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M.SC. (IT)
SEMESTER - I

SOFT COMPUTING TECHNIQUES
SYLLABUS

Course Code: 503 Course Name: Soft Computing Techniques
Total Credits: 04 (60 Lecture Hrs) Total Marks: 100 marks
University assessment: 50 marks College/Department assessment: 50 marks

Pre-requisite: Basic Knowledge on Al
Course Objectives (COs):
To enable the students to:
* CO1: Soft computing concepts like fuzzy logic, neural networks and genetic algorithm, where
Artificial Intelligence is mother branch of all.
*  CO2 All these techniques will be more effective to solve the problem efficiently :

MODULE I: @
CREDITS)

Unit I

a) Introduction of soft computing - soft computing vs. hard computing, various
types of soft computing techniques, Fuzzy Computing, Neural Computing,
Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, 15 Hrs
Classification, Clustering, Bayesian Networks, Probabilistic reasoning, | [OC1-OC3]
applications of soft computing.

b) Artificial Neural Network - Fundamental concept, Evolution of Neural
Networks, Basic Models, McCulloh-Pitts Neuron, Linear Separability, Hebb
Network.

¢) Supervised Learning Network - Perceptron Networks, Adaptive Linear
Neuron, Multiple Adaptive Linear Neurons, Backpropagation Network,
Radial Basis Function, Time Delay Network, Functional Link Networks, Tree
Neural Network

Unit 11

a) Associative Memory Networks - Training algorithm for pattern 15 Hrs
Association, Autoassociative memory network, hetroassociative | [0C4-OC5]
memory network, bi-directional associative memory, Hopfield
networks, iterative autoassociative memory networks, temporal
associative memory networks. Kohonen self-organizing feature maps,
learning vectors quantization, counter propogation networks, adaptive
resonance theory networks.

b) Special Networks - Simulated annealing, Boltzman machine, Gaussian
Machine, Cauchy Machine, Probabilistic neural net, cascade
correlation network, cognition network, neo-cognition network,
cellular neural network, optical neural network

¢) Third Generation Neural Networks - Spiking Neural networks,
convolutional neural networks, deep learning neural networks, extreme
learning machine model.

d) UnSupervised Learning Networks - Fixed weight competitive nets
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MODULE II: 2
CREDITS)
Unit IIT
a) Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets - Classical sets,
Fuzzy sets. 15 Hrs
b) Classical Relations and Fuzzy Relations - Cartesian Product of relation, 0C6
classical relation, fuzzy relations, tolerance and equivalence relations, non-
iterative fuzzy sets.
¢) Membership Function - features of the membership functions, fuzzification,
methods of membership value assignments.
d) Defuzzification - Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy
relations, Defuzzification methods.
e) Fuzzy Arithmetic and Fuzzy measures - fuzzy arithmetic, fuzzy measures,
measures of fuzziness, fuzzy integrals.
Unit IV
a) Fuzzy Rule base and Approximate reasoning - Fuzzy proportion, formation
of rules, decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning, 15 Hrs
fuzzy inference systems, Fuzzy logic control systems, control system design, | [OC7-OCS]
architecture and operation of FLC system, FLC system models and
applications of FLC System.
b) Genetic Algorithm - Biological Background, Traditional optimization and
search techniques, genetic algorithm and search space, genetic algorithm vs.
traditional algorithms, basic terminologies, simple genetic algorithm, general
genetic algorithm, operators in genetic algorithm, stopping condition for
genetic algorithm flow, constraints in genetic algorithm, problem solving
using genetic algorithm, the schema theorem, classification of genetic
algorithm, Holland classifier systems, genetic programming, advantages and
limitations and applications of genetic algorithm.Differential Evolution
Algorithm, Hybrid soft computing techniques — neuro — fuzzy hybrid, genetic
neuro-hybrid systems, genetic fuzzy hybrid and fuzzy genetic hybrid systems.
Books and References:
Sr. No. Title Author/s Publisher | Edition | Year
1. Artificial Intelligence and Soft | Anandita Das SPD 3rd 2018
Computing Battacharya
2. Principles of Soft computing S.N.Sivanandam Wiley 3t 2019
S.N.Deepa
3. Neuro-Fuzzy and Soft | J.S.R.Jang, Prentice 2004
Computing C.T.Sun and Hall of India
E.Mizutani
4. Neural Networks, Fuzzy Logic | S.Rajasekaran, G. Prentice 2004
and Genetic Algorithms: A. Vijayalakshami | Hall of India
Synthesis & Applications
5. Fuzzy Logic with Engineering | Timothy J.Ross McGraw- 1997
Applications Hill
6. Genetic Algorithms: Search, Davis E.Goldberg Addison 1989
Optimization and Machine Wesley
Learning
7. Introduction to Al and Expert | Dan W. Patterson Prentice 2009
System Hall of India
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INTRODUCTION TO SOFT COMPUTING

Unit Structure
1a.0  Objectives

la.l Computational Paradigm
1a.1.1 Soft Computing v/s Hard Computing
1a.2  Introduction to Soft Computing
1la.3  Premises of Soft Computing
la.4  Guidelines of Soft Computing
la.5 Uncertainty in Al
la.6  Application of Soft Computing
1la.7 Types of Soft Computing Techniques
1la.8 Fuzzy Computing
1a.9 Neural Computing
1a.10 Genetics Algorithms
la.11 Associative Memory
la.12 Adaptive of Resonance Theory
1a.13 Classification
la.14 Clustering
1a.15 Probabilistic Reasoning
1a.16 Bayesian Network
1la.17 Summary
1a.18 Review Questions

1a.19 Bibliography, References and Further Reading

1a.0 OBJECTIVES

The objective of this chapter is to give the overview of various soft
computing techniques. In this chapter, we will try to learn what is soft
computing, difference between hard computing and soft computing and
reason for why soft computing evolved. At the end, some application of soft
computing will be discussed.



Soft Computing Techniques

1A.1 COMPUTATIONAL PARADIGM

Computational
Paradigms

{ Hard Computing ] [ Soft Computing ]
[ Precise Models ] [ Imprecise Models ]

: : Traditional . Functional
lic L ¢ A
Sa};lléﬂ]?c;on?ﬁlgc Numerical lglzrazzﬁﬁ?gle Optimization &
Modelling & Search Random Search

Figure 1la.1: Computational Paradigms

Computational paradigm is classified into two viz: Hard computing and soft
computing. Hard computing is the conventional computing. It is based on
the principles of precision, certainty, and inflexibility. It requires
mathematical model to solve problems. It deals withs the precise models.
This model is further classified into symbolic logic and reasoning, and
traditional numerical modelling and search methods. The basic of
traditional artificial intelligence is utilised by these methods. It consumes a
lot of time to deal with real life problem which contains imprecise and
uncertain information. The following problems cannot accommodate hard
computing techniques:

1.  Recognition problems
2. Mobile robot co-ordination, forecasting
3.  Combinatorial problems

Soft computing deals with approximate models. This model is further
classified into two approximate reasoning, and functional optimization &
random search methods. It handles imprecise and uncertain information of
the real world. It can be used in all industries and business sectors to solve
problems. Complex systems can be designed with soft computing to deal
with the incomplete information, where the system behaviour is not
completely known or the existence of measures of variable is noisy.

la.1.1 Soft Computing v/s Hard Computing

Hard Computing Soft Computing

It uses precisely stated analytical It is tolerant to imprecision,
model. uncertainty, partial truth and

approximation.

It is based on binary logic and It is based on fuzzy logic and
crisp systems. probabilistic reasoning.

It has features such as precision It has features such as
and categoricity. approximation and dispositionality.




Hard Computing Soft Computing

It is deterministic in nature. It is stochastic in nature.

It can work with exact input data. | It can work with ambiguous and
noisy data.

It performs sequential It performs parallel computation.

computation.

It produces precise outcome. It produces approximate outcome.

1A.2 INTRODUCTION TO SOFT COMPUTING

The real-world problems require systems that combines knowledge,
techniques, and methodologies from various source. These systems should
possess humanlike expertise within specific domain, adapt themselves and
learn to do better in the changing environments and explain how they make
decisions or take actions.

Natural language is used by human for reasoning and drawing conclusion.
In conventional Al, the human intelligent behaviour is expressed in the
language form or symbolic rules. It manipulates the symbols on the
assumption that such behaviour can be stored in symbolically structured
knowledge base known as physical symbol system hypothesis.

“Basically, Soft Computing is not a homogenous body of concepts &
techniques. Rather, it is partnership of distinct methods that in one way or
another conform to its guiding principle. At this juncture, the dominant aim
of soft computing is to exploit the tolerance for imprecision and uncertainty
to achieve tractability, robustness and low solutions cost. The principal
constituents of soft computing are fuzzy logic, neurocomputing, and
probabilistic reasoning, with the latter subsuming genetic algorithms, belief
networks, chaotic systems, and parts of learning theory. In partnership of
fuzzy logic, neurocomputing, and probabilistic reasoning, fuzzy logic is
mainly concerned with imprecision and approximate reasoning;
neurocomputing with learning and curve-fitting; and probabilistic
reasoning with uncertainty and belief propagation.”

-Zadeh (1994)

Soft computing combines different techniques and concepts. It can handle
imprecision and uncertainty. Fuzzy logic, neurocomputing, evolutionary
and genetic programming, and probabilistic computing are fields of soft
computing. Soft computing is designed to model and enable solutions to
real world problems, which cannot be modelled mathematically. It does not
perform much symbolic manipulation.

The main computing paradigm of soft computing are: Fuzzy systems,
Neural Networks and Genetic Algorithms.

° Fuzzy set are for knowledge representation via fuzzy If — Then rules.
° Neural network for learning and adaptivity and
e  Genetic algorithm for evolutionary computation.

Introduction of
Soft Computing
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To achieve close resemblance with human like decision making, soft
computing aims to exploit the tolerance for approximation, uncertainty,
imprecision, and partial truth.

e  Approximation: the model has similar features but not same.

° Uncertainty: the features of the model may not be same as that of the
entity/belief.

° Imprecision: the model features (quantities) are not same as that the
real ones but are close to them.

1A.3 PREMISES OF SOFT COMPUTING

e  The real-world problems are imprecise and uncertain.
° Precision and certainty carry a cost.

e  There may not be precise solutions for some problems.

1A.4 GUIDELINES OF SOFT COMPUTING

The guiding principle of soft computing is to exploit the tolerance for
approximation, uncertainty, imprecision and partial truth to achieve
tractability, robustness and low solution cost. Human mind is the role model
for soft computing.

1A.5 UNCERTAINTY OF Al

e  Objective (features of whole environment)

0 There are lot of uncertainty in the world. We have limited
capabilities to sense these uncertainties.

e  Subjective (features of interaction with concrete environment

0 For the same/similar situation people may have different
experiences. This experience maps on the features of semantics
of different languages.

1A.6 APPLICATION OF SOFT COMPUTING

The application of soft computing has proved following advantages:

° The application that cannot be modelled mathematically can be
solved.

° Non-linear problems can be solved.

° Introducing human knowledge such as cognition, understanding,
recognition, learning and other into the field of computing.



Few applications of soft computing are enlisted below:

Handwritten Script Recognition using Soft Computing:

It is one of the demanding parts of computer science. It can translate
multilingual documents and sort the various scripts accordingly.
Block -level technique concept is used by the system to recognize the
script from several script document given. To classify the script
according to their features, it uses Discrete Cosine Transform (DCT)
and Discrete Wavelet Transform (DWT) together.

Image Processing and Data Compression using Soft Computing:

Image analysis is the high-level processing technique which includes
recognition and bifurcation of patterns. It is one of the most important
parts of the medical field. The problem of computational complexity
and efficiency in the classification can be easily be solved using soft
computing techniques. Genetic algorithms, genetic programming,
classifier systems, evolutionary strategies, etc are the techniques of
soft computing that can be used. These algorithms give the fastest
solutions to pattern recognition. These help in analysing the medical
images obtained from microscopes as well as examine the X-rays.

Use of Soft Computing in Automotive Systems and
Manufacturing:

Automobile industry has also adapted soft computing to solve some
of the major problems.

Classic control methods is built in vehicles using the Fuzzy logic
techniques. It takes the example of human behavior, which is
described in the forms of rule — “If-Then “statements.

The logic controller then converts the sensor inputs into fuzzy
variables that are then defined according to these rules. Fuzzy logic
techniques are used in engine control, automatic transmissions,
antiskid steering, etc.

Soft Computing based Architecture:

An intelligent building takes inputs from the sensors and controls
effectors by using them. The construction industry uses the technique
of DAI (Distributed Artificial Intelligence) and fuzzy genetic agents
to provide the building with capabilities that match human
intelligence. The fuzzy logic is used to create behaviour-based
architecture in intelligent buildings to deal with the unpredictable
nature of the environment, and these agents embed sensory
information in the buildings.

Soft Computing and Decision Support System:

Soft computing gives an advantage of reducing the cost of the
decision support system. The techniques are used to design, maintain,
and maximize the value of the decision process. The first application
of fuzzy logic is to create a decision system that can predict any sort

Introduction of
Soft Computing
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of risk. The second application is using fuzzy information that selects
the areas which need replacement.

Soft Computing Techniques in Power System Analysis:

Soft computing uses the method of Artificial Neural Network (ANN)
to predict any instability in the voltage of the power system. Using the
ANN, the pending voltage instability can be predicted. The methods
which are deployed here, are very low in cost.

Soft Computing Techniques in Bioinformatics:

The techniques of soft computing help in modifying any uncertainty
and indifference that biometrics data may have. Soft computing is a
technique that provides distinct low-cost solutions with the help of
algorithms, databases, Fuzzy Sets (FSs), and Artificial Neural
Networks (ANNSs). These techniques are best suited to give quality
results in an efficient way.

Soft Computing in Investment and Trading:

The data present in the finance field is in opulence and traditional
computing is not able to handle and process that kind of data. There
are various approaches done through soft computing techniques that
help to handle noisy data. Pattern recognition technique is used to
analyse the pattern or behaviour of the data and time series is used to
predict future trading points.

1A.7 TYPES OF SOFT COMPUTING TECHNIQUES

Following are the various techniques of soft computing:

© 0o N o gk~ w DN E

Fuzzy Computing

Neural Network

Genetic Algorithms
Associative memory
Adaptive Resonance Theory
Classification

Clustering

Probabilistic Reasoning

Bayesian Network

All the above techniques are discussed in brief in the below sections.

1A.8 FUZZY COMPUTING

The knowledge that exists in real world is vague, imprecise, uncertain,
ambiguous, or probabilistic in nature. This type of knowledge is also known
as fuzzy knowledge. Human thinking and reasoning frequently involves
fuzzy information.



The classical computing system involves two valued logic (true/false, 1/0,
yes/no). This system sometimes may not be able to answer some questions
as human does, as they do not have complete true answer. The computing
system is not just expected to give answers like human but also describe the
reality level calculated with the imprecision and uncertainty of the facts and
rules applied.

Lofti Zadeh observed that the classical computing system was not capable
to handle subjective data representation or unclear human ideas. In 1965, he
introduced fuzzy set theory as the extension of classical set theory where
elements have degrees of memberships. It allows to determine the
distinctions among the data that is neither true nor false. It is like process of
human thinking like very hot, hot, warm, little warm, cold, too cold.

In classical system, 1 represents absolute truth value and O represents
absolute false value. But in the fuzzy system, there is no logic for absolute
truth and absolute false value. But in fuzzy logic, there is intermediate value
too present which is partially true and partially false.

Boolean Logic True/Yes/1
Is Mick Honest?
False/Moi0

Extremely Honest
Fuzzy Logic

Very Honest(0.85)

i 7
Is Nick Honest? Sometimes Honest{D.35)

i

Extremely Dishonest(0.00)

Fig a.2: Fuzzy logic with example

Fuzzy Logic Architecture:

INPUT

RULE BASE I_—"

| INFERENCE ENGINE

Fig a.3: Fuzzy Logic Architecture

OUTPUT

-t FUZZIFIER DEFUZZIFIER H—-

Introduction of
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Fuzzy logic architecture mainly constitutes of following four components:

Rule base: It contains the set of rules. The If-then conditions are
provided by the experts to govern the decision-making system. These
conditions are based on linguistic information.

Fuzzification: It converts the crisp numbers into the fuzzy sets. The
crisp input is measured by the sensors and passed into the control
system for processing.

Inference engine: It determines the matching degree of the current
fuzzy input with respect to each rule and decides which rules are to
be fired according to the input field. Next, the fired rules are combined
to form the control actions.

Defuzzification: The fuzzy set obtained from the inference engine is
converted into the crisp value.

Characteristics of fuzzy logic:

1.

o~ w N

It is flexible and easy to implement.

It helps to represent the human logic.

It is highly suitable method for uncertain or approximate learning.
It views inference as a process of propagating elastic constraints.

It allows you to build nonlinear functions of arbitrary complexity.

When not to use fuzzy logic:

1.
2.
3.

If it is inconvenient to map an input space to an output space.
When the problem can be solved using common sense.

When many controllers can do the fine job, without the use of fuzzy
logic.

Advantages of Fuzzy Logic System:

Its structure is easy and understandable.

It is used for commercial and practical purposes.

It helps to control machines and consumer products.

It offers acceptable reasoning. It may not offer accurate reasoning.
In data mining it helps you to deal with uncertainty.

It is mostly robust as no precise inputs are required.

It can be programmed to in the situation when feedback sensor stops
working.



Performance of the system can be modified or altered by using
inexpensive sensors to keep the overall system cost and complexity
low.

It provides a most effective solution to complex issues.

Disadvantages of Fuzzy Logic System:

The results of the system may not be widely accepted as the fuzzy
logic is not always accurate.

It does not have the capability of machine learning as-well-as neural
network type pattern recognition.

Extensive testing with the hardware is needed for validation and
verification of a fuzzy knowledge-based system.

It is difficult task to set exact, fuzzy rules and membership functions.

Application areas of Fuzzy Logic:

Automotive Systems: Automatic Gearboxes, Four-Wheel Steering,
Vehicle environment control.

Consumer Electronic Goods: Photocopiers, Still and video cameras,
television.

Domestic Goods: Refrigerators, Vacuum cleaners, Washing
Machines.

Environment Control: Air conditioners, Humidifiers.

REVIEW QUESTIONS

1.

© N o g b~ w

Write a short note on fuzzy system.

What is artificial neural network? Explain its components and
learning methods.

Write a short note on genetic algorithms.

Explain the working of Adaptive Resonance Theory.

Write a short note on associative memory.

Compare classification technique with clustering technique.
Write a short note on probabilistic reasoning.

Write a short note on Bayesian Networks.

A.9 NEURAL COMPUTING

Artificial Neural Network (ANN) also known as neural network is the
concept inspired from human brain and the way the neurons in the human
brain works. It is computational learning system that uses a network of
functions to understand and translate a data input of one form into another
form. It contains large number of interconnected processing elements called
as neuron. These neurons operate in parallel and are configured. Every

Introduction of
Soft Computing
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neuron is connected with other neurons by a connection link. Each
connection is associated with weights which contain information about the
input signal.

Components of Neural Networks:
1. Neuron model: The information process unit of ANN.
Neuron model consist of the following:

a. Input
b.  Weight
C. Activation functions

2. Architecture: The arrangement of neurons and links connecting
neurons, where every link.

Following are the different ANN architecture:

a Single layer Feed forward Network
b.  Multi-layer Feed forward Network
C Single node with its own feedback
d Single layer recurrent network
e.  Multi-layer recurrent network

3. Alearning algorithm: For training ANN by modifying the weights in
order to model a particular learning task correctly on the training
examples.

Following are the different types of learning algorithm:

a.  Supervised Learning
b.  Unsupervised Learning
c.  Reinforcement Learning

Applications of Neural Network:

1. Image recognition

2 Pattern recognition

3 Self-driving car trajectory prediction
4.  Email spam filtering

5 Medical diagnosis

A.10 GENETICS ALGORITHMS

Genetic Algorithms initiated and developed in the early 1970’s by John
Holland are unorthodox search and optimization algorithms, which mimic
some of the process of natural evolution. Gas perform directed random
search through a given set of alternative with the aim of finding the best



alternative with respect to the given criteria of goodness. These criteria are
required to be expressed in terms of an object function which is usually
referred to as a fitness function.

Biological Background:

All living organism consist of cell. In each cell, there is a set of
chromosomes which are strings of DNA and serves as a model of the
organism. A chromosomes consist of genes of blocks of DNA. Each gene
encodes a particular pattern. Basically, it can be said that each gene encodes
a traits.

Steps involved in the genetic algorithm:

Initialization: Define the population for the problem.

Fitness Function: It calculates the fitness function for all the
chromosomes in the population.

Selection: Two fittest chromosomes are selected for the producing the
offspring.

Crossover: Information in the two chromosomes is exchanged to
produce the new offspring.

Mutation: It is the process of promoting diversity in the populations.

Benefits of Genetic Algorithm

Easy to understand.

We always get an answer and the answer gets better with time.
Good for noisy environment.

Flexible in forming building blocks for hybrid application.
Has substantial history and range of use.

Supports multi-objective optimization.

Modular, separate from application.

Application of Genetic Algorithm:

Recurrent Neural Network
Mutation testing
Code breaking

Filtering and signal processing

Introduction of
Soft Computing
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Soft Computing Tectniaues A 11 ASSOCIATIVE MEMORY

An associative memory is a content-addressable structure that maps a set of
input patterns to a set of output patterns. The associative memory are of two
types : auto-associative and hetero-associative.

An auto-associative memory retrieves a previously stored pattern that
most closely resembles the current pattern. In a hetero-associative
memory, the retrieved pattern is, in general, different from the input pattern
not only in content but possibly also in type and format.

Description of Associative Memory:

Alex Graham Bell

Thomas Edison

Christopher Columbus

Albert Einstein
Crhistpher Columbos —> Charles Darwin — Christopher Columbus

Blaise Pascal

Marco Polo

Neil Armstrong

Sigmund Freud

Fig a.4: A content-addressable memory, Input and output

A content-addressable memory is a type of memory that allows, the recall
of data based on the degree of similarity between the input pattern and the
patterns stored in memory. It refers to a memory organization in which the
memory is accessed by its content and not or opposed to an explicit address
in the traditional computer memory system. This type of memory allows the
recall of information based on partial knowledge of its contents.

The simplest artificial neural associative memory is the linear associator.
The other popular ANN models used as associative memories are Hopfield
model and Bidirectional Associative Memory (BAM) models.

A.12 ADAPTIVE RESONANCE THEORY

ART stands for "Adaptive Resonance Theory", invented by Stephen
Grossberg in 1976. ART encompasses a wide variety of neural networks,
based explicitly on neurophysiology. The word "Resonance" is a concept,
just a matter of being within a certain threshold of a second similarity
measure. The basic ART system is an unsupervised learning model, like
many iterative clustering algorithms where each case is processed by
finding the "nearest™ cluster seed that resonate with the case and update the
cluster seed to be "closer" to the case. If no seed resonate with the case, then
a new cluster is created.

12



Grossberg developed ART as a theory of human cognitive information
processing. The emphasis of ART neural networks lies at unsupervised
learning and self-organization to mimic biological behavior. Self-
organization means that the system must be able to build stable recognition
categories in real-time. The unsupervised learning means that the network
learns the significant patterns based on the inputs only. There is no
feedback. There is no external teacher that instructs the network or tells
which category a certain input belongs. The basic ART system is an
unsupervised learning model.

The model typically consists of:

e acomparison field and a recognition field composed of neurons,
e  avigilance parameter, and
e  areset module.

Comparison field and Recognition field:

e  The Comparison field takes an input vector (a 1-D array of values)
and transfers it to its best match in the Recognition field; the best
match is, the single neuron whose set of weights (weight vector)
matches most closely the input vector.

) Each Recognition Field neuron outputs a negative signal(proportional
to that neuron’s quality of match to the input vector) to each of the
other Recognition field neurons and inhibits their output accordingly.

° Recognition field thus exhibits lateral inhibition, allowing each
neuron in it to represent a category to which input vectors are
classified.

Vigilance parameter:

° It has considerable influence on the system memories:
0 higher vigilance produces highly detailed memories,
0 lower vigilance results in more general memories

Reset module:

e  After the input vector is classified, the Reset module compares the
strength of the recognition match with the vigilance parameter.

0 If the vigilance threshold is met, then training commences.

0 Else, the firing recognition neuron is inhibited until a new input
vector is applied.

Training ART-based Neural Networks:

° Training commences only upon completion of a search procedure.
What happens in this search procedure :

Introduction of
Soft Computing
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0 The Recognition neurons are disabled one by one by the reset
function until the vigilance parameter is satisfied by a
recognition match.

0 If no committed recognition neuron’s match meets the vigilance
threshold, then an uncommitted neuron is committed and
adjusted towards matching the input vector.

Methods of Learning:

Slow learning method: here the degree of training of the recognition
neuron’s weights towards the input vector is calculated using
differential equations and is thus dependent on the length of time the
input vector is presented.

Fast learning method: here the algebraic equations are used to
calculate degree of weight adjustments to be made, and binary values
are used.

Types of ART Systems:

ART 1: The simplest variety of ART networks, accept only binary
inputs.

ART 2 : It extends network capabilities to support continuous inputs.

Fuzzy ART : It Implements fuzzy logic into ART’s pattern
recognition, thus enhances generalizing ability. One very useful
feature of fuzzy ART is complement coding, a means of incorporating
the absence of features into pattern classifications, which goes a long
way towards preventing inefficient and unnecessary category
proliferation.

ARTMAP : Also known as Predictive ART, combines two slightly
modified ARTs , may be two ART-1 or two ART-2 units into a
supervised learning structure where the first unit takes the input data
and the second unit takes the correct output data, then used to make
the minimum possible adjustment of the vigilance parameter in the
first unit in order to make the correct classification.

A.13 CLASSIFICATION

Classification is supervised learning. Classification algorithms is used to
predict the categorical values. Training is provided to identify the category
of new observations. The program learns from the given dataset or
observations and then classifies new observation into a number of classes
or groups. Classes are also called as target/labels or categories.

Classification algorithms:

Logistic Regression
Naive Bayes



° K-Nearest Neighbour Introduction of
. Soft Computing

° Decision tree

° Random Forest

Application of Classification:

e  Email Spam Detection

e  Speech Recognition

° Identification of Cancer tumour cells
° Biometric Identifications

A.14 CLUSTERING

Clustering is type of unsupervised learning method. In this learning we draw
references from datasets consisting of input data without labelled responses.
Generally, it is used as a process to find meaningful structure, explanatory
underlying processes, generative features, and groupings inherent in a set of
examples.

Its task is to divide the population or data points into several groups. Data
points in the same group are similar to the other data point in the same group
and dissimilar to the data points in other groups.

Why Clustering?

Clustering determines the grouping among the unlabelled data present.
There is no criteria for a good clustering. It depends on the criteria that the
user fits the need of the user.

Clustering Methods:

° Density-Based Methods

° Hierarchical Based Methods
0 Agglomerative (bottom up approach)
0 Divisive (top down approach)

° Partitioning Methods

) Grid-based Methods

Applications of Clustering in different fields
° Marketing

e  Biology

) Insurance

e  City Planning

° Earthquake studies
15
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A.15 PROBABILISTIC REASONING

Probabilistic reasoning is a way of knowledge representation where we
apply the concept of probability to indicate the uncertainty in knowledge.
In probabilistic reasoning, we combine probability theory with logic to
handle the uncertainty. We use probability in probabilistic reasoning
because it provides a way to handle the uncertainty that is the result of
someone's laziness and ignorance. In the real world, there are lots of
scenarios, where the certainty of something is not confirmed, such as "It
will rain today,” "behavior of someone for some situations,” "A match
between two teams or two players.” These are probable sentences for which
we can assume that it will happen but not sure about it, so here we use
probabilistic reasoning.

Need of probabilistic reasoning in Al:
e  When there are unpredictable outcomes.

e  When specifications or possibilities of predicates becomes too large
to handle.

) When an unknown error occurs during an experiment.

° In probabilistic reasoning, there are two ways to solve problems with
uncertain knowledge:

0 Bayes' rule
0 Bayesian Statistics

A.16 BAYESIAN NETWORKS

Bayesian network is also known Bayesian belief network, decision network
or Bayesian Model. It deals with the probabilistic events and solves a
problem which has uncertainty.

Bayesian networks are a type of probabilistic graphical model that uses
Bayesian inference for probability computations. Bayesian networks aim
to model conditional dependence, and therefore causation, by representing
conditional dependence by edges in a directed graph. Through these
relationships, one can efficiently conduct inference on the random variables
in the graph through the use of factors.

3 P(C—-T) P(C— £

/ =
R | P(W=T) P(W=F)
T 0,99 0,01
F 0,9 0,1
T 0,9 0,1
F 0,0 1,0

‘ C | P(S=T) P(S=F) \
= @
Fig a.5: Bayesian Network example

mm- -0




A Bayesian network is a directed acyclic graph in which each edge
corresponds to a conditional dependency, and each node corresponds to a
unique random variable. Formally, if an edge (A, B) exists in the graph
connecting random variables A and B, it means that P(B|A) is a factor in
the joint probability distribution, so we must know P(B|A) for all values of
B and A in order to conduct inference.

The Bayesian network has mainly two components:
e  Causal Component
e  Actual numbers

Each node in the Bayesian network has condition probability distribution
P(Xi |Parent(Xi) ), which determines the effect of the parent on that node.

Applications of Bayesian Networks:
° Medical Diagnosis
) Management efficiency

° Biotechnology

1A.17 SUMMARY

In this chapter we have learned different techniques used in soft computing.
Fuzzy system can be used when we want to deal with uncertainty and
imprecision. Adaptivity and learning abilities in the system can be build
using neural computing. To find the better solution to the problem, genetic
algorithms can be applied. The pattern can be retrieved from the memory
based on the content and not based on address is called associative memory.
Find the input patterns closest resemblances in the memory can also be done
with the adaptive resonance theory. Classification is based on supervised
learning usually used for predictions and clustering is based on
unsupervised learning. Probabilistic reasoning and Bayesian Networks are
based on the probability of the event occurring.

1A.18 REVIEW QUESTIONS

What is computational paradigm?
State difference between hard computing and soft computing?

Write a short note on soft computing.

A w0 dpoPE

What are the premises and guiding principle of soft computing
techniques?

5.  Give any three applications of soft computing.

Introduction of
Soft Computing
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1B.0 OBJECTIVES

1
2.
3.
4

o

The fundamentals of artificial neural network
Understanding between biological neuron and artificial neuron
Working of a basic fundamental neuron model.

Terminologies and terms used for better understanding of Atrtificial
Neural Network

The basics of supervised learning and perceptron learning rule
Overview of adaptive and multiple adaptive linear neurons
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1B.1 BASIC CONCEPT

Neural networks are information processing systems that are implemented
to model the working of the human brain. It is more of a computational
model used to perform tasks in a better optimized way than the traditional
systems. The essential properties of biological neural networks are
considered in order to understand the information processing tasks. This
indeed will allow us to design abstract models of artificial neural networks
which can be simulated and analyzed.

1b.1.1 Introduction to Artificial Neural Network

Artificial Neural Network (ANN) is an information processing system that
possesses characteristics with biological neural networks. ANNs consists of
large number of highly interconnected processing elements called nodes or
units or neurons. These neurons operate in parallel. Every neuron is
connected to the other neuron through the communication link with
assigned weights which contain information about the input signal. These
processing elements are called neurons or artificial neurons.

1b.1.2 Overview of Biological Neural Network

synapse

Fig 1b.1: Schematic diagram of a Neuron
(Image courtesy: Ugur Halici Lecture notes)

The fact that the human brain consists of large number of neurons with
numerous interconnections that processes information. The term neural
network is usually referred to the biological neural network that processes
and transmits information. The biological neurons are part of the nervous
system.

The biological neuron consists of three major parts

1.  Soma or Cell body- contains the cell nucleus. In general, processing
occurs here

2. Dendrites- branching fibres that protrude from the cell body or soma.
The nerve is connected to the cell body.

3. Axon- It carries the impulses of the neuron. It carries information
away from the soma to other neurons.

4.  Synapse- Each strand of an axon terminates into a small bulb-like
organ called synapse. It is through synapse the neuron introduces its
signals to other neurons.



Working of the neuron

1.

Dendrites receive activation signal from other neurons which is the
internal state of every neuron

Soma processes the incoming activity signals and convert its into
output activation signals.

Axons carry signals from the neuron and sends it to other neurons.

Electric impulses are passed between the synapses and the dendrites.
The signal transmission involves a chemical process called neuro-
transmitters.

1b.1.3 Human Brain v/s Artificial Neural Network

Comparison between biological and artificial neurons based on the
following criteria

1.

Speed — Signals in human brain move at a speed dependent on the
nerve impulse. The biological neuron is slow in processing as
compared to the artificial neural networks which are modelled to
process faster.

Processing- The biological neuron can perform massive parallel
operations simultaneously. A large number of simple units are
organized to solve problems independently but collectively. The
artificial neurons also respond in parallel but do not execute
programmed instructions.

Size and Complexity- The size and complexity of the brain is
comparatively higher than that of artificial neural network. The size
and complexity of an ANN is different for different applications

Storage Capacity — The biological neuron stores the information in its
interconnection and in artificial neuron it is stored in memory
locations.

Tolerance- The biological neuron has fault tolerant capability but
artificial neuron has no tolerant capability. Biological neurons
considers redundancies whereas artificial neurons cannot consider
redundancies.

Control mechanism- There is no control unit to monitor the
information processed in to the network in biological neural networks
whereas in artificial neuron model all activities are continuously
monitored by a control unit.

Artificial Neural Network
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1b.1.4 Characteristics of Artificial Neural Networks

1. It is a mathematical model consists of computational elements
implemented neurally.

2. Large number of highly interconnected processing elements known
as neurons are prominent in ANN

3. The interconnections with their weights are associated with neurons.

4.  The input signals arrive at the processing elements through
connections and weights.

5. ANNSs collective behavior is characterized by their ability to learn,
recall and generalize from the given data.

6.  Asingle neuron carries no specific information.
1b.1.5 How a simple neuron works?

xl wl

+‘<

Fig 1b.2 Architecture of a simple artificial neural net

From the given figure above, there are two input neurons X1 and X2
transmitting signal to the output neuron Y for receiving signal.

The input neurons are connected to the output neurons over a weighted
interconnection links w1l and w2.

For above neuron architecture , the net input has to be calculated in the way.
yin = x1wl+x2w2

where x1 and x2 are the activations of the input neurons X1 and X2 . The
output yin of the output neuron Y can be obtained by applying activations
over the net input .

y =f(yin)
Output = Function ( net input calculated )

The function to be applied over the net input is called activation function .



1B.2 BASIC MODELS OF ARTIFICAL NEURAL
NETWORK

The models of ANN are specified by the three basic entities

1.  The model’s synaptic interconnections

2. The learning rules adopted for updating and adjusting the connection
weights

3. The activation functions
3.2.1. The model’s synaptic interconnections

ANN consists of a set of highly interconnected neurons connected through
weights to the other processing elements or to itself. The arrangement of
these processing elements and the geometry of their interconnections are
important for ANN. The arrangement of neurons to form layers and the
connection pattern formed within and between layers is called the network
architecture.

There are five basic neuron connection architectures.

Single-layer feed-forward network
Multilayer feed-forward network

1

2

3. Single node with its own feedback
4 Single-layer recurrent network

5

Multi-layer recurrent network
1.  Single-layer feed-forward network

It consists of a single layer of network where the inputs are directly
connected to the output, one per node with a series of various weights.

Input Output
layer layer

Input
neurons”

. Output
neurons

Artificial Neural Network
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It consists of multi layers where along with the input and output layers, there
are hidden layers. There can be zero to many hidden layers. The hidden
layer is usually internal to the network and has no direct contact with the
environment.

Input
layer

Hidden
layers

3. Single node with own feedback

The simplest neural network architecture giving feedback to itself with a
single neuron.

Qutput
Input

T~

/
////V
Feedback

4.  Single-layer recurrent network

A single-layer network with a feedback directed back to itself or to other
processing element or both.

&
b

24



5. Multilayer recurrent network

A recurrent network has at least a feedback in place. The processing
elements output can be directed back to the nodes in the previous layer.

Input layer Output layer

3.2.2.Learning

The most important part of ANN is it capability to train or learn. It is
basically a process by means of which a neural net adapts for adjusting or
updating the connection weights in order to receive a desired response.

Learning in ANN is broadly classified into three categories
1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

1. Supervised Learning

In Supervised learning, it is assumed that the correct target output values
are known for each input pattern. In this learning, a supervisor or teacher is
needed for error minimization. The difference between the actual and
desired output vector is minimized using the error signal by adjusting the
weights until the actual output matches the desired output.

2. Unsupervised Learning

In Unsupervised learning, the learning is performed without the help of a
teacher or supervisor. In the learning process, the input vectors of similar
type are grouped together to form clusters. The desired output is not given
to the network. The system learns on its own with the input patterns.

Artificial Neural Network
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3.

Reinforcement Learning

The Reinforcement learning is a form of Supervised learning as the network
receives feedback from its environment. Here the supervisor does not
present the desired output but learns through the critic information.

3.2.3 Activation Function

An activation function f is applied over the net input to calculate the output
of an ANN. The choice of activation functions depends on the type of
problems to be solved by the network.

The most common functions are

1.

Identity function- It is a linear function. It is defined as f(x) = x for all
X

Binary step function: The function can be defined as
lifx>=6

f(x) =
Oifx<eo

Here,6 represents the threshold value.

Bipolar Step function: The function can be defined as
lifx>=6

fx) =
-lifx<6

Here,d represents the threshold value

Sigmoidal functions: These functions are used in back-propagation
nets.

They are of two types:
Binary Sigmoid function: It is known as unipolar sigmoid function.

It is defined by the equation

f(x) = —

1+e~2x

Here, A is the steepness parameter. The range of the sigmoid function is
from0tol

Bipolar Sigmoid function: This function is defined as

1-e™4
1+e M

f(x) =



Here, A is the steepness parameter. The range of the sigmoid function is Artificial Neural Network
from -1to +1

5. Ramp function: The ramp function is defined as
1 ifx>1
f(x)= xif0<x< 1
0ifx<0

The graphical representation is shown below for all the activation
functions

fix)

Fix

o X
(A) x {B)
fix)
+1
lu] X
-1
(C) Q)
fix)

% h=7 A=5 k=3 A=1.5 A=1
o I

} - T "X

(E} (F)

Denfl?tiun o_factivation functions: (4) identity function; (B) binary step function; (C) bipolar step function;
(D) binary sigmoidal function; (E) bipolar sigmoidal function; (F) ramp function.

1B.3 TERMINOLOGIES OF ANN

3.3.1 Weights

Weight is a parameter which contains information about the input signal.
This information is used by the net to solve a problem.
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In ANN architecture, every neuron is connected to other neurons by means
of a directed communication link and every link is associated with weights.

Wij is the weight from processing element ‘i’ source node to processing
element ‘j” destination node.

3.3.2 Bias (b)

The bias is a constant value included in the network. Its impact is seen in
calculating the net input. The bias is included by adding a component xo =1
to the input vector X.

Bias can be positive or negative. The positive bias helps in increasing the
net input of the network. The negative bias helps in decreasing the net input
of the network.

1b.3.3. Threshold (6)

Threshold is a set value used in the activation function. In ANN, based on
the threshold value the activation functions are defined and the output is
calculated.

1b.3.4 Learning Rate (a)

The learning rate is used to control the amount of weight adjustment at each
step of training. The learning rate ranges from 0O to 1. It determines the rate
of learning at each time step.

1B.4 MCCULLOCH- PITTS NEURON (MP NEURON
MODEL)

MP neuron model was the earliest neural network model discovered by
Warren McCulloch and Walter Pitts in 1943.1t is also known as Threshold
Logic Unit.

The M-P neurons are connected by directed weighted paths. The activation
of this model is binary. The weights associated with the communication
links may be excitatory (weight is positive) or inhibitory (weight is
negative). Each neuron has a fixed threshold and if the net input to the
neuron is greater than the threshold then the neuron fires otherwise it will
not fire.

1B.5 CONCEPT OF LINEAR SEPARABILITY

Concept: Sets of point in 2-D space are linearly separable if the points can
be separated by a straight line

In ANN, linear separability is the concept wherein the separation is based
on the network response being positive or negative. A decision line is drawn
to separate positive and negative responses. The decision line is called as
linear-separable line.



Fig 1b.3: Linear Separable Patterns

The linear separability of the network is based on the decision-boundary
line. If there exists weights for which the training data has correct
response,+ 1 (positive) ,it will lie on one side of the decision boundary line
and all other data on the other side of the boundary line. This is known as

linear separability.

1B.6 HEBB NETWORK

Hebb or Hebb learning rule stated by Donald Hebb in 1949 states that, the
learning is performed by the change in the synaptic gap. Explaining further,
he stated “When an axon of cell A is near enough to excite cell B, and
repeatedly takes place in firing it, some growth or metabolic change takes
place in one or both the cells such that A’s efficiency, as one of the cells

firing B, is increased”.

In Hebb learning, if two interconnected neurons are ‘ON’ simultaneously
then the weights associated with these neurons can be increased by changing

the strength in the synaptic gap.
The weight update is given by

Wi (new) = w; (old) + xiy

Acrtificial Neural Network
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Flowchart of Training algorithm,

L Inftialize weights

I

For
each
sl

Yes

Activate input units
XN =S

|

Activate output units
=1

l

WWeight update
w (new) = w, (old) -+ i,y

!

Bias update
B (new) = blold) + 3

Fig 1b.4: Flowchart of Hebb training algorithm

1B.7 PERCEPTRON NETWORKS

Perceptron Networks are single-layer feed forward networks. They are the
simplest perceptron,

Perceptron consists of three units — input unit (sensory unit), hidden unit
(associator unit) and output unit (response unit). The input units are
connected to the hidden units with fixed weights having values 1, 0 or -1
assigned at random. The binary activation function is used in input and
hidden unit. The response unit has an activation of 1, 0 or -1. The output

signal sent from the hidden unit to the output unit are binary.

The output of the perceptron network is given by y =f(yin) where yin is the
activation function.

input xi weights wij output vi
X1 m Wis )‘ > V1
M
w

X2 > 22 ' y2

(@] w3 ®

e . Wim @

@ W2 @

>

Xn U W >. Ym

Single layer
Perceptron

Fig 1b.5: Perceptron model



Perceptron Learning algorithm

The training of perceptron is a supervised learning algorithm. The algorithm
can be used for either bipolar or binary input vectors, fixed threshold and
variable bias.

The output is obtained by applying the activation function over the
calculated net input.

The weights are adjusted to minimize error when the output does not match
the desired output.

Step O:
rate ar(e ers 1), For simplicity rrisset 1o 1.

Pertorm Steps 26 uniil the final stapping condition Is false,

Ferform Stepa 3-5 for cach tralning palr Indicared by s: 1.

The input layer vuntalnlng input units Is applicd with identity activation functions:

Stop 1:
Step 2:
Step 3:

xlnlr

Step 4: Calculate the output of the network, To do 50, firat obtain the net input:

TS
i=l

where “n ™ is the number of Input neurons in the input layer. “Then apply activations over the net input

calculated 1o obtaln the output:

1 iy, >0
y=fly,)=40 ir-0sy =<¢o
-1 ily, <=0

Step 5: Weight and bias adjustment: Compare the value of the actual (calculated) output and desired (target)

output.
Ify#t,then

w,(new) = w,(old) + atx,
b{new) = blold) + ot
else we have
w,(new) = w,(old)
b(new) = blold)

[lthalize the weiglit and the blas (for ey calculation they can be set to zero). Also initiallze the learning

Artificial Neural Network

Step 6: Train the network until there s no weight change. This is the stopping condition for the network. If this

condition is not met, then start again from Step 2.

1B.8 ADAPTIVE LINEAR NEURON (ADALINE)

It is a network with a single linear unit. The linear activation functions are
called linear units. In this, the input-output relationship is linear. Adaline
networks are trained using the delta rule.

Adaline is a single-unit neuron, which receives input from several units and
also from one unit, called bias. An Adeline model consists of trainable
weights. The inputs are of two values (+1 or -1) and the weights have signs
(positive or negative).

Initially random weights are assigned. The net input calculated is applied to
a quantizer transfer function (possibly activation function) that restores the
output to +1 or -1. The Adaline model compares the actual output with the
target output and with the bias and the adjusts all the weights.
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1b.8.1 Training Algorithm
The Adaline network training algorithm is as follows:

Step0: weights and bias are to be set to some random values but not zero.
Set the learning rate parameter a.

Stepl: perform steps 2-6 when stopping condition is false.
Step2: perform steps 3-5 for each bipolar training pair s:t
Step3: set activations foe input units i=1 to n.

Step4: calculate the net input to the output unit.

Step5: update the weight and bias for i=1 to n

Step6: if the highest weight change that occurred during training is smaller
than a specified tolerance then stops the training process, else continue. This
is the test for the stopping condition of a network.

1b.8.2 Testing Algorithm

It is very essential to perform the testing of a network that has been trained.
When the training has been completed, the Adaline can be used to classify
input patterns. A step function is used to test the performance of the
network. The testing procedure for the Adaline network is as follows:

Step0: initialize the weights. (The weights are obtained from the training
algorithm.)

Stepl: perform steps 2-4 for each bipolar input vector x.

Step2: set the activations of the input units to x.

Step3: calculate the net input to the output units

Step4: apply the activation function over the net input calculated.

1B.9 MULTIPLE ADAPTIVE LINEAR NEURONS
(MADALINE)

It consists of many adalines in parallel with a single output unit whose value
is based on certain selection rules. It uses the majority vote rule. On using
this rule, the output unit would have an answer either true or false.

On the other hand, if AND rule is used, the output is true if and only if both
the inputs are true and so on.

The training process of Madaline is similar to that of Adaline
1b.9.1 Architecture

It consists of “n” units of input layer and “m” units of Adaline layer and “1”
unit of the Madaline layer. Each neuron in the Adaline and Madaline layers
has a bias of excitation “1”. The Adaline layer is present between the input



layer and the Madaline layer; the Adaline layer is considered as the hidden
layer.

Xy

X

Fig 1b.6: Architecture of Madaline layer

1B.10 REVIEW QUESTIONS

1
2
3.
4

Define the term Artificial Neural Network.
List and explain the main components of biological neuron.
Mention the characteristics of an artificial neural network.

Compare the similarities and differences between biological and

artificial neuron.

5.

o N o

© © o o

11.
12.
13.

What are the basic models of an artificial neural network?
List and explain the commonly used activation functions.
Define the following

Weights

Bias

Threshold

Learning rate

Write a short note on McCulloch Pitts Neuron model.
Discuss about the concept of liner separability.

State the training algorithm used for the Hebb learning networks.
Explain perceptron network.

What is Adaline? Draw the model of an Adaline network.

How is Madaline network formed?

Artificial Neural Network

33



Soft Computing Techniques

34

1B.11 REFERENCES

1.

“Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,
2019, Wiley Publication, Chapter 2 and 3

http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,
Stephen Lucci PhD)

Related documents, diagrams from blogs, e-resources from RC
Chakraborty lecture notes and tutorialspoint.com.
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1c

SUPERVISED LEARNING NETWORK

Unit Structure
1c.0 Objective
1c.1 Perceptron Network

1c.2 Adaptive Linear Neuron
1c.2.1 Training Algorithm
1c.2.2 Testing Algorithm

1c.3 Multiple Adaptive Linear Neurons
1c.3.1 Architecture

1c.4 Backpropagation Network

1c.5 Radial Basis Function

1c.6 Time Delay Neural Network
1c.7 Functional Link Network
1c.8 Tree Neural Network

1c¢.9 Review Questions

1¢.10 References

1C.0 OBJECTIVES

The fundamentals of Supervised Learning Network
Understanding Perceptron Network

Working of a Adaptive Linear Neuron.
Understanding of Multiple Adaptive Linear Neurons

To understand Back-propagation networks used in real time
application.

Theory behind radial basis network and its activation function

Special supervised learning networks such as time delay neural
networks, functional link networks, tree neural networks and wavelet
neural networks

AEE I

N o

1C.1 PERCEPTRON NETWORKS

Perceptron Networks are single-layer feed forward networks. They are the
simplest perceptron,

Perceptron consists of three units — input unit (sensory unit), hidden unit
(associator unit) and output unit (response unit). The input units are
connected to the hidden units with fixed weights having values 1, 0 or -1
assigned at random. The binary activation function is used in input and
hidden unit. The response unit has an activation of 1, 0 or -1. The output
signal sent from the hidden unit to the output unit are binary.
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The output of the perceptron network is given by y =f(yin) where yin is the

Soft Computing Techniques - | !
activation function.

input xi weights wij output vyij

/-\ Wiz > V1

X1 >
M
w
X2 > 22 > Y2
[ J
o
@
> Vm

. h 4 )

Single layer
Perceptron

Fig 1c.1: Perceptron model

Perceptron Learning algorithm

The training of perceptron is a supervised learning algorithm. The algorithm
can be used for either bipolar or binary input vectors, fixed threshold and

variable bias.

The output is obtained by applying the activation function over the
calculated net input.

The weights are adjusted to minimize error when the output does not match
the desired output.

St : N
ap 0:  [olialize the f“"l-lh_"' amd the blas (for cusy caleulation they can be wet 1o zern), Also initialize the learning
rate ex{lde er= 1), For simplicity ez is set w 1.

Step 1: Fertorm Step 26 unii) the final stopping condition Is false,
v T .
Step 2: Perfurm Steps 3-5 for cach tralning palr Indicated by s: 1.
Stap 3: The input layer contalnlng input units Is applicd with identity activation functions:

IH‘Il i

Step 4: Calculate the output of the network. ‘To do so, first obtain the net input: .

Y= b+ 3 xw,
=l

where “n " is the number of input neurons in the input layer. ‘Then apply activations over the net input
calculated 10 obtaln the output:

1 iry,>8
y=fly,)=40 ifr-@sy =<0
-1 ily,<-0

Step 5: Weight and bias adjustment: Compare the value of the actual (calculated) output and desired (target)
output.
If y#1t,then

w, {new) =w, (old) + aix,
b{new) =b(old) + et
else we have
w,(new) = w, (old)
b(new) = blold)

Step 6. Train the network until there is no weight change. This is the stopping condition for the network. If this
condition is not met, then start again from Step 2.
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1C.2 ADAPTIVE LINEAR NEURON (ADALINE)

It is a network with a single linear unit. The linear activation functions are
called linear units. In this, the input-output relationship is linear. Adaline
networks are trained using the delta rule.

Adaline is a single-unit neuron, which receives input from several units and
also from one unit, called bias. An Adeline model consists of trainable
weights. The inputs are of two values (+1 or -1) and the weights have signs
(positive or negative).

Initially random weights are assigned. The net input calculated is applied to
a quantizer transfer function (possibly activation function) that restores the
output to +1 or -1. The Adaline model compares the actual output with the
target output and with the bias and the adjusts all the weights.

1c.2.1 Training Algorithm
The Adaline network training algorithm is as follows:

Step0: weights and bias are to be set to some random values but not zero.
Set the learning rate parameter o.

Stepl: perform steps 2-6 when stopping condition is false.
Step2: perform steps 3-5 for each bipolar training pair s:t
Step3: set activations foe input units i= 1 to n.

Step4: calculate the net input to the output unit.

Step5: update the weight and bias for i=1 to n

Step6: if the highest weight change that occurred during training is smaller
than a specified tolerance then stops the training process, else continue. This
is the test for the stopping condition of a network.

1c.2.2 Testing Algorithm

It is very essential to perform the testing of a network that has been trained.
When the training has been completed, the Adaline can be used to classify
input patterns. A step function is used to test the performance of the
network. The testing procedure for the Adaline network is as follows:

StepO: initialize the weights. (The weights are obtained from the training
algorithm.)

Stepl: perform steps 2-4 for each bipolar input vector x.
Step2: set the activations of the input units to x.
Step3: calculate the net input to the output units

Step4: apply the activation function over the net input calculated.

Supervised Learning Network
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1C.3 MULTIPLE ADAPTIVE LINEAR NEURONS
(MADALINE)

It consists of many adalines in parallel with a single output unit whose value
is based on certain selection rules. It uses the majority vote rule. On using
this rule, the output unit would have an answer either true or false.

On the other hand, if AND rule is used, the output is true if and only if both
the inputs are true and so on.

The training process of Madaline is similar to that of Adaline
1c.3.1 Architecture

It consists of “n” units of input layer and “m” units of Adaline layer and “1”
unit of the Madaline layer. Each neuron in the Adaline and Madaline layers
has a bias of excitation “1”. The Adaline layer is present between the input
layer and the Madaline layer; the Adaline layer is considered as the hidden
layer.

51

Fig 1c.3: Architecture of Madaline layer

1C.4 BACKPROPAGATION NETWORKS

It is applied to multi-layer feed forward networks consisting of processing
elements with different activation functions. The networks associated with
back propagation learning algorithm is known as Back propagation
networks. It uses gradient descent method to calculate error and propagate
it back to the hidden unit.

