
M.Sc. (IT)
SEMESTER - I

REVISED SYLLABUS AS PER NEP 2020

SOFT COMPUTING
TECHNIQUES

MSCIT 1.2

ii

© UNIVERSITY OF MUMBAI

Programme Co-ordinator : Prof. Mandar Bhanushe
HOD Science and Technology CDOE,
Mumbai University, Vidyanagari, Santacruz (E).

Course Co-ordinator : Ms. Preeti Bharanuke
Assistant Professor (MSc.IT)
CDOE Mumbai University, Vidyanagari, Santacruz (E).

Editor : Prof. Hiren Dand
HOD, IT Mulund College of Commerce, Mulund (W), Mumbai

Course Writers : Mr. Bhavesh Devchand Shah
Assistant Professor
Vidyalankar School of Information Technology, Vidyalankar Marg,
Sangam nagar, Wadala East, Mumbai 400042

: Miss Maria Muthukumar
Assistant Professor
Vivek College of Commerce,Goregaon West,Mumbai

: Mr Sachin Bhosale,
Head of the department IT,
ICS College, Khed, Dist Ratnagiri.

: Miss Shraddha Kadam
Assistant Professor
Univerisity Department of Information Technology,
University of Mumbai.

: Dr. Rajendra B. Patil
Associate Professor,
Vidyalankar School of Information Technology, Vidyalankar Marg,
Sangam nagar, Wadala East, Mumbai 400042

Prof. Ravindra Kulkarni
Vice Chancellor

University of Mumbai, Mumbai

Professor Shivaji Sargar
Director,

CDOE, University of Mumbai

Prin. (Dr.) Ajay Bhamare
Pro Vice-Chancellor,

University of Mumbai

October 2024, Print - 1 					

Published by: Director,
Centre For Distance and Online Education,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by: Mumbai University Press

iii

CONTENTS

	Cjhapter No.	 Title	 Page No.

MODULE I: Unit I
1a.	 Introduction to Soft Computing ..1

1b.	 Artificial Neural Network...19

1c.	 Supervised Learning Network..35

MODULE I: Unit II

2a.	 Associative Memory Network..43

2b.	 Special Networks..72

2c.	 Third Generation Neural Networks..87

2d.	 Unsupervised Learning Networks.. 110

MODULE II: Unit III
3a.	 Introduction To Fuzzy Logic And Fuzzy..120

3b.	 Classical Relations and Fuzzy Relations..129

3c.	 Membership Functions...138

3d.	 Defuzzification...147

3e.	 Fuzzy Arithmetic And Fuzzy Measures...155

Unit IV
4a.	 Fuzzy Rule Base and Approximate Reasoning ...169
4b.	 Genetic Algorithm..194

iv

M.SC. (IT)

SEMESTER - I

SOFT COMPUTING TECHNIQUES
SYLLABUS

Course Code: 503
Total Credits: 04 (60 Lecture Hrs)
University assessment: 50 marks

Course Name: Soft Computing Techniques
Total Marks: 100 marks
College/Department assessment: 50 marks

Pre-requisite: Basic Knowledge on AI
Course Objectives (COs):
To enable the students to:

• CO1: Soft	 computing	 concepts	 like	 fuzzy	 logic,	 neural	 networks	 and	 genetic	 algorithm,	 where	
Artificial Intelligence is mother branch of all.

• CO2 All	these	techniques	will	be	more	effective	to	solve	the		problem	efficiently :

MODULE I: (2

CREDITS)
Unit I

a) Introduction of soft computing - soft computing vs. hard computing, various
types	of	 soft	computing	 techniques,	Fuzzy	Computing,	Neural	Computing,	
Genetic Algorithms, Associative Memory, Adaptive Resonance Theory,
Classification,	 Clustering,	 Bayesian	 Networks,	 Probabilistic	 reasoning,	
applications of soft computing.

b) Artificial Neural Network - Fundamental	 concept,	 Evolution	 of	 Neural	
Networks,	Basic	Models,	McCulloh-Pitts	Neuron,	Linear	Separability,	Hebb	
Network.

c) Supervised Learning Network - Perceptron	 Networks,	 Adaptive	 Linear	
Neuron,	 Multiple	 Adaptive	 Linear	 Neurons,	 Backpropagation	 Network,	
Radial	Basis	Function,	Time	Delay	Network,	Functional	Link	Networks,	Tree	
Neural	Network

15 Hrs
[OC1-OC3]

Unit II
a) Associative Memory Networks - Training algorithm for pattern

Association,	 Autoassociative	 memory	 network,	 hetroassociative	
memory	 network,	 bi-directional associative memory, Hopfield
networks,	 iterative	 autoassociative	 memory	 networks,	 temporal	
associative	memory	networks.	Kohonen	self-organizing feature maps,
learning	vectors	quantization,	counter	propogation	networks,	adaptive	
resonance	theory	networks.

b) Special Networks - Simulated annealing, Boltzman machine, Gaussian
Machine, Cauchy Machine, Probabilistic neural net, cascade
correlation	 network,	 cognition	 network,	 neo-cognition	 network,	
cellular	neural	network,	optical	neural	network

c) Third Generation Neural Networks - Spiking	 Neural	 networks,	
convolutional	neural	networks,	deep	learning	neural	networks,	extreme	
learning machine model.

d) UnSupervised Learning Networks - Fixed	weight	competitive	nets

15 Hrs

[OC4-OC5]

MODULE II: (2
CREDITS)

 Unit III
a) Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets - Classical sets,

Fuzzy sets.
b) Classical Relations and Fuzzy Relations - Cartesian Product of relation,

classical relation, fuzzy relations, tolerance and equivalence relations, non-
iterative fuzzy sets.

15 Hrs
OC6

v

M.SC. (IT)

SEMESTER - I

SOFT COMPUTING TECHNIQUES
SYLLABUS

c) Membership Function - features of the membership functions, fuzzification,
methods of membership value assignments.

d) Defuzzification - Lambda-cuts for fuzzy sets, Lambda-cuts for fuzzy
relations, Defuzzification methods.

e) Fuzzy Arithmetic and Fuzzy measures - fuzzy arithmetic, fuzzy measures,
measures of fuzziness, fuzzy integrals.

 Unit IV
a) Fuzzy Rule base and Approximate reasoning - Fuzzy proportion, formation

of rules, decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning,
fuzzy inference systems, Fuzzy logic control systems, control system design,
architecture and operation of FLC system, FLC system models and
applications of FLC System.

b) Genetic Algorithm - Biological Background, Traditional optimization and
search techniques, genetic algorithm and search space, genetic algorithm vs.
traditional algorithms, basic terminologies, simple genetic algorithm, general
genetic algorithm, operators in genetic algorithm, stopping condition for
genetic	 algorithm	 flow,	 constraints	 in	 genetic	 algorithm,	 problem	 solving	
using genetic algorithm, the schema theorem, classification of genetic
algorithm, Holland classifier systems, genetic programming, advantages and
limitations and applications of genetic algorithm.Differential Evolution
Algorithm, Hybrid soft computing techniques – neuro – fuzzy hybrid, genetic
neuro-hybrid systems, genetic fuzzy hybrid and fuzzy genetic hybrid systems.

15 Hrs
[OC7-OC8]

Books and References:
Sr. No. Title Author/s Publisher Edition Year

1. Artificial Intelligence and Soft
Computing

Anandita Das
Battacharya

SPD 3rd 2018

2. Principles of Soft computing S.N.Sivanandam	
S.N.Deepa

Wiley 3rd 2019

3. Neuro-Fuzzy and Soft
Computing

J.S.R.Jang,
C.T.Sun and
E.Mizutani

 Prentice
Hall of India

 2004

4. Neural	Networks,	Fuzzy	Logic	
and Genetic Algorithms:
Synthesis & Applications

S.Rajasekaran, G.
A. Vijayalakshami

Prentice
Hall of India

 2004

5. Fuzzy	Logic	with	Engineering	
Applications

Timothy J.Ross McGraw-
Hill

 1997

6. Genetic Algorithms: Search,
Optimization and Machine
Learning

Davis E.Goldberg Addison
Wesley

 1989

7. Introduction to AI and Expert
System

Dan W. Patterson Prentice
Hall of India

 2009

Course Code: 503
Total Credits: 04 (60 Lecture Hrs)
University assessment: 50 marks

Course Name: Soft Computing Techniques
Total Marks: 100 marks
College/Department assessment: 50 marks

Pre-requisite: Basic Knowledge on AI
Course Objectives (COs):
To enable the students to:

• CO1: Soft	 computing	 concepts	 like	 fuzzy	 logic,	 neural	 networks	 and	 genetic	 algorithm,	 where	
Artificial Intelligence is mother branch of all.

• CO2 All	these	techniques	will	be	more	effective	to	solve	the		problem	efficiently :

MODULE I: (2

CREDITS)
Unit I

a) Introduction of soft computing - soft computing vs. hard computing, various
types	of	 soft	computing	 techniques,	Fuzzy	Computing,	Neural	Computing,	
Genetic Algorithms, Associative Memory, Adaptive Resonance Theory,
Classification,	 Clustering,	 Bayesian	 Networks,	 Probabilistic	 reasoning,	
applications of soft computing.

b) Artificial Neural Network - Fundamental	 concept,	 Evolution	 of	 Neural	
Networks,	Basic	Models,	McCulloh-Pitts	Neuron,	Linear	Separability,	Hebb	
Network.

c) Supervised Learning Network - Perceptron	 Networks,	 Adaptive	 Linear	
Neuron,	 Multiple	 Adaptive	 Linear	 Neurons,	 Backpropagation	 Network,	
Radial	Basis	Function,	Time	Delay	Network,	Functional	Link	Networks,	Tree	
Neural	Network

15 Hrs
[OC1-OC3]

Unit II
a) Associative Memory Networks - Training algorithm for pattern

Association,	 Autoassociative	 memory	 network,	 hetroassociative	
memory	 network,	 bi-directional associative memory, Hopfield
networks,	 iterative	 autoassociative	 memory	 networks,	 temporal	
associative	memory	networks.	Kohonen	self-organizing feature maps,
learning	vectors	quantization,	counter	propogation	networks,	adaptive	
resonance	theory	networks.

b) Special Networks - Simulated annealing, Boltzman machine, Gaussian
Machine, Cauchy Machine, Probabilistic neural net, cascade
correlation	 network,	 cognition	 network,	 neo-cognition	 network,	
cellular	neural	network,	optical	neural	network

c) Third Generation Neural Networks - Spiking	 Neural	 networks,	
convolutional	neural	networks,	deep	learning	neural	networks,	extreme	
learning machine model.

d) UnSupervised Learning Networks - Fixed	weight	competitive	nets

15 Hrs

[OC4-OC5]

MODULE II: (2
CREDITS)

 Unit III
a) Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets - Classical sets,

Fuzzy sets.
b) Classical Relations and Fuzzy Relations - Cartesian Product of relation,

classical relation, fuzzy relations, tolerance and equivalence relations, non-
iterative fuzzy sets.

15 Hrs
OC6

1

MODULE I: Unit I

1a
INTRODUCTION TO SOFT COMPUTING

Unit Structure

1a.0 Objectives

1a.1 Computational Paradigm

 1a.1.1 Soft Computing v/s Hard Computing

1a.2 Introduction to Soft Computing

1a.3 Premises of Soft Computing

1a.4 Guidelines of Soft Computing

1a.5 Uncertainty in AI

1a.6 Application of Soft Computing

1a.7 Types of Soft Computing Techniques

1a.8 Fuzzy Computing

1a.9 Neural Computing

1a.10 Genetics Algorithms

1a.11 Associative Memory

1a.12 Adaptive of Resonance Theory

1a.13 Classification

1a.14 Clustering

1a.15 Probabilistic Reasoning

1a.16 Bayesian Network

1a.17 Summary

1a.18 Review Questions

1a.19 Bibliography, References and Further Reading

1a.0 OBJECTIVES

The objective of this chapter is to give the overview of various soft

computing techniques. In this chapter, we will try to learn what is soft

computing, difference between hard computing and soft computing and

reason for why soft computing evolved. At the end, some application of soft

computing will be discussed.

2

Soft Computing Techniques 1A.1 COMPUTATIONAL PARADIGM

Figure 1a.1: Computational Paradigms

Computational paradigm is classified into two viz: Hard computing and soft

computing. Hard computing is the conventional computing. It is based on

the principles of precision, certainty, and inflexibility. It requires

mathematical model to solve problems. It deals withs the precise models.

This model is further classified into symbolic logic and reasoning, and

traditional numerical modelling and search methods. The basic of

traditional artificial intelligence is utilised by these methods. It consumes a

lot of time to deal with real life problem which contains imprecise and

uncertain information. The following problems cannot accommodate hard

computing techniques:

1. Recognition problems

2. Mobile robot co-ordination, forecasting

3. Combinatorial problems

Soft computing deals with approximate models. This model is further

classified into two approximate reasoning, and functional optimization &

random search methods. It handles imprecise and uncertain information of

the real world. It can be used in all industries and business sectors to solve

problems. Complex systems can be designed with soft computing to deal

with the incomplete information, where the system behaviour is not

completely known or the existence of measures of variable is noisy.

1a.1.1 Soft Computing v/s Hard Computing

Hard Computing Soft Computing

It uses precisely stated analytical

model.

It is tolerant to imprecision,

uncertainty, partial truth and

approximation.

It is based on binary logic and

crisp systems.

It is based on fuzzy logic and

probabilistic reasoning.

It has features such as precision

and categoricity.

It has features such as

approximation and dispositionality.

3

Introduction of

Soft Computing
Hard Computing Soft Computing

It is deterministic in nature. It is stochastic in nature.

It can work with exact input data. It can work with ambiguous and

noisy data.

It performs sequential

computation.

It performs parallel computation.

It produces precise outcome. It produces approximate outcome.

1A.2 INTRODUCTION TO SOFT COMPUTING

The real-world problems require systems that combines knowledge,

techniques, and methodologies from various source. These systems should

possess humanlike expertise within specific domain, adapt themselves and

learn to do better in the changing environments and explain how they make

decisions or take actions.

Natural language is used by human for reasoning and drawing conclusion.

In conventional AI, the human intelligent behaviour is expressed in the

language form or symbolic rules. It manipulates the symbols on the

assumption that such behaviour can be stored in symbolically structured

knowledge base known as physical symbol system hypothesis.

“Basically, Soft Computing is not a homogenous body of concepts &

techniques. Rather, it is partnership of distinct methods that in one way or

another conform to its guiding principle. At this juncture, the dominant aim

of soft computing is to exploit the tolerance for imprecision and uncertainty

to achieve tractability, robustness and low solutions cost. The principal

constituents of soft computing are fuzzy logic, neurocomputing, and

probabilistic reasoning, with the latter subsuming genetic algorithms, belief

networks, chaotic systems, and parts of learning theory. In partnership of

fuzzy logic, neurocomputing, and probabilistic reasoning, fuzzy logic is

mainly concerned with imprecision and approximate reasoning;

neurocomputing with learning and curve-fitting; and probabilistic

reasoning with uncertainty and belief propagation.”

-Zadeh (1994)

Soft computing combines different techniques and concepts. It can handle

imprecision and uncertainty. Fuzzy logic, neurocomputing, evolutionary

and genetic programming, and probabilistic computing are fields of soft

computing. Soft computing is designed to model and enable solutions to

real world problems, which cannot be modelled mathematically. It does not

perform much symbolic manipulation.

The main computing paradigm of soft computing are: Fuzzy systems,

Neural Networks and Genetic Algorithms.

● Fuzzy set are for knowledge representation via fuzzy If – Then rules.

● Neural network for learning and adaptivity and

● Genetic algorithm for evolutionary computation.

4

Soft Computing Techniques To achieve close resemblance with human like decision making, soft

computing aims to exploit the tolerance for approximation, uncertainty,

imprecision, and partial truth.

● Approximation: the model has similar features but not same.

● Uncertainty: the features of the model may not be same as that of the

entity/belief.

● Imprecision: the model features (quantities) are not same as that the

real ones but are close to them.

1A.3 PREMISES OF SOFT COMPUTING

● The real-world problems are imprecise and uncertain.

● Precision and certainty carry a cost.

● There may not be precise solutions for some problems.

1A.4 GUIDELINES OF SOFT COMPUTING

The guiding principle of soft computing is to exploit the tolerance for

approximation, uncertainty, imprecision and partial truth to achieve

tractability, robustness and low solution cost. Human mind is the role model

for soft computing.

1A.5 UNCERTAINTY OF AI

● Objective (features of whole environment)

o There are lot of uncertainty in the world. We have limited

capabilities to sense these uncertainties.

● Subjective (features of interaction with concrete environment

o For the same/similar situation people may have different

experiences. This experience maps on the features of semantics

of different languages.

1A.6 APPLICATION OF SOFT COMPUTING

The application of soft computing has proved following advantages:

● The application that cannot be modelled mathematically can be

solved.

● Non-linear problems can be solved.

● Introducing human knowledge such as cognition, understanding,

recognition, learning and other into the field of computing.

5

Introduction of

Soft Computing

Few applications of soft computing are enlisted below:

● Handwritten Script Recognition using Soft Computing:

 It is one of the demanding parts of computer science. It can translate

multilingual documents and sort the various scripts accordingly.

Block -level technique concept is used by the system to recognize the

script from several script document given. To classify the script

according to their features, it uses Discrete Cosine Transform (DCT)

and Discrete Wavelet Transform (DWT) together.

● Image Processing and Data Compression using Soft Computing:

 Image analysis is the high-level processing technique which includes

recognition and bifurcation of patterns. It is one of the most important

parts of the medical field. The problem of computational complexity

and efficiency in the classification can be easily be solved using soft

computing techniques. Genetic algorithms, genetic programming,

classifier systems, evolutionary strategies, etc are the techniques of

soft computing that can be used. These algorithms give the fastest

solutions to pattern recognition. These help in analysing the medical

images obtained from microscopes as well as examine the X-rays.

● Use of Soft Computing in Automotive Systems and

Manufacturing:

 Automobile industry has also adapted soft computing to solve some

of the major problems.

 Classic control methods is built in vehicles using the Fuzzy logic

techniques. It takes the example of human behavior, which is

described in the forms of rule – “If-Then “statements.

 The logic controller then converts the sensor inputs into fuzzy

variables that are then defined according to these rules. Fuzzy logic

techniques are used in engine control, automatic transmissions,

antiskid steering, etc.

● Soft Computing based Architecture:

 An intelligent building takes inputs from the sensors and controls

effectors by using them. The construction industry uses the technique

of DAI (Distributed Artificial Intelligence) and fuzzy genetic agents

to provide the building with capabilities that match human

intelligence. The fuzzy logic is used to create behaviour-based

architecture in intelligent buildings to deal with the unpredictable

nature of the environment, and these agents embed sensory

information in the buildings.

● Soft Computing and Decision Support System:

 Soft computing gives an advantage of reducing the cost of the

decision support system. The techniques are used to design, maintain,

and maximize the value of the decision process. The first application

of fuzzy logic is to create a decision system that can predict any sort

6

Soft Computing Techniques of risk. The second application is using fuzzy information that selects

the areas which need replacement.

● Soft Computing Techniques in Power System Analysis:

 Soft computing uses the method of Artificial Neural Network (ANN)

to predict any instability in the voltage of the power system. Using the

ANN, the pending voltage instability can be predicted. The methods

which are deployed here, are very low in cost.

● Soft Computing Techniques in Bioinformatics:

 The techniques of soft computing help in modifying any uncertainty

and indifference that biometrics data may have. Soft computing is a

technique that provides distinct low-cost solutions with the help of

algorithms, databases, Fuzzy Sets (FSs), and Artificial Neural

Networks (ANNs). These techniques are best suited to give quality

results in an efficient way.

● Soft Computing in Investment and Trading:

 The data present in the finance field is in opulence and traditional

computing is not able to handle and process that kind of data. There

are various approaches done through soft computing techniques that

help to handle noisy data. Pattern recognition technique is used to

analyse the pattern or behaviour of the data and time series is used to

predict future trading points.

1A.7 TYPES OF SOFT COMPUTING TECHNIQUES

Following are the various techniques of soft computing:

1. Fuzzy Computing

2. Neural Network

3. Genetic Algorithms

4. Associative memory

5. Adaptive Resonance Theory

6. Classification

7. Clustering

8. Probabilistic Reasoning

9. Bayesian Network

All the above techniques are discussed in brief in the below sections.

1A.8 FUZZY COMPUTING

The knowledge that exists in real world is vague, imprecise, uncertain,

ambiguous, or probabilistic in nature. This type of knowledge is also known

as fuzzy knowledge. Human thinking and reasoning frequently involves

fuzzy information.

7

Introduction of

Soft Computing

The classical computing system involves two valued logic (true/false, 1/0,

yes/no). This system sometimes may not be able to answer some questions

as human does, as they do not have complete true answer. The computing

system is not just expected to give answers like human but also describe the

reality level calculated with the imprecision and uncertainty of the facts and

rules applied.

Lofti Zadeh observed that the classical computing system was not capable

to handle subjective data representation or unclear human ideas. In 1965, he

introduced fuzzy set theory as the extension of classical set theory where

elements have degrees of memberships. It allows to determine the

distinctions among the data that is neither true nor false. It is like process of

human thinking like very hot, hot, warm, little warm, cold, too cold.

In classical system, 1 represents absolute truth value and 0 represents

absolute false value. But in the fuzzy system, there is no logic for absolute

truth and absolute false value. But in fuzzy logic, there is intermediate value

too present which is partially true and partially false.

Fig a.2: Fuzzy logic with example

Fuzzy Logic Architecture:

Fig a.3: Fuzzy Logic Architecture

8

Soft Computing Techniques Fuzzy logic architecture mainly constitutes of following four components:

● Rule base: It contains the set of rules. The If-then conditions are

provided by the experts to govern the decision-making system. These

conditions are based on linguistic information.

● Fuzzification: It converts the crisp numbers into the fuzzy sets. The

crisp input is measured by the sensors and passed into the control

system for processing.

● Inference engine: It determines the matching degree of the current

fuzzy input with respect to each rule and decides which rules are to

be fired according to the input field. Next, the fired rules are combined

to form the control actions.

● Defuzzification: The fuzzy set obtained from the inference engine is

converted into the crisp value.

Characteristics of fuzzy logic:

1. It is flexible and easy to implement.

2. It helps to represent the human logic.

3. It is highly suitable method for uncertain or approximate learning.

4. It views inference as a process of propagating elastic constraints.

5. It allows you to build nonlinear functions of arbitrary complexity.

When not to use fuzzy logic:

1. If it is inconvenient to map an input space to an output space.

2. When the problem can be solved using common sense.

3. When many controllers can do the fine job, without the use of fuzzy

logic.

Advantages of Fuzzy Logic System:

● Its structure is easy and understandable.

● It is used for commercial and practical purposes.

● It helps to control machines and consumer products.

● It offers acceptable reasoning. It may not offer accurate reasoning.

● In data mining it helps you to deal with uncertainty.

● It is mostly robust as no precise inputs are required.

● It can be programmed to in the situation when feedback sensor stops

working.

9

Introduction of

Soft Computing

● Performance of the system can be modified or altered by using

inexpensive sensors to keep the overall system cost and complexity

low.

● It provides a most effective solution to complex issues.

Disadvantages of Fuzzy Logic System:

● The results of the system may not be widely accepted as the fuzzy

logic is not always accurate.

● It does not have the capability of machine learning as-well-as neural

network type pattern recognition.

● Extensive testing with the hardware is needed for validation and

verification of a fuzzy knowledge-based system.

● It is difficult task to set exact, fuzzy rules and membership functions.

Application areas of Fuzzy Logic:

● Automotive Systems: Automatic Gearboxes, Four-Wheel Steering,

Vehicle environment control.

● Consumer Electronic Goods: Photocopiers, Still and video cameras,

television.

● Domestic Goods: Refrigerators, Vacuum cleaners, Washing

Machines.

● Environment Control: Air conditioners, Humidifiers.

REVIEW QUESTIONS

1. Write a short note on fuzzy system.

2. What is artificial neural network? Explain its components and

learning methods.

3. Write a short note on genetic algorithms.

4. Explain the working of Adaptive Resonance Theory.

5. Write a short note on associative memory.

6. Compare classification technique with clustering technique.

7. Write a short note on probabilistic reasoning.

8. Write a short note on Bayesian Networks.

A.9 NEURAL COMPUTING

Artificial Neural Network (ANN) also known as neural network is the

concept inspired from human brain and the way the neurons in the human

brain works. It is computational learning system that uses a network of

functions to understand and translate a data input of one form into another

form. It contains large number of interconnected processing elements called

as neuron. These neurons operate in parallel and are configured. Every

10

Soft Computing Techniques neuron is connected with other neurons by a connection link. Each

connection is associated with weights which contain information about the

input signal.

Components of Neural Networks:

1. Neuron model: The information process unit of ANN.

 Neuron model consist of the following:

 a. Input

 b. Weight

 c. Activation functions

2. Architecture: The arrangement of neurons and links connecting

neurons, where every link.

 Following are the different ANN architecture:

a. Single layer Feed forward Network

b. Multi-layer Feed forward Network

c. Single node with its own feedback

d. Single layer recurrent network

e. Multi-layer recurrent network

3. A learning algorithm: For training ANN by modifying the weights in

order to model a particular learning task correctly on the training

examples.

 Following are the different types of learning algorithm:

a. Supervised Learning

b. Unsupervised Learning

c. Reinforcement Learning

Applications of Neural Network:

1. Image recognition

2. Pattern recognition

3. Self-driving car trajectory prediction

4. Email spam filtering

5. Medical diagnosis

A.10 GENETICS ALGORITHMS

Genetic Algorithms initiated and developed in the early 1970’s by John

Holland are unorthodox search and optimization algorithms, which mimic

some of the process of natural evolution. Gas perform directed random

search through a given set of alternative with the aim of finding the best

11

Introduction of

Soft Computing

alternative with respect to the given criteria of goodness. These criteria are

required to be expressed in terms of an object function which is usually

referred to as a fitness function.

Biological Background:

All living organism consist of cell. In each cell, there is a set of

chromosomes which are strings of DNA and serves as a model of the

organism. A chromosomes consist of genes of blocks of DNA. Each gene

encodes a particular pattern. Basically, it can be said that each gene encodes

a traits.

Steps involved in the genetic algorithm:

● Initialization: Define the population for the problem.

● Fitness Function: It calculates the fitness function for all the

chromosomes in the population.

● Selection: Two fittest chromosomes are selected for the producing the

offspring.

● Crossover: Information in the two chromosomes is exchanged to

produce the new offspring.

● Mutation: It is the process of promoting diversity in the populations.

Benefits of Genetic Algorithm

● Easy to understand.

● We always get an answer and the answer gets better with time.

● Good for noisy environment.

● Flexible in forming building blocks for hybrid application.

● Has substantial history and range of use.

● Supports multi-objective optimization.

● Modular, separate from application.

Application of Genetic Algorithm:

● Recurrent Neural Network

● Mutation testing

● Code breaking

● Filtering and signal processing

12

Soft Computing Techniques A.11 ASSOCIATIVE MEMORY

An associative memory is a content-addressable structure that maps a set of

input patterns to a set of output patterns. The associative memory are of two

types : auto-associative and hetero-associative.

An auto-associative memory retrieves a previously stored pattern that

most closely resembles the current pattern. In a hetero-associative

memory, the retrieved pattern is, in general, different from the input pattern

not only in content but possibly also in type and format.

Description of Associative Memory:

Fig a.4: A content-addressable memory, Input and output

A content-addressable memory is a type of memory that allows, the recall

of data based on the degree of similarity between the input pattern and the

patterns stored in memory. It refers to a memory organization in which the

memory is accessed by its content and not or opposed to an explicit address

in the traditional computer memory system. This type of memory allows the

recall of information based on partial knowledge of its contents.

The simplest artificial neural associative memory is the linear associator.

The other popular ANN models used as associative memories are Hopfield

model and Bidirectional Associative Memory (BAM) models.

A.12 ADAPTIVE RESONANCE THEORY

ART stands for "Adaptive Resonance Theory", invented by Stephen

Grossberg in 1976. ART encompasses a wide variety of neural networks,

based explicitly on neurophysiology. The word "Resonance" is a concept,

just a matter of being within a certain threshold of a second similarity

measure. The basic ART system is an unsupervised learning model, like

many iterative clustering algorithms where each case is processed by

finding the "nearest" cluster seed that resonate with the case and update the

cluster seed to be "closer" to the case. If no seed resonate with the case, then

a new cluster is created.

13

Introduction of

Soft Computing

Grossberg developed ART as a theory of human cognitive information

processing. The emphasis of ART neural networks lies at unsupervised

learning and self-organization to mimic biological behavior. Self-

organization means that the system must be able to build stable recognition

categories in real-time. The unsupervised learning means that the network

learns the significant patterns based on the inputs only. There is no

feedback. There is no external teacher that instructs the network or tells

which category a certain input belongs. The basic ART system is an

unsupervised learning model.

The model typically consists of:

● a comparison field and a recognition field composed of neurons,

● a vigilance parameter, and

● a reset module.

Comparison field and Recognition field:

● The Comparison field takes an input vector (a 1-D array of values)

and transfers it to its best match in the Recognition field; the best

match is, the single neuron whose set of weights (weight vector)

matches most closely the input vector.

● Each Recognition Field neuron outputs a negative signal(proportional

to that neuron’s quality of match to the input vector) to each of the

other Recognition field neurons and inhibits their output accordingly.

● Recognition field thus exhibits lateral inhibition, allowing each

neuron in it to represent a category to which input vectors are

classified.

Vigilance parameter:

● It has considerable influence on the system memories:

 o higher vigilance produces highly detailed memories,

 o lower vigilance results in more general memories

Reset module:

● After the input vector is classified, the Reset module compares the

strength of the recognition match with the vigilance parameter.

o If the vigilance threshold is met, then training commences.

o Else, the firing recognition neuron is inhibited until a new input

vector is applied.

Training ART-based Neural Networks:

● Training commences only upon completion of a search procedure.

What happens in this search procedure :

14

Soft Computing Techniques o The Recognition neurons are disabled one by one by the reset

function until the vigilance parameter is satisfied by a

recognition match.

o If no committed recognition neuron’s match meets the vigilance

threshold, then an uncommitted neuron is committed and

adjusted towards matching the input vector.

Methods of Learning:

● Slow learning method: here the degree of training of the recognition

neuron’s weights towards the input vector is calculated using

differential equations and is thus dependent on the length of time the

input vector is presented.

● Fast learning method: here the algebraic equations are used to

calculate degree of weight adjustments to be made, and binary values

are used.

Types of ART Systems:

● ART 1: The simplest variety of ART networks, accept only binary

inputs.

● ART 2 : It extends network capabilities to support continuous inputs.

● Fuzzy ART : It Implements fuzzy logic into ART’s pattern

recognition, thus enhances generalizing ability. One very useful

feature of fuzzy ART is complement coding, a means of incorporating

the absence of features into pattern classifications, which goes a long

way towards preventing inefficient and unnecessary category

proliferation.

● ARTMAP : Also known as Predictive ART, combines two slightly

modified ARTs , may be two ART-1 or two ART-2 units into a

supervised learning structure where the first unit takes the input data

and the second unit takes the correct output data, then used to make

the minimum possible adjustment of the vigilance parameter in the

first unit in order to make the correct classification.

A.13 CLASSIFICATION

Classification is supervised learning. Classification algorithms is used to

predict the categorical values. Training is provided to identify the category

of new observations. The program learns from the given dataset or

observations and then classifies new observation into a number of classes

or groups. Classes are also called as target/labels or categories.

Classification algorithms:

● Logistic Regression

● Naïve Bayes

15

Introduction of

Soft Computing

● K-Nearest Neighbour

● Decision tree

● Random Forest

Application of Classification:

● Email Spam Detection

● Speech Recognition

● Identification of Cancer tumour cells

● Biometric Identifications

A.14 CLUSTERING

Clustering is type of unsupervised learning method. In this learning we draw

references from datasets consisting of input data without labelled responses.

Generally, it is used as a process to find meaningful structure, explanatory

underlying processes, generative features, and groupings inherent in a set of

examples.

Its task is to divide the population or data points into several groups. Data

points in the same group are similar to the other data point in the same group

and dissimilar to the data points in other groups.

Why Clustering?

Clustering determines the grouping among the unlabelled data present.

There is no criteria for a good clustering. It depends on the criteria that the

user fits the need of the user.

Clustering Methods:

● Density-Based Methods

● Hierarchical Based Methods

 o Agglomerative (bottom up approach)

 o Divisive (top down approach)

● Partitioning Methods

● Grid-based Methods

Applications of Clustering in different fields

● Marketing

● Biology

● Insurance

● City Planning

● Earthquake studies

16

Soft Computing Techniques A.15 PROBABILISTIC REASONING

Probabilistic reasoning is a way of knowledge representation where we

apply the concept of probability to indicate the uncertainty in knowledge.

In probabilistic reasoning, we combine probability theory with logic to

handle the uncertainty. We use probability in probabilistic reasoning

because it provides a way to handle the uncertainty that is the result of

someone's laziness and ignorance. In the real world, there are lots of

scenarios, where the certainty of something is not confirmed, such as "It

will rain today," "behavior of someone for some situations," "A match

between two teams or two players." These are probable sentences for which

we can assume that it will happen but not sure about it, so here we use

probabilistic reasoning.

Need of probabilistic reasoning in AI:

● When there are unpredictable outcomes.

● When specifications or possibilities of predicates becomes too large

to handle.

● When an unknown error occurs during an experiment.

● In probabilistic reasoning, there are two ways to solve problems with

uncertain knowledge:

 o Bayes' rule

 o Bayesian Statistics

A.16 BAYESIAN NETWORKS

Bayesian network is also known Bayesian belief network, decision network

or Bayesian Model. It deals with the probabilistic events and solves a

problem which has uncertainty.

Bayesian networks are a type of probabilistic graphical model that uses

Bayesian inference for probability computations. Bayesian networks aim

to model conditional dependence, and therefore causation, by representing

conditional dependence by edges in a directed graph. Through these

relationships, one can efficiently conduct inference on the random variables

in the graph through the use of factors.

Fig a.5: Bayesian Network example

17

Introduction of

Soft Computing

A Bayesian network is a directed acyclic graph in which each edge

corresponds to a conditional dependency, and each node corresponds to a

unique random variable. Formally, if an edge (A, B) exists in the graph

connecting random variables A and B, it means that P(B|A) is a factor in

the joint probability distribution, so we must know P(B|A) for all values of

B and A in order to conduct inference.

The Bayesian network has mainly two components:

● Causal Component

● Actual numbers

Each node in the Bayesian network has condition probability distribution

P(Xi |Parent(Xi)), which determines the effect of the parent on that node.

Applications of Bayesian Networks:

● Medical Diagnosis

● Management efficiency

● Biotechnology

1A.17 SUMMARY

In this chapter we have learned different techniques used in soft computing.

Fuzzy system can be used when we want to deal with uncertainty and

imprecision. Adaptivity and learning abilities in the system can be build

using neural computing. To find the better solution to the problem, genetic

algorithms can be applied. The pattern can be retrieved from the memory

based on the content and not based on address is called associative memory.

Find the input patterns closest resemblances in the memory can also be done

with the adaptive resonance theory. Classification is based on supervised

learning usually used for predictions and clustering is based on

unsupervised learning. Probabilistic reasoning and Bayesian Networks are

based on the probability of the event occurring.

1A.18 REVIEW QUESTIONS

1. What is computational paradigm?

2. State difference between hard computing and soft computing?

3. Write a short note on soft computing.

4. What are the premises and guiding principle of soft computing

techniques?

5. Give any three applications of soft computing.

18

Soft Computing Techniques 1A.19 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

● https://www.coursehero.com/file/40458824/01-Introduction-to-Soft-
Computing-CSE-TUBEpdf/

● https://techdifferences.com/difference-between-soft-computing-and-
hard-computing.html

● https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/
Soft_Computing_Applications/attachment/5b8ef4933843b0067537c
b3b/AS%3A667245734817800%401536095188583/download/Soft
+Computing+and+its+Applications.pdf

● https://wisdomplexus.com/blogs/applications-soft-computing/

● Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3rd, 2018

● Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
3rd , 2019

● Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004

● https://www.coursehero.com/file/40458824/01-Introduction-to-Soft-
Computing-CSE-TUBEpdf/

● https://www.geeksforgeeks.org/fuzzy-logic-introduction/

● https://www.guru99.com/what-is-fuzzy-logic.html

● https://www.tutorialspoint.com/artificial_intelligence/artificial_
intelligence_fuzzy_logic_systems.htm

● https://deepai.org/machine-learning-glossary-and-terms/neural-
network

● https://www.javatpoint.com/bayesian-belief-network-in-artificial-
intelligence

● https://www.javatpoint.com/probabilistic-reasoning-in-artifical-
intelligence#:~:text=Probabilistic%20reasoning%20is%20a%20way,
logic%20to%20handle%20the%20uncertainty

● https://www.geeksforgeeks.org/clustering-in-machine-learning/

● https://www.javatpoint.com/classification-algorithm-in-machine-
learning

● https://www.geeksforgeeks.org/genetic-algorithms/

● Artificial Intelligence and Soft Computing, by Anandita Das
Battacharya, SPD 3rd, 2018

● Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,
3rd , 2019

● Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and
E.Mizutani, Prentice Hall of India, 2004



https://techdifferences.com/difference-between-soft-computing-and-hard-computing.html
https://techdifferences.com/difference-between-soft-computing-and-hard-computing.html
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/Soft_Computing_Applications/attachment/5b8ef4933843b0067537cb3b/AS%3A667245734817800%401536095188583/download/Soft+Computing+and+its+Applications.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/Soft_Computing_Applications/attachment/5b8ef4933843b0067537cb3b/AS%3A667245734817800%401536095188583/download/Soft+Computing+and+its+Applications.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/Soft_Computing_Applications/attachment/5b8ef4933843b0067537cb3b/AS%3A667245734817800%401536095188583/download/Soft+Computing+and+its+Applications.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/Soft_Computing_Applications/attachment/5b8ef4933843b0067537cb3b/AS%3A667245734817800%401536095188583/download/Soft+Computing+and+its+Applications.pdf
https://wisdomplexus.com/blogs/applications-soft-computing/
https://www.coursehero.com/file/40458824/01-Introduction-to-Soft-Computing-CSE-TUBEpdf/
https://www.coursehero.com/file/40458824/01-Introduction-to-Soft-Computing-CSE-TUBEpdf/
https://www.geeksforgeeks.org/fuzzy-logic-introduction/
https://www.guru99.com/what-is-fuzzy-logic.html
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_fuzzy_logic_systems.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_fuzzy_logic_systems.htm
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://www.javatpoint.com/bayesian-belief-network-in-artificial-intelligence
https://www.javatpoint.com/bayesian-belief-network-in-artificial-intelligence
https://www.javatpoint.com/probabilistic-reasoning-in-artifical-intelligence#:~:text=Probabilistic%20reasoning%20is%20a%20way,logic%20to%20handle%20the%20uncertainty
https://www.javatpoint.com/probabilistic-reasoning-in-artifical-intelligence#:~:text=Probabilistic%20reasoning%20is%20a%20way,logic%20to%20handle%20the%20uncertainty
https://www.javatpoint.com/probabilistic-reasoning-in-artifical-intelligence#:~:text=Probabilistic%20reasoning%20is%20a%20way,logic%20to%20handle%20the%20uncertainty
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.geeksforgeeks.org/genetic-algorithms/

19

1b
ARTIFICIAL NEURAL NETWORK

Unit Structure

1b.0 Objective

1b.1 Basic Concept

 1b.1.1 Introduction to Artificial Neural Network

 1b.1.2 Overview of Biological Neural Network

 1b.1.3 Human Brain v/s Artificial Neural Network

 1b.1.4 Characteristics of ANN

 1b.1.5 Basic Models of ANN

1b.2 Basic Models of Artifical Neural Network

 1b.2.1 The Model Synaptic Interconnection

 1b.2.2 Learning Based Model

 1b.2.3 Activation Function

1b.3 Terminologies of ANN

1b.4 McCulloch Pitts Neuron

1b.5 Concept of Linear Separability

1b.6 Hebb Training Algorithm

1b.7 Perceptron Network

1b.8 Adaptive Linear Neuron

 1b.8.1 Training Algorithm

 1b.8.2 Testing Algorithm

1b.9 Multiple Adaptive Linear Neurons

 1b.9.1 Architecture

1b.10 Review Questions

1b.11 References

1B.0 OBJECTIVES

1. The fundamentals of artificial neural network

2. Understanding between biological neuron and artificial neuron

3. Working of a basic fundamental neuron model.

4. Terminologies and terms used for better understanding of Artificial

Neural Network

5. The basics of supervised learning and perceptron learning rule

6. Overview of adaptive and multiple adaptive linear neurons

20

Soft Computing Techniques 1B.1 BASIC CONCEPT

Neural networks are information processing systems that are implemented

to model the working of the human brain. It is more of a computational

model used to perform tasks in a better optimized way than the traditional

systems. The essential properties of biological neural networks are

considered in order to understand the information processing tasks. This

indeed will allow us to design abstract models of artificial neural networks

which can be simulated and analyzed.

1b.1.1 Introduction to Artificial Neural Network

Artificial Neural Network (ANN) is an information processing system that

possesses characteristics with biological neural networks. ANNs consists of

large number of highly interconnected processing elements called nodes or

units or neurons. These neurons operate in parallel. Every neuron is

connected to the other neuron through the communication link with

assigned weights which contain information about the input signal. These

processing elements are called neurons or artificial neurons.

1b.1.2 Overview of Biological Neural Network

Fig 1b.1: Schematic diagram of a Neuron

(Image courtesy: Ugur Halici Lecture notes)

The fact that the human brain consists of large number of neurons with

numerous interconnections that processes information. The term neural

network is usually referred to the biological neural network that processes

and transmits information. The biological neurons are part of the nervous

system.

The biological neuron consists of three major parts

1. Soma or Cell body- contains the cell nucleus. In general, processing

occurs here

2. Dendrites- branching fibres that protrude from the cell body or soma.

The nerve is connected to the cell body.

3. Axon- It carries the impulses of the neuron. It carries information

away from the soma to other neurons.

4. Synapse- Each strand of an axon terminates into a small bulb-like

organ called synapse. It is through synapse the neuron introduces its

signals to other neurons.

21

Artificial Neural Network Working of the neuron

1. Dendrites receive activation signal from other neurons which is the

internal state of every neuron

2. Soma processes the incoming activity signals and convert its into

output activation signals.

3. Axons carry signals from the neuron and sends it to other neurons.

4. Electric impulses are passed between the synapses and the dendrites.

The signal transmission involves a chemical process called neuro-

transmitters.

1b.1.3 Human Brain v/s Artificial Neural Network

Comparison between biological and artificial neurons based on the

following criteria

1. Speed – Signals in human brain move at a speed dependent on the

nerve impulse. The biological neuron is slow in processing as

compared to the artificial neural networks which are modelled to

process faster.

2. Processing- The biological neuron can perform massive parallel

operations simultaneously. A large number of simple units are

organized to solve problems independently but collectively. The

artificial neurons also respond in parallel but do not execute

programmed instructions.

3. Size and Complexity- The size and complexity of the brain is

comparatively higher than that of artificial neural network. The size

and complexity of an ANN is different for different applications

4. Storage Capacity – The biological neuron stores the information in its

interconnection and in artificial neuron it is stored in memory

locations.

5. Tolerance- The biological neuron has fault tolerant capability but

artificial neuron has no tolerant capability. Biological neurons

considers redundancies whereas artificial neurons cannot consider

redundancies.

6. Control mechanism- There is no control unit to monitor the

information processed in to the network in biological neural networks

whereas in artificial neuron model all activities are continuously

monitored by a control unit.

22

Soft Computing Techniques 1b.1.4 Characteristics of Artificial Neural Networks

1. It is a mathematical model consists of computational elements

implemented neurally.

2. Large number of highly interconnected processing elements known

as neurons are prominent in ANN

3. The interconnections with their weights are associated with neurons.

4. The input signals arrive at the processing elements through

connections and weights.

5. ANNs collective behavior is characterized by their ability to learn,

recall and generalize from the given data.

6. A single neuron carries no specific information.

1b.1.5 How a simple neuron works?

Fig 1b.2 Architecture of a simple artificial neural net

From the given figure above, there are two input neurons X1 and X2

transmitting signal to the output neuron Y for receiving signal.

The input neurons are connected to the output neurons over a weighted

interconnection links w1 and w2.

For above neuron architecture , the net input has to be calculated in the way.

yin = x1w1+x2w2

where x1 and x2 are the activations of the input neurons X1 and X2 . The

output yin of the output neuron Y can be obtained by applying activations

over the net input .

y =f(yin)

Output = Function (net input calculated)

The function to be applied over the net input is called activation function .

23

Artificial Neural Network 1B.2 BASIC MODELS OF ARTIFICAL NEURAL

NETWORK

The models of ANN are specified by the three basic entities

1. The model’s synaptic interconnections

2. The learning rules adopted for updating and adjusting the connection

weights

3. The activation functions

3.2.1. The model’s synaptic interconnections

ANN consists of a set of highly interconnected neurons connected through

weights to the other processing elements or to itself. The arrangement of

these processing elements and the geometry of their interconnections are

important for ANN. The arrangement of neurons to form layers and the

connection pattern formed within and between layers is called the network

architecture.

There are five basic neuron connection architectures.

1. Single-layer feed-forward network

2. Multilayer feed-forward network

3. Single node with its own feedback

4. Single-layer recurrent network

5. Multi-layer recurrent network

1. Single-layer feed-forward network

It consists of a single layer of network where the inputs are directly

connected to the output, one per node with a series of various weights.

24

Soft Computing Techniques 2. Multi-layer feed-forward network

It consists of multi layers where along with the input and output layers, there

are hidden layers. There can be zero to many hidden layers. The hidden

layer is usually internal to the network and has no direct contact with the

environment.

3. Single node with own feedback

The simplest neural network architecture giving feedback to itself with a

single neuron.

4. Single-layer recurrent network

A single-layer network with a feedback directed back to itself or to other

processing element or both.

25

Artificial Neural Network 5. Multilayer recurrent network

A recurrent network has at least a feedback in place. The processing

elements output can be directed back to the nodes in the previous layer.

3.2.2. Learning

The most important part of ANN is it capability to train or learn. It is

basically a process by means of which a neural net adapts for adjusting or

updating the connection weights in order to receive a desired response.

Learning in ANN is broadly classified into three categories

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

1. Supervised Learning

In Supervised learning, it is assumed that the correct target output values

are known for each input pattern. In this learning, a supervisor or teacher is

needed for error minimization. The difference between the actual and

desired output vector is minimized using the error signal by adjusting the

weights until the actual output matches the desired output.

2. Unsupervised Learning

In Unsupervised learning, the learning is performed without the help of a

teacher or supervisor. In the learning process, the input vectors of similar

type are grouped together to form clusters. The desired output is not given

to the network. The system learns on its own with the input patterns.

26

Soft Computing Techniques 3. Reinforcement Learning

The Reinforcement learning is a form of Supervised learning as the network

receives feedback from its environment. Here the supervisor does not

present the desired output but learns through the critic information.

3.2.3 Activation Function

An activation function f is applied over the net input to calculate the output

of an ANN. The choice of activation functions depends on the type of

problems to be solved by the network.

The most common functions are

1. Identity function- It is a linear function. It is defined as f(x) = x for all

x

2. Binary step function: The function can be defined as

 1 if x >= 𝜃

 f(x) =

 0 if x < 𝜃

 Here,𝜃 represents the threshold value.

3. Bipolar Step function: The function can be defined as

 1 if x >= 𝜃

 f(x) =

 -1 if x < 𝜃

 Here,𝜃 represents the threshold value

4. Sigmoidal functions: These functions are used in back-propagation

nets.

 They are of two types:

 Binary Sigmoid function: It is known as unipolar sigmoid function.

 It is defined by the equation

 f(x) =
1

1 + 𝑒−𝜆𝑥

 Here, 𝞴 is the steepness parameter. The range of the sigmoid function is

from 0 to 1

Bipolar Sigmoid function: This function is defined as

 f(x) =
1 − 𝑒−𝜆𝑥

1 + 𝑒−𝜆𝑥

27

Artificial Neural Network Here, 𝞴 is the steepness parameter. The range of the sigmoid function is

from -1 to +1

5. Ramp function: The ramp function is defined as

 1 if x > 1

 f(x)= x if 0 ≤ 𝑥 ≤ 1

 0 if x < 0

 The graphical representation is shown below for all the activation

functions

1B.3 TERMINOLOGIES OF ANN

3.3.1 Weights

Weight is a parameter which contains information about the input signal.

This information is used by the net to solve a problem.

28

Soft Computing Techniques In ANN architecture, every neuron is connected to other neurons by means

of a directed communication link and every link is associated with weights.

Wij is the weight from processing element ‘i’ source node to processing

element ‘j’ destination node.

3.3.2 Bias (b)

The bias is a constant value included in the network. Its impact is seen in

calculating the net input. The bias is included by adding a component x0 =1

to the input vector X.

Bias can be positive or negative. The positive bias helps in increasing the

net input of the network. The negative bias helps in decreasing the net input

of the network.

1b.3.3. Threshold (𝜽)

Threshold is a set value used in the activation function. In ANN, based on

the threshold value the activation functions are defined and the output is

calculated.

1b.3.4 Learning Rate (𝜶)

The learning rate is used to control the amount of weight adjustment at each

step of training. The learning rate ranges from 0 to 1. It determines the rate

of learning at each time step.

1B.4 MCCULLOCH- PITTS NEURON (MP NEURON

MODEL)

MP neuron model was the earliest neural network model discovered by

Warren McCulloch and Walter Pitts in 1943.It is also known as Threshold

Logic Unit.

The M-P neurons are connected by directed weighted paths. The activation

of this model is binary. The weights associated with the communication

links may be excitatory (weight is positive) or inhibitory (weight is

negative). Each neuron has a fixed threshold and if the net input to the

neuron is greater than the threshold then the neuron fires otherwise it will

not fire.

1B.5 CONCEPT OF LINEAR SEPARABILITY

Concept: Sets of point in 2-D space are linearly separable if the points can

be separated by a straight line

In ANN, linear separability is the concept wherein the separation is based

on the network response being positive or negative. A decision line is drawn

to separate positive and negative responses. The decision line is called as

linear-separable line.

29

Artificial Neural Network

Fig 1b.3: Linear Separable Patterns

The linear separability of the network is based on the decision-boundary

line. If there exists weights for which the training data has correct

response,+ 1 (positive) ,it will lie on one side of the decision boundary line

and all other data on the other side of the boundary line. This is known as

linear separability.

1B.6 HEBB NETWORK

Hebb or Hebb learning rule stated by Donald Hebb in 1949 states that, the

learning is performed by the change in the synaptic gap. Explaining further,

he stated “When an axon of cell A is near enough to excite cell B, and

repeatedly takes place in firing it, some growth or metabolic change takes

place in one or both the cells such that A’s efficiency, as one of the cells

firing B, is increased”.

In Hebb learning, if two interconnected neurons are ‘ON’ simultaneously

then the weights associated with these neurons can be increased by changing

the strength in the synaptic gap.

 The weight update is given by

Wi (new) = wi (old) + xiy

30

Soft Computing Techniques Flowchart of Training algorithm,

Fig 1b.4: Flowchart of Hebb training algorithm

1B.7 PERCEPTRON NETWORKS

Perceptron Networks are single-layer feed forward networks. They are the

simplest perceptron,

Perceptron consists of three units – input unit (sensory unit), hidden unit

(associator unit) and output unit (response unit). The input units are

connected to the hidden units with fixed weights having values 1, 0 or -1

assigned at random. The binary activation function is used in input and

hidden unit. The response unit has an activation of 1, 0 or -1. The output

signal sent from the hidden unit to the output unit are binary.

The output of the perceptron network is given by y =f(yin) where yin is the

activation function.

Fig 1b.5: Perceptron model

31

Artificial Neural Network Perceptron Learning algorithm

The training of perceptron is a supervised learning algorithm. The algorithm

can be used for either bipolar or binary input vectors, fixed threshold and

variable bias.

The output is obtained by applying the activation function over the

calculated net input.

The weights are adjusted to minimize error when the output does not match

the desired output.

1B.8 ADAPTIVE LINEAR NEURON (ADALINE)

It is a network with a single linear unit. The linear activation functions are

called linear units. In this, the input-output relationship is linear. Adaline

networks are trained using the delta rule.

Adaline is a single-unit neuron, which receives input from several units and

also from one unit, called bias. An Adeline model consists of trainable

weights. The inputs are of two values (+1 or -1) and the weights have signs

(positive or negative).

Initially random weights are assigned. The net input calculated is applied to

a quantizer transfer function (possibly activation function) that restores the

output to +1 or -1. The Adaline model compares the actual output with the

target output and with the bias and the adjusts all the weights.

32

Soft Computing Techniques 1b.8.1 Training Algorithm

The Adaline network training algorithm is as follows:

Step0: weights and bias are to be set to some random values but not zero.

Set the learning rate parameter α.

Step1: perform steps 2-6 when stopping condition is false.

Step2: perform steps 3-5 for each bipolar training pair s:t

Step3: set activations foe input units i= 1 to n.

Step4: calculate the net input to the output unit.

Step5: update the weight and bias for i=1 to n

Step6: if the highest weight change that occurred during training is smaller

than a specified tolerance then stops the training process, else continue. This

is the test for the stopping condition of a network.

1b.8.2 Testing Algorithm

It is very essential to perform the testing of a network that has been trained.

When the training has been completed, the Adaline can be used to classify

input patterns. A step function is used to test the performance of the

network. The testing procedure for the Adaline network is as follows:

Step0: initialize the weights. (The weights are obtained from the training

algorithm.)

Step1: perform steps 2-4 for each bipolar input vector x.

Step2: set the activations of the input units to x.

Step3: calculate the net input to the output units

Step4: apply the activation function over the net input calculated.

1B.9 MULTIPLE ADAPTIVE LINEAR NEURONS

(MADALINE)

It consists of many adalines in parallel with a single output unit whose value

is based on certain selection rules. It uses the majority vote rule. On using

this rule, the output unit would have an answer either true or false.

On the other hand, if AND rule is used, the output is true if and only if both

the inputs are true and so on.

The training process of Madaline is similar to that of Adaline

1b.9.1 Architecture

It consists of “n” units of input layer and “m” units of Adaline layer and “1”

unit of the Madaline layer. Each neuron in the Adaline and Madaline layers

has a bias of excitation “1”. The Adaline layer is present between the input

33

Artificial Neural Network layer and the Madaline layer; the Adaline layer is considered as the hidden

layer.

Fig 1b.6: Architecture of Madaline layer

1B.10 REVIEW QUESTIONS

1. Define the term Artificial Neural Network.

2. List and explain the main components of biological neuron.

3. Mention the characteristics of an artificial neural network.

4. Compare the similarities and differences between biological and

artificial neuron.

5. What are the basic models of an artificial neural network?

6. List and explain the commonly used activation functions.

7. Define the following

a. Weights

b. Bias

c. Threshold

d. Learning rate

8. Write a short note on McCulloch Pitts Neuron model.

9. Discuss about the concept of liner separability.

10. State the training algorithm used for the Hebb learning networks.

11. Explain perceptron network.

12. What is Adaline? Draw the model of an Adaline network.

13. How is Madaline network formed?

34

Soft Computing Techniques 1B.11 REFERENCES

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

2019, Wiley Publication, Chapter 2 and 3

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,

Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes and tutorialspoint.com.



