allen Downey,
O'Reilly Media; st edition (August 16, 2016).

https://greenteapress.com/thinkdsp/thinkdsp.pdf

2. The code and sound samples used in this chapter are available from
https: //github.com/AllenDowney/ThinkDSP

o O O O
0.0 0.0 0.0 0.0

Fundamentals of Digital
Signals Processing

33

Unit 1

FUNDAMENTALS OF DIGITAL
SIGNALS PROCESSING - 11

Unit Structure :

2.0 Objective

2.1 Frequency domain Operations:
2.1.1 Introduction to Frequency domain
2.1.2 Representing Image as Signals
2.1.3 Sampling and Fourier Transforms

2.2 Discrete Fourier Transform
2.2.1 Convolution and Frequency Domain Filtering
2.2.2 Smoothing using lowpass filters
2.2.3 Sharpening using high-pass filters

2.3 Fast Fourier Transforms

2.4 Summary

2.5 Exercise

2.6 References

2.0 OBJECTIVE

The objective of this chapter is :

e To Understand the meaning of frequency domain filtering, and how it
differs from filtering in the spatial domain.

e Be familiar with the concepts of sampling, function reconstruction,
and aliasing.

e Understand convolution in the frequency domain, and how it is related
to filtering.

e Know how to obtain frequency domain filter functions from spatial
kernels, and vice versa.

e Know the steps required to perform filtering in the frequency domain.

Understand the mechanics of the fast Fourier transform, and how to
use it effectively in image processing.

Some solved examples based on DFT and FFT.

2.1 FREQUENCY DOMAIN OPERATIONS

2.1.1 Introduction to Frequency domain:

Frequency domain analysis and Fourier transforms are a cornerstone
of signal and system analysis.

Processing signals /images in the frequency domain with the context
Fourier series and frequency domain is purely mathematics.

We will try to minimize that math’s part and focus more on its use in
Digital Image Processing.

In Frequency Domain we first transform the image to its frequency
distribution.

Then our black box system performs whatever processing it has to
perform, and the output of the black box in this case is not an image,
but a transformation.

After performing inverse transformation, it is converted into an image
which is then viewed in spatial domain.

It can be pictorially viewed as

Input image > frequency -y Processing

distribution

! Inverse
Output image <:' transformation

In the frequency domain, a digital image is converted from spatial
domain to frequency domain.

In the frequency domain, image filtering is used for image
enhancement for a specific application.

A Fast Fourier transformation is a tool of the frequency domain used
to convert the spatial domain to the frequency domain.

For smoothing an image, low filter is implemented and for sharpening
an image, high pass filter is implemented.

When both the filters are implemented, it is analyzed for the ideal
filter, Butterworth filter and Gaussian filter.

Fundamentals of Digital
Signals Processing - 11

35

Applied Signal and Image
Processing

36

The frequency domain is a space which is defined by Fourier
transform.

Fourier transform has a very wide application in image processing.

Frequency domain analysis is used to indicate how signal energy can
be distributed in a range of frequency.

The basic principle of frequency domain analysis in image filtering is
to computer 2D discrete Fourier transform of the image.

Original lnuge Image DFT

Cenlering
PR = R \|..|ulp'.x,-.|h-, > W
=y

Array Filtered
Mule IDFT mage
plication feiped pe] Crop

image

Centering DFT
Multiplicd
by -1

Fig: Frequency domain filtering process

2.1.2 Representing Image as Signals

Fourier series : Any function that periodically repeats itself can be
expressed as the sum of sines and/or cosines of different frequencies,
each multiplied by a different coefficient.

Fourier transform : Even functions that are not periodic (but whose
area under the curve is finite) can be expressed as the integral of sines
and/or cosines multiplied by a weighting function.

The frequency domain : refers to the plane of the two dimensional
discrete Fourier transform of an image.

The purpose of the Fourier transform is to represent a signal as a linear
combination of sinusoidal signals of various frequencies.

Following Figure shows sum of the four functions :

Asin(r)

+++

Figure :The function at the bottom is the sum of the four
functions above it.

FUNDAMENTAL STEPS IN DIGITAL IMAGE PROCESSING

The two broad categories are:

1.
2.

methods whose input and output are images, and

methods whose inputs may be images, but whose outputs are attributes
extracted from those images.

Fundamental steps in digital image processing are as follow:

Image acquisition

It is the first process in digital image processing.

Acquisition could be as simple as being given an image that is already
in digital form.

Generally, the image acquisition stage involves preprocessing, such as
scaling.

Image enhancement

It is the process of manipulating an image so the result is more suitable
than the original for a specific application.

It establishes at the outset that enhancement techniques are problem
oriented.

Thus, for example, a method that is quite useful for enhancing X-ray
images may not be the best approach for enhancing satellite images
taken in the infrared band of the electromagnetic spectrum.

Image restoration

It is an area that also deals with improving the appearance of an image.

However, unlike enhancement, which is subjective, image restoration
is objective, in the sense that restoration techniques tend to be based
on mathematical or probabilistic models of image degradation.

Enhancement, on the other hand, is based on human subjective
preferences regarding what constitutes a “good” enhancement result.

Color image processing

It is an area that has been gaining in importance because of the
significant increase in the use of digital images over the internet.

Color is used also as the basis for extracting features of interest in an
image.

Wavelets

Wavelets are the foundation for representing images in various degrees
of resolution.

Fundamentals of Digital
Signals Processing - 11

37

Applied Signal and Image
Processing

38

Compression

As the name implies, it deals with techniques for reducing the storage
required to save an image, or the bandwidth required to transmit it.

Although storage technology has improved significantly over the past
decade, the same cannot be said for transmission capacity.

This is true particularly in uses of the internet, which are characterized
by significant pictorial content. Image compression

It is familiar (perhaps inadvertently) to most users of computers in the
form of image file extensions, such as the jpg file extension used in the
JPEG (Joint Photographic Experts Group) image compression
standard.

Morphological processing

It deals with tools for extracting image components that are useful in
the representation and description of shape.

Segmentation

Segmentation partitions an image into its constituent parts or objects.

In general, autonomous segmentation is one of the most difficult tasks
in digital image processing.

A rugged segmentation procedure brings the process a long way
toward successful solution of imaging problems that require objects to
be identified individually.

On the other hand, weak or erratic segmentation algorithms almost
always guarantee eventual failure. In general, the more accurate the
segmentation, the more likely automated object classification is to
succeed.

Feature extraction

It almost always follows the output of a segmentation stage, which
usually is raw pixel data, constituting either the boundary of a region
(i.e., the set of pixels separating one image region from another) or all
the points in the region itself.

Feature extraction consists of feature detection and feature description.

Feature detection refers to finding the features in an image, region, or
boundary.

Feature description assigns quantitative attributes to the detected
features.

For example, we might detect corners in a region, and describe those
corners by their orientation and location; both of these descriptors are
quantitative attributes.

Feature processing methods discussed in this chapter are subdivided
into three principal categories, depending on whether they are
applicable to boundaries, regions, or whole images.

Some features are applicable to more than one category. Feature
descriptors should be as insensitive as possible to variations in
parameters such as scale, translation, rotation, illumination, and
viewpoint.

Image pattern classification

It is the process that assigns a label (e.g., “vehicle”) to an object based
on its feature descriptors.

We will discuss methods of image pattern classification ranging from
“classical” approaches such as minimum-distance, correlation, and
Bayes classifiers, to more modern approaches implemented using deep
neural networks.

In particular, we will discuss in detail deep convolutional neural
networks, which are ideally suited for image processing work.

2.1.3 Sampling and Fourier Transforms:

SAMPLING

Continuous functions have to be converted into a sequence of discrete
values before they can be processed in a computer.

This requires sampling and quantization.
In the following discussion, we examine sampling in more detail.

Consider a continuous function, f (t), that we wish to sample at
uniform intervals, AT, of the independent variable t (see below figure).

In the following FIGURE we will see,

(a) A continuous function.

(b) Train of impulses used to model sampling.

(c) Sampled function formed as the product of (a) and (b).

(d) Sample values obtained by integration and using the sifting property of
impulses. (The dashed line in (c) is shown for reference. It is not part of

the data.)

Fundamentals of Digital
Signals Processing - 11

39

Applied Signal and Image)
Processing

T

“+—2AT—ATO0 AT2AT -
flt)sap(r)

*+—=2AT—AT 0 AT 2AT
fi = F(kAT)

AT N N VN TN N N (A AN O =
e =221 0 1 2 e

e We assume initially that the function extends from — o to oo with
respect to t.

e One way to model sampling is to multiply f (t) by a sampling function
equal to a train of impulses AT units apart.

e Thatis,

F(6)= fO)syp ()= Y, F(1)8(t - nAT)

where 7 (t) denotes the sampled function.

e FEach component of this summation is an impulse weighted by the
value of f (t) at the location of the impulse, as above Fig.(c) shows.

o The value of each sample is given by the “strength” of the weighted
impulse, which we obtain by integration. That is, the value, f , of an
arbitrary sample in the sampled sequence is given by

fff F(2)8(t — kAT)dt
= f(/;;\T_)

where we used the sifting property of o'.
40

e Above Equation holds for any integer value k = ...,-2 -1 ,0,1,2,....

e Above Figure (d) shows the result, which consists of equally spaced
samples of the original function.

THE FOURIER TRANSFORM OF SAMPLED FUNCTIONS

e Let F(u) m denote the Fourier transform of a continuous function f

(t).

e As discussed in the corresponding sampled function, 7(t) , 1s the
product of f (t) and an impulse train.

e We know from the convolution theorem that the Fourier transform of
the product of two functions in the spatial domain is the convolution of
the transforms of the two functions in the frequency domain.

e Thus, the Fourier transform of the sampled function is:

F(p) = 3{F(0} = 3{f()sr (1)}

= (F*xS)(p)
where,
1 & n
=— ———)is the Fourier transform of the impulse train
S(w) AT 2 o(u AT) p
SAt(t)

e We obtain the convolution of F(«) and S(&) directly from the 1-D
definition of convolution:

F(p)=(F*S)(u) = / F(r)S(p—7)dr

oo

HT) Z s(p,— ‘ —T)(Jr

n=-—w

l[”Z F(T]S(ﬂ—f—%)dr

o
AT

1 < n
~a7, 2. - a7)
e where the final step follows from the sifting property of the impulse.

o The summation in the last line of Eq. shows that the Fourier transform
F(u) of the sampled function f(¢) is an infinite, periodic sequence
of copies of the transform of the original, continuous function.

e The separation between copies is determined by the value of 1/AT.

Fundamentals of Digital
Signals Processing - 11

41

Applied Signal and Image
Processing

42

o CObserve that although 7(t) is a sampled function, its transform,

F(,u), 1s continuous because it consists of copies of F(x), which is a
continuous function.

Following Figure is a graphical summary of the preceding results.

Fp)

¥ H
;Ef,r.c)

—2/AT —1/AT 0 1/AT 2/AT
F(w)
2/AT 1/AT 0 1/AT 2/AT

Fw)

- t } } } m

~3/AT -2/AT —1AT 0 /AT 2/AT 3/AT

Figure (a) is a sketch of the Fourier transform, F(x), of a function f
(t), and

Figure (b) shows the transform, F(&), of the sampled function, f (t).

As mentioned in the previous section, the quantity 1/AT is the
sampling rate used to generate the sampled function.

So, in Figure (b) the sampling rate was high enough to provide
sufficient separation between the periods, and thus preserve the
integrity (i.e., perfect copies) of F(u).

In Figure(c), the sampling rate was just enough to preserve F(«), but

in Figure (d), the sampling rate was below the minimum required to
maintain distinct copies of F() ,and thus failed to preserve the

original transform.

Figure (b) is the result of an over-sampled signal, while Figs.(c) and
(d) are the results of critically sampling and under-sampling the signal,
respectively.

2.2 DISCRETE FOURIER TRANSFORM Fundamentals of Digital

Signals Processing - 11

One of the principal goals of this chapter is the derivation of the discrete
Fourier transform (DFT) starting from basic principles.

The material up to this point may be viewed as the foundation of those
basic principles, so now we have in place the necessary tools to derive the
DFT.

The DFT and Image Processing

To filter an image in the frequency domain:

1. Compute F(u,v) the DFT of the image

2. Multiply F(u,v) by a filter function H(u,v)

3. Compute the inverse DFT of the result

Frequency domain filtering operation

Filter Inverse

Fourier e I =
transform function — Fourier
’ H{u,v) transform
@ e Hiw, wpiuv) M

1}

f(x.y) &(x.y)

Input Enhanced
image image

2.2.1 Convolution and Frequency Domain Filtering
CONVOLUTION:

e Convolution of two functions involves flipping (rotating by 180°) one
function about its origin and sliding it past the other.

e At each displacement in the sliding process, we perform a
computation, which, for discrete interested in the convolution of two
continuous functions, f (t) and h (t), of one continuous variable, t, so
we have to use integration instead of a summation.

e The convolution of these two functions, denoted as before by the
operator , is defined as

(fXxh) ()= T S(Dh(-T)dT

e where the minus sign accounts for the flipping just mentioned, t is the
displacement needed to slide one function past the other, and t is a
dummy variable that is integrated out.

e We assume for now that the functions extend from —= to = .
43

Applied Signal and Image
Processing

44

e We are interested in finding the Fourier transform:

‘\’\{(;(*h)(f)} = / _ {/ ;‘(T)h{f L 'T)(IT j|(-'_|[:m”df

=/ _I"(T)./ h(t —7)e ™ dt]dr
J-00 | -0

e The term inside the brackets is the Fourier transform of h(t — T).

e We will show,

3{}1(1 - 7)} =].{(ILL)(J..I',‘.W_“,—

where H(1) m is the Fourier transform of h (t).

e Using this in the preceding equation gives us

3{(;‘*1:}(:_)}:] FO[H(p)e ™ |dr

= H(#)/ fl)e P dy

= H(p)F(p)
=(HF)(n)

where “ . ” indicates multiplication.

Remember, convolution is commutative, so the order of the functions
in convolution expressions does not matter.

If we refer to the domain of t as the spatial domain, and the domain of
1 as the frequency domain, the preceding equation tells us that the
Fourier transform of the convolution of two functions in the spatial
domain is equal to the product in the frequency domain of the Fourier
transforms of the two functions.

Conversely, if we have the product of the two transforms, we can
obtain the convolution in the spatial domain by computing the inverse
Fourier transform.

In other words, fkh and H - F are a Fourier transform pair.

This result is one-half of the convolution theorem and is written as

(f *h) < (HF) (1)

The double arrow indicates that the expression on the right is obtained by
taking the forward Fourier transform of the expression on the left,

while the expression on the left is obtained by taking the inverse Fourier
transform of the expression on the right.

Following a similar development would result in the other half of the
convolution theorem:

(f-h) (O < H*F) (1)

which states that convolution in the frequency domain is analogous to
multiplication in the spatial domain, the two being related by the forward
and inverse Fourier transforms, respectively.

The convolution theorem is the foundation for filtering in the
frequency domain.

The steps in filtering are given below.

At first step we have to do some pre — processing an image in spatial
domain, means increase its contrast or brightness

Then we will take discrete Fourier transform of the image

Then we will center the discrete Fourier transform, as we will bring
the discrete Fourier transform in center from corners

Then we will apply filtering, means we will multiply the Fourier
transform by a filter function

Then we will again shift the DFT from center to the corners

Last step would be take to inverse discrete Fourier transform, to bring
the result back from frequency domain to spatial domain

And this step of post processing is optional, just like pre processing ,
in which we just increase the appearance of image.

FREQUENCY DOMAIN FILTERING FUNDAMENTALS:

Frequency Domain Filters are used for smoothing and sharpening of
image by removal of high or low frequency components. Sometimes it is
possible to remove very high and very low frequencies.

Frequency domain filters are different from spatial domain filters as it
basically focuses on the frequency of the images.

It is basically done for two basic operation i.e., Smoothing and
Sharpening.

Filtering in the frequency domain consists of modifying the Fourier
transform of an image, then computing the inverse transform to obtain
the spatial domain representation of the processed result.

Thus, given (a padded) digital image, f(x ,y), of size P x Q pixels, the
basic filtering equation in which we are interested has the form:

g(x,y)= Rua]{fﬁ"' [H (1,) F (u, n)]}

Fundamentals of Digital
Signals Processing - 11

45

Applied Signal and Image
Processing

46

Where 37 is the IDFT , F (u,v) is the DFT of the input image, f(x.y),
H(u,v) is a filter transfer function and g(x,y) is the filtered i.e output
image.

Function F,H, and g are arrays of size P x Q, the same as the padded
input image.

The product H(u,v) F(u,v) is formed wusing element wise
multiplication.

The filter transfer function modifies the transform of the input image
to yield the processed output, g(x,y).

The task of specifying H(u,v) is simplified considerably by using
functions that are symmetric about their center, which requires that
F(u,v) be centered also.

STEPS FOR FILTERING IN THE FREQUENCY DOMAIN:

The process of filtering in the frequency domain can be summarized as
follows:

1.

Given an input image f(x,y) of size M x N, obtain the padding sizes P
and Q that is, P=2M and Q=2N.

From a padded image fy(x,y) of size P x Q using zero-,mirror-,or
replicate padding.

Multiply f,(x,y) by (-1)*” to center the Fourier transform on the P x Q
frequency rectangle.

Compute the DFT, F(u,v), of the image from step 3.

Construct a real, symmetric filter transfer function, H(u,v), of size P x
Q with center at(P/2,Q/2)

From the product G(u,v) = H(uyv) F(u,v) using elementwise
multiplication; that is, G(i,k)=H(i,k)F(i,k) for i=0,1,2,...M-1 and
k=0,1,2,...,N-1.

Obtain the final filtered images of size P x Q by computing the IDFT
of G(u,v):

Obtain the final filtered result, g(x,y), of the same size as the impute
image by extracting the M x N region from the top,left quadrant of

gp(X7Y)'

2.2.2 Smoothing using lowpass filters

Low pass filtering i.e.smoothing, is employed to remove high spatial
frequency noise from a digital image.

e The low-pass filters usually employ moving window operator which Fundamentals of Digital
affects one pixel of the image at a time, changing its value by some Signals Processing - II
function of a local region (window) of pixels.

o The operator moves over the image to affect all the pixels in the
image.

e Three types of lowpass filters are:

o IDEAL,

o BUTTERWORTH, and

o GAUSSIAN.

e These three categories cover the range from very sharp (ideal) to very
smooth (Gaussian) filtering.

e The shape of a Butterworth filter is controlled by a parameter called
the filter order.

e For large values of this parameter, the Butterworth filter approaches
the ideal filter.

e For lower values, the Butterworth filter is more like a Gaussian filter.

e Thus, the Butterworth filter provides a transition between two
“extremes.”

e All filtering in this section follows the procedure outlined in the
previous section, so all filter transfer functions, H(, u v), are
understood to be of size P x Q ; that is, the discrete frequency variables
are in the range u =0,1,2,...,P-1 and v =0,1,2,...,Q-1 where P and Q are
the padded sizes.

e [DEAL LOW PASS FILTER

o Simply cut off all high frequency components that are a specified
distance Dy from the origin of the transform

Hu, v) S Hu, v)

1

Dy D(u, v)

FIGURE (a) Perspective plot of an ideal lowpass-filter transfer function.
(b) Function displayed as an image.

(c) Radial cross section.

o changing the distance changes the behaviour of the filter.

47

Applied Signal and Image
Processing

48

The name ideal indicates that all frequencies on or inside a circle of
radius Dy are passed without attenuation,whereas all frequencies
outside the circle are completely attenuated (filtered out).

The ideal lowpass filter transfer function is radially symmetric about
the origin.

This means that it is defined completely by a radial cross section, as
above Fig.(c) shows.

A 2-D representation of the filter is obtained by rotating the cross
section 360°.

The transfer function for the ideal low pass filter can be given as:

1if D(uv)< D,
Hu,v)= .
0 if D(u,v)> D,

where Dfu,v) is given as:

Du,v)=[(u—M/2Y +(v=N/2)"]"

For an ILPF cross section, the point of transition between the values
H(u, v) =1 and H(u, v) = 0 is called the cutoff frequency.

In above Fig.the cutoff frequency is Dy.

The sharp cutoff frequency of an ILPF cannot be realized with
electronic components, although they certainly can be simulated in a
computer (subject to the constrain that the fastest possible transition is
limited by the distance between pixels).

The lowpass filters in this chapter are compared by studying their
behavior as a function of the same cutoff frequencies.

One way to establish standard cutoff frequency loci using circles that
enclose specified amounts of total image power Pt ,which we obtain
by summing the components of the power spectrum of the padded
images at each point (u,v),for u = 0,1,2,...,P-1 and v = 0,1,2,...,Q-1
that is,

P—10-1

Pr = Z Z P(u,v)

u=0v=0

If the DFT has been centered, a circle of radius Dy with origin at the
center of the frequency rectangle encloses [percent of the power,
where

a= mn[zz P(u,v)/P, }

and the summation is over values of (u,v) that lie inside the circle or
on its boundary.

o Belove given Figures (a) and (b) show a test pattern image and its
spectrum.

o The circles superimposed on the spectrum have radii of 10, 30, 60,
160, and 460 pixels, respectively, and enclosed the percentages of total
power listed in the figure caption.

o The spectrum falls off rapidly, with close to 87% of the total power
being enclosed by a relatively small circle of radius 10.

o The significance of this will become evident in the following example.

SN BN s |

d

ZR%aa

FIGURE (a) Test pattern of size 688 688 X pixels, and

(b) its spectrum. The spectrum is double the image size as a result of
padding, but is shown half size to fit. The circles have radii of 10, 30, 60,
160, and 460 pixels with respect to the full-size spectrum. The radii
enclose 86.9, 92.8,95.1, 97.6, and 99.4% of the padded image power,
respectively.

o Above we show an image, it’s Fourier spectrum and a series of ideal
low pass filters of radius 5, 15, 30, 80 and 230 superimposed on top of
it.

I .
c«nm [l - . “
Result of filtering
Original eee a . with ideal low pass
image A filter of radius 5
T &
aaaaaaaad
. ieoml | ccrmmE
Result of filtering Result of filtering
with ideal low pass | | o a Py a with ideal low pass
filter of radius 15 | . ~ I”" "“ | filter of radius 30
STTYY R R __nsaallﬂ_ﬂ_a;

..-I-.. -..-....] .
Result of filtering Result of filtering

® ° L -
with ideal low pass = ®ee a _ coe a, e \f’i\ﬂt:r lgff:c;iol:: ggzs
filter of radius 80 ””” “ o I”” ||| | ,

aaaaaaaad aaaaaaaad

o It is clear from this example that ideal lowpass filtering is not
practical.

Fundamentals of Digital
Signals Processing - II

49

Applied Signal and Image
Processing

50

o

O

o

However, it is useful to study the behavior of ILPFs as part of our
development of filtering concepts.

Also, as shown in the discussion that follows, some interesting insight
is gained by attempting to explain the ringing property of ILPFs in the
spatial domain.

BUTTERWORTH LOWPASS FILTERS:

The transfer function of a Butterworth lowpass filter (BLPF) of order
n, with cutoff frequency at a distance Do from the center of the
frequency rectangle, is defined as

1
I + [D([L ‘“) D‘]]3”

Hu,v) =

Following Fig. shows a perspective plot, image display, and radial
cross sections of the BLPF function.

Hu,v)

Diu, v)

abec

FIGURE (a) Perspective plot of a Butterworth lowpass-filter transfer
function.

(b) Function displayed as an image.
(c) Radial cross sections of BLPFs of orders 1 through 4.

Comparing the cross section plots in given Figs. we see that the BLPF
function can be controlled to approach the characteristics of the ILPF
using higher values of n, and the GLPF for lower values of n, while
providing a smooth transition from low to high frequencies.

Thus, we can use a BLPF to approach the sharpness of an ILPF
function with considerably less ringing.

GAUSSIAN LOWPASS FILTERS:
Gaussian lowpass filter (GLPF) transfer functions have the form

3

'H(H .”} =g -D* (up)2e?

Unlike our earlier expressions for Gaussian functions, we do not use a
multiplying constant here in order to be consistent with the filters
discussed in this and later sections, whose highest value is 1.

o Asbefore, o is a measure of spread about the center.

o By letting o= Dy , we can express the Gaussian transfer function in
the same notation as other functions in this section:

-D*(uv)2D}
H(u,v)=e 7 =%

o where Dy is the cutoff frequency.

o When D (u, v) = Dy the GLPF transfer function is down to 0.607 of its
maximum value of 1.0.

o Following Figure shows a perspective plot, image display, and radial
cross sections of a GLPF transfer function.

Hiu, v)

0.607

FIGURE (a) Perspective plot of a GLPF transfer function.
(b) Function displayed as an image.
(c) Radial cross sections for various values of DO

e Summary Table:

TABLE
Lowpass filter transfer functions. D, is the cutoff frequency, and n is the order of the Butterworth filter.
Tdeal Gaussian Butterworth
1 dif D(u,w) <D, D ua) 2D}
H(u.-ﬂ:{ = b H(u.v) =D (002D, H(uw) = ———
0 if D(u,v) > DU 1+ [D{l{. 01/ D,]-n

e ADDITIONAL EXAMPLES OF LOWPASS FILTERING

o The magnified section in following Fig.(a) shows that the characters in
this document have distorted shapes due to lack of resolution, and
many of the characters are broken.

ab

FIGURE

(a) Sample text
of low resolution
(note the broken
characters in the
magnified view).
(b) Result of
filtering with a
GLPF,

showing that gaps
in the broken
characters were
joined.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year

2000. —
&

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the ygar
2000. /

ea

Fundamentals of Digital
Signals Processing - II

51

Applied Signal and Image
Processing

52

Although humans fill these gaps visually without difficulty, machine
recognition systems have real difficulties reading broken characters.

One approach for handling this problem is to bridge small gaps in the
input image by blurring it.

Figure (b) shows how well characters can be “repaired” by this simple
process using a Gaussian lowpass filter with Dy = 120.

It is typical to follow the type of “repair” just described with additional
processing, such as thresholding and thinning, to yield cleaner
characters.

Following figure shows an application of lowpass filtering for
producing a smoother, softer-looking result from a sharp original.

For human faces, the typical objective is to reduce the sharpness of
fine skin lines and small blemishes.

The magnified sections in Figs.(b) and (c) clearly show a significant
reduction in fine skin lines around the subject’s eyes.

In fact, the smoothed images look quite soft and pleasing.

FIGURE 4.49
(a) Original 785x 732 image.
(b) Result of filtering using a GLPF with Dy = 150.

(c) Result of filtering using a GLPF with Dy = 130. Note the reduction in
fine skin lines in the magnified sections in (b) and (c).

e Following shows two applications of lowpass filtering on the same

image, but with totally different objectives.

FIGURE(a) 808 x 754 satellite image showing prominent horizontal scan
lines.
(b) Result of filtering using a GLPF with Dy = 50.
(c) Result of using a GLPF with DO = 20. (Original image
courtesy of NOAA.)

o Figure (a) is an 808 754 x segment of a very high resolution
radiometer (VHRR) image showing part of the Gulf of Mexico (dark)
and Florida (light) (note the horizontal sensor scan lines).

o The boundaries between bodies of water were caused by loop currents.

o This image is illustrative of remotely sensed images in which sensors
have the tendency to produce pronounced scan lines along the
direction in which the scene is being scanned.

2.2.3 Sharpening using high-pass filters
A high-pass filter can be used to make an image appear sharper.

These filters emphasize fine details in the image - the opposite of the low-
pass filter.

High-pass filtering works in the same way as low-pass filtering; it just
uses a different convolution kernel.

IDEAL, GAUSSIAN, AND BUTTERWORTH HIGHPASS FILTERS
FROM LOWPASS FILTERS

e As was the case with kernels in the spatial domain , subtracting a
lowpass filter transfer function from 1 yields the corresponding
highpass filter transfer function in the frequency domain:

PIHP{“‘I}} — 1 - HLP(”‘ 'UJ

where Hyp(u,v) is the transfer function of a lowpass filter.

e Thus, it follows from that an ideal highpass filter (IHPF) transfer
function is given by

Fundamentals of Digital
Signals Processing - II

53

Applied Signal .and Image J'U if D(u,v)< D,
rrocessine HU9=1 D)=
, 0

where, as before, D(u, v) is the distance from the center of the PxQ
frequency rectangle.

e Similarly, it follows that the transfer function of a Gaussian highpass
filter (GHPF) transfer function is given by and, that the transfer
function of a Butterworth highpass filter (BHPF) is

1
1+[D,/D(u,v)"

H(u,v) =

e Following figure shows 3-D plots, image representations, and radial
cross sections for the preceding transfer functions.

o As before, we see that the BHPF transfer function in the third row of
the figure represents a transition between the sharpness of the IHPF
and the broad smoothness of the GHPF transfer function.

Hw, v} Hiw, v)

el | —

e, v)

e A

Diu, v)

FIGURE

Top row: Perspective plot, image, and, radial cross section of an IHPF
transfer function.

Middle and bottom rows: The same sequence for GHPF and BHPF
transfer functions.

(The thin image borders were added for clarity. They are not part of the
data.)

54

Summary Table: Fundamentals of Digital

Signals Processing - II
TABLE 4.6
Highpass filter transfer functions.), is the cutoff frequency and # is the order of the Butterworth transfer function.

Ideal Gaussian Butterworth
H(u,v) = 0 HDuw=D, H(uv)=1 — 2'@/28 H(uv)= -5
1 if D(u,v)> D, 14 [D,, D(mu)r,.

Similarities between Low pass filter and High pass filter:

e Both filters are used to remove unwanted frequency components from
a signal.

e Both filters have a cut-off frequency, which is the frequency at which
the filter begins to attenuate the signal.

e The steepness of the cut-off slope depends on the order of the filter,
with higher-order filters having steeper slopes.

e Both filters can introduce phase shifts, which can affect the time-
domain characteristics of the signal.

e Both filters are used in a variety of applications including audio
processing, 1image processing, communication systems, and
biomedical signal processing.