The training at BPN is performed in three stages
1.  The feed-forward of the input training pattern

2. The calculation and back-propagation of the error



4.
S.

Weight updates Supervised Learning Network

Hidden layer(s)

Output layer

Ya,, -
Backprop output [ayer

Fig. 1C.4.1: Architecture of Backpropagation network
(Image:guru99.com)

A back-propagation neural network is a multilayer, feed-forward
neural network consisting of an input layer, a hidden layer and output
layer.

The neurons present in the hidden and output layers have activation
with always value 1.

The bias also acts as weights.
During the learning phase, signals are sent in the reverse direction.

The output obtained can be either binary or bipolar.

1C.5 RADIAL BASIS FUNCTION NETWORK

The radial basis function is a classification and functional approximation
neural network. It uses non-linear activation functions like sigmoidal and
Gaussian functions. Since radial basis functions have only one hidden layer,
the convergence of optimization is much faster.

1.
2.

The architecture consists of two layers.

The output nodes form a linear combination of the basis functions

computed by means of radial basis function nodes. Hidden layer generates
a signal corresponding to an input vector in the input layer, and
corresponding to this signal, network generates a response.
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Input Hidden Output
layer layer (RBF) layer

Fig. 1C.4.2: Architecture of Radial Basis functions

1C.6 TIME DELAY NEURAL NETWORKS

Time delay networks are basically feed-forward neural networks except that
the input weights has a tapped delay line associated to it.In TDNN, when
the output is being fed back through a unit delay into the input layer, the net
computed is equivalent to an infinite impulse response filter.

A neuron with a tapped delay line is called a Time delay neural network
unit and a network which consists of TDNN units is called a Time delay
neural network. Application od TDNN is speech recognition.

1C.7 FUNCTIONAL LINK NETWORKS

Functional link networks is a specifically designed high order neural
networks with low complexity for handling linearly non-separable
problems. It has no hidden layers. This model is useful for learning
continuous functions.

The most common example of linear non-separability is XOR problem.

sin 7x
)
COS X

sin 27x

— T y=£fx)

sin nxx

Fig 1C.4.3: Functional line network model with no hidden layer



1C.8 TREE NEURAL NETWORKS Supervised Learning Network

These networks are basically used for pattern recognition problems. It uses
multilayer neural network at each decision-making node of a binary
classification for extracting a non-linear feature.

The decision nodes are circular nodes and the terminal nodes are square
nodes. The splitting rule decides whether the pattern moves to the right or

left.

The algorithm consists of two phases

1.

The growing phase- A large tree is grown in this phase by recursively
finding the rules of splitting until all the terminal nodes have nearly
pure membership or else it can split further.

Tree pruning phase- To avoid overfilling/overfitting of data, a smaller
tree is selected or it is pruned.

Example- Tree neural networks can be used for waveform recognition
problem.

Fig 1C.4.4: Binary Classification tree

1C.9 REVIEW QUESTIONS

1
2.
3.
4

o

Define the term Artificial Neural Network.
List and explain the main components of biological neuron.
Mention the characteristics of an artificial neural network.

Compare the similarities and differences between biological and
artificial neuron.

What are the basic models of an artificial neural network?

List and explain the commonly used activation functions.
41



Define the following
Weights

Bias

Threshold

Learning rate

Soft Computing Techniques

Write a short note on McCulloch Pitts Neuron model.

© ® a o T o N

Discuss about the concept of liner separability.

10. State the training algorithm used for the Hebb learning networks.
11. Explain perceptron network.

12.  What is Adaline? Draw the model of an Adaline network.

13. How is Madaline network formed?

1C.10 REFERENCES

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,
2019, Wiley Publication, Chapter 2 and 3

2. http://lwww.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,
Stephen Lucci PhD)

3.  Related documents, diagrams from blogs, e-resources from RC
Chakraborty lecture notes and tutorialspoint.com
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MODULE I: Unit Il

2a

ASSOCIATIVE MEMORY NETWORK

Unit Structure

2a.0 Objective

2a.1 Wavelet Neural Network

2a.2 Associative Memory Networks-Overview
2a.3 Auto associative Memory Network
2a.4 Hetro associative Memory Network
2a.5 Bi-directional Associative Memory
2a.6 Hopfield Networks

2a.8 Kohonen Self-Organizing Feature Maps
2a.9 Kohonen Self-Organizing Motor Map
2a.10 Learning Vector Quantization (LVQ)
2a.11 Counter propagation Networks

2a.12 Adaptive Resonance Theory Network
2a.13 Questions

2a.14 References

2A.0 OBJECTIVES

To understand Wavelet Neural Networks
Details and understanding about Associative Memory and its types

Hopfield networks and its training algorithm.

P W poE

An overview of iterative auto associative and temporal associative
memory

2A.1 WAVELET NEURAL NETWORKS

These networks work on wavelet transform theory. It is useful for functional
approximation through wavelet decomposition. It consists of rotation,
dilation, translation and if the wavelet lies on the same line then it is called
wavelon instead of a neuron.
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F\_')"“‘*" Ry Dy @ -—-‘ W, :\ _—
N

Fig 2a.1: Wavelet Neural network with translation, rotation,

dilation and wavelon

2A.2 ASSOCIATIVE MEMORY NETWORKS-
OVERVIEW
1. An associative memory is a content addressable memory structure

that maps the set of input patterns to the output patterns. It can store a
set of patterns as memories. The recall is through association of the
key pattern with the help of information memorized. Associative
memory makes a parallel search with a stored data file. The concept
behind this type of search is to retrieve the stored data either
completely or partially.

A content-addressable structure refers to a memory organization
where the memory is accessed by its content. The associative
memory is of two types autoassociative memory and
heteroassociative memory which are single-layer nets where the
weights are determined by the net output which is stored as a pattern.
The architecture of the associative net is either feed-forward or
iterative.

2A.3 AUTOASSOCIATIVE MEMORY NETWORK

o & W npoE

In this network, training input and target output vectors are same.
Determination of weight is called storing of vectors.

Weight is set to zero.

It increases net ability to generalize

The net’s performance is based on its ability to reproduce a stored
pattern from a noisy input.



Architecture

For an autoassociative net, the training input and target output vectors are
the same. The input layer consists of n input units and the output layer also
consists of n output units. The input and output layers are connected through
weighted interconnections.

Fig 2a.2: Autoassociative network

2a.3.1 Training Algorithm

Step 0: [Initialize all the weights to zero,
w,j=0 (i=1ton, j=1ton)
Step 1: For each of the vector that has to be stored perform Steps 2-4.
Step 2: Activate each of the input unit,
x,=s,(i=1ton)
Step 3: Activate each of the output unit,
Y, =5 (j=1ton)
Step 4: Adjust the weights,

w, (new) = w,; (old)+x, ¥,

The weights can also be determined by the formula

:
w=3s"(p)s(p)
p=1

F

2A.4 HETEROASSOCIATIVE MEMORY NETWORK

1. In this network, the training input and the target output vectors are
different.

2. The determination of weights is done by either using Hebb rule or
delta rule.

3. The net finds an appropriate output vector, corresponds to an input
vector x, that may be either one of the stored patterns or a new pattern.

Associative
Memory Network
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The input layer consists of n number of input units and the output layer
consists of m number of output units. There is a weighted connection
between the input and output layers. Here, the input and output are not
correlated with each other.

X

Fig 2a.3: Heteroassociative network

2A.5 BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM)

1. The BAM network performs forward and backward associative
searches for stored stimulus responses.

2. Itatype of recurrent heteroassociative pattern matching network that
encodes using Hebbian learning rule.

3. BAM neural nets can respond either ways from input and output
layers.

4. It consists of two layers of neurons which are connected by directed
weight path connections.

5. The network dynamics involves two layers of interaction until all the
neurons reach equilibrium.

X layer Y layer

¥

= ¥m

46 Fig: 2a.4 Bidirectional associative memory net



2A.6 HOPFIELD NETWORKS

1.  These networks were developed by John. J. Hopfield.
2. Through his work, he promoted construction of the hardware chips.

3. These networks are applied in associative memory and optimization
problems.

4.  They are basically of two types -discrete and continuous Hopfield
networks.

Discrete Hopfield networks- The Hopfield networks is an autoassociative
fully interconnected single-layer feedback network with fixed weights.

It works in discrete fashion. The network takes two-valued inputs -binary
or bipolar. In this network, only one unit updates its activation at a time.

The usefulness of content addressable memory is realized by discrete
Hopfield net.

Continuous Hopfield networks- In this network, time is considered to be a
continuous variable. These networks are used for solving optimization
problems like travelling salesman problems. These networks can be realized
as an electronic circuit. The nodes of these Hopfield networks have
continuous graded output. The total energy of the network decreases
continuously with time.

2A.7 KOHONEN SELF-ORGANIZING FEATURE MAPS

Feature’s mapping is a process which converts the patterns of arbitrary
dimensionality into a response of one- or two-dimensional arrays of
neurons, i.e. it converts a wide pattern space into a typical feature space.
The network performing such a mapping is called feature map. Apart from
its capability to reduce the higher dimensionality, it has to preserve the
neighborhood relations of the input patterns, i.e. it has to obtain a topology
preserving map. For obtaining such feature maps, it is required to find a
self-organizing array which consist of neurons arranged in a one-
dimensional array or a two-dimensional array. To depict this, a typical
network structure where each component of the input vector x is connected
to each of nodes is shown in Figure 2a5-5.

Figure 2a.5 One-dimensional Feature mapping network

Associative
Memory Network
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On the other hand, if the input vector is two-dimensional, the inputs, say
X(a, b), can arrange themselves

in a two-dimensional array defining the input space (a, b) as in Figure 5-6.
Here, the two layers are fully connected.

The topological preserving property is observed in the brain, bur nor found
in any other artificial neural network.

C

O
O
®

Q.

o
O O
O O
0 O

Figure 2a.6. Two dimensional feature mapping network

O
O
Q.

2a.7.1 Architecture of Kohonen Self-Organizing Feature Maps

Consider a linear array of cluster units as in Figure 5-7. The
neighborhoods of the units designated by "o" of radii Ni(k1), Ni(k2) and
Ni(k,), k1 >k, > k,, where k1 =2, k2 =1, k3 =0.

For a rectangular grid, a neighborhood (Ni) of radii k1, k2, and k3 is
shown in Figure 5-8 and for a

hexagonal grid the neighborhood is shown in Figure 5-9. In all the three
cases (Figures 5-7-5-9), the unit with “#” symbol is the winning unit and
the other units are indicated by "0." In both rectangular and hexagonal
grids, k1 >k2 > k3, where k1 =2, k2 =1, k3 = 0.

For rectangular grid, each unit has eight nearest neighbors but there are
only six neighbors for each unit in

the case of a hexagon grid. Missing neighborhoods may just be ignored. A
typical architecture of Kohonen self-organizing feature map (KSOFM) is
shown in Figure 2a.5-10.

o o {0 fo i# o) ok o o e

M)

\

M ko)

N,k

Figure 2a.7. Linear array of cluster units
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Figure 2a.10. Kohonen self organizing feature map architecture
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Flowchart of Kohonen Self-Organizing Feature Maps

Start

Initialize the weighls,
learning rate x(f)

Initialize topological neighborhood
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Figure 2a.11. Flowchart for training process of KSOFM



2a.7.2. Training Algorithm of Kohonen Self-Organizing Feature Associative
MapS' Memory Network

Step 0: - Initialize the weights w;; : Random values may be assumed.
They can be chosen as the same range of values as the component if input
vector. If information related to distribution of clusters is known, the
initial weights. can bet taken to reflect that prior knowledge.

o Set topological neighborhood parameters: As clustering progresses,
the radius of the neighborhood Decreases

o Initialize the learning rate : It should be a slowly decreasing
function of time.

Step 1: Perform Steps 2 — 8 when stopping condition is false.
Step 2; Perform Steps 3-5 for each input vector x.

Step 3: Compute the square of the Euclidean distance, i.e., for each j = 1
tom,

D(j) = Z ,Z: (x; — Wij)2

Step 4: Find the winning unit index ], so that D(]) is minimum. (In Steps 3
and 4 , dot product method can also be used to find the winner, which is
basically the calculation of net input, and the winner will be the one with
the largest dot product.)

Step 5: For all units j within a specific neighborhood of J and for all i,
calculate the new weights:

w;j(new) = w;;(o | d) ao[xl- —w;j(old )]
Or
wii(new ) = (1 — a)w;;(old) + ax;
Step 6: Update the learning rate « using the formula a(t + 1) = 0.5a(t).

Step 7: Reduce radius of topological neighborhood at specified time
intervals.

Step 8 : Test for stopping condition of the network
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2A.8 KOHONEN SELF-ORGANIZING MOTOR MAP :

Actions
periormed

Partially connecled
{unsupervised or
supervised learning)

Figure 2a.12. Architecture of kohonen self organizing motor map

The extension of Kohonen feature map for a multilayer network involve the
addition of an association layer to the output of the self-organizing feature
map layer. The output node is found to associate the desired output values
with certain input vectors. This type of architecture is called as Kohonen
self-organizing motor map and layer that is added is called a motor map in
which the movement command,

are being mapped into two-dimensional locations of excitation. The
architecture of KSOMM is shown in

Figure 5-12. Here, the feature map is a hidden layer and this acts as a
competitive network which classifies the input vectors.

2A.9 LEARNING VECTOR QUANTIZATION (LVQ)

LVQ is a process of classifying the patterns, wherein each output unit
represents a particular class. Here, for each class several units should be
used. The output unit weight vector is called the reference vector or code
book vector for the class which the unit represents. This is a special case of
competitive net, which uses supervised learning methodology. During the
training the output units are found to be positioned to approximate the
decision surfaces of the existing Bayesian classifier. Here, the set of training
patterns with known classifications is given to the network, along with an
initial distribution of the reference vectors. When the training process is
complete, an LVQ net is found to classify an input vector by assigning it to
the same class as that of the output unit, which has its weight vector very
close to the input vector. Thus LVQ is a classifier paradigm that adjusts the
boundaries between categories to minimize existing misclassification. LVQ
is used for optical character recognition, converting speech mro phonemes
and other application as well.



2a.9.1. Architecture of LVQ: Associative

Memory Network

Figure 5-13 shows the architecture of LVQ. From Figure 5-13 it can be
noticed that there exists input layer with "n" unit; and output layer with
"m" units. The layers are found to be fully interconnected with weighted
linkage acting over the links.

Figure 2a.13. Architecture of LVQ

2a.9.2. Flowchart of LVQ:

The parameters used for the training process of a LVQ include the
following:

X = taaining vector (Xq, ..., Xj, .., Xp)
T = category or class for the training vector x
w; = weight vector for jh outpus unit (le, ey Wijy wees ij)

c; = cluster or class or category associated with jh output unit.

The Euclidean distance of jh outpui unit is D(j) = ¥(x; — wl-j)z. The
flowchart indicaring the flow of training process is shown in Figure
2a.14.

53



Soft Computing Techniques

54

=D

L

Initialize wesght vectors
and lgarong rale @

Calculala winner unil J,
when O]} ia minimum

st

Input T e T

1argat
N e
T= Q/
Yes
Update welghls using Uprlala weights using
winew) = wlold) + &lx-w (od)) wilnew) = wiod) - afx—w(oid)]
il
Reduco learing rate
a{l+1) =05 a(l)

2a.9.3. Training Algorithm of LVQ:

Step 0: Initialize the reference vectors. This can be done using the
following steps.

o From the given sec of training vectors, take the first " m " (number
of clusters) training vectors and use them as weighc vectors, the
remaining vectors can be used for training.

o Assign the initial weights and classifications random.1y.

o K -means chustering mechod.



Set initial learning rate a.
Stepl: Perform Steps 2 — 6 if the stopping condition is false.

Step 2: Perform Steps 3-4 for each training input vector x.
Step 3: Calculate the Euclidean distance; fori = 1 ton,j = 1 tom,
n m
. 2
D(j) = Z Z (xi - Wij)
i=1 j=1
Find the winning unit index J, when D (J) is minimum.

Step 4: Update the weights on the winning unit, w, using the following
conditions.

If T = q, then u;(new) = w;(old) + a[x — W](Old}]
If T # q, then u;j(new) = ug(old) — a[x — U (O]d)]
Step 5: Reduce the learning rate a.
Step 6: Test for the stopping condition of the training process.

(The stopping conditions may be fixed number of epochs or if learning rate
has reduced to a negligible value.)

2A.10 COUNTER PROPAGATION NETWORKS

They are multilayer networks based on the combinations of the input, output
and clustering layers. The applications of counter propagation nets are data
compression, function approximation and pattern association. The counter
propagation network is basically constructed from an instar-outstar model.
This model is a three-layer neural network that performs input-output data
mapping, producing an output vector yin response to an input vector x, on
the basis of competitive learning. The three layers in an instar-outstar model
are the input layer, the hidden (competitive) layer and the output layer. The
connections between the input layer and the competitive layer are the instar
structure, and the connections existing between the competitive layer and
the output layer are the outstar structure.

There are two stages involved in the training process of a counter
propagation net. The input vectors are

clustered in the first stage. Originally, it is assumed that there is no topology
included in the counter propagation network. However, on the inclusion of
a linear topology, the performance of the net can be improved. The dusters
are formed using Euclidean distance method or dot product method. In the
second stage of training, the weights from the cluster layer units to the
output units are tuned to obtain the desired response.

Associative
Memory Network
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There are two types of counter propagation nets:
(i)  Full counter propagation net

(i) Forward-only counter propagation net
2a.10.1. Full Counter propagation Net:

Full counter propagation net (full CPN) efficiently represents a large
number of vector pairs x:y by adaptively constructing a look-up-table. The
approximation here is x*.y*, which is based on the vector pairs x:y, possibly
with some distorted or missing elements in either vector or both vectors.
The network is defined to approximate a continue function, defined on a
compact set A. The full CPN works best if the inverse function f* exists and
is continuous. The vectors x and y propagate through the network in a
counter flow manner to yield output vectors x* and y*, which are the
approximations of x and y, respective. During competition, the winner can
be determined either by Euclidean distance or by dot product method. In
case of dot product method, the one with the largest net input is the winner.
Whenever vectors are to be compared using the dot product metric, they
should be normalized. Even though the normalization can be performed
without loss of information by adding an extra component, yet to avoid the
complexity Euclidean distance method can be used. On the basis of this,
direct comparison can be made between the full CPN and forward-only
CPN.

For continuous function, the CPN is as efficient as the back-propagation
net; it is a universal continuous function approximate. In case of CPN, the
number of hidden nodes required to achieve a particular level

of accuracy is greater than the number required by the back-propagation
network. The greatest appeal of

CPN s its speed of learning. Compared to various mapping networks, it
requires only fewer steps of training to achieve best performance. This is
common for any hybrid learning method that combines unsupervised
learning (e.g., instar learning) and supervised learning (e.g., outsrar
learning).

As already discussed, the training of CPN occurs in two phases. In the input
phase, the units in the duster

layer and input layer are found to be active. In CPN, no topology is assumed
for the cluster layer units; only the winning units are allowed to learn. The
weight pupation learning rule on the winning duster units is

vij(new) = v;(0ld) + a[x; —v;;(old)], i=1ton
wy,(new ) = wy;(old) + B(yx —wp(old)], k=1tom



In the second phase of training, only the winner unit J remains active in Associative
the cluster layer. The weights between the winning cluster unit J and the Memory Network
output units are adjusted so that the vector of activations of the units in the

Y-output layer is y* which is an approximation to the input vector y and

X* which is an approximation to the input vector x. The weight updating

for the units in the Y-output and X-output layers are

uj(new) = uy(old) + ayy — ujp(old)], k =1tom
ti(new) =t;j(old) + b[x; —tj(old)], i=1ton

2a.10.2. Architecture of Full Counter propagation Net

The general structure of full CPN is shown in Figure 5-15. The complete
architecture of full CPN is shown in Figure 5-16.

The four major components of the instar-outstar model are the input layer,
the instar, the competitive layer and the outstar. For each node i in the input
layer, there is an input value xi;. An instar responds maximally to the input
vectors from a particular duster. All the instar are grouped into a layer called
the competitive layer.

Each of the instar responds maximally to a group of input vectors in a
different region of space. This layer of instars classifies any input vector
because, for a given input, the winning instar with the strongest response
identifies the region of space in which the input vector lies. Hence, it is
necessary that the competitive layer single outs the winning instar by setting
its output to a nonzero value and also suppressing the other outputs to zero.
That is, it is a winner-take-all or a Maxnet-type network. An outstar model
is found to have all the nodes in the output layer and a single node in the
competitive layer. The outstar looks like the fan-out of a node. Figures 5-17
and 5-18 indicate the units that are active during each of the two phases of
training a full CPN.

l -
x (apu) Instar-gutstar natwork -—L{g-u-t@i-
X" (Outpul Instar-outstar network y (Inpul

Figure 2d.15.General Structure of full CPN
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Figure 2a.17 First phase of training of full CPN
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Figure 2a.18 Second phase of training of full CPN
2a.10.3. Training Algorithm of Full Counter propagation Net:
Step 0: Set the initial weighrs and the initial learning rate.

Step 1: Perform Sreps 2 — 7 if stopping condition is folse for phase |
training.

Step 2: For each of the training input vector pair x: y presented, perform
Steps 3 — 5.

Step 3: Make the X-input layer activations to vector X. Make the Y-inpur
layer acrivations to vector Y.

Step 4: Find the winning cluster unit. If dot product method is used, find the
cluster unit z; with target net inpur: for j = 1 to p.

n m
Snj = Z Xiv;ij + Z YWk
i=1 k=1

If Euclidean distance merhod is used, find the cluster unis z; whore
squared distance from input vecrors is the smallest:

n im
2
D; = z (x; —vi)" + z (Vi — uk;)?
i=1 k=1

If there occurs a tie in case of selection of winner unit, the unit with the
smallest index is the winner. Take the winner unit index as J.

Step 5: Update the weights over the calculated winner unit z;.
Step 6: Reduce the learning rates.
a(t+1) =0.5a(t): f(t+1) =0.58(t)

Step 7: Test stopping condition for phase | training.
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Step 8: Perform Steps 9-15 when stopping condition is false for phase 11
training.

Step 9: Perform Steps 10 — 13 for each training input pair x; y. Here a
and g are small constant values.

Step 10: Make the X-input layer activations to vector x. Make the Y-input
layer activations to vectot y.

Step 11: Find the winning cluster unit (use formulas from Step 4). Take
the winner unit index as j.

Step 12: Update the weights entering into unit 3).
Fori =1ton, v;j( new ) = v;;(old) + a[xi - vl-j(old)]
For k = 1 to m, wyj(new) = wy,(old) + [yx — wi(old)]
Step 13: Update the weights from unit z; to ghe outpur layers.
Fori=1ton, ¢j(new) =t;(old) + b[x; — t;j(0]d)]
Fork = 1tom, uj(new) = up(old) + afy, — wjx(old)]
Step 14: Reduce the learning rates a and b.
a(t+1) = 0.5a(t); b(t+ 1) = 0.5b(¢)
Step 15: Test stopping condition for phase 11 training.
2a.10.4. Testing Algorithm of Full Counter propagation Net:
Step O: Initialize the weights (from training algorithm).
Step 1: Perform Steps 2-4 for each input pair X: Y.

Step 2: Ser X-input layer activations to vector X. Ser Y-input layer
activarions to vector Y.

Step 3: Find the cluster unir z; that is closest to the input pair.
Step 4: Calculate approximations to x and :

X =i Vie = Wik
2a.10.5 Forward Only Counter propagation Net:
A simplified version of full CPN is the forward-only CPN. The
approximation of the function y = f(x) but not of x = f(y) can be performed
using forward-only CPN, i.e., it may be used if the mapping from x to y is
well defined but mapping from y to x is not defined. In forward-only CPN
only the x-vectors are used to form the clusters on the Kohonen units.

Forward-only CPN uses only the x vectors to form the clusters on the
Kohonen units during first phase of training.



In case of forward-only CPN, first input vectors are presented to the input
units. The cluster layer units compete with each other using winner-take-all
policy to learn the input vector. Once entire set of training vectors has been
presented, there exist reduction in learning rate and the vectors are presented
again, performing several iterations. First the weights between the input
layer and duster layer are trained. Then the weights between the cluster layer
and output layer are trained. This is a specific competitive network, with
target known. Hence, when each input vector is presented m the input
vector, its associated target vectors are presented to the output layer. The
winning duster unit sends its signal to the output layer. Thus each of the
output unit has a computed signal (wjk) and die target value (yx). The
difference between these values is calculated; based on this, the weights
between the winning layer and output layer are updated. The weight
updation from input units to cluster units is done using the learning rule
given below:

Fori=1ton,
-v;(new ) = v; fold ) + afx; — v;;(old)] = (1 — a)v;(old ) + ax;

The weight updation from cluster units to output units is done using
following the learning rule: For k = 1 to m,

wi(new ) = vj(old) + aly, — wjx(old)] = (1 — a)wj (old ) + ayy

The learning rule for weight updation from the duster units to output units
can be written in the form of delta rule when the activations of the cluster

units (z;) are included, and is given as
wir(new ) = wj, (0 | d) + nz; [yk — wji(old )}

where

{1 ifj=7J
zZj = cp
0 ifj+#]

This occurs when wy,, is interprered as the computed output (i.e., yx = wjy
). In the formulation of forward-only CPN also, no topological structure
was assumed.

2a.10.6 Architecture of Forward Only Counter propagation Net:

Figure 5-20 shows the architecture of forward-only CPN. It consists of three
layers: input layer, cluster (competitive) layer and output layer. The
architecture of forward-only CPN resembles the back-propagation network,
but in CPN there exists interconnections between the units in the duster
layer (which are nor connected in Figure 5-20). Once competition is
completed in a forward-only CPN, only one unit will be active in that layer
and it sends signal to the output layer. As inputs are presented m the
network, the desired outputs will also be presented simultaneously.
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Figure 2a.19 Architecture of forward only CPN

2a.10.8. Training Algorithm of Forward Only Counter propagation
Net:

Step O: Initialize the weights and learning races.

Step 1: Perform Steps 2-7 when stopping condition for phase | training is
false.

Step 2: Perform Steps 3-5 for each of training input X.

Step 3: Set the X-input layer acrivations to vector X.

Step 4: Compute the winning cluster unit (J). If dot product mechod is
used, find the cluster unit zy Step wich the largest net input:

n
Zinj = Z XiVij

k=1

If Euclidean distance is used, find the cluster unit z; square of whose
distance from the input pattetn is smallest:

n
2
D; = Z (xi — vij)
i=1

If there exists a tie in the selection of winner unit, the unit with the
smallest index is chosen as the winner.

Step 5: Perform weight updation for unit z;. For i = 1 to n,
vij( I’ICW) = vij( Old) + a[xl- - vij( old )]
Step 6: Reduce learning mte «

a(t+1) =0.5a(t)



Step 7: Test the stopping condition for phase | training. Associative
Memory Network

Step 8: Perform Steps 9 — 15 when stopping condition for phase Il
training is false. (Set a a small constant value for phase Il training.)

Step 9: Perform Steps 10-13 for each tmining input pait x.. .

Step 10: Ser X-input layer activations to vector X. Set Y-output layer
activations to vector Y.

Step 11: Find the winning cluster unit (J) [use formulas as in Step 4].

Step 12: Update the weights into unit z;. For i = 1 to n,
vij( new) = vij( Old) + a[xl- —7; (Old) |

Step 13: Update the weights from unit z ) to the output units. For k = 1 to
m,

wjr(new ) = wj,(old) + ,B[nk — wj(old )]
Step 14: Reduce learning rate 3, i.e.,
p(t+1)=0.56(t)
Step 15: Test the stopping condition for phase Il training.

2a.10.9. Testing Algorithm of Forward Only Counter propagation
Net:

Step 0: Set initial weights. (The initial weights here are the weights
obtained during training.)

Step 1: Present input vector X.
Step 2: Find unit J that is closest to vector X.

Step 3: Set activations of output units:

Yk = Wik

2A.11 ADAPTIVE RESONANCE THEORY NETWORK

The adaptive resonance theory (ART) network, developed by Steven
Grossberg and Gail Carpenter (1987), is consistent with behavioral models.
This is an unsupervised learning, based on competition, that finds categories
autonomously and learns new categories if needed. The adaptive resonance
model was developed to solve the problem of instability occurring in feed-
forward systems. There are two types of ART: ART 1 and ART 2. ART 1
is designed for clustering binary vectors and ART 2 is designed to accept
continuous-valued vectors. In both the ners, input patterns can be presented
in any order. For each pattern, presented to the network, an appropriate
cluster unit is chosen and the weighs of the cluster unit are adjusted to let
the cluster unit learn the pattern. This network controls the degree of 63
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similarity of the patterns placed on the same cluster units. During training,
each training pattern may be presented several times. It should be noted that
the mput patterns should not be presented on the same cluster unit, when it
is presented each time. On the basis of this, the stability of the net is defined
as that wherein a pattern is not presented o previous cluster units.

The adaptive resonance theory (ART) network, developed by Steven
Grossberg and Gail Carpenter (1987), is consistent with behavioral
models. This is an unsupervised learning, based on competition, that finds
categories auconomously and learns new categories if needed. The adapdive
resonance model was developed to solve the problem of instability
oceutring in feed-forward systems. There are two types of ART: ART 1 and
ART 2. ART 1 is designed for clustering binary vectors and ART 2 is
designed to accept continuous-valued vectors. In both the ners, input
patterns can be presented in any order. For each pattern, presented to the
network, an appropriate cluster unit is chosen and the weighs of the cluster
unit are adjusted to let the cluster unit learn the pattern. This network
controls the degree of similarity of the patterns placed on the same cluster
units. During training, each training pattern may be presented several times.
It should be noted that the input patterns should not be presented on the
same cluster unit, when it is presented each time. On the basis of this, the
stability of the net is defined as that wherein a pattern is not presented (o
previous cluster units The stability may be achieved by reducing the
learning rates. The ability of the network to respond to a new pattern equally
at any stage of learning is called as plastic: ART nets are designed to possess
the properties, stability and plasticity. The key concept of ART is that the
stability plasticity can be resolved by a system in which the network
includes bottom-up (input-output) competitive learning combined with

top-down (output-input) learning. The instability of instar-outstar

networks could be solved by reducing the learning rate gradually to zero by
freezing the learned categories. Buc, at this point, the net may lose its
plasticity or the ability to react to new data. Thus it is difficult to possess
both stability and plasticity. ART networks are designed particularly to
resolve the stability-plasticity dilemma, that is, they are stable to preserve
significant past learning but nevertheless remain adaptable to incorporate
new information whenever it appears.

2a.11.1. Fundamental architecture of ART-

Three groups of neurons reused to build an ART network. These include:
1. Input processing neurons (F1 layer).

2. Clustering units (F2 layer).

3. Control mechanism (controls degree of similarity of patterns placed
on the same duster

The processing neuron (F1) layer consists of two portions: Input portion and
interface portion input portion may perform some processing based on the
inputs it receives. This is especially performed in the case of ART 2
compared to ART 1.



The interface portion of the F; layer combines the input from input portion
of F; and F, layers for comparing the similarity of the input signal with the
weight vector for the interface portion 25 F (b).

There exist two sets of weighted interconnections for controlling the degree
of similarity between the units in the interface portion and the cluster layer.
The bottom-up weights are used for the connection from F; ( b) layer to F,
tayer and are represented by 6;;(f th F; unit to jhF, unit). The iop-down
weights are used for the connection from F, layer to F;( b) layer and are
repiesented by t; (j th F, unit to i th F; anic). The competitive Jayer in this
cose is the cluster layct and the duster unit wich largest net input is the
victim to learn the input pattern, and the activations of all other F, urnis are
mate zero The interface units combinc the data from input and cluster layer
units. On the basis of the similarity between the top-down weight vector and
input vector, the cluster unit may be allowed to learn the input pattern. This
decision is done by-esset mechanism unit on the basis of the signals receives
from interface portion and input portion of the F, layer. When duster unit is
not allowed to learn, it is inhibited and a new cluster unit is selected as the
victim.

2a.11.2. Fundamental algorithm of ART-

Step 0: initialize the necessary parameters.

Step 1: Perform Steps 2 — 9 when stopping condition is false.
Step 2: Perform Steps 3 — 8 for each input vector.

Step 3: F; layer processing is done.

Step 4: Perform Steps 5 — 7 when teset condition is true.

Step 5: Find the victim unit to learn the current input pattern. The victim
unit is going to be the F, unit (that is nor inhibited) with the largest input.

Step 6: F1 (b) units combine their inputs from F1 (a) and Fo..

Step7: Test for reset condition. Step If reset is true, then the current victim
unit is rejected (inhibited); go to Step 4. If reser is false, then che carrent
victim unit is accepted for learning; go to next step (Step 8).

Step 8: Weight updation is performed.
Step 9: Test for stopping condition.

Adaptive resonance theory 1 (ART 1) network is designed for binary input
vectors. As discussed generally, the ART 1 net consists of two fields of
units-input unit (F; unit) and output unit (F, unit)-aiong with the reser
control unit for controlling the degree of similarity of patterns placed on the
same cluster unit. There exist two sets of weighted interconnection patch
between F, and F, layers. The supplemental unic present in the net provides
the efficient neural control of the leatning process. Carpenter and Grossberg
have designed ART 1 network as a real-time system. In ART 1 network, ic
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IS not necessary to present an input pattern in a particular order; it can be
presented in any order. ART 1 network can be practically implemented by
analog circuits governing the differential equations, i. Q. the bottom-up and
top down weights are controlled by differential equations.)ART 1 network
runs throughout autonomously. It does nor require any external control
signals and can run stably with infinite patterns of input data.

ART 1 network is trained using fast learning method, in which the weights
reach equilibrium during each learning trial. During this resonance phase,
the activations of F units do not change; hence the equilibrium weights can
be determined exactly The ART 1 network performs well with perfect
binary input patterns, but is sensitive to noise in the input dara. Hence care
should be taken to handle the noise.

2a.11.3. Fundamental architecture of ART1-

The ART 1 network is made up of two units:

1 Computational units.

2 Supplemental units.

In this section we will discuss in detail about these two units.
Computational units

The computational unit for ART 1 consists of the following:

1 Input units (F, unit — both input portion and interface portion).
2 Cluster units (F, unit — outpuc unit),

Reset control unit (controls degree of similarity of patterns placed on same
cluster).

The basic architecture of ART | (computational unit) is shown in Figure 5-
22. Here each unit present in the input portion of F, layer (i, e., F;(a) layer
unic) is connected to the respective unic in the interface portion of E layer
(i.e., F;( b) layer unit). Reset control unit has connections from each fF, (a)
and F; (' b) units. Also, each unit in F;( b) layer is connected through two
weighted interconnection pachs to each unic in F, layer and the reser control
unit is connected to every F2 unit.The X; unit of Fy(b) layer is connected to
Y; unit of F> layer through bottom-up weight (bj;) and the Y;j unit of F2 is
connected to X; unit of F1 through top-down weights (t;). Thus ART 1
includes a bottom-up competitive learning system combined with a top-
down outstar learning system. In Figure 5 — 22 for simplicity only the
weighted interconnections b;; and t;; are shown, the other units’ weighted
interconnections are in a similar way. The cluster layer (F, layer) unit is a
competitive layer, where only the uninhibited node with the largest net input
has nonzero activation.
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Fy(a) layer Fyib) | layer

input portion interface portion cluster unit
Figure 2a.20 Basic architecture of ART 1
2a.11.4. Training Algorithm of ART1-

Step 0: initialize the parameters:
and0<p<1

Initialize the weights:

a
0< le(O) < T—1+n

1+n and t]l(O) =1

Step 1: Perform Steps 2-13 when stopping condition is false.
Step 2: Perform Steps 3 — 12 for each of the training input.

Step 3: Set activations of all F, units to zero. Set the activations of F;(2)
units to input vectors.

Step 4: Calculate the norm of Z
Isli=) s
j
Step 5: Send input signal from F, (a) layer to F; (b) byer:
xl == Sl

Step 6: for each F, pode thar is not inhibited, the following rule should
hold: If y, F -1, then _')7} = Zbijxi

Step 7: Perform Steps 8 — 11 when reset is true.

Step 8 : Find J for y; = y; for all nodes j. If y; = —1, then all the nodes
are inhibited and note that this pattern cannot be clustered. 67
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Step 9: Recalculate activation X of F;( b) :

Step 10: Calculate the norm of vector x.

||x||=zxi

i
Step 11: Test for reset condition. If || x lI/ll s I< p, then inhibit node

J,¥; = —1. Go back to step 7 again. Else if Il x II/ll s II= p, then procced
to the next step (Step 12).

Step 12: Perform weight updation for node J. (fast learning):

ax;
a—1+] x|l

JEi (new) = x;}

Step 13: Test for stopping condition. The following may be the stopping
conditions:

a. No change in weights.

b. No reset of units.

¢. Maximum number of epochs reached.

bl]( neW) =

2a.11.5. Adaptive Resonance Theory 2 (ART2):

Adaptive resonance theory 2 (ART 2) is for continuous-valued input
vectors. In ART 2 network complexity is higher than ART 1 network
because much processing is needed in F 1 layer. ART 2 network was
developed by Carpenter and Grossberg in 1987. ART 2 network was
designed to self-organize recognition categories for analog as well as binary
input sequences. The major difference between ART | and ART 2 networks
is the input layer. On the basis of the stability criterion for analog inputs, a
three-layer feedback system in the input layer of ART 2 network is required:
A bottom layer where the input patterns are read in, a top layer where inputs
coming from the output layer are read in and a middle layer where the top
and bottom patterns are combined together to form a marched pattern which
is then fed back to the top and bottom input layers. The complexity in the
F1 layer is essential because continuous-valued input vectors may be
arbitrarily dose together. The F1 layer consists of normalization and noise
suppression parameter, in addition to comparison of the bottom-up and top-
down signals, needed for the reset mechanism.

The continuous-valued inputs presented to the ART 2 network may be of
two forms. The first form

is a "noisy binary" signal form, where the information about patterns is
delivered primarily based on the

components which are "on" or "off," rather than the differences existing in
the magnitude of the components chat are positive. In this case, fast learning
mode is best adopted. The second form of patterns are those, in which the
range of values of the components carries significant information and the
weight vector for a cluster is found to be interpreted as exemplar for- the



patterns placed-on chat unit. In this type of pattern, slow learning mode is
best adopted. The second form of data is "truly continuous."

2a.11.6. Fundamental architecture of ART2-

A typical architecture of ART 2 network is shown in Figure 5 — 25. From
the figure, we can notice that F, layer consists of six types of units - W, X,
U, V, P, Q-and there are " n " units of each type. In Figure 5 — 25, only one
of these units is shown. The supplemental parc of the connection is shown
in Figure 5 — 26.

The supplemental unit " N"' between units W and X receives signals from

all" W" units, computes the no run of vector w and sends this signal to each
of the X units. This signal is inhibitory signal. Each of this
X4, ..., X}, ..., X;,) also receives excicatory signal from the corresponding
W unit. In a similar way, there exists supplemental units between U and V/,
and P and @, performing the same operation as done between W and X.
Each X unit and Q unit is connecred to V unit. The connections between P,
of the F, layer and Y; of the F, layer show the weighted interconnections,
which multiplies the signals transmitted over those pachs. The winning F,
unics’ activation is d(0 < d < 1). There exists normalization between W
and X, Vand U, and P and Q. The noimalization is performed approximately
to unit length.

The operations performed in F, layer are same for both ART 1 and ART 2.
The units in F, layer compete with each other in a winner-take-all policy to
learn each input pattern. The testing of reset condition differs for ART 1
and ART 2 networks. Thus, in ART 2 network, some processing of the input
vector is necessary because the magnitudes of the real valued input vectors
may vary more than for the binary input vectors.

Input
units

8y,
k.

@f —
F

S{input patlem)

K}

Figure 2a.21. Architecture of ART2 network

Associative
Memory Network

69



Soft Computing Techniques

70

2a.11.7 Training Algorithm of ART2:

Step 0: Initialize the following parameters: a, b, ¢, d, e, a, p, 6. Also,
specify the number of epochs of training (nep) and number of learning
iterations (nit).

Step 1: Perform Steps 2-12 (nep) times.
Step 2: Perform Steps 3 — 11 for each input vector s.
Step 3: Update F; unit activations:

u; = 0; wf =s; P =0; q; = 0; v; = f(x;)

Si
xX; =
Poetls
Update F; unit activations again:
Ui N
u; = , W: = S: au.;
Toet+vl” T '
P ad
= U X =
PP e lw I
p;
;= ; vi = f(x;) +bf(q;

In ART 2 networks, norms are calculated as the square root of the sum of
the squares of the respective values.

Step 4: Calculate signals to F, units:

n
Yi = z bijp;
j=1

Step 5: Perform Steps 6 and 7 when reset is true.

Step 6: Find F, unit Y; wich largest signal ] is defined such that y; >
yj,j =1(om).
Step 7: Check for reser:

V; p -|—dt Wi +CPL'
ocHlvi ot 7t etllull=clipll

If Il 7 I< (p — e), then y; = —1 (inhibit J). Reser is true; perform Step 5 .

If |7 11=(p— e),then

_ n _ V7%
W; = S§; au;; X; _e+”W "
pi
U= e v f(x) +bf(q:)



Reset is false. Proceed to Step 8. Associative
Step 8: Perform Steps 9-I 1 for specified number of learning interactions. Memory Network

Step 9: Update the weights for winning unit J:

tii = adui + {[1 + ad(d - 1)}}tj
by = adu; + {|1 + ad(d — 1)]}by;

Step 10: Update F_ acrivations:

V; n
w; = Cow; = s+ ag;
L C+” v ” l L l
P=u; +dty; X = ——
T et w1l
L fGe) +bf(g)
ql e+” p ” l l ql

Step 11: Check for the stopping condition of weight updating.

Step 12: Check for the stopping condition for number of epochs.

2A.12 QUESTIONS

M w0 poE

o1

6.

Define Content addressable memory
What are the two main types of associative memory?
What are Back Propagation networks?

Explain the architecture and working of Radial basis function
networks.

What is Bidirectional associative memory network?

Write a short note on Hopfield network.
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SPECIAL NETWORKS

Unit Structure

2b.1 Simulated Annealing Network
2b.2 Boltzmann Machine

2b.3 Gaussian Machine

2b.4 Cauchy Machine

2b.5 Probabilistic Neural Net

2b.6 Cascade Correlation Network
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2b.11 Summary
2b.12 Review Questions
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2B.1. SIMULATED ANNEALING NETWORK

The concept of simulated annealing has it origin in the physical annealing
process performed over metals and other substances. In metallurgical
annealing, a metal body is heated almost to its melting point and then cooled
back slowly to room temperature. This process eventually makes the metal's
global energy function reach an absolute minimum value. If the metal's
temperature is reduced quickly, the energy of the metallic lattice will be
higher than this minimum value because of the existence of frozen lattice
dislocations that would otherwise disappear due to thermal agitation.
Analogous to the physical annealing behaviour, simulated annealing can
make a system change its state to a higher energy state having a chance to
jump from local minima or global maxima. There exists a cooling
procedure in the simulated annealing process such that the system has a
higher probability of changing to an increasing energy state in the beginning
phase of convergence. Then, as time goes by, the system becomes stable
and always moves in the direction of decreasing energy state as in the case
of normal minimization produce.



With simulated annealing, a system changes its state from the original state
SA° to a new stare SA™Y with a probability P given by

1
P=
1+ exp(—AE/T)

where AE = E°4 — E™V (energy change = difference in new energy and
old energy) and T is the nonnegative parameter (acts like temperature of a
physical system). The probability P as a function of change in energy (AE)
obtained for different values of the remperature T is shown in Figure 6 — 1.
From Figure 6 — 1, it can be noticed that the probability when AE > 0 is
always higher than she probability when AE < 0 for any remperature.

An optimization problem seeks to find some configuration of parameters
X = (X4, ..., X,,), hat minimizes some function £(X) called cost function.
In an arcificial neural network, configuration parameters are associated with
the set of weights and the cost function is associated with the error function.

The simulated annealing concept is used in statistical mechanics and is
called Metropolis algorithm. As discussed earlier, this algorithm is based on
a material that anneals into a solid as temperature is slowly decreased. To
understand this, consider the slope of a hill having local valleys. A stone is
moving down the hill. Here, the local valleys are local minima, and the
bottom of the hill is going to be the global or universal minimum. It is
possible that the stone may stop at a local minimum and never reaches the
global minimum. In neural nets, this would correspond to a set of weights
that correspond to that of local minimum, but this is nm the desired solution.
Hence, to overcome this kind of situation, simulated annealing perturbs the
stone such that if it is trapped in a local minimum, it escapes from it and
continues falling till it reaches its global minimum (optimal solution). At
that point, further perturbations cannot move the stone to a lower position.

Figure 6-2 shows the simulated annealing between a stone and a hill.

AE ' . S—
A 1+exp (-AE/T)
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]

R
~

|

Y

T=1

v

Figure 2b.1 Probability “P” as a function in energy(AE)
for different values of temperature T
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Figure 2b.2 Simulated annealing stone and hill
The components required for annealing algorithm are the following

1 A basic system configuration: The possible solution of a problem over
which we search for a best (optimal) answer. (In a neural ner, this is
optimum steady-state weight.)

2 The move set: A ser of allowable moves thar permit us to escape from
local minima and reach all possible configurations.

A cost function associated with the error function.

A cooling schedule: Starting of the cost function and rules to
determine when it should be lowered and by how much, and when
annealing should be terminated.

5 Simulated annealing networks can be used to make a network
converge to its global minimum.

2B.2. BOLTZMANN MACHINE

The early optimization technique used in artificial neural networks is based
on the Boltzmann machine. When the simulated annealing process is
applied w the discrete Hopfield network, it becomes a Boltzmann machine.
The network is configured as the vector of the states of the units, and the
stares of the units are binary valued with probabilities state transition. The
Boltzmann machine described in this section has fixed weights wij. On
applying the Boltzmann machine to a constrained optimization problem, the
weights represent the constraints of the problem and the quantity to be
optimized. The discussion here is based on the fact of maximization of a
consensus function (CF).

The Boltzmann machine consists of a set of units (Xi, and Xj) and a set of
bi-directional connections between pairs of units. This machine can be used
as an associative memory. If the units Xi; and Xj are connected, then w;j#0.
There exists symmetry in the weighted interconnections based on the
directional nature. It can be represented as wij=wji. There also may exist a
self-connection for a unit (wij). For unit Xi, its State x;; may be either 1 or 0.
The objective of the neural net is to maximize the CF given by



CF = Z Z Wijxix]'

i =i

The maximum of the CF can be obtained by letting each unit attempt to
change its state (alter between " 1™ and " 0 " or " 0 " and "1"). The change
of sate can be done either in parallel or sequencial manner. However, in this
case ali the description is based on sequential manner. The consensus
change when unit X; changes its state is given by

ACF(l) = (1 - in) Wij +Z Wl'jxl'

Jj#i

where x; is the current srate of unit X;. The variation in coefficient
(1 — 2x;) is given by

(1-2x;) = {+1' X; 1s currently off

—1, X is currently on

If unit X; were to change its activations, then the resulting change in the CF
can be obtained from the information that is local to unit X;. Generally, X;
does not change its stare, but if the states are changed, then this increases
the consersus of the net. The probability of the network that accepts a
change in the state for unit X; is given by

1

AR ) = T X [=ACF (/T

where T (temperature) is the controlling parameter and it will gradually
decrease as the CF reaches the maximum value. Low values of T are
acceptable because they increase rhe net consensus since the net accepts a
change in state. To help the net not to stick with the local maximum,
probabilistic functions are used widely.

2b.2.1. Architecture of Boltzmann Machine

Figure 2b.3 Architecture of Boltzmann machine
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2b.2.2. Testing Algorithm of Boltzmann Machine

Step 0: Initialize the weights representing the constraints of the problem.
Also initialize control parameter T and activate the units.

Step 1: When stopping condition is false, perform Steps 2-8.
Step 2: Perform Steps 3 — 6n? rimes. (This forms an epoch.)

Step 3: Integers I and J are chosen random values berween 1 and n. (Unit
Uy, is the current victim to change its state.)

Step 4: Calculate the change in consensus:

ACF = (1—2X,;) |w(l,J: L)) + Z Z v(i,j: L)X

iL,j* 1,j
Step 5: Calculate the probability of acceptance of the change in state:
AF(T) = 1/1 + exp[—(ACF/T)]

Step 6: Decide whether to accept the change or not. Les R be a random
number between

0 and 1. If R < AF, accept the change:

X.,; =1—X; (This changes the scate U, ;.) If R = AF, reject the change.
Step 7: Reduce the control parameter T. T (new) = 0.95T (old)

Step 8: Test for stopping condition, which is:

If the temperature reaches a specified value or if there is no change of state
for specified number of epochs then stop, else continue.

2B.3. GAUSSIAN MACHINE

Gaussian machine is one which includes Boitzmann machine, Hopfield net
and other neural networks. The Gaussian machine is based on the following
three parameters:

(a) a slope parameter of sigmoidal function «,

(b) a time step At, (c) temperacure T. The steps involved in the operation of
the Gaussian net are the following:

Step 1: Compute the net input to unit X; :

N
nec; = Z w;ijv; +6; + €
j=1

where 6; is the rhreshold and € the random noise which depends on
temperature T.



Step 2: Change the activity level of unit X; : Special Networks

% . + net;
At t '
Step 3: Apply the activation function:
v; = f(x;) = 0.5[1 + tanh(x;)]
The binary step function corresponds to @ = oo (infinity).

The Gaussian machine with T = 0 corresponds the Hopfield net. The
Bolamann machine can be obtained by setting At = r = 1 to get

Ax; = —x; + net
N
or x; (new) = net, = Z ivijv;+6; +¢€
j=1
The approximate Boltzmann acceptance function is obtained by integrating
the Gaussian noise distribution

(x — x?)

*° 1
ex
jo V2mo? P 202

where x; = ACF(i). The noise which is found to obey a logistic rather than
a Gaussian distribution produces a Gaussian machine that is identical to
Boltzmann machine having Metropolis acceptance function, i.e., the output
set to 1 with probability,

~ AF(r,T) =
dx 1) 1+ exp(—x;IT)

AF(i, T) =

1+ exp(—x;/T)

Axi = —X; + netl.

2B.4. CAUCHY MACHINE

Cauchy machine can be called fast simulated annealing, and it is based on
including more noise to the net input for increasing the likelihood of a unit
escaping from a neighbourhood of local minimum. Larger changes in the
system's configuration can be obtained due to the unbounded variance of
the Cauchy distribution. Noise involved in Cauchy distribution is called
"coloured noise™ and the noise involved in the Gaussian distribution is
called "white noise." By setting At = t = 1, the Cauchy machine can be
extended into the Gaussian machine, to obtain

Ax; = —x; +net;
N

orx; (new) = mnet; = Z w;iiv; +6; + €
j=1
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The Cauchy acceptance function can be obtained by integrating the Cauchy
noise distribution:

5 T —arctan (%) = AF(i,T)

IW1 Tdx 1 1
0 nT2+ (x —x)% 2

where x; = ACF(t). The cooling schedule and temperature have to be
considered in both Cauchy and Gaussian machines.

2B.5. PROBABILISTIC NEURAL NET

The probabilistic neural net is based on the idea of conventional probability
theory, such as Bayesian classification and other estimators for probability
density functions, to construct a neural net for classification. This net
instantly approximates optimal boundaries between categories. It assumes
that the training data are original representative samples. The probabilistic
neural net consists of two hidden layers as shown in Figure 6-4. The first
hidden layer contains a dedicated node for each training pattern amd the
second hidden layer contains a dedicated node for each class. The two
hidden layers are connected on a class-by-class basis, that is, the several
examples of the class in the first hidden layer are connected only to a single
machine unit in the second hidden layer.

Dutpul

. * layar

: m/ ./ ren

n - layar 2
()

Input Hiciden
Yayer layer 1

Figure 2b.4. Probabilistic neural network
The algorithm for the construction of the net is as follows:

Step 0: For each training input pattern x(p),p = 1 to P, perform Steps 1
and 2.

Step 1: Create pattern unit z, (hidden-layer-I unit). Weight vecror for unit
Zy 1S given by

wi = x(p)
Unit z; is either z -class- 1 unit or z -class- 2 unic.

Step 2: Connect the hidden-layer- 1 unit to the hidden-layer- 2 unic.



If x(p) belongs to class 1, then connect the hidden layer unic z; ro the
hidden layer unit F;.

Otherwise, connect pattern hidden layer unit z, to the hidden layer unit F,.

