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MODULE I: Unit I 

1a 
INTRODUCTION TO SOFT COMPUTING 

Unit Structure 

1a.0 Objectives 

1a.1 Computational Paradigm 

 1a.1.1 Soft Computing v/s Hard Computing 

1a.2 Introduction to Soft Computing 

1a.3 Premises of Soft Computing 

1a.4 Guidelines of Soft Computing 

1a.5 Uncertainty in AI 

1a.6 Application of Soft Computing 

1a.7 Types of Soft Computing Techniques 

1a.8 Fuzzy Computing 

1a.9 Neural Computing 

1a.10 Genetics Algorithms 

1a.11 Associative Memory 

1a.12 Adaptive of Resonance Theory 

1a.13 Classification 

1a.14 Clustering 

1a.15 Probabilistic Reasoning 

1a.16 Bayesian Network 

1a.17 Summary 

1a.18 Review Questions 

1a.19 Bibliography, References and Further Reading 

1a.0 OBJECTIVES 

The objective of this chapter is to give the overview of various soft 

computing techniques. In this chapter, we will try to learn what is soft 

computing, difference between hard computing and soft computing and 

reason for why soft computing evolved. At the end, some application of soft 

computing will be discussed. 
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Soft Computing Techniques 1A.1 COMPUTATIONAL PARADIGM 

 

Figure 1a.1: Computational Paradigms 

Computational paradigm is classified into two viz: Hard computing and soft 

computing. Hard computing is the conventional computing. It is based on 

the principles of precision, certainty, and inflexibility. It requires 

mathematical model to solve problems. It deals withs the precise models. 

This model is further classified into symbolic logic and reasoning, and 

traditional numerical modelling and search methods. The basic of 

traditional artificial intelligence is utilised by these methods. It consumes a 

lot of time to deal with real life problem which contains imprecise and 

uncertain information. The following problems cannot accommodate hard 

computing techniques: 

1. Recognition problems 

2. Mobile robot co-ordination, forecasting 

3. Combinatorial problems 

Soft computing deals with approximate models. This model is further 

classified into two approximate reasoning, and functional optimization & 

random search methods. It handles imprecise and uncertain information of 

the real world. It can be used in all industries and business sectors to solve 

problems. Complex systems can be designed with soft computing to deal 

with the incomplete information, where the system behaviour is not 

completely known or the existence of measures of variable is noisy. 

1a.1.1 Soft Computing v/s Hard Computing 

Hard Computing Soft Computing 

It uses precisely stated analytical 

model. 

It is tolerant to imprecision, 

uncertainty, partial truth and 

approximation. 

It is based on binary logic and 

crisp systems. 

It is based on fuzzy logic and 

probabilistic reasoning. 

It has features such as precision 

and categoricity. 

It has features such as 

approximation and dispositionality. 
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Soft Computing 
Hard Computing Soft Computing 

It is deterministic in nature. It is stochastic in nature. 

It can work with exact input data. It can work with ambiguous and 

noisy data. 

It performs sequential 

computation. 

It performs parallel computation. 

It produces precise outcome. It produces approximate outcome. 

1A.2 INTRODUCTION TO SOFT COMPUTING 

The real-world problems require systems that combines knowledge, 

techniques, and methodologies from various source. These systems should 

possess humanlike expertise within specific domain, adapt themselves and 

learn to do better in the changing environments and explain how they make 

decisions or take actions.  

Natural language is used by human for reasoning and drawing conclusion. 

In conventional AI, the human intelligent behaviour is expressed in the 

language form or symbolic rules. It manipulates the symbols on the 

assumption that such behaviour can be stored in symbolically structured 

knowledge base known as physical symbol system hypothesis. 

“Basically, Soft Computing is not a homogenous body of concepts & 

techniques. Rather, it is partnership of distinct methods that in one way or 

another conform to its guiding principle. At this juncture, the dominant aim 

of soft computing is to exploit the tolerance for imprecision and uncertainty 

to achieve tractability, robustness and low solutions cost. The principal 

constituents of soft computing are fuzzy logic, neurocomputing, and 

probabilistic reasoning, with the latter subsuming genetic algorithms, belief 

networks, chaotic systems, and parts of learning theory. In partnership of 

fuzzy logic, neurocomputing, and probabilistic reasoning, fuzzy logic is 

mainly concerned with imprecision and approximate reasoning; 

neurocomputing with learning and curve-fitting; and probabilistic 

reasoning with uncertainty and belief propagation.” 

-Zadeh (1994) 

Soft computing combines different techniques and concepts. It can handle 

imprecision and uncertainty. Fuzzy logic, neurocomputing, evolutionary 

and genetic programming, and probabilistic computing are fields of soft 

computing. Soft computing is designed to model and enable solutions to 

real world problems, which cannot be modelled mathematically. It does not 

perform much symbolic manipulation.  

The main computing paradigm of soft computing are: Fuzzy systems, 

Neural Networks and Genetic Algorithms.  

● Fuzzy set are for knowledge representation via fuzzy If – Then rules.  

● Neural network for learning and adaptivity and  

● Genetic algorithm for evolutionary computation. 
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Soft Computing Techniques To achieve close resemblance with human like decision making, soft 

computing aims to exploit the tolerance for approximation, uncertainty, 

imprecision, and partial truth. 

● Approximation: the model has similar features but not same. 

● Uncertainty: the features of the model may not be same as that of the 

entity/belief. 

● Imprecision: the model features (quantities) are not same as that the 

real ones but are close to them. 

1A.3 PREMISES OF SOFT COMPUTING 

● The real-world problems are imprecise and uncertain. 

● Precision and certainty carry a cost. 

● There may not be precise solutions for some problems. 

1A.4 GUIDELINES OF SOFT COMPUTING 

The guiding principle of soft computing is to exploit the tolerance for 

approximation, uncertainty, imprecision and partial truth to achieve 

tractability, robustness and low solution cost. Human mind is the role model 

for soft computing. 

1A.5 UNCERTAINTY OF AI 

● Objective (features of whole environment) 

o There are lot of uncertainty in the world. We have limited 

capabilities to sense these uncertainties. 

● Subjective (features of interaction with concrete environment 

o For the same/similar situation people may have different 

experiences. This experience maps on the features of semantics 

of different languages. 

1A.6 APPLICATION OF SOFT COMPUTING 

The application of soft computing has proved following advantages: 

● The application that cannot be modelled mathematically can be 

solved. 

● Non-linear problems can be solved. 

● Introducing human knowledge such as cognition, understanding, 

recognition, learning and other into the field of computing. 
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Soft Computing 

Few applications of soft computing are enlisted below: 

● Handwritten Script Recognition using Soft Computing: 

 It is one of the demanding parts of computer science. It can translate 

multilingual documents and sort the various scripts accordingly. 

Block -level technique concept is used by the system to recognize the 

script from several script document given. To classify the script 

according to their features, it uses Discrete Cosine Transform (DCT) 

and Discrete Wavelet Transform (DWT) together. 

● Image Processing and Data Compression using Soft Computing: 

 Image analysis is the high-level processing technique which includes 

recognition and bifurcation of patterns. It is one of the most important 

parts of the medical field. The problem of computational complexity 

and efficiency in the classification can be easily be solved using soft 

computing techniques. Genetic algorithms, genetic programming, 

classifier systems, evolutionary strategies, etc are the techniques of 

soft computing that can be used. These algorithms give the fastest 

solutions to pattern recognition. These help in analysing the medical 

images obtained from microscopes as well as examine the X-rays. 

● Use of Soft Computing in Automotive Systems and 

Manufacturing:  

 Automobile industry has also adapted soft computing to solve some 

of the major problems.  

 Classic control methods is built in vehicles using the Fuzzy logic 

techniques. It takes the example of human behavior, which is 

described in the forms of rule – “If-Then “statements.  

 The logic controller then converts the sensor inputs into fuzzy 

variables that are then defined according to these rules. Fuzzy logic 

techniques are used in engine control, automatic transmissions, 

antiskid steering, etc. 

● Soft Computing based Architecture: 

 An intelligent building takes inputs from the sensors and controls 

effectors by using them. The construction industry uses the technique 

of DAI (Distributed Artificial Intelligence) and fuzzy genetic agents 

to provide the building with capabilities that match human 

intelligence. The fuzzy logic is used to create behaviour-based 

architecture in intelligent buildings to deal with the unpredictable 

nature of the environment, and these agents embed sensory 

information in the buildings. 

● Soft Computing and Decision Support System: 

 Soft computing gives an advantage of reducing the cost of the 

decision support system. The techniques are used to design, maintain, 

and maximize the value of the decision process. The first application 

of fuzzy logic is to create a decision system that can predict any sort 
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Soft Computing Techniques of risk. The second application is using fuzzy information that selects 

the areas which need replacement. 

● Soft Computing Techniques in Power System Analysis: 

 Soft computing uses the method of Artificial Neural Network (ANN) 

to predict any instability in the voltage of the power system. Using the 

ANN, the pending voltage instability can be predicted. The methods 

which are deployed here, are very low in cost. 

● Soft Computing Techniques in Bioinformatics: 

 The techniques of soft computing help in modifying any uncertainty 

and indifference that biometrics data may have. Soft computing is a 

technique that provides distinct low-cost solutions with the help of 

algorithms, databases, Fuzzy Sets (FSs), and Artificial Neural 

Networks (ANNs). These techniques are best suited to give quality 

results in an efficient way. 

● Soft Computing in Investment and Trading: 

 The data present in the finance field is in opulence and traditional 

computing is not able to handle and process that kind of data. There 

are various approaches done through soft computing techniques that 

help to handle noisy data. Pattern recognition technique is used to 

analyse the pattern or behaviour of the data and time series is used to 

predict future trading points. 

1A.7 TYPES OF SOFT COMPUTING TECHNIQUES 

Following are the various techniques of soft computing: 

1. Fuzzy Computing 

2. Neural Network 

3. Genetic Algorithms 

4. Associative memory 

5. Adaptive Resonance Theory 

6. Classification 

7. Clustering 

8. Probabilistic Reasoning 

9. Bayesian Network 

All the above techniques are discussed in brief in the below sections. 

1A.8 FUZZY COMPUTING 

The knowledge that exists in real world is vague, imprecise, uncertain, 

ambiguous, or probabilistic in nature. This type of knowledge is also known 

as fuzzy knowledge. Human thinking and reasoning frequently involves 

fuzzy information.  
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Soft Computing 

The classical computing system involves two valued logic (true/false, 1/0, 

yes/no). This system sometimes may not be able to answer some questions 

as human does, as they do not have complete true answer. The computing 

system is not just expected to give answers like human but also describe the 

reality level calculated with the imprecision and uncertainty of the facts and 

rules applied. 

Lofti Zadeh observed that the classical computing system was not capable 

to handle subjective data representation or unclear human ideas. In 1965, he 

introduced fuzzy set theory as the extension of classical set theory where 

elements have degrees of memberships. It allows to determine the 

distinctions among the data that is neither true nor false. It is like process of 

human thinking like very hot, hot, warm, little warm, cold, too cold.  

In classical system, 1 represents absolute truth value and 0 represents 

absolute false value. But in the fuzzy system, there is no logic for absolute 

truth and absolute false value. But in fuzzy logic, there is intermediate value 

too present which is partially true and partially false. 

 

Fig a.2: Fuzzy logic with example 

Fuzzy Logic Architecture: 

 

Fig a.3: Fuzzy Logic Architecture 
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Soft Computing Techniques Fuzzy logic architecture mainly constitutes of following four components: 

● Rule base: It contains the set of rules. The If-then conditions are 

provided by the experts to govern the decision-making system. These 

conditions are based on linguistic information.   

● Fuzzification: It converts the crisp numbers into the fuzzy sets. The 

crisp input is measured by the sensors and passed into the control 

system for processing. 

● Inference engine:  It determines the matching degree of the current 

fuzzy input with respect to each rule and decides which rules are to 

be fired according to the input field. Next, the fired rules are combined 

to form the control actions. 

● Defuzzification: The fuzzy set obtained from the inference engine is 

converted into the crisp value. 

Characteristics of fuzzy logic: 

1. It is flexible and easy to implement. 

2. It helps to represent the human logic. 

3. It is highly suitable method for uncertain or approximate learning. 

4. It views inference as a process of propagating elastic constraints. 

5. It allows you to build nonlinear functions of arbitrary complexity. 

When not to use fuzzy logic: 

1. If it is inconvenient to map an input space to an output space. 

2. When the problem can be solved using common sense. 

3. When many controllers can do the fine job, without the use of fuzzy 

logic. 

Advantages of Fuzzy Logic System: 

● Its structure is easy and understandable. 

● It is used for commercial and practical purposes. 

● It helps to control machines and consumer products. 

● It offers acceptable reasoning. It may not offer accurate reasoning. 

● In data mining it helps you to deal with uncertainty. 

● It is mostly robust as no precise inputs are required. 

● It can be programmed to in the situation when feedback sensor stops 

working. 
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Soft Computing 

● Performance of the system can be modified or altered by using 

inexpensive sensors to keep the overall system cost and complexity 

low.  

● It provides a most effective solution to complex issues. 

Disadvantages of Fuzzy Logic System: 

● The results of the system may not be widely accepted as the fuzzy 

logic is not always accurate. 

● It does not have the capability of machine learning as-well-as neural 

network type pattern recognition. 

● Extensive testing with the hardware is needed for validation and 

verification of a fuzzy knowledge-based system. 

● It is difficult task to set exact, fuzzy rules and membership functions. 

Application areas of Fuzzy Logic: 

● Automotive Systems: Automatic Gearboxes, Four-Wheel Steering, 

Vehicle environment control. 

● Consumer Electronic Goods: Photocopiers, Still and video cameras, 

television. 

● Domestic Goods: Refrigerators, Vacuum cleaners, Washing 

Machines. 

● Environment Control: Air conditioners, Humidifiers. 

REVIEW QUESTIONS 

1. Write a short note on fuzzy system. 

2. What is artificial neural network? Explain its components and 

learning methods. 

3. Write a short note on genetic algorithms. 

4. Explain the working of Adaptive Resonance Theory. 

5. Write a short note on associative memory. 

6. Compare classification technique with clustering technique. 

7. Write a short note on probabilistic reasoning. 

8. Write a short note on Bayesian Networks. 

A.9 NEURAL COMPUTING 

Artificial Neural Network (ANN) also known as neural network is the 

concept inspired from human brain and the way the neurons in the human 

brain works. It is computational learning system that uses a network of 

functions to understand and translate a data input of one form into another 

form. It contains large number of interconnected processing elements called 

as neuron. These neurons operate in parallel and are configured. Every 
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Soft Computing Techniques neuron is connected with other neurons by a connection link. Each 

connection is associated with weights which contain information about the 

input signal. 

Components of Neural Networks: 

1. Neuron model: The information process unit of ANN. 

 Neuron model consist of the following: 

 a. Input 

 b. Weight 

 c. Activation functions 

2. Architecture: The arrangement of neurons and links connecting 

neurons, where every link. 

 Following are the different ANN architecture: 

a. Single layer Feed forward Network 

b. Multi-layer Feed forward Network 

c. Single node with its own feedback 

d. Single layer recurrent network 

e. Multi-layer recurrent network 

3. A learning algorithm: For training ANN by modifying the weights in 

order to model a particular learning task correctly on the training 

examples. 

 Following are the different types of learning algorithm: 

a. Supervised Learning 

b. Unsupervised Learning 

c. Reinforcement Learning 

Applications of Neural Network: 

1. Image recognition 

2. Pattern recognition 

3. Self-driving car trajectory prediction 

4. Email spam filtering 

5. Medical diagnosis 

A.10 GENETICS ALGORITHMS 

Genetic Algorithms initiated and developed in the early 1970’s by John 

Holland are unorthodox search and optimization algorithms, which mimic 

some of the process of natural evolution. Gas perform directed random 

search through a given set of alternative with the aim of finding the best 
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Soft Computing 

alternative with respect to the given criteria of goodness. These criteria are 

required to be expressed in terms of an object function which is usually 

referred to as a fitness function. 

Biological Background: 

All living organism consist of cell. In each cell, there is a set of 

chromosomes which are strings of DNA and serves as a model of the 

organism. A chromosomes consist of genes of blocks of DNA. Each gene 

encodes a particular pattern. Basically, it can be said that each gene encodes 

a traits. 

Steps involved in the genetic algorithm: 

● Initialization: Define the population for the problem. 

● Fitness Function: It calculates the fitness function for all the 

chromosomes in the population. 

● Selection: Two fittest chromosomes are selected for the producing the 

offspring. 

● Crossover: Information in the two chromosomes is exchanged to 

produce the new offspring. 

●  Mutation: It is the process of promoting diversity in the populations. 

Benefits of Genetic Algorithm 

● Easy to understand. 

● We always get an answer and the answer gets better with time. 

● Good for noisy environment. 

● Flexible in forming building blocks for hybrid application. 

● Has substantial history and range of use. 

● Supports multi-objective optimization. 

● Modular, separate from application. 

Application of Genetic Algorithm: 

● Recurrent Neural Network 

● Mutation testing 

● Code breaking 

● Filtering and signal processing 
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Soft Computing Techniques A.11 ASSOCIATIVE MEMORY 

An associative memory is a content-addressable structure that maps a set of 

input patterns to a set of output patterns. The associative memory are of two 

types : auto-associative and hetero-associative.  

An auto-associative memory retrieves a previously stored pattern that 

most closely resembles the current pattern. In a hetero-associative 

memory, the retrieved pattern is, in general, different from the input pattern 

not only in content but possibly also in type and format. 

Description of Associative Memory: 

 

Fig a.4: A content-addressable memory, Input and output  

A content-addressable memory is a type of memory that allows, the recall 

of data based on the degree of similarity between the input pattern and the 

patterns stored in memory. It refers to a memory organization in which the 

memory is accessed by its content and not or opposed to an explicit address 

in the traditional computer memory system. This type of memory allows the 

recall of information based on partial knowledge of its contents.  

The simplest artificial neural associative memory is the linear associator. 

The other popular ANN models used as associative memories are Hopfield 

model and Bidirectional Associative Memory (BAM) models. 

A.12 ADAPTIVE RESONANCE THEORY 

ART stands for "Adaptive Resonance Theory", invented by Stephen 

Grossberg in 1976. ART encompasses a wide variety of neural networks, 

based explicitly on neurophysiology.  The word "Resonance" is a concept, 

just a matter of being within a certain threshold of a second similarity 

measure. The basic ART system is an unsupervised learning model, like 

many iterative clustering algorithms where each case is processed by 

finding the "nearest" cluster seed that resonate with the case and update the 

cluster seed to be "closer" to the case. If no seed resonate with the case, then 

a new cluster is created.  
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Grossberg developed ART as a theory of human cognitive information 

processing. The emphasis of ART neural networks lies at unsupervised 

learning and self-organization to mimic biological behavior. Self-

organization means that the system must be able to build stable recognition 

categories in real-time. The unsupervised learning means that the network 

learns the significant patterns based on the inputs only. There is no 

feedback. There is no external teacher that instructs the network or tells 

which category a certain input belongs. The basic ART system is an 

unsupervised learning model. 

The model typically consists of:  

● a comparison field and a recognition field composed of neurons,  

● a vigilance parameter, and  

● a reset module.  

Comparison field and Recognition field: 

● The Comparison field takes an input vector (a 1-D array of values) 

and transfers it to its best match in the Recognition field; the best 

match is, the single neuron whose set of weights (weight vector) 

matches most closely the input vector.  

● Each Recognition Field neuron outputs a negative signal(proportional 

to that neuron’s quality of match to the input vector) to each of the 

other Recognition field neurons and inhibits their output accordingly.  

● Recognition field thus exhibits lateral inhibition, allowing each 

neuron in it to represent a category to which input vectors are 

classified. 

Vigilance parameter: 

● It has considerable influence on the system memories:  

 o higher vigilance produces highly detailed memories,  

 o lower vigilance results in more general memories 

Reset module: 

● After the input vector is classified, the Reset module compares the 

strength of the recognition match with the vigilance parameter.  

o If the vigilance threshold is met, then training commences.  

o Else, the firing recognition neuron is inhibited until a new input 

vector is applied. 

Training ART-based Neural Networks: 

● Training commences only upon completion of a search procedure. 

What happens in this search procedure :  
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Soft Computing Techniques o The Recognition neurons are disabled one by one by the reset 

function until the vigilance parameter is satisfied by a 

recognition match.  

o If no committed recognition neuron’s match meets the vigilance 

threshold, then an uncommitted neuron is committed and 

adjusted towards matching the input vector. 

Methods of Learning: 

● Slow learning method: here the degree of training of the recognition 

neuron’s weights towards the input vector is calculated using 

differential equations and is thus dependent on the length of time the 

input vector is presented.  

● Fast learning method: here the algebraic equations are used to 

calculate degree of weight adjustments to be made, and binary values 

are used. 

Types of ART Systems: 

● ART 1: The simplest variety of ART networks, accept only binary 

inputs. 

● ART 2 : It extends network capabilities to support continuous inputs.  

● Fuzzy ART : It Implements fuzzy logic into ART’s pattern 

recognition, thus enhances generalizing ability. One very useful 

feature of fuzzy ART is complement coding, a means of incorporating 

the absence of features into pattern classifications, which goes a long 

way towards preventing inefficient and unnecessary category 

proliferation.  

● ARTMAP : Also known as Predictive ART, combines two slightly 

modified ARTs , may be two ART-1 or two ART-2 units into a 

supervised learning structure where the first unit takes the input data 

and the second unit takes the correct output data, then used to make 

the minimum possible adjustment of the vigilance parameter in the 

first unit in order to make the correct classification.  

A.13 CLASSIFICATION 

Classification is supervised learning. Classification algorithms is used to 

predict the categorical values. Training is provided to identify the category 

of new observations. The program learns from the given dataset or 

observations and then classifies new observation into a number of classes 

or groups. Classes are also called as target/labels or categories. 

Classification algorithms: 

● Logistic Regression 

● Naïve Bayes 
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● K-Nearest Neighbour  

● Decision tree 

● Random Forest 

Application of Classification: 

● Email Spam Detection 

● Speech Recognition 

● Identification of Cancer tumour cells 

● Biometric Identifications 

A.14 CLUSTERING 

Clustering is type of unsupervised learning method. In this learning we draw 

references from datasets consisting of input data without labelled responses. 

Generally, it is used as a process to find meaningful structure, explanatory 

underlying processes, generative features, and groupings inherent in a set of 

examples. 

Its task is to divide the population or data points into several groups. Data 

points in the same group are similar to the other data point in the same group 

and dissimilar to the data points in other groups.  

Why Clustering? 

Clustering determines the grouping among the unlabelled data present. 

There is no criteria for a good clustering. It depends on the criteria that the 

user fits the need of the user. 

Clustering Methods: 

● Density-Based Methods 

● Hierarchical Based Methods 

 o Agglomerative (bottom up approach) 

 o Divisive (top down approach) 

● Partitioning Methods 

● Grid-based Methods 

Applications of Clustering in different fields 

● Marketing 

● Biology 

● Insurance 

● City Planning 

● Earthquake studies 
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Probabilistic reasoning is a way of knowledge representation where we 

apply the concept of probability to indicate the uncertainty in knowledge. 

In probabilistic reasoning, we combine probability theory with logic to 

handle the uncertainty. We use probability in probabilistic reasoning 

because it provides a way to handle the uncertainty that is the result of 

someone's laziness and ignorance. In the real world, there are lots of 

scenarios, where the certainty of something is not confirmed, such as "It 

will rain today," "behavior of someone for some situations," "A match 

between two teams or two players." These are probable sentences for which 

we can assume that it will happen but not sure about it, so here we use 

probabilistic reasoning.  

Need of probabilistic reasoning in AI: 

● When there are unpredictable outcomes.  

● When specifications or possibilities of predicates becomes too large 

to handle. 

● When an unknown error occurs during an experiment. 

● In probabilistic reasoning, there are two ways to solve problems with 

uncertain knowledge: 

 o Bayes' rule 

 o Bayesian Statistics 

A.16 BAYESIAN NETWORKS 

Bayesian network is also known Bayesian belief network, decision network 

or Bayesian Model. It deals with the probabilistic events and solves a 

problem which has uncertainty.  

Bayesian networks are a type of probabilistic graphical model that uses 

Bayesian inference for probability computations.  Bayesian networks aim 

to model conditional dependence, and therefore causation, by representing 

conditional dependence by edges in a directed graph. Through these 

relationships, one can efficiently conduct inference on the random variables 

in the graph through the use of factors. 

 

Fig a.5: Bayesian Network example 
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A Bayesian network is a directed acyclic graph in which each edge 

corresponds to a conditional dependency, and each node corresponds to a 

unique random variable. Formally, if an edge (A, B) exists in the graph 

connecting random variables A and B, it means that P(B|A) is a factor in 

the joint probability distribution, so we must know P(B|A) for all values of 

B and A in order to conduct inference. 

The Bayesian network has mainly two components: 

● Causal Component 

● Actual numbers 

Each node in the Bayesian network has condition probability distribution 

P(Xi |Parent(Xi) ), which determines the effect of the parent on that node. 

Applications of Bayesian Networks: 

● Medical Diagnosis 

● Management efficiency  

● Biotechnology 

1A.17 SUMMARY 

In this chapter we have learned different techniques used in soft computing. 

Fuzzy system can be used when we want to deal with uncertainty and 

imprecision. Adaptivity and learning abilities in the system can be build 

using neural computing. To find the better solution to the problem, genetic 

algorithms can be applied. The pattern can be retrieved from the memory 

based on the content and not based on address is called associative memory. 

Find the input patterns closest resemblances in the memory can also be done 

with the adaptive resonance theory. Classification is based on supervised 

learning usually used for predictions and clustering is based on 

unsupervised learning. Probabilistic reasoning and Bayesian Networks are 

based on the probability of the event occurring. 

1A.18 REVIEW QUESTIONS 

1. What is computational paradigm? 

2. State difference between hard computing and soft computing? 

3. Write a short note on soft computing. 

4. What are the premises and guiding principle of soft computing 

techniques? 

5. Give any three applications of soft computing. 
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ARTIFICIAL NEURAL NETWORK 

Unit Structure 

1b.0  Objective  
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 1b.1.1 Introduction to Artificial Neural Network 

 1b.1.2 Overview of Biological Neural Network 

 1b.1.3 Human Brain v/s Artificial Neural Network 
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1b.6  Hebb Training Algorithm 

1b.7  Perceptron Network 

1b.8  Adaptive Linear Neuron 

 1b.8.1 Training Algorithm 

 1b.8.2 Testing Algorithm 

1b.9  Multiple Adaptive Linear Neurons 

 1b.9.1 Architecture 

1b.10 Review Questions 

1b.11 References 

1B.0 OBJECTIVES 

1. The fundamentals of artificial neural network 

2. Understanding between biological neuron and artificial neuron 

3. Working of a basic fundamental neuron model. 

4. Terminologies and terms used for better understanding of Artificial 

Neural Network  

5. The basics of supervised learning and perceptron learning rule 

6. Overview of adaptive and multiple adaptive linear neurons 
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Neural networks are information processing systems that are implemented 

to model the working of the human brain. It is more of a computational 

model used to perform tasks in a better optimized way than the traditional 

systems. The essential properties of biological neural networks are 

considered in order to understand the information processing tasks. This 

indeed will allow us to design abstract models of artificial neural networks 

which can be simulated and analyzed. 

1b.1.1 Introduction to Artificial Neural Network  

Artificial Neural Network (ANN) is an information processing system that 

possesses characteristics with biological neural networks. ANNs consists of 

large number of highly interconnected processing elements called nodes or 

units or neurons. These neurons operate in parallel. Every neuron is 

connected to the other neuron through the communication link with 

assigned weights which contain information about the input signal. These 

processing elements are called neurons or artificial neurons. 

1b.1.2 Overview of Biological Neural Network 

 

Fig 1b.1: Schematic diagram of a Neuron  

(Image courtesy: Ugur Halici Lecture notes) 

The fact that the human brain consists of large number of neurons with 

numerous interconnections that processes information. The term neural 

network is usually referred to the biological neural network that processes 

and transmits information. The biological neurons are part of the nervous 

system. 

The biological neuron consists of three major parts  

1. Soma or Cell body- contains the cell nucleus. In general, processing 

occurs here 

2. Dendrites- branching fibres that protrude from the cell body or soma. 

The nerve is connected to the cell body. 

3. Axon- It carries the impulses of the neuron. It carries information 

away from the soma to other neurons. 

4. Synapse- Each strand of an axon terminates into a small bulb-like 

organ called synapse. It is through synapse the neuron introduces its 

signals to other neurons. 
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Artificial Neural Network  Working of the neuron 

1. Dendrites receive activation signal from other neurons which is the 

internal state of every neuron 

2. Soma processes the incoming activity signals and convert its into 

output activation signals. 

3. Axons carry signals from the neuron and sends it to other neurons. 

4. Electric impulses are passed between the synapses and the dendrites. 

The signal transmission involves a chemical process called neuro-

transmitters. 

1b.1.3 Human Brain v/s Artificial Neural Network 

Comparison between biological and artificial neurons based on the 

following criteria  

1. Speed – Signals in human brain move at a speed dependent on the 

nerve impulse. The biological neuron is slow in processing as 

compared to the artificial neural networks which are modelled to 

process faster. 

2. Processing- The biological neuron can perform massive parallel 

operations simultaneously. A large number of simple units are 

organized to solve problems independently but collectively. The 

artificial neurons also respond in parallel but do not execute 

programmed instructions. 

3. Size and Complexity- The size and complexity of the brain is 

comparatively higher than that of artificial neural network. The size 

and complexity of an ANN is different for different applications 

4. Storage Capacity – The biological neuron stores the information in its 

interconnection and in artificial neuron it is stored in memory 

locations. 

5. Tolerance- The biological neuron has fault tolerant capability but 

artificial neuron has no tolerant capability. Biological neurons 

considers redundancies whereas artificial neurons cannot consider 

redundancies. 

6. Control mechanism- There is no control unit to monitor the 

information processed in to the network in biological neural networks 

whereas in artificial neuron model all activities are continuously 

monitored by a control unit. 
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Soft Computing Techniques 1b.1.4 Characteristics of Artificial Neural Networks  

1. It is a mathematical model consists of computational elements 

implemented neurally. 

2. Large number of highly interconnected processing elements known 

as neurons are prominent in ANN 

3. The interconnections with their weights are associated with neurons. 

4. The input signals arrive at the processing elements through 

connections and weights. 

5. ANNs collective behavior is characterized by their ability to learn, 

recall and generalize from the given data. 

6. A single neuron carries no specific information. 

1b.1.5 How a simple neuron works? 

 

Fig 1b.2 Architecture of a simple artificial neural net 

From the given figure above, there are two input neurons X1 and X2 

transmitting signal to the output neuron Y for receiving signal.  

The input neurons are connected to the output neurons over a weighted 

interconnection links w1 and w2. 

For above neuron architecture , the net input has to be calculated in the way. 

yin = x1w1+x2w2 

where x1 and x2 are the activations of the input neurons X1 and X2 . The 

output yin of the output neuron Y can be obtained by applying activations 

over the net input . 

y =f(yin) 

Output = Function ( net input calculated ) 

The function to be applied over the net input is called activation function .  
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Artificial Neural Network 1B.2 BASIC MODELS OF ARTIFICAL NEURAL 

NETWORK 

The models of ANN are specified by the three basic entities 

1. The model’s synaptic interconnections 

2. The learning rules adopted for updating and adjusting the connection 

weights  

3. The activation functions 

3.2.1. The model’s synaptic interconnections  

ANN consists of a set of highly interconnected neurons connected through 

weights to the other processing elements or to itself. The arrangement of 

these processing elements and the geometry of their interconnections are 

important for ANN. The arrangement of neurons to form layers and the 

connection pattern formed within and between layers is called the network 

architecture. 

There are five basic neuron connection architectures. 

1. Single-layer feed-forward network 

2. Multilayer feed-forward network 

3. Single node with its own feedback 

4. Single-layer recurrent network 

5. Multi-layer recurrent network  

1. Single-layer feed-forward network  

It consists of a single layer of network where the inputs are directly 

connected to the output, one per node with a series of various weights. 
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Soft Computing Techniques 2. Multi-layer feed-forward network 

It consists of multi layers where along with the input and output layers, there 

are hidden layers. There can be zero to many hidden layers. The hidden 

layer is usually internal to the network and has no direct contact with the 

environment. 

 

3. Single node with own feedback  

The simplest neural network architecture giving feedback to itself with a 

single neuron. 

 

4. Single-layer recurrent network  

A single-layer network with a feedback directed back to itself or to other 

processing element or both. 
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Artificial Neural Network 5. Multilayer recurrent network 

A recurrent network has at least a feedback in place. The processing 

elements output can be directed back to the nodes in the previous layer. 

 

3.2.2. Learning  

The most important part of ANN is it capability to train or learn. It is 

basically a process by means of which a neural net adapts for adjusting or 

updating the connection weights in order to receive a desired response. 

Learning in ANN is broadly classified into three categories 

1. Supervised Learning  

2. Unsupervised Learning  

3. Reinforcement Learning  

1. Supervised Learning  

In Supervised learning, it is assumed that the correct target output values 

are known for each input pattern. In this learning, a supervisor or teacher is 

needed for error minimization. The difference between the actual and 

desired output vector is minimized using the error signal by adjusting the 

weights until the actual output matches the desired output. 

2. Unsupervised Learning 

In Unsupervised learning, the learning is performed without the help of a 

teacher or supervisor. In the learning process, the input vectors of similar 

type are grouped together to form clusters. The desired output is not given 

to the network. The system learns on its own with the input patterns. 

 



   

 
26 

Soft Computing Techniques 3. Reinforcement Learning  

The Reinforcement learning is a form of Supervised learning as the network 

receives feedback from its environment. Here the supervisor does not 

present the desired output but learns through the critic information. 

3.2.3 Activation Function  

An activation function f is applied over the net input to calculate the output 

of an ANN. The choice of activation functions depends on the type of 

problems to be solved by the network. 

The most common functions are  

1. Identity function- It is a linear function. It is defined as f(x) = x for all 

x 

2. Binary step function:  The function can be defined as  

       1 if x >= 𝜃 

 f(x) =  

       0 if x < 𝜃 

 Here,𝜃 represents the threshold value. 

3. Bipolar Step function: The function can be defined as  

        1 if x >= 𝜃 

 f(x)   =          

        -1 if x < 𝜃 

 Here,𝜃 represents the threshold value 

4. Sigmoidal functions: These functions are used in back-propagation 

nets. 

 They are of two types: 

 Binary Sigmoid function: It is known as unipolar sigmoid function.  

 It is defined by the equation  

                               f(x) = 
1

1 + 𝑒−𝜆𝑥 

 Here, 𝞴 is the steepness parameter. The range of the sigmoid function is 

from 0 to 1  

Bipolar Sigmoid function: This function is defined as  

         f(x) = 
1 −  𝑒−𝜆𝑥

1 + 𝑒−𝜆𝑥  
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Artificial Neural Network Here, 𝞴 is the steepness parameter. The range of the sigmoid function is 

from  -1 to +1 

5. Ramp function: The ramp function is defined as  

     1   if x > 1  

   f(x)=             x if 0 ≤  𝑥 ≤   1 

     0 if x < 0 

       The graphical representation is shown below for all the activation 

functions 

 

1B.3 TERMINOLOGIES OF ANN 

3.3.1 Weights  

Weight is a parameter which contains information about the input signal. 