35

1c
SUPERVISED LEARNING NETWORK

Unit Structure

1c.0 Objective

1c.1 Perceptron Network

1c.2 Adaptive Linear Neuron

 1c.2.1 Training Algorithm

 1c.2.2 Testing Algorithm

1c.3 Multiple Adaptive Linear Neurons

 1c.3.1 Architecture

1c.4 Backpropagation Network

1c.5 Radial Basis Function

1c.6 Time Delay Neural Network

1c.7 Functional Link Network

1c.8 Tree Neural Network

1c.9 Review Questions

1c.10 References

1C.0 OBJECTIVES

1. The fundamentals of Supervised Learning Network

2. Understanding Perceptron Network

3. Working of a Adaptive Linear Neuron.

4. Understanding of Multiple Adaptive Linear Neurons

5. To understand Back-propagation networks used in real time
application.

6. Theory behind radial basis network and its activation function

7. Special supervised learning networks such as time delay neural
networks, functional link networks, tree neural networks and wavelet
neural networks

1C.1 PERCEPTRON NETWORKS

Perceptron Networks are single-layer feed forward networks. They are the
simplest perceptron,

Perceptron consists of three units – input unit (sensory unit), hidden unit
(associator unit) and output unit (response unit). The input units are
connected to the hidden units with fixed weights having values 1, 0 or -1
assigned at random. The binary activation function is used in input and
hidden unit. The response unit has an activation of 1, 0 or -1. The output
signal sent from the hidden unit to the output unit are binary.

36

Soft Computing Techniques The output of the perceptron network is given by y =f(yin) where yin is the
activation function.

Fig 1c.1: Perceptron model

Perceptron Learning algorithm

The training of perceptron is a supervised learning algorithm. The algorithm

can be used for either bipolar or binary input vectors, fixed threshold and

variable bias.

The output is obtained by applying the activation function over the

calculated net input.

The weights are adjusted to minimize error when the output does not match

the desired output.

37

Supervised Learning Network 1C.2 ADAPTIVE LINEAR NEURON (ADALINE)

It is a network with a single linear unit. The linear activation functions are

called linear units. In this, the input-output relationship is linear. Adaline

networks are trained using the delta rule.

Adaline is a single-unit neuron, which receives input from several units and

also from one unit, called bias. An Adeline model consists of trainable

weights. The inputs are of two values (+1 or -1) and the weights have signs

(positive or negative).

Initially random weights are assigned. The net input calculated is applied to

a quantizer transfer function (possibly activation function) that restores the

output to +1 or -1. The Adaline model compares the actual output with the

target output and with the bias and the adjusts all the weights.

1c.2.1 Training Algorithm

The Adaline network training algorithm is as follows:

Step0: weights and bias are to be set to some random values but not zero.

Set the learning rate parameter α.

Step1: perform steps 2-6 when stopping condition is false.

Step2: perform steps 3-5 for each bipolar training pair s:t

Step3: set activations foe input units i= 1 to n.

Step4: calculate the net input to the output unit.

Step5: update the weight and bias for i=1 to n

Step6: if the highest weight change that occurred during training is smaller

than a specified tolerance then stops the training process, else continue. This

is the test for the stopping condition of a network.

1c.2.2 Testing Algorithm

It is very essential to perform the testing of a network that has been trained.

When the training has been completed, the Adaline can be used to classify

input patterns. A step function is used to test the performance of the

network. The testing procedure for the Adaline network is as follows:

Step0: initialize the weights. (The weights are obtained from the training

algorithm.)

Step1: perform steps 2-4 for each bipolar input vector x.

Step2: set the activations of the input units to x.

Step3: calculate the net input to the output units

Step4: apply the activation function over the net input calculated.

38

Soft Computing Techniques 1C.3 MULTIPLE ADAPTIVE LINEAR NEURONS

(MADALINE)

It consists of many adalines in parallel with a single output unit whose value

is based on certain selection rules. It uses the majority vote rule. On using

this rule, the output unit would have an answer either true or false.

On the other hand, if AND rule is used, the output is true if and only if both

the inputs are true and so on.

The training process of Madaline is similar to that of Adaline

1c.3.1 Architecture

It consists of “n” units of input layer and “m” units of Adaline layer and “1”

unit of the Madaline layer. Each neuron in the Adaline and Madaline layers

has a bias of excitation “1”. The Adaline layer is present between the input

layer and the Madaline layer; the Adaline layer is considered as the hidden

layer.

Fig 1c.3: Architecture of Madaline layer

1C.4 BACKPROPAGATION NETWORKS

It is applied to multi-layer feed forward networks consisting of processing

elements with different activation functions. The networks associated with

back propagation learning algorithm is known as Back propagation

networks. It uses gradient descent method to calculate error and propagate

it back to the hidden unit.

The training at BPN is performed in three stages

1. The feed-forward of the input training pattern

2. The calculation and back-propagation of the error

39

Supervised Learning Network 3. Weight updates

Fig. 1C.4.1:Architecture of Backpropagation network

(Image:guru99.com)

1. A back-propagation neural network is a multilayer, feed-forward

neural network consisting of an input layer, a hidden layer and output

layer.

2. The neurons present in the hidden and output layers have activation

with always value 1.

3. The bias also acts as weights.

4. During the learning phase, signals are sent in the reverse direction.

5. The output obtained can be either binary or bipolar.

1C.5 RADIAL BASIS FUNCTION NETWORK

The radial basis function is a classification and functional approximation

neural network. It uses non-linear activation functions like sigmoidal and

Gaussian functions. Since radial basis functions have only one hidden layer,

the convergence of optimization is much faster.

1. The architecture consists of two layers.

2. The output nodes form a linear combination of the basis functions

computed by means of radial basis function nodes. Hidden layer generates

a signal corresponding to an input vector in the input layer, and

corresponding to this signal, network generates a response.

40

Soft Computing Techniques

 Fig. 1C.4.2: Architecture of Radial Basis functions

1C.6 TIME DELAY NEURAL NETWORKS

Time delay networks are basically feed-forward neural networks except that

the input weights has a tapped delay line associated to it.In TDNN, when

the output is being fed back through a unit delay into the input layer, the net

computed is equivalent to an infinite impulse response filter.

A neuron with a tapped delay line is called a Time delay neural network

unit and a network which consists of TDNN units is called a Time delay

neural network. Application od TDNN is speech recognition.

1C.7 FUNCTIONAL LINK NETWORKS

Functional link networks is a specifically designed high order neural

networks with low complexity for handling linearly non-separable

problems. It has no hidden layers. This model is useful for learning

continuous functions.

The most common example of linear non-separability is XOR problem.

 Fig 1C.4.3: Functional line network model with no hidden layer

41

Supervised Learning Network 1C.8 TREE NEURAL NETWORKS

These networks are basically used for pattern recognition problems. It uses

multilayer neural network at each decision-making node of a binary

classification for extracting a non-linear feature.

The decision nodes are circular nodes and the terminal nodes are square

nodes. The splitting rule decides whether the pattern moves to the right or

left.

The algorithm consists of two phases

1. The growing phase- A large tree is grown in this phase by recursively

finding the rules of splitting until all the terminal nodes have nearly

pure membership or else it can split further.

2. Tree pruning phase- To avoid overfilling/overfitting of data, a smaller

tree is selected or it is pruned.

Example- Tree neural networks can be used for waveform recognition

problem.

Fig 1C.4.4: Binary Classification tree

1C.9 REVIEW QUESTIONS

1. Define the term Artificial Neural Network.

2. List and explain the main components of biological neuron.

3. Mention the characteristics of an artificial neural network.

4. Compare the similarities and differences between biological and

artificial neuron.

5. What are the basic models of an artificial neural network?

6. List and explain the commonly used activation functions.

42

Soft Computing Techniques 7. Define the following

a. Weights

b. Bias

c. Threshold

d. Learning rate

8. Write a short note on McCulloch Pitts Neuron model.

9. Discuss about the concept of liner separability.

10. State the training algorithm used for the Hebb learning networks.

11. Explain perceptron network.

12. What is Adaline? Draw the model of an Adaline network.

13. How is Madaline network formed?

1C.10 REFERENCES

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

2019, Wiley Publication, Chapter 2 and 3

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,

Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes and tutorialspoint.com



43

MODULE I: Unit II

2a
ASSOCIATIVE MEMORY NETWORK

Unit Structure

2a.0 Objective

2a.1 Wavelet Neural Network

2a.2 Associative Memory Networks-Overview

2a.3 Auto associative Memory Network

2a.4 Hetro associative Memory Network

2a.5 Bi-directional Associative Memory

2a.6 Hopfield Networks

2a.8 Kohonen Self-Organizing Feature Maps

2a.9 Kohonen Self-Organizing Motor Map

2a.10 Learning Vector Quantization (LVQ)

2a.11 Counter propagation Networks

2a.12 Adaptive Resonance Theory Network

2a.13 Questions

2a.14 References

2A.0 OBJECTIVES

1. To understand Wavelet Neural Networks

2. Details and understanding about Associative Memory and its types

3. Hopfield networks and its training algorithm.

4. An overview of iterative auto associative and temporal associative

memory

2A.1 WAVELET NEURAL NETWORKS

These networks work on wavelet transform theory. It is useful for functional

approximation through wavelet decomposition. It consists of rotation,

dilation, translation and if the wavelet lies on the same line then it is called

wavelon instead of a neuron.

44

Soft Computing Techniques

Fig 2a.1: Wavelet Neural network with translation, rotation,

 dilation and wavelon

2A.2 ASSOCIATIVE MEMORY NETWORKS-

OVERVIEW

1. An associative memory is a content addressable memory structure

that maps the set of input patterns to the output patterns. It can store a

set of patterns as memories. The recall is through association of the

key pattern with the help of information memorized. Associative

memory makes a parallel search with a stored data file. The concept

behind this type of search is to retrieve the stored data either

completely or partially.

2. A content-addressable structure refers to a memory organization

where the memory is accessed by its content. The associative

memory is of two types autoassociative memory and

heteroassociative memory which are single-layer nets where the

weights are determined by the net output which is stored as a pattern.

The architecture of the associative net is either feed-forward or

iterative.

2A.3 AUTOASSOCIATIVE MEMORY NETWORK

1. In this network, training input and target output vectors are same.

2. Determination of weight is called storing of vectors.

3. Weight is set to zero.

4. It increases net ability to generalize

5. The net’s performance is based on its ability to reproduce a stored

pattern from a noisy input.

45

Associative

Memory Network
Architecture

For an autoassociative net, the training input and target output vectors are

the same. The input layer consists of n input units and the output layer also

consists of n output units. The input and output layers are connected through

weighted interconnections.

Fig 2a.2: Autoassociative network

2a.3.1 Training Algorithm

2A.4 HETEROASSOCIATIVE MEMORY NETWORK

1. In this network, the training input and the target output vectors are

different.

2. The determination of weights is done by either using Hebb rule or

delta rule.

3. The net finds an appropriate output vector, corresponds to an input

vector x, that may be either one of the stored patterns or a new pattern.

46

Soft Computing Techniques Architecture

The input layer consists of n number of input units and the output layer

consists of m number of output units. There is a weighted connection

between the input and output layers. Here, the input and output are not

correlated with each other.

Fig 2a.3: Heteroassociative network

2A.5 BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM)

1. The BAM network performs forward and backward associative

searches for stored stimulus responses.

2. It a type of recurrent heteroassociative pattern matching network that

encodes using Hebbian learning rule.

3. BAM neural nets can respond either ways from input and output

layers.

4. It consists of two layers of neurons which are connected by directed

weight path connections.

5. The network dynamics involves two layers of interaction until all the

neurons reach equilibrium.

 Fig: 2a.4 Bidirectional associative memory net

47

Associative

Memory Network
2A.6 HOPFIELD NETWORKS

1. These networks were developed by John. J. Hopfield.

2. Through his work, he promoted construction of the hardware chips.

3. These networks are applied in associative memory and optimization
problems.

4. They are basically of two types -discrete and continuous Hopfield
networks.

Discrete Hopfield networks- The Hopfield networks is an autoassociative
fully interconnected single-layer feedback network with fixed weights.

It works in discrete fashion. The network takes two-valued inputs -binary
or bipolar. In this network, only one unit updates its activation at a time.

The usefulness of content addressable memory is realized by discrete
Hopfield net.

Continuous Hopfield networks- In this network, time is considered to be a
continuous variable. These networks are used for solving optimization
problems like travelling salesman problems. These networks can be realized
as an electronic circuit. The nodes of these Hopfield networks have
continuous graded output. The total energy of the network decreases
continuously with time.

2A.7 KOHONEN SELF-ORGANIZING FEATURE MAPS

Feature’s mapping is a process which converts the patterns of arbitrary
dimensionality into a response of one- or two-dimensional arrays of
neurons, i.e. it converts a wide pattern space into a typical feature space.
The network performing such a mapping is called feature map. Apart from
its capability to reduce the higher dimensionality, it has to preserve the
neighborhood relations of the input patterns, i.e. it has to obtain a topology
preserving map. For obtaining such feature maps, it is required to find a
self-organizing array which consist of neurons arranged in a one-
dimensional array or a two-dimensional array. To depict this, a typical
network structure where each component of the input vector x is connected
to each of nodes is shown in Figure 2a5-5.

Figure 2a.5 One-dimensional Feature mapping network

48

Soft Computing Techniques On the other hand, if the input vector is two-dimensional, the inputs, say

x(a, b), can arrange themselves

in a two-dimensional array defining the input space (a, b) as in Figure 5-6.

Here, the two layers are fully connected.

The topological preserving property is observed in the brain, bur nor found

in any other artificial neural network.

Figure 2a.6. Two dimensional feature mapping network

2a.7.1 Architecture of Kohonen Self-Organizing Feature Maps

Consider a linear array of cluster units as in Figure 5-7. The

neighborhoods of the units designated by "o" of radii Ni(k1), Ni(k2) and

Ni(k,), k1 > k, > k,, where k1 = 2, k2 = 1, k3 = 0.

For a rectangular grid, a neighborhood (Ni) of radii k1, k2, and k3 is

shown in Figure 5-8 and for a

hexagonal grid the neighborhood is shown in Figure 5-9. In all the three

cases (Figures 5-7-5-9), the unit with “#” symbol is the winning unit and

the other units are indicated by "o." In both rectangular and hexagonal

grids, k1 >k2 > k3, where k1 = 2, k2 = 1, k3 = 0.

For rectangular grid, each unit has eight nearest neighbors but there are

only six neighbors for each unit in

the case of a hexagon grid. Missing neighborhoods may just be ignored. A

typical architecture of Kohonen self-organizing feature map (KSOFM) is

shown in Figure 2a.5-10.

Figure 2a.7. Linear array of cluster units

49

Associative

Memory Network

Fifure 2a.8.Rectanguler grid

Figure 2a.9. Hexagonal grid

Figure 2a.10. Kohonen self organizing feature map architecture

50

Soft Computing Techniques Flowchart of Kohonen Self-Organizing Feature Maps

Figure 2a.11. Flowchart for training process of KSOFM

51

Associative

Memory Network
2a.7.2. Training Algorithm of Kohonen Self-Organizing Feature

Maps:

Step 0: - Initialize the weights 𝑤𝑖𝑗 : Random values may be assumed.

They can be chosen as the same range of values as the component if input

vector. If information related to distribution of clusters is known, the

initial weights. can bet taken to reflect that prior knowledge.

 Set topological neighborhood parameters: As clustering progresses,

the radius of the neighborhood Decreases

 Initialize the learning rate : It should be a slowly decreasing

function of time.

Step 1: Perform Steps 2 − 8 when stopping condition is false.

Step 2; Perform Steps 3-5 for each input vector 𝑥.

Step 3: Compute the square of the Euclidean distance, i.e., for each 𝑗 = 1

to 𝑚,

𝐷(𝑗) = ∑  

𝑛

𝑖=1

∑  

𝑚

𝑗=1

(𝑥𝑖 − 𝑤𝑖𝑗)
2

Step 4: Find the winning unit index J, so that D(J) is minimum. (In Steps 3

and 4 , dot product method can also be used to find the winner, which is

basically the calculation of net input, and the winner will be the one with

the largest dot product.)

Step 5: For all units 𝑗 within a specific neighborhood of 𝐽 and for all 𝑖,

calculate the new weights:

𝑤𝑗𝑗(new) = 𝑤𝑖𝑗(o ∣ d) ± 𝛼0[𝑥𝑖 − 𝑤𝑖𝑗(old)]

Or

𝑤𝑖𝑗(new) = (1 − 𝛼)𝑤𝑖𝑗(old) + 𝛼𝑥𝑖

Step 6: Update the learning rate 𝛼 using the formula 𝛼(𝑡 + 1) = 0.5𝛼(𝑡).

Step 7: Reduce radius of topological neighborhood at specified time

intervals.

Step 8 : Test for stopping condition of the network

52

Soft Computing Techniques 2A.8 KOHONEN SELF-ORGANIZING MOTOR MAP :

Figure 2a.12. Architecture of kohonen self organizing motor map

The extension of Kohonen feature map for a multilayer network involve the

addition of an association layer to the output of the self-organizing feature

map layer. The output node is found to associate the desired output values

with certain input vectors. This type of architecture is called as Kohonen

self-organizing motor map and layer that is added is called a motor map in

which the movement command,

are being mapped into two-dimensional locations of excitation. The

architecture of KSOMM is shown in

Figure 5-12. Here, the feature map is a hidden layer and this acts as a

competitive network which classifies the input vectors.

2A.9 LEARNING VECTOR QUANTIZATION (LVQ)

LVQ is a process of classifying the patterns, wherein each output unit

represents a particular class. Here, for each class several units should be

used. The output unit weight vector is called the reference vector or code

book vector for the class which the unit represents. This is a special case of

competitive net, which uses supervised learning methodology. During the

training the output units are found to be positioned to approximate the

decision surfaces of the existing Bayesian classifier. Here, the set of training

patterns with known classifications is given to the network, along with an

initial distribution of the reference vectors. When the training process is

complete, an LVQ net is found to classify an input vector by assigning it to

the same class as that of the output unit, which has its weight vector very

close to the input vector. Thus LVQ is a classifier paradigm that adjusts the

boundaries between categories to minimize existing misclassification. LVQ

is used for optical character recognition, converting speech mro phonemes

and other application as well.

53

Associative

Memory Network
2a.9.1. Architecture of LVQ:

Figure 5-13 shows the architecture of LVQ. From Figure 5-13 it can be

noticed that there exists input layer with "n" unit; and output layer with

"m" units. The layers are found to be fully interconnected with weighted

linkage acting over the links.

Figure 2a.13. Architecture of LVQ

2a.9.2. Flowchart of LVQ:

The parameters used for the training process of a LVQ include the

following:

𝑥 = taaining vector (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)

𝑇 = category or class for the training vector 𝑥

𝑤𝑗 = weight vector for jh outpus unit (𝑧1𝑗, … , 𝑤𝑖𝑗, … , 𝑤𝑣𝑗)

𝑐𝑗 = cluster or class or category associated with jh output unit.

The Euclidean distance of jh outpui unit is 𝐷(𝑗) = ∑(𝑥𝑖 − 𝑤𝑖𝑗)
2

. The

flowchart indicaring the flow of training process is shown in Figure

𝟐𝐚. 𝟏𝟒.

54

Soft Computing Techniques

2a.9.3. Training Algorithm of LVQ:

Step 0: Initialize the reference vectors. This can be done using the

following steps.

 From the given sec of training vectors, take the first " 𝑚 " (number

of clusters) training vectors and use them as weighc vectors, the

remaining vectors can be used for training.

 Assign the initial weights and classifications random.1y.

 K -means chustering mechod.

55

Associative

Memory Network
Set initial learning rate 𝛼.

Step1: Perform Steps 2 − 6 if the stopping condition is false.

Step 2: Perform Steps 3-4 for each training input vector 𝑥.

Step 3: Calculate the Euclidean distance; for 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚,

𝐷(𝑗) = ∑  

𝑛

𝑖=1

∑  

𝑚

𝑗=1

(𝑥𝑖 − 𝑤𝑖𝑗)
2

Find the winning unit index 𝐽, when 𝐷(𝐽) is minimum.

Step 4: Update the weights on the winning unit, 𝑤, using the following

conditions.

 If 𝑇 = 𝑞, then 𝑢𝑗(𝑛𝑒𝑤) = 𝑢𝑗(𝑜𝑙𝑑) + 𝛼[𝑥 − 𝑤𝚥(𝑜𝑙𝑑}]

 If 𝑇 ≠ 𝑞, then 𝑢𝑗(𝑛𝑒𝑤) = 𝑢𝑔(𝑜𝑙𝑑) − 𝛼[𝑥 − 𝑢𝑗(0]𝑑)]

Step 5: Reduce the learning rate 𝛼.

Step 6: Test for the stopping condition of the training process.

(The stopping conditions may be fixed number of epochs or if learning rate

has reduced to a negligible value.)

2A.10 COUNTER PROPAGATION NETWORKS

They are multilayer networks based on the combinations of the input, output

and clustering layers. The applications of counter propagation nets are data

compression, function approximation and pattern association. The counter

propagation network is basically constructed from an instar-outstar model.

This model is a three-layer neural network that performs input-output data

mapping, producing an output vector yin response to an input vector x, on

the basis of competitive learning. The three layers in an instar-outstar model

are the input layer, the hidden (competitive) layer and the output layer. The

connections between the input layer and the competitive layer are the instar

structure, and the connections existing between the competitive layer and

the output layer are the outstar structure.

There are two stages involved in the training process of a counter

propagation net. The input vectors are

clustered in the first stage. Originally, it is assumed that there is no topology

included in the counter propagation network. However, on the inclusion of

a linear topology, the performance of the net can be improved. The dusters

are formed using Euclidean distance method or dot product method. In the

second stage of training, the weights from the cluster layer units to the

output units are tuned to obtain the desired response.

56

Soft Computing Techniques There are two types of counter propagation nets:

(i) Full counter propagation net

(ii) Forward-only counter propagation net

2a.10.1. Full Counter propagation Net:

Full counter propagation net (full CPN) efficiently represents a large

number of vector pairs x:y by adaptively constructing a look-up-table. The

approximation here is x*.y*, which is based on the vector pairs x:y, possibly

with some distorted or missing elements in either vector or both vectors.

The network is defined to approximate a continue function, defined on a

compact set A. The full CPN works best if the inverse function f-1 exists and

is continuous. The vectors x and y propagate through the network in a

counter flow manner to yield output vectors x* and y*, which are the

approximations of x and y, respective. During competition, the winner can

be determined either by Euclidean distance or by dot product method. In

case of dot product method, the one with the largest net input is the winner.

Whenever vectors are to be compared using the dot product metric, they

should be normalized. Even though the normalization can be performed

without loss of information by adding an extra component, yet to avoid the

complexity Euclidean distance method can be used. On the basis of this,

direct comparison can be made between the full CPN and forward-only

CPN.

For continuous function, the CPN is as efficient as the back-propagation

net; it is a universal continuous function approximate. In case of CPN, the

number of hidden nodes required to achieve a particular level

of accuracy is greater than the number required by the back-propagation

network. The greatest appeal of

CPN is its speed of learning. Compared to various mapping networks, it

requires only fewer steps of training to achieve best performance. This is

common for any hybrid learning method that combines unsupervised

learning (e.g., instar learning) and supervised learning (e.g., outsrar

learning).

As already discussed, the training of CPN occurs in two phases. In the input

phase, the units in the duster

layer and input layer are found to be active. In CPN, no topology is assumed

for the cluster layer units; only the winning units are allowed to learn. The

weight pupation learning rule on the winning duster units is

𝑣𝑖𝑗(new) = 𝑣𝑖(0𝑙𝑑) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(𝑜𝑙𝑑)], 𝑖 = 1 to 𝑛

𝑤𝑘/(new) = 𝑤𝑘𝑗(𝑜𝑙𝑑) + 𝛽(𝑦𝑘 − 𝑤𝑏(𝑜𝑙𝑑)], 𝑘 = 1 to 𝑚

57

Associative

Memory Network

In the second phase of training, only the winner unit J remains active in

the cluster layer. The weights between the winning cluster unit J and the

output units are adjusted so that the vector of activations of the units in the

Y-output layer is y* which is an approximation to the input vector y and

X* which is an approximation to the input vector x. The weight updating

for the units in the Y-output and X-output layers are

𝑢𝑗𝑘(𝑛𝑒𝑤) = 𝑢𝑗𝑘(𝑜𝑙𝑑) + 𝑎[𝑦𝑘 − 𝑢𝑗𝑘(𝑜𝑙𝑑)], 𝑘 = 1 to 𝑚

𝑡𝑗(𝑛𝑒𝑤) = 𝑡𝑗(𝑜𝑙𝑑) + 𝑏[𝑥𝑖 − 𝑡𝑗(𝑜𝑙𝑑)], 𝑖 = 1 to 𝑛

2a.10.2. Architecture of Full Counter propagation Net

The general structure of full CPN is shown in Figure 5-15. The complete

architecture of full CPN is shown in Figure 5-16.

The four major components of the instar-outstar model are the input layer,

the instar, the competitive layer and the outstar. For each node i in the input

layer, there is an input value xi;. An instar responds maximally to the input

vectors from a particular duster. All the instar are grouped into a layer called

the competitive layer.

Each of the instar responds maximally to a group of input vectors in a

different region of space. This layer of instars classifies any input vector

because, for a given input, the winning instar with the strongest response

identifies the region of space in which the input vector lies. Hence, it is

necessary that the competitive layer single outs the winning instar by setting

its output to a nonzero value and also suppressing the other outputs to zero.

That is, it is a winner-take-all or a Maxnet-type network. An outstar model

is found to have all the nodes in the output layer and a single node in the

competitive layer. The outstar looks like the fan-out of a node. Figures 5-17

and 5-18 indicate the units that are active during each of the two phases of

training a full CPN.

Figure 2d.15.General Structure of full CPN

58

Soft Computing Techniques

Figure 2a.16. Architecture of full CPN

Figure 2a.17 First phase of training of full CPN

59

Associative

Memory Network

Figure 2a.18 Second phase of training of full CPN

2a.10.3. Training Algorithm of Full Counter propagation Net:

Step 0: Set the initial weighrs and the initial learning rate.

Step 1: Perform Sreps 2 − 7 if stopping condition is folse for phase I

training.

Step 2: For each of the training input vector pair 𝑥: 𝑦 presented, perform

Steps 3 − 5.

Step 3: Make the X-input layer activations to vector X. Make the Y-inpur

layer acrivations to vector Y.

Step 4: Find the winning cluster unit. If dot product method is used, find the

cluster unit 𝑧𝑗 with target net inpur: for 𝑗 = 1 to 𝑝.

𝑠𝑛𝑗 = ∑  

𝑛

𝑖=1

𝑥𝑖𝑣𝑖𝑗 + ∑  

𝑚

𝑘=1

𝛾𝑘𝑤𝑘𝑗

If Euclidean distance merhod is used, find the cluster unis 𝑧1 whore

squared distance from input vecrors is the smallest:

𝐷𝑗 = ∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝑣𝑖𝑗)
2

+ ∑  

𝑖𝑚

𝑘=1

⟨𝛾𝑘 − 𝑢𝑛𝑘𝑖⟩2

If there occurs a tie in case of selection of winner unit, the unit with the

smallest index is the winner. Take the winner unit index as J.

Step 5: Update the weights over the calculated winner unit 𝑧𝑗 .

Step 6: Reduce the learning rates.

𝛼(𝑡 + 1) = 0.5𝛼(𝑡): 𝛽(𝑡 + 1) = 0.5𝛽(𝑡)

Step 7: Test stopping condition for phase I training.

60

Soft Computing Techniques Step 8: Perform Steps 9-15 when stopping condition is false for phase II

training.

Step 9: Perform Steps 10 − 13 for each training input pair 𝑥; 𝑦. Here 𝛼

and 𝛽 are small constant values.

Step 10: Make the X-input layer activations to vector 𝑥. Make the Y-input

layer activations to vectot 𝑦.

Step 11: Find the winning cluster unit (use formulas from Step 4). Take

the winner unit index as 𝑗.

Step 12: Update the weights entering into unit 3).

 For 𝑖 = 1 to 𝑛, 𝑣𝑖𝑗(new) = 𝑣𝑖𝑗(old) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(old)]

 For 𝑘 = 1 to 𝑚, 𝑤𝑘𝑗(new) = 𝑤𝑘/(old) + 𝛽[𝑦𝑘 − 𝑤𝑘(old)]

Step 13: Update the weights from unit 𝑧𝑗 to ghe outpur layers.

 For 𝑖 = 1 to 𝑛, 𝑐𝑗(new) = 𝑡𝑗(old) + 𝑏[𝑥𝑖 − 𝑡𝑗(𝑜]𝑑)]

 For 𝑘 = 1 to 𝑚, 𝑢𝑗𝑘(new) = 𝑢𝑗𝑘(old) + 𝑎[𝑦𝑘 − 𝑢𝑗𝑘(old)]

Step 14: Reduce the learning rates 𝑎 and 𝑏.

𝑎(𝑡 + 1) = 0.5𝑎(𝑡); 𝑏(𝑡 + 1) = 0.5𝑏(𝑡)

Step 15: Test stopping condition for phase II training.

2a.10.4. Testing Algorithm of Full Counter propagation Net:

Step 0: Initialize the weights (from training algorithm).

Step 1: Perform Steps 2-4 for each input pair X: Y.

Step 2: Ser X-input layer activations to vector X. Ser Y-input layer

activarions to vector Y.

Step 3: Find the cluster unir 𝑧𝑗 that is closest to the input pair.

Step 4: Calculate approximations to 𝑥 and :

𝑥𝑗
∗ = 𝑡𝑗𝑖; 𝑦𝑘

∗ = 𝑢𝑗𝑘

2a.10.5 Forward Only Counter propagation Net:

A simplified version of full CPN is the forward-only CPN. The

approximation of the function y = f(x) but not of x = f(y) can be performed

using forward-only CPN, i.e., it may be used if the mapping from x to y is

well defined but mapping from y to x is not defined. In forward-only CPN

only the x-vectors are used to form the clusters on the Kohonen units.

Forward-only CPN uses only the x vectors to form the clusters on the

Kohonen units during first phase of training.

61

Associative

Memory Network

In case of forward-only CPN, first input vectors are presented to the input

units. The cluster layer units compete with each other using winner-take-all

policy to learn the input vector. Once entire set of training vectors has been

presented, there exist reduction in learning rate and the vectors are presented

again, performing several iterations. First the weights between the input

layer and duster layer are trained. Then the weights between the cluster layer

and output layer are trained. This is a specific competitive network, with

target known. Hence, when each input vector is presented m the input

vector, its associated target vectors are presented to the output layer. The

winning duster unit sends its signal to the output layer. Thus each of the

output unit has a computed signal (wjk) and die target value (yk). The

difference between these values is calculated; based on this, the weights

between the winning layer and output layer are updated. The weight

updation from input units to cluster units is done using the learning rule

given below:

For i= 1 to n,

⋅ 𝑣𝑖(new) = 𝑣𝑖 fold) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(old)] = (1 − 𝛼)𝑣𝑗(old) + 𝛼𝑥𝑖

The weight updation from cluster units to output units is done using

following the learning rule: For 𝑘 = 1 to 𝑚,

𝑤𝑗𝑘(new) = 𝑣𝑗𝑘(old) + 𝑎[𝑦𝑘 − 𝑤𝑗𝑘(𝑜𝑙𝑑)] = (1 − 𝑎)𝑤𝑗𝑘(old) + 𝑎𝑦𝑘

The learning rule for weight updation from the duster units to output units

can be written in the form of delta rule when the activations of the cluster

units (𝑧𝑗) are included, and is given as

𝑤𝑗𝑘(new) = 𝑤𝑗𝑘(0 ∣ 𝑑) + 𝑛𝑧𝑗[𝑦𝑘 − 𝑤𝑗𝑘(old)}

where

𝑧𝑗 = {
1 if 𝑗 = 𝐽

0 if 𝑗 ≠ 𝐽

This occurs when 𝑤𝑗𝑘 is interprered as the computed output (i.e., 𝑦𝑘 = 𝑤𝑗𝑘

). In the formulation of forward-only CPN also, no topological structure

was assumed.

2a.10.6 Architecture of Forward Only Counter propagation Net:

Figure 5-20 shows the architecture of forward-only CPN. It consists of three

layers: input layer, cluster (competitive) layer and output layer. The

architecture of forward-only CPN resembles the back-propagation network,

but in CPN there exists interconnections between the units in the duster

layer (which are nor connected in Figure 5-20). Once competition is

completed in a forward-only CPN, only one unit will be active in that layer

and it sends signal to the output layer. As inputs are presented m the

network, the desired outputs will also be presented simultaneously.

62

Soft Computing Techniques

Figure 2a.19 Architecture of forward only CPN

2a.10.8. Training Algorithm of Forward Only Counter propagation

Net:

Step 0: Initialize the weights and learning races.

Step 1: Perform Steps 2-7 when stopping condition for phase I training is

false.

Step 2: Perform Steps 3-5 for each of training input 𝑋.

Step 3: Set the X-input layer acrivations to vector 𝑋.

Step 4: Compute the winning cluster unit (𝐽). If dot product mechod is

used, find the cluster unit zy Step wich the largest net input:

𝑧𝑖𝑛𝑗 = ∑  

𝑛

𝑘=1

𝑥𝑖𝑣𝑖𝑗

If Euclidean distance is used, find the cluster unit 𝑧𝑗 square of whose

distance from the input pattetn is smallest:

𝐷𝑗 = ∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝑣𝑖𝑗)
2

If there exists a tie in the selection of winner unit, the unit with the

smallest index is chosen as the winner.

Step 5: Perform weight updation for unit 𝑧𝑗. For 𝑖 = 1 to 𝑛,

𝑣𝑖𝑗(new) = 𝑣𝑖𝑗(old) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(old)]

Step 6: Reduce learning mte 𝛼

𝛼(𝑡 + 1) = 0.5𝛼(𝑡)

63

Associative

Memory Network

Step 7: Test the stopping condition for phase I training.

Step 8: Perform Steps 9 − 15 when stopping condition for phase II

training is false. (Set 𝛼 a small constant value for phase II training.)

Step 9: Perform Steps 10-13 for each tmining input pait 𝑥.. .

Step 10: Ser X-input layer activations to vector X. Set Y-output layer

activations to vector Y.

Step 11: Find the winning cluster unit (J) [use formulas as in Step 4].

Step 12: Update the weights into unit 𝑧𝑗. For 𝑖 = 1 to 𝑛,

𝑣𝑖𝑗(new) = 𝑣𝑖𝑗(old) + 𝛼[𝑥𝑖 − 𝑣𝑖 (old) ∣

Step 13: Update the weights from unit z) to the output units. For 𝑘 = 1 to

m,

𝑤𝑗𝑘(new) = 𝑤𝑗𝑘(old) + 𝛽[𝜂𝑘 − 𝑤𝑗𝑘(old)]

Step 14: Reduce learning rate 𝛽, i.e.,

𝛽(𝑡 + 1) = 0.5𝛽(𝑡)

Step 15: Test the stopping condition for phase II training.

2a.10.9. Testing Algorithm of Forward Only Counter propagation

Net:

Step 0: Set initial weights. (The initial weights here are the weights

obtained during training.)

Step 1: Present input vector X.

Step 2: Find unit J that is closest to vector X.

Step 3: Set activations of output units:

𝑦𝑘 = 𝑤𝑗𝑘

2A.11 ADAPTIVE RESONANCE THEORY NETWORK

The adaptive resonance theory (ART) network, developed by Steven

Grossberg and Gail Carpenter (1987), is consistent with behavioral models.

This is an unsupervised learning, based on competition, that finds categories

autonomously and learns new categories if needed. The adaptive resonance

model was developed to solve the problem of instability occurring in feed-

forward systems. There are two types of ART: ART 1 and ART 2. ART 1

is designed for clustering binary vectors and ART 2 is designed to accept

continuous-valued vectors. In both the ners, input patterns can be presented

in any order. For each pattern, presented to the network, an appropriate

cluster unit is chosen and the weighs of the cluster unit are adjusted to let

the cluster unit learn the pattern. This network controls the degree of

64

Soft Computing Techniques similarity of the patterns placed on the same cluster units. During training,

each training pattern may be presented several times. It should be noted that

the mput patterns should not be presented on the same cluster unit, when it

is presented each time. On the basis of this, the stability of the net is defined

as that wherein a pattern is not presented o previous cluster units.

The adaptive resonance theory (ART) network, developed by Steven

Grossberg and Gail Carpenter (1987), is consistent with behavioral

models. This is an unsupervised learning, based on competition, that finds

categories auconomously and learns new categories if needed. The adapdive

resonance model was developed to solve the problem of instability

oceutring in feed-forward systems. There are two types of ART: ART 1 and

ART 2. ART 1 is designed for clustering binary vectors and ART 2 is

designed to accept continuous-valued vectors. In both the ners, input

patterns can be presented in any order. For each pattern, presented to the

network, an appropriate cluster unit is chosen and the weighs of the cluster

unit are adjusted to let the cluster unit learn the pattern. This network

controls the degree of similarity of the patterns placed on the same cluster

units. During training, each training pattern may be presented several times.

It should be noted that the input patterns should not be presented on the

same cluster unit, when it is presented each time. On the basis of this, the

stability of the net is defined as that wherein a pattern is not presented (o

previous cluster units The stability may be achieved by reducing the

learning rates. The ability of the network to respond to a new pattern equally

at any stage of learning is called as plastic: ART nets are designed to possess

the properties, stability and plasticity. The key concept of ART is that the

stability plasticity can be resolved by a system in which the network

includes bottom-up (input-output) competitive learning combined with

 top-down (output-input) learning. The instability of instar-outstar

networks could be solved by reducing the learning rate gradually to zero by

freezing the learned categories. Buc, at this point, the net may lose its

plasticity or the ability to react to new data. Thus it is difficult to possess

both stability and plasticity. ART networks are designed particularly to

resolve the stability-plasticity dilemma, that is, they are stable to preserve

significant past learning but nevertheless remain adaptable to incorporate

new information whenever it appears.

2a.11.1. Fundamental architecture of ART-

Three groups of neurons reused to build an ART network. These include:

1. Input processing neurons (F1 layer).

2. Clustering units (F2 layer).

3. Control mechanism (controls degree of similarity of patterns placed

on the same duster

The processing neuron (F1) layer consists of two portions: Input portion and

interface portion input portion may perform some processing based on the

inputs it receives. This is especially performed in the case of ART 2

compared to ART 1.

65

Associative

Memory Network
The interface portion of the F1 layer combines the input from input portion

of F1 and F2 layers for comparing the similarity of the input signal with the

weight vector for the interface portion 25 F (b).

There exist two sets of weighted interconnections for controlling the degree

of similarity between the units in the interface portion and the cluster layer.

The bottom-up weights are used for the connection from F1(b) layer to F2

tayer and are represented by 𝛿𝑖𝑗(𝑓 th F1 unit to jhF2 unit). The iop-down

weights are used for the connection from F2 layer to F1(b) layer and are

repiesented by 𝑡𝜇‾ (𝑗 th F2 unit to 𝑖 th F1 anic). The competitive Jayer in this

cose is the cluster layct and the duster unit wich largest net input is the

victim to learn the input pattern, and the activations of all other F2 urnis are

mate zero The interface units combinc the data from input and cluster layer

units. On the basis of the similarity between the top-down weight vector and

input vector, the cluster unit may be allowed to learn the input pattern. This

decision is done by-esset mechanism unit on the basis of the signals receives

from interface portion and input portion of the F1 layer. When duster unit is

not allowed to learn, it is inhibited and a new cluster unit is selected as the

victim.

2a.11.2. Fundamental algorithm of ART-

Step 0: initialize the necessary parameters.

Step 1: Perform Steps 2 − 9 when stopping condition is false.

Step 2: Perform Steps 3 − 8 for each input vector.

Step 3: F1 layer processing is done.

Step 4: Perform Steps 5 − 7 when teset condition is true.

Step 5: Find the victim unit to learn the current input pattern. The victim

unit is going to be the F2 unit (that is nor inhibited) with the largest input.

Step 6: F1 (b) units combine their inputs from F1 (a) and F2.

Step7: Test for reset condition. Step If reset is true, then the current victim

unit is rejected (inhibited); go to Step 4. If reser is false, then che carrent

victim unit is accepted for learning; go to next step (Step 8).

Step 8: Weight updation is performed.

Step 9: Test for stopping condition.

Adaptive resonance theory 1 (ART 1) network is designed for binary input

vectors. As discussed generally, the ART 1 net consists of two fields of

units-input unit (𝐹1 unit) and output unit (𝐹2 unit)-aiong with the reser

control unit for controlling the degree of similarity of patterns placed on the

same cluster unit. There exist two sets of weighted interconnection patch

between F1 and F2 layers. The supplemental unic present in the net provides

the efficient neural control of the leatning process. Carpenter and Grossberg

have designed ART 1 network as a real-time system. In ART 1 network, ic

66

Soft Computing Techniques is not necessary to present an input pattern in a particular order; it can be

presented in any order. ART 1 network can be practically implemented by

analog circuits governing the differential equations, i. Q. the bottom-up and

top down weights are controlled by differential equations.)ART 1 network

runs throughout autonomously. It does nor require any external control

signals and can run stably with infinite patterns of input data.

ART 1 network is trained using fast learning method, in which the weights

reach equilibrium during each learning trial. During this resonance phase,

the activations of F units do not change; hence the equilibrium weights can

be determined exactly The ART 1 network performs well with perfect

binary input patterns, but is sensitive to noise in the input dara. Hence care

should be taken to handle the noise.

2a.11.3. Fundamental architecture of ART1-

The ART 1 network is made up of two units:

1 Computational units.

2 Supplemental units.

In this section we will discuss in detail about these two units.

Computational units

The computational unit for ART 1 consists of the following:

1 Input units (F1 unit − both input portion and interface portion).

2 Cluster units (F2 unit − outpuc unit),

Reset control unit (controls degree of similarity of patterns placed on same

cluster).

The basic architecture of ART I (computational unit) is shown in Figure 5-

22. Here each unit present in the input portion of F1 layer (i, e. , F1(a) layer

unic) is connected to the respective unic in the interface portion of E layer

(i.e., F1(b) layer unit). Reset control unit has connections from each fF1(a)

and F1(b) units. Also, each unit in F1(b) layer is connected through two

weighted interconnection pachs to each unic in F2 layer and the reser control

unit is connected to every F2 unit.The Xi unit of F1(b) layer is connected to

Yj unit of F2 layer through bottom-up weight (bij) and the Yj unit of F2 is

connected to Xi unit of F1 through top-down weights (tji). Thus ART 1

includes a bottom-up competitive learning system combined with a top-

down outstar learning system. In Figure 5 − 22 for simplicity only the

weighted interconnections 𝑏𝑖𝑗 and 𝑡𝑗𝑖 are shown, the other units’ weighted

interconnections are in a similar way. The cluster layer (𝐹2 layer) unit is a

competitive layer, where only the uninhibited node with the largest net input

has nonzero activation.

67

Associative

Memory Network

Figure 2a.20 Basic architecture of ART 1

2a.11.4. Training Algorithm of ART1-

Step 0: initialize the parameters:

and 0 < 𝜌 ≤ 1

Initialize the weights:

0 < 𝑏𝑖𝑗(0) <
𝛼

𝛼 − 1 + 𝑛
 and 𝑡𝑗𝑖(0) = 1

Step 1: Perform Steps 2-13 when stopping condition is false.

Step 2: Perform Steps 3 − 12 for each of the training input.

Step 3: Set activations of all F2 units to zero. Set the activations of F1(2)

units to input vectors.

Step 4: Calculate the norm of Σ

∥ 𝑠 ∥= ∑  

𝑗

𝑠𝑖

Step 5: Send input signal from F1 (a) layer to F1 (b) byer:

𝑥1 = 𝑠𝑖

Step 6: for each F2 pode thar is not inhibited, the following rule should

hold: If 𝑦; ≠ −1, then 𝑦‾𝑗 = ∑𝑏𝑖𝑗𝑥𝑖

Step 7: Perform Steps 8 − 11 when reset is true.

Step 8 : Find J for 𝑦𝑗 ≥ 𝑦𝑗 for all nodes 𝑗. If 𝑦𝑗 = −1, then all the nodes

are inhibited and note that this pattern cannot be clustered.

68

Soft Computing Techniques Step 9: Recalculate activation X of F1(b) :

 𝑥𝑖 = 𝑠𝑖𝑡𝑗

Step 10: Calculate the norm of vector 𝑥.

∥ 𝑥 ∥= ∑  

𝑖

𝑥𝑖

Step 11: Test for reset condition. If ∥ 𝑥 ∥/∥ 𝑠 ∥< 𝜌, then inhibit node
𝐽, 𝑦𝑗 = −1. Go back to step 7 again. Else if ∥ 𝑥 ∥/∥ 𝑠 ∥≥ 𝜌, then procced

to the next step (Step 12).

Step 12: Perform weight updation for node J. (fast learning):

𝑏𝑖𝑗(new) =
𝛼𝑥𝑖

𝛼 − 1+∥ 𝑥 ∥

√𝑡𝑗𝑖 (new) = 𝑥𝑖}

Step 13: Test for stopping condition. The following may be the stopping
conditions:
a. No change in weights.
b. No reset of units.
c. Maximum number of epochs reached.

2a.11.5. Adaptive Resonance Theory 2 (ART2):

Adaptive resonance theory 2 (ART 2) is for continuous-valued input
vectors. In ART 2 network complexity is higher than ART 1 network
because much processing is needed in F 1 layer. ART 2 network was
developed by Carpenter and Grossberg in 1987. ART 2 network was
designed to self-organize recognition categories for analog as well as binary
input sequences. The major difference between ART l and ART 2 networks
is the input layer. On the basis of the stability criterion for analog inputs, a
three-layer feedback system in the input layer of ART 2 network is required:
A bottom layer where the input patterns are read in, a top layer where inputs
coming from the output layer are read in and a middle layer where the top
and bottom patterns are combined together to form a marched pattern which
is then fed back to the top and bottom input layers. The complexity in the
F1 layer is essential because continuous-valued input vectors may be
arbitrarily dose together. The F1 layer consists of normalization and noise
suppression parameter, in addition to comparison of the bottom-up and top-
down signals, needed for the reset mechanism.

The continuous-valued inputs presented to the ART 2 network may be of
two forms. The first form

is a "noisy binary" signal form, where the information about patterns is
delivered primarily based on the

components which are "on" or "off," rather than the differences existing in

the magnitude of the components chat are positive. In this case, fast learning

mode is best adopted. The second form of patterns are those, in which the

range of values of the components carries significant information and the

weight vector for a cluster is found to be interpreted as exemplar for· the

69

Associative

Memory Network

patterns placed-on chat unit. In this type of pattern, slow learning mode is

best adopted. The second form of data is "truly continuous.''

2a.11.6. Fundamental architecture of ART2-

A typical architecture of ART 2 network is shown in Figure 5 − 25. From

the figure, we can notice that F1 layer consists of six types of units - W, X,

U, V, P, Q-and there are " 𝑛 " units of each type. In Figure 5 − 25, only one

of these units is shown. The supplemental parc of the connection is shown

in Figure 5 − 26.

The supplemental unit " N′′ between units 𝑊 and 𝑋 receives signals from

all " 𝑊" units, computes the no run of vector 𝑤 and sends this signal to each

of the 𝑋 units. This signal is inhibitory signal. Each of this

(X1, … , X𝑖, … , X𝑛) also receives excicatory signal from the corresponding

𝑊 unit. In a similar way, there exists supplemental units between 𝑈 and 𝑉,

and 𝑃 and 𝑄, performing the same operation as done between W and X.

Each X unit and Q unit is connecred to V unit. The connections between Pj

of the F1 layer and Y𝑗 of the F2 layer show the weighted interconnections,

which multiplies the signals transmitted over those pachs. The winning F2

unics’ activation is 𝑑(0 < 𝑑 < 1). There exists normalization between 𝑊

and X, V and U1 and P and Q. The noimalization is performed approximately

to unit length.

The operations performed in F2 layer are same for both ART 1 and ART 2.

The units in F2 layer compete with each other in a winner-take-all policy to

learn each input pattern. The testing of reset condition differs for ART 1

and ART 2 networks. Thus, in ART 2 network, some processing of the input

vector is necessary because the magnitudes of the real valued input vectors

may vary more than for the binary input vectors.

Figure 2a.21. Architecture of ART2 network

70

Soft Computing Techniques 2a.11.7 Training Algorithm of ART2:

Step 0: Initialize the following parameters: 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝛼, 𝜌, 𝜃. Also,

specify the number of epochs of training (nep) and number of learning

iterations (nit).

Step 1: Perform Steps 2-12 (nep) times.

Step 2: Perform Steps 3 − 11 for each input vector 𝑠.

Step 3: Update F1 unit activations:

𝑢𝑖 = 0; 𝑤𝑖
2 = 𝑠𝑖; P𝑖 = 0; 𝑞𝑖 = 0; 𝑣𝑖 = 𝑓(𝑥𝑖)

𝑥𝑖 =
𝑠𝑖

𝑒+∥ 𝑠 ∥

Update F1 unit activations again:

𝑢𝑗 =
𝑣𝑖

𝑒+∥ 𝑣 ∥
; 𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖;

𝑃𝑖 = 𝑢𝑖; 𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥′
;

𝑞𝑖 =
𝑝𝑖

𝑒+∥ 𝑝 ∥
; 𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)

In ART 2 networks, norms are calculated as the square root of the sum of

the squares of the respective values.

Step 4: Calculate signals to F2 units:

𝑦𝑗 = ∑  

𝑛

𝑗=1

𝑏𝑖𝑗𝑝𝑖

Step 5: Perform Steps 6 and 7 when reset is true.

Step 6: Find F2 unit Y𝑗 wich largest signal J is defined such that 𝑦𝑗 ≥

𝑦𝑗 , 𝑗 = 1 (o 𝑚).

Step 7: Check for reser:

𝑢𝑖 =
𝑣𝑖

𝑐+∥ 𝜈 ∥
; P𝑖 = 𝑢𝑖 + 𝑑𝑡𝑗; 𝑟𝑖 =

𝑤𝑖 + 𝑐P𝑖

𝑒+∥ 𝑢 ∥÷ 𝑐 ∥ 𝑝 ∥

If ∥ 𝑟 ∥< (𝜌 − 𝑒), then 𝑦𝐽 = −1 (inhibit 𝐽). Reser is true; perform Step 5 .

 If ∥ 𝑟 ∥≥ (𝜌 − 𝑒), then

𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖; 𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥
:

𝑞𝑖 =
𝑝𝑖

𝑒+∥ 𝑝 ∥
; 𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)

71

Associative

Memory Network
Reset is false. Proceed to Step 8.
Step 8: Perform Steps 9-l 1 for specified number of learning interactions.

Step 9: Update the weights for winning unit J:

𝑡𝑖𝑖 = 𝛼𝑑𝑢𝑖 + {[1 + 𝛼𝑑(𝑑 − 1)}}𝑡𝑗

𝑏𝑖𝑗 = 𝛼𝑑𝑢𝑖 + {⌊1 + 𝛼𝑑(𝑑 − 1)]}𝑏𝑖𝑗

Step 10: Update F_ acrivations:

𝑢𝑖 =
𝑣𝑖

𝑐+∥ 𝜈 ∥
: 𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖;

𝑃𝑖 = 𝑢𝑖 + 𝑑𝑡𝑗𝑖; 𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥
;

𝑞𝑖 =
𝑃𝑖

𝑒+∥ 𝑝 ∥
; 𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)

Step 11: Check for the stopping condition of weight updating.

Step 12: Check for the stopping condition for number of epochs.

2A.12 QUESTIONS

1. Define Content addressable memory

2. What are the two main types of associative memory?

3. What are Back Propagation networks?

4. Explain the architecture and working of Radial basis function

networks.

5. What is Bidirectional associative memory network?

6. Write a short note on Hopfield network.

2A.13 REFERENCES

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

2019, Wiley Publication, Chapter 3 and Chapter 4.

2. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes.



72

Soft Computing Techniques

2b
SPECIAL NETWORKS

Unit Structure

2b.1 Simulated Annealing Network

2b.2 Boltzmann Machine

2b.3 Gaussian Machine

2b.4 Cauchy Machine

2b.5 Probabilistic Neural Net

2b.6 Cascade Correlation Network

2b.7 Cognitron Network

2b.8 Neocognitron Network

2b.9 Cellular Neural Network

2b.10 Optical Neural Networks

2b.11 Summary

2b.12 Review Questions

2b.13 Reference

2B.1. SIMULATED ANNEALING NETWORK

The concept of simulated annealing has it origin in the physical annealing

process performed over metals and other substances. In metallurgical

annealing, a metal body is heated almost to its melting point and then cooled

back slowly to room temperature. This process eventually makes the metal's

global energy function reach an absolute minimum value. If the metal's

temperature is reduced quickly, the energy of the metallic lattice will be

higher than this minimum value because of the existence of frozen lattice

dislocations that would otherwise disappear due to thermal agitation.

Analogous to the physical annealing behaviour, simulated annealing can

make a system change its state to a higher energy state having a chance to

jump from local minima or global maxima. There exists a cooling

procedure in the simulated annealing process such that the system has a

higher probability of changing to an increasing energy state in the beginning

phase of convergence. Then, as time goes by, the system becomes stable

and always moves in the direction of decreasing energy state as in the case

of normal minimization produce.

73

Special Networks With simulated annealing, a system changes its state from the original state

SAold to a new stare SAnew with a probability P given by

P =
1

1 + exp⁡(−Δ𝐸/𝑇)

where Δ𝐸 = 𝐸old − 𝐸new (energy change = difference in new energy and

old energy) and 𝑇 is the nonnegative parameter (acts like temperature of a

physical system). The probability P as a function of change in energy (Δ𝐸)
obtained for different values of the remperature 𝑇 is shown in Figure 6 − 1.

From Figure 6 − 1, it can be noticed that the probability when Δ𝐸 > 0 is

always higher than she probability when Δ𝐸 < 0 for any remperature.

An optimization problem seeks to find some configuration of parameters

𝑋̇ = (𝑋1, … , 𝑋𝑛), hat minimizes some function 𝑓(𝑋) called cost function.

In an arcificial neural network, configuration parameters are associated with

the set of weights and the cost function is associated with the error function.

The simulated annealing concept is used in statistical mechanics and is

called Metropolis algorithm. As discussed earlier, this algorithm is based on

a material that anneals into a solid as temperature is slowly decreased. To

understand this, consider the slope of a hill having local valleys. A stone is

moving down the hill. Here, the local valleys are local minima, and the

bottom of the hill is going to be the global or universal minimum. It is

possible that the stone may stop at a local minimum and never reaches the

global minimum. In neural nets, this would correspond to a set of weights

that correspond to that of local minimum, but this is nm the desired solution.

Hence, to overcome this kind of situation, simulated annealing perturbs the

stone such that if it is trapped in a local minimum, it escapes from it and

continues falling till it reaches its global minimum (optimal solution). At

that point, further perturbations cannot move the stone to a lower position.

Figure 6-2 shows the simulated annealing between a stone and a hill.

Figure 2b.1 Probability “P” as a function in energy(AE)

for different values of temperature T

74

Soft Computing Techniques

Figure 2b.2 Simulated annealing stone and hill

The components required for annealing algorithm are the following

1 A basic system configuration: The possible solution of a problem over

which we search for a best (optimal) answer. (In a neural ner, this is

optimum steady-state weight.)

2 The move set: A ser of allowable moves thar permit us to escape from

local minima and reach all possible configurations.

3 A cost function associated with the error function.

4 A cooling schedule: Starting of the cost function and rules to

determine when it should be lowered and by how much, and when

annealing should be terminated.

5 Simulated annealing networks can be used to make a network

converge to its global minimum.

2B.2. BOLTZMANN MACHINE

The early optimization technique used in artificial neural networks is based
on the Boltzmann machine. When the simulated annealing process is
applied w the discrete Hopfield network, it becomes a Boltzmann machine.
The network is configured as the vector of the states of the units, and the
stares of the units are binary valued with probabilities state transition. The
Boltzmann machine described in this section has fixed weights wij. On
applying the Boltzmann machine to a constrained optimization problem, the
weights represent the constraints of the problem and the quantity to be
optimized. The discussion here is based on the fact of maximization of a
consensus function (CF).