2B.6. CASCADE CORRELATION NETWORK:

Cascade correlation is a network which builds its own architecture as the
training progresses. Figure 6-5 shows the cascade correlation architecture.
The network begins with some inputs and one or more output nodes, but it
has no hidden nodes. Each and every input is connected to every output
node. There may be linear units or some nonlinear activation function such
as bipolar sigmoidal activation function in the output nodes. During training
process, new hidden nodes are added to the network one by one. For each
new hidden node, the correlation magnitude between the new node's output
and the residual error signal is maximized. The connection is made to each
node from each of the network’s original inputs and also from every pre-
existing hidden node. During the time when the node is being added to the
network, the input weights of the hidden nodes are-frozen, and only the
output connections are trained repeatedly. Each new node thus adds a new

one-node layer to the network.
Iy
G!D qla

q\?‘ .
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i
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Figure 2b.5. Cascade architecture after two hidden nodes have been
added

In Figure 6-5, the vertical lines sum all incoming activations. The
rectangular boxed connections are frozen and "0" connections are trained
continuously. In the beginning of the training, there are no hidden nodes,
and the network is trained over the complete training set. Since there is no
hidden node, a simple learning rule, Widrow-Hofflearning rule, is used for
training. After a certain number of training cycles, when there is no
significant error reduction and the final error obtained is unsatisfactory, we
try to reduce the residual errors further by adding a new hidden node. For
performing this task, we begin with a candidate node that receives trainable
input connections from the network's external inputs and from all pre-
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existing hidden nodes. The output of this candidate node is not yet
connected to the active network. After this, we run several numbers of
epochs for the training set. We adjust the candidate node's input weights
after each -epoch to maximize C which is defined as

C =Z IZ (vj _‘7)(Ej.i _EO)

where i is the network output at which error is measured, j the raining
partern, v the candidate node’s output value, E, the residual output error at
node o, v the value of y averaged over all parterns, E, the value of E,

averaged over all patterns. The value " C” ' measures the correlation
berween the candidate node's oucput value and the calculated residual
output error. For maximizing C, the gradient dd dw; is obrained as

= z O-i(Ej,i — E_L)djlm
Jj,i

dc
aWi

where g; is the sign of the correlation between the candidatc's value and
output i; d; the derivative for pattern j of the candidate node's activation
function with respecc to sum of its inputs; I,,, ; the input the candidate node
receives from node m for pattern j. When gradient dd dw; is calculated,
perform gradient ascent to maximize C. As we are training only a single
layer of weights, simple delta learning rule can be applied. When C stops
improving, again a new candidate can be brought in as a node in the active
network and its input weights are frozen. Once again, all the output weights
are trained by the delta learning rule as done previously, and the whole cycle
repeats itself until the error becomes acceptably small.

2B.7. COGNITRON NETWORK:

The synaptic strength from cell X to cell Y is reinforced if and only if the
following two conditions are true:

I. Cell X- presynaptic cell fires.
2. None of the postsynaptic cells present near cell Y fire stronger than Y.

The model developed by Fukushima was called cognitron as a successor to
the perceptron which can perform cognizance of symbols from any alphabet
after training. Figure 6-6 shows the connection between presynaptic cell and
postsynaptic cell.

The cognitron network is a self-organizing multilayer neural network. Its
nodes receive input from the defined areas of the previous layer and also
from units within its own area. The input and output neural elements can
rake the form of positive analog values, which are proportional to the pulse
density of firing biological neurons. The cells in the cognitron model use a
mechanism of shunting inhibition, i.e., a cell is bound in terms of a
maximum and minimum activities and is driven toward these extremities.



The area from which the cell receives input is called connectable area. The
area formed by the inhibitory cluster is called the vicinity area. Figure 2b. 7
shows the model of a cognitron. Since the connectable areas for cells in the
same vicinity are defined to overlap, but are not exactly the same, there will
be-a slight difference appearing between the cells which is reinforced so
that the gap becomes more apparent. Like this, each cell is allowed to
develop its own characteristics.

Cognitron network can be used in neurophysiology and psychology. Since
this network closely resembles the natural characteristics of a biological
neuron, this is best suited for various kinds of visual and auditory
information processing systems. However, a major drawback of cognitron
net is that it cannot deal with the problems of orientation or distortion. To
overcome this drawback, an improved version called neocognitron was

developed.
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Figure 2b.6 Connection between presynaptic cell and postsynaptic cell

Nodes in Nodes in
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anoa area

Figure 2b.7 Model of a cognitron network

2B.8. NEOCOGNITRON NETWORK

Neocognitron is a multilayer feed-forward network model for visual pattern
recognition. It is a hierarchical net comprising many layers and there is a
localized pattern of connectivity between the layers. It is an extension of
cognitron network. Neocognitron net can be used for recognizing hand-
written characters. A neocognitron model is shown in Figure 6-8.
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The algorithm used in cognitron and neocognitron is same, except that
neocognicron model can recognize patterns that are position-shifted or
shape-distorted. The cells used in neocognitron are of two types:

1. S--cell: Cells that are trained suitably to respond to only certain features in
the previous layer.

2. C-cell- A C-cell displaces the result of an S-cell in space, i.e., son of
"spreads” the features recognized by the S-cell.

O 8 C, S, G s, C,
O I S| ——

Inpul Modu'e 1 Module 2 ' Module n
layer

Figure 2b.8 Neocognitron models
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Figure 2b.9 Sprcading effect in neocognitron

Neocognitron net consists of many modules with the layered arrangement
of S-cells and C-cells. The S-cells receive the input from the previous layer,
while C-cells receive the input from the S-layer. During training, only the
inputs to the S-layer are modifled. The S-layer helps in the detection of
spcciflc features and their complexities. The feature recognized in the S:
layer may be a horizontal bar or a vertical bar but the feature in the Sn layer
may be more complex. Each unit in the C-layer corresponds to one relative
position independent feature. For the independent feature, C-node receives
the inputs from a subset of S-layer nodes. For instance, if one node in C-
layer detects a vertical line and if four nodes in the preceding S-layer detect
a vertical line, then these four nodes will give the input to the specific node
in C-layer to spatially distribute the extracted features. Modules present
near the input layer (lower in hierarchy) will be trained before the modules



that are higher in hierarchy, i.e., module 1 will be trained before module 2
and so on.

The users have to fix the "receptive field" of each C-node before training
starts because the inputs to C-node cannot be modified. The lower level
modules have smaller receptive fields while the higher level modules
indicate complex independent features present in the hidden layer. The
spreading effect used in neocognitron is shown in Figure 6-9.

2B.9. CELLULAR NEURAL NETWORK -

cellular neural network (CNN), introduced in 1988, is based on cellular
automata, i.e., every cell in the network is connected only to its neighbour
cells. Figures 6-10 (A) and (B) show 2 x 2 CNN and 3 x 3 CNN,
respectively. The basic unit of a CNN is a cell. In Figures 6-10(A) and (B),
C(l, I) and C(2, 1) are called as cells.

Even if the cells are not directly connected with each other, they affect each
other indirectly due to propagation effects of the network dynamics. The
CNN can be implemented by means of a hardware model. This is achieved
by replacing each cell with linear capacitors and resistors, linear and
nonlinear controlled sources, and independent sources. An electronic circuit
model can be constructed for a CNN. The CNNs are used in a wide variety
of applications including image processing, pattern recognition and array
computers.

ci c(,2) C(1,3)
[con}—Jcna
: LI’.‘-{2-."II' cdf C@,3)
‘ﬂ c 2 ,
C{3,1) C{E.2) C lﬁ. 3)
{A) ‘ (B)

Figure 2b.10 (A) A2*2CNN;(B) a 3*3 CNN

2B.10. OPTICAL NEURAL NETWORKS

Optical neural networks interconnect neurons with light beams. Owing to
this interconnection, no insulation is required between signal paths and the
light rays can pass through each other without interacting. The path of the
signal travels in three dimensions. The transmission path density is limited
by the spacing of light sources, the divergence effect and the spacing, of
detectors. A$ a result, all signal paths operate simultaneously, and true data
rare results are produced. In holograms with high density, the weighted
strengths are stored.
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These stored weights can be modified during training for producing a fully
adaptive system. There are two classes of this optical neural network. They
are:

1. electro-optical multipliers;
2. holographic correlators.
2b.10.1. Electro-optical multipliers

Electro-optical multipliers, also called electro-optical matrix multipliers,
perform matrix multiplication in

parallel. The network speed is limited only by the available electro-optical
components; here the computation time is potentially in the nanosecond
range. A model of electro-optical matrix multiplier is shown in Figure 6-11.

Figure 6-11 shows a system which can multiply a nine-element input vector
by a 9 X 7 matrix, which

produces a seven-element NET vector. There exists a column of light
sources that passes its rays through

a lens; each light illuminates a single row of weight shield. The weight
shield is a photographic film where transmittance of each square (as shown
in Figure 6-11) is proportional to the weight. There is another lens that
focuses the light from each column of the shield m a corresponding
photoelectron. The NET is calculated as

NET, = Yiwux;

where NET is the net output of neuron k; wix the weight from neuron i to
neuron k; xi the input vector

component i. The output of each photo detector represents the dot product
between the input vector and a

column of the weight matrix. The output vector set is equal to the produce
of the input vector with weight

matrix. Hence, matrix multiplication is performed parallel. The speed is
independent of the size of the array.
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Figure 2b.11 Elecrno-optical multiplier



2b.10.2. Holographic Correlators

In holographic correlators, the reference images are stored in a thin
hologram and are retrieved in a coherently illuminated feedback loop. The
input signal, either noisy or incomplete, may be applied to the system and
can simultaneously be correlated optically with all the stored reference
images. These. correlations can be threshold and are fed back to the input,
where the strongest correlation reinforces the input image. The enhanced
image passes around the loop repeatedly, which approaches the stored
image more closely on each pass, until the system gets stabilized on the
desired image. The best performance of optical correlators is obtained when
they are used for image recognition. A generalized optical image
recognition system with holograms is shown in Figure 6- 12.

Mimor A |
Pin hole atray Mirror B
Morss |
Lens 2 Lens 3
Fiest hologram | Secend hologram
Lons 4
L.
Inpuls
LN .
;::;J]' «——»| Beam splitter +~——»~{ Threshold device Mirror C
—_—]

Figure 2b.12 Optical image recognition system

The system input is an image from a laser beam. This passes through a beam
splitter, which sends it to

the threshold device. The image is reflected, then gets reflected from the
threshold device, passes back to the beam splitter, then goes to lens 1, which
makes it fall on the first hologram. There are several stored images in first
hologram. The image then gets correlated with each stored image. This
correlation produces light patterns. The brightness of the patterns varies
with the degree of correlation. The projected images from lens 2 and mirror
A pass through pinhole array, where they are spatially separated. From this
array, light patterns go to mirror B through lens 3 and then are applied to
the second hologram. Lens 4 and mirror C then produce superposition of
the multiple correlated images olnto the back side of the threshold device.

The front surface of the threshold device reflects most strongly that pattern
which is brightest on its rear surface. Its rear surface has projected on it the
set of four correlations of each of the four stored images with the input
image. The stored image that is similar to the input image possesses highest
correlation. This reflected image again passes through the beam splitter and
re-enters the loop for further enhancement. The system gets converged on
the stored patterns most like the input pattern.
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2B.11 SUMMARY:

In this chapter we learn about Simulated Annealing Network, Boltzmann
Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net
,Cascade Correlation Network, Cognitron Network ,Neocognitron
Network, Cellular Neural Network , Optical Neural Networks, Spiking
Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer
Sizing, Deep learning Neural networks, Extreme Learning Machine Model
(ELMM) in detail.

2B.12 REVIEW QUESTIONS:

© © N o a bk~ 0w PR

Write a short note on Simulated Annealing Networks?

Explain Architecture of Boltzmann Machine.

Explain Probabilistic Neural Net.

Write a short note on Cellular Neural Network.

What are the Third-Generation Neural Networks?

Explain Architecture of a Convolutional Neural Network

What are the Limitations of CNN Model.

Write a short note on Deep learning Neural networks.

Write a short note on ELM Architecture and Training Algorithm

2B.13 REFERENCE:
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“Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,
2019, Wiley Publication, Chapter 2 and 3

http://www.sci.brooklyn.cuny.edu/  (Artificial Neural Networks,
Stephen Lucci PhD)

Related documents, diagrams from blogs, e-resources from RC
Chakraborty lecture notes and tutorialspoint.com.
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2c.1 Spiking Neural Networks (SNN)

2c¢.2 Encoding of Neurons in SNN
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2c.4 Deep learning Neural networks

2c.5 Extreme Learning Machine Model (ELMM)
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2C.1 SPIKING NEURAL NETWORKS (SNN)

As it is well known that the biological nervous system has inspired the
development of the artificial neural network models. On looking into the
depth of working of biological neurons, it is noted that the working of these
neurons and their computations are performed in temporal domain and the
neuron firing depends on the timing between the spikes stimulated in the
neurons of the brain. These fundamental biological understandings of the
neuron operation lead the pathway to the development of spiking neural
networks (SNN). SNNs fall under the category of third-generation neural
networks and this is more closely related to the biological counterparts
compared to the first- and second-generation neural networks. These
developed spiking neural networks use transient pulses for performing the
computations and require communications within the layers of the network
designed. There exist different spiking neural models and their
classification is based on their level of abstraction.

2c¢.1.1. Architecture of SNN Model

Neurons in central nervous system communicate using short-duration
electrical impulses called spikes or action potentials in which their
amplitude is constant in the same structure of neurons. SNNs offer a
biological plausible fast third-generation neural connectionist model. They
derive their strength and interest from an accurate modelling of synaptic
interactions between neurons, taking into account the time of spike
emission. SNNs overcome the computational power of neural networks

Third Generation
Neural Networks
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made of threshold or sigmoidal units. Based on dynamic event-driven
processing, they open up new horizons for developing models with an
exponential capacity of memorizing and a strong ability to fast adaptation.

Moreover, SNNs add a new dimension, the temporal axis, to the
representation capacity and the processing abilities of neural networks.
There are many different models one could use to model both the individual
spiking neurons and also the nonlinear dynamics of the system. Neurons
communicate with spikes, also known as action potentials. Since all spikes
art identical (1-2 ms of duration and 100 mV of amplitude), the information
is encoded by the liming of the spikes and not the spikes themselves.
Basically, a neuron is divided into three parts: the dendrites, the soma and
the axon. Generally speaking, the dendrites receive the input signals from
the previous neurons. The received input signals are processed in the soma
and the output signals are transmitted at the axon. The synapse is between
every two neurons; if a neuron j sends a signal across the synapse to neuron
i, the neuron that sends the signal is called pre-synaptic neuron and the
neuron that receives the signal is called post-synaptic neuron. Every neuron
is surrounded by positive and negative ions. In the inner surface of the
membrane there is an excess of negative charges and on the outer surface
there is an excess of positive charges. Those charges create the membrane
potential.

Each spiking neuron is characterized by a membrane potential. When the
membrane potential reaches a critical value called threshold it emits an
action potential, also known as a spike (Figure 7-1). A neuron is said to fire
when its membrane potential reaches a specific threshold. When it fires, it
sends a spike towards all other connected neurons. Its membrane potentials
then reset and the neuron cannot fire for a short period of time,

this time period refractory period. The output of a spiking neuron is therefore
binary (spike or not) but it can be converted to continuous signal over time.
Hence the activity of a neuron over a short period of lime is converted into
a mean firing rate. The spikes are identical to each other and their form does
not change as the signal moves from a pre-synaptic to a post-synaptic
neuron. The firing time of a neuron is called spike train.

;‘m sap  7lt-tH 1

Fig-.2c.13-SNN spikes: The membrane potential is increased and at time
t(f) the membrane potential reaches the threshold so that a spike is emitted.



2¢.1.2 Izhikevich Neuron Model
The Izhikevich Neuron Model is defined by the following equation:

v'=0.04v2 + 5v + 140 —u +I
u’= a(bv-u)

If v>=30mV, thenv =candu=u+d. Here, / is the input, v is the neuron
membrane voltage and u is the recovery variable of the activation of
potassium K ionic currents and inactivation of sodium Na ionic currents.
The model exhibits all known neuronal firing patterns with the appropriate
values for the variables a, b, c and d.

1 The parameter a describes the time scale of the recovery variable u.
Smaller values result in slower recovery. A typical value is a = 0.02.

2. The parameter b describes the sensitivity of the recovery
variable u to the sub-threshold fluctuations of the membrane potential
v. A typical value is b - 0.2.

3. The parameter ¢ describes the after-spike reset value of the
membrane potential v caused by the fast high-threshold K (potassium)
conductance. A typical value for real neurons is ¢ = -65 mV.

4. The parameter d describes the after-spike reset of the recovery
variable u caused by slow high threshold Na (sodium) and K
(potassium) conductance. A typical value of d is 2.

The 1Z neuron uses voltage as its modelling variable. When the membrane
voltage v(f) reaches 30 mV, a spike is emitted and the membrane voltage
and the recovery variable are reset according to 1Z neuron model equations.
For I ms of simulation, this model takes 13 FLOPS. Figure 7-2 illustrates
the 1Z neuron model firing.
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Fig- 2c.14-The Izhikevich Spiking Neuron Model. In the top graph, there exists
the membrane potential of the neuron. In the middle graph, there is the
membrane recovery variable. Finally, the bottom plot represents the action
pre-synaptic spikes.

The SNN with N neurons is assumed to be fully connected and hence the
output of each neuron | is connected to every other neuron. The synaptic
strength of these connections are given by the N x N matrix W where
WIi, j] is the strength between the output of neuron j and the input of neuron
i. Thus Wi, :] represents the synapses at the input of neuron i, whereas
WI:, j] represents the synapse values connected to the outputs of neuron j.
Each neuron has its own static parameters and varying state values. The set
P represents the set of possible constant parameters and I is the set of neuron
states. The set of possible inputs to the neurons is denoted by R. The neuron
updated function f:(P, S, R) -> (S, [0,1 ]) takes input parameters as the
neuronal states and inputs and produces the next neuronal state and binary
output.

Izhikevich's model uses a two-dimensional differential equation to
represent the state of a single neuron i, namely, its membrane recovery
variable u[i] and membrane potential v[i], that is (u[i], v[i]) € S with a hard
reset spike. Additional four parameters are used for the configuration of the
neurons: a - time scale of u; b - sensitivity of u; c - value of v after the
neuron is fired; d - value of u after the neuron is fired. Hence the neuron
parameters are (a, b, c, d) e P, These parameters can be tuned to represent
different neuron classes. If the value of Vv[i| is above 30 mV, the output is
set to 1 (otherwise it is 0) and the state variables are reset.

Izhikevich used a random input for each neuron in the range N(0,1), a zero
mean and unit variance that is normally distributed. This input results in
random number of neurons firing each time, depending not only on the
intensity of the stimulus, but also on their randomly initialized parameters.
After the input layer, one or more layers are connected in a feed-forward
fashion. A spike occurs anytime the voltage reaches 30 mV. While the
neurons communicate with spikes, the input current Ii of the neuron i is
equal to



m

;

n
=1

where wijj is weight of connection from node; to node i; wik is weight of
connection from external input k to node i; l(t) is binary external input k;
oj 1s binary output of neuron j (0 or 1).

Wikl (1)
k=1

When the input current signal changes, the response of the Izhikevich
neuron also changes, generating different firing rates. The neuron is
responded during “T” ms with an input signal and it gets fired when its
membrane potential reaches a specific value, generating an action potential
(spike) or a train of spikes. The firing rate is evaluated as

Number of spikes
T

Firing rate=

2c¢.2 Encoding of Neurons in SNN

Spiking neural networks can encode digital and analogy information. The
neuronal coding schemes are of three categories: rate coding, temporal
coding and population coding. In rate coding, the information is encoded
into the mean firing rate of the neuron, which is also known as temporal
average. In temporal coding, the information is encoded in the form of spike
times. In population coding, a number of input neurons (population) are
involved in the analog encoding and this produces different firing times.
Commonly used encoding method is the population- based encoding.

In population encoding, analogy input values are represented into spike
times using population coding. Multiple Gaussian receptive fields are used
so that the input neurons encode an input value into spike times. The firing
time is computed based on the intersection of Gaussian function. The centre
of the Gaussian function is calculated using

u= Imin + (2 * [ — 3)/2 * (Imax - Imin)/(M - 2)
and the width is computed employing
0=1/BUnax — Imin)/(M —2) where 1 < <2

with the variable interval of [I ;' Imax]- The parameter " g " controls the
width of each Gaussian receptive field.

2c¢.2.1. Learning with Spiking Neurons

Similar to other supervised training algorithms, the synaptic weights of the
network are adjusted iteratively in order to impose a desired input-output
mapping to the SNN. Learning is performed through implementation of
synaptic plasticity on excitatory synapses, The synaptic weights of the
model, which are directly connected to the input pattern, determine the
firing rate of the neurons. This means that the carried learning phase
generates the desired behaviour by adjusting the synaptic weights of the
neuron.
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The neurons characterize sudden change of the membrane potential
instantaneously prior to and subsequent to the firing. This potential
behavioural feature leads to complexity in training SNNs. Some of the
learning models include SpikeProp, spike-based supervised Hebbian
learning, and ReSuMe and Spike time-dependent plasticity. Neurons can be
trained to classify categories of input signals based on only a temporal
configuration of spikes. The decision is communicated by emitting
precisely timed spike trains associated with given input categories. Trained
neurons can perform the classification task correctly.

The weights w between a pre-synaptic neuron i and a post-synaptic neuron
j do not have fixed values. It has been proved through experiments that they
change, and this affects the amplitude of the generated spike. The procedure
of the weight update is called learning process and it can be divided into
two categories: supervised and unsupervised learning If the synaptic
strength is increased then it is called long-term potentiation (LTP) and if the
strength is decreased then it is called long-term depression (LTD).

2c.2.2. Spike Prop Learning Algorithm

SNN employs spiking neurons as computational units which account to
precise firing times of neurons for information coding. The information
retrieval from the spike trains (neurons encode the information) are done by
binary bit coding which is a population coding approach. This section
presents the error-back propagation supervised learning algorithm as
employed for the spiking neural networks.

Each SNN consists of a set of neurons (I, J), a set of edges (E = | x J), input
neurons i — | and output neurons j < J. For each non-input neuron, i € I,
with threshold,function Vi and potential u(t), each synapse {i, j} € E will
have a response function &j; and weight wij. The structures of neurons tend
to be fully connected feed forward neural network. The source neuron V
will fire and propagate spikes along all directions. Formally, a spike train is
defined as a sequence of pulses. Each target neuron w that receives a spike
experiences an increase in potential at time t, similar as wjw . &jw (i-t).

The firing time of a neuron i is denoted as t where f=1,2,3,... is the number
of the spike. The objective is to train a set of target firing times tsand actual
firing time ta For a series of the input spike trains Sin(t), a sequence of the
target output spikes S (f) is obtained. The goal is to find a vector of the
synaptic weights w such that the outputs of the learning neurons Sou(t) are
close to Si(t). Changing the weights of the synapses alters the timing of the
output spike for a given temporal input pattern

S, (t) = Z §(te —tr)

f

where §(x) is the Dirac function, §(x) = 0 forx # 0 and [ §(x)dx = 1.
Every pulse is taken as a single point in time. The objective is to train the
desired target firing times {¢,} and that of the actual firing times {¢,}. The
least mean squares error function is chosen and is defined by



E= %Z (to — te)?

iv

In error-back propagation algorithm, each synaptic terminal is taken as a
separate connection k from neuron i to j with weight w, in* is the learning
rate parameter. The basic weight adaptation functions for neurons in the
output layer hidden layer are given by

) (t — t.)

0, 0x;(t, 0,1(t
u6x;(t.) Zisth1W¢i_T5t(d)

Awpyr =-1 SWo = —nyi(ta) - O¢
5 = 6ty 81 (ta)
: B 6xi(ta) HeLT Sta
Awpyx = —nyn(ty) - 6

The training process involves modifying the thresholds of the neuron
firing and synaptic weights. The algorithmic steps involved in learning
through Spike-Prop Algorithm are as follows:

2¢.2.3. Spike-Prop Algorithm

Step 1: The threshold is chosen and the weights are initialized randomly
between 0 and 1.

Step 2: In feed-forward stage, each input synapse receives input signal and
transmits it to the next neuron (i.e., hidden units). Each hidden unit with
SNN function calculated is sent to the output unit which in return calculates
the spike function as the response for the given input. The firing time of a
neuron ta is found. The time to first spike of the output neurons is compared
with that of the desired time ti of the first spike.

Step 3: Perform the error-back propagation learning process for all the
layers.

The equations are transformed to partial derivatives and the process is
carried out.

Step 4. Calculate 6; using actual and desired firing time of each output
neuron.

Step 5: Calculate 6i employing the actual and desired firing times of each
hidden neuron and §; values.

Step 6: Update weights: For output layer, calculate each change in weight.
Step 7: Compute: New weight = Old weight + A wijx
Step 8: For hidden layer, calculate each change in weight.

Step 9: Compute new weights for the hidden layer. New weight = Old
weight + A whik

Step 10: Repeat until the occurrence of convergence.
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2c.2.4. Spike Time-Dependent Plasticity (STOP) Learning

Spike time-dependent plasticity (STOP) is viewed as a more quantitative
form of Hebbian learning. It emphasizes the importance of causality in
synaptic strengthening or weakening. STDP is a form of Hebbian Learning
where spike time and transmission are used in order to calculate the change
in the synaptic weight of a neuron. When the pre-synaptic spikes precede
post-synaptic spikes by tens of milliseconds, synaptic efficacy is increased.
On the other hand, when the post-synaptic spikes precede the pre-synaptic
spikes, the synaptic strength decreases. Furthermore, the synaptic efficacy
Awij is a function of the spike times of the pre-synaptic and post-synaptic
neurons. This is called Spike Timing-Dependent Plasticity (STDP). The well-
known STDP algorithm modifies the synaptic weights using the following
algorithm

A = {A+exp(At/T+)ifAt <0
—A"exp(—At/t) if At > 0
Wy + r;Aw(wmas - Wold) ifAw > 0
WmCV =

W, T NAW(Wop — Winin) if At < 0

Where At = (tpre — tpost) the time delay between the pre synaptic spike and
the post synaptic spike. If the pre-synaptic spike occurs before the post
synaptic spike, the weight of the synapse should be increased. If the pre
synaptic spike occurs after the post-synaptic spike, then the weight of the
synapse gets reduced. STDP learning can be used for Inhibitory or
excitatory neurons.

2¢.2.5. Convolutional neural network (CNN)

Convolutional neural network (CNN) is built up of one or more number of
convolutional layers and after then it is trailed by one or more fully
connected layers like feed forward networks. CNN architecture is designed
to possess the structure of a two dimensional input image, that is, CNN's
key advantage is that its input consists of images and this representation of
images designs the architecture in a practical way. The neurons in CNN arc
arranged in 3 dimensions: height, width, and depth. The information
pertaining to "depth" is an activation volume and it represents the third
dimension. This architectural design of CNN is carried out with the local
connections and possesses weights which art subsequently followed by
certain pooling operations. CNN’s can be trained in an easy manner and
these have minimal parameters for the same number of hidden units than
that of the other fully interconnected networks considered for comparison,
figure 7-3 shows the arrangement of neurons in three dimensions in a
convolutional neural network. As a regular neural network, the
convolutional neural network is also made up of layers, and each and every
layer transforms an input 3D volume to an output 3D volume along with
certain differentiable activation functions with or without any parameters.
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Figure 2c.15 Arrangement of neurons in CNN model
2¢.2.6. Layers in Convolutional Neural Networks

It is well noted that the convolutional neural network is a sequence of layers
and each and every layer in CNN perform transformation of one volume
activations to the other by employing a differentiable function. CNN
consists of three major layers:

1.  Convolutional layer
2. Pooling layer

3. Fully interconnected layer (regular neural models like perceptron and
BPN)

These layers exist between the input layer and output layer Input layer holds
the input values represented by the pixel values of an image. Convolutional
layer performs computation and determines output of a neuron that is
connected to local regions in the input. The computation is done by performing
dot product between their weights and a small region that is connected to
the input volume. After then, an element wise activation function is applied
wherein the threshold set to zero. Applying this activation function results
no change in the size of the volume of the layers Pooling layer carries out
the down sampling operation along with the spatial dimensions including
width and height Regular fully connected layers perform computation of the
class scores (belongs to the class or nut) and result m a specified volume
size. In this manner, convolutional neural networks transform the original
input layer by laser and result in the final scores. Pooling layer implements
only a died function whereas convolutional and fully interconnected layer
implements transformation on functions and as well on the weights and
biases of the neurons.

Fundamentally, a convolutional neural network is none comprising a
sequence of layers that transform the image volume into an output volume.
Each of the designed layers in CNN is modelled to take an input 3
dimensional volume data and perform transformation to an output 3
dimensional data employing a differentiable function Here, the designed
convolutional and fully inter connected layers possess parameters and the
pooling layers do not possess a parameter.
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2¢.2.7. Architecture of a Convolutional Neural Network

It is well known that CNN is made up of a number of convolutional and
pooling (also called as sub-sampling) layers, subsequently followed by fully
interconnected layers (at certain cases this layer becomes optional based on
the application considered).

Figure 2¢.17 CNN with convolutional and pooling layers

The input presented to the convolutional layer is an n X n x p image where
“n" is the height and width of an image and “p” refers to the number of
channels (e g., an RGB image possess 3 channels and so p = 3). The
convolutional layer to be constructed possesses 'm filters of size r x r X g,
where <" tends to be smaller than the dimension of the image and “4" can
be the same size as that of “»” or it can be smaller and vary for each of the
filter. The filter size enables the design of locally connected structure which
gets convolved with the image for producing “m" feature maps. The size of
feature map will be “n - r + 1”. Each of the feature maps then gets pooled
(sub-sampled) based on maximum or average pooling over r x r connecting
regions. The value of «»~ is 2 for small images and 5 for larger images. A
bias and a non-linear sigmoidal function can be applied to each of the
feature map before or after the pooling layer, figure 7-4 shows the
architecture of the convolutional neural network.

2c.2.8. Designing the Layers in CNN Model

CNN b nude up of the three individual layers and this subsection presents
the details on designing each of these lasers specifying their connectivity
and hyper parameters.

1- Design of Convolutional Layer

The primary building block of convolutional neural network is the
convolutional layer. The convolutional layer is designed to perform intense
computations in a CNN model. Convolutional layer possess a set of



trainable filters and every filter is spatially small (along the width and
height) but noted to extend through the fullest depth of the input volume.
When the forward pass gets initiated, each filter slides across the height and
width of the input volume and the dot product is computed between the
input at any position and that of the entries in the filter. When the filter slides
across the height and weight of the input volume, a two-dimensional
activation feature map is produced that gives the responses of that filter at
every spatial position. The filters get activated when they come across
certain type of visual features (like edge detection, color stain on the first
layer, certain specific patterns or honeycomb existing on higher layers of
the network) and the network learns from the filter that gets activated.
Convolutional layer consists of the complete set of filters and each of these
filters produces a separate 2-dimensional activation map. These activation
maps will be stacked along the depth dimension and result in the output
volume.

In CNN network model, at the convolutional layer, each neuron gets
connected only to a local region of the input volume. The spatial extent of
this neuronal connectivity is represented by a hyper-parameter called the
receptive field Of the neuron. This receptive field of the neuron is the filter size.
This spatial extent's connectivity along the depth axis will be equal to the
depth of input volume. These connections tend to be local in space and get
full towards the entire depth of the input volume.

With respect to the number of neurons in the output volume, three hyper-
parameters are noted to control the size of the output volume - depth, stride
and zero-padding. The depth of the output volume refers to the number of
filters to be used, wherein each learning searches the existence of difference
in the input. The stride is to be specified for sliding the filter.

one pixel at a time, stride = 1

. . ., f
2 pixel at a time, stride "

subsequently for other strides

The movement of the filter is specified by the above equation. This
representation of the strides results in smaller output volumes spatially. At
times it is required to pad the input volume with zeros around the border,
hence, the other hyper-parameter is the size of this zero-padding. Zero-
padding allows controlling the spatial size of the output volumes. It should
be noted that if all neurons presented in the single depth slice employ the
same weight vector, then in every depth slice, the forward pass of the
convolutional layer can be computed as the convolution of the neuronal
weights with that of the input volume. Thus, the sets of weights are referred
in CNN as filter that gets convolved with the input. The limitation of this
approach is that it uses lots of memory, as certain values in the input volume
arc generated repeatedly for multiple times.

It is to be noted that the backward pass for a convolution operation is also a
convolution process. The backward pass also moves to a back propagation
neural network. In few works carried out earlier, it is observed that they use
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1 x 1 convolution, but for a two-dimensional case it is similar to a point-
wise scaling operation. As with CNN model, it is operated more on three-
dimensional volumes and also the filters get extended over the full depth of
the input volume. It is to be noted that employing 1 x 1 convolution will
perform the three-dimensional dot product. Another method of convolution
is the dilated convolution, wherein an added hyper-parameter called dilation
is included to the convolutional layer. In case of dilated convolution, there
is possibility to have filters with spaces between each cell. Implementation
will be done in a manner of dilation 0, dilation 1 (gap 1 will be adopted
between the filters) and so on. Employing dilated convolutions drastically
increases the receptive field.

2-Design of Pooling Layer

Between the successive convolutional layers, pooling layers are placed. The
presence of pooling layer between the convolutelayers is to gradually
decrease the spatial size of the parameters and to reduce the computation in
the network. This placement of pooling layer also controls the occurrence
of over fitting. The pooling layer works independently on depth slice of the
input as well as resizes them spatially. Commonly employed pooling layer
is the one with the filter size of 2 x 2 applied with a stride of 2 down samples.
The down sampling occurs for every depth slice in the input by 2 along the
height and width. The dimension of the depth parameter remains unaltered
in this case. Pooling sizes with higher receptive fields are noted to be
damaging. Generally used pooling mechanism is the “max pooling”.

Apart from this operation, the pooling layer can also perform functions like
mean pooling or even L2-norm pooling. In the backward pass of a pooling
layer, the process is only to route the gradient to the input that possessed the
highest value in the forward pass. Hence, at the time of forward pass of the
pooling layer, it is important to track the index of the activation function
(probably “max’) so that the gradient routing is carried out effectively by a
back-propagation network algorithm.

2¢.2.9. Layer Modelling in CNN and Common CNN Nets

The other layers of importance in convolutional neural network are the
normalization layer and the fully connected layer. Numerous normalization
layers are developed to be used in CNN model and they are designed in a
manner to implement the inhibition procedure of the human brain. Various
types of normalization procedures like mean scaling, max scaling,
summation process, etc. can be employed if required for operation in the
CNN model. Fully connected layers possess full interconnections for all the
activations in the previous layer. As regular, their activations are based on
computing the net input to the neurons of a layer along with the bias input
also.

2¢.2.10. Conversion of Fully Connected Layer to Convolutional Layer

The main difference between the fully connected and the convolutional
layer is that the neurons present in the convolutional layer get connected
only to a local region in the input and the neurons in the convolutional



voluminous structure share their parameters. The neurons in both fully
connected and convolutional layers calculate the dot products and hence
their functional form remains the same. Therefore it is possible to perform
conversion between the fully connected and the convolutional layers.

Considering any convolutional layer, there exists a fully connected layer
which implements one and the same forward pass function. The weight
matrix will be a large one and possesses zero entities except at specific
blocks (no self-connection and existence of local connectivity) and the
weights in numerous blocks tend to be equal (parameter sharing). Also, fully
connected layer can be converted into convolutional layer; here the filter
size will be set equal to the size of the input volume and the output will be
a single depth column fit across the input volumes. This gives the same
result as that of the initial fully connected layer. In both these conversions,
the process of converting a fully connected layer to a convolutional layer is
generally in practice.

2¢.3 CNN Layer Sizing

As known, CNN model commonly comprises convolutional layer, pooling
layer, and fully connected layer. The rules for sizing the architecture of the
CNN model are as follows:

1. The input layer should be designed in such a way that it should be
divisible by the convolutional layer should employ small size filters,
specifying the stride. The convolutional layer should not alter the
spatial dimensions of the input.

2. The pooling layer down samples the spatial dimensions of the input.
Commonly used pooling is the max-pooling with a 2 x 2 receptive
fields and a stride of 2. Receptive field size is accepted until 3x3 and
if it exceeds above 3, the pooling becomes more aggressive and tends
to lose information. This results in poor performance of the network.

From all the above, it is clearly understood that the convolutional layers
preserve the spatial size of their input. On the other hand, the pooling layers
are responsible for down sampling the volumes spatially. Alternatively, if
strides greater than 1 or zero-padding are not done to the input in
convolutional layers, then it is very important to track the input volumes
through the entire CNN architecture and ensure that all the strides and filters
work in a proper manner. Smaller strides are generally better in practice.
Padding actually improves the performance of the network. When the
convolutional layer does not zero-pad the inputs and only performs
authenticate convolutions, then the volume size will reduce by a smaller
amount after each convolution process.

2c.3.1 Common CNN Nets

In the past few years, there were numerous CNN models developed and
implemented for various applications. Few of them include

1.  LeNet: The first convolutional neural network model named after the
developer LeCun. It is applied to read zip codes, digits and so on.

Third Generation
Neural Networks

99



Soft Computing Techniques

100

AlexNet: CNN model in this case was applied to computer vision
application. It was developed in the year 2012 by Alex Krizhevsky
and team.

ZFNetf: It was developed in the year 2013 by Zeiler and Fergus and
hence named as ZFNet. In this network model, the convolutional
layers in the middle are expanded and the stride and filter size are
made smalt in the first layer.

VGGNet: It was modelled in the year 2014 by Karen and Andrew. It
has phenomenal impact on the depth of the network and it was noted
that depth of network parameter plays a major role for better
performance.

GoogLeNet It was developed in the year 2014 from Google by
Szegedy and team. This net contributed an Inception module wherein
the numbers of parameters in the model are reduced. This network
employs mean pooling instead of fully connected layers at the top of
the convolutional network. As a result, more number of parameters
arc eliminated in this case.

ResNet: It was modelled in the year 2015 by Kaiming and team, and
hence called as Residual Network. This network is the default
convolutional neural network. It employs batch normalization and the
architecture also docs not consider fully connected layers at the end
of the network.

2c¢.3.2. Limitations of CNN Model

The computational considerations are the major limitations of the
convolutional neural network model. Memory requirement is one of the
problems for CNN models. In the current processor unit, the memory limits
from 3/4/6 GB to the latest best version of 12 GB memory. The memory
can be handled by

1.

Convolutional network implementations should maintain varied
memory requirements, like the image data modules

Intermediate volume sizes specify the number of activations at each
layer of the convolutional network as well is their gradients. Running
convolutional network at the time of testing alone reduces the
memory by large amount, by storing only the current activations at
any layer and eliminating the activations of the previous layer.

Network parameters and their size, gradient descent values of the
parameters during backward pass in back propagation process and
also a step cache when momentum factor is used. The memory
required to store a parameter alone should be multiplied by a factor of
at least 3 or so.

On calculating the total number of parametric values, the number must be
converted to a specified size in GB for memory requirement. For each of
the parameters, consider the number of parametric values. Then multiply



the number of parametric values by 4 to get the raw number of bytes and
then divide it by multiples of 1024 to get the amount of memory in KB, MB
and then in GB. In this way, the memory requirement of CNN model can
be computed and the limitations can be overcome.

2c¢.4 Deep learning Neural networks:

Machine learning approaches are undergoing a tremendous revolution,
which has led to the development of third generation neural networks. The
limitations observed in the second-generation neural networks like delayed
converged undue local and global minimal problems and so on are handled
in the developed third-generation neural networks. One of the prominent
third generation neural networks is the deep learning neural networks
(DLNNSs) and this neural model provides a deep understanding of the input
information.

The prominent researcher behind the concept of deep learning neural
networks is Professor Hinton from University of Toronto who managed to
develop a special program module for constituting the formulation of
molecules to produce an effective medicine. Minton's group employed deep
learning artificial intelligence methodology to locate the combination of
molecules required for the composition of medicine with very limited
information on source data. Apple and Google have transformed themselves
with deep learning concepts and this can be noted through Apple Siri and
Google Street view, respectively.

The learning process in deep learning neural network takes place in two
steps. In the first step, the information about the input data’s internal
structure is obtained from the existing large array of unformatted data. This
extraction of the internal structure is carried out by an auto-associator unit
via unsupervised training layer-by-layer, then the formatted data obtained
from the unsupervised multi-layer neural network gets processed through a
supervised network module employing the already available neural network
training methods. It is to be noted that the amount of unformatted data
should be as large as possible and the amount of formatted data can be
smaller in size (but this need not be an essential criteria).

2¢.4.1. Network Model and Process Flow of Deep Learning Neural
Network

The growth of deep learning neural networks is its deep architecture that
contains multiple hidden layers and each hidden layer carries out a non-
linear transformation between the layers. DLNNs get trained based on two
features:

1. Pre-training of the deep neural networks employing unsupervised
learning techniques like auto-encoders layer-by-layer,

2. Fine tuning of the DLNNs employing back propagation neural
network.
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Basically, auto-encoders are employed with respect to the unsupervised
learning technique and the input data is the output target of the auto-
encoder. An auto-encoder consists of two parts - encoder and decoder
network. The operation of an encoder network is to transform the input data
that is present in the form of a high-dimensional space into codes pertaining
to low-dimensional space. The operation of the decoder network is to
reconstruct the inputs from the corresponding codes. In encoder neural
network, the encoding function is given by “fo". The encode vector (EY) is
given by

EV=fo (xY)
where “x” is the data set of the measured signal.

The reconstruction operation is carried out at the decoder neural network
and its function is given by “ge". This reconstruction function maps the data
set “x”” from the low-dimensional space into the high-dimensional space.
The reconstructed form is given by

x"=go(E")

The ultimate goal of these encoder and decoder neural networks is to
minimize the reconstruction error E(x, X) for that many numbers of training
samples. E(x, X) is specified as a loss function that is used to measure the
discrepancy between the encoded and decoded data samples. The key
objective of the unsupervised auto-encoder is to determine the parameter
sets that minimize the reconstruction error “E”

8e(0,0") = Zi1 E (x"g’o(fo (X))

The encoding and decoding functions of the DLNN will be present along
with a non-linearity and are given by

f@ (X) = faf_e (b+Wx)
go (X) = far_a (D+Wy)

Where fas e and far o refer to the encoder activation function and the decoder
activation function, respectively, “b" indicates the bias of the network, and
W and WT specify the weight matrices of the DLNN model.

The reconstruction error is given by
E(x, X) =[| x- X]|

In order to carry out the pre-training of a DLNN model, the “N" auto-
encoders developed in previous module should be stacked. For the given
input signal x¥ input layer along with the first hidden layer of DLNN arc
considered as the encoder neural network of the first auto-encoding process.
When the first auto-encoder is noted to be trained by minimizing the
reconstruction error, the first trained parameter set 01, of the encoder neural
network is employed to initialize the first hidden layer of the DLNN and the
first encode vector is obtained by

Ei¥="fo (XV)



Now, the input data becomes the encode vector E1". The first and second Third Generation
hidden layers of the DLNN are considered as the encoder neural network Neural Networks
for the second auto-encoder. Subsequently, the second hidden layer of the

DLNN gets initialized by that of the second trained auto-encoder. This

process gets continued upto the N-th auto-encoder that gets trained for

initializing the final hidden layer of the DI.NN model. The final or the N-th

encode vector in generalized form for the vector x" is obtained by

EnY=fo (E'N-1)

where “OnN” denotes the Nth trained parameter set of the encoder neural
network. Thus, in this way, all the DLNN s hidden layers get pre trained by
means of the N stacked auto encoders. It is well noted that the process of
pre-training avoids local minima and improves generalization aspect of the
problem under consideration. Figure 7-5 shows the fundamental
architecture of the deep learning neural network.

T e~

Input Values Input Layer Hidden Layer 1 Hidden Layer 2 Qutput Layer

Figure 2¢.18 Architecture model of deep learning neural network

The above completes the pre training process of DLNN and the nest
process is the tine-tuning process in the DLNN model DLNN models
output is calculated from the input signal XY as

VY =fo n+1(E

where On+1 denotes the trained parameter set of the output layer. Here,
back propagation network (BPN)is employed for minimizing the error of
the output by carrying out the parameter adjustments in DLNN backwards
in case the output the target of x* is t, then the error criterion is given by

MSE(¥)=1/N T3, E(y', )
Where WY={O1, Oz, O3, ..... On+1}
2c.4.2. Training Algorithm of Deep Learning Neural Network:
Step 1: Start the algorithmic process.

Step 2: Obtain the training data sets to feed into the DLNN model and

initialize the necessary parameters. 103
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Step 3: Construct DLNN with "N hidden layers.
Step 4: Perform the training of r-th auto-encoder.

Step 5: Initialize i-th hidden layer parameter of DLNN employing the
parameters of the auto encoder.

Step 6: Check whether “1” is greater than “N". If no carry out step 4; if
yes go to the next step.

Step 7: Calculate the dimensions of the output layer.

Step 8: Fine tune the parameters of DLNN through the BBN algorithm.
Step 9: With the final fine-tuned DLNN model go to the next step.
Step 10:  Return the trained DLNN.

Step 11:  Output the solutions achieved.

Step 12:  Stop the process on meeting termination condition.
The termination condition is the number of iterations or
reaching the minimal mean square error.

2c¢.4.3. Encoder Configurations

Encoders are built so as to receive the possible exact configuration of the
input at the output end. These encoders belong to the category of auto
associator neural units, Auto associator modules, are designed to perform
the generating part as well as the synthesizing part. Encoders discussed in
this section belong to the synthesized module of auto associator and tor the
generation part, a variation of Boltzmann machine as presented in special
networks.

An auto encoder is configured to be all open layer neural network Auto
encoder for its operation sets its target value equal to that of the Input vector.
A model of an auto encoder is as shown in figure 2¢.6. The encoder model
attempts to find approximation of a defined function authenticating that the
feedback of a neural network tends to be approximately equal to the values
of the given input parameters. The encoder is also capable of compressing
the data once the given input signal gets passed to that of the output of the
network. The compression is possible in an auto encoder if there exists
hidden interconnections or a sort of characteristics correlation. In this
manner, auto encoder behaves m a similar manner as the principal
component analysis and achieves data reduction (possible compression) in
the input side.



Input

Feature 1

FEATURES IN THE
HIDDEN LAYER

Figure 2c.19 Model configuration of an auto encoder

On the other hand, when the auto encoder is trained with the stochastic
gradient descent algorithm and the where the number of hidden neurons
becomes greater than the number of inputs, it results in the possible decrease
in the error values. So, it is applied for various function analysis and
compression applications

Another variation in the encoder configuration is the denoting auto encoder.
Here, the variation exists in the training process. On training the deep
learning neural network for demolishing encoder, corrupted or demonised
data (substituted with “0" values) can be given as input. further to this,
during the same time, the coned data can be compared with that of the output
data. The advantage of this mechanism is that it paves way to restore the
damaged data.

2¢.5. EXTREME LEARNING MACHINE MODEL (ELMM)

Over the years, it has been observed that the k nearest neighbourhood and
other few architectures like support machine (SVM) classifiers employed
for classification requite more computations due to the repetition of
classification and registration, hence they are relatively slow. SVM

Third Generation
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approach, even though it has the advantages of generalization and can
handle high dimensional feature space, assumes that the data are
independently and identically distributed. This is not applicable for all sets
of data, as they are likely to have noise and related distribution. Storage is
also an added disadvantage of SVM classifier.

Other multilayer neural networks which are trained with back propagation
algorithm based on gradient descent learning rule. Posses certain limitations
like slow conversions, setting the learning rate parameters, local and global
minimum occurrences and repeated training process without attaining
conversions point.

ELMM is a single hidden layer feed forward neural network where input
weights and hidden neuron are randomly selected without training. The
output weights are analytically computed employing the least square norm
solution and Moore — Penrose inverse of a generalized linear system. This
method of determining output weights results in significant reduction of
training time. For hidden layer neurons are the activation functions like
Gaussian, sigmoidal and so on can be employee for output layer neurons
layer linear activation function. This single layer feed forward, network
ELM model employee additive neural design instead of kernel based and
hence there is random parameter selection.

2¢.5.2. ELM TRAINING PROGRAM:

For a given training vector pair N={x¢,t)}, with i€ R"ti € R", i=1,...,.N
activation function f(x) and hidden neuron N, the algorithm is as follows:

Step 1: Start Initialize the necessary parameters, choose suitable activation
function and the number of hidden neurons in the hidden layer for the
considered problem.

Step 2: Assign arbitrary input weights w; and bi as b;

Step 3: Compute the output matrix H at the hidden layer
H= f(xOw-+b)

Step 4: Compute the output weight § based on the equation
8=H*T

2¢.5.3. Other ELM Models

Huang initially proposed ELM in the year 2004 and subsequently numerous
researchers worked on ELM and developed certain improved ELM
algorithms. ELM was enhanced over the years to improve the network
training speed, to avoid local and global minima, to reduce iteration time,
to overcome the difficulty in defining learning role parameters and setting
the stopping criteria.

Since ELM works on empirical minimization principle, the random
selection of input layer weights and hidden layer biases result in non-
optimal convergence. In comparison with that of the gradient descent



learning rule, ELM may require more number of hidden layer neurons and
this reduces ELM’s training effect. Henceforth, to speed the convergence
and response of ELM training, numerous improvements were made in
existing ELM algorithm and modified versions of ELM algorithm were
introduced. The following sub-sections present few improvements made by
researchers in the existing ELM algorithm.

2¢.5.4. Online Extreme Learning Machine

ELM is well noted for solving regression and classification problems; it
results in better generalization performance and training speed. When
considering ELM for real applications which involve minimal data set, it
may result in over-fitting occurrences.

Online ELM is also referred to as online sequential extreme learning
machine (OSELM) and this works on sequential adaptation with recursive
least square algorithm. This was also introduced by Huang in the year 2005.
Further to this, online sequential fuzzy ELM (OS-Fuzzy-ELM) has also
been developed for implementing different orders of TSK models. In fuzzy-
based FLM, randomly all the antecedent parameters of membership
functions are assigned first and subsequently the consequent parameters are
computed. Zhang, in the year 2011, developed selective forgetting ELM
(SFELM) to overcome the online training issues and applied it to time-
series prediction. SFELM’s output weight is calculated in a recursive
manner at the time of online training based on its generalization
performance. SFELM is noted to possess better prediction accuracy.

2¢.5.5. Pruned Extreme Learning Mac/i/ne

ELM is well known for its short training time and here the number of hidden
layer nodes are randomly selected and are analysed for determination of
their respective weights. This minimizes the calculation time with fast
learning. Rong in the year 2008 modified the architectural design of ELM
as the existence of smaller or higher hidden layer neurons will result in
Under-fitting and over-fitting problems for classification problems. Pruned
ELM (PELM) algorithm was developed as an automated technique to
design an ELM. The significance of hidden neurons was measured in PELM
by employing statistical approaches. Starting with higher number of hidden
neurons, the insignificant ones are then pruned with class labels based on
their importance. Henceforth the architectural design of ELM network gets
automated. PELM is inferred to have better prediction accuracy for unseen
data when compared with basic ELM. there also exists a pruning algorithm
that is based on regularized regression method, to determine the required
number of hidden neurons in the network architecture. This regression
approach starts with higher number of hidden neurons and in due course the
unimportant neurons get pruned employing methods like ridge regression,
elastic network and so on. In this manner, the architectural design of FILM
network gets automated.

2¢.5.6. Improved Extreme Learning Machine Models

ELM requires more number of hidden neurons due to its random
computation of input layer weights and hidden biases. Owing on this,
certain hybrid ELM algorithms were developed by researchers to improve
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the generalization capability. One of the method proposed by Zhu (2005)
employs differential evolution (DE) algorithm for obtaining the input
weights and Moore-Penrose (MP) inverse to obtain the output weights of an
ELM model. Several researchers also attempted to combine ELM with other
data processing methods resulting in new ELM learning models and
applying the newly developed algorithm for related applications.

ELM at times results in non-optimal performance and possess over-fitting
occurrence. This was addressed by Silva in the year 2011 by hybridizing
group search optimizer to compute the input weights and ELM algorithm
for computing the hidden layer biases. Here it is required to evaluate the
influence of various types of members that tend to fly over the search space
bounds. The effectiveness of ELM model gets lowered because at times, the
hidden layer output matrix obtained through the algorithm docs not form a
full rank matrix due to random generation of input weights and biases. This
was overcome by the development of effective extreme learning machine
(EELM) neural network model which properly selects the input weights and
biases prior to the calculation of output weights ensuring a full column rank
of the output matrix.

Thus, considering the existing limitations of ELM models, researchers have
involved themselves in developing new variants of ELM models both in the
algorithmic side and in the architectural design side. This section has
presented few of the variants of ELM models as developed by the
researchers and applied for various prediction and classification problems.