Difference between Low pass filter and High pass filter:

Low pass filter High pass filter
e [t is used for smoothing the image. e [tis used for sharpening the image.
e [t attenuates the high frequency. e [t attenuates the low frequency.
e [ow frequency is preserved in it. e High frequency is preserved in it.

e [t allows the frequencies below the cut | @ It allows the frequencies above cut off
off frequency to pass through it. frequency to pass through it.

e [t consists of a resistor followed by a|e® It consists of a capacitor that is
capacitor. followed by a resistor.

e [t helps in removal of aliasing effects. | ® It helps in removal of noise.

e G(u,v)=H(u,v).F(u,vVv) e H(u,v)=1-H'(u,v)

OBTAINING THE DFT FROM THE CONTINUOUS TRANSFORM OF
A SAMPLED FUNCTION

o The Fourier transform of a sampled, band-limited function extending
from —oo to oo is a continuous, periodic function that also extends from
—00 to 0.

e The objective of this section is to derive the DFT of such finite sample

sets.
55

=

Applied Signal and Image F(y)=(F*S]{,U.)=] F(r)S(p—7)dr

Processing
e

= ﬁ) F(TJHZT 5(,&1 —7— %)(ﬁf

l w
:EZ

== J_

F(‘r)é(p, -7 = %)a‘r

1 e
=2 B

e Above equation gives the transform, F(,u), of sampled data in terms
of the transform of the original function, but it does not give us an

expression for f(M) in terms of the sampled function F(t) itself.

e We find that expression directly from the definition of the transform in
equation

e The Fourier transform of a continuous function f(t) of a continuous
variable, t, denoted J{f(1)}, is defined by the equation

w00

J{f()} = / f(t)ye > dr
L e &
We get,
F(p)=[f@ye ™ dr
e By substituting equation

TO=f0ss 1= Y £O)3(—nAr)

for F(1),
we obtain,
F(p)= / ,F(f)t’ Raslay = / Z f(1)8(t — nAT)e >™ dt

Z/ f(1)o(t — nAT)e i2mpt gy
n=-=,)—on

. - ~ —j2aundAT
= z ..ln ¢
n=-—x

56

e The last step follows from Eq. Fundamentals of Digital
Signals Processing - II

oo

Ji = f f(0)8(r — kAT)dr
o0
= f(kAT)
and the sifting property of the impulse.

e Although f, is a discrete function, its Fourier transform, F(u), 1S

continuous and infinitely periodic with period 1/AT, as we know from
Eq.

e

F"m)=(F*S){M=/ F(r)S(u—7)dr

-G

e Therefore, all we need to characterize F(u) is one period, and
sampling one period of this function is the basis for the DFT.

e Suppose that we want to obtain M equally spaced samples of F(u)
taken over the one period interval from y=0to ¢ =1/AT.

e This is accomplished by taking the samples at the following
frequencies:

p=—"""m=012,....,M-1
MAT

e Substituting this result for m into Eq.

F(u) / fye *™dr = / S f(t)8(t = nAT)e ™ dy

.o

08t — nAT)e 2™ dy
J(t)8(

A==rc J—00

2 f;lﬁ—.léngn.“\'f'

H=—5c

and letting F,, denote the result yields

F,= F,e J2mmnM m=0,12....

57

Applied Signal and Image
Processing

58

This expression is the discrete Fourier transform we are seeking.Given
a set {f;,} consisting of M samples of f (t), above Eq. yields a set {f;;}
of M complex values corresponding to the discrete Fourier transform
of the input sample set.

Conversely, given {f,}, we can recover the sample set {f,} by using
the inverse discrete Fourier transform (IDFT)

F,, e /2xmM n=0,12....

substituting Eq. (B) for f, into Eq. (A) gives the identity F,, = F,, .
Similarly, substituting Eq. (A) into Eq. (B) for Fy, yields f, =1, .

This implies that Eqgs. (A) and (B) constitute a discrete Fourier
transform pair.

Furthermore, these identities indicate that the forward and inverse
Fourier transforms exist for any set of samples whose values are finite.

Note that neither expression depends explicitly on the sampling
interval AT, nor on the frequency intervals of Eq.

=" m=012,...,M-1
MAT

Therefore, the DFT pair is applicable to any finite set of discrete
samples taken uniformly.

We used m and n in the preceding development to denote discrete
variables because it is typical to do so for derivations.

However, it is more intuitive, especially in two dimensions, to use the
notation x and y for image coordinate variables and u and v for
frequency variables, where these are understood to be integers.

Then,
e Egs. (A) and (B) become

Fuy= S Fae ™M y=012
------ EqT:OC
and
1 & P2mux/M
3 F(u) ™" x=0,1,2....
-------- Eq.

e where we used functional notation instead of subscripts for simplicity.

Comparing Egs. (A) through (D), you can see that F(u) = F,, and f(x) =
fa

From this point on, we use Egs. (C) and (D) to denote the 1-D DFT
pair.

As in the continuous case, we often refer to Eq. (C) as the forward
DFT of f (x), and to Eq. (D) as the inverse DFT of F (u).

As before, we use the notation f(x) < F(u) to denote a Fourier
transform pair.

Sometimes you will encounter in the literature the 1/M term in front of
Eq. (C) instead.

That does not affect the proof that the two equations form a Fourier
transform pair.

Knowledge that f(x) and F(u) are a transform pair is useful in proving
relationships between functions and their transforms.

For example, you are asked in Problem 4.17 to show that
f(x-x0) ©F(u) e /> is a Fourier transform pair.

That is, you have to show that the DFT of and, conversely, that the
inverse DFT of

f(x - xo) is F(u) e™/>™™

Because this is done by substituting directly into Egs. (C) and (D), and
you will have proved already that these two equations constitute a
Fourier transform pair , if you prove that one side of “<” is the DFT
(IDFT) of the other, then it must be true the other side is the IDFT
(DFT) of the side you just proved.

It turns out that having the option to prove one side or the other often
simplifies proofs significantly.

This is true also of the 1-D continuous and 2-D continuous and
discrete Fourier transform pairs.

It can be shown that both the forward and inverse discrete transforms
are infinitely periodic, with period M.

That is,
F(u) = F(u + kM)
and
f(x)=f(x + kM)

where k is an integer.

Fundamentals of Digital
Signals Processing - 11

59

Applied Signal and Image
Processing

60

The discrete equivalent of the 1-D convolution is

f(x) * h(x) = Mz] F(m)h(x—m) Where x=0,1,2,.. . M-1 -

Because in the preceding formulations the functions are periodic, their
convolution also is periodic. Above Equation F gives one period of the
periodic convolution.

For this reason, this equation often is referred to as circular
convolution.

This is a direct result of the periodicity of the DFT and its inverse.

This is in contrast with the convolution in which values of the
displacement, x, were determined by the requirement of sliding one
function completely past the other, and were not fixed to the range
[0,M-1] as in circular convolution.

Finally, we point out that the convolution theorem is applicable also to
discrete variables.

RELATIONSHIP BETWEEN THE SAMPLING AND FREQUENCY
INTERVALS

If £ (x) consists of M samples of a function f (t) taken AT units apart,
the length of the record comprising the set {f(x)}, x = 0,1,2,....M-1, is
T=MAT

The corresponding spacing, Au, in the frequency domain follows from
Eq.

m

u=——m=20,1,2,., M-1 :
MAT
1 1
Uu=——————=——
MAT T

The entire frequency range spanned by the M components of the DFT
is then

RZMAuZL
AT

Thus, we see from above Egs. that the resolution in frequency, Au, of
the DFT depends inversely on the length (duration, if t is time) of the
record, T, over which the continuous function, f (t), is sampled; and
the range of frequencies spanned by the DFT depends on the sampling
interval AT.

Keep in mind these inverse relationships between Auand AT.

2.3 FAST FOURIER TRANSFORMS

It is important to develop a basic understanding of methods by which
Fourier transform computations can be simplified and speeded up.

SEPARABILITY OF THE 2-D DFT
e The 2-D DFT is separable into 1-D transforms.

e We can write Eq.as

M-1) N-1)
F(u,V) — ze—_ﬂlzm/MZf(x’ y)e—_/27rvy/N
x=0 y=0

M-1
— Z F(x V)e—j27rux/M
D
x=0
where

N-1
F(u,v) = D f(x,p)e ™
v=0

e For one value of x, and for v=0,1,2,...,N-1, we see that F (x ,v) is the
1-D DFT of one row of f(x ,y).

e We conclude that the 2-D DFT of f (x,y) can be obtained by
computing the 1-D transform of each row of f (x,y) and then
computing the 1-D transform along each column of the result.

e This is an important simplification because we have to deal only with
one variable at a time.

e A similar development applies to computing the 2-D IDFT using the
1-D IDFT.

e However, as we show in the following section, we can compute the
IDFT using an algorithm designed to compute the forward DFT, so all
2-D Fourier transform computations are reduced to multiple passes of
a 1-D algorithm designed for computing the 1-D DFT.

COMPUTING THE IDFT USING A DFT ALGORITHM

e Taking the complex conjugate of both sides of Eq.and multiplying the
results by MN yields

S
=

1 N-1
MNf*(X,y): *(u,v)e—jZH(ux/M+vy/N)

u

Il
[=1
I
(=}

V:

e If we substitute F*(u,v) into an algorithm designed to compute the 2-D
forward Fourier transform, the result will be MNTf (x ,y).

e Taking the complex conjugate and dividing this result by MN yields f
(x,y), which is the inverse of F(u, v).

Fundamentals of Digital
Signals Processing - 11

61

Applied Signal and Image
Processing

62

The key concept to keep in mind is that we simply input F*(u,v)into
whatever forward algorithm we have.

The result will be MNf*(x,y).

All we have to do with this result to obtain f(x ,y) is to take its
complex conjugate and divide it by the constant MN.

When f (x ,y) is real, as typically is the case, then f*(x,y)z f(x,y).

THE FAST FOURIER TRANSFORM (FFT)

The fast Fourier transform (FFT), reduces computations to the order of
MN log, MN multiplications and additions.

The computational reductions afforded by the FFT are impressive
indeed.

For example, computing the 2-D FFT of a 2048 X 2048 image would
require on the order of 92 million multiplication and additions, which
is a significant reduction from the one trillion computations
mentioned.

The algorithm we selected to accomplish this objective is the so-called
successive-doubling method, which was the original algorithm that led
to the birth of an entire industry.

This particular algorithm assumes that the number of samples is an
integer power of 2, but this is not a general requirement of other
approaches (Brigham [1988]).

We know from the previous section that 2-D DFTs can be
implemented by successive passes of the 1-D transform, so we need to
focus only on the FFT of one variable.

In derivations of the FFT, it is customary to express Eq. in the form
M-1
Fu)=) f(x)Wy
x=0

foru=0,1,2,....M-1 , where
Wy = e /27/M
and M is assumed to be of the form
M=2"
Where p is a positive integer.
Then it follows that M can be expressed as

M=2k

With K being a positive integer and by substituting values Fundamentals of Digital

Signals P ing - 11
2K-1 1gnals rrocessing

Fw =X /(3

K-1 K-1
= 2 SO+ f QR+ DI
x=0 x=0
However, it can be shown using Eq. that W,2* =W, so Eq. can be
written as

K-l K-1
F(u) = z f2x) W™ + z f2x+1) e

=0

xX=

=

Defining
K-1
Feven(u) = f(2X) ngx for u=0,1,2,...,.K-1, and
K-1
Foga(u) = f(2x+1) W foru=0,1,2,.... K-1, reduces Eq. to

=

F(u): Feven(u) + Fodd(U.) ng

u+K __ u u+K __ u
Also, because W, " = W, and W,;" = -W,

o« » 1t follows that

F(u + K) = Feven(u) - Fodd(u) VVZMK

An M-point DFT can be computed by dividing the original expression
into two parts, as indicated in above Eqgs.

Computing the first half of F (u) requires evaluation of the two (M/2)-
point transforms given in Egs.

The resulting values of Feyen(u) and F o44(u) are then substituted into
Eq.to obtain F(u)

for u=0,1,2,...,(M/2-1).

The other half then follows directly from Eq. without additional
transform evaluations.

It provides computationally efficient algorithms for evaluating the
DFT.

Direct computation of DFT has large number addition and
multiplication operations.

The DFT has various applications such as linear filtering, correlation
analysis, and spectrum analysis.

Hence an efficient computation of DFT is an important issue in DSP.

63

Applied Signal and Image There are two different approaches in computing efficient DFT, those are:
Processing

1 Divide and Conquer approach

2 DFT as Linear filtering.

Computation of

DFT
Divide and DFT as Linear
s ol Filtering
Approach
Y Goertzel Chirp-Z
l J' l Algorithm Transform
Algorithm
Radix-2 Radix-4 Split-Radix
FFT FFT FFT
Algorithm Algorithm Algorithm
¥ ¥ ¥
DIT DFT DIF DFT
Algorithm Algorithm
Figure 1: FFT Algorithms
DFT Solved Examples
Example 1

Verify Parseval's theorem of the sequence z(n) = lTﬁu(n)

5] 1 m i
Solution — _ZDC:|:C1(H)\2 = E[w |X1(e-7“’)|2dw

o0
L.H.S Z|x1(n)|2
—0o
(a9
= Zm(n)x*(n]
—00
<1 1 16
= (P)rumn) = —F = —
—~"4 1- 3% 15
wy 1 _ 1
RHS. X(eM) = 1 lejo 1T O0Boswijbsmoe
0wy 1
— X7(eM) = 1025 cosw—j0.25 snw
Calculating, X(e™). X*(e/)
_ 1 _ 1
(1-0.25 cos w)*+(0.25 sin w)* 1.0625—0.5 cos w

1 7 1
o . 0635 05 oo O
1w 1 _
2 | s Toem 05w = 16/15

We can see that, LHS = RHS. HenceProved

64

Example 2
Compute the N-point DFT of z(n) = 3d(n)

Solution — We know that,

=35(0)xe’ =1
So, z(k) =3,0<k<N-1 ... Ans.

Example 3
Compute the N-point DFT of z(n) = 7(n — ng)

Solution — We know that,

N-1 20lkn

X(K) = Z z(n)e ¥

n=0

Substituting the value of xn,
jaTlkn

N-1
» T6(n—no)e ¥
n=>0

= g Fkildllkng /N ... Ans

e In DFT methods, we have seen that the computational part is too long.
e We can reduce that through FFT or fast Fourier transform.

e So, we can say FFT is nothing but computation of discrete Fourier
transform in an algorithmic format, where the computational part will
be reduced.

o The main advantage of having FFT is that through it, we can design
the FIR filters.

e Mathematically, the FFT can be written as follows;

N-1

z[K] =) z[n] Wk

n=>0
Example 4

Consider eight points named from x, to x; . We will choose the even terms
in one group and the odd terms in the other. Diagrammatic view of the
above said has been shown below:

x0 x1 x2 x3 x4 x5 x6 x7

X9
x0 Txth 0o "x3 x40 e X

Fundamentals of Digital
Signals Processing - II

65

Applied Signal and Image
Processing

66

Here, points X, X2, X4 and x¢ have been grouped into one category and
Similarly, points x;, x3, Xs and X7 have been put into another category.

Now, we can further make them in a group of two and can proceed with
the computation.

Now, let us see how these breaking into further two is helping in
computation.

g—l %-1

zlk] = > 2] Wk + Y z[2r + qWFT"
r=0 r=0

=7, z[2rW, wZ:B z[2r + 1Wgh, x W

= G[k] + H[K) x Wk

Initially, we took an eight-point sequence, but later we broke that one into
two parts G[k] and H[k]. G[k] stands for the even part whereas H[k]
stands for the odd part.

If we want to realize it through a diagram, then it can be shown as below:

G[0] x[0]

G[1] ;fili X[1]
- or 1 1 e, 112

cp1 | 4 xi3]
2

f“/‘"

.GI0] N
St \
I Gt2|
6[3]
— » -1)
(-1) (1 @
H[1] : A
H H[3] i i : x[61
R

From the above figure, we can see that

Wy =-1

WP = -W¢
W= W2
W= W3

Similarly, the final values can be written as follows —
G[0] — H[0] = z[4]

G[1] - WeH[1] = z[5]

G[2] —- W2H|2] = z[6]

G[1] - WZH[3] = z[T7]

The above one is a periodic series.

The disadvantage of this system is that K cannot be broken beyond 4
point.

Now Let us break down the above into further.

We will get the structures something like this

x[0]+x[4]

x[01>< wg
xi4] X10}-x14]

3
x[2]+x(6])\ W

x[2]
4
X 1[2]-1([5] Aﬂ 8

x[6]

Example 5

Consider the sequence x[n]={ 2,1,-1,-3,0,1,2,1}. Calculate the FFT.
Solution — The given sequence is x[n]={ 2,1,-1,-3,0,1,2,1}

Arrange the terms as shown below;
2

N
nX 2 b3 i

o

'] &l L]

AN VAN

X
b .

Fundamentals of Digital
Signals Processing - II

67

Applied Signal and Image Example 6

P ;
rocessing Find the DFT of a sequence x(n)= {1,1,0,0} and find the IDFT of Y(K)=
{1,0,1,0}
Let us assume N = L = 4.
N-1
We have X (k) = Z zln)e #2=kN p—0,1,.,.,N—1
n=0
3
X(0) = a(n) = 2(0) +z(1) + z(2) + z(3)
n=0
=14+1404+0=2
3 3
X(1) =3 2(n)e™™2 = 2(0) + 2(1)e /2 4 z(2)eI7 4 g (3)e 72
n=0
= 1+cos% —jsing
=1-j
- 3 _iw —jx (2)€-j21r + I(3)e*j3x
X(2) = Y a(n)e ™ = 2(0) +a(l)e ™" +2
n=0
=1+4cosw—jsinm®
=1-1=0
3 : . 19
X@3) =Y z(n)e 3"/ = 2(0) + x(1)e 72 + 2(2)e T + 2(3)e N
n=0
=1+ cos 2 Jsin 2
=147 L
X(k)={2,1-30,1+ j}

N-1
y(n) = % Y Y(k)e™ /N p—g,1,...N-1
k=0

L |
¥0) =3 Y(k) n=0,1,23
k=0

- i- [v(0) + y(1) + (2) + ¥(3)]

=2[140+1+0]

8 -

68

Fundamentals of Digital
Signals Processing - 11

3
y(l) e %ZY(k)ej"""f?
k=0
y(1) = % [Y @+ Y()e™2 + Y (20" + Y (3)e*"?]
= i[1+0+c057r+jsinn+0]
= H140-140]=0
¥(2) = % [Y(0) + Y(1)eI™ + Y(2)&™ + Y (3)/™"]
=%[1+0+00327r + jsin 27 + 0]
= {1 +0+140=05

¥(3) [Y(O) + Y1)/ 4+ Y(2)e + Y(3)eJ9*/?]

i | =]

Il

[1+0+cos37r+jsin31r+0]

=Z[1+0+(—1)+0]=0

u(n) = {0.5,0,0.5, 0}

Example 7
Find the DFT of a sequence
x(n) =1 for0<n<2
= 0 otherwise
For (i) N=4 (ii) N=8. Plot | X(K) | and L X(K)
Solution: 1) N=4

Fig a) Sequence given in problem

xin)

-3=2~-1 01 2 3 45 n
(a)
69

Applied Signal and Image b) Periodic extension of the sequence for N=4

NS

- (b)

For N=4
3
X(k)= zx(n)e—jzrnk/z k=0,1,2.3
n=0
Fork=0
3
X(0) =2 x(n) = x(0) +x(1) +x(2) + x(3)
n=0
=3
Therefore,| X (0)| =3, ZX (0)=0
Fork=1
3 —jmn/2
X()=3 x(me
n=0
= x(0)+x(1)e ™ +x(2)e " + x(3)e 7
T .. 7 .
=1lcos——jsin—+cosz— jsinz+0
2 2
X|=1, 2x(1)= %
Fork=2

X(2)= ix(n)e‘j””

=x(0)+x(De " +x(2)e /" +x(3)e "
=1l+coszw—jsinzwr+cos2z— jsin2z+0
=1-1+1=1
Therefore,
|X(2)|=1, £X(2)=0

70

Fork=3 Fundamentals of Digital
3 Signals Processing - II
X(3) — Zx(n)e—j37m/2
n=0
=x(0)+x(D)e " + x(2)e™** + x(3)e ">
3 .3 .
=1+cos%—jsm7”+cos37r—jsm37r+0
=l+j-1=j

Therefore,

XQ3)|=1, £x(3)=

N

| X (k)| =1{3,1,1,1
ZX (k)= {o,—%,o,f}

——

2
Nk
||l. 2
T Tool
0 | ; é 3k
(a) b
Fig: frequency response of x(n) for N=4
i) N= 8
For N =8

The periodie extension of x(n)is shown in fig. 3.7 can be obtained by
adding five (".- N — L zeros)

x(0)=x(I)=x(2)=1land x(n) =0for3<n<7

-',nr =

l

8-7-6-54-3-2-101 2345678910

Fig. 3.7 Periodic extension of the sequence x(n) for N =g

71

Applied Signal and Image For N =8
Processing

X (k)= ix(n)e_j”"m k=0,1..7
Fork=0 h

X(0) :i;x(n)

X(0)=1n:r1+1+0+0+0+0+0:3

Therefore,|X (0)|=3 ZX(0)=0
Fork=1
7 .
X()= Z:x(n)e_””’/4
n=0

= x(0)+x(De"™* + x(2)e *"*

=1+0.707-0.707+0—

=1.707 - j1.707
Therefore,

IX(D|=2414, 2ZX(1)= %

Fork=2

;
X(12)= z x(n)e ™"
n=0
=x(0)+x(De "™ + x(2)e "
:1+cos£—jsin%+cos7r—jsin7z

=1-j-1=
Therefore

IXQ)|=1, £x@)= %

Fork =3
.
X(3) — Zx(n)e—j37m/4
n=0
= x(0)+x(De > + x(2)e """
3z .. 3« 3z .. 37
=1+cos—— jsin—+cos—— jsin—
4 4 2 2

=1-0.707 - j0.707 + j
=0.293+ j0.293

72

T Fundamentals of Digital

Therefore,|X(3)|=0.414, ZX(3)= "n Signals Processing - I1
Fork=4
;
X(4)=> x(n)e ™
n=0
=x(0)+x(De " +x(2)e™/*"
=1+cosmr— jsinzr+cos2z— jsin2rx
=1-1+1=1
Therefore,|X (4)|=1, £X(4)=0

Fork=5
7
X(S) — zx(n)e—j57zn/4
n=0

= x(0)+x(De *"* + x(2)e >

Sk .. S& Sv. .. S«
=l+cos—— jsin—+cos—— jsin—
4 4 2 2

=1-0.707 + j0.707 — j
=0.293— j0.293

X (5)|=0.414, £X(5) = —%

Fork=6
7
X(6) — zx(n)efjfaﬂn/z
n=0

= x(0)+x(De " + x(2)e "
=l+j-1=j

X (6)|=1, £X(6)= —%

Fork=17

X(7)= ix(n)e’j”"”4

_1+e—j77z/4 +e—j77r/2

Tr .. T« T .. T«
=1+cos—— jsin—+cos—— jsin—
4 4 2 2
=140.707+ j0.707 + j
=1.707+ j1.707

X (7)| = 2.414, 4)((7):%
X (K)|={3, 2.414, 1, 0, 414, 1, 0.414, 1, 0.414, 1, 2.414}
AX(,{)_{O oz rx T z}
2 4 2 2 2 4 2 2 4 2 2 2 4

73

Applied Signal and Image
Processing

74

Fork=17

X(7)= Zﬁx(n)e’j””’/4

n=0

— 1 + e—j7zz/4

LT

e .. T« e .. T«
=1+cos—— jsin—+cos—— jsin—
4 4 2 2
=14+0.707+ j0.707 + j
=1.707+ j1.707
1X(7)|=2.414, 4)((7):%
|X(k)|:{3, 2414, 1, 0, 414, 1, 0.414, 1, 0.414, 1, 2.414}

Z‘)((k)= 09 _Ea _Ea za Oa 19 Z,E
47 24 " a2

1
i
|r
-

Fig: frequency response of x(n) for N=8

2.4 SUMMARY

In this chapter we have seen a progression from sampling to the
Fourier transform, and then to filtering in the frequency domain.

Introduction The sampling theorem explained in the context of the
frequency domain.

The same is true of effects such as aliasing.

The material starts with basic principles, so that any reader with a
modest mathematical background would be in a position not only to
absorb the material, but also to apply it.

Summary of DFT definitions and corresponding expressions.

MNarme Expression(s)
1} Discrete Fourier 18- -
F2mnl
transform (DFT) of Flu,p) = Z z flx.v)e
flx.v)

2} Inverse discrete o, e
Fourier transform Jix,y)= —er z Z Flu, v)e == :
(IDFT) of Flu,) e

3} Spectrum |Fiu,rh = [R1[ru.r'}-* J"\ln.r'b]I > R =Real(F) I =Imag(F)

4) Phase angle e, v)=tan™ | L),

| L Rimv) |

5) Polar representation Fiu,v) = |Flup)|e ™"

6} Power spectrum Pluv) = |[Fav)

7} Average value —.‘ (0.0

ge - Z Z flx,)
4y Periodicity (&, and Fluv)= Flo+ kM.u)= Flup + kN)
k, arc integers) = Flu+k v+ kN)
flx,v)= flx + kM y)= f(x,y + k. N)
= flx+ kM. v+ kN)
A=) N
9} Convolution (foehprey) = Z z f(m n)x —m,y—n)
(LU)
M I'_‘:

10y Correlation (Ferhdx.y) = z L fimnih(x+m,y+n)

11} Separability The 2-D DFT ean be computed by computing 1-D DFT
transforms along the rows {columns) of the image, followed
by 1-D transforms along the columns (rows) of the result.
See Section 4.11.

: M-I N1 =
12) Obtaining the IDFT M7 (v, v) = E E e TR

using a DF1 a=l t=i)

algorithm This equation indicates that inputting F’(«,) into an
algorithm that computes the forward transform (right side
of above equation) vields MNF (x, v). Taking the complex
conjugate and dividing by MN gives the desired inverse. See

2.5 EXERCISE

Answer the following:

1.

Explain the process of obtaining the Discrete Fourier transform from
the continuous transform of a sampled function.

Explain the properties of the 2D Discrete Fourier transform.
Explain the following with relevant equations
a. The 2D discrete Fourier transform and its inverse.

b. The 2D continuous Fourier transform pair

Fundamentals of Digital
Signals Processing - 11

75

Applied Signal and Image
Processing

76

b

Explain Image smoothing and Image sharpening in frequency domain.
5. Explain the steps for filtering in frequency domain in detail.

6. Write a short note on Sampling and the Fourier Transform of Sampled
Functions.

7. Explain Sharpening in the Frequency Domain Filters using highpass
filter.

8. Explain convolution.

9. Explain smoothing lowpass for
a. IDEAL,
b. BUTTERWORTH, and
c. GAUSSIAN.

10. Write a short note on FFT.

2.6 REFERENCES

Digital Image Processing by Rafael Gonzalez & Richard Woods, Pearson;
4th edition.pdf

https://sbme-tutorials.github.i0/2018/cv/notes/3 week3.html

https://www.cis.rit.edu/class/simg782/lectures/lecture 14/lec782 05 14.p
df

https://universe.bits-pilani.ac.in/uploads/JINKDUBAI/ImageProcessing7-
FrequencyFiltering.pdf

https://www.tutorialspoint.com/digital signal processing/dsp discrete fo
urier transform solved examples.htm

https://faculty.nps.edu/rcristi/EC34000nline/homework/solutions/Solution
s _Chapter3.pdf

https://www.sathyabama.ac.in/sites/default/files/course-material/2020-
10/UNIT3_1.pdf

o O O 0
0.0 0.0 0.0 0.0

3

IMAGE PROCESSING FUNDAMENTALS
AND PIXEL TRANSFORMATION-I

Unit Structure:
3.0 Objectives

3.1 Definition

3.2 Overlapping Fields with Image Processing

3.3 Components of an Image Processing System
3.4 Fundamental Steps in Digital Image Processing
3.5 Application of Image Processing

3.6 Image Processing Pipeline

3.7 Tools and Libraries for Image Processing

3.8 Image Types

3.9 Image File Formats

3.10 Intensity Transformations

3.11 Some Basic Intensity Transformation Functions
3.12 Piecewise-Linear Transformation Functions
3.13 Summary

3.14 Exercise Questions

3.15 References

3.0 OBJECTIVES

This chapter provides an overview of image processing fundamental,
components of an image processing system, fundamental steps in digital
image processing, tools and libraries available for image processing,
image types and files formats, various application domains where image
processing can be highly useful, basic intensity transformation techniques
in spatial domain which includes image negative, log transformation and
power law transformation and contrast stretching technique to increase the
range of intensity levels in low contrast images.

77

Applied Signal and Image
Processing

78

3.1 DEFINITION

What is Image Processing?

Image processing refers to the manipulation and analysis of digital images
using various algorithms and techniques to extract useful information or
enhance certain aspects of the image. It involves acquiring, processing,
analyzing, and interpreting images to improve their quality, extract
relevant features, or perform specific tasks such as object detection, image
restoration, image segmentation and compression.

Image processing can be categorized into two main types:

1. Analog Image Processing: This involves processing images that are
represented in analog form, such as photographs or printed images.
Analog image processing techniques include filtering, sharpening, and
noise reduction using traditional methods like optical filters or
chemical processes.

2. Digital Image Processing: This deals with processing digital images
that are stored in a computer or a digital device. Digital image
processing techniques use algorithms and mathematical operations to
manipulate images, such as image enhancement, image restoration,
image compression, object detection, and pattern recognition.

Why do we need to process an image?
It is motivated by three major applications-

1. Improvement of pictorial information for human perception -We want
to enhance the quality of image so that the image will have a better
look.

2. Image processing for automated machine applications - Quality control
in assembly automation.

3. Efficient Storage and transmission - Disk space for storing the image
can be reduced. Process the image or video so that it can be
transmitted over a low bandwidth communication channel.

Digital Image Representation as a Matrix-

A digital image is a representation of a two-dimensional image as a finite
set of digital values, called picture elements or pixels.

An image is defined as a two-dimensional function, f(x,y), where x and y
are spatial coordinates, and the amplitude of fat any pair of coordinates
(x,y) is called the intensity of that image at that point. It can be considered
as a matrix whose row and column indices specify a point in the imageand
the element value identifies gray level value at that point.