This information is used by the net to solve a problem.  
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Soft Computing Techniques In ANN architecture, every neuron is connected to other neurons by means 

of a directed communication link and every link is associated with weights. 

Wij is the weight from processing element ‘i’ source node to processing 

element ‘j’ destination node. 

3.3.2 Bias (b) 

The bias is a constant value included in the network. Its impact is seen in 

calculating the net input. The bias is included by adding a component x0 =1 

to the input vector X. 

Bias can be positive or negative. The positive bias helps in increasing the 

net input of the network. The negative bias helps in decreasing the net input 

of the network.  

1b.3.3.  Threshold (𝜽) 

Threshold is a set value used in the activation function. In ANN, based on 

the threshold value the activation functions are defined and the output is 

calculated.  

1b.3.4 Learning Rate (𝜶) 

The learning rate is used to control the amount of weight adjustment at each 

step of training. The learning rate ranges from 0 to 1. It determines the rate 

of learning at each time step. 

1B.4 MCCULLOCH- PITTS NEURON (MP NEURON 

MODEL) 

MP neuron model was the earliest neural network model discovered by 

Warren McCulloch and Walter Pitts in 1943.It is also known as Threshold 

Logic Unit. 

The M-P neurons are connected by directed weighted paths. The activation 

of this model is binary. The weights associated with the communication 

links may be excitatory (weight is positive) or inhibitory (weight is 

negative). Each neuron has a fixed threshold and if the net input to the 

neuron is greater than the threshold then the neuron fires otherwise it will 

not fire.  

1B.5 CONCEPT OF LINEAR SEPARABILITY  

Concept: Sets of point in 2-D space are linearly separable if the points can 

be separated by a straight line  

In ANN, linear separability is the concept wherein the separation is based 

on the network response being positive or negative. A decision line is drawn 

to separate positive and negative responses. The decision line is called as 

linear-separable line.  
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Artificial Neural Network 

 

Fig 1b.3: Linear Separable Patterns 

The linear separability of the network is based on the decision-boundary 

line. If there exists weights for which the training data has correct 

response,+ 1 (positive) ,it will lie on one side of the decision boundary line 

and all other data on the other side of the boundary line. This is known as 

linear separability. 

1B.6 HEBB NETWORK 

Hebb or Hebb learning rule stated by Donald Hebb in 1949 states that, the 

learning is performed by the change in the synaptic gap. Explaining further, 

he stated “When an axon of cell A is near enough to excite cell B, and 

repeatedly takes place in firing it, some growth or metabolic change takes 

place in one or both the cells such that A’s efficiency, as one of the cells 

firing B, is increased”. 

In Hebb learning, if two interconnected neurons are ‘ON’ simultaneously 

then the weights associated with these neurons can be increased by changing 

the strength in the synaptic gap. 

 The weight update is given by  

Wi (new) = wi (old) + xiy 
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Soft Computing Techniques Flowchart of Training algorithm,   

 

Fig 1b.4: Flowchart of Hebb training algorithm 

1B.7 PERCEPTRON NETWORKS 

Perceptron Networks are single-layer feed forward networks. They are the 

simplest perceptron, 

Perceptron consists of three units – input unit (sensory unit), hidden unit 

(associator unit) and output unit (response unit). The input units are 

connected to the hidden units with fixed weights having values 1, 0 or -1 

assigned at random. The binary activation function is used in input and 

hidden unit. The response unit has an activation of 1, 0 or -1. The output 

signal sent from the hidden unit to the output unit are binary. 

The output of the perceptron network is given by y =f(yin) where yin is the 

activation function. 

 

Fig 1b.5: Perceptron model 
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Artificial Neural Network Perceptron Learning algorithm 

The training of perceptron is a supervised learning algorithm. The algorithm 

can be used for either bipolar or binary input vectors, fixed threshold and 

variable bias. 

The output is obtained by applying the activation function over the 

calculated net input. 

The weights are adjusted to minimize error when the output does not match 

the desired output. 

 

1B.8 ADAPTIVE LINEAR NEURON (ADALINE) 

It is a network with a single linear unit. The linear activation functions are 

called linear units. In this, the input-output relationship is linear. Adaline 

networks are trained using the delta rule. 

Adaline is a single-unit neuron, which receives input from several units and 

also from one unit, called bias. An Adeline model consists of trainable 

weights. The inputs are of two values (+1 or -1) and the weights have signs 

(positive or negative). 

Initially random weights are assigned. The net input calculated is applied to 

a quantizer transfer function (possibly activation function) that restores the 

output to +1 or -1. The Adaline model compares the actual output with the 

target output and with the bias and the adjusts all the weights. 
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The Adaline network training algorithm is as follows: 

Step0: weights and bias are to be set to some random values but not zero. 

Set the learning rate parameter α. 

Step1: perform steps 2-6 when stopping condition is false. 

Step2: perform steps 3-5 for each bipolar training pair s:t 

Step3: set activations foe input units i= 1 to n. 

Step4: calculate the net input to the output unit. 

Step5: update the weight and bias for i=1 to n 

Step6: if the highest weight change that occurred during training is smaller 

than a specified tolerance then stops the training process, else continue. This 

is the test for the stopping condition of a network. 

1b.8.2 Testing Algorithm 

It is very essential to perform the testing of a network that has been trained. 

When the training has been completed, the Adaline can be used to classify 

input patterns. A step function is used to test the performance of the 

network. The testing procedure for the Adaline network is as follows: 

Step0: initialize the weights. (The weights are obtained from the training 

algorithm.) 

Step1: perform steps 2-4 for each bipolar input vector x. 

Step2: set the activations of the input units to x. 

Step3: calculate the net input to the output units 

Step4: apply the activation function over the net input calculated. 

1B.9 MULTIPLE ADAPTIVE LINEAR NEURONS 

(MADALINE) 

It consists of many adalines in parallel with a single output unit whose value 

is based on certain selection rules. It uses the majority vote rule. On using 

this rule, the output unit would have an answer either true or false. 

On the other hand, if AND rule is used, the output is true if and only if both 

the inputs are true and so on. 

The training process of Madaline is similar to that of Adaline 

1b.9.1 Architecture 

It consists of “n” units of input layer and “m” units of Adaline layer and “1” 

unit of the Madaline layer. Each neuron in the Adaline and Madaline layers 

has a bias of excitation “1”. The Adaline layer is present between the input 
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Artificial Neural Network layer and the Madaline layer; the Adaline layer is considered as the hidden 

layer. 

 

Fig 1b.6: Architecture of Madaline layer 

1B.10 REVIEW QUESTIONS  

1. Define the term Artificial Neural Network. 

2. List and explain the main components of biological neuron. 

3. Mention the characteristics of an artificial neural network. 

4. Compare the similarities and differences between biological and 

artificial neuron. 

5. What are the basic models of an artificial neural network? 

6. List and explain the commonly used activation functions. 

7. Define the following 

a. Weights 

b. Bias 

c. Threshold  

d. Learning rate  

8. Write a short note on McCulloch Pitts Neuron model. 

9. Discuss about the concept of liner separability. 

10. State the training algorithm used for the Hebb learning networks. 

11. Explain perceptron network. 

12. What is Adaline? Draw the model of an Adaline network. 

13. How is Madaline network formed? 
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1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

2019, Wiley Publication, Chapter 2 and 3  

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks, 

Stephen Lucci PhD) 

3. Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes and tutorialspoint.com. 

 


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1c 
SUPERVISED LEARNING NETWORK 

Unit Structure 

1c.0  Objective  

1c.1  Perceptron Network 

1c.2  Adaptive Linear Neuron 

 1c.2.1 Training Algorithm 

 1c.2.2 Testing Algorithm 

1c.3  Multiple Adaptive Linear Neurons 

 1c.3.1 Architecture 

1c.4 Backpropagation Network 

1c.5 Radial Basis Function 

1c.6 Time Delay Neural Network 

1c.7 Functional Link Network 

1c.8 Tree Neural Network 

1c.9 Review Questions 

1c.10 References 

1C.0 OBJECTIVES 

1. The fundamentals of Supervised Learning Network 

2. Understanding Perceptron Network 

3. Working of a Adaptive Linear Neuron. 

4. Understanding of Multiple Adaptive Linear Neurons 

5. To understand Back-propagation networks used in real time 
application. 

6. Theory behind radial basis network and its activation function  

7. Special supervised learning networks such as time delay neural 
networks, functional link networks, tree neural networks and wavelet 
neural networks  

1C.1 PERCEPTRON NETWORKS 

Perceptron Networks are single-layer feed forward networks. They are the 
simplest perceptron, 

Perceptron consists of three units – input unit (sensory unit), hidden unit 
(associator unit) and output unit (response unit). The input units are 
connected to the hidden units with fixed weights having values 1, 0 or -1 
assigned at random. The binary activation function is used in input and 
hidden unit. The response unit has an activation of 1, 0 or -1. The output 
signal sent from the hidden unit to the output unit are binary. 
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Soft Computing Techniques The output of the perceptron network is given by y =f(yin) where yin is the 
activation function. 

 

Fig 1c.1: Perceptron model 

Perceptron Learning algorithm 

The training of perceptron is a supervised learning algorithm. The algorithm 

can be used for either bipolar or binary input vectors, fixed threshold and 

variable bias. 

The output is obtained by applying the activation function over the 

calculated net input. 

The weights are adjusted to minimize error when the output does not match 

the desired output. 
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Supervised Learning Network 1C.2 ADAPTIVE LINEAR NEURON (ADALINE) 

It is a network with a single linear unit. The linear activation functions are 

called linear units. In this, the input-output relationship is linear. Adaline 

networks are trained using the delta rule. 

Adaline is a single-unit neuron, which receives input from several units and 

also from one unit, called bias. An Adeline model consists of trainable 

weights. The inputs are of two values (+1 or -1) and the weights have signs 

(positive or negative). 

Initially random weights are assigned. The net input calculated is applied to 

a quantizer transfer function (possibly activation function) that restores the 

output to +1 or -1. The Adaline model compares the actual output with the 

target output and with the bias and the adjusts all the weights. 

1c.2.1 Training Algorithm 

The Adaline network training algorithm is as follows: 

Step0: weights and bias are to be set to some random values but not zero. 

Set the learning rate parameter α. 

Step1: perform steps 2-6 when stopping condition is false. 

Step2: perform steps 3-5 for each bipolar training pair s:t 

Step3: set activations foe input units i= 1 to n. 

Step4: calculate the net input to the output unit. 

Step5: update the weight and bias for i=1 to n 

Step6: if the highest weight change that occurred during training is smaller 

than a specified tolerance then stops the training process, else continue. This 

is the test for the stopping condition of a network. 

1c.2.2 Testing Algorithm 

It is very essential to perform the testing of a network that has been trained. 

When the training has been completed, the Adaline can be used to classify 

input patterns. A step function is used to test the performance of the 

network. The testing procedure for the Adaline network is as follows: 

Step0: initialize the weights. (The weights are obtained from the training 

algorithm.) 

Step1: perform steps 2-4 for each bipolar input vector x. 

Step2: set the activations of the input units to x. 

Step3: calculate the net input to the output units 

Step4: apply the activation function over the net input calculated. 
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(MADALINE) 

It consists of many adalines in parallel with a single output unit whose value 

is based on certain selection rules. It uses the majority vote rule. On using 

this rule, the output unit would have an answer either true or false. 

On the other hand, if AND rule is used, the output is true if and only if both 

the inputs are true and so on. 

The training process of Madaline is similar to that of Adaline 

1c.3.1 Architecture 

It consists of “n” units of input layer and “m” units of Adaline layer and “1” 

unit of the Madaline layer. Each neuron in the Adaline and Madaline layers 

has a bias of excitation “1”. The Adaline layer is present between the input 

layer and the Madaline layer; the Adaline layer is considered as the hidden 

layer. 

 

Fig 1c.3: Architecture of Madaline layer 

1C.4 BACKPROPAGATION NETWORKS  

It is applied to multi-layer feed forward networks consisting of processing 

elements with different activation functions. The networks associated with 

back propagation learning algorithm is known as Back propagation 

networks. It uses gradient descent method to calculate error and propagate 

it back to the hidden unit. 

The training at BPN is performed in three stages 

1. The feed-forward of the input training pattern 

2. The calculation and back-propagation of the error 
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Supervised Learning Network 3. Weight updates          

             

Fig. 1C.4.1:Architecture of Backpropagation network 

(Image:guru99.com) 

1. A back-propagation neural network is a multilayer, feed-forward 

neural network consisting of an input layer, a hidden layer and output 

layer. 

2. The neurons present in the hidden and output layers have activation 

with always value 1. 

3. The bias also acts as weights. 

4. During the learning phase, signals are sent in the reverse direction. 

5. The output obtained can be either binary or bipolar. 

1C.5 RADIAL BASIS FUNCTION NETWORK  

The radial basis function is a classification and functional approximation 

neural network. It uses non-linear activation functions like sigmoidal and 

Gaussian functions. Since radial basis functions have only one hidden layer, 

the convergence of optimization is much faster. 

1. The architecture consists of two layers. 

2.  The output nodes form a linear combination of the basis functions 

computed by means of radial basis function nodes. Hidden layer generates 

a signal corresponding to an input vector in the input layer, and 

corresponding to this signal, network generates a response. 
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  Fig. 1C.4.2: Architecture of Radial Basis functions  

1C.6 TIME DELAY NEURAL NETWORKS  

Time delay networks are basically feed-forward neural networks except that 

the input weights has a tapped delay line associated to it.In TDNN, when 

the output is being fed back through a unit delay into the input layer, the net 

computed is equivalent to an infinite impulse response filter. 

A neuron with a tapped delay line is called a Time delay neural network 

unit and a network which consists of TDNN units is called a Time delay 

neural network. Application od TDNN is speech recognition. 

1C.7 FUNCTIONAL LINK NETWORKS 

Functional link networks is a specifically designed high order neural 

networks with low complexity for handling linearly non-separable 

problems. It has no hidden layers. This model is useful for learning 

continuous functions. 

The most common example of linear non-separability is XOR problem. 

 

          Fig 1C.4.3: Functional line network model with no hidden layer 
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Supervised Learning Network 1C.8 TREE NEURAL NETWORKS  

These networks are basically used for pattern recognition problems. It uses 

multilayer neural network at each decision-making node of a binary 

classification for extracting a non-linear feature. 

The decision nodes are circular nodes and the terminal nodes are square 

nodes. The splitting rule decides whether the pattern moves to the right or 

left. 

The algorithm consists of two phases 

1. The growing phase- A large tree is grown in this phase by recursively 

finding the rules of splitting until all the terminal nodes have nearly 

pure membership or else it can split further. 

2. Tree pruning phase- To avoid overfilling/overfitting of data, a smaller 

tree is selected or it is pruned. 

Example- Tree neural networks can be used for waveform recognition 

problem. 

 

Fig 1C.4.4: Binary Classification tree 

1C.9 REVIEW QUESTIONS  

1. Define the term Artificial Neural Network. 

2. List and explain the main components of biological neuron. 

3. Mention the characteristics of an artificial neural network. 

4. Compare the similarities and differences between biological and 

artificial neuron. 

5. What are the basic models of an artificial neural network? 

6. List and explain the commonly used activation functions. 
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Soft Computing Techniques 7. Define the following 

a. Weights 

b. Bias 

c. Threshold  

d. Learning rate  

8. Write a short note on McCulloch Pitts Neuron model. 

9. Discuss about the concept of liner separability. 

10. State the training algorithm used for the Hebb learning networks. 

11. Explain perceptron network. 

12. What is Adaline? Draw the model of an Adaline network. 

13. How is Madaline network formed? 

1C.10 REFERENCES 

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

2019, Wiley Publication, Chapter 2 and 3  

2. http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks, 

Stephen Lucci PhD) 

3. Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes and tutorialspoint.com 

 


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MODULE I: Unit II 

2a 
ASSOCIATIVE MEMORY NETWORK 

Unit Structure 

2a.0  Objective 

2a.1 Wavelet Neural Network 

2a.2 Associative Memory Networks-Overview  

2a.3 Auto associative Memory Network 

2a.4 Hetro associative Memory Network 

2a.5 Bi-directional Associative Memory 

2a.6  Hopfield Networks 

2a.8  Kohonen Self-Organizing Feature Maps 

2a.9  Kohonen Self-Organizing Motor Map 

2a.10  Learning Vector Quantization (LVQ) 

2a.11  Counter propagation Networks 

2a.12  Adaptive Resonance Theory Network 

2a.13 Questions 

2a.14 References 

2A.0 OBJECTIVES 

1. To understand Wavelet Neural Networks  

2. Details and understanding about Associative Memory and its types 

3. Hopfield networks and its training algorithm. 

4. An overview of iterative auto associative and temporal associative 

memory  

2A.1 WAVELET NEURAL NETWORKS 

These networks work on wavelet transform theory. It is useful for functional 

approximation through wavelet decomposition. It consists of rotation, 

dilation, translation and if the wavelet lies on the same line then it is called 

wavelon instead of a neuron. 
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Fig 2a.1: Wavelet Neural network with translation, rotation, 

 dilation and wavelon 

2A.2 ASSOCIATIVE MEMORY NETWORKS-

OVERVIEW 

1. An associative memory is a content addressable memory structure 

that maps the set of input patterns to the output patterns. It can store a 

set of patterns as memories. The recall is through association of the 

key pattern with the help of information memorized. Associative 

memory makes a parallel search with a stored data file. The concept 

behind this type of search is to retrieve the stored data either 

completely or partially.  

2.   A content-addressable structure refers to a memory organization 

where the      memory is accessed by its content. The associative 

memory is of two types autoassociative memory and 

heteroassociative memory which are single-layer nets where the 

weights are determined by the net output which is stored as a pattern. 

The architecture of the associative net is either feed-forward or 

iterative. 

2A.3 AUTOASSOCIATIVE MEMORY NETWORK 

1. In this network, training input and target output vectors are same. 

2. Determination of weight is called storing of vectors. 

3. Weight is set to zero. 

4. It increases net ability to generalize 

5. The net’s performance is based on its ability to reproduce a stored 

pattern from a noisy input. 
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Associative  

Memory Network 
Architecture 

For an autoassociative net, the training input and target output vectors are 

the same. The input layer consists of n input units and the output layer also 

consists of n output units. The input and output layers are connected through 

weighted interconnections.  

 

Fig 2a.2: Autoassociative network 

2a.3.1 Training Algorithm 

 

2A.4 HETEROASSOCIATIVE MEMORY NETWORK 

1. In this network, the training input and the target output vectors are 

different. 

2. The determination of weights is done by either using Hebb rule or 

delta rule. 

3. The net finds an appropriate output vector, corresponds to an input 

vector x, that may be either one of the stored patterns or a new pattern. 
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The input layer consists of n number of input units and the output layer 

consists of m number of output units. There is a weighted connection 

between the input and output layers. Here, the input and output are not 

correlated with each other. 

 

Fig 2a.3: Heteroassociative network  

2A.5 BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM) 

1. The BAM network performs forward and backward associative 

searches for stored stimulus responses.  

2. It a type of recurrent heteroassociative pattern matching network that 

encodes using Hebbian learning rule. 

3. BAM neural nets can respond either ways from input and output 

layers. 

4. It consists of two layers of neurons which are connected by directed 

weight path connections. 

5. The network dynamics involves two layers of interaction until all the 

neurons reach equilibrium. 

                    

                 Fig: 2a.4 Bidirectional associative memory net  
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Associative  

Memory Network 
2A.6 HOPFIELD NETWORKS 

1. These networks were developed by John. J. Hopfield. 

2. Through his work, he promoted construction of the hardware chips. 

3. These networks are applied in associative memory and optimization 
problems. 

4. They are basically of two types -discrete and continuous Hopfield 
networks. 

Discrete Hopfield networks- The Hopfield networks is an autoassociative 
fully interconnected single-layer feedback network with fixed weights. 

It works in discrete fashion. The network takes two-valued inputs -binary 
or bipolar. In this network, only one unit updates its activation at a time. 

The usefulness of content addressable memory is realized by discrete 
Hopfield net. 

Continuous Hopfield networks- In this network, time is considered to be a 
continuous variable. These networks are used for solving optimization 
problems like travelling salesman problems. These networks can be realized 
as an electronic circuit. The nodes of these Hopfield networks have 
continuous graded output. The total energy of the network decreases 
continuously with time. 

2A.7 KOHONEN SELF-ORGANIZING FEATURE MAPS 

Feature’s mapping is a process which converts the patterns of arbitrary 
dimensionality into a response of one- or two-dimensional arrays of 
neurons, i.e. it converts a wide pattern space into a typical feature space. 
The network performing such a mapping is called feature map. Apart from 
its capability to reduce the higher dimensionality, it has to preserve the 
neighborhood relations of the input patterns, i.e. it has to obtain a topology 
preserving map. For obtaining such feature maps, it is required to find a 
self-organizing array which consist of neurons arranged in a one-
dimensional array or a two-dimensional array. To depict this, a typical 
network structure where each component of the input vector x is connected 
to each of nodes is shown in Figure 2a5-5. 

 

Figure 2a.5 One-dimensional Feature mapping network 
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Soft Computing Techniques On the other hand, if the input vector is two-dimensional, the inputs, say 

x(a, b), can arrange themselves 

in a two-dimensional array defining the input space (a, b) as in Figure 5-6. 

Here, the two layers are fully connected. 

The topological preserving property is observed in the brain, bur nor found 

in any other artificial neural network. 

 

Figure 2a.6. Two dimensional feature mapping network 

2a.7.1 Architecture of Kohonen Self-Organizing Feature Maps 

Consider a linear array of cluster units as in Figure 5-7. The 

neighborhoods of the units designated by "o" of radii Ni(k1), Ni(k2) and 

Ni(k,), k1 > k, > k,, where k1 = 2, k2 = 1, k3 = 0. 

For a rectangular grid, a neighborhood (Ni) of radii k1, k2,  and k3 is 

shown in Figure 5-8 and for a 

hexagonal grid the neighborhood is shown in Figure 5-9. In all the three 

cases (Figures 5-7-5-9), the unit with “#” symbol is the winning unit and 

the other units are indicated by  "o." In both rectangular and hexagonal 

grids, k1 >k2 > k3, where k1 = 2, k2 = 1, k3 = 0. 

For rectangular grid, each unit has eight nearest neighbors but there are 

only six neighbors for each unit in 

the case of a hexagon grid. Missing neighborhoods may just be ignored. A 

typical architecture of Kohonen self-organizing feature map (KSOFM) is 

shown in Figure 2a.5-10. 

 

Figure 2a.7. Linear array of cluster units 
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Associative  

Memory Network 

 

Fifure 2a.8.Rectanguler grid 

 

Figure 2a.9. Hexagonal grid 

 

Figure 2a.10. Kohonen self organizing feature map architecture  
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Figure 2a.11. Flowchart for training process of KSOFM 
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Memory Network 
2a.7.2. Training Algorithm of Kohonen Self-Organizing Feature 

Maps: 

Step 0: - Initialize the weights 𝑤𝑖𝑗 : Random values may be assumed. 

They can be chosen as the same range of values as the component if input 

vector. If information related to distribution of clusters is known, the 

initial weights. can bet taken to reflect that prior knowledge. 

 Set topological neighborhood parameters: As clustering progresses, 

the radius of the neighborhood Decreases 

 Initialize the learning rate  : It should be a slowly decreasing 

function of time.  

Step 1: Perform Steps 2 − 8 when stopping condition is false.  

Step 2; Perform Steps 3-5 for each input vector 𝑥.  

Step 3: Compute the square of the Euclidean distance, i.e., for each 𝑗 = 1 

to 𝑚, 

𝐷(𝑗) = ∑  

𝑛

𝑖=1

∑  

𝑚

𝑗=1

(𝑥𝑖 − 𝑤𝑖𝑗)
2
 

Step 4: Find the winning unit index J, so that D(J) is minimum. (In Steps 3 

and 4 , dot product method can also be used to find the winner, which is 

basically the calculation of net input, and the winner will be the one with 

the largest dot product.)  

Step 5: For all units 𝑗 within a specific neighborhood of 𝐽 and for all 𝑖, 

calculate the new weights: 

𝑤𝑗𝑗(new) = 𝑤𝑖𝑗(o ∣ d) ± 𝛼0[𝑥𝑖 − 𝑤𝑖𝑗( old )] 

Or 

𝑤𝑖𝑗( new ) = (1 − 𝛼)𝑤𝑖𝑗( old ) + 𝛼𝑥𝑖 

Step 6: Update the learning rate 𝛼 using the formula 𝛼(𝑡 + 1) = 0.5𝛼(𝑡).  

Step 7: Reduce radius of topological neighborhood at specified time 

intervals.  

Step 8 : Test for stopping condition of the network 
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Figure 2a.12. Architecture of kohonen self organizing motor map 

The extension of Kohonen feature map for a multilayer network involve the 

addition of an association layer to the output of the self-organizing feature 

map layer. The output node is found to associate the desired output values 

with certain input vectors. This type of architecture is called as Kohonen 

self-organizing motor map and layer that is added is called a motor map in 

which the movement command, 

are being mapped into two-dimensional locations of excitation. The 

architecture of KSOMM is shown in 

Figure 5-12. Here, the feature map is a hidden layer and this acts as a 

competitive network which classifies the input vectors.  

2A.9 LEARNING VECTOR QUANTIZATION (LVQ) 

LVQ is a process of classifying the patterns, wherein each output unit 

represents a particular class. Here, for each class several units should be 

used. The output unit weight vector is called the reference vector or code 

book vector for the class which the unit represents. This is a special case of 

competitive net, which uses supervised learning methodology. During the 

training the output units are found to be positioned to approximate the 

decision surfaces of the existing Bayesian classifier. Here, the set of training 

patterns with known classifications is given to the network, along with an 

initial distribution of the reference vectors. When the training process is 

complete, an LVQ net is found to classify an input vector by assigning it to 

the same class as that of the output unit, which has its weight vector very 

close to the input vector. Thus LVQ is a classifier paradigm that adjusts the 

boundaries between categories to minimize existing misclassification. LVQ 

is used for optical character recognition, converting speech mro phonemes 

and other application as well. 
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2a.9.1. Architecture of LVQ: 

Figure 5-13 shows the architecture of LVQ. From Figure 5-13 it can be 

noticed that there exists input layer with "n" unit; and output layer with 

"m" units. The layers are found to be fully interconnected with weighted 

linkage acting over the links. 

 

Figure 2a.13. Architecture of LVQ 

2a.9.2. Flowchart of LVQ: 

The parameters used for the training process of a LVQ include the 

following: 

𝑥 =  taaining vector (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)

𝑇 =  category or class for the training vector 𝑥

𝑤𝑗 =  weight vector for jh outpus unit (𝑧1𝑗, … , 𝑤𝑖𝑗, … , 𝑤𝑣𝑗)

 

𝑐𝑗 = cluster or class or category associated with jh output unit. 

The Euclidean distance of jh outpui unit is 𝐷(𝑗) = ∑(𝑥𝑖 − 𝑤𝑖𝑗)
2

. The 

flowchart indicaring the flow of training process is shown in Figure 

𝟐𝐚. 𝟏𝟒. 
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2a.9.3. Training Algorithm of LVQ: 

Step 0: Initialize the reference vectors. This can be done using the 

following steps. 

 From the given sec of training vectors, take the first " 𝑚 " (number 

of clusters) training vectors and use them as weighc vectors, the 

remaining vectors can be used for training. 

 Assign the initial weights and classifications random.1y. 

 K -means chustering mechod. 
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Set initial learning rate 𝛼. 

Step1: Perform Steps 2 − 6 if the stopping condition is false.  

Step 2: Perform Steps 3-4 for each training input vector 𝑥. 

Step 3: Calculate the Euclidean distance; for 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚, 

𝐷(𝑗) = ∑  

𝑛

𝑖=1

∑  

𝑚

𝑗=1

(𝑥𝑖 − 𝑤𝑖𝑗)
2
 

Find the winning unit index 𝐽, when 𝐷(𝐽) is minimum.  

Step 4: Update the weights on the winning unit, 𝑤, using the following 

conditions. 

 If 𝑇 = 𝑞, then 𝑢𝑗(𝑛𝑒𝑤) = 𝑢𝑗(𝑜𝑙𝑑) + 𝛼[𝑥 − 𝑤𝚥(𝑜𝑙𝑑}]

 If 𝑇 ≠ 𝑞, then 𝑢𝑗(𝑛𝑒𝑤) = 𝑢𝑔(𝑜𝑙𝑑) − 𝛼[𝑥 − 𝑢𝑗(0]𝑑)]
 

Step 5: Reduce the learning rate 𝛼. 

Step 6: Test for the stopping condition of the training process.  

(The stopping conditions may be fixed number of epochs or if learning rate 

has reduced to a negligible value.) 

2A.10 COUNTER PROPAGATION NETWORKS 

They are multilayer networks based on the combinations of the input, output 

and clustering layers. The applications of counter propagation nets are data 

compression, function approximation and pattern association. The counter 

propagation network is basically constructed from an instar-outstar model. 

This model is a three-layer neural network that performs input-output data 

mapping, producing an output vector yin response to an input vector x, on 

the basis of competitive learning. The three layers in an instar-outstar model 

are the input layer, the hidden (competitive) layer and the output layer. The 

connections between the input layer and the competitive layer are the instar 

structure, and the connections existing between the competitive layer and 

the output layer are the outstar structure.  

There are two stages involved in the training process of a counter 

propagation net. The input vectors are 

clustered in the first stage. Originally, it is assumed that there is no topology 

included in the counter propagation network. However, on the inclusion of 

a linear topology, the performance of the net can be improved. The dusters 

are formed using Euclidean distance method or dot product method. In the 

second stage of training, the weights from the cluster layer units to the 

output units are tuned to obtain the desired response.  
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(i) Full counter propagation net  

(ii) Forward-only counter propagation net 

2a.10.1. Full Counter propagation Net: 

Full counter propagation net (full CPN) efficiently represents a large 

number of vector pairs x:y by adaptively constructing a look-up-table. The 

approximation here is x*.y*, which is based on the vector pairs x:y, possibly 

with some distorted or missing elements in either vector or both vectors. 

The network is defined to approximate a continue function, defined on a 

compact set A. The full CPN works best if the inverse function f-1 exists and 

is continuous. The vectors x and y propagate through the network in a 

counter flow manner to yield output vectors x* and y*, which are the 

approximations of x and y, respective. During competition, the winner can 

be determined either by Euclidean distance or by dot product method. In 

case of dot product method, the one with the largest net input is the winner. 

Whenever vectors are to be compared using the dot product metric, they 

should be normalized. Even though the normalization can be performed 

without loss of information by adding an extra component, yet to avoid the 

complexity Euclidean distance method can be used. On the basis of this, 

direct comparison can be made between the full CPN and forward-only 

CPN. 

For continuous function, the CPN is as efficient as the back-propagation 

net; it is a universal continuous function approximate. In case of CPN, the 

number of hidden nodes required to achieve a particular level 

of accuracy is greater than the number required by the back-propagation 

network. The greatest appeal of 

CPN is its speed of learning. Compared to various mapping networks, it 

requires only fewer steps of training to achieve best performance. This is 

common for any hybrid learning method that combines unsupervised 

learning (e.g., instar learning) and supervised learning (e.g., outsrar 

learning). 

As already discussed, the training of CPN occurs in two phases. In the input 

phase, the units in the duster 

layer and input layer are found to be active. In CPN, no topology is assumed 

for the cluster layer units; only the winning units are allowed to learn. The 

weight pupation learning rule on the winning duster units is 

𝑣𝑖𝑗( new ) = 𝑣𝑖(0𝑙𝑑) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(𝑜𝑙𝑑)], 𝑖 = 1 to 𝑛

𝑤𝑘/( new ) = 𝑤𝑘𝑗(𝑜𝑙𝑑) + 𝛽(𝑦𝑘 − 𝑤𝑏(𝑜𝑙𝑑)], 𝑘 = 1 to 𝑚
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In the second phase of training, only the winner unit J remains active in 

the cluster layer. The weights between the winning cluster unit J and the 

output units are adjusted so that the vector of activations of the units in the 

Y-output layer is y* which is an approximation to the input vector y and 

X* which is an approximation to the input vector x. The weight updating 

for the units in the Y-output and X-output layers are 

𝑢𝑗𝑘(𝑛𝑒𝑤)  = 𝑢𝑗𝑘(𝑜𝑙𝑑) + 𝑎[𝑦𝑘 − 𝑢𝑗𝑘(𝑜𝑙𝑑)],  𝑘 = 1 to 𝑚

𝑡𝑗(𝑛𝑒𝑤)  = 𝑡𝑗(𝑜𝑙𝑑) + 𝑏[𝑥𝑖 − 𝑡𝑗(𝑜𝑙𝑑)],  𝑖 = 1 to 𝑛
 

2a.10.2. Architecture of Full Counter propagation Net 

The general structure of full CPN is shown in Figure 5-15. The complete 

architecture of full CPN is shown in Figure 5-16.  

The four major components of the instar-outstar model are the input layer, 

the instar, the competitive layer and the outstar. For each node i in the input 

layer, there is an input value xi;. An instar responds maximally to the input 

vectors from a particular duster. All the instar are grouped into a layer called 

the competitive layer. 

Each of the instar responds maximally to a group of input vectors in a 

different region of space. This layer of instars classifies any input vector 

because, for a given input, the winning instar with the strongest response 

identifies the region of space in which the input vector lies. Hence, it is 

necessary that the competitive layer single outs the winning instar by setting 

its output to a nonzero value and also suppressing the other outputs to zero. 

That is, it is a winner-take-all or a Maxnet-type network. An outstar model 

is found to have all the nodes in the output layer and a single node in the 

competitive layer. The outstar looks like the fan-out of a node. Figures 5-17 

and 5-18 indicate the units that are active during each of the two phases of 

training a full CPN. 

 

Figure 2d.15.General Structure of full CPN 
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Figure 2a.16. Architecture of full CPN 

 

 

Figure 2a.17 First phase of training of full CPN 
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Figure 2a.18 Second phase of training of full CPN 

2a.10.3. Training Algorithm of Full Counter propagation Net: 

Step 0: Set the initial weighrs and the initial learning rate.  

Step 1: Perform Sreps 2 − 7 if stopping condition is folse for phase I 

training.  

Step 2: For each of the training input vector pair 𝑥: 𝑦 presented, perform 

Steps 3 − 5. 

Step 3: Make the X-input layer activations to vector X. Make the Y-inpur 

layer acrivations to vector Y.  

Step 4: Find the winning cluster unit. If dot product method is used, find the 

cluster unit 𝑧𝑗 with target net inpur: for 𝑗 = 1 to 𝑝. 

𝑠𝑛𝑗 = ∑  

𝑛

𝑖=1

𝑥𝑖𝑣𝑖𝑗 + ∑  

𝑚

𝑘=1

𝛾𝑘𝑤𝑘𝑗
 

If Euclidean distance merhod is used, find the cluster unis 𝑧1 whore 

squared distance from input vecrors is the smallest: 

𝐷𝑗 = ∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝑣𝑖𝑗)
2

+ ∑  

𝑖𝑚

𝑘=1

⟨𝛾𝑘 − 𝑢𝑛𝑘𝑖⟩2 

If there occurs a tie in case of selection of winner unit, the unit with the 

smallest index is the winner. Take the winner unit index as J. 