2¢.5.7. Applications of ELM

Neural networks are widely employed in mining, classification, prediction,
recognition and other applications. ELM has been developed with an idea
to improve the learning ability and provide better generalization
performance. Considering the advantages of ELM models, few of its
application include

1.  Signal processing

2. Image processing

3. Medical diagnosis

4.  Automatic control

5. Aviation and aerospace

6.  Business and market analysis
2C.6 SUMMARY::

In this chapter we learn about Simulated Annealing Network, Boltzmann
Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net
,Cascade Correlation Network, Cognitron Network ,Neocognitron
Network, Cellular Neural Network , Optical Neural Networks, Spiking
Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer
Sizing, Deep learning Neural networks, Extreme Learning Machine Model
(ELMM) in detail.



2C.7 REVIEW QUESTIONS: Third Generation

Neural Networks

1.

o & DD

~

9.

Write a short note on Simulated Annealing Networks?
Explain Architecture of Boltzmann Machine.

Explain Probabilistic Neural Net.

Write a short note on Cellular Neural Network.

What are the Third-Generation Neural Networks?
Explain Architecture of a Convolutional Neural Network
What are the Limitations of CNN Model.

Write a short note on Deep learning Neural networks.

Write a short note on ELM Architecture and Training Algorithm

2C.8 REFERENCE:

1.

“Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,
2019, Wiley Publication, Chapter 2 and 3

http://lwww.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,
Stephen Lucci PhD)

Related documents, diagrams from blogs, e-resources from RC
Chakraborty lecture notes and tutorialspoint.com.
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2d

UNSUPERVISED LEARNING NETWORKS

Unit Structure

2d.0 Introduction

2d.1 Fixed Weight Competitive Nets
2d.2 Mexican Hat Net

2d.3 Hamming Network

2d.4 Review Questions

2d.5 Reference

2D.0 INTRODUCTION

In this learning, there exists no feedback from the system (environment) w
indicate the desired outputs of a network. The network by itself should
discover any relationships of interest, such as features, patterns, contours,
correlations or categories, classification in the input data, and thereby
translate the discovered relationships into outputs. Such networks are also
called self-organizing networks. An unsupervised learning can judge how
similar a new input pattern is to typical patterns already seen, and the
network gradually learns what similarity is; the network may construct a set
of axes along which to measure similarity to previous patterns, i.e., it
performs principal component analysis, clustering, adaptive vector
quantization and feature mapping.

For example, when net has been trained to classify the input patterns into
any one of the output classes, say, P, Q, R, S or T, the net may respond to
both the classes, P and Q or R and S. In the case mentioned, only one of
several neurons should fire, i.e., respond. Hence the network has an added
structure by means of which the net is forced to make a decision, so that
only one unit will respond. The process for achieving this is called
competition. Practically, considering a set of students, if we want to classify
them on the basis of evaluation performance, their score may be calculated,
and the one whose score is higher than the others should be the winner. The
same principle adopted here is followed in the neural networks for pattern
classification. In this case, there may exist a tie; a suitable solution is
presented even when a tie occurs. Hence these nets may also be called
competitive nets, the extreme form of these competitive nets is called
winner-take-all.

The name itself implies that only one neuron in the competing group will
possess a nonzero output signal at the end of competition.



There exist several neural networks that come under this category. To list
out a few: Max net, Mexican hat, Hamming net, Kohonen self-organizing
feature map, counter propagation net, learning vector quantization (LVQ)
and adaptive resonance theory (ART).

The learning algorithm used -m most of these nets is known as Kohonen
learning. In this learning, the

units update their weights by forming a new weight vector, which is a linear
combination of the old weight vector and the new input vector. Also, the
learning continues for the unit whose weight vector is closest to the input
vector. The weight updation formula used in Kohonen learning for output
cluster unit j is given as

wj(new) = woj{old)+ a [x - w(-)j(old)]

where x is the inpuc vector; wg; the weight vector for unit j; o the learning rate whose value decreases

monotonically as training continues. There exist two methods to determine
the winner of the network during competition. One of the methods for
determining the winner uses the square of the Euclidean distance between
the input vector and weight vector, and the unit whose weight vector is at
the smallest Euclidean distance from the input vector is chosen as the
winner. The next method uses the dot product of the input vector and weight
vector. The dot product between the input vector and weight vector is
nothing but the net inputs calculated for the corresponding duster units. The
unit with the largest dot product is chosen as the winner and the weight
updation is performed over it because the one with largest dot product
corresponds to the smallest angle between the input and weight vectors, if
both are of unit length.

2D.1. FIXED WEIGHT COMPETITIVE NETS

These competitive nets arc those where the weights remain fixed, even
during training process. The idea of competition is used among neurons
for enhancement of contrast in their activation functions. These are

Maxnet, Mexican hat and Hamming net.

Maxnet

The Maxnet serves as a sub net for picking the node whose input is larger.
Architecture of Maxnet

The architecture of Maxnet is shown in Figure 5-1, where fixed
symmetrical weights are present over the

weighted interconnections. The weights between the neurons are
inhibitory and fixed. The Maxnet with this structure can be used as a
subnet to select a particular node whose net input is the largest.
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Figure 2d.1 Maxnet Structure

Testing/Application Algorithm of Maxnet:

Step
0: Initial weights and initial activations are ser. The weight is set as [0 <
€ < 1/m], where "m™ is the total number of nodes. Let

xj(0) = input to the node X;

and

{ 1 ifi=j

Wi = o

—& ifi#]j

Step 1: Perform Steps 2 — 4, when stopping condition is false. Step 2:
Update the activations of each node. For j = 1 to m,

x;(n € w) = f|x,(0.d) — sz %, (0ld)

i#j

Step

3: Save the acrivarions obtained for use in the next iteration. For j = 1 to
m,

x;j(oid) = x; (new)

Step 4: Finally, test the stopping condition for convergence of the
network. The following is the stopping condition: If more than one node
has a nonzero activation, continue; else stop.



2D.2 MEXICAN HAT NET

In 1989, Kohonen developed the Mexican hat network which is a more
generalized contrast enhancement

network compared to the earlier Maxner. There exist several "cooperative
neighbors” (neurons in close proximity) to which every other neuron is
connected by excitatory links. Also, each neuron is connected over
inhibitory weights to a number of" competitive neighbors" {neurons present
farther away). There are several oilier fanher neurons ro which the
connections between the neurons are nor established. Here, in addition to
the connections within a particular laye-r Of neural net, the neurons also
receive some other external signals.

This interconnection pattern is repeated for several other neurons in the
layer.

2d.2.1 Architecture of Mexican Hat Net

The architecture of Mexican hat is shown in Figure 5-2, with the
interconnection pattern for node Xi. The

neurons here are arranged in linear order; having positive connections
between Xi and near neighboring units, and negative connections between
Xi and farther away neighboring units. The positive connection region is
called region of cooperation and the negative connection region is called
region of competition. The size of these regions depends on the relative
magnitudes existing between the positive and negative weights and also on
the topology of regions such as linear, rectangular, hexagonal grids, ere. In
Mexican Hat, there exist two symmetric regions around each individual
neuron.

The individual neuron in Figure 5-2 is denoted by Xi. This neuron is
surrounded by other neurons Xi+ 1,

Xi-1, Xi+2, Xi-2, .... The nearest neighbors to the individual neuron Xi are
Xi+1, Xi- 1. Xi+2¢ and Xi-2-

Hence, the weights associated with these are considered to be positive and
are denoted by WI and w2. The

farthest neighbors m the individual neuron Xi are taken as Xi+3 and Xi-3,
the weights associated with these are negative and are denoted by w3. It can
be seen chat Xi+4 and Xi-4 are not connected to the individual neuron Xi,
and therefore no weighted interconnections exist between these
connections. To make it easier, the units present within a radius of 2 [query
for unit] to the unit Xi are connected with positive weights, the units within
radius 3 are connected with negative weights and the units present further
away from radius 3 are not connected in any manner co the neuron Xi.
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Figure 2d.2 Structure of Maxican Hat

2d.2.3 Flowchart of Mexican Hat Net

The flowchart for Mexicann hat is shown in Figure 5-3. This dearly
depicts the flow of the process performed in Mexican Hat Network.

Initialize radius of ragien of

interconnection {A;), radius of + Va
reinforcement (A,), total no. of iterations £ .,

Setinitial weights
w,=¢y; k=010 A, {>0)
W= &y k= A+l 1o Ay (<0)

‘| Set X, veclor of aclivations,
at previous time step 1o zero

External signal sis inputed
x=sand ig= X

Iteration count
f=1

No
Yes

Compule net input, for i=1tan
-1

A, A, ;!
X=0 E Xgiat G Y Koot €2

e n]
k= A h==R, w=F, 1

Apply aciivation funciions
x, = minf X, max(0, x)] i=1ton

Store current aclivations
Ky = Xy

Figure 2d.3. Flowchart of Mexican Hat
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2d.2.3 Algorithm of Mexican Hat Net:

The various parameters used in the training algorithm are as shown below.

R, = radius of rcgions of interconnections
Xi+ and X_ are conniected to the individual units X; for k = 1 to R,.
R, = adrus of tegion with positive reinforcement (R; < R,)

W, = weight berween X; and the unis X;,, and X;_j

0<kL
R; < k < R,, w, = negative

t = external input signal

Ry, wy = positive

x = vector of accivation

Xy = vecior of activations at previous time step
tmax = total number of iterations of contmst enhancemen.

Here the iteration is started only with the incoming of the external signal
presented to the network.

l Step 0: The parameters Ky, Ry, fnay are initialized accordingly. Initialize weights as

wr=1¢ fork=0,...,K (where ¢; > 0)
wp=c; fork=R+1,...,R (wheree < )

Thivialize xg = 0.
Step 1: Input the excernal signal 5

x==x

The acrivations occurring are saved in armay xp. Fori = 1 o n,

Xpj = X
Once activarions are stored, set iteration counter £ = 1.
Step 2: When t is less than ¢, , perform Steps 3-7.

Srep 3: Calculace net input. Foti = 1 to n,

Ry Ry
Xi =0 E Xo0;, + Ck=—R, X014k + ¢y E X0k
k=—R1 k=R1+1

Step 4: Apply the activation function. For i = 1 to n,

X;=m [xmax'm (Ofxi)]
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Step 5: Save the current activations in x,, i.e., fori = 1 to n,
Xoi = Xi

Step 6: Increment the iteration counter:
t=t+1

Step 7: Test for stopping condition. The following is the stopping condition:
If t <t thencontinue Else stop. The positive reinforcement here has the

capacity to increase the activation of units with larger initial activations and
the negative reinforcement has the capacity’ to reduce the activation of unis
with smaller initial activations. The activation function used here for unit X;
at a particular time instant "'t" is given by

XA = f [smt) D Wi+ k(e = 1)]
k

The terms present within the summation symbol are the weighted signals
that arrived from other units a the previous time step.

2D.3 HAMMING NETWORK

The Hamming network selects stored classes, which are at a maximum
Hamming distance (H) from the

noisy vector presented at the input (Lippmann, 1987). The vectors involved
in this case are all binary and

bipolar. Hamming network is a maximum likelihood classifier that
determines which of several exemplar

vectors (the weight vector for an output unit in a clustering net is exemplar
vector or code book vector for the pattern of inputs, which the net has placed
on that duster unit) is most similar to an input vector (represented as an
n~tuple). The weights of the net are determined by the exemplar vectors.
The difference between the tom! number of components and the Hamming
distance between the vecrors gives the measure of similarity between the
input vector and stored exemplar vcctors.lt is already discussed the
Hamming distance between the two vectors is the number of components in
which the vectors differ.

Consider two bipolar vectors x and y; we use a relation
X.y=a-d

where a is the number of components in which the vectors agree, d the
number of components in which the vectors disagree. The value "a - d" is



the Hamming distance existing between two vectors. Since, the total
number of components is n, we have,

n=a+d
e, d=n-—a

On simplification, we get

x-y =a-—d
x-y =a—(m-—-a)
xX-y =2a—n

2a =x-y+n

1 1
a —E(X'J’)‘l'z(n)

From the above equation, it is clearly understood that the weights can be set
to one-half the exemplar vector and bias can be set initially to n/2. By
calculating the unit with the largest net input, the net is able to locate a
particular unit that is closest to the exemplar. The unit with the largest net
input is obtained by the Hamming net using Maxnet as its subnet.

2d.3.1. Architecture of Hamming Network:

The architecture of Hamming network is shown in Figure 5-4. The
Hamming network consists of two layers. The first layer computes the
difference between the total number of components and Hamming distance
between the input vector x and the stored pattern of vectors in the feed-
forward path. The efficient response in this layer of a neuron is the
indication of the minimum Hamming distance value between the input and
the category, which this neuron represents. The second layer of the
Hamming network is composed of Maxnet (used as a subnet) or a Winner-
take-all network which is a recurrent network The Maxnet is found to
suppress the values at Maxnet output nodes except the initially maximum
output node of the first layer.

N
— 15—
¥ ‘tOI 1 y“‘” Yy y‘b\-q;
) ~E
o
Ye 1 J"'z'h“
- —&
N vl €
o} 1
}’,{ 1 yj[ku]
] ]
L 1 4 L] 9 ] y, ton
AN — V——‘*J
Hamming distance matching Maxnet

Figure 2d.4 Structure of Hamming Network
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2d.3.2 Testing Algorithm of Hamming Network:

The given bipolar input vector is x and for a given set of "m" bipolar
exemplar vectors say e(l),.

e(), .., e(m), the Hamming network is used to determine the exemplar
vector that is closest m the input

vector X. The net input entering unit Y] gives the measure of the similarity
between the input vector and

exemplar vector. The parameters used here are the following:

n = number of input units (number of components of input-output vector)
m= number of output units (humber of components of exemplar vector)
e(j)= jth exemplar vector, i.e.,

e() =[e1 (@), - . &), ..., en(i)]

The testing algorithm for the Hamming Net is as follows:

Step O: Initialize the weights. Fori = 1ronandj = 1 rom,

. e;(j)
Wij = >

Initialize the bias for storing the 'm™ exemplar vectors. For j = 1 to m,

bj:E

Step 1: Perform Steps 2-4 for each inpuc vector x.

Step 2: Calculate the net input to each unit Y}, i.e.,

w
yinj = b] +z xiwij,jz lTtom

i=1
Step 3: Initialize the activations for Maxnet, i.e.,
Yi(0) =yinj, j=1tom

Step 4: Maxnet is found to iterate for finding the exemplar that best
matches the inpur patterns.

2D.4 REVIEW QUESTIONS:

1. Explain the concept of Unsupervised Learning.

2. Write a short note on Fixed Weight Competitive Nets



3. Explain Algorithm of Mexican Hat Net Unsupervised
Learning Networks

4. What is mean by Hamming Network

5. Explain the Architecture of Hamming Network

6. Write a short note on Kohonen Self-Organizing Feature Maps

7. Write a short note on Learning Vector Quantization (LVQ)

8. Explain Counter propagation Networks

9. What is mean by Adaptive Resonance Theory Network

2D.5 REFERENCE
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2. http://lwww.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,
Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC
Chakraborty lecture notes and tutorialspoint.com
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3a.7 Summary
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3A.0 OBJECTIVES

We begin this chapter with introducing fuzzy logic, classical sets and fuzzy
sets followed by the comparison of classical sets and fuzzy sets.

3A.1 INTRODUCTION TO FUZZY LOGIC

Fuzzy logic is a form of multi-valued logic to deal with reasoning that is
approximate rather than precise. Fuzzy logic variables may have a truth
value that ranges between 0 and 1 and is not constrained to the two truth
values of classical propositional logic.

“As the complexity of a system increases, it becomes more difficult and
eventually impossible to make a precise statement about its behavior,
eventually arriving at a point of complexity where the fuzzy logic method
born in humans is the only way to get at the problem” — Originally identified
& set forth by Lotfi A. Zadeh, Ph.D., University of California, Berkeley.
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Fuzzy logic offers soft computing:

o provides a technique to deal with imprecision & information
granularity.

o provides a mechanism for representing linguistics construct.

Imprecise and vague data Decisions
—» Fuzzy Logic System

v

Figure 3a.1: A fuzzy logic system accepting imprecise data and
providing a decision

The theory of fuzzy logic is based upon the notion of relative graded
membership and so are the functions of cognitive processes. It models
uncertain or ambiguous data & provides suitable decision. Fuzzy sets that
represents fuzzy logic provides means to model the uncertainty associated
with vagueness, imprecision & lack of information regarding a problem or
a plant or system.

Fuzzy logic operates on the concept of membership. The basis of the theory
lies in making the membership function lie over a range of real numbers
from 0.0 to 1.0. The fuzzy set is characterized by (0.0,0,1.0). The
membership value is “1” if it belongs to the set & “0” if it not member of
the set. The membership in the set is found to be binary, that is, either the
element is a member of a set or not. It is indicated as

1x €A
0, x&A

E.g. The statement “Elizabeth is Old” can be translated as Elizabeth is a
member of the set of old people and can be written symbolically as =

U(OLD) 5 where U is the membership function that can return a
value between 0.0 to 0.1 depending upon the degree of the membership.

xA(x) =

Tall
1

Membership

0.5

1 I |
150 180 210

Haight {cm)

Figure 3a.2: Graph showing membership functions
for fuzzy set “tall”.
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e /
. \/ Short Medium Tall

1— ———
Membership
0.5

| | }
150 180 210

Height (cm)

Figure 3a.3: Graph showing membership functions for fuzzy set
“short”, “medium” and “tall”.

The membership was extended to possess various “degree of membership” on the
real continuous interval [0,1]. Zadeh generalized the idea of a crisp set by
extending a valuation set {0,1} (definitely in, definitely out) to the interval of real
values (degree of membership) between 1 & 0, denoted by [0,1]. The degree of the
membership of any element of fuzzy set expresses the degree of computability of
the element with a concept represented by fuzzy set.

Membership Function: A fuzzy set A contains an object x to degree a(x), that is,
a(x) = Degree (x € A) and the map a: X — {Membership Degrees}

Possibility Distribution: The fuzzy set A can be expressed as
A

={(x,a(x))}, x € X; itimposes an elastic constrain of the possible values
of elements x € X

Fuzzy sets tend to capture vagueness exclusively via membership functions that
are mappings from a given universe of discourse X to a unit internal containing
membership value. The membership function for a set maps each element of the
set to membership value between 0 & 1 and uniquely describes that set. The values
0 and 1 describes “not belonging to” & “belonging to” a conventional set,
respectively; values in between represent “fuzziness”. Determining the
membership function is subjective to varying degree depending on the situation. It
depends on an individual’s perception of the data in question and does not depend
on randomness.

X - universe of discourse

° @

Figure 3a.4: Boundary region of a Fuzzy Set



Fuzzy Rule Base

Fuzzy sets in X ’——-* Fuzzy Inference Engine _.‘ Fuzzy selsin Y

Figure 3a.5: Configuration of a pure fuzzy system

Fuzzy logic also consists of fuzzy inference engine or fuzzy rule base to perform
approximate reasoning somewhat similar to human brain. The fuzzy approach uses
a premise that human don’t represent classes of objects as fully disjoint sets but
rather as sets in which there may be graded of membership intermediate between
full membership and non-membership. A fuzzy set works as a concept that makes
it possible to treat fuzziness in a quantitative manner. Fuzzy sets form the building
blocks for fuzzy IF-THEN rules which have general form “IF X is A THEN Y is
B” where A and B are fuzzy sets.

The term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF-
THEN rules. The IF part of an implication is called antecedent whereas the THEN
part is called consequent. The fuzzy system is a set of fuzzy rules that converts
inputs to outputs.

The fuzzy inference engine (algorithm) combines fuzzy IF-THEN rules into a
mapping from fuzzy sets in the input space X to the fuzzy sets in the output space
Y based fuzzy logic principles. From a knowledge representation viewpoint, a
fuzzy IF-THEN rule is a scheme for capturing knowledge that involves
imprecision. The main features of the reasoning using these rules is its partial
matching capability, which enables an inference to be made from a fuzzy rule even
when the rule’s condition is partially satisfied. Fuzzy systems, on one hand is rule
based system that are constructed from a collection of linguistic rules, on other
hand, fuzzy systems are non-linear mappings of inputs to the outputs. The inputs
and the outputs can be numbers or vectors of numbers. These rule-based systems
can in theory model any system with arbitrary accuracy, i.e. they work as universal
approximation.

The Achilles’ heel of a fuzzy system is it rules; smart rules gives smart systems
and other rules give less smart or dumb systems. The number of rules increases
exponentially with the dimension of the input space. This rule explosion is called
the curse of dimensionality & is general problem for mathematical models.

3A.2 CLASSICAL SETS (CRISP SETS)

Collection of objects with certain characteristics is called set. A classical
set/ crisp set is defined as the collection of distinct objects. An individual
entity of the set is called as element/ member of the set. The classical set is
defined in such a way that the universe of discourse is splitted into two
groups: members and non-members. Partial membership does not exist in
the case of crisp set.

Introduction to Fuzzy Logic
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Whole set: The collection of elements in the universe
Cardinal number: Number of the elements in the set.
Set: The collections of elements within the universe

Subset: The collections of elements within the set.

3A.3 FUZZY SETS

A fuzzy set is a set having degree of membership between 0 & 1. A member of
one fuzzy set can also be the member of other fuzzy set in same universe. A fuzzy
set A in the universe of disclosure U can be defined as a set of ordered pairs and it
is given by

A= {(ouy()lx €U}

where

t4(x)is the degree of membership of x in A and it indicates the degree that
x belongs to A. The membership is set to unit interval [0,1] or Hax) €
[0,1]. When the universe of disclosure is discrete & finite, fuzzy set A is

given as

4= ‘udi:xll | Hal) | pylo) +I _ lz nd(x,-}]
o I x2 X3 _ X;

=]

When the universe of disclosure is continuous & infinite, fuzzy set A is given as

’5=Uﬂf}]

Universal Fuzzy Set/ Whole Fuzzy Set: If and only if the value of the
membership function is 1 for all the members under consideration. Any fuzzy set
A is defined on universe U is the subset of that universe.

Empty Fuzzy Set: If and only if the value of the membership function is 0 for all
the members under consideration.

Equal Fuzzy Set: two fuzzy set A & B are said to be equal fuzzy sets if
HA(x) = MB(x)foralx €U

Fuzzy Power set P(U): The collection of all fuzzy sets and fuzzy subsets on
universe U.



3A.4 CLASSICAL SETS VIS FUZZY SETS

3a.4.1 Operations

Classical Sets Fuzzy Sets
Definition | The classical set is defined in | A fuzzy set is a set having
such away in that the universe | degree of membership
of the discourse is divided into | between 0 & 1.
two groups: members and
nonmembers. Consider Set A | A fuzzy set A in the universe
in Universe U: of disclosure U can be defined
An object x is a member of a | 25 @ set of ordered pairs and it
given set a(x € 4) ie x| iSgivenby:
belongs to A A= {(X, .UA(X)|X € U}
An object x is a member of a
givenseta(x & A) i.e. x does
not belong to A.
Union The union between two sets | The union of fuzzy sets A & B
gives all those elements in the | is defined as:
universe that belong to either _ v
set A or set B or both the sets. | “A 4B ) T HFA(x) ¥ #B()
The union is termed as logical | = max{l‘A(x)'“B(x)} forall
OR operation. ev
AUB V indicates max operation
={x|x € Aor x € B}
Intersectio | The intersection between two | The intersection of fuzzy sets
n sets gives all those elements in | A & B is defined as:
the universe that belong to _ A
both set A and set B. The | YA 4 B (x) = HA() " HB(x)
union is termed as logical | = min{“A(x)'P‘B(x)}
AND operation. forallx e U
ANB A indicates min operation
={x|x € Aand x € B}
Compleme | The complement of set A is | The union of fuzzy sets A & B
nt defined as the collection of all | is defined as:
elements in the universe X that | —q—
do not belong to set A. HA() =
_ orallx eU
A={x|x €A x €X} HA(X)f
Difference | The difference of set A with

respect to set B is the
collection of all the elements
in the universe that belong to
A but does not belong to B. It
is denoted by A|B or A-B

A|B ={x|x € Aand x GEB}
A—(ANB)

Introduction to Fuzzy Logic
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3a.4.2 Properties

Classical Sets Fuzzy Sets
Commutativi | A UB=B U A AUB=B UA
ty
ANB=BnNnA ANB=BnNA
Associativity | AU(BUC) = (AUB) AU(BUC)=(AUB)
uc ucC
AnBNCO=(ANB) | An(BncC)=(nNB)
Distributivity | A u(BNnC)=(AuUB) |AU(BNC)=(AUB)
Nn(AUC) N(AUC)
An(BUC)=(ANnB) An(BucC)=(AnNnB)
UAaAnco) u@Aanco)
Idempotency |4 U A=A AU A=A
ANA=A ANA=A
Transitivity | ifA €B cCthenA SC |if A €SB S CthenA €C
Identity AUd=4ANnd=A4A|AUd=4 ANnd=A4
AUX=X;ANX=A AUuX=X, AnX=A4
Involution A=A A=A
(double
negation)
DeMorgan’s | |JAUB|=A4 UB JAUB|=A4 UB
Law
|AnB|=4nB |AnB|=4nB
Law of ANA=¢d Not Followed
Contradiction
Law of AUA=X Not Followed
Excluded
Middle




3A.5 MORE OPERATIONS ON FUZZY SETS

Algebraic Sum: The algebraic sum (A+B) of two fuzzy sets A & B is defined as
HA L B(x) THA(X) T HB(x) ~ HA(X)-HB(x)

Algebraic Product: The algebraic product (A.B) of two fuzzy sets A & B is
defined as

Ha B (x) = HAx) HB(x)

Bounded Sum: The bounded sum (A @ B) of two fuzzy sets A & B is defined
as

A g B (0) = min{l, ) + HB(x)}

Bounded Difference: The bounded difference (A4 @ B) of two fuzzy sets A & B
is defined as

HA 5B (x) = max{0, Ky (x) — HB(x)}

3A.6 FUNCTIONAL MAPPING OF CLASSICAL SETS

Mapping is a rule of correspondence between set-theoretic forms and
function theoretic forms.

X and Y are two different universe of disclosure. If an element x contained
in X corresponds to an element y contained Y, it is called as mapping from

XtoY;ie. f: X >V

Let A & B be two sets on universe. The function theoretic forms of operation
performed between these two sets are given as follows:

Union: x4 uB x) = X4 (X) VXB (X) = max {XA (X) XB (X)} Here Vv
1s maximum operator.

Intersection: XA A B x) = XA (X) AXB X) =
min {)( A(X)XB (X)} Here A is minimum operator.

Complement: x 3 x) = 1-xy X)

Containment: if A S B, then x4 (X) < XB (X)

3A.7 SUMMARY

In this chapter, we have discussed the basic definitions, properties and
operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert
the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial
membership, they provide computer with such algorithms that extend
binary logic and enable it to take human-like decisions. In other words,

Introduction to Fuzzy Logic
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fuzzy sets can be thought of as a media through which the human thinking
is transferred to a computer. One difference between fuzzy sets and classical
sets is that the former does not follow the law of excluded middle and law
of contradiction.

The relation concept is used for nonlinear simulation, classification, and
control. The description on composition of relations gives a view of
extending fuzziness into functions. Tolerance and equivalence relations are
helpful for solving similar classification problems. The noninteractivity
between fuzzy sets is analogous to the assumption of independence in
probability modelling.

3A.8 REVIEW QUESTIONS

1. Explain fuzzy logic in detail.

2. Compare Classical set and fuzzy set.

3. Enlist and explain any three classicals set operations.
4.  Enlist and explain any three fuzzy sets operations.

5. Enlist and explain any three classical set properties.
6.  Enlist and explain any three fuzzy sets properties.

7. Write a short note on fuzzy relation.

3A.9 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

. Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3rd, 2018

o Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
3rd , 2019

. Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004
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3B.0 OBJECTIVES

We begin this chapter with introducing Classical Relations & Fuzzy
Relations.

3B.1 INTRODUCTION TO CLASSICAL RELATIONS &
FUZZY RELATIONS

Relationship between the object are the basic concepts involved in decision
making & other dynamic system application. Relations represent mapping
between sets & connective logic. A classical binary relation represents the
presence or absences of connection or interaction or association between
the elements of two sets. Fuzzy binary relations impart degrees of strength
to connections or association. In fuzzy binary relation, the degree of
association is represented by membership grades in the same way as the
degree of set membership is represented in fuzzy set.
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When r = 2, the relation is a subset of the Cartesian product A1*A2. This
relation is called a binary relation from Al to A2. X & Y are two universe;

their Cartesian product X* Yis givenby X *Y = {(x,y)|x € X,y € Y}

Every element in X is completely related to every element in Y. The
characteristic function, denoted by y, gives the strength of the relationship
between ordered pair of elements in each universe. The characteristic
function, denoted by y, gives the strength of the relationship between
ordered pair of elements in each universe.

1, (x,y) €EX xY

x,y) =
xx .y @) {o, (x,y) € X *Y

A binary relation in which each element from the first set X is not mapped
to more than one element in second set Y is called a function and is
expressed

asR: X »Y
A fuzzy relation is a fuzzy set defined on the Cartesian product of classical
set {XI,XZ,X3,. X} where tuples (X .X,....X ) may have varying degree of

membership uR (xl, X9y e xn) within the relation

R(X{,Xp,...,Xn) = fxl*xz*...xzv'uR(xl'XZ'""xn)l (xq, X9, .., Xn),xi €
Xi

A fuzzy relation between two sets X & Y is called binary fuzzy relation &
is denoted by R(X,Y). A binary relation R(X,Y) is referred to as bipartite
graph when X#Y.A binary relation on a single set X is called digraph or
directed graph.This relation occur when X=Y and is denoted as R(X,X)or
R(X2).The matrix representing a fuzzy relation is called fuzzy matrix.A
fuzzy relation R is a mapping from Cartesian product space X *Y to interval
[0,1]where the mapping strength is expressed by the membership function
of the relation for ordered pairs from the two universe [uR(x,y)]

Les
3:= !-\‘h-‘:ls <oy and E= [.}Il".}ll’ Tt ’.}I-""]
Fuazy relation R{ X, 1) can be expressed by an » x an marrix as follows:
—

r#ﬂ[—"l!_}']} #H{xlb}!} . e “Hl:x]l_.]"m:i-
melep) mrlanpd o . pale, )

R Y

q - i

L pxay) weloyr) o - el )|



A fuzzy graph is a graphical representation of a binary fuzzy relation. Each Classical Relations
element in X & Y corresponds to a node in the fuzzy graph. The connection and Fuzzy Relations
links are established between the nodes by the elements of X*Y with
nonzero membership grades in R(X,Y). The links may also be present in the
forms of arcs. This links are labelled with membership value as
[UR(x,y)].When X +
Y, the link connecting the two nodes is an undirected binary graph
called as bipartite graph. Here, each of the sets X & Y can be
represented by a set of nodes such that the nodes corresponding to
one set are clearly differentiated from the nodes representing the
other set. When X =Y, a node is connected to itself and directed links are
used; in such case, the fuzzy graph is called directed graph. Here, only one
set off nodes corresponding to set X is used.

The domain of binary fuzzy relation R(X,Y) is the fuzzy set, dom R(X,Y)
having the membership function as:

M domain K {J‘i—‘j - ma;f H R (\xa _};) v x € X
ye

The range of binary fuzzy relation R(X,Y) is the fuzzy set, ran R(X,Y)
having the membership function as:

| , Vye Y
MrangcR ()’) — Te%?ﬂf\ (x’ y) -y

3B.2 CARTESIAN PRODUCT OF THE RELATION

An ordered r-tuple is and ordered sequence of r-elements expressed in the
form (al, a2, a3 ... ar).

An unordered r-tuple is a collection of r-elements without any restriction
in order.

For r = 2, the r-tuple is called an ordered pair.

For crisp sets A1’A2°A3’ ....Ar , the set of all r-tuples (al,az,a3,...ar) where
ale A1, an € A2, Y W EAr is called Cartesian product of A1’A2’A3’
A and is denoted by Al*Az*A3*. . ..*Ar.

If all the a’s are identical and equal to A, then the Cartesian product

Al*Az*A3*. ..."‘Ar is denoted as Ar
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3B.3 CLASSICAL RELATION V/S FUZZY RELATIONS

3b.3.1 Cardinality

Classical Relations

Fuzzy Relations

Cardin

ality:

Consider n elements of universe X
being related to the m elements of
universe Y.

When the cardinality of X= X &

n
the cardinality of Y = Y, then the
cardinality of relation R between
the two universe is

Ny xy =M"x «My

The cardinality of the power set
P(X *Y) describing the relation is
given by

Np(X xY) =2 (X

The cardinality of fuzzy sets on any
universe is infinity; hence the
cardinality of a fuzzy relation
between two or more universe is
also infinity.

3b.3.2 Operations

Let R & S be two separate relations on the Cartesian universe X * Y. The
null relation and the complete relation are defined by the relation matrices

¢R and ER
0 0 0 L 4 1
=10 0 0| and E,=|1 1 1
000 111
Operations Classical Relations Fuzzy Relations
Union RUS - yRUS(x,y) HR s(x,y)

= max[yR(x,y), xS(x,y)]

= max[ug(x,y), ug(x,y)]

Intersection

RNS - yRNS(x,y) =
mm[)(R(x,}’),)(S(x'Y)]

UR G0 Y)
= min[up(x,y), ug(x,y)]

Complemen

t =1 - xp(xy)

R - xp(x,y): xp(x,y)

pr(x,y) =1 — pup(x,y)




Containmen RcS RcS= upxy)

t - xr(x,¥): xp(x,y) < ps(x,y)
< xs(xy)
Identity p->¢pR & X- Ep
Inverse The inverse of fuzzy
relation R on X*Y is
-1
denoted by R .

It is relation on Y*X
defined by

-1
R (y,x)=R(x,y) for all
pairs (y,x) €Y * X

Projection For fuzzy relation R(X,Y),
let [R | Y] denote the
projection of R onto Y.

Kiriy] (%, Y)
= maxig(x,y)

3b.3.3 Properties

Classical Relations Fuzzy Relations
Properties
o Commutativity o Commutativity
o Associativity o Associativity
o Distributivity o Distributivity
o Involution o Involution
o Idempotency o Idempotency
. DeMorgan’s Law . DeMorgan’s Law
o Excluded middle law

3B.4 CLASSICAL COMPOSITION AND FUZZY
COMPOSITION

The operation executed on two binary relations to get a single binary
relation is called composition.

Let R be a relation that maps elements from universe X to universe Y and S
be a relation that maps elements from universe Y to universe Z. The two

Classical Relations
and Fuzzy Relations
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binary elements R & S are compatible if R SX*Y & SESY*Z. The
composition between the two relations is denoted by ReS.

Consider the universal sets given by:
X ={al,a2,a3};Y = {b1,b2,b3}; Z = {c1,c2,c3}

Let the relation R & S be formed as:
R=X=xY ={(al,bl),(al,b2),(a2,b2),(a3,b3)}

S=Yx*Z={(b1,cl), (b2 c3), (b3,c2)}
It can be inferred that:

T =RoS ={(al,cl), (a2, c3),(a3,c2),(al,c3)}
The composition operations are of two types

1. Max-Min Composition:

T=RoS
X1 (%,2) =Vyey [Xr(x,¥) A xs(¥, 2)]

2. Max-product Composition:
T =RoS
xr(x,2) =y\e/Y e () - x5y, 2)]

Let A be fuzzy set on universe X & B be fuzzy set on universe Y. The
Cartesian product over A and B results in fuzzy relation B and is contained

within the entire (complete) Cartesian space A * B = Rwhere R € X *Y

The membership function of fuzzy relation is given by up(x,y) = uy .
g(x,¥) = min[ug(x), ug(¥)]

For e.g., for a fuzzy set A that has three elements and a fuzzy set B has four
elements, the resulting fuzzy relation R will be represented by a matrix size
3%4

There are two types of fuzzy composition techniques:
1. Fuzzy Max-min composition
2. Fuzzy Max-product composition

Let R be fuzzy relation on Cartesian space X*Y and S be fuzzy relation on
Cartesian Space Y*Z.

Fuzzy Max-min composition:

The max-min composition of R(X,Y) and S(Y,Z) is denoted by
R(X,Y)°S(Y,Z) is defined by T(X,Z) as



M (x,2)= f ((x,2) = m_i)n{max[,ue(x,y),ﬂ§(y,z)]} = ;\YUIB () v pg(y2)) VxeX,zel

Fuzzy Max-product composition:

Hy (3,2) = fy s (x,2) = max [ 24, (%, y)- 45 (5 2)]

yeY

=y\;},[ﬂg(x)y)'/[§(y>z)]

3b.4.1 Properties

Classical Composition Fuzzy Composition

Associative (R°S)°M = R°(S°M) (R°S)°M = R°(S°M)

Commutative R°S #+ S°R R°S #+ S°R

(R°S) 1=s5 top 1 oy 1 _ o 1o
Inverse (R°S) —5—1 R

3b.4.2 Equivalence

Classical Composition Fuzzy Composition

Reflexivity ¥R (xi, xi) = lé);(xi, xi) UR(xi,xi) =1Vx €X

xR (xi,xj) UR (xi, xj)
Symmetry = xR (xj, xi)(xi,xj) €R = uR(xj, xi) Vxi, xj
= (xj,xi) ER €X

xR (xi,xj) and yR(xj, xk) UR (xi, xj)
=1, so yR(xi, xk) = 1 anduR (xj, xk)
= 1(xi, xj) € R(xj, xk) =*2

Transitivity | € R, so (xi,xk) € R

= uR(xi, xk) =x
where

x=min(X\ 1,x\ 2)

Fuzzy Max-product transitive can be defined. It is given by

M (x,,%,) 2 g}g-[ﬂg(xi,x,-) M (x,x)] V(x,%)€X

Classical Relations
and Fuzzy Relations
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3b.4.3 Tolerance

Classical Composition

Fuzzy Composition

A tolerance relation R1 on universe X
is one where the only the properties of
reflexivity & symmetry are satisfied.

A binary fuzzy relation that
possesses the properties of
reflexivity and symmetry is
called fuzzy tolerance relation
or resemblance relation.

The tolerance relation can also be
called proximity relation.

The equivalence relations are a
special case of the tolerance
relation.

An equivalence relation can be
formed from tolerance relation R1 by
(n-1) compositions with itself, where
n is the cardinality of the set that

The fuzzy tolerance relation can
be reformed into fuzzy
equivalence relation in the same
way as a crisp tolerance relation

) [E——
l'olerance Equivalence
relation relation

defines R1, here it is X is  reformed into  crisp
equivalence relation
R"' =RoRo-oR= R R =RoRooRi= K
—_— Fuzzy

Fuzzy
tolerance
relation

vquiv:;lcm e
relation

3b.5 Non-INTERACTIVE FUZZY SET

The independent events in probability theory are analogous

to

noninteractive fuzzy sets in fuzzy theory. We are defining fuzzy set A on the
Cartesian space X= X xX. Set A is separable into two noninteractive fuzzy

sets called orthogonal projections if and only if

@ = OPI‘X1 (4)XOPI'X2 (é)

where

IUOPrX1 (4)

/'lOPrXZ (é)(

(xl)zma)?(,ué(xl,xz) Vx, €X,

x,)=max L, (x,,x,) Vx, € X,
xeX, T .

The equations represent membership functions for the orthographic
projections of A on universes X and X . respectively.




3B.6 SUMMARY

In this chapter, we have discussed the basic definitions, properties and
operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert
the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial
membership, they provide computer with such algorithms that extend
binary logic and enable it to take human-like decisions. In other words,
fuzzy sets can be thought of as a media through which the human thinking
is transferred to a computer. One difference between fuzzy sets and classical
sets is that the former does not follow the law of excluded middle and law
of contradiction.

The relation concept is used for nonlinear simulation, classification, and
control. The description on composition of relations gives a view of
extending fuzziness into functions. Tolerance and equivalence relations are
helpful for solving similar classification problems. The noninteractivity
between fuzzy sets is analogous to the assumption of independence in
probability modelling.

3B.7 REVIEW QUESTIONS

1. Write a short note on fuzzy relation.
2. Compare classical relations and fuzzy relations.

3. Write a short note classical composition and fuzzy composition.

3B.8 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

o Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3rd, 2018

J Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
3rd, 2019

o Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004
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3C.0 OBJECTIVES

This chapter begins with explaining the membership function and later
introduces the concept of fuzzification, defuzzification and fuzzy
arithmetic.

3C.1 INTRODUCTION TO MEMBERSHIP FUNCTION

Membership function defines fuzziness in a fuzzy set irrespective of the
elements in the discrete or continuous. The membership functions are
generally represented in graphical form. There exist certain limitations for
the shapes used in graphical form of membership function. The rules that
describes fuzziness graphically are also fuzzy. Membership can be thought
of as a technique to solve empirical problems on the basis of experience
rather than knowledge.

3C.2 FEATURES OF THE MEMBERSHIP FUNCTION

The membership function defines all the information contained in a fuzzy
set. A fuzzy set A in the universe of discourse X can be defined as a set of
ordered pairs: A={(x,nA(X)) | x€X} where pA(.) is called membership
function of A. The membership function pA(.) maps X to the membership
space M,i.e.uA :X—M. The membership value ranges in the interval [0,1].
Main features involved in characterizing membership function are:



Core: The core of a membership function for some fuzzy set A is
defined as that region of universe that is characterized by complete
membership in the set A. The core has elements x of the universe such
that uA(x) = 1. The core of a fuzzy set may be an empty set.

Support: The support of a membership function for a fuzzy set A is

defined as that region of universe that is characterized by a nonzero

membership. The support comprises elements x of the universe such

that UA(x) >

0. A fuzzy set whose support is a single element in X with pA(x) =
1 is referred to as a fuzzy singleton.

Boundary: The support of a membership function for a fuzzy set A is
defined as that region of universe containing elements that have
nonzero but not complete membership. The boundary comprises of
those elements of x of the universe such that 0 < pA(x) < 1. The
boundary elements are those which possess partial membership in
fuzzy set A.

Figure 3c.2: (A) Normal Fuzzy Set and (B) Subnormal Fuzzy Set
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Figure 3c.1: Properties of Membership Functions
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. Normal fuzzy set: A fuzzy set whose membership function has at
least one element x in the universe whose membership value is unity.

o Prototypical element: The element for which the membership
is equal to 1.

. Subnormal fuzzy set: A fuzzy set wherein no membership function
has it equal to 1.

J Convex fuzzy set: A convex fuzzy set has membership function
whose membership values are strictly monotonically increasing or
strictly monotonically decreasing or strictly monotonically increasing
than strictly monotonically decreasing with increasing values for the
elements in the universe.

. Nonconvex fuzzy set: the membership value of the membership
function is not strictly monotonically increasing or decreasing or
strictly monotonically increasing than decreasing.

#a pixf

-y

(=)

Figure 3c.3: (A) Convex Normal Fuzzy Set and (B) Nonconvex Normal
Fuzzy Set

The intersection of two convex fuzzy set is also a convex fuzzy set. The
element in the universe for which a particular fuzzy set A has its value equal
to 0.5 is called crossover point of membership function. There can be more
than one crossover point in fuzzy set. The maximum value of the
membership function of the fuzzy set A is called height of the fuzzy set. If
the height of the fuzzy set is less than 1, then the fuzzy set is called
subnormal fuzzy set. When the fuzzy set A is a convex single —point
normal fuzzy set defined on the real time, then A is termed as a fuzzy
number.

wix) I}

H,Ir

Figure 3c.4: Crossover Point of a Fuzzy Set



3C.3 OVERVIEW OF FUZZIFICATION

Fuzzification is the process of transforming a crisp set to a fuzzy set or a
fuzzy set into a fuzzier set. This operation translates accurate crisp input
value into linguistic variables. Quantities that we consider to be accurate,
crisp & deterministic, possess uncertainty within themselves. The
uncertainty arises due to vagueness, imprecision or uncertainty.

For a fuzzy set A={pi/xijxi€X},a common fuzzification algorithm is
performed by keeping i constant and xi being transformed to a fuzzy set
Q(x1) depicting the expression about xi. The fuzzy set Q(xi) is referred to as
the kernel of fuzzification.

The fuzzified set A can be expressed as:
4:/’[1Q(xl) + IUZ Q('xZ) T :Lln Q('xn)

where the symbol ~ means fuzzified. This process of fuzzification is called
support fuzzification (s-fuzzification).

Grade fuzzification (g-fuzzification) is another method where
xi is kept constant and ui is expressed as a fuzzy set.

3C4 METHODS OF MEMBERSHIP VALUE
ASSIGNMENT

Following are the methods for assigning membership value:

. Intuition

. Inference

. Rank ordering

o Angular fuzzy sets

o Neural Network

. Genetic Algorithm

. Inductive Reasoning

3c.4.1 Intuition

Intuition method is the base upon the common intelligence of human. It is
capacity of the human to develop membership functions on the basis of their
own intelligence and understanding capability. There should be an in-depth
knowledge of the application to which membership value assignment has to
be made.

Membership Functions
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Figure 3c.5: Membership functions for the Fuzzy variable “weight”
3c.4.2 Inference & Rank Ordering

The inference method uses knowledge to perform deductive reasoning.
Deduction achieves conclusion by means of forward inference.

Rank ordering is carried on the basis of the preferences. Pairwise
comparisons enable us to determine preferences & resulting in determining
the order of membership.

3c.4.3 Angular Fuzzy Sets

Angular fuzzy set ‘s’ is defined on a universe of angles, thus repeating the
shapes every 2m cycles. The truth value of the linguistic variable is
represented by angular fuzzy sets. The logical proposition is equated to the
membership value “1” is said to be “true” and that preposition with
membership value 0 is said to be “false”. The intermediate values between
0 & 1 correspond to proposition being partially true or partially false.
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Figure 3c.6: Model of Angular Fuzzy Set



The values of the linguistic variable vary with “0” & their membership
values are on the p(0)axis. The membership value corresponding to the
linguistic term can be obtained from equation ut(6)=t.tan (8) where t is the
horizontal projection of radial vector

3c.4.4 Neural Network

Figure 3c.7: Fuzzy Membership function evaluated from Neural
Networks

3c.4.5 Genetic Algorithm

Genetic algorithm is based on the Darwin’s theory of evolution, the basic
rule is “survival of the fittest”. Genetic algorithms use the following steps
to determine the fuzzy membership function:

. For a particular functional mapping system, the same membership
functions & shapes are assumed for various fuzzy variables to be
defined.

J These chosen membership functions are then coded into bit strings.
. Then these bit strings are concatenated together

. The fitness function to be used here is noted. In genetic algorithm,
fitness function plays a major role similar to that played by activation
function in neural network.

Membership Functions
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° The fitness function is used to evaluate the fitness of each set of
membership function.

. These membership functions define the functional mapping of the
system

3c.4.6 Inductive Reasoning

Induction is used to deduce causes by means of backward inference. The
characteristics of inductive reasoning can be used to generate membership
functions. Induction employs entropy minimization principles, which
clusters the parameters corresponding to the output classes. To perform
inductive reasoning method, a well-defined database for the input-output
relationship exist. Induction reasoning can be applied for complex systems
where database is abundant & static.

Laws of Induction:

. Given a set of irreducible outcomes of experiment, the induced
probabilities are probability consistent with all the available
information that maximize the entropy of the set.

. The induced probability of a set of independent observation is
proportional to the probability density of the induced probability of
single observation.

° The induced rule is that rule consistent with all available information
of that minimizes the entropy

The third law stated above is widely used for development of membership
function.

The membership functions using inductive reasoning are generated as
follow:

J A fuzzy threshold is to be established between classes of data.

. Using entropy minimization screening method, first determine the
threshold line

o Then start the segmentation process
o The segmentation process results into two classes.

o Again, partitioning the first two classes one more time, we obtain
three different classes.

J The partitioning is repeated with threshold value calculation, which
lead us to partition the data set into a number of classes and fuzzy set.

. Then on the basis of shape, membership function is determined.



3C.5 SUMMARY

This chapter starts with the discussion about membership functions and
their features. The formation of the membership function is the core for the
entire fuzzy system operation. The capability of human reasoning is
important for membership functions. The inference method is based on the
geometrical shapes and geometry, whereas the angular fuzzy set is based on
the angular features. Using neural networks and reasoning methods the
memberships are tuned in a cyclic fashion and are based on rule structure.
The improvements are carried out to achieve an optimum solution using
generic algorithms. Thus, the membership function can be formed using any
one of the methods.

Later we have discussed the methods of converting fuzzy variables into
crisp variables by a process called as defuzzification. Defuzzification
process is essential because some engineering applications need exact
values for performing the operation. Defuzzification is a natural and
essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were
discussed. Apart from the Lambda-cut method, seven defuzzification
methods were presented. The method of defuzzification should be assessed
on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension
of interval arithmetic. One of the important tools of fuzzy set theory
introduced by Zadeh is the extension principle, which allows any
mathematical relationship between nonfuzzy elements to be extended to
fuzzy entities. This principle can be applied to algebraic operations to define
set-theoretic operations for higher order fuzzy sets. The belief and
plausibility measures can be expressed by the basic probability assignment
m, which assigns degree of evidence or belief indicating that a particular
element of X belongs to set A and not to any subset of A. The main
characteristic of probability measures is that each of them can be distinctly
represented by a probability distribution function defined on the elements
of a universal set apart from its subsets. Fuzzy integrals defined define by
Sugeno (1977) are also discussed. Fuzzy integrals are used to perform
integration of fuzzy functions.

3C.6 REVIEW QUESTIONS

1. What is membership function? Enlist and explain its features.
2. Write a short note on fuzzification.

3.  Explain any three methods of membership value assignments in
detail.

4. Write a short note on defuzzification.

5. What is Lambda-cuts for fuzzy set and Fuzzy relations?

6.  Explain any three methods of defuzzification in detail.

7. Write a short note on fuzzy arithmetic.

8. What are the mathematical operations on intervals of fuzzy.

Membership Functions
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9. Write a short note on fuzzy number and fuzzy ordering.
10.  Write a short note on fuzzy vectors.

11.  Write a short note on belief and plausibility measures.
12.  Write a short note on possibility and necessity measures.

3C.7 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

. Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3", 2018

° Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
31,2019

. Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004
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3D.0 OBJECTIVES

This chapter begins with explaining the membership function and later
introduces the concept of Defuzzification.

3D.1 OVERVIEW OF DEFUZZIFICATION

Defuzzification is mapping process from a space of fuzzy control actions
defined over an output universe of discourse into space of crisp control
action. A defuzzification process produces a nonfuzzy control action that
represents the possibility distribution of an inferred fuzzy control action.
Defuzzification process has the capability to reduce a fuzzy set into a crisp
single-valued quantity or into a crisp set; to convert a fuzzy matrix into a
crisp matrix; or to convert a fuzzy number into a crisp number.
Mathematically, the defuzzification process may also termed as “rounding
oft”. Fuzzy set with a collection of membership values or a vector of values
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on the unit interval may be reduced to a single scalar quantity using
defuzzification process.

3D.2 CONCEPT OF LAMBA-CUTS FOR FUZZY SETS
(ALPHA-CUTS)

Consider a fuzzy set A. The set A (0 < 4 < 1),called the lamba (1) —
cut (or alpha [a]'CUt) set, 1s a cris

set of the fuzzy set & defined as:

The set A is called a weak lambda-cut set if it consists of all the elements
of fuzzy sdt whose

membership functions have values greater than or equal to specified value.

The set A _is called a strong lambda-cut set if it consists of all the elements
of fuzzy sbt whose

membership functions have values strictly greater than specified value.
Ay = {quA(x) > A} 1 €[0,1]

The properties of A-cut sets are as follows:

1 (AUB=A41UB;

2 (ANnBn=4NnB;

3  (A); # (4,) except when 1 = 0.5

4 Forany A < 8, where 0 < f < 1, itis true that A3 < 4,
where 4, = X.

3D.3 CONCEPT OF LAMBA-CUTS FOR FUZZY
RELATIONS

LetR be a fuzzy relation where each row of the relational matrix is considered a fuzzy
set. The jth row in a fuzzy relation matrix R denotes a discrete membership function for
a fuzzy set R j. A fuzzy relation can be converted into a crisp relation in the following

manner:
R—J‘. == {I:-""’-: }I'»:Il#{_{_l:'{ﬂ }Ij 2-'1-}

where R; is a A-cut relation of the fLIZZ}-' relation E

For two fuzz}-' relatiunsﬂ and § the fu]luwing prupertit‘:s should hold:
. RUSH =R.US;
2.RN3h=R.nN§,
3. (R); # (R,) except when A = 0.5
4. Forany A = f, where 0 = 8 = 1, it is true that Rlﬁ C R,.



3D.4 METHODS OF DEFUZZIFICATION

Defuzzification is the process of conversion of a fuzzy quantity into a
precise quantity. The output of a fuzzy process may be union of two or more
fuzzy membership functions defined on the universe of discourse of the
output variable.