The Boltzmann machine consists of a set of units (Xi, and Xj) and a set of
bi-directional connections between pairs of units. This machine can be used
as an associative memory. If the units Xi; and Xj are connected, then wij≠0.
There exists symmetry in the weighted interconnections based on the
directional nature. It can be represented as wij=wji. There also may exist a
self-connection for a unit (wij). For unit Xi, its State xi; may be either 1 or 0.
The objective of the neural net is to maximize the CF given by

75

Special Networks CF =∑  

𝑖

∑ 

𝑗≤𝑖

𝑤𝑖𝑗𝑥𝑖𝑥𝑗

The maximum of the CF can be obtained by letting each unit attempt to
change its state (alter between " 1𝑛 and " 0 " or " 0 " and "1"). The change
of sate can be done either in parallel or sequencial manner. However, in this
case ali the description is based on sequential manner. The consensus
change when unit 𝑋𝑖 changes its state is given by

Δ𝐶𝐹(𝑖) = (1 − 2𝑥𝑖) (𝑤𝑖𝑗 +∑  

𝑗≠𝑖

 𝑤𝑖𝑗𝑥𝑖)

where 𝑥𝑖 is the current srate of unit 𝑋𝑖. The variation in coefficient
(1 − 2𝑥𝑖) is given by

(1 − 2𝑥𝑖) = {
+1, 𝑋𝑖 is currently off

−1, 𝑋𝑖 is currently on

If unit 𝑋𝑖 were to change its activations, then the resulting change in the CF
can be obtained from the information that is local to unit 𝑋𝑖. Generally, 𝑋𝑖
does not change its stare, but if the states are changed, then this increases
the consersus of the net. The probability of the network that accepts a
change in the state for unit 𝑋𝑖 is given by

AF(𝑖, 𝑇) =
1

1 + exp⁡[−ΔCF(𝑖)/𝑇]

where 𝑇 (temperature) is the controlling parameter and it will gradually
decrease as the CF reaches the maximum value. Low values of 𝑇 are
acceptable because they increase rhe net consensus since the net accepts a
change in state. To help the net not to stick with the local maximum,
probabilistic functions are used widely.

2b.2.1. Architecture of Boltzmann Machine

 B

Figure 2b.3 Architecture of Boltzmann machine

76

Soft Computing Techniques 2b.2.2. Testing Algorithm of Boltzmann Machine

Step 0: Initialize the weights representing the constraints of the problem.

Also initialize control parameter 𝑇 and activate the units.

Step 1: When stopping condition is false, perform Steps 2-8.

Step 2: Perform Steps 3 − 6𝑛2 rimes. (This forms an epoch.)

Step 3: Integers 𝐼 and 𝐽 are chosen random values berween 1 and 𝑛. (Unit

𝑈1,𝑗 is the current victim to change its state.)

Step 4: Calculate the change in consensus:

Δ𝐶𝐹 = (1 − 2𝑋𝑙,𝑗) [𝑤(𝐼, 𝐽: 𝐼, 𝐽) +∑  

𝑖,𝑗≠

 ∑  

1,𝑗

 𝑣(𝑖, 𝑗: 𝐼, 𝐽)𝑋𝑖,𝐽]

Step 5: Calculate the probability of acceptance of the change in state:

AF(𝑇) = 1/1 + exp⁡[−(ΔCF/𝑇)]

Step 6: Decide whether to accept the change or not. Les 𝑅 be a random

number between

0 and 1. If 𝑅 < AF, accept the change:

𝑋𝐿,𝐽 = 1 − 𝑋𝑙,𝑗 (This changes the scate U𝐿,𝐽.) If 𝑅 ≥ 𝐴𝐹, reject the change.

Step 7: Reduce the control parameter 𝑇. 𝑇 (new) = 0.95𝑇 (old)

Step 8: Test for stopping condition, which is:

If the temperature reaches a specified value or if there is no change of state

for specified number of epochs then stop, else continue.

2B.3. GAUSSIAN MACHINE

Gaussian machine is one which includes Boitzmann machine, Hopfield net

and other neural networks. The Gaussian machine is based on the following

three parameters:

(a) a slope parameter of sigmoidal function 𝛼,

(b) a time step Δ𝑡, (c) temperacure 𝑇. The steps involved in the operation of

the Gaussian net are the following:

Step 1: Compute the net input to unit 𝑋𝑖 :

nec𝑖 =∑  

𝑁

𝑗=1

𝑤𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖

where 𝜃; is the rhreshold and ∈ the random noise which depends on

temperature 𝑇.

77

Special Networks Step 2: Change the activity level of unit 𝑋𝑖 :

Δ𝑥𝑖
Δ𝑡

= −
𝑥𝑖
𝑡
+ net𝑖

Step 3: Apply the activation function:

𝑣𝑖 = 𝑓(𝑥𝑖) = 0.5[1 + tanh⁡(𝑥𝑖)]

The binary step function corresponds to 𝛼 = ∞ (infinity).

The Gaussian machine with 𝑇 = 0 corresponds the Hopfield net. The

Bolamann machine can be obtained by setting Δ𝑡 = r = 1 to get

Δ𝑥𝑖 = −𝑥𝑖 + net
𝑖

 or 𝑥𝑖 (new) = net
𝑖
= ∑  

𝑁

𝑗=1

 𝑖𝑣𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖

The approximate Boltzmann acceptance function is obtained by integrating

the Gaussian noise distribution

∫  
∞

0

1

√2𝜋𝜎2
exp⁡

(𝑥 − 𝑥𝑖
2)

2𝜎2
𝑑𝑥 ≈ AF⁡(𝑟, 𝑇) =

1

1 + exp⁡(−𝑥𝑖𝑙𝑇)

where 𝑥𝑖 = Δ𝐶𝐹(𝑖). The noise which is found to obey a logistic rather than

a Gaussian distribution produces a Gaussian machine that is identical to

Boltzmann machine having Metropolis acceptance function, i.e., the output

set to 1 with probability,

AF(𝑖, T) =
1

1 + exp⁡(−𝑥𝑖/𝑇)

Δ𝑥𝑖 = −𝑥𝑖 + net
𝑖

2B.4. CAUCHY MACHINE

Cauchy machine can be called fast simulated annealing, and it is based on

including more noise to the net input for increasing the likelihood of a unit

escaping from a neighbourhood of local minimum. Larger changes in the

system's configuration can be obtained due to the unbounded variance of

the Cauchy distribution. Noise involved in Cauchy distribution is called

"coloured noise" and the noise involved in the Gaussian distribution is

called "white noise." By setting Δ𝑡 = 𝜏 = 1, the Cauchy machine can be

extended into the Gaussian machine, to obtain

Δ𝑥𝑖 ⁡= −𝑥𝑖 + net𝑖

 or 𝑥𝑖 (new) ⁡= net
𝑖
= ∑  

𝑁

𝑗=1

 𝑤𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖

78

Soft Computing Techniques The Cauchy acceptance function can be obtained by integrating the Cauchy

noise distribution:

∫  
∞

0

1

𝜋

𝑇𝑑𝑥

𝑇2 + (𝑥 − 𝑥𝑖)2
=
1

2
+
1

𝜋
arctan⁡(

𝑥𝑖
𝑇
) = AF⁡(𝑖, 𝑇)

where 𝑥𝑖 = Δ𝐶𝐹(𝑡). The cooling schedule and temperature have to be

considered in both Cauchy and Gaussian machines.

2B.5. PROBABILISTIC NEURAL NET

The probabilistic neural net is based on the idea of conventional probability

theory, such as Bayesian classification and other estimators for probability

density functions, to construct a neural net for classification. This net

instantly approximates optimal boundaries between categories. It assumes

that the training data are original representative samples. The probabilistic

neural net consists of two hidden layers as shown in Figure 6-4. The first

hidden layer contains a dedicated node for each training pattern amd the

second hidden layer contains a dedicated node for each class. The two

hidden layers are connected on a class-by-class basis, that is, the several

examples of the class in the first hidden layer are connected only to a single

machine unit in the second hidden layer.

Figure 2b.4. Probabilistic neural network

The algorithm for the construction of the net is as follows:

Step 0: For each training input pattern 𝑥(𝑝), 𝑝 = 1 to 𝑃, perform Steps 1

and 2.

Step 1: Create pattern unit 𝑧𝑘 (hidden-layer-l unit). Weight vecror for unit

𝑧𝑘 is given by

𝑤𝑘 = 𝑥(𝑝)

Unit 𝑧𝑘 is either 𝑧 -class- 1 unit or 𝑧 -class- 2 unic.

Step 2: Connect the hidden-layer- 1 unit to the hidden-layer- 2 unic.

79

Special Networks If 𝑥(𝑝) belongs to class 1, then connect the hidden layer unic 𝑧𝑘 ro the

hidden layer unit F1.

Otherwise, connect pattern hidden layer unit 𝑧𝑘 to the hidden layer unit 𝐹2.

2B.6. CASCADE CORRELATION NETWORK:

Cascade correlation is a network which builds its own architecture as the

training progresses. Figure 6-5 shows the cascade correlation architecture.

The network begins with some inputs and one or more output nodes, but it

has no hidden nodes. Each and every input is connected to every output

node. There may be linear units or some nonlinear activation function such

as bipolar sigmoidal activation function in the output nodes. During training

process, new hidden nodes are added to the network one by one. For each

new hidden node, the correlation magnitude between the new node's output

and the residual error signal is maximized. The connection is made to each

node from each of the network's original inputs and also from every pre-

existing hidden node. During the time when the node is being added to the

network, the input weights of the hidden nodes are-frozen, and only the

output connections are trained repeatedly. Each new node thus adds a new

one-node layer to the network.

Figure 2b.5. Cascade architecture after two hidden nodes have been

added

In Figure 6-5, the vertical lines sum all incoming activations. The

rectangular boxed connections are frozen and "0" connections are trained

continuously. In the beginning of the training, there are no hidden nodes,

and the network is trained over the complete training set. Since there is no

hidden node, a simple learning rule, Widrow-Hofflearning rule, is used for

training. After a certain number of training cycles, when there is no

significant error reduction and the final error obtained is unsatisfactory, we

try to reduce the residual errors further by adding a new hidden node. For

performing this task, we begin with a candidate node that receives trainable

input connections from the network's external inputs and from all pre-

80

Soft Computing Techniques existing hidden nodes. The output of this candidate node is not yet

connected to the active network. After this, we run several numbers of

epochs for the training set. We adjust the candidate node's input weights

after each -epoch to maximize C which is defined as

𝐶 =∑  

𝑖

∣ ∑  

𝑗

(𝑣𝑗 − 𝑣⃗)(𝐸𝑗,𝑖 − 𝐸‾𝑜)

where 𝑖 is the network output at which error is measured, 𝑗 the raining

partern, 𝑣 the candidate node's output value, 𝐸𝑜 the residual output error at

node 𝑜, 𝜈‾ the value of 𝑦 averaged over all parterns, 𝐸𝑜̅̅ ̅ the value of 𝐸𝑜

averaged over all patterns. The value " 𝐶′′ ' measures the correlation

berween the candidate node's oucput value and the calculated residual

output error. For maximizing 𝐶, the gradient ∂𝑑 ∂𝑤𝑖 is obrained as

∂𝑐

∂𝑤𝑖
= ∑  

𝑗,𝑖

𝜎𝑖(𝐸𝑗,𝑖 − 𝐸‾𝑖)𝑑𝑗𝐼𝑚

where 𝜎𝑖 is the sign of the correlation between the candidatc's value and

output 𝑖; 𝑑𝑗 the derivative for pattern 𝑗 of the candidate node's activation

function with respecc to sum of its inputs; 𝐼𝑚,𝑗 the input the candidate node

receives from node 𝑚 for pattern 𝑗. When gradient ∂𝑑 ∂𝑤𝑖 is calculated,

perform gradient ascent to maximize C. As we are training only a single

layer of weights, simple delta learning rule can be applied. When 𝐶 stops

improving, again a new candidate can be brought in as a node in the active

network and its input weights are frozen. Once again, all the output weights

are trained by the delta learning rule as done previously, and the whole cycle

repeats itself until the error becomes acceptably small.

2B.7. COGNITRON NETWORK:

The synaptic strength from cell X to cell Y is reinforced if and only if the

following two conditions are true:

l. Cell X- presynaptic cell fires.

2. None of the postsynaptic cells present near cell Y fire stronger than Y.

The model developed by Fukushima was called cognitron as a successor to

the perceptron which can perform cognizance of symbols from any alphabet

after training. Figure 6-6 shows the connection between presynaptic cell and

postsynaptic cell.

The cognitron network is a self-organizing multilayer neural network. Its

nodes receive input from the defined areas of the previous layer and also

from units within its own area. The input and output neural elements can

rake the form of positive analog values, which are proportional to the pulse

density of firing biological neurons. The cells in the cognitron model use a

mechanism of shunting inhibition, i.e., a cell is bound in terms of a

maximum and minimum activities and is driven toward these extremities.

81

Special Networks The area from which the cell receives input is called connectable area. The

area formed by the inhibitory cluster is called the vicinity area. Figure 2b. 7

shows the model of a cognitron. Since the connectable areas for cells in the

same vicinity are defined to overlap, but are not exactly the same, there will

be-a slight difference appearing between the cells which is reinforced so

that the gap becomes more apparent. Like this, each cell is allowed to

develop its own characteristics.

Cognitron network can be used in neurophysiology and psychology. Since

this network closely resembles the natural characteristics of a biological

neuron, this is best suited for various kinds of visual and auditory

information processing systems. However, a major drawback of cognitron

net is that it cannot deal with the problems of orientation or distortion. To

overcome this drawback, an improved version called neocognitron was

developed.

Figure 2b.6 Connection between presynaptic cell and postsynaptic cell

Figure 2b.7 Model of a cognitron network

2B.8. NEOCOGNITRON NETWORK

Neocognitron is a multilayer feed-forward network model for visual pattern

recognition. It is a hierarchical net comprising many layers and there is a

localized pattern of connectivity between the layers. It is an extension of

cognitron network. Neocognitron net can be used for recognizing hand-

written characters. A neocognitron model is shown in Figure 6·8.

82

Soft Computing Techniques The algorithm used in cognitron and neocognitron is same, except that

neocognicron model can recognize patterns that are position-shifted or

shape-distorted. The cells used in neocognitron are of two types:

1. S·-cell: Cells that are trained suitably to respond to only certain features in

the previous layer.

2. C-cell· A C-cell displaces the result of an S-cell in space, i.e., son of

"spreads" the features recognized by the S-cell.

Figure 2b.8 Neocognitron models

Figure 2b.9 Sprcading effect in neocognitron

Neocognitron net consists of many modules with the layered arrangement

of S-cells and C-cells. The S-cells receive the input from the previous layer,

while C-cells receive the input from the S-layer. During training, only the

inputs to the S-layer are modif1ed. The S-layer helps in the detection of

spccif1c features and their complexities. The feature recognized in the S1

layer may be a horizontal bar or a vertical bar but the feature in the Sn layer

may be more complex. Each unit in the C-layer corresponds to one relative

position independent feature. For the independent feature, C-node receives

the inputs from a subset of S-layer nodes. For instance, if one node in C-

layer detects a vertical line and if four nodes in the preceding S-layer detect

a vertical line, then these four nodes will give the input to the specific node

in C-layer to spatially distribute the extracted features. Modules present

near the input layer (lower in hierarchy) will be trained before the modules

83

Special Networks that are higher in hierarchy, i.e., module 1 will be trained before module 2

and so on.

The users have to fix the "receptive field" of each C-node before training

starts because the inputs to C-node cannot be modified. The lower level

modules have smaller receptive fields while the higher level modules

indicate complex independent features present in the hidden layer. The

spreading effect used in neocognitron is shown in Figure 6-9.

2B.9. CELLULAR NEURAL NETWORK –

cellular neural network (CNN), introduced in 1988, is based on cellular

automata, i.e., every cell in the network is connected only to its neighbour

cells. Figures 6-10 (A) and (B) show 2 x 2 CNN and 3 x 3 CNN,

respectively. The basic unit of a CNN is a cell. In Figures 6-10(A) and (B),

C(l, l) and C(2, 1) are called as cells.

Even if the cells are not directly connected with each other, they affect each

other indirectly due to propagation effects of the network dynamics. The

CNN can be implemented by means of a hardware model. This is achieved

by replacing each cell with linear capacitors and resistors, linear and

nonlinear controlled sources, and independent sources. An electronic circuit

model can be constructed for a CNN. The CNNs are used in a wide variety

of applications including image processing, pattern recognition and array

computers.

Figure 2b.10 (A) A2*2CNN;(B) a 3*3 CNN

2B.10. OPTICAL NEURAL NETWORKS

Optical neural networks interconnect neurons with light beams. Owing to

this interconnection, no insulation is required between signal paths and the

light rays can pass through each other without interacting. The path of the

signal travels in three dimensions. The transmission path density is limited

by the spacing of light sources, the divergence effect and the spacing, of

detectors. A$ a result, all signal paths operate simultaneously, and true data

rare results are produced. In holograms with high density, the weighted

strengths are stored.

84

Soft Computing Techniques These stored weights can be modified during training for producing a fully

adaptive system. There are two classes of this optical neural network. They

are:

1. electro-optical multipliers;

2. holographic correlators.

2b.10.1. Electro-optical multipliers

Electro-optical multipliers, also called electro-optical matrix multipliers,

perform matrix multiplication in

parallel. The network speed is limited only by the available electro-optical

components; here the computation time is potentially in the nanosecond

range. A model of electro-optical matrix multiplier is shown in Figure 6-11.

Figure 6-11 shows a system which can multiply a nine-element input vector

by a 9 X 7 matrix, which

produces a seven-element NET vector. There exists a column of light

sources that passes its rays through

a lens; each light illuminates a single row of weight shield. The weight

shield is a photographic film where transmittance of each square (as shown

in Figure 6-11) is proportional to the weight. There is another lens that

focuses the light from each column of the shield m a corresponding

photoelectron. The NET is calculated as

NET𝑘 = ∑𝑖  𝑤𝑖𝑘𝑥𝑖

where NETk is the net output of neuron k; wik the weight from neuron i to

neuron k; xi the input vector

component i. The output of each photo detector represents the dot product

between the input vector and a

column of the weight matrix. The output vector set is equal to the produce

of the input vector with weight

matrix. Hence, matrix multiplication is performed parallel. The speed is

independent of the size of the array.

Figure 2b.11 Elecrno-optical multiplier

85

Special Networks 2b.10.2. Holographic Correlators

In holographic correlators, the reference images are stored in a thin

hologram and are retrieved in a coherently illuminated feedback loop. The

input signal, either noisy or incomplete, may be applied to the system and

can simultaneously be correlated optically with all the stored reference

images. These. correlations can be threshold and are fed back to the input,

where the strongest correlation reinforces the input image. The enhanced

image passes around the loop repeatedly, which approaches the stored

image more closely on each pass, until the system gets stabilized on the

desired image. The best performance of optical correlators is obtained when

they are used for image recognition. A generalized optical image

recognition system with holograms is shown in Figure 6- 12.

Figure 2b.12 Optical image recognition system

The system input is an image from a laser beam. This passes through a beam

splitter, which sends it to

the threshold device. The image is reflected, then gets reflected from the

threshold device, passes back to the beam splitter, then goes to lens 1, which

makes it fall on the first hologram. There are several stored images in first

hologram. The image then gets correlated with each stored image. This

correlation produces light patterns. The brightness of the patterns varies

with the degree of correlation. The projected images from lens 2 and mirror

A pass through pinhole array, where they are spatially separated. From this

array, light patterns go to mirror B through lens 3 and then are applied to

the second hologram. Lens 4 and mirror C then produce superposition of

the multiple correlated images o1nto the back side of the threshold device.

The front surface of the threshold device reflects most strongly that pattern

which is brightest on its rear surface. Its rear surface has projected on it the

set of four correlations of each of the four stored images with the input

image. The stored image that is similar to the input image possesses highest

correlation. This reflected image again passes through the beam splitter and

re-enters the loop for further enhancement. The system gets converged on

the stored patterns most like the input pattern.

86

Soft Computing Techniques 2B.11 SUMMARY:

In this chapter we learn about Simulated Annealing Network, Boltzmann

Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net

,Cascade Correlation Network, Cognitron Network ,Neocognitron

Network, Cellular Neural Network , Optical Neural Networks, Spiking

Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer

Sizing, Deep learning Neural networks, Extreme Learning Machine Model

(ELMM) in detail.

2B.12 REVIEW QUESTIONS:

1. Write a short note on Simulated Annealing Networks?

2. Explain Architecture of Boltzmann Machine.

3. Explain Probabilistic Neural Net.

4. Write a short note on Cellular Neural Network.

5. What are the Third-Generation Neural Networks?

6. Explain Architecture of a Convolutional Neural Network

7. What are the Limitations of CNN Model.

8. Write a short note on Deep learning Neural networks.

9. Write a short note on ELM Architecture and Training Algorithm

2B.13 REFERENCE:

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

2019, Wiley Publication, Chapter 2 and 3

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,

Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes and tutorialspoint.com.



87

Third Generation

Neural Networks 2c

THIRD GENERATION

NEURAL NETWORKS

Unit Structure

2c.1 Spiking Neural Networks (SNN)

2c.2 Encoding of Neurons in SNN

2c.3 CNN Layer Sizing

2c.4 Deep learning Neural networks

2c.5 Extreme Learning Machine Model (ELMM)

2c.6 Summary

2c.7 Review Questions

2c.8 Reference

2C.1 SPIKING NEURAL NETWORKS (SNN)

As it is well known that the biological nervous system has inspired the

development of the artificial neural network models. On looking into the

depth of working of biological neurons, it is noted that the working of these

neurons and their computations are performed in temporal domain and the

neuron firing depends on the timing between the spikes stimulated in the

neurons of the brain. These fundamental biological understandings of the

neuron operation lead the pathway to the development of spiking neural

networks (SNN). SNNs fall under the category of third-generation neural

networks and this is more closely related to the biological counterparts

compared to the first- and second-generation neural networks. These

developed spiking neural networks use transient pulses for performing the

computations and require communications within the layers of the network

designed. There exist different spiking neural models and their

classification is based on their level of abstraction.

2c.1.1. Architecture of SNN Model

Neurons in central nervous system communicate using short-duration

electrical impulses called spikes or action potentials in which their

amplitude is constant in the same structure of neurons. SNNs offer a

biological plausible fast third-generation neural connectionist model. They

derive their strength and interest from an accurate modelling of synaptic

interactions between neurons, taking into account the time of spike

emission. SNNs overcome the computational power of neural networks

88

Soft Computing Techniques made of threshold or sigmoidal units. Based on dynamic event-driven

processing, they open up new horizons for developing models with an

exponential capacity of memorizing and a strong ability to fast adaptation.

Moreover, SNNs add a new dimension, the temporal axis, to the

representation capacity and the processing abilities of neural networks.

There are many different models one could use to model both the individual

spiking neurons and also the nonlinear dynamics of the system. Neurons

communicate with spikes, also known as action potentials. Since all spikes

art identical (1-2 ms of duration and 100 mV of amplitude), the information

is encoded by the liming of the spikes and not the spikes themselves.

Basically, a neuron is divided into three parts: the dendrites, the soma and

the axon. Generally speaking, the dendrites receive the input signals from

the previous neurons. The received input signals are processed in the soma

and the output signals are transmitted at the axon. The synapse is between

every two neurons; if a neuron j sends a signal across the synapse to neuron

i, the neuron that sends the signal is called pre-synaptic neuron and the

neuron that receives the signal is called post-synaptic neuron. Every neuron

is surrounded by positive and negative ions. In the inner surface of the

membrane there is an excess of negative charges and on the outer surface

there is an excess of positive charges. Those charges create the membrane

potential.

Each spiking neuron is characterized by a membrane potential. When the

membrane potential reaches a critical value called threshold it emits an

action potential, also known as a spike (Figure 7-1). A neuron is said to fire

when its membrane potential reaches a specific threshold. When it fires, it

sends a spike towards all other connected neurons. Its membrane potentials

then reset and the neuron cannot fire for a short period of time,

this time period refractory period. The output of a spiking neuron is therefore

binary (spike or not) but it can be converted to continuous signal over time.

Hence the activity of a neuron over a short period of lime is converted into

a mean firing rate. The spikes are identical to each other and their form does

not change as the signal moves from a pre-synaptic to a post-synaptic

neuron. The firing time of a neuron is called spike train.

Fig-.2c.13-SNN spikes: The membrane potential is increased and at time

t(f) the membrane potential reaches the threshold so that a spike is emitted.

89

Third Generation

Neural Networks
2c.1.2 Izhikevich Neuron Model

The Izhikevich Neuron Model is defined by the following equation:

v’= 0.04v2 + 5v + 140 –u +I

u’= a(bv-u)

If v >= 30 mV, then v = c and u = u + d. Here, / is the input, v is the neuron

membrane voltage and u is the recovery variable of the activation of

potassium K ionic currents and inactivation of sodium Na ionic currents.

The model exhibits all known neuronal firing patterns with the appropriate

values for the variables a, b, c and d.

1 The parameter a describes the time scale of the recovery variable u.

Smaller values result in slower recovery. A typical value is a = 0.02.

2. The parameter b describes the sensitivity of the recovery

variable u to the sub-threshold fluctuations of the membrane potential

v. A typical value is b - 0.2.

3. The parameter c describes the after-spike reset value of the

membrane potential v caused by the fast high-threshold K (potassium)

conductance. A typical value for real neurons is c = -65 mV.

4. The parameter d describes the after-spike reset of the recovery

variable u caused by slow high threshold Na (sodium) and K

(potassium) conductance. A typical value of d is 2.

The IZ neuron uses voltage as its modelling variable. When the membrane

voltage v(f) reaches 30 mV, a spike is emitted and the membrane voltage

and the recovery variable are reset according to IZ neuron model equations.

For I ms of simulation, this model takes 13 FLOPS. Figure 7-2 illustrates

the IZ neuron model firing.

90

Soft Computing Techniques

Fig- 2c.14-The Izhikevich Spiking Neuron Model. In the top graph, there exists
the membrane potential of the neuron. In the middle graph, there is the
membrane recovery variable. Finally, the bottom plot represents the action
pre-synaptic spikes.

The SNN with N neurons is assumed to be fully connected and hence the

output of each neuron I is connected to every other neuron. The synaptic

strength of these connections are given by the N x N matrix W where

W[i, j] is the strength between the output of neuron j and the input of neuron

i. Thus W[i, :] represents the synapses at the input of neuron i, whereas

 W[:, j] represents the synapse values connected to the outputs of neuron j.

Each neuron has its own static parameters and varying state values. The set

P represents the set of possible constant parameters and I is the set of neuron

states. The set of possible inputs to the neurons is denoted by R. The neuron

updated function f:(P, S, R) -> (S, [0,1]) takes input parameters as the

neuronal states and inputs and produces the next neuronal state and binary

output.

Izhikevich's model uses a two-dimensional differential equation to

represent the state of a single neuron i, namely, its membrane recovery

variable u[i] and membrane potential v[i], that is (u[i], v[i]) ϵ S with a hard

reset spike. Additional four parameters are used for the configuration of the

neurons: a - time scale of u; b - sensitivity of u; c - value of v after the

neuron is fired; d - value of u after the neuron is fired. Hence the neuron

parameters are (a, b, c, d) ϵ P, These parameters can be tuned to represent

different neuron classes. If the value of v[i| is above 30 mV, the output is

set to 1 (otherwise it is 0) and the state variables are reset.

Izhikevich used a random input for each neuron in the range N(0,1), a zero

mean and unit variance that is normally distributed. This input results in

random number of neurons firing each time, depending not only on the

intensity of the stimulus, but also on their randomly initialized parameters.

After the input layer, one or more layers are connected in a feed-forward

fashion. A spike occurs anytime the voltage reaches 30 mV. While the

neurons communicate with spikes, the input current Ii of the neuron i is

equal to

91

Third Generation

Neural Networks 𝐼𝑖 = ∑  

𝑛

𝑗=1

𝑤𝑖𝑗𝛿𝑗 + ∑  

𝑚

𝑘=1

𝑤𝑖𝑘𝐼𝑘(𝑡)

where wij is weight of connection from node; to node i; wik is weight of

connection from external input k to node i; Ik(t) is binary external input k;

δj is binary output of neuron j (0 or 1).

When the input current signal changes, the response of the Izhikevich

neuron also changes, generating different firing rates. The neuron is

responded during “T” ms with an input signal and it gets fired when its

membrane potential reaches a specific value, generating an action potential

(spike) or a train of spikes. The firing rate is evaluated as

2c.2 Encoding of Neurons in SNN

Spiking neural networks can encode digital and analogy information. The

neuronal coding schemes are of three categories: rate coding, temporal

coding and population coding. In rate coding, the information is encoded

into the mean firing rate of the neuron, which is also known as temporal

average. In temporal coding, the information is encoded in the form of spike

times. In population coding, a number of input neurons (population) are

involved in the analog encoding and this produces different firing times.

Commonly used encoding method is the population- based encoding.

In population encoding, analogy input values are represented into spike

times using population coding. Multiple Gaussian receptive fields are used

so that the input neurons encode an input value into spike times. The firing

time is computed based on the intersection of Gaussian function. The centre

of the Gaussian function is calculated using

𝜇 = 𝐼min + (2 ∗ 𝑖 − 3)/2 ∗ (Imax − 𝐼min)/(𝑀 − 2)

and the width is computed employing

𝜎 = 1/𝛽(𝐼max − 𝐼min)/(𝑀 − 2) where 1 ≤ 𝛽 ≤ 2

with the variable interval of [𝐼min′  𝐼max]. The parameter " 𝛽 " controls the

width of each Gaussian receptive field.

2c.2.1. Learning with Spiking Neurons

Similar to other supervised training algorithms, the synaptic weights of the

network are adjusted iteratively in order to impose a desired input-output

mapping to the SNN. Learning is performed through implementation of

synaptic plasticity on excitatory synapses, The synaptic weights of the

model, which are directly connected to the input pattern, determine the

firing rate of the neurons. This means that the carried learning phase

generates the desired behaviour by adjusting the synaptic weights of the

neuron.

92

Soft Computing Techniques The neurons characterize sudden change of the membrane potential

instantaneously prior to and subsequent to the firing. This potential

behavioural feature leads to complexity in training SNNs. Some of the

learning models include SpikeProp, spike-based supervised Hebbian

learning, and ReSuMe and Spike time-dependent plasticity. Neurons can be

trained to classify categories of input signals based on only a temporal

configuration of spikes. The decision is communicated by emitting

precisely timed spike trains associated with given input categories. Trained

neurons can perform the classification task correctly.

The weights w between a pre-synaptic neuron i and a post-synaptic neuron

j do not have fixed values. It has been proved through experiments that they

change, and this affects the amplitude of the generated spike. The procedure

of the weight update is called learning process and it can be divided into

two categories: supervised and unsupervised learning If the synaptic

strength is increased then it is called long-term potentiation (LTP) and if the

strength is decreased then it is called long-term depression (LTD).

2c.2.2. Spike Prop Learning Algorithm

SNN employs spiking neurons as computational units which account to

precise firing times of neurons for information coding. The information

retrieval from the spike trains (neurons encode the information) are done by

binary bit coding which is a population coding approach. This section

presents the error-back propagation supervised learning algorithm as

employed for the spiking neural networks.

Each SNN consists of a set of neurons (I, J), a set of edges (E ⸦ I x J), input

neurons i ⸦ I and output neurons j ⸦ J. For each non-input neuron, i ϵ I,

with threshold function Vth and potential u(t), each synapse {i, j} ϵ E will

have a response function εij and weight wij. The structures of neurons tend

to be fully connected feed forward neural network. The source neuron V

will fire and propagate spikes along all directions. Formally, a spike train is

defined as a sequence of pulses. Each target neuron w that receives a spike

experiences an increase in potential at time t, similar as wj,w . εj,w (i-t).

The firing time of a neuron i is denoted as t where f = 1,2,3,... is the number

of the spike. The objective is to train a set of target firing times tft and actual

firing time ta For a series of the input spike trains Sin(t), a sequence of the

target output spikes S (f) is obtained. The goal is to find a vector of the

synaptic weights w such that the outputs of the learning neurons Sout(t) are

close to St(t). Changing the weights of the synapses alters the timing of the

output spike for a given temporal input pattern

𝑆1(𝑡) = ∑  

𝑓

𝛿(𝑡𝑒 − 𝑡𝑓)

where 𝛿(𝑥) is the Dirac function, 𝛿(𝑥) = 0 for 𝑥 ≠ 0 and ∫
−

−
 𝛿(𝑥)𝑑𝑥 = 1.

Every pulse is taken as a single point in time. The objective is to train the

desired target firing times {𝑡𝑓} and that of the actual firing times {𝑡𝑎}. The

least mean squares error function is chosen and is defined by

93

Third Generation

Neural Networks 𝐸 =
1

2
∑  

𝑖⩽𝑣

(𝑡𝛼 − 𝑡6)2

In error-back propagation algorithm, each synaptic terminal is taken as a

separate connection 𝑘 from neuron 𝑖 to 𝑗 with weight 𝑤∗̸ 𝑖𝜂∗ is the learning

rate parameter. The basic weight adaptation functions for neurons in the

output layer hidden layer are given by

𝛿𝑗 =
𝛿𝜉

𝛿u

𝛿s

𝛿𝑥𝑖(𝑡∘)
=

(𝑡𝑘 − 𝑡𝑒)

∑𝑖𝜖𝑡𝑗
 ∑1  𝑤𝜙𝑖

𝛿𝑟′(𝑡)
𝛿𝑡𝑑

Δ𝑤𝑏,𝑘 = −𝜂
𝛿𝐸

𝛿𝑤𝑏𝑘
= −𝜂𝑦𝑖𝑘(𝑡𝑎) ⋅ 𝛿𝑡

𝛿𝑖 =
𝛿𝑡𝑎

𝛿𝑥𝑖(𝑡𝑎)
∑𝜇∈𝑖

 𝛿𝑗

𝛿𝑥1(𝑡𝑎)

𝛿𝑡𝑎

Δ𝑤ℎ,𝑘 = −𝜂𝑦ℎ𝑘(𝑡𝛼) ⋅ 𝛿𝑗

The training process involves modifying the thresholds of the neuron

firing and synaptic weights. The algorithmic steps involved in learning

through Spike-Prop Algorithm are as follows:

2c.2.3. Spike-Prop Algorithm

Step 1: The threshold is chosen and the weights are initialized randomly

between 0 and 1.

Step 2: In feed-forward stage, each input synapse receives input signal and

transmits it to the next neuron (i.e., hidden units). Each hidden unit with

SNN function calculated is sent to the output unit which in return calculates

the spike function as the response for the given input. The firing time of a

neuron ta is found. The time to first spike of the output neurons is compared

with that of the desired time tfi of the first spike.

Step 3: Perform the error-back propagation learning process for all the

layers.

The equations are transformed to partial derivatives and the process is

carried out.

Step 4: Calculate δj using actual and desired firing time of each output

neuron.

Step 5: Calculate δi employing the actual and desired firing times of each

hidden neuron and δj values.

Step 6: Update weights: For output layer, calculate each change in weight.

Step 7: Compute: New weight = Old weight + Δ wijk

Step 8: For hidden layer, calculate each change in weight.

Step 9: Compute new weights for the hidden layer. New weight = Old

weight + Δ whik

Step 10: Repeat until the occurrence of convergence.

94

Soft Computing Techniques 2c.2.4. Spike Time-Dependent Plasticity (STOP) Learning

Spike time-dependent plasticity (STOP) is viewed as a more quantitative

form of Hebbian learning. It emphasizes the importance of causality in

synaptic strengthening or weakening. STDP is a form of Hebbian Learning

where spike time and transmission are used in order to calculate the change

in the synaptic weight of a neuron. When the pre-synaptic spikes precede

post-synaptic spikes by tens of milliseconds, synaptic efficacy is increased.

On the other hand, when the post-synaptic spikes precede the pre-synaptic

spikes, the synaptic strength decreases. Furthermore, the synaptic efficacy

Δwij is a function of the spike times of the pre-synaptic and post-synaptic

neurons. This is called Spike Timing-Dependent Plasticity (STDP). The well-

known STDP algorithm modifies the synaptic weights using the following

algorithm

Δ𝑤 = {
𝐴+exp (Δ𝑡/𝜏+)if Δ𝑡 < 0

−𝐴−exp (−Δ𝑡/𝜏) if Δ𝑡 ≥ 0

𝑤mev = {
𝑤old + 𝜂Δ𝑤(𝑤mas − 𝑤old) if Δ𝑤 ≥ 0

𝑤ous + 𝜂Δ𝑤(𝑤𝑜Δ − 𝑤min) if Δ𝑡 < 0

Where Δt = (tpre – tpost) the time delay between the pre synaptic spike and

the post synaptic spike. If the pre-synaptic spike occurs before the post

synaptic spike, the weight of the synapse should be increased. If the pre

synaptic spike occurs after the post-synaptic spike, then the weight of the

synapse gets reduced. STDP learning can be used for Inhibitory or

excitatory neurons.

2c.2.5. Convolutional neural network (CNN)

Convolutional neural network (CNN) is built up of one or more number of

convolutional layers and after then it is trailed by one or more fully

connected layers like feed forward networks. CNN architecture is designed

to possess the structure of a two dimensional input image, that is, CNN's

key advantage is that its input consists of images and this representation of

images designs the architecture in a practical way. The neurons in CNN arc

arranged in 3 dimensions: height, width, and depth. The information

pertaining to "depth" is an activation volume and it represents the third

dimension. This architectural design of CNN is carried out with the local

connections and possesses weights which art subsequently followed by

certain pooling operations. CNN’s can be trained in an easy manner and

these have minimal parameters for the same number of hidden units than

that of the other fully interconnected networks considered for comparison,

figure 7-3 shows the arrangement of neurons in three dimensions in a

convolutional neural network. As a regular neural network, the

convolutional neural network is also made up of layers, and each and every

layer transforms an input 3D volume to an output 3D volume along with

certain differentiable activation functions with or without any parameters.

95

Third Generation

Neural Networks

Figure 2c.15 Arrangement of neurons in CNN model

2c.2.6. Layers in Convolutional Neural Networks

It is well noted that the convolutional neural network is a sequence of layers

and each and every layer in CNN perform transformation of one volume

activations to the other by employing a differentiable function. CNN

consists of three major layers:

1. Convolutional layer

2. Pooling layer

3. Fully interconnected layer (regular neural models like perceptron and

BPN)

These layers exist between the input layer and output layer Input layer holds

the input values represented by the pixel values of an image. Convolutional

layer performs computation and determines output of a neuron that is

connected to local regions in the input. The computation is done by performing

dot product between their weights and a small region that is connected to

the input volume. After then, an element wise activation function is applied

wherein the threshold set to zero. Applying this activation function results

no change in the size of the volume of the layers Pooling layer carries out

the down sampling operation along with the spatial dimensions including

width and height Regular fully connected layers perform computation of the

class scores (belongs to the class or nut) and result m a specified volume

size. In this manner, convolutional neural networks transform the original

input layer by laser and result in the final scores. Pooling layer implements

only a died function whereas convolutional and fully interconnected layer

implements transformation on functions and as well on the weights and

biases of the neurons.

Fundamentally, a convolutional neural network is none comprising a

sequence of layers that transform the image volume into an output volume.

Each of the designed layers in CNN is modelled to take an input 3

dimensional volume data and perform transformation to an output 3

dimensional data employing a differentiable function Here, the designed

convolutional and fully inter connected layers possess parameters and the

pooling layers do not possess a parameter.

96

Soft Computing Techniques 2c.2.7. Architecture of a Convolutional Neural Network

It is well known that CNN is made up of a number of convolutional and

pooling (also called as sub-sampling) layers, subsequently followed by fully

interconnected layers (at certain cases this layer becomes optional based on

the application considered).

Figure 2c.17 CNN with convolutional and pooling layers

 The input presented to the convolutional layer is an n x n x p image where

“n" is the height and width of an image and “p" refers to the number of

channels (e g., an RGB image possess 3 channels and so p = 3). The

convolutional layer to be constructed possesses 'm filters of size r x r x q,

where “r" tends to be smaller than the dimension of the image and “q” can

be the same size as that of “p" or it can be smaller and vary for each of the

filter. The filter size enables the design of locally connected structure which

gets convolved with the image for producing “m" feature maps. The size of

feature map will be “n - r + 1”. Each of the feature maps then gets pooled

(sub-sampled) based on maximum or average pooling over r x r connecting

regions. The value of “r” is 2 for small images and 5 for larger images. A

bias and a non-linear sigmoidal function can be applied to each of the

feature map before or after the pooling layer, figure 7-4 shows the

architecture of the convolutional neural network.

2c.2.8. Designing the Layers in CNN Model

CNN b nude up of the three individual layers and this subsection presents

the details on designing each of these lasers specifying their connectivity

and hyper parameters.

1- Design of Convolutional Layer

The primary building block of convolutional neural network is the

convolutional layer. The convolutional layer is designed to perform intense

computations in a CNN model. Convolutional layer possess a set of

97

Third Generation

Neural Networks

trainable filters and every filter is spatially small (along the width and

height) but noted to extend through the fullest depth of the input volume.

When the forward pass gets initiated, each filter slides across the height and

width of the input volume and the dot product is computed between the

input at any position and that of the entries in the filter. When the filter slides

across the height and weight of the input volume, a two-dimensional

activation feature map is produced that gives the responses of that filter at

every spatial position. The filters get activated when they come across

certain type of visual features (like edge detection, color stain on the first

layer, certain specific patterns or honeycomb existing on higher layers of

the network) and the network learns from the filter that gets activated.

Convolutional layer consists of the complete set of filters and each of these

filters produces a separate 2-dimensional activation map. These activation

maps will be stacked along the depth dimension and result in the output

volume.

In CNN network model, at the convolutional layer, each neuron gets

connected only to a local region of the input volume. The spatial extent of

this neuronal connectivity is represented by a hyper-parameter called the

receptive field of the neuron. This receptive field of the neuron is the filter size.

This spatial extent's connectivity along the depth axis will be equal to the

depth of input volume. These connections tend to be local in space and get

full towards the entire depth of the input volume.

With respect to the number of neurons in the output volume, three hyper-

parameters are noted to control the size of the output volume - depth, stride

and zero-padding. The depth of the output volume refers to the number of

filters to be used, wherein each learning searches the existence of difference

in the input. The stride is to be specified for sliding the filter.

one pixel at a time, stride = 1

2 pixel at a time, stride = 2

subsequently for other strides

The movement of the filter is specified by the above equation. This

representation of the strides results in smaller output volumes spatially. At

times it is required to pad the input volume with zeros around the border,

hence, the other hyper-parameter is the size of this zero-padding. Zero-

padding allows controlling the spatial size of the output volumes. It should

be noted that if all neurons presented in the single depth slice employ the

same weight vector, then in every depth slice, the forward pass of the

convolutional layer can be computed as the convolution of the neuronal

weights with that of the input volume. Thus, the sets of weights are referred

in CNN as filter that gets convolved with the input. The limitation of this

approach is that it uses lots of memory, as certain values in the input volume

arc generated repeatedly for multiple times.

It is to be noted that the backward pass for a convolution operation is also a

convolution process. The backward pass also moves to a back propagation

neural network. In few works carried out earlier, it is observed that they use

fmove

=

98

Soft Computing Techniques 1 x 1 convolution, but for a two-dimensional case it is similar to a point-

wise scaling operation. As with CNN model, it is operated more on three-

dimensional volumes and also the filters get extended over the full depth of

the input volume. It is to be noted that employing 1 x 1 convolution will

perform the three-dimensional dot product. Another method of convolution

is the dilated convolution, wherein an added hyper-parameter called dilation

is included to the convolutional layer. In case of dilated convolution, there

is possibility to have filters with spaces between each cell. Implementation

will be done in a manner of dilation 0, dilation 1 (gap 1 will be adopted

between the filters) and so on. Employing dilated convolutions drastically

increases the receptive field.

2-Design of Pooling Layer

Between the successive convolutional layers, pooling layers are placed. The

presence of pooling layer between the convolutelayers is to gradually

decrease the spatial size of the parameters and to reduce the computation in

the network. This placement of pooling layer also controls the occurrence

of over fitting. The pooling layer works independently on depth slice of the

input as well as resizes them spatially. Commonly employed pooling layer

is the one with the filter size of 2 x 2 applied with a stride of 2 down samples.

The down sampling occurs for every depth slice in the input by 2 along the

height and width. The dimension of the depth parameter remains unaltered

in this case. Pooling sizes with higher receptive fields are noted to be

damaging. Generally used pooling mechanism is the “max pooling”.

Apart from this operation, the pooling layer can also perform functions like

mean pooling or even L2-norm pooling. In the backward pass of a pooling

layer, the process is only to route the gradient to the input that possessed the

highest value in the forward pass. Hence, at the time of forward pass of the

pooling layer, it is important to track the index of the activation function

(probably “max”) so that the gradient routing is carried out effectively by a

back-propagation network algorithm.

2c.2.9. Layer Modelling in CNN and Common CNN Nets

The other layers of importance in convolutional neural network are the

normalization layer and the fully connected layer. Numerous normalization

layers are developed to be used in CNN model and they are designed in a

manner to implement the inhibition procedure of the human brain. Various

types of normalization procedures like mean scaling, max scaling,

summation process, etc. can be employed if required for operation in the

CNN model. Fully connected layers possess full interconnections for all the

activations in the previous layer. As regular, their activations are based on

computing the net input to the neurons of a layer along with the bias input

also.

2c.2.10. Conversion of Fully Connected Layer to Convolutional Layer

The main difference between the fully connected and the convolutional

layer is that the neurons present in the convolutional layer get connected

only to a local region in the input and the neurons in the convolutional

99

Third Generation

Neural Networks

voluminous structure share their parameters. The neurons in both fully

connected and convolutional layers calculate the dot products and hence

their functional form remains the same. Therefore it is possible to perform

conversion between the fully connected and the convolutional layers.

Considering any convolutional layer, there exists a fully connected layer

which implements one and the same forward pass function. The weight

matrix will be a large one and possesses zero entities except at specific

blocks (no self-connection and existence of local connectivity') and the

weights in numerous blocks tend to be equal (parameter sharing). Also, fully

connected layer can be converted into convolutional layer; here the filter

size will be set equal to the size of the input volume and the output will be

a single depth column fit across the input volumes. This gives the same

result as that of the initial fully connected layer. In both these conversions,

the process of converting a fully connected layer to a convolutional layer is

generally in practice.

2c.3 CNN Layer Sizing

As known, CNN model commonly comprises convolutional layer, pooling

layer, and fully connected layer. The rules for sizing the architecture of the

CNN model are as follows:

1. The input layer should be designed in such a way that it should be

divisible by the convolutional layer should employ small size filters,

specifying the stride. The convolutional layer should not alter the

spatial dimensions of the input.

2. The pooling layer down samples the spatial dimensions of the input.

Commonly used pooling is the max-pooling with a 2 x 2 receptive

fields and a stride of 2. Receptive field size is accepted until 3x3 and

if it exceeds above 3, the pooling becomes more aggressive and tends

to lose information. This results in poor performance of the network.

From all the above, it is clearly understood that the convolutional layers

preserve the spatial size of their input. On the other hand, the pooling layers

are responsible for down sampling the volumes spatially. Alternatively, if

strides greater than 1 or zero-padding are not done to the input in

convolutional layers, then it is very important to track the input volumes

through the entire CNN architecture and ensure that all the strides and filters

work in a proper manner. Smaller strides are generally better in practice.

Padding actually improves the performance of the network. When the

convolutional layer does not zero-pad the inputs and only performs

authenticate convolutions, then the volume size will reduce by a smaller

amount after each convolution process.

2c.3.1 Common CNN Nets

In the past few years, there were numerous CNN models developed and

implemented for various applications. Few of them include

1. LeNet: The first convolutional neural network model named after the

developer LeCun. It is applied to read zip codes, digits and so on.

100

Soft Computing Techniques 2. AlexNet: CNN model in this case was applied to computer vision

application. It was developed in the year 2012 by Alex Krizhevsky

and team.

3. ZFNetf: It was developed in the year 2013 by Zeiler and Fergus and

hence named as ZFNet. In this network model, the convolutional

layers in the middle are expanded and the stride and filter size are

made smalt in the first layer.

4. VGGNet: It was modelled in the year 2014 by Karen and Andrew. It

has phenomenal impact on the depth of the network and it was noted

that depth of network parameter plays a major role for better

performance.

5. GoogLeNet It was developed in the year 2014 from Google by

Szegedy and team. This net contributed an Inception module wherein

the numbers of parameters in the model are reduced. This network

employs mean pooling instead of fully connected layers at the top of

the convolutional network. As a result, more number of parameters

arc eliminated in this case.

6. ResNet: It was modelled in the year 2015 by Kaiming and team, and

hence called as Residual Network. This network is the default

convolutional neural network. It employs batch normalization and the

architecture also docs not consider fully connected layers at the end

of the network.

2c.3.2. Limitations of CNN Model

The computational considerations are the major limitations of the

convolutional neural network model. Memory requirement is one of the

problems for CNN models. In the current processor unit, the memory limits

from 3/4/6 GB to the latest best version of 12 GB memory. The memory

can be handled by

1. Convolutional network implementations should maintain varied

memory requirements, like the image data modules

2. Intermediate volume sizes specify the number of activations at each

layer of the convolutional network as well is their gradients. Running

convolutional network at the time of testing alone reduces the

memory by large amount, by storing only the current activations at

any layer and eliminating the activations of the previous layer.

3. Network parameters and their size, gradient descent values of the

parameters during backward pass in back propagation process and

also a step cache when momentum factor is used. The memory

required to store a parameter alone should be multiplied by a factor of

at least 3 or so.

On calculating the total number of parametric values, the number must be

converted to a specified size in GB for memory requirement. For each of

the parameters, consider the number of parametric values. Then multiply

101

Third Generation

Neural Networks

the number of parametric values by 4 to get the raw number of bytes and

then divide it by multiples of 1024 to get the amount of memory in KB, MB

and then in GB. In this way, the memory requirement of CNN model can

be computed and the limitations can be overcome.

2c.4 Deep learning Neural networks:

Machine learning approaches are undergoing a tremendous revolution,

which has led to the development of third generation neural networks. The

limitations observed in the second-generation neural networks like delayed

converged undue local and global minimal problems and so on are handled

in the developed third-generation neural networks. One of the prominent

third generation neural networks is the deep learning neural networks

(DLNNs) and this neural model provides a deep understanding of the input

information.

The prominent researcher behind the concept of deep learning neural

networks is Professor Hinton from University of Toronto who managed to

develop a special program module for constituting the formulation of

molecules to produce an effective medicine. Minton's group employed deep

learning artificial intelligence methodology to locate the combination of

molecules required for the composition of medicine with very limited

information on source data. Apple and Google have transformed themselves

with deep learning concepts and this can be noted through Apple Siri and

Google Street view, respectively.

The learning process in deep learning neural network takes place in two

steps. In the first step, the information about the input data’s internal

structure is obtained from the existing large array of unformatted data. This

extraction of the internal structure is carried out by an auto-associator unit

via unsupervised training layer-by-layer, then the formatted data obtained

from the unsupervised multi-layer neural network gets processed through a

supervised network module employing the already available neural network

training methods. It is to be noted that the amount of unformatted data

should be as large as possible and the amount of formatted data can be

smaller in size (but this need not be an essential criteria).

2c.4.1. Network Model and Process Flow of Deep Learning Neural

Network

The growth of deep learning neural networks is its deep architecture that

contains multiple hidden layers and each hidden layer carries out a non-

linear transformation between the layers. DLNNs get trained based on two

features:

1. Pre-training of the deep neural networks employing unsupervised

learning techniques like auto-encoders layer-by-layer,

2. Fine tuning of the DLNNs employing back propagation neural

network.

102

Soft Computing Techniques Basically, auto-encoders are employed with respect to the unsupervised

learning technique and the input data is the output target of the auto-

encoder. An auto-encoder consists of two parts - encoder and decoder

network. The operation of an encoder network is to transform the input data

that is present in the form of a high-dimensional space into codes pertaining

to low-dimensional space. The operation of the decoder network is to

reconstruct the inputs from the corresponding codes. In encoder neural

network, the encoding function is given by “fΘ". The encode vector (Ev) is

given by

 Ev = fΘ (x
v)

where “x” is the data set of the measured signal.

The reconstruction operation is carried out at the decoder neural network

and its function is given by “gΘ". This reconstruction function maps the data

set “xv” from the low-dimensional space into the high-dimensional space.

The reconstructed form is given by

 𝑥̂v = gθ(E
v)

The ultimate goal of these encoder and decoder neural networks is to

minimize the reconstruction error E(x, 𝑥̂) for that many numbers of training

samples. E(x, 𝑥̂) is specified as a loss function that is used to measure the

discrepancy between the encoded and decoded data samples. The key

objective of the unsupervised auto-encoder is to determine the parameter

sets that minimize the reconstruction error “E”

 δae(θ,θ’) =
1

𝑁
 ∑ 𝐸 𝑁

𝑣=1 (xv,g’θ(fΘ (x
v)))

The encoding and decoding functions of the DLNN will be present along

with a non-linearity and are given by

fΘ (x) = faf_e (b+Wx)

gΘ (x) = faf_d (b+Wx
T)

Where faf_e and faf_d refer to the encoder activation function and the decoder

activation function, respectively, “b" indicates the bias of the network, and

W and WT specify the weight matrices of the DLNN model.

The reconstruction error is given by

E(x, 𝑥̂) =|| x- 𝑥̂||

In order to carry out the pre-training of a DLNN model, the “N" auto-

encoders developed in previous module should be stacked. For the given

input signal xv input layer along with the first hidden layer of DLNN arc

considered as the encoder neural network of the first auto-encoding process.

When the first auto-encoder is noted to be trained by minimizing the

reconstruction error, the first trained parameter set θ1, of the encoder neural

network is employed to initialize the first hidden layer of the DLNN and the

first encode vector is obtained by

E1
v = fΘ (x

v)

103

Third Generation

Neural Networks

Now, the input data becomes the encode vector E1
v. The first and second

hidden layers of the DLNN are considered as the encoder neural network

for the second auto-encoder. Subsequently, the second hidden layer of the

DLNN gets initialized by that of the second trained auto-encoder. This

process gets continued upto the N-th auto-encoder that gets trained for

initializing the final hidden layer of the DI.NN model. The final or the N-th

encode vector in generalized form for the vector xv is obtained by

EN
v = fΘ (E

v
N-1)

where “θN” denotes the Nth trained parameter set of the encoder neural

network. Thus, in this way, all the DLNN s hidden layers get pre trained by

means of the N stacked auto encoders. It is well noted that the process of

pre-training avoids local minima and improves generalization aspect of the

problem under consideration. Figure 7-5 shows the fundamental

architecture of the deep learning neural network.

Figure 2c.18 Architecture model of deep learning neural network

The above completes the pre training process of DLNN and the nest

process is the tine-tuning process in the DLNN model DLNN models

output is calculated from the input signal Xy as

yy =ʄϴ N+1(Ey
N)

where ϴN+1 denotes the trained parameter set of the output layer. Here,

back propagation network (BPN)is employed for minimizing the error of

the output by carrying out the parameter adjustments in DLNN backwards

in case the output the target of xx is tv , then the error criterion is given by

MSE(Ψ)=1/𝑁 ∑ 𝐸𝑛
𝑦=1 (yy, ty)

Where Ψ={ϴ1, ϴ2, ϴ3, …..ϴN+1}

2c.4.2. Training Algorithm of Deep Learning Neural Network:

Step 1: Start the algorithmic process.

Step 2: Obtain the training data sets to feed into the DLNN model and

initialize the necessary parameters.

104

Soft Computing Techniques Step 3: Construct DLNN with "N” hidden layers.

Step 4: Perform the training of r-th auto-encoder.

Step 5: Initialize i-th hidden layer parameter of DLNN employing the

parameters of the auto encoder.

Step 6: Check whether “i” is greater than “N". If no carry out step 4; if

yes go to the next step.

Step 7: Calculate the dimensions of the output layer.

Step 8: Fine tune the parameters of DLNN through the BBN algorithm.

Step 9: With the final fine-tuned DLNN model go to the next step.

Step 10: Return the trained DLNN.

Step 11: Output the solutions achieved.