Step 5: Update the weights over the calculated winner unit 𝑧𝑗 . 

Step 6: Reduce the learning rates. 

𝛼(𝑡 + 1) = 0.5𝛼(𝑡):  𝛽(𝑡 + 1) = 0.5𝛽(𝑡) 

Step 7: Test stopping condition for phase I training.  
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training. 

Step 9: Perform Steps 10 − 13 for each training input pair 𝑥; 𝑦. Here 𝛼 

and 𝛽 are small constant values.  

Step 10: Make the X-input layer activations to vector 𝑥. Make the Y-input 

layer activations to vectot 𝑦.  

Step 11: Find the winning cluster unit (use formulas from Step 4). Take 

the winner unit index as 𝑗.  

Step 12: Update the weights entering into unit 3). 

 For 𝑖 = 1 to 𝑛,  𝑣𝑖𝑗( new ) = 𝑣𝑖𝑗(old) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗(old)]

 For 𝑘 = 1 to 𝑚,  𝑤𝑘𝑗(new) = 𝑤𝑘/(old) + 𝛽[𝑦𝑘 − 𝑤𝑘(old)]
 

Step 13: Update the weights from unit 𝑧𝑗 to ghe outpur layers. 

 For 𝑖 = 1 to 𝑛,  𝑐𝑗( new ) = 𝑡𝑗( old ) + 𝑏[𝑥𝑖 − 𝑡𝑗(𝑜]𝑑)]

 For 𝑘 = 1 to 𝑚,  𝑢𝑗𝑘( new ) = 𝑢𝑗𝑘( old ) + 𝑎[𝑦𝑘 − 𝑢𝑗𝑘( old )]
 

Step 14: Reduce the learning rates 𝑎 and 𝑏. 

𝑎(𝑡 + 1) = 0.5𝑎(𝑡);  𝑏(𝑡 + 1) = 0.5𝑏(𝑡) 

Step 15: Test stopping condition for phase II training. 

2a.10.4. Testing Algorithm of Full Counter propagation Net: 

Step 0: Initialize the weights (from training algorithm).  

Step 1: Perform Steps 2-4 for each input pair X: Y. 

Step 2: Ser X-input layer activations to vector X. Ser Y-input layer 

activarions to vector Y.  

Step 3: Find the cluster unir 𝑧𝑗 that is closest to the input pair. 

Step 4: Calculate approximations to 𝑥 and  : 

𝑥𝑗
∗ = 𝑡𝑗𝑖; 𝑦𝑘

∗ = 𝑢𝑗𝑘 

2a.10.5 Forward Only Counter propagation Net: 

A simplified version of full CPN is the forward-only CPN. The 

approximation of the function y = f(x) but not of x = f(y) can be performed 

using forward-only CPN, i.e., it may be used if the mapping from x to y is 

well defined but mapping from y to x is not defined. In forward-only CPN 

only the x-vectors are used to form the clusters on the Kohonen units. 

Forward-only CPN uses only the x vectors to form the clusters on the 

Kohonen units during first phase of training. 
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In case of forward-only CPN, first input vectors are presented to the input 

units. The cluster layer units compete with each other using winner-take-all 

policy to learn the input vector. Once entire set of training vectors has been 

presented, there exist reduction in learning rate and the vectors are presented 

again, performing several iterations. First the weights between the input 

layer and duster layer are trained. Then the weights between the cluster layer 

and output layer are trained. This is a specific competitive network, with 

target known. Hence, when each input vector is presented m the input 

vector, its associated target vectors are presented to the output layer. The 

winning duster unit sends its signal to the output layer. Thus each of the 

output unit has a computed signal (wjk) and die target value (yk). The 

difference between these values is calculated; based on this, the weights 

between the winning layer and output layer are updated. The weight 

updation from input units to cluster units is done using the learning rule 

given below:  

For i= 1 to n, 

⋅ 𝑣𝑖( new ) = 𝑣𝑖 fold ) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗( old )] = (1 − 𝛼)𝑣𝑗( old ) + 𝛼𝑥𝑖 

The weight updation from cluster units to output units is done using 

following the learning rule: For 𝑘 = 1 to 𝑚, 

𝑤𝑗𝑘( new ) = 𝑣𝑗𝑘( old ) + 𝑎[𝑦𝑘 − 𝑤𝑗𝑘(𝑜𝑙𝑑)] = (1 − 𝑎)𝑤𝑗𝑘( old ) + 𝑎𝑦𝑘 

The learning rule for weight updation from the duster units to output units 

can be written in the form of delta rule when the activations of the cluster 

units (𝑧𝑗) are included, and is given as 

𝑤𝑗𝑘( new ) = 𝑤𝑗𝑘(0 ∣ 𝑑) + 𝑛𝑧𝑗[𝑦𝑘 − 𝑤𝑗𝑘( old )} 

where 

𝑧𝑗 = {
1  if 𝑗 = 𝐽

0  if 𝑗 ≠ 𝐽
 

This occurs when 𝑤𝑗𝑘 is interprered as the computed output (i.e., 𝑦𝑘 = 𝑤𝑗𝑘 

). In the formulation of forward-only CPN also, no topological structure 

was assumed. 

2a.10.6 Architecture of Forward Only Counter propagation Net: 

Figure 5-20 shows the architecture of forward-only CPN. It consists of three 

layers: input layer, cluster (competitive) layer and output layer. The 

architecture of forward-only CPN resembles the back-propagation network, 

but in CPN there exists interconnections between the units in the duster 

layer (which are nor connected in Figure 5-20). Once competition is 

completed in a forward-only CPN, only one unit will be active in that layer 

and it sends signal to the output layer. As inputs are presented m the 

network, the desired outputs will also be presented simultaneously. 
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Figure 2a.19 Architecture of forward only CPN 

2a.10.8. Training Algorithm of Forward Only Counter propagation 

Net: 

Step 0: Initialize the weights and learning races.  

Step 1: Perform Steps 2-7 when stopping condition for phase I training is 

false.  

Step 2: Perform Steps 3-5 for each of training input 𝑋.  

Step 3: Set the X-input layer acrivations to vector 𝑋. 

 

Step 4: Compute the winning cluster unit (𝐽). If dot product mechod is 

used, find the cluster unit zy Step wich the largest net input: 

𝑧𝑖𝑛𝑗 = ∑  

𝑛

𝑘=1

𝑥𝑖𝑣𝑖𝑗  

If Euclidean distance is used, find the cluster unit 𝑧𝑗 square of whose 

distance from the input pattetn is smallest: 

𝐷𝑗 = ∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝑣𝑖𝑗)
2
 

If there exists a tie in the selection of winner unit, the unit with the 

smallest index is chosen as the winner. 

Step 5: Perform weight updation for unit 𝑧𝑗. For 𝑖 = 1 to 𝑛, 

𝑣𝑖𝑗( new ) = 𝑣𝑖𝑗( old ) + 𝛼[𝑥𝑖 − 𝑣𝑖𝑗( old )] 

Step 6: Reduce learning mte 𝛼 

𝛼(𝑡 + 1) = 0.5𝛼(𝑡) 



 

 
63 

 

Associative  

Memory Network 

Step 7: Test the stopping condition for phase I training. 

Step 8: Perform Steps 9 − 15 when stopping condition for phase II 

training is false. (Set 𝛼 a small constant value for phase II training.)  

Step 9: Perform Steps 10-13 for each tmining input pait 𝑥.. .  

Step 10: Ser X-input layer activations to vector X. Set Y-output layer 

activations to vector Y.  

Step 11: Find the winning cluster unit (J) [use formulas as in Step 4].  

Step 12: Update the weights into unit 𝑧𝑗. For 𝑖 = 1 to 𝑛, 

𝑣𝑖𝑗( new ) = 𝑣𝑖𝑗( old ) + 𝛼[𝑥𝑖 − 𝑣𝑖 (old) ∣ 

Step 13: Update the weights from unit z ) to the output units. For 𝑘 = 1 to 

m, 

𝑤𝑗𝑘( new ) = 𝑤𝑗𝑘( old ) + 𝛽[𝜂𝑘 − 𝑤𝑗𝑘( old )] 

Step 14: Reduce learning rate 𝛽, i.e., 

𝛽(𝑡 + 1) = 0.5𝛽(𝑡) 

Step 15: Test the stopping condition for phase II training. 

2a.10.9. Testing Algorithm of Forward Only Counter propagation 

Net: 

Step 0: Set initial weights. (The initial weights here are the weights 

obtained during training.)  

Step 1: Present input vector X.  

Step 2: Find unit J that is closest to vector X. 

Step 3: Set activations of output units: 

𝑦𝑘 = 𝑤𝑗𝑘 

2A.11 ADAPTIVE RESONANCE THEORY NETWORK 

The adaptive resonance theory (ART) network, developed by Steven 

Grossberg and Gail Carpenter (1987), is consistent with behavioral models. 

This is an unsupervised learning, based on competition, that finds categories 

autonomously and learns new categories if needed. The adaptive resonance 

model was developed to solve the problem of instability occurring in feed-

forward systems. There are two types of ART: ART 1 and ART 2. ART 1 

is designed for clustering binary vectors and ART 2 is designed to accept 

continuous-valued vectors. In both the ners, input patterns can be presented 

in any order. For each pattern, presented to the network, an appropriate 

cluster unit is chosen and the weighs of the cluster unit are adjusted to let 

the cluster unit learn the pattern. This network controls the degree of 
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each training pattern may be presented several times. It should be noted that 

the mput patterns should not be presented on the same cluster unit, when it 

is presented each time. On the basis of this, the stability of the net is defined 

as that wherein a pattern is not presented o previous cluster units. 

The adaptive resonance theory (ART) network, developed by Steven 

Grossberg and Gail Carpenter (1987), is consistent with behavioral 

models. This is an unsupervised learning, based on competition, that finds 

categories auconomously and learns new categories if needed. The adapdive 

resonance model was developed to solve the problem of instability 

oceutring in feed-forward systems. There are two types of ART: ART 1 and 

ART 2. ART 1 is designed for clustering binary vectors and ART 2 is 

designed to accept continuous-valued vectors. In both the ners, input 

patterns can be presented in any order. For each pattern, presented to the 

network, an appropriate cluster unit is chosen and the weighs of the cluster 

unit are adjusted to let the cluster unit learn the pattern. This network 

controls the degree of similarity of the patterns placed on the same cluster 

units. During training, each training pattern may be presented several times. 

It should be noted that the input patterns should not be presented on the 

same cluster unit, when it is presented each time. On the basis of this, the 

stability of the net is defined as that wherein a pattern is not presented (o 

previous cluster units The stability may be achieved by reducing the 

learning rates. The ability of the network to respond to a new pattern equally 

at any stage of learning is called as plastic: ART nets are designed to possess 

the properties, stability and plasticity. The key concept of ART is that the 

stability plasticity can be resolved by a system in which the network 

includes bottom-up (input-output) competitive learning combined with 

 top-down  (output-input) learning. The instability of instar-outstar 

networks could be solved by reducing the learning rate gradually to zero by 

freezing the learned categories. Buc, at this point, the net may lose its 

plasticity or the ability to react to new data. Thus it is difficult to possess 

both stability and plasticity. ART networks are designed particularly to 

resolve the stability-plasticity dilemma, that is, they are stable to preserve 

significant past learning but nevertheless remain adaptable to incorporate 

new information whenever it appears. 

2a.11.1. Fundamental architecture of ART- 

Three groups of neurons reused to build an ART network. These include: 

1. Input processing neurons (F1 layer). 

2.  Clustering units (F2 layer). 

3.  Control mechanism (controls degree of similarity of patterns placed 

on the same duster 

The processing neuron (F1) layer consists of two portions: Input portion and 

interface portion input portion may perform some processing based on the 

inputs it receives. This is especially performed in the case of ART 2 

compared to ART 1.  
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The interface portion of the F1 layer combines the input from input portion 

of F1 and F2 layers for comparing the similarity of the input signal with the 

weight vector for the interface portion 25 F (b). 

There exist two sets of weighted interconnections for controlling the degree 

of similarity between the units in the interface portion and the cluster layer. 

The bottom-up weights are used for the connection from F1( b) layer to F2 

tayer and are represented by 𝛿𝑖𝑗(𝑓 th F1 unit to jhF2 unit). The iop-down 

weights are used for the connection from F2 layer to F1( b) layer and are 

repiesented by 𝑡𝜇‾ (𝑗 th F2 unit to 𝑖 th F1 anic). The competitive Jayer in this 

cose is the cluster layct and the duster unit wich largest net input is the 

victim to learn the input pattern, and the activations of all other F2 urnis are 

mate zero The interface units combinc the data from input and cluster layer 

units. On the basis of the similarity between the top-down weight vector and 

input vector, the cluster unit may be allowed to learn the input pattern. This 

decision is done by-esset mechanism unit on the basis of the signals receives 

from interface portion and input portion of the F1 layer. When duster unit is 

not allowed to learn, it is inhibited and a new cluster unit is selected as the 

victim. 

2a.11.2. Fundamental algorithm of ART- 

Step 0: initialize the necessary parameters. 

Step 1: Perform Steps 2 − 9 when stopping condition is false. 

Step 2: Perform Steps 3 − 8 for each input vector.  

Step 3: F1 layer processing is done. 

Step 4: Perform Steps 5 − 7 when teset condition is true.  

Step 5: Find the victim unit to learn the current input pattern. The victim 

unit is going to be the F2 unit (that is nor inhibited) with the largest input. 

Step 6: F1 (b) units combine their inputs from F1 (a) and  F2.  

Step7:  Test for reset condition. Step If reset is true, then the current victim 

unit is rejected (inhibited); go to Step 4. If reser is false, then che carrent 

victim unit is accepted for learning; go to next step (Step 8). 

Step 8: Weight updation is performed. 

Step 9: Test for stopping condition.  

Adaptive resonance theory 1 (ART 1) network is designed for binary input 

vectors. As discussed generally, the ART 1 net consists of two fields of 

units-input unit (𝐹1 unit) and output unit (𝐹2 unit)-aiong with the reser 

control unit for controlling the degree of similarity of patterns placed on the 

same cluster unit. There exist two sets of weighted interconnection patch 

between F1 and F2 layers. The supplemental unic present in the net provides 

the efficient neural control of the leatning process. Carpenter and Grossberg 

have designed ART 1 network as a real-time system. In ART 1 network, ic 
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presented in any order. ART 1 network can be practically implemented by 

analog circuits governing the differential equations, i. Q. the bottom-up and 

top down weights are controlled by differential equations.)ART 1 network 

runs throughout autonomously. It does nor require any external control 

signals and can run stably with infinite patterns of input data. 

ART 1 network is trained using fast learning method, in which the weights 

reach equilibrium during each learning trial. During this resonance phase, 

the activations of F units do not change; hence the equilibrium weights can 

be determined exactly The ART 1 network performs well with perfect 

binary input patterns, but is sensitive to noise in the input dara. Hence care 

should be taken to handle the noise. 

2a.11.3. Fundamental architecture of ART1- 

The ART 1 network is made up of two units: 

1 Computational units.  

2 Supplemental units. 

In this section we will discuss in detail about these two units. 

Computational units 

The computational unit for ART 1 consists of the following: 

1 Input units (F1 unit − both input portion and interface portion). 

2 Cluster units (F2 unit − outpuc unit), 

Reset control unit (controls degree of similarity of patterns placed on same 

cluster). 

The basic architecture of ART I (computational unit) is shown in Figure 5-

22. Here each unit present in the input portion of F1 layer (i, e. , F1(a) layer 

unic) is connected to the respective unic in the interface portion of E layer 

(i.e., F1( b) layer unit). Reset control unit has connections from each fF1(a) 

and F1( b) units. Also, each unit in F1( b) layer is connected through two 

weighted interconnection pachs to each unic in F2 layer and the reser control 

unit is connected to every F2 unit.The Xi unit of F1(b) layer is connected to 

Yj unit of F2 layer through bottom-up weight (bij) and the Yj unit of F2 is 

connected to Xi unit of F1 through top-down weights (tji). Thus ART 1 

includes a bottom-up competitive learning system combined with a top-

down outstar learning system. In Figure 5 − 22 for simplicity only the 

weighted interconnections 𝑏𝑖𝑗 and 𝑡𝑗𝑖 are shown, the other units’ weighted 

interconnections are in a similar way. The cluster layer (𝐹2 layer) unit is a 

competitive layer, where only the uninhibited node with the largest net input 

has nonzero activation. 
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Figure 2a.20 Basic architecture of ART 1 

2a.11.4. Training Algorithm of ART1- 

Step 0: initialize the parameters: 

and 0 < 𝜌 ≤ 1 

Initialize the weights: 

0 < 𝑏𝑖𝑗(0) <
𝛼

𝛼 − 1 + 𝑛
 and 𝑡𝑗𝑖(0) = 1 

 

Step 1: Perform Steps 2-13 when stopping condition is false.  

Step 2: Perform Steps 3 − 12 for each of the training input.  

Step 3: Set activations of all F2 units to zero. Set the activations of F1(2) 

units to input vectors.  

 

Step 4: Calculate the norm of Σ 

∥ 𝑠 ∥= ∑  

𝑗

𝑠𝑖 

Step 5: Send input signal from F1 (a) layer to F1 (b) byer: 

𝑥1 = 𝑠𝑖 

Step 6: for each F2 pode thar is not inhibited, the following rule should 

hold: If 𝑦; ≠ −1, then 𝑦‾𝑗 = ∑𝑏𝑖𝑗𝑥𝑖
 

 

Step 7: Perform Steps 8 − 11 when reset is true.  

Step 8 : Find J for 𝑦𝑗 ≥ 𝑦𝑗 for all nodes 𝑗. If 𝑦𝑗 = −1, then all the nodes 

are inhibited and note that this pattern cannot be clustered.  
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                                                                         𝑥𝑖 = 𝑠𝑖𝑡𝑗 

Step 10: Calculate the norm of vector 𝑥. 

∥ 𝑥 ∥= ∑  

𝑖

𝑥𝑖 

Step 11: Test for reset condition. If ∥ 𝑥 ∥/∥ 𝑠 ∥< 𝜌, then inhibit node 
𝐽, 𝑦𝑗 = −1. Go back to step 7 again. Else if ∥ 𝑥 ∥/∥ 𝑠 ∥≥ 𝜌, then procced 

to the next step (Step 12).  

Step 12: Perform weight updation for node J. (fast learning):  

𝑏𝑖𝑗( new ) =
𝛼𝑥𝑖

𝛼 − 1+∥ 𝑥 ∥

√𝑡𝑗𝑖 (new) = 𝑥𝑖}
 

Step 13: Test for stopping condition. The following may be the stopping 
conditions: 
a. No change in weights. 
b. No reset of units. 
c. Maximum number of epochs reached. 

2a.11.5. Adaptive Resonance Theory 2 (ART2): 

Adaptive resonance theory 2 (ART 2) is for continuous-valued input 
vectors. In ART 2 network complexity is higher than ART 1 network 
because much processing is needed in F 1 layer. ART 2 network was 
developed by Carpenter and Grossberg in 1987. ART 2 network was 
designed to self-organize recognition categories for analog as well as binary 
input sequences. The major difference between ART l and ART 2 networks 
is the input layer. On the basis of the stability criterion for analog inputs, a 
three-layer feedback system in the input layer of ART 2 network is required: 
A bottom layer where the input patterns are read in, a top layer where inputs 
coming from the output layer are read in and a middle layer where the top 
and bottom patterns are combined together to form a marched pattern which 
is then fed back to the top and bottom input layers. The complexity in the 
F1 layer is essential because continuous-valued input vectors may be 
arbitrarily dose together. The F1 layer consists of normalization and noise 
suppression parameter, in addition to comparison of the bottom-up and top-
down signals, needed for the reset mechanism. 

The continuous-valued inputs presented to the ART 2 network may be of 
two forms. The first form 

is a "noisy binary" signal form, where the information about patterns is 
delivered primarily based on the 

components which are "on" or "off," rather than the differences existing in 

the magnitude of the components chat are positive. In this case, fast learning 

mode is best adopted. The second form of patterns are those, in which the 

range of values of the components carries significant information and the 

weight vector for a cluster is found to be interpreted as exemplar for· the 
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patterns placed-on chat unit. In this type of pattern, slow learning mode is 

best adopted. The second form of data is "truly continuous.'' 

2a.11.6. Fundamental architecture of ART2- 

A typical architecture of ART 2 network is shown in Figure 5 − 25. From 

the figure, we can notice that F1 layer consists of six types of units - W, X, 

U, V, P, Q-and there are " 𝑛 " units of each type. In Figure 5 − 25, only one 

of these units is shown. The supplemental parc of the connection is shown 

in Figure 5 − 26. 

The supplemental unit " N′′ between units 𝑊 and 𝑋 receives signals from 

all " 𝑊"  units, computes the no run of vector 𝑤 and sends this signal to each 

of the 𝑋 units. This signal is inhibitory signal. Each of this 

(X1, … , X𝑖, … , X𝑛) also receives excicatory signal from the corresponding 

𝑊 unit. In a similar way, there exists supplemental units between 𝑈 and 𝑉, 

and 𝑃 and 𝑄, performing the same operation as done between W and X. 

Each X unit and Q unit is connecred to V unit. The connections between Pj 

of the F1 layer and Y𝑗 of the F2 layer show the weighted interconnections, 

which multiplies the signals transmitted over those pachs. The winning F2 

unics’ activation is 𝑑(0 < 𝑑 < 1). There exists normalization between 𝑊 

and X, V and U1 and P and Q. The noimalization is performed approximately 

to unit length. 

The operations performed in F2 layer are same for both ART 1 and ART 2. 

The units in F2 layer compete with each other in a winner-take-all policy to 

learn each input pattern. The testing of reset condition differs for ART 1 

and ART 2 networks. Thus, in ART 2 network, some processing of the input 

vector is necessary because the magnitudes of the real valued input vectors 

may vary more than for the binary input vectors. 

 

Figure 2a.21. Architecture of ART2 network 
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Step 0: Initialize the following parameters: 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝛼, 𝜌, 𝜃. Also, 

specify the number of epochs of training (nep) and number of learning 

iterations (nit).  

Step 1: Perform Steps 2-12 (nep) times.  

Step 2: Perform Steps 3 − 11 for each input vector 𝑠.  

Step 3: Update F1 unit activations: 

𝑢𝑖 = 0;  𝑤𝑖
2 = 𝑠𝑖;  P𝑖 = 0;  𝑞𝑖 = 0;  𝑣𝑖 = 𝑓(𝑥𝑖)

𝑥𝑖 =
𝑠𝑖

𝑒+∥ 𝑠 ∥

 

Update F1 unit activations again: 

𝑢𝑗 =
𝑣𝑖

𝑒+∥ 𝑣 ∥
;  𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖;

𝑃𝑖 = 𝑢𝑖;  𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥′
;

𝑞𝑖 =
𝑝𝑖

𝑒+∥ 𝑝 ∥
;  𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)

 

In ART 2 networks, norms are calculated as the square root of the sum of 

the squares of the respective values.  

Step 4: Calculate signals to F2 units: 

𝑦𝑗 = ∑  

𝑛

𝑗=1

𝑏𝑖𝑗𝑝𝑖 

Step 5: Perform Steps 6 and 7 when reset is true.  

Step 6: Find F2 unit Y𝑗 wich largest signal J is defined such that 𝑦𝑗 ≥

𝑦𝑗 , 𝑗 = 1 (o 𝑚).  

Step 7: Check for reser: 

𝑢𝑖 =
𝑣𝑖

𝑐+∥ 𝜈 ∥
;  P𝑖 = 𝑢𝑖 + 𝑑𝑡𝑗;  𝑟𝑖 =

𝑤𝑖 + 𝑐P𝑖

𝑒+∥ 𝑢 ∥÷ 𝑐 ∥ 𝑝 ∥
 

If ∥ 𝑟 ∥< (𝜌 − 𝑒), then 𝑦𝐽 = −1 (inhibit 𝐽). Reser is true; perform Step 5 . 

 

 If ∥ 𝑟 ∥≥ (𝜌 − 𝑒), then  

𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖;  𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥
:

𝑞𝑖 =
𝑝𝑖

𝑒+∥ 𝑝 ∥
;  𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)
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Reset is false. Proceed to Step 8. 
Step 8: Perform Steps 9-l 1 for specified number of learning interactions. 

Step 9: Update the weights for winning unit J: 

𝑡𝑖𝑖 = 𝛼𝑑𝑢𝑖 + {[1 + 𝛼𝑑(𝑑 − 1)}}𝑡𝑗

𝑏𝑖𝑗 = 𝛼𝑑𝑢𝑖 + {⌊1 + 𝛼𝑑(𝑑 − 1)]}𝑏𝑖𝑗
 

Step 10: Update F_ acrivations: 

𝑢𝑖 =
𝑣𝑖

𝑐+∥ 𝜈 ∥
: 𝑤𝑖 = 𝑠𝑖 + 𝑎𝑢𝑖;

𝑃𝑖 = 𝑢𝑖 + 𝑑𝑡𝑗𝑖; 𝑥𝑖 =
𝑤𝑖

𝑒+∥ 𝑤 ∥
;

𝑞𝑖 =
𝑃𝑖

𝑒+∥ 𝑝 ∥
; 𝑣𝑖 = 𝑓(𝑥𝑖) + 𝑏𝑓(𝑞𝑖)

 

Step 11: Check for the stopping condition of weight updating. 

Step 12: Check for the stopping condition for number of epochs. 

2A.12 QUESTIONS 

1. Define Content addressable memory 

2. What are the two main types of associative memory? 

3. What are Back Propagation networks? 

4. Explain the architecture and working of Radial basis function 

networks. 

5. What is Bidirectional associative memory network? 

6. Write a short note on Hopfield network. 

2A.13 REFERENCES 

1. “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

2019, Wiley Publication, Chapter 3 and Chapter 4. 

2. Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes. 

 


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2b 
SPECIAL NETWORKS 

Unit Structure 

2b.1  Simulated Annealing Network 

2b.2  Boltzmann Machine  

2b.3  Gaussian Machine   

2b.4  Cauchy Machine 

2b.5 Probabilistic Neural Net 

2b.6  Cascade Correlation Network 

2b.7  Cognitron Network 

2b.8  Neocognitron Network 

2b.9     Cellular Neural Network 

2b.10 Optical Neural Networks 

2b.11  Summary 

2b.12  Review Questions 

2b.13  Reference 

2B.1. SIMULATED ANNEALING NETWORK 

The concept of simulated annealing has it origin in the physical annealing 

process performed over metals and other substances. In metallurgical 

annealing, a metal body is heated almost to its melting point and then cooled 

back slowly to room temperature. This process eventually makes the metal's 

global energy function reach an absolute minimum value. If the metal's 

temperature is reduced quickly, the energy of the metallic lattice will be 

higher than this minimum value because of the existence of frozen lattice 

dislocations that would otherwise disappear due to thermal agitation. 

Analogous to the physical annealing behaviour, simulated annealing can 

make a system change its state to a higher energy state having a chance to 

jump from local minima or global maxima. There exists a cooling 

procedure in the simulated annealing process such that the system has a 

higher probability of changing to an increasing energy state in the beginning 

phase of convergence. Then, as time goes by, the system becomes stable 

and always moves in the direction of decreasing energy state as in the case 

of normal minimization produce. 
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Special Networks With simulated annealing, a system changes its state from the original state 

SAold  to a new stare SAnew  with a probability P given by 

P =
1

1 + exp⁡(−Δ𝐸/𝑇)
 

where Δ𝐸 = 𝐸old − 𝐸new  (energy change = difference in new energy and 

old energy) and 𝑇 is the nonnegative parameter (acts like temperature of a 

physical system). The probability P as a function of change in energy (Δ𝐸) 
obtained for different values of the remperature 𝑇 is shown in Figure 6 − 1. 

From Figure 6 − 1, it can be noticed that the probability when Δ𝐸 > 0 is 

always higher than she probability when Δ𝐸 < 0 for any remperature. 

An optimization problem seeks to find some configuration of parameters 

𝑋̇ = (𝑋1, … , 𝑋𝑛), hat minimizes some function 𝑓(𝑋) called cost function. 

In an arcificial neural network, configuration parameters are associated with 

the set of weights and the cost function is associated with the error function. 

The simulated annealing concept is used in statistical mechanics and is 

called Metropolis algorithm. As discussed earlier, this algorithm is based on 

a material that anneals into a solid as temperature is slowly decreased. To 

understand this, consider the slope of a hill having local valleys. A stone is 

moving down the hill. Here, the local valleys are local minima, and the 

bottom of the hill is going to be the global or universal minimum. It is 

possible that the stone may stop at a local minimum and never reaches the 

global minimum. In neural nets, this would correspond to a set of weights 

that correspond to that of local minimum, but this is nm the desired solution. 

Hence, to overcome this kind of situation, simulated annealing perturbs the 

stone such that if it is trapped in a local minimum, it escapes from it and 

continues falling till it reaches its global minimum (optimal solution). At 

that point, further perturbations cannot move the stone to a lower position.  

Figure 6-2 shows the simulated annealing between a stone and a hill. 

 

Figure 2b.1 Probability “P” as a function in energy(AE)  

for different values of temperature T 
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Figure 2b.2 Simulated annealing stone and hill 

The components required for annealing algorithm are the following 

1 A basic system configuration: The possible solution of a problem over 

which we search for a best (optimal) answer. (In a neural ner, this is 

optimum steady-state weight.) 

2 The move set: A ser of allowable moves thar permit us to escape from 

local minima and reach all possible configurations. 

3 A cost function associated with the error function. 

4 A cooling schedule: Starting of the cost function and rules to 

determine when it should be lowered and by how much, and when 

annealing should be terminated. 

5 Simulated annealing networks can be used to make a network 

converge to its global minimum. 

2B.2. BOLTZMANN MACHINE 

The early optimization technique used in artificial neural networks is based 
on the Boltzmann machine. When the simulated annealing process is 
applied w the discrete Hopfield network, it becomes a Boltzmann machine. 
The network is configured as the vector of the states of the units, and the 
stares of the units are binary valued with probabilities state transition. The 
Boltzmann machine described in this section has fixed weights wij. On 
applying the Boltzmann machine to a constrained optimization problem, the 
weights represent the constraints of the problem and the quantity to be 
optimized. The discussion here is based on the fact of maximization of a 
consensus function (CF). 

The Boltzmann machine consists of a set of units (Xi, and Xj) and a set of 
bi-directional connections between pairs of units. This machine can be used 
as an associative memory. If the units Xi; and Xj are connected, then wij≠0. 
There exists symmetry in the weighted interconnections based on the 
directional nature. It can be represented as wij=wji. There also may exist a 
self-connection for a unit (wij). For unit Xi, its State xi; may be either 1 or 0. 
The objective of the neural net is to maximize the CF given by 



 

 
75 

 

Special Networks CF =∑  

𝑖

∑ 

𝑗≤𝑖

𝑤𝑖𝑗𝑥𝑖𝑥𝑗 

The maximum of the CF can be obtained by letting each unit attempt to 
change its state (alter between " 1𝑛 and " 0 " or " 0 " and "1"). The change 
of sate can be done either in parallel or sequencial manner. However, in this 
case ali the description is based on sequential manner. The consensus 
change when unit 𝑋𝑖 changes its state is given by 

Δ𝐶𝐹(𝑖) = (1 − 2𝑥𝑖) (𝑤𝑖𝑗 +∑  

𝑗≠𝑖

 𝑤𝑖𝑗𝑥𝑖) 

where 𝑥𝑖 is the current srate of unit 𝑋𝑖. The variation in coefficient 
(1 − 2𝑥𝑖) is given by 

(1 − 2𝑥𝑖) = {
+1, 𝑋𝑖 is currently off 

−1, 𝑋𝑖 is currently on 
 

If unit 𝑋𝑖 were to change its activations, then the resulting change in the CF 
can be obtained from the information that is local to unit 𝑋𝑖. Generally, 𝑋𝑖 
does not change its stare, but if the states are changed, then this increases 
the consersus of the net. The probability of the network that accepts a 
change in the state for unit 𝑋𝑖 is given by 

AF(𝑖, 𝑇) =
1

1 + exp⁡[−ΔCF(𝑖)/𝑇]
 

where 𝑇 (temperature) is the controlling parameter and it will gradually 
decrease as the CF reaches the maximum value. Low values of 𝑇 are 
acceptable because they increase rhe net consensus since the net accepts a 
change in state. To help the net not to stick with the local maximum, 
probabilistic functions are used widely. 

2b.2.1. Architecture of Boltzmann Machine 

 B                                                                                   

 

Figure 2b.3 Architecture of Boltzmann machine 
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Step 0: Initialize the weights representing the constraints of the problem. 

Also initialize control parameter 𝑇 and activate the units. 

Step 1: When stopping condition is false, perform Steps 2-8.  

Step 2: Perform Steps 3 − 6𝑛2 rimes. (This forms an epoch.) 

Step 3: Integers 𝐼 and 𝐽 are chosen random values berween 1 and 𝑛. (Unit 

𝑈1,𝑗 is the current victim to change its state.)  

Step 4: Calculate the change in consensus: 

Δ𝐶𝐹 = (1 − 2𝑋𝑙,𝑗) [𝑤(𝐼, 𝐽: 𝐼, 𝐽) +∑  

𝑖,𝑗≠

 ∑  

1,𝑗

 𝑣(𝑖, 𝑗: 𝐼, 𝐽)𝑋𝑖,𝐽] 

Step 5: Calculate the probability of acceptance of the change in state: 

AF(𝑇) = 1/1 + exp⁡[−(ΔCF/𝑇)] 

Step 6: Decide whether to accept the change or not. Les 𝑅 be a random 

number between 

0 and 1. If 𝑅 < AF, accept the change: 

𝑋𝐿,𝐽 = 1 − 𝑋𝑙,𝑗 (This changes the scate U𝐿,𝐽.) If 𝑅 ≥ 𝐴𝐹, reject the change.  

Step 7: Reduce the control parameter 𝑇. 𝑇 (new) = 0.95𝑇 (old) 

Step 8: Test for stopping condition, which is: 

If the temperature reaches a specified value or if there is no change of state 

for specified number of epochs then stop, else continue. 

2B.3. GAUSSIAN MACHINE  

Gaussian machine is one which includes Boitzmann machine, Hopfield net 

and other neural networks. The Gaussian machine is based on the following 

three parameters:  

(a) a slope parameter of sigmoidal function 𝛼, 

(b) a time step Δ𝑡, (c) temperacure 𝑇. The steps involved in the operation of 

the Gaussian net are the following: 

Step 1: Compute the net input to unit 𝑋𝑖 : 

nec𝑖 =∑  

𝑁

𝑗=1

𝑤𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖 

where 𝜃; is the rhreshold and ∈ the random noise which depends on 

temperature 𝑇. 
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Special Networks Step 2: Change the activity level of unit 𝑋𝑖 : 

Δ𝑥𝑖
Δ𝑡

= −
𝑥𝑖
𝑡
+ net𝑖 

Step 3: Apply the activation function: 

𝑣𝑖 = 𝑓(𝑥𝑖) = 0.5[1 + tanh⁡(𝑥𝑖)] 

The binary step function corresponds to 𝛼 = ∞ (infinity). 