Image Processing

ﬁ lumination (energy)
)

T e Transformation-I
!'I

P

Imaging system

Output (digitize

(Internal) image planc

Scene

There are infinite no of points in both the directions and intensity value is
continuousbetween 0 and 1at every point. It is not possible to store these
continuous values in digital form. Instead of storing all the intensity values
at all possible points in the image, we try to take sample of the image.

Each of these sample values are quantized and the quantization is done
using 8-bit (0 to 255) for gray scale images and 24-bit for colored images
(8-bit for each channel RGB).

8-bit Grey scale
image. Intensity
values ranges
from 0-255

24-bit RGB Image

3.2 OVERLAPPING FIELDS WITH IMAGE
PROCESSING

The continuum from image processing to computer vision can be broken
up into low-level, mid-level and high-level processes.

Low level Processes:
e Input and output are images

e Tasks: Primitive operations, such as, image processing to reduce noise,
contrast enhancement and image sharpening
79

Fundamentals and Pixel

Applied Signal and Image
Processing

80

N

Mid-level Processes:

e Inputs are images. Outputs are attributes extracted from those images
(edges, contours, identity of individual objects)

e Tasks: Segmentation (partitioning an image into regions or objects),

description of those segmented objects to reduce them to a form

suitable for computer processing, classifications of objects.

3. High-Level Processes:
e Image analysis and computer vision

Low Level Process Mid Level Process High Level Process

Input: Image Input: Image Input: Attributes

Output: Image Output: Attributes Output: Understanding >
Examples: Noise B Examples: Object B Examples: Scene

removal, image recognition, understanding,

sharpening segmentation autonomous navigation

3.3 COMPONENTS OF AN IMAGE PROCESSING
SYSTEM

Image Sensors:

With reference to sensing, two elements are required to acquire digital
images.

e The first is the physical device that is sensitive to the energy radiated
by the object we wish to image (Sensor).

e The second, called a digitizer, is a device for converting the output of
the physical sensing device into digital form.

Specialized image processing hardware:

It usually consists of the digitizer plus hardware that performs other
primitive operations such as arithmetic and logical operations (ALU). Eg.
Noise reduction. This type of hardware sometimes is called a front-end
subsystem.

Computer:

The computer in an image processing system is a general-purpose
computer and can range from a PC to a supercomputer. In dedicated
applications, sometimes specially designed computers are used to achieve
a required level of performance.

Image Processing Software:

Software for image processing consists of specialized modules that
perform specific tasks. A well-designed package also includes the
capability for the user to write code that, as a minimum, utilizes the
specialized modules

Mass Storage Capability:

Mass storage capability is a must in a image processing applications. And
image of sized 1024 * 1024 pixels requires one megabyte of storage space
if the image is not compressed. Digital storage for image processing
applications falls into three principal categories:

1. Short-term storage for use during processing.

2. On line storage for relatively fast recall.

3. Archival storage, characterized by infrequent access
4. Image Displays —

Image Display: The displays in use today are mainly color (preferably flat
screen) TV monitors. Monitors are driven by the outputs of the image and
graphics display cards that are an integral part of a computer system.

Hardcopy Devices: Devices used for recording images include laser
printers, film cameras, heat-sensitive devices, inkjet units and digital units,
such as optical and CD-Rom disks.

Networking: Networking is almost a default function in any computer
system, in use today. Because of the large amount of data inherent in
image processing applications the key consideration in image transmission
is bandwidth.

Network

Image displays Computer Mass storage

4 4L by
L A >

Specialized image Image processing

H
ArGaepY processing hardware software

A\
o 1l
"V

) Image sensors
Problem Domain :> €

Fig: Components of a general- purpose image processing system

3.4 FUNDAMENTAL STEPS IN DIGITAL IMAGE
PROCESSING

1. Image Acquisition:

Image acquisition could be as simple as being given an image that is
already in digital form. Generally, the image acquisition stage involves
pre-processing, such as scaling etc.

Image Processing
Fundamentals and Pixel
Transformation-I

81

Applied Signal and Image
Processing

82

2. Image Enhancement:

Basically, the idea behind enhancement techniques is to bring out detail
that is obscured, or simply to highlight certain features of interest in an
image. Such as, changing brightness & contrast etc.

3. Image Restoration:

Unlike enhancement, which is subjective, image restoration is objective.
Restoration techniques tend to be based on mathematical or probabilistic
models of image degradation.

4. Color Image Processing:
It deals with pseudo color and full color image processing color models
are applicable to digital image processing.

5. Wavelets and Multi-Resolution Processing:
It is foundation of representing images in various degrees of resolution. It
is used for image data compression.

6. Compression:
Compression deals with techniques for reducing the storage required to
save an image or the bandwidth to transmit it.

7. Morphological Processing:
Morphological processing deals with tools for extracting image
components that are useful in the representation and description of shape.

8. Segmentation:
Segmentation procedures partition an image into its constituent parts or
objects.

9. Representation and Description:

Representation and description almost always follow the output of a
segmentation stage, which usually is raw pixel data, constituting either the
boundary of a region or all the points in the region itself.

10. Object Detection and Recognition:
It is a process that assigns a label to an object based on its descriptor.

11. Knowledge Base:

Knowledge may be as simple as detailing regions of an image where the
information of interest is known to be located, thus limiting the search that
has to be conducted in seeking that information.

Qutputs of these steps are generally images

Wavelets & \\
sy MUltirESOlUTION | N

Processing W,

N Compression

1

Knowledge Base

mage v
g Segmentation

Acquisition

Froblem
Domain Object Representation
Recognition & Description

Figure: Steps in Digital Image Processing

3.5 APPLICATION OF IMAGE PROCESSING

Medical Technology:

Image processing has been extensively used in medical research and has
enabled more efficient and accurate treatment plans. Since medical usage
calls for highly trained image processors, these applications require
significant implementation and evaluation before they can be accepted for
use.

For example, it can be used for the early detection of tumor /breast cancer.
It can detect the exact location and size of the tumour- help the doctor to
plan the operations

Brain Tumor

Left hand image is Original CT Scan Image of human brain. Right hand
images are the processed images. Region of yellow and red tells the
presence of tumour in the brain.

Image Processing
Fundamentals and Pixel
Transformation-I

83

Applied Signal and Image
Processing

84

Original MRI Image of a Dog Heart Edge Detection Image

A slice from MRI scan of canine heart and find boundaries between types
of tissue. A suitable filter is used to highlight edges.

Image Reconstruction

Image processing can be used to recover and fill in the missing or corrupt
parts of an image. This involves using image processing systems that have
been trained extensively with existing photo datasets to create newer
versions of old and damaged photos.

Machine Vision

One of the most interesting and useful applications of Image Processing is
in Computer Vision. Computer Vision is used to make the computer see,
identify things, and process the whole environment as a whole.

An important use of
computer vision 1is self-
driving cars, drones etc.
Computer Vision helps in
obstacle detection, path
recognition, and
understanding the
environment.

Traffic Sensing Technologies:

In the case of traffic sensors, we use a video image processing system or
VIPS. This consists of a) an image capturing system b) a
telecommunication system and c) an image processing system. When
capturing video, a VIPS has several detection zones which output an “on”
signal whenever a vehicle enters the zone, and then output an “off” signal
whenever the vehicle exits the detection zone. These detection zones can
be set up for multiple lanes and can be used to sense the traffic in a
particular station.

Remote Sensing and Satellite Imaging:

Digital image processing techniques are used extensively to manipulate
satellite images for terrain classification, any change detection and
analysis of geological features, meteorology, urban planningand disaster
monitoring etc.

Image processing techniques are used to enhance, analyze, and interpret
remote sensing data to derive insights about the Earth's surface, its
features, and changes over time.

Industrial Inspection:

Industrial Vision systems are used in all kinds of industries for quality
check and inspection.

For eg, whether a bottle is filled up to the specified level or not. Machine
inspection is used to determine that all components are present and that all
solder joints are acceptable.

Bottle level check PCB Check

Biometrics:

Image processing plays a crucial role in biometric systems for tasks such
as face recognition, fingerprint recognition, iris recognition, and hand
geometry analysis.

Security and Surveillance:

Image processing techniques are employed in security and surveillance
systems for tasks such as video analytics, motion detection, object
recognition, and tracking of suspicious activities.

3.6 IMAGE PROCESSING PIPELINE

The following steps describe the basic steps in the image processing
pipeline.

Acquisition and storage: The image needsto be captured (using a
camera, for example) and stored on some device (such as a hard disk) as a
file (for example, a JPEG file).

Load into memory and save to disk: The image needs to be read from
the diskinto memory and stored using some data structure (for
example, numpy, ndarray).

Manipulation, enhancement, and restoration: We need to run some
pre-processingalgorithmsto do the following:

- Run a few transformations on the image; for example, grayscale
conversion

- Enhance the quality of the image (filtering; for example, deblurring)

- Restore the image from noise degradation

Image Processing
Fundamentals and Pixel
Transformation-I

85

Applied Signal and Image
Processing

86

Segmentation: The image needs to be segmented in order to extract the
objects of interest.

Information extraction/representation: The image needs to be
represented in some alternative form; for example, one of the following:

- Some hand-crafted feature-descriptor can be computed

- Some features can be automatically learned from the image (for
example, the weights and bias values learned in the hidden layers of a
neural net with deep learning)

- The image is going to be represented using that alternative
representation

Image understanding/interpretation: This representation will be used to
understand the image better with the following:

- Image classification (for example, whether an image contains a human
object or not)

- Object recognition (for example, finding the location of the car objects
in an image with a bounding box)

3.7 TOOLS AND LIBRARIES FOR IMAGE
PROCESSING

Installing some image processing libraries in Python

In Python, there are many libraries that we can use for image processing.
The ones we are going to use are: NumPy, SciPy, scikit-image, PIL
(Pillow), OpenCV, scikit-learn, SimplelTK, and Matplotlib.

The matplotliblibrary will primarily be used for display purposes,
whereas numpy will be used for storing an image.

The scikit-learn library will be used for building machine-learning models
for image processing, andscipy will be used mainly for image
enhancements.

The scikit-image, mahotas, and opencv libraries will be used for different
image processing algorithms.

The following code block shows how the libraries that we are going to use
can be downloaded and installed with pip from a Python prompt
(interactive mode):

>>> pip install numpy

>>> pip install opencv-python
>>> pip install scipy

>>> pip install scikit-image

>>> pip install scikit-learn

>>> pip install pillow Image Processing
Fundamentals and Pixel
>>> pip install SimpleITK Transformation-I

>>> pip install matplotlib

3.8 IMAGE TYPES

Images can be broadly classified under four categories: (i) Black and ghite
or binary images, (ii) grayscale images, (iii) colour images, (iv)
multispectral images.

(i) Binary Images:

Binary images take only two
values, either ‘0’ or ‘1°. The
brightness graduation can not
be differentiated in binary
images.

white 255

A binary image is referred as a | Plack 0
1-bit image because it takes
only 1 binary digit to represent Binary image representation
each pixel.

A gray-scale image can be
converted to a black-and-white
or binary 1image by the
thresholding operation.

(ii) Gray-scale Images:

Each pixel value in a gray-
scale image corresponds to the
amount or quantity of light.
The brightness graduation can
be differentiated in a gray-
scale image. black 0

white 255

An 8-bit image will have a
brightness variation from 0 to
255 where ‘0’ represents black
and ‘255’ represents white

(iii) Color Images

Color images has three values per pixel and they measure the intensity and
chrominance of light. Each pixel is a vector of color components.

87

Applied Signal and Image
Processing

88

Color images can be modelled as three-band monochrome image data,
where each band of data corresponds to a different color. The actual
information stored in the digital image data is the brightness information
in each spectral band.

Common color spaces are RGB (Red, Green, Blue), HSI (Hue Saturation
and Intensity) CMYK (Cyan, Magenta, Yellow, Black).

R=255, G=0, B=0 R=0, G=255, B=0 R=0, G=0, B=255

(iv) Multispectral Images:

Multispectral images are images of the same object taken in different
bands of visible or infrared regions of the electromagnetic spectrum. This
includes infrared, ultraviolet and other bands in electromagnetic spectrum.

Multi spectral images typically contain information outside the normal
human perceptual range. The information available in multispectral image
is not visible to a human observer. However, the information is often
represented in visual form by mapping the different spectral bands to RGB
components.

Images acquired for remote-sensing applications are generally multi-
spectral in nature. They are used by scientists on the earth to study
dynamics and processes occurring in the earth surface.

3.9 IMAGE FILE FORMATS

A digital image is often encoded in the form of binary files for the purpose
of storage and transmission. Different file formats compress the image
data by different amounts.

Common image file formats are GIF (Graphical Interchange Formats),
JPEG (Joint Photographic Expert Group), PNG (Portable Network
Graphics), TIFF (Tagged Image File Format), PSD file format and EPS.

GIF File Format-

- The GIF file format uses lossless compression scheme. As a result, the
quality of the image is pre- served.

- GIF interlaced images can be displayed as low-resolution images
initially and then develop clarity and detail gradually.

- GIF images can be used to create simple animations.

- GIF 89a images allow for one transparent colour.

Advantages of GIF File Format - GIF uses lossless compression
algorithm that provides up to 4:1 compression of images which is the most
widely supported graphics format on the Web.GIF supports transparency
and interlacing

Limitations of GIF File Format - GIF file format supports a maximum
of 256 colours. Due to this particular limitation, complex images may lose
some detail when translated into GIF

JPEG Files -

- JPEG is not actually a file type. JPEG is the most important current
standard for image compression. JPEG standard was created by a
working group of the International Organisation for Standardisation
(ISO). This format provides the most dramatic compression option for
photographic images. JPEG compression is used within the JFIF file
format that uses the file extension (jpg).

- This format is useful when the storage space is at a premium. JPEG
pictures store a single raster image in 24-bit colour.

JPEG is a platform-independent format that supports the highest levels of
compression; however, this compression is lossy. JPEG images are not
interlaced; however, progressive JPEG images support interlacing.

Advantage of JPEG File Format- The strength of JPEG file format is its
ability to compress larger image files. Due to this compression, the image
data can be stored effectively and transmitted efficiently from one place to
another

Limitations of JPEG File Format- JPEG in its base version does not
support multiple layers, high dynamic range. Hence JPEG will not be a
wise choice if one is interested in maintaining high quality pictures.

PNG Files -

- PNG stands for Portable Network Graphics. PNG is a bitmapped
image format that employs lossless data compression. PNG was
created to improve and replace the GIF format.

- The PNG file format is regarded and was made as a free and open-
source successor to the GIF file format. The PNG file format supports
true colour (16 million colours), whereas the GIF file format only
allows 256 colours.

- The lossless PNG format is best suited for editing pictures, whereas
the lossy formats like JPG are best for the final distribution of
photographic-type images due to smaller file size.

- Yet many earlier browsers do not support the PNG file format,
however with the release of Internet Explorer 7 all popular modern
browsers fully support PNG. Special features of PNG files include
support for up to 48 bits of colour information.

Image Processing
Fundamentals and Pixel
Transformation-I

89

Applied Signal and Image
Processing

920

TIFF Files -
- TIFF stands for Tagged Image File Format and was developed by the
Aldus Corporation in the 1980s. It was later supported by Microsoft.

- TIFF files are often used with scanned images. Since a TIFF file does
not compress an image file, hence images are often large but the
quality is preserved.

- It uses a filename extension of TIFF of TIF. The TIFF format is often
used to exchange files between applications and computer platforms.

- Within TIFF, a lossless compression routine known as LZW is
available. This reduces the size of the stored file without perceptible
loss in quality.

- The goals of the TIFF specification include extensibility, portability,
and revisability.

Advantages of TIFF File Format is that it can support any range of image
resolution, size, and colour depth and different compression techniques.
Disadvantage of TIFF file format is its large file size that limits its usage
in web applications.

3.10 INTENSITY TRANSFORMATIONS

3.10.1Introduction —

All the image processing techniques discussed in this section are
implemented in the spatial domain (plane containing the pixels of an
image). Spatial domain techniques operate directly on the pixels of an
image. In frequency domain, operations are performed on the Fourier
transform of an image, rather than on the image itself.

Generally, spatial domain techniques are more efficient computationally
and require less processing resources to implement.

3.10.2 Image Transformations Basics —
The spatial domain processes can be denoted by the expression-
g(x, y) = T[fx, y)]

Where f(x,y) is the input image, g(X,y) is the output image, and T is an
operator on f defined over a neighborhood of point (x, y). The point (X, y)
shown is an arbitrary location in the image, and the small region shown
containing the point is a neighborhood of (x, y),

Originﬂ‘ ;
Figure: A 3X3 neighborhood
= about a Point (X, y) in an image in
3 3 neighborhood of (x, y) the spatial domain. The

neighborhood is moved from pixel
to pixel in the image to generate an
output image.

Image f

Spatial domain

X

3.10.3 Spatial filtering-

The process consists of moving the origin of the neighborhood from pixel
to pixel and applying the operator T to the pixels in the neighborhood to
yield the output at that location.Typically, the process starts at the top left
of the input image and proceeds pixel by pixel in a horizontal scan, one
row at a time.

When the origin of the neighborhood is at the border of the image, part of
the neighborhood will reside outside the image. The procedure is either to
ignore the outside neighbors in the computations specified by T, or to pad
the image with a border of 0’s or some other specified intensity values.

The procedure just described is called spatial filtering, in which the
neighborhood, along with a predefined operation, is called a spatial filter
(also referred to as a spatial mask, kernel, template, or window).

The smallest possible neighborhood is of size 1X1. In this case, g depends
only on the value of f at a single point (X, y) and T in equation becomes an
intensitytransformation function of the form — s =
T(r)

where, ‘s’ and ‘r’are variables denoting the intensity of g and f at any
point (x, y) respectively.

3.11 SOME BASIC INTENSITY TRANSFORMATION
FUNCTIONS

3.11.1 Negative Images

The negative of an image with intensity levels in the range [0, L-1] is
obtained by using the negative transformation which is given by the
expression-

s=L-1-r

Reversing the intensity levels of an image in this manner produces the
equivalent of a photographic negative.

Image Processing
Fundamentals and Pixel
Transformation-I

91

Applied Signal and Image

Processing ot ' ' '

Negative

il 1508 Figure: Shows Some basic

intensity transformation

Log functions. All curves were scaled
Ao to fit in the range shown.

3L/

5

Ouiput intensity level,

Inverse log

]llu!“i;'/
1 1
1

0 L4 L2 3L/4 L=1

Input intensity level, r

This type of processing is particularly suited for enhancing white or
gray detail embedded in dark regions of an image, especially when the
WY Orginal Image = (] b [m{ Negative Image

black areas are dominant in size.

Original Image and its Negative image

3.11.2 Log Transform -

Log Transformation

The general form of the log
transformation is-

s=clog(l+r)

Qutput Pixel Value

where ‘s’ and ‘r’ are the pixel

values of the output and input %
image and ¢ is a constant, and it 0
is assumed that r > 0. The value . oo 2. Eo S

Input Pixel Value

1 is added to each of the pixel
value of the input image because
if there is a pixel intensity of 0 in
the image, then log(0) is equal to
infinity.

The shape of the log curve shows that this transformation maps a narrow
range of low intensity values in the input into a wider range of output
levels. The opposite is true of higher values of input levels.

92

We use a transformation of this type to expand the values of dark pixels in Image Processing
an image while compressing the higher-level values. The opposite is true Fundamentals and Pixel
of the inverse log transformation. Transformation-I

The log function has the important characteristic that it compresses the
dynamic range of images with large variations in pixel values.

Qriginal Image After Log Transform
d‘

Power-law transformations have the basic form-

3.11.3 Power-law Transform-

s=cr’
where ¢ and y are positive constants.

Power-law curves with fractional values of y map a narrow range of dark
input values into a wider range of output values, with the opposite being
true for higher values of input levels.

Curves generated with values of y >1 have exactly the opposite effect as
those generated with values of y <l. It reduces to the identity
transformation when c= y=1

y.= 003

y.= 010

Plots of the equation s = cr’ for
various values of y (c=1 in all
cases)

Output intensity le

Input intensity level, r

A variety of devices used for image capture, printing, and display respond
according to a power law. By convention, the exponent in the power-law
equation is referred to as gamma. The process used to correct these power-
law response phenomena is called gamma correction.

93

Applied Signal and Image
Processing

94

For example, cathode ray tube (CRT) devices have an intensity-to-voltage
response that is a power function, with exponents varying from
approximately 1.8 to 2.5

With reference to the curve for y=2.2, we see that such display systems
would tend to produce images that are darker than intended.

Qriginal image

Gamma Value: 0.1 Gamma Value: 0.5

=S

o

Gamma Value: 1.2) Gamma Value: 2.2

3.12 PIECEWISE-LINEAR TRANSFORMATION

FUNCTIONS

3.13.1Contrast Stretching-

One of the simplest piecewise linear functions is a contrast-stretching
transformation. Low-contrast images can result from poor illumination,
lack of dynamic range in the imaging sensor, or even the wrong setting of
a lens aperture during image acquisition.

Contraststretchingis a process that expands the range of intensity levels
in an image so that it spans the full intensity range of the recording
medium or display device.

The locations of points (1}, s;) and (12, s2) control the shape of the
transformation function.

If r; = s; and 1, = s; the transformation is a linear function that produces
no changes in intensity levels.

If r; = 12, 51 =0 and s,=L-1 the transformation becomes a thresholding
functionthat creates a binary image.

Intermediate values of (r;, s;) and (r2, s;) produce various degrees of
spread in the intensity levels of the output image, thus affecting its
contrast.

Original Image

Contrast streiching

/%

—

Thresholding function —

In the limiting
case, T(r) produces
a two-level
(binary) image.

A mapping of this
form is called a
thresholding
function.

‘Original image histogram

-

] 02 04 06 08

Contrast stretching histogram

.

0 02 04 06 08

Figure shows
the Contrast
stretching
Transformation
of High
Contrast Image
along with the
image
histogram.

ab
cd

Contrast stretching.

(@) Form of transformation
function. (b) A low-contrast
image.

(c) Result of contrast stretching.
(d) Result of thresholding.
(Original image courtesy of Dr.

Roger Heady, Research School
ofBiological Sciences, Australian
National University, Canberra,

Australia.)
s=T(r)

_______ |

- |

= |

2 |

T T~ :

|

|

“ 1

A ‘.
1 r

Dark =<— Light

3.13 SUMMARY

In this chapter, we learnt about the fundamentals about Image processing.

Before understanding

image processing,

we discussed about the

representation of images in digital form (matrix form). Different types of
images and image file formats are discussed. Intensity levels of binary
images, gray-scale images and colored images are briefly explained in the

Image Processing
Fundamentals and Pixel
Transformation-I

95

Applied Signal and Image
Processing

96

chapter. Wide area of applications of Iage processing is explained.
Components and steps in digital image processing system is discussed
with diagrams.

Basic intensity transformation functions like log transformation and power
low transformation, contrast stretching and thresholding are demonstrated
using the transformed output images and function curves.

3.14 EXERCISE QUESTIONS

1.

A e A i

—
)

What is Image processing? Which are the overlapping fields with
Image Processing?

What is the motivation behind the need of image processing?
Discuss the applications of digital image processing in various fields.
Explain the components of an image processing system.

Explain the fundamental steps in Digital Image Processing.

Write a short note on Image Processing Pipeline.

Discuss Tools and Libraries for Image Processing.

Write a note on various image types.

Discuss different Image file format in brief.

. Explain briefly the following basic image intensity transformations

functions-

(1) Negative Image,
(i1)) Log Transformation and
(i11)) Power Law Transformation.

3.15 REFERENCES

. https://www .researchgate.net/publication.

Digital Image Processing by Rafael Gonzalez & Richard Woods,
Pearson; 4th edition, pdf.

Digital Image Processing by S. Jayaraman, Tata McGraw Hill
Publication, pdf.

Images used are processed using the tools- OpenCV (Python) and
GNU Octave (compatible with MATLAB).

O O 0 0
0‘0 0‘0 0‘0 0‘0

4

IMAGE PROCESSING FUNDAMENTALS
AND PIXEL TRANSFORMATION-II

Unit Structure:

4.0 Objective

4.1 Definitions

4.2 Histogram Processing

4.3 Histogram Equalization

4.4 Histogram Matching

4.5 Mechanics of Spatial Filtering

4.6 Image Smoothing (Low Pass) Filter

4.7 Smoothing Order-Statistic (Non-Linear) Filters
4.8 Sharpening Filters (High Pass Filters)

4.9 TIllustration of The First and Second Derivatives of A 1-D Digital
Function- Example

4.10 Image Sharpening Filter -The Laplacian

4.11 Using First - Order Derivatives for (Edge Detection) Image
Sharpening - The Gradient

4.12 Summary
4.13 Exercise Questions
4.14 References

4.0 OBJECTIVE

This chapter provides an overview of image histogram processing. The
objective behind histogram processing is to improve the contrast of the
image by stretching the image intensity range. This chapter also includes
the mechanics of linear and non-linear low pass (smoothing/blur) filters.
First order and second order derivatives are discussed to understand the
high pass (sharpening)filters. Various smoothing and sharping filters are
explained with examples.

4.1 DEFINITIONS

Image Histogram:

Image histogram shows the graphical representation of intensity
distribution of all the pixels in an image. We can consider histogram as a
graph or plot, which gives an overall idea about the intensity distribution
of an image.

97

Applied Signal and Image))))])
Processing It is a plot with pixel values (ranging from 0 to 255 in Gray-scale images)

in X-axis and corresponding number of pixels in the image on Y-axis.

6000

a000

2000

0

a S0 100 150 200 250
Histogram of a dark image

o s Wwe 18 a0 om0
Histogram of a Light image

Above histogram is plotted using hist() function in OpenCV-python

Histogram of an image gives idea about
contrast, brightness, intensity distribution
etc of that image.

All image processing tools provides
features to display image histogram.

Figure shows the image and its
histogram.
Image Ref- https://docs.opencv.org/

-2
o
£
B
-
o
o
=

0 Pixel Values 255

4.2 HISTOGRAM PROCESSING

The histogram of a digital image with intensity levels in the range [0, L-1]
is a discrete function h(ry) = nmywhere riis the kthintensity value and ngis
the number of pixels in the image with intensity ry.

Histogram of high-contrast image

98

I I I I

Histogram of low-contrast image

| | | |

The horizontal axis of the histograms are values of ryand the vertical axis
are values of

h(ry) = ng or p(rx) = rx /MN if the values are normalized, where, M and N
are the row and column dimensions of the image.

We see that the components of the histogram in the high-contrast image
cover a wide range of the intensity scale and, further, that the distribution
of pixels is not too far from uniform.Intuitively, it is reasonable to
conclude that an image whose pixels tend to occupy the entire range of
possible intensity levels and, in addition, tend to be distributed uniformly,
will have an appearance of high contrast and will exhibit a large variety of
gray tones.

It is possible to develop a transformation function that can achieve this
effect automatically, using only the histogram of an input image.

4.3 HISTOGRAM EQUALIZATION

Histogram Equalization is a computer image processing technique used to
improve contrast in images. It accomplishes this by effectively spreading
out the most frequent intensity values, i.e. stretching out the intensity range
of the image.

This method usually increases the global contrast of images and allows for
areas of lower local contrast to gain a higher contrast.

It is common practice to normalize a histogram by dividing each of its
components by the total number of pixels in the image, denoted by the
product MN, where, M and N are the row and column dimensions of the
image.

Thus, a normalized histogram is given by p(rx) = rx /MN, fork =0, 1, 2,
...,L-1.

p(ry) is an estimate of the probability of occurrence of intensity level ry in
an image. The sum of all components of a normalized histogram is equal
to 1.

Assuming initially continuous intensity values, let the variable r denote
the intensitiesof an image to be processed. As usual, we assume that r is

Image Processing
Fundamentals and Pixel
Transformation

929

Applied Signal and Image in the range [0, L — 1], with r = 0 representing black and r = L — 1
Processing representing white.

The discrete form of the Histogram Equalization transformation is-

& =TE)= —12;: k=0,1,2,..,L-1

j=0

The transformation (mapping) T(rx) in this equation is called a histogram
equalization or histogram linearization transformation

A simple illustration of the mechanics of histogram equalization:

Tg ny; p(r) = ni/MN

Suppose that a 3-bit ry="0 790 0.19
image (L=2°= 8) of size | |7~} 18 025

. =23z &I aide
64X64 pixels (MN=409§) . =3 656 0.16
has the intensity r,=4 329 0.08
distribution shown in the rs=3 245 0.06
Table where the intensity | | %~ ‘;]3 i:::ﬂ
levels are integers in the " ‘ o
range [0, L - 1] =[O0, 7].

Values of the histogram equalization transformation function are obtained
as follows—

so = T(ry) = 7217;-(?}' 1Pt = 1.33

j=0

I
si=T(n) = 72,0,.(1‘ Tp.(ry) + 7p,(r;) = 3.08
=0
S, =T(rp) = T(r)) + 7*pi(r2) = 3.08 + 7%(0.21) = 4.55
Similarly, S; =5.67, S4 = 6.23, S5 = 6.65, S¢ = 6.86, and S;=7.00

At this point, the svalues still have fractions because they were generated
by summing probability values, so we round them to the nearest integer:

5555 5,=62356 s5,=686—-7

5o =133 > —
676 5=065—-7 s5,=700-7

1
5, =3.08 =3 Ky

’-'\

[
3
I
A =
n

('S

These are the values of the equalized histogram. Observe that there are
only five distinct intensity levels. Because rp=0 was mapped to sy = 1.
there are 790 pixels in the histogram equalized image with this value.

100

Also, there are 1023 pixels with a value of s; = 3 and 850 pixels with a Image Processing
value of s, = 5. Fundamentals and Pixel
Transformation

However, both r;and r4 were mapped to the same value, 6, so there are
(656 + 329) = 985 pixels in the equalized image with this value.

Similarly, there are (245 + 122 + 81) = 448 pixels with a value of 7 in the
histogram equalized image. Dividing these numbers by MN = 4096
yielded the equalized histogram.