Step 12: Stop the process on meeting termination condition.

The termination condition is the number of iterations or

reaching the minimal mean square error.

2c.4.3. Encoder Configurations

Encoders are built so as to receive the possible exact configuration of the

input at the output end. These encoders belong to the category of auto

associator neural units, Auto associator modules, are designed to perform

the generating part as well as the synthesizing part. Encoders discussed in

this section belong to the synthesized module of auto associator and tor the

generation part, a variation of Boltzmann machine as presented in special

networks.

An auto encoder is configured to be all open layer neural network Auto

encoder for its operation sets its target value equal to that of the Input vector.

A model of an auto encoder is as shown in figure 2c.6. The encoder model

attempts to find approximation of a defined function authenticating that the

feedback of a neural network tends to be approximately equal to the values

of the given input parameters. The encoder is also capable of compressing

the data once the given input signal gets passed to that of the output of the

network. The compression is possible in an auto encoder if there exists

hidden interconnections or a sort of characteristics correlation. In this

manner, auto encoder behaves m a similar manner as the principal

component analysis and achieves data reduction (possible compression) in

the input side.

105

Third Generation

Neural Networks

Figure 2c.19 Model configuration of an auto encoder

On the other hand, when the auto encoder is trained with the stochastic

gradient descent algorithm and the where the number of hidden neurons

becomes greater than the number of inputs, it results in the possible decrease

in the error values. So, it is applied for various function analysis and

compression applications

Another variation in the encoder configuration is the denoting auto encoder.

Here, the variation exists in the training process. On training the deep

learning neural network for demolishing encoder, corrupted or demonised

data (substituted with “0" values) can be given as input. further to this,

during the same time, the coned data can be compared with that of the output

data. The advantage of this mechanism is that it paves way to restore the

damaged data.

2c.5. EXTREME LEARNING MACHINE MODEL (ELMM)

Over the years, it has been observed that the k nearest neighbourhood and

other few architectures like support machine (SVM) classifiers employed

for classification requite more computations due to the repetition of

classification and registration, hence they are relatively slow. SVM

FEATURES IN THE

HIDDEN LAYER

106

Soft Computing Techniques approach, even though it has the advantages of generalization and can

handle high dimensional feature space, assumes that the data are

independently and identically distributed. This is not applicable for all sets

of data, as they are likely to have noise and related distribution. Storage is

also an added disadvantage of SVM classifier.

Other multilayer neural networks which are trained with back propagation

algorithm based on gradient descent learning rule. Posses certain limitations

like slow conversions, setting the learning rate parameters, local and global

minimum occurrences and repeated training process without attaining

conversions point.

ELMM is a single hidden layer feed forward neural network where input

weights and hidden neuron are randomly selected without training. The

output weights are analytically computed employing the least square norm

solution and Moore – Penrose inverse of a generalized linear system. This

method of determining output weights results in significant reduction of

training time. For hidden layer neurons are the activation functions like

Gaussian, sigmoidal and so on can be employee for output layer neurons

layer linear activation function. This single layer feed forward, network

ELM model employee additive neural design instead of kernel based and

hence there is random parameter selection.

2c.5.2. ELM TRAINING PROGRAM:

For a given training vector pair N={xt ,tt)}, with xi € Rn ti € Rm , i=1,…,N

activation function f(x) and hidden neuron N, the algorithm is as follows:

Step 1: Start Initialize the necessary parameters, choose suitable activation

function and the number of hidden neurons in the hidden layer for the

considered problem.

Step 2: Assign arbitrary input weights wi and bi as bi

Step 3: Compute the output matrix H at the hidden layer

 H= ʄ(xϴw+b)

Step 4: Compute the output weight Ᵹ based on the equation

 Ᵹ=H*T

2c.5.3. Other ELM Models

Huang initially proposed ELM in the year 2004 and subsequently numerous

researchers worked on ELM and developed certain improved ELM

algorithms. ELM was enhanced over the years to improve the network

training speed, to avoid local and global minima, to reduce iteration time,

to overcome the difficulty in defining learning role parameters and setting

the stopping criteria.

Since ELM works on empirical minimization principle, the random

selection of input layer weights and hidden layer biases result in non-

optimal convergence. In comparison with that of the gradient descent

107

Third Generation

Neural Networks

learning rule, ELM may require more number of hidden layer neurons and

this reduces ELM’s training effect. Henceforth, to speed the convergence

and response of ELM training, numerous improvements were made in

existing ELM algorithm and modified versions of ELM algorithm were

introduced. The following sub-sections present few improvements made by

researchers in the existing ELM algorithm.

2c.5.4. Online Extreme Learning Machine

ELM is well noted for solving regression and classification problems; it

results in better generalization performance and training speed. When

considering ELM for real applications which involve minimal data set, it

may result in over-fitting occurrences.

Online ELM is also referred to as online sequential extreme learning

machine (OSELM) and this works on sequential adaptation with recursive

least square algorithm. This was also introduced by Huang in the year 2005.

Further to this, online sequential fuzzy ELM (OS-Fuzzy-ELM) has also

been developed for implementing different orders of TSK models. In fuzzy-

based FLM, randomly all the antecedent parameters of membership

functions are assigned first and subsequently the consequent parameters are

computed. Zhang, in the year 2011, developed selective forgetting ELM

(SFELM) to overcome the online training issues and applied it to time-

series prediction. SFELM’s output weight is calculated in a recursive

manner at the time of online training based on its generalization

performance. SFELM is noted to possess better prediction accuracy.

2c.5.5. Pruned Extreme Learning Mac/i/ne

ELM is well known for its short training time and here the number of hidden

layer nodes are randomly selected and are analysed for determination of

their respective weights. This minimizes the calculation time with fast

learning. Rong in the year 2008 modified the architectural design of ELM

as the existence of smaller or higher hidden layer neurons will result in

Under-fitting and over-fitting problems for classification problems. Pruned

ELM (PELM) algorithm was developed as an automated technique to

design an ELM. The significance of hidden neurons was measured in PELM

by employing statistical approaches. Starting with higher number of hidden

neurons, the insignificant ones are then pruned with class labels based on

their importance. Henceforth the architectural design of ELM network gets

automated. PELM is inferred to have better prediction accuracy for unseen

data when compared with basic ELM. there also exists a pruning algorithm

that is based on regularized regression method, to determine the required

number of hidden neurons in the network architecture. This regression

approach starts with higher number of hidden neurons and in due course the

unimportant neurons get pruned employing methods like ridge regression,

elastic network and so on. In this manner, the architectural design of FILM

network gets automated.

2c.5.6. Improved Extreme Learning Machine Models

ELM requires more number of hidden neurons due to its random

computation of input layer weights and hidden biases. Owing on this,

certain hybrid ELM algorithms were developed by researchers to improve

108

Soft Computing Techniques the generalization capability. One of the method proposed by Zhu (2005)

employs differential evolution (DE) algorithm for obtaining the input

weights and Moore-Penrose (MP) inverse to obtain the output weights of an

ELM model. Several researchers also attempted to combine ELM with other

data processing methods resulting in new ELM learning models and

applying the newly developed algorithm for related applications.

ELM at times results in non-optimal performance and possess over-fitting

occurrence. This was addressed by Silva in the year 2011 by hybridizing

group search optimizer to compute the input weights and ELM algorithm

for computing the hidden layer biases. Here it is required to evaluate the

influence of various types of members that tend to fly over the search space

bounds. The effectiveness of ELM model gets lowered because at times, the

hidden layer output matrix obtained through the algorithm docs not form a

full rank matrix due to random generation of input weights and biases. This

was overcome by the development of effective extreme learning machine

(EELM) neural network model which properly selects the input weights and

biases prior to the calculation of output weights ensuring a full column rank

of the output matrix.

Thus, considering the existing limitations of ELM models, researchers have

involved themselves in developing new variants of ELM models both in the

algorithmic side and in the architectural design side. This section has

presented few of the variants of ELM models as developed by the

researchers and applied for various prediction and classification problems.

2c.5.7. Applications of ELM

Neural networks are widely employed in mining, classification, prediction,

recognition and other applications. ELM has been developed with an idea

to improve the learning ability and provide better generalization

performance. Considering the advantages of ELM models, few of its

application include

1. Signal processing

2. Image processing

3. Medical diagnosis

4. Automatic control

5. Aviation and aerospace

6. Business and market analysis

2C.6 SUMMARY:

In this chapter we learn about Simulated Annealing Network, Boltzmann

Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net

,Cascade Correlation Network, Cognitron Network ,Neocognitron

Network, Cellular Neural Network , Optical Neural Networks, Spiking

Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer

Sizing, Deep learning Neural networks, Extreme Learning Machine Model

(ELMM) in detail.

109

Third Generation

Neural Networks
2C.7 REVIEW QUESTIONS:

1. Write a short note on Simulated Annealing Networks?

2. Explain Architecture of Boltzmann Machine.

3. Explain Probabilistic Neural Net.

4. Write a short note on Cellular Neural Network.

5. What are the Third-Generation Neural Networks?

6. Explain Architecture of a Convolutional Neural Network

7. What are the Limitations of CNN Model.

8. Write a short note on Deep learning Neural networks.

9. Write a short note on ELM Architecture and Training Algorithm

2C.8 REFERENCE:

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

2019, Wiley Publication, Chapter 2 and 3

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,

Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes and tutorialspoint.com.



110

Soft Computing Techniques

2d
UNSUPERVISED LEARNING NETWORKS

Unit Structure

2d.0 Introduction

2d.1 Fixed Weight Competitive Nets

2d.2 Mexican Hat Net

2d.3 Hamming Network

2d.4 Review Questions

2d.5 Reference

2D.0 INTRODUCTION

In this learning, there exists no feedback from the system (environment) w

indicate the desired outputs of a network. The network by itself should

discover any relationships of interest, such as features, patterns, contours,

correlations or categories, classification in the input data, and thereby

translate the discovered relationships into outputs. Such networks are also

called self-organizing networks. An unsupervised learning can judge how

similar a new input pattern is to typical patterns already seen, and the

network gradually learns what similarity is; the network may construct a set

of axes along which to measure similarity to previous patterns, i.e., it

performs principal component analysis, clustering, adaptive vector

quantization and feature mapping.

For example, when net has been trained to classify the input patterns into

any one of the output classes, say, P, Q, R, S or T, the net may respond to

both the classes, P and Q or R and S. In the case mentioned, only one of

several neurons should fire, i.e., respond. Hence the network has an added

structure by means of which the net is forced to make a decision, so that

only one unit will respond. The process for achieving this is called

competition. Practically, considering a set of students, if we want to classify

them on the basis of evaluation performance, their score may be calculated,

and the one whose score is higher than the others should be the winner. The

same principle adopted here is followed in the neural networks for pattern

classification. In this case, there may exist a tie; a suitable solution is

presented even when a tie occurs. Hence these nets may also be called

competitive nets, the extreme form of these competitive nets is called

winner-take-all.

The name itself implies that only one neuron in the competing group will

possess a nonzero output signal at the end of competition.

111

Unsupervised

Learning Networks

There exist several neural networks that come under this category. To list

out a few: Max net, Mexican hat, Hamming net, Kohonen self-organizing

feature map, counter propagation net, learning vector quantization (LVQ)

and adaptive resonance theory (ART).

The learning algorithm used ·m most of these nets is known as Kohonen

learning. In this learning, the

units update their weights by forming a new weight vector, which is a linear

combination of the old weight vector and the new input vector. Also, the

learning continues for the unit whose weight vector is closest to the input

vector. The weight updation formula used in Kohonen learning for output

cluster unit j is given as

monotonically as training continues. There exist two methods to determine

the winner of the network during competition. One of the methods for

determining the winner uses the square of the Euclidean distance between

the input vector and weight vector, and the unit whose weight vector is at

the smallest Euclidean distance from the input vector is chosen as the

winner. The next method uses the dot product of the input vector and weight

vector. The dot product between the input vector and weight vector is

nothing but the net inputs calculated for the corresponding duster units. The

unit with the largest dot product is chosen as the winner and the weight

updation is performed over it because the one with largest dot product

corresponds to the smallest angle between the input and weight vectors, if

both are of unit length.

2D.1. FIXED WEIGHT COMPETITIVE NETS

These competitive nets arc those where the weights remain fixed, even

during training process. The idea of competition is used among neurons

for enhancement of contrast in their activation functions. These are

Maxnet, Mexican hat and Hamming net.

Maxnet

The Maxnet serves as a sub net for picking the node whose input is larger.

Architecture of Maxnet

The architecture of Maxnet is shown in Figure 5·1, where fixed

symmetrical weights are present over the

weighted interconnections. The weights between the neurons are

inhibitory and fixed. The Maxnet with this structure can be used as a

subnet to select a particular node whose net input is the largest.

112

Soft Computing Techniques

Figure 2d.1 Maxnet Structure

Testing/Application Algorithm of Maxnet:

Step

0: Initial weights and initial activations are ser. The weight is set as [0 <
𝜀 < 1/𝑚], where "𝑚𝑛 is the total number of nodes. Let

𝑥𝑗(0) = input to the node 𝑋𝑗

and

𝑤𝑖𝑗 = {
1 if 𝑖 = 𝑗

−𝜀 if 𝑖 ≠ 𝑗

Step 1: Perform Steps 2 − 4, when stopping condition is false. Step 2:

Update the activations of each node. For 𝑗 = 1 to 𝑚,

𝑥𝑗(𝑛 ∈ 𝑤) = 𝑓 [𝑥𝑗(0. 𝑑) − 𝜀 ∑  

𝑖≠𝑗

 𝑥𝑘(𝑜𝑙𝑑)]

Step

3: Save the acrivarions obtained for use in the next iteration. For 𝑗 = 1 to

𝑚,

𝑥𝑗(oid) = 𝑥𝑗 (new)

Step 4: Finally, test the stopping condition for convergence of the

network. The following is the stopping condition: If more than one node

has a nonzero activation, continue; else stop.

113

Unsupervised

Learning Networks
2D.2 MEXICAN HAT NET

In 1989, Kohonen developed the Mexican hat network which is a more

generalized contrast enhancement

network compared to the earlier Maxner. There exist several "cooperative

neighbors" (neurons in close proximity) to which every other neuron is

connected by excitatory links. Also, each neuron is connected over

inhibitory weights to a number of" competitive neighbors" {neurons present

farther away). There are several oilier fanher neurons ro which the

connections between the neurons are nor established. Here, in addition to

the connections within a particular laye·r Of neural net, the neurons also

receive some other external signals.

This interconnection pattern is repeated for several other neurons in the

layer.

2d.2.1 Architecture of Mexican Hat Net

The architecture of Mexican hat is shown in Figure 5·2, with the

interconnection pattern for node Xi. The

neurons here are arranged in linear order; having positive connections

between Xi and near neighboring units, and negative connections between

Xi and farther away neighboring units. The positive connection region is

called region of cooperation and the negative connection region is called

region of competition. The size of these regions depends on the relative

magnitudes existing between the positive and negative weights and also on

the topology of regions such as linear, rectangular, hexagonal grids, ere. In

Mexican Hat, there exist two symmetric regions around each individual

neuron.

The individual neuron in Figure 5-2 is denoted by Xi. This neuron is

surrounded by other neurons Xi+ 1,

Xi-1, Xi+2, Xi-2, The nearest neighbors to the individual neuron Xi are

Xi+1, Xi- 1. Xi+2• and Xi-2·

Hence, the weights associated with these are considered to be positive and

are denoted by WI and w2. The

farthest neighbors m the individual neuron Xi are taken as Xi+3 and Xi-3,

the weights associated with these are negative and are denoted by w3. It can

be seen chat Xi+4 and Xi-4 are not connected to the individual neuron Xi,

and therefore no weighted interconnections exist between these

connections. To make it easier, the units present within a radius of 2 [query

for unit] to the unit Xi are connected with positive weights, the units within

radius 3 are connected with negative weights and the units present further

away from radius 3 are not connected in any manner co the neuron Xi.

114

Soft Computing Techniques

Figure 2d.2 Structure of Maxican Hat

2d.2.3 Flowchart of Mexican Hat Net

The flowchart for Mexicann hat is shown in Figure 5-3. This dearly

depicts the flow of the process performed in Mexican Hat Network.

Figure 2d.3. Flowchart of Mexican Hat

115

Unsupervised

Learning Networks
2d.2.3 Algorithm of Mexican Hat Net:

The various parameters used in the training algorithm are as shown below.

𝑅2 = radius of rcgions of interconnections

X𝑖+𝑘 and X𝑓−𝑘 are conniected to the individual units X𝑖 for 𝑘 = 1 to 𝑅2.

𝑅1 = adrus of tegion with positive reinforcement (𝑅1 < 𝑅2)

W𝑘 = weight berween X𝑖 and the unis X𝑖+𝑘 and X𝑖−𝑘

0 ⩽ 𝑘 ⩽ 𝑅1, 𝑤𝑘 = positive

𝑅1 ⩽ 𝑘 ⩽ 𝑅2, 𝑤𝑘 = negative

𝑡 = external input signal

𝑥 = vector of accivation

𝑥0 = vecior of activations at previous time step

𝑡max = total number of iterations of contmst enhancemen.

Here the iteration is started only with the incoming of the external signal

presented to the network.

Step 2: When 𝑡 is less than 𝑡max , perform Steps 3-7.

Srep 3: Calculace net input. Fot 𝑖 = 1 to 𝑛,

𝑥𝑖 = 𝑐1 ∑  

𝑅1

𝑘=−𝑅1

𝑥0𝑖+
+ 𝑐𝑘=−𝑅2

−𝑅1−1
𝑥0𝑖+𝑘

+ 𝑐2 ∑  

𝑅2

𝑘=𝑅1+1

𝑥0𝑖+𝑘

Step 4: Apply the activation function. For 𝑖 = 1 to 𝑛,

𝑥𝑖 = m [𝑥max, m (0, 𝑥𝑖)]

116

Soft Computing Techniques Step 5: Save the current activations in 𝑥0, i.e., for 𝑖 = 1 to 𝑛,

𝑥0𝑖 = 𝑥𝑖

Step 6: Increment the iteration counter:

𝑡 = 𝑡 + 1

Step 7: Test for stopping condition. The following is the stopping condition:

If 𝑡 < 𝑡Ex. then continue Else stop. The positive reinforcement here has the

capacity to increase the activation of units with larger initial activations and

the negative reinforcement has the capacity’ to reduce the activation of unis

with smaller initial activations. The activation function used here for unit Xi

at a particular time instant ′′𝑡′′ is given by

𝑥𝑖(𝜆) = 𝑓 [𝑠𝑖(𝑡) + ∑  

𝑘

 𝑤𝑘𝑥𝑖+𝑘 + 𝑘(𝑡 − 1)]

The terms present within the summation symbol are the weighted signals

that arrived from other units 𝛼 the previous time step.

2D.3 HAMMING NETWORK

The Hamming network selects stored classes, which are at a maximum

Hamming distance (H) from the

noisy vector presented at the input (Lippmann, 1987). The vectors involved

in this case are all binary and

bipolar. Hamming network is a maximum likelihood classifier that

determines which of several exemplar

vectors (the weight vector for an output unit in a clustering net is exemplar

vector or code book vector for the pattern of inputs, which the net has placed

on that duster unit) is most similar to an input vector (represented as an

n~tuple). The weights of the net are determined by the exemplar vectors.

The difference between the tom! number of components and the Hamming

distance between the vecrors gives the measure of similarity between the

input vector and stored exemplar vcctors.lt is already discussed the

Hamming distance between the two vectors is the number of components in

which the vectors differ.

Consider two bipolar vectors x and y; we use a relation

x . y = a - d

where a is the number of components in which the vectors agree, d the

number of components in which the vectors disagree. The value "a - d" is

117

Unsupervised

Learning Networks

the Hamming distance existing between two vectors. Since, the total

number of components is n, we have,

𝑛 = 𝑎 + 𝑑

 i.e., 𝑑 = 𝑛 − 𝑎

On simplification, we get

𝑥 ⋅ 𝑦 = 𝑎 − 𝑑
𝑥 ⋅ 𝑦 = 𝑎 − (𝑛 − 𝑎)
𝑥 ⋅ 𝑦 = 2𝑎 − 𝑛

2𝑎 = 𝑥 ⋅ 𝑦 + 𝑛

𝑎 =
1

2
(𝑥 ⋅ 𝑦) +

1

2
(𝑛)

From the above equation, it is clearly understood that the weights can be set

to one-half the exemplar vector and bias can be set initially to n/2. By

calculating the unit with the largest net input, the net is able to locate a

particular unit that is closest to the exemplar. The unit with the largest net

input is obtained by the Hamming net using Maxnet as its subnet.

2d.3.1. Architecture of Hamming Network:

The architecture of Hamming network is shown in Figure 5-4. The

Hamming network consists of two layers. The first layer computes the

difference between the total number of components and Hamming distance

between the input vector x and the stored pattern of vectors in the feed-

forward path. The efficient response in this layer of a neuron is the

indication of the minimum Hamming distance value between the input and

the category, which this neuron represents. The second layer of the

Hamming network is composed of Maxnet (used as a subnet) or a Winner-

take-all network which is a recurrent network The Maxnet is found to

suppress the values at Maxnet output nodes except the initially maximum

output node of the first layer.

Figure 2d.4 Structure of Hamming Network

118

Soft Computing Techniques 2d.3.2 Testing Algorithm of Hamming Network:

The given bipolar input vector is x and for a given set of "m" bipolar

exemplar vectors say e(l),.

e(j), ... , e(m), the Hamming network is used to determine the exemplar

vector that is closest m the input

vector x. The net input entering unit Yj gives the measure of the similarity

between the input vector and

exemplar vector. The parameters used here are the following:

n = number of input units (number of components of input-output vector)

m= number of output units (number of components of exemplar vector)

e(j)= jth exemplar vector, i.e.,

e(j) = [e1 (j), ... , ej(j), ... , en(j)]

The testing algorithm for the Hamming Net is as follows:

Step 0: Initialize the weights. For 𝑖 = 1 ro 𝑛 and 𝑗 = 1 ro 𝑚,

𝑤𝑖𝑗 =
𝑒𝑖(𝑗)

2

Initialize the bias for storing the ′𝑚𝑛 exemplar vectors. For 𝑗 = 1 to 𝑚,

𝑏𝑗 =
𝑛

2

Step 1: Perform Steps 2-4 for each inpuc vector 𝑥.

Step 2: Calculate the net input to each unit Y𝑗, i.e.,

𝑦𝑖𝑛𝑗 = 𝑏𝑗 + ∑  

𝜔

𝑖=1

𝑥𝑖𝑤𝑖𝑗 , 𝑗 = 1 to 𝑚

Step 3: Initialize the activations for Maxnet, i.e.,

𝑦𝑗(0) = 𝑦𝑖𝑛𝑗 , 𝑗 = 1 to 𝑚

Step 4: Maxnet is found to iterate for finding the exemplar that best

matches the inpur patterns.

2D.4 REVIEW QUESTIONS:

1. Explain the concept of Unsupervised Learning.

2. Write a short note on Fixed Weight Competitive Nets

119

Unsupervised

Learning Networks

3. Explain Algorithm of Mexican Hat Net

4. What is mean by Hamming Network

5. Explain the Architecture of Hamming Network

6. Write a short note on Kohonen Self-Organizing Feature Maps

7. Write a short note on Learning Vector Quantization (LVQ)

8. Explain Counter propagation Networks

9. What is mean by Adaptive Resonance Theory Network

2D.5 REFERENCE

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa,

 2019, Wiley Publication, Chapter 2 and 3

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks,

Stephen Lucci PhD)

3. Related documents, diagrams from blogs, e-resources from RC

Chakraborty lecture notes and tutorialspoint.com



120

Soft Computing Techniques MODULE II: Unit III

3a

INTRODUCTION TO FUZZY LOGIC

AND FUZZY

Unit Structure

3a.0 Objectives

3a.1 Introduction to Fuzzy Logic

3a.2 Classical Sets

3a.3 Fuzzy Sets

3a.4 Classical Sets v/s Fuzzy Sets

 3a.4.1 Operations

 3a.4.2 Properties

3a.5 More Operations on Fuzzy Sets

3a.6 Functional Mapping of Classical Sets

3a.7 Summary

3a.8 Review Questions

3a.9 Bibliography, References and Further Reading

3A.0 OBJECTIVES

We begin this chapter with introducing fuzzy logic, classical sets and fuzzy

sets followed by the comparison of classical sets and fuzzy sets.

3A.1 INTRODUCTION TO FUZZY LOGIC

Fuzzy logic is a form of multi-valued logic to deal with reasoning that is

approximate rather than precise. Fuzzy logic variables may have a truth

value that ranges between 0 and 1 and is not constrained to the two truth

values of classical propositional logic.

“As the complexity of a system increases, it becomes more difficult and

eventually impossible to make a precise statement about its behavior,

eventually arriving at a point of complexity where the fuzzy logic method

born in humans is the only way to get at the problem” – Originally identified

& set forth by Lotfi A. Zadeh, Ph.D., University of California, Berkeley.

121

Introduction to Fuzzy Logic

and Fuzzy

Fuzzy logic offers soft computing:

 provides a technique to deal with imprecision & information

granularity.

 provides a mechanism for representing linguistics construct.

Figure 3a.1: A fuzzy logic system accepting imprecise data and

providing a decision

The theory of fuzzy logic is based upon the notion of relative graded

membership and so are the functions of cognitive processes. It models

uncertain or ambiguous data & provides suitable decision. Fuzzy sets that

represents fuzzy logic provides means to model the uncertainty associated

with vagueness, imprecision & lack of information regarding a problem or

a plant or system.

Fuzzy logic operates on the concept of membership. The basis of the theory

lies in making the membership function lie over a range of real numbers

from 0.0 to 1.0. The fuzzy set is characterized by (0.0,0,1.0). The

membership value is “1” if it belongs to the set & “0” if it not member of

the set. The membership in the set is found to be binary, that is, either the

element is a member of a set or not. It is indicated as

𝜒A(𝑥) = {
1 𝑥 ∈ 𝐴

0, 𝑥 ∉ 𝐴

E.g. The statement “Elizabeth is Old” can be translated as Elizabeth is a

member of the set of old people and can be written symbolically as 

𝜇(𝑂𝐿𝐷)  where 𝜇 is the membership function that can return a

value between 0.0 to 0.1 depending upon the degree of the membership.

Figure 3a.2: Graph showing membership functions

for fuzzy set “tall”.

122

Soft Computing Techniques

Figure 3a.3: Graph showing membership functions for fuzzy set

“short”, “medium” and “tall”.

The membership was extended to possess various “degree of membership” on the

real continuous interval [0,1]. Zadeh generalized the idea of a crisp set by

extending a valuation set {0,1} (definitely in, definitely out) to the interval of real

values (degree of membership) between 1 & 0, denoted by [0,1]. The degree of the

membership of any element of fuzzy set expresses the degree of computability of

the element with a concept represented by fuzzy set.

Membership Function: A fuzzy set A contains an object x to degree a(x), that is,

a(x) = Degree (𝑥 ∈ 𝐴) and the map 𝑎: 𝑋 → {𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐷𝑒𝑔𝑟𝑒𝑒𝑠}

Possibility Distribution: The fuzzy set A can be expressed as

𝐴

= {(𝑥, 𝑎(𝑥))}, 𝑥 ∈ 𝑋; it imposes an elastic constrain of the possible values

of elements 𝑥 ∈ 𝑋

Fuzzy sets tend to capture vagueness exclusively via membership functions that

are mappings from a given universe of discourse X to a unit internal containing

membership value. The membership function for a set maps each element of the

set to membership value between 0 & 1 and uniquely describes that set. The values

0 and 1 describes “not belonging to” & “belonging to” a conventional set,

respectively; values in between represent “fuzziness”. Determining the

membership function is subjective to varying degree depending on the situation. It

depends on an individual’s perception of the data in question and does not depend

on randomness.

Figure 3a.4: Boundary region of a Fuzzy Set

123

Introduction to Fuzzy Logic

and Fuzzy

Figure 3a.5: Configuration of a pure fuzzy system

Fuzzy logic also consists of fuzzy inference engine or fuzzy rule base to perform

approximate reasoning somewhat similar to human brain. The fuzzy approach uses

a premise that human don’t represent classes of objects as fully disjoint sets but

rather as sets in which there may be graded of membership intermediate between

full membership and non-membership. A fuzzy set works as a concept that makes

it possible to treat fuzziness in a quantitative manner. Fuzzy sets form the building

blocks for fuzzy IF-THEN rules which have general form “IF X is A THEN Y is

B” where A and B are fuzzy sets.

The term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF-

THEN rules. The IF part of an implication is called antecedent whereas the THEN

part is called consequent. The fuzzy system is a set of fuzzy rules that converts

inputs to outputs.

The fuzzy inference engine (algorithm) combines fuzzy IF-THEN rules into a

mapping from fuzzy sets in the input space X to the fuzzy sets in the output space

Y based fuzzy logic principles. From a knowledge representation viewpoint, a

fuzzy IF-THEN rule is a scheme for capturing knowledge that involves

imprecision. The main features of the reasoning using these rules is its partial

matching capability, which enables an inference to be made from a fuzzy rule even

when the rule’s condition is partially satisfied. Fuzzy systems, on one hand is rule

based system that are constructed from a collection of linguistic rules, on other

hand, fuzzy systems are non-linear mappings of inputs to the outputs. The inputs

and the outputs can be numbers or vectors of numbers. These rule-based systems

can in theory model any system with arbitrary accuracy, i.e. they work as universal

approximation.

The Achilles’ heel of a fuzzy system is it rules; smart rules gives smart systems

and other rules give less smart or dumb systems. The number of rules increases

exponentially with the dimension of the input space. This rule explosion is called

the curse of dimensionality & is general problem for mathematical models.

3A.2 CLASSICAL SETS (CRISP SETS)

Collection of objects with certain characteristics is called set. A classical

set/ crisp set is defined as the collection of distinct objects. An individual

entity of the set is called as element/ member of the set. The classical set is

defined in such a way that the universe of discourse is splitted into two

groups: members and non-members. Partial membership does not exist in

the case of crisp set.

124

Soft Computing Techniques Whole set: The collection of elements in the universe

Cardinal number: Number of the elements in the set.

Set: The collections of elements within the universe

Subset: The collections of elements within the set.

3A.3 FUZZY SETS

A fuzzy set is a set having degree of membership between 0 & 1. A member of

one fuzzy set can also be the member of other fuzzy set in same universe. A fuzzy

set 𝐴 in the universe of disclosure U can be defined as a set of ordered pairs and it

is given by

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑈}

where

𝜇𝐴(𝑥)is the degree of membership of x in A and it indicates the degree that

x belongs to A. The membership is set to unit interval [0,1] or 𝜇𝐴(𝑥) ∈

[0,1]. When the universe of disclosure is discrete & finite, fuzzy set A is

given as

When the universe of disclosure is continuous & infinite, fuzzy set A is given as

Universal Fuzzy Set/ Whole Fuzzy Set: If and only if the value of the

membership function is 1 for all the members under consideration. Any fuzzy set

A is defined on universe U is the subset of that universe.

Empty Fuzzy Set: If and only if the value of the membership function is 0 for all

the members under consideration.

Equal Fuzzy Set: two fuzzy set A & B are said to be equal fuzzy sets if

 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) for all 𝑥 ∈ 𝑈

Fuzzy Power set P(U): The collection of all fuzzy sets and fuzzy subsets on

universe U.

125

Introduction to Fuzzy Logic

and Fuzzy
3A.4 CLASSICAL SETS V/S FUZZY SETS

3a.4.1 Operations

 Classical Sets Fuzzy Sets

Definition The classical set is defined in

such a way in that the universe

of the discourse is divided into

two groups: members and

nonmembers. Consider Set A

in Universe U:

An object x is a member of a

given set 𝑎(𝑥 ∈ 𝐴) i.e. x

belongs to A.

An object x is a member of a

given set 𝑎(𝑥 ∉ 𝐴) i.e. x does

not belong to A.

A fuzzy set is a set having

degree of membership

between 0 & 1.

A fuzzy set 𝐴 in the universe

of disclosure U can be defined

as a set of ordered pairs and it

is given by:

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑈}

Union The union between two sets

gives all those elements in the

universe that belong to either

set A or set B or both the sets.

The union is termed as logical

OR operation.

𝐴 ∪ 𝐵

= { 𝑥| 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}

The union of fuzzy sets A & B

is defined as:

𝜇𝐴 ∪ 𝐵 (x) = 𝜇𝐴(x) ∨ 𝜇𝐁(x)

= max{𝜇𝐴(x), 𝜇𝐁(x)} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥
∈ 𝑈

V indicates max operation

Intersectio

n

The intersection between two

sets gives all those elements in

the universe that belong to

both set A and set B. The

union is termed as logical

AND operation.

𝐴 ∩ 𝐵

= { 𝑥| 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}

The intersection of fuzzy sets

A & B is defined as:

𝜇𝐴 ∩ 𝐵 (x) = 𝜇𝐴(x) ∧ 𝜇𝐁(x)

= min{𝜇𝐴(x), 𝜇𝐁(x)}

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈

∧ indicates min operation

Compleme

nt

The complement of set A is

defined as the collection of all

elements in the universe X that

do not belong to set A.

Ā = { 𝑥| 𝑥 ∉ 𝐴, 𝑥 ∈ 𝑋}

The union of fuzzy sets A & B

is defined as:

𝜇Ā (x) = 1 −

𝜇𝐴 (X)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈

Difference The difference of set A with

respect to set B is the

collection of all the elements

in the universe that belong to

A but does not belong to B. It

is denoted by A|B or A-B

𝐴|𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}

𝐴 − (𝐴 ∩ 𝐵)

126

Soft Computing Techniques 3a.4.2 Properties

 Classical Sets Fuzzy Sets

Commutativi

ty
𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

Associativity 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵)
∪ 𝐶

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵)
∩ 𝐶

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵)
∪ 𝐶

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵)

∩ 𝐶

Distributivity 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵)
∩ (𝐴 ∪ 𝐶)

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵)
∪ (𝐴 ∩ 𝐶)

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵)
∩ (𝐴 ∪ 𝐶)

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵)
∪ (𝐴 ∩ 𝐶)

Idempotency 𝐴 ∪ 𝐴 = 𝐴

𝐴 ∩ 𝐴 = 𝐴

𝐴 ∪ 𝐴 = 𝐴

𝐴 ∩ 𝐴 = 𝐴

Transitivity 𝑖𝑓 𝐴 ⊆ 𝐵 ⊆ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶 𝑖𝑓 𝐴 ⊆ 𝐵 ⊆ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶

Identity 𝐴 ∪ ɸ = 𝐴; 𝐴 ∩ ɸ = 𝐴

𝐴 ∪ 𝑋 = 𝑋; 𝐴 ∩ 𝑋 = 𝐴

𝐴 ∪ ɸ = 𝐴; 𝐴 ∩ ɸ = 𝐴

𝐴 ∪ 𝑋 = 𝑋; 𝐴 ∩ 𝑋 = 𝐴

Involution

(double

negation)

Ā = 𝐴 Ā = 𝐴

DeMorgan’s

Law
|𝐴 ∪ 𝐵| = 𝐴 ∪ 𝐵

|𝐴 ∩ 𝐵| = 𝐴 ∩ 𝐵

|𝐴 ∪ 𝐵| = 𝐴 ∪ 𝐵

|𝐴 ∩ 𝐵| = 𝐴 ∩ 𝐵

Law of

Contradiction
𝐴 ∩ Ā = ɸ Not Followed

Law of

Excluded

Middle

𝐴 ∪ Ā = 𝑋 Not Followed

127

Introduction to Fuzzy Logic

and Fuzzy
3A.5 MORE OPERATIONS ON FUZZY SETS

Algebraic Sum: The algebraic sum (A+B) of two fuzzy sets A & B is defined as

𝜇𝐴 + 𝐵 (x) = 𝜇𝐴(x) + 𝜇𝐁(x) − 𝜇𝐴(x). 𝜇𝐁(x)

Algebraic Product: The algebraic product (A.B) of two fuzzy sets A & B is

defined as

𝜇𝐴. 𝐵 (x) = 𝜇𝐴(x). 𝜇𝐁(x)

Bounded Sum: The bounded sum (𝐴 ⊕ 𝐵) of two fuzzy sets A & B is defined

as

𝜇𝐴 ⊕ 𝐵 (x) = min {1, 𝜇𝐴(x) + 𝜇𝐁(x)}

Bounded Difference: The bounded difference (𝐴 ⊕ 𝐵) of two fuzzy sets A & B

is defined as

𝜇𝐴 ⊙ 𝐵 (x) = m𝑎𝑥{0, 𝜇𝐴(x) − 𝜇𝐁(x)}

3A.6 FUNCTIONAL MAPPING OF CLASSICAL SETS

Mapping is a rule of correspondence between set-theoretic forms and

function theoretic forms.

X and Y are two different universe of disclosure. If an element x contained

in X corresponds to an element y contained Y, it is called as mapping from

X to Y; i.e. 𝑓 : 𝑋 → 𝑌

Let A & B be two sets on universe. The function theoretic forms of operation

performed between these two sets are given as follows:

Union: 𝜒𝐴 ∪ 𝐵 (x) = 𝜒𝐴 (X) ∨ 𝜒𝐁 (X) = max {𝜒𝐴 (X), 𝜒𝐁 (X)} Here ∨

is maximum operator.

Intersection: 𝜒𝐴 ∩ 𝐵 (x) = 𝜒𝐴 (X) ∧ 𝜒𝐁 (X) =

min {𝜒𝐴 (X), 𝜒𝐁 (X)} Here ∧ is minimum operator.

Complement: 𝜒Ā (x) = 1 − 𝜒𝐴 (X)

Containment: if A ⊆ 𝐵, 𝑡ℎ𝑒𝑛 𝜒𝐴 (X) ≤ 𝜒𝐁 (X)

3A.7 SUMMARY

In this chapter, we have discussed the basic definitions, properties and

operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert

the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial

membership, they provide computer with such algorithms that extend

binary logic and enable it to take human-like decisions. In other words,

128

Soft Computing Techniques fuzzy sets can be thought of as a media through which the human thinking

is transferred to a computer. One difference between fuzzy sets and classical

sets is that the former does not follow the law of excluded middle and law

of contradiction.

The relation concept is used for nonlinear simulation, classification, and

control. The description on composition of relations gives a view of

extending fuzziness into functions. Tolerance and equivalence relations are

helpful for solving similar classification problems. The noninteractivity

between fuzzy sets is analogous to the assumption of independence in

probability modelling.

3A.8 REVIEW QUESTIONS

1. Explain fuzzy logic in detail.

2. Compare Classical set and fuzzy set.

3. Enlist and explain any three classicals set operations.

4. Enlist and explain any three fuzzy sets operations.

5. Enlist and explain any three classical set properties.

6. Enlist and explain any three fuzzy sets properties.

7. Write a short note on fuzzy relation.

3A.9 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Artificial Intelligence and Soft Computing, by Anandita Das

Battacharya, SPD 3rd, 2018

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,

3rd , 2019

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and

E.Mizutani, Prentice Hall of India, 2004



129

3b

CLASSICAL RELATIONS AND

FUZZY RELATIONS

Unit Structure

3b.0 Objectives

3b.1 Introduction to Classical Relations & Fuzzy Relations

3b.2 Cartesian product of the Relation

3b.3 Classical Relation v/s Fuzzy Relations

3b.3.1 Cardinality

3b.3.2 Operations

3b.3.3 Properties

3b.4 Classical Composition and Fuzzy Composition

3b.4.1 Properties

3b.4.2 Equivalence

3b.4.3 Tolerance

3b.5 Non-Interactive Fuzzy Set

3b.6 Summary

3b.7 Review Questions

3b.8 Bibliography, References and Further Reading

3B.0 OBJECTIVES

We begin this chapter with introducing Classical Relations & Fuzzy

Relations.

3B.1 INTRODUCTION TO CLASSICAL RELATIONS &

FUZZY RELATIONS

Relationship between the object are the basic concepts involved in decision

making & other dynamic system application. Relations represent mapping

between sets & connective logic. A classical binary relation represents the

presence or absences of connection or interaction or association between

the elements of two sets. Fuzzy binary relations impart degrees of strength

to connections or association. In fuzzy binary relation, the degree of

association is represented by membership grades in the same way as the

degree of set membership is represented in fuzzy set.

130

Soft Computing Techniques When r = 2, the relation is a subset of the Cartesian product A1*A2. This

relation is called a binary relation from A1 to A2. X & Y are two universe;

their Cartesian product X* Y is given by 𝑋 ∗ 𝑌 = {(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}

Every element in X is completely related to every element in Y. The

characteristic function, denoted by χ, gives the strength of the relationship

between ordered pair of elements in each universe. The characteristic

function, denoted by χ, gives the strength of the relationship between

ordered pair of elements in each universe.

𝜒𝛸 ∗ 𝑌 (𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ 𝛸 ∗ 𝑌

0, (𝑥, 𝑦) ∉ 𝛸 ∗ 𝑌

A binary relation in which each element from the first set X is not mapped

to more than one element in second set Y is called a function and is

expressed

as 𝑅: 𝛸 → 𝑌

A fuzzy relation is a fuzzy set defined on the Cartesian product of classical

set {X
1
,X

2
,X

3
,…X

n
} where tuples (x

1
,x

2
,…,x

n
) may have varying degree of

membership 𝜇𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) within the relation

𝑅(𝑋1, 𝑋2, … . , 𝑋𝑛) = ∫ 𝜇𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)|
𝑋

1
∗𝑋

2
∗…𝑋𝑁

 (𝑥1, 𝑥2, … , 𝑥𝑛), xi ∈

𝑋𝑖

A fuzzy relation between two sets X & Y is called binary fuzzy relation &

is denoted by R(X,Y). A binary relation R(X,Y) is referred to as bipartite

graph when X≠Y.A binary relation on a single set X is called digraph or

directed graph.This relation occur when X=Y and is denoted as R(X,X)or

R(X2).The matrix representing a fuzzy relation is called fuzzy matrix.A

fuzzy relation R is a mapping from Cartesian product space X *Y to interval

[0,1]where the mapping strength is expressed by the membership function

of the relation for ordered pairs from the two universe [μR(x,y)]

131

Classical Relations

 and Fuzzy Relations

A fuzzy graph is a graphical representation of a binary fuzzy relation. Each

element in X & Y corresponds to a node in the fuzzy graph. The connection

links are established between the nodes by the elements of X*Y with

nonzero membership grades in R(X,Y). The links may also be present in the

forms of arcs. This links are labelled with membership value as

[𝜇𝑅(𝑥, 𝑦)]. When 𝑋 ≠
𝑌 , the link connecting the two nodes is an undirected binary graph

called as 𝐛𝐢𝐩𝐚𝐫𝐭𝐢𝐭𝐞 𝐠𝐫𝐚𝐩𝐡. Here, each of the sets X & Y can be
represented by a set of nodes such that the nodes corresponding to
 one set are clearly differentiated from the nodes representing the

other set. When 𝑋 = 𝑌, a node is connected to itself and directed links are

used; in such case, the fuzzy graph is called directed graph. Here, only one

set off nodes corresponding to set X is used.

The domain of binary fuzzy relation R(X,Y) is the fuzzy set, dom R(X,Y)

having the membership function as:

The range of binary fuzzy relation R(X,Y) is the fuzzy set, ran R(X,Y)

having the membership function as:

3B.2 CARTESIAN PRODUCT OF THE RELATION

An ordered r-tuple is and ordered sequence of r-elements expressed in the

form (a1, a2, a3 … ar).

An unordered r-tuple is a collection of r-elements without any restriction

in order.

For r = 2, the r-tuple is called an ordered pair.

For crisp sets A
1
,A

2
,A

3
, ….A

r
 , the set of all r-tuples (a

1
,a

2
,a

3
,…a

r
) where

a
1
∈ A1, a2 ∈ A2, … . , ar ∈A

r
 is called Cartesian product of A

1
,A

2
,A

3
,

….A
r
 and is denoted by A

1
*A

2
*A

3
*….*A

r
.

If all the a
r
’s are identical and equal to A, then the Cartesian product

A
1
*A

2
*A

3
*….*A

r
 is denoted as A

r

132

Soft Computing Techniques 3B.3 CLASSICAL RELATION V/S FUZZY RELATIONS

3b.3.1 Cardinality

Classical Relations Fuzzy Relations

Cardinality:

Consider n elements of universe X

being related to the m elements of

universe Y.

When the cardinality of X=
n

X &

the cardinality of Y =
n

Y, then the

cardinality of relation R between

the two universe is

𝑛𝑋 ∗ 𝑌 = 𝑛𝑋 ∗ 𝑛𝑌

The cardinality of the power set

P(X *Y) describing the relation is

given by

𝑛𝑃(𝑋 ∗ 𝑌) = 2 (
𝑛𝑋𝑛𝑌)

The cardinality of fuzzy sets on any

universe is infinity; hence the

cardinality of a fuzzy relation

between two or more universe is

also infinity.

3b.3.2 Operations

Let R & S be two separate relations on the Cartesian universe X * Y. The

null relation and the complete relation are defined by the relation matrices

𝜙𝑅 𝑎𝑛𝑑 𝛦𝑅.

Operations Classical Relations Fuzzy Relations

Union 𝑅 ∪ 𝑆 → 𝜒𝑅 ∪ 𝑆(𝑥, 𝑦)
= max [𝜒𝑅(𝑥, 𝑦), 𝜒𝑆(𝑥, 𝑦)]

𝜇𝑅 ∪ 𝑆(𝑥, 𝑦)

= max [𝜇𝑅(𝑥, 𝑦), 𝜇𝑆(𝑥, 𝑦)]

Intersection 𝑅 ∩ 𝑆 → 𝜒𝑅 ∩ 𝑆(𝑥, 𝑦) =
m𝑖𝑛[𝜒𝑅(𝑥, 𝑦), 𝜒𝑆(𝑥, 𝑦)]

𝜇𝑅 ∩ 𝑆(𝑥, 𝑦)

= m𝑖𝑛 [𝜇𝑅(𝑥, 𝑦), 𝜇𝑆(𝑥, 𝑦)]

Complemen

t
𝑅 → 𝜒𝑅(𝑥, 𝑦): 𝜒R(𝑥, 𝑦)

= 1 − 𝜒R(𝑥, 𝑦)

𝜇𝑅(𝑥, 𝑦) = 1 − 𝜇𝑅(𝑥, 𝑦)

133

Classical Relations

 and Fuzzy Relations
Containmen

t
𝑅 ⊂ 𝑆
→ 𝜒𝑅(𝑥, 𝑦): 𝜒𝑅(𝑥, 𝑦)
≤ 𝜒𝑆(𝑥, 𝑦)

𝑅 ⊂ 𝑆 ⟹ 𝜇𝑅(𝑥, 𝑦)
≤ 𝜇𝑆(𝑥, 𝑦)

Identity 𝜙 → 𝜙𝑅 & 𝑋 → 𝛦𝑅

Inverse The inverse of fuzzy

relation R on X*Y is

denoted by R
-1

.

It is relation on Y*X

defined by

R
-1

(y,x)= R(x,y) for all

pairs (𝑦, 𝑥) ∈ 𝑌 ∗ 𝑋

Projection For fuzzy relation R(X,Y),

let [𝑅 ↓ 𝑌] denote the

projection of R onto Y.

𝜇[𝑅↓𝑌](𝑥, 𝑦)

= 𝑚𝑎𝑥
𝑥

 𝜇𝑅(𝑥, 𝑦)

3b.3.3 Properties

Classical Relations Fuzzy Relations

Properties

 Commutativity

 Associativity

 Distributivity

 Involution

 Idempotency

 DeMorgan’s Law

 Excluded middle law

 Commutativity

 Associativity

 Distributivity

 Involution

 Idempotency

 DeMorgan’s Law

3B.4 CLASSICAL COMPOSITION AND FUZZY

COMPOSITION

The operation executed on two binary relations to get a single binary

relation is called composition.

Let R be a relation that maps elements from universe X to universe Y and S

be a relation that maps elements from universe Y to universe Z. The two

134

Soft Computing Techniques binary elements R & S are compatible if R ⊆X*Y & S⊆Y*Z. The

composition between the two relations is denoted by R∘S.

Consider the universal sets given by:

 𝑋 = {𝑎1, 𝑎2, 𝑎3}; 𝑌 = {𝑏1, 𝑏2, 𝑏3}; 𝑍 = {c1, c2, c3}

Let the relation R & S be formed as:

𝑅 = 𝑋 ∗ 𝑌 = {(𝑎1, 𝑏1), (𝑎1, 𝑏2), (𝑎2, 𝑏2), (𝑎3, 𝑏3)}

𝑆 = 𝑌 ∗ 𝑍 = {(𝑏1, 𝑐1), (𝑏2, 𝑐3), (𝑏3, 𝑐2)}

It can be inferred that:

𝑇 = 𝑅 ∘ 𝑆 = {(𝑎1, 𝑐1), (𝑎2, 𝑐3), (𝑎3, 𝑐2), (𝑎1, 𝑐3)}

The composition operations are of two types

1. Max-Min Composition:

𝑇 = 𝑅 ∘ 𝑆
𝜒𝑇(𝑥, 𝑧) =∨𝑦∈𝑌 [𝜒𝑅(𝑥, 𝑦) ∧ 𝜒𝑆(𝑦, 𝑧)]

2. Max-product Composition:

𝑇 = 𝑅 ∘ 𝑆
𝜒𝑇(𝑥, 𝑧) = ∨

𝑦∈𝑌
[𝜒𝑅(𝑥, 𝑦) ⋅ 𝜒𝑠(𝑦, 𝑧)]

Let A be fuzzy set on universe X & B be fuzzy set on universe Y. The

Cartesian product over A and B results in fuzzy relation B and is contained

within the entire (complete) Cartesian space 𝐴 ∗ 𝐵 = 𝑅 𝑤ℎ𝑒𝑟𝑒 𝑅 ⊂ 𝑋 ∗ 𝑌

The membership function of fuzzy relation is given by 𝜇𝑅(𝑥, 𝑦) = 𝜇𝐴 ∗
𝐵(𝑥, 𝑦) = min [𝜇𝐴(𝑥), 𝜇𝐵(𝑦)]

For e.g., for a fuzzy set A that has three elements and a fuzzy set B has four

elements, the resulting fuzzy relation R will be represented by a matrix size

3 * 4

There are two types of fuzzy composition techniques:

1. Fuzzy Max-min composition

2. Fuzzy Max-product composition

Let R be fuzzy relation on Cartesian space X*Y and S be fuzzy relation on

Cartesian Space Y*Z.

Fuzzy Max-min composition:

The max-min composition of R(X,Y) and S(Y,Z) is denoted by

𝑅(𝑋, 𝑌)°𝑆(𝑌, 𝑍) is defined by T(X,Z) as

135

Classical Relations

 and Fuzzy Relations

Fuzzy Max-product composition:

3b.4.1 Properties

 Classical Composition Fuzzy Composition

Associative (𝑅°𝑆)°𝑀 = 𝑅°(𝑆°𝑀) (𝑅°𝑆)°𝑀 = 𝑅°(𝑆°𝑀)

Commutative 𝑅°𝑆 ≠ 𝑆°𝑅 𝑅°𝑆 ≠ 𝑆°𝑅

Inverse
(𝑅°𝑆)

− 1 = 𝑆
− 1°𝑅

− 1
(𝑅°𝑆)

− 1 = 𝑆
− 1 °𝑅− 1

3b.4.2 Equivalence

 Classical Composition Fuzzy Composition

Reflexivity
𝜒𝑅(𝑥𝑖, 𝑥𝑖) = 1 𝑜𝑟 (𝑥𝑖, 𝑥𝑖)

∈ 𝑅

𝜇𝑅(𝑥𝑖, 𝑥𝑖) = 1 ∀𝑥 ∈ 𝑋

Symmetry

𝜒𝑅(𝑥𝑖, 𝑥𝑗)
= 𝜒𝑅(𝑥𝑗, 𝑥𝑖)(𝑥𝑖, 𝑥𝑗) ∈ 𝑅
⟹ (𝑥𝑗, 𝑥𝑖) ∈ 𝑅

𝜇𝑅(𝑥𝑖, 𝑥𝑗)

= 𝜇𝑅(𝑥𝑗, 𝑥𝑖) ∀𝑥𝑖, 𝑥𝑗
∈ 𝑋

Transitivity

𝜒𝑅(𝑥𝑖, 𝑥𝑗) 𝑎𝑛𝑑 𝜒𝑅(𝑥𝑗, 𝑥𝑘)

= 1, 𝑠𝑜 𝜒𝑅(𝑥𝑖, 𝑥𝑘)
= 1(𝑥𝑖, 𝑥𝑗) ∈ 𝑅(𝑥𝑗, 𝑥𝑘)

∈ 𝑅, 𝑠𝑜 (𝑥𝑖, 𝑥𝑘) ∈ 𝑅

𝜇𝑅(𝑥𝑖, 𝑥𝑗)

=⋋ 1 𝑎𝑛𝑑𝜇𝑅(𝑥𝑗, 𝑥𝑘)
=⋋ 2

⟹ 𝜇𝑅(𝑥𝑖, 𝑥𝑘) =⋋
𝑤ℎ𝑒𝑟𝑒

⋋= min (⋋ 1,⋋ 2)

Fuzzy Max-product transitive can be defined. It is given by

136

Soft Computing Techniques 3b.4.3 Tolerance

Classical Composition Fuzzy Composition

A tolerance relation R1 on universe X

is one where the only the properties of

reflexivity & symmetry are satisfied.

A binary fuzzy relation that

possesses the properties of

reflexivity and symmetry is

called fuzzy tolerance relation

or resemblance relation.

The tolerance relation can also be

called proximity relation.

The equivalence relations are a

special case of the tolerance

relation.

An equivalence relation can be

formed from tolerance relation R1 by

(n-1) compositions with itself, where

n is the cardinality of the set that

defines R1, here it is X

The fuzzy tolerance relation can

be reformed into fuzzy

equivalence relation in the same

way as a crisp tolerance relation

is reformed into crisp

equivalence relation

3b.5 Non-INTERACTIVE FUZZY SET

The independent events in probability theory are analogous to

noninteractive fuzzy sets in fuzzy theory. We are defining fuzzy set A on the

Cartesian space X= X
1
 x X

2
. Set A is separable into two noninteractive fuzzy

sets called orthogonal projections if and only if

where

The equations represent membership functions for the orthographic

projections of A on universes X
1
 and X

2
. respectively.

137

Classical Relations

 and Fuzzy Relations
3B.6 SUMMARY

In this chapter, we have discussed the basic definitions, properties and

operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert

the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial

membership, they provide computer with such algorithms that extend

binary logic and enable it to take human-like decisions. In other words,

fuzzy sets can be thought of as a media through which the human thinking

is transferred to a computer. One difference between fuzzy sets and classical

sets is that the former does not follow the law of excluded middle and law

of contradiction.

The relation concept is used for nonlinear simulation, classification, and

control. The description on composition of relations gives a view of

extending fuzziness into functions. Tolerance and equivalence relations are

helpful for solving similar classification problems. The noninteractivity

between fuzzy sets is analogous to the assumption of independence in

probability modelling.

3B.7 REVIEW QUESTIONS

1. Write a short note on fuzzy relation.

2. Compare classical relations and fuzzy relations.

3. Write a short note classical composition and fuzzy composition.

3B.8 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Artificial Intelligence and Soft Computing, by Anandita Das

Battacharya, SPD 3rd, 2018

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,

3rd , 2019

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and

E.Mizutani, Prentice Hall of India, 2004



138

Soft Computing Techniques

3c

MEMBERSHIP FUNCTIONS

Unit Structure

3c.0 Objectives

3c.1 Introduction to Membership Function

3c.2 Features of the Membership Function

3c.3 Overview of Fuzzification

3c.4 Methods of Membership Value Assignment

3c.4.1 Intuition

3c.4.2 Inference & Rank Ordering

3c.4.3 Angular Fuzzy Sets

3c.4.4 Neural Network

3c.4.5 Genetic Algorithm

3c.4.6 Inductive Reasoning

3c.5 Summary

3c.6 Review Questions

3c.7 Bibliography, References and Further Reading

3C.0 OBJECTIVES

This chapter begins with explaining the membership function and later
introduces the concept of fuzzification, defuzzification and fuzzy
arithmetic.