The Gaussian machine with 𝑇 = 0 corresponds the Hopfield net. The 

Bolamann machine can be obtained by setting Δ𝑡 = r = 1 to get 

Δ𝑥𝑖 = −𝑥𝑖 +  net 
𝑖

 or 𝑥𝑖 (new) =  net 
𝑖
= ∑  

𝑁

𝑗=1

 𝑖𝑣𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖
 

The approximate Boltzmann acceptance function is obtained by integrating 

the Gaussian noise distribution 

∫  
∞

0

1

√2𝜋𝜎2
exp⁡

(𝑥 − 𝑥𝑖
2)

2𝜎2
𝑑𝑥 ≈ AF⁡(𝑟, 𝑇) =

1

1 + exp⁡(−𝑥𝑖𝑙𝑇)
 

where 𝑥𝑖 = Δ𝐶𝐹(𝑖). The noise which is found to obey a logistic rather than 

a Gaussian distribution produces a Gaussian machine that is identical to 

Boltzmann machine having Metropolis acceptance function, i.e., the output 

set to 1 with probability, 

AF(𝑖, T) =
1

1 + exp⁡(−𝑥𝑖/𝑇)
 

Δ𝑥𝑖 = −𝑥𝑖 +  net 
𝑖
 

2B.4. CAUCHY MACHINE 

Cauchy machine can be called fast simulated annealing, and it is based on 

including more noise to the net input for increasing the likelihood of a unit 

escaping from a neighbourhood of local minimum. Larger changes in the 

system's configuration can be obtained due to the unbounded variance of 

the Cauchy distribution. Noise involved in Cauchy distribution is called 

"coloured noise" and the noise involved in the Gaussian distribution is 

called "white noise." By setting Δ𝑡 = 𝜏 = 1, the Cauchy machine can be 

extended into the Gaussian machine, to obtain 

Δ𝑥𝑖 ⁡= −𝑥𝑖 + net𝑖

 or 𝑥𝑖 (new) ⁡=  net 
𝑖
= ∑  

𝑁

𝑗=1

 𝑤𝑖𝑗𝑣𝑗 + 𝜃𝑖 + 𝜖
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noise distribution: 

∫  
∞

0

1

𝜋

𝑇𝑑𝑥

𝑇2 + (𝑥 − 𝑥𝑖)2
=
1

2
+
1

𝜋
arctan⁡(

𝑥𝑖
𝑇
) = AF⁡(𝑖, 𝑇) 

where 𝑥𝑖 = Δ𝐶𝐹(𝑡). The cooling schedule and temperature have to be 

considered in both Cauchy and Gaussian machines. 

2B.5. PROBABILISTIC NEURAL NET 

The probabilistic neural net is based on the idea of conventional probability 

theory, such as Bayesian classification and other estimators for probability 

density functions, to construct a neural net for classification. This net 

instantly approximates optimal boundaries between categories. It assumes 

that the training data are original representative samples. The probabilistic 

neural net consists of two hidden layers as shown in Figure 6-4. The first 

hidden layer contains a dedicated node for each training pattern amd the 

second hidden layer contains a dedicated node for each class. The two 

hidden layers are connected on a class-by-class basis, that is, the several 

examples of the class in the first hidden layer are connected only to a single 

machine unit in the second hidden layer. 

 

Figure 2b.4. Probabilistic neural network 

The algorithm for the construction of the net is as follows: 

Step 0: For each training input pattern 𝑥(𝑝), 𝑝 = 1 to 𝑃, perform Steps 1 

and 2.  

Step 1: Create pattern unit 𝑧𝑘 (hidden-layer-l unit). Weight vecror for unit 

𝑧𝑘 is given by 

𝑤𝑘 = 𝑥(𝑝) 

Unit 𝑧𝑘 is either 𝑧 -class- 1 unit or 𝑧 -class- 2 unic.  

Step 2: Connect the hidden-layer- 1 unit to the hidden-layer- 2 unic.  
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Special Networks If 𝑥(𝑝) belongs to class 1, then connect the hidden layer unic 𝑧𝑘 ro the 

hidden layer unit F1. 

Otherwise, connect pattern hidden layer unit 𝑧𝑘 to the hidden layer unit 𝐹2. 

2B.6. CASCADE CORRELATION NETWORK: 

Cascade correlation is a network which builds its own architecture as the 

training progresses. Figure 6-5 shows the cascade correlation architecture. 

The network begins with some inputs and one or more output nodes, but it 

has no hidden nodes. Each and every input is connected to every output 

node. There may be linear units or some nonlinear activation function such 

as bipolar sigmoidal activation function in the output nodes. During training 

process, new hidden nodes are added to the network one by one. For each 

new hidden node, the correlation magnitude between the new node's output 

and the residual error signal is maximized. The connection is made to each 

node from each of the network's original inputs and also from every pre-

existing hidden node. During the time when the node is being added to the 

network, the input weights of the hidden nodes are-frozen, and only the 

output connections are trained repeatedly. Each new node thus adds a new 

one-node layer to the network. 

 

Figure 2b.5. Cascade architecture after two hidden nodes have been 

added 

In Figure 6-5, the vertical lines sum all incoming activations. The 

rectangular boxed connections are frozen and "0" connections are trained 

continuously. In the beginning of the training, there are no hidden nodes, 

and the network is trained over the complete training set. Since there is no 

hidden node, a simple learning rule, Widrow-Hofflearning rule, is used for 

training. After a certain number of training cycles, when there is no 

significant error reduction and the final error obtained is unsatisfactory, we 

try to reduce the residual errors further by adding a new hidden node. For 

performing this task, we begin with a candidate node that receives trainable 

input connections from the network's external inputs and from all pre-
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Soft Computing Techniques existing hidden nodes. The output of this candidate node is not yet 

connected to the active network. After this, we run several numbers of 

epochs for the training set. We adjust the candidate node's input weights 

after each -epoch to maximize C which is defined as 

𝐶 =∑  

𝑖

∣ ∑  

𝑗

(𝑣𝑗 − 𝑣⃗)(𝐸𝑗,𝑖 − 𝐸‾𝑜) 

where 𝑖 is the network output at which error is measured, 𝑗 the raining 

partern, 𝑣 the candidate node's output value, 𝐸𝑜 the residual output error at 

node 𝑜, 𝜈‾ the value of 𝑦 averaged over all parterns, 𝐸𝑜̅̅ ̅ the value of 𝐸𝑜 

averaged over all patterns. The value " 𝐶′′ ' measures the correlation 

berween the candidate node's oucput value and the calculated residual 

output error. For maximizing 𝐶, the gradient ∂𝑑 ∂𝑤𝑖 is obrained as 

∂𝑐

∂𝑤𝑖
= ∑  

𝑗,𝑖

𝜎𝑖(𝐸𝑗,𝑖 − 𝐸‾𝑖)𝑑𝑗𝐼𝑚 

where 𝜎𝑖 is the sign of the correlation between the candidatc's value and 

output 𝑖; 𝑑𝑗  the derivative for pattern 𝑗 of the candidate node's activation 

function with respecc to sum of its inputs; 𝐼𝑚,𝑗 the input the candidate node 

receives from node 𝑚 for pattern 𝑗. When gradient ∂𝑑 ∂𝑤𝑖 is calculated, 

perform gradient ascent to maximize C. As we are training only a single 

layer of weights, simple delta learning rule can be applied. When 𝐶 stops 

improving, again a new candidate can be brought in as a node in the active 

network and its input weights are frozen. Once again, all the output weights 

are trained by the delta learning rule as done previously, and the whole cycle 

repeats itself until the error becomes acceptably small. 

2B.7. COGNITRON NETWORK: 

The synaptic strength from cell X to cell Y is reinforced if and only if the 

following two conditions are true: 

l. Cell X- presynaptic cell fires. 

2. None of the postsynaptic cells present near cell Y fire stronger than Y. 

The model developed by Fukushima was called cognitron as a successor to 

the perceptron which can perform cognizance of symbols from any alphabet 

after training. Figure 6-6 shows the connection between presynaptic cell and 

postsynaptic cell. 

The cognitron network is a self-organizing multilayer neural network. Its 

nodes receive input from the defined areas of the previous layer and also 

from units within its own area. The input and output neural elements can 

rake the form of positive analog values, which are proportional to the pulse 

density of firing biological neurons. The cells in the cognitron model use a 

mechanism of shunting inhibition, i.e., a cell is bound in terms of a 

maximum and minimum activities and is driven toward these extremities. 
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Special Networks The area from which the cell receives input is called connectable area. The 

area formed by the inhibitory cluster is called the vicinity area. Figure 2b. 7 

shows the model of a cognitron. Since the connectable areas for cells in the 

same vicinity are defined to overlap, but are not exactly the same, there will 

be-a slight difference appearing between the cells which is reinforced so 

that the gap becomes more apparent. Like this, each cell is allowed to 

develop its own characteristics. 

Cognitron network can be used in neurophysiology and psychology. Since 

this network closely resembles the natural characteristics of a biological 

neuron, this is best suited for various kinds of visual and auditory 

information processing systems. However, a major drawback of cognitron 

net is that it cannot deal with the problems of orientation or distortion. To 

overcome this drawback, an improved version called neocognitron was 

developed. 

 

Figure 2b.6 Connection between presynaptic cell and postsynaptic cell 

 

Figure 2b.7 Model of a cognitron network 

2B.8. NEOCOGNITRON NETWORK 

Neocognitron is a multilayer feed-forward network model for visual pattern 

recognition. It is a hierarchical net comprising many layers and there is a 

localized pattern of connectivity between the layers. It is an extension of 

cognitron network. Neocognitron net can be used for recognizing hand-

written characters. A neocognitron model is shown in Figure 6·8. 



   

 
82 

Soft Computing Techniques The algorithm used in cognitron and neocognitron is same, except that 

neocognicron model can recognize patterns that are position-shifted or 

shape-distorted. The cells used in neocognitron are of two types: 

1. S·-cell: Cells that are trained suitably to respond to only certain features in 

the previous layer. 

2. C-cell· A C-cell displaces the result of an S-cell in space, i.e., son of 

"spreads" the features recognized by the S-cell. 

 

Figure 2b.8 Neocognitron models 

 

Figure 2b.9 Sprcading effect in neocognitron  

Neocognitron net consists of many modules with the layered arrangement 

of S-cells and C-cells. The S-cells receive the input from the previous layer, 

while C-cells receive the input from the S-layer. During training, only the 

inputs to the S-layer are modif1ed. The S-layer helps in the detection of 

spccif1c features and their complexities. The feature recognized in the S1 

layer may be a horizontal bar or a vertical bar but the feature in the Sn layer 

may be more complex. Each unit in the C-layer corresponds to one relative 

position independent feature. For the independent feature, C-node receives 

the inputs from a subset of S-layer nodes. For instance, if one node in C-

layer detects a vertical line and if four nodes in the preceding S-layer detect 

a vertical line, then these four nodes will give the input to the specific node 

in C-layer to spatially distribute the extracted features. Modules present 

near the input layer (lower in hierarchy) will be trained before the modules 
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Special Networks that are higher in hierarchy, i.e., module 1 will be trained before module 2 

and so on. 

The users have to fix the "receptive field" of each C-node before training 

starts because the inputs to C-node cannot be modified. The lower level 

modules have smaller receptive fields while the higher level modules 

indicate complex independent features present in the hidden layer. The 

spreading effect used in neocognitron is shown in Figure 6-9. 

2B.9. CELLULAR NEURAL NETWORK – 

cellular neural network (CNN), introduced in 1988, is based on cellular 

automata, i.e., every cell in the network is connected only to its neighbour 

cells. Figures 6-10 (A) and (B) show 2 x 2 CNN and 3 x 3 CNN, 

respectively. The basic unit of a CNN is a cell. In Figures 6-10(A) and (B), 

C(l, l) and C(2, 1) are called as cells. 

Even if the cells are not directly connected with each other, they affect each 

other indirectly due to propagation effects of the network dynamics. The 

CNN can be implemented by means of a hardware model. This is achieved 

by replacing each cell with linear capacitors and resistors, linear and 

nonlinear controlled sources, and independent sources. An electronic circuit 

model can be constructed for a CNN. The CNNs are used in a wide variety 

of applications including image processing, pattern recognition and array 

computers. 

 

Figure 2b.10 (A) A2*2CNN;(B) a 3*3 CNN 

2B.10. OPTICAL NEURAL NETWORKS 

Optical neural networks interconnect neurons with light beams. Owing to 

this interconnection, no insulation is required between signal paths and the 

light rays can pass through each other without interacting. The path of the 

signal travels in three dimensions. The transmission path density is limited 

by the spacing of light sources, the divergence effect and the spacing, of 

detectors. A$ a result, all signal paths operate simultaneously, and true data 

rare results are produced. In holograms with high density, the weighted 

strengths are stored. 
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Soft Computing Techniques These stored weights can be modified during training for producing a fully 

adaptive system. There are two classes of this optical neural network. They 

are: 

1. electro-optical multipliers; 

2. holographic correlators. 

2b.10.1. Electro-optical multipliers 

Electro-optical multipliers, also called electro-optical matrix multipliers, 

perform matrix multiplication in 

parallel. The network speed is limited only by the available electro-optical 

components; here the computation time is potentially in the nanosecond 

range. A model of electro-optical matrix multiplier is shown in Figure 6-11. 

Figure 6-11 shows a system which can multiply a nine-element input vector 

by a 9 X 7 matrix, which 

produces a seven-element NET vector. There exists a column of light 

sources that passes its rays through 

a lens; each light illuminates a single row of weight shield. The weight 

shield is a photographic film where transmittance of each square (as shown 

in Figure 6-11) is proportional to the weight. There is another lens that 

focuses the light from each column of the shield m a corresponding 

photoelectron. The NET is calculated as 

NET𝑘 = ∑𝑖  𝑤𝑖𝑘𝑥𝑖 

where NETk is the net output of neuron k; wik the weight from neuron i to 

neuron k; xi the input vector 

component i. The output of each photo detector represents the dot product 

between the input vector and a 

column of the weight matrix. The output vector set is equal to the produce 

of the input vector with weight 

matrix. Hence, matrix multiplication is performed parallel. The speed is 

independent of the size of the array. 

 

Figure 2b.11 Elecrno-optical multiplier 
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Special Networks 2b.10.2. Holographic Correlators 

In holographic correlators, the reference images are stored in a thin 

hologram and are retrieved in a coherently illuminated feedback loop. The 

input signal, either noisy or incomplete, may be applied to the system and 

can simultaneously be correlated optically with all the stored reference 

images. These. correlations can be threshold and are fed back to the input, 

where the strongest correlation reinforces the input image. The enhanced 

image passes around the loop repeatedly, which approaches the stored 

image more closely on each pass, until the system gets stabilized on the 

desired image. The best performance of optical correlators is obtained when 

they are used for image recognition. A generalized optical image 

recognition system with holograms is shown in Figure 6- 12. 

 

Figure 2b.12 Optical image recognition system 

The system input is an image from a laser beam. This passes through a beam 

splitter, which sends it to 

the threshold device. The image is reflected, then gets reflected from the 

threshold device, passes back to the beam splitter, then goes to lens 1, which 

makes it fall on the first hologram. There are several stored images in first 

hologram. The image then gets correlated with each stored image. This 

correlation produces light patterns. The brightness of the patterns varies 

with the degree of correlation. The projected images from lens 2 and mirror 

A pass through pinhole array, where they are spatially separated. From this 

array, light patterns go to mirror B through lens 3 and then are applied to 

the second hologram. Lens 4 and mirror C then produce superposition of 

the multiple correlated images o1nto the back side of the threshold device. 

The front surface of the threshold device reflects most strongly that pattern 

which is brightest on its rear surface. Its rear surface has projected on it the 

set of four correlations of each of the four stored images with the input 

image. The stored image that is similar to the input image possesses highest 

correlation. This reflected image again passes through the beam splitter and 

re-enters the loop for further enhancement. The system gets converged on 

the stored patterns most like the input pattern. 
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In this chapter we learn about Simulated Annealing Network, Boltzmann 

Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net 

,Cascade Correlation Network, Cognitron Network ,Neocognitron 

Network, Cellular Neural Network , Optical Neural Networks, Spiking 

Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer 

Sizing, Deep learning Neural networks, Extreme Learning Machine Model 

(ELMM) in detail. 

2B.12 REVIEW QUESTIONS:  

1. Write a short note on Simulated Annealing Networks? 

2. Explain Architecture of Boltzmann Machine. 

3. Explain Probabilistic Neural Net. 

4. Write a short note on Cellular Neural Network. 

5. What are the Third-Generation Neural Networks? 

6. Explain Architecture of a Convolutional Neural Network 

7. What are the Limitations of CNN Model. 

8. Write a short note on Deep learning Neural networks. 

9. Write a short note on ELM Architecture and Training Algorithm 

2B.13 REFERENCE:  

1.  “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

2019, Wiley Publication, Chapter 2 and 3 

2.  http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks, 

Stephen Lucci PhD) 

3.  Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes and tutorialspoint.com. 

 


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Third Generation  

Neural Networks 2c 

THIRD GENERATION  

NEURAL NETWORKS 

Unit Structure 

2c.1 Spiking Neural Networks (SNN) 

2c.2 Encoding of Neurons in SNN 

2c.3 CNN Layer Sizing 

2c.4 Deep learning Neural networks 

2c.5  Extreme Learning Machine Model (ELMM) 

2c.6  Summary 

2c.7  Review Questions 

2c.8  Reference 

2C.1 SPIKING NEURAL NETWORKS (SNN) 

As it is well known that the biological nervous system has inspired the 

development of the artificial neural network models. On looking into the 

depth of working of biological neurons, it is noted that the working of these 

neurons and their computations are performed in temporal domain and the 

neuron firing depends on the timing between the spikes stimulated in the 

neurons of the brain. These fundamental biological understandings of the 

neuron operation lead the pathway to the development of spiking neural 

networks (SNN). SNNs fall under the category of third-generation neural 

networks and this is more closely related to the biological counterparts 

compared to the first- and second-generation neural networks. These 

developed spiking neural networks use transient pulses for performing the 

computations and require communications within the layers of the network 

designed. There exist different spiking neural models and their 

classification is based on their level of abstraction. 

2c.1.1. Architecture of SNN Model 

Neurons in central nervous system communicate using short-duration 

electrical impulses called spikes or action potentials in which their 

amplitude is constant in the same structure of neurons. SNNs offer a 

biological plausible fast third-generation neural connectionist model. They 

derive their strength and interest from an accurate modelling of synaptic 

interactions between neurons, taking into account the time of spike 

emission. SNNs overcome the computational power of neural networks 
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Soft Computing Techniques made of threshold or sigmoidal units. Based on dynamic event-driven 

processing, they open up new horizons for developing models with an 

exponential capacity of memorizing and a strong ability to fast adaptation. 

Moreover, SNNs add a new dimension, the temporal axis, to the 

representation capacity and the processing abilities of neural networks. 

There are many different models one could use to model both the individual 

spiking neurons and also the nonlinear dynamics of the system. Neurons 

communicate with spikes, also known as action potentials. Since all spikes 

art identical (1-2 ms of duration and 100 mV of amplitude), the information 

is encoded by the liming of the spikes and not the spikes themselves. 

Basically, a neuron is divided into three parts: the dendrites, the soma and 

the axon. Generally speaking, the dendrites receive the input signals from 

the previous neurons. The received input signals are processed in the soma 

and the output signals are transmitted at the axon. The synapse is between 

every two neurons; if a neuron j sends a signal across the synapse to neuron 

i, the neuron that sends the signal is called pre-synaptic neuron and the 

neuron that receives the signal is called post-synaptic neuron. Every neuron 

is surrounded by positive and negative ions. In the inner surface of the 

membrane there is an excess of negative charges and on the outer surface 

there is an excess of positive charges. Those charges create the membrane 

potential. 

Each spiking neuron is characterized by a membrane potential. When the 

membrane potential reaches a critical value called threshold it emits an 

action potential, also known as a spike (Figure 7-1). A neuron is said to fire 

when its membrane potential reaches a specific threshold. When it fires, it 

sends a spike towards all other connected neurons. Its membrane potentials 

then reset and the neuron cannot fire for a short period of time, 

this time period refractory period. The output of a spiking neuron is therefore 

binary (spike or not) but it can be converted to continuous signal over time. 

Hence the activity of a neuron over a short period of lime is converted into 

a mean firing rate. The spikes are identical to each other and their form does 

not change as the signal moves from a pre-synaptic to a post-synaptic 

neuron. The firing time of a neuron is called spike train. 

 

Fig-.2c.13-SNN spikes: The membrane potential is increased and at time 

t(f) the membrane potential reaches the threshold so that a spike is emitted. 
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Neural Networks 
2c.1.2  Izhikevich Neuron Model 

The Izhikevich Neuron Model is defined by the following equation: 

v’= 0.04v2 + 5v + 140 –u +I 

u’= a(bv-u) 

If v >= 30 mV, then v = c and u = u + d. Here, / is the input, v is the neuron 

membrane voltage and u is the recovery variable of the activation of 

potassium K ionic currents and inactivation of sodium Na ionic currents. 

The model exhibits all known neuronal firing patterns with the appropriate 

values for the variables a, b, c and d. 

1  The parameter a describes the time scale of the recovery variable u. 

Smaller values result in slower recovery. A typical value is a = 0.02. 

2.  The parameter b describes the sensitivity of the recovery 

variable u to the sub-threshold fluctuations of the membrane potential 

v. A typical value is b - 0.2. 

3.  The parameter c describes the after-spike reset value of the 

membrane potential v caused by the fast high-threshold K (potassium) 

conductance. A typical value for real neurons is c = -65 mV. 

4.  The parameter d describes the after-spike reset of the recovery 

variable u caused by slow high threshold Na (sodium) and K 

(potassium) conductance. A typical value of d is 2. 

The IZ neuron uses voltage as its modelling variable. When the membrane 

voltage v(f) reaches 30 mV, a spike is emitted and the membrane voltage 

and the recovery variable are reset according to IZ neuron model equations. 

For I ms of simulation, this model takes 13 FLOPS. Figure 7-2 illustrates 

the IZ neuron model firing. 
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Fig- 2c.14-The Izhikevich Spiking Neuron Model. In the top graph, there exists 
the membrane potential of the neuron. In the middle graph, there is the 
membrane recovery variable. Finally, the bottom plot represents the action 
pre-synaptic spikes. 

The SNN with N neurons is assumed to be fully connected and hence the 

output of each neuron I is connected to every other neuron. The synaptic 

strength of these connections are given by the N x N matrix W where  

W[i, j] is the strength between the output of neuron j and the input of neuron 

i. Thus W[i, :] represents the synapses at the input of neuron i, whereas 

 W[:,  j] represents the synapse values connected to the outputs of neuron j. 

Each neuron has its own static parameters and varying state values. The set 

P represents the set of possible constant parameters and I is the set of neuron 

states. The set of possible inputs to the neurons is denoted by R. The neuron 

updated function f:(P, S, R) -> (S, [0,1 ]) takes input parameters as the 

neuronal states and inputs and produces the next neuronal state and binary 

output. 

Izhikevich's model uses a two-dimensional differential equation to 

represent the state of a single neuron i, namely, its membrane recovery 

variable u[i] and membrane potential v[i], that is (u[i], v[i]) ϵ S with a hard 

reset spike. Additional four parameters are used for the configuration of the 

neurons: a - time scale of u; b - sensitivity of u;  c - value of v after the 

neuron is fired; d - value of u after the neuron is fired. Hence the neuron 

parameters are (a, b, c, d) ϵ P, These parameters  can be tuned to represent 

different neuron classes. If the value of v[i| is above 30 mV, the output is 

set to 1 (otherwise it is 0) and the state variables are reset. 

Izhikevich used a random input for each neuron in the range N(0,1), a zero 

mean and unit variance that is normally distributed. This input results in 

random number of neurons firing each time, depending not only on the 

intensity of the stimulus, but also on their randomly initialized parameters. 

After the input layer, one or more layers are connected in a feed-forward 

fashion. A spike occurs anytime the voltage reaches 30 mV. While the 

neurons communicate with spikes, the input current Ii of the neuron i is 

equal to 
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Neural Networks 𝐼𝑖 = ∑  

𝑛

𝑗=1

𝑤𝑖𝑗𝛿𝑗 + ∑  

𝑚

𝑘=1

𝑤𝑖𝑘𝐼𝑘(𝑡) 

where wij is weight of connection from node; to node i; wik is weight of 

connection from external input k to node i; Ik(t) is binary external input k; 

δj is binary output of neuron j (0 or 1). 

When the input current signal changes, the response of the Izhikevich 

neuron also changes, generating different firing rates. The neuron is 

responded during “T” ms with an input signal and it gets fired when its 

membrane potential reaches a specific value, generating an action potential 

(spike) or a train of spikes. The firing rate is evaluated as 

 

2c.2 Encoding of Neurons in SNN 

Spiking neural networks can encode digital and analogy information. The 

neuronal coding schemes are of three categories: rate coding, temporal 

coding and population coding. In rate coding, the information is encoded 

into the mean firing rate of the neuron, which is also known as temporal 

average. In temporal coding, the information is encoded in the form of spike 

times. In population coding, a number of input neurons (population) are 

involved in the analog encoding and this produces different firing times. 

Commonly used encoding method is the population- based encoding. 

In population encoding, analogy input values are represented into spike 

times using population coding. Multiple Gaussian receptive fields are used 

so that the input neurons encode an input value into spike times. The firing 

time is computed based on the intersection of Gaussian function. The centre 

of the Gaussian function is calculated using  

𝜇 = 𝐼min + (2 ∗ 𝑖 − 3)/2 ∗ (Imax − 𝐼min)/(𝑀 − 2) 

and the width is computed employing 

𝜎 = 1/𝛽(𝐼max − 𝐼min)/(𝑀 − 2)  where 1 ≤ 𝛽 ≤ 2 

with the variable interval of [𝐼min′  𝐼max]. The parameter " 𝛽 " controls the 

width of each Gaussian receptive field. 

2c.2.1. Learning with Spiking Neurons 

Similar to other supervised training algorithms, the synaptic weights of the 

network are adjusted iteratively in order to impose a desired input-output 

mapping to the SNN. Learning is performed through implementation of 

synaptic plasticity on excitatory synapses, The synaptic weights of the 

model, which are directly connected to the input pattern, determine the 

firing rate of the neurons. This means that the carried learning phase 

generates the desired behaviour by adjusting the synaptic weights of the 

neuron. 
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instantaneously prior to and subsequent to the firing. This potential 

behavioural feature leads to complexity in training SNNs. Some of the 

learning models include SpikeProp, spike-based supervised Hebbian 

learning, and ReSuMe and Spike time-dependent plasticity. Neurons can be 

trained to classify categories of input signals based on only a temporal 

configuration of spikes. The decision is communicated by emitting 

precisely timed spike trains associated with given input categories. Trained 

neurons can perform the classification task correctly. 

The weights w between a pre-synaptic neuron i and a post-synaptic neuron 

j do not have fixed values. It has been proved through experiments that they 

change, and this affects the amplitude of the generated spike. The procedure 

of the weight update is called learning process and it can be divided into 

two categories: supervised and unsupervised learning If the synaptic 

strength is increased then it is called long-term potentiation (LTP) and if the 

strength is decreased then it is called long-term depression (LTD). 

2c.2.2. Spike Prop Learning Algorithm 

SNN employs spiking neurons as computational units which account to 

precise firing times of neurons for information coding. The information 

retrieval from the spike trains (neurons encode the information) are done by 

binary bit coding which is a population coding approach. This section 

presents the error-back propagation supervised learning algorithm as 

employed for the spiking neural networks. 

Each SNN consists of a set of neurons (I, J), a set of edges (E ⸦ I x J), input 

neurons i ⸦ I and output neurons j ⸦ J. For each non-input neuron, i ϵ I, 

with threshold function Vth and potential u(t), each synapse {i, j} ϵ E will 

have a response function εij and weight wij. The structures of neurons tend 

to be fully connected feed forward neural network. The source neuron V 

will fire and propagate spikes along all directions. Formally, a spike train is 

defined as a sequence of pulses. Each target neuron w that receives a spike 

experiences an increase in potential at time t, similar as wj,w . εj,w (i-t). 

The firing time of a neuron i is denoted as t where f = 1,2,3,... is the number 

of the spike. The objective is to train a set of target firing times tft and actual 

firing time ta For a series of the input spike trains Sin(t), a sequence of the 

target output spikes S (f) is obtained. The goal is to find a vector of the 

synaptic weights w such that the outputs of the learning neurons Sout(t) are 

close to St(t). Changing the weights of the synapses alters the timing of the 

output spike for a given temporal input pattern 

𝑆1(𝑡) = ∑  

𝑓

𝛿(𝑡𝑒 − 𝑡𝑓) 

where 𝛿(𝑥) is the Dirac function, 𝛿(𝑥) = 0 for 𝑥 ≠ 0 and ∫
−

−
 𝛿(𝑥)𝑑𝑥 = 1. 

Every pulse is taken as a single point in time. The objective is to train the 

desired target firing times {𝑡𝑓} and that of the actual firing times {𝑡𝑎}. The 

least mean squares error function is chosen and is defined by 
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Neural Networks 𝐸 =
1

2
∑  

𝑖⩽𝑣

(𝑡𝛼 − 𝑡6)2 

In error-back propagation algorithm, each synaptic terminal is taken as a 

separate connection 𝑘 from neuron 𝑖 to 𝑗 with weight 𝑤∗̸ 𝑖𝜂∗ is the learning 

rate parameter. The basic weight adaptation functions for neurons in the 

output layer hidden layer are given by 

𝛿𝑗 =
𝛿𝜉

𝛿u

𝛿s

𝛿𝑥𝑖(𝑡∘)
=

(𝑡𝑘 − 𝑡𝑒)

∑𝑖𝜖𝑡𝑗
 ∑1  𝑤𝜙𝑖

𝛿𝑟′(𝑡)
𝛿𝑡𝑑

 

Δ𝑤𝑏,𝑘  = −𝜂
𝛿𝐸

𝛿𝑤𝑏𝑘
= −𝜂𝑦𝑖𝑘(𝑡𝑎) ⋅ 𝛿𝑡

𝛿𝑖  =
𝛿𝑡𝑎

𝛿𝑥𝑖(𝑡𝑎)
∑𝜇∈𝑖

 𝛿𝑗

𝛿𝑥1(𝑡𝑎)

𝛿𝑡𝑎

Δ𝑤ℎ,𝑘  = −𝜂𝑦ℎ𝑘(𝑡𝛼) ⋅ 𝛿𝑗

 

The training process involves modifying the thresholds of the neuron 

firing and synaptic weights. The algorithmic steps involved in learning 

through Spike-Prop Algorithm are as follows: 

2c.2.3. Spike-Prop Algorithm 

Step 1: The threshold is chosen and the weights are initialized randomly 

between 0 and 1. 

Step 2: In feed-forward stage, each input synapse receives input signal and 

transmits it to the next neuron (i.e., hidden units). Each hidden unit with 

SNN function calculated is sent to the output unit which in return calculates 

the spike function as the response for the given input. The firing time of a 

neuron ta is found. The time to first spike of the output neurons is compared 

with that of the desired time tfi of the first spike. 

Step 3: Perform the error-back propagation learning process for all the 

layers.  

The equations are transformed to partial derivatives and the process is 

carried out. 

Step 4: Calculate δj using actual and desired firing time of each output 

neuron. 

Step 5: Calculate δi employing the actual and desired firing times of each 

hidden neuron and δj values. 

Step 6: Update weights: For output layer, calculate each change in weight. 

Step 7: Compute: New weight = Old weight + Δ wijk 

Step 8: For hidden layer, calculate each change in weight. 

Step 9: Compute new weights for the hidden layer. New weight = Old 

weight + Δ whik 

Step 10: Repeat until the occurrence of convergence. 
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Spike time-dependent plasticity (STOP) is viewed as a more quantitative 

form of Hebbian learning. It emphasizes the importance of causality in 

synaptic strengthening or weakening. STDP is a form of Hebbian Learning 

where spike time and transmission are used in order to calculate the change 

in the synaptic weight of a neuron. When the pre-synaptic spikes precede 

post-synaptic spikes by tens of milliseconds, synaptic efficacy is increased. 

On the other hand, when the post-synaptic spikes precede the pre-synaptic 

spikes, the synaptic strength decreases. Furthermore, the synaptic efficacy 

Δwij  is a function of the spike times of the pre-synaptic and post-synaptic 

neurons. This is called Spike Timing-Dependent Plasticity (STDP). The well-

known STDP algorithm modifies the synaptic weights using the following 

algorithm 

Δ𝑤 = {
𝐴+exp (Δ𝑡/𝜏+)if Δ𝑡 < 0

−𝐴−exp (−Δ𝑡/𝜏) if Δ𝑡 ≥ 0
 

𝑤mev = {
𝑤old + 𝜂Δ𝑤(𝑤mas − 𝑤old ) if Δ𝑤 ≥ 0

𝑤ous + 𝜂Δ𝑤(𝑤𝑜Δ − 𝑤min) if Δ𝑡 < 0
 

Where Δt = (tpre – tpost) the time delay between the pre synaptic spike and 

the post synaptic spike. If the pre-synaptic spike occurs before the post 

synaptic spike, the weight of the synapse should be increased. If the pre 

synaptic spike occurs after the post-synaptic spike, then the weight of the 

synapse gets reduced. STDP learning can be used for Inhibitory or 

excitatory neurons. 

2c.2.5. Convolutional neural network (CNN) 

Convolutional neural network (CNN) is built up of one or more number of 

convolutional layers and after then it is trailed by one or more fully 

connected layers like feed forward networks. CNN architecture is designed 

to possess the structure of a two dimensional input image, that is, CNN's 

key advantage is that its input consists of images and this representation of 

images designs the architecture in a practical way. The neurons in CNN arc 

arranged in 3 dimensions: height, width, and depth. The information 

pertaining to "depth" is an activation volume and it represents the third 

dimension. This architectural design of CNN is carried out with the local 

connections and possesses weights which art subsequently followed by 

certain pooling operations. CNN’s can be trained in an easy manner and 

these have minimal parameters for the same number of hidden units than 

that of the other fully interconnected networks considered for comparison, 

figure 7-3 shows the arrangement of neurons in three dimensions in a 

convolutional neural network. As a regular neural network, the 

convolutional neural network is also made up of layers, and each and every 

layer transforms an input 3D volume to an output 3D volume along with 

certain differentiable activation functions with or without any parameters. 
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Figure 2c.15 Arrangement of neurons in CNN model 

2c.2.6. Layers in Convolutional Neural Networks 

It is well noted that the convolutional neural network is a sequence of layers 

and each and every layer in CNN perform transformation of one volume 

activations to the other by employing a differentiable function. CNN 

consists of three major layers: 

1. Convolutional layer 

2. Pooling layer 

3. Fully interconnected layer (regular neural models like perceptron and 

BPN) 

These layers exist between the input layer and output layer Input layer holds 

the input values represented by the pixel values of an image. Convolutional 

layer performs computation and determines output of a neuron that is 

connected to local regions in the input. The computation is done by performing 

dot product between their weights and a small region that is connected to 

the input volume. After then, an element wise activation function is applied 

wherein the threshold set to zero. Applying this activation function results 

no change in the size of the volume of the layers Pooling layer carries out 

the down sampling operation along with the spatial dimensions including 

width and height Regular fully connected layers perform computation of the 

class scores (belongs to the class or nut) and result m a specified volume 

size. In this manner, convolutional neural networks transform the original 

input layer by laser and result in the final scores. Pooling layer implements 

only a died function whereas convolutional and fully interconnected layer 

implements transformation on functions and as well on the weights and 

biases of the neurons. 