Pelrg)

i
T —
01 2 3 4

abec

[lustration of Histogram equalization of a 3-bit (8 intensity levels) image.
(a) Original histogram. (b) Transformation function. (c) Equalized

histogram.
Solution:
))l 20
OFF
0 790 0.19 0.19 1.33 1
1 1023 0.25 0.44 3.08 3
2 850 0.21 0.65 4.55 5
3 656 0.16 0.81 5.67 6
4 329 0.08 0.89 6.23 6
5 245 0.06 0.95 6.65 7
6 122 0.03 0.98 6.86 7
7 81 0.0.2 1 7 7
4096

4.4 HISTOGRAM MATCHING

As explained in the last section, histogram equalization produces a
transformation function that seeks to generate an output image with a
uniform histogram. When automatic enhancement is desired, this is a good
approach to consider because the results from this technique are
predictable and the method is simple to implement.

However, there are applications in which histogram equalization is not
suitable. In particular, it is useful sometimes to be able to specify the
shape of the histogram that we wish the processed image to have. The
method used to generate images that have a specified histogram is called
histogram matching or histogram specification.

101

Applied Signal and Image
Processing

102

4.5 MECHANICSOF SPATIAL FILTERING

“Filtering” refers to accepting (passing) or rejecting certain frequency
components.

For example, a filter that passes low frequencies is called a lowpassfilter.
The net effect produced by a lowpass filter is to blur (smooth) an image.

We can accomplish a similar smoothing directly on the image itself by
using spatial filters (also called spatial masks, kernels, templates, and
windows).

A spatial filter consists of two things-
* A neighborhood, (typically a small rectangle)

* A predefined operation that is performed on the image pixels
encompassed by the neighborhood.

Filtering creates a new pixel with coordinates equal to the coordinates of
the center of the neighborhood, and whose value is the result of the
filtering operation.

A processed or filtered image is generated as the center of the filter visits
each pixel in the input image.

At any point (x, y) in the image, the response, g(X,y) , of the filter is the
sum of products of the filter coefficients and the image pixels
encompassedby the filter:

gx,y)=w(-1,-1) *f(x-1,y-1)+w(-1,0) *f(x-1,y) +...... + w(0, 0)
*fx,y)+w(l,) *fx+1,y+1)

Klmagu origin

Observe that the center coefficient of the filter, w(0,0), aligns with the
pixel at location (X, y).

For a mask of size m x n we assume that m=2a+1 and n=2b+1 where a
and b are positive integers.

Spatial Correlation and Convolution-

There are two closely related concepts that must be understood clearly
when performing linear spatial filtering. One is correlation and the other is
convolution.

Correlation is the process of moving a filter mask over the image and
computing the sum of products at each location, exactly as explained in
the previous section.

The mechanics of convolution are the same, except that the filter is first
rotated by 180°. For example-

Padded f - For a filter of
000000000 size m x n we pad the
00D0O0O0O0O0O0O) i
00000000 O image with a
,— Origin f(x,y) D0O0D0DO00DO0D0DO0 minimum of m-/
B0 000 i DUG BEY OB rows of 0" at the top
wix,y
00100 123 000000000 andb(’ttomagd”']
00000 456 000000O0O0O0 columns of 0° on the
0000(2) 7809 ooou(g)oooo left and right.
m and n are equal
to 3, so we pad f
with two rows of 0°
above and below
and two columns of
0° to the left and
right
20000800 0000000Ge 00000 Spatial Correlation
14 5 fi: 0o o0 001010 000000000 09 870
7809000000 000000000 06540
0O000Q0O0OO0CO0OODQOO 0009287000 03210
000010000 00046 i 4 0 0 0O 00000
000000 000321000
400000000 00000000 0
0000 OQOO0OO0OCO0OD0O OODO0ODCODO0DO0DO0CTODO
000000000 00000000010
(e) {d) (e)
_Y_Iio_mted w Full convolution result Cropped convolution result : :
:9 8 7: 000000 OCODOOOOODOO OO0O0COO Spatlal COIlVOluthIl
654000000 000O0C000CO0OCO0O 01230
321000000 000000000 04560
0o0000O0CO0ODO0OO0OC OODOCLZ2Z3000 078290
000010000 O0CODO0D456000 00000CO0
000000DO0OO0OO0OD OCOOT7 89000
00000O0COD0O0OC OCDOOCOOODODOO
0000O0O0CO0ODO0ODO0OD OCDOOCODOODODOO
00000D0D0O0OO0OC OCODOODOOO0OO
63} () (h)

Image Processing
Fundamentals and Pixel
Transformation

103

Applied Signal and Image
Processing

104

4.6 IMAGE SMOOTHING (LOW PASS) FILTER

Smoothing filters are used for blurring and for noise reduction. Blurring is
used in preprocessing tasks, such as removal of small details from an
image prior to (large) object extraction,

Linear Filers- Average filter

The output (response) of a smoothinglinear spatial filter is simply the
average of the pixels contained in the neighborhood of the filter mask.
These filters sometimes are called averaging filters. They also are
referred to a lowpass filters.

Replace the value of every pixel in an image by the average of the
intensity levels in the neighborhood defined by the filter mask, this
process results in an image with reduced “sharp” transitions in intensities.

Because random noise typically consists of sharp transitions in intensity
levels, the most obvious application of smoothing is noise reduction.

However, edges (which almost always are desirable features of an image)
also are characterized by sharp intensity transitions, so averaging filters
have the undesirable side-effect that they bluredges.

Let us first understand the filter/mask/kernel-

BOX FILTER KERNELS-

(all co-efficient are equal)

The simplest, separable ! ! 1
lowpass filter kernel is the box
kernel, whose coefficients
have the same value (typically
1). The name “box kernel”
comes from a constant kernel
resembling a box when viewed
in 3-D.

WEIGHTED AVERAGE
FILTER-

The constant multiplier in |
front of mask is equal to 1
divided by the sum of the
values of its coefficients, as is
required to compute an
average.

b
[u—y

==

A 3x3 smoothing (averaging)
filter masks.

An Example of Average Filter- Image Processing
Fundamentals and Pixel

2D Average filtering example using a 3 x 3 sampling window: Transformation
Keeping border values unchanged

Average = round(1+4+0+2+2+4+1+0+1)/9 :(;T})
Output

Input /

1410 |1 |3]1 1 #0131
2@ 14 |22 3 2 I'212 12 |1 |3
110 |1]0(1]0 12 (1|1 |1]0
12 (1]012 |2 12 (1]1]1 |2
2 (5 (3|1 (2]5 21212121215
1 (1 (41230 1 (141213 |0

An important application of spatial averaging is to blur an image for
the purpose of getting a gross representation of objects of interest, such
that the intensity of smaller objects blends with the background and
larger objects become “bloblike” and easy to detect.

The size of the mask establishes the relative size of the objects that
will be blended with the background.

abe

FIGURE 3.34 (a) Image of size 528 x 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 * 15 averaging mask. (¢) Result of thresholding (b). (Original image courtesy of NASA.)

* Linear filters blur all image structures points, edges and lines,
reduction of image quality

* Linear filters thus not used a lot for removing noise

Apply Blurred

Linear Edge
Filter / Results
Sharp s
edge \‘ /f

nno —tt
| 1]
:] £
. | —LHN Blurred
arp Thin
Thin / \ Line
Line Results

105

Applied Signal and Image
Processing

106

4.7 SMOOTHING ORDER-STATISTIC (NON-LINEAR)
FILTERS

Order-statistic filters are nonlinear spatial filters whose response is based
on ordering (ranking) the pixels contained in the image area encompassed
by the filter, and then replacing the value of the center pixel with the value
determined by the ranking result.

2D Median filtering example using a 3 x 3 sampling window:
Keeping border values unchanged
Sorted: 0,0.1,(1)2.2.4.4

Input / \ Qutput

1[4 o D31 410 [1 (3 1
2 @14 12|23 2 M1 |1 (13
1ot {o[1 o L1 {11]2]o
121022 tlr [t []2
21531215 20212121215
1104230 1 [1 {4]2 (3]0

Nonlinear filters — Median Filters

e The best-known filter in this category is the median filter, which, as its
name implies, replaces the value of a pixel by the median of the
intensity values in the neighborhood of that pixel (the original value of
the pixel is included in the computation of the median).

e Median filters are quite popular because, for certain types of random
noise, they provide excellent noise-reduction capabilities, with
considerably less blurring than linear smoothing filters of similar size.

e Median filters are particularly effective in the presence of impulse
noise, also called salt-and-pepper noise because of its appearance as
white and black dots superimposed on an image.

e The median, of a set of values is such that half the values in the set are
less than or equal to the median and half are greater than or equal to
the median.

e Although the median filter is by far the most useful order-statistic filter
in image processing, it is by no means the only one. The median
represents the 50th percentile of a ranked set of numbers,

e Using the 100™ percentile results in the so-called max filter, which is
useful for finding the brightest points in an image.

e The 0" percentile filter is the min filter, used for the opposite purpose.

Isolated pixels Thin fines Image Processing

e elminated B olinnind Fundamentals and Pixel
Transformation

= =)

(a) (b)
Tllustration- Effect
of median Filter

o d g
(c) (d)

A step edge is A corner is
unchanged rounded off

4.8 SHARPENING FILTERS (HIGH PASS FILTERS)

Sharpeningfilters highlight fine detail in an image or enhance detail that
has been blurred. Averaging technique used for smoothingis same as
integration while sharpening can be achieved by differentiation.
Differentiation enhances edges and discontinuities (including noise) and
deemphasizes slow varying gray-scalevalues.

**Strength of response of a derivative operator is proportional to the
degree of discontinuity of image at the point where the operator is applied.

Derivatives: (1" orderand 2" order)

Derivative of a digital function is defined in terms of differences. There
are various ways to define these differences. However, we require that any
definition we use for a first derivative-

1. must be zero in areas of constant intensity;

2. must be nonzero at the onset of an intensity step or ramp; and

3. must be nonzero along ramps.

Similarly, any definition of a second derivative-

1. must be zero in constant areas;

2. must be nonzero at the onset and end of an intensity step or ramp; and
3. must be zero along ramps of constant slope.

Basic definition of first-order derivative of a one-dimensional function
given by the difference-

of/ox = f(x + 1) — f(x)
Second-order derivative is defined by the difference-

/0x> = f(x + 1) + f(x — 1) — 2*f(x)

107

Applied Signal and Image
Processing

108

| Explanation of second order derivative: |
: B/0x2 = [fix + 1) - f(x)] - [f(x) - f(x-1)] :
| &2f/ox2 = [fix + 1) - f(x) - f(x) + f(x-1)] :
: B/ox2 = [fix + 1) - 2f(x) + f(x-1)] :

Let’s first understand the different types of Edges:

Edge Definition-Edge is a boundary between two regions with relatively
distinct gray level properties. Edges are pixels where the brightness

function changes abruptly.

—

.
.

ramp [/

Hix) ™
(]
Nx)

4.9 ILLUSTRATION

OF THE FIRST AND

SECOND

DERIVATIVES OF A 1-D DIGITAL FUNCTION-

EXAMPLE

e - Intensity tansition s As the ﬁgure ShOWS, the scan

- ‘-..l;,.!q.,‘-:{?\._ " line contains an intensity
miensty Y, Rimp Stes three sections of

ive 0 0-1-1-1-1-1 0 0O O

ramp,
constant intensity, and an
intensity step.

The circles indicate the onset
or end of intensity transitions.

A section of a horizontal intensity profile from an image

When computing the first derivative at a location x, subtract the value of
the function at that location from the next point. So, this is a “look-ahead”

operation.

In this method we take the 1* order derivative of the intensity value across
the image and find points where the derivative is maximum then the edge
could be located. Similarly, to compute the second derivative at x, we use
the previous and the next points in the computation.

To avoid a situation in which the previous or next points are outside the
range of the scan line, we show derivative computations in Figure, from
the second through the penultimate points in the sequence.

Observation from the figure above-

1. First, we encounter an area of constant intensity and, as Figures show,
both derivatives are zerothere, so condition (1) is satisfied for both.

2. Next, we encounter an intensity ramp followed by a step, and we note
that the first-order derivative is nonzero at the onset of the ramp and
the step. similarly, the second derivative is nonzero at the onset and
end of both the ramp and the step; therefore, property (2) is satisfied
for both derivatives.

3. We see that property (3) is satisfied also for both derivatives because
the first derivative is nonzero and the second is zero along the ramp.

S I8
[
4 /%
! ‘I\
3 1’ 1A
.’ i
2 /
“l
= 1 ,D\ | I‘. ‘._‘
£ 0p-@-E—0-0-0-0—B6-E-8--8—F—-F-8-§——=
g —jl @ -e--e—-e-—e—a ZET0CIOSSING ' /
ol Yo
4 1 i
o o Frst derivative '\ ,’
-4} 0O Second derivative !/
B &
Scan

2[iJufifi[11]e]6]6]6]6]—=

-
J

[6]6]6]6]5]4

line
Ist derivative 0 0-1-1-1-1—-1 O O O O O 5 O O O O
2nd derivative 0 0—-1 0 0 O 0O I O O O O 5-5 0 0 0

Note that the sign of the second derivative changes at the onset and end of
a step or ramp.

The 2™ derivative of an image - where the image highlights regions of
rapid intensity change and is therefore often used for edge detection-
zero crossing edge detectors.

Using the Second Derivative for Image Sharpening-

The approach basically consists of defining a discrete formulation of the
second-order derivative and then constructing a filter mask based on that

formulation.

We are interested in isotropicfilters, whose response is independent of the
direction of the discontinuities in the image to which the filter is applied.In
other words, isotropic filters are rotation invariant, in the sense that
rotating the image and then applying the filter gives the same result as
applying the filter to the image first and then rotating the result.

Image Processing
Fundamentals and Pixel
Transformation

109

Applied Signal and Image
Processing

110

4.10 IMAGE SHARPENING FILTER -THE LAPLACIAN

The simplest isotropic derivative operator is the Laplacian, which, for a
function (image) f (x,y) of two variables, is defined as-
2 2
o d
Lo
dx”

Vf =

9" the Laplacian operator

Since derivative of any order is a linear operation, Laplacian is a linear
operator. Discrete Laplacian operator Must satisfy the properties of second
derivative.

Partial order derivative in x-direction-

Pfox* =f(x + 1, y) + f(x - 1, y) - 2*f(x,y) eql
Partial order derivative in y-direction-

oy = f(x, y + 1) + f(x, y- 1) = 2*f(x,y)...... eq 2

Discrete Laplacian in two dimensions is given by taking the sum of partial
equations 1 and2 -

sz(X, Y) :f(X+ 1> Y) + f(X - 15 Y) +f(X, y+ 1)+f(X7 y- 1) -4f(X7 Y)

The mask is given by —

071710 MV [P v

O(1 10

« The mask gives isotropic result in increments of 90°

» Because the Laplacian is a derivative operator, its highlights intensity
discontinuities in an image and deemphasizes regions with slowly
varying intensity levels.

» This will tend to produce images that have grayish edge lines and other
discontinuities, all superimposed on a dark, featureless background.

4.11 USING FIRST-ORDER DERIVATIVES FOR (EDGE
DETECTION) IMAGE SHARPENING - THE
GRADIENT

First derivatives in image processing are implemented using the
magnitude of the gradient. For a function f(x,y), the gradient offat
coordinates (X, y) is defined as the two-dimensional column vector-

i
8x 0x
Vf = grad = =
dy
This vector has the important geometrical property that it points in the
direction of the greatest rate of change of fat location (x, y).

The magnitude(length) of vector Vf denoted as M(x, y), where M(x,y) is
the value at (x, y) of the rate of change in the direction of the gradient
vector.

M(x,y) = mag(Vf) = Vg + &

Note that M(x, y) is an image of the same size as the original. It is
common practice to refer to this image as the gradient image. In some
implementations, it is more suitable computationally to approximate the
squares and square root operations by absolute values:

M(x,y) =~ |8 + |8

It 1s simpler to compute and preserves relative changes in gray levels. It
does not preserve isotropic feature property.

Digital approximations to compute appropriate filtermasks - use the
following notation to denote intensities in a 3 X 3 region

71|72y | Z5
Zs | Zs | Zs
Ze | Z7 | Zg

* Simplest approximations is given by
g=1fx,y+1)- f(x,y)
gy =fx+1Ly)-flx,y)

* Robert’s definition, based on cross differences
g=fx+ 1, y+1)-fix,y)
gy=flx,y+1)-fix+ Ly)

e Compute the gradient as-

M(a,y) = V@ + Ly+)= f@)P + J@y+ 1) — @+ Ly

Image Processing
Fundamentals and Pixel
Transformation

111

Applied Signal and Image
Processing

112

e Using absolute values, the gradient is given by —
M(z,y) = |f(z+1,y+1) - f(z,9)| + |[f(z.y+1) — fz+1,y)|

e Implemented with the mask (Robert’scross-gradient operator)-

-1 10 0 -1
01 110

e Even-sized masks are different to implement due to lack of centre of
symmetry.

e An approximation using absolute values at point f(x; y) using a 3 X 3
mask is given by Sobel operators.

M(z,y) =~ |[(flz—Ly+1)+2f(z,y+ 1)+ flz+1Ly+1))—
(flx—Ly—1) +2f(z,y—)+ fla+1,y— 1)+
[(flzg+1,9—D)+2f(z+ 1,9+ fle+ L9+ 1)) —
(fle-Ly—-1)+2f(z—Ly) + f(z—1,y+1))|

-1 20 -1 1101
0|00 2102
1|21 -1 101

e Difference in first and third row in the left mask gives partial
derivative in the vertical direction.

e Difference in first and third column in the right mask gives partial
derivative in the horizontal direction.

e Mask gives gradient in x and y directions, and coefficients sum to zero
indicating no change in constant gray-level areas

e Used for edge detection.

4.12 SUMMARY

In this chapter we learned about the image histogram and its
transformation. Histogram equalization can be used to improve the
contrast of the image by stretching out the intensity range of the image. We
discussed the low pass and high pass filters in spatial domain of the image.
Smoothing Linear (Average filter) and non-linear filters (Median Filters)
are discussed and their impact was shown for noise reduction. Mechanics
of Sharpening filters is illustrated using first order and second order
derivatives of a 1-D function using a line profile. Mathematics of Laplacian
filter and gradient operators are discussed.

4.13 EXERCISE QUESTIONS

l.

What is image histogram? Discuss the histogram pattens of low
contrast and high contrast images.

Histogram of an image with 8 quantization levels is given below.
Perform histogram equalization. Draw original and equalized
histogram.

Grey Level |0 I |12 |3 4 5 16 7

No of Pixel |[220 |70 |50 [150 [130 |70 | 150 |160

What is median filter used for? Apply median filter on the below
image keeping border values unchanged-

1 4 0 1 3 1
2 2 4 2 2 3
1 0 1 0 1 0
1 2 1 0 2 2
2 5 3 1 2 5
1 1 4 2 3 0

What is low pass filtering? Discuss the advantage of weighted average
filters in the spatial domain.

How does Weighted average filter reduce the effect of blurring as
compared to average filter. Apply the below filter to the given image-

Input Image Kernel
40 |40 |200 |40 |40 1 2 1

40 | 40 | 40 40 | 40 116 |2 4 2

40 |40 | 100 |40 |40 1 2 1

40 |0 40 40 | 40

40 |40 |0 40 | 40

40 |40 | 40 40 | 40

Discuss the requirements to be satisfied for 1* order derivatives and
2" order derivates in constant intensities, at ramp and at step edged of
an image.

Write a note on high pass filters and formula for calculating 1% and
second order derivatives.

Calculate the 1% and 2™ order derivatives for the below given profile
of a line.

6 6 6 65432111111¢6¢6°%6 6 6

Show the zero-crossing region in the graph.

Image Processing
Fundamentals and Pixel
Transformation

113

Applied Signal and Image
Processing

114

9. Use diagrams to define a Step, a Ramp and a Roof in edge detection.
Also discuss the impact of applying a median filter on isolated pixels
and thin lines.

10. Write a note on Laplacian filter.

11. Using First-Order Derivatives for derive The Gradient Filter for edge
detection.

4.14 REFERENCES

1. https://towardsdatascience.com/histogram-equalization-5d1013626e64
2. https://docs.opencv.org/

3. Digital Image Processing by Rafael Gonzalez & Richard Woods,
Pearson; 4th edition, pdf.

4. Digital Image Processing by S. Jayaraman, Tata Mc-Graw Hill
Publication, pdf.

5. Images used are processed using the tools- OpenCV (Python) and
GNU Octave (compatible with MATLAB).

O O 0 L0
0‘0 0‘0 0‘0 0‘0

S

STRUCTURAL AND MORPHOLOGICAL
OPERATIONS

Unit Structure :
5.0 Objectives
5.1 Edge Detection
5.2 Edge properties
5.3 Simple edge model
5.3.1 Step Edge Model
5.3.2 Ramp Edge Model
5.4 Edge detection techniques
5.4.1 Sobel
5.4.2 Canny
5.4.3 Prewitt
5.4.4 Robert edge detection techniques
5.4.5 LoG filters
5.4.6 DoG filters
5.5 Image Pyramids
5.5.1 Gaussian Pyramid
5.5.2 Laplacian Pyramid
5.5.3 Morphological pyramid
5.6 Summary
5.7 Reference for further reading

5.0 OBJECTIVES

After going through this unit, you will be able to:
e Learn dilation, erosion, opening, and closing for morphological
operations.

e Master edge detection with Sobel, Prewitt, Robert, and Canny
techniques.

e Explore LoG and DoG filters for edge detection at different scales.

e Understand Gaussian and Laplacian pyramids for multi-scale image
representation.

e Apply morphological operations like dilation, erosion, opening, and
closing for image manipulation and feature extraction.

115

Applied Signal and Image
Processing

116

5.1 EDGE DETECTION

Our eyes naturally focus on edges in an image, as they often reveal
important details about the scene. In image processing, edge detection
plays a similar role, identifying sharp changes in brightness that can tell us
a lot about the world captured in the image.

Why are edges important?
These sudden brightness shifts often correspond to:

e Differences in depth (nearby vs. faraway objects)

e Changes in surface orientation (flat vs. curved surfaces)

e Variations in materials (wood vs. metal)

e Shifts in lighting conditions (bright sun vs. shadow)

Ideally, edge detection would result in a clean map highlighting object
boundaries, surface markings, and other significant changes in the image.
This filtered image would contain less data, focusing on the essential
structure while filtering out less relevant details.

Benefits of Clean Edges:

e Reduced data: Less data to process means faster analysis and
potentially lower storage requirements.

e Simplified interpretation: Clear edges make it easier to understand
the image content.

Challenges of Real-World Images:

Unfortunately, real-world images are rarely perfect. Edge detection can
suffer from:

e Fragmentation: Edges may be broken into disconnected pieces,
making it difficult to understand the whole picture.

e Missing segments: Important edges might be entirely missed.

o False edges: Edges may appear where there are no real changes in the
scene, creating confusion.

If successful edge detection occurs, the subsequent task of interpreting the
information within the original image can be significantly simplified.
However, achieving ideal edges from real-life images of moderate
complexity is not always feasible. Extracted edges from such images often
suffer from fragmentation, where the edge curves are disjointed, leading to
missing edge segments and false edges that do not correspond to
meaningful features in the image. This complication further challenges the
interpretation of the image data.

Edge detection serves as a fundamental step in various fields including
image processing, image analysis, pattern recognition, and computer
vision techniques. In recent years, considerable and successful research
has also been conducted on computer vision methods that do not explicitly
rely on edge detection as a pre-processing step.

5.2 EDGE PROPERTIES

Edge properties refer to the characteristics that define an edge detected in
an image. These properties can be used to further analyze the edges and
extract more information from the image. Here are some key edge
properties:

1. Strength/Magnitude:

e Represents the intensity of the change in pixel intensity at the edge.
Higher values indicate a more significant difference in brightness
between neighboring pixels.

N

. Orientation:
Indicates the direction of the edge, typically measured in degrees (0-
180) or radians (0-m). This helps differentiate between horizontal,
vertical, or diagonal edges.

w

. Location:
Specifies the coordinates (x,y) of each edge pixel in the image. This
allows for precise localization of edges and potential object
boundaries.

N

. Type:
Depending on the edge detection algorithm used, the edge type might
be categorized as a step edge (sharp transition), a ramp edge (gradual
change), or a roof edge (double intensity change).

N

. Connectivity:
Describes how edge pixels are connected. Edges can be isolated
points, short segments, or continuous curves outlining objects.

(=)

. Curvature:
Represents the degree to which the edge bends or curves. This can be
helpful in identifying shapes and distinguishing between smooth and
sharp corners.

3

. Color:
In color images, the edge may have a specific color profile that can be
informative. For example, an edge between a red object and a blue
background might have a combined color representing the transition.

By analyzing these edge properties, we can gain a deeper understanding of
the image content. For example, strong edges with specific orientations
might indicate object boundaries, while weak, fragmented edges could be
noise or irrelevant details. Additionally, edge properties can be used for
tasks like:

e Image segmentation: Grouping pixels with similar edge properties to
isolate objects.

e Shape recognition: Analyzing edge curvature and orientation to
identify shapes in the image.

Structural and
Morphological Operations

117

Applied Signal and Image
Processing

118

e Motion detection: Tracking changes in edge properties over time to
detect moving objects.

Understanding edge properties allows us to exploit edge detection for a
wider range of image processing and computer vision applications.

5.3 SIMPLE EDGE MODEL

In image processing, a simple edge model is often used to understand the
fundamental concept of edges and how edge detection algorithms work.
This model provides a theoretical basis for more complex real-world
scenarios.

There are two main approaches to simple edge models:
5.3.1. Step Edge Model:

This model assumes an ideal edge as a sudden and sharp transition in
intensity between two constant regions. Imagine a horizontal line in a
digital image where all pixels to the left of the line have a constant value
(e.g., black) and all pixels to the right have another constant value (e.g.,
white). This creates a perfect step change in brightness, representing the
simplest edge possible.

5.3.2. Ramp Edge Model:

This model acknowledges that edges in real images are rarely perfect step
changes. Instead, the intensity might gradually transition from one level to
another over a few pixels. This creates a ramp-like structure, where the
brightness value changes progressively across the edge region.

Both models are abstractions, but they help us understand the core concept
of edges and how edge detection algorithms function. These algorithms
typically involve applying filters or mathematical operations to the image
that aim to identify these sudden changes (step model) or significant
intensity variations (ramp model).

Here are some key points to remember about simple edge models:

e They are theoretical constructs and don't perfectly represent real-world
edges.

e They provide a foundation for understanding how edge detection
works.

e Real image edges often exhibit a combination of step and ramp
characteristics.

By understanding these simple models, we can move on to exploring more
sophisticated edge detection techniques that can handle the complexities
of real-world images.

5.4 EDGE DETECTION TECHNIQUES

Edge detection techniques play a crucial role in identifying boundaries and
transitions within images, enabling various image processing tasks. Here,
we delve into several prominent edge detection methods, including Sobel,
Canny, Prewitt, and Robert operators, as well as LoG (Laplacian of
Gaussian) and DoG (Difference of Gaussians) filters.

5.4.1. Sobel

The Sobel operator is a widely-used method for detecting edges in digital
images. It is based on the computation of image gradients to identify areas
of rapid intensity change, which typically correspond to edges or
boundaries between objects. The Sobel operator is particularly effective
due to its simplicity and computational efficiency. Here, we delve into the
principles behind the Sobel operator and its application in edge detection.

The Sobel edge detection technique, which is commonly used in digital
image processing. The Sobel operator helps identify edges by estimating
the gradient magnitude and direction at each pixel in a grayscale image.

The Sobel algorithm is explained in detail below:

1. Converting the Image into Grayscale:
Before applying edge detection, we convert the original color image
into grayscale. Grayscale images have a single intensity channel,
making them suitable for edge analysis.

2. Sobel Filters:

e The Sobel operator involves convolving the image with two filters:
one in the x-direction and another in the y-direction.

o These filters are derivative filters, meaning they compute the first
derivative of the image intensity along the x and y axes.

3. Sobel-x Filter(Horizontal Sobel Kernel):

e To obtain the Sobel derivative along the x-direction, we perform an
outer product between a 1D Gaussian filter and the x derivative.

e The Gaussian filter helps reduce noise, resulting in a smoother
gradient computation.

e The Sobel-x filter looks like this:

0 1

0 2

0 1

4. Sobel-y Filter(Vertical Sobel Kernel):

e Similarly, the Sobel-y filter is obtained by performing an outer product

between the y derivative and a 1D Gaussian filter.
e The Sobel-y filter looks like this:

Structural and
Morphological Operations

119

Applied Signal and Image
Processing

120

hy

-1 -2 -1
=0 0 0
1 2 1

5. Gradient Magnitude and Direction:

After convolving the grayscale image with both Sobel filters, we
calculate the gradient magnitude and direction for each pixel.
The gradient magnitude (G) can be computed as:

G=1G,+G,

Where (Gy) and (Gy) represent the gradients in the x and y directions,
respectively.

6. Edge Emphasis:

¢ Pixels with high gradient magnitude form edges in the image.
e The Sobel operator emphasizes these edges, making them stand out.

Applications:

Edge Detection: The Sobel operator is primarily used for edge
detection in various image processing applications, such as object
recognition, image segmentation, and feature extraction.

Image Analysis: It is also employed in image analysis tasks where the
detection of boundaries and transitions between regions is essential for
understanding image content.

Real-Time Processing: Due to its computational efficiency, the Sobel
operator is suitable for real-time processing applications, including
video processing and computer vision tasks.

Limitations:

Sensitive to noise: Noise in the image can lead to spurious edges in
the output. Pre-processing with noise reduction techniques might be
necessary.

Not scale-specific: The Sobel operator might struggle with edges at
different scales in the image. Techniques like Difference of Gaussians
(DoG) can address this limitation.

Example

Let's say we're working with a basic 3x3 grayscale image where the pixel
intensities vary:

image

50 100 | 150

75 120 | 175

100 | 150 200

We'll apply the Sobel operator to detect edges in this image.