3C.1 INTRODUCTION TO MEMBERSHIP FUNCTION

Membership function defines fuzziness in a fuzzy set irrespective of the
elements in the discrete or continuous. The membership functions are
generally represented in graphical form. There exist certain limitations for
the shapes used in graphical form of membership function. The rules that
describes fuzziness graphically are also fuzzy. Membership can be thought
of as a technique to solve empirical problems on the basis of experience
rather than knowledge.

3C.2 FEATURES OF THE MEMBERSHIP FUNCTION

The membership function defines all the information contained in a fuzzy
set. A fuzzy set A in the universe of discourse X can be defined as a set of
ordered pairs: A={(x,μA(x))│x∈X} where μA(.) is called membership
function of A. The membership function μA(.) maps X to the membership
space M,i.e.μA :X→M. The membership value ranges in the interval [0,1].
Main features involved in characterizing membership function are:

139

Membership Functions  Core: The core of a membership function for some fuzzy set A is
defined as that region of universe that is characterized by complete
membership in the set A. The core has elements x of the universe such
that 𝜇𝐴(𝑥) = 1. The core of a fuzzy set may be an empty set.

 Support: The support of a membership function for a fuzzy set A is
defined as that region of universe that is characterized by a nonzero
membership. The support comprises elements x of the universe such
that 𝜇𝐴(𝑥) >
0. A fuzzy set whose support is a single element in X with 𝜇𝐴(𝑥) =
1 is referred to as a fuzzy singleton.

 Boundary: The support of a membership function for a fuzzy set A is
defined as that region of universe containing elements that have
nonzero but not complete membership. The boundary comprises of
those elements of x of the universe such that 0 < 𝜇𝐴(𝑥) < 1. The
boundary elements are those which possess partial membership in
fuzzy set A.

Figure 3c.1: Properties of Membership Functions

Other types of Fuzzy Sets

Figure 3c.2: (A) Normal Fuzzy Set and (B) Subnormal Fuzzy Set

140

Soft Computing Techniques  Normal fuzzy set: A fuzzy set whose membership function has at

least one element x in the universe whose membership value is unity.

o Prototypical element: The element for which the membership

is equal to 1.

 Subnormal fuzzy set: A fuzzy set wherein no membership function

has it equal to 1.

 Convex fuzzy set: A convex fuzzy set has membership function

whose membership values are strictly monotonically increasing or

strictly monotonically decreasing or strictly monotonically increasing

than strictly monotonically decreasing with increasing values for the

elements in the universe.

 Nonconvex fuzzy set: the membership value of the membership

function is not strictly monotonically increasing or decreasing or

strictly monotonically increasing than decreasing.

Figure 3c.3: (A) Convex Normal Fuzzy Set and (B) Nonconvex Normal

Fuzzy Set

The intersection of two convex fuzzy set is also a convex fuzzy set. The

element in the universe for which a particular fuzzy set A has its value equal

to 0.5 is called crossover point of membership function. There can be more

than one crossover point in fuzzy set. The maximum value of the

membership function of the fuzzy set A is called height of the fuzzy set. If

the height of the fuzzy set is less than 1, then the fuzzy set is called

subnormal fuzzy set. When the fuzzy set A is a convex single –point

normal fuzzy set defined on the real time, then A is termed as a fuzzy

number.

Figure 3c.4: Crossover Point of a Fuzzy Set

141

Membership Functions 3C.3 OVERVIEW OF FUZZIFICATION

Fuzzification is the process of transforming a crisp set to a fuzzy set or a

fuzzy set into a fuzzier set. This operation translates accurate crisp input

value into linguistic variables. Quantities that we consider to be accurate,

crisp & deterministic, possess uncertainty within themselves. The

uncertainty arises due to vagueness, imprecision or uncertainty.

For a fuzzy set A={μi/xi|xi∈X},a common fuzzification algorithm is

performed by keeping μi constant and xi being transformed to a fuzzy set

Q(xi) depicting the expression about xi. The fuzzy set Q(xi) is referred to as

the kernel of fuzzification.

The fuzzified set A can be expressed as:

where the symbol ~ means fuzzified. This process of fuzzification is called

support fuzzification (s-fuzzification).

Grade fuzzification (g-fuzzification) is another method where

𝑥𝑖 is kept constant and 𝜇𝑖 is expressed as a fuzzy set.

3C.4 METHODS OF MEMBERSHIP VALUE

ASSIGNMENT

Following are the methods for assigning membership value:

 Intuition

 Inference

 Rank ordering

 Angular fuzzy sets

 Neural Network

 Genetic Algorithm

 Inductive Reasoning

3c.4.1 Intuition

Intuition method is the base upon the common intelligence of human. It is

capacity of the human to develop membership functions on the basis of their

own intelligence and understanding capability. There should be an in-depth

knowledge of the application to which membership value assignment has to

be made.

142

Soft Computing Techniques

Figure 3c.5: Membership functions for the Fuzzy variable “weight”

3c.4.2 Inference & Rank Ordering

The inference method uses knowledge to perform deductive reasoning.

Deduction achieves conclusion by means of forward inference.

Rank ordering is carried on the basis of the preferences. Pairwise

comparisons enable us to determine preferences & resulting in determining

the order of membership.

3c.4.3 Angular Fuzzy Sets

Angular fuzzy set ‘s’ is defined on a universe of angles, thus repeating the

shapes every 2𝜋 cycles. The truth value of the linguistic variable is

represented by angular fuzzy sets. The logical proposition is equated to the

membership value “1” is said to be “true” and that preposition with

membership value 0 is said to be “false”. The intermediate values between

0 & 1 correspond to proposition being partially true or partially false.

Figure 3c.6: Model of Angular Fuzzy Set

143

Membership Functions The values of the linguistic variable vary with “θ” & their membership

values are on the μ(θ)axis.The membership value corresponding to the

linguistic term can be obtained from equation μt(θ)=t.tan (θ) where t is the

horizontal projection of radial vector

3c.4.4 Neural Network

Figure 3c.7: Fuzzy Membership function evaluated from Neural

Networks

3c.4.5 Genetic Algorithm

Genetic algorithm is based on the Darwin’s theory of evolution, the basic

rule is “survival of the fittest”. Genetic algorithms use the following steps

to determine the fuzzy membership function:

 For a particular functional mapping system, the same membership

functions & shapes are assumed for various fuzzy variables to be

defined.

 These chosen membership functions are then coded into bit strings.

 Then these bit strings are concatenated together

 The fitness function to be used here is noted. In genetic algorithm,

fitness function plays a major role similar to that played by activation

function in neural network.

144

Soft Computing Techniques  The fitness function is used to evaluate the fitness of each set of

membership function.

 These membership functions define the functional mapping of the

system

3c.4.6 Inductive Reasoning

Induction is used to deduce causes by means of backward inference. The

characteristics of inductive reasoning can be used to generate membership

functions. Induction employs entropy minimization principles, which

clusters the parameters corresponding to the output classes. To perform

inductive reasoning method, a well-defined database for the input-output

relationship exist. Induction reasoning can be applied for complex systems

where database is abundant & static.

Laws of Induction:

 Given a set of irreducible outcomes of experiment, the induced

probabilities are probability consistent with all the available

information that maximize the entropy of the set.

 The induced probability of a set of independent observation is

proportional to the probability density of the induced probability of

single observation.

 The induced rule is that rule consistent with all available information

of that minimizes the entropy

The third law stated above is widely used for development of membership

function.

The membership functions using inductive reasoning are generated as

follow:

 A fuzzy threshold is to be established between classes of data.

 Using entropy minimization screening method, first determine the

threshold line

 Then start the segmentation process

 The segmentation process results into two classes.

 Again, partitioning the first two classes one more time, we obtain

three different classes.

 The partitioning is repeated with threshold value calculation, which

lead us to partition the data set into a number of classes and fuzzy set.

 Then on the basis of shape, membership function is determined.

145

Membership Functions 3C.5 SUMMARY

This chapter starts with the discussion about membership functions and

their features. The formation of the membership function is the core for the

entire fuzzy system operation. The capability of human reasoning is

important for membership functions. The inference method is based on the

geometrical shapes and geometry, whereas the angular fuzzy set is based on

the angular features. Using neural networks and reasoning methods the

memberships are tuned in a cyclic fashion and are based on rule structure.

The improvements are carried out to achieve an optimum solution using

generic algorithms. Thus, the membership function can be formed using any

one of the methods.

Later we have discussed the methods of converting fuzzy variables into

crisp variables by a process called as defuzzification. Defuzzification

process is essential because some engineering applications need exact

values for performing the operation. Defuzzification is a natural and

essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were

discussed. Apart from the Lambda-cut method, seven defuzzification

methods were presented. The method of defuzzification should be assessed

on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension

of interval arithmetic. One of the important tools of fuzzy set theory

introduced by Zadeh is the extension principle, which allows any

mathematical relationship between nonfuzzy elements to be extended to

fuzzy entities. This principle can be applied to algebraic operations to define

set-theoretic operations for higher order fuzzy sets. The belief and

plausibility measures can be expressed by the basic probability assignment

m, which assigns degree of evidence or belief indicating that a particular

element of X belongs to set A and not to any subset of A. The main

characteristic of probability measures is that each of them can be distinctly

represented by a probability distribution function defined on the elements

of a universal set apart from its subsets. Fuzzy integrals defined define by

Sugeno (1977) are also discussed. Fuzzy integrals are used to perform

integration of fuzzy functions.

3C.6 REVIEW QUESTIONS

1. What is membership function? Enlist and explain its features.

2. Write a short note on fuzzification.

3. Explain any three methods of membership value assignments in

detail.

4. Write a short note on defuzzification.

5. What is Lambda-cuts for fuzzy set and Fuzzy relations?

6. Explain any three methods of defuzzification in detail.

7. Write a short note on fuzzy arithmetic.

8. What are the mathematical operations on intervals of fuzzy.

146

Soft Computing Techniques 9. Write a short note on fuzzy number and fuzzy ordering.

10. Write a short note on fuzzy vectors.

11. Write a short note on belief and plausibility measures.

12. Write a short note on possibility and necessity measures.

3C.7 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Artificial Intelligence and Soft Computing, by Anandita Das

Battacharya, SPD 3rd, 2018

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,

3rd , 2019

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and

E.Mizutani, Prentice Hall of India, 2004



147

3d

DEFUZZIFICATION

Unit Structure

3d.0 Objectives

3d.1 Overview of Defuzzification

3d.2 Concept of Lamba-Cuts for Fuzzy Sets (Alpha-Cuts)

3d.3 Concept of Lamba-Cuts for Fuzzy Relations

3d.4 Methods of Defuzzification

3d.4.1 Max-membership Principle

3d.4.2 Centroid Method

3d.4.3 Weighted Average Method

3d.4.4 Mean-Max Membership

3d.4.5 Centers of Sums

3d.4.6 Centers of Largest Area

3d.4.7 First of Maxima, Last of Maxima

3d.5 Summary

3d.6 Review Questions

3d.7 Bibliography, References and Further Reading

3D.0 OBJECTIVES

This chapter begins with explaining the membership function and later

introduces the concept of Defuzzification.

3D.1 OVERVIEW OF DEFUZZIFICATION

Defuzzification is mapping process from a space of fuzzy control actions

defined over an output universe of discourse into space of crisp control

action. A defuzzification process produces a nonfuzzy control action that

represents the possibility distribution of an inferred fuzzy control action.

Defuzzification process has the capability to reduce a fuzzy set into a crisp

single-valued quantity or into a crisp set; to convert a fuzzy matrix into a

crisp matrix; or to convert a fuzzy number into a crisp number.

Mathematically, the defuzzification process may also termed as “rounding

off”. Fuzzy set with a collection of membership values or a vector of values

148

Soft Computing Techniques on the unit interval may be reduced to a single scalar quantity using

defuzzification process.

3D.2 CONCEPT OF LAMBA-CUTS FOR FUZZY SETS

(ALPHA-CUTS)

Consider a fuzzy set A. The set A
𝜆

 (0 < 𝜆 < 1), called the lamba (𝜆) −
cut (or alpha [𝛼]-cut) set, is a crisp

set of the fuzzy set & defined as:

A𝜆 = {𝑥|𝜇𝐴(𝑥) ≥ 𝜆}; 𝜆 ∈ [0,1]

The set A
𝜆

 is called a weak lambda-cut set if it consists of all the elements

of fuzzy set whose

membership functions have values greater than or equal to specified value.

The set A
𝜆

 is called a strong lambda-cut set if it consists of all the elements

of fuzzy set whose

membership functions have values strictly greater than specified value.

A𝜆 = {𝑥|𝜇𝐴(𝑥) > 𝜆}; 𝜆 ∈ [0,1]

The properties of 𝜆-cut sets are as follows:

1 (𝐴∼ ∪ 𝐵∼)𝜆 = 𝐴𝜆 ∪ 𝐵𝜆

2 (𝐴∼ ∩ 𝐵∼)𝜆 = 𝐴𝜆 ∩ 𝐵𝜆

3 (𝐴‾)𝜆 ≠ (𝐴‾𝜆) except when 𝜆 = 0.5

4 For any 𝜆 ≤ 𝛽, where 0 ≤ 𝛽 ≤ 1, it is true that 𝐴𝛽 ⊆ 𝐴𝜆,

where 𝐴0 = 𝑋.

3D.3 CONCEPT OF LAMBA-CUTS FOR FUZZY

RELATIONS

149

Defuzzification 3D.4 METHODS OF DEFUZZIFICATION

Defuzzification is the process of conversion of a fuzzy quantity into a

precise quantity. The output of a fuzzy process may be union of two or more

fuzzy membership functions defined on the universe of discourse of the

output variable.

Figure 3d.1 (A): First part of fuzzy output, (B) second part of fuzzy

output, (C) union of parts (A) and (B)

Defuzzification Methods

 Max-membership principle

 Centroid method

 Weighted average method

 Mean-Max membership

 Centers of Sums

 Center of largest area

 First of maxima, last of maxima

3d.4.1 Max-membership Principle

This method is also known as height method and is limited to peak output

functions. This method is given by the algebraic expression:

150

Soft Computing Techniques

Figure 3d.2: Max-membership Defuzzification Method

3d.4.2 Centroid Method

This method is also known as center of mass, center of area, center of

gravity,

𝑥∗ =
∫ 𝜇𝐶(𝑥) ⋅ 𝑥𝑑𝑥

∫ 𝜇𝐶(𝑥)𝑑𝑥

∫ is denotes an algebraic integration.

Figure 3d.3: Centroid Defuzzification Method

3d.4.3 Weighted Average Method

This method is valid for symmetrical output membership functions only.

Each membership function is weighted by its maximum membership

value.

151

Defuzzification
∑ denotes algebraic sum and xi is the maximum of the i

th

membership

function.

Figure 3d.4: Weighted average defuzzification method

(two symmetrical membership functions)

3d.4.4 Mean-Max Membership

This method is also known as the middle of maxima. The locations of the

maxima membership can be nonunique.

Figure 3d.5: Mean-max membership defuzzification method

3d.4.5 Centers of Sums

This method employs the algebraic sum of the individual fuzzy subsets.

Advantage: Fast calculation. Drawback: intersecting areas are added twice.

The defuzzified value x* is given by:

152

Soft Computing Techniques

Figure 3d.6: (A) First and (B) Second Membership functions, (C)

Defuzzification

3d.4.6 Centers of Largest Area

This method can be adopted when the output consists of at least two convex

fuzzy subsets which are not overlapping. The output in this case is biased

towards a side of one membership function. When output fuzzy set has at

least two convex regions then the center-of-gravity of the convex fuzzy sub

region having the largest area is used to obtain the defuzzified value x*.

This value is given by:

Figure 3d.7: Center of Largest Area Method

3d.4.7 First of Maxima, Last of Maxima

This method uses the overall output or union of all individual output fuzzy

sets cj for determining the smallest value of the domain with the maximized

membership in cj.

153

Defuzzification

Figure 3d.8: First of maxima (last of maxima) method

The steps used for obtaining x* are:

 Initially, the maximum height in the union is found

 where sup is supremum, i.e., the least upper bound

 Then the first of maxima is found:

 where inf is the infimum, i.e. the greatest lower bound.

 After this the last of maxima is found:

3D.5 SUMMARY

This chapter starts with the discussion about membership functions and
their features. The formation of the membership function is the core for the
entire fuzzy system operation. The capability of human reasoning is
important for membership functions. The inference method is based on the
geometrical shapes and geometry, whereas the angular fuzzy set is based on
the angular features. Using neural networks and reasoning methods the
memberships are tuned in a cyclic fashion and are based on rule structure.
The improvements are carried out to achieve an optimum solution using
generic algorithms. Thus, the membership function can be formed using any
one of the methods.

Later we have discussed the methods of converting fuzzy variables into
crisp variables by a process called as defuzzification. Defuzzification
process is essential because some engineering applications need exact

154

Soft Computing Techniques values for performing the operation. Defuzzification is a natural and
essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were
discussed. Apart from the Lambda-cut method, seven defuzzification
methods were presented. The method of defuzzification should be assessed
on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension
of interval arithmetic. One of the important tools of fuzzy set theory
introduced by Zadeh is the extension principle, which allows any
mathematical relationship between nonfuzzy elements to be extended to
fuzzy entities. This principle can be applied to algebraic operations to define
set-theoretic operations for higher order fuzzy sets. The belief and
plausibility measures can be expressed by the basic probability assignment
m, which assigns degree of evidence or belief indicating that a particular
element of X belongs to set A and not to any subset of A. The main
characteristic of probability measures is that each of them can be distinctly
represented by a probability distribution function defined on the elements
of a universal set apart from its subsets. Fuzzy integrals defined define by
Sugeno (1977) are also discussed. Fuzzy integrals are used to perform
integration of fuzzy functions.

3D.6 REVIEW QUESTIONS

1. What is membership function? Enlist and explain its features.

2. Write a short note on fuzzification.

3. Explain any three methods of membership value assignments in

detail.

4. Write a short note on defuzzification.

5. What is Lambda-cuts for fuzzy set and Fuzzy relations?

6. Explain any three methods of defuzzification in detail.

7. Write a short note on fuzzy arithmetic.

8. What are the mathematical operations on intervals of fuzzy.

9. Write a short note on fuzzy number and fuzzy ordering.

10. Write a short note on fuzzy vectors.

11. Write a short note on belief and plausibility measures.

12. Write a short note on possibility and necessity measures.

3D.7 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Artificial Intelligence and Soft Computing, by Anandita Das

Battacharya, SPD 3rd, 2018

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,

3rd , 2019

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and

E.Mizutani, Prentice Hall of India, 2004



155

3e

FUZZY ARITHMETIC

AND FUZZY MEASURES

Unit Structure

3e.0 Objectives

3e.1 Overview of Fuzzy Arithmetic

3e.2 Interval Analysis of Uncertain Values

3e.3 Mathematical operations on Intervals

3e.4 Fuzzy Number

3e.5 Fuzzy Ordering

3e.6 Fuzzy Vectors

3e.7 Extension Principles

3e.8 Overview of Fuzzy Measures

3e.9 Belief & Plausibility Measures

3e.10 Probability Measures

3e.11 Possibility & Necessity Measures

3e.12 Measure of Fuzziness

3e.13 Fuzzy Integrals

3e.14 Summary

3e.15 Review Questions

3e.16 Bibliography, References and Further Reading

3E.0 OBJECTIVES

This chapter begins with explaining the membership function and later

introduces the concept of Fuzzy Arithmetic and Fuzzy Measures.

3E.1 OVERVIEW OF FUZZY ARITHMETIC

Fuzzy arithmetic is based on the operations and computations of fuzzy

numbers. Fuzzy numbers help in expressing fuzzy cardinalities and fuzzy

quantifiers. Fuzzy arithmetic is applied in various engineering applications

when only imprecise or uncertain sensory data are available for

computation. The imprecise data from the measuring instruments are

generally expressed in the form of intervals, and suitable mathematical

operations are performed over these intervals to obtain a reliable data of the

156

Soft Computing Techniques measurements (which are also in the form of intervals). This type of

computation is called interval arithmetic or interval analysis.

3E.2 INTERVAL ANALYSIS OF UNCERTAIN VALUES

Fuzzy numbers are an extension of the concept of intervals. Intervals are

considered at only one unique level. Fuzzy numbers consider them at

several levels varying from 0 to 1. In interval analysis, the uncertainty of

the data is limited between the intervals specified by the lower bound &

upper bound. The following are the various types of intervals:

 [𝑎1, 𝑎2] = {𝑥|𝑎1 ≤ 𝑥 ≤ 𝑎2} is closed interval

 [𝑎1, 𝑎2) = {𝑥|𝑎1 ≤ 𝑥 < 𝑎2} is an interval closed at left end side &

open at right end.

 (𝑎1, 𝑎2] = {𝑥|𝑎1 < 𝑥 ≤ 𝑎2} is an interval open at left end side &

closed at right end.

 (𝑎1, 𝑎2) = {𝑥|𝑎1 < 𝑥 < 𝑎2} is an open interval, open at both left end

and right end.

3E.3 MATHEMATICAL OPERATIONS ON INTERVALS

Let 𝐴 = [𝑎1, 𝑎2] & 𝐵 = [𝑏1, 𝑏2] be the intervals defined. If 𝑥 ∈
[𝑎1, 𝑎2] & 𝑦 ∈ [𝑏1, 𝑏2]

Addition (+): 𝐴 + 𝐵 = [𝑎1, 𝑎2] + [𝑏1, 𝑏2] = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2]

Subtraction (-): 𝐴 − 𝐵 = [𝑎1, 𝑎2] − [𝑏1, 𝑏2] = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1]

We subtract the larger value out of b1 & b2 from a1. The smaller value out

of b1 & b2 from a2 is subtracted.

Multiplication (.): Let the two intervals of confidence be A=[a1,a2] &

B=[b1,b2] defined on non-negative real line.

𝐴. 𝐵 = [𝑎1, 𝑎2]. [𝑏1, 𝑏2] = [𝑎1. 𝑏1, 𝑎2. 𝑏2]

If we multiply an interval with a non-negative real number ∝

∝. 𝐴 = [∝, ∝]. [𝑎1, 𝑎2] = [∝. 𝑎1, ∝. 𝑎2]

∝. 𝐵 = [∝, ∝]. [𝑏1, 𝑏2] = [∝. 𝑏1, ∝. 𝑏2]

Division (÷): The division two intervals of confidence defined on non-

negative real line is given by.

 𝐴 ÷ 𝐵 = [𝑎1, 𝑎2] ÷ [𝑏1, 𝑏2] = [𝑎1/𝑏1, 𝑎2/𝑏2]

If b1 = 0 then the upper bound increases to

+∞. If b1 = b2 = 0, then interval of confidence is extended to + ∞

157

Fuzzy Arithmetic

and Fuzzy Measures
Image

(Ā): If 𝑥 ∈ [−𝑎2, −𝑎1]. Also if 𝐴 = [𝑎1, 𝑎2] then its image Ā =
[−𝑎2, −𝑎1].
Note that 𝐴 + Ā = [𝑎1, 𝑎2] + [−𝑎2, −𝑎1] = [𝑎1 − 𝑎2, 𝑎2 − 𝑎1] ≠ 0

The subtraction becomes addition of an image.

Inverse (A
-1

): If

𝑥
∈ [𝑎1, 𝑎2]is a subset of a positive real line, then its inverse is given by

(
1

𝑥
) = [

1

𝑎2
,

1

𝑎1
] . Similarly, the inverse of A is given by A

− 1

= [𝑎1, 𝑎2]
− 1

= [
1

𝑎2
,

1

𝑎1
] . The division becomes multiplication of an inverse. For division

by a non − negative number ∝> 0 i. e. (
1

∝
).

A, we obtain 𝐴 ÷∝= 𝐴. [
1

∝
,
1

∝
] = [

𝑎1

∝
,
𝑎2

∝
]

Max and Min Operations: 𝐴 = [𝑎1, 𝑎2] & 𝐵 = [𝑏1, 𝑏2]

Max: 𝐴 ∨ 𝐵 = [𝑎1, 𝑎2] ∨ [𝑏1, 𝑏2] = [𝑎1 ∨ 𝑏1, 𝑎2 ∨ 𝑏2]

Min: 𝐴 ∧ 𝐵 = [𝑎1, 𝑎2] ∧ [𝑏1, 𝑏2] = [𝑎1 ∧ 𝑏1, 𝑎2 ∧ 𝑏2]

Table 3e.1: Set Operations on Intervals

Table 3e.2: Algebraic Properties of Intervals

158

Soft Computing Techniques 3E.4 FUZZY NUMBER

A fuzzy number is a normal, convex membership function on the real line

R. Its membership function is piecewise continuous. That is, every λ-cut set

Aλ, λ∈[0,1],of a fuzzy number A is a closed interval of R & the highest

value of membership of A is unity. For two given numbers A & B in R, for

specific λ1 ∈ [0, 1], we obtain two dosed intervals:

𝐴𝜆1 =
[𝑎1

(𝜆1),
𝑎2

(𝜆2)
] 𝑓𝑟𝑜𝑚 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝐴

𝐵𝜆1 =
[𝑏1

(𝜆1),
𝑏2

(𝜆2)] 𝑓𝑟𝑜𝑚 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝐵

Fuzzy number is an extension of the concept of intervals. Fuzzy numbers

consider them at several levels with each of these levels corresponding to

each λ-cut of the fuzzy numbers. The notation Aλ1=[a1(λ1),a2(λ2)] can be

used to represent a closed interval of a fuzzy number A at a λ h -level.

159

Fuzzy Arithmetic

and Fuzzy Measures

Table 3e.3 Algebraic Properties of Addition and Multiplication on

Fuzzy Numbers

3E.5 FUZZY ORDERING

The technique for fuzzy ordering is based on the concept of possibility

measure. For a fuzzy number A, two fuzzy sets, A
1
 & A

2
 are defined. For

this number, the set of numbers that are possibly greater than or equal to A

is denoted as A
1
 and is defined as

160

Soft Computing Techniques In a similar manner, the set of numbers that are necessarily greater than A is

denoted as A
2
 and is defined as

where ∏𝐴 and N
A
 are possibility and necessity measures.

We can compare A with B
1
 & B

2
 by index of comparison such as the

possibility or necessity measure of a fuzzy set. That is, we can calculate the

possibility and necessity measures, in the set 𝜇𝐴 of fuzzy sets B
1
 & B

2
. On

the basis of this, we obtain four fundamental indices of comparison.

3E.6 FUZZY VECTORS

A vector P = (P
1
, P

2
, ... , P

n
) is called a fuzzy vector if for any element we

have 0 ≤ P ≤ 1 for i = 1 to n. Similarly, the transpose of the fuzzy vector e

denoted by P
T

, is a column vector if P is a row vector, i.e.,

∼
𝑃 T= [

𝑃1

𝑃2

⋮
𝑃𝑛

]

Let P & Q as fuzzy vector on length n.

Fuzzy inner product:

Fuzzy outer product:

The complement of fuzzy vector ~P has constraint 0 ≤ ~𝑃 ≤ 1 𝑓𝑜𝑟 𝑖 =

1 𝑡𝑜 𝑛

~𝑃 = (1 − 𝑃1,1 − 𝑃2, … 1 − 𝑃𝑛) = (~𝑃1, ~𝑃2, … , ~𝑃𝑛)

161

Fuzzy Arithmetic

and Fuzzy Measures Largest component is defined as its upper bound:

Smallest component is defined as its lower bound:

Properties of Fuzzy Vector

3E.7 EXTENSION PRINCIPLES

The extension principle allows generalization of crisp sets into fuzzy sets

framework & extends point-to-point mappings for fuzzy sets.

162

Soft Computing Techniques

3E.8 OVERVIEW OF FUZZY MEASURES

A fuzzy measure explains the imprecision or ambiguity in the assignment

of an element ∝ to two or more crisp sets. For representing uncertainty

condition, known as ambiguity, we assign a value in the unit interval [0, 1]

to each possible crisp set to which the element in the problem might belong.

The value assigned represents the degree of evidence or certainty or belief

of the element's membership in the set. The representation of uncertainty of

this manner is called fuzzy measure. The difference between a fuzzy

measure and a fuzzy set on a universe of elements is that, in fuzzy measure,

the imprecision is in the assignment of an element to one of two or more

crisp sets, and in fuzzy sets, the imprecision is in the prescription of the

boundaries of a set.

A fuzzy measure is defined by a function g: P(X) → [0,1] which assigns to

each crisp subset of a universe of discourse X a number in the unit interval

[0,1],where P(X) is power set of X.A fuzzy measure is a set function. To

qualify a fuzzy measure,the function g should possess certain properties.A

fuzzy measure is also described as follows: g: B → [0,1] where B ⊂P(X) is

a family of crisp subsets of X Here B is a Borel field or a σ field. Also, g

satisfies rhe following three axioms of fuzzy measures:

 Boundary condition (g1): 𝑔(∅) = 0; 𝑔(𝑋) = 1

 Monotonicity (g2): for every classical set 𝐴, 𝐵 ∈ 𝑃(𝑋), 𝑖𝑓 𝐴 ⊆

𝐵, 𝑡ℎ𝑒𝑛 𝑔(𝐴) ≤ 𝑔(𝐵)

 Continuity (g3): for sequence 𝐴𝑖 ∈ 𝑃(𝑋)|𝑖 ∈

𝑁) of subsets X, if either 𝐴1 ⊆ 𝐴2 … 𝑜𝑟 𝐴1 ⊇

𝐴2 … 𝑡ℎ𝑒𝑛 lim
𝑖→∞

𝑔(𝐴𝑖) = 𝑔 (lim
𝑖→∞

𝐴𝑖)

where N is the set of all positive integers

A 𝜎 field or Borel field satisfies the following properties:

 𝑋 ∈ 𝐵 & ∅ ∈ 𝐵

163

Fuzzy Arithmetic

and Fuzzy Measures
 𝑖𝑓 𝐴 ∈ 𝐵, 𝑡ℎ𝑒𝑛 ~𝐴 ∈ 𝐵

 B is closed under set union operation, i.e. if 𝐴 ∈ 𝐵 & 𝐵 ∈

𝐵 (𝜎 𝑓𝑖𝑒𝑙𝑑), 𝑡ℎ𝑒𝑛 𝐴 ∪ 𝐵 ∈ 𝐵 (𝜎 𝑓𝑖𝑒𝑙𝑑)

The fuzzy measure excludes the additive property of standard measures, h.

The additive property states that when two sees A and B are disjoint, then

ℎ(𝐴 ∪ 𝐵) = ℎ(𝐴) + ℎ(𝐵). Since 𝐴 ⊆ 𝐴 ∪ 𝐵 & 𝐵 ⊆ 𝐴 ∪
𝐵, and because fuzzy measure g possesses monotonic property, we have 𝑔(𝐴 ∪

𝐵) ≥ max [𝑔(𝐴), 𝑔(𝐵)]. Since 𝐴 ∩ 𝐵 ⊆ 𝐴 & 𝐴 ∩ 𝐵 ⊆
𝐵, and because fuzzy measure g possesses monotonic property, we have 𝑔(𝐴 ∪

𝐵) ≤ m𝑖𝑛 [𝑔(𝐴), 𝑔(𝐵)].

3E.9 BELIEF & PLAUSIBILITY MEASURES

The belief measure is a fuzzy measure that satisfies three axioms g1, g2 and

g3 and an additional axiom of subadditivity. A belief measure is a function

𝑏𝑒𝑙: 𝐵 → [0,1] satisfying axioms g1, g2 and g3 of fuzzy measures and

subadditivity axiom. It is defined as follows:

Plausibility is defined as Pl(A)=1 -bel(Ā) for all A∈B(CP(X)).Belief

measure can be defined as bel(A)=1-Pl(Ā).Plausibility measure can also be

defined independent of belief measure.A plausibility measure is a function

Pl:B→[0,1] satisfying axioms g1, g2, g3 of fuzzy measures and the

following subadditivity axiom (axiom g5):

for every 𝑛 ∈ 𝑁 and all collection of subsets of X

The belief measure and the plausibility measure are mutually dual, so it will

be beneficial to express both of them in terms of a set function m, called a

basic probability assignment. The basic probability assignment m is a set

function, : 𝐵 → [0,1]𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(∅ = 0)𝑎𝑛𝑑 ∑ 𝐴 ∈ 𝐵 𝑚(𝐴) =
1. The basic probability assignments are not fuzzy measures. The quantity

𝑚(𝐴) ∈ [0,1], 𝐴 ∈ 𝐵(𝐶𝑃(𝑋)) , is called A's basic probability number.

Given a basic assignment m, a belief measure and a plausibility measure

and a plausibility measure can be uniquely determined by:

164

Soft Computing Techniques

3E.10 PROBABILITY MEASURES

A probability measure is the function 𝑃: 𝐵 →
[0,1] satisfying the three axioms
g1, g2 & g3 of fuzzy measures and the additivity axioms (axiom g6) as follows

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ∈ 𝐵.

Theorem : “A belief measure bel on a finite 𝜎-field B, which is a subset of

P(X), is a probability measure if and only if its basic probability assignment

m is given by m({x}) = bel({x}) and m(A) = 0 for all subsets of X that are

not singletons.”

The theorem indicates fiat a probability measure on finite sets can be

represented uniquely by a function defined on the elements of the universal

set X rather than its subsets. The probability measures on finite sets can be

fully represented by a function, P: X → [0, 1] such that P(x) = m({x}). This

function P(X) is called probability distribution function.

Within probability measure, the total ignorance is expressed by the uniform

probability distribution function:

𝑃(𝑥) = 𝑚({𝑥}) =
1

|𝑋|
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋

The plausibility and belief measures can be viewed as upper & lower

probabilities that characterize a set of probability measures.

165

Fuzzy Arithmetic

and Fuzzy Measures
3E.11 POSSIBILITY & NECESSITY MEASURES

A group of subsets of a universal set is nested if these subsets can be ordered

in a way that each is contained in the next; i.e. 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 … ⊂ 𝐴𝑛, 𝐴𝑖 ∈
𝑃(𝑋) are nested sets. When the focal elements of a body of evidence (E, m)

are nested, the linked belief and plausibility measures are called consonants,

because here the degrees of evidence allocated to them do not conflict with

each other.

Theorem: “Consider a consonant body of evidence (E, m), the associated

consonant belief and plausibility measures possess the following properties:

𝑏𝑒𝑙 (𝐴 ∩ 𝐵) = min(𝑏𝑒𝑙(𝐴), 𝑏𝑒𝑙(𝐵))

𝑃𝑙(𝐴 ∪ 𝐵) = max (𝑃𝑙(𝐴), 𝑃𝑙(𝐵))

for all 𝐴, 𝐵 ∈ 𝐵(𝐶𝑃(𝑋)).

Consonant belief and plausibility measures are referred to as necessity &

possibility measures & are denoted by N and ∏, respectively.

The possibility measure ∏ & necessity measure N are function:

∏: 𝐵 → [0,1] & N: B → [0,1] such that ∏ & N both satisfy the axioms

g1,g2 & g3 of fuzzy measures and following axiom g7:

∏(𝐴 ∪ 𝐵) = max(∏(A), ∏(𝐵)) ∀𝐴, 𝐵 ∈ 𝐵

𝑁(𝐴 ∩ 𝐵) = m𝑖𝑛(𝑁(A), 𝑁(𝐵)) ∀𝐴, 𝐵 ∈ 𝐵

Necessity and possibility are special subclasses of belief and plausibility

measures, they are related to each other by

∏(𝐴) = 1 − 𝑁(Ā) & 𝑁(𝐴) = 1 − ∏(Ā) ∀ 𝐴 ∈ 𝜎 𝑓𝑖𝑒𝑙𝑑

166

Soft Computing Techniques

3E.12 MEASURE OF FUZZINESS

The fuzzy measures concept provides a general mathematical framework to

deal with ambiguous variables. Measures of uncertainty related to

vagueness are referred to as measures of fuzziness. A measure of fuzziness

is a function 𝑓: 𝑃(𝑋) → 𝑅 where R is the real line and P(X) is the set of all

fuzzy subsets of X. The function f satisfies the following axioms:

 Axiom 1 (f1): f(A) = 0 if and only if A is a crisp set.

 Axiom 2 (f2): If A (shp) B, then f(A) ≤ f(B), where A (shp) B denotes

that A is sharper than B.

 Axiom 3 (f3): f(A) takes the maximum value if and only if A is

maximally fuzzy.

Axiom f1 shows that a crisp set has zero degree of fuzziness in it. Axioms

f2 and f3 are based on concept of "sharper" and "maximal fuzzy,"

respectively.

167

Fuzzy Arithmetic

and Fuzzy Measures
3E.13 FUZZY INTEGRALS

3E.14 SUMMARY

This chapter starts with the discussion about membership functions and

their features. The formation of the membership function is the core for the

entire fuzzy system operation. The capability of human reasoning is

important for membership functions. The inference method is based on the

geometrical shapes and geometry, whereas the angular fuzzy set is based on

the angular features. Using neural networks and reasoning methods the

memberships are tuned in a cyclic fashion and are based on rule structure.

The improvements are carried out to achieve an optimum solution using

generic algorithms. Thus, the membership function can be formed using any

one of the methods.

Later we have discussed the methods of converting fuzzy variables into

crisp variables by a process called as defuzzification. Defuzzification

process is essential because some engineering applications need exact

values for performing the operation. Defuzzification is a natural and

essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were

discussed. Apart from the Lambda-cut method, seven defuzzification

methods were presented. The method of defuzzification should be assessed

on the basis of the output in the context of data available.

Finally, we discussed fuzzy arithmetic, which is considered as an extension

of interval arithmetic. One of the important tools of fuzzy set theory

introduced by Zadeh is the extension principle, which allows any

mathematical relationship between nonfuzzy elements to be extended to

fuzzy entities. This principle can be applied to algebraic operations to define

set-theoretic operations for higher order fuzzy sets. The belief and

plausibility measures can be expressed by the basic probability assignment

168

Soft Computing Techniques m, which assigns degree of evidence or belief indicating that a particular

element of X belongs to set A and not to any subset of A. The main

characteristic of probability measures is that each of them can be distinctly

represented by a probability distribution function defined on the elements

of a universal set apart from its subsets. Fuzzy integrals defined define by

Sugeno (1977) are also discussed. Fuzzy integrals are used to perform

integration of fuzzy functions.

3E.15 REVIEW QUESTIONS

1. Write a short note on fuzzy arithmetic.

2. What are the mathematical operations on intervals of fuzzy.

3. Write a short note on fuzzy number and fuzzy ordering.

4. Write a short note on fuzzy vectors.

5. Write a short note on belief and plausibility measures.

6. Write a short note on possibility and necessity measures.

3E.16 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Artificial Intelligence and Soft Computing, by Anandita Das

Battacharya, SPD 3rd, 2018

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley,

3rd , 2019

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and

E.Mizutani, Prentice Hall of India, 2004



169

MODULE II: UNIT 4

4a

FUZZY RULE BASE AND

APPROXIMATE REASONING

Unit Structure

4a.0 Introduction

4a.1 Biological Background

4a.2 Traditional Optimization and Search Techniques

4a.3 The Cell

4a.4 Genetic Algorithm and Search Space

4a.5 Genetic Algorithm vs. Traditional Algorithms

4a.6 Basic Terminologies in Genetic Algorithm

4a.7 Simple GA

4a.8 Summary

4a.9 Review Questions

LEARNING OBJECTIVES

 Gives an introduction to natural evolution.

 Lists the basic operators (selection, crossover, mutation) and other

terminologies used in Genetic Algorithms (GAs).

 Discusses the need for schemata approach.

 Details the comparison of traditional algorithm with GA.

 Explains the operational flow of simple GA.

 Description is given of the various classifications of GA- Messy GA,

adaptive GA, hybrid GA, parallel GA and independent sampling GA.

 The variants of parallel GA (fine-grained parallel GA and coarse-

grained parallel GA) are included.

 Enhances the basic concepts involved in Holland classifier system.

 The various features and operational properties of genetic

programming are provided.

 The application areas of GA are also discussed.

Thales R. Darwin says that "Although the belief that an organ so perfect as

the eye could have been formed by natural selection is enough to stagger

any one; yet in the case of any organ, if we know of a long series of

170

Soft Computing Techniques gradations in complexity, each good for its possessor, then, under changing

conditions of life, there is no logical impossibility in the acquirement of any

conceivable degree of perfection through natural selection."

4A.0 INTRODUCTION

Thales Darwin has formulated the fundamental principle of natural

selection as the main evolutionary tool. He put forward his ideas without

the knowledge of basic hereditary principles. In 1865, Gregory Mendel

discovered these hereditary principles by the experiments he carried out on

peas. After Mendel's work genetics was developed. Morgan experimentally

found that chromosomes were the carriers of hereditary information and that

genes representing the hereditary factors were lined up on chromosomes.

Darwin's natural selection theory and natural genetics remained unlinked

until 1920s when it was proved that genetics and selection were in no way

contrasting each other. Combination of Darwin’s and Mendel’s ideas leads

to the modern evolutionary theory.

In The Origin of Species, Thales Darwin stated the theory of natural

evolution. Over many generations, biological organisms evolve according

to the principles of natural selection like "survival of the fittest" to reach

some remarkable forms of accomplishment. The perfect shape of the

albatross wing, the efficiency and the similarity between sharks and

dolphins and so on are good examples of what random evolution with

absence of intelligence can achieve. So, if it works so well in nature, it

should be interesting to simulate natural evolution and try to obtain a

method which may solve concrete search and optimization problems.

For a better understanding of this theory, it is important first to understand

the biological terminology used in evolutionary computation. It is discussed

in Section 1.2

In 1975, Holland developed this idea in Adaptation in Natural and Artificial

Systems. By describing how to apply the principles of natural evolution to

optimization problems, he laid down the first GA. Holland’s theory has

been further developed and now GAs stand up as powerful adaptive

methods to solve search and optimization problems. Today, GAs are used

to resolve complicated optimization problems, such as, organizing the time

table, scheduling job shop, playing games.

What are Genetic Algorithms?

GAs is adaptive heuristic search algorithms based on the evolutionary ideas

of natural selection and genetics. As such they represent an intelligent

exploitation of a random search used to solve optimization problems.

Although randomized, GAs are by no means random; instead they exploit

historical information to direct the search into the region of better

performance within the search space. The basic techniques of the GAs are

designed to simulate processes in natural systems necessary for evolution,

especially those that follow the principles first laid down by Thales Darwin,

"survival of the fittest," because in nature, competition among individuals

171

Fuzzy Rule Base and

Approximate Reasoning

for seamy resources results in the fittest individuals dominating over the

weaker ones.

Why Genetic Algorithms?

They are better than conventional algorithms in that they are more robust.

Unlike older AI systems, they do not break easily even if the inputs are

changed slightly or in the presence of reasonable noise. Also, in searching

a large state-space, multimodal state-spare or n-dimensional source, a GA

may offer significant benefits over more typical optimization techniques

(linear programming, heuristic, depth-first and praxis.)

4A.1 BIOLOGICAL BACKGROUND

The science that deals with the mechanisms responsible for similarities and

differences in a species is called Genetics. The word "genetics" is derived

from the Greek word "genesis" meaning "to grow" or "to become. “The

science of genetics helps us to differentiate between heredity and variations

and accounts for the resemblances and differences during the process of

evolution. The concepts of GAs are directly derived from natural evolution

and heredity. The terminologies involved in the biological background of

species are discussed in the following subsections.

4A.2 THE CELL

Every animal/human cell is a complex of many "small" factories that work

together. The centre of all this is the cell nucleus. The genetic information

is contained in the cell nucleus. Figure 9-1 shows anatomy of the animal

cell and cell nucleus.

Chromosomes

All the genetic information gets stored in the chromosomes. Each

chromosome is build of deoxyribonucleic acid (DNA). In humans,

chromosomes exist in pairs (23 pairs found). The chromosomes are divided

into several parts called genes. Genes code the properties of species, i.e., the

characteristics of an individual. The possibilities of combination of the

genes for one property are called alleles, and a gene can take different

alleles. For example, there is a gene for eye colour, and all the different

possible alleles are black, brown, blue and green (since no one has red or

violet eyes!). The set of all possible alleles present in a particular population

forms a gene pool. This gene pool can determine all the different possible

variations for the future generations. The size of the gene pool helps in

determining the diversity of the individuals in the population. The set of all

the genes of a specific species is called genome. Each and every gene has a

unique position on the genome called

172

Soft Computing Techniques

Fig9-1 anatomy of the animal cell and cell nucleus

Locus. In fact, most living organisms store their genome on several

chromosomes, but in the GAs, all the genes are usually stored on the same

chromosomes. Thus, chromosomes and genomes are synonyms with one

other in GAs. Figure 9-2 shows a model of chromosome.

4a.2.3 Genetics

For a particular individual, the entire combination of genes is called

genotype. The phenotype describes the physical aspect of decoding a

genotype to produce the phenotype. One interesting point of evolution is

that selection is always done on the phenotype whereas the reproduction

recombines genotype. Thus, morphogenesis plays a key role between

section and reproduction. In higher life forms, chromosomes contain two

sets of genes. These are known as diploids. In the case of conflicts between

two values of the same pair of genes, the dominant one will determine the

phenotype whereas the other one, called recessive, will still be present and

173

Fuzzy Rule Base and

Approximate Reasoning

Figure 9-2 Model of chromoson

Figure 9-3 Development of genotype to Phonotype

Can be passed onto the offspring. Diploid allows a wider diversity of alleles.

This provides a useful memory mechanism in changing or noisy

environment. However, most GAs concentrates on haploid chromosomes

because they are much simple to construct. In haploid representation, only

one set of each gene is stored, thus the process of determining which allele

should be dominant and which one should be recessive is avoided. Figure9-

3 shows the development of genotype to phenotype.

4a.2.4 Reproduction

Reproduction of species via genetic information is carried out by the

following;

1. Mitosis: In mitosis the same genetic information is copied to new

offspring. There is no exchange of information. This is a normal way

of growing of multicell structures, such as organs. Figure 9-4 shows

mitosis form of reproduction.

174

Soft Computing Techniques 2. Meiosis: Meiosis forms the basis of sexual reproduction. When

meiotic division takes place, two gametes appear in the process. When

reproduction occurs, these two gametes conjugate to a zygote which

becomes the new individual. Thus in this case, the genetic information

is shared between the parents in order to create new offspring. Figure

9-5 shows meiosis form of reproduction.

Figure 9-4 Mitosis form of reproduction

Figure 9-5 Meiosis form of reproduction

175

Fuzzy Rule Base and

Approximate Reasoning

Table 9·1 Comparison of natural evolution and genetic algorithm

terminology

Natural evolution Genetic algorithm

Chromosome String

Gene Feature or character

Allele Feature value

Locus String position

Genotype Structure or coded string

Phenotype Parameter set, a decoded

structure

4a.2.5 Natural Selection

The origin of species is based on "Preservation of favourable variations and

rejection of unfavourable variations.” The variation refers to the differences

shown by the individual of a species and also by offspring's of the same

parents. There are more individuals born than can survive, so there is a

continuous struggle for life. Individuals with an advantage have a greater

chance of survival, i.e., the survival of the fittest. For example, Giraffe with

long necks can have food from tall trees as well from the ground; on the

other hand, goat and deer having smaller neck can have food only from the

ground. As a result, natural selection plays a major role in this survival

process.

Table 4a.1 gives a list of different expressions, which are common in natural

evolution and genetic algorithm.

4A.3 TRADITIONAL OPTIMIZATION AND

SEARCH TECHNIQUES

The basic principle of optimization is the efficient allocation of scarce

resources. Optimization can be applied to any scientific or engineering

discipline. The aim of optimization is to find an algorithm which solves a

given class of problems. There exists no specific method which solves all

optimization problems. Consider a function,

f(x) : [x1,x"] [0, 1] ……….(1)

Where

f(x)= 1 if l|x - a|| <, > 0, -1 elsewhere ……….(2)

For the above function, f can be maintained by decreasing  or by making

the interval of [x1, x"] large. Thus, a difficult task can be made easier.

176

Soft Computing Techniques Therefore, one can solve optimization problems by combining human

creativity and the raw processing power of the computers.

The various conventional optimization and search techniques available are

discussed in the following subsections.

4a.3.1 Gradient Based Local Optimization Method

When the objective function is smooth and one needs efficient local

optimization, it is better to use gradient-based or Hessian-based

optimization methods. The performance and reliability of the different

gradient methods vary considerably. To discuss gradient-based local

optimization, let us assume a smooth objective function (i.e., continuous

first and second derivatives). The object function is denoted by

f(x) : KnR …….(3)

The first derivatives are contained in the gradient vector f(x)

f(x)ixl

f(x) = : ……(4)

f(x)ixn

The second derivatives of the object function are contained in the Hessian

matrix H(x):

2 2

2

1 1

2 2

2

1

() ()

() ()

() ()

n

T

n n

f x f x

x x x

H x f x

f x f x

x x x

  
 

   
    
 
  

    

……………..(5)

Few methods need only the gradient vector, but in the Newton's method we

need the Hessian matrix. The general pseudo code used in gradient methods

is as follows:

Select an initial guess value x1and set n = I.

Repeat

Solve the search direction Pn from Eq. (5) below.

Determine the next iteration point using Eq. (5) below:

xn+I= Xn+n P
n

Setn=n+l.

Until || Xn – Xn-1 || < ……(6)

These gradient methods search for minimum and not maximum. Several

different methods are obtained based on the details of the algorithm.

177

Fuzzy Rule Base and

Approximate Reasoning

The search direction Pn in conjugate gradient method is found as follows:

Pn= -f(Xn)+nP
n-1 ……………….(7)

In second method,

nP
n= -f(xn) …………..(8)

is used for finding search direction. The matrix n in Eq. (6) estimates the

Hessian and is updated in each iteration. When n is defined as the identity

matrix, the steepest descent method occurs. When the matrix Bn is the

Hessian H (xn), we get the Newton's method.

The length  n of the search step is computed using:

 n= argmin f(an + Pan) …..(9)

 n>0

The discussed is a one-dimensional optimization problem. The steepest

descent method provides poor performance. As a result, conjugate gradient

method can be used. If the second derivatives are easy to compute, then

Newton’s method may provide best results. The secant methods are faster

than conjugate gradient methods, but there occurs memory problems. Thus,

these local optimization methods can be combined with other methods to

get a good link between performance and reliability.

4a.3.2 Random Search

Random search is an extremely basic method. It only explodes the search

space by randomly selecting solutions and evaluates their fitness. This is

quite an unintelligent strategy, and is rarely used. Nevertheless, this method

is sometimes worth testing. It doesn't take much effort to implement it, and

an important number of evaluations can be done fairly quickly. For new

unresolved problems, it can be useful to compare the results of a more

advanced algorithm to those obtained just with a random search for the same

number of evaluations. Nasty surprises might well appear when comparing,

for example, GAs to random search. It’s good to remember that the

efficiency of GA is extremely dependent on consistent coding and relevant

reproduction operators. Building a GA which performs no more than a

random search happens more often than we can expect. If the reproduction

operators are just producing new random solutions without any concrete

links to the ones selected from the last generation, the GA is just doing

nothing else than a random search.

Random search does have a few interesting qualities. However good the

obtained solution may be, if it’s not optimal one, it can be always improved

by continuing the run of the random search algorithm for long enough. A

random search never gets stuck at any point such as a local optimum.

Furthermore, theoretically, if the search space is finite, random search is

guaranteed to reach the optimal solution. Unfortunately, this result is

178

Soft Computing Techniques completely useless. For most of problems we are interested in, exploiting

the whole search space takes lot of time.

4a.3.3 Stochastic Hill Climbing

Efficient methods exist for problems with well-behaved continuous fitness

functions. These methods use a kind of gradient to guide the direction of

search. Stochastic hill climbing is the simplest method of these kinds. Each

iteration consists in choosing randomly a solution in the neighbourhood of

the current solution and retains this new solution only if it improves the

fitness function. Stochastic hill climbing converges towards the optimal

solution if the fitness function of the problem is continuous and has only

one peak (unimodal function).

On functions with many peaks (multimodal functions), the algorithm is

likely to stop on the first peak it finds even if it is not the highest one. Once

a peak is reached, hill climbing cannot progress anymore, and that is

problematic when this point is a local optimum. Stochastic hill climbing

usually starts from a random select point. A simple idea to avoid getting

stuck on the first local optimal consists in repeating several hill climbs each

time starting from a different randomly chosen point. This method is

sometimes known as iterated hill climbing. By discovering different local

optimal points, chances to reach the global optimum increase. It works well

if there are not too many local optima in the search space. However, if the

fitness function is very "noisy" with many small peaks, stochastic hill

climbing is definitely nor a good method to use. Nevertheless, such methods

have the advantage of being easy to implement and giving fairly good

solutions very quickly.

4a.3.4 Simulated Annealing

Simulated annealing (SA) was originally inspired by formation of crystal in

solids during cooling. As discovered a long time ago by Iron Age

blacksmiths, the slower the cooling, the more perfect is the crystal formed.

By cooling, complex physical systems naturally converge rewards a stare

of minimal energy. The system moves randomly, but the probability to stay

in a particular configuration depends directly on the energy of the system

and on its temperature. This probability is formally given by Gibbs law:

in = eElkT …….(10)

where E stands for the energy, k is the Boltzmann constant and T is the

temperature. In the mid0l970s, Kirkpatrick by analogy of these physical

phenomena; laid out the first description of SA.

As in the stochastic hill climbing, the iteration of the SA consists of

randomly choosing a new solution in the neighbourhood of the actual

solution. If the fitness function of the new solution is better than the fitness

function of the current one, the new solution is accepted as the new current

solution. If the fitness function is not improved, the new solution is retained

with a probability:

179

Fuzzy Rule Base and

Approximate Reasoning

P = e -1f(y)-f(x)|lkT …….(11)

Where f(y) - f(x) is the difference of the fitness function between the new

and the old solution.

The SA behaves like a hill climbing method but with the possibility of going

downhill to avoid being trapped at local optima. When the temperature is

high, the probability of deteriorate the solution is quite important, and then

a lot of large moves are possible to explode the search space. The more the

temperature decreases, the more difficult it is to go downhill. The algorithm

thus tries to climb up from the current solution to reach a maximum. When

temperature is lower, there is an exploitation of the current solution. If the

temperature is too low, number deterioration is accepted, and the algorithm

behaves just like a stochastic hill climbing method. Usually, the SA stars

from a high temperature which decreases exponentially. The slower the

cooling, the better it is for finding good solutions. It even has been

demonstrated that with an infinitely slow cooling, the algorithm is almost

certain to find the global optimum. The only point is that infinitely slow

cooling consists in finding the appropriate temperature decrease rate to

obtain a good behaviour of the algorithm.

SA by mixing exploitation features such as the random search and

exploitation features like hill climbing usually gives quite good results. SA

is a serious competitor of GAs. It is worth trying to compare the results

obtained by each. Both are derived from analogy with natural system

evolution and both deal with the same kind of optimization problem. GAs

differ from SA in two main features which makes them more efficient. First,

GAs use a population-based selection whereas SA only deals with one

individual at each iteration. Hence Gas are expected to cover a much larger

landscape of the search space at each iteration; however, SA iterations are

much more simple, and so, often much faster. The grocer advantage of GA

is its exceptional ability to be parallelized, whereas SA does not gain much

of this. It is mainly due to the population scheme use by GA. Second, Gas

use recombination operators, and are able to mix good characteristics from

different solutions. The exploitation made by recombination operators are

supposedly considered helpful to find optimal salmons of the problem. On

the other hand, SA is still very simple to implement and gives good this.

SAs have proved their efficiency over a large spectrum of difficult

problems, like the optimal layout or primed circuit board or the famous

travelling salesman problem.