At I

14

.54

(=]

Figure 3d.1 (A): First part of fuzzy output, (B) second part of fuzzy
output, (C) union of parts (A) and (B)

Defuzzification Methods

o Max-membership principle

J Centroid method

. Weighted average method

. Mean-Max membership

J Centers of Sums

. Center of largest area

° First of maxima, last of maxima

3d.4.1 Max-membership Principle

This method is also known as height method and is limited to peak output
functions. This method is given by the algebraic expression:

A (x*)Z,ug(x) forall x € X

Defuzzification
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'F|gl.:na 1?'4 Mo membership defumzifcacion avethod.
Figure 3d.2: Max-membership Defuzzification Method

3d.4.2 Centroid Method

This method is also known as center of mass, center of area, center of
gravity,

o Jrc(x) - xdx
Xt =2t T
J uc(x)dx

[ is denotes an algebraic integration.

“1.

Figure 3d.3: Centroid Defuzzification Method
3d.4.3 Weighted Average Method

This method is valid for symmetrical output membership functions only.
Each membership function is weighted by its maximum membership
value.

*_Zﬂc@'f:
" D H(E)




th
> denotes algebraic sum and xi is the maximum of the i membership

function.

Defuzzification
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Figure 3d.4: Weighted average defuzzification method
(two symmetrical membership functions)

3d.4.4 Mean-Max Membership

This method is also known as the middle of maxima. The locations of the
maxima membership can be nonunique.

Figure 3d.5: Mean-max membership defuzzification method
3d.4.5 Centers of Sums

This method employs the algebraic sum of the individual fuzzy subsets.
Advantage: Fast calculation. Drawback: intersecting areas are added twice.
The defuzzified value x* is given by:

LA s
L

X ods
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Figure 10-8 {A) Firsc and (B} sccand membershig funcrions, (C) defuazificarion.

Figure 3d.6: (A) First and (B) Second Membership functions, (C)

Defuzzification

3d.4.6 Centers of Largest Area

This method can be adopted when the output consists of at least two convex
fuzzy subsets which are not overlapping. The output in this case is biased
towards a side of one membership function. When output fuzzy set has at
least two convex regions then the center-of-gravity of the convex fuzzy sub
region having the largest area is used to obtain the defuzzified value x*.
This value is given by:

-}

Boundany

Figure 3d.7: Center of Largest Area Method
3d.4.7 First of Maxima, Last of Maxima

This method uses the overall output or union of all individual output fuzzy
sets ¢ for determining the smallest value of the domain with the maximized
membership in c;.



0.5+

Figure 3d.8: First of maxima (last of maxima) method

The steps used for obtaining x* are:
J Initially, the maximum height in the union is found

hgt(c,) = sup#, (x)

xeXN

where sup is supremum, i.e., the least upper bound

° Then the first of maxima is found:

x* = 'mf{x e x' i, ()= hgt(gi)}

xeX
where inf is the infimum, i.e. the greatest lower bound.
° After this the last of maxima is found:

X =sup {x C X];JE_ (x)= hgt(gf)}

xeX

3D.5 SUMMARY

This chapter starts with the discussion about membership functions and
their features. The formation of the membership function is the core for the
entire fuzzy system operation. The capability of human reasoning is
important for membership functions. The inference method is based on the
geometrical shapes and geometry, whereas the angular fuzzy set is based on
the angular features. Using neural networks and reasoning methods the
memberships are tuned in a cyclic fashion and are based on rule structure.
The improvements are carried out to achieve an optimum solution using
generic algorithms. Thus, the membership function can be formed using any
one of the methods.

Later we have discussed the methods of converting fuzzy variables into
crisp variables by a process called as defuzzification. Defuzzification
process is essential because some engineering applications need exact

Defuzzification
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values for performing the operation. Defuzzification is a natural and
essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were
discussed. Apart from the Lambda-cut method, seven defuzzification
methods were presented. The method of defuzzification should be assessed
on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension
of interval arithmetic. One of the important tools of fuzzy set theory
introduced by Zadeh is the extension principle, which allows any
mathematical relationship between nonfuzzy elements to be extended to
fuzzy entities. This principle can be applied to algebraic operations to define
set-theoretic operations for higher order fuzzy sets. The belief and
plausibility measures can be expressed by the basic probability assignment
m, which assigns degree of evidence or belief indicating that a particular
element of X belongs to set A and not to any subset of A. The main
characteristic of probability measures is that each of them can be distinctly
represented by a probability distribution function defined on the elements
of a universal set apart from its subsets. Fuzzy integrals defined define by
Sugeno (1977) are also discussed. Fuzzy integrals are used to perform
integration of fuzzy functions.

3D.6 REVIEW QUESTIONS

What is membership function? Enlist and explain its features.
Write a short note on fuzzification.

Explain any three methods of membership value assignments in
detail.

4 Write a short note on defuzzification.

5 What is Lambda-cuts for fuzzy set and Fuzzy relations?
6 Explain any three methods of defuzzification in detail.
7. Write a short note on fuzzy arithmetic.
8
9

won o=

What are the mathematical operations on intervals of fuzzy.
Write a short note on fuzzy number and fuzzy ordering.

10.  Write a short note on fuzzy vectors.

11.  Write a short note on belief and plausibility measures.

12.  Write a short note on possibility and necessity measures.

3D.7 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

o Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3", 2018

o Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
3, 2019

o Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004
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3E.0 OBJECTIVES

This chapter begins with explaining the membership function and later
introduces the concept of Fuzzy Arithmetic and Fuzzy Measures.

3E.1 OVERVIEW OF FUZZY ARITHMETIC

Fuzzy arithmetic is based on the operations and computations of fuzzy
numbers. Fuzzy numbers help in expressing fuzzy cardinalities and fuzzy
quantifiers. Fuzzy arithmetic is applied in various engineering applications
when only imprecise or uncertain sensory data are available for
computation. The imprecise data from the measuring instruments are
generally expressed in the form of intervals, and suitable mathematical
operations are performed over these intervals to obtain a reliable data of the
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measurements (which are also in the form of intervals). This type of
computation is called interval arithmetic or interval analysis.

3E.2 INTERVAL ANALYSIS OF UNCERTAIN VALUES

Fuzzy numbers are an extension of the concept of intervals. Intervals are
considered at only one unique level. Fuzzy numbers consider them at
several levels varying from 0 to 1. In interval analysis, the uncertainty of
the data is limited between the intervals specified by the lower bound &
upper bound. The following are the various types of intervals:

o [al,a2] = {x]al < x < a2} is closed interval

o [al,a2) = {x|al < x < a2} is an interval closed at left end side &
open at right end.

o (al,a2] = {x|al < x < a2} is an interval open at left end side &
closed at right end.

. (al,a2) = {x|al < x < a2} is an open interval, open at both left end
and right end.

3E.3 MATHEMATICAL OPERATIONS ON INTERVALS

Let A = [al,a2] & B = [b1, b2] be the intervals defined. If x €
[al,a2] & y € [b1, b2]

Addition (+): A+ B = [al,a2] + [b1,b2] = [al + b1,a2 + b2]
Subtraction (-): A — B = [al,a2] — [b1,b2] = [al — b2,a2 — b1]

We subtract the larger value out of bl & b2 from al. The smaller value out
of bl & b2 from a2 is subtracted.

Multiplication (.): Let the two intervals of confidence be A=[al,a2] &
B=[b1,b2] defined on non-negative real line.

A.B = [al,a2].[b1,b2] = [al.bl, a2.b2]

If we multiply an interval with a non-negative real number o
. A =[x, «].[al,a2] = [x.al, x.a2]
. B = [«,x].[b1, b2] = [x. b1, x. b2]

Division (=): The division two intervals of confidence defined on non-
negative real line is given by.

A+ B =[al,a2] + [b1,b2] = [al/b1, a2/b2]

If bl = 0 then the upper bound increases to
+00.If bl = b2 = 0, then interval of confidence is extended to + o



Image Fuzzy Arithmetic
(A): If x € [—a2,—al].Also if A = [al, a2] then its image A = and Fuzzy Measures
[—a2,—al].

Note that A + A = [al,a2] + [-a2,—al] = [al —a2,a2 —al] # 0

The subtraction becomes addition of an image.
-1
Inverse (A ): If

X
€ [al, a2]is a subset of a positive real line, then its inverse is given by

O-Ea

= [al, a2]
] The division becomes multiplication of an inverse. For division

] Similarly, the inverse of A is given by A 1

~zvar

1
by a non — negative number «> 0i.e. (E)'

11 al a2
A, we obtain 4 +~x= A. [—,— = [—,—]

o o«
Max and Min Operations: A = [al,a2] & B = [b1, b2]
Max: A V B = [al,a2] V [b1,b2] =[alV b1, a2V b2]
Min: A A B = [al,a2] A [b1,b2] =[al A b1, a2 A b2]

Table 3e.1: Set Operations on Intervals

Condidons Union, U [ntersection, N
a1> by [61, 2] U [a), 2] ¢

o> az [a1,a2] U [, 7] ¢

ay;> b, a< b [61. &) [ay, a2]
by> a,h<m [a1, 42) (61, 62)
ay<b<a<b (a1, £2] (61, a2]
bh<a<h<a [6), a2] [a1, 1)

Table 3e.2: Algebraic Properties of Intervals

Property Addition (+) Multiplication (+)
Commutativity A+B=B+A4 A-B=B-4
Associacivicy (A+D+C=A+B+0)  4B-C=4-@ O
Neutral number A+0=0+4=4 A-1=1-4=4
Image and inverse 4-‘-E=Z+zj9‘=0 A_-d‘l =4 4#1
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3E.4 FUZZY NUMBER

A fuzzy number is a normal, convex membership function on the real line
R. Its membership function is piecewise continuous. That is, every A-cut set
AL, A€[0,1],0f a fuzzy number A is a closed interval of R & the highest
value of membership of A is unity. For two given numbers A & B in R, for
specific A1 € [0, 1], we obtain two dosed intervals:

A1

B [a1(“)' az(ﬂ)]

= A, A2
By 107520

from fuzzy number A

] from fuzzy number B

Fuzzy number is an extension of the concept of intervals. Fuzzy numbers
consider them at several levels with each of these levels corresponding to
each A-cut of the fuzzy numbers. The notation Ax=[al(*"),a2(*?)] can be
used to represent a closed interval of a fuzzy number A at a A h -level.

Lec ws discuss the interval arishmenic for dosed intervals of fuzzy numbers. Ler (%) denate an arithimeric
aperation, such as addition, subtraction, mulriplicacion or division, en fuzzy numbers. The resulr 4 * B, where
A and £ are owo fuzzy numbers is given by

Eteglz) = zzxiv[ ta (=), Fie ()]

Using extension principle (see Secdon 11.3), where v, y € &, for min (A} and max (V) operadion, we have

Eaegied = sup [ (x) = yg (3]

=y
Using a-cue, the abeove owe equations become
(A% By =da By forall Le [0,1)
where 4;, = [.-zﬁ;", r:li_,}'J| and ffy = [5t1m,c‘:[;'}]. Noee that for ay, a2 € [0, 1], if ;> a2, then 4y, C As-

On excending the addition and subtreciion operations en intervals to wo fuzzy numbers 4 and Bin B,
we et

A+ B o=+ 8, + 8]
~Bo= [~ tha - 8l)

Similarly, on extending the wdtiplication and division operations on two fuzzy numbers 4 and B in £F
I:nnn-nug:l.ri'.re teal l]nc}l = [I},DO], we pet

A Bo=[d 8.d- 8]

|4
d;?&—[E,E], bé}[}



Fuzzy Arithmetic

The multiplication of 2 fuzzy number 4 C R by an ordinary number 8 € RY can be defined as and Fuzzy Measures

(8- =[B4).84]
The support for a fuzzy numbe, say 4, is given by
supp 4 = {xlug (x)> 0}

which is an incerval on the real line, denoted symbolically as A. The support of the fuzzy number resulting
from che arithmetic operation 4 * 8, ..,

supplz) = A= B
Ao

is the arithmeric operation on the owo individual supports, A and B, for fuzzy numbers 4 2nd B, respectively.

In general, acithmetic operacions on fuzzy numbers based on A-cut are given by (as mentioned earlier)

(AxB)y =M 5

The algebraic propercics of fuzzy numbers are listed in Table 11-3. The operacions on fuzzy numbers
possess the following properties as well.

1. If A and B are fuzzy numbers in R, then (4 + B) and (4 — B) are also fuzzy numbers. Similarly if A and B
are fuzzy numbers in R, chen (4 - B) and (4 + B) are also fuzzy numbess.

2. Thete exist no image and inverse fuzzy numbers, 4 and ™", respectively.

3. The inequalities given below stand true:

A-B+B#A and (A+B)-B#A

Table 3e.3 Algebraic Properties of Addition and Multiplication on
Fuzzy Numbers

Praperty Addition Multiplication
Fuzzy numbers ABCCR ABCCRY
Commurativicy A+ B=8+4 A-B=H1-A
Associativicy A+B+C=A+{B+C) A-B)-C=A-{f-C)
Meureal number A+0=0+4=4 A-l=1.4=4
Image and inverse A+Ad=A+A£0 AA = A"V A

3E.5 FUZZY ORDERING

The technique for fuzzy ordering is based on the concept of possibility
measure. For a fuzzy number A, two fuzzy sets, A1 & A2 are defined. For

this number, the set of numbers that are possibly greater than or equal to A
is denoted as A1 and is defined as

3,0 =TT, o= supa 0

usw
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In a similar manner, the set of numbers that are necessarily greater than A is
denoted as A2 and is defined as

Hy, (W) =N, (—oo,w)=infll-#, (1)]

uz=w

where [] 4 and N are possibility and necessity measures.

We can compare A with B1 & B2 by index of comparison such as the

possibility or necessity measure of a fuzzy set. That is, we can calculate the
possibility and necessity measures, in the set p, of fuzzy sets B1 & B2. On

the basis of this, we obtain four fundamental indices of comparison.

1. T, (8) =supmin (4, (),0p 1, (")) = supmin (g, (1), 4y (v))

uzy

This shows the possibility th;t the largest value X can take is at least equal to smallest value that Y can take
2. T14(B)=supmin (g (u)inf[1- 4, (v)]) = supinf min (4, (), [1- 21, (V)])

This shows the possibility that the largest value X can take is greater than the largest value that Y can take.
3. N, (B)=infmax (-4, (v).sup sty (V) =infsupmax (1= p , (), p1, (v))

This shows the possibility that ‘thwe smallest valu:} can take is at least equal to smallest value that Y can take.
4. N,(B)= inf max (1=, (u), inf (1-pt,(W)])=1- &up min 1, (), g2, (v)]

This shows 1he possibility that the smallest value X can take is greater than the largest value that Y can take.

3E.6 FUZZY VECTORS

A vector P = (Pl, Pz’ s Pn) is called a fuzzy vector if for any element we
have 0 < P < 1 fori=1 to n. Similarly, the transpose of the fuzzy vector e

T
denoted by P , is a column vector if P is a row vector, i.e.,

Py
Py

Let P & Q as fuzzy vector on length n.

P QT = _{31{10,- A Q)

P

Fuzzy inner product:

®Q = AP VQ)

"2

Fuzzy outer product:

The complement of fuzzy vector ~P has constraint 0 < ~P < 1 fori =
lton

~P = (1—P1,1—P2,1—Pn) = (~P1,~P2,...,~Pn)



?) i max(P } Fuzzy Arithmetic
- ¢ 1
1

Largest component is defined as its upper bound: and Fuzzy Meastires

P = min{/)

Smallest component is defined as its lower bound: »

Properties of Fuzzy Vector

L.2-Q=P0Q
= =T
2206Q =P-Q
A A
32.-QN=(PAQ
4 P0Q =(PvQ
vl M A
5.0 P =P
6. PorM>p
M
7.1 P S Qehen P - Q' = Pandif QC Rehen 2B Q =P
8. L-P<3
9. P P )

3E.7 EXTENSION PRINCIPLES

The extension principle allows generalization of crisp sets into fuzzy sets
framework & extends point-to-point mappings for fuzzy sets.

Given a function f: M — Nand a fuzzy set in M, where

the extension principle states that

xn

= Fon f(xz v +}"'<;,T

If fmaps several clements of Mo the same element yin N'(i.¢., many-to-one mapping), then the maximum
among their membership grades is taken. That is,

iy 0) = s (g (6]

[ui)=y

where ;5 are the elemencs mapped to same element y. The function fmaps n-tuples in M to a point in M.
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Ler M be the Cartesian product of universes M = My x M x - x M, and 4,43, ..., A, be n fuzzy
sets in My, My, ..., M, respectively. The function fmaps an n-ple (x1, %3, ..., x,} in the crisp set Mo 2
point y in the crisp set ¥, ie., y = f (v, x3,...,%,). The function £ (x|, xa,. .., %) to be extended 1o act on
the # fuzzy subsets of M, A1, 43, .. .. 4, is permitted by the extension principle such thar

I=f@)
where Jis the fuzzy image of 41, 43, ..., 4, through £(:). The fuzzy sex 8 s defined by
‘.-B..= [(7-#&()')”}' =f(xlsx:| v 1xll)1 (xlsxhn ras |xn') € M!

where

pO) = sup  min[ug, (), kg ()., pg, ()]
(1,22, .- 3 €M
7= gt

with a condition that g (3) = 0 if there exists no (x1,x3,...,x,) € Msuch thaty = flx1, %2, ..., %,).

3E.8 OVERVIEW OF FUZZY MEASURES

A fuzzy measure explains the imprecision or ambiguity in the assignment
of an element & to two or more crisp sets. For representing uncertainty
condition, known as ambiguity, we assign a value in the unit interval [0, 1]
to each possible crisp set to which the element in the problem might belong.
The value assigned represents the degree of evidence or certainty or belief
of the element's membership in the set. The representation of uncertainty of
this manner is called fuzzy measure. The difference between a fuzzy
measure and a fuzzy set on a universe of elements is that, in fuzzy measure,
the imprecision is in the assignment of an element to one of two or more
crisp sets, and in fuzzy sets, the imprecision is in the prescription of the
boundaries of a set.

A fuzzy measure is defined by a function g: P(X) — [0,1] which assigns to
each crisp subset of a universe of discourse X a number in the unit interval
[0,1],where P(X) is power set of X.A fuzzy measure is a set function. To
qualify a fuzzy measure,the function g should possess certain properties.A
fuzzy measure is also described as follows: g: B — [0,1] where B cP(X) is
a family of crisp subsets of X Here B is a Borel field or a ¢ field. Also, g
satisfies rhe following three axioms of fuzzy measures:

o Boundary condition (gl): g(@) = 0; g(X) =1

o Monotonicity (g2): for every classical set A,B € P(X), if A<
B, then g(A) < g(B)

J Continuity (g3): for sequence A;eP(X)|i €
N) of subsets X, if either A1 c AZ .. OT A1 2

Ag ...then lli_)rgg(Al-) =g (llLrgAl)
where N is the set of all positive integers

A o field or Borel field satisfies the following properties:

° XEB&PEB



° ifA € B, then~A €B Fuzzy Arithmetic
and Fuzzy Measures

. B is closed under set union operation, i.e. if A€ B&B €
B (a field), then AUB € B (o field)

The fuzzy measure excludes the additive property of standard measures, h.

The additive property states that when two sees A and B are disjoint, then

h(AU B) = h(A) + h(B).Since AS AUB&B C A U

B, and because fuzzy measure g possesses monotonic property, we have g(4 U
B) = max[g(A), g(B)].Since ANBCS A&ANB <

B, and because fuzzy measure g possesses monotonic property, we have g(4 U

B) < min[g(4), g(B)].

3E.9 BELIEF & PLAUSIBILITY MEASURES

The belief measure is a fuzzy measure that satisfies three axioms g1, g2 and
g3 and an additional axiom of subadditivity. A belief measure is a function
bel: B = [0,1] satisfying axioms gl, g2 and g3 of fuzzy measures and
subadditivity axiom. It is defined as follows:

bel (41 U4y U+ UA4,) 2 bel (43— 5 bel (40 4)
i i<j

+ et (=) bl (4 NA N NA)

for every n € Nand every collection of subsers of X. N is set of all positive integer. This is called axiom 4 (gd).

Plausibility is defined as PI(A)=1 -bel(A) for all A€EB(CP(X)).Belief
measure can be defined as bel(A)=1-PI(A).Plausibility measure can also be
defined independent of belief measure. A plausibility measure is a function
Pl:B—[0,1] satisfying axioms gl, g2, g3 of fuzzy measures and the
following subadditivity axiom (axiom g5):

PI(AImAzm---ﬁAn)SzPl(Ai)—ZPl (A VA)

i<j

4.+ (=1)"" PL(A, VA, U UA)

for every n € N and all collection of subsets of X

The belief measure and the plausibility measure are mutually dual, so it will

be beneficial to express both of them in terms of a set function m, called a
basic probability assignment. The basic probability assignment m is a set
function, : B - [0,1]such that m(® = 0)and ZA gpm(4) =

1. The basic probability assignments are not fuzzy measures. The quantity
m(A) €[0,1], A € B(CP(X)) , is called A's basic probability number.

Given a basic assignment m, a belief measure and a plausibility measure
and a plausibility measure can be uniquely determined by:
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bel (A)= ) m(B)

Bz A

Pl(A)= Y m(B)

B A=0

The relations among m{A), bel(4) and PI(A) are as follows:

1. m(A) measures the belief that che element (x € X) belongs to set A alone, not the total belief thar the
element commits in A.

2. bel (4) indicates total evidence that the element (x € X) belongs to set A and toany other special subsets of 4

3. P1(A) includes tlie toral evidence that the element (x € X)} belongs to set A or o other special subsets of
A plus the additional evidence or belief associated with sets that oveclap with A.

Based on these relations, we have
PI(A) > bel {4) > m(A) VY A € B(o field)

Belief and plausibility measurte are dual to each other. The corresponding basic assignment = can be
obrained from a given plausibility measure Pk

mi) =3 (=)D —PI (B) VA€ B0 field
BCA

Evety set A € B(CP(X)) for which m(A4) > 0 is called a focal element of 7. Focal elements are subsets of X
on which the available evidence focuses.

3E.10 PROBABILITY MEASURES

A probability measure is the function P:B —

[0,1] satisfying the three axioms

gl, g2 & g3 of fuzzy measures and the additivity axioms (axiom g6) as follows
P(AUB) = P(A) + P(B) whenever ANB =0, A,B € B.

Theorem : “A belief measure bel on a finite o-field B, which is a subset of
P(X), is a probability measure if and only if its basic probability assignment
m is given by m({x}) = bel({x}) and m(A) = 0 for all subsets of X that are
not singletons.”

The theorem indicates fiat a probability measure on finite sets can be
represented uniquely by a function defined on the elements of the universal
set X rather than its subsets. The probability measures on finite sets can be
fully represented by a function, P: X — [0, 1] such that P(x) = m({x}). This
function P(X) is called probability distribution function.

Within probability measure, the total ignorance is expressed by the uniform
probability distribution function:

1
P(x) =m({x}) = X forallx € X
The plausibility and belief measures can be viewed as upper & lower
164 probabilities that characterize a set of probability measures.



3E.11 POSSIBILITY & NECESSITY MEASURES

A group of subsets of a universal set is nested if these subsets can be ordered
in a way that each is contained in the next; i.e. A1 € A2 € A3 ... c An,Ai €
P(X) are nested sets. When the focal elements of a body of evidence (E, m)
are nested, the linked belief and plausibility measures are called consonants,
because here the degrees of evidence allocated to them do not conflict with
each other.

Theorem: “Consider a consonant body of evidence (E, m), the associated
consonant belief and plausibility measures possess the following properties:

bel (AN B) = min(bel(A), bel(B))
PI(A U B) = max(Pl(4), PI(B))
forall A,B € B(CP(X)).

Consonant belief and plausibility measures are referred to as necessity &
possibility measures & are denoted by N and [], respectively.

The possibility measure [| & necessity measure N are function:

[I: B—>[0,1] & N:B — [0,1] such that][] & N both satisfy the axioms
gl,g2 & g3 of fuzzy measures and following axiom g7:

[1(A u B) = max([1(A),[1(B)) VA,B €B
N(An B) = min(N(A),N(B)) VA,B €B

Necessity and possibility are special subclasses of belief and plausibility
measures, they are related to each other by

[[A)=1-N@A) & N@A=1-[[(A) VA€o field

1. min[N(A),N(Z)] = I\"(AHE) =0. This implies that A or A isnot necessary at all.

9. max{[T(4), TT(A)]=TT(A U A)=T1(X)=1. This implies that either A or A is completely possible.

3. [1(A)2N(A)VAco field.
4 1f N(A)>0 then[](4)=1and if [I(A)<1 then N(A)=0.

The two equations indicate that if an event is necessary then it is completely possible. Ifit is not completely
possible then it is not necessary. Every possibility measure [ on B C P(x) can be uniquely decermined by a

possibility distribution function

[_[:x——>[0,1]

Fuzzy Arithmetic
and Fuzzy Measures
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using the formula

[Jr=ma[td Vxeo feld

€A

The necessity and possibility measure ate mutually dual wich cach other. As a resule we can obuain the
necessity measure from the possibility distribution function, This is given as

=1 =[] =1-m] )

The toal ignorance can be expressed in terms of the possibility distribution by [[(x,) = 1and [(x}) =0
fori = 110 n- 1, corresponding to [](4,) = [](X) = 1 and [](4) = 0.

3E.12 MEASURE OF FUZZINESS

The fuzzy measures concept provides a general mathematical framework to
deal with ambiguous variables. Measures of uncertainty related to
vagueness are referred to as measures of fuzziness. A measure of fuzziness
is a function f: P(X) — R where R is the real line and P(X) is the set of all
fuzzy subsets of X. The function f satisfies the following axioms:

. Axiom 1 (f1): f(A)=0if and only if A is a crisp set.

J Axiom 2 (f2): If A (shp) B, then f(A) < f(B), where A (shp) B denotes
that A is sharper than B.

. Axiom 3 (f3): f(A) takes the maximum value if and only if A is
maximally fuzzy.

Axiom fl shows that a crisp set has zero degree of fuzziness in it. Axioms
f2 and f3 are based on concept of "sharper" and "maximal fuzzy,"
respectively.

1. The first fuzay measure can be defined by the function:
) ==Y {9 logy lua () [1-p4 (5] logy 1~y (1)
xEA

It can be normalized as

f!(AJ __f(-A)

|x|

where || is cardinality of universal set X, This measure of fuzziness can be considered as the entropy of a

fuzay set
2. A(shp) B,A i sharper than B, is defined as

e (x) S pplx) forpg <05
() > pplx) forpp(®>05 VeeX
3. Ais maximally fuzzy if

A =05 forallxe X



3E.13 FUZZY INTEGRALS Fuzzy Arithmetic

and Fuzzy Measures

Let K'be a mapping from Xto {0,1). The fuzzy integral, in the sense of fuzzy measure g, of K over a subser
A of Xis defined as

Lk(x) ‘g= sup min[f, g4 N Hg)]

a€ef0,1]

where Hg = (x € x|K{x) > ). Here, A is called the domain of incegration. If £ = a € [0, 1] is a constant,
then its fuzzy integral over Xis “a” itself, because g (XN Hp) = 1 for § < zand g(XN Hp) = 0for > a,i.c,

fa.géa,- 2e[0,1]
x 7
Consider X to be 2 finite set such that X = {x1,x,...,x,}. Without loss of generality, assuming the

function to be integrated, £ can be obtained such that A(x;) > k{xs) > -~ > k{x,). This is obtained after
proper ordering, The basic fuzzy integral then becomes

[ ) g = max minlie), (D)
X i=lton

where H; = {x1,x,...,x). The calculacion of the fuzzy measure “g" is a fundamental point in performing

a fuzzy integration.

3E.14 SUMMARY

This chapter starts with the discussion about membership functions and
their features. The formation of the membership function is the core for the
entire fuzzy system operation. The capability of human reasoning is
important for membership functions. The inference method is based on the
geometrical shapes and geometry, whereas the angular fuzzy set is based on
the angular features. Using neural networks and reasoning methods the
memberships are tuned in a cyclic fashion and are based on rule structure.
The improvements are carried out to achieve an optimum solution using
generic algorithms. Thus, the membership function can be formed using any
one of the methods.

Later we have discussed the methods of converting fuzzy variables into
crisp variables by a process called as defuzzification. Defuzzification
process is essential because some engineering applications need exact
values for performing the operation. Defuzzification is a natural and
essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were
discussed. Apart from the Lambda-cut method, seven defuzzification
methods were presented. The method of defuzzification should be assessed
on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension
of interval arithmetic. One of the important tools of fuzzy set theory
introduced by Zadeh is the extension principle, which allows any
mathematical relationship between nonfuzzy elements to be extended to
fuzzy entities. This principle can be applied to algebraic operations to define
set-theoretic operations for higher order fuzzy sets. The belief and

plausibility measures can be expressed by the basic probability assignment 167
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m, which assigns degree of evidence or belief indicating that a particular
element of X belongs to set A and not to any subset of A. The main
characteristic of probability measures is that each of them can be distinctly
represented by a probability distribution function defined on the elements
of a universal set apart from its subsets. Fuzzy integrals defined define by
Sugeno (1977) are also discussed. Fuzzy integrals are used to perform
integration of fuzzy functions.

3E.15 REVIEW QUESTIONS

1.
2.

5.
6.

Write a short note on fuzzy arithmetic.

What are the mathematical operations on intervals of fuzzy.
Write a short note on fuzzy number and fuzzy ordering.
Write a short note on fuzzy vectors.

Write a short note on belief and plausibility measures.

Write a short note on possibility and necessity measures.
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MODULE I1: UNIT 4

4a

FUZZY RULE BASE AND
APPROXIMATE REASONING

Unit Structure

4a.0
4a.1
4a.2
4a.3
4a.4
4a.5
4a.6
4a.7
4a.8
4a.9

Introduction

Biological Background

Traditional Optimization and Search Techniques
The Cell

Genetic Algorithm and Search Space

Genetic Algorithm vs. Traditional Algorithms
Basic Terminologies in Genetic Algorithm
Simple GA

Summary

Review Questions

LEARNING OBJECTIVES

Gives an introduction to natural evolution.

Lists the basic operators (selection, crossover, mutation) and other
terminologies used in Genetic Algorithms (GAS).

Discusses the need for schemata approach.
Details the comparison of traditional algorithm with GA.
Explains the operational flow of simple GA.

Description is given of the various classifications of GA- Messy GA,
adaptive GA, hybrid GA, parallel GA and independent sampling GA.

The variants of parallel GA (fine-grained parallel GA and coarse-
grained parallel GA) are included.

Enhances the basic concepts involved in Holland classifier system.

The various features and operational properties of genetic
programming are provided.

The application areas of GA are also discussed.

Thales R. Darwin says that "Although the belief that an organ so perfect as
the eye could have been formed by natural selection is enough to stagger
any one; yet in the case of any organ, if we know of a long series of
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gradations in complexity, each good for its possessor, then, under changing
conditions of life, there is no logical impossibility in the acquirement of any
conceivable degree of perfection through natural selection.”

4A.0 INTRODUCTION

Thales Darwin has formulated the fundamental principle of natural
selection as the main evolutionary tool. He put forward his ideas without
the knowledge of basic hereditary principles. In 1865, Gregory Mendel
discovered these hereditary principles by the experiments he carried out on
peas. After Mendel's work genetics was developed. Morgan experimentally
found that chromosomes were the carriers of hereditary information and that
genes representing the hereditary factors were lined up on chromosomes.
Darwin's natural selection theory and natural genetics remained unlinked
until 1920s when it was proved that genetics and selection were in no way
contrasting each other. Combination of Darwin’s and Mendel’s ideas leads
to the modern evolutionary theory.

In The Origin of Species, Thales Darwin stated the theory of natural
evolution. Over many generations, biological organisms evolve according
to the principles of natural selection like "survival of the fittest" to reach
some remarkable forms of accomplishment. The perfect shape of the
albatross wing, the efficiency and the similarity between sharks and
dolphins and so on are good examples of what random evolution with
absence of intelligence can achieve. So, if it works so well in nature, it
should be interesting to simulate natural evolution and try to obtain a
method which may solve concrete search and optimization problems.

For a better understanding of this theory, it is important first to understand
the biological terminology used in evolutionary computation. It is discussed
in Section 1.2

In 1975, Holland developed this idea in Adaptation in Natural and Artificial
Systems. By describing how to apply the principles of natural evolution to
optimization problems, he laid down the first GA. Holland’s theory has
been further developed and now GAs stand up as powerful adaptive
methods to solve search and optimization problems. Today, GAs are used
to resolve complicated optimization problems, such as, organizing the time
table, scheduling job shop, playing games.

What are Genetic Algorithms?

GA:s is adaptive heuristic search algorithms based on the evolutionary ideas
of natural selection and genetics. As such they represent an intelligent
exploitation of a random search used to solve optimization problems.
Although randomized, GAs are by no means random; instead they exploit
historical information to direct the search into the region of better
performance within the search space. The basic techniques of the GAs are
designed to simulate processes in natural systems necessary for evolution,
especially those that follow the principles first laid down by Thales Darwin,
"survival of the fittest," because in nature, competition among individuals



for seamy resources results in the fittest individuals dominating over the
weaker ones.

Why Genetic Algorithms?

They are better than conventional algorithms in that they are more robust.
Unlike older Al systems, they do not break easily even if the inputs are
changed slightly or in the presence of reasonable noise. Also, in searching
a large state-space, multimodal state-spare or n-dimensional source, a GA
may offer significant benefits over more typical optimization techniques
(linear programming, heuristic, depth-first and praxis.)

4A.1 BIOLOGICAL BACKGROUND

The science that deals with the mechanisms responsible for similarities and
differences in a species is called Genetics. The word "genetics" is derived
from the Greek word "genesis" meaning "to grow" or "to become. “The
science of genetics helps us to differentiate between heredity and variations
and accounts for the resemblances and differences during the process of
evolution. The concepts of GAs are directly derived from natural evolution
and heredity. The terminologies involved in the biological background of
species are discussed in the following subsections.

4A.2 THE CELL

Every animal/human cell is a complex of many "small" factories that work
together. The centre of all this is the cell nucleus. The genetic information
is contained in the cell nucleus. Figure 9-1 shows anatomy of the animal
cell and cell nucleus.

Chromosomes

All the genetic information gets stored in the chromosomes. Each
chromosome is build of deoxyribonucleic acid (DNA). In humans,
chromosomes exist in pairs (23 pairs found). The chromosomes are divided
into several parts called genes. Genes code the properties of species, i.e., the
characteristics of an individual. The possibilities of combination of the
genes for one property are called alleles, and a gene can take different
alleles. For example, there is a gene for eye colour, and all the different
possible alleles are black, brown, blue and green (since no one has red or
violet eyes!). The set of all possible alleles present in a particular population
forms a gene pool. This gene pool can determine all the different possible
variations for the future generations. The size of the gene pool helps in
determining the diversity of the individuals in the population. The set of all
the genes of a specific species is called genome. Each and every gene has a
unique position on the genome called
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Anatomy of the Animal Cell
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Fig9-1 anatomy of the animal cell and cell nucleus

Locus. In fact, most living organisms store their genome on several
chromosomes, but in the GAs, all the genes are usually stored on the same
chromosomes. Thus, chromosomes and genomes are synonyms with one
other in GAs. Figure 9-2 shows a model of chromosome.

4a.2.3 Genetics

For a particular individual, the entire combination of genes is called
genotype. The phenotype describes the physical aspect of decoding a
genotype to produce the phenotype. One interesting point of evolution is
that selection is always done on the phenotype whereas the reproduction
recombines genotype. Thus, morphogenesis plays a key role between
section and reproduction. In higher life forms, chromosomes contain two
sets of genes. These are known as diploids. In the case of conflicts between
two values of the same pair of genes, the dominant one will determine the
phenotype whereas the other one, called recessive, will still be present and



Can be passed onto the offspring. Diploid allows a wider diversity of alleles.
This provides a useful memory mechanism in changing or noisy
environment. However, most GAs concentrates on haploid chromosomes
because they are much simple to construct. In haploid representation, only
one set of each gene is stored, thus the process of determining which allele
should be dominant and which one should be recessive is avoided. Figure9-
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Figure 9-3 Development of genotype to Phonotype

3 shows the development of genotype to phenotype.

4a.2.4 Reproduction

Reproduction of species via genetic information is carried out by the

following;

1.

Mitosis: In mitosis the same genetic information is copied to new
offspring. There is no exchange of information. This is a normal way
of growing of multicell structures, such as organs. Figure 9-4 shows

mitosis form of reproduction.
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2.

Meiosis: Meiosis forms the basis of sexual reproduction. When
meiotic division takes place, two gametes appear in the process. When
reproduction occurs, these two gametes conjugate to a zygote which
becomes the new individual. Thus in this case, the genetic information
is shared between the parents in order to create new offspring. Figure
9-5 shows meiosis form of reproduction.
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)
X
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Figure 9-4 Mitosis form of reproduction

l DNA replication

Figure 9-5 Meiosis form of reproduction



Table 9:1 Comparison of natural evolution and genetic algorithm
terminology

Natural evolution Genetic algorithm

Chromosome String

Gene Feature or character

Allele Feature value

Locus String position

Genotype Structure or coded string

Phenotype Parameter set, a decoded
structure

4a.2.5 Natural Selection

The origin of species is based on "Preservation of favourable variations and
rejection of unfavourable variations.” The variation refers to the differences
shown by the individual of a species and also by offspring's of the same
parents. There are more individuals born than can survive, so there is a
continuous struggle for life. Individuals with an advantage have a greater
chance of survival, i.e., the survival of the fittest. For example, Giraffe with
long necks can have food from tall trees as well from the ground; on the
other hand, goat and deer having smaller neck can have food only from the
ground. As a result, natural selection plays a major role in this survival
process.

Table 4a.1 gives a list of different expressions, which are common in natural
evolution and genetic algorithm.

4A.3 TRADITIONAL OPTIMIZATION AND
SEARCH TECHNIQUES

The basic principle of optimization is the efficient allocation of scarce
resources. Optimization can be applied to any scientific or engineering
discipline. The aim of optimization is to find an algorithm which solves a
given class of problems. There exists no specific method which solves all
optimization problems. Consider a function,

fx): [x}x"] =[0,1] ... (1)
Where

f(X): {1 if Ix-al|<e, e>0, -lelsewhere.......... ?2)

For the above function, f can be maintained by decreasing € or by making
the interval of [x!, x"] large. Thus, a difficult task can be made easier.
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Therefore, one can solve optimization problems by combining human
creativity and the raw processing power of the computers.

The various conventional optimization and search techniques available are
discussed in the following subsections.

4a.3.1 Gradient Based Local Optimization Method

When the objective function is smooth and one needs efficient local
optimization, it is better to use gradient-based or Hessian-based
optimization methods. The performance and reliability of the different
gradient methods vary considerably. To discuss gradient-based local
optimization, let us assume a smooth objective function (i.e., continuous
first and second derivatives). The object function is denoted by

fx):K"->R ... (3)
The first derivatives are contained in the gradient vector Af(x)
of(x)iox
AfX)=:| L 4)
of(X)ioxn

The second derivatives of the object function are contained in the Hessian
matrix H(x):

0% (X) 0° f (x)
o’x,  OXOX
HX) =V'Vi(x)=| : - N (5)
0% (X) 0” f (x)
oxox,  0x,

Few methods need only the gradient vector, but in the Newton's method we
need the Hessian matrix. The general pseudo code used in gradient methods
is as follows:

Select an initial guess value x!and set n = 1.

Repeat

Solve the search direction P" from Eqg. (5) below.
Determine the next iteration point using Eq. (5) below:
XM= X+, P

Setn=n+l.

Until || X"- X" |l <e ... (6)

These gradient methods search for minimum and not maximum. Several
different methods are obtained based on the details of the algorithm.



The search direction P" in conjugate gradient method is found as follows: Fuzzy Rule Base and
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Pn: _Af(xn)+ﬂnpn-l ................... 7)
In second method,
GaP=-AR(XY) (8)

is used for finding search direction. The matrix f£»in Eg. (6) estimates the
Hessian and is updated in each iteration. When £, is defined as the identity
matrix, the steepest descent method occurs. When the matrix Bn is the
Hessian H (x"), we get the Newton's method.

The length A, of the search step is computed using:
An=argmin f(@a" + APan) .....(9)
An>0

The discussed is a one-dimensional optimization problem. The steepest
descent method provides poor performance. As a result, conjugate gradient
method can be used. If the second derivatives are easy to compute, then
Newton’s method may provide best results. The secant methods are faster
than conjugate gradient methods, but there occurs memory problems. Thus,
these local optimization methods can be combined with other methods to
get a good link between performance and reliability.

4a.3.2 Random Search

Random search is an extremely basic method. It only explodes the search
space by randomly selecting solutions and evaluates their fitness. This is
quite an unintelligent strategy, and is rarely used. Nevertheless, this method
is sometimes worth testing. It doesn't take much effort to implement it, and
an important number of evaluations can be done fairly quickly. For new
unresolved problems, it can be useful to compare the results of a more
advanced algorithm to those obtained just with a random search for the same
number of evaluations. Nasty surprises might well appear when comparing,
for example, GAs to random search. It’s good to remember that the
efficiency of GA is extremely dependent on consistent coding and relevant
reproduction operators. Building a GA which performs no more than a
random search happens more often than we can expect. If the reproduction
operators are just producing new random solutions without any concrete
links to the ones selected from the last generation, the GA is just doing
nothing else than a random search.

Random search does have a few interesting qualities. However good the
obtained solution may be, if it’s not optimal one, it can be always improved
by continuing the run of the random search algorithm for long enough. A
random search never gets stuck at any point such as a local optimum.
Furthermore, theoretically, if the search space is finite, random search is
guaranteed to reach the optimal solution. Unfortunately, this result is 177
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completely useless. For most of problems we are interested in, exploiting
the whole search space takes lot of time.

4a.3.3 Stochastic Hill Climbing

Efficient methods exist for problems with well-behaved continuous fitness
functions. These methods use a kind of gradient to guide the direction of
search. Stochastic hill climbing is the simplest method of these kinds. Each
iteration consists in choosing randomly a solution in the neighbourhood of
the current solution and retains this new solution only if it improves the
fitness function. Stochastic hill climbing converges towards the optimal
solution if the fitness function of the problem is continuous and has only
one peak (unimodal function).

On functions with many peaks (multimodal functions), the algorithm is
likely to stop on the first peak it finds even if it is not the highest one. Once
a peak is reached, hill climbing cannot progress anymore, and that is
problematic when this point is a local optimum. Stochastic hill climbing
usually starts from a random select point. A simple idea to avoid getting
stuck on the first local optimal consists in repeating several hill climbs each
time starting from a different randomly chosen point. This method is
sometimes known as iterated hill climbing. By discovering different local
optimal points, chances to reach the global optimum increase. It works well
if there are not too many local optima in the search space. However, if the
fitness function is very "noisy" with many small peaks, stochastic hill
climbing is definitely nor a good method to use. Nevertheless, such methods
have the advantage of being easy to implement and giving fairly good
solutions very quickly.

4a.3.4 Simulated Annealing

Simulated annealing (SA) was originally inspired by formation of crystal in
solids during cooling. As discovered a long time ago by Iron Age
blacksmiths, the slower the cooling, the more perfect is the crystal formed.
By cooling, complex physical systems naturally converge rewards a stare
of minimal energy. The system moves randomly, but the probability to stay
in a particular configuration depends directly on the energy of the system
and on its temperature. This probability is formally given by Gibbs law:

in= eEIkT

where E stands for the energy, k is the Boltzmann constant and T is the
temperature. In the mid0I970s, Kirkpatrick by analogy of these physical
phenomena; laid out the first description of SA.

As in the stochastic hill climbing, the iteration of the SA consists of
randomly choosing a new solution in the neighbourhood of the actual
solution. If the fitness function of the new solution is better than the fitness
function of the current one, the new solution is accepted as the new current
solution. If the fitness function is not improved, the new solution is retained
with a probability:



P =g HOHIKT (11)

Where f(y) - f(x) is the difference of the fitness function between the new
and the old solution.

The SA behaves like a hill climbing method but with the possibility of going
downhill to avoid being trapped at local optima. When the temperature is
high, the probability of deteriorate the solution is quite important, and then
a lot of large moves are possible to explode the search space. The more the
temperature decreases, the more difficult it is to go downhill. The algorithm
thus tries to climb up from the current solution to reach a maximum. When
temperature is lower, there is an exploitation of the current solution. If the
temperature is too low, number deterioration is accepted, and the algorithm
behaves just like a stochastic hill climbing method. Usually, the SA stars
from a high temperature which decreases exponentially. The slower the
cooling, the better it is for finding good solutions. It even has been
demonstrated that with an infinitely slow cooling, the algorithm is almost
certain to find the global optimum. The only point is that infinitely slow
cooling consists in finding the appropriate temperature decrease rate to
obtain a good behaviour of the algorithm.

SA by mixing exploitation features such as the random search and
exploitation features like hill climbing usually gives quite good results. SA
is a serious competitor of GAs. It is worth trying to compare the results
obtained by each. Both are derived from analogy with natural system
evolution and both deal with the same kind of optimization problem. GAs
differ from SA in two main features which makes them more efficient. First,
GAs use a population-based selection whereas SA only deals with one
individual at each iteration. Hence Gas are expected to cover a much larger
landscape of the search space at each iteration; however, SA iterations are
much more simple, and so, often much faster. The grocer advantage of GA
is its exceptional ability to be parallelized, whereas SA does not gain much
of this. It is mainly due to the population scheme use by GA. Second, Gas
use recombination operators, and are able to mix good characteristics from
different solutions. The exploitation made by recombination operators are
supposedly considered helpful to find optimal salmons of the problem. On
the other hand, SA is still very simple to implement and gives good this.
SAs have proved their efficiency over a large spectrum of difficult
problems, like the optimal layout or primed circuit board or the famous
travelling salesman problem.

4a.3.5 Symbolic Artificial Intelligence

Most symbolic artificial intelligence (Al) systems are very static. Most of
them can usually only solve one given specific problem, since their
architecture was designed for whatever that specific problem was in the first
place. Thus, if the given problem were somehow to be changed, these
systems could have a hard time adapting to them; since the algorithm that
would originally arrive co the solution may be either incorrect or less
efficient. GAs were created to combat these problems. They are basically
algorithms based on natural biological evolution. The architecture of
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systems that implement GAs is more able to adapt to a wide range of
problems. A GA functions by generating a large set of possible solutions to
a given problem. It then evaluates each of chose solutions, and decides on a
"fitness level" (you may recall the phrase: "survival of the fittest") for each
solution set. These solutions then breed new Solutions. The parent solutions
that were more "fit” are more likely m reproduce, while those that were less
"fit" are more unlikely to do so. In essence, solutions are evolved over time.
This way we evolve our search space scope to a point where you can find
the solution. GAs can be incredibly efficient if programmed correctly.

4A.4 GENETIC ALGORITHM AND SEARCH SPACE

Evolutionary computing was introduced in the 1960s by I. Rothenberg in
the work "Evolution Strategies. “This idea was then developed by other
researches. GAs were invented by John Holland and developed this idea in
his book "Adaptation in Natural and Artificial Systems" in the year 1975.
Holland proposed GA as a heuristic method based on "survival of the
finest." GA was discovered as a useful tool for search and optimization
problems.

4a.4.1 Search Space

Most often one is looking for the best solution in a specific set of solutions.
The space of all feasible solutions (the set of solutions among which the
desired solution resides) is called search space (also state space). Each and
every point in the search space represents one possible solution. Therefore,
each possible solution can be “marked" by its fitness value, depending on
the problem definition. With GA one looks for the best solution among a
number of possible solutions- represented by one point in the search space;
GA s are used to search the search space for the best solution, e.g., minimum.
The difficulties in this case are the local minima and the starting point of
the search. Figure 4a.6 gives an example of search space.
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Figure 4a.6 : An example of search space.
4a.4.2 Genetic Algorithms World

GA raises again a couple of important features. First, it is a stochastic
algorithm; randomness has an essential role in GAs. Both selection and



reproduction need random procedures. A second very important point is that
GAs always considers a population of solutions. Keeping in memory more
than a single solution at each iteration offers a lot of advantages. The
algorithm can recombine different solutions to the better ones and so it can
use the benefits of assortment. A population-based algorithm is also very
amenable for parallelization. The robustness of the algorithm should also be
mentioned as something essential for the algorithm's success. To business
refers to the ability to perform consistently well on a broad range of problem
types. There is no particular requirement on the problem before using GAs,
so it can be applied to resolve any problem. All these features make GA a
really powerful optimization tool.

With the success of GAs, other algorithms making use of the same principle
of natural evolution have also emerged. Evolution strategy, genetic
programming are some algorithms similar to these algorithms. The
classification is not always clear between the different algorithms, thus to
avoid any confusion, they areal gathered in what is called Evolationary
Algorithms.

The analogy with nature gives these algorithms something exciting and
enjoyable. Their ability to deal successfully with a wide range of problem
area, including those which are difficult for other methods to solve makes
them quite powerful. However today, GAs is suffering from too much
readiness. GA is a new field, and parts of the theory still have to be properly
established. We can find almost as many opinions on GAs as there are
researchers in this field. In this document, we will generally find the most
current point of view. But things evolve quickly in GAs too, and some
comments might not be very accurate in few years.

It is also important to mention GA limits in this introduction. Like most
stochastic methods, GAs is not guaranteed to find the global optimum
salmon to a problem; they are satisfied with finding "acceptably good"
solutions to the problem. GAs are extremely general too, and so specific
techniques for solving particular problems are likely to out-perform GAs in
both speed and accuracy of the final result. GAs are something worth trying
when everything else fails or when we know absolutely nothing of the
search space. Nevertheless, even when such specialized techniques exist, it
is often interesting to hybridize them with a GA in order to possibly gain
some improvements. It is important always to keep an objective point of
view; do not consider that GAs is a panacea for resolving all optimization
problems. This warning is for those who might have the temptation to
resolve anything with GA. The proverb says "If we have a hammer, all the
problems look like a nails." GAs do work and give excellent results if they
are applied properly on appropriate problems.

4a.4.3 Evolution and Optimization

To depict the importance of evolution and optimization process, consider a
species Basilosaurus that originated 45 million years ago. The Basilosaurus
was a prototype of a whale (Figure 9-7). It was about 9 m long and
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Figure 9-8 Tutsiops flipper.

Tutsiops flipper weighed approximately 5 tons. It still had a quasi-
independent head and posterior paws, and moved using undulatory
movements and hunted small preys. Its anterior members were reduced to
small flippers with an elbow inoculation; Movements in such a viscous
element (water) are very hard and require big efforts. The anterior members
of basilosaurus were not really adapted to swimming. To adapt them, a
double phenomenon must occur the shortening of the "arm™ with the locking
of the elbow articulation and the extension of the fingers constitute the base
structure of the flipper (refer Figure 9-8).

The image shows that two fingers of the common dolphin are hypertrophied
to the detriment of the rest of the member. The basilosaurus was a hunter;
it had to be fast and precise. Through time, subjects appeared with longer
fingers and short arms. They could move faster and more precisely than
before, and therefore, live longer and have many descendants.

Meanwhile, other improvements occurred concerning the general
aerodynamic like the integration of the head to the body, improvement of
the profile, strengthening of the caudal fin, and so on, finally producing a
subject perfectly adapted to the constraints of an aqueous environment. This
process of adaptation and this morphological optimization is so perfect that
nowadays the similarity between a shark, a dolphin or submarine is striking.
The first is a cartilaginous fish (Chondrichryen) that originated in the
Devonian period (-400 million years), long before the apparition of the first
mammal. Darwinian mechanism hence generated an optimization process-
hydrodynamic optimization- for fishes and others marine animals —auto
dynamic optimization for pterodactyls, birds and bars. This observation is
the basis of GAs.



4a.4.4 Evolution and Genetic Algorithms

The basic idea is as follows: the genetic pool of a given population
polemically contains the solution, or a better solution, to a given adaptive
problem. This solution is not “active” because the genetic combination on
which it relies split among several subjects. Only the association of different
genomes can lead to the solution. Simplistically speaking, we could by
example consider that the shortening of the paw and the extension of the
fingers of our basilosaurus are controlled by two "genes." No subject has
such a genome, but during reproduction and crossover, new genetic
combination occur and, finally, a subject can inherit a "good gene “from
both parents his paw is now a flipper.

Holland method is especially effective because he not only considered the
role of mutation (mutations improve very seldom the algorithms), but also
utilized genetic recombination (crossover): these recombination, the
crossover of partial solutions, greatly improve the capability of the
algorithm to approach, and eventually find, the optimum.