Fundamentally, a convolutional neural network is none comprising a 

sequence of layers that transform the image volume into an output volume. 

Each of the designed layers in CNN is modelled to take an input 3 

dimensional volume data and perform transformation to an output 3 

dimensional data employing a differentiable function Here, the designed 

convolutional and fully inter connected layers possess parameters and the 

pooling layers do not possess a parameter. 
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It is well known that CNN is made up of a number of convolutional and 

pooling (also called as sub-sampling) layers, subsequently followed by fully 

interconnected layers (at certain cases this layer becomes optional based on 

the application considered). 

 

Figure 2c.17 CNN with convolutional and pooling layers 

 The input presented to the convolutional layer is an n x n x p image where 

“n" is the height and width of an image and “p" refers to the number of 

channels (e g., an RGB image possess 3 channels and so p = 3). The 

convolutional layer to be constructed possesses 'm filters of size r x r x q, 

where “r" tends to be smaller than the dimension of the image and “q” can 

be the same size as that of “p" or it can be smaller and vary for each of the 

filter. The filter size enables the design of locally connected structure which 

gets convolved with the image for producing “m" feature maps. The size of 

feature map will be “n - r + 1”. Each of the feature maps then gets pooled 

(sub-sampled) based on maximum or average pooling over r x r connecting 

regions. The value of “r” is 2 for small images and 5 for larger images. A 

bias and a non-linear sigmoidal function can be applied to each of the 

feature map before or after the pooling layer, figure 7-4 shows the 

architecture of the convolutional neural network. 

2c.2.8. Designing the Layers in CNN Model 

CNN b nude up of the three individual layers and this subsection presents 

the details on designing each of these lasers specifying their connectivity 

and hyper parameters. 

1- Design of Convolutional Layer 

The primary building block of convolutional neural network is the 

convolutional layer. The convolutional layer is designed to perform intense 

computations in a CNN model. Convolutional layer possess a set of 
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trainable filters and every filter is spatially small (along the width and 

height) but noted to extend through the fullest depth of the input volume. 

When the forward pass gets initiated, each filter slides across the height and 

width of the input volume and the dot product is computed between the 

input at any position and that of the entries in the filter. When the filter slides 

across the height and weight of the input volume, a two-dimensional 

activation feature map is produced that gives the responses of that filter at 

every spatial position. The filters get activated when they come across 

certain type of visual features (like edge detection, color stain on the first 

layer, certain specific patterns or honeycomb existing on higher layers of 

the network) and the network learns from the filter that gets activated. 

Convolutional layer consists of the complete set of filters and each of these 

filters produces a separate 2-dimensional activation map. These activation 

maps will be stacked along the depth dimension and result in the output 

volume. 

In CNN network model, at the convolutional layer, each neuron gets 

connected only to a local region of the input volume. The spatial extent of 

this neuronal connectivity is represented by a hyper-parameter called the 

receptive field of the neuron. This receptive field of the neuron is the filter size. 

This spatial extent's connectivity along the depth axis will be equal to the 

depth of input volume. These connections tend to be local in space and get 

full towards the entire depth of the input volume. 

With respect to the number of neurons in the output volume, three hyper-

parameters are noted to control the size of the output volume - depth, stride 

and zero-padding. The depth of the output volume refers to the number of 

filters to be used, wherein each learning searches the existence of difference 

in the input. The stride is to be specified for sliding the filter. 

one pixel at a time, stride = 1 

2 pixel at a time, stride = 2 

subsequently for other strides 

The movement of the filter is specified by the above equation. This 

representation of the strides results in smaller output volumes spatially. At 

times it is required to pad the input volume with zeros around the border, 

hence, the other hyper-parameter is the size of this zero-padding. Zero-

padding allows controlling the spatial size of the output volumes. It should 

be noted that if all neurons presented in the single depth slice employ the 

same weight vector, then in every depth slice, the forward pass of the 

convolutional layer can be computed as the convolution of the neuronal 

weights with that of the input volume. Thus, the sets of weights are referred 

in CNN as filter that gets convolved with the input. The limitation of this 

approach is that it uses lots of memory, as certain values in the input volume 

arc generated repeatedly for multiple times. 

It is to be noted that the backward pass for a convolution operation is also a 

convolution process. The backward pass also moves to a back propagation 

neural network. In few works carried out earlier, it is observed that they use 

fmove

= 
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wise scaling operation. As with CNN model, it is operated more on three-

dimensional volumes and also the filters get extended over the full depth of 

the input volume. It is to be noted that employing 1 x 1 convolution will 

perform the three-dimensional dot product. Another method of convolution 

is the dilated convolution, wherein an added hyper-parameter called dilation 

is included to the convolutional layer. In case of dilated convolution, there 

is possibility to have filters with spaces between each cell. Implementation 

will be done in a manner of dilation 0, dilation 1 (gap 1 will be adopted 

between the filters) and so on. Employing dilated convolutions drastically 

increases the receptive field. 

2-Design of Pooling Layer 

Between the successive convolutional layers, pooling layers are placed. The 

presence of pooling layer between the convolutelayers is to gradually 

decrease the spatial size of the parameters and to reduce the computation in 

the network. This placement of pooling layer also controls the occurrence 

of over fitting. The pooling layer works independently on depth slice of the 

input as well as resizes them spatially. Commonly employed pooling layer 

is the one with the filter size of 2 x 2 applied with a stride of 2 down samples. 

The down sampling occurs for every depth slice in the input by 2 along the 

height and width. The dimension of the depth parameter remains unaltered 

in this case. Pooling sizes with higher receptive fields are noted to be 

damaging. Generally used pooling mechanism is the “max pooling”. 

Apart from this operation, the pooling layer can also perform functions like 

mean pooling or even L2-norm pooling. In the backward pass of a pooling 

layer, the process is only to route the gradient to the input that possessed the 

highest value in the forward pass. Hence, at the time of forward pass of the 

pooling layer, it is important to track the index of the activation function 

(probably “max”) so that the gradient routing is carried out effectively by a 

back-propagation network algorithm. 

2c.2.9. Layer Modelling in CNN and Common CNN Nets 

The other layers of importance in convolutional neural network are the 

normalization layer and the fully connected layer. Numerous normalization 

layers are developed to be used in CNN model and they are designed in a 

manner to implement the inhibition procedure of the human brain. Various 

types of normalization procedures like mean scaling, max scaling, 

summation process, etc. can be employed if required for operation in the 

CNN model. Fully connected layers possess full interconnections for all the 

activations in the previous layer. As regular, their activations are based on 

computing the net input to the neurons of a layer along with the bias input 

also. 

2c.2.10. Conversion of Fully Connected Layer to Convolutional Layer 

The main difference between the fully connected and the convolutional 

layer is that the neurons present in the convolutional layer get connected 

only to a local region in the input and the neurons in the convolutional 
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voluminous structure share their parameters. The neurons in both fully 

connected and convolutional layers calculate the dot products and hence 

their functional form remains the same. Therefore it is possible to perform 

conversion between the fully connected and the convolutional layers. 

Considering any convolutional layer, there exists a fully connected layer 

which implements one and the same forward pass function. The weight 

matrix will be a large one and possesses zero entities except at specific 

blocks (no self-connection and existence of local connectivity') and the 

weights in numerous blocks tend to be equal (parameter sharing). Also, fully 

connected layer can be converted into convolutional layer; here the filter 

size will be set equal to the size of the input volume and the output will be 

a single depth column fit across the input volumes. This gives the same 

result as that of the initial fully connected layer. In both these conversions, 

the process of converting a fully connected layer to a convolutional layer is 

generally in practice. 

2c.3 CNN Layer Sizing 

As known, CNN model commonly comprises convolutional layer, pooling 

layer, and fully connected layer. The rules for sizing the architecture of the 

CNN model are as follows: 

1.    The input layer should be designed in such a way that it should be 

divisible by the convolutional layer should employ small size filters, 

specifying the stride. The convolutional layer should not alter the 

spatial dimensions of the input. 

2. The pooling layer down samples the spatial dimensions of the input. 

Commonly used pooling is the max-pooling with a 2 x 2 receptive 

fields and a stride of 2. Receptive field size is accepted until 3x3 and 

if it exceeds above 3, the pooling becomes more aggressive and tends 

to lose information. This results in poor performance of the network. 

From all the above, it is clearly understood that the convolutional layers 

preserve the spatial size of their input. On the other hand, the pooling layers 

are responsible for down sampling the volumes spatially. Alternatively, if 

strides greater than 1 or zero-padding are not done to the input in 

convolutional layers, then it is very important to track the input volumes 

through the entire CNN architecture and ensure that all the strides and filters 

work in a proper manner. Smaller strides are generally better in practice. 

Padding actually improves the performance of the network. When the 

convolutional layer does not zero-pad the inputs and only performs 

authenticate convolutions, then the volume size will reduce by a smaller 

amount after each convolution process. 

2c.3.1  Common CNN Nets 

In the past few years, there were numerous CNN models developed and 

implemented for various applications. Few of them include 

1. LeNet: The first convolutional neural network model named after the 

developer LeCun. It is applied to read zip codes, digits and so on. 
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application. It was developed in the year 2012 by Alex Krizhevsky 

and team. 

3. ZFNetf: It was developed in the year 2013 by Zeiler and Fergus and 

hence named as ZFNet. In this network model, the convolutional 

layers in the middle are expanded and the stride and filter size are 

made smalt in the first layer. 

4. VGGNet: It was modelled in the year 2014 by Karen and Andrew. It 

has phenomenal impact on the depth of the network and it was noted 

that depth of network parameter plays a major role for better 

performance. 

5. GoogLeNet It was developed in the year 2014 from Google by 

Szegedy and team. This net contributed an Inception module wherein 

the numbers of parameters in the model are reduced. This network 

employs mean pooling instead of fully connected layers at the top of 

the convolutional network. As a result, more number of parameters 

arc eliminated in this case. 

6. ResNet: It was modelled in the year 2015 by Kaiming and team, and 

hence called as Residual Network. This network is the default 

convolutional neural network. It employs batch normalization and the 

architecture also docs not consider fully connected layers at the end 

of the network. 

2c.3.2.  Limitations of CNN Model 

The computational considerations are the major limitations of the 

convolutional neural network model. Memory requirement is one of the 

problems for CNN models. In the current processor unit, the memory limits 

from 3/4/6 GB to the latest best version of 12 GB memory. The memory 

can be handled by 

1. Convolutional network implementations should maintain varied 

memory requirements, like the image data modules 

2. Intermediate volume sizes specify the number of activations at each 

layer of the convolutional network as well is their gradients. Running 

convolutional network at the time of testing alone reduces the 

memory by large amount, by storing only the current activations at 

any layer and eliminating the activations of the previous layer. 

3. Network parameters and their size, gradient descent values of the 

parameters during backward pass in back propagation process and 

also a step cache when momentum factor is used. The memory 

required to store a parameter alone should be multiplied by a factor of 

at least 3 or so. 

On calculating the total number of parametric values, the number must be 

converted to a specified size in GB for memory requirement. For each of 

the parameters, consider the number of parametric values. Then multiply 
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the number of parametric values by 4 to get the raw number of bytes and 

then divide it by multiples of 1024 to get the amount of memory in KB, MB 

and then in GB. In this way, the memory requirement of CNN model can 

be computed and the limitations can be overcome. 

2c.4 Deep learning Neural networks: 

Machine learning approaches are undergoing a tremendous revolution, 

which has led to the development of third generation neural networks. The 

limitations observed in the second-generation neural networks like delayed 

converged undue local and global minimal problems and so on are handled 

in the developed third-generation neural networks. One of the prominent 

third generation neural networks is the deep learning neural networks 

(DLNNs) and this neural model provides a deep understanding of the input 

information. 

The prominent researcher behind the concept of deep learning neural 

networks is Professor Hinton from University of Toronto who managed to 

develop a special program module for constituting the formulation of 

molecules to produce an effective medicine. Minton's group employed deep 

learning artificial intelligence methodology to locate the combination of 

molecules required for the composition of medicine with very limited 

information on source data. Apple and Google have transformed themselves 

with deep learning concepts and this can be noted through Apple Siri and 

Google Street view, respectively. 

The learning process in deep learning neural network takes place in two 

steps. In the first step, the information about the input data’s internal 

structure is obtained from the existing large array of unformatted data. This 

extraction of the internal structure is carried out by an auto-associator unit 

via unsupervised training layer-by-layer, then the formatted data obtained 

from the unsupervised multi-layer neural network gets processed through a 

supervised network module employing the already available neural network 

training methods. It is to be noted that the amount of unformatted data 

should be as large as possible and the amount of formatted data can be 

smaller in size (but this need not be an essential criteria). 

2c.4.1. Network Model and Process Flow of Deep Learning Neural 

Network 

The growth of deep learning neural networks is its deep architecture that 

contains multiple hidden layers and each hidden layer carries out a non-

linear transformation between the layers. DLNNs get trained based on two 

features: 

1. Pre-training of the deep neural networks employing unsupervised 

learning techniques like auto-encoders layer-by-layer, 

2. Fine tuning of the DLNNs employing back propagation neural 

network. 
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learning technique and the input data is the output target of the auto-

encoder. An auto-encoder consists of two parts - encoder and decoder 

network. The operation of an encoder network is to transform the input data 

that is present in the form of a high-dimensional space into codes pertaining 

to low-dimensional space. The operation of the decoder network is to 

reconstruct the inputs from the corresponding codes. In encoder neural 

network, the encoding function is given by “fΘ". The encode vector (Ev) is 

given by 

   Ev = fΘ (x
v) 

where “x” is the data set of the measured signal. 

The reconstruction operation is carried out at the decoder neural network 

and its function is given by “gΘ". This reconstruction function maps the data 

set “xv” from the low-dimensional space into the high-dimensional space. 

The reconstructed form is given by 

                        𝑥̂v = gθ(E
v) 

The ultimate goal of these encoder and decoder neural networks is to 

minimize the reconstruction error E(x, 𝑥̂) for that many numbers of training 

samples. E(x, 𝑥̂) is specified as a loss function that is used to measure the 

discrepancy between the encoded and decoded data samples. The key 

objective of the unsupervised auto-encoder is to determine the parameter 

sets that minimize the reconstruction error “E” 

  δae(θ,θ’) = 
1

𝑁
 ∑ 𝐸 𝑁

𝑣=1 (xv,g’θ(fΘ (x
v))) 

The encoding and decoding functions of the DLNN will be present along 

with a non-linearity and are given by 

fΘ (x) = faf_e (b+Wx) 

gΘ (x) = faf_d (b+Wx
T) 

Where  faf_e  and faf_d refer to the encoder activation function and the decoder 

activation function, respectively, “b" indicates the bias of the network, and 

W and WT specify the weight matrices of the DLNN model. 

The reconstruction error is given by 

E(x, 𝑥̂) =|| x- 𝑥̂|| 

In order to carry out the pre-training of a DLNN model, the “N" auto-

encoders developed in previous module should be stacked. For the given 

input signal xv input layer along with the first hidden layer of DLNN arc 

considered as the encoder neural network of the first auto-encoding process. 

When the first auto-encoder is noted to be trained by minimizing the 

reconstruction error, the first trained parameter set θ1, of the encoder neural 

network is employed to initialize the first hidden layer of the DLNN and the 

first encode vector is obtained by 

E1
v = fΘ (x

v) 
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Now, the input data becomes the encode vector E1
v. The first and second 

hidden layers of the DLNN are considered as the encoder neural network 

for the second auto-encoder. Subsequently, the second hidden layer of the 

DLNN gets initialized by that of the second trained auto-encoder. This 

process gets continued upto the N-th auto-encoder that gets trained for 

initializing the final hidden layer of the DI.NN model. The final or the N-th 

encode vector in generalized form for the vector xv is obtained by 

EN
v = fΘ (E

v
N-1) 

where “θN” denotes the Nth trained parameter set of the encoder neural 

network. Thus, in this way, all the DLNN s hidden layers get pre trained by 

means of the N stacked auto encoders. It is well noted that the process of 

pre-training avoids local minima and improves generalization aspect of the 

problem under consideration. Figure 7-5 shows  the fundamental 

architecture of the deep learning neural network. 

 

Figure 2c.18 Architecture model of deep learning neural network 

The above completes the pre training process of DLNN and the nest 

process is the tine-tuning process in the DLNN model DLNN models 

output is calculated from the input signal Xy as 

yy =ʄϴ N+1(Ey
N) 

where ϴN+1 denotes the trained parameter set of the output layer. Here, 

back propagation network (BPN)is employed for minimizing the error of 

the output by carrying out the parameter adjustments in DLNN backwards 

in case the output the target of xx is tv , then the error criterion is given by 

MSE(Ψ)=1/𝑁 ∑ 𝐸𝑛
𝑦=1 (yy, ty) 

Where Ψ={ϴ1, ϴ2, ϴ3, …..ϴN+1} 

2c.4.2. Training Algorithm of Deep Learning Neural Network: 

Step 1: Start the algorithmic process. 

Step 2: Obtain the training data sets to feed into the DLNN model and 

initialize the necessary parameters.  
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Step 4: Perform the training of r-th auto-encoder. 

Step 5: Initialize i-th hidden layer parameter of DLNN employing the 

parameters    of the auto encoder. 

Step 6: Check whether “i” is greater than “N". If no carry out step 4; if 

yes go to the next step. 

Step 7: Calculate the dimensions of the output layer. 

Step 8: Fine tune the parameters of DLNN through the BBN algorithm. 

Step 9: With the final fine-tuned DLNN model go to the next step. 

Step 10: Return the trained DLNN. 

Step 11: Output the solutions achieved. 

Step 12: Stop the process on meeting termination condition.  

The termination condition is the number of iterations or 

reaching the minimal mean square error. 

2c.4.3. Encoder Configurations 

Encoders are built so as to receive the possible exact configuration of the 

input at the output end. These encoders belong to the category of auto 

associator neural units, Auto associator modules, are designed to perform 

the generating part as well as the synthesizing part. Encoders discussed in 

this section belong to the synthesized module of auto associator and tor the 

generation part, a variation of Boltzmann machine as presented in special 

networks. 

An auto encoder is configured to be all open layer neural network Auto 

encoder for its operation sets its target value equal to that of the Input vector. 

A model of an auto encoder is as shown in figure 2c.6. The encoder model 

attempts to find approximation of a defined function authenticating that the 

feedback of a neural network tends to be approximately equal to the values 

of the given input parameters. The encoder is also capable of compressing 

the data once the given input signal gets passed to that of the output of the 

network. The compression is possible in an auto encoder if there exists 

hidden interconnections or a sort of characteristics correlation. In this 

manner, auto encoder behaves m a similar manner as the principal 

component analysis and achieves data reduction (possible compression) in 

the input side. 
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Figure 2c.19 Model configuration of an auto encoder 

On the other hand, when the auto encoder is trained with the stochastic 

gradient descent algorithm and the where the number of hidden neurons 

becomes greater than the number of inputs, it results in the possible decrease 

in the error values. So, it is applied for various function analysis and 

compression applications 

Another variation in the encoder configuration is the denoting auto encoder. 

Here, the variation exists in the training process. On training the deep 

learning neural network for demolishing encoder, corrupted or demonised 

data (substituted with “0" values) can be given as input. further to this, 

during the same time, the coned data can be compared with that of the output 

data. The advantage of this mechanism is that it paves way to restore the 

damaged data. 

2c.5. EXTREME LEARNING MACHINE MODEL (ELMM) 

Over the years, it has been observed that the k nearest neighbourhood and 

other few architectures like support machine (SVM) classifiers employed 

for classification requite more computations due to the repetition of 

classification and registration, hence they are relatively slow. SVM 

FEATURES IN THE 

HIDDEN LAYER  
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handle high dimensional feature space, assumes that the data are 

independently and identically distributed. This is not applicable for all sets 

of data, as they are likely to have noise and related distribution. Storage is 

also an added disadvantage of SVM classifier. 

Other multilayer neural networks which are trained with back propagation 

algorithm based on gradient descent learning rule. Posses certain limitations 

like slow conversions, setting the learning rate parameters, local and global 

minimum occurrences and repeated training process without attaining 

conversions point.  

ELMM is a single hidden layer feed forward neural network where input 

weights and hidden neuron are randomly selected without training. The 

output weights are analytically computed employing the least square norm 

solution and Moore – Penrose inverse of a generalized linear system. This 

method of determining output weights results in significant reduction of 

training time. For hidden layer neurons are the activation functions like 

Gaussian, sigmoidal and so on can be employee for output layer neurons 

layer linear activation function. This single layer feed forward, network 

ELM model employee additive neural design instead of kernel based and 

hence there is random parameter selection. 

2c.5.2. ELM TRAINING PROGRAM: 

For a given training vector pair N={xt ,tt)}, with xi € Rn ti € Rm , i=1,…,N 

activation function f(x) and hidden neuron N, the algorithm is as follows: 

Step 1: Start Initialize the necessary parameters, choose suitable activation 

function and the number of hidden neurons in the hidden layer for the 

considered problem. 

Step 2: Assign arbitrary input weights wi and bi as bi 

Step 3: Compute the output matrix H at the hidden layer 

   H= ʄ(xϴw+b) 

Step 4: Compute the output weight Ᵹ based on the equation 

   Ᵹ=H*T  

2c.5.3. Other ELM Models 

Huang initially proposed ELM in the year 2004 and subsequently numerous 

researchers worked on ELM and developed certain improved ELM 

algorithms. ELM was enhanced over the years to improve the network 

training speed, to avoid local and global minima, to reduce iteration time, 

to overcome the difficulty in defining learning role parameters and setting 

the stopping criteria. 

Since ELM works on empirical minimization principle, the random 

selection of input layer weights and hidden layer biases result in non-

optimal convergence. In comparison with that of the gradient descent 
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learning rule, ELM may require more number of hidden layer neurons and 

this reduces ELM’s training effect. Henceforth, to speed the convergence 

and response of ELM training, numerous improvements were made in 

existing ELM algorithm and modified versions of ELM algorithm were 

introduced. The following sub-sections present few improvements made by 

researchers in the existing ELM algorithm. 

2c.5.4. Online Extreme Learning Machine 

ELM is well noted for solving regression and classification problems; it 

results in better generalization performance and training speed. When 

considering ELM for real applications which involve minimal data set, it 

may result in over-fitting occurrences. 

Online ELM is also referred to as online sequential extreme learning 

machine (OSELM) and this works on sequential adaptation with recursive 

least square algorithm. This was also introduced by Huang in the year 2005. 

Further to this, online sequential fuzzy ELM (OS-Fuzzy-ELM) has also 

been developed for implementing different orders of TSK models. In fuzzy-

based FLM, randomly all the antecedent parameters of membership 

functions are assigned first and subsequently the consequent parameters are 

computed. Zhang, in the year 2011, developed selective forgetting ELM 

(SFELM) to overcome the online training issues and applied it to time-

series prediction. SFELM’s output weight is calculated in a recursive 

manner at the time of online training based on its generalization 

performance. SFELM is noted to possess better prediction accuracy. 

2c.5.5. Pruned Extreme Learning Mac/i/ne 

ELM is well known for its short training time and here the number of hidden 

layer nodes are randomly selected and are analysed for determination of 

their respective weights. This minimizes the calculation time with fast 

learning. Rong in the year 2008 modified the architectural design of ELM 

as the existence of smaller or higher hidden layer neurons will result in 

Under-fitting and over-fitting problems for classification problems. Pruned 

ELM (PELM) algorithm was developed as an automated technique to 

design an ELM. The significance of hidden neurons was measured in PELM 

by employing statistical approaches. Starting with higher number of hidden 

neurons, the insignificant ones are then pruned with class labels based on 

their importance. Henceforth the architectural design of ELM network gets 

automated. PELM is inferred to have better prediction accuracy for unseen 

data when compared with  basic ELM. there also exists a pruning algorithm 

that is based on regularized regression method, to determine the required 

number of hidden neurons in the network architecture. This regression 

approach starts with higher number of hidden neurons and in due course the 

unimportant neurons get pruned employing methods like ridge regression, 

elastic network and so on. In this manner, the architectural design of FILM 

network gets automated. 

2c.5.6. Improved Extreme Learning Machine Models 

ELM requires more number of hidden neurons due to its random 

computation of input layer weights and hidden biases. Owing on this, 

certain hybrid ELM algorithms were developed by researchers to improve 
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employs differential evolution (DE) algorithm for obtaining the input 

weights and Moore-Penrose (MP) inverse to obtain the output weights of an 

ELM model. Several researchers also attempted to combine ELM with other 

data processing methods resulting in new ELM learning models and 

applying the newly developed algorithm for related applications. 

ELM at times results in non-optimal performance and possess over-fitting 

occurrence. This was addressed by Silva in the year 2011 by hybridizing 

group search optimizer to compute the input weights and ELM algorithm 

for computing the hidden layer biases. Here it is required to evaluate the 

influence of various types of members that tend to fly over the search space 

bounds. The effectiveness of ELM model gets lowered because at times, the 

hidden layer output matrix obtained through the algorithm docs not form a 

full rank matrix due to random generation of input weights and biases. This 

was overcome by the development of effective extreme learning machine 

(EELM) neural network model which properly selects the input weights and 

biases prior to the calculation of output weights ensuring a full column rank 

of the output matrix. 

Thus, considering the existing limitations of ELM models, researchers have 

involved themselves in developing new variants of ELM models both in the 

algorithmic side and in the architectural design side. This section has 

presented few of the variants of ELM models as developed by the 

researchers and applied for various prediction and classification problems. 

2c.5.7. Applications of ELM 

Neural networks are widely employed in mining, classification, prediction, 

recognition and other applications. ELM has been developed with an idea 

to improve the learning ability and provide better generalization 

performance. Considering the advantages of ELM models, few of its 

application include 

1. Signal processing 

2. Image processing 

3. Medical diagnosis 

4. Automatic control 

5. Aviation and aerospace 

6. Business and market analysis 

2C.6 SUMMARY: 

In this chapter we learn about Simulated Annealing Network, Boltzmann 

Machine, Gaussian Machine, Cauchy Machine, Probabilistic Neural Net 

,Cascade Correlation Network, Cognitron Network ,Neocognitron 

Network, Cellular Neural Network , Optical Neural Networks, Spiking 

Neural , Networks (SNN) ,Encoding of Neurons in SNN, CNN Layer 

Sizing, Deep learning Neural networks, Extreme Learning Machine Model 

(ELMM) in detail. 
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2C.7 REVIEW QUESTIONS:  

1. Write a short note on Simulated Annealing Networks? 

2. Explain Architecture of Boltzmann Machine. 

3. Explain Probabilistic Neural Net. 

4. Write a short note on Cellular Neural Network. 

5. What are the Third-Generation Neural Networks? 

6. Explain Architecture of a Convolutional Neural Network 

7. What are the Limitations of CNN Model. 

8. Write a short note on Deep learning Neural networks. 

9. Write a short note on ELM Architecture and Training Algorithm 

2C.8 REFERENCE:  

1.  “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

2019, Wiley Publication, Chapter 2 and 3 

2.  http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks, 

Stephen Lucci PhD) 

3.  Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes and tutorialspoint.com.  
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2d 
UNSUPERVISED LEARNING NETWORKS 

Unit Structure 

2d.0 Introduction 

2d.1 Fixed Weight Competitive Nets 

2d.2  Mexican Hat Net 

2d.3  Hamming Network 

2d.4  Review Questions 

2d.5  Reference 

2D.0 INTRODUCTION 

In this learning, there exists no feedback from the system (environment) w 

indicate the desired outputs of a network. The network by itself should 

discover any relationships of interest, such as features, patterns, contours, 

correlations or categories, classification in the input data, and thereby 

translate the discovered relationships into outputs. Such networks are also 

called self-organizing networks. An unsupervised learning can judge how 

similar a new input pattern is to typical patterns already seen, and the 

network gradually learns what similarity is; the network may construct a set 

of axes along which to measure similarity to previous patterns, i.e., it 

performs principal component analysis, clustering, adaptive vector 

quantization and feature mapping. 

For example, when net has been trained to classify the input patterns into 

any one of the output classes, say, P, Q, R, S or T, the net may respond to 

both the classes, P and Q or R and S. In the case mentioned, only one of 

several neurons should fire, i.e., respond. Hence the network has an added 

structure by means of which the net is forced to make a decision, so that 

only one unit will respond. The process for achieving this is called 

competition. Practically, considering a set of students, if we want to classify 

them on the basis of evaluation performance, their score may be calculated, 

and the one whose score is higher than the others should be the winner. The 

same principle adopted here is followed in the neural networks for pattern 

classification. In this case, there may exist a tie; a suitable solution is 

presented even when a tie occurs. Hence these nets may also be called 

competitive nets, the extreme form of these competitive nets is called 

winner-take-all.  

The name itself implies that only one neuron in the competing group will 

possess a nonzero output signal at the end of competition. 
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There exist several neural networks that come under this category. To list 

out a few: Max net, Mexican hat, Hamming net, Kohonen self-organizing 

feature map, counter propagation net, learning vector quantization (LVQ) 

and adaptive resonance theory (ART). 

The learning algorithm used ·m most of these nets is known as Kohonen 

learning. In this learning, the 

units update their weights by forming a new weight vector, which is a linear 

combination of the old weight vector and the new input vector. Also, the 

learning continues for the unit whose weight vector is closest to the input 

vector. The weight updation formula used in Kohonen learning for output 

cluster unit j is given as 

 

monotonically as training continues. There exist two methods to determine 

the winner of the network during competition. One of the methods for 

determining the winner uses the square of the Euclidean distance between 

the input vector and weight vector, and the unit whose weight vector is at 

the smallest Euclidean distance from the input vector is chosen as the 

winner. The next method uses the dot product of the input vector and weight 

vector. The dot product between the input vector and weight vector is 

nothing but the net inputs calculated for the corresponding duster units. The 

unit with the largest dot product is chosen as the winner and the weight 

updation is performed over it because the one with largest dot product 

corresponds to the smallest angle between the input and weight vectors, if 

both are of unit length. 

2D.1. FIXED WEIGHT COMPETITIVE NETS 

These competitive nets arc those where the weights remain fixed, even 

during training process. The idea of competition is used among neurons 

for enhancement of contrast in their activation functions. These are 

Maxnet, Mexican hat and Hamming net. 

Maxnet 

The Maxnet serves as a sub net for picking the node whose input is larger. 

Architecture of Maxnet 

The architecture of Maxnet is shown in Figure 5·1, where fixed 

symmetrical weights are present over the 

weighted interconnections. The weights between the neurons are 

inhibitory and fixed. The Maxnet with this structure can be used as a 

subnet to select a particular node whose net input is the largest. 
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Figure 2d.1 Maxnet Structure 

Testing/Application Algorithm of Maxnet: 

Step 

0: Initial weights and initial activations are ser. The weight is set as [0 <
𝜀 < 1/𝑚], where "𝑚𝑛 is the total number of nodes. Let 

𝑥𝑗(0) =  input to the node 𝑋𝑗 

and 

𝑤𝑖𝑗 = {
1  if 𝑖 = 𝑗

−𝜀  if 𝑖 ≠ 𝑗
 

Step 1: Perform Steps 2 − 4, when stopping condition is false. Step 2: 

Update the activations of each node. For 𝑗 = 1 to 𝑚, 

𝑥𝑗(𝑛 ∈ 𝑤) = 𝑓 [𝑥𝑗(0. 𝑑) − 𝜀 ∑  

𝑖≠𝑗

 𝑥𝑘(𝑜𝑙𝑑)] 

Step 

3: Save the acrivarions obtained for use in the next iteration. For 𝑗 = 1 to 

𝑚, 

𝑥𝑗( oid ) = 𝑥𝑗  (new) 

Step 4: Finally, test the stopping condition for convergence of the 

network. The following is the stopping condition: If more than one node 

has a nonzero activation, continue; else stop. 
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2D.2 MEXICAN HAT NET 

In 1989, Kohonen developed the Mexican hat network which is a more 

generalized contrast enhancement 

network compared to the earlier Maxner. There exist several "cooperative 

neighbors" (neurons in close proximity) to which every other neuron is 

connected by excitatory links. Also, each neuron is connected over 

inhibitory weights to a number of" competitive neighbors" {neurons present 

farther away). There are several oilier fanher neurons ro which the 

connections between the neurons are nor established. Here, in addition to 

the connections within a particular laye·r Of neural net, the neurons also 

receive some other external signals. 

This interconnection pattern is repeated for several other neurons in the 

layer. 

2d.2.1 Architecture of Mexican Hat Net 

The architecture of Mexican hat is shown in Figure 5·2, with the 

interconnection pattern for node Xi. The 

neurons here are arranged in linear order; having positive connections 

between Xi and near neighboring units, and negative connections between 

Xi and farther away neighboring units. The positive connection region is 

called region of cooperation and the negative connection region is called 

region of competition. The size of these regions depends on the relative 

magnitudes existing between the positive and negative weights and also on 

the topology of regions such as linear, rectangular, hexagonal grids, ere. In 

Mexican Hat, there exist two symmetric regions around each individual 

neuron. 

The individual neuron in Figure 5-2 is denoted by Xi. This neuron is 

surrounded by other neurons Xi+ 1, 

Xi-1, Xi+2, Xi-2, .... The nearest neighbors to the individual neuron Xi are 

Xi+1, Xi- 1. Xi+2• and Xi-2· 

Hence, the weights associated with these are considered to be positive and 

are denoted by WI and w2. The 

farthest neighbors m the individual neuron Xi are taken as Xi+3 and Xi-3, 

the weights associated with these are negative and are denoted by w3. It can 

be seen chat Xi+4 and Xi-4 are not connected to the individual neuron Xi, 

and therefore no weighted interconnections exist between these 

connections. To make it easier, the units present within a radius of 2 [query 

for unit] to the unit Xi are connected with positive weights, the units within 

radius 3 are connected with negative weights and the units present further 

away from radius 3 are not connected in any manner co the neuron Xi. 
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Figure 2d.2 Structure of Maxican Hat 

2d.2.3 Flowchart of Mexican Hat Net 

The flowchart for Mexicann hat is shown in Figure 5-3. This dearly 

depicts the flow of the process performed in Mexican Hat Network. 

 

 

 

 

 

 

 

 

 

Figure 2d.3. Flowchart of Mexican Hat 
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2d.2.3 Algorithm of Mexican Hat Net: 

The various parameters used in the training algorithm are as shown below. 

𝑅2 = radius of rcgions of interconnections 

X𝑖+𝑘 and X𝑓−𝑘 are conniected to the individual units X𝑖 for 𝑘 = 1 to 𝑅2. 

𝑅1 = adrus of tegion with positive reinforcement (𝑅1 < 𝑅2) 

W𝑘 = weight berween X𝑖 and the unis X𝑖+𝑘 and X𝑖−𝑘 

 
0 ⩽ 𝑘 ⩽ 𝑅1,  𝑤𝑘 =  positive 

𝑅1 ⩽ 𝑘 ⩽ 𝑅2,  𝑤𝑘 =  negative 

𝑡 =   external  input signal 

𝑥 =  vector of accivation 

𝑥0 =  vecior of activations at previous time step 

 

𝑡max = total number of iterations of contmst enhancemen. 

Here the iteration is started only with the incoming of the external signal 

presented to the network. 