4a.3.5 Symbolic Artificial Intelligence

Most symbolic artificial intelligence (AI) systems are very static. Most of

them can usually only solve one given specific problem, since their

architecture was designed for whatever that specific problem was in the first

place. Thus, if the given problem were somehow to be changed, these

systems could have a hard time adapting to them; since the algorithm that

would originally arrive co the solution may be either incorrect or less

efficient. GAs were created to combat these problems. They are basically

algorithms based on natural biological evolution. The architecture of

180

Soft Computing Techniques systems that implement GAs is more able to adapt to a wide range of

problems. A GA functions by generating a large set of possible solutions to

a given problem. It then evaluates each of chose solutions, and decides on a

"fitness level" (you may recall the phrase: "survival of the fittest") for each

solution set. These solutions then breed new Solutions. The parent solutions

that were more "fit” are more likely m reproduce, while those that were less

"fit" are more unlikely to do so. In essence, solutions are evolved over time.

This way we evolve our search space scope to a point where you can find

the solution. GAs can be incredibly efficient if programmed correctly.

4A.4 GENETIC ALGORITHM AND SEARCH SPACE

Evolutionary computing was introduced in the 1960s by I. Rothenberg in

the work "Evolution Strategies. “This idea was then developed by other

researches. GAs were invented by John Holland and developed this idea in

his book "Adaptation in Natural and Artificial Systems" in the year 1975.

Holland proposed GA as a heuristic method based on "survival of the

finest." GA was discovered as a useful tool for search and optimization

problems.

4a.4.1 Search Space

Most often one is looking for the best solution in a specific set of solutions.

The space of all feasible solutions (the set of solutions among which the

desired solution resides) is called search space (also state space). Each and

every point in the search space represents one possible solution. Therefore,

each possible solution can be “marked" by its fitness value, depending on

the problem definition. With GA one looks for the best solution among a

number of possible solutions- represented by one point in the search space;

GAs are used to search the search space for the best solution, e.g., minimum.

The difficulties in this case are the local minima and the starting point of

the search. Figure 4a.6 gives an example of search space.

Figure 4a.6 : An example of search space.

4a.4.2 Genetic Algorithms World

GA raises again a couple of important features. First, it is a stochastic

algorithm; randomness has an essential role in GAs. Both selection and

181

Fuzzy Rule Base and

Approximate Reasoning

reproduction need random procedures. A second very important point is that

GAs always considers a population of solutions. Keeping in memory more

than a single solution at each iteration offers a lot of advantages. The

algorithm can recombine different solutions to the better ones and so it can

use the benefits of assortment. A population-based algorithm is also very

amenable for parallelization. The robustness of the algorithm should also be

mentioned as something essential for the algorithm's success. To business

refers to the ability to perform consistently well on a broad range of problem

types. There is no particular requirement on the problem before using GAs,

so it can be applied to resolve any problem. All these features make GA a

really powerful optimization tool.

With the success of GAs, other algorithms making use of the same principle

of natural evolution have also emerged. Evolution strategy, genetic

programming are some algorithms similar to these algorithms. The

classification is not always clear between the different algorithms, thus to

avoid any confusion, they areal gathered in what is called Evo1ationary

Algorithms.

The analogy with nature gives these algorithms something exciting and

enjoyable. Their ability to deal successfully with a wide range of problem

area, including those which are difficult for other methods to solve makes

them quite powerful. However today, GAs is suffering from too much

readiness. GA is a new field, and parts of the theory still have to be properly

established. We can find almost as many opinions on GAs as there are

researchers in this field. In this document, we will generally find the most

current point of view. But things evolve quickly in GAs too, and some

comments might not be very accurate in few years.

It is also important to mention GA limits in this introduction. Like most

stochastic methods, GAs is not guaranteed to find the global optimum

salmon to a problem; they are satisfied with finding "acceptably good"

solutions to the problem. GAs are extremely general too, and so specific

techniques for solving particular problems are likely to out-perform GAs in

both speed and accuracy of the final result. GAs are something worth trying

when everything else fails or when we know absolutely nothing of the

search space. Nevertheless, even when such specialized techniques exist, it

is often interesting to hybridize them with a GA in order to possibly gain

some improvements. It is important always to keep an objective point of

view; do not consider that GAs is a panacea for resolving all optimization

problems. This warning is for those who might have the temptation to

resolve anything with GA. The proverb says "If we have a hammer, all the

problems look like a nails.'' GAs do work and give excellent results if they

are applied properly on appropriate problems.

4a.4.3 Evolution and Optimization

To depict the importance of evolution and optimization process, consider a

species Basilosaurus that originated 45 million years ago. The Basilosaurus

was a prototype of a whale (Figure 9-7). It was about 9 m long and

182

Soft Computing Techniques

Figure 9-7Basilosaurus.

Figure 9·8 Tutsiops flipper.

Tutsiops flipper weighed approximately 5 tons. It still had a quasi-

independent head and posterior paws, and moved using undulatory

movements and hunted small preys. Its anterior members were reduced to

small flippers with an elbow inoculation; Movements in such a viscous

element (water) are very hard and require big efforts. The anterior members

of basilosaurus were not really adapted to swimming. To adapt them, a

double phenomenon must occur the shortening of the "arm" with the locking

of the elbow articulation and the extension of the fingers constitute the base

structure of the flipper (refer Figure 9-8).

The image shows that two fingers of the common dolphin are hypertrophied

to the detriment of the rest of the member. The basilosaurus was a hunter;

it had to be fast and precise. Through time, subjects appeared with longer

fingers and short arms. They could move faster and more precisely than

before, and therefore, live longer and have many descendants.

Meanwhile, other improvements occurred concerning the general

aerodynamic like the integration of the head to the body, improvement of

the profile, strengthening of the caudal fin, and so on, finally producing a

subject perfectly adapted to the constraints of an aqueous environment. This

process of adaptation and this morphological optimization is so perfect that

nowadays the similarity between a shark, a dolphin or submarine is striking.

The first is a cartilaginous fish (Chondrichryen) that originated in the

Devonian period (-400 million years), long before the apparition of the first

mammal. Darwinian mechanism hence generated an optimization process-

hydrodynamic optimization- for fishes and others marine animals –auto

dynamic optimization for pterodactyls, birds and bars. This observation is

the basis of GAs.

183

Fuzzy Rule Base and

Approximate Reasoning
4a.4.4 Evolution and Genetic Algorithms

The basic idea is as follows: the genetic pool of a given population

polemically contains the solution, or a better solution, to a given adaptive

problem. This solution is not “active” because the genetic combination on

which it relies split among several subjects. Only the association of different

genomes can lead to the solution. Simplistically speaking, we could by

example consider that the shortening of the paw and the extension of the

fingers of our basilosaurus are controlled by two "genes." No subject has

such a genome, but during reproduction and crossover, new genetic

combination occur and, finally, a subject can inherit a "good gene “from

both parents his paw is now a flipper.

Holland method is especially effective because he not only considered the

role of mutation (mutations improve very seldom the algorithms), but also

utilized genetic recombination (crossover): these recombination, the

crossover of partial solutions, greatly improve the capability of the

algorithm to approach, and eventually find, the optimum.

Recombination of sexual reproduction is a key operator for natural

evolution. Technically, it takes two genotypes and it produces a new

genotype by mixing the gene found in the originals. In biology, the most

common form of recombination is crossover: two chromosomes are cur at

one point and the halves are spliced to create new chromosomes. The effect

of recombination is very important because it allows characteristics from

two different parents to be assorted. If the father and the mother possess

different good qualities, we would expect that all the good qualities will be

passed to the child. Thus the offspring, just by combining all the good

features from its parents, may surpass its ancestors. Many people believe

that this mixing of genetic material via sexual reproduction is one of the

most powerful features of GAs. As a quick parenthesis about sexual

reproduction, GA representation usually does not differentiate male and

female individuals (without any perversity). As in many livings species

(e.g., snails) any individual can be either a male or a female. Infact, for

almost all recombination operators, mother and father are interchangeable.

Mutation is the other way to get new genomes. Mutation consists in

changing the value of genes. In natural evolution, mutation mostly

engenders non-viable genomes. Actually mutation is not a very frequent

operator in natural evolution. Nevertheless, in optimization, a few random

changes can be a good way of exploiting the search space quickly.

Through those low-level notions of genetic, we have seen how living beings

store their characteristic information and how this information can be

passed into their offspring. It very basic but it is more than enough to

understand the GA theory.

Darwin was totally unaware of the biochemical basics of genetics. Now we

know how the genetic inheritable information is coded in DNA, RNA, and

proteins and that the coding principles are actually digital, much resembling

the information storage in computers. Information processing is in many

ways totally different, however. The magnificent phenomenon called the

184

Soft Computing Techniques evolution of species can also give some insight into information processing

methods and optimization, in particular. According to Darwinism, inherited

variation is characterized by the following properties:

1. Variation must be copying because selection does not create directly

anything, but presupposes a large population to work on.

2. Variation must be small-scaled in practice. Species do not appear

suddenly.

3. Variation is undirected. This is also known as the blind watch maker

paradigm.

While the natural sciences approach to evolution has for over a century been

to analyse and study different aspects of evolution to find the underlying

principles, the engineering sciences are happy to apply evolutionary

principles, that have been heavily tested over billions of years, to arrack the

most complex technical problems, including protein folding.

4A.5 GENETIC ALGORITHM VS. TRADITIONAL

ALGORITHMS

The principle of Gas is simple: emirate genetics and natural selection by a

computer program: The parameters of the problem are coded most naturally

as a DNA- like linear data structure, a vector or a suing. Sometimes, when

the problem is naturally two or three dimensional, corresponding array

structures are used.

A set, called population, of these problem-dependent parameter value

vectors is processed by GA. To start, there is usually a totally random

population, the values of different parameters generated by a random

number generator. Typical population size is from few dozens to thousands.

To do optimization we need a cost function or fitness function as it is usually

called when Gas are used. By a fitness function we can select the best

solution candidates from the population and delete the not so good

specimens.

The nice thing when comparing GAs to other optimization methods is that

the fitness function can be nearly anything that can be evaluated by a

computer or even something that cannot In the latter case it might be a

human judgment that cannot be seated as a crisp program, like in the case

of eye witness, where a human being selects from the alternatives generated

by GA. So, there are not any definite mathematical restrictions on the

properties of the fitness fraction. It may be discrete, multimodal, etc.

The main criteria used to classify optimization algorithms are as follows:

continuous/discrete, constrained/unconstrained and sequential/parallel.

There is a clear difference between discrete and continuous problems.

Therefore, it is instructive to notice that continuous methods are sometimes

used to solve inherently discrete problems and vice versa. Parallel

185

Fuzzy Rule Base and

Approximate Reasoning

algorithms are usually used to speed up processing. There are, however,

some cases in which it is more efficient to run several processors in parallel

rather than sequentially. These cases include among others those in which

there is high probability of each individual search run to get stuck into a

local extreme.

Irrespective of the above classification, optimization methods can be further

classified into deterministic and non-deterministic methods. In addition,

optimization algorithms can be classified as local or global. Interns of

energy and entropy local search correspond to entropy while global

optimization depends essentially on the fitness, i.e., energy landscape.

GA differs from conventional optimization techniques in following ways:

1. GAs operate with coded versions of the problem parameters rather

than parameters themselves, i.e., GA works with the coding of

solution sec and nor with the solution itself.

2. Almost all conventional optimization techniques search from a single

point, but GAs always operate on a whole population of points

(strings), i.e., GA uses population of solutions rather than a single

solution for searching. This plays a major role to the robustness of

GAs. It improves the chance of reaching the global optimum and also

helps in avoiding local stationary point.

3. GA uses fitness fiction for evaluation rather than derivatives. As a

result, they can be applied to any kind of continuous or discrete

optimization problem. The key point to be performed here is to

identify and specify a meaningful decoding function.

4. GAs use probabilistic transition operates while conventional methods

for continuous optimization apply deterministic transition operates,

i.e., Gas does not use deterministic rules.

These are the major differences that exist between GA and conventional

optimization techniques.

4A.6 BASIC TERMINOLOGIES IN GENETIC

ALGORITHM

The two distinct elements in the GA are individuals and populations. An

individual is a single solution while the population is the set of individuals

currently involved in the search process.

4a.6.1 Individuals

An individual is a single solution. Individual groups together two forms of

solutions as given below:

186

Soft Computing Techniques I. The chromosome which is the raw "genetic" information (genotype)

that the GA deals.

2. The phenotype which is the expressive of the chromosome in the

terms of the model.

A chromosome is subdivided into genes. A gene is the GA's representation

of a single factor for a control factor. Each factor in the solution set

corresponds to a gene in the chromosome. Figure 9-9 shows the

representation of a genotype.

A chromosome should in some way contain information about the solution

that it represents. The morphogenesis function associates each genotype

with its phenotype. It simply means that each chromosome must define one

unique solution, but it does not mean that each solution is encoded by

exactly one chromosome. Indeed, the morphogenesis function is not

necessarily objective, and it is even sometimes impossible (especially with

binary representation). Nevertheless, the morphogenesis function should at

least be subjective. Indeed;

Solution Set Phenotype

Factor 1

Factor 2 Factor 3

… Factor N

Figure 9·9 Representation of genotype and phenotype.

101010111010110

Figure 9·10 Representation of a chromosome.

all the candidate solutions of the problem must correspond to at least one

possible chromosome, to be sure that the whole search space can be

exploited. When the morphogenesis function that associates each

chromosome to one solution is not injective. i.e., different chromosomes

can encode the same solution, the representation is said to be degenerated.

A slight degeneracy is not so worrying, even if the space where the

algorithm is looking for the optimal solution is inevitably enlarged. Bur a

too important degeneracy could be a more serious problem. It can badly

affect the behaviour of the GA, mostly because if several chromosomes can

represent the same phenotype, the meaning of each gene will obviously not

Gene 1 Gene 2 Gene 3 … Gene N

Chromosome Genotype

187

Fuzzy Rule Base and

Approximate Reasoning

correspond to a specif1c characteristic of the solution. It may add some kind

of confusion in the search. Chromosomes encoded by bit strings are given

in Figure 9-10.

4a.6.2 Genes

Genes are the basic "instructions" for building a GA. A chromosome is a

sequence of genes. Genes may describe possible solution to a problem,

without actually being the solution. A gene is a bit string of arbitrary

lengths. The bit string is a binary representation of number of intervals from

a lower bound. A gene is the GNs representation of a single factor value for

a control factor, where control factor must have an upper bound and a lower

bound. This range can be divided into the number of intervals that can be

expressed by the gene's bit string. A bit string of length "n" can represent

(2n1 - 1) intervals. The size of the interval would be (range)/ (2n- 1).

The structure of each gene is defined in a record of phenotyping parameters.

The phenotype parameters are instructions for mapping between genotype

and phenotype. It can also be said as encoding a solution set into a

chromosome and decoding a chromosome to a solution set. The mapping

between genotype and phenotype is necessary to convert solution sets from

the model into a form that the GA can work with, and for converting new

individuals from the GA into a form that the model can evaluate. In a

chromosome, the genes are represented as shown in Figure 9-11.

4a.6.3 Fitness

The fitness of an individual in a GA is the value of an objective function for

its phenotype. For calculating fitness, the chromosome has to be first

decoded and the objective function has to be evaluated. The fitness

1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1

 Gene 1 Gene2 Gene 3 Gene4

Figure 9·11 Representation of a gene.

not only indicates how good the solution is, but also corresponds to how

does the chromosome is to the optimal one.

In the case of multicriterion optimization, the fitness function is definitely

more difficult to determine. In multicriterion optimization problems, there

is often a dilemma as how to determine if one solution is better than another.

What should be done if a solution is better for one criterion but worse for

another? But here, the trouble comes more from the definition of a "better"

salmon rather than from how to implement a GA to resolve it. If sometimes

a fitness function obtained by a simple combination of the different criteria

can give good result, it supposes that criterions can be combined in a

consistent way. But, for more advanced problems, it may be useful to

consider something like Pareto optimally or other ideas from multicriterian

optimization theory.

188

Soft Computing Techniques 4a.6.4 Populations

A population is a collection of individuals. A population consists of a

number of individuals being reseed, the phenotype parameters defining the

individuals and some information about the search space. The two

important aspects of population used in GAs are:

1. The initial population generation.

2. The population size.

For each and every problem, the population size will depend on the

complexity of the problem. It is often a random initialization of population.

In the case of a binary coded chromosome this means chat each bit is

initialized to a random 0 or 1. However, there may be instances where the

initialization of population is carried out with some known good solutions.

Ideally, the first population should have a gene pool as large as possible in

order to be able to explode the whole search space. All the different possible

alleles of each should be present in the population. To achieve this, the

initial population is, in most of the cases, chosen randomly. Nevertheless,

sometimes a kind of heuristic can be used to seed ·the initial population.

Thus, the mean fitness of the population is already high and it may help the

GA to find good solutions faster. Bur for doing this one should be sure that

the gene pool is spillage enough. Otherwise, if the population badly lacks

diversity, the algorithm will just explode a small part of the search space

and never find global optimal solutions.

The size of the population raises few problems too. The larger the

population is, the easier it is m explode the search space. However, it has

been established that the time required by a GAm converge is O (n log n)

function evaluations where n is the population size. We say that the

population has converged when all the individuals are very much alike and

further improvement may only be possible by mutation. Goldberg has also

shown that GA efficiency to reach global optimum instead of local ones is

largely determined by the size of the population. To sum up, a large

population is quite useful. However, it requires much more computational

cost memory and time. Practically, a population size of around 100

individuals is quite frequent, but anyway this size can be changed according

to the time and the memory disposed on the machine compared to the

quality of the result to be reached.

Population

Chromosome 1 1 1 1 0 0 0 1 0

Chromosome 2 2 0 1 1 1 1 0 1 1

Chromosome 3 1 0 1 0 1 0 1 0

Chromosome 4 1 1 0 0 1 1 0 0

Figure 9-12 Population.

189

Fuzzy Rule Base and

Approximate Reasoning

Population being combination of various chromosomes is represented as in

Figure 9-12. Thus the population in Figure 9-12 consists of four

chromosomes.

4A.7 SIMPLE GA

GA handles a population of possible solutions. Each solution is represented

through a chromosome, which is just an abstract representation. Coding all

the possible solutions into a chromosome is the first part, but certainly not

the most straightforward one of a GA. A set of reproduction operators has

to be determined, coo. Reproduction operators are applied directly on the

chromosomes, and are used to perform mutations and recombination over

solutions of the problem. Appropriate representation and reproduction

operators are the determining factors, as the behaviour of the GA is

extremely dependent on it. Frequency, it can be extremely difficult to find

a representation that respects the structure of the search space and

reproduction operators that are coherent and relevant according to the

properties of the problems.

The simple form of GA is given by the following.

1. Scan with a randomly generated population.

2. Calculate the fitness of each chromosome in the population.

3. Repeat the following steps until n offspring’s have been created:

* Select a pair of parent chromosomes from the current

population.

* With probability Pc crossover the pair at a randomly chosen

point co forms two offspring’s.

* Mutate le two offspring’s at each locus with probability Pm.

4. Replace the current population with the new population.

5. Go to seep 2.

Now we discuss each iteration of this process.

Generation: Selection: is supposed to be able to compare each individual in

the population. Selection is done by using a fitness function. Each

chromosome has an associated value corresponding to the fitness of the

solution it represents. The fitness should correspond to an evaluation of how

good the candidate solution is. The optimal solution is the one which

maximizes the fitness function. GAs deal with the problems that maximize

the fitness function. Bur, if the problem consists of minimizing a cost

function, the adaptation is quite easy. Either the cost function can be

transformed into a fitness function, for example by inverting it; or the

selection can be adapted in such way that they consider individuals with low

evaluation functions as better. Once the reproduction and the fitness

function have been properly defined, a GA is evolved according to the same

basic structure. It starts by generating an initial population of chromosomes.

This first population must offer a wide diversity of genetic materials. The

gene pool should be as large as possible so that any solution of the search

190

Soft Computing Techniques space can be engendered. Generally, the initial population is generated

randomly. Then, the GA loops over an iteration process to make the

population evolve. Each iteration consists of the following steps:

1. Selection: The first step consists in selecting individuals for

reproduction. This selection is done randomly with a probability

depending on the relative fitness of the individuals so that best ones

are often chosen for reproduction rather than the poor ones.

2. Reproduction: In the second step, offspring are bred by selected

individuals. For generating new Chromosomes, the algorithm can use

both recombination and mutation.

3. Evaluation: Then the fitness of the new chromosomes is evaluated.

4. Replacement: During the last step, individuals from the old

population are killed and replaced by the new ones.

The algorithm is stopped when the population converges toward the optimal

solution.

BEGIN/* genetic algorithm"/

Generate initial population;

Compare fitness of each individual;

WHILE NOT finished DO LOOP

BEGIN

Select individuals from old generations

For mating;

Create offspring by applying

Recombination and/or mutation

The selected individuals;

Compute fitness of the new individuals;

Kill old individuals w make room for

New chromosomes and insert

Offspring in the new generalization;

IF Population has converged

THEN finishes: =TRUE;

END

END

Genetic algorithms are not too hard to program or understand because they

are biological based. An example of a flowchart of a GA is shown in Figure

9-13.

191

Fuzzy Rule Base and

Approximate Reasoning

Figure 9·13 Flowchart for genetic algorithm.

4A.8 SUMMARY

Genetic algorithms are original systems based on the supposed functioning

of the living. The method is very different & the classical optimization

algorithms as it:

1. Uses the encoding of the parameters, not the parameters themselves.

2. Works on a population of points, not a unique one.

3. Uses the only values of the function to optimize, not their derived

function or other auxiliary knowledge.

4. Uses probabilistic transition function and not determinist ones.

lt is important to understand that the functioning of such an algorithm does

not guarantee success. The problem is in a stochastic system and a genetic

pool may be too far from the solution, or for example, a too fast convergence

may hair the process of evolution. These algorithms are, nevertheless,

extremely efficient, and are used in fields as diverse as stock exchange,

production scheduling or programming of assembly robots in the

automotive industry.

GAs can even be faster in finding global maxima that conventional methods,

in particular when derivatives provide misleading information. It should be

noted that in most cases where conventional methods can be applied, GAs

are much slower because they do not take auxiliary information such as

derivatives into account. In these optimization problems, there is no need to

192

Soft Computing Techniques apply a GA, which gives less accurate solutions after much longer

computation time. The enormous potential of GAs lies elsewhere- in

optimization of non-differentiable or even discontinuous functions, discrete

optimization, and program in junction.

lt has been claimed that via the operations of selection, crossover and

mutation, the GA will converge over successive generations towards the

global (or near global) optimum. This simple operation should produce a

fast, useful and to bust technique largely because of the face that GAs

combine direction and chance in the search in an effective and efficient

manner. Since population implicity contain much more information than

simply the individual fitness stores, GAs combine the good information

hidden in a solution with good information from another solution to produce

new solutions with good information inherited from both parents,

inevitable}' (hopefully) leading towards optimality.

In this chapter we have also discussed the various classifications of GAs.

The class of parallel GAs is very complex, and its behavior is affected by

many parameters. It seems that the only way to achieve a greater

understanding of parallel GAs is to study individual facets independent!}',

and we have seen that some of the most influential publications in parallel

GAs concentrate on only one inspect (migration rates, communication

topology or deme size) either ignoring or making simplifying assumptions

on the others. Also the hybrid GA, adaptive GA, independent sampling GA

and messy GA has been included with the necessary information.

Genetic programming has been used to model and control a multitude of

processes and to govern their behavior according to fitness based

automatically generated algorithm. Implementation of generic

programming will benefit in the coming year from new approaches which

include research from developmental biology. Also, it will be necessary to

learn to handle the redundancy forming pressures in the evolution of to the.

Application of genetic programming will continue to broaden. Many

applications focus on controlling behaviour of real or virtual agents. In this

role, genetic programming may contribute considerably to the growing field

of social and behavioural simulations. A brief discussion on Holland

classifier system is also included in this chapter.

4A.9 REVIEW QUESTIONS

1. State Charles Darwin's theory of evulsions.

2. What is meant by genetic algorithm?

3. Compare and contrast traditional algorithm and genetic algorithm.

4. Stare the importance of genetic algorithm.

5. Explain in detail about the various operators involved in genetic

algorithm.

6. What the various types of crossover and mutation techniques?

7. With a neat flowchart, explain the operation of a simple genetic

algorithm.

193

Fuzzy Rule Base and

Approximate Reasoning

8. State the general genetic algorithm.

9. Discuss in detail about the various types of genetic algorithm in derail.

10. State schema theorem.

11. Write than note on Holland classifier systems.

12. Differentiate between messy GA and parallel GA

13. What is the importance of hybrid GAs?

14. Describe the concepts involved in real-coded genetic algorithm.

15. What is genetic programming?

16. Compare genetic algorithm and genetic programming.

17. List the characteristics of genetic programming.

18. With a neat flowchart, explain the operation of genetic programming.

19. How are data represented in genetic programming?

20. Mention the application of genetic algorithm.

Exercise Problems

1. Determine the maximum of function x x x5 (0.007x+ 2) using genetic

algorithm by wiring a program.

2. Determine the maximum of function exp(-3x) + sin(6 r x) using

genetic algorithm. Given range = [0.004 0.7]; bits = 6; population =

12; generations = 36; mutation = 0.005; mutation = 0.3.

3. Optimize the logarithmic function using a genetic algorithm by

writing a program. Genetic Algorithm

4. Solve the logical AND function using genetic algorithm by writing a

program.

5. Solve the XNOR problem using genetic algorithm by writing a

program.

6. Determine the maximum of function exp(5x) + sin (7rr x) using

genetic algorithm. Given range = [0.002 0.6]; bits = 3; population ==

14; generations = 36; mutation = 0.006; matenum = 0.3.

REFERENCES

https://link.springer.com/article/10.1007/BF00175354

https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial

.pdf

https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-

goodman.pdf

https://www.researchgate.net/publication/228569652_Genetic_Algorithm_

A_Tutorial_Review

S.Rajasekaran, G. A. Vijayalakshami , Neural Networks, Fuzzy Logic and

Genetic Algorithms: Synthesis & Applications, Prentice Hall of India, 2004



https://link.springer.com/article/10.1007/BF00175354
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review

195

Genetic Algorithm

4b
GENETIC ALGORITHM

Unit Structure

4b.0 Introduction

4b.1 General Genetic Algorithm

4b.2 Operators in Genetic Algorithm

4b.3 Stopping Condition for Genetic Algorithm Flow

4b.4 Constraints in Genetic Algorithm

4b.5 Problem Solving Using Genetic Algorithm

4b.6 The Schema Theorem

4b.7 Classification of Genetic Algorithm

4b.8 Holland Classifier Systems

4b.9 Genetic Programming

4b.10 Advantages and Limitations of Genetic Algorithm

4b.11 Applications of Genetic Algorithm

4b.12 Summary

4b.13 Review Questions

4b.14 REFERENCES

LEARNING OBJECTIVES

 Gives an introduction to natural evolution.

 Lists the basic operators (selection, crossover, mutation) and other

terminologies used in Genetic Algorithms (GAs).

 Discusses the need for schemata approach.

 Details the comparison of traditional algorithm with GA.

 Explains the operational flow of simple GA.

 Description is given of the various classifications of GA- Messy GA,

adaptive GA, hybrid GA, parallel GA and independent sampling GA.

 The variants of parallel GA (fine-grained parallel GA and coarse-

grained parallel GA) are included.

 Enhances the basic concepts involved in Holland classifier system.

 The various features and operational properties of genetic

programming are provided.

 The application areas of GA are also discussed.

196

Soft Computing Techniques Thales R. Darwin says that "Although the belief that an organ so perfect as

the eye could have been formed by natural selection is enough to stagger

any one; yet in the case of any organ, if we know of a long series of

gradations in complexity, each good for its possessor, then, under changing

conditions of life, there is no logical impossibility in the acquirement of any

conceivable degree of perfection through natural selection."

4B.0 INTRODUCTION

Thales Darwin has formulated the fundamental principle of natural

selection as the main evolutionary tool. He put forward his ideas without

the knowledge of basic hereditary principles. In 1865, Gregory Mendel

discovered these hereditary principles by the experiments he carried out on

peas. After Mendel's work genetics was developed. Morgan experimentally

found that chromosomes were the carriers of hereditary information and that

genes representing the hereditary factors were lined up on chromosomes.

Darwin's natural selection theory and natural genetics remained unlinked

until 1920s when it was proved that genetics and selection were in no way

contrasting each other. Combination of Darwin’s and Mendel’s ideas leads

to the modern evolutionary theory.

In The Origin of Species, Thales Darwin stated the theory of natural

evolution. Over many generations, biological organisms evolve according

to the principles of natural selection like "survival of the fittest" to reach

some remarkable forms of accomplishment. The perfect shape of the

albatross wing, the efficiency and the similarity between sharks and

dolphins and so on are good examples of what random evolution with

absence of intelligence can achieve. So, if it works so well in nature, it

should be interesting to simulate natural evolution and try to obtain a

method which may solve concrete search and optimization problems.

For a better understanding of this theory, it is important first to understand

the biological terminology used in evolutionary computation. It is discussed

in Section 1.2

In 1975, Holland developed this idea in Adaptation in Natural and Artificial

Systems. By describing how to apply the principles of natural evolution to

optimization problems, he laid down the first GA. Holland’s theory has

been further developed and now GAs stand up as powerful adaptive

methods to solve search and optimization problems. Today, GAs are used

to resolve complicated optimization problems, such as, organizing the time

table, scheduling job shop, playing games.

What are Genetic Algorithms?

GAs is adaptive heuristic search algorithms based on the evolutionary ideas

of natural selection and genetics. As such they represent an intelligent

exploitation of a random search used to solve optimization problems.

Although randomized, GAs are by no means random; instead they exploit

historical information to direct the search into the region of better

performance within the search space. The basic techniques of the GAs are

197

Genetic Algorithm designed to simulate processes in natural systems necessary for evolution,

especially those that follow the principles first laid down by Thales Darwin,

"survival of the fittest," because in nature, competition among individuals

for seamy resources results in the fittest individuals dominating over the

weaker ones.

Why Genetic Algorithms?

They are better than conventional algorithms in that they are more robust.

Unlike older AI systems, they do not break easily even if the inputs are

changed slightly or in the presence of reasonable noise. Also, in searching

a large state-space, multimodal state-spare or n-dimensional source, a GA

may offer significant benefits over more typical optimization techniques

(linear programming, heuristic, depth-first and praxis.)

4B.1 GENERAL GENETIC ALGORITHM

The general GA is as follows:

Step 1: Create a random initial state: An initial population is created from

a random selection of solutions J (which are analogous to chromosomes).

This is unlike the situation for symbolic AI systems, where the initial State

in a problem is already given.

Step 2: Evaluate fitness: A value for fitness is assigned to each solution

(chromosome) depending on how close it actually is w solving the problem

(thus arriving to the answer of the desired problem).

(These "solutions" are not to be confused with "answers" to the problem;

think of them as possible

Characteristics that the system would employ in order to reach the answer.)

Step 3 Reproduce (and children mutate): Those chromosomes with a higher

fitness value are more likely to reproduce offspring (which can mutate after

reproduction). The offspring is a product of the father and mother, whose

composition consists of a combination of genes from the row (this process

is known as "crossing over").

Step 4: Nat generation: If the new generation contains a solution that

produces an output that is dose enough or equal to the desired answer then

the problem has been solved. If this is not the case, then the new generation

will go through the same process as their parents did. This will continue L

until a solution is reached.

Table 4b.1 : Fitness value for corresponding

Chromosomes (Example 4a.1)

Chromosome Fitness

A : 00000110 2

B : 11101110 6

C : 00100000 1

D : 00110100 3

198

Soft Computing Techniques Table 4b.2: Fitness value for corresponding

Chromosomes

Chromosome Fitness

A : 01101110 5

B : 00100000 1

C : 10110000 3

D : 01101110 5

Figure 4b.1 Roulette wheel sampling for proportionate selection

Example 4b.1: Consider 8-bitchromosomes with the following properties:

1. Fitness function f(x) = number of 1 bits in chromosome;

2. Population size N = 4;

3. Crossover probability Pc= 0.7;

4. Mutation probability Pm = 0.001;

Average fitness of population= 12/4 = 3.0.

1. If B and C are selected, crossover is not performed.

2. If B is mutated, then

B : 11101110 B' : 01101110

3. If B and D are selected, crossover is performed.

B : 11101110 E : 10110100 D : 00110100 F : 01101110

4. If E is mutated, then

E : 10110100 E' : 10110000

Best-fit string from previous population is lost, but the average fitness of

population is as given below:

Average fitness of population 14/4 = 3.5

Tables 4b-2 and 4b-3 show the fitness value for the corresponding

chromosomes and Figure 9-14 shows the Roulette wheel selection for the

fitness proportionate selection.

199

Genetic Algorithm 4B.2 OPERATORS IN GENETIC ALGORITHM

The basic operators that are to be discussed in this section include:

encoding, selection, recombination and mutation operators. The operators

with their various types are explained with necessary examples.

4b.2.1 Encoding

Encoding is a process of representing individual genes. The process can be

performed using bits, numbers, trees, arrays, lists or any other objects. The

encoding depends mainly on solving the problem. For example, one can

encode directly real or integer numbers.

4b.2.1.1 Binary Encoding

The most common way of encoding is a binary string, which would be

represented as in Figure 4b-2.

Each chromosome encodes a binary (bit) suing. Each bit in the suing can

represent some characteristics of the solution. Every bit string therefore is a

solution but not necessarily the best solution. Another possibility is that the

whole string can represent a number. The way bit strings can code differs

from problem to problem.

Binary encoding gives many possible chromosomes with a smaller number

of alleles. On the other hand, this encoding is not natural for many problems

and sometimes corrections must be made after genetic operation is

completed. Binary coded strings with Is and Os are mostly used. The length

of the string depends on the accuracy. In such coding

1. Integers are represented exactly.

2. Finite number of real numbers can be represented.

3. Number of real numbers represented increases with string length.

4b.2.1.2 Octal Encoding

This encoding uses string made up of octal numbers (0-7) (see Figure 9-16).

Chromosome 1 1 1 0 1 0 0 0 1 1 0 1 0

Chromosome 2 I 0 1 1 1 1 1 1 1 1 1 0 0

Figure 4b.2 Binary encoding.

Chromosome 1 03467216

Chromosome 2 9723314

Figure 4b.3 Octal encoding

Chromosome1 9CE7

Chromosome 2 3DBA

Figure 4b.4 Hexadecimal encoding.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosomes 8 5 6 7 2 3 1 4 9

Figure 4b.5 Permutation encoding.

200

Soft Computing Techniques 4b.2.1.3 Hexadecimal Encoding

This encoding uses string made up of hexadecimal numbers (0-9, A-F)

(see Figure 9-17).

4b.2.1.4 Permutation Encoding (Real Number Coding)

Every chromosome is a string of numbers, represented in a sequence.

Sometimes corrections have to be done after genetic operation is complete.

In permutation encoding, every chromosome is a suing of integer/real

values, which represents number in a sequence.

Permutation encoding (Figure 9-18) is only useful for ordering problems.

Even for this problem, some types of crossover and mutation corrections

must be made to leave the chromosome consistent (i.e., have real sequence

in it).

4b.2.1.5 Value Encoding

Every chromosome is a string of values and the values can be anything

connected w the problem. This encoding produces best results for some

special problems. On the other hand, it is often necessary to develop new

genetic operator's specific to the problem. Direct value encoding can be

used in problems, where some complicated values, such as real numbers,

are used. Use of binary encoding for this type of problems would be very

difficult.

In value encoding (Figure 9-19), every chromosome is a string of some

values. Values can be anything connected to problem, form numbers, real

numbers or characters to some complicated objects. Value encoding is very

good for some special problems. On the other hand, for this encoding it is

often necessary to develop some new crossover and mutation specific for

the problem.

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Figure 4b.6 Value encoding.

4b.2.1.6 Tree Encoding

This encoding is mainly used for evolving program expressions for genetic

programming. Every chromosome is a tree of some objects such as

functions and commands of a programming language.

4b.2.2 Selection

Selection is the process of choosing two parents from the population for

crossing. After deciding on an encoding, the next step is to decide how to

perform selection, i.e., how to choose individuals in the population that will

create offspring for the next generation and how many offspring each will

201

Genetic Algorithm create. The purpose of selection is in emphasize fitter individuals in the-

population in hopes that their offspring have higher fitness. Chromosomes

are selected from the initial population to be parents for reproduction. The

problem is how to select these chromosomes. According to Darwin’s theory

of evolution the best ones survive to create new offspring. Figure 4b.7

shows the basic selection process.

Selection is a method that randomly picks chromosomes out of the

population according to their evaluation function. The higher the fitness

function, the better chance that an individual will be selected. The selection

pressure is defined as the degree to which the better individuals are

favoured. The higher selection pressured, the more the better individuals are

favoured. This selection pressure drives the GA to improve the population

fitness over successive generations.

The convergence rate of GA is largely determined by the magnitude of the

selection pressure, with higher selection pressures resulting in higher

convergence rates. GAs should be able to identify optimal or nearly optimal

solutions under a wide range of selection scheme pressure. However, if the

selection pressure is too low, the convergence rate will be slow, and the GA

will take unnecessarily longer to find the optimal solution. If the selection

pressure is too high, there is an increased change of the GA prematurely

converging to an incorrect (sub-optimal) solution. In addition to providing

selection pressure, selection schemes should also preserve population

diversity, as this helps to avoid premature convergence.

Typically we can distinguish two types of selection scheme, proportionate-

based selection and ordinal based selection. Proportionate-based selection

picks out individuals based upon their fitness values relative to the fitness

of the other individuals in the population. Ordinal-based selection schemes

select individuals not upon their raw fitness, bur upon their rank within the

population. This requires that the selection pressure is independent of the

fitness distribution of the population, and is solely based upon the relative

ordering (ranking) of the population.

Figure 4b-7 Selection.

202

Soft Computing Techniques It is also possible to use a scaling function to redistribute the fitness range

of the population in order to adapt the selection pressure. For example, if all

the solutions have their finesses in the range [999, 1000], the probability of

selecting a better individual than any other using a proportionate based

method will note important. If the fitness every individual is bringing to the

range [0, 1] equitable, the probability of selecting good individual instead

of bad one will be important. Selection has to be balanced with variation

from crossover and mutation. Too strong selection means sub-optimal

highly fit individuals will take over the population, reducing the diversity

needed for change and progress; too weak selection will result in too slow

evolution. The various selection methods are discussed in the following

subsections.

4b.2.2.1 Roulette Wheel Selection

Roulette selection is one of the traditional GA selection techniques. The

commonly used reproduction operator is the proportionate reproductive

operator where a string is selected from the mating Pool with a probability

proportional to the fitness. The principle of Roulette selection is a linear

search through a Roulette wheel with the store in the wheel weighted in

proportion to the individual's fitness values. A target value is set, which is

a random proportion of the sum of the finesses in the population. The

population is stepped through until the target value is reached. This is only

a moderately strong selection technique, since fir individuals are not

guaranteed to be selected for, bur somewhat have a greater chance. A fit

individual will contribute more to the target value, but if it does not exceed

it, the next chromosome in line has a chance, and it may be weak. It is

essential that the population not be sorted by fitness, since this would

dramatically bias the selection.

The Roulette process can also be explained as follows: The expected value

of an individual is individual’s fitness divided by the actual fitness of the

population. Each individual is assigned a slice of the Roulette wheel, the

size of the slice being proportional to the individual's fitness. The wheel is

spun N times, where N is the number of individuals in the population. On

each spin, the individual under the wheel's marker is selected to be in the

pool of parents for the next generation. This method is implemented as

follows:

1. Sum the total expected value of the individuals in the population. Let

it be T.

2. Repeat N times:

i. Choose a random integer "r" between 0 and T.

ii. Loop through the individuals in the population, summing the

expected values, until the sum is greater than or equal to "r."

The individual whose expected value puts the sum over this

limit is the one selected.

Roulette wheel selection is easier to implement bur is noisy. The rate of

evolution depends on the variance of fitness's in the population.

203

Genetic Algorithm 4b.2.2.2 Random Selection

This technique randomly selects a parent from the population. In terms of

disruption of genetic codes, random selection is a little more disruptive, on

average, than Roulette wheel selection.

4b.2.2.3 Rank Selection

The Roulette wheel will have a problem when the fitness values differ very

much. If the best chromosome fitness is 90%, its circumference occupies

90% of Roulette wheel, and then other chromosomes have too few chances

to be selected. Rank Selection ranks the population and every chromosome

receives fitness from the ranking. The worst has fitness 1 and the best has

fitness N. It results in slow convergence but prevents too quick convergence.

It also keeps up selection pressure when the fitness variance is low. It

preserves diversity and hence leads to a successful search. In effect,

potential parents are selected and a tournament is held to decide which of

the individuals will be the parent. There are many ways this can be achieved

and two suggestions are:

1. Select a pair of individuals at random. Generate a random number R

between 0 and 1. If R <ruse the first individual as a parent. If the R >r

then use the second individual as the parent. This is repeated to select

the second parent. The value of r is a parameter to this method.

2. Select two individuals at random. The individual with the highest

evaluation becomes the parent. Repeat to find a second parent.

4b.22.4 Tournament Selection

An ideal selection strategy should be such that it is able to adjust its selective

pressure and population diversity so as to fine-rune GA search performance.

Unlike, the Roulette wheel selection, the tournament selection strategy

provides selective pressure by holding a tournament competition among Nu

individuals.

The best individual from the tournament is the one with the highest fitness,

who is the winner of Nu. Tournament competitions and the winner are then

inserted into the mating pool. The tournament competition is repeated until

the mating pool for generating new offspring is filled. The mating pool

comprising the tournament winner has higher average population fitness.

The fitness difference provides the selection pressure, which drives GA to

improve the fitness of the succeeding genes. This method is more efficient

and leads to an optimal solution.

4b.2.2.5 Boltzmann Selection

SA is a method of function minimization or maximization. This method

simulates the process of slow cooling of molten metal to achieve the

minimum function value in a minimization problem. Controlling a

temperature-like parameter introduced with the concept of Boltzmann

probability distribution simulates the cooling phenomenon.

204

Soft Computing Techniques In Boltzmann selection, a continuously varying temperature controls the

rate of selection according to a preset schedule. The temperature starts out

high, which means that the selection pressure is low. The temperature is

gradually lowered, which gradually increases the selection pressure, thereby

allowing the GA to narrow in more closely to the best part of the search

space while maintaining the appropriate degree of diversity.

A logarithmically decreasing temperature is found useful for convergence

without getting stuck to a local minima state. However, it takes time to cool

down the system to the equilibrium state.

Let fax be the fitness of the currently available best string. If the next string

has fitness f (X:) such that f(X;)>fmax• then the new string is selected.

Otherwise it is selected with Bole/Mann

P= exp[-{fmax- f(Xi)} /T] ……………(17)

probability where T = To (1-)k and k = (1 + 100 *g/G); g is the current

generation number; G the maximum value of g. The value of CI:' can be

chosen from the range [0, 1] and that of T0 from the range [5, 100]. The

final stare is reached when computation approaches zero value of T, i.e., the

global solution is achieved at this point.

The probability that the best string is selected and introduced into the mating

pool is very high. However, Elitism can be used to eliminate the chance of

any undesired loss of information during the mutation stage. Moreover, the

execution time is less.

Figure 4b·8 Stochastic universal sampling.

Elitism

The first best chromosome or the few best chromosomes are copied to the

new population. The rest is done in a classical way. Such individuals can be

lost if they are not selected to reproduce or if crossover or mutation destroys

them. This significantly improves the GA's performance.

4b.2.2.6 Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and minimum spread. The

individuals are mapped to contiguous segments of a line, such that each

individual's segment is equal in size to its fitness exactly as in Roulette

205

Genetic Algorithm wheel selection. Here equally spaced pointers are placed over the line, as

many as there are individuals to be selected. Consider N Pointer the number

of individuals to be selected, then the distance between the pointers are 1/N

Pointer and the position of the first pointer is given by a randomly generated

number in the range [0, 1/N Pointer]. For 6 individuals to be selected, the

distance between the pointers is 1/6 = 0.167.

Figure 4a.21 shows the selection for the above example.

Sample of 1 random number in the range [0, 0.167]: 0.1.

After selection the mating population consists of the individuals,

1,2,3,4,6,8

Stochastic universal sampling ensures selection of offspring that is closer to

what is deserved as compared to Roulette wheel selection.

4b.2.3 Crossover (Recombination)

Crossover is the process of taking two parent solutions and producing from

them a child. After the selection (reproduction) process, the population is

enriched with better individuals. Reproduction makes clones of good strings

but does not create new ones. Crossover operator is applied to the mating

pool with the hope that it creates a better offspring.

Crossover is a recombination operator that proceeds in three steps:

1. The reproduction operator selects at random a pair of two individual

strings for the mating.

2. A cross site is selected at random along the string length.

3. Finally, the position values are swapped between the two strings

following the cross site.

That is the simplest way how to do that is to choose randomly some

crossover point and copy everything before this point &on the first parent

and then copy everything after the crossover point from the other parent.

The various crossover techniques are discussed in the following

subsections.

Parent1 1 0 1 1 0 0 1 0

Parent2 1 0 1 0 1 1 1 1

Child1 1 0 1 1 0 1 1 1

Chiled2 1 0 1 0 1 0 1 0

Figure 4b.9: Single-point crossover

206

Soft Computing Techniques 4b.2.3.1 Single-Point Crossover

The traditional genetic algorithm uses single-point crossover, where the two

mating chromosomes are cut once at corresponding points and the sections

after the cuts exchanged. Here, a cross site or crossover point is selected

randomly along the length of the mated strings and bits next to the cross

sites are exchanged. Inappropriate site is chosen, bender children can be

obtained by combining good parents, else it severely hampers string quality.

Figure 4b-22 illustrates single point crossover and it can be observed that

the bits next to the crossover point are exchanged to produce children. The

crossover point can be chosen randomly.

4b.2.3.2 Two Point Crossover

Apart from single point crossover, many different crossover algorithms

have been devised, often involving more than one cut point. It should be

noted that adding further crossover points reduces the performance of the

GA. The problem with adding additional crossover points is that building

blocks are more likely to be disrupted. However, an advantage of having

more crossover points is that the problem space may be searched more

thoroughly.

In two-point crossover, two crossover points are chosen and the contents

between these points are exchanged between two mated parents.

In Figure 4b-23 the dotted lines indicate the crossover points. Thus the

comments between these points are

exchanged between the parents to produce new children for mating in the

next generation.

Parent1 1 1 0 1 1 0 1 0

Parent2 0 1 1 0 1 1 0 0

Child 1 1 1 1 0 1 0 1 0

Child2 0 1 0 1 1 1 0 0

Figure 4b-10 Two-point crossover

Originally, GAs were using one point crossover which cuts two

chromosomes in one point and splices the two halves to create new ones.

But with this one-point crossover, the head and the rail of one chromosome

cannot be passed together to the offspring. If both the head and the rail of a

chromosome contain good genetic information, none of the offspring

obtained directly with one-point crossover will share the two good features.

Using a two-point crossover one can avoid this drawback, and so it is

generally considered better than one-point crossover. In fact, this problem

207

Genetic Algorithm can be generalized to each gene position in a chromosome. Genes that are

close on a chromosome have more chance to be passed together to the

offspring obtained through N-points crossover. It leads to an unwanted

correlation between genes next to each other. Consequently, the efficiency

of an N-point crossover will depend on the position of the genes within the

chromosome. In a genetic representation, genes that encode dependent

characteristics of the solution should be close together. To avoid all the

problem of genes locus, a good thing is to use a uniform crossover as

recombination operator.

4b.2.3.3 Multipoint Crossover (N·Point Crossover)

There are two ways in this crossover. One is even number of cross sires and

the other odd number of cross sites. In the case of even number of cross

sires, the cross sites are selected randomly around a circle and information’s

exchanged. In the case of odd number of cross sites, a different cross point

is always assumed at the string beginning.

4b.2.3.4 Uniform Crossover

Uniform crossover is quite different from the N-point crossover. Each gene

in the offspring is created by copying the corresponding gene from one or

the other parent chosen according to a random generated binary crossover

mask of the same length as the chromosomes. Where there is a 1 in the

crossover mask, the gene miscopied from the first parent, and where there

is a 0 in the mask the gene is copied from the second parent. Anew crossover

mask is randomly generated for each pair of parents. Offspring, therefore,

contain a mixture of genes from each parent. The number of effective

crossing point is not fixed, but will average L/2 (where L is the chromosome

length).

In Figure 4a.24, new children are produced using uniform crossover

approach. It can be noticed that while producing child 1, when there is a 1

in the mask, the gene is copied from parent 1 else it is copied from parent

2. On producing child 2, when there is a 1 in the mask, the gene is copied

from parent 2, and when there is a 0 in the mask, the gene is copied from

the parent 1.

4b.2.3.5 Three Parent Crossover

In this crossover technique, three parents are randomly chosen. Each bit of

the first parent is compared with the bit of the second parent. If both are the

same, the bit is taken for the offspring; otherwise the bit from the third

parent is taken for the offspring. This concept is illustrated in Figure 9-25.

Parent 1 1 0 1 1 0 0 1 1

Parent 2 0 0 0 1 1 0 1 0

Mask 1 1 1 0 1 0 1 1 0

Child 1 1 0 0 1 1 0 1 0

Child 2 0 0 1 1 0 0 1 1

208

Soft Computing Techniques Figure 4b.11 Uniform crossover

Parent 1 11010001

Parent 2 01101001

Parent 3 01101100

Child 01101001

Figure 4b.12 Three parent crossover

4b.2.3.6 Crossover with Reduced Surrogate

The reduced surrogate operator constraints crossover to always produce

new individuals wherever possible. This is implemented by restricting the

location of crossover points such that crossover points only occur where

gene values differ.

4b.2.3.7 Shuffle Crossover

Shuffle crossover is related to uniform crossover. A single crossover

position (as in single point crossover) is decreed. But before the variables

are exchanged, they are randomly shuffled in both parents. After

recombination, the variables in the offspring are unstuffed. This removes

positional bias as the variables are randomly reassigned each time crossover

is performed.

4b.2.3.8 Precedence Preservative Crossover

Precedence preservative crossover (PPX) was independently developed for

vehicle touting problems by Blanton and Wainwright (1993) and for

scheduling problems by Bierwirth et al. (1996). The operator passes on

precedence relations of operations given in two parental permutations to one

offspring at the same race, while no new precedence relations are

introduced. PPX is illustrated below for a. problem consisting of six

operations A-F. The operator works as follows:

l. A vector of length Sigma, sub i == 1 tomi, representing the number

of operations involved in the problem, is randomly filled with

elements of the set {1, 2).

2. This vector defines the order in which the operations are successively

drawn from parent I and parent 2.

3. We can also consider the parent and offspring permutations as lists,

for which the operations "append “and "delete'' are defined.

4. First we scan by initializing an empty offspring.

5. The leftmost operation in one of the two parents is selected in

accordance with the order of parents given in the vector.

6. After an operation is selected, it is deleted in both parents.

7. Finally the selected operation is appended to the offspring.

209

Genetic Algorithm 8. Step 7 is repeated until both parents are empty and the offspring

domains all operations involved.

Note that PPX does not work in a uniform crossover manner due tithe

"deletion-append" scheme used. Example is shown in Figure 9-26.

4b.2.3.9 Ordered Crossover

Ordered two-point crossover is used when the problem is order based, for

example in U shaped assembly line balancing, etc. Given two parent

chromosomes, two random crossover points are selected partitioning

Parent permutation 1 A B C D E F

Parent permutation 2 C A B F D E

Select parent no. (1/2) 1 2 1 1 2 2

Offspring permutation A C B D F E

Figure 4b.26 Precedence preservative crossover (PPX).

Parent 1:4 2 | 1 3 | 65 Child 1:4 2 | 31 | 65

Parent 2:2 3 | 1 4 | 56 Child 2:2 3 | 41 | 56

Figure 4b.13 Ordered crossover

them into a left, middle and right portions. The ordered two point crossover

behaves in the following way: child 1 inherits its left and right section from·

parent l, and its middle section is determined by the genes in the middle

section of parent 1 in the order in which the values appear in parent 2. A

similar process is applied to determine child 2. This is shown in Figure

4a.27.

4b.2.3. 10 Partially Matched Crossover

Finally matched crossover (PMX) can be applied usefully in the TSP.

Indeed, TSP chromosomes are simply sequences of integers, where each

integer represents a different city and the order represents the time at which

acidy is visited. Under this representation, known as permutation encoding,

we are only interested in labels and not alleles. It may be viewed as a

crossover of permutations that guarantees that all positions arc found

exactly once in each offspring, i.e., both offspring receive a full complement

of genes, followed by the corresponding filling in of alleles from their

parents. PMX proceeds as follows:

1. The two chromosomes are aligned.

2. Two crossing sires are selected uniformly at random along the strings,

defining a marching section.

3. The matching section is used to effect a cross through position-by-

position exchange operation.

210

Soft Computing Techniques 4. Alleles are moved to their new positions in the offspring.

The following illustrates how PMX works.

Name 9 8 4 . 5 6 7 . 1 8 2 1 0 Allele 1 0 1 . 0 0 1 . 1 1 0 0

Name 8 7 1 . 2 3 1 0 . 9 5 4 6 Allele 1 1 1 . 0 1 1 . 1 1 0 1

Figure 4b·14 Given strings

Consider the two strings shown in Figure 9-28, where the dots mark the

selected cross points. The marching section defines the position-wise

exchanges that must take place in both parents to produce the offspring. The

exchanges are read from the marching section of one chromosome to that

of the other. In the example illustrate in Figure 9-28, the numbers that

exchange places are 5 and 2, 6 and 3, and 7 and 10. The resulting offspring

are as shown in Figure 4a.29. PMX is dealt in derail in the next chapter.

Name 9 8 4 . 2 3 1 0 . 1 6 5 7 Allele 1 0 1 . 0 1 0 . 1 0 0 1

Name 8 1 0 1 . 5 6 7 . 9 2 4 3 Allele 1 1 1 . 1 1 1 . 1 0 0 1

Figure 4b.15 partially matched crossover.

4b.2.3.11 Crossover Probability

The basic parameter in crossover technique is the crossover probability

(Pt).Crossover probability is a parameter to describe how often crossover

will be performed. If there is no crossover, offspring are exact copies of

parents. If there is crossover, offspring are made from parts of both parents'

chromosome. If crossover probability is 100%, then all offspring are made

by crossover. If it is O%, whole new- generation is made from exact copies

of chromosomes from old population (but this does not mean that the new

generation is the same!). Crossover is made in hope that new chromosomes

will contain good parts of old chromosomes and therefore the new

chromosomes will be better. However, it is good to leave some part of old

population survive to next generation.

4b.2.4 Mutation

After crossover, the strings are subjected to mutation. Mutation prevents the

algorithm to be trapped in a local minimum. Mutation plays the tale of

recovering the lost genetic materials as well as for randomly distributing

genetic information. It is an insurance policy against the irreversible loss of

genetic material. Mutation has been traditionally considered as a simple

search operator. If crossover is supposed to exploit the current solution to

find better ones, mutation is supposed to help for the exploitation of the

whole search space. Mutation isvie¥1ed as a background operator to

maintain genetic diversity in the population. It introduces new genetic

structures in the population by randomly modifying some of its building

blocks. Mutation helps escape from local minima's trap and maintains

diversity in the population. It also keeps the gene pool well stocked, thus

211

Genetic Algorithm ensuring periodicity. A search space is said to be argotic if there is a non-

zero probability of generating any solution from any population state.

There are many different forms of mutation for the different kinds of

representation. For binary representation, a simple mutation can consist in

inverting the value of each gene with a small probability. The probability is

usually taken about 1/ L, where L is the length of the chromosome. It is also

possible to implement kind of hill climbing mutation operators that do

mutation only if it improves the quality of the solution. Such anoperawr can

accelerate the search; however, care should be taken, because it might also

reduce the diversity in the population and make the algorithm converge

toward some local optima. Mutation of a bit involves flipping a bit,

changing 0 to1 and vice-versa.

4b.2.4 1 Flipping

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation

chromosome generated. Figure 4a.30 explains mutation flipping concept. A

parent is considered and a mutation chromosome is randomly generated.