Horizontal Sobel Kernel:

-1
h=|-2
-1

o o O

1
2
1

Vertical Sobel Kernel:

-1 -2 -1
hyz 0 0 0
1 2 1
Convolution:

We apply the horizontal and vertical Sobel kernels separately to the image
using convolution:

For the horizontal gradient (gx):

gx = (-1*50) + (0%100) + (1*150) + (-2%75) + (0*120) + (2*175) +
(-1¥100) + (0*150) + (1*200)

=-50+0+150-150+0+350-100+ 0+ 200
=-50+0+150-150+0+350-100+ 0+ 200
=300

For the vertical gradient (gy):

gy = (-1*50) + (-2*100) + (-1*150) + (0*75) + (0*120) + (0*175)
+(1*100) + (2*150) + (1*200)

=-50-200-150+0+0+0+ 100+ 300+ 200
=-400+0+0+400
=0

Gradient Magnitude:

The gradient magnitude is calculated using the formula:
magnitude = G=A Gi+ Gi

= sart (G2 + Gy*2)
= sqrt (30072 + 072)
= sqrt (90000)
=300

Structural and
Morphological Operations

121

Applied Signal and Image
Processing

122

Thresholding:

We compare the gradient magnitude (300) to a predefined threshold (let's
say 200). Since the magnitude exceeds the threshold, we consider this
pixel as part of an edge.

Output:
We mark the corresponding pixel in the output image as an edge pixel.
5.4.2. Canny

The Canny edge detector is a widely recognized and powerful technique
for identifying significant edges in images. It builds upon the foundation
of simpler methods like Sobel or Prewitt but incorporates additional steps
to achieve more robust and well-defined edges. The Canny algorithm
provides accurate results by considering multiple stages of processing.

The Canny edge detector involves several key steps:

1. Gaussian Smoothing:

e Before detecting edges, the Canny algorithm applies Gaussian
blurring to the image. This helps reduce noise and smooths out
pixel intensity variations.

e The Gaussian filter is defined by the following equation:

S
20°

1

Glx. y) = ——
211 o

e

e Here, (x) and (y) represent the pixel coordinates, and controls the
blurring strength.

2. Gradient Calculation:
e Compute the gradient magnitude and direction using Sobel
operators. These operators estimate the intensity changes along the
x and y axes.
e The gradient magnitude (G) is given by:

G=1\G+G,

e Where (Gy) and (Gy) are the gradients in the x and y directions,
respectively.

3. Non-Maximum Suppression:
e Suppress non-maximum gradient values to keep only the local
maxima. This step ensures that only thin edges remain.
e (Compare the gradient magnitude with its neighbours along the
gradient direction. If it’s the maximum, retain it; otherwise, set it to
Zero.

4. Double Thresholding:

e Set two thresholds: a high threshold (HT) and a low threshold
(LT).

e Pixels with gradient magnitude above (HT) are considered strong
edges.

e Pixels with gradient magnitude between (LT) and (HT) are
considered weak edges.

e Pixels below (LT) are suppressed (set to zero).

5. Edge Tracking by Hysteresis:
e (Connect weak edges to strong edges if they form continuous
contours.

e Follow the edges based on connectivity.

Applications:
e Robust Edge Detection: Canny effectively suppresses noise and
identifies well-defined edges.
e Good Localization: The edges are accurately positioned relative to
the actual intensity changes in the image.
e Single Edge Response: Each edge point is detected only once,
avoiding multiple detections for the same edge.

Limitations:

e Computational Cost: Compared to simpler methods like Sobel,
Canny involves more steps and can be computationally more
expensive.

e Parameter Tuning: The choice of thresholds (HT and LT) can
impact the results. Selecting appropriate thresholds depends on the
specific image and desired edge characteristics.

Example:
1. Grayscale Conversion: Convert the image to black and white.

Imagine we have a simple 5x5 image with varying shades of gray:

100 100 100 150 200
100 100 100 150 200
100 100 100 150 200
100 100 100 150 200
100 100 100 150 200

2. Blur the Image: Smooth out the image to reduce noise.
After blurring, the image remains the same:

100 100 100 150 200
100 100 100 150 200
100 100 100 150 200
100 100 100 150 200
100 100 100 150 200

Structural and
Morphological Operations

123

Applied Signal and Image
Processing

124

3. Find Edges: Look for areas of rapid intensity change.
The algorithm detects edges where there's a sudden change in intensity:

0 0 50 100 100
50 100 100
50 100 100
50 100 100
50 100 100

oS O O O
S O O O

4. Thinning: Ensure edges are only one pixel wide.
Thin the edges to keep only the strongest ones:

0 0 0 100 100
0 0 0 100 100
100 100
100 100
100 100

S O O
S O O
S O O

5. Thresholding: Determine which edges are significant.
Set a threshold to distinguish strong and weak edges:

0 0 0 255 255
255 255
255 255
255 255
255 255

o
S O O O
S O O O

6. Edge Tracking: Connect weak edges to strong ones.
Ensure weak edges that are part of a strong edge are retained:

0 0 0 255 255
0 255 255
255 255
255 255
255 255

S O O O
S O O O
oS O O

5.4.3. Prewitt

The Prewitt operator is a fundamental technique in image processing used
for edge detection. It's a simple yet effective way to identify areas in an
image where there's a sudden change in pixel intensity, which often
corresponds to the edges of objects.

Here are the steps involved:
1. Read the Image:

First, read the image you want to process. If it’s a colored image, convert
it to grayscale.

2. Convert to Grayscale:

If your image is in color, convert it to grayscale. The Prewitt operator
works with grayscale images.

3. Apply Prewitt Masks:

The Prewitt operator provides two masks: one for detecting edges in the
horizontal direction (along the x-axis) and another for detecting edges in
the vertical direction (along the y-axis).

The Prewitt masks are as follows:

=1 % 1
Prewitt Operator [X-axis]=|—1 0 1
-1 0 1
=L =] 1
Prewitt Operator [Y-axis] = 0 0
1 1 1

4. Convolution:

e (Convolve the image with both the Prewitt masks separately. This
involves sliding the masks over the image and computing the weighted
sum of pixel intensities.

e The result of convolution along the x-axis (kx) and y-axis (ky)
represents the gradient components.

5. Edge Magnitude:
e Calculate the edge magnitude (ked) by combining the gradient
components:

ked=vk«’+k y*

6. Display the Results:

e Display the original grayscale image, the edge detection along the x-
axis (abs(kx)), the edge detection along the y-axis (abs(ky)), and the
full edge detection (abs(ked)).

Applications of Prewitt Operator:

e Medical Imaging: Can be used to identify boundaries of organs and
tissues in X-ray or MRI scans.

e Object Recognition: Helps locate object outlines in images for further
analysis.

e Motion Detection: Useful in identifying areas of significant intensity
changes which could indicate movement.

Structural and
Morphological Operations

125

Applied Signal and Image
Processing

126

Limitations

e Noise: Prone to false edges due to image noise.

e Accuracy: Less precise in pinpointing exact edge location and
direction, especially for diagonals.

e Weak Edges: May miss subtle changes in intensity.

Example

Imagine you have a grayscale image of a black cat sitting on a white chair.
The Prewitt operator would be helpful in identifying the edges where the
black fur meets the white chair.

Here's how it works:

1. Masks: The Prewitt operator uses two 3x3 masks, one for horizontal
edges and one for vertical edges.
e Horizontal Mask: Emphasizes changes in intensity from left to

right.
-1 0 1
-1 0 1
-1 0 1
e Vertical Mask: Emphasizes changes in intensity from top to
bottom.
-1 -1 -1
0 0 0
1 1 1

2. Convolution: It slides these masks across the image pixel by pixel. At
each position, it multiplies the mask values with the corresponding
pixel intensities in the image and sums the products. This gives a new
value representing the "edge strength" for that pixel.

3. Edge Detection:

e Magnitude: We can calculate the overall edge strength by taking the
absolute value of the results from both horizontal and vertical
convolutions. This highlights strong edges (areas with high intensity
change).

e Direction (Optional): We can also calculate the direction of the edge
(horizontal, vertical, or diagonal) based on the signs of the mask
values in the convolution.

The final result would be a new image highlighting the edges of the cat
(where fur meets chair) with varying intensity based on how strong the
change in grayscale value is at that point.

5.4.4. Robert edge detection techniques

The Roberts operator is a simple and quick-to-compute method for
measuring a 2-D spatial gradient on an image. It highlights strong spatial
gradient regions, which often correspond to edges.

1. Roberts Edge Detection:

e The Roberts operator calculates the gradient intensity in discrete
differentiation. It approximates the gradient by computing the sum of
squares of differences between diagonally adjacent pixels.

e The operator uses a pair of 2x2 convolution masks, one of which is
merely the other rotated by 90 degrees. This is similar to the Sobel
operator.

e The masks are designed to respond maximally to edges running at a
45° angle to the pixel grid.

e The masks can be applied to the input grayscale image independently
to produce separate gradient component measurements in each
orientation.

e These components can then be combined to determine the absolute
magnitude and orientation of the gradient at each location.

2. Roberts Masks:
e The two Roberts masks are as follows:

1 0
g —1

0 1
-1 0
Steps to Apply Roberts Edge Detection:
Read the image and convert it to grayscale.
Initialize the Roberts cross operator masks.

Convolve the image with both the X-axis and Y-axis masks.
Calculate the gradient magnitude using:

Roberts Operator [X-axis]:

Roberts Operator [Y-axis]:

e o o o W

G=\ horizontal®+vertical®
Applications:

e Simple and Fast: The Roberts operator is very easy to understand and
implement due to its small kernel size (2x2) and simple calculations.

Limitations:

e Overly Sensitive: It can be sensitive to noise in the image, leading to
the detection of false edges.

Structural and
Morphological Operations

127

Applied Signal and Image
Processing

128

e Less Precise: While good at detecting strong edges, it may not be as
accurate in pinpointing the exact location of the edge compared to
more sophisticated methods.

e Diagonal Focus: The Roberts operator is primarily sensitive to edges
along diagonal directions (because it checks diagonals).

Example

Consider a tiny 2x2 grayscale image:
[100, 150]

[120, 180]

We'll apply the Robert operators to compute the horizontal and vertical
gradients, then calculate the gradient magnitude.

1. Horizontal gradient:

[-1, 0] [100, 150] [-1%100 + 0*120, -1*150 + 0*180] [-100, -150]
[o, 17 | *| 120, 1807 | = | [0*100 + 1*120, 0*150 + 1*180] = | [120,180]
[0, 0] [0, 0]
2. Vertical gradient:
[0,-1] [100, 150] [0*100 + -1*120, 0%¥150 + -1*180] [-120, -180]
[1, 0] |*|r120, 1801 |=|[1*100+0%120, 1*150 + 0*180] =| 100, 150]
[0, 0] [0, 0]

3. Compute gradient magnitude:
gradient_magnitude = sqrt((-100)"2 + (-150)"2 + (-120)"2 + (-180)"2)
= sqrt(10000 + 22500 + 14400 + 32400)
= sqrt(79300)
~281.39

The gradient magnitude for this simplified example is approximately
281.39.

5.4.5. LoG filters

Log filters are tools used to narrow down the content of log files, which
are digital records of events that occur within a system or application.
There are many reasons why you might want to filter log files. The term
“LoG filters” can refer to two different concepts depending on the context:

Laplacian of Gaussian (LoG) in Image Processing: The LoG filter
is used in image processing for edge detection. It involves applying a
Gaussian blur to an image before calculating the Laplacian. This helps
to reduce noise which can be amplified when calculating the second
derivative, which is what the Laplacian does. The LoG operator takes
a single grayscale image as input and produces another grayscale
image as output. The 2-D LoG function centered on zero and with
Gaussian standard deviation o has the form:

1
LoG(x,y) = ——|1
no*

2 2
X2+ y?

4+

e 20

2a°

This filter highlights regions of rapid intensity change and is often used for
edge detection.

Logging Filters in Computing: In the context of computing and
cloud services, LoG filters could refer to filters used in logging to
query and filter data. For example, Google Cloud’s Logging query
language allows you to write filters to create sinks and log-based
metrics. A query is a Boolean expression that specifies a subset of all
the log entries in your selected Google Cloud resource.

Application:

o Effective for edge detection.

e Enhances features and textures.
e Useful for blob detection.

¢ Enables scale-space analysis.

Limitations:

e Can be computationally intensive.

e Sensitive to parameter choices.

e Challenges in precise edge localization.

¢ Susceptible to noise amplification.

e Complexity in selecting the appropriate scale.

Example
Consider a small 3x3 grayscale image:

[100, 150, 200]
[120, 180, 220]
[90, 140, 190]

We'll apply the LoG filter with a Gaussian kernel of size 3x3 and sigma
(standard deviation) of 1.

1. Apply Gaussian Smoothing:

We'll convolve the image with a 3x3 Gaussian kernel.
Gaussian Kernel:

1/16 2/16 1/16
2/16 4/16 2/16
1/16 2/16 1/16

Structural and
Morphological Operations

129

Applied Signal and Image ~ Smoothed Image:

Processing [147.8125, 183.5, 198.1875]
[163.75, 190.25, 206.25]
[140.1875, 167.75, 183.8125]
2. Apply Laplacian Operator:
We'll apply the Laplacian operator to the smoothed image.
Laplacian Kernel:
010
1-41
010
LoG Image:
[-17.9375, -5.9375, 9.3125]
[-7.4375, -14.1875, -1.4375]
[4.3125, -1.4375, -7.9375]
The resulting LoG-filtered image for this numerical example is:
[-17.9375, -5.9375, 9.3125]
[-7.4375,-14.1875, -1.4375]
[4.3125, -1.4375, -7.9375]

This demonstrates the application of the Laplacian of Gaussian filter to a
small numerical example. In practice, larger images and different sigma
values would be used for more meaningful results.

5.4.6. DoG filters

The term “DoG filters” refers to Difference of Gaussians, which is a
technique used in image processing, particularly in edge detection and
feature extraction. The DoG filter is a band-pass filter that highlights
edges and details in an image by subtracting one blurred version of an
original image from another, less blurred version of the original.

Here’s how the DoG filter works:

Create two blurred images: First, you create two blurred versions of the
original image using Gaussian blurring with different standard deviations
(o). The first image is blurred with a smaller ¢ (narrower Gaussian), and
the second image is blurred with a larger o (wider Gaussian).

130

Subtract the blurred images: You then subtract the wider-blurred image Structural and
from the narrower-blurred image. This subtraction process results in anew Morphological Operations
image that emphasizes the edges that are present in the spatial range

between the two levels of blurring.

Mathematical Representation: The DoG function (D(x, y, 6)) can be
represented as the difference between two Gaussian blurred images (G(x,
¥y, ko) and (G(x,y, 0):

D(x,y,0) = G(x,y, ko) — G(x,y,0)

where (k) is a constant that determines the difference in blurring between
the two images.

Application:

e Effective for edge detection.

e Enhances features and textures.
e Enables scale-space analysis.

e Useful for blob detection.

Limitations:

e Parameter sensitivity.

¢ Limited edge localization.

¢ Noise sensitivity.

e Computational overhead (though less than LoG).

Example:
Suppose we have a 3x3 grayscale image:

[100, 150, 200]
[120, 180, 220]
[90, 140, 190]

We'll apply two Gaussian filters with different standard deviations (o) and
compute their difference.

1. Gaussian with 61 =1:
[0.0751, 0.1238, 0.0751]
[0.1238, 0.2042, 0.1238]
[0.0751, 0.1238, 0.0751]
2. Gaussian with 62 =2:
[0.028, 0.05, 0.028]
[0.05, 0.091, 0.05]

[0.028, 0.05, 0.028]
131

Applied Signal and Image
Processing

132

3. Difference (DoG):
[0.0471, 0.0738, 0.0471]
[0.0738, 0.1132, 0.0738]
[0.0471, 0.0738, 0.0471]
In this example, we perform the following steps:

e Convolution: We apply two Gaussian filters with different standard
deviations to the original image.

e Subtraction: We subtract the resulting blurred images to obtain the
difference (DoG) image.

5.5 IMAGE PYRAMIDS

Image pyramids are a multi-level approach in image processing that
allows for multi-scale representation and analysis of images. Types are:

5.5.1 Gaussian Pyramid

Definition: A Gaussian pyramid is a hierarchical representation of an
image that captures its content at multiple scales by successively applying
Gaussian blurring and down sampling.

Construction:

e The process begins with the original image, which is convolved with a
Gaussian kernel to blur it.

e Subsequently, the blurred image is subsampled to reduce its size.

e This process is repeated iteratively, creating a pyramid of images, each
with reduced resolution but capturing the image content at different
scales.

Purpose:

e Gaussian pyramids are used in various applications such as image
blending, texture analysis, and scale-invariant feature detection.

e They provide an efficient and compact representation of images at
multiple resolutions, enabling computationally efficient processing at
different scales.

Example

Consider an original image of size 256x256 pixels. We can construct a
Gaussian pyramid with, for example, 4 levels. At each level, we
successively blur the image using Gaussian filtering and then downsample
it by a factor of 2. This results in a pyramid with images at decreasing
resolutions, capturing the image content at different scales. Here's an
example:

Level 0: Original Image (256x256)
Level 1: Blurred &Downsampled (128x128)

Level 2: Further Blurred &Downsampled (64x64)
Level 3: Further Blurred &Downsampled (32x32)
Level 4: Further Blurred &Downsampled (16x16)

5.5.2 Laplacian Pyramid

Definition: Derived from the Gaussian pyramid, the Laplacian pyramid
represents the details of an image at different scales.

Construction:

e The Laplacian pyramid is constructed by taking the difference between
each level of the Gaussian pyramid and the up sampled version of the
next level.

e This difference operation retains the high-frequency details discarded
during Gaussian blurring.

Purpose:

e Laplacian pyramids are commonly used in image compression, as they
efficiently capture the information required for image reconstruction
while discarding redundant details.

e They are also employed in tasks like edge detection, texture synthesis,
and image sharpening.

Benefits:

e The Laplacian pyramid provides a compact representation of image
details, making it useful for various image processing tasks requiring
multi-scale analysis.

Example

Using the Gaussian pyramid constructed above, we can derive the
Laplacian pyramid. For each level of the Gaussian pyramid (except the
last level), we up sample the next level and subtract it from the current
level. This results in a pyramid capturing the details at different scales.
Here's an example:

Level 0: Original Image (256x256)
Level 1: Details (128x128)

Level 2: Details (64x64)

Level 3: Details (32x32)

5.5.3 Morphological pyramid

Definition: A morphological pyramid is a variant of the Laplacian
pyramid used specifically in morphological image processing.

Structural and
Morphological Operations

133

Applied Signal and Image
Processing

134

Construction:

e Like the Laplacian pyramid, it is built by taking the difference between
levels of the Gaussian pyramid.

e However, instead of the difference operation, morphological
operations such as erosion and dilation are applied.

Purpose:

e Morphological pyramids are used in tasks like image segmentation,
shape analysis, and feature extraction in morphological image
processing.

e They enable the representation of morphological features at different
scales, facilitating the analysis and processing of complex structures in
images.

Example

For a morphological pyramid, suppose we have an image containing
binary objects (e.g., shapes). We can use morphological operations such as
erosion and dilation to create a pyramid representing the morphological
features at different scales. Here's an example:

Level 0: Original Binary Image (256x256)
Level 1: Eroded & Dilated (128x128)

Level 2: Further Eroded & Dilated (64x64)
Level 3: Further Eroded & Dilated (32x32)

5.6 SUMMARY

In image processing, edge detection is crucial for identifying boundaries
between objects or regions. Various techniques, such as Sobel, Canny, and
Prewitt operators, utilize gradient information to detect edges accurately.
Simple edge models like step and ramp edges offer idealized
representations for analysis. Advanced methods like LoG and DoG filters
combine Gaussian blurring with differentiating operators to detect edges at
multiple scales. Additionally, image pyramids, including Gaussian,
Laplacian, and morphological pyramids, facilitate multi-scale analysis,
aiding tasks such as image compression and feature extraction. These
techniques are fundamental in computer vision applications, offering
insights into image structures and facilitating further processing.

5.7 REFERENCE FOR FURTHER READING

e Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2018). Digital Image
Processing Using MATLAB. Gatesmark Publishing.

e Sonka, M., Hlavac, V., & Boyle, R. (2014). Image Processing,
Analysis, and Machine Vision. Cengage Learning.

Jain, A. K. (1989). Fundamentals of Digital Image Processing.
Prentice Hall.

Burger, W., & Burge, M. J. (2009). Principles of Digital Image
Processing: Fundamental Techniques. Springer Science & Business
Media.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications.
Springer Science & Business Media.

Websites

https://docs.opencv.org/
https://www.pyimagesearch.com/
https://towardsdatascience.com/tagged/image-processing

https://www.mathworks.com/help/images/

O O 0 L0
0‘0 0‘0 0‘0 0‘0

Structural and
Morphological Operations

135

136

IMAGE PROCESSING

Unit Structure :

6.0 Objectives

6.1 Erosion

6.2 Dilation

6.3 Opening and closing

6.4 Hit-or-Miss Transformation
6.5 Skeletonizing

6.6 Computing the convex hull
6.7 Removing Small Objects
6.8 White and black top- hats
6.9 Extracting the boundary
6.10 Grayscale operations

6.11 Summary

6.12 Reference for further reading

6.0 OBJECTIVES

After completing this unit, you will be proficient in a range of
fundamental image processing techniques. You will be able to effectively
utilize erosion and dilation to enhance boundaries and fill gaps, implement
opening and closing operations for noise reduction and object
preservation, employ Hit-or-Miss Transformation for pattern detection,
and skeletonize images to thin object structures while maintaining
connectivity. Additionally, you will have the skills to compute convex
hulls for understanding object shapes, remove small objects while
preserving essential features, and utilize white and black top-hat
transformations for feature extraction. You will also be adept at extracting
boundaries for further analysis and applying grayscale operations for
contrast enhancement and filtering, thereby enhancing your capabilities in
image processing.

Set theory notation is a powerful tool in image processing, particularly for
defining fundamental morphological operations like erosion and dilation.
Here's a breakdown of how it's used:

Basics of set theory
Image as a Set:

e We consider a digital image as a set of pixels. Each pixel is
represented by its coordinates (X, y) and has a specific intensity value.

e In binary images, the intensity values are typically 0 (black) and 1
(white). So, the image becomes a set of coordinates representing
foreground pixels (usually white).

Basic Set Operations:

e Union (U): This combines pixels that belong to either set A or set B or
both. In image processing, it could represent combining two separate
objects in an image.

e Intersection (N): This includes pixels that belong to both set A and set
B. It's useful for finding overlapping regions between objects.

o Difference (\): This includes pixels that are in set A but not in set B. In
image processing, it can be used to isolate objects by removing
overlapping areas.

e Complement (A”c): This represents all the pixels that are not in set
A. In a binary image, it would be all the black pixels if A represents
the white foreground objects.

Morphological Operations:

e Erosion (©): As discussed earlier, erosion is defined using a subset
relationship. A pixel is included in the eroded image (A © B) only if
the structuring element B, shifted to that pixel's location, is entirely
contained within the original image (A).

e Dilation (®): Dilation, the opposite of erosion, expands objects by
incorporating pixels from the background that are close to the object
boundaries. It can be defined using set complement and union
operations on the structuring element and the original image.

6.1 EROSION

Erosion is a fundamental morphological operation in image processing
that is used to shrink or thin objects in a binary image. It involves a
process where the boundaries of objects are eroded away based on a
predefined structuring element. This structuring element, which can be of
various shapes like a disk or a square, moves over the image, and at each
position, it compares its shape with the object’s pixels in the image. If the
structuring element fits within the object, the original pixel value is
retained; otherwise, it is set to zero, effectively eroding the boundary of
the object.

To summarize, erosion results in:

e Shrinks objects: Erosion nibbles away at the edges of foreground
objects (usually white pixels) in a binary image.

e Enlarges holes: As objects shrink, any holes within them conversely
become larger.

e Uses a structuring element: The effect of erosion depends on a small
binary shape called a structuring element (or kernel). This element

Image Processing

137

Applied Signal and Image
Processing

138

defines the neighborhood around a pixel that's considered during
erosion. Common structuring elements include squares, circles, and
diamonds.

The erosion ofa binary image Aby a structuring element B is defined
as:

A©B={z|(BzE A)}

where:

e A © B represents the erosion of image A by structuring element B.

e zrepresents a pixel location in the image.

e (BzC A) is a set operation that checks if the shifted version of B,
denoted by Bz, is completely contained within the original image A.

A pixel location (z) is considered part of the eroded image (A © B) only
if the structuring element B, when centered at that location (z), fits entirely
within the foreground region of the original image (A).

Applications of erosion:

e Noise reduction: Erosion can help remove small isolated pixels that
might be caused by noise in the image.

e Object separation: By selectively eroding objects, you can isolate
them from touching or overlapping objects.

e Shape analysis: Erosion can be used to analyze the shape of objects in
an image by measuring how much they shrink under erosion.

Example

Imagine a binary image where "1" represents the object and "0" represents
the background:

00000

01110

01110

01110

00000

Let's use a simple 3x3 square structuring element:

[W —y
— —
—

To create erosion, we slide the structural element over the image. If all of
the pixels under the structural element are "1", the center pixel remains
"1"; otherwise, it is "0".

Here is the outcome of erosion:
00000
00000
00000
00000
00000

In this simplified example, the objects in the binary image have shrunk, or
eroded, because we've eliminated pixels from their edges.

6.2 DILATION

Dilation, alongside erosion, is a fundamental operation in image
processing, particularly within the realm of mathematical morphology. In
contrast to erosion, which shrinks objects, dilation expands the boundaries
of objects in a binary image.

To summarize, dilation results in:

e Increases object size: Dilation adds pixels to the edges of foreground
objects (usually white pixels).

e Reduces holes: As objects grow, small holes within them tend to
disappear.

e Uses a structuring element: Similar to erosion, dilation relies on a
small binary shape called a structuring element (or kernel) to define
the neighborhood around a pixel. Common structuring elements
include squares, circles, and diamonds.

The dilation of a binary image A by a structuring element B is defined
as:

The dilation of a binary image (A) by a structuring element (B) is a
fundamental operation in image processing, particularly in the field of
mathematical morphology. It is defined as the set of all displacements (z)
such that (B) and (A) overlap by at least one element when (B) is
translated by (z). In simpler terms, it involves expanding the pixels of
image (A) according to the shape defined by (B).

A@B={z|(B)_.n4A+ @
Where

(B), represents the translation of (B) by the vector (z), and the
operation checks for an overlap between (A) and (B). If there is at least
one common element, the pixel in the resulting image at position (z) is
set to 1 (or the maximum value of the pixels in the neighborhood for
grayscale images).

Applications of dilation:

e Object thickening: Dilation can be used to thicken lines or strengthen
weak edges of objects.

e Bridging gaps: If objects are partially touching or have small gaps
between them, dilation can help connect them.

e Noise reduction: Dilation can be useful for filling in small holes
caused by image noise, although it might also enlarge existing objects
slightly.

Image Processing

139

Applied Signal and Image
Processing

140

Example

Consider a binary image where "1" represents the object and "0"
represents the background:

00000

01010

00000

Let's use a simple 3x3 square structuring element:

— p— —

To perform dilation, we slide this structuring element over the image. If
any part of the structuring element overlaps with a foreground pixel
(marked as "1") in the image, we set the center pixel of the structuring
element to "1".

Here's the result of dilation:

11111
11111
11111

In this simplified example, the objects in the binary image have been
expanded or thickened as we've added pixels to their boundaries using the
3x3 square structuring element.

Duality

Erosion and dilation are duals of each other with respect to set
complementationand reflection. This duality is a powerful concept that
helps in understanding and applying these operations effectively in image
processing and analysis.

The duality principle can be expressed as:
(A©B)=A"®F
(A@B)Y=A°0 B

These operations are used in various image processing tasks such as noise
reduction, shape analysis, and feature extraction

6.3 OPENING AND CLOSING

Opening and closing are image processing techniques built upon the
foundation of erosion and dilation. They are often used sequentially to
achieve specific image manipulations.

Opening:

e Function: Removes small objects in the foreground (usually white
pixels) while preserving larger ones.

Process: Performs erosion followed by dilation using the same
structuring element.

Analogy: Imagine opening a box with a small key. Small features
(dust particles) get removed during "erosion," while the desired object
(larger than the key) remains after "dilation."

Applications: Noise reduction, object separation (by selectively
removing small objects touching larger ones).

Opening is performed by applying erosion followed by dilation on an
image.

It's useful for removing small objects or noise from the foreground of
an image while preserving the larger structures.

The opening operation can be represented as AcB=(A©B)® B, where
A is the input image and B is the structuring element.

Opening is particularly effective in cases where objects of interest are
smaller than the structuring element and need to be removed.

Closing:

Function: Fills small holes in the foreground objects and connects
narrow breaks between them.

Process: Performs dilation followed by erosion using the same
structuring element.

Analogy: Imagine filling small cracks in a wall with putty (dilation)
and then smoothing the surface (erosion) to create a more uniform
look.

Applications: Improves object segmentation, reduces speckles in
images.

Closing is performed by applying dilation followed by erosion on an
image.

It's useful for closing small gaps or holes in the foreground of an
image while preserving the overall shape of objects.

The closing operation can be represented as A-B=(A@B)OB, where A
is the input image and B is the structuring element.

Closing is effective in cases where objects of interest are larger than
the structuring element and need to be filled or connected.

Differences:

Target: Opening targets small objects, while closing targets small
holes and gaps.

Image Processing

141

Applied Signal and Image
Processing

142

e Order: Opening is erosion followed by dilation, whereas closing is
dilation followed by erosion.

Combined Usage:

e Often used together for image pre-processing before further analysis.

e The choice of structuring element significantly impacts the outcome.

e By combining opening and closing, you can achieve more
sophisticated image manipulations.

Example

Imagine a 1D "image" with values representing foreground (1) and
background (0):

Original Image (A): [1,0,1,1,0,1,0, 1, 0]

Structuring Element (B): [1, 1] (assuming a small rectangular structuring
element)

Opening (Erosion followed by Dilation):

1. Erosion: Iterate over each element in A. If both elements in B (shifted
to that position) are not 1 (foreground), the element in A becomes 0
(background).

Eroded Image: [1, 0, 0, 1, 0, 1, 0, 1, 0] (Notice isolated foreground
elements are removed)

2. Dilation: Iterate over each element in the eroded image. If at least one
element in B (shifted to that position) is 1 (foreground), the element in the
eroded image becomes 1 (foreground).