 

 

Step 2: When 𝑡 is less than 𝑡max , perform Steps 3-7. 

Srep 3: Calculace net input. Fot 𝑖 = 1 to 𝑛, 

𝑥𝑖 = 𝑐1 ∑  

𝑅1

𝑘=−𝑅1

𝑥0𝑖+
+ 𝑐𝑘=−𝑅2

−𝑅1−1
𝑥0𝑖+𝑘

+ 𝑐2 ∑  

𝑅2

𝑘=𝑅1+1

𝑥0𝑖+𝑘
 

Step 4: Apply the activation function. For 𝑖 = 1 to 𝑛, 

𝑥𝑖 = m  [𝑥max, m  (0, 𝑥𝑖)] 
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𝑥0𝑖 = 𝑥𝑖 

Step 6: Increment the iteration counter: 

𝑡 = 𝑡 + 1 

Step 7: Test for stopping condition. The following is the stopping condition: 

If 𝑡 < 𝑡Ex.  then continue Else stop. The positive reinforcement here has the 

capacity to increase the activation of units with larger initial activations and 

the negative reinforcement has the capacity’ to reduce the activation of unis 

with smaller initial activations. The activation function used here for unit Xi 

at a particular time instant  ′′𝑡′′ is given by 

𝑥𝑖(𝜆) = 𝑓 [𝑠𝑖(𝑡) + ∑  

𝑘

 𝑤𝑘𝑥𝑖+𝑘 + 𝑘(𝑡 − 1)] 

The terms present within the summation symbol are the weighted signals 

that arrived from other units 𝛼 the previous time step. 

2D.3 HAMMING NETWORK 

The Hamming network selects stored classes, which are at a maximum 

Hamming distance (H) from the 

noisy vector presented at the input (Lippmann, 1987). The vectors involved 

in this case are all binary and 

bipolar. Hamming network is a maximum likelihood classifier that 

determines which of several exemplar 

vectors (the weight vector for an output unit in a clustering net is exemplar 

vector or code book vector for the pattern of inputs, which the net has placed 

on that duster unit) is most similar to an input vector (represented as an 

n~tuple). The weights of the net are determined by the exemplar vectors. 

The difference between the tom! number of components and the Hamming 

distance between the vecrors gives the measure of similarity between the 

input vector and stored exemplar vcctors.lt is already discussed  the 

Hamming distance between the two vectors is the number of components in 

which the vectors differ. 

Consider two bipolar vectors x and y; we use a relation 

x . y = a - d 

where a is the number of components in which the vectors agree, d the 

number of components in which the vectors disagree. The value "a - d" is 
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the Hamming distance existing between two vectors. Since, the total 

number of components is n, we have, 

𝑛 = 𝑎 + 𝑑

 i.e., 𝑑 = 𝑛 − 𝑎
 

On simplification, we get 

𝑥 ⋅ 𝑦  = 𝑎 − 𝑑
𝑥 ⋅ 𝑦  = 𝑎 − (𝑛 − 𝑎)
𝑥 ⋅ 𝑦  = 2𝑎 − 𝑛

2𝑎  = 𝑥 ⋅ 𝑦 + 𝑛

𝑎  =
1

2
(𝑥 ⋅ 𝑦) +

1

2
(𝑛)

 

 

From the above equation, it is clearly understood that the weights can be set 

to one-half the exemplar vector and bias can be set initially to n/2. By 

calculating the unit with the largest net input, the net is able to locate a 

particular unit that is closest to the exemplar. The unit with the largest net 

input is obtained by the Hamming net using Maxnet as its subnet. 

2d.3.1. Architecture of Hamming Network: 

The architecture of Hamming network is shown in Figure 5-4. The 

Hamming network consists of two layers. The first layer computes the 

difference between the total number of components and Hamming distance 

between the input vector x and the stored pattern of vectors in the feed-

forward path. The efficient response in this layer of a neuron is the 

indication of the minimum Hamming distance value between the input and 

the category, which this neuron represents. The second layer of the 

Hamming network is composed of Maxnet (used as a subnet) or a Winner-

take-all network which is a recurrent network The Maxnet is found to 

suppress the values at Maxnet output nodes except the initially maximum 

output node of the first layer. 

 

Figure 2d.4 Structure of Hamming Network 



   

 
118 

Soft Computing Techniques 2d.3.2 Testing Algorithm of Hamming Network: 

The given bipolar input vector is x and for a given set of "m" bipolar 

exemplar vectors say e(l),. 

e(j), ... , e(m), the Hamming network is used to determine the exemplar 

vector that is closest m the input 

vector x. The net input entering unit Yj gives the measure of the similarity 

between the input vector and 

exemplar vector. The parameters used here are the following: 

n = number of input units (number of components of input-output vector) 

m= number of output units (number of components of exemplar vector) 

e(j)= jth exemplar vector, i.e., 

e(j) = [e1 (j), ... , ej(j), ... , en(j)] 

The testing algorithm for the Hamming Net is as follows: 

 

Step 0: Initialize the weights. For 𝑖 = 1 ro 𝑛 and 𝑗 = 1 ro 𝑚, 

𝑤𝑖𝑗 =
𝑒𝑖(𝑗)

2
 

Initialize the bias for storing the  ′𝑚𝑛 exemplar vectors. For 𝑗 = 1 to 𝑚, 

𝑏𝑗 =
𝑛

2
 

Step 1: Perform Steps 2-4 for each inpuc vector 𝑥.  

Step 2: Calculate the net input to each unit Y𝑗, i.e., 

𝑦𝑖𝑛𝑗 = 𝑏𝑗 + ∑  

𝜔

𝑖=1

𝑥𝑖𝑤𝑖𝑗 ,  𝑗 = 1 to 𝑚 

Step 3: Initialize the activations for Maxnet, i.e., 

𝑦𝑗(0) = 𝑦𝑖𝑛𝑗 ,  𝑗 = 1 to 𝑚 

Step 4: Maxnet is found to iterate for finding the exemplar that best 

matches the inpur patterns. 

2D.4 REVIEW QUESTIONS: 

1. Explain the concept of Unsupervised Learning. 

2. Write a short note on Fixed Weight Competitive Nets 



 

 
119 

 

Unsupervised  

Learning Networks 

3. Explain Algorithm of Mexican Hat Net 

4. What is mean by Hamming Network 

5. Explain the Architecture of Hamming Network 

6. Write a short note on Kohonen Self-Organizing Feature Maps 

7. Write a short note on Learning Vector Quantization (LVQ) 

8. Explain Counter propagation Networks 

9. What is mean by Adaptive Resonance Theory Network 

2D.5 REFERENCE  

1.  “Principles of Soft Computing”, by S.N. Sivanandam and S.N. Deepa, 

 2019, Wiley Publication, Chapter 2 and 3 

2.  http://www.sci.brooklyn.cuny.edu/ (Artificial Neural Networks, 

Stephen Lucci PhD) 

3.  Related documents, diagrams from blogs, e-resources from RC 

Chakraborty lecture notes and tutorialspoint.com 

 





   

 
120 

Soft Computing Techniques MODULE II: Unit III 

3a 

INTRODUCTION TO FUZZY LOGIC  

AND FUZZY  

Unit Structure 

3a.0 Objectives 

3a.1 Introduction to Fuzzy Logic 

3a.2 Classical Sets 

3a.3 Fuzzy Sets 

3a.4 Classical Sets v/s Fuzzy Sets 

 3a.4.1 Operations 

 3a.4.2 Properties 

3a.5 More Operations on Fuzzy Sets 

3a.6 Functional Mapping of Classical Sets 

3a.7  Summary 

3a.8  Review Questions 

3a.9  Bibliography, References and Further Reading 

3A.0 OBJECTIVES 

We begin this chapter with introducing fuzzy logic, classical sets and fuzzy 

sets followed by the comparison of classical sets and fuzzy sets. 

3A.1 INTRODUCTION TO FUZZY LOGIC 

Fuzzy logic is a form of multi-valued logic to deal with reasoning that is 

approximate rather than precise. Fuzzy logic variables may have a truth 

value that ranges between 0 and 1 and is not constrained to the two truth 

values of classical propositional logic. 

“As the complexity of a system increases, it becomes more difficult and 

eventually impossible to make a precise statement about its behavior, 

eventually arriving at a point of complexity where the fuzzy logic method 

born in humans is the only way to get at the problem” – Originally identified 

& set forth by Lotfi A. Zadeh, Ph.D., University of California, Berkeley. 
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Fuzzy logic offers soft computing: 

 provides a technique to deal with imprecision & information 

granularity. 

 provides a mechanism for representing linguistics construct. 

 

Figure 3a.1: A fuzzy logic system accepting imprecise data and  

providing a decision 

The theory of fuzzy logic is based upon the notion of relative graded 

membership and so are the functions of cognitive processes. It models 

uncertain or ambiguous data & provides suitable decision. Fuzzy sets that 

represents fuzzy logic provides means to model the uncertainty associated 

with vagueness, imprecision & lack of information regarding a problem or 

a plant or system. 

Fuzzy logic operates on the concept of membership. The basis of the theory 

lies in making the membership function lie over a range of real numbers 

from 0.0 to 1.0. The fuzzy set is characterized by (0.0,0,1.0). The 

membership value is “1” if it belongs to the set & “0” if it not member of 

the set. The membership in the set is found to be binary, that is, either the 

element is a member of a set or not. It is indicated as  

𝜒A(𝑥) = {
1  𝑥 ∈ 𝐴

0,   𝑥 ∉ 𝐴
 

E.g. The statement “Elizabeth is Old” can be translated as Elizabeth is a 

member of the set of old people and can be written symbolically as  

𝜇(𝑂𝐿𝐷)  where 𝜇 is the membership function that can return a 

value between 0.0 to 0.1 depending upon the degree of the membership. 

 

Figure 3a.2: Graph showing membership functions  

for fuzzy set “tall”. 
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Figure 3a.3: Graph showing membership functions for fuzzy set  

“short”, “medium” and “tall”. 

The membership was extended to possess various “degree of membership” on the 

real continuous interval [0,1]. Zadeh generalized the idea of a crisp set by 

extending a valuation set {0,1} (definitely in, definitely out) to the interval of real 

values (degree of membership) between 1 & 0, denoted by [0,1]. The degree of the 

membership of any element of fuzzy set expresses the degree of computability of 

the element with a concept represented by fuzzy set. 

Membership Function: A fuzzy set A contains an object x to degree a(x), that is, 

a(x) = Degree (𝑥 ∈ 𝐴) and the map 𝑎: 𝑋 → {𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝐷𝑒𝑔𝑟𝑒𝑒𝑠} 

Possibility Distribution: The fuzzy set A can be expressed as  

𝐴

= {(𝑥, 𝑎(𝑥))},  𝑥 ∈ 𝑋;  it imposes an elastic constrain of the possible values  

of elements 𝑥 ∈ 𝑋 

Fuzzy sets tend to capture vagueness exclusively via membership functions that 

are mappings from a given universe of discourse X to a unit internal containing 

membership value. The membership function for a set maps each element of the 

set to membership value between 0 & 1 and uniquely describes that set. The values 

0 and 1 describes “not belonging to” & “belonging to” a conventional set, 

respectively; values in between represent “fuzziness”. Determining the 

membership function is subjective to varying degree depending on the situation. It 

depends on an individual’s perception of the data in question and does not depend 

on randomness. 

 

Figure 3a.4: Boundary region of a Fuzzy Set 
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Figure 3a.5: Configuration of a pure fuzzy system 

Fuzzy logic also consists of fuzzy inference engine or fuzzy rule base to perform 

approximate reasoning somewhat similar to human brain. The fuzzy approach uses 

a premise that human don’t represent classes of objects as fully disjoint sets but 

rather as sets in which there may be graded of membership intermediate between 

full membership and non-membership. A fuzzy set works as a concept that makes 

it possible to treat fuzziness in a quantitative manner. Fuzzy sets form the building 

blocks for fuzzy IF-THEN rules which have general form “IF X is A THEN Y is 

B” where A and B are fuzzy sets. 

The term “fuzzy systems” refers mostly to systems that are governed by fuzzy IF-

THEN rules. The IF part of an implication is called antecedent whereas the THEN 

part is called consequent. The fuzzy system is a set of fuzzy rules that converts 

inputs to outputs. 

The fuzzy inference engine (algorithm) combines fuzzy IF-THEN rules into a 

mapping from fuzzy sets in the input space X to the fuzzy sets in the output space 

Y based fuzzy logic principles. From a knowledge representation viewpoint, a 

fuzzy IF-THEN rule is a scheme for capturing knowledge that involves 

imprecision. The main features of the reasoning using these rules is its partial 

matching capability, which enables an inference to be made from a fuzzy rule even 

when the rule’s condition is partially satisfied. Fuzzy systems, on one hand is rule 

based system that are constructed from a collection of linguistic rules, on other 

hand, fuzzy systems are non-linear mappings of inputs to the outputs. The inputs 

and the outputs can be numbers or vectors of numbers. These rule-based systems 

can in theory model any system with arbitrary accuracy, i.e. they work as universal 

approximation. 

The Achilles’ heel of a fuzzy system is it rules; smart rules gives smart systems 

and other rules give less smart or dumb systems. The number of rules increases 

exponentially with the dimension of the input space. This rule explosion is called 

the curse of dimensionality & is general problem for mathematical models. 

3A.2 CLASSICAL SETS (CRISP SETS) 

Collection of objects with certain characteristics is called set. A classical 

set/ crisp set is defined as the collection of distinct objects. An individual 

entity of the set is called as element/ member of the set. The classical set is 

defined in such a way that the universe of discourse is splitted into two 

groups: members and non-members. Partial membership does not exist in 

the case of crisp set. 
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Cardinal number: Number of the elements in the set. 

Set: The collections of elements within the universe 

Subset: The collections of elements within the set. 

3A.3 FUZZY SETS 

A fuzzy set is a set having degree of membership between 0 & 1. A member of 

one fuzzy set can also be the member of other fuzzy set in same universe. A fuzzy 

set 𝐴 in the universe of disclosure U can be defined as a set of ordered pairs and it 

is given by  

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑈} 

where 

𝜇𝐴(𝑥)is the degree of membership of x in A and it indicates the degree that  

x belongs to A. The membership is set to unit interval [0,1] or 𝜇𝐴(𝑥) ∈

[0,1]. When the universe of disclosure is discrete & finite, fuzzy set A is 

given as 

 

When the universe of disclosure is continuous & infinite, fuzzy set A is given as 

 

Universal Fuzzy Set/ Whole Fuzzy Set: If and only if the value of the 

membership function is 1 for all the members under consideration. Any fuzzy set 

A is defined on universe U is the subset of that universe. 

Empty Fuzzy Set: If and only if the value of the membership function is 0 for all 

the members under consideration. 

Equal Fuzzy Set: two fuzzy set A & B are said to be equal fuzzy sets if 

 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) for all 𝑥 ∈ 𝑈 

Fuzzy Power set P(U): The collection of all fuzzy sets and fuzzy subsets on 

universe U. 
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3A.4 CLASSICAL SETS V/S FUZZY SETS 

3a.4.1 Operations 

 Classical Sets Fuzzy Sets 

Definition The classical set is defined in 

such a way in that the universe 

of the discourse is divided into 

two groups: members and 

nonmembers. Consider Set A 

in Universe U: 

An object x is a member of a 

given set 𝑎(𝑥 ∈ 𝐴) i.e. x 

belongs to A. 

An object x is a member of a 

given set 𝑎(𝑥 ∉ 𝐴) i.e. x does 

not belong to A. 

A fuzzy set is a set having 

degree of membership 

between 0 & 1. 

A fuzzy set 𝐴 in the universe 

of disclosure U can be defined 

as a set of ordered pairs and it 

is given by: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑈} 

 

Union The union between two sets 

gives all those elements in the 

universe that belong to either 

set A or set B or both the sets. 

The union is termed as logical 

OR operation. 

𝐴 ∪ 𝐵

= { 𝑥| 𝑥 ∈ 𝐴 𝑜𝑟  𝑥 ∈ 𝐵} 

The union of fuzzy sets A & B 

is defined as: 

𝜇𝐴 ∪ 𝐵 (x) = 𝜇𝐴(x) ∨ 𝜇𝐁(x)

= max{𝜇𝐴(x), 𝜇𝐁(x)}  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥
∈ 𝑈 

V indicates max operation

 

Intersectio

n 

The intersection between two 

sets gives all those elements in 

the universe that belong to 

both set A and set B. The 

union is termed as logical 

AND operation. 

𝐴 ∩ 𝐵

= { 𝑥| 𝑥 ∈ 𝐴 𝑎𝑛𝑑  𝑥 ∈ 𝐵} 

The intersection of fuzzy sets 

A & B is defined as: 

𝜇𝐴 ∩ 𝐵 (x) = 𝜇𝐴(x) ∧ 𝜇𝐁(x)

= min{𝜇𝐴(x), 𝜇𝐁(x)}   

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈 

∧ indicates min operation 

Compleme

nt 

The complement of set A is 

defined as the collection of all 

elements in the universe X that 

do not belong to set A. 

Ā = { 𝑥| 𝑥 ∉ 𝐴,   𝑥 ∈ 𝑋} 

The union of fuzzy sets A & B 

is defined as: 

𝜇Ā (x) = 1 −

𝜇𝐴 (X)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈  

 

Difference The difference of set A with 

respect to set B is the 

collection of all the elements 

in the universe that belong to 

A but does not belong to B. It 

is denoted by A|B or A-B 

𝐴|𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵} 

𝐴 − (𝐴 ∩ 𝐵) 
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 Classical Sets Fuzzy Sets 

Commutativi

ty 
𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

Associativity 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵)
∪ 𝐶 

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵)
∩ 𝐶 

𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵)
∪ 𝐶 

𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵)

∩ 𝐶 

Distributivity 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵)
∩ (𝐴 ∪ 𝐶) 

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵)
∪ (𝐴 ∩ 𝐶) 

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵)
∩ (𝐴 ∪ 𝐶) 

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵)
∪ (𝐴 ∩ 𝐶) 

Idempotency 𝐴 ∪   𝐴 = 𝐴 

𝐴 ∩ 𝐴 = 𝐴 

𝐴 ∪   𝐴 = 𝐴 

𝐴 ∩ 𝐴 = 𝐴 

Transitivity 𝑖𝑓 𝐴 ⊆ 𝐵 ⊆ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶 𝑖𝑓 𝐴 ⊆ 𝐵 ⊆ 𝐶 𝑡ℎ𝑒𝑛 𝐴 ⊆ 𝐶 

Identity 𝐴 ∪  ɸ = 𝐴;  𝐴 ∩  ɸ = 𝐴 

𝐴 ∪ 𝑋 = 𝑋;  𝐴 ∩ 𝑋 = 𝐴 

𝐴 ∪  ɸ = 𝐴;   𝐴 ∩  ɸ = 𝐴 

𝐴 ∪ 𝑋 = 𝑋;   𝐴 ∩ 𝑋 = 𝐴 

Involution 

(double 

negation) 

Ā = 𝐴 Ā = 𝐴 

DeMorgan’s 

Law 
|𝐴 ∪ 𝐵| = 𝐴 ∪ 𝐵 

|𝐴 ∩ 𝐵| = 𝐴 ∩ 𝐵 

|𝐴 ∪ 𝐵| = 𝐴 ∪ 𝐵 

|𝐴 ∩ 𝐵| = 𝐴 ∩ 𝐵 

Law of 

Contradiction 
𝐴 ∩ Ā = ɸ Not Followed 

Law of 

Excluded 

Middle 

𝐴 ∪ Ā = 𝑋 Not Followed 
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3A.5 MORE OPERATIONS ON FUZZY SETS 

Algebraic Sum: The algebraic sum (A+B) of two fuzzy sets A & B is defined as 

𝜇𝐴 + 𝐵 (x) = 𝜇𝐴(x) +  𝜇𝐁(x) − 𝜇𝐴(x). 𝜇𝐁(x) 

Algebraic Product: The algebraic product (A.B) of two fuzzy sets A & B is 

defined as  

𝜇𝐴. 𝐵 (x) = 𝜇𝐴(x). 𝜇𝐁(x) 

Bounded Sum: The bounded sum (𝐴 ⊕ 𝐵) of two fuzzy sets A & B is defined 

as  

𝜇𝐴 ⊕ 𝐵 (x) = min {1,  𝜇𝐴(x) +  𝜇𝐁(x)} 

Bounded Difference: The bounded difference (𝐴 ⊕ 𝐵) of two fuzzy sets A & B 

is defined as 

𝜇𝐴 ⊙ 𝐵 (x) = m𝑎𝑥{0,  𝜇𝐴(x) −  𝜇𝐁(x)} 

3A.6 FUNCTIONAL MAPPING OF CLASSICAL SETS 

Mapping is a rule of correspondence between set-theoretic forms and 

function theoretic forms. 

X and Y are two different universe of disclosure. If an element x contained 

in X corresponds to an element y contained Y, it is called as mapping from 

X to Y; i.e. 𝑓 : 𝑋 → 𝑌 

Let A & B be two sets on universe. The function theoretic forms of operation 

performed between these two sets are given as follows: 

Union: 𝜒𝐴 ∪ 𝐵 (x) =  𝜒𝐴 (X) ∨ 𝜒𝐁 (X) = max {𝜒𝐴 (X), 𝜒𝐁 (X)}  Here ∨ 

is maximum operator. 

Intersection: 𝜒𝐴 ∩ 𝐵 (x) =  𝜒𝐴 (X) ∧ 𝜒𝐁 (X) =

min {𝜒𝐴 (X), 𝜒𝐁 (X)}  Here ∧ is minimum operator. 

Complement: 𝜒Ā (x) = 1 −  𝜒𝐴 (X) 

Containment:  if A ⊆ 𝐵,  𝑡ℎ𝑒𝑛 𝜒𝐴 (X) ≤  𝜒𝐁 (X) 

3A.7 SUMMARY 

In this chapter, we have discussed the basic definitions, properties and 

operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert 

the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial 

membership, they provide computer with such algorithms that extend 

binary logic and enable it to take human-like decisions. In other words, 
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is transferred to a computer. One difference between fuzzy sets and classical 

sets is that the former does not follow the law of excluded middle and law 

of contradiction. 

The relation concept is used for nonlinear simulation, classification, and 

control. The description on composition of relations gives a view of 

extending fuzziness into functions. Tolerance and equivalence relations are 

helpful for solving similar classification problems. The noninteractivity 

between fuzzy sets is analogous to the assumption of independence in 

probability modelling. 

3A.8 REVIEW QUESTIONS 

1. Explain fuzzy logic in detail. 

2. Compare Classical set and fuzzy set. 

3. Enlist and explain any three classicals set operations. 

4. Enlist and explain any three fuzzy sets operations. 

5. Enlist and explain any three classical set properties. 

6. Enlist and explain any three fuzzy sets properties. 

7. Write a short note on fuzzy relation. 

3A.9 BIBLIOGRAPHY, REFERENCES AND FURTHER 

READING 

 Artificial Intelligence and Soft Computing, by Anandita Das 

Battacharya, SPD 3rd, 2018 

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley, 

3rd , 2019 

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and 

E.Mizutani, Prentice Hall of India, 2004   
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CLASSICAL RELATIONS AND  

FUZZY RELATIONS 

Unit Structure 

3b.0 Objectives 

3b.1 Introduction to Classical Relations & Fuzzy Relations 

3b.2 Cartesian product of the Relation 

3b.3 Classical Relation v/s Fuzzy Relations 

3b.3.1 Cardinality 

3b.3.2 Operations 

3b.3.3 Properties 

3b.4 Classical Composition and Fuzzy Composition 

3b.4.1 Properties 

3b.4.2 Equivalence 

3b.4.3 Tolerance 

3b.5 Non-Interactive Fuzzy Set  

3b.6  Summary 

3b.7  Review Questions 

3b.8  Bibliography, References and Further Reading 

3B.0 OBJECTIVES 

We begin this chapter with introducing Classical Relations & Fuzzy 

Relations. 

3B.1 INTRODUCTION TO CLASSICAL RELATIONS & 

FUZZY RELATIONS 

Relationship between the object are the basic concepts involved in decision 

making & other dynamic system application. Relations represent mapping 

between sets & connective logic. A classical binary relation represents the 

presence or absences of connection or interaction or association between 

the elements of two sets. Fuzzy binary relations impart degrees of strength 

to connections or association. In fuzzy binary relation, the degree of 

association is represented by membership grades in the same way as the 

degree of set membership is represented in fuzzy set. 
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relation is called a binary relation from A1 to A2. X & Y are two universe; 

their Cartesian product X* Y is given by 𝑋 ∗ 𝑌 = {(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} 

Every element in X is completely related to every element in Y. The 

characteristic function, denoted by χ, gives the strength of the relationship 

between ordered pair of elements in each universe. The characteristic 

function, denoted by χ, gives the strength of the relationship between 

ordered pair of elements in each universe. 

𝜒𝛸 ∗ 𝑌 (𝑥, 𝑦) = {
1,   (𝑥, 𝑦) ∈ 𝛸 ∗ 𝑌

0,   (𝑥, 𝑦) ∉ 𝛸 ∗ 𝑌
 

A binary relation in which each element from the first set X is not mapped 

to more than one element in second set Y is called a function and is 

expressed  

as 𝑅:  𝛸 → 𝑌 

A fuzzy relation is a fuzzy set defined on the Cartesian product of classical 

set {X
1
,X

2
,X

3
,…X

n
} where tuples (x

1
,x

2
,…,x

n
) may have varying degree of 

membership 𝜇𝑅(𝑥1, 𝑥2, … , 𝑥𝑛) within the relation 

𝑅(𝑋1, 𝑋2, … . , 𝑋𝑛) = ∫ 𝜇𝑅(𝑥1, 𝑥2, … , 𝑥𝑛)|
𝑋

1
∗𝑋

2
∗…𝑋𝑁

 (𝑥1, 𝑥2, … , 𝑥𝑛), xi ∈

𝑋𝑖
  

A fuzzy relation between two sets X & Y is called binary fuzzy relation & 

is denoted by R(X,Y). A binary relation R(X,Y) is referred to as bipartite 

graph when X≠Y.A binary relation on a single set X is called digraph or 

directed graph.This relation occur when X=Y and is denoted as R(X,X)or 

R(X2).The matrix representing a fuzzy relation is called fuzzy matrix.A 

fuzzy relation R is a mapping from Cartesian product space X *Y to interval 

[0,1]where the mapping strength is expressed by the membership function 

of the relation for ordered pairs from the two universe [μR(x,y)]  
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A fuzzy graph is a graphical representation of a binary fuzzy relation. Each 

element in X & Y corresponds to a node in the fuzzy graph. The connection 

links are established between the nodes by the elements of X*Y with 

nonzero membership grades in R(X,Y). The links may also be present in the 

forms of arcs. This links are labelled with membership value as 

[𝜇𝑅(𝑥, 𝑦)]. When 𝑋 ≠
𝑌 , the link connecting the two nodes is an undirected binary graph  

called as 𝐛𝐢𝐩𝐚𝐫𝐭𝐢𝐭𝐞 𝐠𝐫𝐚𝐩𝐡. Here, each of the sets X & Y can be  
represented by a set of nodes such that the nodes corresponding to 
 one set are clearly differentiated from the nodes representing the  

other set. When 𝑋 = 𝑌, a node is connected to itself and directed links are 

used; in such case, the fuzzy graph is called directed graph. Here, only one 

set off nodes corresponding to set X is used. 

The domain of binary fuzzy relation R(X,Y) is the fuzzy set, dom R(X,Y) 

having the membership function as: 

 

The range of binary fuzzy relation R(X,Y) is the fuzzy set, ran R(X,Y) 

having the membership function as:  

 

3B.2 CARTESIAN PRODUCT OF THE RELATION 

An ordered r-tuple is and ordered sequence of r-elements expressed in the 

form (a1, a2, a3 … ar). 

An unordered r-tuple is a collection of r-elements without any restriction 

in order. 

For r = 2, the r-tuple is called an ordered pair. 

For crisp sets A
1
,A

2
,A

3
, ….A

r
 , the set of all r-tuples (a

1
,a

2
,a

3
,…a

r
) where 

a
1
∈ A1, a2 ∈ A2, … . , ar ∈A

r
 is called Cartesian product of A

1
,A

2
,A

3
, 

….A
r
 and is denoted by A

1
*A

2
*A

3
*….*A

r
. 

If all the a
r
’s are identical and equal to A, then the Cartesian product 

A
1
*A

2
*A

3
*….*A

r
 is denoted as A

r 
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3b.3.1 Cardinality 

Classical Relations Fuzzy Relations 

Cardinality: 

Consider n elements of universe X 

being related to the m elements of 

universe Y. 

When the cardinality of X= 
n

X & 

the cardinality of Y = 
n

Y, then the 

cardinality of relation R between 

the two universe is 

𝑛𝑋 ∗ 𝑌 = 𝑛𝑋 ∗ 𝑛𝑌 

The cardinality of the power set 

P(X *Y) describing the relation is 

given by  

𝑛𝑃(𝑋 ∗ 𝑌) = 2 (
𝑛𝑋𝑛𝑌)

 

The cardinality of fuzzy sets on any 

universe is infinity; hence the 

cardinality of a fuzzy relation 

between two or more universe is 

also infinity. 

 

 

3b.3.2 Operations 

Let R & S be two separate relations on the Cartesian universe X * Y. The 

null relation and the complete relation are defined by the relation matrices 

𝜙𝑅 𝑎𝑛𝑑 𝛦𝑅. 

 

Operations Classical Relations Fuzzy Relations 

Union 𝑅 ∪ 𝑆 → 𝜒𝑅 ∪ 𝑆(𝑥, 𝑦)
= max [𝜒𝑅(𝑥, 𝑦), 𝜒𝑆(𝑥, 𝑦)] 

𝜇𝑅 ∪ 𝑆(𝑥, 𝑦) 

= max [𝜇𝑅(𝑥, 𝑦), 𝜇𝑆(𝑥, 𝑦)] 

Intersection 𝑅 ∩ 𝑆 → 𝜒𝑅 ∩ 𝑆(𝑥, 𝑦) =
m𝑖𝑛[𝜒𝑅(𝑥, 𝑦), 𝜒𝑆(𝑥, 𝑦)]  

𝜇𝑅 ∩ 𝑆(𝑥, 𝑦) 

= m𝑖𝑛 [𝜇𝑅(𝑥, 𝑦), 𝜇𝑆(𝑥, 𝑦)] 

Complemen

t 
𝑅 → 𝜒𝑅(𝑥, 𝑦):  𝜒R(𝑥, 𝑦)

= 1 − 𝜒R(𝑥, 𝑦) 

𝜇𝑅(𝑥, 𝑦) = 1 −  𝜇𝑅(𝑥, 𝑦) 
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Containmen

t 
𝑅 ⊂ 𝑆
→ 𝜒𝑅(𝑥, 𝑦): 𝜒𝑅(𝑥, 𝑦)
≤ 𝜒𝑆(𝑥, 𝑦) 

𝑅 ⊂ 𝑆 ⟹ 𝜇𝑅(𝑥, 𝑦)
≤ 𝜇𝑆(𝑥, 𝑦) 

Identity 𝜙 → 𝜙𝑅     &    𝑋 →  𝛦𝑅  

Inverse  The inverse of fuzzy 

relation R on X*Y is 

denoted by R
-1

. 

It is relation on Y*X 

defined by 

R
-1

(y,x)= R(x,y) for all 

pairs (𝑦, 𝑥) ∈ 𝑌 ∗ 𝑋 

Projection  For fuzzy relation R(X,Y), 

let [𝑅 ↓ 𝑌] denote the 

projection of R onto Y. 

𝜇[𝑅↓𝑌](𝑥, 𝑦)

= 𝑚𝑎𝑥
𝑥

 𝜇𝑅(𝑥, 𝑦) 

 

3b.3.3 Properties 

Classical Relations Fuzzy Relations 

Properties 

 Commutativity 

 Associativity 

 Distributivity 

 Involution 

 Idempotency 

 DeMorgan’s Law 

 Excluded middle law 

 Commutativity 

 Associativity 

 Distributivity 

 Involution 

 Idempotency 

 DeMorgan’s Law 

 

3B.4 CLASSICAL COMPOSITION AND FUZZY 

COMPOSITION 

The operation executed on two binary relations to get a single binary 

relation is called composition. 

Let R be a relation that maps elements from universe X to universe Y and S 

be a relation that maps elements from universe Y to universe Z. The two 
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composition between the two relations is denoted by R∘S. 

Consider the universal sets given by: 

 𝑋 = {𝑎1, 𝑎2, 𝑎3}; 𝑌 = {𝑏1, 𝑏2, 𝑏3};  𝑍 = {c1, c2, c3} 

Let the relation R & S be formed as: 

𝑅 = 𝑋 ∗ 𝑌 = {(𝑎1, 𝑏1), (𝑎1, 𝑏2), (𝑎2, 𝑏2), (𝑎3, 𝑏3)} 

𝑆 = 𝑌 ∗ 𝑍 =  {(𝑏1, 𝑐1), (𝑏2, 𝑐3),  (𝑏3, 𝑐2)} 

It can be inferred that: 

𝑇 = 𝑅 ∘ 𝑆 = {(𝑎1, 𝑐1), (𝑎2, 𝑐3), (𝑎3, 𝑐2), (𝑎1, 𝑐3)} 

The composition operations are of two types 

1. Max-Min Composition:  

𝑇 = 𝑅 ∘ 𝑆
𝜒𝑇(𝑥, 𝑧) =∨𝑦∈𝑌 [𝜒𝑅(𝑥, 𝑦) ∧ 𝜒𝑆(𝑦, 𝑧)] 

 

2.  Max-product Composition:  

𝑇  = 𝑅 ∘ 𝑆
𝜒𝑇(𝑥, 𝑧)  = ∨

𝑦∈𝑌
[𝜒𝑅(𝑥, 𝑦) ⋅ 𝜒𝑠(𝑦, 𝑧)] 

Let A be fuzzy set on universe X & B be fuzzy set on universe Y. The 

Cartesian product over A and B results in fuzzy relation B and is contained 

within the entire (complete) Cartesian space 𝐴 ∗ 𝐵 = 𝑅 𝑤ℎ𝑒𝑟𝑒 𝑅 ⊂ 𝑋 ∗ 𝑌 

The membership function of fuzzy relation is given by 𝜇𝑅(𝑥, 𝑦) = 𝜇𝐴 ∗
𝐵(𝑥, 𝑦) = min [𝜇𝐴(𝑥),  𝜇𝐵(𝑦)] 

For e.g., for a fuzzy set A that has three elements and a fuzzy set B has four 

elements, the resulting fuzzy relation R will be represented by a matrix size 

3 * 4 

There are two types of fuzzy composition techniques: 

1. Fuzzy Max-min composition 

2. Fuzzy Max-product composition 

Let R be fuzzy relation on Cartesian space X*Y and S be fuzzy relation on 

Cartesian Space Y*Z. 