For a 1 in mutation chromosome, the corresponding bit in parent

chromosome is flipped (0 to 1 and1 to 0) and child chromosome is

produced. In the case illustrated in Figure 41.30, 1 occurs at 3 places of

mutation chromosome, the corresponding bits in parent chromosome are

flipped and the child is generated.

4b.2.4.2 Interchanging

Two random positions of the string are chosen and the bits corresponding

to those positions are interchanged (Figure 4a.31).

Parent 1 0 1 1 0 1 0 1

Mutation chromosome 1 0 0 0 1 0 0 1

Child 0 0 1 1 1 1 0 0

Figure 4b.16 Mutation flipping.

Parent 1 0 1 1 0 1 0 1

Child 1 1 1 1 0 0 0 1

Figure 4b.17 Interchanging

Parent 1 0 1 1 0 1 0 1

Child 1 0 1 1 0 11 1

Figure 4b·18 Reversing.

212

Soft Computing Techniques 4b.2.4.3 Reversing

A random position is chosen and the bits next to that position is reversed

and child chromosome is produced (Figure 9-32).

4b.2.4.4 Mutation Probability

An important parameter in the mutation technique is the mutation

probability (P,). It decides how often parts of chromosome will be mutated.

If there is no mutation, offspring are generated immediately after crossover

(or directly copied) within any change. If mutation is performed, one or

more parts of a chromosome are changed. If mutation probability is 100%,

whole chromosome is changed; if it is 0%, nothing is changed. Marion

generally prevents the GA from falling into local extremes. Mutation should

not occur very often, because then GA will in fact change to ralidom search.

4B.3 STOPPING CONDITION FOR GENETIC

ALGORITHM FLOW

In short, the various stopping condition are listed as follows:

1. Maxim 11m generations:. The GA stops when the specified number

of generations has evolved.

2. Elapsed time: The genetic process will end when a specified time has

elapsed.

 Note: If the maximum number of generation has been reached before

the specified time has elapsed, the process will end.

3. No change in fitness: The genetic process will end if there is no

change tithe population's best fitness for a specified number of

generations.

 Note: If the maximum number of generation has been reached before

the specified number of generation with too changes has been

reached, the process will end.

4. Stall generations: The algorithm stops if there is no improvement in

the objective function for a sequence of consecutive generations of

length "Stall generations."

5. Stall time limit. The algorithm stops if there is no improvement in the

objective function during animerval of time in seconds equal to "Stall

time limit."·

The termination or convergence criterion finally brings the search to a halt.

The following are the few methods of termination techniques.

4b.3.1 Best Individual

A best individual convergence criterion stops the search once the minimum

fitness in the population drops below the convergence value. This brings the

search w a faster conclusion, guaranteeing at least one good solmion.

213

Genetic Algorithm 4b.3.2 Worst Individual

Worst individual terminates the search when the least fir individuals in the

population have fitness less than me convergence criteria. This guarantees

the entire population w be of minimum standard, although the best

individual may not be significantly better than the worst. In this case, a

stringent convergence value may never be met, in which case the search will

terminate after the maximum has been exceeded.

4b.3.3 Sum of Fitness

In this termination scheme, the search is considered to have satisfaction

converged when the sum of the fitness in the entire population is less than

or equal to the convergence value in the population record. This guarantees

that virtually all individuals in the population will be within a particular

fitness range, although it is bener to pair this convergence criteria with

weakest gene replacement, otherwise a few unfit individuals in the

population will blow out the fitness sum. The population size has to be

considered while setting the convergence value.

4b.3.4 Median Fitness

Here at least half of the individuals will be better than or equal to the

convergence value, which should give a good range of solutions to choose

from.

4B.4 CONSTRAINTS IN GENETIC ALGORITHM

If the GA considered consists of only objective function and no information

about the specifications of variable, then it is called unconstrained

optimization problem. Consider, an unconstrained optimization problem of

the form

Minimize f(x) = x2 …………(18)

and there is no information about "x" range. GA minimizes this function

using its operators in random specifications.

In the case of constrained optimization problems, the information is

provided for the variables under consideration. Constraints are classified as:

1. Equality relations.

2. Inequality relations.

GA geneses a sequence of parameters to be rested using the system under

consideration, objective function (to be maximized or minimized) and the

constraints. On running. the system, the objective function is evaluated and

constraints are checked to see if there are any violations. If there are no

violations, the parameter set is assigned the fitness value corresponding to

the objective function evaluation. When the constraints are violated, the

solution is infeasible and thus has no fitness. Many practical problems are

constrained and it is very difficult to find a feasible point that is best. As a

214

Soft Computing Techniques result, one should get some information out of infeasible solutions,

irrespective of their fitness ranking in relation tithe degree of constraint

violation. Thesis performed in penalty method.

Penalty method is one where a constrained optimization problem is

transformed to an unconstrained optimization problem by associating a

penalty or cost with all constraint violations. This penalty is included in the

objective function evaluation.

Consider the original constrained problem in maximization form:

Maximize f(x)

Subject to gi(x)>0, i = 1, 2, 3, ... , n

where x is a k-vector. Transforming this to unconstrained form:

Maximize f(x) + P ∑ 𝜑[𝑔, (𝑥)]𝑁
𝑖=1 ……..(19)

where  is the penalty function and P is the penalty coefficient. There exist

several alternatives for this penalty function. The penalty function can be

squared for all violated constraints. In certain situations, the unconstrained

solution converges to the constrained solution as the penalty coefficient p

rends to infinity.

4B.5 PROBLEM SOLVING USING GENETIC

ALGORITHM

4b5.1 Maximizing a Function

Consider the problem of maximizing the function,

f (x)= x2 …..(20)

where x is permitted to vary between 0 and 31. The steps involved in solving

this problem are as follows:

Step I: For using GA approach, one must first code the decision variable "x"

into a finite length string. I Using a five bit (binary integer) unsigned integer,

numbers between 0(00000) and 31(11111) can be obtained.

The objective function here is f(x) = x2 which is to be maximized. A single

generation of a GA is performed here with encoding, selection, crossover

and mutation. To start with, select initial population at random. Here initial

population of size 4 is chosen, but any number of populations can be

selected based on the requirement and application. Table 9-4 shows an

initial population randomly selected.

215

Genetic Algorithm Table 4b·4 Selection

String No. Initial

population

(randomly

selected)

x

valu

e

Fitness

f(x) =

x2

Probi Percentage

Probability

(%)

Expected

count

Actual

count

1 0 1 1 0 0 12 144 0.1247 11.47 0.4987 1

2 1 1 0 0 1 25 625 0.5411 54.11 2.1645 2

3 0 0 1 0 1 5 25 0.0216 2.16 0.0866 0

4 1 0 0 1 1 19 361 0.3126 31.26 1.2502 1

Sum 195 1.0000 100 4.0000 4

Average 288.75 0.2500 25 1.0000 1

Maximum 625 0.5411 54.11 2.1645 2

Step 2: Obtain the decoded x values for the initial population generated.

Consider string 1.

01100 = 0 * 24 + 1 * 23 + I * 22 + 0 * 21 + 0 * 20

 = 0+ 8 + 4 + 0 + 0

 = 12

Thus for all the four strings the decoded values are obtained.

Step 3: Calculate the fitness or objective function. This is obtained by

simply squaring the “x”

value, since the given function is f(x) = x2 When x = 12, the fitness value is

f(x) = x2 = (12) 2 = 144

For x = 25, f(x) = x2 = (25) 2 = 625

and so on, until the entire population is computed.

Step 4: Compute the probability of selection,

𝑃𝑟𝑜𝑏𝑖 =
𝑓(𝑥)𝑖

∑ 𝑓(𝑥)𝑖
𝑛
𝑖=1

 ….(21)

where n is the number of populations; f(x) is the fitness value corresponding

to a particular

216

Soft Computing Techniques Individual in the population;

 f(x) is the summation of all the fitness value of the entire population.

Considering string l,

Fitness f (x) = 144

 f (x) = 195

The probability that string 1 occurs is given by

P1 = 144/195 = 0.1247

The percentage probability is obtained as

0.1247 * 100 = 12.47%

The same operation is done for all the strings. It should be noted that

summation of probability select is l.

Step 5: The next step is to calculate the expected count, which is calculated

as

 Expected count =
f(x)𝑖

[𝐴𝑣𝑔 𝑓(𝑥)]𝑖
 …………(22)

Where

 (𝐴𝑣𝑔 𝑓(𝑥))𝑖 = [
∑ 𝑓(𝑥)𝑖

𝑛
𝑖=1

𝑛̅
] ……………..(23)

For string 1,

Expected count = Fitness/Average = 144/288.75 = 0.4987

We then compute the expected count for the entire population. The expected

count gives an idea of which population can be selected for further

processing in the mating pool.

Step 6: Now the actual count is to be obtained to select the individuals who

would participate in the crossover cycle using Roulette wheel selection. The

Roulette wheel is formed as shown Figure 9-33.

The entire Raul we wheel covers 100% and the probabilities of selection as

calculated in step 4 for the entire populations are used as indicators to fit

into the Roulette wheel. Now the wheel may be spun and the number of

occurrences of population is noted to get actual count.

1. String I occupies 12.47%, so there is a chance for it to occur at least

once. Hence its actual count may be I.

2. With string 2 occupying 54.11% of the Roulette wheel, it has a fair

chance of being selected twice. Thus its actual count can be

considered as 2.

217

Genetic Algorithm 3. On the other hand, string 3 has the least probability percentage of

2.16%, so their occurrence for next cycle is very poor. As a result, ire

actual count is 0.

Figure 4b.19 Selection using Roulette wheel.

Table 4b·5 Crossover

String

no.

Mating

Pool

Crossover

point

Offspring

after

crossover

x

value

Fitness

value

f(x) = x2

1

2

3

4

0 1 1 0 0

1 1 0 0 1

1 1 0 0 1

1 0 0 1 1

4

4

2

2

0 1 1 0 1

1 1 0 0 0

1 1 0 1 1

1 0 0 0 1

13

24

27

17

169

576

729

289

Sum

Average

Maximum

 1763

440.75

729

4. String 4 with 31.26% has at least one chance for occurring while
Roulette wheel is spun, thus its actual count is 1.

The above values of actual count are tabulated as shown is Table 9-5.

Step 7: Now, write the mating pool based upon the actual count as shown
in Table 9-5.

218

Soft Computing Techniques The actual count of string no. 1 is I; hence it occurs once in the mating pool.
The actual count of string no. 2 is 2, hence it occurs twice in the mating
pool. Since the actual count of string no. 3 is 0, it does not occur in the
mating pool. Similarly, the actual count of string no. 4 being I, it occurs
once in the mating pool. Based on this, the mating pool is formed.

Step 8: Crossover operation is performed w produce new offspring
(children). The crossover point is specified and based on the crossover
point, single-point crossover is performed and new offspring is produced.
The parents are

Parent 1 0 1 1 0 0

Parent 2 1 1 0 0 1

The offspring is produced as

Offspring 1 0 1 1 0 1

Offspring 2 1 1 0 0 0

In a similar manner. crossover is performed for the next strings.

Step 9: After crossover operations. new offspring are produced and "x ..
value.\ are decoded and I mess is calculated.

Step 10: In this step, mutation operation is performed to produce new
offspring. After crossover operation. As discussed in Section 4a.9.4.1
mutation-Aipping operation is performed and new offspring are produced.
Table 4a.6 shows the new offspring after mutation. Once the offspring are
obtained L after mutation, they are decoded tax value and the fitness values
are computed.

This completes one generation. The mutation is performed on a bit-bit by
basis. The crossover probability and mutation probability were assumed to
be 1.0 and 0.001, respectively. Once selection, crossover and mutation are
performed, the new popular ion is now ready to be rested. This is performed
by decoding the new strings created by the simple GA after mutation and
calculates the fitness function values from the x values thus decoded. The
results for successive cycles of simulation are shown in Tables 9-4 and 96.

Table 4b-6 Mutation

String

no.

Offspring

after

crossover

Mutation

chromosomes

for Ripping

Offspring

after

crossover

x

value

Fitness

f(x) =

x2

1

2

3

4

0 1 1 0 1

1 1 0 0 0

1 1 0 1 1

1 0 0 0 1

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1 1 1 0 1

1 1 0 0 0

1 1 0 1 1

1 0 1 0 0

29

24

27

20

841

576

729

400

Sum

Average

Maximum

 2546

636.5

841

219

Genetic Algorithm From the rabies, it can be observed how GAs combine high-performance

notions to achieve bercer performance. In the rabies, it can be noted how

maximal and average performances have improved in the new population.

The population average fitness has improved from 288.75 to 636.5 in one

generation. The maximum fitness has increased from 625 to 841 during the

same period. Though random processes make this best solution, its

improvement can also be seen successively. The best string of the initial

population (1 1 0 0 1) receives no chances for its existence because of its

high, above-average performance. When this combines at random with the

next highest string (1 0 0 1 1) and is crossed at crossover point 2 (as shown

in Table 9-5), one of the resulting strings (1 1 0 1 1) proves to be a very best

solution indeed. Thus after mutation at random, a new offspring (1 1 1 0 1)

is produced which is an excellent choice.

This example has shown one gene ion of a simple GA.

4B.6 THE SCHEMA THEOREM

In this section. we will formulate and prove the fundamental research on the

behaviour of GAs- the so-called Schema Theorem. Although being

completely incomparable with convergence research’s for conventional

optimization methods, it still provides valuable insight two the intrinsic

principles of GAs. Assume a GA with proportional selection and an

arbitrary bur fixed fitess function f Let us make the following notations:

1. The number of individuals which fulfil H at time step tare denoted as

rH,r = \Br  H\

2. The expression f (t) refers to the observed average fitness at time t:

.

1

1
() ()

m

i t

i

f t f b
m 

 

3. The term f (H, t) stands for the observed average fitness of schema H

in time step t:

.

{ }

1
(,) ()

.
ix

i t

i Ab H

f H t f b
rH s  

 

Theorem (Schema Theorem - Holland 1975). Assuming we consider a

simple GA. the following inequality holds for eveq schema H:

()

1

(,) ()
[.] (1 (1)

() 1

O H

t c

f H t H
E rh rHs p pM

f t n



  



Proof. The probability that we select an individual fulfilling H is

220

Soft Computing Techniques

,

,

{ | }

,

1

()

()

j t

i t

i j b H

m

i t

i

f b

f b

 







This probability does not change throughout the execution of the selection

loop. Moreover, each of them individuals is select::d independent of the

others. Hence the number of selected individuals. which fulfil H, is

binomially distributed with sample amount m and the probability. We

obtain, therefore, that the expected number of selected individuals fulfilling

H is

……(24)

If two individuals at crossed, which bmh fulfil H, the two offspring’s again

fulfil H. The number of strings fulfilling H can only decrease if one string.

which fulfils H, is crossed with a string which does not fulfil H. but,

obviously, only if the cross sire is chosen somewhere in between the

specifications of H. The probability that the cross sire is chosen within the

detaining length of H is

()

1

H

n




………………..(25)

Hence the survival probability ps of H, i.e., the probability that a string

fulfilling H produces an offspring also fulfilling H. can be estimated as

follows (crossover is only done with probability):

()
1 .

1

H
ps pc

n


 


………..(26)

Selection and crossover are carried our independently, so we may compute

the expected number of strings fulfilling H after crossover simply as

, ,

(,) (,) ()
. . . .(1 .)

() () 1
t t

f H t f H t H
rH ps rH pc

f t f t n


 


………..(27)

After crossover, the number of strings fulfilling H can only decrease if a

suing fulfilling His ahered by mutation at a specification of H. The

probability that all specifications of H remain untouthed by mutation is

obviously

221

Genetic Algorithm ()(1)O HPM ………..(28)

The arguments in the proof of the Sthema Theorem can be applied

analogously too many other crossover and mutation operations.

4b.6.1 The Optimal Allocation of Trials

The Sthema Theorem has provided the insight that building blocks receive

exponentially increasing trials in future generations. The question remains,

however, why this could be a good strategy. This leads to an important and

well analyzed problem from statistical decision theory- the two-armed

bandit problem and its generalization, the k-armed bandit problem.

Although this seems like a detour from our main concern, we shall soon

understand the connection to GAs.

Suppose we have a gambling machine with two slots for coins and two

arms. The gambler can deposit the coin either two the left or the right slot.

After pulling the corresponding arm, either a reward is given or the coin is

lost. For mathematical simplicity, we just work with outcomes, i.e., the

difference between the reward (which can be zero) and the value of the coin.

Let us assume that the left arm produces an outcome with mean value 2

and a variance  22 while the right arm produces an outcome with mean

value 2 and variance  12. Without loss of generality, although the gambler

does not know this, assume that 1 > 2·

Now the question arises which arm should be played. Since we do not know

beforehand which arm is associated with the higher outcome, we are faced

with an interesting dilemma. Not only must we make a sequence of

decisions about which arm to play, we have to collect, at the same time,

information about which is the bener arm. This trade-off between

exploitation of knowledge and its exploitation is the key issue in this

problem and, as rums out later, in GAs, too.

A simple approach to this problem is to separate exploitation from

exploitation. More specifically, we could perform a single experiment at the

beginning and thereafter make an irreversible decision that depends on the

results of the experiment. Suppose we have N coins. If we allocate an equal

number n {where 2n N) of trials to both arms, we could allocate the

remaining N- 2n uials to the observed bener arm. Assuming we know all

involved parameters, the expected loss is given as

L(N. n) = (1 - 2){(N - n)q(n) + n[l - q(n)l}

where q(n) is the probability that the worst arm is the observed best arm

after 2n expetimental trials. The underlying idea is obvious: In case that we

observe that the worse arm is the best, which happens with probability q(n),

the total number of trials allothed to the right arm is N - 11. The loss is,

therefore, (J1 1 -Jl2)(N- n). In the reverse case where we actually observe

that the best arm is the best, which happens with probability I - q(n), the

loss is only whir we get less because we played the worse arm 11 times, i.e.,

222

Soft Computing Techniques (Ill -112)11. Taking the central limit theorem into account, we can

approximate q (n) with the rail of a normal distribution:

2 /21
()

2

te
q n

c




 ………..(29)

where

1 2

2 2

1 2

c n
 

 






Now we have m specify a reasonable experiment size n. obviously, if we

choose

 n = 1, the obtained information is potentially unreliable. If we choose,

however,

n = N/2 there are no trials left to make use of the information gained though

the experimental phase. What we see is again the trade-off between

exploitation with almost no exploitation (n = 1) and exploitation without

exploitation {n = N/2).

It does not take a Nobel prize winner to see that the optimal way is

somewhere in the middle. Holland has studied this problem in detail. He

came to the conclusion that the optimal strategy is given by the following

equation:

2
4 2

4 2
ln()

8 ln

N
b

b N



 ………..(30)

where

1

1 2

b


 




Making a few transformations, we obtain that

44 4 2 28 ln 12N n b N e b ………..(31)

That is, the optimal strategy is m allocate slightly more than an

exponentially increasing number of trials to the observed best arm.

Although no gambler is able to apply this strategy in practice, because it

requires knowledge of the mean values Jll and JLz, we still have found an

important bound of performance a decision strategy should try to approach.

A GA, although the direct connection is not yet fully clear, actually comes

close to this ideal, giving at least an exponentially increasing number of

trials to the observed best building blocks. However, one may still wonder

how the two-armed bandit problem and GAs are related. Let us consider an

223

Genetic Algorithm arbitrary string position. Then there are two sthemata of order one which

have their only specification in this position. According to the Sthema

Theorem, the GA implicitly decides between these two sthemata, where

only incomplete data are available (observed average fitness values). In this

sense, a GA solves a lot of two-armed problems in parallel.

The Sthema Theorem, however, is not restricted to sthemata of order one.

Looking at competing sthemata (different sthemata which are specified in

the same positions). We observe that a GA is solving an enormous number

of k-armed bandit problems in parallel. The k-armed bandit problem,

although much more complicated, is solved in an analogous way - the

observed better alternatives should receive an exponentially increasing

number of trials. This is exactly what a GA does.

4b.6.2 Implicit Parallelism

So far we have discovered two distinct, seemingly conflicting views of

genetic algorithms:

1. The algorithmic view that GAs operate on strings;

2. The sthema-based interpretation.

So, we may ask what a GA really processes, strings or sthemata? The

answer is surprising: Both. Now a day, the common interpretation is chat a

GA processes an enormous amount of sthemata implicitly. This is

accomplished by exploiting the currently available, incomplete information

about these sthemata continuously, while trying to explore more

information about them and other, possibly better sthemata.

This remarkable property is commonly called the implicit parallelism of

GAs. A simple GA has only m structures in one time step, without any

memory or bookkeeping about the previous generations. We will now ny to

get a feeling how many sthemata a GA actually processes.

Obviously, there are 3n sthemata of length n. A single binary string fulfils n

sthema of order 1, (2n) sthemata of order 2, in general, (kn) sthemata of order

k. Hence, a string fulfils

1

() 2
n

n n

k

k

 ………..(32)

Theorem. Consider a randomly generated start population of a simple GA

and let e E (0, 1) be a fixed error bound. Then sthemata of length

1, < E (n - l) + l

have a probability of at least (1-) to survive one-point crossover (compare

with the proof of the Sthema Theorem). If the population size is chosen as

m = 21/2, the number of sthemata, which survive for the next generation, is

of order O(m3).

224

Soft Computing Techniques 4B.7 CLASSIFICATION OF GENETIC ALGORITHM

There exist wide variety of GAs including simple and general GAs

discussed in Sections 4a.4 and 4a.5, respectively. Some or her variants of

GA are discussed below.

4b.7.1 Messy Genetic Algorithms

In a "classical" GA, the genes are encoded in a fixed order. The meaning of

a single gene is determined by its position inside the string. We have seen

in the previous chapter that a GA is likely to converge well if the

optimization risk can be divided two several short building blocks. What,

however, happens if the coding is chosen such that couplings occur between

distant genes? Of course, one-point crossover rends to disadvantage long

sthemata {even if they have low order) over short ones.

Messy GAs try w overcome this difficulty by using a variable-length,

position-independent coding. The key idea is to append an index to each

gene which allows identifying its position. A gene, therefore, is no longer

represented as a single allele value and a fixed position, but as a pair of an

index and an allele. Figure 9-34(A) shows how this "messy" coding works

for a string of length 6.

Since with the help of the index we can identify the genes uniquely, genes

may be swapped arbitrarily without changing the meaning of the string.

With appropriate genetic operations, which also change the order of the

paits, the GA could possibly group coupled genes to get her automatically.

Figure 4b.20 (A) Messy coding and (B) positional preference; Genes with

indices 1 and 6 occur twice, the firm occurrences are used.

225

Genetic Algorithm

Figure 4b.21 the cut and splice operation.

Owing to the free arrangement of genes and the variable length of the

encoding, we can, however, run into. Problems, which do not occur, in a

simple GA. First of all, it can happen that there are two entries in a string,

which correspond to the same index but have conflicting alleles. The most

obvious way to overcome this "over-specification" is positional preference-

the first entry, which refers to a gene, is taken. Figure 9-34(B) shows an

example. The reader may have observed that the genes with indices 3 and 5

do not occur at all in the example in Figure 9-34(B). This problem of “under

specification" is more complicated and its solution is not as obvious as for

over=-specification. Of course, a lot of variants are reasonable.

One approach could be to theck all possible combinations and to rake the

best one (fork missing genes, there are 2k combinations). With the objective

to reduce this effort, Goldberg ct al. have suggested using so-called

competitive templates for finding specifications for missing genes. It is

nothing else than applying a local hill climbing method with random initial

value to the k missing genes.

While messy GAs usually work with the same mutation operator as simple

GAs (every allele is altered with a low probability pM), the crossover

operator is replaced by a more general cut and splice operator which also

allows to mate parents with different lengths. The basic idea is to choose

cut sites for both parents independently and to splice the four fragments.

Figure 9-35 shows an example.

4b.7.2 Adaptive Genetic Algorithms

Adaptive GAs are those whose parameters, such as the population size, the

crossing over probability, or the mutation probability, are varied while the

GA is running. A simple variant could be the following: The mutation rate

is changed according to changes in the population- the longer the population

does not improve, the higher the mutation rare is chosen. Vice versa, it is

decreased again as soon as an improvement of the population occurs.

4b.7.2.1 Adaptive Probabilities of Crossover and Mutation

It is essential to have two characteristics in GAs for optimizing multimodal

functions. The first characteristic is the capacity to converge wan optimum

226

Soft Computing Techniques (local or global) after locating the region containing the optimum. The

second characteristic is the capacity to explore new regions of the solution

space in search of the global optimum. The balance between these

characteristics of the GA is dictated by the values of Pw and Pn and the type

of crossover employed. Increasing values of Pw and Pr promote

exploitation at the expense of exploitation. Moderately large values of Pc

(in the range 0.5-1.0) and small values of Pw (in the range 0.001-0.05) are

commonly employed in GA practice. In this approach, we aim at achieving

this trade-off between exploitation and exploitation in a different manner,

by varying, and Pm adaptively in response to the fitness values of the

solutions; Pr and Pm are increased when the population tends to get stuck

at a local optimum and are decreased when the population is scattered in the

solution space.

4b.7.2.2 Design of Adaptive pc and Pm

To vary Pr and Pm adaptively for preventing premature convergence of the

GA to a local optimum, it is essential to identify were the GA is converging

to an optimum. One possible way of detecting is to observe average fitness

value f of the population in relation to the maximum fitness value fmax of

the population. The value fmax - f is likely to be less for a population that

has converged to an optimum solution than that for a population scattered

in the solution space. We have observed the above property in all our

experiments with GAs, and Figure 9-36 illustrates the property for a typical

case. In Figure 9-36 we notice that fmax – f decreases when the GA

converges to a local optimum with a fitness value of 0.5. (The globally

optimal solution has a fitness value of 1.0.) We use the difference in the

average and maximum fitness value, fmax - f, as a yardstick for detecting

the convergence of the GA. The values of Pc and Pm are varied depending

on the value of fmax. - f. Since Pc and Pm have to be increased when the

GA converges to a local optimum, i.e., when fmax - f decreases, Pc and Pm

will have to be varied inversely with fmax - f. The expressions that we have

chosen for Pc and Pm are of the form

Pc = k1/ (fmax - f)

Pm = k2/ (fmax - f)

Figure 4b.22 Variation of fmax – f and f best (best fitness).

227

Genetic Algorithm It has to be observed in the above expressions that Pc and Pm do not depend

on the fitness value of any particular solution, and have the same values for

all the solution of the population. Consequently, solutions with high fitness

values as well as solutions with low fitness values are subjected to the same

levels of mutation and crossover. When a population converges to a globally

optimal solution (or even a locally optimal solution), Pc and Pm increase

and may cause the disruption of the neat-optimal solutions. The population

may never converge to the global optimum. Though we may prevent the

GA from getting stuck at a local optimum, the performance of the GA (in

terms of the generations required for convergence) will certainly

deteriorate.

To overcome the above-stated problem, we need to preserve "good"

solutions of the population. This can be achieved by having lower values of

Pc and Pm for high fitness solutions and higher values of Pc and Pm for

low fitness solutions. While the high fitness solutions aid in the convergence

of the GA, the low fitness solutions prevent the GA from getting stuck at a

local optimum. The value of Pm should depend not only on fmax – f but

also on the fitness value f of the solution. Similarly, Pc should depend on

the fitness values of both the parent solutions. The closer f is to fmax the

smaller Pm should be, i.e., Pm should vary directly as fmax – f. Similarly,

Pc should vary directly as fmax – f1', where f1 is the larger of the fitness

value of the solutions to be crossed. The expressions for Pc and Pm now

take the forms

'

1 max 1

'

2 max 2

[() / ()], 1.0

[() / ()], 1.0

c max

m max

p k f f f f k

p k f f f f k

   

   
………..(33)

(Here k1 and k2 have to be less than 1.0 to constrain Pc and Pm to the

range 0.0-1.0.)

Note that Pc and Pm are zero for the solution with the maximum fitness.

Alsop, = k1 for a solution with f = f, and Pm = k2 for a solution with f = f.

For solution with subaverage fitness values, i.e., f < f, Pc and Pm might

assume values larger than 1.0. To prevent the overshooting of Pc and Pm

beyond 1.0, we also have the following constraints:

3

4

, '

,

c

m

p k f f

p k f f

 

 
………..(34)

where k3, k4 < 1.0.

4b.7.2.3 Practical Considerations and Choice of Values for k1, k2, k3

and k4

In the previous subsection, we saw that for a solution with the maximum

fitness value Pc and Pm are both zero. The best solution in a population is

transferred undisrupted into the next generation. Together with the selection

228

Soft Computing Techniques mechanism, this may lead to an exponential growth of the solution in the

population and may cause premature convergence. To overcome the above-

mued problem, we introduce a default mutation rate (of 0.005) for every

solution in the Adaptive Genetic Algorithm (AGA).

We now discuss the choice of values for k1, kz, k3 and k4. For convenience,

the expressions for Pc and Pm are given as

'

1 max

3

'

2 max

4

() / (),

,

() / (),

,

c max

c

m max

m

p k f f f f f f

p k f f

p k f f f f f f

p k f f

   

 

   

 

………..(35)

where k1, k2, k3, k4 < 1.0.

It has been well established in GA literature that moderately large values of

Pc (0.5 < Pc < 1.0) and small values of Pm (0.001 < Pm < 0.05) are essential

for the successful working of GAs. The moderately large values of Pc

promote the extensive recombination of sthemata, while small values of Pm

are necessary to prevent the disruption of the solutions. These guidelines,

however, are useful and relevant when the values of Pc and Pm do not vary.

One of the goals of the approach is to prevent the GA from getting stuck at

a local optimum. To achieve this goal, we employ solutions with subaverage

fitnesses to search the search space for the region containing the global

optimum. Such solutions need to be completely disrupted, and for this

purpose we use a value of 0.5 for k4. Since solutions with a fitness value of

f should also be disrupted completely, we assign a value of 0.5 to k2 as well.

Based on similar reasoning, we assign k1and k3 a value of 1.0. This ensures

that all solutions with a fitness value less than or equal to f compulsorily

undergo crossover. The probability of crossover decreases as the fitness

value (maximum of the fitness values of the parent solutions) tends to fmax

and is 0.0 for solutions with a fitness value equal to fmax.

4b.7.3 Hybrid Genetic Algorithms

As they use the fitness function only in the selection step, GAs are blind

oprimizers which do not use any auxiliary information such as derivatives

or other specific knowledge about the special strucrure of theobjective

function. If there is such knowledge, however, ir is unwise and inefficient

not to make use of ir.Several investigations have shown that a lot of

synergism lies in the combination of genetic alj!orirhms andconventional

methods.

The basic idea is co divide the optimization task into two complementary

parts. The GA does the coarse, global optimization while local refinement

is done by the conventional method (e.g. gradient-based, hill climbing,

229

Genetic Algorithm greedy algorithm, simulated annealing, ere.). A number of variants are

reasonable:

1. The GA performs coarse search first. Afrer the GA is completed, local

refinement is done.

2. The local method is integrated in the GA. For instance, every K

generations, the population is doped witha locally optimal individual.

3. Both methods run in parallel: All individuals are continuously used as

initial values for the local method. The locally optimized individuals

are re-implanred into the current generation.

In this section a novel optimization approach is used that switthes between

global and local search methods based on the local topography of the design

space. The global and local optimizers work in concert to efficiently locate

quality design points better than either could alone. To determine when it is

apptopriate to execute a local search, some characteristics about the local

area of the design space need to be determined. One good source of

information is contained in the population of designs in the GA. By

calculating the relative homogeneity of the population we can get a good

idea of whether there are multiple local optima located within this local

region of the design space.

To quantify the relative homogeneity of the population in each subspace,

the coefficient of variance of the objective function and design variables is

calculated. The coefficient of variance is a normalized measure of variation,

and unlike the actual variance, is independent of the magnitude of the mean

of the population. A high coefficient of variance could be an indication that

there are multiple local optima present. Very low values could indicate that

the GA has converged to a small area in the design space, warranting the

use of alocal search algorithm to find the best design within this region.

By calculating the coefficient of variance of the both the design variables

and the objective function as the optimization progresses, it can also be used

as a criterion to switch from me global to the local optimizer. As the

variance of the objective values and design variables of the population

increases, it may indicate that the optimizer is exploting new areas of the

design space or hill climbing. If the variance is decreasing, the optimizer

may be converging toward local minima and the optimization process could

be made more efficient by switching to a local search algorithm.

The second method, regression analysis, used in this section helps us

determine when to switch between the global and local optimizer. The

design data present in the current population of the GA can be used

toprovide information as to the local topography of the design space by

attempting to fit models of various order to it.

The use of regression analysis to augment optimization algorithms is not

new. In problems in which the objective function or consrrainrs are

computationally expensive, approximations to the design space are created

by sampling the design space and then using regression or other methods to

230

Soft Computing Techniques create a simple mathematical model that closely approximates the actual

design space, which may be highly nonlinear. The design space can then be

exploted to find regions of good designs or optimized to improve the

performance of the system using the predictive surrogate approximation

models instead of the computarionally expensive analysis code, resulting in

large computational savings. The most common regression models are

linear and quadratic polynomials created by performing ordinary least

squares regrssion on a set of analysis data.

To make dear the use of regression analysis in this way, consider Figure 9-

37, which represents a complex design space. Our goal is to minimize this

function, and as a first step the GA is run. Suppose that afrer acertain

number of generarions the population consists of the sampled points shown

in the figure. Since the population of the GA is spread throughout the design

space, having yet to converge into one of the local minima, it seems logical

to continue the GA for additional generations. Ideally, before the local

optimizer is run it would be beneficial to have some confidence that its

starting point is somewhere within the mode that contains the optimum.

Fitting a second-order response surface to the data and noting the large error

(the R2 value is 0.13), ther is a dear indication that the GA is currently

exploting multiple modes in the design space.

In Figure 9-38, the same design space is shown but afrer the GA has begun

to converge into the part of the design space containing the optimal design.

Once again a second-order approximation is fir to GA's population. The

dotted line connects the points predicted by the response surface. Note how

much smaller the error is in the approximation (the R2 is 0.96), which is a

good indication that the GA is currently exploting a single mode within the

design space. At this point, the local optimizer can be made to quickly

converge to the best solution within this area of the design space, thereby

avoiding the slow convergence propenies of the GA.

After each generarion of the global optimizer the values of the coefficient

of determination and the coefficient of variance of the enrire population are

compared with the designer specified threshold levels.

Figure 4b.23 Apptoximating multiple modes with a second-order model.

231

Genetic Algorithm

Figure 4b.24 : Apptoximating a single mode with a

second-order model.

The first threshold simply states that if coefficient of determination of the

population exceeds a designer set value when a second-order regression

analysis is performed on the design data in the current GA population, then

a local search is started from the current 'best design' in the population. The

second threshold is based on the value of the coefficient of variance of the

entire population. This threshold is also set by the designer and can range

upwards from O%. If it increases at a rate greater than the threshold level

then a local sarch is execuced from the best point in the population.

The flowchart in Figure 9-39 illustrates the stages in the algorithm. The

algorithm can switch repeatedly between the global search (Stage 1) and the

local search (Stage 2) during execution. In Stage I, the global search is

initialized and then monitored. This is also where the regression and

statistical analysis occurs.

In Stage 2 the local search is executed when the threshold levels are

exceeded, and then this solution is passed back and integrated two the global

search. The algorithm scops when convergence is achieved for the global

optimization algorithm.

4b.7.4 Parallel Genetic Algorithm

GAs are powerful search techniques that are used successfully to solve

problems in many different disciplines. Parallel GAs (PGAs) are

particularly easy to implement and promise substantial gains in

performance. As such, there has been extensive research in this field. The

section describes some of the most significant problems in modeling and

designing multi-population PGAs and presents some recent advancemenrs.

One of the major aspects of GA is their ability to be parallelized. Indeed,

because natural evolution deals with an entire population and not only with

particular individuals, it is a remarkably highly parallel process. Except in

the selection phase, during which there is competition between individuals,

the only interactions between remembers of the population occur during the

reproduction phase, and usually, no more than two individuals are necessary

232

Soft Computing Techniques to engender a new child. Otherwise, any other operations of the evolution,

in particular the evaluation of each member of the population, can be done

separately. So, neatly all the operations in a genetic algorithm are implicitly

parallel.

PGAs simply consist in distributing the task of a basic GA on different

processors. As those tasks are implicitly parallel, little time will be spent on

communication; and rhus, the algorithm is expected to run much faster or

to find more accurate this.

It has been established chat GA's efficiency co find optimal solution is

largely determined by the population size. With a larger population size, the

genetic diversity increases, and so the algorithm is more likdy to find a

global optimum! A large population requires more memory to be scored; it

has also been ptoved that it takes a longer time to converge. If n is the

population size, the convergence is expected aft:er n log(n) function

evaluations.

Figure 4b.25 : Steps in two·stage hybrid optimization approach.

The use of mday's new parallel computers not only provides more storage

space but also allows the use of several processors to produce and evaluate

more solutions in a smaller amount of time. By parallelizing the algorithm,

it is possible D increase population size, reduce the computational cost, and

so improve the performance of the GA.

Probably the first attempt to map GAs to existing parallel computer

architectures was made in 1981 by John Grefensrerre. But obviously today,

with the emergence of new high-performance computing (HPC), PGA is

really a flourishing area. Researthers try to improve performance of GAs.

233

Genetic Algorithm The stake is to show that GAs are one of the besr optimization methods to

be used with HPC.

4b.7.4.1 Global Parallelization

The first attempt to parallelize GAs simply consists of global

parallelization. This approach nics to explicitly parallelize the implicit

parallel tasks of the "sequential" GA. The nature of the problems remains

unchanged. The algorithm still manipulates a single population where each

individual can mare with any other, but the breeding of new children and/or

their evaluation are now made in parallel. The basic idea is that different

processors can create new individuals and compme their fir ness in parallel

almost without any communication among each other.

To start with, doing the evaluation of the population in parallel is something

really simple co implement. Each processor is assigned a subset of

individuals to be evaluated. For example, on a shared memory computer,

individuals could be stored in shared memory, so that each processor can

read the chtomosori:tes assigned and c:an write back the resnlr of the fitness

computation. This method only supposes iliat the GA works with a

generational update of the population. Of course, some synchtonization is

needed between generations.

Generally, most of the computational time in a GA is spent calling the

evaluation function. The time spent in manipulating the chromosomes

during the selection or recombination phase is usually negligible. By

assigning to each processor a subset of individuals m evaluate, a speedup

proportional to the number of processors can be expeaed if there is a good

load balancing between them. However, load balancing should not be a

problem as generally the time spent for the evolution of an individual does

not really depend on dle individual. A simple dynamic stheduling algorithm

is usually enough to share the population between each processor equally.

On a distribmed memory compUter, we can smre the population in one

"master" processor responsible for sending the individuals to the other

processors, i.e., "slaves." The master processor is also responsible for

collecting the result of the evaluation. A drawback of this distributed

memory implementation is that a bottleneck may occur when slaves are idle

while only the master is working. But a simple and good use of the master

processor can improve the load balancing by distributing individuals

dynamically tothe slave processors when they finish their jobs.

A further seep could consist in applying thegenetic operators in parallel. In

fact, the interaction inside the population only occurs during selection. The

breeding, involving only two individuals to generate he offspring, could

easily be done simultaneously over n/2 paits of individuals. But it is not chat

clear if it worth doing so. Crossover is usually very simple and not so time-

consuming; the point is nor that too much time will be lost during the

communication, but that the time gain in the algorithm will be almost

nothing compared to the effort produced to change the code.

This kind of global parallelization simply shows how easy it can be to

transpose any GA onto a parallel machine and how a speed-up sublinear to

the number of processors may be expected.

234

Soft Computing Techniques 4b.7.4.2 Classification of Parallel GAs

The basic idea behind most parallel programs is to divide a cask into chunks

and co solve the chunkssimulraneously using multiple processors. This

divide-and-conquer approach can be applied toGAs in many different ways,

and the literature contains many examples of successful parallel

implementations. Some parallelizacion methods use a single population,

while others divide the population into several relatively isolated

subpopulacions. Some methods can exploit massively parallel computer

architectures, while others are better suited to multicomputers with fewer

and more powerful processing elements.

There are three main cypes of PGAs:

1. global single-population master-slave GAs,

2. single-population fine-grained,

3. multiple-population coarse-grained GAs.

In a master-slave GA there is a single panmicric population (just as in a

simple GA), but the evaluation of fitness is distributed among several

processors (see Figure 9-40). Since in this type of PGA, selection and

crossover consider the entire population it is also known as global PGA.

Fine-grained PGAs are suited for massively parallel computers and consist

of one spatially structured population. Selection and mating are resrricred

to a small neighbothood, but neighbothoods overlap permitting some

interaction among all the individuals (see Figure 9-41 for a sthematic of this

class of GAs). The ideal case is co have only one individual for every

processing element available.

Multiple-popuJarion (or multiple-deme) GAs are more sophisticated, as

they consist in several subpopulacions which exchange individuals

occasionally (Figure 9-42 has a sthematic). This exchange of individuals

Master Workers

Figure 4b.26 A sthematic of a master-slave PGA. The master stores the

population, executes GA operations and distributes individuals to the

slaves. The slaves only evaluate the fitness of the individuals.

235

Genetic Algorithm

Figure 4b.27 A sthematic of a fine-grained PGA. This class ofPGAs has

one spadally distributed popularion, and ir can be implemented very

efficiently on massively parallel compmers.

Figure 4b.28 A sthematic of a mulciple-populaTion PGA. Each process is

a simple GA, and there is (infrequent) communicadon between the

populations.

is called migration and, as we shall see in later sections, it is conttolled by

several parameters. Multiple-deme GAs are very popular, but also are the

class ofPGAs which is most difficult to understand, because the effects of

migration are not fully understood. Multiple-deme PGAs introduce

fundamental changes in the operation of the GA and have a different

behavior than simple GAs.

Multiple-deme PGAs are known with different names. Sometimes they are

known as "distributed" GAs, because they are usually implemented on

distributed memory MIMD computers. Since the computation to

communication ratio is usually high, they are occasionally called coarse-

grained GAs. Finally, multipledeme GAs resemble the "island model" in

Population Genetics which considers relatively isolated demes, so the PGAs

are also known ·as "island" PGAs. Since the size of the demes is smaller

than the population used by a serial GA, we would expect that lhe PGA

converges faster. However, when we compare the performance of the serial

and the parallel algorithms, we must also consider the qualicy of the

solutions found in each case. Therefore, while it is true that smaller demes

236

Soft Computing Techniques converge faster, it is also true iliar the qualicy of the solution might be

poorer.

It is important to emphasize that while the master-slave parallelization

method does not affect the behaviour of the algorithm, the last two methods

change the way the GA works. For example, in master-slave PGAs,

selection takes into account all the population, but in the other two PGAs,

seleccion only considers a subset of individuals. Also, in the mascerslave

any two individuals in the population can mare (i.e., there is random

mating), but in the other methods mating is restricted to a subset of

individuals.

The final merhod to parallelize GAs combines multiple demes with

masrerslave or finegrained GAs. We call this class of algorithms

hierarchical PGAs, because at a higher level they are multipledeme

algorithms with single-population PGAs (either master-slave or

finegrained) at the lower level. A hierarchical PGA combines the benefits

of its components, and it ptomises bener performance than any of them

alone.

Master-slave parallelization: This section reviews the masterslave (or

global) parallelization method. The algorithm uses a single population and

the evaluation of the individuals and/or the application of genetic operators

are done in parallel. As in the serial GA, each individual may compete and

mate with any other (thus selection and mating are global). Global PGAs

are usually implemented as masrer-slave programs, where the master stores

the population and the slaves evaluate the fitness.

The most common operation iliac is parallelized is the evaluation of the

individuals, because the fitness of an individual is independent from the rest

of the population, and there is no need to communicme during this phase.

The evaluation of individuals is parallelizcd by assigning a fraction of the

population to each of the processors available. Communication occurs only

as each slave receives its subset of individuals to evaluate and when the

slaves return the fitness values. If the algorithm stops and waits to receive

the fitness values for all the population before proceeding into the next

generation, then the algorithm is synchronous. A synchronous master slave

GA has exactly the same properties as a simple GA, with speed being the

only difference. However, ir is also possible to implement an a synchronous

master-slave GA where the algorithm does not stop to wait for any slow

processors, but it does not work exactly like a simple GA. Most global PGA

implementations are synchtonous and the rest of the paper assumes that

global PGA carry our exactly the same search of simple GAs.

The global paralleliz. An ion model does not assume anything about the

underlying computer architecture, and it can be implemented efficiently on

shared memory and distributed-memory computers. On a shared memory

multiprocessor, the population could be slotted in shared memory and each

processor can read the individuals assigned co it and write the evaluation

results back without any conflicts.

237

Genetic Algorithm On a distributed-memory computer, the population can be scored in one

processor. This "master" processor would be responsible for explicitly

sending the individuals to the other processors {the "slaves") for evaluation,

collecting the results and applying the genetic operators to produce the next

generation. The number of individuals assigned to any processor may be

constant, but in some cases (like in a multiuser environment where the

utilize. action of processors is variable) it may be necessary to balance the

computational load among the processors by using a dynamic scheduling

algorithm (e.g., guided self scheduling).

Multiple-deme parallel GAs: The important characteristics of multiple-

deme PGAs are the use of a few relatively large subpopulations and

migration. Multiple-deme GAs are the most popular parallel method, and

many papers have been written describing innumerable aspects and derails

of their implementation.

Probably the first systematic srudy of PGA<i with multiple populations was

Grosso's dissertation. His objective was to simulate the interaction of

several parallel subcomponents of an evolving population. Grosso

simulated diploid individuals (so there were two subcomponents for each

"gene"), and the population was divided into five demes. Each deme

exchanged individuals with all the others with a fixed migration rate.

With controlled experiments, Gtosso found cha the improvement of the

average population fitness was faster in the smaller demes than in a single

large panmictic population. This confirms a long held principle in

Population Genetics: favourable traits spread faster when the demes are

small chain when the demes are large. However, he also observed that when

the demes were isolated, the rapid rise in fitness stopped at a lower fitness

value than with the large population. In other words, the quality of the

solution found after convergence was worse in the isolated case chain in the

single population.

With a low migration rate, the demes still behaved independently and

exploited different regions of the search space. The migrants did not have a

significant effect on the receiving deme and the quality of the solutions was

similar to the case where the demes were isolated. However, at intermediate

migration rates the divided population found solutions similar to those

found in the panmictic population. These observations indicate that there is

a critical migration rate below which the performance of the algorithm is

obstructed by the isolation of the demes, and above which the partitioned

population finds solutions of the same quality as the panmictic population.

It is interesting that such important observations were made so long ago, at

the same time that other systematic studies of PGAs were underway. For

example, Tanese proposed a PGA with the demes connected on a four-

dimensional hypercube topology. In Tanese's algorithm, migration occurred

at fixed intervals between processors a Jong one dimension of the

hypercube. The migrants were chosen probabilistically from the best

individuals in the subpopulation, and they replaced the worst individuals in

the receiving deme. Tanese carried out three sees of experiments. In the

238

Soft Computing Techniques first, the interval between migrations was ser to five generations, and the

number of processors varied. In tests with two migration rates and varying

the number of processors, the PGA found results of the same quality as the

serial GA. However, it is difficult to see from the experimental results if the

PGA found the solutions sooner than the serial GA, because the range of

the chimes is too large. In the second set of experiments, Tanese varied the

mutation and crossover rates in each deme, attempting to find parameter

values to balance exploration and exploitation. The third set of experiments

studied the effect of the exchange frequency on the search, and the results

showed than migrating too frequency or too infrequently degraded the

performance of the algorithm.

The multimember PGAs are popular due to the following several reasons:

l. Multiple-deme GAs seem like a simple extension of the serial GA.

The recipe is simple: take a few conventional (serial) GAs, run each

of them on a node of a parallel computer, and at some predetermined

times exchange a few individuals.

2. There is relatively little extra effort needed to convert a serial GA into

a multiple-deme GA. Most of the program of the serial GA remains

the same and only a few subtoutines need to be added co implement

migration.

3. Coarse-grain parallel computers are easily available, and even when

they are not, it is easy co simulate one with a network of workstations

or even on a single processor using free software (like MPI or PVM).

There are a few important issues noted from the above sections. For

example, PGAs are very promising in terms of the gains in performance.

Also, PGAs are more complex than their serial counterparts. In particular,

the migration of individuals from one deme to another is conttolled by

several p:uameters like (a) the topology that defines the connections

between the subpopulations, (b) a migr;uion r;Ht:: rh.lt controls how many

individuals migrate and (c) a migration interval that affects the frequency

<'lK· of mir.1inn. In rht.' btl' 1 1lS(h .ullll·arl· 1990 the research on PGA:;

began to explote alternatives to make PGAs faster and to understand better

how they worked.

Around this time the first theoretical studies on PGAs began to appear and

the empirical research attempted to identify favourable parameters. This

section reviews some of that early theoretical work and experimental studies

on migration and topologies. Also in this period, more researchers began to

use multiple population GAs co solve application problems, and this section

ends with a brief review of their work.

One of the directions in which the field matured is that PGAs began to be

tested with very large and difficult test functions.

Fine-grained PGAs: The development of massively paralel compmers

triggers a new approach of PGAs. To take advantage of new architectures

with even a greater number of processors and less communication coslS,

239

Genetic Algorithm fine-grained PGAs have been devoted. The population is now partitioned

into a la..tge number of very small subpopulations. The limit (and may be

ideal) case is to have just one individual for every processing element

available.

"Basically, the population is mapped onto a connected processor graph,

usually, one individual on each processor. (But it works also more than one

individual on each processor. In this case, it is preferable to choose a

multiple of the number of processors for the population size.) Mating is only

possible between neighbouring individual, i.e, individuals stored on

neighbouring processors. The selection is also done in a neighbourhood of

each individual and so depends only on local information. A motivation

behind local selection is biological. In nature there is no global selection,

instead natural selection is a local phenomenon, raking place in an

individual's local environment.

If we want to compare this model to the island model, each neighborhood

can be considered as a different deme. But here, the demes overlap

providing a way w disseminate good solutions across the entire population.

Thus, the topology does not need w explicitly define migration toads and

migration rare.

It is common to place the population on a two-dimensional or three-

dimensional torus grid because in many massively parallel computers the

processing elements are connected using this topology. Consequently each

individual has four neighbours. Experimentally, it seems that good results

can be obtained using a topology with a medium diameter and

neighborhoods nor too large. Like the coarse-grained models, it worth

trying to simulate this model even on a single processor to improve the

results. Indeed, when the population is stored in a grid like this, after few

generations, different optima could appear in different places on the grid.

To sum up, with parallelization of GA, all the different models proposed

and all the new models we can imagine by mixing those ones, can

demonstrate how well GA are adapted to parallel comparison. In fact, the

too many implementations reponed in the literature may even be confusing.

We really need to understand what truly affects the performance of PGAs.

Fine-grained PGAs have only one population, but have a spatial structure

that limits the interactions between individuals. An individual can only

compere and mate with its neighbours; but since the neighbothoods overlap

good solutions may disseminate across the entire population.

Robertson parallelized the GA of a classifier system on a Connection

Machine 1. He parallelized the selection of parents, the selection of

classifiers to replace, mating, and cl-ossover. The execution time of his

implementation was independent of the number of classifiers (up to 16K,

the number of processing elements in the CM-1).

Hierarchical parallel algorithms: A few researchers have cried to combine

two of the methods to parallelize GAs, producing hierarchical PGAs. Some

of these new hybrid algorithms add a new degree of complexity to .the

240

Soft Computing Techniques already complicated scene of PGAs, but other hybrids manage to keep the

same complexity as one of their components. When two methods of

parallelizing GAs are combined they form a hierarchy. At the upper level

most of the hybrid PGAs ace multiple-population algorithms.

Some hybrids have a fine-grained GA at the lower level (see Figure 9-43).

For example Gruau invented a "mixed" PGA. In his algorithm, the

population of each deme was placed on a two-dimensional grid, and the

demes themselves were connected as a two-dimensional to M. Migration

between demes occurred at regulate intervals, and good results were

reported for a novel neucal network design and uaining application.

Another type of hierarchical PGA uses a master-slave on each of the demes

of a multi-population GA (see Figure 9-44). Migration occurs between

demes, and the evaluation of the individuals is handled in parallel. This

approach does not introduce new analytic problems, and it can be useful

when working with complex applications with objective functions that need

a considerable amount of computation time. Bianchini and

Figure 4b.29 Hierarchical GA combines a multiple-deme GA (ar the upper

level) and a fine-grained GA {at the lower level).

Figure 4b.30 A schematic of a hierarchical PGA. At the upper level this

hybrid is a mulci-deme PGA where each node is a master-slave GA.

241

Genetic Algorithm

Figure 4b.31 This hybrid uses mulciple-deme GAs ar both the upper and

the lower levels. At the lower level the migration rate is faster and the

communications topology is much denser than at the upper level.

Btown presented an example of this method of hybridizing PGAs, and

showed that it can find a solution of the same quality as of a masrerslave

PGA or a multipledeme GAin less time.

Interestingly, a very similar concept was invented by Goldberg in the

context of an objecr·oriented implementation of a "community model"

PGA. In each "community" there are multiple houses where parents

reproduce and the offsprings are evaluated. Also, there are multiple

communities and ir is possible that individuals migrate to other places.

A third method of hybridizing PGAs is to use multiple-deme GAs at both

the upper and the lower levels (see Figure 9-45). The idea is to force

panmiaic mixing ar the lower level by using a high migration rate and a

dense topology, while a low migration rate is used at the high level. The

complexity of this hybrid would be equivalent to a multiplepopularion GA

if we consider the gtoups of panmicric subpopularions as a single deme.

This method has nor been implemented yet. Hierarchical implementations

can reduce the execution time more than any of their components alone.

4b.7.4.3 Coarse· Grained PGAs - The Island Model

The second class of PGA is once again inspired by nature. The population

is now divided into a few subpopulations or demes, and each of these

relatively large demes evolves separately on different processors. Exchange

between subpopularions is possible via a migration operator. The term

island model is easily understandable; the GA behave as if the world was

constituted of islands where populations evolve isolated from each other.

On each island the population is free to converge award different optima.

The migration operator allows "merissage" of the different sub populations

and is supposed to mix good features that emerge locally in the different

demes.

242

Soft Computing Techniques We can notice chat this time the nature of the algorithm changes. An

individual can no longer breed with any other from the entire population,

but only with individuals of the same island. Amazingly, even if this

algorithm has been developed to be used on several processors, it is wonh

simulating it sequentially on one processor. It has been shown on a few

problems that better results can be achieved using this model. This

algorithm is able to give different suboptimal solutions, and in many

problems, it is an advantage if we need to determine a kind of landscape in

the search space to know where the good solutions are located. Another

great advantage of the island model is iliat cite population in each island can

evolve wiili different rules. That can be used for multicriterion optimization.

On each island, selection can be made according to different fitness

functions, representing different criterions. For example it can be useful to

have as many islands as criteria, plus another central island where 'selection

is done with a multicriterion fitness function.

The migration operator allows individuals to move betwen islands, and

therefore, m mix criteria.

In lirerarure this model is sometimes also referred as the coarsegrained

PGA. (In parallelism, grain size refers m the ratio of time spent in

computation and time spent in communication; when the ratio is high the

processing is called coarsegrained). Sometimes, we can also find the term

"distributed" GA, since they are usually implemented on distributed

memory machines (MIMD Computers).

Technically there are three important features in the coarsegrained PGA:

the topology that defines connections between sub populations, migration

rare that conttols how many individuals migrate, migration intervals chat

affect how often the migration occurs. Even if a lot of work has been done

to find optimal mpology and migration parameters, here, intuition is still

used more often than analysis with quite good results.

Many topologies can be defined m connect the demes, but the most common

models are the island model and the steppingstones model. In the basic

island model, migration can occur between any subpopulations, whereas in

the Stepping stone demes are disposed on a ring and migration is restricted

to neighbouring demes. Works have shown that cite topology of the space

is nor so important as long as ir has high connectivity and small diameter to

ensure adequate mixing as time proceeds.