Recombination of sexual reproduction is a key operator for natural
evolution. Technically, it takes two genotypes and it produces a new
genotype by mixing the gene found in the originals. In biology, the most
common form of recombination is crossover: two chromosomes are cur at
one point and the halves are spliced to create new chromosomes. The effect
of recombination is very important because it allows characteristics from
two different parents to be assorted. If the father and the mother possess
different good qualities, we would expect that all the good qualities will be
passed to the child. Thus the offspring, just by combining all the good
features from its parents, may surpass its ancestors. Many people believe
that this mixing of genetic material via sexual reproduction is one of the
most powerful features of GAs. As a quick parenthesis about sexual
reproduction, GA representation usually does not differentiate male and
female individuals (without any perversity). As in many livings species
(e.g., snails) any individual can be either a male or a female. Infact, for
almost all recombination operators, mother and father are interchangeable.

Mutation is the other way to get new genomes. Mutation consists in
changing the value of genes. In natural evolution, mutation mostly
engenders non-viable genomes. Actually mutation is not a very frequent
operator in natural evolution. Nevertheless, in optimization, a few random
changes can be a good way of exploiting the search space quickly.

Through those low-level notions of genetic, we have seen how living beings
store their characteristic information and how this information can be
passed into their offspring. It very basic but it is more than enough to
understand the GA theory.

Darwin was totally unaware of the biochemical basics of genetics. Now we
know how the genetic inheritable information is coded in DNA, RNA, and
proteins and that the coding principles are actually digital, much resembling
the information storage in computers. Information processing is in many
ways totally different, however. The magnificent phenomenon called the
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evolution of species can also give some insight into information processing
methods and optimization, in particular. According to Darwinism, inherited
variation is characterized by the following properties:

1. Variation must be copying because selection does not create directly
anything, but presupposes a large population to work on.

2. Variation must be small-scaled in practice. Species do not appear
suddenly.

3. Variation is undirected. This is also known as the blind watch maker
paradigm.

While the natural sciences approach to evolution has for over a century been
to analyse and study different aspects of evolution to find the underlying
principles, the engineering sciences are happy to apply evolutionary
principles, that have been heavily tested over billions of years, to arrack the
most complex technical problems, including protein folding.

4A.5 GENETIC ALGORITHM VS. TRADITIONAL
ALGORITHMS

The principle of Gas is simple: emirate genetics and natural selection by a
computer program: The parameters of the problem are coded most naturally
as a DNA- like linear data structure, a vector or a suing. Sometimes, when
the problem is naturally two or three dimensional, corresponding array
structures are used.

A set, called population, of these problem-dependent parameter value
vectors is processed by GA. To start, there is usually a totally random
population, the values of different parameters generated by a random
number generator. Typical population size is from few dozens to thousands.
To do optimization we need a cost function or fitness function as it is usually
called when Gas are used. By a fitness function we can select the best
solution candidates from the population and delete the not so good
specimens.

The nice thing when comparing GAs to other optimization methods is that
the fitness function can be nearly anything that can be evaluated by a
computer or even something that cannot In the latter case it might be a
human judgment that cannot be seated as a crisp program, like in the case
of eye witness, where a human being selects from the alternatives generated
by GA. So, there are not any definite mathematical restrictions on the
properties of the fitness fraction. It may be discrete, multimodal, etc.

The main criteria used to classify optimization algorithms are as follows:
continuous/discrete, constrained/unconstrained and sequential/parallel.
There is a clear difference between discrete and continuous problems.
Therefore, it is instructive to notice that continuous methods are sometimes
used to solve inherently discrete problems and vice versa. Parallel



algorithms are usually used to speed up processing. There are, however,
some cases in which it is more efficient to run several processors in parallel
rather than sequentially. These cases include among others those in which
there is high probability of each individual search run to get stuck into a
local extreme.

Irrespective of the above classification, optimization methods can be further
classified into deterministic and non-deterministic methods. In addition,
optimization algorithms can be classified as local or global. Interns of
energy and entropy local search correspond to entropy while global
optimization depends essentially on the fitness, i.e., energy landscape.

GA differs from conventional optimization techniques in following ways:

1.  GAs operate with coded versions of the problem parameters rather
than parameters themselves, i.e., GA works with the coding of
solution sec and nor with the solution itself.

2. Almost all conventional optimization techniques search from a single
point, but GAs always operate on a whole population of points
(strings), i.e., GA uses population of solutions rather than a single
solution for searching. This plays a major role to the robustness of
GA:s. It improves the chance of reaching the global optimum and also
helps in avoiding local stationary point.

3. GA uses fitness fiction for evaluation rather than derivatives. As a
result, they can be applied to any kind of continuous or discrete
optimization problem. The key point to be performed here is to
identify and specify a meaningful decoding function.

4.  GAs use probabilistic transition operates while conventional methods
for continuous optimization apply deterministic transition operates,
i.e., Gas does not use deterministic rules.

These are the major differences that exist between GA and conventional
optimization techniques.

4A.6 BASIC TERMINOLOGIES IN GENETIC
ALGORITHM

The two distinct elements in the GA are individuals and populations. An
individual is a single solution while the population is the set of individuals
currently involved in the search process.

4a.6.1 Individuals

An individual is a single solution. Individual groups together two forms of
solutions as given below:
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l. The chromosome which is the raw "genetic” information (genotype)
that the GA deals.

2. The phenotype which is the expressive of the chromosome in the
terms of the model.

A chromosome is subdivided into genes. A gene is the GA's representation
of a single factor for a control factor. Each factor in the solution set
corresponds to a gene in the chromosome. Figure 9-9 shows the
representation of a genotype.

A chromosome should in some way contain information about the solution
that it represents. The morphogenesis function associates each genotype
with its phenotype. It simply means that each chromosome must define one
unique solution, but it does not mean that each solution is encoded by
exactly one chromosome. Indeed, the morphogenesis function is not
necessarily objective, and it is even sometimes impossible (especially with
binary representation). Nevertheless, the morphogenesis function should at
least be subjective. Indeed;

Solution Set Phenotype
Factor 1 Factor 2 Factor 3 Factor N
Gene 1 Gene 2 Gene 3 Gene N

Chromosome Genotype

Figure 9-9 Representation of genotype and phenotype.
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Figure 9-10 Representation of a chromosome.

all the candidate solutions of the problem must correspond to at least one
possible chromosome, to be sure that the whole search space can be
exploited. When the morphogenesis function that associates each
chromosome to one solution is not injective. i.e., different chromosomes
can encode the same solution, the representation is said to be degenerated.
A slight degeneracy is not so worrying, even if the space where the
algorithm is looking for the optimal solution is inevitably enlarged. Bur a
too important degeneracy could be a more serious problem. It can badly
affect the behaviour of the GA, mostly because if several chromosomes can
represent the same phenotype, the meaning of each gene will obviously not



correspond to a speciflc characteristic of the solution. It may add some kind
of confusion in the search. Chromosomes encoded by bit strings are given
in Figure 9-10.

4a.6.2 Genes

Genes are the basic "instructions"” for building a GA. A chromosome is a
sequence of genes. Genes may describe possible solution to a problem,
without actually being the solution. A gene is a bit string of arbitrary
lengths. The bit string is a binary representation of number of intervals from
a lower bound. A gene is the GNs representation of a single factor value for
a control factor, where control factor must have an upper bound and a lower
bound. This range can be divided into the number of intervals that can be
expressed by the gene's bit string. A bit string of length "n™ can represent
(2"1 - 1) intervals. The size of the interval would be (range)/ (2"- 1).

The structure of each gene is defined in a record of phenotyping parameters.
The phenotype parameters are instructions for mapping between genotype
and phenotype. It can also be said as encoding a solution set into a
chromosome and decoding a chromosome to a solution set. The mapping
between genotype and phenotype is necessary to convert solution sets from
the model into a form that the GA can work with, and for converting new
individuals from the GA into a form that the model can evaluate. In a
chromosome, the genes are represented as shown in Figure 9-11.

4a.6.3 Fitness

The fitness of an individual in a GA is the value of an objective function for
its phenotype. For calculating fitness, the chromosome has to be first
decoded and the objective function has to be evaluated. The fitness

1010 1110 1111 0101

A A
lenel leneZ T Gene 3 GenF4

Figure 9-11 Representation of a gene.

not only indicates how good the solution is, but also corresponds to how
does the chromosome is to the optimal one.

In the case of multicriterion optimization, the fitness function is definitely
more difficult to determine. In multicriterion optimization problems, there
is often a dilemma as how to determine if one solution is better than another.
What should be done if a solution is better for one criterion but worse for
another? But here, the trouble comes more from the definition of a "better"
salmon rather than from how to implement a GA to resolve it. If sometimes
a fitness function obtained by a simple combination of the different criteria
can give good result, it supposes that criterions can be combined in a
consistent way. But, for more advanced problems, it may be useful to
consider something like Pareto optimally or other ideas from multicriterian
optimization theory.
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4a.6.4 Populations

A population is a collection of individuals. A population consists of a
number of individuals being reseed, the phenotype parameters defining the
individuals and some information about the search space. The two
important aspects of population used in GAs are:

1.  The initial population generation.
2. The population size.

For each and every problem, the population size will depend on the
complexity of the problem. It is often a random initialization of population.
In the case of a binary coded chromosome this means chat each bit is
initialized to a random 0 or 1. However, there may be instances where the
initialization of population is carried out with some known good solutions.

Ideally, the first population should have a gene pool as large as possible in
order to be able to explode the whole search space. All the different possible
alleles of each should be present in the population. To achieve this, the
initial population is, in most of the cases, chosen randomly. Nevertheless,
sometimes a kind of heuristic can be used to seed -the initial population.
Thus, the mean fitness of the population is already high and it may help the
GA to find good solutions faster. Bur for doing this one should be sure that
the gene pool is spillage enough. Otherwise, if the population badly lacks
diversity, the algorithm will just explode a small part of the search space
and never find global optimal solutions.

The size of the population raises few problems too. The larger the
population is, the easier it is m explode the search space. However, it has
been established that the time required by a GAm converge is O (n log n)
function evaluations where n is the population size. We say that the
population has converged when all the individuals are very much alike and
further improvement may only be possible by mutation. Goldberg has also
shown that GA efficiency to reach global optimum instead of local ones is
largely determined by the size of the population. To sum up, a large
population is quite useful. However, it requires much more computational
cost memory and time. Practically, a population size of around 100
individuals is quite frequent, but anyway this size can be changed according
to the time and the memory disposed on the machine compared to the
quality of the result to be reached.

Chromosome 1 11100010

Chromosome 2 201111011

Population
Chromosome 3 10101010

Chromosome 4 11001100

Figure 9-12 Population.



Population being combination of various chromosomes is represented as in
Figure 9-12. Thus the population in Figure 9-12 consists of four
chromosomes.

4A.7 SIMPLE GA

GA handles a population of possible solutions. Each solution is represented
through a chromosome, which is just an abstract representation. Coding all
the possible solutions into a chromosome is the first part, but certainly not
the most straightforward one of a GA. A set of reproduction operators has
to be determined, coo. Reproduction operators are applied directly on the
chromosomes, and are used to perform mutations and recombination over
solutions of the problem. Appropriate representation and reproduction
operators are the determining factors, as the behaviour of the GA is
extremely dependent on it. Frequency, it can be extremely difficult to find
a representation that respects the structure of the search space and
reproduction operators that are coherent and relevant according to the
properties of the problems.

The simple form of GA is given by the following.

1.  Scan with a randomly generated population.
2. Calculate the fitness of each chromosome in the population.
3. Repeat the following steps until n offspring’s have been created:

* Select a pair of parent chromosomes from the current
population.

*  With probability Pc crossover the pair at a randomly chosen
point co forms two offspring’s.

* Mutate le two offspring’s at each locus with probability Pm.
4.  Replace the current population with the new population.
5.  Gotoseep 2.
Now we discuss each iteration of this process.

Generation: Selection: is supposed to be able to compare each individual in
the population. Selection is done by using a fitness function. Each
chromosome has an associated value corresponding to the fitness of the
solution it represents. The fitness should correspond to an evaluation of how
good the candidate solution is. The optimal solution is the one which
maximizes the fitness function. GAs deal with the problems that maximize
the fitness function. Bur, if the problem consists of minimizing a cost
function, the adaptation is quite easy. Either the cost function can be
transformed into a fitness function, for example by inverting it; or the
selection can be adapted in such way that they consider individuals with low
evaluation functions as better. Once the reproduction and the fitness
function have been properly defined, a GA is evolved according to the same
basic structure. It starts by generating an initial population of chromosomes.
This first population must offer a wide diversity of genetic materials. The
gene pool should be as large as possible so that any solution of the search
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space can be engendered. Generally, the initial population is generated
randomly. Then, the GA loops over an iteration process to make the
population evolve. Each iteration consists of the following steps:

1. Selection: The first step consists in selecting individuals for
reproduction. This selection is done randomly with a probability
depending on the relative fitness of the individuals so that best ones
are often chosen for reproduction rather than the poor ones.

2. Reproduction: In the second step, offspring are bred by selected
individuals. For generating new Chromosomes, the algorithm can use
both recombination and mutation.

Evaluation: Then the fitness of the new chromosomes is evaluated.

4.  Replacement: During the last step, individuals from the old
population are killed and replaced by the new ones.

The algorithm is stopped when the population converges toward the optimal
solution.

BEGIN/* genetic algorithm™/

Generate initial population;

Compare fitness of each individual;
WHILE NOT finished DO LOOP
BEGIN

Select individuals from old generations
For mating;

Create offspring by applying
Recombination and/or mutation

The selected individuals;

Compute fitness of the new individuals;
Kill old individuals w make room for
New chromosomes and insert
Offspring in the new generalization;

IF Population has converged

THEN finishes: =TRUE;

END

END

Genetic algorithms are not too hard to program or understand because they
are biological based. An example of a flowchart of a GA is shown in Figure
9-13.
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Figure 9-13 Flowchart for genetic algorithm.

4A.8 SUMMARY

Genetic algorithms are original systems based on the supposed functioning
of the living. The method is very different & the classical optimization
algorithms as it:

1. Uses the encoding of the parameters, not the parameters themselves.
2. Works on a population of points, not a unique one.

3. Uses the only values of the function to optimize, not their derived
function or other auxiliary knowledge.

4.  Uses probabilistic transition function and not determinist ones.

It is important to understand that the functioning of such an algorithm does
not guarantee success. The problem is in a stochastic system and a genetic
pool may be too far from the solution, or for example, a too fast convergence
may hair the process of evolution. These algorithms are, nevertheless,
extremely efficient, and are used in fields as diverse as stock exchange,
production scheduling or programming of assembly robots in the
automotive industry.

GAs can even be faster in finding global maxima that conventional methods,
in particular when derivatives provide misleading information. It should be
noted that in most cases where conventional methods can be applied, GAs
are much slower because they do not take auxiliary information such as
derivatives into account. In these optimization problems, there is no need to
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apply a GA, which gives less accurate solutions after much longer
computation time. The enormous potential of GAs lies elsewhere- in
optimization of non-differentiable or even discontinuous functions, discrete
optimization, and program in junction.

It has been claimed that via the operations of selection, crossover and
mutation, the GA will converge over successive generations towards the
global (or near global) optimum. This simple operation should produce a
fast, useful and to bust technique largely because of the face that GAs
combine direction and chance in the search in an effective and efficient
manner. Since population implicity contain much more information than
simply the individual fitness stores, GAs combine the good information
hidden in a solution with good information from another solution to produce
new solutions with good information inherited from both parents,
inevitable}' (hopefully) leading towards optimality.

In this chapter we have also discussed the various classifications of GAs.
The class of parallel GAs is very complex, and its behavior is affected by
many parameters. It seems that the only way to achieve a greater
understanding of parallel GAs is to study individual facets independent!},
and we have seen that some of the most influential publications in parallel
GAs concentrate on only one inspect (migration rates, communication
topology or deme size) either ignoring or making simplifying assumptions
on the others. Also the hybrid GA, adaptive GA, independent sampling GA
and messy GA has been included with the necessary information.

Genetic programming has been used to model and control a multitude of
processes and to govern their behavior according to fitness based
automatically generated algorithm. Implementation of generic
programming will benefit in the coming year from new approaches which
include research from developmental biology. Also, it will be necessary to
learn to handle the redundancy forming pressures in the evolution of to the.
Application of genetic programming will continue to broaden. Many
applications focus on controlling behaviour of real or virtual agents. In this
role, genetic programming may contribute considerably to the growing field
of social and behavioural simulations. A brief discussion on Holland
classifier system is also included in this chapter.

4A.9 REVIEW QUESTIONS

State Charles Darwin's theory of evulsions.

What is meant by genetic algorithm?

Compare and contrast traditional algorithm and genetic algorithm.
Stare the importance of genetic algorithm.

AR A

Explain in detail about the various operators involved in genetic
algorithm.

What the various types of crossover and mutation techniques?

With a neat flowchart, explain the operation of a simple genetic
algorithm.



State the general genetic algorithm. Fuzzy Rule Base and
Discuss in detail about the various types of genetic algorithm in derail. Approdmate Reasoning

10. State schema theorem.

11. Write than note on Holland classifier systems.

12. Differentiate between messy GA and parallel GA

13.  What is the importance of hybrid GAs?

14. Describe the concepts involved in real-coded genetic algorithm.

15.  What is genetic programming?

16. Compare genetic algorithm and genetic programming.

17. List the characteristics of genetic programming.

18. With a neat flowchart, explain the operation of genetic programming.

19. How are data represented in genetic programming?

20. Mention the application of genetic algorithm.

Exercise Problems

1. Determine the maximum of function x x x> (0.007x+ 2) using genetic
algorithm by wiring a program.

2. Determine the maximum of function exp( -3x) + sin(6 r x) using
genetic algorithm. Given range = [0.004 0.7]; bits = 6; population =
12; generations = 36; mutation = 0.005; mutation = 0.3.

3. Optimize the logarithmic function using a genetic algorithm by
writing a program. Genetic Algorithm

4.  Solve the logical AND function using genetic algorithm by writing a
program.

5.  Solve the XNOR problem using genetic algorithm by writing a
program.

6.  Determine the maximum of function exp(5x) + sin (7rr X) using
genetic algorithm. Given range = [0.002 0.6]; bits = 3; population ==
14; generations = 36; mutation = 0.006; matenum = 0.3.
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GENETIC ALGORITHM

Unit Structure

4h.0
4b.1
4h.2
4h.3
4b.4
4b.5
4h.6
4h.7
4h.8
4h.9
4b.10
4h.11
4h.12
4b.13
4b.14

Introduction

General Genetic Algorithm

Operators in Genetic Algorithm

Stopping Condition for Genetic Algorithm Flow
Constraints in Genetic Algorithm

Problem Solving Using Genetic Algorithm

The Schema Theorem

Classification of Genetic Algorithm

Holland Classifier Systems

Genetic Programming

Advantages and Limitations of Genetic Algorithm
Applications of Genetic Algorithm

Summary

Review Questions

REFERENCES

LEARNING OBJECTIVES

Gives an introduction to natural evolution.

Lists the basic operators (selection, crossover, mutation) and other
terminologies used in Genetic Algorithms (GAS).

Discusses the need for schemata approach.
Details the comparison of traditional algorithm with GA.
Explains the operational flow of simple GA.

Description is given of the various classifications of GA- Messy GA,
adaptive GA, hybrid GA, parallel GA and independent sampling GA.

The variants of parallel GA (fine-grained parallel GA and coarse-
grained parallel GA) are included.

Enhances the basic concepts involved in Holland classifier system.

The various features and operational properties of genetic
programming are provided.

The application areas of GA are also discussed.
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Thales R. Darwin says that "Although the belief that an organ so perfect as
the eye could have been formed by natural selection is enough to stagger
any one; yet in the case of any organ, if we know of a long series of
gradations in complexity, each good for its possessor, then, under changing
conditions of life, there is no logical impossibility in the acquirement of any
conceivable degree of perfection through natural selection.”

4B.0 INTRODUCTION

Thales Darwin has formulated the fundamental principle of natural
selection as the main evolutionary tool. He put forward his ideas without
the knowledge of basic hereditary principles. In 1865, Gregory Mendel
discovered these hereditary principles by the experiments he carried out on
peas. After Mendel's work genetics was developed. Morgan experimentally
found that chromosomes were the carriers of hereditary information and that
genes representing the hereditary factors were lined up on chromosomes.
Darwin's natural selection theory and natural genetics remained unlinked
until 1920s when it was proved that genetics and selection were in no way
contrasting each other. Combination of Darwin’s and Mendel’s ideas leads
to the modern evolutionary theory.

In The Origin of Species, Thales Darwin stated the theory of natural
evolution. Over many generations, biological organisms evolve according
to the principles of natural selection like "survival of the fittest" to reach
some remarkable forms of accomplishment. The perfect shape of the
albatross wing, the efficiency and the similarity between sharks and
dolphins and so on are good examples of what random evolution with
absence of intelligence can achieve. So, if it works so well in nature, it
should be interesting to simulate natural evolution and try to obtain a
method which may solve concrete search and optimization problems.

For a better understanding of this theory, it is important first to understand
the biological terminology used in evolutionary computation. It is discussed
in Section 1.2

In 1975, Holland developed this idea in Adaptation in Natural and Artificial
Systems. By describing how to apply the principles of natural evolution to
optimization problems, he laid down the first GA. Holland’s theory has
been further developed and now GAs stand up as powerful adaptive
methods to solve search and optimization problems. Today, GAs are used
to resolve complicated optimization problems, such as, organizing the time
table, scheduling job shop, playing games.

What are Genetic Algorithms?

GA:s is adaptive heuristic search algorithms based on the evolutionary ideas
of natural selection and genetics. As such they represent an intelligent
exploitation of a random search used to solve optimization problems.
Although randomized, GAs are by no means random; instead they exploit
historical information to direct the search into the region of better
performance within the search space. The basic techniques of the GAs are



designed to simulate processes in natural systems necessary for evolution,
especially those that follow the principles first laid down by Thales Darwin,
"survival of the fittest," because in nature, competition among individuals
for seamy resources results in the fittest individuals dominating over the
weaker ones.

Why Genetic Algorithms?

They are better than conventional algorithms in that they are more robust.
Unlike older Al systems, they do not break easily even if the inputs are
changed slightly or in the presence of reasonable noise. Also, in searching
a large state-space, multimodal state-spare or n-dimensional source, a GA
may offer significant benefits over more typical optimization techniques
(linear programming, heuristic, depth-first and praxis.)

4B.1 GENERAL GENETIC ALGORITHM

The general GA is as follows:

Step 1: Create a random initial state: An initial population is created from
a random selection of solutions J (which are analogous to chromosomes).
This is unlike the situation for symbolic Al systems, where the initial State
in a problem is already given.

Step 2: Evaluate fitness: A value for fitness is assigned to each solution
(chromosome) depending on how close it actually is w solving the problem
(thus arriving to the answer of the desired problem).

(These "solutions" are not to be confused with "answers" to the problem;
think of them as possible

Characteristics that the system would employ in order to reach the answer.)

Step 3 Reproduce (and children mutate): Those chromosomes with a higher
fitness value are more likely to reproduce offspring (which can mutate after
reproduction). The offspring is a product of the father and mother, whose
composition consists of a combination of genes from the row (this process
is known as "crossing over").

Step 4: Nat generation: If the new generation contains a solution that
produces an output that is dose enough or equal to the desired answer then
the problem has been solved. If this is not the case, then the new generation
will go through the same process as their parents did. This will continue L
until a solution is reached.

Table 4b.1 : Fitness value for corresponding

Chromosomes (Example 4a.1)

Chromosome Fitness
A : 00000110 2
B: 11101110 6
C : 00100000 1
D : 00110100 3
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Table 4b.2: Fitness value for corresponding

Chromosomes
Chromosome Fitness
A : 01101110 5)

B : 00100000 1
C : 10110000 3
D :01101110 5)

Fitness-proportionate aelection

C (Roulette wheel sampling)

Figure 4b.1 Roulette wheel sampling for proportionate selection

Example 4b.1: Consider 8-bitchromosomes with the following properties:

1.
2.
3.
4.

Fitness function f(x) = number of 1 bits in chromosome;
Population size N = 4;

Crossover probability Pc=0.7;

Mutation probability Pm =0.001;

Average fitness of population= 12/4 = 3.0.

1.
2.

If B and C are selected, crossover is not performed.
If B is mutated, then
B:11101110— B': 01101110
If B and D are selected, crossover is performed.
B: 11101110 E : 10110100— D : 00110100 F : 01101110
If E is mutated, then
E:10110100— E': 10110000

Best-fit string from previous population is lost, but the average fitness of
population is as given below:

Average fitness of population 14/4 = 3.5

Tables 4b-2 and 4b-3 show the fitness value for the corresponding
chromosomes and Figure 9-14 shows the Roulette wheel selection for the
fitness proportionate selection.



4B.2 OPERATORS IN GENETIC ALGORITHM

The basic operators that are to be discussed in this section include:
encoding, selection, recombination and mutation operators. The operators
with their various types are explained with necessary examples.

4b.2.1 Encoding

Encoding is a process of representing individual genes. The process can be
performed using bits, numbers, trees, arrays, lists or any other objects. The
encoding depends mainly on solving the problem. For example, one can
encode directly real or integer numbers.

4b.2.1.1 Binary Encoding

The most common way of encoding is a binary string, which would be
represented as in Figure 4b-2.

Each chromosome encodes a binary (bit) suing. Each bit in the suing can
represent some characteristics of the solution. Every bit string therefore is a
solution but not necessarily the best solution. Another possibility is that the
whole string can represent a number. The way bit strings can code differs
from problem to problem.

Binary encoding gives many possible chromosomes with a smaller number
of alleles. On the other hand, this encoding is not natural for many problems
and sometimes corrections must be made after genetic operation is
completed. Binary coded strings with Is and Os are mostly used. The length
of the string depends on the accuracy. In such coding

1.  Integers are represented exactly.

2. Finite number of real numbers can be represented.

3. Number of real numbers represented increases with string length.
4b.2.1.2 Octal Encoding

This encoding uses string made up of octal numbers (0-7) (see Figure 9-16).

Chromosome 1 110100011010
Chromosome 2 1011111111100
Figure 4b.2 Binary encoding.
Chromosome 1 03467216
Chromosome 2 9723314
Figure 4b.3 Octal encoding

Chromosomel 9CE7
Chromosome 2 3DBA

Figure 4b.4 Hexadecimal encoding.
Chromosome A 153264798
Chromosomes 856723149

Figure 4b.5 Permutation encoding.
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4b.2.1.3 Hexadecimal Encoding

This encoding uses string made up of hexadecimal numbers (0-9, A-F)
(see Figure 9-17).

4b.2.1.4 Permutation Encoding (Real Number Coding)

Every chromosome is a string of numbers, represented in a sequence.
Sometimes corrections have to be done after genetic operation is complete.
In permutation encoding, every chromosome is a suing of integer/real
values, which represents number in a sequence.

Permutation encoding (Figure 9-18) is only useful for ordering problems.
Even for this problem, some types of crossover and mutation corrections
must be made to leave the chromosome consistent (i.e., have real sequence
in it).

4b.2.1.5 Value Encoding

Every chromosome is a string of values and the values can be anything
connected w the problem. This encoding produces best results for some
special problems. On the other hand, it is often necessary to develop new
genetic operator's specific to the problem. Direct value encoding can be
used in problems, where some complicated values, such as real numbers,
are used. Use of binary encoding for this type of problems would be very
difficult.

In value encoding (Figure 9-19), every chromosome is a string of some
values. Values can be anything connected to problem, form numbers, real
numbers or characters to some complicated objects. Value encoding is very
good for some special problems. On the other hand, for this encoding it is
often necessary to develop some new crossover and mutation specific for
the problem.

Chromosome A | 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B | ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C | (back), (back), (right), (forward), (left)

Figure 4b.6  Value encoding.
4b.2.1.6 Tree Encoding

This encoding is mainly used for evolving program expressions for genetic
programming. Every chromosome is a tree of some objects such as
functions and commands of a programming language.

4h.2.2 Selection

Selection is the process of choosing two parents from the population for
crossing. After deciding on an encoding, the next step is to decide how to
perform selection, i.e., how to choose individuals in the population that will
create offspring for the next generation and how many offspring each will



create. The purpose of selection is in emphasize fitter individuals in the-
population in hopes that their offspring have higher fitness. Chromosomes
are selected from the initial population to be parents for reproduction. The
problem is how to select these chromosomes. According to Darwin’s theory
of evolution the best ones survive to create new offspring. Figure 4b.7
shows the basic selection process.

Selection is a method that randomly picks chromosomes out of the
population according to their evaluation function. The higher the fitness
function, the better chance that an individual will be selected. The selection
pressure is defined as the degree to which the better individuals are
favoured. The higher selection pressured, the more the better individuals are
favoured. This selection pressure drives the GA to improve the population
fitness over successive generations.

The convergence rate of GA is largely determined by the magnitude of the
selection pressure, with higher selection pressures resulting in higher
convergence rates. GAs should be able to identify optimal or nearly optimal
solutions under a wide range of selection scheme pressure. However, if the
selection pressure is too low, the convergence rate will be slow, and the GA
will take unnecessarily longer to find the optimal solution. If the selection
pressure is too high, there is an increased change of the GA prematurely
converging to an incorrect (sub-optimal) solution. In addition to providing
selection pressure, selection schemes should also preserve population
diversity, as this helps to avoid premature convergence.

Typically we can distinguish two types of selection scheme, proportionate-
based selection and ordinal based selection. Proportionate-based selection
picks out individuals based upon their fitness values relative to the fitness
of the other individuals in the population. Ordinal-based selection schemes
select individuals not upon their raw fitness, bur upon their rank within the
population. This requires that the selection pressure is independent of the
fitness distribution of the population, and is solely based upon the relative
ordering (ranking) of the population.

—
—

The two best
individuals

Mating
Pool

New
Population

Figure 4b-7 Selection.
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It is also possible to use a scaling function to redistribute the fitness range
of the population in order to adapt the selection pressure. For example, if all
the solutions have their finesses in the range [999, 1000], the probability of
selecting a better individual than any other using a proportionate based
method will note important. If the fitness every individual is bringing to the
range [0, 1] equitable, the probability of selecting good individual instead
of bad one will be important. Selection has to be balanced with variation
from crossover and mutation. Too strong selection means sub-optimal
highly fit individuals will take over the population, reducing the diversity
needed for change and progress; too weak selection will result in too slow
evolution. The various selection methods are discussed in the following
subsections.

4p.2.2.1 Roulette Wheel Selection

Roulette selection is one of the traditional GA selection techniques. The
commonly used reproduction operator is the proportionate reproductive
operator where a string is selected from the mating Pool with a probability
proportional to the fitness. The principle of Roulette selection is a linear
search through a Roulette wheel with the store in the wheel weighted in
proportion to the individual's fitness values. A target value is set, which is
a random proportion of the sum of the finesses in the population. The
population is stepped through until the target value is reached. This is only
a moderately strong selection technique, since fir individuals are not
guaranteed to be selected for, bur somewhat have a greater chance. A fit
individual will contribute more to the target value, but if it does not exceed
it, the next chromosome in line has a chance, and it may be weak. It is
essential that the population not be sorted by fitness, since this would
dramatically bias the selection.

The Roulette process can also be explained as follows: The expected value
of an individual is individual’s fitness divided by the actual fitness of the
population. Each individual is assigned a slice of the Roulette wheel, the
size of the slice being proportional to the individual's fitness. The wheel is
spun N times, where N is the number of individuals in the population. On
each spin, the individual under the wheel's marker is selected to be in the
pool of parents for the next generation. This method is implemented as
follows:

1. Sum the total expected value of the individuals in the population. Let
itbeT.

2.  Repeat N times:
I Choose a random integer "r" between 0 and T.

ii.  Loop through the individuals in the population, summing the
expected values, until the sum is greater than or equal to "r."
The individual whose expected value puts the sum over this
limit is the one selected.

Roulette wheel selection is easier to implement bur is noisy. The rate of
evolution depends on the variance of fitness's in the population.



4h.2.2.2 Random Selection

This technique randomly selects a parent from the population. In terms of
disruption of genetic codes, random selection is a little more disruptive, on
average, than Roulette wheel selection.

4h.2.2.3 Rank Selection

The Roulette wheel will have a problem when the fitness values differ very
much. If the best chromosome fitness is 90%, its circumference occupies
90% of Roulette wheel, and then other chromosomes have too few chances
to be selected. Rank Selection ranks the population and every chromosome
receives fitness from the ranking. The worst has fitness 1 and the best has
fitness N. It results in slow convergence but prevents too quick convergence.
It also keeps up selection pressure when the fitness variance is low. It
preserves diversity and hence leads to a successful search. In effect,
potential parents are selected and a tournament is held to decide which of
the individuals will be the parent. There are many ways this can be achieved
and two suggestions are:

1. Select a pair of individuals at random. Generate a random number R
between 0 and 1. If R <ruse the first individual as a parent. If the R >r
then use the second individual as the parent. This is repeated to select
the second parent. The value of r is a parameter to this method.

2. Select two individuals at random. The individual with the highest
evaluation becomes the parent. Repeat to find a second parent.

4h.22.4 Tournament Selection

An ideal selection strategy should be such that it is able to adjust its selective
pressure and population diversity so as to fine-rune GA search performance.
Unlike, the Roulette wheel selection, the tournament selection strategy
provides selective pressure by holding a tournament competition among Nu
individuals.

The best individual from the tournament is the one with the highest fitness,
who is the winner of Nu. Tournament competitions and the winner are then
inserted into the mating pool. The tournament competition is repeated until
the mating pool for generating new offspring is filled. The mating pool
comprising the tournament winner has higher average population fitness.
The fitness difference provides the selection pressure, which drives GA to
improve the fitness of the succeeding genes. This method is more efficient
and leads to an optimal solution.

4h.2.2.5 Boltzmann Selection

SA is a method of function minimization or maximization. This method
simulates the process of slow cooling of molten metal to achieve the
minimum function value in a minimization problem. Controlling a
temperature-like parameter introduced with the concept of Boltzmann
probability distribution simulates the cooling phenomenon.
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In Boltzmann selection, a continuously varying temperature controls the
rate of selection according to a preset schedule. The temperature starts out
high, which means that the selection pressure is low. The temperature is
gradually lowered, which gradually increases the selection pressure, thereby
allowing the GA to narrow in more closely to the best part of the search
space while maintaining the appropriate degree of diversity.

A logarithmically decreasing temperature is found useful for convergence
without getting stuck to a local minima state. However, it takes time to cool
down the system to the equilibrium state.

Let fax be the fitness of the currently available best string. If the next string
has fitness f (X:) such that f(X;)>fmax* then the new string is selected.
Otherwise it is selected with Bole/Mann

P= exp[-{fmax- {Xi)} /T] cevvvererenns (17)

probability where T = To (1-a ) and k = (1 + 100 *g/G); g is the current
generation number; G the maximum value of g. The value of CI:' can be
chosen from the range [0, 1] and that of TO from the range [5, 100]. The
final stare is reached when computation approaches zero value of T, i.e., the
global solution is achieved at this point.

The probability that the best string is selected and introduced into the mating
pool is very high. However, Elitism can be used to eliminate the chance of
any undesired loss of information during the mutation stage. Moreover, the
execution time is less.

Pointer 1 Pointer 2 Pointer 3 Pointer 4  Pointer 5 Pointer 6

Individual , l l [ [ l
| 1 2 | 3 4 3 6 7 8 9 10

| | l .
|W| T T 1T 1T 1T TT1T7

0.0

random number

Figure 4b-8 Stochastic universal sampling.
Elitism

The first best chromosome or the few best chromosomes are copied to the
new population. The rest is done in a classical way. Such individuals can be
lost if they are not selected to reproduce or if crossover or mutation destroys
them. This significantly improves the GA's performance.

4b.2.2.6 Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and minimum spread. The
individuals are mapped to contiguous segments of a line, such that each
individual's segment is equal in size to its fitness exactly as in Roulette



wheel selection. Here equally spaced pointers are placed over the line, as
many as there are individuals to be selected. Consider N Pointer the number
of individuals to be selected, then the distance between the pointers are 1/N
Pointer and the position of the first pointer is given by a randomly generated
number in the range [0, 1/N Pointer]. For 6 individuals to be selected, the
distance between the pointers is 1/6 = 0.167.

Figure 4a.21 shows the selection for the above example.

Sample of 1 random number in the range [0, 0.167]: 0.1.

After selection the mating population consists of the individuals,
1,2,3,4,6,8

Stochastic universal sampling ensures selection of offspring that is closer to
what is deserved as compared to Roulette wheel selection.

4b.2.3 Crossover (Recombination)

Crossover is the process of taking two parent solutions and producing from
them a child. After the selection (reproduction) process, the population is
enriched with better individuals. Reproduction makes clones of good strings
but does not create new ones. Crossover operator is applied to the mating
pool with the hope that it creates a better offspring.

Crossover is a recombination operator that proceeds in three steps:

1.  The reproduction operator selects at random a pair of two individual
strings for the mating.

2. Across site is selected at random along the string length.

3. Finally, the position values are swapped between the two strings
following the cross site.

That is the simplest way how to do that is to choose randomly some
crossover point and copy everything before this point &on the first parent
and then copy everything after the crossover point from the other parent.
The various crossover techniques are discussed in the following
subsections. ,

Parentl 10110 O]EO

Parent2 10101 121

Child1 1011051 11

Chiled2 [101011010

Figure 4b.9: Single-point crossover
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4b.2.3.1 Single-Point Crossover

The traditional genetic algorithm uses single-point crossover, where the two
mating chromosomes are cut once at corresponding points and the sections
after the cuts exchanged. Here, a cross site or crossover point is selected
randomly along the length of the mated strings and bits next to the cross
sites are exchanged. Inappropriate site is chosen, bender children can be
obtained by combining good parents, else it severely hampers string quality.

Figure 4b-22 illustrates single point crossover and it can be observed that
the bits next to the crossover point are exchanged to produce children. The
crossover point can be chosen randomly.

4h.2.3.2 Two Point Crossover

Apart from single point crossover, many different crossover algorithms
have been devised, often involving more than one cut point. It should be
noted that adding further crossover points reduces the performance of the
GA. The problem with adding additional crossover points is that building
blocks are more likely to be disrupted. However, an advantage of having
more crossover points is that the problem space may be searched more
thoroughly.

In two-point crossover, two crossover points are chosen and the contents
between these points are exchanged between two mated parents.

In Figure 4b-23 the dotted lines indicate the crossover points. Thus the
comments between these points are

exchanged between the parents to produce new children for mating in the
next generation.

Parentl 11011010
Parent2 01101100
Childl 11101010
Child2 [01:011:100

Figure 4b-10 Two-point crossover

Originally, GAs were using one point crossover which cuts two
chromosomes in one point and splices the two halves to create new ones.
But with this one-point crossover, the head and the rail of one chromosome
cannot be passed together to the offspring. If both the head and the rail of a
chromosome contain good genetic information, none of the offspring
obtained directly with one-point crossover will share the two good features.
Using a two-point crossover one can avoid this drawback, and so it is
generally considered better than one-point crossover. In fact, this problem



can be generalized to each gene position in a chromosome. Genes that are
close on a chromosome have more chance to be passed together to the
offspring obtained through N-points crossover. It leads to an unwanted
correlation between genes next to each other. Consequently, the efficiency
of an N-point crossover will depend on the position of the genes within the
chromosome. In a genetic representation, genes that encode dependent
characteristics of the solution should be close together. To avoid all the
problem of genes locus, a good thing is to use a uniform crossover as
recombination operator.

4b.2.3.3 Multipoint Crossover (N-Point Crossover)

There are two ways in this crossover. One is even number of cross sires and
the other odd number of cross sites. In the case of even number of cross
sires, the cross sites are selected randomly around a circle and information’s
exchanged. In the case of odd number of cross sites, a different cross point
is always assumed at the string beginning.

4h.2.3.4 Uniform Crossover

Uniform crossover is quite different from the N-point crossover. Each gene
in the offspring is created by copying the corresponding gene from one or
the other parent chosen according to a random generated binary crossover
mask of the same length as the chromosomes. Where there is a 1 in the
crossover mask, the gene miscopied from the first parent, and where there
is a 0 in the mask the gene is copied from the second parent. Anew crossover
mask is randomly generated for each pair of parents. Offspring, therefore,
contain a mixture of genes from each parent. The number of effective
crossing point is not fixed, but will average L/2 (where L is the chromosome
length).

In Figure 4a.24, new children are produced using uniform crossover
approach. It can be noticed that while producing child 1, when there is a 1
in the mask, the gene is copied from parent 1 else it is copied from parent
2. On producing child 2, when there is a 1 in the mask, the gene is copied
from parent 2, and when there is a 0 in the mask, the gene is copied from
the parent 1.

4h.2.3.5 Three Parent Crossover

In this crossover technique, three parents are randomly chosen. Each bit of
the first parent is compared with the bit of the second parent. If both are the
same, the bit is taken for the offspring; otherwise the bit from the third
parent is taken for the offspring. This concept is illustrated in Figure 9-25.

Parent 1 10110011

Parent 2 00011010

Mask 1 11010110

Child 1 10011010

Child 2 00110011
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Figure 4b.11 Uniform crossover

Parent 1 11010001

Parent 2 01101001

Parent 3 01101100

Child 01101001

Figure 4b.12 Three parent crossover
4b.2.3.6 Crossover with Reduced Surrogate

The reduced surrogate operator constraints crossover to always produce
new individuals wherever possible. This is implemented by restricting the
location of crossover points such that crossover points only occur where
gene values differ.

4h.2.3.7 Shuffle Crossover

Shuffle crossover is related to uniform crossover. A single crossover
position (as in single point crossover) is decreed. But before the variables
are exchanged, they are randomly shuffled in both parents. After
recombination, the variables in the offspring are unstuffed. This removes
positional bias as the variables are randomly reassigned each time crossover
is performed.

4h.2.3.8 Precedence Preservative Crossover

Precedence preservative crossover (PPX) was independently developed for
vehicle touting problems by Blanton and Wainwright (1993) and for
scheduling problems by Bierwirth et al. (1996). The operator passes on
precedence relations of operations given in two parental permutations to one
offspring at the same race, while no new precedence relations are
introduced. PPX is illustrated below for a. problem consisting of six
operations A-F. The operator works as follows:

l. A vector of length Sigma, sub i == 1 tomi, representing the number
of operations involved in the problem, is randomly filled with
elements of the set {1, 2).

2. This vector defines the order in which the operations are successively
drawn from parent | and parent 2.

3. We can also consider the parent and offspring permutations as lists,
for which the operations "append “and "delete" are defined.

4.  First we scan by initializing an empty offspring.

The leftmost operation in one of the two parents is selected in
accordance with the order of parents given in the vector.

6.  After an operation is selected, it is deleted in both parents.
7. Finally the selected operation is appended to the offspring.



8.  Step 7 is repeated until both parents are empty and the offspring
domains all operations involved.

Note that PPX does not work in a uniform crossover manner due tithe
"deletion-append" scheme used. Example is shown in Figure 9-26.

4p.2.3.9 Ordered Crossover

Ordered two-point crossover is used when the problem is order based, for
example in U shaped assembly line balancing, etc. Given two parent
chromosomes, two random crossover points are selected partitioning

Parent permutation 1 ABCDEF
Parent permutation 2 CABFDE
Select parent no. (1/2) 121122

Offspring permutation ACBDFE

Figure 4b.26 Precedence preservative crossover (PPX).
Parent 1:4 2 | 1 3| 65 Child 1:4 2| 31| 65
Parent 2:23 |14 |56 Child 2:23|41|56
Figure 4b.13 Ordered crossover

them into a left, middle and right portions. The ordered two point crossover
behaves in the following way: child 1 inherits its left and right section from-
parent |, and its middle section is determined by the genes in the middle
section of parent 1 in the order in which the values appear in parent 2. A
similar process is applied to determine child 2. This is shown in Figure
4a.27.

4b.2.3. 10 Partially Matched Crossover

Finally matched crossover (PMX) can be applied usefully in the TSP.
Indeed, TSP chromosomes are simply sequences of integers, where each
integer represents a different city and the order represents the time at which
acidy is visited. Under this representation, known as permutation encoding,
we are only interested in labels and not alleles. It may be viewed as a
crossover of permutations that guarantees that all positions arc found
exactly once in each offspring, i.e., both offspring receive a full complement
of genes, followed by the corresponding filling in of alleles from their
parents. PMX proceeds as follows:

1.  The two chromosomes are aligned.

2. Two crossing sires are selected uniformly at random along the strings,
defining a marching section.

3. The matching section is used to effect a cross through position-by-
position exchange operation.
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4.  Alleles are moved to their new positions in the offspring.

The following illustrates how PMX works.

Name 984 .567.18210 Allele101.001.1100

Name 871.2310.9546 Allele111.011.1101
Figure 4b-14  Given strings

Consider the two strings shown in Figure 9-28, where the dots mark the
selected cross points. The marching section defines the position-wise
exchanges that must take place in both parents to produce the offspring. The
exchanges are read from the marching section of one chromosome to that
of the other. In the example illustrate in Figure 9-28, the numbers that
exchange places are 5 and 2, 6 and 3, and 7 and 10. The resulting offspring
are as shown in Figure 4a.29. PMX is dealt in derail in the next chapter.

Name 984.2310.1657 Allele101.010.1001
Name 8101.567.9243 Allele111.111.1001

Figure 4b.15 partially matched crossover.
4b.2.3.11 Crossover Probability

The basic parameter in crossover technique is the crossover probability
(Py).Crossover probability is a parameter to describe how often crossover
will be performed. If there is no crossover, offspring are exact copies of
parents. If there is crossover, offspring are made from parts of both parents'
chromosome. If crossover probability is 100%, then all offspring are made
by crossover. If it is 0%, whole new- generation is made from exact copies
of chromosomes from old population (but this does not mean that the new
generation is the same!). Crossover is made in hope that new chromosomes
will contain good parts of old chromosomes and therefore the new
chromosomes will be better. However, it is good to leave some part of old
population survive to next generation.

4h.2.4 Mutation

After crossover, the strings are subjected to mutation. Mutation prevents the
algorithm to be trapped in a local minimum. Mutation plays the tale of
recovering the lost genetic materials as well as for randomly distributing
genetic information. It is an insurance policy against the irreversible loss of
genetic material. Mutation has been traditionally considered as a simple
search operator. If crossover is supposed to exploit the current solution to
find better ones, mutation is supposed to help for the exploitation of the
whole search space. Mutation isvie¥led as a background operator to
maintain genetic diversity in the population. It introduces new genetic
structures in the population by randomly modifying some of its building
blocks. Mutation helps escape from local minima's trap and maintains
diversity in the population. It also keeps the gene pool well stocked, thus



ensuring periodicity. A search space is said to be argotic if there is a non-
zero probability of generating any solution from any population state.

There are many different forms of mutation for the different kinds of
representation. For binary representation, a simple mutation can consist in
inverting the value of each gene with a small probability. The probability is
usually taken about 1/ L, where L is the length of the chromosome. It is also
possible to implement kind of hill climbing mutation operators that do
mutation only if it improves the quality of the solution. Such anoperawr can
accelerate the search; however, care should be taken, because it might also
reduce the diversity in the population and make the algorithm converge
toward some local optima. Mutation of a bit involves flipping a bit,
changing 0 tol and vice-versa.

4b.2.4 1 Flipping

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation
chromosome generated. Figure 4a.30 explains mutation flipping concept. A
parent is considered and a mutation chromosome is randomly generated.
For a 1 in mutation chromosome, the corresponding bit in parent
chromosome is flipped (0 to 1 andl to 0) and child chromosome is
produced. In the case illustrated in Figure 41.30, 1 occurs at 3 places of
mutation chromosome, the corresponding bits in parent chromosome are
flipped and the child is generated.

4b.2.4.2 Interchanging

Two random positions of the string are chosen and the bits corresponding
to those positions are interchanged (Figure 4a.31).

Parent 10110101
Mutation chromosome 10001001
Child 00111100

Figure 4b.16 Mutation flipping.

Parent 10110101

Child 11110001

Figure 4b.17 Interchanging

Parent 10110101

Child 10110111

Figure 4b-18 Reversing.
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4b.2.4.3 Reversing

A random position is chosen and the bits next to that position is reversed
and child chromosome is produced (Figure 9-32).

4b.2.4.4 Mutation Probability

An important parameter in the mutation technique is the mutation
probability (P,). It decides how often parts of chromosome will be mutated.
If there is no mutation, offspring are generated immediately after crossover
(or directly copied) within any change. If mutation is performed, one or
more parts of a chromosome are changed. If mutation probability is 100%,
whole chromosome is changed; if it is 0%, nothing is changed. Marion
generally prevents the GA from falling into local extremes. Mutation should
not occur very often, because then GA will in fact change to ralidom search.

4B.3 STOPPING CONDITION FOR GENETIC
ALGORITHM FLOW

In short, the various stopping condition are listed as follows:

1.  Maxim 11m generations:. The GA stops when the specified number
of generations has evolved.

2. Elapsed time: The genetic process will end when a specified time has
elapsed.

Note: If the maximum number of generation has been reached before
the specified time has elapsed, the process will end.

3. No change in fitness: The genetic process will end if there is no
change tithe population's best fitness for a specified number of
generations.

Note: If the maximum number of generation has been reached before
the specified number of generation with too changes has been
reached, the process will end.

4.  Stall generations: The algorithm stops if there is no improvement in
the objective function for a sequence of consecutive generations of
length "Stall generations.”

5. Stall time limit. The algorithm stops if there is no improvement in the
objective function during animerval of time in seconds equal to "Stall
time limit."-

The termination or convergence criterion finally brings the search to a halt.
The following are the few methods of termination techniques.

4h.3.1 Best Individual

A best individual convergence criterion stops the search once the minimum
fitness in the population drops below the convergence value. This brings the
search w a faster conclusion, guaranteeing at least one good solmion.



4h.3.2 Worst Individual

Worst individual terminates the search when the least fir individuals in the
population have fitness less than me convergence criteria. This guarantees
the entire population w be of minimum standard, although the best
individual may not be significantly better than the worst. In this case, a
stringent convergence value may never be met, in which case the search will
terminate after the maximum has been exceeded.

4b.3.3 Sum of Fitness

In this termination scheme, the search is considered to have satisfaction
converged when the sum of the fitness in the entire population is less than
or equal to the convergence value in the population record. This guarantees
that virtually all individuals in the population will be within a particular
fitness range, although it is bener to pair this convergence criteria with
weakest gene replacement, otherwise a few unfit individuals in the
population will blow out the fitness sum. The population size has to be
considered while setting the convergence value.

4h.3.4 Median Fitness

Here at least half of the individuals will be better than or equal to the
convergence value, which should give a good range of solutions to choose
from.

4B.4 CONSTRAINTS IN GENETIC ALGORITHM

If the GA considered consists of only objective function and no information
about the specifications of variable, then it is called unconstrained
optimization problem. Consider, an unconstrained optimization problem of
the form

Minimize f(x) =x% ............(18)

and there is no information about "x" range. GA minimizes this function
using its operators in random specifications.

In the case of constrained optimization problems, the information is
provided for the variables under consideration. Constraints are classified as:

1.  Equality relations.
2. Inequality relations.

GA geneses a sequence of parameters to be rested using the system under
consideration, objective function (to be maximized or minimized) and the
constraints. On running. the system, the objective function is evaluated and
constraints are checked to see if there are any violations. If there are no
violations, the parameter set is assigned the fitness value corresponding to
the objective function evaluation. When the constraints are violated, the
solution is infeasible and thus has no fitness. Many practical problems are
constrained and it is very difficult to find a feasible point that is best. As a
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result, one should get some information out of infeasible solutions,
irrespective of their fitness ranking in relation tithe degree of constraint
violation. Thesis performed in penalty method.

Penalty method is one where a constrained optimization problem is
transformed to an unconstrained optimization problem by associating a
penalty or cost with all constraint violations. This penalty is included in the
objective function evaluation.

Consider the original constrained problem in maximization form:
Maximize f(x)
Subjectto gi(x)>0, i=1,2,3,..,n
where X is a k-vector. Transforming this to unconstrained form:
Maximize f(x) + P XN, olg, (0)] ........ (19)

where @ is the penalty function and P is the penalty coefficient. There exist
several alternatives for this penalty function. The penalty function can be
squared for all violated constraints. In certain situations, the unconstrained
solution converges to the constrained solution as the penalty coefficient p
rends to infinity.

4B.5 PROBLEM SOLVING USING GENETIC
ALGORITHM

4b5.1 Maximizing a Function
Consider the problem of maximizing the function,
f(x)=x2....(20)

where x is permitted to vary between 0 and 31. The steps involved in solving
this problem are as follows:

Step I: For using GA approach, one must first code the decision variable "x"
into a finite length string. 1 Using a five bit (binary integer) unsigned integer,
numbers between 0(00000) and 31(11111) can be obtained.

The objective function here is f(x) = x? which is to be maximized. A single
generation of a GA is performed here with encoding, selection, crossover
and mutation. To start with, select initial population at random. Here initial
population of size 4 is chosen, but any number of populations can be
selected based on the requirement and application. Table 9-4 shows an
initial population randomly selected.