Opened Image: [1, 0, 1, 1, 0, 1, 0, 1, 0] (Small foreground elements are
gone, larger ones remain)

Closing (Dilation followed by Erosion):

1. Dilation: Following the same principle as above.

Dilated Image: [1, 1, 1, 1, 1, 1, 1, 1, 0] (Small gaps are filled)
2. Erosion: Similar to the erosion step in opening.

Closed Image: [1, 1,1, 1,0, 1, 0, 1, 0] (Small protrusions are removed, but
gaps are filled)

This simplified example demonstrates how opening removes small
foreground elements (noise) and closing fills small gaps/holes. Remember,
in real images, these operations would be applied to a 2D array of pixels,
and the size and shape of the structuring element would significantly
impact the results.

Morphological opening and closing has the following properties:

1.

Idempotence:

Performing opening or closing on an image multiple times with the
same structuring element yields the same result as performing it once.

Mathematically, (AeB)oB=AoB and (A-B)-B=A'B.
Extensivity:

Morphological opening and closing are extensive operations, meaning
the resulting image always contains the input image.

Mathematically, ASAoB and ASA-B
Non-Increasing:

Morphological opening is non-increasing, meaning the size of objects
in the resulting image is never greater than the size of objects in the
input image.

Similarly, morphological closing is also non-increasing.
Commutativity with Inclusion:

Morphological opening and closing commute with inclusion, meaning
if one image is a subset of another, the same holds true for the opening
or closing of those images.

Mathematically, if ASC, then AcBSCoB and A-BSC-B
Associativity:

Opening and closing are associative operations, meaning the order of
applying these operations does not affect the final result.

Mathematically, (AeB)oC=Ao(B°C) and (A'B)-C=A-(B-C)

6.4 HIT-OR-MISS TRANSFORMATION

The Hit-or-Miss Transformation is a morphological operation used in
image processing to detect specific patterns within a binary image. It
operates by employing two structuring elements that are disjoint, meaning
they do not overlap. The transformation looks for places where the first
structuring element fits within the foreground of the image, while the
second structuring element fits within the background.

Mathematically, if (A) is the binary image and (B = (C, D)) is the
composite structuring element where (C) and (D) are disjoint, the Hit-
or-Miss Transformation of (A) by (B) is defined as:

A®B =(AGC)N (4 OD)

Image Processing

143

Applied Signal and Image
Processing

144

Here, (A @ C) represents the erosion of image (A) by structuring
element (C), and (A° @ D) represents the erosion of the complement of
image (A) by structuring element (D).

Applications:

e Shape Detection: It can identify specific shapes or objects in an image
based on their unique pixel configurations.

e Line End-Point Detection: By defining appropriate structuring
elements, you can locate the endpoints of lines in an image.

e Feature Extraction: It can be used to extract specific features from an
image that might be relevant for further analysis.

e Pattern Recognition: It can be a building block for more complex
pattern recognition algorithms in image processing tasks.

Example
Imagine a small 3x3 binary image (A):
A =[[0, 1, 0],[0, 1, 1],[0, O, O]]

find all locations with a vertical line segment (two foreground pixels
stacked on top of each other).

Structuring Elements:

e BI1 (Hit Element): A vertical line segment with two foreground
pixels (1s).

B1=[[1, 0],[1, 0]]

e B2 (Miss Element): A single foreground pixel (1) in the center,
representing a position that should not have a foreground pixel in
the original image for a hit.

B2 =[[0, 1, 0],[0, 1, 0]]
Process:

We'll iterate over each pixel in the image (A) and apply the following
logic at each position (i, j):

1. Shift B1 and B2 to the current location (i, j):

e Shifted B1: Overwrite the corresponding pixels in A starting from (i,
j) with the values from B1.

e Shifted B2: Overwrite the corresponding pixels in A starting from (i,
j) with the values from B2.

2. Check for hit conditions:

e Hit condition 1 (B1): All pixels overlapped by the shifted B1 in A
must be 1 (foreground).

¢ Hit condition 2 (B2): No pixels overlapped by the shifted B2 in A
should be 1 (foreground).

3. Output Image:

e If both hit conditions are satisfied (vertical line segment found), set
the corresponding pixel (i, j) in the output image to 1 (foreground).
e Otherwise, leave the output pixel (i, j) as 0 (background).

Iterating over the image (A):

e Top-left corner (0, 0): Shifted Bl doesn't fit (background pixel
above), so it's a miss. Output (0, 0) remains 0.

e Other locations can be analyzed similarly.
Output Image:

After checking all positions, the output image will have a 1 (foreground)
only at location (1, 1) because that's the only place where the vertical line
segment is found (two foreground pixels stacked). All other output pixels
will be 0 (background).

6.5 SKELETONIZING

Skeletonizing in image processing refers to the process of reducing a
shape to its basic form, which is its skeleton. This is done by successively
eroding the boundary of the shape until only the ‘skeleton’ remains. The
skeleton consists of a subset of the medial axis points of the shape and
represents the general form of the shape in a simplified manner.

In the context of binary images, skeletonizing is used to thin objects to
their minimal representation without changing the essential structure or
connectivity. This can be particularly useful for feature extraction, pattern
recognition, and image analysis tasks.

Mathematically, the skeleton (S) of a shape (A) in a binary image can
be defined as:

5= ﬁ[;ﬁlE}Bi]

Here, (A © B,) represents the erosion of the shape (A) by a structuring
element (B,), and the intersection of all such erosions gives the skeleton
of the shape. The structuring elements (B;) are chosen to preserve the

connectivity of the shape while reducing its boundary.

Image Processing

145

Processing
e Reduces object thickness: It iteratively removes pixels from the

boundaries of foreground objects (usually white pixels) until a one-
pixel-wide skeleton remains.

e Maintains connectivity: Unlike simple erosion, skeletonization aims
to preserve the connectedness of the object, ensuring it remains as a
single entity.

Applications:

e Object recognition: Skeletons can be used for object recognition
tasks as they represent the core structure of the object.

e Shape analysis: By analyzing the skeleton, you can measure
properties like the object's length, branching points, or overall form.

e Medical imaging: In medical image analysis, skeletonizing can be
used to extract the centerline of blood vessels or bone structures.

Example
Imagine a small 5x5 binary image (A) representing a simple shape:

A=[[0,1,1,1,0],
[0, I,

0

09 > >]5
0 |
0 |

3 3

S O OO

11,1
11,1

1,1, 1,0],
0,0, 0, 0]]

This represents a square with a thickness of 3 pixels.

Skeletonization Process (Simplified):

We'll assume a basic iterative approach where we remove pixels from the
object's boundaries that are "safe" to remove (won't break connectivity).
Iteration 1:

1. Identify pixels on the object's boundary (all foreground pixels touching
a background pixel).

2. Remove pixels that have exactly two foreground neighbors (these are
safe to remove as they won't disconnect the object).

Result after Iteration 1:

The image will look similar to the original, but some outermost layer
pixels might be removed, depending on the specific removal criteria.

Iterations 2 and beyond:
1. Repeat the process of identifying and removing safe boundary pixels.

2. Stop when no more safe pixels can be removed without compromising
the one-pixel width or connectivity of the object.

146

Final Skeleton: Image Processing
After several iterations, the resulting image might look like:

Skeleton =[0, 1, 0, 1, 0],

“

EXEENE
cor—~o
o~ o
co—~o
==A=N=!

This represents a one-pixel-wide skeleton that captures the essential shape
of the square.

6.6 COMPUTING THE CONVEX HULL

In image processing, computing the convex hull is a crucial step for
various applications such as shape analysis, pattern recognition, and object
detection. The convex hull in this context refers to the smallest convex
shape that can enclose all the points (or pixels) of the object of interest
within an image.

Here's the conventional method for computing the convex hull in image
processing.:

e Image Preprocessing: The image is preprocessed to detect edges or
points that define the shape of the object. This might involve
thresholding, filtering, and edge detection.

e Point Collection: The detected points or edge pixels are collected as a
set of coordinates that will be used to compute the convex hull.

e Convex Hull Algorithms: One of the convex hull algorithms is
applied to these points. Common algorithms used in image processing
include:

o Graham Scan: Efficient for larger datasets, it sorts the points and
constructs the hull using a stack of candidate verticesl.

o Jarvis’s March (Gift Wrapping): Suitable for smaller sets of
points, it wraps around the points by selecting the most
counterclockwise point relative to the current point2.

o QuickHull: Similar to QuickSort, it uses a divide and conquer
strategy to find the convex hull3.

e Convex Hull Representation: The resulting convex hull is often
represented as a polygon for 2D images or a polyhedron for 3D
images. This representation can be used for further analysis or
processing tasks.

Applications:

e Image Registration and Retrieval: Matching and searching images
based on shape.

e Image Classification: Categorizing images based on the convexity of

shapes.
147

Applied Signal and Image
Processing

148

Shape Detection and Extraction: Identifying and isolating specific
shapes within an image.

Convex Hull Algorithms

1.

Graham Scan:

Sorting Points: First, it sorts the points based on their polar angles
relative to a reference point. This sorting step ensures that the points
are ordered in a counterclockwise direction.

Constructing Hull: Starting from the point with the smallest polar
angle (the reference point), it iterates through the sorted points. For
each point, it checks whether the angle formed by the last two points in
the hull and the current point makes a left turn. If it does, the point is
added to the hull. If it makes a right turn, the last point is removed
from the hull until a left turn is achieved.

Efficiency: Graham Scan is efficient for larger datasets because its
time complexity is
O(nlogn), mainly dominated by the sorting step.

Jarvis’s March (Gift Wrapping):
Selection of Initial Point: It starts by selecting the leftmost point as
the initial point of the convex hull.

Selecting Next Point: Iteratively, it selects the point with the smallest
counterclockwise angle relative to the current point. This is done by
considering the cross product of vectors formed by the current point
and each candidate point.

Wrapping Around Points: The algorithm wraps around the points
until it reaches the initial point again, forming the convex hull.

Suitability: Jarvis’s March is suitable for smaller sets of points
because its time complexity is O(nl]), where [1h is the number of
points on the convex hull. For larger datasets, its time complexity can
be 0(n2), making it less efficient.

QuickHull:

Divide and Conquer: QuickHull follows a divide and conquer
strategy similar to QuickSort. It recursively divides the set of points
into subsets based on their relationship with a line connecting the two
outermost points (extreme points).

Finding Extreme Points: It first finds the extreme points (leftmost
and rightmost points) of the set.

Partitioning: It partitions the points into two subsets based on which
side of the line they lie. Points lying on the left side are included in the
left subset, and points lying on the right side are included in the right
subset.

Recursive Hull Construction: It recursively constructs the convex
hull for each subset until no further subdivision is possible.

e Merging: Finally, it merges the convex hulls of the two subsets to
form the convex hull of the entire set of points.

o Efficiency: QuickHull is efficient and has an average-case time
complexity of O(nlogn) and a worst-case time complexity of O(n2). It
is suitable for both small and large datasets.

Example

Consider an image:

Points: [(1, 2), (3, 5), (6, 4), (7, 2), (4, 1), (2, 1)]

Now, let's apply each of the convex hull algorithms mentioned:
Graham Scan:

It sorts the points based on their angles and constructs the convex hull.
Result: [(1, 2), (2, 1), (7, 2), (6,4), (3, 5)]

Jarvis’s March (Gift Wrapping):

It iteratively selects the next point with the smallest angle to enclose the
points.

Result: [(1, 2), (2, 1), (7, 2), (6, 4), (3, 5)]
QuickHull:
It divides the points into subsets and recursively finds the convex hull.

Result: [(1, 2), (2, 1), (7, 2), (6, 4), (3, 5)]

6.7 REMOVING SMALL OBJECTS

In image processing, morphology is a collection of techniques used to
analyze and manipulate the shapes of objects in an image. One common
morphological operation is removing small objects, which helps clean up
images by eliminating unwanted noise or insignificant details.

Here's how it works:

1. Binary Image : This technique typically works on binary images,
where each pixel is either black (foreground, representing the object)
or white (background).

2. Structuring Element : We use a small binary shape called a
structuring element to probe the image. It's like a tiny stamp that we
use to scan the image one pixel at a time. Common structuring
elements include squares, circles, or diamonds.

3. Erosion : The core operation for removing small objects is often
erosion. Imagine using sandpaper on the image (erosion) — it removes

Image Processing

149

Applied Signal and Image
Processing

150

pixels from the edges of objects. In this case, we erode the foreground
objects (black pixels) in the image.

4. Size Threshold : We define a size threshold for objects. Objects with
fewer pixels than the threshold after erosion are considered "small"
and unwanted.

5. Removing Small Objects : There are two main approaches to remove
small objects:

e Keeping only the eroded image: This approach discards the original
image and keeps only the eroded version, where small objects have
vanished.

e Object Comparison: We compare the original image with the eroded
image. Pixels that were black in the original image but became white
after erosion (because they belonged to small objects) are set to white
in the original image, effectively removing them.

This process helps eliminate small specks, noise, or isolated dots that
might not be relevant to the main objects in the image.

By understanding how removing small objects works in morphology, you
can improve the quality of your images and prepare them for further
analysis tasks in computer vision or image processing applications.

6.8 WHITE AND BLACK TOP- HATS

White top-hat and black top-hat are morphological operations used in
image processing for highlighting specific types of structures or features
within an image. Here's a brief overview of each:

e White Top-Hat:

The white top-hat operation is the difference between the original image
and its opening.

Opening is an erosion followed by a dilation operation. It removes bright
regions smaller than the structuring element.White top-hat highlights
small bright structures or details in the image that are smaller than the
structuring element used in the opening operation.It is useful for
enhancing features such as small objects, bright spots, or textures against a
relatively bright background.

e Black Top-Hat:

The black top-hat operation is the difference between the closing of the
original image and the original image itself.Closing is a dilation followed
by an erosion operation. It removes dark regions smaller than the
structuring element.Black top-hat highlights small dark structures or
details in the image that are smaller than the structuring element used in
the closing operation.It is useful for enhancing features such as small dark
objects, dark spots, or textures against a relatively dark background.

Both white top-hat and black top-hat operations are valuable tools in
image processing for extracting and enhancing subtle features that may be
difficult to discern in the original image. They are commonly used in tasks
such as image enhancement, feature extraction, and texture analysis.

The equations for the white top-hat and black top-hat operations can

be expressed as follows:
White Top-Hat:

WTH(A)=A—(A°B)
where:

A is the original image.

o represents the opening operation.

B is the structuring element.
Black Top-Hat:
BTH(A)=(A'B)-A
where:
A is the original image.
represents the closing operation.
B is the structuring element.

In these equations:

WTH(A) represents the white top-hat of image
BTH(A) represents the black top-hat of image
AoB denotes the opening of image A using structuring element B.

A-B denotes the closing of image A using structuring element B.

Example

Suppose we have the following binary image A, where "1" represents the

object and "0" represents the background:

O ==
O == =O
-l e =]

o O O o

0

We'll use a simple 3x3 square structuring element B:

Image Processing

151

Applied Signal and Image
Processing

152

B—

—_ =
— =
— =

Now, let's compute the white top-hat (WTH) and black top-hat (BTH) of
the given binary image.

Sure, let's compute the white top-hat (WTH) and black top-hat (BTH) of
the given binary image A.

Given the binary image A and the structuring element B:

000 00
01 1 10
A=10 1 1 1 0
01 1 10
000 0O

1
1

ait

We'll perform erosion and dilation operations to compute the white top-hat
and black top-hat. Let's start by computing erosion A©B and dilation
A@B.

—

e
=

Let's perform erosion and dilation on the given binary image A with the
structuring element B:

Erosion (A © B):Erosion removes pixels from the boundary of objects in
the image.

For each pixel, if all the pixels in the 3x3 neighborhood around it are 1
(object), the pixel remains 1; otherwise, it becomes 0.

Dilation (A @ B):Dilation adds pixels to the boundary of objects in the
image.

For each pixel, if at least one pixel in the 3x3 neighborhood around it is 1
(object), the pixel becomes 1; otherwise, it remains 0.

Let's apply erosion and dilation operations to the given binary image A:

00 0 0 0
01 1 1 0
A=|(0 1 1 1 0
01 110
00 0 00
11
B=1{1 11
1 1 1

Erosion (A © B):

The result after erosion will remove one layer of pixels from the boundary
of the objects in the image.

Ae B =

o O O OO
o oo oo
[e=R e Ben Bl an Bl an]
(== RN e B e e Bl e
je= e an Bl an Bl e}

Dilation (A @ B):

The result after dilation will add one layer of pixels to the boundary of the
objects in the image.

Ad B =

e e
= e e
e e
e e
e e

Now, let's compute the white top-hat and black top-hat using these results.

Given the results of erosion (A©B) and dilation (A@B), we can now
compute the white top-hat (WTH) and black top-hat (BTH) of the image
A.

White Top-Hat (WTH):

The white top-hat operation is obtained by subtracting the result of erosion
(A©GB) from the original image (A)

WTH(A)=A—(AOB)

Subtracting the erosion result from the original image:

000 0 0 0000 0 0000 0
01110 00000 01110
WTH(4)={0 1 1 1 0o/—-f0 0 0 0 0/=|f0 11 1 0
01 1 10 0000 0 01110
0000 0 0000 0 0000 0

The white top-hat (WTH) of the image
A

A is the same as the original image since erosion did not remove any
pixels.

Image Processing

153

Applied Signal and Image
Processing

154

Black Top-Hat (BTH):

The black top-hat operation is obtained by subtracting the original image
(A) from the result of dilation (A@B)

BTH(A)=(A@B)-A

Subtracting the original image from the dilation result:

1 1 1 1 1 0 0 0 0 0 1 1 1 11
1 1 1 1 1 0 1 1 1 0 1 0 0 0 1
BTHA)=(1 1 1 1 1|—-]0 1 1 1 O|=(1 0 0 0 1
1 1 1 11 01 1 1 0 1 0 0 0 1
1 1 1 11 0 0 0 0 0 1 1 1 11

The black top-hat (BTH) of the image A highlights the boundary of the
object, which was added by the dilation operation.

6.9 EXTRACTING THE BOUNDARY

Extracting the boundary of objects in an image using morphology involves
using morphological operations to highlight the edges or contours of
objects. Here's a general approach to extracting the boundary:

Erosion : Perform erosion on the binary image using a structuring
element.Erosion shrinks the objects in the image, effectively removing
the object's boundary pixels.

Difference : Compute the difference between the original binary
image and the eroded image.This operation effectively isolates the
boundary pixels of the objects, as they are the pixels that were
removed by erosion.

Output : The resulting binary image will contain only the boundary
pixels of the objects, highlighting their contours or edges.This
approach effectively extracts the boundary of objects in the image,
allowing for further analysis or processing focused on object edges or
contours.

The boundary is expressed as:

Boundary(A)=A—(A©B)

Where:

Arepresents the original binary image.
Brepresents the structuring element used for erosion.

Boundary(A)represents the resulting binary image containing only the
boundary pixels of the objects.

Example Image Processing

Consider binary image A, where "1" represents the object and "0"
represents the background:

0

I

|
o o O oo
= e =
O = = =O
o o o o o

O = e

Let's use a simple 3x3 square structuring element B for erosion:

B—

— =
— =
— ==

Now, let's compute the boundary of objects in this image A using
morphology.

To extract the boundary of objects in the binary image A, we'll follow
these steps:

1. Erosion (A©B):

e Perform erosion on the original binary image Ausing the structuring
element B.

2. Difference:

o Compute the difference between the original image Aand the eroded
image AOB

Let's apply these steps to our example:
1. Erosion (A©B):

o Erosion removes pixels from the boundary of objects in the image. For
each pixel, if all the pixels in the 3x3 neighbourhood around it are 1
(object), the pixel remains 1; otherwise, it becomes 0.

Ae B =

el an i en Bl an i e
oo o o o
oo oo
oo o oo
el an i an B e Y e

2. Difference:

o Compute the difference between the original image A and the eroded
image A©B to obtain the boundary.

Boundary(A)=A—(A©B)
155

Applied Signal and Image
Processing

156

0O 0 0 0 0 0O 0 0 0 O 00 0 0 O
0 1. 1 1 0 0O 00 0 O 01 1 1 0
=0 1.1 1 0]—-|0 0 0 0O Of=10 1 1 1 0
0 1.1 10 0 0 0 0 O 01 1 1 0
00 0 0 0 0O 0 0 0 0 00 0 0 O

6.10 GRAYSCALE OPERATIONS

Grayscale morphology operations are used for processing grayscale
images, where each pixel represents a shade of gray. These operations
involve applying morphological operations to grayscale images to achieve
various tasks such as smoothing, edge detection, and feature extraction.
Here are some common grayscale morphology operations:

e Erosion:

In grayscale erosion, the minimum pixel value within the neighborhood
defined by the structuring element is assigned to the center pixel.Erosion
reduces the intensity of bright regions and is useful for removing small
bright spots or thinning object boundaries.

e Dilation:

In grayscale dilation, the maximum pixel value within the neighborhood
defined by the structuring element is assigned to the center pixel.Dilation
increases the intensity of bright regions and is useful for filling gaps or
thickening object boundaries.

e Opening:

Opening is the combination of erosion followed by dilation.It helps in
removing small bright regions while preserving the larger structures and is
useful for smoothing or filtering images.

e C(Closing:

Closing is the combination of dilation followed by erosion.It helps in
filling small dark gaps or holes while preserving the larger structures and
is useful for image restoration or enhancing object boundaries.

e Gradient:

The gradient of a grayscale image is computed as the difference between
dilation and erosion.It highlights the boundaries or edges of objects in the
image and is useful for edge detection or feature extraction.

e Top-Hat Transform:

The top-hat transform is the difference between the original image and its
opening.It extracts small-scale features or details from the image and is
useful for image enhancement or background subtraction.

These grayscale morphology operations are fundamental tools in image
processing for analyzing and manipulating grayscale images to extract
meaningful information or enhance image quality.

Some common grayscale morphology operations:

1. Grayscale Erosion: (AQB)(x,y)=min jep {A(x+i,y+j)}
2. Grayscale Dilation: (A® B)(x,y)=max jep {A(x—i,y—j)}
3. Grayscale Opening: AcB=(A©B)®B

4. Grayscale Closing: A-B=(A®B)OB

5. Grayscale Gradient:Gradient(A)=(A@B)—(A©B)

In these formulas:

o A represents the grayscale image.

e B represents the structuring element.

e (AOB)(x,y)denotes the erosion of image A at pixel (x,y).
e (A®B)(x,y)denotes the dilation of image A at pixel (x,y).
e AoB represents the grayscale opening of image A.

e A-B represents the grayscale closing of image A.

e (Gradient(A) represents the gradient of image A.

6.11 SUMMARY

Morphological operations are fundamental techniques in image
processing, each serving distinct purposes. Erosion and dilation are basic
operations for shrinking and expanding object boundaries, while opening
and closing are compound operations used for noise reduction and gap
filling, respectively. Hit-or-Miss transformation facilitates pattern
matching, and skeletonizing reduces object thickness to topological
skeletons. Computing the convex hull encloses objects within the smallest
convex shape, while removing small objects enhances segmentation
results. White and black top-hats highlight specific features, boundary
extraction isolates object contours, and grayscale operations are essential
for processing grayscale images. These operations find extensive
application in various fields like image analysis, pattern recognition, and
feature extraction, offering a powerful toolkit for image enhancement and
understanding.

6.12 REFERENCE FOR FURTHER READING

e Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing
(3rd ed.). Prentice Hall.

e Serra, J. (1982). Image Analysis and Mathematical Morphology.
Academic Press.

Image Processing

157

Applied Signal and Image
Processing

158

Soille, P. (2003). Morphological Image Analysis: Principles and
Applications. Springer.

Haralick, R. M., & Shapiro, L. G. (1992). Computer and Robot Vision:
Volume I. Addison-Wesley.

Dougherty, G. (2003). Digital Image Processing for Medical
Applications. Cambridge University Press.

Web references

OpenCV Documentation: https://docs.opencv.org/
Scikit-image Documentation: https://scikit-image.org/docs/stable/

MATLAB Documentation - Image Processing Toolbox:
https://www.mathworks.com/help/images/index.html

o O O 0
0.0 0.0 0.0 0.0

7

ADVANCED IMAGE PROCESSING
OPERATIONS

Unit Structure :

7.0 Objectives

7.1 Introduction

7.2 Extracting Image Features and Descriptors: Feature detector versus
descriptors

7.3 Boundary Processing and feature descriptor

7.4 Principal Components
7.4.1 Introduction to Principal Component Analysis (PCA):
7.4.2 Key Concepts
7.4.3 PCA Example
7.4.4 What Are Principal Components?
7.4.5 How Principal Component Analysis (PCA) work?
7.4.6 Applications of PCA

7.5 Harris Corner Detector

7.6 Blob detector

7.7 Histogram of Oriented Gradients

7.8 Scale-invariant feature transforms

7.9 Haar-like features

7.10 Summary

7.11 List of References

7.12 Unit End Exercises

7.0 OBJECTIVES

To get familiar with various advance image processing operations
To study the analogy between feature detector and descriptors

To gain detail insights about the principal components along with
different detectors associated with image processing techniques

159

Applied Signal and Image
Processing

160

7.1 INTRODUCTION

In the vast realm of computer vision, unlocking the intricacies of visual
data is paramount for machines to perceive and comprehend the world
around them. Central to this endeavor is the extraction and description of
image features, a fundamental process that underpins numerous
applications ranging from object recognition to image matching and
beyond. This chapter delves into the intricacies of this critical domain,
exploring various techniques and methodologies employed in the
extraction and characterization of image features.

From fundamental concepts to advanced techniques, each section sheds
light on a specific aspect of this multifaceted domain, offering insights and
practical knowledge to readers keen on mastering the art of image
analysis. Additionally, this chapter also explores the role of feature
descriptors in capturing the salient characteristics of image boundaries,
paving the way for robust and efficient feature representation.

This chapter elucidates the principles of PCA and its applications in
extracting informative features from high-dimensional data. Through
insightful discussions and illustrative examples, readers gain a deeper
understanding of how PCA facilitates the extraction of essential visual
features while mitigating the curse of dimensionality.

7.2 EXTRACTING IMAGE FEATURES AND
DESCRIPTORS: FEATURE DETECTOR
VERSUS DESCRIPTORS

Feature detectors and descriptors are essential components in computer
vision and image processing tasks, particularly in tasks like object
recognition, image matching, and tracking. While they are closely related,
they serve different purposes in analyzing and understanding images.

1. Feature Detectors:

e Feature detectors are algorithms designed to identify distinctive points
or regions in an image that are salient or informative. These points are
often referred to as keypoints or interest points.

e They locate areas with unique characteristics such as corners, edges, or
blobs that are likely to be recognizable across different views of an
object or scene.

e Common feature detectors include Harris corner detector, FAST
(Features from Accelerated Segment Test), and SIFT (Scale-Invariant
Feature Transform).

2. Descriptors:

Descriptors are complementary to feature detectors. Once keypoints
are detected, descriptors are used to describe the local appearance of

these keypoints in a way that is invariant to changes in illumination,
viewpoint, and scale.

e Descriptors encode information about the local image region
surrounding a keypoint into a compact numerical vector.

e The purpose of descriptors is to enable matching of keypoints across
different images or frames, facilitating tasks like object recognition,
image alignment, and 3D reconstruction.

e Popular descriptors include SIFT descriptors, SURF (Speeded-Up
Robust Features), and ORB (Oriented FAST and Rotated BRIEF).

In summary, feature detectors identify distinctive points or regions in
images, while descriptors encode information about these keypoints for
further processing such as matching and recognition. Together, they form
the backbone of many computer vision applications, allowing machines to
understand and interpret visual data.

7.3 BOUNDARY PROCESSING AND FEATURE
DESCRIPTOR

Boundary processing and feature descriptors play crucial roles in
extracting meaningful information from images, enabling machines to
interpret and understand visual data. Let's dive into each of these topics:

Boundary Processing:

In the realm of image processing, boundaries delineate the transitions
between different regions within an image. Detecting and analyzing these
boundaries are fundamental tasks as they often correspond to important
structures or objects of interest. Boundary processing involves techniques
aimed at enhancing, detecting, and representing these boundary regions.

e Enhancement : Boundary enhancement techniques aim to accentuate
the edges or transitions between different regions within an image.
Common methods include gradient-based approaches, such as the
Sobel or Prewitt operators, which compute the gradient magnitude to
highlight regions of rapid intensity change.

e Detection : Boundary detection algorithms identify and localize the
boundaries within an image. Popular techniques include the Canny
edge detector, which utilizes gradient information and non-maximum
suppression to accurately locate edges while minimizing noise and
spurious detections.

e Representation : Once boundaries are detected, they need to be
represented in a suitable format for further processing. This may
involve encoding boundary points into a chain code, polygonal
approximation, or parametric representation such as line segments or
curves.

Feature Descriptors:

Feature descriptors provide compact representations of local image
regions around keypoints or interest points. These descriptors encode

Advanced Image
Processing Operations

161

Applied Signal and Image
Processing

162

distinctive characteristics of these regions, enabling robust matching and
recognition across different images. Feature descriptors should possess
several key properties:

Distinctiveness : Descriptors should capture unique information about
the local image region to facilitate reliable matching between
keypoints.

Robustness : Descriptors should be invariant or resilient to common
image transformations such as changes in viewpoint, illumination, and
scale. This ensures that the descriptors remain effective under varying
conditions.

Compactness : Descriptors should be compact, meaning they should
encode relevant information concisely while minimizing
computational overhead.

Efficiency : Descriptors should be computationally efficient to allow
for real-time processing in applications such as video analysis or
robotics.

Some popular feature descriptors include:

SIFT (Scale-Invariant Feature Transform) : SIFT descriptors
capture information about gradient orientations in local image patches,
providing robustness to scale and rotation changes.

SURF (Speeded-Up Robust Features) : SURF descriptors utilize
Haar wavelets to efficiently compute feature descriptors, offering
scalability and robustness to image transformations.

ORB (Oriented FAST and Rotated BRIEF) : ORB descriptors
combine the FAST keypoint detector with the BRIEF descriptor,
providing a fast and efficient solution for feature extraction and
matching.