Choosing the right time for migration and which individuals should migrate

appears to be more complicated. Quite a lot of work is done on this subject,

and problems come from the following dilemmas. We can observe that

species are converging quickly in small isolated populations. Nevertheless,

migrations should occur after a time long enough for allowing the

development of goods characteristics in each subpopulation. It also appears

that, immigration is a trigger for evolutionary changes. If mjgrarion occurs

after each new generation, the algorithm is more or le equivalent to a

sequencia\ GA with a larger population. In praaice, migration occurs either

after a fixed number of iterations in each deme or at uniform periods of time.

243

Genetic Algorithm Migrants are usually selected randomly from the best individuals in the

population and they replace the worst in the receiving deme. In fact,

intuition is still mainly used to fix migration rare and migration intervals;

there is absolurely nothing rigid, each personal cooking recipe may give

good results.

4b.7.5 Independent Sampling Genetic Algorithm (ISGA)

In the independent sampling phase, we design a core stheme, named the

"Building Block Detecting Strategy" (BBDS), to extract relevam building

block information of a fitness landscape. In this way, an individual is able

to sequentially construct more highly fir partial solutions. For Toyal Toad

Rl, the global optimum can be attained easily. For other more complicared

fitness landscapes, we allow a number of individuals to adopt the BBDS

and independently evolve in parallel so that each sthema region can be given

samples indepcndently. During this phase, the population is expected to be

seeded with ptomising genetic material. Then follows the breeding phase,

in which individuals are paired for breeding based on two mate-selection

sthemes (Huang, 2001): individuals being assigned mates by natural

selection only and individuals being allowed to actively choose their mares.

In the Iauer case, individuals are able to distinguish candidate mates that

have the same fitness yet have different string structures, which may lead to

quite different performance after crossover. This is nor achievable by

natural selection alone since it assigns individuals of the same fitness the

same probability for being mares, without explicitly raking into account

string suucrures. In short, in the breeding phase individuals manage to

construct even more ptomising sthemata thtough the recombination of

highly fir building blocks found in the first phase. Owing to the thatacteristic

of independent sampling of building blocks that distinguishes the ptoposed

GAs from tonventional GAs, we name this type of GA independent

sampling genetic algorithms (ISGAs).

4b.7.6 Tomparison of ISGA with PGA

The independent sampling phase of ISGAs is similar m the fine-grained

PGAs in the sense that each individual evolves autonomously, although

ISG.As do not adopt the population scrucrure. An initial population is

randomly generated. Then in every cycle each individual does local hill

climbing, and creates the next population by mating with a parmer in its

neighbothood and replacing parents if offsprings are better. By tontrast, IS

Gas partition the genetic processing into two phases: the independent

sampling phase and the breeding phase as described in the preceding

section. Third, the approach employed by each individual for improvement

in IS GAs is different from that of the PGAs. During the independent

sampling phase of ISGAs, in each cycle, through the BBDS, each individual

attempts to extract relevant informacion of potential building blocks

whenever its fitness increases. Then, based on the sthema information

accumulated, individuals tontinue to tonstruct more tomplicated building

blocks. However, the individuals of fine-grained PGAs adopt a local hill

climbing algorithm that does not manage to extract relevant information of

potential sthemata.

244

Soft Computing Techniques The motivation of the two phased ISGAs was partially from the messy

genetic algorithms (mGAs). The two stages employed in the mGA.s are

"prtwordial phase" and "juxtaPositional phase," in which the mGAs first

emphasize candidate building blocks based on the guess at the order k of

small sthemata, then just aposing them to build up global optima in the

second phase by "cut" and "splice" operators. However, in the first phase,

the mGAs still adopt centralized selection to emphasize some candidate

sthemata; this in rum results in the loss of samples of other potentially

ptomising sthemata. By tontrast, IS GAs manage to postpone the emphasis

of candidate building blocks to the latter stage, and highlight the fearure of

independent sampling of building blocks to suppress hitchhiking in the first

phase. As a result, population is more diverse and implicit parallelism can

be fulfiUed to a larger degree. Thereafter, during the second phase, ISGA.s

implement population breeding thtough two mateselecrion sthemes as

discussed in the preceding section. In the following subsections, we present

the key tomponenrs of ISGAs in detail and show the tomparisons between

the expetimental results of the ISGAs and those of several other GAs on two

benchmark test functions.

4b.7.6 .1 Tomponents of ISGAs

ISGAs are divided into two phases: the independent sampling phase and the

breeding phase. We describe them as follows.

Independent sampling phase: To implement independent sampling of

various building blocks, a number of strings are allowed w evolve in parallel

and each individual searthes for a possible evolutionary path entirely

independent of others.

In this section, we develop a new searching strategy, BBDS, for each

individual to evolve based on the accumulated knowledge for potentially

useful building blocks. The idea is to allow each individual to probe

valuable information toncerning beneficial sthemata thtough resting its

fitness increase since each time a fitness increase of a string tould tome from

the presence of useful building blocks on it. In short, by systematically

resting each bit to examine whether this bit is associated with the fitness

increase during each cycle, a cluster of bits tonstituting potentially

beneficial sthemata will be untovered. Iterating this process guarantees the

formation oflonger and longer candidate building blocks.

The operation of BBDS on a string can be described as follows:

1. Generate an empty set for tollecting genes of candidate sthemata and

create an initial string with uniform probability for each bit until its

fitness exceeds 0. (Retord the current fitness as Fit.)

2. Except the genes of candidate schemata collected, from lefr to right,

successively all the other bits, one at a time, evaluate the resuhing

string. If the resulting fitness is less than Fit, retord this bit's position

and original value as a gene of candidate sthemata.

245

Genetic Algorithm 3. Except the genes retorded. Randomly generate all the other bits of the

string until the resulting string's fitness exceeds Fit. Replace Fit by

the new fitness.

4. Go to steps 2 and 3 until some end criterion. The idea of this strategy

is that the tooperation of certain genes (bits) makes for good fitness.

Once these genes tome in sight simultaneously, [hey tontribute a fitness

increase w the string tontaining them; thus any .loss of one of these genes

leads to the fitness decrease of the string. This is essentially what step 2

does and after this step we should be able to tollect a set of genes of

candidate sthemata. Then at step 3, we keep the tollected genes of candidate

sthel) lata fixed and randomly generate other bits, awaiting other building

blocks to appear and bring forth another fitness in crease.

However, step 2 in this strategy only emphasizes the f1mess dtop due to a

particular bit. It ignores the possibility that the same bit leads to a new

fitness rise because many loci tould interact in an extremely non linear

fashion. To rake this into actount, the second version ofBBDS is inttoduced

thtough the change in seep 2 as follows.

Step 2: Except the genes of candidate sthemata tollected, from left to right,

successively all the other bits, one at a time, evaluate the resulting string. If

the resulting fitness is less than Fit, retord this bit's position and original

value as a gene of candidate sthemata. If the resulting fitness exceeds Fit,

substitute this bit's 'new' value for the old value, replace Fit by this new

fitness, retord this bit's posicion and 'new' value as a gene of candidate

sthemata, andre-execute this step.

Because this version of BBDS cakes into consideration the fitness increase

resulted from that particular bit, iris expected to cake less time for detecting.

Other versions of RBDS are of tourse possible. For example, in step 2, if

the same bit resuhs in a fitness increase, ir can be retorded as a gene of

candidate sthemata, and the ptocedure tontinues to test the residual bits

yetwithour tompletely traveling back to the first bit to reexamine each bit.

However, the empirical results obtained rhus far indicate that the

performance of this alternative is quire similar to that of the second version.

More expetimental results are needed to distinguish the difference between

them.

The overall implementation of the independent sampling phase of ISGAs is

thtough the ptoposed BBDS to get autonomous evolution of each string

until all individuals in the population have reathed some end criterion.

Breeding phase: After the independent sampling phase, individuals

independendy build up their own evolutionary avenues by various building

blocks. Hence the population is expected to tontain diverse beneficial

sthemata and premature tonvergence is alleviated to some degree. However,

factors such as deception and intompatible sthemata (i.e., two sthemata have

different bit values ar common defining positions) still could lead

individuals to arrive at suboptimal regions of a fitness landscape. Since

building blocks for some strings to leave suboptimal regions may be

246

Soft Computing Techniques embedded in other srrings, the search for ptoper maring partners and then

exploiting the building blocks on them are critical for overwhelming the

difficulty of strings being trapped in undesired regions. In Huang (2001) the

importance of mate selection has been investigated and the results showed

that the GAs is able to improve their performance when the individuals are

allowed to select maces to a larger degree.

In this section, we adopt two mate-selection sthemes analyzed in Huang

(2001) w breed the population: individuals being assigned mates by natural

selection only and individuals being allowed to actively choose their mares.

Since natural selection assigns strings of the same fitness the same

probability for being parents, individuals of identical fitness yet distinct

string structures are treated equally. This may result in significant loss of

performance improvement after crossover.

We adopt the tournament selection stheme (Mitthell, 1996) as the tole of

natural selection and the mechanism for choosing mates in the breeding

phase is as follows:

During each mating evem, a binary tournament selection with ptobabilicy

1.0 is performed to select the first individual out of the two fittest randomly

sampled individuals according to the following sthemes:

1. Run the binary tournament selection again to choose the partner.

2. Run another two times of the binary tournament selection to choose

two highly fit candidate partners; then the one more dissimilar to the

first individual is selected for mating.

The implementation of the breeding phase is thtough iterating each breeding

cycle which consists of (a) two parents obtained on the basis of the

mateseleccion sthemes above. (b) Two-point crossover operator (crossover

rate 1.0) is applied to these parents. (c) Both parents are replaced with both

offsprings if any of the two offsprings is better than them. Then steps (a),

(b) and (c) are repeated until the population size is reathed and this is a

breeding cycle.

4b.7.6 Real-Coded Genetic Algorithms

The variant of GAs for rea.lvalued optimization that is closest to the original

GA are socalled realcoded GAs. Let us assume that we are dealing with a

free Ndimensional realvalued optimization problem, which means X = RN

without tonstraints. In a real-coded GA, an individual is then represented as

an N-dimensional vector of real numbers:

b = (Xi, ….,XN)

As selection does not involve the particular toding, no adaptation needs to

be made- all selection sthemes discussed so far are applicable withour any

restriction. What has to be adapted to £his special structure are the genetic

oper.uions crossover and mutation.

247

Genetic Algorithm 4b.7.6.1 Crossover Operators for Real-Coded GAs

So far, the following crossover sthemes are most common for real-coded

GAs:

Flat crossover: Given two parents b1 = (x1/2, ... , x
1/N) and b2 = (x2/1, ... ,

x2/N), a vector of random values from the unit interval (AJ , ... , AN) is

chosen and the offspring b = (x{, ... , xfv) is tomputed as a vector of linear

tombinations in the following way (for all i = 1, ... , N):

x1
i = i - x

1
i + (1 - i) – x2

i

BLX-α crossover is an extension of flat crossover, which allows an

offspring allele to be also located outside the interval

[min(x1
i, x

2
j), max(x1

i, x
2
i)]

In BLX- α crossover, each offspring allele is chosen as a uniformly

disuibuted random value from the imerval

[min (x1
i, x

2
j), max(x, 1i, x

2
i) + 1-α]

where l = max(x1
i,x

2
i) – min (x1

i,x
2
i). The parameter a has to be chosen in

advance. For a = 0, BLX-a crossover becomes identical to flat crossover.

Simple crossover is nothing else but classical one-point crossover for real

vectors, i.e., a crossover site k  2{ 1, ... , N- 1} is chosen and cwo offspring

are created in the following way:

b1 = (x1
i, ……, x1

k, x
1
k+1 …., x2

N)

bN = (x2
1, ……, x2

k, x
1
k+1 …., x1

N)

Discrete crossover is analogous to classical uniform crossover for real

vectors. An offspring b of the two parents b1 and b2 is composed from

alleles, which are randomly chosen either as x1
i or x2

i.

4b.7.6.2 Mutation Operators for Real-Coded GAs

The following mutation operators are most common for real-coded GAs:

1. Random mutation: For a randomly chosen gene i of an individual b =

(xl, ... , XN), the allele x; is replaced by a randomly chosen value from

a predefined interval Ia, b,].

2. Nonuniform mutation : In nonuniform mutation, the possible impact

of mutation decreases with the number of generations. Assume that

fmax is the predefined maximum number of generations. Then, with

the same setup as in random mumion, the allele xi is replaced by one

of the two values

= x1+A (t,b;- x1)

:if= x;-A (r,x;- a;)

248

Soft Computing Techniques The choice as to which of the two is taken is determined by a random
expetiment with two outtomes that have equal probabilities 1/2 and I /2. The
random variable A (t, x) determines a mutation step from the range 10, xl
in the following way:

D. (t,x) = x(J-),IHd•m•IJ')

In this formula, A is a uniformly distributed random value from the unit
interval. The parameter r determines the influence of the generation index
ton the disrribution of mutation step sizes over the imerval IO,xl.

4B.9 HOLLAND CLASSIFIER SYSTEMS

A Holland classifier system is a classifier system of the Michigan type
which processes binary messages of a fixed length thtough a rule base
whose rules are adapted actording to response of the envitonment.

4b.9.1 The Production System

First of all, the tommunication of theproduction system with the
envitonment is done via an arbitrarily long list of messages. The derectors
translate responses from the environment two binary messages and place
them on the message list which is then scanned and changed by the rule
base. Finally, the effectors translate output messages two actions on the
envitonment, such as forces or movements.

Messages are binaty strings of the same length k. More formally, a message
belongs w {0, l}k. The rule base consists of a fixed number (m) of rules
(classifiers) which tonsist of a fixed number (r) of conditions and an acrion,
where both conditions and actions are strings oflength k over the alphabet
{0, 1, *}.The asterisk plays the tole of a wildcard, a 'don't care' symbol.

A condition is matthed if and only if there is a message in the list which
matthes the tondition in all nonwildcard positions. Moreover, conditions,
except the first one, may be negated by adding a'-' prefix. Such a prefixed
tondition is satisfied if and only if there is no message in the list which
marthes the string associated with the tondition. Finally, a rule fires if and
only if all the conditions are satisfied, i.e., the conditions are tonnected with
AND. Such 'firing' rules tompere to put their action messages on the
message list.

In the action pans, the wildcard symbols have a different meaning. They
take thetole of 'pass through' element. The outpm message of a firing rule,
whose action parr tontains a wildcard, is composed from the actually the
reason why Ilegations of the first conditions are not allowed. More formally;
the outgoing message m is defined as

where a is the action part of the classifier and m is the.(Ilessage which
matthes the first tondition. Formally, a classifier is a suing of the form

Cond1,|’-‘|| Cond2, ……, |’-‘ Cond,/Action

249

Genetic Algorithm where the brackets shouJd express the optionalicy of the "-" prefixes.
Depending on the toncrete nee¢; of the task to be solved, it may be desirable
to allow messages to be preserved for the next step. More specifically, if a
message is not interpreted and removed by the effectors interface, it can
make another classifier fire in the next step. In practical applications, this is
usually actomplished by reserving a few bits of the messages for identifying
the origin of the messages (a kind of variable index called tag).

Tagging offers new opportunities to transfer information about the current
step intothe next step simply by placing ragged messages on the list, which
are not interpreted, by the output interface. These messages, which
obviously tontain information about the previous step, can support the
decisions in the next step. Hence, apptopriate use of rags permits rules to be
toupled to act sequenrially. In some sense, such messages are the memory
of the system.

A single execmion cycle of the production system consists of the following
steps:

1. Messages from the environment are appended tothe message list.

2. All the conditions of all classifiers are thecked against the message
list w obtain the set of firing rules.

3. The message list is erased.

4. The firing classifiers participate in a tompetition to place their
messages on the list.

5. The winning classifiers place their actions on the list.

6. The messages directed to the effectors are executed.

This ptocedure is repeated iteratively. How step 6 is done, if these messages
are deleted or nor, and so on, depends on the toncrete implementation. It is,
on the one hand, possible to choose a representation such that the effectors
can interpret each output message. On the other hand, it is possible to direct
messages explicitly to the effectors with a special tag. If no messages are
directed to the effectors, the system is in a iliinking phase.

A classifier Rl is called tonsumer of a classifier R2 if and only if there is a
message mO which fulfills at least one ofRl's conditions and has been
placed on the list by R2. Tonversely, R2 is called a supplier of Rl.

4b.9.2 The Bucket Brigade Algorithm

As already mentioned, in each time step t, we assign a strength value ui,t to
each classifier Ri. This strength value represents the torrectness and
importance of a classifier. On the one hand, the strengrh value influences
the chance of a classifier to place its action on the output list. On the other
hand, the suength values are used by the rule distovery system, which we
will soon discuss.

In Holland classifier systems, the adaptation of the strength values
depending on the feedback (payoff) from the envitonment is done by the
so.called bucket brigade algorithm. It can be regarded as a simulared

250

Soft Computing Techniques economic system in which various agents, here the classifiers, participate in
an auction, where the chance to buy the right to post the action depends on
the strength of the agents.

The bid of classifier Ri at timet is defined as

B;,, = CLrJ;,,S;

where CL E [0, 1] is a learning parameter, similar to learning rates in
anificial neural nets, and s,- is the specificity, the number of nonwildcard
symbols in the tondition pan of the classifier. If CL is chosen small, the
system adapts slowly. If it is chosen too high, the strengths rend to oscillate
chaotically. Then the rules have to tompete for the right for placing
their"output messages on the list. In the simplest case, this can be done by
a random expetiment like the selection in a genetic algorithm. For i:h
bidding classifier it is decided randomly if it wins or not, where the
probability that it wins is proportional to its bid:

,

,

[]

i

j i

i

j i

j Sat

B
P R wins

B





In rhis equation, Sar1 is the set of indices of all classifiers which are satisfied
at timet. Classifiers which get the right to post their output messages are
called winning classifiers.

Obviously, in this approach more than one winning classifier is allowed. C
f tourse, or her selection sthemes are reasonable, for instance, the highest
bidding agent wins alone. This is necessary to avoid the conflict between
two winning classifiers. Now let us discuss how payoff from the
envitonment is disrtibuted and how the strengths are adapted. For this
purpose, let us denme the set of classifiers, which have supplied a winning
gent R; in step t with 5;,1• Then the new strength of a winning agent is
reduced by its bid and increased by its portion of the payoff P1 received
&om the environment:

, 1 , ,
t

i t i t i t

t

P
B

w
    

where w1 is the number of winning agents in the actual time step. A winning
agent pays its bid to its suppliers which share the bid among each other
equally in the simplest case:

If a winning agent has also been active in the previous step and supplies
another winning agent, the value above is additionally increased by one

251

Genetic Algorithm portion of the bid the tonsumer offers. In the case that two winning agents
have supplied each other mutually, the portions of the bids are exchanged
in the above manner. The SHengrhs of all other classifiers Rm which are
neither winning agents nor suppliers of winning agents, are reduced by a
certain factor (they pay a rax):

un,1+1 = Nn,1 (1 – T)

T is a small value lying in the interval [0, 1]. The intention of taxation is to
punish classifiers which never contribute anything to the output of the
system. With this concept, redundant classifiers, which never become
active, can be filtered out.

The idea behind credit assignment in general and bucket brigade in
particular is w increase the strengths of rules, which have ser the stage for
later successful actions. The problem of determining such classifiers, which
were responsible for conditions under which it was later on possible to
receive a high payoff, can be very difficult. Consider, for instance, the game
of thess again, in which very early moves can be significant for a late
success or failure. In fact, the bucker brigade algorithm can solve this
problem, although strength is only transferred to the suppliers, which were
active in the previous step. Each time the same sequence is activated,
however, a little bir of the payoff is transferred one step back in the
sequence. It is easy to see that repeated successful execution of a sequence
increases the mengrhs of all involved classifiers.

Figure 4b.32 The bucker brigade principle.

Figure 4b.32 shows a simple example of how the bucker brigade algorithm

works. For simplicity, we consider a sequence of five classifiers which

always bid 20% of their strength. Only after the fifth step, after the

activation of the fifth classifier, a payoff of 60 is received. The further

252

Soft Computing Techniques development of the strengths in this example is shown in the Table lS-7. It

is easy to see from this example that the reinforcement of the strengths is

slow at the beginning, but it accelerates later. Exactly this property

tontributes much to the robustness of classifier systems - they tend to be

cautious at the beginning, trying not to rush conclusions, but, after a certain

number of similar situations, the system adopts the rules more and more.

It might be clear that a Holland classifier system only works if successful

sequences of classifier activations are observed sufficiently often.

Otherwise the bucket brigade algorithm does not have a chance to reinforce

the strengths of the successful sequence ptoperly.

4b.9.3 Rule Generation

The purpose of the rule distovery system is to eliminate low-firred rules and

to replace them by hopefully better ones. The fitness of a rule is simply its

strength. Since the classifiers of a Holland classifier system themselves are

strings, the application of a GA to the problem of rule induction is

straightforward, though many variants are reasonable. Almost all variants

have one thing in common: the GA is nor invoked in each time step, but

only every nth step, where 11 has to be set such that enough information

about the performance of new classifiers can be obtained in the meantime.

A. Geyer-Schuh., for instance, suggests the following ptocedure, where the

strength of new classifiers is initialized with the average strength of the

current rule base:

1. Select a subpopulation of a certain size at random.

2. Compute a new set of rules by applying the genetic operations-

selection, crossingover and muration - to this subpopularion.

3. Merge the new sub population with the rule base omitting duplicates

and replace the worst classifiers.

Table 9·7 An example for repeated propogation of payoffs

 __

 Strength after the

 3rd 100.00 100.00 101.60 120.80 172.00

 4th 100.00 100:32 103.44 136.16 197.60

 5th 100.06 101.34 111.58 92.54 234.46

 6th 100.32 103.39 119.78 168.93 247.57

 .

 .

 .

 10th 106.56 124.17 164 .44 224.84 278.52

 .

 .

 .

 25th 29.86 253.20 280.36 294.52 299.24

 .

 .

 .

 execution of the sequence

 __

253

Genetic Algorithm This process of acquiring new rules has an interesting sideffect. Iris more

rhan just the exchange of parts of conditions and actions. Since we have nor

stared restrictions for manipulating rags, the GA can retombine parts of

already existing rags m invent new tags. In the following. rags spawn related

rags establishing new touplings. These new tags survive if they tonrribute

to useful interactions. In this sense, the GA additionally creates experience-

based internal structures autonomously.

4B.10 GENETIC PROGRAMMING

Genetic programming (GP) is also part of the gtowing set of evolutionary

algorithms that apply the search principles of natural evolution in a variety

of differem problem domains, notably parameter optimization.

Evolutionary algorithms and GP in particular, follow Darvin's principle of

differential natural selection. This principle states that the follow"ing

preconditions must be fulfilled for evolution to occur via (natural) selection:

1. There are entities called individuals which form a population. These

entities can reproduce or can be reproduced.

2. There is herediry in reproduction, rhat is to say that individuals

produce similar offspring.

3. In the tourse of reproduction, there is variery which affects the

likelihood of survival and therefore of reproducibility of individuals.

4. There are finite resources which cause the individuals to tompete.

Owing to over reproduction of individuals nor all can survive the

struggle for existance. Differential natural selections will exert a

tontinuous pressure towards improved individuals.

In the long run, GP and other evolutionary computing technologies will

revolutionize program devel opmem. Present methods are not mamre

enough for deploymem as automatic programming systems. Nevertheless,

GP has already made intoads two automatic programming and will tontinue

to do so in the foreseeable fmure. Likewise, the application of evolution in

machine-learning problems is one of the potentials we will exploit over the

coming decade.

GP is part of a more general Held known as evolutionary tomputation.

Evolutionary tomputation is based on the idea that basic concepts of

biological reproduction and evolution can serve as a metaphor on which

computer-based, goal-directed problem solving can be based. The general

idea is that a computer program can maintain a population of artifacts

represented using some suitable computer-based data structures. Elements

of that population can then mare, mutate, or otherwise reproduce and

evolve, directed by a fitness measure that assesses the quality of the

population with respect to the goal of the task at hand.

254

Soft Computing Techniques GP is an automated method for creating a working computer program from

a high-level problem statement of a problem. GP starts from a high-level

statement of 'what needs to be done' and automarically creates a computer

program to solve the problem.

One of the central challenges of computer science is to get a computer to do

what needs to be done, without telling it how to do it. GP addresses this

challenge by ptoviding a method for automatically creating a working

tompmer program from a high-level problem statement of the problem. GP

achieves this goal of automatic programming (also sometimes called

program synthesis or program induction) by genetically breeding a

population of computer programs using the principles of Darwinian natural

selection and biologically inspired operations. The operations include

reproduction, crossover, mutation and architecture-altering operations

patterned after gene duplication and gene deletion in nature.

GP is a domain-independent method that genetically breeds a population of

computer programs to solve a problem. Specifically, GP iteratively

transforms a population of computer programs into a new generation of

programs by applying analogs of naturally occurring genetic operations.

The genetic operations include crossover, mutation, reproduction, gene

duplication and gene deletion. GP is an excellent problem solver, a superb

function apptoximator and an effective tool for writing functions to solve

specific tasks. However, despite all these areas in which it excels, it still

does not replace programmers; rather, it helps them. A human still must

specify the fitness function and identify the problemto which GP should be

applied.

4b.10.1 Working of Genetic Programming

GP typically starts with a population of randomly generated tom purer

programs composed of the available programmatic ingredients. GP

iteratively transforms a population of computer programs into a new

generation of the population by applying analogs of naturally occurring

genetic operations. These operations are applied to individual(s) selected

from the population. The individuals are ptobabilisrically selected to

participate in the genetic operations based on their fitness (as measured by

the f1tness measure provided by the human user in the third preparatory

step). The iterative transformation of the population is executed inside the

main generational loop of the run of G P.

The executional steps of GP (i.e., the flowchart of GP) are as follows;

1. Randomly create an initial population (generation 0) of individual

computer programs composed of the available functions and

terminals.

255

Genetic Algorithm 2. Iteratively perform the following subsreps (called a genemtion) on the

population until the termination criterion is satisfied:

* Execute each program in the population and ascertain its fitness

(explicitly or implicitly) using the problem's fitness measure.

* Select one or two individual program(s) from the population

with a probability based on fitness (with reselecrion allowed) to

participate in the genetic operations in the next subsrep.

* Create new individual program(s) for the populaiion by

applying the following genetic operations with specified

probabilities:

(a) Reproduction: Topy the selected individual program to the new

population.

(b) Crossover: Create new offspring program(s) for the new population

by recombining randomly chosen parts from two selected programs.

(c) Mutation: Create one new offspring program for the new population

by randomly mutating a randomly chosen part of one selected

program.

(d) Archirecrure-altring operation - Choose an architecture altering

operation from the available repertoire of such operations and create

one new offspring program for the new population by applying the

chosen architecture-altering operation to one selected program.

3. After the termination criterion is satisfied, the single best program in

the population produced during the run (the besr-so-far individual) is

harvested and designated as the result of the run. If the run is

successful, the result may be a solution (or approximate solution) to

the problem.

GP is problem-independent in the sense that the flowchart specifying the

basic sequence of executional steps is not modified for each new run or each

new problem. There is usually no discretionary human intervention or

interaction during a run of genetic programming (although a human user

may exercise judgment as to whether to terminate a run).

Figure 9-47 below is a flowchart showing the executional steps of a run

ofGP. The flowchart shows the genetic operations of crossover,

reproduction and mutation as well as the architecrurealrering operations.

This flowchart shows a two-offspring version of the crossover operation.

256

Soft Computing Techniques

Figure 4b.33 Flowchart of genetic programming.

The flowchart of GP is explained as follows: GP starts with an initial

population of computer programs composed of functions and terminals

apptopriate to the problem. The individual programs in the initial population

are typically generated by recursively generating a rooted point-labeled

program tree composed of random choices of the primitive functions and

terminals (provided by the human user as part of the first and setond

preparatory steps, a run ofGP). The initial individuals are usually generated

subject to a pre-established maximum size (specified by the user as a minor

parameter as pan of the founh preparatory step}. In general, the programs

in the population are of different sizes (number of functions and terminals)

and of different shapes (the particular graphical arrangement of functions

and terminals in the program tree).

257

Genetic Algorithm Each individual program in the population is executed. Then, each

individual program in the population is either measured or tompared in

rerms of how well it performs the task at hand (using the fitness measure

provided in the third preparatory step). For many problems, this

measurement yields a single explicit numerical value called fitness. The

fitness of a program may be measured in many different ways, including,

for example, in terms of the amount of error between its output and the

desired output, the amount of time (fuel, money, etc.) required to bring a

system to a desired target stare, the accuracy of the program in retognizing

patterns or classifying objects into classes, the payoff that a game-playing

program produces, or the tompliance of a tomplex structure (such as an

antenna, circuit, or tonttoller) with user-specifted design criteria. The

execution of the program sometimes returns one or more explicit vaJues.

Alternatively, the execution of a program may tonsist only of side effecrs

on the stare of a world (e.g., a robot's actions). Alternatively, the execution

of a program may produce both return values and side effects.

The fitness measure is, for many practical problems, mulriobjecrive in the

sense that it tombines two or more differem elements. The different

elements of the fitness measure are often in tompetition with one another to

some degree.

For many problems, each program in the population is executed over a

representative sample of different fituess cases. These fitness cases may

represent different values of the program's inpur(s), differem initial

conditions of a system, or different envitonments. Sometimes the fitness

cases are tonstructed probabilistically.

The creation of the initial random population is, in effect, a blind random

search of the search space of the problem. It provides a baseline for judging

future search effons. Typically, the individual programs in generation 0 all

have exceedingly poor fitness. Nevertheless, some individuals in the

population are {usually) more fir than odters. The difference. in fitness are

dten exploited by GP. GP applies Darwinian selection and the genetic

operations to create a new population of offspring programs from the

current population.

The genetic operations include crossover, mutation, reproduction and the

architecture-altering operations. These genetic operations are applied to

individual(s) that are ptobabilistically selected from the population based

on fitness. In this ptobabilistic selection process, better individuals are

favored over inferior individuals. However, the best individual in the

population is not necessarily selected and the worst individual in the

population is not necessarily passed over.

After the genetic operations arc performed on the current population, the

population of offspring (i.e. the new generation) replaces the current

population {i.e., the now-old generation). This iterative process of

measuring fitness and performing the genetic operations· is reeated over

many generations.

258

Soft Computing Techniques The run of GP terminates when the termination criterion (as provided by the

fifth preparatory step) is satisfied. The outcome of the run is specified by

the method of result designation. The best individual ever encountered

during the run (i.e., the best-so-far individual) is typically designated as the

result of the run.

All programs in the initial random population {generation 0) of a run of GP

are symmetrically valid, executable programs. The genetic operations that

are performed during the run (i.e., crossover. mutation, reproduction and the

architecture-altering operations) are designed to produce offspring that art:

syntactically valid, executable programs. Thus, ever individual created

during a run of genetic programming (including, in pmicular, the best-of-

run individual) is'' syntactically valid, executable program.

4b.10.2 Characteristics of Genetic Programming

GP now toutinely delivers high-return human-competitive machine

intelligence, the next four subsections explain what we mean by the terms

human-competitive, high-return, routine and machine intelligence.

4b.10.2.1 Human-Competitive

In attempting to evaluate an automated problem-solving method, the

question arises as to whether there is any real substance tothe demonstrative

problems that are published in connection with the method. Demonstrative

problems in the fields of artificial intelligence and machine learning are

often connived to problems that circulate exclusively inside academic

groups that study a particular methodology. These problems typically have

little relevance to any issues pursued by any scientist or engineer outside

the fields of artificial intelligence and machine learning.

ln his 1983 talk entitled "Al: Where It Has Been and Where It Is Going,"

machine learning pioneer Arthur Samuel said:

The aim is …… to get machines to exhibit behaviour, which of done by

human, would be assumed to involve the use of intelligence.

Samuel’s statement reflects the common goat articulated by the pioneers of

the 1950s in the fields of artificial intelligence and machine learning.

Indeed, getting machines to produce human like results is the reason for the

existence of the fields of artificial intelligence and machine learning. To

make this goal more concrete, we say that a result is “human-competitive”

if it satisfies one or more of the eight criteria in Table 9-8. These eight

criteria have the desirable attribute of being at arms-length from the fields

of artificial intelligence, machine learning and GP. That is a result cannot

acquire the rating of ‘human-competitive’ merely because it is endorsed by

researchers inside the specialized fields that are attempting to create

machine intelligence, machine learning and GP. That is, a result cannot

acquire the rating of ‘human-competitive’ merely because it is endorsed by

researchers inside the specialized fields that are attempting to create

machine intelligence. Instead a result produced by an automated method

259

Genetic Algorithm must earn the rating of human-competitive dependent of the fact that it was

generated by an automated method.

4b.10.2.2 High-Return

What is delivered by the accrual automated operation of an artificial method

in comparison to the amount of knowledge, information, analysis and

intelligence that is pre-supplied by the human employing the method?

We define the AI ratio (the 'artificial-to-intelligence' ratio) of a problem-

solving method as the ratio of that which is delivered by the automated

operation of the artificial method to the amount of intelligence that is

supplied by the human applying the method to a particular problem.

Table 9·8 Eight criteria for saying that an automatically created research

is human-competitive

--

Criterion

--

A The result was patented as an invention in the past, is an improvement

over a parented invention or would quality today as a permeable new

invention.

B The result is equal to or beuer than a result that was accepted as a new

scientific result at the time when it was published in a peer-reviewed

scientific journal.

C The result is equal to better than a result that was placed into a

database or archive of results maintained by an internationally

recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result-

independent of the fact that the result was mechanically created.

E The result is equal to or better than the most recent human-created

solution to a long-standing problem for which there has been a

succession of increasingly better human-created solutions.

F The result is equal to or better than a research that was considered an

achievement in its field at the time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H The result holds its own or wins a regulated tom petition involving

human contestants (in the form of either live human players or human-

written computer programs).

--

The AI ratio is especially pertinent to methods for getting computers to

automatically solve problems because it measures the value added by the

artificial problem-solving method. Manifestly, the aim of the fields of

260

Soft Computing Techniques artificial intelligence and machine learning is to generate human-

competitive results with a high AI ratio.

Deep Blue: An Arnficin/ lme//igence Milestone (Newborn, 2002) describes

the 1997 defeat of the human world thess champion Garry Kaspatov by the

Deep Blue computer system. This commanding example of machine

indigence is clearly a human-competitive result (by virtue of satisfying

criterion H of Table 9-8). Feng-Suing Hsu (the system architect and chip

designer for the Deep Blue project) recounts the intensive work on the Deep

Blue project at IBM's T. J. Watson Research Centre between 1989 and 1997

{Hsu, 2002). The team of scientists and engineers spent years developing

the software and the specialized computer chips to efficiently evaluate large

numbers of alternative moves as part of a massive parallel state-space

search. In short, the human developers invested an enormous amount of "!"

in the project. In spite of the fact that Deep Blue delivered a high {human-

competitive) amount of "A," the project has a low return when measured in

terms of the A-to-l ratio.

The aim of the fields of artificial intelligence and machine learning is to get

computers to automatically generate human-competitive results with a high

AI ratio- not to have humans generate human-competitive results

themselves.

4b.10.2.3 Routine

Generality is a precondition to what we mean when we say that an

automated problem-solving method is "combine" Once the generality of a

method is established, "routineness" means that relatively little human

effort is required to get the method to successfully handle new problems

within a particular domain and to successfully handle new problems from a

different domain. The ease of making the transition to new problem lies at

the hearr of what we mean by routine. A problem-solving method cannot be

considered routine if its executional steps must be substantially augmented,

deleted, rearranged, reworked or customized by the human user for each

new problem.

4b.10.2.4 Machine Intelligence

We use the term machine intelligence to refer to the broad vision articulated

in AJan Turing's 1948 paper emided "Intelligent Machinery" and his 1950

paper entitled "Computing Machinery and Intelligence."

In the 1950s, the terms machine intelligence, artificial intelligence and

machine learning all referred to the goal of getting "machines to exhibit

behaviour, which if done by humans, would be assumed to involve the use

of intelligence" {to again quote Arthur Samuel).

However, in the intervening five decades, the terms "artificial intelligence"

and "machine learning" progressively diverged from their original goal-

oriented meaning. These terms are now primarily associated with particular

methodologies for attempting to achieve the goal of getting computers to

automatically solve problems. Thus, the term "artificial intelligence" is

261

Genetic Algorithm today primarily associated with attempts to get computers to solve problems

using methods that rely on knowledge, logic, and various analytical and

mathematical methods. The term "machine learning" is today primarily

associated with attempts to get computers to solve problems that use a

particular small and somewhat arbitrarily chosen set of methodologies

(many of which are statistical in nature). The narrowing of these terms is in

marked contrast to the broad field envisioned by Samuel at the time when

he toned the term "machine learning" in the 1950s, the thatter of the original

founders of the field of artificial indigence, and the broad vision

encompassed by Turing's term "machine intelligence." Of course, the shift

in focus from broad goals to narrow methodologies is an all too common

sociological phenomenon in academic research.

Turing's term "machine intelligence" did not undergo this arteriosclerosis

because, by accident of history, it was never appropriated or monopolized

by any group of academic researchers whose primary dedication is to a

particular methodological approach. Thus, Turing's term remains catholic

today. We prefer to use Turing's term because it still communicates the

broad goal of getting computers to automatically solve problems in a

human-like way. ,

In his 1948 paper, Turing identified three broad approaches by which

human competitive\'e machine intelligence might be achieved: The first

approach was a logic-driven search. Turing's interest in this approach is not

surprising in light of Turing's own pioneering work in the 1930s on the

logical foundations of computing. The second approach for achieving

machine intelligence was what he called a "cultural search" in which

previously acquired knowledge is accumulated, stored in libraries and

brought to bear in solving a problem - the approach taken by modern

knowledge-based expert systems. Turing's first two approaches have been

pursued over the past 50 years by the \'past majority of researchers using

the methodologies that are today primarily associated with the term

"artificial inelegance.''

4b.10.3 Data Representation

Without any doubt, programs can be considered as strings. There are,

however, two important limitations which make it impossible to use the

representations and operations from our simple GA:

l. It is mostly inappropriate to assume a fixed length of programs.

2. The probability to obtain syntactically correct programs when

applying our simple initialization crossover and mutation procedures

is hopelessly low.

Lt is, therefore, indispensable to modify the data representation and the

operations such that syntactical correctness is easier to guarantee. The

common approach to represent programs in GP is to consider programs as

trees. By doing so, initialization can be done recursively, crossover can be

done by exchanging sub trees and random replacement of sub trees can

serve as mutation operation.

262

Soft Computing Techniques Since their only construct are nested lists programs in LISP-like languages

already have a kind of tree-like Structure. Figure 9-48 shows an example

how the function 3x + sin(x + I) can be implemented in a LISP like language

and how such an LISP-like Function can he split up into a tree. Let can be

noted that the tree n: presentation corresponds to the nested lists. The

program consists of tonic expressions, like variables and constants, which

act as leave nodes while functions act as no leave nodes

Figure 4b.34 The tree representation of 3x+ sin (x + 1).

There is one important disadvantage of the LISP approach-iris difficult to

introduce type checking. In case of a purely numeric function like in the

above example, there is no problem at all. However, it can be desirable to

process numeric data, .mings and logical expressions simultaneously. This

is difficult to handle if we use a tree representation like that in Figure 948.

A. Geyer-Schulz bas proposed a very general approach, which overcomes

this problem allowing maximum flexibility. He suggested representing

programs by their syntactical derivation trees with respect to a recursive

'definition of underlying language in Backus-Naur form (BNF). This works

for any ton text-free language. He is far beyond the stop of this lecture to go

into much derail about formal languages. We will explain the basics with

the help of a simple example. Consider the following language which is

suitable for implementing binary logical expressions:

 S := <exp>;

<exp> := (var) | “(“<neg> <exp>”)” | “(“<exp> <bin>

<exp>”)”;

<var> := “x” | “y”;

<neg> := “NOT”

<bin> := “AND” | “OR”;

The BNF description consists of so-called syntactical rules. Symbols in

angular brackets < > are called nomerminal symbols, i.e. symbols which

have to be expanded. Symbols between quotation marks are called terminal

263

Genetic Algorithm symbols, i.e., they cannot be expanded any further. The first rule S:=<exp>

defines the staining symbol. A BNF rule of the general shape,

< non terminal > := < deriv1 > | < deriv2> | ... | < deriv11 >;

defines how a non-terminal symbol may be expanded, where the different

varies are separated by vertical bars.

In order to get a feeling of how to work with the BNF grammar description,

we will now show step-by-step how the expression (NOT (x OR y)) can be

derivated from the above language. For simplicity, we omit quotation marks

for the terminal symbols:

1. We have to begin with the start symbol: <exp>

2. We replace hexpi with the second possible derivation:

<exp>  (<neg><exp>)

3. The symbol <neg> may only he expanded with the terminal symbol

NOT:

(<neg> <exp>)  (NOT <exp>i

4. Next. we replace: <exp> with the third possible derivation:

(NOT <exp>)  (NOT {<exp><bin><exp>))

5. We expand the second possible derivation for <bin>:

(NOT (<exp> <bin> <exp>))  (NOT (<exp> OR <exp>))

6. The first occurrence of <exp> is expanded with the first derivation:

(NOT (<exp> OR <exp>))  (NOT (<var> OR <exp>))

7. The .second occurrence of <exp> is expanded with the first

derivation, too:

(NOT (<virr> OR <exp>))  (NOT (<var> OR <var>))

8. Now we replace the first <var> with the corresponding first

alternative:

(NOT (<var> OR <var>))  (NOT tx OR <var>))

9. Finally, the last non-terminal symbol is expanded with the second

alternative:

(NOT ix OR <var>))  (NOT tx OR y))

Such a recursive derivation has an inherent tree structure. For the above

example, this derivation tree has been visualized in Figure 4a.49. The syntax

of modern programming languages can be specified in BNF. Hence, our

data model would be applicable to all of them. The question is whether this

is useful. Koza’s hypothesis includes that the programming language has to

be chosen such that the given problem is solvable. This does not necessarily

imply that we have no choose the language such that virtually any solvable

problem can be solved. It is obvious that the size of the search grows with

the complexity of the language. We know that the size of the search space

264

Soft Computing Techniques influences the performance of a GA – the larger the language. We know that

the size of the search space influences the performance of a GA – the larger

the slower.

It is therefore, recommendable to restrict the language to necessary

constructs and to avoid superfluous constructs. Assume, for example, that

we want to do symbolic regression, but we are only interested in

polynomials with integer coefficients. For such an application, it would be

an overkill to introduce rational constants or to include exponential

functions in the language. A good choice could be the following.

 S := <func>;

<func> := (var) | “(“<const>) | “(“<func> <bin> <func>”)”;

<var> := “x”;

<const> := <int> | <const> <int>;

<int> := “0” | … | “9” ;

<bin> := “+” | “-” | “+”;

For representing rational functions with integer coefficients, it.is sufficient

to add the division symbol "f" to the possible derivations of the binary

operator <bin>.

Figure 4b.35 The derivation tree of (NOT (x OR y)).

Another example: The following language could be appropriate for

discovering trigonometric identities:

265

Genetic Algorithm S := <func>;

<func> := (var) | “(“<const>) | <trig> “(“<func>”) |

“(“<func> <bin> <func>”)”;

<var> := “x”;

<const> := “0” | “1” | “π”;

<trig> := “sin” | “cos”;

<bin> := “+” | “-” | "+”;

There are basically two different variants of how w generate random

programs with respect to a given BNF grammar:

l. Beginning from the starting symbol, it is possible to expand

nonterminal symbols recursively, where we have to choose randomly

if we have more than one alternative derivation. This approach is

simple and fast, but has some disadvantages: First, it is almost

impossible to realize a uniform distribution. Second, one has to

implement some constraints with respect to the depth of the derivation

trees in order to avoid excessive growth of the programs. Depending

on the complexity of the underlying grammar, this can be a tedious

task.

2. Geyer-Schulz has suggested to prepare a list of all possible derivation

trees up to a certain depth and to select from this list randomly

applying a uniform distribution. Obviously, in this approach, the

problems in terms of depth and the resulting probability distribution

are elegantly solved, but these advantages go along with considerably

long computation times.

4b.10.3. 1 Crossing Programs

It is trivial to see that primitive string-based crossover of programs almost

never yields syntactically correct program. Instead, we should use the

perfect syntax information a derivation tree provides. Already in the USP

times of Gp, sometime before the BNF-based representation was known,

crossover was usually implemented as the exchange of randomly selected

subtrees. In case that the subtrees (sub expressions) may have different

types of return values (e.g., logical and numerical), it is not guaranteed iliar

crossover preserves syntactical correctness.

The derivation tree based representation overcomes this problem in a very

elegant way. If we only exchange subtrees which start from the same

nonterminal symbol, crossover can never violate syntactical correctness. In

this sense, the derivation tree model provides implicit type checking. In

order to demonstrate in more detail how this crossover operation works, let

266

Soft Computing Techniques us reconsider the example of binary logical expressions. k parents, we take

the following expressions:

(NOT (x OR y))

((NOT x) OR (x AND y))

Figure l5-50 shows graphically how the two children (NOT (x OR (x AND

y))) ((NOT x) OR y) are obtained.

Figure 4b.36 An example for crossing two binary logical expressions.

267

Genetic Algorithm

Figure 4b.37 An example for making a derivation tree

4b.10.3.2 Mutating Programs

We have always considered mutation as the random deformation of a

chromosome. It is therefore, not surprising that the most common mutation

in genetic programming is the random replacement of a randomly selected

subtree. The only modification is that we do not necessarily start from the

start symbol but from the nonterminal symbol at the root of the subtree we

consider. Figure 4a.51 shows as example where in the logical expression

(NOT (x OR y)). Te variable y is replaced by (NOT y).

4b.10.3.3 The Fitness Function

There is no common recipe for specifying an appropriate fitness functions

which wrongly depends on the given problem. It is, however, worth

emphasizing that it is necessary to provide enough information to guide the

GA to the solution. More specifically, it is not sufficient to define a fitness

function which assigns 0 to a program which does not solve the problem

and 1 to a problem. Such a fitness function would correspond to needle-in-

haystack problem. In the sense a proper fitness measure should be a gradual

concept for judging the correctness of programs.

In many applications, the fitness function is based on a comparison of

desired and actually obtained output. Koza, for instance, uses the simple

sum of quadriatic errors for symbolic regression and the discover of

trigonometric identities:

In this definition, F is the mathematical function which corresponds to the

program under evaluation. The list (xi, y), 1 < 1 < N consists of reference

pairs – a desired output y, is assigned to each input 1. Check the samples

268

Soft Computing Techniques have to be chosen such that the considered input space is covered

sufficiently well.

Numeric error-based fitness functions usually imply minimization problem.

Some other applications may imply maximization tasks. There are basically

two well-known transformation which allow to standardize fitness functions

such that always minimization or maximization tasks are obtained.

Consider an arbitrary “raw” fitness function f. Assuming that the number of

individuals in the population is not fixed (m, at time t), the standardized

fitness is computed as

It f has to be maximized and as

If f has to be minimized. One possible variant is to consider the best

individual of the last k generations instead of only considering the actual

generation.

Obviously, standardized fitness transform’s any optimization problem into

a minimization task. Roulette wheel selection relies on the fact that the

objective is maximization of the fitness function. Koza has suggested a

simple transformation such that, in any case, a maximization problem is

obtained.

With the assumptions of previous definition, the adjusted fitness is

computed as

Another variant of adjusted fitness is defined as

For applying GP w a given problem, the following points have to be

satisfied.

269

Genetic Algorithm 1. An appropriate fitness function, which provides enough information

to guide the GA to the solution (mostly based on examples).

2. A syntractical description of a programming language, which contains

as much elements as necessary for solving the problem.

3. An interpreter for the programming language.

The main application areas of GP include: Computer Science, Science,

Engineering, and entertainment.

4B.11 ADVANTAGES AND LIMITATIONS OF GENETIC

ALGORITHM

The advantages of GA are as follows:

1. Parallelism.

2. Liability.

3. Solution space is wider.

4. The fitness landscape is complex.

5. Easy to discover global optimum.

6. The problem has multi objective function.

The limitations of GA are as follows:

1. The problem of identifying fitness function.

2. Definition of representation for the problem.

3. Premature convergence occurs.

4. The problem of choosing various parameters such as the size of the

population, mutation rare, crossover rare, the selection method and its

strength.

4B.12 APPlICATIONS OF GENETIC ALGORITHM

An effective GA representation and meaningful fitness evaluation are the

keys of the success in GA applications. The appeal of GAs tomes & on their

simplicity and elegance as to bust search algorithms as well as from their

power to discover good solutions rapidly for difficult high-dimensional

problems. GAs are useful and efficient when

1. the search space is large, complex or poorly understood;

2. domain knowledge is scarce or expert knowledge is difficult to

encode to narrow the search space;· .

3. no mathematical analysis is available;

4. traditional search methods fail.

The advantage of the GA approach is the ease with which it can handle

arbitrary kinds of constraints and objectives; all such things can be handled

270

Soft Computing Techniques as weighted components of the fitness function, making it easy to adapt the

GA scheduler to the particular requirements of a very wide range of possible

overall objectives.

GAs have been used for problem-solving and for modeling. GA are applied

to many scientific, engineering problems, in business and entertainment

including:

1. Optimization: GAs have been used in a wide variety of optimization

tasks, including numerical optimization and combinatorial

optimization problems such as traveling salesman problem (TSP),

circuit design (Louis, 1993), job shop scheduling (Goldstein, 1991)

and video &sound quality optimization.

2. Automatic programming. GAs have been used to evolve computer

programs for specific tasks and to design other commercial structures,

for example, cellular automata and sorting networks.

3. Machine and robot learning. GAs have been used for many machine-

learning applications, including classifications and prediction, and

protein structure prediction. GAs have also been used to design neural

networks, to evolve rules for learning classifier systems or symbolic

production systems, and to design and control robots.

4. Economic models: GAs have been used to model processes of

innovation, the development of bidding strategies and the emergence

of economic markets.

5. Immune system models: GAs have been used to model various

aspects of the natural immune system, including somatic mutation

during an individual's lifetime and the discovery of multi-gene

families during evolutionary time.

6. Ecologjcal models: GAs have been used to model ecological

phenomena such as biological arms races, host-parasite to evolutions,

symbiosis and resource flow in ecologies.

7. Population genetics models: GAs have been used to study questions

in population genetics, such as 'under what conditions will a gene for

recombination be evolutionarily viable?'

8. Interactions between evolution and learning. GAs have been used to

study how individual learning and species evolution affect' one

another.

9. Models of social systems: GAs have been used to study evolutionary

aspects of social systems, such as the evolution of cooperation

(Chughtai, 1995), the evolution of communication and trail-following

behavior in ants.

271

Genetic Algorithm 4B.13 SUMMARY

Genetic algorithms are original systems based on the supposed functioning

of the living. The method is very different & the classical optimization

algorithms as it:

1. Uses the encoding of the parameters, not the parameters themselves.

2. Works on a population of points, not a unique one.

3. Uses the only values of the function to optimize, not their derived

function or other auxiliary knowledge.

4. Uses probabilistic transition function and not determinist ones.

lt is important to understand that the functioning of such an algorithm does

not guarantee success. The problem is in a stochastic system and a genetic

pool may be too far from the solution, or for example, a too fast convergence

may hair the process of evolution. These algorithms are, nevertheless,

extremely efficient, and are used in fields as diverse as stock exchange,

production scheduling or programming of assembly robots in the

automotive industry.

GAs can even be faster in finding global maxima that conventional methods,

in particular when derivatives provide misleading information. It should be

noted that in most cases where conventional methods can be applied, GAs

are much slower because they do not take auxiliary information such as

derivatives into account. In these optimization problems, there is no need to

apply a GA, which gives less accurate solutions after much longer

computation time. The enormous potential of GAs lies elsewhere- in

optimization of non-differentiable or even discontinuous functions, discrete

optimization, and program in junction.

lt has been claimed that via the operations of selection, crossover and

mutation, the GA will converge over successive generations towards the

global (or near global) optimum. This simple operation should produce a

fast, useful and to bust technique largely because of the face that GAs

combine direction and chance in the search in an effective and efficient

manner. Since population implicity contain much more information than

simply the individual fitness stores, GAs combine the good information

hidden in a solution with good information from another solution to produce

new solutions with good information inherited from both parents,

inevitable}' (hopefully) leading towards optimality.

In this chapter we have also discussed the various classifications of GAs.

The class of parallel GAs is very complex, and its behavior is affected by

many parameters. It seems that the only way to achieve a greater

understanding of parallel GAs is to study individual facets independent!}',

and we have seen that some of the most influential publications in parallel

GAs concentrate on only one inspect (migration rates, communication

272

Soft Computing Techniques topology or deme size) either ignoring or making simplifying assumptions

on the others. Also the hybrid GA, adaptive GA, independent sampling GA

and messy GA has been included with the necessary information.

Genetic programming has been used to model and control a multitude of

processes and to govern their behavior according to fitness based

automatically generated algorithm. Implementation of generic

programming will benefit in the coming year from new approaches which

include research from developmental biology. Also, it will be necessary to

learn to handle the redundancy forming pressures in the evolution of to the.

Application of genetic programming will continue to broaden. Many

applications focus on controlling behaviour of real or virtual agents. In this

role, genetic programming may contribute considerably to the growing field

of social and behavioural simulations. A brief discussion on Holland

classifier system is also included in this chapter.

4B.14 REVIEW QUESTIONS

1. State Charles Darwin's theory of evulsions.

2. What is meant by genetic algorithm?

3. Compare and contrast traditional algorithm and genetic algorithm.

4. Stare the importance of genetic algorithm.

5. Explain in detail about the various operators involved in genetic

algorithm.

6. What the various types of crossover and mutation techniques?

7. With a neat flowchart, explain the operation of a simple genetic

algorithm.

8. State the general genetic algorithm.

9. Discuss in detail about the various types of genetic algorithm in derail.

10. State schema theorem.

11. Write than note on Holland classifier systems.

12. Differentiate between messy GA and parallel GA

13. What is the importance of hybrid GAs?

14. Describe the concepts involved in real-coded genetic algorithm.

15. What is genetic programming?

16. Compare genetic algorithm and genetic programming.

17. List the characteristics of genetic programming.

18. With a neat flowchart, explain the operation of genetic programming.

19. How are data represented in genetic programming?

20. Mention the application of genetic algorithm.

273

Genetic Algorithm Exercise Problems

1. Determine the maximum of function x x x5 (0.007x+ 2) using genetic

algorithm by wiring a program.

2. Determine the maximum of function exp(-3x) + sin(6 r x) using

genetic algorithm. Given range = [0.004 0.7]; bits = 6; population =

12; generations = 36; mutation = 0.005; mutation = 0.3.

3. Optimize the logarithmic function using a genetic algorithm by

writing a program. Genetic Algorithm

4. Solve the logical AND function using genetic algorithm by writing a

program.

5. Solve the XNOR problem using genetic algorithm by writing a

program.

6. Determine the maximum of function exp(5x) + sin (7rr x) using

genetic algorithm. Given range = [0.002 0.6]; bits = 3; population ==

14; generations = 36; mutation = 0.006; matenum = 0.3.

REFERENCES

https://link.springer.com/article/10.1007/BF00175354

https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial

.pdf

https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-

goodman.pdf

https://www.researchgate.net/publication/228569652_Genetic_Algorithm_

A_Tutorial_Review

S.Rajasekaran, G. A. Vijayalakshami , Neural Networks, Fuzzy Logic and

Genetic Algorithms: Synthesis & Applications, Prentice Hall of India, 2004





https://link.springer.com/article/10.1007/BF00175354
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.csd.uwo.ca/~mmorenom/cs2101a_moreno/Class9GATutorial.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review
https://www.researchgate.net/publication/228569652_Genetic_Algorithm_A_Tutorial_Review

	Soft Computing Starting pages
	1a
	1b
	1c
	2a
	2b
	2c
	2d
	3a
	3b
	3c
	3d
	3e
	4a
	4b