Table 4b-4 Selection

String No. Initial X | Fitness | Probi | Percentage | Expected | Actual
population |valu| f(x) = Probability | count count
(randomly | e X2 (%)
selected)

1 01100 | 12 144 | 0.1247 11.47 0.4987 1

2 11001 | 25 625| 0.5411 54.11 2.1645 2

3 00101 5 25| 0.0216 2.16 0.0866 0

4 10011 | 19 361| 0.3126 31.26 1.2502 1

Sum 195| 1.0000 100 4.0000f 4

Average 288.75| 0.2500 25 1.0000 1

Maximum 625| 0.5411 54.11 2.1645 2

Step 2: Obtain the decoded x values for the initial population generated.
Consider string 1.

01100=0*24+1*22+1*22+0*21+0* 20
=0+8+4+0+0
=12
Thus for all the four strings the decoded values are obtained.

Step 3: Calculate the fitness or objective function. This is obtained by

“ .

simply squaring the “x
value, since the given function is f(x) = x> When x = 12, the fitness value is
f(x) =x*=(12)2=144
For x = 25, f(x) =x?=(25) 2 =625
and so on, until the entire population is computed.

Step 4: Compute the probability of selection,

N A€o
Probi = S oo ....(21)

where n is the number of populations; f(x) is the fitness value corresponding
to a particular
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Individual in the population;
2. f(x) is the summation of all the fitness value of the entire population.
Considering string |,
Fitness f(x) =144
2f(x) =195

The probability that string 1 occurs is given by

P1 =144/195 = 0.1247
The percentage probability is obtained as

0.1247 * 100 = 12.47%

The same operation is done for all the strings. It should be noted that
summation of probability select is I.

Step 5: The next step is to calculate the expected count, which is calculated
as

__ fx)
Expected count = Tvg Tl (22)
Where
(Avg f()); = [FS®@] (23)
For string 1,

Expected count = Fitness/Average = 144/288.75 = 0.4987

We then compute the expected count for the entire population. The expected
count gives an idea of which population can be selected for further
processing in the mating pool.

Step 6: Now the actual count is to be obtained to select the individuals who
would participate in the crossover cycle using Roulette wheel selection. The
Roulette wheel is formed as shown Figure 9-33.

The entire Raul we wheel covers 100% and the probabilities of selection as
calculated in step 4 for the entire populations are used as indicators to fit
into the Roulette wheel. Now the wheel may be spun and the number of
occurrences of population is noted to get actual count.

1. String | occupies 12.47%, so there is a chance for it to occur at least
once. Hence its actual count may be I.

2. With string 2 occupying 54.11% of the Roulette wheel, it has a fair
chance of being selected twice. Thus its actual count can be
considered as 2.



3. On the other hand, string 3 has the least probability percentage of
2.16%, so their occurrence for next cycle is very poor. As a result, ire
actual count is 0.

Table 4b-5 Crossover

Figure 4b.19 Selection using Roulette wheel.

String Mating | Crossover | Offspring X Fitness
no. Pool point after value value
crossover f(x) = x?
1 01100 4 01101 13 169
2 11001 4 11000 24 576
3 11001 2 11011 27 729
4 10011 2 10001 17 289
Sum 1763
Average 440.75
Maximum 729

4.  String 4 with 31.26% has at least one chance for occurring while

Roulette wheel is spun, thus its actual count is 1.

The above values of actual count are tabulated as shown is Table 9-5.

Step 7: Now, write the mating pool based upon the actual count as shown

in Table 9-5.
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The actual count of string no. 1 is I; hence it occurs once in the mating pool.
The actual count of string no. 2 is 2, hence it occurs twice in the mating
pool. Since the actual count of string no. 3 is 0, it does not occur in the
mating pool. Similarly, the actual count of string no. 4 being I, it occurs
once in the mating pool. Based on this, the mating pool is formed.

Step 8: Crossover operation is performed w produce new offspring
(children). The crossover point is specified and based on the crossover
point, single-point crossover is performed and new offspring is produced.
The parents are

Parent 1 01100

Parent 2 11001
The offspring is produced as

Offspring 1 01101

Offspring 2 11000

In a similar manner. crossover is performed for the next strings.

Step 9: After crossover operations. new offspring are produced and "x ..
value.\ are decoded and | mess is calculated.

Step 10: In this step, mutation operation is performed to produce new
offspring. After crossover operation. As discussed in Section 4a.9.4.1
mutation-Aipping operation is performed and new offspring are produced.
Table 4a.6 shows the new offspring after mutation. Once the offspring are
obtained L after mutation, they are decoded tax value and the fitness values
are computed.

This completes one generation. The mutation is performed on a bit-bit by
basis. The crossover probability and mutation probability were assumed to
be 1.0 and 0.001, respectively. Once selection, crossover and mutation are
performed, the new popular ion is now ready to be rested. This is performed
by decoding the new strings created by the simple GA after mutation and
calculates the fitness function values from the x values thus decoded. The
results for successive cycles of simulation are shown in Tables 9-4 and 96.

Table 4b-6 Mutation

String | Offspring Mutation Offspring X Fitness
no. after chromosomes after value | f(x) =
crossover | for Ripping | crossover X2
1 01101 10000 11101 29 841
2 11000 00000 11000 24 576
3 11011 00000 11011 27 729
4 10001 00100 10100 20 400
Sum 2546
Average 636.5
Maximum 841




From the rabies, it can be observed how GAs combine high-performance
notions to achieve bercer performance. In the rabies, it can be noted how
maximal and average performances have improved in the new population.
The population average fitness has improved from 288.75 to 636.5 in one
generation. The maximum fitness has increased from 625 to 841 during the
same period. Though random processes make this best solution, its
improvement can also be seen successively. The best string of the initial
population (1 1 0 0 1) receives no chances for its existence because of its
high, above-average performance. When this combines at random with the
next highest string (1 00 1 1) and is crossed at crossover point 2 (as shown
in Table 9-5), one of the resulting strings (1 1 0 1 1) proves to be a very best
solution indeed. Thus after mutation at random, a new offspring (1110 1)
is produced which is an excellent choice.

This example has shown one gene ion of a simple GA.

4B.6 THE SCHEMA THEOREM

In this section. we will formulate and prove the fundamental research on the
behaviour of GAs- the so-called Schema Theorem. Although being
completely incomparable with convergence research’s for conventional
optimization methods, it still provides valuable insight two the intrinsic
principles of GAs. Assume a GA with proportional selection and an
arbitrary bur fixed fitess function f Let us make the following notations:

1. The number of individuals which fulfil H at time step tare denoted as
rH,r =\Br n H\

2. The expression f (t) refers to the observed average fitness at time t:

F(t) = %Z f(b,,)

3. Theterm f (H, t) stands for the observed average fitness of schema H
in time step t:

3 1
f(H,t)=—— f (b,
(0= 2 T

Theorem (Schema Theorem - Holland 1975). Assuming we consider a
simple GA. the following inequality holds for eveq schema H:

f(H,1) a(H)
f(t)

Proof. The probability that we select an individual fulfilling H is

E[rh.,]>rHs ———>(1- (1 pM )°H)
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This probability does not change throughout the execution of the selection
loop. Moreover, each of them individuals is select::d independent of the
others. Hence the number of selected individuals. which fulfil H, is
binomially distributed with sample amount m and the probability. We
obtain, therefore, that the expected number of selected individuals fulfilling
His

> f@,) Z f,) S f) _
m, 28R =m. rH, e Pl =rH,. EUL&; ="Hr'f,(;(f‘) )
m "H m : ¥ P ’ t
f(b.,) ;‘ A b"r m
2/¢ 2./ 570,
m
...... (24)

If two individuals at crossed, which bmh fulfil H, the two offspring’s again
fulfil H. The number of strings fulfilling H can only decrease if one string.
which fulfils H, is crossed with a string which does not fulfil H. but,
obviously, only if the cross sire is chosen somewhere in between the
specifications of H. The probability that the cross sire is chosen within the
detaining length of H is

6(H)

Hence the survival probability ps of H, i.e., the probability that a string
fulfilling H produces an offspring also fulfilling H. can be estimated as
follows (crossover is only done with probability):

o(H)

ps=>1-pc.——= T (26)

Selection and crossover are carried our independently, so we may compute
the expected number of strings fulfilling H after crossover simply as

M.rHt. S > f(H.t )rH e@d=pc——=) ...
f(t) | f(t) n-1

After crossover, the number of strings fulfilling H can only decrease if a
suing fulfilling His ahered by mutation at a specification of H. The
probability that all specifications of H remain untouthed by mutation is
obviously




The arguments in the proof of the Sthema Theorem can be applied
analogously too many other crossover and mutation operations.

4b.6.1 The Optimal Allocation of Trials

The Sthema Theorem has provided the insight that building blocks receive
exponentially increasing trials in future generations. The question remains,
however, why this could be a good strategy. This leads to an important and
well analyzed problem from statistical decision theory- the two-armed
bandit problem and its generalization, the k-armed bandit problem.
Although this seems like a detour from our main concern, we shall soon
understand the connection to GAs.

Suppose we have a gambling machine with two slots for coins and two
arms. The gambler can deposit the coin either two the left or the right slot.
After pulling the corresponding arm, either a reward is given or the coin is
lost. For mathematical simplicity, we just work with outcomes, i.e., the
difference between the reward (which can be zero) and the value of the coin.
Let us assume that the left arm produces an outcome with mean value p2
and a variance o 22 while the right arm produces an outcome with mean
value p2 and variance o 12. Without loss of generality, although the gambler
does not know this, assume that ul > u2-

Now the question arises which arm should be played. Since we do not know
beforehand which arm is associated with the higher outcome, we are faced
with an interesting dilemma. Not only must we make a sequence of
decisions about which arm to play, we have to collect, at the same time,
information about which is the bener arm. This trade-off between
exploitation of knowledge and its exploitation is the key issue in this
problem and, as rums out later, in GAs, too.

A simple approach to this problem is to separate exploitation from
exploitation. More specifically, we could perform a single experiment at the
beginning and thereafter make an irreversible decision that depends on the
results of the experiment. Suppose we have N coins. If we allocate an equal
number n {where 2n N) of trials to both arms, we could allocate the
remaining N- 2n uials to the observed bener arm. Assuming we know all
involved parameters, the expected loss is given as

L(N. n) = (ul - u2){(N - n)q(n) + n[l - q(n)I}

where q(n) is the probability that the worst arm is the observed best arm
after 2n expetimental trials. The underlying idea is obvious: In case that we
observe that the worse arm is the best, which happens with probability q(n),
the total number of trials allothed to the right arm is N - 11. The loss is,
therefore, (J1 1 -JI2 )(N- n). In the reverse case where we actually observe
that the best arm is the best, which happens with probability I - g(n), the
loss is only whir we get less because we played the worse arm 11 times, i.e.,
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(1M -112 )11. Taking the central limit theorem into account, we can
approximate g (n) with the rail of a normal distribution:

1 e—t2/2

q(n)z\/g P (29)

where

C= H—H, \/ﬁ

Now we have m specify a reasonable experiment size n. obviously, if we
choose

n = 1, the obtained information is potentially unreliable. If we choose,
however,

n = N/2 there are no trials left to make use of the information gained though
the experimental phase. What we see is again the trade-off between
exploitation with almost no exploitation (n = 1) and exploitation without
exploitation {n = N/2).
It does not take a Nobel prize winner to see that the optimal way is
somewhere in the middle. Holland has studied this problem in detail. He
came to the conclusion that the optimal strategy is given by the following
equation:

4 2 N*
7" =b In(m) ........... (30)
where
b1
M~ H

Making a few transformations, we obtain that

4
N —n*0«87zb*InN%e” 120° . . (31)

That is, the optimal strategy is m allocate slightly more than an

exponentially increasing number of trials to the observed best arm.

Although no gambler is able to apply this strategy in practice, because it

requires knowledge of the mean values JIl and JLz, we still have found an

important bound of performance a decision strategy should try to approach.

A GA, although the direct connection is not yet fully clear, actually comes
close to this ideal, giving at least an exponentially increasing number of
trials to the observed best building blocks. However, one may still wonder
how the two-armed bandit problem and GAs are related. Let us consider an



arbitrary string position. Then there are two sthemata of order one which
have their only specification in this position. According to the Sthema
Theorem, the GA implicitly decides between these two sthemata, where
only incomplete data are available (observed average fitness values). In this
sense, a GA solves a lot of two-armed problems in parallel.

The Sthema Theorem, however, is not restricted to sthemata of order one.
Looking at competing sthemata (different sthemata which are specified in
the same positions). We observe that a GA is solving an enormous number
of k-armed bandit problems in parallel. The k-armed bandit problem,
although much more complicated, is solved in an analogous way - the
observed better alternatives should receive an exponentially increasing
number of trials. This is exactly what a GA does.

4b.6.2 Implicit Parallelism

So far we have discovered two distinct, seemingly conflicting views of
genetic algorithms:

1.  The algorithmic view that GAs operate on strings;
2. The sthema-based interpretation.

So, we may ask what a GA really processes, strings or sthemata? The
answer is surprising: Both. Now a day, the common interpretation is chat a
GA processes an enormous amount of sthemata implicitly. This is
accomplished by exploiting the currently available, incomplete information
about these sthemata continuously, while trying to explore more
information about them and other, possibly better sthemata.

This remarkable property is commonly called the implicit parallelism of
GAs. A simple GA has only m structures in one time step, without any
memory or bookkeeping about the previous generations. We will now ny to
get a feeling how many sthemata a GA actually processes.

Obviously, there are 3" sthemata of length n. A single binary string fulfils n
sthema of order 1, (2") sthemata of order 2, in general, (k") sthemata of order
k. Hence, a string fulfils

; (k) =20 (32)

Theorem. Consider a randomly generated start population of a simple GA
and let e E (0, 1) be a fixed error bound. Then sthemata of length

1, <E(n-1)+I

have a probability of at least (1-<) to survive one-point crossover (compare
with the proof of the Sthema Theorem). If the population size is chosen as
m = 21/2, the number of sthemata, which survive for the next generation, is
of order O(m?).
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There exist wide variety of GAs including simple and general GAs
discussed in Sections 4a.4 and 4a.5, respectively. Some or her variants of
GA are discussed below.

4b.7.1 Messy Genetic Algorithms

In a "classical" GA, the genes are encoded in a fixed order. The meaning of
a single gene is determined by its position inside the string. We have seen
in the previous chapter that a GA is likely to converge well if the
optimization risk can be divided two several short building blocks. What,
however, happens if the coding is chosen such that couplings occur between
distant genes? Of course, one-point crossover rends to disadvantage long
sthemata {even if they have low order) over short ones.

Messy GAs try w overcome this difficulty by using a variable-length,
position-independent coding. The key idea is to append an index to each
gene which allows identifying its position. A gene, therefore, is no longer
represented as a single allele value and a fixed position, but as a pair of an
index and an allele. Figure 9-34(A) shows how this "messy" coding works
for a string of length 6.

Since with the help of the index we can identify the genes uniquely, genes
may be swapped arbitrarily without changing the meaning of the string.
With appropriate genetic operations, which also change the order of the
paits, the GA could possibly group coupled genes to get her automatically.

g T T R
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(B)

Figure 4b.20 (A) Messy coding and (B) positional preference; Genes with
indices 1 and 6 occur twice, the firm occurrences are used.
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Figure 4b.21 the cut and splice operation.

Owing to the free arrangement of genes and the variable length of the
encoding, we can, however, run into. Problems, which do not occur, in a
simple GA. First of all, it can happen that there are two entries in a string,
which correspond to the same index but have conflicting alleles. The most
obvious way to overcome this "over-specification™ is positional preference-
the first entry, which refers to a gene, is taken. Figure 9-34(B) shows an
example. The reader may have observed that the genes with indices 3 and 5
do not occur at all in the example in Figure 9-34(B). This problem of “under
specification” is more complicated and its solution is not as obvious as for
over=-specification. Of course, a lot of variants are reasonable.

One approach could be to theck all possible combinations and to rake the
best one (fork missing genes, there are 2k combinations). With the objective
to reduce this effort, Goldberg ct al. have suggested using so-called
competitive templates for finding specifications for missing genes. It is
nothing else than applying a local hill climbing method with random initial
value to the k missing genes.

While messy GAs usually work with the same mutation operator as simple
GAs (every allele is altered with a low probability pM), the crossover
operator is replaced by a more general cut and splice operator which also
allows to mate parents with different lengths. The basic idea is to choose
cut sites for both parents independently and to splice the four fragments.
Figure 9-35 shows an example.

4b.7.2 Adaptive Genetic Algorithms

Adaptive GAs are those whose parameters, such as the population size, the
crossing over probability, or the mutation probability, are varied while the
GA is running. A simple variant could be the following: The mutation rate
is changed according to changes in the population- the longer the population
does not improve, the higher the mutation rare is chosen. Vice versa, it is
decreased again as soon as an improvement of the population occurs.

4b.7.2.1 Adaptive Probabilities of Crossover and Mutation

It is essential to have two characteristics in GAs for optimizing multimodal
functions. The first characteristic is the capacity to converge wan optimum
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(local or global) after locating the region containing the optimum. The
second characteristic is the capacity to explore new regions of the solution
space in search of the global optimum. The balance between these
characteristics of the GA is dictated by the values of Pw and Pn and the type
of crossover employed. Increasing values of Pw and Pr promote
exploitation at the expense of exploitation. Moderately large values of Pc
(in the range 0.5-1.0) and small values of Pw (in the range 0.001-0.05) are
commonly employed in GA practice. In this approach, we aim at achieving
this trade-off between exploitation and exploitation in a different manner,
by varying, and Pm adaptively in response to the fitness values of the
solutions; Pr and Pm are increased when the population tends to get stuck
at a local optimum and are decreased when the population is scattered in the
solution space.

4b.7.2.2 Design of Adaptive pc and Pm

To vary Pr and Pm adaptively for preventing premature convergence of the
GA to a local optimum, it is essential to identify were the GA is converging
to an optimum. One possible way of detecting is to observe average fitness
value f of the population in relation to the maximum fitness value fmax of
the population. The value fmax - f is likely to be less for a population that
has converged to an optimum solution than that for a population scattered
in the solution space. We have observed the above property in all our
experiments with GAs, and Figure 9-36 illustrates the property for a typical
case. In Figure 9-36 we notice that fmax — f decreases when the GA
converges to a local optimum with a fitness value of 0.5. (The globally
optimal solution has a fitness value of 1.0.) We use the difference in the
average and maximum fitness value, fmax - f, as a yardstick for detecting
the convergence of the GA. The values of Pc and Pm are varied depending
on the value of fmax. - f. Since Pc and Pm have to be increased when the
GA converges to a local optimum, i.e., when fmax - f decreases, Pc and Pm
will have to be varied inversely with fmax - f. The expressions that we have
chosen for Pc and Pm are of the form

Pc = ki/ (fmax - f)
Pm = ka/ (fmax - f)

0.6 —
Besi

L 13
=
g
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Figure 4b.22 Variation of fmax —f and f best (best fitness).



It has to be observed in the above expressions that Pc and Pm do not depend
on the fitness value of any particular solution, and have the same values for
all the solution of the population. Consequently, solutions with high fitness
values as well as solutions with low fitness values are subjected to the same
levels of mutation and crossover. When a population converges to a globally
optimal solution (or even a locally optimal solution), Pc and Pm increase
and may cause the disruption of the neat-optimal solutions. The population
may never converge to the global optimum. Though we may prevent the
GA from getting stuck at a local optimum, the performance of the GA (in
terms of the generations required for convergence) will certainly
deteriorate.

To overcome the above-stated problem, we need to preserve "good"
solutions of the population. This can be achieved by having lower values of
Pc and Pm for high fitness solutions and higher values of Pc and Pm for
low fitness solutions. While the high fitness solutions aid in the convergence
of the GA, the low fitness solutions prevent the GA from getting stuck at a
local optimum. The value of Pm should depend not only on fmax — f but
also on the fitness value f of the solution. Similarly, Pc should depend on
the fitness values of both the parent solutions. The closer f is to fmax the
smaller Pm should be, i.e., Pm should vary directly as fmax — f. Similarly,
Pc should vary directly as fmax — f', where f is the larger of the fitness
value of the solutions to be crossed. The expressions for Pc and Pm now
take the forms

P = K[(Frge = T )/ (Fom — F)1, kK, <2.0
pm — kz[( fmax _ f)/(fmax _?)]’k2 Slo ...........

(Here ki1 and k2 have to be less than 1.0 to constrain Pc and Pm to the
range 0.0-1.0.)

Note that Pc and Pm are zero for the solution with the maximum fitness.
Alsop, = k1 for a solution with f = f, and Pm = k> for a solution with f = f.
For solution with subaverage fitness values, i.e., f < f, Pc and Pm might
assume values larger than 1.0. To prevent the overshooting of Pc and Pm
beyond 1.0, we also have the following constraints:

p, =k, f'<f

where ks, ks < 1.0.

4h.7.2.3  Practical Considerations and Choice of Values for ki, ko, ks
and ks

In the previous subsection, we saw that for a solution with the maximum
fitness value Pc and Pm are both zero. The best solution in a population is
transferred undisrupted into the next generation. Together with the selection
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mechanism, this may lead to an exponential growth of the solution in the
population and may cause premature convergence. To overcome the above-
mued problem, we introduce a default mutation rate (of 0.005) for every
solution in the Adaptive Genetic Algorithm (AGA).

We now discuss the choice of values for k1, kz, k3 and k4. For convenience,
the expressions for Pc and Pm are given as

p.=k(f —f)/(f —F)f>f

p, =k, f<f

=k, (f  —F)/I(f - f)fz? ........... (35)
p =k, f<f

where ki, k2, k3, ka <1.0.

It has been well established in GA literature that moderately large values of
Pc (0.5 <Pc < 1.0) and small values of Pm (0.001 < Pm < 0.05) are essential
for the successful working of GAs. The moderately large values of Pc
promote the extensive recombination of sthemata, while small values of Pm
are necessary to prevent the disruption of the solutions. These guidelines,
however, are useful and relevant when the values of Pc and Pm do not vary.

One of the goals of the approach is to prevent the GA from getting stuck at
a local optimum. To achieve this goal, we employ solutions with subaverage
fitnesses to search the search space for the region containing the global
optimum. Such solutions need to be completely disrupted, and for this
purpose we use a value of 0.5 for k4. Since solutions with a fitness value of
f should also be disrupted completely, we assign a value of 0.5 to k> as well.

Based on similar reasoning, we assign kiand ks a value of 1.0. This ensures
that all solutions with a fitness value less than or equal to f compulsorily
undergo crossover. The probability of crossover decreases as the fitness
value (maximum of the fitness values of the parent solutions) tends to fmax
and is 0.0 for solutions with a fitness value equal to fmax.

4b.7.3 Hybrid Genetic Algorithms

As they use the fitness function only in the selection step, GAs are blind
oprimizers which do not use any auxiliary information such as derivatives
or other specific knowledge about the special strucrure of theobjective
function. If there is such knowledge, however, ir is unwise and inefficient
not to make use of ir.Several investigations have shown that a lot of
synergism lies in the combination of genetic alj'orirhms andconventional
methods.

The basic idea is co divide the optimization task into two complementary
parts. The GA does the coarse, global optimization while local refinement
is done by the conventional method (e.g. gradient-based, hill climbing,



greedy algorithm, simulated annealing, ere.). A number of variants are
reasonable:

1. The GA performs coarse search first. Afrer the GA is completed, local
refinement is done.

2. The local method is integrated in the GA. For instance, every K
generations, the population is doped witha locally optimal individual.

3. Both methods run in parallel: All individuals are continuously used as
initial values for the local method. The locally optimized individuals
are re-implanred into the current generation.

In this section a novel optimization approach is used that switthes between
global and local search methods based on the local topography of the design
space. The global and local optimizers work in concert to efficiently locate
quality design points better than either could alone. To determine when it is
apptopriate to execute a local search, some characteristics about the local
area of the design space need to be determined. One good source of
information is contained in the population of designs in the GA. By
calculating the relative homogeneity of the population we can get a good
idea of whether there are multiple local optima located within this local
region of the design space.

To quantify the relative homogeneity of the population in each subspace,
the coefficient of variance of the objective function and design variables is
calculated. The coefficient of variance is a normalized measure of variation,
and unlike the actual variance, is independent of the magnitude of the mean
of the population. A high coefficient of variance could be an indication that
there are multiple local optima present. Very low values could indicate that
the GA has converged to a small area in the design space, warranting the
use of alocal search algorithm to find the best design within this region.

By calculating the coefficient of variance of the both the design variables
and the objective function as the optimization progresses, it can also be used
as a criterion to switch from me global to the local optimizer. As the
variance of the objective values and design variables of the population
increases, it may indicate that the optimizer is exploting new areas of the
design space or hill climbing. If the variance is decreasing, the optimizer
may be converging toward local minima and the optimization process could
be made more efficient by switching to a local search algorithm.

The second method, regression analysis, used in this section helps us
determine when to switch between the global and local optimizer. The
design data present in the current population of the GA can be used
toprovide information as to the local topography of the design space by
attempting to fit models of various order to it.

The use of regression analysis to augment optimization algorithms is not
new. In problems in which the objective function or consrrainrs are
computationally expensive, approximations to the design space are created
by sampling the design space and then using regression or other methods to
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create a simple mathematical model that closely approximates the actual
design space, which may be highly nonlinear. The design space can then be
exploted to find regions of good designs or optimized to improve the
performance of the system using the predictive surrogate approximation
models instead of the computarionally expensive analysis code, resulting in
large computational savings. The most common regression models are
linear and quadratic polynomials created by performing ordinary least
squares regrssion on a set of analysis data.

To make dear the use of regression analysis in this way, consider Figure 9-
37, which represents a complex design space. Our goal is to minimize this
function, and as a first step the GA is run. Suppose that afrer acertain
number of generarions the population consists of the sampled points shown
in the figure. Since the population of the GA is spread throughout the design
space, having yet to converge into one of the local minima, it seems logical
to continue the GA for additional generations. Ideally, before the local
optimizer is run it would be beneficial to have some confidence that its
starting point is somewhere within the mode that contains the optimum.
Fitting a second-order response surface to the data and noting the large error
(the R2 value is 0.13), ther is a dear indication that the GA is currently
exploting multiple modes in the design space.

In Figure 9-38, the same design space is shown but afrer the GA has begun
to converge into the part of the design space containing the optimal design.
Once again a second-order approximation is fir to GA's population. The
dotted line connects the points predicted by the response surface. Note how
much smaller the error is in the approximation (the R2 is 0.96), which is a
good indication that the GA is currently exploting a single mode within the
design space. At this point, the local optimizer can be made to quickly
converge to the best solution within this area of the design space, thereby
avoiding the slow convergence propenies of the GA.

After each generarion of the global optimizer the values of the coefficient
of determination and the coefficient of variance of the enrire population are
compared with the designer specified threshold levels.

1 5 ; - T b I 1 ' 1 -l

© Sampled designs
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- - - True design space

Figure 4b.23 Apptoximating multiple modes with a second-order model.
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Figure 4b.24 : Apptoximating a single mode with a
second-order model.

The first threshold simply states that if coefficient of determination of the
population exceeds a designer set value when a second-order regression
analysis is performed on the design data in the current GA population, then
a local search is started from the current 'best design’ in the population. The
second threshold is based on the value of the coefficient of variance of the
entire population. This threshold is also set by the designer and can range
upwards from O%. If it increases at a rate greater than the threshold level
then a local sarch is execuced from the best point in the population.

The flowchart in Figure 9-39 illustrates the stages in the algorithm. The
algorithm can switch repeatedly between the global search (Stage 1) and the
local search (Stage 2) during execution. In Stage |, the global search is
initialized and then monitored. This is also where the regression and
statistical analysis occurs.

In Stage 2 the local search is executed when the threshold levels are
exceeded, and then this solution is passed back and integrated two the global
search. The algorithm scops when convergence is achieved for the global
optimization algorithm.

4b.7.4 Parallel Genetic Algorithm

GAs are powerful search techniques that are used successfully to solve
problems in many different disciplines. Parallel GAs (PGAs) are
particularly easy to implement and promise substantial gains in
performance. As such, there has been extensive research in this field. The
section describes some of the most significant problems in modeling and
designing multi-population PGAs and presents some recent advancementrs.

One of the major aspects of GA is their ability to be parallelized. Indeed,
because natural evolution deals with an entire population and not only with
particular individuals, it is a remarkably highly parallel process. Except in
the selection phase, during which there is competition between individuals,
the only interactions between remembers of the population occur during the
reproduction phase, and usually, no more than two individuals are necessary
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to engender a new child. Otherwise, any other operations of the evolution,
in particular the evaluation of each member of the population, can be done

separately. So, neatly all the operations in a genetic algorithm are implicitly
parallel.

PGAs simply consist in distributing the task of a basic GA on different
processors. As those tasks are implicitly parallel, little time will be spent on
communication; and rhus, the algorithm is expected to run much faster or
to find more accurate this.

It has been established chat GA's efficiency co find optimal solution is
largely determined by the population size. With a larger population size, the
genetic diversity increases, and so the algorithm is more likdy to find a
global optimum! A large population requires more memory to be scored,; it
has also been ptoved that it takes a longer time to converge. If n is the

population size, the convergence is expected aft:er n log(n) function
evaluations.
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Figure 4b.25 : Steps in two-stage hybrid optimization approach.

The use of mday's new parallel computers not only provides more storage
space but also allows the use of several processors to produce and evaluate
more solutions in a smaller amount of time. By parallelizing the algorithm,
it is possible D increase population size, reduce the computational cost, and
so improve the performance of the GA.

Probably the first attempt to map GAs to existing parallel computer
architectures was made in 1981 by John Grefensrerre. But obviously today,
with the emergence of new high-performance computing (HPC), PGA is
really a flourishing area. Researthers try to improve performance of GAs.



The stake is to show that GAs are one of the besr optimization methods to
be used with HPC.

4b.7.4.1 Global Parallelization

The first attempt to parallelize GAs simply consists of global
parallelization. This approach nics to explicitly parallelize the implicit
parallel tasks of the "sequential” GA. The nature of the problems remains
unchanged. The algorithm still manipulates a single population where each
individual can mare with any other, but the breeding of new children and/or
their evaluation are now made in parallel. The basic idea is that different
processors can create new individuals and compme their fir ness in parallel
almost without any communication among each other.

To start with, doing the evaluation of the population in parallel is something
really simple co implement. Each processor is assigned a subset of
individuals to be evaluated. For example, on a shared memory computer,
individuals could be stored in shared memory, so that each processor can
read the chtomosori:tes assigned and c:an write back the resnlr of the fitness
computation. This method only supposes iliat the GA works with a
generational update of the population. Of course, some synchtonization is
needed between generations.

Generally, most of the computational time in a GA is spent calling the
evaluation function. The time spent in manipulating the chromosomes
during the selection or recombination phase is usually negligible. By
assigning to each processor a subset of individuals m evaluate, a speedup
proportional to the number of processors can be expeaed if there is a good
load balancing between them. However, load balancing should not be a
problem as generally the time spent for the evolution of an individual does
not really depend on dle individual. A simple dynamic stheduling algorithm
is usually enough to share the population between each processor equally.

On a distribmed memory compUter, we can smre the population in one
"master" processor responsible for sending the individuals to the other
processors, i.e., "slaves." The master processor is also responsible for
collecting the result of the evaluation. A drawback of this distributed
memory implementation is that a bottleneck may occur when slaves are idle
while only the master is working. But a simple and good use of the master
processor can improve the load balancing by distributing individuals
dynamically tothe slave processors when they finish their jobs.

A further seep could consist in applying thegenetic operators in parallel. In
fact, the interaction inside the population only occurs during selection. The
breeding, involving only two individuals to generate he offspring, could
easily be done simultaneously over n/2 paits of individuals. But it is not chat
clear if it worth doing so. Crossover is usually very simple and not so time-
consuming; the point is nor that too much time will be lost during the
communication, but that the time gain in the algorithm will be almost
nothing compared to the effort produced to change the code.

This kind of global parallelization simply shows how easy it can be to
transpose any GA onto a parallel machine and how a speed-up sublinear to
the number of processors may be expected.
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4b.7.4.2 Classification of Parallel GAs

The basic idea behind most parallel programs is to divide a cask into chunks
and co solve the chunkssimulraneously using multiple processors. This
divide-and-conquer approach can be applied toGAs in many different ways,
and the literature contains many examples of successful parallel
implementations. Some parallelizacion methods use a single population,
while others divide the population into several relatively isolated
subpopulacions. Some methods can exploit massively parallel computer
architectures, while others are better suited to multicomputers with fewer
and more powerful processing elements.

There are three main cypes of PGAS:

1. global single-population master-slave GAs,
2. single-population fine-grained,

3. multiple-population coarse-grained GAs.

In a master-slave GA there is a single panmicric population (just as in a
simple GA), but the evaluation of fitness is distributed among several
processors (see Figure 9-40). Since in this type of PGA, selection and
crossover consider the entire population it is also known as global PGA.
Fine-grained PGAs are suited for massively parallel computers and consist
of one spatially structured population. Selection and mating are resrricred
to a small neighbothood, but neighbothoods overlap permitting some
interaction among all the individuals (see Figure 9-41 for a sthematic of this
class of GAs). The ideal case is co have only one individual for every
processing element available.

Multiple-popuJarion (or multiple-deme) GAs are more sophisticated, as
they consist in several subpopulacions which exchange individuals
occasionally (Figure 9-42 has a sthematic). This exchange of individuals
Master Workers

Master

Workers

Figure 4b.26 A sthematic of a master-slave PGA. The master stores the
population, executes GA operations and distributes individuals to the
slaves. The slaves only evaluate the fitness of the individuals.



Figure 4b.27 A sthematic of a fine-grained PGA. This class ofPGAs has
one spadally distributed popularion, and ir can be implemented very
efficiently on massively parallel compmers.

¥ LY
-'I. A L

t ‘

Figure 4b.28 A sthematic of a mulciple-populaTion PGA. Each process is
a simple GA, and there is (infrequent) communicadon between the
populations.

is called migration and, as we shall see in later sections, it is conttolled by
several parameters. Multiple-deme GAs are very popular, but also are the
class ofPGAs which is most difficult to understand, because the effects of
migration are not fully understood. Multiple-deme PGAs introduce
fundamental changes in the operation of the GA and have a different
behavior than simple GAs.

Multiple-deme PGAs are known with different names. Sometimes they are
known as "distributed" GAs, because they are usually implemented on
distributed memory MIMD computers. Since the computation to
communication ratio is usually high, they are occasionally called coarse-
grained GAs. Finally, multipledeme GAs resemble the "island model™ in
Population Genetics which considers relatively isolated demes, so the PGAs
are also known -as "island” PGAs. Since the size of the demes is smaller
than the population used by a serial GA, we would expect that lhe PGA
converges faster. However, when we compare the performance of the serial
and the parallel algorithms, we must also consider the qualicy of the
solutions found in each case. Therefore, while it is true that smaller demes

Genetic Algorithm

235



Soft Computing Techniques

236

converge faster, it is also true iliar the qualicy of the solution might be
poorer.

It is important to emphasize that while the master-slave parallelization
method does not affect the behaviour of the algorithm, the last two methods
change the way the GA works. For example, in master-slave PGAs,
selection takes into account all the population, but in the other two PGAs,
seleccion only considers a subset of individuals. Also, in the mascerslave
any two individuals in the population can mare (i.e., there is random
mating), but in the other methods mating is restricted to a subset of
individuals.

The final merhod to parallelize GAs combines multiple demes with
masrerslave or finegrained GAs. We call this class of algorithms
hierarchical PGAs, because at a higher level they are multipledeme
algorithms with single-population PGAs (either master-slave or
finegrained) at the lower level. A hierarchical PGA combines the benefits
of its components, and it ptomises bener performance than any of them
alone.

Master-slave parallelization: This section reviews the masterslave (or
global) parallelization method. The algorithm uses a single population and
the evaluation of the individuals and/or the application of genetic operators
are done in parallel. As in the serial GA, each individual may compete and
mate with any other (thus selection and mating are global). Global PGAs
are usually implemented as masrer-slave programs, where the master stores
the population and the slaves evaluate the fitness.

The most common operation iliac is parallelized is the evaluation of the
individuals, because the fitness of an individual is independent from the rest
of the population, and there is no need to communicme during this phase.
The evaluation of individuals is parallelizcd by assigning a fraction of the
population to each of the processors available. Communication occurs only
as each slave receives its subset of individuals to evaluate and when the
slaves return the fitness values. If the algorithm stops and waits to receive
the fitness values for all the population before proceeding into the next
generation, then the algorithm is synchronous. A synchronous master slave
GA has exactly the same properties as a simple GA, with speed being the
only difference. However, ir is also possible to implement an a synchronous
master-slave GA where the algorithm does not stop to wait for any slow
processors, but it does not work exactly like a simple GA. Most global PGA
implementations are synchtonous and the rest of the paper assumes that
global PGA carry our exactly the same search of simple GAs.

The global paralleliz. An ion model does not assume anything about the
underlying computer architecture, and it can be implemented efficiently on
shared memory and distributed-memory computers. On a shared memory
multiprocessor, the population could be slotted in shared memory and each
processor can read the individuals assigned co it and write the evaluation
results back without any conflicts.



On a distributed-memory computer, the population can be scored in one
processor. This "master” processor would be responsible for explicitly
sending the individuals to the other processors {the "slaves") for evaluation,
collecting the results and applying the genetic operators to produce the next
generation. The number of individuals assigned to any processor may be
constant, but in some cases (like in a multiuser environment where the
utilize. action of processors is variable) it may be necessary to balance the
computational load among the processors by using a dynamic scheduling
algorithm (e.g., guided self scheduling).

Multiple-deme parallel GAs: The important characteristics of multiple-
deme PGAs are the use of a few relatively large subpopulations and
migration. Multiple-deme GAs are the most popular parallel method, and
many papers have been written describing innumerable aspects and derails
of their implementation.

Probably the first systematic srudy of PGA<i with multiple populations was
Grosso's dissertation. His objective was to simulate the interaction of
several parallel subcomponents of an evolving population. Grosso
simulated diploid individuals (so there were two subcomponents for each
"gene"), and the population was divided into five demes. Each deme
exchanged individuals with all the others with a fixed migration rate.

With controlled experiments, Gtosso found cha the improvement of the
average population fitness was faster in the smaller demes than in a single
large panmictic population. This confirms a long held principle in
Population Genetics: favourable traits spread faster when the demes are
small chain when the demes are large. However, he also observed that when
the demes were isolated, the rapid rise in fitness stopped at a lower fitness
value than with the large population. In other words, the quality of the
solution found after convergence was worse in the isolated case chain in the
single population.

With a low migration rate, the demes still behaved independently and
exploited different regions of the search space. The migrants did not have a
significant effect on the receiving deme and the quality of the solutions was
similar to the case where the demes were isolated. However, at intermediate
migration rates the divided population found solutions similar to those
found in the panmictic population. These observations indicate that there is
a critical migration rate below which the performance of the algorithm is
obstructed by the isolation of the demes, and above which the partitioned
population finds solutions of the same quality as the panmictic population.

It is interesting that such important observations were made so long ago, at
the same time that other systematic studies of PGAs were underway. For
example, Tanese proposed a PGA with the demes connected on a four-
dimensional hypercube topology. In Tanese's algorithm, migration occurred
at fixed intervals between processors a Jong one dimension of the
hypercube. The migrants were chosen probabilistically from the best
individuals in the subpopulation, and they replaced the worst individuals in
the receiving deme. Tanese carried out three sees of experiments. In the
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first, the interval between migrations was ser to five generations, and the
number of processors varied. In tests with two migration rates and varying
the number of processors, the PGA found results of the same quality as the
serial GA. However, it is difficult to see from the experimental results if the
PGA found the solutions sooner than the serial GA, because the range of
the chimes is too large. In the second set of experiments, Tanese varied the
mutation and crossover rates in each deme, attempting to find parameter
values to balance exploration and exploitation. The third set of experiments
studied the effect of the exchange frequency on the search, and the results
showed than migrating too frequency or too infrequently degraded the
performance of the algorithm.

The multimember PGAs are popular due to the following several reasons:

l. Multiple-deme GAs seem like a simple extension of the serial GA.
The recipe is simple: take a few conventional (serial) GAs, run each
of them on a node of a parallel computer, and at some predetermined
times exchange a few individuals.

2. Thereis relatively little extra effort needed to convert a serial GA into
a multiple-deme GA. Most of the program of the serial GA remains
the same and only a few subtoutines need to be added co implement
migration.

3. Coarse-grain parallel computers are easily available, and even when
they are not, it is easy co simulate one with a network of workstations
or even on a single processor using free software (like MPI or PVM).

There are a few important issues noted from the above sections. For
example, PGAs are very promising in terms of the gains in performance.
Also, PGAs are more complex than their serial counterparts. In particular,
the migration of individuals from one deme to another is conttolled by
several p:uameters like (a) the topology that defines the connections
between the subpopulations, (b) a migr;uion r;Ht:: rh.It controls how many
individuals migrate and (c) a migration interval that affects the frequency
<'IK- of mir.linn. In rht." btl' 1 1IS(h .ullll-arl- 1990 the research on PGA:;
began to explote alternatives to make PGAs faster and to understand better
how they worked.

Around this time the first theoretical studies on PGAs began to appear and
the empirical research attempted to identify favourable parameters. This
section reviews some of that early theoretical work and experimental studies
on migration and topologies. Also in this period, more researchers began to
use multiple population GAs co solve application problems, and this section
ends with a brief review of their work.

One of the directions in which the field matured is that PGAs began to be
tested with very large and difficult test functions.

Fine-grained PGAs: The development of massively paralel compmers
triggers a new approach of PGAs. To take advantage of new architectures
with even a greater number of processors and less communication coslS,



fine-grained PGAs have been devoted. The population is now partitioned
into a la..tge number of very small subpopulations. The limit (and may be
ideal) case is to have just one individual for every processing element
available.

"Basically, the population is mapped onto a connected processor graph,
usually, one individual on each processor. (But it works also more than one
individual on each processor. In this case, it is preferable to choose a
multiple of the number of processors for the population size.) Mating is only
possible between neighbouring individual, i.e, individuals stored on
neighbouring processors. The selection is also done in a neighbourhood of
each individual and so depends only on local information. A motivation
behind local selection is biological. In nature there is no global selection,
instead natural selection is a local phenomenon, raking place in an
individual's local environment.

If we want to compare this model to the island model, each neighborhood
can be considered as a different deme. But here, the demes overlap
providing a way w disseminate good solutions across the entire population.
Thus, the topology does not need w explicitly define migration toads and
migration rare.

It is common to place the population on a two-dimensional or three-
dimensional torus grid because in many massively parallel computers the
processing elements are connected using this topology. Consequently each
individual has four neighbours. Experimentally, it seems that good results
can be obtained using a topology with a medium diameter and
neighborhoods nor too large. Like the coarse-grained models, it worth
trying to simulate this model even on a single processor to improve the
results. Indeed, when the population is stored in a grid like this, after few
generations, different optima could appear in different places on the grid.

To sum up, with parallelization of GA, all the different models proposed
and all the new models we can imagine by mixing those ones, can
demonstrate how well GA are adapted to parallel comparison. In fact, the
too many implementations reponed in the literature may even be confusing.
We really need to understand what truly affects the performance of PGAs.

Fine-grained PGAs have only one population, but have a spatial structure
that limits the interactions between individuals. An individual can only
compere and mate with its neighbours; but since the neighbothoods overlap
good solutions may disseminate across the entire population.

Robertson parallelized the GA of a classifier system on a Connection
Machine 1. He parallelized the selection of parents, the selection of
classifiers to replace, mating, and cl-ossover. The execution time of his
implementation was independent of the number of classifiers (up to 16K,
the number of processing elements in the CM-1).

Hierarchical parallel algorithms: A few researchers have cried to combine
two of the methods to parallelize GAs, producing hierarchical PGAs. Some
of these new hybrid algorithms add a new degree of complexity to .the
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already complicated scene of PGAS, but other hybrids manage to keep the
same complexity as one of their components. When two methods of
parallelizing GAs are combined they form a hierarchy. At the upper level
most of the hybrid PGAs ace multiple-population algorithms.

Some hybrids have a fine-grained GA at the lower level (see Figure 9-43).
For example Gruau invented a "mixed" PGA. In his algorithm, the
population of each deme was placed on a two-dimensional grid, and the
demes themselves were connected as a two-dimensional to M. Migration
between demes occurred at regulate intervals, and good results were
reported for a novel neucal network design and uaining application.

Another type of hierarchical PGA uses a master-slave on each of the demes
of a multi-population GA (see Figure 9-44). Migration occurs between
demes, and the evaluation of the individuals is handled in parallel. This
approach does not introduce new analytic problems, and it can be useful
when working with complex applications with objective functions that need
a considerable amount of computation time. Bianchini and
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Figure 4b.29 Hierarchical GA combines a multiple-deme GA (ar the upper
level) and a fine-grained GA {at the lower level).

e

Figure 4b.30 A schematic of a hierarchical PGA. At the upper level this
hybrid is a mulci-deme PGA where each node is a master-slave GA.
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Figure 4b.31 This hybrid uses mulciple-deme GAs ar both the upper and
the lower levels. At the lower level the migration rate is faster and the
communications topology is much denser than at the upper level.

Btown presented an example of this method of hybridizing PGAs, and
showed that it can find a solution of the same quality as of a masrerslave
PGA or a multipledeme GAin less time.

Interestingly, a very similar concept was invented by Goldberg in the
context of an objecr-oriented implementation of a "community model”
PGA. In each "community" there are multiple houses where parents
reproduce and the offsprings are evaluated. Also, there are multiple
communities and ir is possible that individuals migrate to other places.

A third method of hybridizing PGAs is to use multiple-deme GAs at both
the upper and the lower levels (see Figure 9-45). The idea is to force
panmiaic mixing ar the lower level by using a high migration rate and a
dense topology, while a low migration rate is used at the high level. The
complexity of this hybrid would be equivalent to a multiplepopularion GA
if we consider the gtoups of panmicric subpopularions as a single deme.
This method has nor been implemented yet. Hierarchical implementations
can reduce the execution time more than any of their components alone.

4h.7.4.3 Coarse: Grained PGAs - The Island Model

The second class of PGA is once again inspired by nature. The population
is now divided into a few subpopulations or demes, and each of these
relatively large demes evolves separately on different processors. Exchange
between subpopularions is possible via a migration operator. The term
island model is easily understandable; the GA behave as if the world was
constituted of islands where populations evolve isolated from each other.
On each island the population is free to converge award different optima.
The migration operator allows "merissage™ of the different sub populations
and is supposed to mix good features that emerge locally in the different
demes.
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We can notice chat this time the nature of the algorithm changes. An
individual can no longer breed with any other from the entire population,
but only with individuals of the same island. Amazingly, even if this
algorithm has been developed to be used on several processors, it is wonh
simulating it sequentially on one processor. It has been shown on a few
problems that better results can be achieved using this model. This
algorithm is able to give different suboptimal solutions, and in many
problems, it is an advantage if we need to determine a kind of landscape in
the search space to know where the good solutions are located. Another
great advantage of the island model is iliat cite population in each island can
evolve wiili different rules. That can be used for multicriterion optimization.
On each island, selection can be made according to different fitness
functions, representing different criterions. For example it can be useful to
have as many islands as criteria, plus another central island where 'selection
is done with a multicriterion fitness function.

The migration operator allows individuals to move betwen islands, and
therefore, m mix criteria.

In lirerarure this model is sometimes also referred as the coarsegrained
PGA. (In parallelism, grain size refers m the ratio of time spent in
computation and time spent in communication; when the ratio is high the
processing is called coarsegrained). Sometimes, we can also find the term
"distributed” GA, since they are usually implemented on distributed
memory machines (MIMD Computers).

Technically there are three important features in the coarsegrained PGA:
the topology that defines connections between sub populations, migration
rare that conttols how many individuals migrate, migration intervals chat
affect how often the migration occurs. Even if a lot of work has been done
to find optimal mpology and migration parameters, here, intuition is still
used more often than analysis with quite good results.

Many topologies can be defined m connect the demes, but the most common
models are the island model and the steppingstones model. In the basic
island model, migration can occur between any subpopulations, whereas in
the Stepping stone demes are disposed on a ring and migration is restricted
to neighbouring demes. Works have shown that cite topology of the space
is nor so important as long as ir has high connectivity and small diameter to
ensure adequate mixing as time proceeds.

Choosing the right time for migration and which individuals should migrate
appears to be more complicated. Quite a lot of work is done on this subject,
and problems come from the following dilemmas. We can observe that
species are converging quickly in small isolated populations. Nevertheless,
migrations should occur after a time long enough for allowing the
development of goods characteristics in each subpopulation. It also appears
that, immigration is a trigger for evolutionary changes. If mjgrarion occurs
after each new generation, the algorithm is more or le equivalent to a
sequencia\ GA with a larger population. In praaice, migration occurs either
after a fixed number of iterations in each deme or at uniform periods of time.



Migrants are usually selected randomly from the best individuals in the
population and they replace the worst in the receiving deme. In fact,
intuition is still mainly used to fix migration rare and migration intervals;
there is absolurely nothing rigid, each personal cooking recipe may give
good results.

4b.7.5 Independent Sampling Genetic Algorithm (ISGA)

In the independent sampling phase, we design a core stheme, named the
"Building Block Detecting Strategy" (BBDS), to extract relevam building
block information of a fitness landscape. In this way, an individual is able
to sequentially construct more highly fir partial solutions. For Toyal Toad
RI, the global optimum can be attained easily. For other more complicared
fitness landscapes, we allow a number of individuals to adopt the BBDS
and independently evolve in parallel so that each sthema region can be given
samples indepcndently. During this phase, the population is expected to be
seeded with ptomising genetic material. Then follows the breeding phase,
in which individuals are paired for breeding based on two mate-selection
sthemes (Huang, 2001): individuals being assigned mates by natural
selection only and individuals being allowed to actively choose their mares.
In the lauer case, individuals are able to distinguish candidate mates that
have the same fitness yet have different string structures, which may lead to
quite different performance after crossover. This is nor achievable by
natural selection alone since it assigns individuals of the same fitness the
same probability for being mares, without explicitly raking into account
string suucrures. In short, in the breeding phase individuals manage to
construct even more ptomising sthemata thtough the recombination of
highly fir building blocks found in the first phase. Owing to the thatacteristic
of independent sampling of building blocks that distinguishes the ptoposed
GAs from tonventional GAs, we name this type of GA independent
sampling genetic algorithms (ISGAS).

4b.7.6 Tomparison of ISGA with PGA

The independent sampling phase of ISGAs is similar m the fine-grained
PGAs in the sense that each individual evolves autonomously, although
ISG.As do not adopt the population scrucrure. An initial population is
randomly generated. Then in every cycle each individual does local hill
climbing, and creates the next population by mating with a parmer in its
neighbothood and replacing parents if offsprings are better. By tontrast, IS
Gas partition the genetic processing into two phases: the independent
sampling phase and the breeding phase as described in the preceding
section. Third, the approach employed by each individual for improvement
in IS GAs is different from that of the PGAs. During the independent
sampling phase of ISGAs, in each cycle, through the BBDS, each individual
attempts to extract relevant informacion of potential building blocks
whenever its fitness increases. Then, based on the sthema information
accumulated, individuals tontinue to tonstruct more tomplicated building
blocks. However, the individuals of fine-grained PGAs adopt a local hill
climbing algorithm that does not manage to extract relevant information of
potential sthemata.

Genetic Algorithm

243



Soft Computing Techniques

244

The motivation of the two phased ISGAs was partially from the messy
genetic algorithms (mGAs). The two stages employed in the mGA.s are
"prtwordial phase™ and "juxtaPositional phase,” in which the mGAs first
emphasize candidate building blocks based on the guess at the order k of
small sthemata, then just aposing them to build up global optima in the
second phase by "cut" and "splice™" operators. However, in the first phase,
the mGAs still adopt centralized selection to emphasize some candidate
sthemata; this in rum results in the loss of samples of other potentially
ptomising sthemata. By tontrast, IS GAs manage to postpone the emphasis
of candidate building blocks to the latter stage, and highlight the fearure of
independent sampling of building blocks to suppress hitchhiking in the first
phase. As a result, population is more diverse and implicit parallelism can
be fulfiUed to a larger degree. Thereafter, during the second phase, ISGA.s
implement population breeding thtough two mateselecrion sthemes as
discussed in the preceding section. In the following subsections, we present
the key tomponenrs of ISGAs in detail and show the tomparisons between
the expetimental results of the ISGAs and those of several other GAs on two
benchmark test functions.

4b.7.6 .1 Tomponents of ISGAs

ISGAs are divided into two phases: the independent sampling phase and the
breeding phase. We describe them as follows.