Here's a table summarizing the key differences:

Table 1: Key differences between Boundary Processing and Feature

Descriptor

Aspect Boundary Processing Feature Descriptor

Focus Edges and contours Specific, localized regions

Process Edge detection, Extracting mathematical
boundary tracing representation (gradients,

histograms, etc.)

Applications | Object segmentation, Object recognition, image
shape analysis, object retrieval, image
recognition registration

Relationship | Can provide starting Not limited to boundaries
points for feature
descriptors

In summary, boundary processing and feature descriptors are essential
components in image analysis and computer vision tasks. Boundary

processing facilitates the detection and representation of image
boundaries, while feature descriptors encode distinctive information about
local image regions, enabling robust image matching and recognition.
Together, these techniques form the foundation for various applications in
fields such as object recognition, image registration, and scene
understanding.

7.4 PRINCIPAL COMPONENTS

Principal Component Analysis (PCA) is a powerful statistical technique
used for dimensionality reduction and data visualization. It's particularly
useful in fields like computer vision for feature extraction and data
compression. PCA is a dimensionality reduction technique that simplifies
data by reducing the number of features while retaining most of the
information. It does this by identifying the underlying patterns in the data
and creating new features, called principal components, that capture the
most significant variations in the data.These new features are uncorrelated,
meaning they don't contain redundant information. This makes them easier
to analyze and interpret, especially for machine learning algorithms.

Here's a simple analogy: imagine you have a dataset of customer data,
including features like age, income, and spending habits. These features
might be correlated, meaning that customers with higher incomes tend to
spend more. PCA can identify this underlying pattern and create a new
feature, "purchasing power," that combines age and income into a single
variable. This new feature would capture the most significant variation in
spending habits, making it easier to analyze customer behavior.

7.4.1 Introduction to Principal Component Analysis (PCA):

Principal Component Analysis (PCA) is a mathematical technique used to
reduce the dimensionality of data while preserving its essential structure.
It accomplishes this by transforming the original data into a new
coordinate system, where the axes (principal components) are orthogonal
and ordered by the amount of variance they explain. This transformation
enables the most significant variations in the data to be captured by a
smaller number of components, facilitating easier visualization, analysis,
and interpretation of high-dimensional datasets.

7.4.2 Key Concepts:

1. Principal Components : Principal components are the new orthogonal
axes obtained after the transformation. These components are ordered by
the amount of variance they explain in the original data. The first principal
component captures the most significant variance, followed by subsequent
components in decreasing order of importance.

2. Dimensionality Reduction : PCA reduces the dimensionality of data
by projecting it onto a lower-dimensional subspace defined by the
principal components. This reduction simplifies the data while retaining as
much of the original variability as possible.

Advanced Image
Processing Operations

163

Applied Signal and Image
Processing

164

3. Variance Maximization : PCA seeks to maximize the variance of the
data along each principal component. By capturing the directions of
maximum variance, PCA ensures that the transformed data retains as
much information as possible from the original dataset.

4. Eigenvalues and Eigenvectors : PCA is based on the eigende
composition of the covariance matrix of the original data. The eigenvalues
represent the amount of variance explained by each principal component,
while the eigenvectors represent the directions (or axes) of maximum
variance.

5. Projection : After determining the principal components, PCA projects
the original data onto these components to obtain the transformed dataset.
This projection preserves the most significant information in the data
while reducing its dimensionality.

7.4.3 PCA Example

Let’s say we have a data set of dimension300 (n)x 50
(p). n represents the number of observations, and p represents the
number of predictors. Since we have a large p = 50, there can be p(p-
1)/2 scatter plots, i.e., more than 1000 plots possible to analyze the
variable relationship. Wouldn’t it be a tedious job to perform
exploratory analysis on this data?

In this case, it would be a lucid approach to select a subset of p (p <<
50) predictor which captures so much information, followed by
plotting the observation in the resultant low-dimensional space.

The image below shows the transformation of high-dimensional data
(3 dimension) to low-dimensional data (2 dimension) using PCA. Not
to forget, each resultant dimension is a linear combination
of p features.

original data space

PCA component space
. | |

1 £

o o | o

© 3] T ; afg*
[T o il |
o L]
o eige

Gene 2 Gene 1

Figure 1: Transformation of high-dimensional data (3D) to low-
dimensional data (2D)

7.4.4 What Are Principal Components?

A principal component (PCA) is a normalized linear combination of
the original features in a data set. In the image above, PC1 and PC2 are
the principal components. Let’s say we have a set of predictors
as X', X2...,XP

The principal component can be written as:
Z'=0"X! + @X2 + O3X3 + ... +OPIXP
where,

e Z!is the first principal component

e @' is the loading vector comprising loadings (®!, ®2..) of the first
principal component. The loadings are constrained to a sum of
squares equals to 1. This is because a large magnitude of loadings
may lead to a large variance. It also defines the direction of the
principal component (Z'), along which data varies the most. It
results in a line in p dimensional space, which is closest to
the n observations. Closeness is measured using average squared
euclidean distance.

e X'..XP are normalized predictors. Normalized predictors have mean
values equal to zero and standard deviations equal to one.

First Principal Component:

The first principal component is a linear combination of original
predictor variables that captures the data set’s maximum variance. It
determines the direction of highest variability in the data. Larger the
variability captured in the first component, larger the information
captured by component. No other component can have variability
higher than first principal component.

The first principal component results in a line that is closest to the
data, i.e., it minimizes the sum of squared distance between a data
point and the line.

Similarly, we can compute the second principal component also.
Second Principal Component (Z?):

The second principal component is also a linear combination of
original predictors, which captures the remaining variance in the data
set and is uncorrelated with Z!. In other words, the correlation between
first and second components should be zero. It can be represented as:

72 = O2X' + 02X + O2X + ... + OPXP

If the two components are uncorrelated, their directions should be
orthogonal (image below). This image is based on simulated data with
2 predictors. Notice the direction of the components; as expected, they
are orthogonal. This suggests the correlation b/w these components are
Zero.

Advanced Image
Processing Operations

165

Applied Signal and Image
Processing

166

Second principal component

First principal component

Figure 2: Two PCA components possessing orthogonality

All succeeding principal component follows a similar concept, i.e.,
they capture the remaining variation without being correlated with the
previous component. In general, for n X p dimensional data, min(n-1,
p) principal component can be constructed.

The directions of these components are identified unsupervised; i.e.,
the response variable(Y) is not used to determine the component
direction. Therefore, it is an unsupervised approach.

7.4.5 How Principal Component Analysis (PCA) work?
1. Standardize the Data:

If the features of your dataset are on different scales, it’s essential
to standardize them (subtract the mean and divide by the standard
deviation).

2. Compute the Covariance Matrix:

Calculate the covariance matrix for the standardized dataset.

w

. Compute Eigenvectors and Eigenvalues:

e Find the eigenvectors and eigenvalues of the covariance matrix.
The eigenvectors represent the directions of maximum variance,
and the corresponding eigenvalues indicate the magnitude of
variance along those directions.

4. Sort Eigenvectors by Eigenvalues:

Sort the eigenvectors based on their corresponding eigenvalues in
descending order.

5. Choose Principal Components:

e Select the top k eigenvectors (principal components) where k is the
desired dimensionality of the reduced dataset.

6. Transform the Data:

e Multiply the original standardized data by the selected principal
components to obtain the new, lower-dimensional representation of
the data.

7.4.6 Applications of PCA

1. Dimensionality Reduction : PCA is widely used to reduce the
dimensionality of high-dimensional datasets, making them more
manageable for analysis and visualization without losing critical
information.

2. Feature Extraction : In computer vision and pattern recognition, PCA
can be used to extract relevant features from image datasets, allowing
for more efficient and effective image analysis tasks such as object
recognition and classification.

3. Data Compression : PCA can be employed for data compression by
representing the original data using a smaller number of principal
components. This compression reduces storage requirements and
speeds up computational processes while preserving the essential
structure of the data.

4. Noise Reduction : PCA can help remove noise or irrelevant variability
from datasets by focusing on the principal components that capture the
most significant sources of variation, thus enhancing the signal-to-
noise ratio.

In summary, Principal Component Analysis (PCA) is a versatile technique
with applications across various domains, including computer vision, data
analysis, and machine learning. By transforming high-dimensional data
into a lower-dimensional space while preserving essential information,
PCA enables more efficient analysis, visualization, and interpretation of
complex datasets.

7.5 HARRIS CORNER DETECTOR

The Harris Corner Detector is a popular method in computer vision used
for detecting corners in an image. It was introduced by Chris Harris and
Mike Stephens in 1988. The basic idea behind the Harris Corner Detector
is to identify points in an image where there are significant variations in
intensity in all directions. These points are typically found at corners,
junctions, and edges.

Advanced Image
Processing Operations

167

Applied Signal and Image
Processing

168

Here's a brief overview of how it works:

1. Gradient Calculation : The first step involves computing the gradient
of the image. This is typically done using a gradient operator like the
Sobel operator.

2. Structure Tensor : For each pixel in the image, a structure tensor is
calculated. The structure tensor represents the local image structure
around the pixel. It is essentially a covariance matrix of the image
gradients within a local neighborhood of the pixel.

3. Corner Response Function : The corner response function is
computed using the eigenvalues of the structure tensor. This function
measures the likelihood of a point being a corner. High values of the
corner response function indicate strong corners.

4. Thresholding and Non-maximum Suppression : After computing
the corner response function, a threshold is applied to identify strong
corners. Additionally, non-maximum suppression is often performed
to select only the local maxima as corner points.

We will now discuss about a corner detection method. Fig. 2 depicts the
concept of the Harris-Stephens (HS) corner detector. The fundamental
strategy is as follows: To find the corners of an image, drag a tiny window
over it. It is intended for the detector window to compute variations in
intensity. There are three situations which fascinate us: The conditions that
occur when the window spans a boundary between two regions, as in
location B, are (1) areas of zero (or small) intensity changes in all
directions; (2) areas of changes in one direction but no (or small) changes
in the orthogonal direction; and (3) areas of significant changes in all
directions. Location C is an example of an area that contains a corner or
isolated points. A mathematical model that aims to distinguish between
these three conditions is called the HS corner detector.

-
-
N\
Riiad
-
i

-~

i

Region 2 |
A
A

S —Boundary E $3l: c

Region 1 \

1HE

Figure 2: Working of Harris-Stephens corner detector

An image is represented by f, and a patch of the image defined by the
values of (s,t) is represented by f (s,t). f (s+x, t+y) gives the patch of the

same size that has been shifted by (x, y). Next, the two patches' weighted
total of squared differences is obtained as follows:

Cx,y)= Y Y w(s,O)[f(s+x.t+y) = f(s.0]

where w(s,t) = weighting function

One can approximate the shifted patch using the linear terms in a Taylor
expansion as given below

fls+xt+y)= f(s,0) + xf(s.1) + yfy(s:1)

where f (s,1) = df /ox and f, (s, 1) = df /dy, both evaluated at (s,t).

We can rewrite the equation as

2
Cx.y) =3 D w(s.O[xf(s.t) + yf,(s.0)]
This equation can written in matrix form as
X
Clxy) == y]M[}
y

where

M= 2210(5,!)A

Az[.ff ff]
L

The Harris matrix is an alternative designation for Matrix M. It is
acknowledged that the terms are assessed at (s,t). M is symmetric if and
only if A is symmetric if w(s, t) is isotropic. The weighting function w(s,
t) utilized in the HS detector often has one of two forms: either it is an
exponential function of the form or it is 1 inside the patch and 0 outside
(i.e., it resembles a box lowpass filter kernel).

and

~(s%+ 2)/247

w(s,t)=e

The regions A, B, and C in Fig. 2 are represented by the little imagine
patches in Figs. 3(a) through (c).In Fig. 3 (d), we show values of (f,.f;)
computed using the derivative kernels wy, = —[101] and wy = wyT. . Figure
(e) shows the derivatives of the patch containing the edge. Here, the
spread is greater along the x-axis, and about nearly the same as Fig. a in

Advanced Image
Processing Operations

169

Applied Signal and Image

Processing

170

the y-axis. The derivatives of the patch enclosing the corner are displayed
in Fig. (f). In this case, the data is dispersed in both directions, producing
two huge eigenvalues and a significantly bigger fitting ellipse that is
almost circular.

Flat 1 Straight

1 Corner 1
Edge gt

A, :small A:large A, large
A,z small 1. A,z small ELY A,: large EIt

abe
dielf

Figure 3

Because a square matrix's determinant equals the product of its
eigenvalues and its trace equals the sum of its eigenvalues, the HS detector
uses a measure of corner response. The definition of the measure is

R=AA, — k(A +A,)
= det(M) — ktrace’(M)

where the constant is k. When both eigenvalues are large, Measure R
indicates the presence of a corner; when one eigenvalue is large and the
other small, it indicates the presence of an edge; and when both
eigenvalues are small, Measure R's absolute value is small, indicating that
the image patch under consideration is flat.

The Harris Corner Detector has been widely used in various applications
such as feature detection, image alignment, object recognition, and
tracking. However, it's worth noting that it has some limitations, such as
sensitivity to noise and variations in lighting conditions. As a result, it's
often used in combination with other techniques for more robust feature
detection.

7.6 BLOB DETECTOR

A blob detector is a computer vision algorithm used to detect regions in an
image that have similar intensity or color. Unlike corner detectors, which
focus on detecting sharp changes in intensity, blob detectors are designed
to identify regions that are uniform and stand out from their surroundings.

What is a Blob?

A region of interest or a connected component in an image or video that
shares some common properties, such color, texture, intensity, or form, is
referred to as a blob.

A portion of an image that appears to differ in intensity or color from its
surroundings is referred to as a "blob" in image processing. Blobs can
represent a wide range of properties, including edges, corners, and objects.
They can also appear in different sizes and shapes.
Numerous characteristics, including area, perimeter, centroid, bounding
box, orientation, circularity, convexity, and eccentricity, can be assigned
to blobs. The blobs can be distinguished from other visual components and
described and characterized using these attributes.

What is Blob detection?

The technique of locating and detecting blobs in an image is called blob
detection. Finding areas of an image that differ noticeably from their
surrounds and indicate a major feature or object is the aim of blob
detection.The Difference of Gaussian (DoG) approach, Laplacian of
Gaussian (LoG) filtering, and thresholding are some of the methods
available for blob detection. In order to find areas of a picture that have
high contrast or intensity in relation to their surrounds, these techniques
convolve the image using different filters. Blobs can be utilized for a
variety of activities, including item identification, tracking, and
recognition, once they have been identified.Blobs, for instance, can be
used to represent particular characteristics of an object, such edges or
corners, in object recognition. These features can then be compared with
features in other photos to identify the object.

Numerous uses for OpenCV's blob detection can be found in image
processing, robotics, and computer vision. Object recognition, gesture
recognition, facial recognition, tracking moving objects, region of interest
identification, anomaly or event detection are a few examples. Among
other domains, blob detection finds application in satellite imaging,
surveillance systems, and biomedical imaging.

Necessity of Blob Detection

In OpenCV, blob detection is required for a number of reasons, including:

e Blob detection is a technique that aids in the identification of items
inside an image. We can distinguish objects from the background and
ascertain their size, shape, and location within the image by identifying
and localizing blobs.

o Feature Extraction : To extract features from an image, use blob
detection. items can be categorized or matched to items in other photos
using these attributes.

e Tracking : Blob detection facilitates tracking an object's motion over
time. The ability to track and identify blobs allows us to ascertain an

Advanced Image
Processing Operations

171

Applied Signal and Image
Processing

172

object's direction and speed, which is helpful for robotics and
autonomous driving applications.

Segmentation : An image can be divided into distinct areas according
to their texture or color using blob detection. Finding areas of interest
in an image and isolating them from the backdrop are two benefits of
segmentation.

7.7 HISTOGRAM OF ORIENTED GRADIENTS

Histogram of Oriented Gradients (HOG) is a feature descriptor used in
computer vision and image processing for object detection and
recognition. It's particularly popular in tasks like pedestrian detection, face
detection, and gesture recognition.

Here's a simplified explanation of how HOG works:

1.

Gradient Calculation : HOG works by first calculating the gradient
(intensity gradient) of pixel values in the image. Typically, this is done
by applying Sobel filters in both the horizontal and vertical directions
to compute the gradient magnitude and direction.

Gradient Orientation Binning : The image is divided into small
connected regions called cells. For each pixel in each cell, the gradient
orientation is calculated, usually quantized into discrete bins. This step
essentially quantizes the gradient direction into a finite set of possible
orientations.

Histogram Formation : For each cell, a histogram of gradient
orientations is constructed. Each pixel contributes to the histogram of
the cell based on the orientation of its gradient. Usually, the histogram
bins correspond to a range of gradient orientations.

Block Normalization : To enhance the invariance to changes in
illumination and contrast, neighboring cells are grouped into larger
blocks. Normalization is applied to the histograms within each block.
This normalization can be L1-norm, L2-norm, or block normalization
techniques like Block-wise Contrast Normalization (BCN) or Mutual
Orientation Histograms (MOH).

Descriptor Formation : Finally, the normalized histograms from all
the blocks are concatenated to form the final feature vector, which
represents the image. This feature vector is then used for various tasks
such as classification or object detection.

HOG's popularity stems from its:

Simplicity: The underlying calculations are efficient and easy to
implement.

Effectiveness: It effectively captures local object shapes through
gradients, making it useful for various detection tasks.

However, it's important to consider HOG's limitations:

o Complexity: While good for basic shapes, HOG might struggle with
objects undergoing significant pose variations or complex
appearances.

HOG has been widely used due to its simplicity and effectiveness,
especially when combined with machine learning algorithms like Support
Vector Machines (SVMs) or neural networks. However, it's worth noting
that HOG alone might not be robust to complex variations in appearance
and pose, so it's often used as part of a larger pipeline in modern computer
vision systems.

7.8 SCALE-INVARIANT FEATURE TRANSFORMS

The Scale-Invariant Feature Transform (SIFT) is a widely used algorithm
in computer vision for detecting and describing local features in images.
Developed by David Lowe in 1999, SIFT is renowned for its robustness to
changes in scale, rotation, illumination, and viewpoint, making it suitable
for various tasks such as object recognition, image stitching, and 3D
reconstruction.

Here's a detailed explanation of how SIFT works:
1. Scale-space Extrema Detection:

e SIFT operates on multiple scales of an image to detect features that are
invariant to scale changes. This is achieved by constructing a scale-
space representation of the image, which involves creating a series of
blurred and downsampled versions of the original image.

e Gaussian kernels with different standard deviations (representing
different scales) are convolved with the image to create a scale-space
pyramid.

e At each scale level of the pyramid, potential keypoints are detected by
finding local extrema in the scale-space images. These extrema
represent regions of high contrast compared to their surrounding
neighborhoods across multiple scales.

2. Keypoint Localization:

e Once potential keypoints are identified, SIFT performs precise
localization to accurately determine their positions. This involves
fitting a 3D quadratic function to the intensity values in the vicinity of
each keypoint candidate.

e The localization process ensures that keypoints are accurately located
at sub-pixel precision and eliminates unstable keypoints that are poorly
localized.

Advanced Image
Processing Operations

173

Applied Signal and Image
Processing

174

. Orientation Assignment:

To achieve rotation invariance, each keypoint is assigned a dominant
orientation based on local image gradient directions.

A gradient orientation histogram is computed in a region around the
keypoint, with orientations binned into discrete bins (e.g., 36 bins
covering a full circle).

The peak(s) in the histogram correspond to the dominant orientation(s)
of the local image gradients, and the keypoint is assigned one or more
dominant orientations based on these peaks.

4. Descriptor Generation:

5

For each keypoint, a descriptor is generated to capture its local
appearance information.

A window around the keypoint is subdivided into smaller regions or
bins.

Within each bin, gradient orientations and magnitudes are computed,
and histogram bins are populated based on these values.

The resulting histograms across all bins are concatenated to form the
keypoint descriptor, which encodes information about the local image
gradients in the keypoint's neighborhood.

The descriptor is designed to be highly distinctive and invariant to
changes in illumination, viewpoint, and partial occlusion.

. Keypoint Matching:

Once descriptors are computed for keypoints in multiple images,
keypoint matching is performed to establish correspondences between
keypoints in different images.

Typically, a nearest neighbor approach is used, where descriptors from
one image are matched to the closest descriptors in another image
based on a distance metric (e.g., Euclidean distance or cosine
similarity).

Additionally, techniques like ratio test or thresholding are often
employed to filter out ambiguous matches and improve robustness.

SIFT has been widely used in various computer vision applications for
more than two decades due to its reliability and effectiveness. While it can
be computationally intensive, especially when dealing with large-scale
datasets, SIFT remains a fundamental tool in the field of computer vision.

Strengths of SIFT:

Scale and Rotation Invariance: SIFT's key advantage is its ability to
find and match features regardless of image scale or rotation.

e Robustness: It's relatively robust to illumination changes and some
geometric distortions.

Limitations of SIFT:

o Computational Cost: Compared to HOG, SIFT is computationally
more expensive due to the scale-space representation and descriptor
generation.

e Sensitivity to Complex Deformations: While robust to some
distortions, SIFT might struggle with highly deformed objects.

Overall, SIFT is a cornerstone technique in computer vision for feature
matching and object recognition. Its ability to handle scale and rotation
variations makes it valuable in tasks like image stitching, 3D modeling,
and robot navigation

7.9 HAAR-LIKE FEATURES

Haar-like features are simple rectangular filters used in object detection
and recognition tasks, particularly in the Viola-Jones object detection
framework. These features are named after Alfred Haar, a mathematician
who first introduced them in the early 20th century. They are primarily
used for detecting variations in pixel intensity in localized regions of an
image.

Here's a detailed explanation of Haar-like features and their role in object
detection:

1. Definition:

e Haar-like features are rectangular regions within an image where the
pixel values are summed up in a specific pattern. These features are
defined by their shape, size, and position within the image.

e Fach Haar-like feature consists of a set of rectangular regions,
typically arranged in a specific layout. These regions can be either
white (representing areas of higher intensity) or black (representing
areas of lower intensity).

N

. Types of Haar-like Features:

e There are several types of Haar-like features, each capturing different
patterns of intensity variations:

o Edge Features: These features capture the contrast between adjacent
regions of different intensities, such as the transition from light to dark
or vice versa.

e Line Features: Line features capture longer horizontal or vertical
edges within an image.

Advanced Image
Processing Operations

175

Applied Signal and Image
Processing

176

w

9]

Four-rectangle Features: These features divide a rectangular region
into four smaller rectangles and compute the difference between the
sum of pixel intensities in the two diagonally opposite rectangles.

Three-rectangle Features: Similar to four-rectangle features but with
three rectangles, often used for capturing diagonal edges or corners.

. Integral Image:

To efficiently compute Haar-like features across different scales and
positions, an integral image is used.

An integral image is a data structure that allows rapid calculation of
the sum of pixel intensities within any rectangular area of an image.

Each pixel in the integral image contains the sum of all pixel
intensities above and to the left of it in the original image.

. Feature Evaluation:

To use Haar-like features for object detection, a classifier evaluates
each feature to determine whether it is relevant for detecting objects of
interest.

During training, the classifier learns which Haar-like features are
discriminative for distinguishing between positive (object) and
negative (non-object) examples.

This learning process is typically done using machine learning
algorithms such as AdaBoost, which selects a subset of the most
informative features and combines them into a strong classifier.

. Object Detection:

In the Viola-Jones object detection framework, Haar-like features are
used in a cascade of classifiers to efficiently detect objects in an
image.

The cascade consists of multiple stages, each containing a set of weak
classifiers based on Haar-like features.

At each stage, the classifier evaluates a subset of features, and if the
region does not match the object being detected, it is quickly rejected
without further processing.

Regions that pass all stages of the cascade are considered positive
detections and are further refined using additional techniques.

Advantages of Haar-like features:

Simplicity: They are easy to compute and understand, making them
efficient for real-time applications.

o Effectiveness: They can effectively capture basic geometric properties
relevant for object detection, particularly for objects with well-defined
shapes like faces.

Disadvantages of Haar-like features:

o Limited Features: They struggle to capture complex object variations
in pose, shape, or illumination.

o High False Positives: The reliance on simple thresholds can lead to a
high number of false positives, where non-object regions are
mistakenly identified as the target object.

Haar-like features provide a computationally efficient way to capture basic
patterns of intensity variation in images, making them well-suited for real-
time object detection applications. While they are less flexible than more
sophisticated feature descriptors like SIFT or HOG, they remain a
foundational component in many object detection systems, particularly in
scenarios where computational resources are limited.

7.10 SUMMARY

In this chapter, we embark on a journey into the heart of image feature
extraction and description, exploring the diverse landscape of
methodologies and algorithms that enable machines to discern and
interpret visual information. From fundamental concepts to advanced
techniques, each section sheds light on a specific aspect of this
multifaceted domain, offering insights and practical knowledge to readers
keen on mastering the art of image analysis.

At the boundary between raw pixel data and meaningful visual
representations lies the crucial step of boundary processing. This chapter
also discussed about the intricacies of extracting features from image
boundaries, unraveling the underlying principles and methodologies that
guide this process. Additionally, it explores the role of feature descriptors
in capturing the salient characteristics of image boundaries, paving the
way for robust and efficient feature representation.We also studiedthe
principles of PCA and its applications in extracting informative features
from high-dimensional data.

Corner detection lies at the heart of many computer vision applications,
enabling the identification of salient keypoints in images. We explored the
Harris Corner Detector, a seminal algorithm that revolutionized the field
of feature detection. From its mathematical foundations to practical
implementation strategies, readers are equipped with the knowledge to
harness the power of corner detection in various visual tasks. We
discussed how the Histogram of Oriented Gradients (HOG) emerges as a
powerful technique for capturing local image structure and texture along
with a comprehensive overview of SIFT, from its underlying principles to
practical implementation strategies. Through intuitive explanations and
illustrative examples, readers discover the versatility of Haar-like features
and their applications across diverse domains.

Advanced Image
Processing Operations

177

Applied Signal and Image
Processing

178

By delving into the depths of image feature extraction and description, this
chapter equips readers with the knowledge and tools to unravel the
mysteries of visual data, paving the way for groundbreaking advancements
in the field of computer vision. Whether you're a seasoned practitioner or
aspiring enthusiast, this chapter serves as a guiding beacon in your

an

quest to master the art of image analysis.

7.11 LIST OF REFERENCES

Text Books:

1.

2.

Digital Image Processing by Rafael Gonzalez & Richard Woods,

Pearson; 4th edition, 2018.

Think DSP: Digital Signal Processing in Python by Allen Downey,

O'Reilly Media; 1st edition (August 16, 2016).

Reference Books:

1. Understanding Digital Image Processing, VipinTyagi, CRC Press,
2018.

2. Digital Signal and Image Processing by Tamal Bose, John Wiley 2010.

3. Hands-On Image Processing with Python by SandipanDey,Packt
Publishing, 2018.

4. Fundamentals of Digital Images Processing by A K Jain, Pearson,
2010.

7.12 UNIT END EXERCISES

1. Explain the difference between feature detector versus descriptors.

2. Explain in detail aboutboundary processing and feature descriptor.

3. Write a note onprincipal components.

4. What do you mean by Principal Component Analysis (PCA)?

5. Explain thekey concepts associated with PCA.

6. Give the example of PCA.

7. What Are Principal Components?

8. How Principal Component Analysis (PCA) work ?

9. State theapplications of PCA.

10. Write a note on Harris Corner Detector.

11. Explain Blob detector.

12. Write a note on Histogram of Oriented Gradients.

13. What are Scale-invariant feature transforms ?

14. Write a note on Haar-like features.

o O O 0
0.0 0.0 0.0 0.0

IMAGE SEGMENTATION

Unit Structure :

8.0 Objectives

8.1 Introduction

8.2 Hough Transform for detecting lines and circles
8.3 Thresholding and Otsu’s segmentation
8.4 Edge-based/region-based segmentation
8.5 Region growing

8.6 Region splitting and Merging

8.7 Watershed algorithm

8.8 Active Contours

8.9 Morphological snakes

8.10 GrabCut algorithms

8.11 Summary

8.12 List of References

&.13 Unit End Exercises

8.0 OBJECTIVES

e To get insights of image segmentation

e To understand different techniques and algorithms associated with
segmentation

8.1 INTRODUCTION

Image segmentation is a fundamental task in computer vision that involves
partitioning an image into multiple segments or regions based on certain
characteristics such as color, intensity, texture, or semantic meaning. The
goal of image segmentation is to simplify and/or change the representation
of an image into something more meaningful and easier to analyze.

Objective: The primary objective of image segmentation is to simplify the
representation of an image into more meaningful and easy-to-analyze
parts. It aims to partition an image into distinct regions or objects based on
certain features or criteria.

179

Applied Signal and Image
Processing

180

Types of Segmentation:

Semantic Segmentation : This type of segmentation assigns a class
label to each pixel in the image, effectively dividing the image into
regions corresponding to different objects or regions of interest.

Instance Segmentation : Instance segmentation not only assigns class
labels to pixels but also distinguishes between individual object
instances. Each instance of an object is segmented separately.

Boundary or Edge Detection : This approach focuses on detecting
edges or boundaries between different regions in an image. It doesn't
segment the whole image but rather highlights the boundaries.

Clustering-Based Segmentation : It groups pixels based on their
similarity in terms of color, intensity, or other features. Common
clustering algorithms like k-means or mean-shift are often used.

Region Growing : This method starts with seed points and grows
regions by adding neighboring pixels that meet certain similarity
criteria.

Challenges:

Noise and Variability : Images may contain noise, variations in
illumination, or other artifacts, making it challenging to accurately
segment objects.

Object Occlusion : Objects in images may be partially occluded by
other objects, complicating the segmentation process.

Complex Object Shapes : Objects in images may have irregular
shapes, making it difficult to accurately delineate their boundaries.

Applications:

Medical Imaging : Image segmentation is used for identifying and
delineating structures or abnormalities in medical images such as MRI
scans or X-rays.

Autonomous Vehicles : Segmentation helps in detecting and
recognizing objects in the environment for tasks like lane detection,
pedestrian detection, and obstacle avoidance.