Fuzzy Max-min composition: 

The max-min composition of R(X,Y) and S(Y,Z) is denoted by 

𝑅(𝑋, 𝑌)°𝑆(𝑌, 𝑍) is defined by T(X,Z) as  
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Fuzzy Max-product composition: 

 

3b.4.1 Properties 

 Classical Composition Fuzzy Composition 

Associative (𝑅°𝑆)°𝑀 = 𝑅°(𝑆°𝑀) (𝑅°𝑆)°𝑀 = 𝑅°(𝑆°𝑀) 

Commutative 𝑅°𝑆 ≠ 𝑆°𝑅 𝑅°𝑆 ≠ 𝑆°𝑅 

Inverse 
(𝑅°𝑆)

− 1 = 𝑆
− 1°𝑅

− 1 
(𝑅°𝑆)

− 1 = 𝑆
− 1 °𝑅− 1 

3b.4.2 Equivalence 

 Classical Composition Fuzzy Composition 

Reflexivity 
𝜒𝑅(𝑥𝑖, 𝑥𝑖) = 1 𝑜𝑟 (𝑥𝑖, 𝑥𝑖)

∈ 𝑅 

𝜇𝑅(𝑥𝑖, 𝑥𝑖) = 1 ∀𝑥 ∈ 𝑋 

Symmetry 

𝜒𝑅(𝑥𝑖, 𝑥𝑗)
= 𝜒𝑅(𝑥𝑗, 𝑥𝑖)(𝑥𝑖, 𝑥𝑗) ∈ 𝑅
⟹ (𝑥𝑗, 𝑥𝑖) ∈ 𝑅 

𝜇𝑅(𝑥𝑖, 𝑥𝑗)

= 𝜇𝑅(𝑥𝑗, 𝑥𝑖) ∀𝑥𝑖, 𝑥𝑗
∈ 𝑋 

Transitivity 

𝜒𝑅(𝑥𝑖, 𝑥𝑗) 𝑎𝑛𝑑 𝜒𝑅(𝑥𝑗, 𝑥𝑘)

= 1,  𝑠𝑜 𝜒𝑅(𝑥𝑖, 𝑥𝑘)
= 1(𝑥𝑖, 𝑥𝑗) ∈ 𝑅(𝑥𝑗, 𝑥𝑘)

∈ 𝑅,  𝑠𝑜 (𝑥𝑖, 𝑥𝑘) ∈ 𝑅 

𝜇𝑅(𝑥𝑖, 𝑥𝑗)

=⋋ 1 𝑎𝑛𝑑𝜇𝑅(𝑥𝑗, 𝑥𝑘)
=⋋ 2 

⟹ 𝜇𝑅(𝑥𝑖, 𝑥𝑘) =⋋
𝑤ℎ𝑒𝑟𝑒 

⋋= min (⋋ 1,⋋ 2) 

 

Fuzzy Max-product transitive can be defined. It is given by 
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Classical Composition Fuzzy Composition 

A tolerance relation R1 on universe X 

is one where the only the properties of 

reflexivity & symmetry are satisfied. 

 

A binary fuzzy relation that 

possesses the properties of 

reflexivity and symmetry is 

called fuzzy tolerance relation 

or resemblance relation.  

The tolerance relation can also be 

called proximity relation. 

The equivalence relations are a 

special case of the tolerance 

relation. 

An equivalence relation can be 

formed from tolerance relation R1 by 

(n-1) compositions with itself, where 

n is the cardinality of the set that 

defines R1, here it is X 

The fuzzy tolerance relation can 

be reformed into fuzzy 

equivalence relation in the same 

way as a crisp tolerance relation 

is reformed into crisp 

equivalence relation 

  

3b.5 Non-INTERACTIVE FUZZY SET 

The independent events in probability theory are analogous to 

noninteractive fuzzy sets in fuzzy theory. We are defining fuzzy set A on the 

Cartesian space X= X
1
 x X

2
. Set A is separable into two noninteractive fuzzy 

sets called orthogonal projections if and only if  

 

where 

 

The equations represent membership functions for the orthographic 

projections of A on universes X
1
 and X

2
. respectively. 
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3B.6 SUMMARY 

In this chapter, we have discussed the basic definitions, properties and 

operations on classical sets and fuzzy sets. Fuzzy sets are tools that convert 

the concept of fuzzy logic into algorithms. Since fuzzy sets allow partial 

membership, they provide computer with such algorithms that extend 

binary logic and enable it to take human-like decisions. In other words, 

fuzzy sets can be thought of as a media through which the human thinking 

is transferred to a computer. One difference between fuzzy sets and classical 

sets is that the former does not follow the law of excluded middle and law 

of contradiction. 

The relation concept is used for nonlinear simulation, classification, and 

control. The description on composition of relations gives a view of 

extending fuzziness into functions. Tolerance and equivalence relations are 

helpful for solving similar classification problems. The noninteractivity 

between fuzzy sets is analogous to the assumption of independence in 

probability modelling. 

3B.7 REVIEW QUESTIONS 

1. Write a short note on fuzzy relation. 

2. Compare classical relations and fuzzy relations. 

3. Write a short note classical composition and fuzzy composition. 

3B.8 BIBLIOGRAPHY, REFERENCES AND FURTHER 

READING 

 Artificial Intelligence and Soft Computing, by Anandita Das 

Battacharya, SPD 3rd, 2018 

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley, 

3rd , 2019 

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and 

E.Mizutani, Prentice Hall of India, 2004   

 


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3c 

MEMBERSHIP FUNCTIONS  

Unit Structure 

3c.0 Objectives 

3c.1 Introduction to Membership Function 

3c.2 Features of the Membership Function 

3c.3 Overview of Fuzzification 

3c.4 Methods of Membership Value Assignment 

3c.4.1 Intuition 

3c.4.2 Inference & Rank Ordering 

3c.4.3 Angular Fuzzy Sets 

3c.4.4 Neural Network 

3c.4.5 Genetic Algorithm 

3c.4.6 Inductive Reasoning 

3c.5 Summary 

3c.6 Review Questions 

3c.7 Bibliography, References and Further Reading 

3C.0 OBJECTIVES 

This chapter begins with explaining the membership function and later 
introduces the concept of fuzzification, defuzzification and fuzzy 
arithmetic. 

3C.1 INTRODUCTION TO MEMBERSHIP FUNCTION 

Membership function defines fuzziness in a fuzzy set irrespective of the 
elements in the discrete or continuous. The membership functions are 
generally represented in graphical form. There exist certain limitations for 
the shapes used in graphical form of membership function. The rules that 
describes fuzziness graphically are also fuzzy. Membership can be thought 
of as a technique to solve empirical problems on the basis of experience 
rather than knowledge. 

3C.2 FEATURES OF THE MEMBERSHIP FUNCTION 

The membership function defines all the information contained in a fuzzy 
set. A fuzzy set A in the universe of discourse X can be defined as a set of 
ordered pairs: A={(x,μA(x))│x∈X}  where μA(.) is called membership 
function of A. The membership function μA(.)  maps X to the membership 
space M,i.e.μA :X→M.   The membership value ranges in the interval [0,1]. 
Main features involved in characterizing membership function are: 
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Membership Functions  Core:  The core of a membership function for some fuzzy set A is 
defined as that region of universe that is characterized by complete 
membership in the set A. The core has elements x of the universe such 
that 𝜇𝐴(𝑥) = 1. The core of a fuzzy set may be an empty set.  

 Support: The support of a membership function for a fuzzy set A is 
defined as that region of universe that is characterized by a nonzero 
membership. The support comprises elements x of the universe such 
that 𝜇𝐴(𝑥) >
0. A fuzzy set whose support is a single element in X with 𝜇𝐴(𝑥) =
1 is referred to as a fuzzy singleton. 

 Boundary: The support of a membership function for a fuzzy set A is 
defined as that region of universe containing elements that have 
nonzero but not complete membership. The boundary comprises of 
those elements of x of the universe such that 0 < 𝜇𝐴(𝑥) < 1. The 
boundary elements are those which possess partial membership in 
fuzzy set A. 

 

Figure 3c.1: Properties of Membership Functions 

Other types of Fuzzy Sets 

 

Figure 3c.2: (A) Normal Fuzzy Set and (B) Subnormal Fuzzy Set 
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least one element x in the universe whose membership value is unity. 

o Prototypical element: The element for which the membership 

is equal to 1. 

 Subnormal fuzzy set: A fuzzy set wherein no membership function 

has it equal to 1. 

 Convex fuzzy set: A convex fuzzy set has membership function 

whose membership values are strictly monotonically increasing or 

strictly monotonically decreasing or strictly monotonically increasing 

than strictly monotonically decreasing with increasing values for the 

elements in the universe. 

 Nonconvex fuzzy set: the membership value of the membership 

function is not strictly monotonically increasing or decreasing or 

strictly monotonically increasing than decreasing. 

 

Figure 3c.3: (A) Convex Normal Fuzzy Set and (B) Nonconvex Normal 

Fuzzy Set 

The intersection of two convex fuzzy set is also a convex fuzzy set. The 

element in the universe for which a particular fuzzy set A has its value equal 

to 0.5 is called crossover point of membership function. There can be more 

than one crossover point in fuzzy set. The maximum value of the 

membership function of the fuzzy set A is called height of the fuzzy set. If 

the height of the fuzzy set is less than 1, then the fuzzy set is called 

subnormal fuzzy set. When the fuzzy set A is a convex single –point 

normal fuzzy set defined on the real time, then A is termed as a fuzzy 

number. 

 

Figure 3c.4: Crossover Point of a Fuzzy Set 
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Membership Functions 3C.3 OVERVIEW OF FUZZIFICATION 

Fuzzification is the process of transforming a crisp set to a fuzzy set or a 

fuzzy set into a fuzzier set. This operation translates accurate crisp input 

value into linguistic variables. Quantities that we consider to be accurate, 

crisp & deterministic, possess uncertainty within themselves. The 

uncertainty arises due to vagueness, imprecision or uncertainty. 

For a fuzzy set A={μi/xi|xi∈X},a common fuzzification algorithm is 

performed by keeping μi constant and xi being transformed to a fuzzy set 

Q(xi) depicting the expression about xi. The fuzzy set Q(xi) is referred to as 

the kernel of fuzzification. 

The fuzzified set A can be expressed as:  

 

where the symbol ~ means fuzzified. This process of fuzzification is called 

support fuzzification (s-fuzzification). 

Grade fuzzification (g-fuzzification) is another method where 

𝑥𝑖 is kept constant and 𝜇𝑖 is expressed as a fuzzy set. 

3C.4 METHODS OF MEMBERSHIP VALUE 

ASSIGNMENT 

Following are the methods for assigning membership value: 

 Intuition 

 Inference 

 Rank ordering 

 Angular fuzzy sets 

 Neural Network 

 Genetic Algorithm 

 Inductive Reasoning 

3c.4.1 Intuition 

Intuition method is the base upon the common intelligence of human. It is 

capacity of the human to develop membership functions on the basis of their 

own intelligence and understanding capability. There should be an in-depth 

knowledge of the application to which membership value assignment has to 

be made. 
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Figure 3c.5: Membership functions for the Fuzzy variable “weight” 

3c.4.2 Inference & Rank Ordering 

The inference method uses knowledge to perform deductive reasoning. 

Deduction achieves conclusion by means of forward inference. 

Rank ordering is carried on the basis of the preferences. Pairwise 

comparisons enable us to determine preferences & resulting in determining 

the order of membership. 

3c.4.3 Angular Fuzzy Sets 

Angular fuzzy set ‘s’ is defined on a universe of angles, thus repeating the 

shapes every 2𝜋 cycles. The truth value of the linguistic variable is 

represented by angular fuzzy sets. The logical proposition is equated to the 

membership value “1” is said to be “true” and that preposition with 

membership value 0 is said to be “false”. The intermediate values between 

0 & 1 correspond to proposition being partially true or partially false.  

 

Figure 3c.6: Model of Angular Fuzzy Set 
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Membership Functions The values of the linguistic variable vary with “θ” & their membership 

values are on the μ(θ)axis.The membership value corresponding to the 

linguistic term can be obtained from equation  μt(θ)=t.tan (θ) where t is the 

horizontal projection of radial vector 

3c.4.4 Neural Network 

 

Figure 3c.7: Fuzzy Membership function evaluated from Neural 

Networks 

3c.4.5 Genetic Algorithm 

Genetic algorithm is based on the Darwin’s theory of evolution, the basic 

rule is “survival of the fittest”. Genetic algorithms use the following steps 

to determine the fuzzy membership function: 

 For a particular functional mapping system, the same membership 

functions & shapes are assumed for various fuzzy variables to be 

defined.  

 These chosen membership functions are then coded into bit strings.  

 Then these bit strings are concatenated together  

 The fitness function to be used here is noted. In genetic algorithm, 

fitness function plays a major role similar to that played by activation 

function in neural network. 
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membership function. 

 These membership functions define the functional mapping of the 

system 

3c.4.6 Inductive Reasoning 

Induction is used to deduce causes by means of backward inference. The 

characteristics of inductive reasoning can be used to generate membership 

functions. Induction employs entropy minimization principles, which 

clusters the parameters corresponding to the output classes. To perform 

inductive reasoning method, a well-defined database for the input-output 

relationship exist. Induction reasoning can be applied for complex systems 

where database is abundant & static. 

Laws of Induction: 

 Given a set of irreducible outcomes of experiment, the induced 

probabilities are probability consistent with all the available 

information that maximize the entropy of the set. 

 The induced probability of a set of independent observation is 

proportional to the probability density of the induced probability of 

single observation. 

 The induced rule is that rule consistent with all available information 

of that minimizes the entropy 

The third law stated above is widely used for development of membership 

function. 

The membership functions using inductive reasoning are generated as 

follow: 

 A fuzzy threshold is to be established between classes of data. 

 Using entropy minimization screening method, first determine the 

threshold line 

 Then start the segmentation process 

 The segmentation process results into two classes. 

 Again, partitioning the first two classes one more time, we obtain 

three different classes. 

 The partitioning is repeated with threshold value calculation, which 

lead us to partition the data set into a number of classes and fuzzy set. 

 Then on the basis of shape, membership function is determined. 
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Membership Functions 3C.5 SUMMARY 

This chapter starts with the discussion about membership functions and 

their features. The formation of the membership function is the core for the 

entire fuzzy system operation. The capability of human reasoning is 

important for membership functions. The inference method is based on the 

geometrical shapes and geometry, whereas the angular fuzzy set is based on 

the angular features. Using neural networks and reasoning methods the 

memberships are tuned in a cyclic fashion and are based on rule structure. 

The improvements are carried out to achieve an optimum solution using 

generic algorithms. Thus, the membership function can be formed using any 

one of the methods. 

Later we have discussed the methods of converting fuzzy variables into 

crisp variables by a process called as defuzzification. Defuzzification 

process is essential because some engineering applications need exact 

values for performing the operation. Defuzzification is a natural and 

essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were 

discussed. Apart from the Lambda-cut method, seven defuzzification 

methods were presented. The method of defuzzification should be assessed 

on the basis of the output in the context of data available. 

Finally, we discussed fuzzy arithmetic, which is considered as an extension 

of interval arithmetic. One of the important tools of fuzzy set theory 

introduced by Zadeh is the extension principle, which allows any 

mathematical relationship between nonfuzzy elements to be extended to 

fuzzy entities. This principle can be applied to algebraic operations to define 

set-theoretic operations for higher order fuzzy sets. The belief and 

plausibility measures can be expressed by the basic probability assignment 

m, which assigns degree of evidence or belief indicating that a particular 

element of X belongs to set A and not to any subset of A. The main 

characteristic of probability measures is that each of them can be distinctly 

represented by a probability distribution function defined on the elements 

of a universal set apart from its subsets. Fuzzy integrals defined define by 

Sugeno (1977) are also discussed. Fuzzy integrals are used to perform 

integration of fuzzy functions. 

3C.6 REVIEW QUESTIONS 

1. What is membership function? Enlist and explain its features. 

2. Write a short note on fuzzification. 

3. Explain any three methods of membership value assignments in 

detail. 

4. Write a short note on defuzzification. 

5. What is Lambda-cuts for fuzzy set and Fuzzy relations? 

6. Explain any three methods of defuzzification in detail. 

7. Write a short note on fuzzy arithmetic. 

8. What are the mathematical operations on intervals of fuzzy. 
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Soft Computing Techniques 9. Write a short note on fuzzy number and fuzzy ordering. 

10. Write a short note on fuzzy vectors. 

11. Write a short note on belief and plausibility measures. 

12. Write a short note on possibility and necessity measures. 

3C.7 BIBLIOGRAPHY, REFERENCES AND FURTHER 

READING 

 Artificial Intelligence and Soft Computing, by Anandita Das 

Battacharya, SPD 3rd, 2018 

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley, 

3rd , 2019 

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and 

E.Mizutani, Prentice Hall of India, 2004 


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3d.0 Objectives 

3d.1 Overview of Defuzzification 

3d.2 Concept of Lamba-Cuts for Fuzzy Sets (Alpha-Cuts) 

3d.3 Concept of Lamba-Cuts for Fuzzy Relations 

3d.4 Methods of Defuzzification 

3d.4.1 Max-membership Principle 

3d.4.2 Centroid Method 

3d.4.3 Weighted Average Method 

3d.4.4 Mean-Max Membership 

3d.4.5 Centers of Sums 

3d.4.6 Centers of Largest Area 

3d.4.7 First of Maxima, Last of Maxima 

3d.5 Summary 

3d.6 Review Questions 

3d.7 Bibliography, References and Further Reading 

3D.0 OBJECTIVES 

This chapter begins with explaining the membership function and later 

introduces the concept of Defuzzification. 

3D.1 OVERVIEW OF DEFUZZIFICATION 

Defuzzification is mapping process from a space of fuzzy control actions 

defined over an output universe of discourse into space of crisp control 

action.  A defuzzification process produces a nonfuzzy control action that 

represents the possibility distribution of an inferred fuzzy control action. 

Defuzzification process has the capability to reduce a fuzzy set into a crisp 

single-valued quantity or into a crisp set; to convert a fuzzy matrix into a 

crisp matrix; or to convert a fuzzy number into a crisp number. 

Mathematically, the defuzzification process may also termed as “rounding 

off”. Fuzzy set with a collection of membership values or a vector of values 
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Soft Computing Techniques on the unit interval may be reduced to a single scalar quantity using 

defuzzification process. 

3D.2 CONCEPT OF LAMBA-CUTS FOR FUZZY SETS 

(ALPHA-CUTS) 

Consider a fuzzy set A. The set A
𝜆 

 (0 < 𝜆 < 1), called the lamba (𝜆) −
cut (or alpha [𝛼]-cut) set, is a crisp  

set of the fuzzy set & defined as: 

A𝜆 = {𝑥|𝜇𝐴(𝑥) ≥ 𝜆};  𝜆 ∈ [0,1] 

The set A
𝜆

 is called a weak lambda-cut set if it consists of all the elements 

of fuzzy set whose  

membership functions have values greater than or equal to specified value. 

The set A
𝜆

 is called a strong lambda-cut set if it consists of all the elements 

of fuzzy set whose  

membership functions have values strictly greater than specified value. 

A𝜆 = {𝑥|𝜇𝐴(𝑥) > 𝜆};  𝜆 ∈ [0,1] 

The properties of 𝜆-cut sets are as follows:  

1 (𝐴∼ ∪ 𝐵∼)𝜆 = 𝐴𝜆 ∪ 𝐵𝜆 

2  (𝐴∼ ∩ 𝐵∼)𝜆 = 𝐴𝜆 ∩ 𝐵𝜆 

3 (𝐴‾)𝜆 ≠ (𝐴‾𝜆) except when 𝜆 = 0.5 

4 For any 𝜆 ≤ 𝛽, where 0 ≤ 𝛽 ≤ 1, it is true that 𝐴𝛽 ⊆ 𝐴𝜆,  

where 𝐴0 = 𝑋.  

3D.3 CONCEPT OF LAMBA-CUTS FOR FUZZY 

RELATIONS 
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Defuzzification 3D.4 METHODS OF DEFUZZIFICATION 

Defuzzification is the process of conversion of a fuzzy quantity into a 

precise quantity. The output of a fuzzy process may be union of two or more 

fuzzy membership functions defined on the universe of discourse of the 

output variable. 

 

Figure 3d.1 (A): First part of fuzzy output, (B) second part of fuzzy 

output, (C) union of parts (A) and (B) 

Defuzzification Methods 

 Max-membership principle 

 Centroid method 

 Weighted average method 

 Mean-Max membership 

 Centers of Sums 

 Center of largest area 

 First of maxima, last of maxima 

3d.4.1 Max-membership Principle 

This method is also known as height method and is limited to peak output 

functions. This method is given by the algebraic expression: 
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Figure 3d.2: Max-membership Defuzzification Method 

3d.4.2 Centroid Method 

This method is also known as center of mass, center of area, center of 

gravity, 

𝑥∗ =
∫ 𝜇𝐶(𝑥) ⋅ 𝑥𝑑𝑥

∫ 𝜇𝐶(𝑥)𝑑𝑥
 

 

∫ is denotes an algebraic integration. 

 

Figure 3d.3: Centroid Defuzzification Method 

3d.4.3 Weighted Average Method 

This method is valid for symmetrical output membership functions only. 

Each membership function is weighted by its maximum membership 

value. 

 



 

 
151 

 

Defuzzification 
∑ denotes algebraic sum and xi is the maximum of the i

th 

membership 

function. 

 

Figure 3d.4: Weighted average defuzzification method  

(two symmetrical membership functions) 

3d.4.4 Mean-Max Membership 

This method is also known as the middle of maxima. The locations of the 

maxima membership can be nonunique. 

 

 

Figure 3d.5: Mean-max membership defuzzification method 

3d.4.5 Centers of Sums 

This method employs the algebraic sum of the individual fuzzy subsets. 

Advantage: Fast calculation. Drawback: intersecting areas are added twice. 

The defuzzified value x* is given by: 
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Figure 3d.6: (A) First and (B) Second Membership functions, (C) 

Defuzzification 

3d.4.6 Centers of Largest Area 

This method can be adopted when the output consists of at least two convex 

fuzzy subsets which are not overlapping. The output in this case is biased 

towards a side of one membership function. When output fuzzy set has at 

least two convex regions then the center-of-gravity of the convex fuzzy sub 

region having the largest area is used to obtain the defuzzified value x*. 

This value is given by: 

 

 

Figure 3d.7: Center of Largest Area Method 

3d.4.7 First of Maxima, Last of Maxima 

This method uses the overall output or union of all individual output fuzzy 

sets cj for determining the smallest value of the domain with the maximized 

membership in cj. 
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Defuzzification 

 

Figure 3d.8: First of maxima (last of maxima) method 

The steps used for obtaining x* are: 

 Initially, the maximum height in the union is found 

 

 where sup is supremum, i.e., the least upper bound 

 Then the first of maxima is found: 

 

 where inf is the infimum, i.e. the greatest lower bound. 

 After this the last of maxima is found: 

 

3D.5 SUMMARY 

This chapter starts with the discussion about membership functions and 
their features. The formation of the membership function is the core for the 
entire fuzzy system operation. The capability of human reasoning is 
important for membership functions. The inference method is based on the 
geometrical shapes and geometry, whereas the angular fuzzy set is based on 
the angular features. Using neural networks and reasoning methods the 
memberships are tuned in a cyclic fashion and are based on rule structure. 
The improvements are carried out to achieve an optimum solution using 
generic algorithms. Thus, the membership function can be formed using any 
one of the methods. 

Later we have discussed the methods of converting fuzzy variables into 
crisp variables by a process called as defuzzification. Defuzzification 
process is essential because some engineering applications need exact 
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essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were 
discussed. Apart from the Lambda-cut method, seven defuzzification 
methods were presented. The method of defuzzification should be assessed 
on the basis of the output in the context of data available. 

Finally, we discussed fuzzy arithmetic, which is considered as an extension 
of interval arithmetic. One of the important tools of fuzzy set theory 
introduced by Zadeh is the extension principle, which allows any 
mathematical relationship between nonfuzzy elements to be extended to 
fuzzy entities. This principle can be applied to algebraic operations to define 
set-theoretic operations for higher order fuzzy sets. The belief and 
plausibility measures can be expressed by the basic probability assignment 
m, which assigns degree of evidence or belief indicating that a particular 
element of X belongs to set A and not to any subset of A. The main 
characteristic of probability measures is that each of them can be distinctly 
represented by a probability distribution function defined on the elements 
of a universal set apart from its subsets. Fuzzy integrals defined define by 
Sugeno (1977) are also discussed. Fuzzy integrals are used to perform 
integration of fuzzy functions. 

3D.6 REVIEW QUESTIONS 

1. What is membership function? Enlist and explain its features. 

2. Write a short note on fuzzification. 

3. Explain any three methods of membership value assignments in 

detail. 

4. Write a short note on defuzzification. 

5. What is Lambda-cuts for fuzzy set and Fuzzy relations? 

6. Explain any three methods of defuzzification in detail. 

7. Write a short note on fuzzy arithmetic. 

8. What are the mathematical operations on intervals of fuzzy. 

9. Write a short note on fuzzy number and fuzzy ordering. 

10. Write a short note on fuzzy vectors. 

11. Write a short note on belief and plausibility measures. 

12. Write a short note on possibility and necessity measures. 

3D.7 BIBLIOGRAPHY, REFERENCES AND FURTHER 

READING 

 Artificial Intelligence and Soft Computing, by Anandita Das 

Battacharya, SPD 3rd, 2018 

 Principles of Soft Computing, S.N. Sivanandam, S.N.Deepa, Wiley, 

3rd , 2019 

 Neuro-fuzzy and soft computing, J.S.R. Jang, C.T.Sun and 

E.Mizutani, Prentice Hall of India, 2004   
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3e.14 Summary 

3e.15 Review Questions 
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3E.0 OBJECTIVES 

This chapter begins with explaining the membership function and later 

introduces the concept of Fuzzy Arithmetic and Fuzzy Measures. 

3E.1 OVERVIEW OF FUZZY ARITHMETIC 

Fuzzy arithmetic is based on the operations and computations of fuzzy 

numbers. Fuzzy numbers help in expressing fuzzy cardinalities and fuzzy 

quantifiers. Fuzzy arithmetic is applied in various engineering applications 

when only imprecise or uncertain sensory data are available for 

computation. The imprecise data from the measuring instruments are 

generally expressed in the form of intervals, and suitable mathematical 

operations are performed over these intervals to obtain a reliable data of the 
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computation is called interval arithmetic or interval analysis. 

3E.2 INTERVAL ANALYSIS OF UNCERTAIN VALUES 

Fuzzy numbers are an extension of the concept of intervals. Intervals are 

considered at only one unique level. Fuzzy numbers consider them at 

several levels varying from 0 to 1. In interval analysis, the uncertainty of 

the data is limited between the intervals specified by the lower bound & 

upper bound. The following are the various types of intervals: 

 [𝑎1, 𝑎2] = {𝑥|𝑎1 ≤ 𝑥 ≤ 𝑎2} is closed interval 

 [𝑎1, 𝑎2) = {𝑥|𝑎1 ≤ 𝑥 < 𝑎2} is an interval closed at left end side & 

open at right end. 

 (𝑎1, 𝑎2] = {𝑥|𝑎1 < 𝑥 ≤ 𝑎2} is an interval open at left end side & 

closed at right end. 

 (𝑎1, 𝑎2) = {𝑥|𝑎1 < 𝑥 < 𝑎2} is an open interval, open at both left end 

and right end. 

3E.3 MATHEMATICAL OPERATIONS ON INTERVALS 

Let 𝐴 = [𝑎1, 𝑎2] & 𝐵 = [𝑏1, 𝑏2] be the intervals defined. If 𝑥 ∈
[𝑎1, 𝑎2] & 𝑦 ∈ [𝑏1, 𝑏2] 

Addition (+): 𝐴 + 𝐵 = [𝑎1, 𝑎2] + [𝑏1, 𝑏2] = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2] 

Subtraction (-): 𝐴 − 𝐵 = [𝑎1, 𝑎2] − [𝑏1, 𝑏2] = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1] 

We subtract the larger value out of b1 & b2 from a1. The smaller value out 

of b1 & b2 from a2 is subtracted. 

Multiplication (.):  Let the two intervals of confidence be A=[a1,a2] & 

B=[b1,b2] defined on non-negative real line. 

𝐴. 𝐵 = [𝑎1, 𝑎2]. [𝑏1, 𝑏2] = [𝑎1. 𝑏1,  𝑎2. 𝑏2] 

If we multiply an interval with a non-negative real number ∝ 

∝. 𝐴 = [∝, ∝]. [𝑎1, 𝑎2] = [∝. 𝑎1, ∝. 𝑎2] 

∝. 𝐵 = [∝, ∝]. [𝑏1, 𝑏2] = [∝. 𝑏1, ∝. 𝑏2] 

Division (÷):  The division two intervals of confidence defined on non-

negative real line is given by. 

 𝐴 ÷ 𝐵 = [𝑎1, 𝑎2] ÷ [𝑏1, 𝑏2] = [𝑎1/𝑏1,  𝑎2/𝑏2] 

If b1 = 0 then the upper bound increases to 

+∞. If b1 = b2 = 0, then interval of confidence is extended to + ∞ 
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Image  

(Ā): If 𝑥 ∈ [−𝑎2, −𝑎1]. Also if 𝐴 = [𝑎1, 𝑎2] then its image Ā =
[−𝑎2, −𝑎1].  
Note that 𝐴 + Ā = [𝑎1, 𝑎2] + [−𝑎2, −𝑎1] = [𝑎1 − 𝑎2, 𝑎2 − 𝑎1] ≠ 0 

The subtraction becomes addition of an image. 

Inverse (A
-1

): If  

𝑥
∈ [𝑎1, 𝑎2]is a subset of a positive real line, then its inverse is given by  

(
1

𝑥
) = [

1

𝑎2
,

1

𝑎1
] . Similarly, the inverse of A is given by A

− 1

= [𝑎1, 𝑎2]
− 1

= [
1

𝑎2
,

1

𝑎1
] . The division becomes multiplication of an inverse. For division  

by a non − negative number ∝> 0 i. e. (
1

∝
).  

A, we obtain 𝐴 ÷∝= 𝐴. [
1

∝
,
1

∝
] = [

𝑎1

∝
,
𝑎2

∝
] 

Max and Min Operations: 𝐴 = [𝑎1, 𝑎2] & 𝐵 = [𝑏1, 𝑏2]  

Max: 𝐴 ∨  𝐵 = [𝑎1, 𝑎2] ∨  [𝑏1, 𝑏2] = [ 𝑎1 ∨ 𝑏1,  𝑎2 ∨ 𝑏2] 

Min: 𝐴 ∧  𝐵 = [𝑎1, 𝑎2] ∧  [𝑏1, 𝑏2] = [ 𝑎1 ∧  𝑏1,  𝑎2 ∧  𝑏2] 

Table 3e.1: Set Operations on Intervals 

 

Table 3e.2: Algebraic Properties of Intervals 
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A fuzzy number is a normal, convex membership function on the real line 

R. Its membership function is piecewise continuous. That is, every λ-cut set 

Aλ, λ∈[0,1],of a fuzzy number A is a closed interval of R & the highest 

value of membership of A is unity. For two given numbers A & B in R, for 

specific λ1 ∈  [0, 1], we obtain two dosed intervals: 

𝐴𝜆1 =
[𝑎1

(𝜆1),
𝑎2

(𝜆2)
] 𝑓𝑟𝑜𝑚 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝐴 

𝐵𝜆1 =
[𝑏1

(𝜆1),
𝑏2

(𝜆2)] 𝑓𝑟𝑜𝑚 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 𝐵 

Fuzzy number is an extension of the concept of intervals. Fuzzy numbers 

consider them at several levels with each of these levels corresponding to 

each λ-cut of the fuzzy numbers. The notation Aλ1=[a1(λ1),a2(λ2)]  can be 

used to represent a closed interval of a fuzzy number A at a λ h -level.   
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Table 3e.3 Algebraic Properties of Addition and Multiplication on  

Fuzzy Numbers 

 

3E.5 FUZZY ORDERING 

The technique for fuzzy ordering is based on the concept of possibility 

measure. For a fuzzy number A, two fuzzy sets, A
1
 & A

2
 are defined. For 

this number, the set of numbers that are possibly greater than or equal to A 

is denoted as A
1
 and is defined as  
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denoted as A
2
 and is defined as 

 

where ∏𝐴 and N
A
 are possibility and necessity measures. 

We can compare A with B
1
 & B

2
 by index of comparison such as the 

possibility or necessity measure of a fuzzy set. That is, we can calculate the 

possibility and necessity measures, in the set  𝜇𝐴 of fuzzy sets B
1
 & B

2
. On 

the basis of this, we obtain four fundamental indices of comparison. 

 

3E.6 FUZZY VECTORS 

A vector P = (P
1
, P

2
, ... , P

n
) is called a fuzzy vector if for any element we 

have 0 ≤  P ≤ 1 for i = 1 to n. Similarly, the transpose of the fuzzy vector e 

denoted by P
T

, is a column vector if P is a row vector, i.e., 

∼
𝑃 T= [

𝑃1

𝑃2

⋮
𝑃𝑛

] 

Let P & Q as fuzzy vector on length n. 

Fuzzy inner product:  

Fuzzy outer product:   

The complement of fuzzy vector ~P has constraint 0 ≤ ~𝑃 ≤ 1 𝑓𝑜𝑟 𝑖 =

1 𝑡𝑜 𝑛  

~𝑃 = (1 − 𝑃1,1 − 𝑃2, … 1 − 𝑃𝑛) = (~𝑃1, ~𝑃2, … , ~𝑃𝑛) 
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Smallest component is defined as its lower bound:  

Properties of Fuzzy Vector 

 

3E.7 EXTENSION PRINCIPLES 

The extension principle allows generalization of crisp sets into fuzzy sets 

framework & extends point-to-point mappings for fuzzy sets. 
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3E.8 OVERVIEW OF FUZZY MEASURES 

A fuzzy measure explains the imprecision or ambiguity in the assignment 

of an element ∝ to two or more crisp sets. For representing uncertainty 

condition, known as ambiguity, we assign a value in the unit interval [0, 1] 

to each possible crisp set to which the element in the problem might belong.  

The value assigned represents the degree of evidence or certainty or belief 

of the element's membership in the set. The representation of uncertainty of 

this manner is called fuzzy measure. The difference between a fuzzy 

measure and a fuzzy set on a universe of elements is that, in fuzzy measure, 

the imprecision is in the assignment of an element to one of two or more 

crisp sets, and in fuzzy sets, the imprecision is in the prescription of the 

boundaries of a set. 

A fuzzy measure is defined by a function g: P(X) → [0,1] which assigns to 

each crisp subset of a universe of discourse X a number in the unit interval 

[0,1],where P(X) is power set of X.A fuzzy measure is a set function. To 

qualify a fuzzy measure,the function g should possess certain properties.A 

fuzzy measure is also described as follows: g: B → [0,1] where B ⊂P(X) is 

a family of crisp subsets of X Here B is a Borel field or a σ field. Also, g 

satisfies rhe following three axioms of fuzzy measures: 

 Boundary condition (g1): 𝑔(∅) = 0; 𝑔(𝑋) = 1 

 Monotonicity (g2): for every classical set 𝐴, 𝐵 ∈ 𝑃(𝑋),  𝑖𝑓 𝐴 ⊆

𝐵,  𝑡ℎ𝑒𝑛 𝑔(𝐴) ≤ 𝑔(𝐵) 

 Continuity (g3): for sequence 𝐴𝑖 ∈ 𝑃(𝑋)|𝑖 ∈

𝑁) of subsets X, if either 𝐴1 ⊆ 𝐴2 … 𝑜𝑟 𝐴1 ⊇

𝐴2 … 𝑡ℎ𝑒𝑛 lim
𝑖→∞

𝑔(𝐴𝑖) = 𝑔 (lim
𝑖→∞

𝐴𝑖)  

where N is the set of all positive integers 

A 𝜎 field or Borel field satisfies the following properties: 

 𝑋 ∈ 𝐵 & ∅ ∈ 𝐵 
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 𝑖𝑓 𝐴 ∈ 𝐵,  𝑡ℎ𝑒𝑛 ~𝐴 ∈ 𝐵 

 B is closed under set union operation, i.e. if 𝐴 ∈ 𝐵 & 𝐵 ∈

𝐵 (𝜎 𝑓𝑖𝑒𝑙𝑑),  𝑡ℎ𝑒𝑛 𝐴 ∪ 𝐵 ∈ 𝐵 (𝜎 𝑓𝑖𝑒𝑙𝑑) 

The fuzzy measure excludes the additive property of standard measures, h. 