Independent sampling phase: To implement independent sampling of
various building blocks, a number of strings are allowed w evolve in parallel
and each individual searthes for a possible evolutionary path entirely
independent of others.

In this section, we develop a new searching strategy, BBDS, for each
individual to evolve based on the accumulated knowledge for potentially
useful building blocks. The idea is to allow each individual to probe
valuable information toncerning beneficial sthemata thtough resting its
fitness increase since each time a fitness increase of a string tould tome from
the presence of useful building blocks on it. In short, by systematically
resting each bit to examine whether this bit is associated with the fitness
increase during each cycle, a cluster of bits tonstituting potentially
beneficial sthemata will be untovered. Iterating this process guarantees the
formation oflonger and longer candidate building blocks.

The operation of BBDS on a string can be described as follows:

1.  Generate an empty set for tollecting genes of candidate sthemata and
create an initial string with uniform probability for each bit until its
fitness exceeds 0. (Retord the current fitness as Fit.)

2.  Except the genes of candidate schemata collected, from lefr to right,
successively all the other bits, one at a time, evaluate the resuhing
string. If the resulting fitness is less than Fit, retord this bit's position
and original value as a gene of candidate sthemata.



3. Except the genes retorded. Randomly generate all the other bits of the
string until the resulting string's fitness exceeds Fit. Replace Fit by
the new fitness.

4.  Goto steps 2 and 3 until some end criterion. The idea of this strategy
is that the tooperation of certain genes (bits) makes for good fitness.

Once these genes tome in sight simultaneously, [hey tontribute a fitness
increase w the string tontaining them; thus any .loss of one of these genes
leads to the fitness decrease of the string. This is essentially what step 2
does and after this step we should be able to tollect a set of genes of
candidate sthemata. Then at step 3, we keep the tollected genes of candidate
sthel) lata fixed and randomly generate other bits, awaiting other building
blocks to appear and bring forth another fitness in crease.

However, step 2 in this strategy only emphasizes the fimess dtop due to a
particular bit. It ignores the possibility that the same bit leads to a new
fitness rise because many loci tould interact in an extremely non linear
fashion. To rake this into actount, the second version ofBBDS is inttoduced
thtough the change in seep 2 as follows.

Step 2: Except the genes of candidate sthemata tollected, from left to right,
successively all the other bits, one at a time, evaluate the resulting string. If
the resulting fitness is less than Fit, retord this bit's position and original
value as a gene of candidate sthemata. If the resulting fitness exceeds Fit,
substitute this bit's 'new' value for the old value, replace Fit by this new
fitness, retord this bit's posicion and 'new' value as a gene of candidate
sthemata, andre-execute this step.

Because this version of BBDS cakes into consideration the fitness increase
resulted from that particular bit, iris expected to cake less time for detecting.
Other versions of RBDS are of tourse possible. For example, in step 2, if
the same bit resuhs in a fitness increase, ir can be retorded as a gene of
candidate sthemata, and the ptocedure tontinues to test the residual bits
yetwithour tompletely traveling back to the first bit to reexamine each bit.
However, the empirical results obtained rhus far indicate that the
performance of this alternative is quire similar to that of the second version.
More expetimental results are needed to distinguish the difference between
them.

The overall implementation of the independent sampling phase of ISGAS is
thtough the ptoposed BBDS to get autonomous evolution of each string
until all individuals in the population have reathed some end criterion.

Breeding phase: After the independent sampling phase, individuals
independendy build up their own evolutionary avenues by various building
blocks. Hence the population is expected to tontain diverse beneficial
sthemata and premature tonvergence is alleviated to some degree. However,
factors such as deception and intompatible sthemata (i.e., two sthemata have
different bit values ar common defining positions) still could lead
individuals to arrive at suboptimal regions of a fitness landscape. Since
building blocks for some strings to leave suboptimal regions may be
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embedded in other srrings, the search for ptoper maring partners and then
exploiting the building blocks on them are critical for overwhelming the
difficulty of strings being trapped in undesired regions. In Huang (2001) the
importance of mate selection has been investigated and the results showed
that the GAs is able to improve their performance when the individuals are
allowed to select maces to a larger degree.

In this section, we adopt two mate-selection sthemes analyzed in Huang
(2001) w breed the population: individuals being assigned mates by natural
selection only and individuals being allowed to actively choose their mares.
Since natural selection assigns strings of the same fitness the same
probability for being parents, individuals of identical fitness yet distinct
string structures are treated equally. This may result in significant loss of
performance improvement after crossover.

We adopt the tournament selection stheme (Mitthell, 1996) as the tole of
natural selection and the mechanism for choosing mates in the breeding
phase is as follows:

During each mating evem, a binary tournament selection with ptobabilicy
1.0 is performed to select the first individual out of the two fittest randomly
sampled individuals according to the following sthemes:

1. Run the binary tournament selection again to choose the partner.

2. Run another two times of the binary tournament selection to choose
two highly fit candidate partners; then the one more dissimilar to the
first individual is selected for mating.

The implementation of the breeding phase is thtough iterating each breeding
cycle which consists of (a) two parents obtained on the basis of the
mateseleccion sthemes above. (b) Two-point crossover operator (crossover
rate 1.0) is applied to these parents. (c) Both parents are replaced with both
offsprings if any of the two offsprings is better than them. Then steps (a),
(b) and (c) are repeated until the population size is reathed and this is a
breeding cycle.

4b.7.6 Real-Coded Genetic Algorithms

The variant of GAs for rea.lvalued optimization that is closest to the original
GA are socalled realcoded GAs. Let us assume that we are dealing with a
free Ndimensional realvalued optimization problem, which means X = RN
without tonstraints. In a real-coded GA, an individual is then represented as
an N-dimensional vector of real numbers:

b= (Xi, ....XN)

As selection does not involve the particular toding, no adaptation needs to
be made- all selection sthemes discussed so far are applicable withour any
restriction. What has to be adapted to £his special structure are the genetic
oper.uions crossover and mutation.



4b.7.6.1 Crossover Operators for Real-Coded GAs

So far, the following crossover sthemes are most common for real-coded
GA:s:

Flat crossover: Given two parents bt = (x!/z, ..., x!/n) and b? = (X1, ...,
x?/N), a vector of random values from the unit interval (AJ , ..., AN) is
chosen and the offspring b = (x{, ... , xfv) is tomputed as a vector of linear
tombinations in the following way (forall i =1, ..., N):

xhi=hi-xb + (1 - M) = X3
BLX-a crossover is an extension of flat crossover, which allows an
offspring allele to be also located outside the interval

[min(x", x%), max(xh, x%)]
In BLX- a crossover, each offspring allele is chosen as a uniformly
disuibuted random value from the imerval

[min (x4, x), max(x, 1, x%) + 1-a]

where | = max(x%i,x%) — min (x%,x%). The parameter a has to be chosen in
advance. For a = 0, BLX-a crossover becomes identical to flat crossover.

Simple crossover is nothing else but classical one-point crossover for real
vectors, i.e., a crossover site k e 2{ 1, ... , N- 1} is chosen and cwo offspring
are created in the following way:

Discrete crossover is analogous to classical uniform crossover for real
vectors. An offspring b of the two parents b® and b? is composed from
alleles, which are randomly chosen either as x%i or x?i.

4b.7.6.2 Mutation Operators for Real-Coded GAs
The following mutation operators are most common for real-coded GAs:

1. Random mutation: For a randomly chosen gene i of an individual b =
(X1, ..., Xn), the allele x; is replaced by a randomly chosen value from
a predefined interval la, b,].

2. Nonuniform mutation : In nonuniform mutation, the possible impact
of mutation decreases with the number of generations. Assume that
fmax is the predefined maximum number of generations. Then, with
the same setup as in random mumion, the allele x; is replaced by one
of the two values

= x1+A (t,b;- x1)

if=x;-A (r,x;- a;)
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The choice as to which of the two is taken is determined by a random
expetiment with two outtomes that have equal probabilities 1/2 and 1 /2. The
random variable A (t, xX) determines a mutation step from the range 10, xI
in the following way:

D. (t,x) = x(J-),]JHd*me*1J")

In this formula, A is a uniformly distributed random value from the unit
interval. The parameter r determines the influence of the generation index
ton the disrribution of mutation step sizes over the imerval 10,xI.

4B.9 HOLLAND CLASSIFIER SYSTEMS

A Holland classifier system is a classifier system of the Michigan type
which processes binary messages of a fixed length thtough a rule base
whose rules are adapted actording to response of the envitonment.

4b.9.1 The Production System

First of all, the tommunication of theproduction system with the
envitonment is done via an arbitrarily long list of messages. The derectors
translate responses from the environment two binary messages and place
them on the message list which is then scanned and changed by the rule
base. Finally, the effectors translate output messages two actions on the
envitonment, such as forces or movements.

Messages are binaty strings of the same length k. More formally, a message
belongs w {0, I}k. The rule base consists of a fixed number (m) of rules
(classifiers) which tonsist of a fixed number (r) of conditions and an acrion,
where both conditions and actions are strings oflength k over the alphabet
{0, 1, *}.The asterisk plays the tole of a wildcard, a ‘don't care' symbol.

A condition is matthed if and only if there is a message in the list which
matthes the tondition in all nonwildcard positions. Moreover, conditions,
except the first one, may be negated by adding a'-' prefix. Such a prefixed
tondition is satisfied if and only if there is no message in the list which
marthes the string associated with the tondition. Finally, a rule fires if and
only if all the conditions are satisfied, i.e., the conditions are tonnected with
AND. Such 'firing' rules tompere to put their action messages on the
message list.

In the action pans, the wildcard symbols have a different meaning. They
take thetole of 'pass through' element. The outpm message of a firing rule,
whose action parr tontains a wildcard, is composed from the actually the
reason why llegations of the first conditions are not allowed. More formally;
the outgoing message m is defined as

:{a[i] S i=1,.. .k

} mli] ifafil=*

~

where a is the action part of the classifier and m is the.(llessage which
matthes the first tondition. Formally, a classifier is a suing of the form

Condy,|’-|| Condy, ...... ,|’-¢ Cond,/Action



where the brackets shouJd express the optionalicy of the "-" prefixes.
Depending on the toncrete nee¢; of the task to be solved, it may be desirable
to allow messages to be preserved for the next step. More specifically, if a
message is not interpreted and removed by the effectors interface, it can
make another classifier fire in the next step. In practical applications, this is
usually actomplished by reserving a few bits of the messages for identifying
the origin of the messages (a kind of variable index called tag).

Tagging offers new opportunities to transfer information about the current
step intothe next step simply by placing ragged messages on the list, which
are not interpreted, by the output interface. These messages, which
obviously tontain information about the previous step, can support the
decisions in the next step. Hence, apptopriate use of rags permits rules to be
toupled to act sequenrially. In some sense, such messages are the memory
of the system.

A single execmion cycle of the production system consists of the following
steps:

1.  Messages from the environment are appended tothe message list.

2. All the conditions of all classifiers are thecked against the message
list w obtain the set of firing rules.

3. The message list is erased.

4.  The firing classifiers participate in a tompetition to place their
messages on the list.

5.  The winning classifiers place their actions on the list.
6.  The messages directed to the effectors are executed.

This ptocedure is repeated iteratively. How step 6 is done, if these messages
are deleted or nor, and so on, depends on the toncrete implementation. It is,
on the one hand, possible to choose a representation such that the effectors
can interpret each output message. On the other hand, it is possible to direct
messages explicitly to the effectors with a special tag. If no messages are
directed to the effectors, the system is in a iliinking phase.

A classifier Rl is called tonsumer of a classifier R2 if and only if there is a
message mO which fulfills at least one ofRI's conditions and has been
placed on the list by R2. Tonversely, R2 is called a supplier of RI.

4b.9.2 The Bucket Brigade Algorithm

As already mentioned, in each time step t, we assign a strength value ui: to
each classifier Ri. This strength value represents the torrectness and
importance of a classifier. On the one hand, the strengrh value influences
the chance of a classifier to place its action on the output list. On the other
hand, the suength values are used by the rule distovery system, which we
will soon discuss.

In Holland classifier systems, the adaptation of the strength values
depending on the feedback (payoff) from the envitonment is done by the
so.called bucket brigade algorithm. It can be regarded as a simulared
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economic system in which various agents, here the classifiers, participate in
an auction, where the chance to buy the right to post the action depends on
the strength of the agents.

The bid of classifier Ri at timet is defined as
B;,, =CLrJ;,,S;

where CL E [0, 1] is a learning parameter, similar to learning rates in
anificial neural nets, and s,- is the specificity, the number of nonwildcard
symbols in the tondition pan of the classifier. If CL is chosen small, the
system adapts slowly. If it is chosen too high, the strengths rend to oscillate
chaotically. Then the rules have to tompete for the right for placing
their"output messages on the list. In the simplest case, this can be done by
a random expetiment like the selection in a genetic algorithm. For i:h
bidding classifier it is decided randomly if it wins or not, where the
probability that it wins is proportional to its bid:

: B,
P[Rwins] = <>—

2. B,

jeSati

In rhis equation, Sarl is the set of indices of all classifiers which are satisfied
at timet. Classifiers which get the right to post their output messages are
called winning classifiers.

Obviously, in this approach more than one winning classifier is allowed. C
f tourse, or her selection sthemes are reasonable, for instance, the highest
bidding agent wins alone. This is necessary to avoid the conflict between
two winning classifiers. Now let us discuss how payoff from the
envitonment is disrtibuted and how the strengths are adapted. For this
purpose, let us denme the set of classifiers, which have supplied a winning
gent R; in step t with 5;,1¢ Then the new strength of a winning agent is
reduced by its bid and increased by its portion of the payoff P1 received
&om the environment:

P
Mg = M T —+ Bi,t
Wt

where w1 is the number of winning agents in the actual time step. A winning
agent pays its bid to its suppliers which share the bid among each other
equally in the simplest case:

B.

i,
lui,m-l - lui,t +

| S,-,; | for pll Ry€Si¢

If a winning agent has also been active in the previous step and supplies
another winning agent, the value above is additionally increased by one



portion of the bid the tonsumer offers. In the case that two winning agents
have supplied each other mutually, the portions of the bids are exchanged
in the above manner. The SHengrhs of all other classifiers Rm which are
neither winning agents nor suppliers of winning agents, are reduced by a
certain factor (they pay a rax):

Un1+1 =Nn1 (1-T)

T is a small value lying in the interval [0, 1]. The intention of taxation is to
punish classifiers which never contribute anything to the output of the
system. With this concept, redundant classifiers, which never become
active, can be filtered out.

The idea behind credit assignment in general and bucket brigade in
particular is w increase the strengths of rules, which have ser the stage for
later successful actions. The problem of determining such classifiers, which
were responsible for conditions under which it was later on possible to
receive a high payoff, can be very difficult. Consider, for instance, the game
of thess again, in which very early moves can be significant for a late
success or failure. In fact, the bucker brigade algorithm can solve this
problem, although strength is only transferred to the suppliers, which were
active in the previous step. Each time the same sequence is activated,
however, a little bir of the payoff is transferred one step back in the
sequence. It is easy to see that repeated successful execution of a sequence
increases the mengrhs of all involved classifiers.

60 |l
-~ | 20 |\ | 20 |
100 100 140

60 | Payoff
172

First execution
Payoff

20

Strengths 100 100

Second execution

- | 20 20 20 n
a0 80
100

Sirengths 104 100

108

Figure 4b.32 The bucker brigade principle.

Figure 4b.32 shows a simple example of how the bucker brigade algorithm
works. For simplicity, we consider a sequence of five classifiers which
always bid 20% of their strength. Only after the fifth step, after the
activation of the fifth classifier, a payoff of 60 is received. The further
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development of the strengths in this example is shown in the Table IS-7. It
is easy to see from this example that the reinforcement of the strengths is
slow at the beginning, but it accelerates later. Exactly this property
tontributes much to the robustness of classifier systems - they tend to be
cautious at the beginning, trying not to rush conclusions, but, after a certain
number of similar situations, the system adopts the rules more and more.

It might be clear that a Holland classifier system only works if successful
sequences of classifier activations are observed sufficiently often.
Otherwise the bucket brigade algorithm does not have a chance to reinforce
the strengths of the successful sequence ptoperly.

4h.9.3 Rule Generation

The purpose of the rule distovery system is to eliminate low-firred rules and
to replace them by hopefully better ones. The fitness of a rule is simply its
strength. Since the classifiers of a Holland classifier system themselves are
strings, the application of a GA to the problem of rule induction is
straightforward, though many variants are reasonable. Almost all variants
have one thing in common: the GA is nor invoked in each time step, but
only every nth step, where 11 has to be set such that enough information
about the performance of new classifiers can be obtained in the meantime.
A. Geyer-Schuh., for instance, suggests the following ptocedure, where the
strength of new classifiers is initialized with the average strength of the
current rule base:

1.  Select a subpopulation of a certain size at random.

2. Compute a new set of rules by applying the genetic operations-
selection, crossingover and muration - to this subpopularion.

3. Merge the new sub population with the rule base omitting duplicates
and replace the worst classifiers.

Table 9-7 An example for repeated propogation of payoffs

Strength after the

3rd 100.00 100.00 101.60 120.80 172.00
4th  100.00 100:32 103.44 136.16 197.60
5th  100.06 101.34 111.58 92.54 234.46
6th  100.32 103.39 119.78 168.93 247.57

10" 106.56 124.17 164 44  224.84 278.52

25th 29.86 253.20 280.36 294.52 299.24

execution of the sequence




This process of acquiring new rules has an interesting sideffect. Iris more
rhan just the exchange of parts of conditions and actions. Since we have nor
stared restrictions for manipulating rags, the GA can retombine parts of
already existing rags m invent new tags. In the following. rags spawn related
rags establishing new touplings. These new tags survive if they tonrribute
to useful interactions. In this sense, the GA additionally creates experience-
based internal structures autonomously.

4B.10 GENETIC PROGRAMMING

Genetic programming (GP) is also part of the gtowing set of evolutionary
algorithms that apply the search principles of natural evolution in a variety
of differem problem domains, notably parameter optimization.
Evolutionary algorithms and GP in particular, follow Darvin's principle of
differential natural selection. This principle states that the follow"ing
preconditions must be fulfilled for evolution to occur via (natural) selection:

1. There are entities called individuals which form a population. These
entities can reproduce or can be reproduced.

2. There is herediry in reproduction, rhat is to say that individuals
produce similar offspring.

3. In the tourse of reproduction, there is variery which affects the
likelihood of survival and therefore of reproducibility of individuals.

4.  There are finite resources which cause the individuals to tompete.
Owing to over reproduction of individuals nor all can survive the
struggle for existance. Differential natural selections will exert a
tontinuous pressure towards improved individuals.

In the long run, GP and other evolutionary computing technologies will
revolutionize program devel opmem. Present methods are not mamre
enough for deploymem as automatic programming systems. Nevertheless,
GP has already made intoads two automatic programming and will tontinue
to do so in the foreseeable fmure. Likewise, the application of evolution in
machine-learning problems is one of the potentials we will exploit over the
coming decade.

GP is part of a more general Held known as evolutionary tomputation.
Evolutionary tomputation is based on the idea that basic concepts of
biological reproduction and evolution can serve as a metaphor on which
computer-based, goal-directed problem solving can be based. The general
idea is that a computer program can maintain a population of artifacts
represented using some suitable computer-based data structures. Elements
of that population can then mare, mutate, or otherwise reproduce and
evolve, directed by a fitness measure that assesses the quality of the
population with respect to the goal of the task at hand.

Genetic Algorithm

253



Soft Computing Techniques

254

GP is an automated method for creating a working computer program from
a high-level problem statement of a problem. GP starts from a high-level
statement of ‘what needs to be done' and automarically creates a computer
program to solve the problem.

One of the central challenges of computer science is to get a computer to do
what needs to be done, without telling it how to do it. GP addresses this
challenge by ptoviding a method for automatically creating a working
tompmer program from a high-level problem statement of the problem. GP
achieves this goal of automatic programming (also sometimes called
program synthesis or program induction) by genetically breeding a
population of computer programs using the principles of Darwinian natural
selection and biologically inspired operations. The operations include
reproduction, crossover, mutation and architecture-altering operations
patterned after gene duplication and gene deletion in nature.

GP is a domain-independent method that genetically breeds a population of
computer programs to solve a problem. Specifically, GP iteratively
transforms a population of computer programs into a new generation of
programs by applying analogs of naturally occurring genetic operations.
The genetic operations include crossover, mutation, reproduction, gene
duplication and gene deletion. GP is an excellent problem solver, a superb
function apptoximator and an effective tool for writing functions to solve
specific tasks. However, despite all these areas in which it excels, it still
does not replace programmers; rather, it helps them. A human still must
specify the fitness function and identify the problemto which GP should be
applied.

4b.10.1 Working of Genetic Programming

GP typically starts with a population of randomly generated tom purer
programs composed of the available programmatic ingredients. GP
iteratively transforms a population of computer programs into a new
generation of the population by applying analogs of naturally occurring
genetic operations. These operations are applied to individual(s) selected
from the population. The individuals are ptobabilisrically selected to
participate in the genetic operations based on their fitness (as measured by
the fltness measure provided by the human user in the third preparatory
step). The iterative transformation of the population is executed inside the
main generational loop of the run of G P.

The executional steps of GP (i.e., the flowchart of GP) are as follows;

1.  Randomly create an initial population (generation 0) of individual
computer programs composed of the available functions and
terminals.



(@)

(b)

(©)

(d)

Iteratively perform the following subsreps (called a genemtion) on the
population until the termination criterion is satisfied:

* Execute each program in the population and ascertain its fitness
(explicitly or implicitly) using the problem's fitness measure.

*  Select one or two individual program(s) from the population
with a probability based on fitness (with reselecrion allowed) to
participate in the genetic operations in the next subsrep.

* Create new individual program(s) for the populaiion by
applying the following genetic operations with specified
probabilities:

Reproduction: Topy the selected individual program to the new
population.

Crossover: Create new offspring program(s) for the new population
by recombining randomly chosen parts from two selected programs.

Mutation: Create one new offspring program for the new population
by randomly mutating a randomly chosen part of one selected
program.

Archirecrure-altring operation - Choose an architecture altering
operation from the available repertoire of such operations and create
one new offspring program for the new population by applying the
chosen architecture-altering operation to one selected program.

After the termination criterion is satisfied, the single best program in
the population produced during the run (the besr-so-far individual) is
harvested and designated as the result of the run. If the run is
successful, the result may be a solution (or approximate solution) to
the problem.

GP is problem-independent in the sense that the flowchart specifying the
basic sequence of executional steps is not modified for each new run or each
new problem. There is usually no discretionary human intervention or
interaction during a run of genetic programming (although a human user
may exercise judgment as to whether to terminate a run).

Figure 9-47 below is a flowchart showing the executional steps of a run
ofGP. The flowchart shows the genetic operations of crossover,
reproduction and mutation as well as the architecrurealrering operations.
This flowchart shows a two-offspring version of the crossover operation.
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Figure 4b.33 Flowchart of genetic programming.

The flowchart of GP is explained as follows: GP starts with an initial
population of computer programs composed of functions and terminals
apptopriate to the problem. The individual programs in the initial population
are typically generated by recursively generating a rooted point-labeled
program tree composed of random choices of the primitive functions and
terminals (provided by the human user as part of the first and setond
preparatory steps, a run ofGP). The initial individuals are usually generated
subject to a pre-established maximum size (specified by the user as a minor
parameter as pan of the founh preparatory step}. In general, the programs
in the population are of different sizes (number of functions and terminals)
and of different shapes (the particular graphical arrangement of functions
and terminals in the program tree).



Each individual program in the population is executed. Then, each
individual program in the population is either measured or tompared in
rerms of how well it performs the task at hand (using the fitness measure
provided in the third preparatory step). For many problems, this
measurement yields a single explicit numerical value called fitness. The
fitness of a program may be measured in many different ways, including,
for example, in terms of the amount of error between its output and the
desired output, the amount of time (fuel, money, etc.) required to bring a
system to a desired target stare, the accuracy of the program in retognizing
patterns or classifying objects into classes, the payoff that a game-playing
program produces, or the tompliance of a tomplex structure (such as an
antenna, circuit, or tonttoller) with user-specifted design criteria. The
execution of the program sometimes returns one or more explicit vaJues.
Alternatively, the execution of a program may tonsist only of side effecrs
on the stare of a world (e.g., a robot's actions). Alternatively, the execution
of a program may produce both return values and side effects.

The fitness measure is, for many practical problems, mulriobjecrive in the
sense that it tombines two or more differem elements. The different
elements of the fitness measure are often in tompetition with one another to
some degree.

For many problems, each program in the population is executed over a
representative sample of different fituess cases. These fitness cases may
represent different values of the program's inpur(s), differem initial
conditions of a system, or different envitonments. Sometimes the fitness
cases are tonstructed probabilistically.

The creation of the initial random population is, in effect, a blind random
search of the search space of the problem. It provides a baseline for judging
future search effons. Typically, the individual programs in generation 0 all
have exceedingly poor fitness. Nevertheless, some individuals in the
population are {usually) more fir than odters. The difference. in fitness are
dten exploited by GP. GP applies Darwinian selection and the genetic
operations to create a new population of offspring programs from the
current population.

The genetic operations include crossover, mutation, reproduction and the
architecture-altering operations. These genetic operations are applied to
individual(s) that are ptobabilistically selected from the population based
on fitness. In this ptobabilistic selection process, better individuals are
favored over inferior individuals. However, the best individual in the
population is not necessarily selected and the worst individual in the
population is not necessarily passed over.

After the genetic operations arc performed on the current population, the
population of offspring (i.e. the new generation) replaces the current
population {i.e., the now-old generation). This iterative process of
measuring fitness and performing the genetic operations- is reeated over
many generations.
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The run of GP terminates when the termination criterion (as provided by the
fifth preparatory step) is satisfied. The outcome of the run is specified by
the method of result designation. The best individual ever encountered
during the run (i.e., the best-so-far individual) is typically designated as the
result of the run.

All programs in the initial random population {generation 0) of a run of GP
are symmetrically valid, executable programs. The genetic operations that
are performed during the run (i.e., crossover. mutation, reproduction and the
architecture-altering operations) are designed to produce offspring that art:
syntactically valid, executable programs. Thus, ever individual created
during a run of genetic programming (including, in pmicular, the best-of-
run individual) is" syntactically valid, executable program.

4b.10.2 Characteristics of Genetic Programming

GP now toutinely delivers high-return human-competitive machine
intelligence, the next four subsections explain what we mean by the terms
human-competitive, high-return, routine and machine intelligence.

4b.10.2.1 Human-Competitive

In attempting to evaluate an automated problem-solving method, the
question arises as to whether there is any real substance tothe demonstrative
problems that are published in connection with the method. Demonstrative
problems in the fields of artificial intelligence and machine learning are
often connived to problems that circulate exclusively inside academic
groups that study a particular methodology. These problems typically have
little relevance to any issues pursued by any scientist or engineer outside
the fields of artificial intelligence and machine learning.

In his 1983 talk entitled "Al: Where It Has Been and Where It Is Going,"
machine learning pioneer Arthur Samuel said:

The aim is ...... to get machines to exhibit behaviour, which of done by
human, would be assumed to involve the use of intelligence.

Samuel’s statement reflects the common goat articulated by the pioneers of
the 1950s in the fields of artificial intelligence and machine learning.
Indeed, getting machines to produce human like results is the reason for the
existence of the fields of artificial intelligence and machine learning. To
make this goal more concrete, we say that a result is “human-competitive”
if it satisfies one or more of the eight criteria in Table 9-8. These eight
criteria have the desirable attribute of being at arms-length from the fields
of artificial intelligence, machine learning and GP. That is a result cannot
acquire the rating of ‘human-competitive’ merely because it is endorsed by
researchers inside the specialized fields that are attempting to create
machine intelligence, machine learning and GP. That is, a result cannot
acquire the rating of ‘human-competitive’ merely because it is endorsed by
researchers inside the specialized fields that are attempting to create
machine intelligence. Instead a result produced by an automated method



must earn the rating of human-competitive dependent of the fact that it was
generated by an automated method.

4b.10.2.2 High-Return

What is delivered by the accrual automated operation of an artificial method
in comparison to the amount of knowledge, information, analysis and
intelligence that is pre-supplied by the human employing the method?

We define the Al ratio (the ‘artificial-to-intelligence’ ratio) of a problem-
solving method as the ratio of that which is delivered by the automated
operation of the artificial method to the amount of intelligence that is
supplied by the human applying the method to a particular problem.

Table 9-8 Eight criteria for saying that an automatically created research
is human-competitive

A Theresult was patented as an invention in the past, is an improvement
over a parented invention or would quality today as a permeable new
invention.

B Theresultis equal to or beuer than a result that was accepted as a new
scientific result at the time when it was published in a peer-reviewed
scientific journal.

C  The result is equal to better than a result that was placed into a
database or archive of results maintained by an internationally
recognized panel of scientific experts.

D  The result is publishable in its own right as a new scientific result-
independent of the fact that the result was mechanically created.

E  The result is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been a
succession of increasingly better human-created solutions.

F  The result is equal to or better than a research that was considered an
achievement in its field at the time it was first discovered.

G  The result solves a problem of indisputable difficulty in its field.

The result holds its own or wins a regulated tom petition involving
human contestants (in the form of either live human players or human-
written computer programs).

The Al ratio is especially pertinent to methods for getting computers to
automatically solve problems because it measures the value added by the
artificial problem-solving method. Manifestly, the aim of the fields of
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artificial intelligence and machine learning is to generate human-
competitive results with a high Al ratio.

Deep Blue: An Arnficin/ Ime//igence Milestone (Newborn, 2002) describes
the 1997 defeat of the human world thess champion Garry Kaspatov by the
Deep Blue computer system. This commanding example of machine
indigence is clearly a human-competitive result (by virtue of satisfying
criterion H of Table 9-8). Feng-Suing Hsu (the system architect and chip
designer for the Deep Blue project) recounts the intensive work on the Deep
Blue project at IBM's T. J. Watson Research Centre between 1989 and 1997
{Hsu, 2002). The team of scientists and engineers spent years developing
the software and the specialized computer chips to efficiently evaluate large
numbers of alternative moves as part of a massive parallel state-space
search. In short, the human developers invested an enormous amount of "1"
in the project. In spite of the fact that Deep Blue delivered a high {human-
competitive) amount of "A," the project has a low return when measured in
terms of the A-to-I ratio.

The aim of the fields of artificial intelligence and machine learning is to get
computers to automatically generate human-competitive results with a high
Al ratio- not to have humans generate human-competitive results
themselves.

4h.10.2.3 Routine

Generality is a precondition to what we mean when we say that an
automated problem-solving method is “combine” Once the generality of a
method is established, "routineness” means that relatively little human
effort is required to get the method to successfully handle new problems
within a particular domain and to successfully handle new problems from a
different domain. The ease of making the transition to new problem lies at
the hearr of what we mean by routine. A problem-solving method cannot be
considered routine if its executional steps must be substantially augmented,
deleted, rearranged, reworked or customized by the human user for each
new problem.

4b.10.2.4 Machine Intelligence

We use the term machine intelligence to refer to the broad vision articulated
in AJan Turing's 1948 paper emided "Intelligent Machinery" and his 1950
paper entitled "Computing Machinery and Intelligence."

In the 1950s, the terms machine intelligence, artificial intelligence and
machine learning all referred to the goal of getting "machines to exhibit
behaviour, which if done by humans, would be assumed to involve the use
of intelligence" {to again quote Arthur Samuel).

However, in the intervening five decades, the terms “artificial intelligence™
and "machine learning" progressively diverged from their original goal-
oriented meaning. These terms are now primarily associated with particular
methodologies for attempting to achieve the goal of getting computers to
automatically solve problems. Thus, the term "artificial intelligence™ is



today primarily associated with attempts to get computers to solve problems
using methods that rely on knowledge, logic, and various analytical and
mathematical methods. The term "machine learning” is today primarily
associated with attempts to get computers to solve problems that use a
particular small and somewhat arbitrarily chosen set of methodologies
(many of which are statistical in nature). The narrowing of these terms is in
marked contrast to the broad field envisioned by Samuel at the time when
he toned the term "machine learning™ in the 1950s, the thatter of the original
founders of the field of artificial indigence, and the broad vision
encompassed by Turing's term "machine intelligence.” Of course, the shift
in focus from broad goals to narrow methodologies is an all too common
sociological phenomenon in academic research.

Turing's term "machine intelligence™ did not undergo this arteriosclerosis
because, by accident of history, it was never appropriated or monopolized
by any group of academic researchers whose primary dedication is to a
particular methodological approach. Thus, Turing's term remains catholic
today. We prefer to use Turing's term because it still communicates the
broad goal of getting computers to automatically solve problems in a
human-like way. ,

In his 1948 paper, Turing identified three broad approaches by which
human competitive\'e machine intelligence might be achieved: The first
approach was a logic-driven search. Turing's interest in this approach is not
surprising in light of Turing's own pioneering work in the 1930s on the
logical foundations of computing. The second approach for achieving
machine intelligence was what he called a "cultural search™ in which
previously acquired knowledge is accumulated, stored in libraries and
brought to bear in solving a problem - the approach taken by modern
knowledge-based expert systems. Turing's first two approaches have been
pursued over the past 50 years by the \'past majority of researchers using
the methodologies that are today primarily associated with the term
“artificial inelegance."

4b.10.3 Data Representation

Without any doubt, programs can be considered as strings. There are,
however, two important limitations which make it impossible to use the
representations and operations from our simple GA:

l. It is mostly inappropriate to assume a fixed length of programs.

2. The probability to obtain syntactically correct programs when
applying our simple initialization crossover and mutation procedures
is hopelessly low.

Lt is, therefore, indispensable to modify the data representation and the
operations such that syntactical correctness is easier to guarantee. The
common approach to represent programs in GP is to consider programs as
trees. By doing so, initialization can be done recursively, crossover can be
done by exchanging sub trees and random replacement of sub trees can
serve as mutation operation.
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Since their only construct are nested lists programs in LISP-like languages
already have a kind of tree-like Structure. Figure 9-48 shows an example
how the function 3x + sin(x + I) can be implemented in a LISP like language
and how such an LISP-like Function can he split up into a tree. Let can be
noted that the tree n: presentation corresponds to the nested lists. The
program consists of tonic expressions, like variables and constants, which
act as leave nodes while functions act as no leave nodes

Figure 4b.34 The tree representation of 3x+ sin (x + 1).

There is one important disadvantage of the LISP approach-iris difficult to
introduce type checking. In case of a purely numeric function like in the
above example, there is no problem at all. However, it can be desirable to
process numeric data, .mings and logical expressions simultaneously. This
is difficult to handle if we use a tree representation like that in Figure 948.

A. Geyer-Schulz bas proposed a very general approach, which overcomes
this problem allowing maximum flexibility. He suggested representing
programs by their syntactical derivation trees with respect to a recursive
‘definition of underlying language in Backus-Naur form (BNF). This works
for any ton text-free language. He is far beyond the stop of this lecture to go
into much derail about formal languages. We will explain the basics with
the help of a simple example. Consider the following language which is
suitable for implementing binary logical expressions:

S = <exp>;
<exp> = (var) | “(“<neg> <exp>")" | “(“<exp> <bin>
<eXp>”)”;
<Var> := “X” | ‘Cy’ﬁ;

<neg> :=“NOT”
<bin> = “AND” | “OR”;

The BNF description consists of so-called syntactical rules. Symbols in
angular brackets < > are called nomerminal symbols, i.e. symbols which
have to be expanded. Symbols between quotation marks are called terminal



symbols, i.e., they cannot be expanded any further. The first rule S:=<exp>
defines the staining symbol. A BNF rule of the general shape,

< non terminal > := < derivl > | < deriv2> | ... | < derivll >;

defines how a non-terminal symbol may be expanded, where the different
varies are separated by vertical bars.

In order to get a feeling of how to work with the BNF grammar description,
we will now show step-by-step how the expression (NOT (x OR y)) can be
derivated from the above language. For simplicity, we omit quotation marks
for the terminal symbols:
1. We have to begin with the start symbol: <exp>
2. We replace hexpi with the second possible derivation:

<exp> — (<neg><exp>)

3. The symbol <neg> may only he expanded with the terminal symbol
NOT:

(<neg> <exp>) — (NOT <exp>i
4. Next. we replace: <exp> with the third possible derivation:
(NOT <exp>) — (NOT {<exp><bin><exp>))
5. We expand the second possible derivation for <bin>:
(NOT (<exp> <bin> <exp>)) — (NOT (<exp> OR <exp>))
6.  The first occurrence of <exp> is expanded with the first derivation:
(NOT (<exp> OR <exp>)) — (NOT (<var> OR <exp>))

7. The .second occurrence of <exp> is expanded with the first
derivation, too:

(NOT ( <virr> OR <exp>)) — (NOT ( <var> OR <var>))

8. Now we replace the first <var> with the corresponding first
alternative:

(NOT ( <var> OR <var>)) — (NOT tx OR <var>))

9.  Finally, the last non-terminal symbol is expanded with the second
alternative:

(NOT ix OR <var>)) — (NOT tx OR y))

Such a recursive derivation has an inherent tree structure. For the above
example, this derivation tree has been visualized in Figure 4a.49. The syntax
of modern programming languages can be specified in BNF. Hence, our
data model would be applicable to all of them. The question is whether this
is useful. Koza’s hypothesis includes that the programming language has to
be chosen such that the given problem is solvable. This does not necessarily
imply that we have no choose the language such that virtually any solvable
problem can be solved. It is obvious that the size of the search grows with
the complexity of the language. We know that the size of the search space
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Soft computing Techniques  INfluences the performance of a GA —the larger the language. We know that
the size of the search space influences the performance of a GA — the larger
the slower.

It is therefore, recommendable to restrict the language to necessary
constructs and to avoid superfluous constructs. Assume, for example, that
we want to do symbolic regression, but we are only interested in
polynomials with integer coefficients. For such an application, it would be
an overkill to introduce rational constants or to include exponential
functions in the language. A good choice could be the following.

S := <func>;
<func> = (var) | “(“<const>) | “(“<func> <bin> <func>")";
<var> =g
<const> := <int>| <const> <int>;
<int> =%0"1...1“9”;
<bin> = | e | s

For representing rational functions with integer coefficients, it.is sufficient
to add the division symbol "f" to the possible derivations of the binary
operator <bin>.

<exp>

2nd of 3 possible derivations

| "(" |-=:neg> -:exp::-l "y

1st of 1 3rd of 3 possible derivations

| (" |<exp>| <bin> ‘ <exp> | ")"

1st of/ 2nd of 2 1stof 3

r
"OR"

1stof 2 2nd of 2

Figure 4b.35 The derivation tree of (NOT (x ORy)).

Another example: The following language could be appropriate for
discovering trigonometric identities:
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S .= <func>;

<func> = (var) | “(“<const>) | <trig> “(“<func>") |
“(“<func> <bin> <func>")";

<var> =“X";

9
<C0nst> :: ‘6099 | C‘l’) | “T[”;
<trig> = “sin” | “cos”;

<bin> :: 66+’9 | CC_” | '|+37;

There are basically two different variants of how w generate random
programs with respect to a given BNF grammar:

l. Beginning from the starting symbol, it is possible to expand
nonterminal symbols recursively, where we have to choose randomly
if we have more than one alternative derivation. This approach is
simple and fast, but has some disadvantages: First, it is almost
impossible to realize a uniform distribution. Second, one has to
implement some constraints with respect to the depth of the derivation
trees in order to avoid excessive growth of the programs. Depending
on the complexity of the underlying grammar, this can be a tedious
task.

2. Geyer-Schulz has suggested to prepare a list of all possible derivation
trees up to a certain depth and to select from this list randomly
applying a uniform distribution. Obviously, in this approach, the
problems in terms of depth and the resulting probability distribution
are elegantly solved, but these advantages go along with considerably
long computation times.

4b.10.3. 1 Crossing Programs

It is trivial to see that primitive string-based crossover of programs almost
never yields syntactically correct program. Instead, we should use the
perfect syntax information a derivation tree provides. Already in the USP
times of Gp, sometime before the BNF-based representation was known,
crossover was usually implemented as the exchange of randomly selected
subtrees. In case that the subtrees (sub expressions) may have different
types of return values (e.g., logical and numerical), it is not guaranteed iliar
crossover preserves syntactical correctness.

The derivation tree based representation overcomes this problem in a very
elegant way. If we only exchange subtrees which start from the same
nonterminal symbol, crossover can never violate syntactical correctness. In
this sense, the derivation tree model provides implicit type checking. In
order to demonstrate in more detail how this crossover operation works, let
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the following expressions:

(NOT (x ORYY))
((NOT x) OR (x AND y))

Figure 15-50 shows graphically how the two children (NOT (x OR (x AND
y))) ((NOT x) OR y) are obtained.

Parents

> <exp> )] [ J<exp>] <bin> [<exp> [ "]

["NOT"] (" [ <exp> <bin> [<exp>] )| [ J<neg>[<exp>]"y'] ["OR"] [ [<exp>] <bin> [ <exp>] )]
/ \
[evar> | ["OR" | [<var] ["NOT"] [<var | [var>] [AND"| [<var> |
L < R
<exp= <exp:
neg> [ <exp> [ )" | [ J<exp>] <bin> [ <exp>[ )" |
mor]  [Tleslewn @7 ((eslesT] [or] [
[<var> | [FOR"] [ <exp>[ <bin> [<exp>] "' | ["NOT"]
[cvar | [aND"|  [<var |
Children

Figure 4b.36 An example for crossing two binary logical expressions.
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<exp> <exp>

-/ <negs| <exp> : -/ <neg> | <exp> :

|"NOT"‘ ‘(| <exp> | bin= | exp> " | “'NOT"| ‘(‘ <exp> ‘ <bin> ‘ exp> ") ‘
2nd of 3
[va]  [or ] [~gf] [wvar-]  ["or"] [ [<neg=[<exp=]")"]
0 | 7\
, N 1stof 1 1stof 3
’ N
woT

Figure 4b.37 An example for making a derivation tree
4b.10.3.2 Mutating Programs

We have always considered mutation as the random deformation of a
chromosome. It is therefore, not surprising that the most common mutation
in genetic programming is the random replacement of a randomly selected
subtree. The only modification is that we do not necessarily start from the
start symbol but from the nonterminal symbol at the root of the subtree we
consider. Figure 4a.51 shows as example where in the logical expression
(NOT (x OR y)). Te variable y is replaced by (NOT y).

4h.10.3.3 The Fitness Function

There is no common recipe for specifying an appropriate fitness functions
which wrongly depends on the given problem. It is, however, worth
emphasizing that it is necessary to provide enough information to guide the
GA to the solution. More specifically, it is not sufficient to define a fitness
function which assigns 0 to a program which does not solve the problem
and 1 to a problem. Such a fitness function would correspond to needle-in-
haystack problem. In the sense a proper fitness measure should be a gradual
concept for judging the correctness of programs.

In many applications, the fitness function is based on a comparison of
desired and actually obtained output. Koza, for instance, uses the simple
sum of quadriatic errors for symbolic regression and the discover of
trigonometric identities:

N
. 2
f(F) = E (yi — F(x;))
i=1
In this definition, F is the mathematical function which corresponds to the

program under evaluation. The list (xi, y), 1 <1 < N consists of reference
pairs — a desired output y, is assigned to each input 1. Check the samples
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have to be chosen such that the considered input space is covered
sufficiently well.

Numeric error-based fitness functions usually imply minimization problem.
Some other applications may imply maximization tasks. There are basically
two well-known transformation which allow to standardize fitness functions
such that always minimization or maximization tasks are obtained.

Consider an arbitrary “raw” fitness function f. Assuming that the number of
individuals in the population is not fixed (m, at time t), the standardized
fitness is computed as

m .
fs(bit) = f(big) — 1}1_5‘]{;{ (bjt)
It f has to be maximized and as
mt

fs(bir) = f(big) — 1L f(bj)

If f has to be minimized. One possible variant is to consider the best
individual of the last k generations instead of only considering the actual
generation.

Obviously, standardized fitness transform’s any optimization problem into
a minimization task. Roulette wheel selection relies on the fact that the
objective is maximization of the fitness function. Koza has suggested a
simple transformation such that, in any case, a maximization problem is
obtained.

With the assumptions of previous definition, the adjusted fitness is
computed as

iy

fA(bLt) = 1?:511\ fs(bj:t) - fs(bj,t)-

Another variant of adjusted fitness is defined as

1
1 + f‘S(bj;t) .

falbie) =

For applying GP w a given problem, the following points have to be
satisfied.



3.

An appropriate fitness function, which provides enough information
to guide the GA to the solution (mostly based on examples).

A syntractical description of a programming language, which contains
as much elements as necessary for solving the problem.

An interpreter for the programming language.

The main application areas of GP include: Computer Science, Science,
Engineering, and entertainment.

4B.11 ADVANTAGES AND LIMITATIONS OF GENETIC
ALGORITHM

The advantages of GA are as follows:

1
2
3
4.
5
6

Parallelism.

Liability.

Solution space is wider.

The fitness landscape is complex.

Easy to discover global optimum.

The problem has multi objective function.

The limitations of GA are as follows:

1.

2
3.
4

The problem of identifying fitness function.
Definition of representation for the problem.
Premature convergence occurs.

The problem of choosing various parameters such as the size of the
population, mutation rare, crossover rare, the selection method and its
strength.

4B.12 APPIICATIONS OF GENETIC ALGORITHM

An effective GA representation and meaningful fitness evaluation are the
keys of the success in GA applications. The appeal of GAs tomes & on their
simplicity and elegance as to bust search algorithms as well as from their
power to discover good solutions rapidly for difficult high-dimensional
problems. GAs are useful and efficient when

1.
2.

3.
4.

the search space is large, complex or poorly understood;

domain knowledge is scarce or expert knowledge is difficult to
encode to narrow the search space;- .

no mathematical analysis is available;
traditional search methods fail.

The advantage of the GA approach is the ease with which it can handle
arbitrary kinds of constraints and objectives; all such things can be handled
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as weighted components of the fitness function, making it easy to adapt the
GA scheduler to the particular requirements of a very wide range of possible
overall objectives.

GA s have been used for problem-solving and for modeling. GA are applied
to many scientific, engineering problems, in business and entertainment
including:

1.

Optimization: GAs have been used in a wide variety of optimization
tasks, including numerical optimization and combinatorial
optimization problems such as traveling salesman problem (TSP),
circuit design (Louis, 1993), job shop scheduling (Goldstein, 1991)
and video &sound quality optimization.

Automatic programming. GAs have been used to evolve computer
programs for specific tasks and to design other commercial structures,
for example, cellular automata and sorting networks.

Machine and robot learning. GAs have been used for many machine-
learning applications, including classifications and prediction, and
protein structure prediction. GAs have also been used to design neural
networks, to evolve rules for learning classifier systems or symbolic
production systems, and to design and control robots.

Economic models: GAs have been used to model processes of
innovation, the development of bidding strategies and the emergence
of economic markets.

Immune system models: GAs have been used to model various
aspects of the natural immune system, including somatic mutation
during an individual's lifetime and the discovery of multi-gene
families during evolutionary time.

Ecologjcal models: GAs have been used to model ecological
phenomena such as biological arms races, host-parasite to evolutions,
symbiosis and resource flow in ecologies.

Population genetics models: GAs have been used to study questions
in population genetics, such as ‘'under what conditions will a gene for
recombination be evolutionarily viable?'

Interactions between evolution and learning. GAs have been used to
study how individual learning and species evolution affect' one
another.

Models of social systems: GAs have been used to study evolutionary
aspects of social systems, such as the evolution of cooperation
(Chughtai, 1995), the evolution of communication and trail-following
behavior in ants.



4B.13 SUMMARY

Genetic algorithms are original systems based on the supposed functioning
of the living. The method is very different & the classical optimization
algorithms as it:

1. Uses the encoding of the parameters, not the parameters themselves.
2. Works on a population of points, not a unique one.

3. Uses the only values of the function to optimize, not their derived
function or other auxiliary knowledge.

4.  Uses probabilistic transition function and not determinist ones.

It is important to understand that the functioning of such an algorithm does
not guarantee success. The problem is in a stochastic system and a genetic
pool may be too far from the solution, or for example, a too fast convergence
may hair the process of evolution. These algorithms are, nevertheless,
extremely efficient, and are used in fields as diverse as stock exchange,
production scheduling or programming of assembly robots in the
automotive industry.

GAs can even be faster in finding global maxima that conventional methods,
in particular when derivatives provide misleading information. It should be
noted that in most cases where conventional methods can be applied, GAs
are much slower because they do not take auxiliary information such as
derivatives into account. In these optimization problems, there is no need to
apply a GA, which gives less accurate solutions after much longer
computation time. The enormous potential of GAs lies elsewhere- in
optimization of non-differentiable or even discontinuous functions, discrete
optimization, and program in junction.

It has been claimed that via the operations of selection, crossover and
mutation, the GA will converge over successive generations towards the
global (or near global) optimum. This simple operation should produce a
fast, useful and to bust technique largely because of the face that GAs
combine direction and chance in the search in an effective and efficient
manner. Since population implicity contain much more information than
simply the individual fitness stores, GAs combine the good information
hidden in a solution with good information from another solution to produce
new solutions with good information inherited from both parents,
inevitable}' (hopefully) leading towards optimality.

In this chapter we have also discussed the various classifications of GAs.
The class of parallel GAs is very complex, and its behavior is affected by
many parameters. It seems that the only way to achieve a greater
understanding of parallel GAs is to study individual facets independent!},
and we have seen that some of the most influential publications in parallel
GAs concentrate on only one inspect (migration rates, communication
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topology or deme size) either ignoring or making simplifying assumptions
on the others. Also the hybrid GA, adaptive GA, independent sampling GA
and messy GA has been included with the necessary information.

Genetic programming has been used to model and control a multitude of
processes and to govern their behavior according to fitness based
automatically generated algorithm. Implementation of generic
programming will benefit in the coming year from new approaches which
include research from developmental biology. Also, it will be necessary to
learn to handle the redundancy forming pressures in the evolution of to the.
Application of genetic programming will continue to broaden. Many
applications focus on controlling behaviour of real or virtual agents. In this
role, genetic programming may contribute considerably to the growing field
of social and behavioural simulations. A brief discussion on Holland
classifier system is also included in this chapter.

4B.14 REVIEW QUESTIONS

State Charles Darwin's theory of evulsions.

What is meant by genetic algorithm?

Compare and contrast traditional algorithm and genetic algorithm.
Stare the importance of genetic algorithm.

o~ w D E

Explain in detail about the various operators involved in genetic
algorithm.

What the various types of crossover and mutation techniques?

7. With a neat flowchart, explain the operation of a simple genetic
algorithm.

8.  State the general genetic algorithm.

9.  Discuss in detail about the various types of genetic algorithm in derail.
10. State schema theorem.

11. Write than note on Holland classifier systems.

12. Differentiate between messy GA and parallel GA

13.  What is the importance of hybrid GAs?

14. Describe the concepts involved in real-coded genetic algorithm.

15.  What is genetic programming?

16. Compare genetic algorithm and genetic programming.

17. List the characteristics of genetic programming.

18. With a neat flowchart, explain the operation of genetic programming.
19. How are data represented in genetic programming?

20. Mention the application of genetic algorithm.



Exercise Problems Genetic Algorithm

1. Determine the maximum of function x x x° (0.007x+ 2) using genetic
algorithm by wiring a program.

2.  Determine the maximum of function exp( -3x) + sin(6 r Xx) using
genetic algorithm. Given range = [0.004 0.7]; bits = 6; population =
12; generations = 36; mutation = 0.005; mutation = 0.3.

3. Optimize the logarithmic function using a genetic algorithm by
writing a program. Genetic Algorithm

4.  Solve the logical AND function using genetic algorithm by writing a
program.

5.  Solve the XNOR problem using genetic algorithm by writing a
program.

6.  Determine the maximum of function exp(5x) + sin (7rr X) using
genetic algorithm. Given range = [0.002 0.6]; bits = 3; population ==
14; generations = 36; mutation = 0.006; matenum = 0.3.

REFERENCES

https://link.springer.com/article/10.1007/BF00175354

https://www.csd.uwo.ca/~mmorenom/cs2101a moreno/Class9GATutorial
-pdf

https://www.egr.msu.edu/~goodman/GECSummitintroToGA Tutorial-
goodman.pdf

https://www.researchgate.net/publication/228569652 Genetic Algorithm
A Tutorial Review

S.Rajasekaran, G. A. Vijayalakshami , Neural Networks, Fuzzy Logic and
Genetic Algorithms: Synthesis & Applications, Prentice Hall of India, 2004

ke e ofe ke e e ke

273


https://link.springer.com/article/10.1007/BF00175354
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review

	Soft Computing Starting pages
	1a
	1b
	1c
	2a
	2b
	2c
	2d
	3a
	3b
	3c
	3d
	3e
	4a
	4b