Satellite Imaging : It aids in land cover classification, urban planning,
and environmental monitoring by segmenting satellite images into
different land cover types.

Object Recognition and Tracking : Segmentation is an essential
component in object recognition and tracking systems for identifying
and tracking objects in video streams.

In essence, image segmentation is a crucial preprocessing step in many
computer vision tasks, enabling the extraction of meaningful information
from images for further analysis and decision-making.

8.2 HOUGH TRANSFORM FOR DETECTING LINES
AND CIRCLES

The Hough Transform is a powerful technique in computer vision and
image processing used to detect geometric shapes such as lines and circles
in an image. It was originally developed by Paul Hough in the 1960s for
detecting lines in binary images and later extended by Richard Duda and
Peter Hart in 1972 to detect arbitrary shapes like circles. The Hough
Transform is particularly robust to noise and occlusion and can detect
shapes even when they are incomplete or broken.

Here's a detailed explanation of the Hough Transform for detecting lines
and circles:

Hough Transform for Line Detection:
1. Parameter Space Representation :

e In the Hough Transform for lines, each pixel in the image space
corresponds to a parameter space representation. Instead of
representing lines as slopes and intercepts (as in Cartesian space), lines
are represented as points in a parameter space known as the Hough
space.

e For a line defined by y = mx + ¢, where m is the slope and c is the y-
intercept, the Hough space is represented by a 2D array where one axis
represents mand the other represents c.

2. Voting :

e For each edge pixel in the binary image (typically obtained through
edge detection techniques like Canny edge detector), we compute the
possible lines that could pass through that pixel in parameter space.

e FEach edge pixel votes for the possible lines it could belong to in the
Hough space. This is done by incrementing the corresponding cells in
the Hough space for each possible line.

3. Accumulator Thresholding:

e After all edge pixels have voted, we examine the Hough space to
identify cells with high vote counts. These cells correspond to lines in
the original image.

e By thresholding the accumulator array, we select only those cells with
a high enough count, indicating significant line detections.

Image Segmentation

181

Applied Signal and Image
Processing

182

4. Line Extraction:

After thresholding, lines are extracted from the parameter space
representation by mapping back to the Cartesian space using the
parameters represented by the selected cells.

Each selected cell corresponds to a line in the original image.

Hough Transform for Circle Detection:

1

N

N

. Parameter Space Representation:

In the Hough Transform for circles, circles in the image are
represented by their center coordinates (a, b) and their radius r. Thus,
each pixel in the image space corresponds to a parameter space
representation.

The Hough space for circle detection is typically three-dimensional,
with axes representing a,b, and r.

. Voting:
Similar to line detection, for each edge pixel in the binary image, we
compute the possible circles that could pass through that pixel in
parameter space.
Each edge pixel votes for the possible circles it could belong to in the
Hough space by incrementing the corresponding cells in the
accumulator array.

. Accumulator Thresholding:

After all edge pixels have voted, we examine the accumulator array to
identify cells with high vote counts, indicating potential circle
detections.

By thresholding the accumulator array, we select only those cells with
a high enough count, indicating significant circle detections.

. Circle Extraction:

After thresholding, circles are extracted from the parameter space
representation by mapping back to the Cartesian space using the
parameters represented by the selected cells.

Each selected cell corresponds to a circle in the original image.

Summary

The Hough Transform provides a robust method for detecting lines
and circles in images, even in the presence of noise and occlusion.

e [t operates by transforming the spatial domain representation of the
image into a parameter space where geometric shapes are represented
explicitly.

e Voting and accumulator thresholding are key steps in both line and
circle detection variants of the Hough Transform.

e Despite its computational complexity, the Hough Transform remains
widely used in computer vision applications for its effectiveness in
shape detection and robustness to various image conditions.

8.3 THRESHOLDING AND OTSU’S SEGMENTATION

Thresholding is a basic yet powerful image processing technique used to
separate objects or regions of interest from the background in an image. It
works by converting a grayscale or color image into a binary image, where
pixels are classified as either foreground (object) or background based on
their intensity values relative to a specified threshold value.

Thresholding:
1. Simple Thresholding:

e In simple thresholding, a fixed threshold value is applied to each pixel
in the image. If the intensity of a pixel exceeds the threshold, it is
classified as foreground; otherwise, it is classified as background.

e Mathematically, if I(x, y) represents the intensity of the pixel at
coordinates (x, y), and T represents the threshold value, then the
binary result B(x, y) is given by:

Bx,y)=1............ ifl(x,y)>T
=0 ... otherwise
2. Adaptive Thresholding:

e Adaptive thresholding adjusts the threshold value for each pixel based
on the local neighborhood of that pixel. This is useful when the
illumination varies across the image.

e Instead of using a single global threshold, adaptive methods compute
thresholds for smaller regions of the image.

3. Otsu's Thresholding:

e Otsu's method is an automatic thresholding technique that selects the
optimal threshold value by maximizing the between-class variance of
the pixel intensities.

e It assumes that the image contains two classes of pixels: background
and foreground.

Image Segmentation

183

Applied Signal and Image
Processing

184

Otsu's method works by iterating through all possible threshold values
and selecting the one that minimizes the intra-class variance (variance
within each class) or maximizes the inter-class variance (variance
between classes).

The algorithm computes the histogram of pixel intensities and
calculates the cumulative probabilities and means for each intensity
level.

Then, it iterates through all possible threshold values and calculates
the between-class variance for each threshold.

The threshold value that maximizes the between-class variance is
selected as the optimal threshold.

Applications:

Thresholding is widely used in various image processing tasks such as
object detection, image segmentation, and feature extraction.

It is particularly useful for segmenting objects from the background in
applications like document analysis, medical imaging, and quality
control.

Otsu’s Segmentation:

Steps:

Compute the histogram of pixel intensities in the grayscale image.
Normalize the histogram to obtain probabilities of each intensity level.

Compute the cumulative probabilities and means for each intensity
level.

Iterate through all possible threshold values and calculate the between-
class variance for each threshold.

Select the threshold value that maximizes the between-class variance.

Apply the selected threshold to the image to obtain the binary result.

the Otsu's method given by Nobuyuki Otsufor obtaining optimal
thresholding. This is a variance-based method used to evaluate the least
weighted variance between the foreground and background pixels. The
essential factor is to measure the distribution of background and
foreground pixels while iterating over all potential threshold values and
then locating the threshold at which the dispersion is the smallest [C.
Huang et.al., 37].

Algorithm

The algorithm repeatedly finds the threshold that reduces the variance
belonging to the same class determined by the weighted sum of spread.
Grayscale typically has hues between 0-255 (0-1 in case of float).

The following equation is utilized to calculate the variance at threshold t:
aM}) = wbg(t)o'b?-g(t) + wfg(t)cr';}g(t)

Where mp,(t) and wg(t) represents the probability of pixels for value of t
and o2 represents the deviation of color values.

Let,

P,y :total pixel count,
Ppg(t) and Prg(t) : background and foreground pixels count at t,

So the updates are given by,

Ppa(t)

wog(t) = —p,—

_ Ppg(t)
wfg(t) Pon

The variance is calculated using the below formula

W " __ 2
2 (t) z_,;g?_ 11')
Where,

xjand x bar: pixel value and its mean at i in the group (b, or fy)
N: number of pixels.

Advantages:

e Otsu's method automatically selects the threshold value without the
need for manual tuning.

e [t isrobust to variations in illumination and background clutter.

e It works well for bimodal or nearly bimodal images where the
foreground and background intensities are well-separated.

Limitations:

e Otsu's method assumes a bimodal distribution of pixel intensities,
which may not hold true for all images.

Image Segmentation

185

Applied Signal and Image
Processing

186

e It may not perform well for images with complex intensity
distributions or significant overlap between foreground and
background intensities.

8.4 EDGE-BASED/REGION-BASED SEGMENTATION

Edge-based and region-based segmentation are two common approaches
used in image processing to partition an image into meaningful regions or
objects. Here's a detailed explanation of each approach with mathematical
equations:

Edge-based Segmentation:

Edge-based segmentation relies on detecting significant changes in
intensity or color, which often correspond to object boundaries or edges in
the image.

1. Edge Detection:

e Edge detection is typically performed using techniques like the Sobel
operator, Prewitt operator, or Canny edge detector. These operators
compute the gradient magnitude of the image to highlight regions of
rapid intensity change.

2. Gradient Magnitude:

e Let I(x, y) be the intensity of the pixel at coordinates(x, y). The
gradient magnitude G(X, y) is computed as:

G(x, y) = sqrt{Gx(x, ¥)"2 + Gy(x, y)"2}

e Where G«(x, y)and Gy(X, y)are the horizontal and vertical components
of the gradient, respectively.

3. Thresholding:

e After edge detection, a thresholding operation is often applied to the
gradient magnitude to obtain a binary edge map. Pixels with gradient
magnitudes above a certain threshold are considered part of an edge.

4. Edge Linking and Refinement:

e Detected edges may not form continuous contours. Techniques such as
edge linking (e.g., using the Hough transform) and edge refinement
(e.g., applying morphological operations) can be employed to connect
and smooth the detected edges.

Region-based Segmentation:

Region-based segmentation aims to partition an image into regions or
objects based on certain criteria such as color similarity, texture, or
intensity homogeneity.

[y

. Region Growing: Image Segmentation

e Region growing algorithms start with seed points and iteratively grow
regions by adding neighboring pixels that meet certain similarity
criteria.

e One common criterion is intensity homogeneity, where pixels are
added to a region if their intensity values are similar to those of the
region's seed point.

2. Region Splitting and Merging:

e Region splitting divides an image into smaller regions based on certain
criteria. For example, a region may be split if it contains significant
intensity variations.

e Region merging combines adjacent regions that satisfy certain
similarity criteria. This helps in merging regions that belong to the
same object but were initially split due to noise or other factors.

Mathematical Equations for Region-based Segmentation:
1. Region Homogeneity Criterion:

e Let R, represent a region in the image, and I(x, y)be the intensity of the
pixel at coordinates (x, y) within the region. The region homogeneity
criterion can be expressed as:

1I(x, y) - wi| <=T

e Where pjis the mean intensity of region R;, and T is a threshold
representing the acceptable deviation from the mean.

2. Region Growing Algorithm:

e (@Given a seed point (Xs, ys), the region growing algorithm iteratively
adds neighboring pixels (x, y) to the region if they satisfy the
homogeneity criterion.

3. Region Splitting and Merging Criteria:

e Region splitting may involve criteria such as local variance exceeding
a threshold or the presence of significant edges within a region.

e Region merging criteria may include comparing the mean intensities
of neighboring regions and merging regions with similar mean
intensities.

Both edge-based and region-based segmentation have their strengths and
weaknesses, and the choice between them depends on the specific
characteristics of the image and the desired segmentation result. Edge-
based methods are effective for detecting object boundaries, while region-
based methods are useful for segmenting homogeneous regions. Often, a

187

Applied Signal and Image
Processing

188

combination of these techniques is employed for more robust
segmentation results.

8.5 REGION GROWING

Region growing is a fundamental method for image segmentation,
particularly in cases where objects of interest exhibit uniform
characteristics such as intensity or color. This technique starts from seed
points and iteratively adds neighboring pixels to form regions that meet
certain homogeneity criteria. Here's a detailed explanation of region
growing with mathematical equations:

Region Growing Algorithm:

1. Initialization:

Select seed points within the image. These seed points can be chosen
manually or automatically based on certain criteria.

Let S represent the set of seed points.

N

. Homogeneity Criterion:

e Define a homogeneity criterion that determines whether a pixel should
be added to the region.

e Let I(x, y) represent the intensity (or color) of the pixel at coordinates
(X, y).

e The homogeneity criterion typically involves comparing the intensity
(or color) of neighboring pixels to the seed point or the current region.

e One common criterion is to check if the intensity of a pixel is within a
certain threshold of the mean intensity of the region.

w

. Region Growing Process:
e Start with the seed points in S.

e For each seed point (X, ys) in S, initialize a region R containing only
the seed point.

e [terate through the neighboring pixels of each pixel in R (e.g., 4 or 8
connectivity).

e If a neighboring pixel (X, y)satisfies the homogeneity criterion, add it
to the region R and mark it as visited.

e Continue this process until no more pixels can be added to the region.

e Repeat the above steps for each seed point in S.

Mathematical Equations: Image Segmentation
1. Homogeneity Criterion:
e Let prrepresent the mean intensity (or color) of region R.
e The homogeneity criterion can be expressed as:
(X, y) - ue| <T

e Where T is a threshold representing the acceptable deviation from the
mean.

2. Region Growing Process:
e Start with the seed points:
S={(x_Ly_1),(x_2,y_2), ..., (Xn, yn)}
e For each seed point (X, ys) in S, initialize the region:
R ={(Xs, ¥s)
e [terate through the neighboring pixels (x, y)of each pixel in R:
e If (x,y) satisfies the homogeneity criterion, add it to R:
* R=RU{xy)}
Advantages:
e Region growing is simple to implement and computationally efficient.
e It can effectively segment regions with homogeneous characteristics.
e It can handle irregular shapes and objects with varying sizes.
Limitations:

e The choice of seed points can significantly affect the segmentation
result.

e Region growing may fail if the homogeneity criterion is not well-
defined or if the image contains noise or artifacts.

e It may be sensitive to variations in illumination or shading.

In summary, region growing is a versatile technique for image
segmentation, widely used in various applications such as medical image
analysis, object recognition, and satellite image processing. By iteratively
expanding regions based on predefined criteria, region growing can
effectively partition images into meaningful regions or objects.

189

Applied Signal and Image
Processing

190

8.6 REGION SPLITTING AND MERGING

Region splitting and merging is another important technique for image
segmentation, particularly useful when dealing with complex images
containing objects with varying characteristics or cluttered backgrounds.
This method involves dividing regions into smaller segments based on
certain criteria (splitting) and then merging adjacent segments that satisfy
specific similarity conditions (merging). Here's a detailed explanation of
region splitting and merging along with mathematical equations:

Region Splitting:
1. Homogeneity Criterion for Splitting:

e Define a criterion to determine when a region should be split into
smaller segments.

e (Common criteria include variations in intensity, texture, or color
within a region.

e For example, a region may be split if the local variance of pixel
intensities exceeds a certain threshold.

N

. Splitting Process:

e Start with the initial regions obtained through an initial segmentation
method or seed points.

e For each region that satisfies the splitting criterion, divide it into
smaller segments.

Mathematical Equations for Region Splitting:
1. Homogeneity Criterion for Splitting:

e Let R represent a region in the image, andI(x, y) be the intensity (or
color) of the pixel at coordinates (x, y) within region R.

e Define a splitting criterion based on the local variance of pixel
intensities:

If cR>Tsplit, split region R

Where cRis the standard deviation of pixel intensities within regionR, and
Tsplitis a threshold representing the maximum allowable variance.

Region Merging:
1.Homogeneity Criterion for Merging:

e Define a criterion to determine when adjacent regions should be
merged into a single region.

Common criteria include comparing the mean intensity (or color) of
neighboring regions and checking for color or intensity similarity.

For example, two regions may be merged if their mean intensities are
similar or if their color histograms exhibit significant overlap.

2. Merging Process:

Start with the initial regions obtained through segmentation or
splitting.

For each pair of adjacent regions that satisfy the merging criterion,
merge them into a single region.

Mathematical Equations for Region Merging:

1. Homogeneity Criterion for Merging:

If

Let R; and Rjrepresent two adjacent regions in the image, with mean
intensities p; and

L, respectively.

Define a merging criterion based on the difference in mean intensities:

[ul—p2|<Tmerge, merge regions R1 and R2

Where Tmergeis a threshold representing the maximum allowable
difference in mean intensities.

Advantages:

Region splitting and merging can handle complex images with varying
characteristics.

It allows for the segmentation of objects with irregular shapes and
varying sizes.

The method can be adapted to different types of images and
segmentation tasks.

Limitations:

The performance of region splitting and merging heavily depends on
the choice of criteria and thresholds.

The method can be computationally expensive, especially for large
images or complex segmentation tasks.

It may produce over-segmentation or under-segmentation if the criteria
are not appropriately tuned.

Image Segmentation

191

Applied Signal and Image
Processing

192

8.7 WATERSHED ALGORITHM

The Watershed algorithm is a powerful method for image segmentation,
particularly in scenarios where objects of interest are touching or
overlapping. It views the grayscale image as a topographic surface, where
pixel intensities represent elevations, and the goal is to partition the
surface into catchment basins (regions) corresponding to distinct objects.
Here's a detailed explanation of the Watershed algorithm along with
mathematical equations and a diagram:

Watershed Algorithm:
1. Gradient Computation:

e Compute the gradient magnitude of the grayscale image to highlight
regions of rapid intensity change, which often correspond to object
boundaries.

e The gradient magnitude image represents the topographic surface
where higher values correspond to steeper regions.

N

. Marker Selection:

e Identify markers or seeds within the image that correspond to potential
objects or regions of interest. These markers can be manually selected
or obtained through other segmentation methods.

e Markers can be placed at local minima in the gradient magnitude
image or based on user input.

3. Flood Fill Simulation:

e Simulate a flooding process on the topographic surface starting from
the markers.

e The flooding process is analogous to filling basins with water, where
each basin corresponds to a catchment area or region.

4. Boundary Identification:

e As the flooding process progresses, boundaries between adjacent
basins are formed where the water from different basins meets.

e These boundaries represent the segmentation result, delineating the
boundaries between different objects or regions.

Mathematical Equations:
1. Gradient Magnitude Calculation:

Let I(x, y) represent the intensity of the pixel at coordinates (x, y), and
G(x, y) denote the gradient magnitude:

G(x,y) = IVI(x,y)l

- Where |VI(x,y)|represents the gradient vector.
2. Marker Selection:

Markers can be manually defined or obtained automatically. Let M
represent the set of markers:

M ={m1, mp, ..., mn}

Each marker m; can be represented as a point in the image domain (x;, ;)
along with an associated label.

3. Flood Fill Simulation:

Simulate the flooding process by propagating water from the markers
throughout the image.

At each iteration, water flows from each marker to neighboring pixels with
lower elevations (lower intensity values).

Pixels are labeled with the marker labels as the flooding process
progresses.

The process continues until all pixels are labeled.
4. Boundary Identification:

Boundaries between adjacent regions are formed where water from
different markers meets during the flooding process.

These boundaries can be represented as watershed lines or contours.

Diagram:
Step 1: Gradient Magnitude
O R e e
I e
e e e
I e
I T e e
Step 2: Marker Selection
I e
e e e
I e
e L
lo [o | Jo | [[ol | |

Image Segmentation

193

Applied Signal and Image
Processing

194

Step 3: Flood Fill

In the diagram:

Step 1 illustrates the computation of the gradient magnitude.
Step 2 shows the selection of markers.

Step 3 depicts the flood fill simulation, where the labels propagate
from the markers.

Step 4 demonstrates the identification of boundaries between regions.

Advantages:

The Watershed algorithm can segment complex images with
overlapping objects.

It does not require a priori knowledge of the number of objects in the
image.

It can handle objects with irregular shapes and sizes.

Limitations:

In

The algorithm may produce over-segmentation, especially in areas
with texture or noise.

It can be sensitive to the choice of markers and parameters.

Post-processing steps may be required to refine the segmentation
result.

summary, the Watershed algorithm is a powerful tool for image

segmentation, particularly useful in scenarios where objects are touching

or

overlapping. By simulating a flooding process on the gradient

magnitude image, the algorithm can partition the image into distinct
regions corresponding to different objects or structures.

8.8 ACTIVE CONTOURS

Active Contours, also known as snakes, are curve-evolving algorithms
used for image segmentation and object tracking. These algorithms aim to
deform a curve iteratively until it aligns with the boundary of an object of
interest in an image. Here's a detailed explanation of Active Contours
along with mathematical equations:

Active Contours Algorithm:

1

N

N

. Initialization:

Initialize a curve (or contour) within the image domain, typically close
to the boundary of the object to be segmented.

The curve can be represented parametrically or implicitly, depending
on the specific implementation.

. Energy Minimization:

Define an energy functional that quantifies the properties of the curve
and its relationship with the image.

The energy functional typically consists of two components:

Internal Energy: Encodes the smoothness and regularity of the curve,
preventing it from deforming excessively.

External Energy: Measures the compatibility between the curve and
the image, attracting the curve towards object boundaries or edges.

. Curve Evolution:

Deform the curve iteratively to minimize the energy functional.

The curve evolution process involves updating the positions of the
curve's control points (or parameters) based on the gradient descent or
other optimization techniques.

. Convergence:

Iterate until the curve converges to the desired object boundary or until
a termination criterion is met (e.g., maximum number of iterations,
negligible change in energy).

Mathematical Equations:

1. Energy Functional:

The energy functional E is typically defined as the sum of internal and
external energies:

Image Segmentation

195

Applied Signal and Image
Processing

196

E=Einternal+a-Eexternal
Where ais a weighting parameter controlling the influence of the external
energy.

2. Internal Energy:

e The internal energy Einternalmeasures the smoothness and regularity
of the curve:

1 2
Eint.crnal = j;] (H‘(S) - H’U(S)) ds
e Where «k(s)represents the curvature of the curve at arc length s, and k0
(s)is a reference curvature.

3. External Energy:

e The external energy Eexternalmeasures the compatibility between the
curve and the image:

Ecxtcrnal - J;]l W{S) - Vf(x(s))3 ds

e Where W(s) is a weighting function that emphasizes image gradients
near the curve, and VI(x(s))represents the image gradient at the curve's
position.

4. Curve Evolution:

e The curve evolves according to the gradient descent of the energy

functional:
ax _ _OE
ot ox

e Wherex represents the curve's control points (or parameters), and t is
the evolution time.

Advantages:

e Active Contours can accurately segment objects with irregular shapes
and complex boundaries.

e They are robust to noise and cluttered backgrounds.

e The method allows for interactive refinement and user guidance.
Limitations:

e Active Contours may struggle with concave or fragmented objects.

e They can be sensitive to the choice of parameters and initialization.

e The algorithm may require significant computational resources,
especially for large images or complex objects.

In summary, Active Contours are versatile techniques for image
segmentation, widely used in medical imaging, remote sensing, and
computer vision applications. By minimizing an energy functional that
balances curve smoothness and image compatibility, Active Contours can
accuratelydelineate object boundaries and provide precise segmentation
results.

8.9 MORPHOLOGICAL SNAKES

Morphological snakes, also known as morphological active contours or
morphological geodesic active contours, are a variation of the active
contour model that combines geometric deformations with morphological
operations. These snakes are particularly useful for segmenting objects
with irregular shapes and varying contrast levels in images. Here's a
detailed explanation of morphological snakes along with mathematical
equations.

Morphological Snakes Algorithm:
1. Initialization:

¢ Initialize a curve (or contour) within the image domain, typically close
to the boundary of the object to be segmented.

e The curve can be represented parametrically or implicitly, similar to
traditional active contours.

N

. Energy Minimization:

e Define an energy functional that quantifies the properties of the curve
and its relationship with the image, incorporating both geometric and
morphological terms.

e The energy functional consists of three components:
e Internal Energy: Encodes the smoothness and regularity of the curve.

e External Energy: Measures the compatibility between the curve and
the image, attracting the curve towards object boundaries or edges.

e Morphological Energy: Incorporates morphological operations to
enhance the curve's response to image features.

3. Curve Evolution:

e Deform the curve iteratively to minimize the energy functional, similar
to traditional active contours.

e However, morphological snakes employ morphological operations
such as dilation and erosion to adjust the curve's shape and position.

Image Segmentation

197

Applied Signal and Image
Processing

198

4. Convergence:

e [terate until the curve converges to the desired object boundary or until
a termination criterion is met.

Mathematical Equations:
1. Energy Functional:

e The energy functional E is defined as the sum of internal, external, and
morphological energies:

E= Einternal +aEexternal + BEmorphological

Where oand Pare weighting parameters controlling the influence of the
external and morphological energies, respectively.

2. Internal Energy:

The internal energy Einternalmeasures the smoothness and regularity
of the curve, similar to traditional active contours.

3. External Energy:

The external energy Eexternalmeasures the compatibility between the
curve and the image, similar to traditional active contours.

N

. Morphological Energy:

e The morphological energy Emorphologicalincorporates morphological
operations to enhance the curve's response to image features.

e This energy term can be defined based on morphological operations
such as dilation, erosion, opening, or closing applied to the image and
the curve.

Advantages:

e Morphological snakes combine the advantages of traditional active
contours with the flexibility of morphological operations.

e They can handle objects with irregular shapes and varying contrast
levels.

e The method is robust to noise and cluttered backgrounds.
Limitations:

e Morphological snakes may struggle with concave or fragmented
objects.

e They can be sensitive to the choice of parameters and initialization.

e The algorithm may require significant computational resources,
especially for large images or complex objects.

Thus, morphological snakes offer a powerful approach to image
segmentation, particularly suitable for applications requiring accurate
delineation of object boundaries in challenging imaging conditions. By
integrating morphological operations with active contour models,
morphological snakes can achieve precise segmentation results in various
domains such as medical imaging, remote sensing, and computer vision.

8.10 GRABCUT ALGORITHMS

The GrabCut algorithm is an iterative method for foreground object
segmentation in images, developed by Carsten Rother, Vladimir
Kolmogorov, and Andrew Blake. It combines graph cuts with Gaussian
mixture modeling to efficiently segment objects based on user input.
Here's a detailed explanation of the GrabCut algorithm along with
mathematical equations and a corresponding diagram:

GrabCut Algorithm:
1. Initialization:

e The algorithm begins with an initial bounding box or user-defined
scribbles indicating the foreground and background regions.

e Pixels within the bounding box are classified as either foreground or
background based on their color similarity to the scribbles.

2. Gaussian Mixture Modeling:

e Represent the pixel colors within the bounding box as a mixture of
Gaussian distributions, one for foreground and one for background.

e Learn the parameters (mean and covariance) of these Gaussian
distributions using the Expectation-Maximization (EM) algorithm.

w

. Graph Construction:

e Construct a graph where each pixel in the image is a node, and the
edges between nodes represent the pairwise relationships between
pixels.

e Assign weights to edges based on color similarity and spatial
proximity.

N

. Graph Cut Optimization:

e Use graph cuts to iteratively optimize the segmentation by minimizing
the energy function, which consists of data and smoothness terms.

e The data term encourages pixels to be assigned to the foreground or
background based on their color likelihood under the Gaussian mixture
models.

Image Segmentation

199

Applied Signal and Image
Processing

200

9]

=)

The smoothness term penalizes abrupt changes in the segmentation,
promoting smooth object boundaries.

. Foreground and Background Refinement:

Update the foreground and background models based on the new
segmentation result.

Refine the Gaussian mixture models and reassign pixels to foreground
or background based on the updated models.

. Convergence:

Iterate the optimization process until convergence, typically based on a
predefined number of iterations or when the segmentation result
stabilizes.

Mathematical Equations:

Gaussian Mixture Model (GMM):
"‘_F'\: -~
Where:

I is the pixel intensity,
* 7 is the weight of component k,

* py is the mean, and

* ¥, is the covariance matrix of component k.
Data Term:

D(x) = —log(P(x/foreground)) — log(P(x|/background))

.. Smoothness Term:

S(z,y) = A exp (— =)
Where:

* and y are neighboring pixels,
* A controls the strength of the term, and

o controls the spatial proximity.

Energy Function:

E(S) = Yoy D(@) + Y ioyen S(,3)

Advantages:

GrabCut is an efficient and interactive method for foreground object
segmentation.

It does not require extensive user input and can adapt to complex
object shapes and backgrounds.

e The algorithm provides accurate segmentation results, particularly for
images with well-defined object boundaries.

Limitations:

e (GrabCut may struggle with images containing multiple objects with
similar colors or textures.

e It can be sensitive to the initialization and may require manual
adjustments for challenging cases.

e The algorithm may not perform well on images with low contrast or
ambiguous object boundaries.

In summary, the GrabCut algorithm offers a versatile and effective
approach to foreground object segmentation in images, combining
Gaussian mixture modeling with graph cuts to achieve accurate and
efficient results. With its interactive nature and robust performance,
GrabCut has become a popular choice for various computer vision and
image editing applications.

8.11 SUMMARY

We have seen thatmain goal of image segmentation is to simplify the
representation of an image into more meaningful and easy-to-analyze
parts. It aims to partition an image into distinct regions or objects based on
certain features or criteria.We have also observed thatthe Hough
Transform provides a robust method for detecting lines and circles in
images, even in the presence of noise and occlusion.It operates by
transforming the spatial domain representation of the image into a
parameter space where geometric shapes are represented explicitly.

Thresholding is a fundamental image processing technique used for image
segmentation, and Otsu's method provides an automatic way to select an
optimal threshold value based on the image's intensity distribution

We also explored region splitting and merging which is a flexible
technique for image segmentation, suitable for a wide range of
applications such as medical imaging, remote sensing, and scene analysis.
By iteratively dividing and merging regions based on predefined criteria,
this method can effectively partition images into meaningful segments or
objects.

8.12 LIST OF REFERENCES

Text Books:

1. Digital Image Processing by Rafael Gonzalez & Richard Woods,
Pearson; 4th edition, 2018.

2. Think DSP: Digital Signal Processing in Python by Allen Downey,
O'Reilly Media; 1st edition (August 16, 2016).

Image Segmentation

201

Applied Signal and Image
Processing

202

Reference Books:

1. Understanding Digital Image Processing, VipinTyagi, CRC Press,
2018.

2. Digital Signal and Image Processing by Tamal Bose, John Wiley 2010.

3. Hands-On Image Processing with Python by SandipanDey,Packt
Publishing, 2018.

4. Fundamentals of Digital Images Processing by A K Jain, Pearson,
2010.

8.13 UNIT END EXERCISES

1. Explain in detail about Hough Transform for detecting lines and
circles.

2. Write a note on Thresholding and Otsu’s segmentation.

3. What is Edge-based/region-based segmentation?

4. Explain the concept of region growing.

5. Discuss in detail about region splitting and merging.

6. Explain watershed algorithm.

7. Write a note on Active Contours along with its mathematical
formulations.

8. Write a note on Morphological snakesalong with its mathematical
formulations.

9. Write a note on GrabCut algorithmsalong with its mathematical

formulations.

& O O 0
0’0 0’0 0’0 0’0