The additive property states that when two sees A and B are disjoint, then 

ℎ(𝐴 ∪ 𝐵) = ℎ(𝐴) + ℎ(𝐵). Since 𝐴 ⊆ 𝐴 ∪ 𝐵 & 𝐵 ⊆ 𝐴 ∪
𝐵, and because fuzzy measure g possesses monotonic property, we have 𝑔(𝐴 ∪

𝐵) ≥ max [𝑔(𝐴),  𝑔(𝐵)]. Since 𝐴 ∩ 𝐵 ⊆ 𝐴 & 𝐴 ∩ 𝐵 ⊆
𝐵, and because fuzzy measure g possesses monotonic property, we have 𝑔(𝐴 ∪

𝐵) ≤ m𝑖𝑛 [𝑔(𝐴),  𝑔(𝐵)]. 

3E.9 BELIEF & PLAUSIBILITY MEASURES 

The belief measure is a fuzzy measure that satisfies three axioms g1, g2 and 

g3 and an additional axiom of subadditivity. A belief measure is a function 

𝑏𝑒𝑙: 𝐵 → [0,1] satisfying axioms g1, g2 and g3 of fuzzy measures and 

subadditivity axiom. It is defined as follows: 

 

Plausibility is defined as Pl(A)=1 -bel(Ā)  for all A∈B(CP(X)).Belief 

measure can be defined as  bel(A)=1-Pl(Ā).Plausibility measure can also be 

defined independent of belief measure.A plausibility measure is a function 

Pl:B→[0,1] satisfying axioms g1, g2, g3 of fuzzy measures and the 

following subadditivity axiom (axiom g5): 

 

for every 𝑛 ∈ 𝑁 and all collection of subsets of X 

The belief measure and the plausibility measure are mutually dual, so it will 

be beneficial to express both of them in terms of a set function m, called a 

basic probability assignment. The basic probability assignment m is a set 

function, : 𝐵 → [0,1]𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(∅ = 0)𝑎𝑛𝑑 ∑ 𝐴 ∈ 𝐵 𝑚( 𝐴) =
1.  The basic probability assignments are not fuzzy measures. The quantity  

𝑚(𝐴) ∈ [0,1],  𝐴 ∈ 𝐵(𝐶𝑃(𝑋)) , is called A's basic probability number. 

Given a basic assignment m, a belief measure and a plausibility measure 

and a plausibility measure can be uniquely determined by: 
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3E.10 PROBABILITY MEASURES 

A probability measure is the function 𝑃: 𝐵 →
[0,1] satisfying the three axioms  
g1, g2 & g3 of fuzzy measures and the additivity axioms (axiom g6) as follows  

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝐴 ∩ 𝐵 = ∅,  𝐴, 𝐵 ∈ 𝐵. 

Theorem : “A belief measure bel on a finite 𝜎-field B, which is a subset of 

P(X), is a probability measure if  and only if  its basic probability assignment 

m is given by m({x}) = bel({x}) and m(A) = 0 for all subsets of X that are 

not singletons.” 

The theorem indicates fiat a probability measure on finite sets can be 

represented uniquely by a function defined on the elements of the universal 

set X rather than its subsets. The probability measures on finite sets can be 

fully represented by a function, P: X → [0, 1]  such that P(x) = m({x}). This 

function P(X) is called probability distribution function. 

Within probability measure, the total ignorance is expressed by the uniform 

probability distribution function: 

𝑃(𝑥) = 𝑚({𝑥}) =
1

|𝑋|
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

The plausibility and belief measures can be viewed as upper & lower 

probabilities that characterize a set of probability measures. 
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3E.11 POSSIBILITY & NECESSITY MEASURES 

A group of subsets of a universal set is nested if these subsets can be ordered 

in a way that each is contained in the next; i.e. 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 … ⊂ 𝐴𝑛, 𝐴𝑖 ∈
𝑃(𝑋) are nested sets. When the focal elements of a body of evidence (E, m) 

are nested, the linked belief and plausibility measures are called consonants, 

because here the degrees of evidence allocated to them do not conflict with 

each other. 

Theorem: “Consider a consonant body of evidence (E, m), the associated 

consonant belief and plausibility measures possess the following properties: 

𝑏𝑒𝑙 (𝐴 ∩ 𝐵) = min(𝑏𝑒𝑙(𝐴), 𝑏𝑒𝑙(𝐵)) 

𝑃𝑙(𝐴 ∪ 𝐵) = max (𝑃𝑙(𝐴),  𝑃𝑙(𝐵)) 

for all 𝐴, 𝐵 ∈ 𝐵(𝐶𝑃(𝑋)). 

Consonant belief and plausibility measures are referred to as necessity & 

possibility measures & are denoted by N and ∏, respectively. 

The possibility measure ∏ & necessity measure N are function: 

∏: 𝐵 → [0,1] & N: B → [0,1] such that ∏ & N both satisfy the axioms 

g1,g2 & g3 of fuzzy measures and following axiom g7: 

∏(𝐴 ∪ 𝐵) = max(∏(A), ∏(𝐵))           ∀𝐴, 𝐵 ∈ 𝐵 

𝑁(𝐴 ∩ 𝐵) = m𝑖𝑛(𝑁(A), 𝑁(𝐵))           ∀𝐴, 𝐵 ∈ 𝐵 

Necessity and possibility are special subclasses of belief and plausibility 

measures, they are related to each other by 

∏(𝐴) = 1 − 𝑁(Ā)        &    𝑁(𝐴) = 1 − ∏(Ā)          ∀ 𝐴 ∈ 𝜎 𝑓𝑖𝑒𝑙𝑑 
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3E.12 MEASURE OF FUZZINESS 

The fuzzy measures concept provides a general mathematical framework to 

deal with ambiguous variables. Measures of uncertainty related to 

vagueness are referred to as measures of fuzziness. A measure of fuzziness 

is a function 𝑓: 𝑃(𝑋) → 𝑅 where R is the real line and P(X) is the set of all 

fuzzy subsets of X. The function f satisfies the following axioms: 

 Axiom 1 (f1):  f(A) = 0 if and only if  A is a crisp set. 

 Axiom 2 (f2):  If A (shp) B, then f(A) ≤ f(B), where A (shp) B denotes 

that A is sharper than B. 

 Axiom 3 (f3): f(A) takes the maximum value if and only if A is 

maximally fuzzy.  

Axiom f1 shows that a crisp set has zero degree of fuzziness in it. Axioms 

f2 and f3 are based on concept of "sharper" and "maximal fuzzy," 

respectively. 
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3E.13 FUZZY INTEGRALS 

 

 

3E.14 SUMMARY 

This chapter starts with the discussion about membership functions and 

their features. The formation of the membership function is the core for the 

entire fuzzy system operation. The capability of human reasoning is 

important for membership functions. The inference method is based on the 

geometrical shapes and geometry, whereas the angular fuzzy set is based on 

the angular features. Using neural networks and reasoning methods the 

memberships are tuned in a cyclic fashion and are based on rule structure. 

The improvements are carried out to achieve an optimum solution using 

generic algorithms. Thus, the membership function can be formed using any 

one of the methods. 

Later we have discussed the methods of converting fuzzy variables into 

crisp variables by a process called as defuzzification. Defuzzification 

process is essential because some engineering applications need exact 

values for performing the operation. Defuzzification is a natural and 

essential technique. Lambda-cuts for fuzzy sets and fuzzy relations were 

discussed. Apart from the Lambda-cut method, seven defuzzification 

methods were presented. The method of defuzzification should be assessed 

on the basis of the output in the context of data available. 

Finally, we discussed fuzzy arithmetic, which is considered as an extension 

of interval arithmetic. One of the important tools of fuzzy set theory 

introduced by Zadeh is the extension principle, which allows any 

mathematical relationship between nonfuzzy elements to be extended to 

fuzzy entities. This principle can be applied to algebraic operations to define 

set-theoretic operations for higher order fuzzy sets. The belief and 

plausibility measures can be expressed by the basic probability assignment 
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element of X belongs to set A and not to any subset of A. The main 

characteristic of probability measures is that each of them can be distinctly 

represented by a probability distribution function defined on the elements 

of a universal set apart from its subsets. Fuzzy integrals defined define by 

Sugeno (1977) are also discussed. Fuzzy integrals are used to perform 

integration of fuzzy functions. 

3E.15 REVIEW QUESTIONS 

1. Write a short note on fuzzy arithmetic. 

2. What are the mathematical operations on intervals of fuzzy. 

3. Write a short note on fuzzy number and fuzzy ordering. 

4. Write a short note on fuzzy vectors. 

5. Write a short note on belief and plausibility measures. 

6. Write a short note on possibility and necessity measures. 
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MODULE II: UNIT 4 

4a 

FUZZY RULE BASE AND  

APPROXIMATE REASONING  

Unit Structure 

4a.0 Introduction 

4a.1 Biological Background 

4a.2 Traditional Optimization and Search Techniques 

4a.3 The Cell 

4a.4  Genetic Algorithm and Search Space 

4a.5  Genetic Algorithm vs. Traditional Algorithms 

4a.6 Basic Terminologies in Genetic Algorithm 

4a.7  Simple GA 

4a.8  Summary 

4a.9  Review Questions 

LEARNING OBJECTIVES  

 Gives an introduction to natural evolution.  

 Lists the basic operators (selection, crossover, mutation) and other 

terminologies used in Genetic Algorithms (GAs). 

 Discusses the need for schemata approach. 

 Details the comparison of traditional algorithm with GA. 

 Explains the operational flow of simple GA. 

 Description is given of the various classifications of GA- Messy GA, 

adaptive GA, hybrid GA, parallel GA and independent sampling GA. 

 The variants of parallel GA (fine-grained parallel GA and coarse-

grained parallel GA) are included. 

 Enhances the basic concepts involved in Holland classifier system. 

 The various features and operational properties of genetic 

programming are provided. 

 The application areas of GA are also discussed. 

Thales R. Darwin says that "Although the belief that an organ so perfect as 

the eye could have been formed by natural selection is enough to stagger 

any one; yet in the case of any organ, if we know of a long series of 
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conditions of life, there is no logical impossibility in the acquirement of any 

conceivable degree of perfection through natural selection." 

4A.0 INTRODUCTION 

Thales Darwin has formulated the fundamental principle of natural 

selection as the main evolutionary tool. He put forward his ideas without 

the knowledge of basic hereditary principles. In 1865, Gregory Mendel 

discovered these hereditary principles by the experiments he carried out on 

peas. After Mendel's work genetics was developed. Morgan experimentally 

found that chromosomes were the carriers of hereditary information and that 

genes representing the hereditary factors were lined up on chromosomes. 

Darwin's natural selection theory and natural genetics remained unlinked 

until 1920s when it was proved that genetics and selection were in no way 

contrasting each other. Combination of Darwin’s and Mendel’s ideas leads 

to the modern evolutionary theory. 

In The Origin of Species, Thales Darwin stated the theory of natural 

evolution. Over many generations, biological organisms evolve according 

to the principles of natural selection like "survival of the fittest" to reach 

some remarkable forms of accomplishment. The perfect shape of the 

albatross wing, the efficiency and the similarity between sharks and 

dolphins and so on are good examples of what random evolution with 

absence of intelligence can achieve. So, if it works so well in nature, it 

should be interesting to simulate natural evolution and try to obtain a 

method which may solve concrete search and optimization problems. 

For a better understanding of this theory, it is important first to understand 

the biological terminology used in evolutionary computation. It is discussed 

in Section 1.2 

In 1975, Holland developed this idea in Adaptation in Natural and Artificial 

Systems. By describing how to apply the principles of natural evolution to 

optimization problems, he laid down the first GA. Holland’s theory has 

been further developed and now GAs stand up as powerful adaptive 

methods to solve search and optimization problems. Today, GAs are used 

to resolve complicated optimization problems, such as, organizing the time 

table, scheduling job shop, playing games. 

What are Genetic Algorithms? 

GAs is adaptive heuristic search algorithms based on the evolutionary ideas 

of natural selection and genetics. As such they represent an intelligent 

exploitation of a random search used to solve optimization problems. 

Although randomized, GAs are by no means random; instead they exploit 

historical information to direct the search into the region of better 

performance within the search space. The basic techniques of the GAs are 

designed to simulate processes in natural systems necessary for evolution, 

especially those that follow the principles first laid down by Thales Darwin, 

"survival of the fittest," because in nature, competition among individuals 
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for seamy resources results in the fittest individuals dominating over the 

weaker ones. 

Why Genetic Algorithms? 

They are better than conventional algorithms in that they are more robust. 

Unlike older AI systems, they do not break easily even if the inputs are 

changed slightly or in the presence of reasonable noise. Also, in searching 

a large state-space, multimodal state-spare or n-dimensional source, a GA 

may offer significant benefits over more typical optimization techniques 

(linear programming, heuristic, depth-first and praxis.) 

4A.1 BIOLOGICAL BACKGROUND 

The science that deals with the mechanisms responsible for similarities and 

differences in a species is called Genetics. The word "genetics" is derived 

from the Greek word "genesis" meaning "to grow" or "to become. “The 

science of genetics helps us to differentiate between heredity and variations 

and accounts for the resemblances and differences during the process of 

evolution. The concepts of GAs are directly derived from natural evolution 

and heredity. The terminologies involved in the biological background of 

species are discussed in the following subsections. 

4A.2 THE CELL 

Every animal/human cell is a complex of many "small" factories that work 

together. The centre of all this is the cell nucleus. The genetic information 

is contained in the cell nucleus. Figure 9-1 shows anatomy of the animal 

cell and cell nucleus. 

Chromosomes 

All the genetic information gets stored in the chromosomes. Each 

chromosome is build of deoxyribonucleic acid (DNA). In humans, 

chromosomes exist in pairs (23 pairs found). The chromosomes are divided 

into several parts called genes. Genes code the properties of species, i.e., the 

characteristics of an individual. The possibilities of combination of the 

genes for one property are called alleles, and a gene can take different 

alleles. For example, there is a gene for eye colour, and all the different 

possible alleles are black, brown, blue and green (since no one has red or 

violet eyes!). The set of all possible alleles present in a particular population 

forms a gene pool. This gene pool can determine all the different possible 

variations for the future generations. The size of the gene pool helps in 

determining the diversity of the individuals in the population. The set of all 

the genes of a specific species is called genome. Each and every gene has a 

unique position on the genome called 
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Fig9-1 anatomy of the animal cell and cell nucleus 

Locus. In fact, most living organisms store their genome on several 

chromosomes, but in the GAs, all the genes are usually stored on the same 

chromosomes. Thus, chromosomes and genomes are synonyms with one 

other in GAs. Figure 9-2 shows a model of chromosome. 

4a.2.3  Genetics 

For a particular individual, the entire combination of genes is called 

genotype. The phenotype describes the physical aspect of decoding a 

genotype to produce the phenotype. One interesting point of evolution is 

that selection is always done on the phenotype whereas the reproduction 

recombines genotype. Thus, morphogenesis plays a key role between 

section and reproduction. In higher life forms, chromosomes contain two 

sets of genes. These are known as diploids. In the case of conflicts between 

two values of the same pair of genes, the dominant one will determine the 

phenotype whereas the other one, called recessive, will still be present and 
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Figure 9-2 Model of chromoson  

 

Figure 9-3 Development of genotype to Phonotype 

Can be passed onto the offspring. Diploid allows a wider diversity of alleles. 

This provides a useful memory mechanism in changing or noisy 

environment. However, most GAs concentrates on haploid chromosomes 

because they are much simple to construct. In haploid representation, only 

one set of each gene is stored, thus the process of determining which allele 

should be dominant and which one should be recessive is avoided. Figure9-

3 shows the development of genotype to phenotype. 

4a.2.4 Reproduction 

Reproduction of species via genetic information is carried out by the 

following; 

1.  Mitosis: In mitosis the same genetic information is copied to new 

offspring. There is no exchange of information. This is a normal way 

of growing of multicell structures, such as organs. Figure 9-4 shows 

mitosis form of reproduction. 
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meiotic division takes place, two gametes appear in the process. When 

reproduction occurs, these two gametes conjugate to a zygote which 

becomes the new individual. Thus in this case, the genetic information 

is shared between the parents in order to create new offspring. Figure 

9-5 shows meiosis form of reproduction. 

 

Figure 9-4 Mitosis form of reproduction 

 

 

Figure 9-5 Meiosis form of reproduction 
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Table 9·1 Comparison of natural evolution and genetic algorithm 

terminology 

Natural evolution Genetic algorithm 

Chromosome String 

Gene Feature or character 

Allele Feature value 

Locus String position 

Genotype Structure or coded string 

Phenotype Parameter set, a decoded 

structure 

 

4a.2.5  Natural Selection 

The origin of species is based on "Preservation of favourable variations and 

rejection of unfavourable variations.” The variation refers to the differences 

shown by the individual of a species and also by offspring's of the same 

parents. There are more individuals born than can survive, so there is a 

continuous struggle for life. Individuals with an advantage have a greater 

chance of survival, i.e., the survival of the fittest. For example, Giraffe with 

long necks can have food from tall trees as well from the ground; on the 

other hand, goat and deer having smaller neck can have food only from the 

ground. As a result, natural selection plays a major role in this survival 

process. 

Table 4a.1 gives a list of different expressions, which are common in natural 

evolution and genetic algorithm. 

4A.3  TRADITIONAL OPTIMIZATION AND 

SEARCH TECHNIQUES 

The basic principle of optimization is the efficient allocation of scarce 

resources. Optimization can be applied to any scientific or engineering 

discipline. The aim of optimization is to find an algorithm which solves a 

given class of problems. There exists no specific method which solves all 

optimization problems. Consider a function, 

f(x) : [x1,x"] [0, 1]            ……….(1) 

Where 

f(x)=    1 if   l|x - a|| <,          > 0, -1 elsewhere ……….(2) 

For the above function, f can be maintained by decreasing  or by making 

the interval of [x1, x"] large. Thus, a difficult task can be made easier. 
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creativity and the raw processing power of the computers. 

The various conventional optimization and search techniques available are 

discussed in the following subsections. 

4a.3.1 Gradient Based Local Optimization Method 

When the objective function is smooth and one needs efficient local 

optimization, it is better to use gradient-based or Hessian-based 

optimization methods. The performance and reliability of the different 

gradient methods vary considerably. To discuss gradient-based local 

optimization, let us assume a smooth objective function (i.e., continuous 

first and second derivatives). The object function is denoted by 

f(x) : KnR …….(3) 

The first derivatives are contained in the gradient vector f(x) 

f(x)ixl 

f(x) =  :            ……(4) 

f(x)ixn 

 

The second derivatives of the object function are contained in the Hessian 

matrix H(x): 

2 2

2

1 1

2 2
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  

    

……………..(5) 

Few methods need only the gradient vector, but in the Newton's method we 

need the Hessian matrix. The general pseudo code used in gradient methods 

is as follows: 

Select an initial guess value x1and set n = I. 

Repeat 

Solve the search direction Pn from Eq. (5) below. 

Determine the next iteration point using Eq. (5) below: 

xn+I= Xn+n P
n 

Setn=n+l. 

Until || Xn – Xn-1 || <  ……(6) 

These gradient methods search for minimum and not maximum. Several 

different methods are obtained based on the details of the algorithm. 
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The search direction Pn in conjugate gradient method is found as follows: 

Pn= -f(Xn)+nP
n-1 ……………….(7) 

In second method, 

nP
n= -f(xn)        …………..(8) 

is used for finding search direction. The matrix n in Eq. (6) estimates the 

Hessian and is updated in each iteration. When n is defined as the identity 

matrix, the steepest descent method occurs. When the matrix Bn is the 

Hessian H (xn), we get the Newton's method. 

 

The length  n of the search step is computed using: 

 n= argmin f(an + Pan)  …..(9) 

 n>0 

The discussed is a one-dimensional optimization problem. The steepest 

descent method provides poor performance. As a result, conjugate gradient 

method can be used. If the second derivatives are easy to compute, then 

Newton’s method may provide best results. The secant methods are faster 

than conjugate gradient methods, but there occurs memory problems. Thus, 

these local optimization methods can be combined with other methods to 

get a good link between performance and reliability. 

4a.3.2  Random Search 

Random search is an extremely basic method. It only explodes the search 

space by randomly selecting solutions and evaluates their fitness. This is 

quite an unintelligent strategy, and is rarely used. Nevertheless, this method 

is sometimes worth testing. It doesn't take much effort to implement it, and 

an important number of evaluations can be done fairly quickly. For new 

unresolved problems, it can be useful to compare the results of a more 

advanced algorithm to those obtained just with a random search for the same 

number of evaluations. Nasty surprises might well appear when comparing, 

for example, GAs to random search. It’s good to remember that the 

efficiency of GA is extremely dependent on consistent coding and relevant 

reproduction operators. Building a GA which performs no more than a 

random search happens more often than we can expect. If the reproduction 

operators are just producing new random solutions without any concrete 

links to the ones selected from the last generation, the GA is just doing 

nothing else than a random search. 

Random search does have a few interesting qualities. However good the 

obtained solution may be, if it’s not optimal one, it can be always improved 

by continuing the run of the random search algorithm for long enough. A 

random search never gets stuck at any point such as a local optimum. 

Furthermore, theoretically, if the search space is finite, random search is 

guaranteed to reach the optimal solution. Unfortunately, this result is 
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the whole search space takes lot of time. 

4a.3.3 Stochastic Hill Climbing 

Efficient methods exist for problems with well-behaved continuous fitness 

functions. These methods use a kind of gradient to guide the direction of 

search. Stochastic hill climbing is the simplest method of these kinds. Each 

iteration consists in choosing randomly a solution in the neighbourhood of 

the current solution and retains this new solution only if it improves the 

fitness function. Stochastic hill climbing converges towards the optimal 

solution if the fitness function of the problem is continuous and has only 

one peak (unimodal function). 

On functions with many peaks (multimodal functions), the algorithm is 

likely to stop on the first peak it finds even if it is not the highest one. Once 

a peak is reached, hill climbing cannot progress anymore, and that is 

problematic when this point is a local optimum. Stochastic hill climbing 

usually starts from a random select point. A simple idea to avoid getting 

stuck on the first local optimal consists in repeating several hill climbs each 

time starting from a different randomly chosen point. This method is 

sometimes known as iterated hill climbing. By discovering different local 

optimal points, chances to reach the global optimum increase. It works well 

if there are not too many local optima in the search space. However, if the 

fitness function is very "noisy" with many small peaks, stochastic hill 

climbing is definitely nor a good method to use. Nevertheless, such methods 

have the advantage of being easy to implement and giving fairly good 

solutions very quickly. 

4a.3.4 Simulated Annealing 

Simulated annealing (SA) was originally inspired by formation of crystal in 

solids during cooling. As discovered a long time ago by Iron Age 

blacksmiths, the slower the cooling, the more perfect is the crystal formed. 

By cooling, complex physical systems naturally converge rewards a stare 

of minimal energy. The system moves randomly, but the probability to stay 

in a particular configuration depends directly on the energy of the system 

and on its temperature. This probability is formally given by Gibbs law: 

in = eElkT  …….(10) 

where E stands for the energy, k is the Boltzmann constant and T is the 

temperature. In the mid0l970s, Kirkpatrick by analogy of these physical 

phenomena; laid out the first description of SA. 

As in the stochastic hill climbing, the iteration of the SA consists of 

randomly choosing a new solution in the neighbourhood of the actual 

solution. If the fitness function of the new solution is better than the fitness 

function of the current one, the new solution is accepted as the new current 

solution. If the fitness function is not improved, the new solution is retained 

with a probability: 
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P = e -1f(y)-f(x)|lkT …….(11) 

Where f(y) - f(x) is the difference of the fitness function between the new 

and the old solution. 

The SA behaves like a hill climbing method but with the possibility of going 

downhill to avoid being trapped at local optima. When the temperature is 

high, the probability of deteriorate the solution is quite important, and then 

a lot of large moves are possible to explode the search space. The more the 

temperature decreases, the more difficult it is to go downhill. The algorithm 

thus tries to climb up from the current solution to reach a maximum. When 

temperature is lower, there is an exploitation of the current solution. If the 

temperature is too low, number deterioration is accepted, and the algorithm 

behaves just like a stochastic hill climbing method. Usually, the SA stars 

from a high temperature which decreases exponentially. The slower the 

cooling, the better it is for finding good solutions. It even has been 

demonstrated that with an infinitely slow cooling, the algorithm is almost 

certain to find the global optimum. The only point is that infinitely slow 

cooling consists in finding the appropriate temperature decrease rate to 

obtain a good behaviour of the algorithm. 

SA by mixing exploitation features such as the random search and 

exploitation features like hill climbing usually gives quite good results. SA 

is a serious competitor of GAs. It is worth trying to compare the results 

obtained by each. Both are derived from analogy with natural system 

evolution and both deal with the same kind of optimization problem. GAs 

differ from SA in two main features which makes them more efficient. First, 

GAs use a population-based selection whereas SA only deals with one 

individual at each iteration. Hence Gas are expected to cover a much larger 

landscape of the search space at each iteration; however, SA iterations are 

much more simple, and so, often much faster. The grocer advantage of GA 

is its exceptional ability to be parallelized, whereas SA does not gain much 

of this. It is mainly due to the population scheme use by GA. Second, Gas 

use recombination operators, and are able to mix good characteristics from 

different solutions. The exploitation made by recombination operators are 

supposedly considered helpful to find optimal salmons of the problem. On 

the other hand, SA is still very simple to implement and gives good this. 

SAs have proved their efficiency over a large spectrum of difficult 

problems, like the optimal layout or primed circuit board or the famous 

travelling salesman problem. 

4a.3.5 Symbolic Artificial Intelligence 

Most symbolic artificial intelligence (AI) systems are very static. Most of 

them can usually only solve one given specific problem, since their 

architecture was designed for whatever that specific problem was in the first 

place. Thus, if the given problem were somehow to be changed, these 

systems could have a hard time adapting to them; since the algorithm that 

would originally arrive co the solution may be either incorrect or less 

efficient. GAs were created to combat these problems. They are basically 

algorithms based on natural biological evolution. The architecture of 
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problems. A GA functions by generating a large set of possible solutions to 

a given problem. It then evaluates each of chose solutions, and decides on a 

"fitness level" (you may recall the phrase: "survival of the fittest") for each 

solution set. These solutions then breed new Solutions. The parent solutions 

that were more "fit” are more likely m reproduce, while those that were less 

"fit" are more unlikely to do so. In essence, solutions are evolved over time. 

This way we evolve our search space scope to a point where you can find 

the solution. GAs can be incredibly efficient if programmed correctly. 

4A.4  GENETIC ALGORITHM AND SEARCH SPACE 

Evolutionary computing was introduced in the 1960s by I. Rothenberg in 

the work "Evolution Strategies. “This idea was then developed by other 

researches. GAs were invented by John Holland and developed this idea in 

his book "Adaptation in Natural and Artificial Systems" in the year 1975. 

Holland proposed GA as a heuristic method based on "survival of the 

finest." GA was discovered as a useful tool for search and optimization 

problems. 

4a.4.1 Search Space 

Most often one is looking for the best solution in a specific set of solutions. 

The space of all feasible solutions (the set of solutions among which the 

desired solution resides) is called search space (also state space). Each and 

every point in the search space represents one possible solution. Therefore, 

each possible solution can be “marked" by its fitness value, depending on 

the problem definition. With GA one looks for the best solution among a 

number of possible solutions- represented by one point in the search space; 

GAs are used to search the search space for the best solution, e.g., minimum. 

The difficulties in this case are the local minima and the starting point of 

the search. Figure 4a.6 gives an example of search space. 

 

Figure 4a.6 : An example of search space. 

4a.4.2 Genetic Algorithms World 

GA raises again a couple of important features. First, it is a stochastic 

algorithm; randomness has an essential role in GAs. Both selection and 
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reproduction need random procedures. A second very important point is that 

GAs always considers a population of solutions. Keeping in memory more 

than a single solution at each iteration offers a lot of advantages. The 

algorithm can recombine different solutions to the better ones and so it can 

use the benefits of assortment. A population-based algorithm is also very 

amenable for parallelization. The robustness of the algorithm should also be 

mentioned as something essential for the algorithm's success. To business 

refers to the ability to perform consistently well on a broad range of problem 

types. There is no particular requirement on the problem before using GAs, 

so it can be applied to resolve any problem. All these features make GA a 

really powerful optimization tool. 

With the success of GAs, other algorithms making use of the same principle 

of natural evolution have also emerged. Evolution strategy, genetic 

programming are some algorithms similar to these algorithms. The 

classification is not always clear between the different algorithms, thus to 

avoid any confusion, they areal gathered in what is called Evo1ationary 

Algorithms. 

The analogy with nature gives these algorithms something exciting and 

enjoyable. Their ability to deal successfully with a wide range of problem 

area, including those which are difficult for other methods to solve makes 

them quite powerful. However today, GAs is suffering from too much 

readiness. GA is a new field, and parts of the theory still have to be properly 

established. We can find almost as many opinions on GAs as there are 

researchers in this field. In this document, we will generally find the most 

current point of view. But things evolve quickly in GAs too, and some 

comments might not be very accurate in few years. 

It is also important to mention GA limits in this introduction. Like most 

stochastic methods, GAs is not guaranteed to find the global optimum 

salmon to a problem; they are satisfied with finding "acceptably good" 

solutions to the problem. GAs are extremely general too, and so specific 

techniques for solving particular problems are likely to out-perform GAs in 

both speed and accuracy of the final result. GAs are something worth trying 

when everything else fails or when we know absolutely nothing of the 

search space. Nevertheless, even when such specialized techniques exist, it 

is often interesting to hybridize them with a GA in order to possibly gain 

some improvements. It is important always to keep an objective point of 

view; do not consider that GAs is a panacea for resolving all optimization 

problems. This warning is for those who might have the temptation to 

resolve anything with GA. The proverb says "If we have a hammer, all the 

problems look like a nails.'' GAs do work and give excellent results if they 

are applied properly on appropriate problems. 

4a.4.3  Evolution and Optimization 

To depict the importance of evolution and optimization process, consider a 

species Basilosaurus that originated 45 million years ago. The Basilosaurus 

was a prototype of a whale (Figure 9-7). It was about 9 m long and 
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Figure 9-7Basilosaurus. 

 

Figure 9·8  Tutsiops flipper. 

Tutsiops flipper weighed approximately 5 tons. It still had a quasi-

independent head and posterior paws, and moved using undulatory 

movements and hunted small preys. Its anterior members were reduced to 

small flippers with an elbow inoculation; Movements in such a viscous 

element (water) are very hard and require big efforts. The anterior members 

of basilosaurus were not really adapted to swimming. To adapt them, a 

double phenomenon must occur the shortening of the "arm" with the locking 

of the elbow articulation and the extension of the fingers constitute the base 

structure of the flipper (refer Figure 9-8). 

The image shows that two fingers of the common dolphin are hypertrophied 

to the detriment of the rest of the member. The basilosaurus was a hunter; 

it had to be fast and precise. Through time, subjects appeared with longer 

fingers and short arms. They could move faster and more precisely than 

before, and therefore, live longer and have many descendants. 

Meanwhile, other improvements occurred concerning the general 

aerodynamic like the integration of the head to the body, improvement of 

the profile, strengthening of the caudal fin, and so on, finally producing a 

subject perfectly adapted to the constraints of an aqueous environment. This 

process of adaptation and this morphological optimization is so perfect that 

nowadays the similarity between a shark, a dolphin or submarine is striking. 

The first is a cartilaginous fish (Chondrichryen) that originated in the 

Devonian period (-400 million years), long before the apparition of the first 

mammal. Darwinian mechanism hence generated an optimization process-

hydrodynamic optimization- for fishes and others marine animals –auto 

dynamic optimization for pterodactyls, birds and bars. This observation is 

the basis of GAs. 
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4a.4.4  Evolution and Genetic Algorithms 

The basic idea is as follows: the genetic pool of a given population 

polemically contains the solution, or a better solution, to a given adaptive 

problem. This solution is not “active” because the genetic combination on 

which it relies split among several subjects. Only the association of different 

genomes can lead to the solution. Simplistically speaking, we could by 

example consider that the shortening of the paw and the extension of the 

fingers of our basilosaurus are controlled by two "genes." No subject has 

such a genome, but during reproduction and crossover, new genetic 

combination occur and, finally, a subject can inherit a "good gene “from 

both parents his paw is now a flipper. 

Holland method is especially effective because he not only considered the 

role of mutation (mutations improve very seldom the algorithms), but also 

utilized genetic recombination (crossover): these recombination, the 

crossover of partial solutions, greatly improve the capability of the 

algorithm to approach, and eventually find, the optimum. 

Recombination of sexual reproduction is a key operator for natural 

evolution. Technically, it takes two genotypes and it produces a new 

genotype by mixing the gene found in the originals. In biology, the most 

common form of recombination is crossover: two chromosomes are cur at 

one point and the halves are spliced to create new chromosomes. The effect 

of recombination is very important because it allows characteristics from 

two different parents to be assorted. If the father and the mother possess 

different good qualities, we would expect that all the good qualities will be 

passed to the child. Thus the offspring, just by combining all the good 

features from its parents, may surpass its ancestors. Many people believe 

that this mixing of genetic material via sexual reproduction is one of the 

most powerful features of GAs. As a quick parenthesis about sexual 

reproduction, GA representation usually does not differentiate male and 

female individuals (without any perversity). As in many livings species 

(e.g., snails) any individual can be either a male or a female. Infact, for 

almost all recombination operators, mother and father are interchangeable. 

Mutation is the other way to get new genomes. Mutation consists in 

changing the value of genes. In natural evolution, mutation mostly 

engenders non-viable genomes. Actually mutation is not a very frequent 

operator in natural evolution. Nevertheless, in optimization, a few random 

changes can be a good way of exploiting the search space quickly. 

Through those low-level notions of genetic, we have seen how living beings 

store their characteristic information and how this information can be 

passed into their offspring. It very basic but it is more than enough to 

understand the GA theory. 

Darwin was totally unaware of the biochemical basics of genetics. Now we 

know how the genetic inheritable information is coded in DNA, RNA, and 

proteins and that the coding principles are actually digital, much resembling 

the information storage in computers. Information processing is in many 

ways totally different, however. The magnificent phenomenon called the 



   

 
184 

Soft Computing Techniques evolution of species can also give some insight into information processing 

methods and optimization, in particular. According to Darwinism, inherited 

variation is characterized by the following properties: 

1.  Variation must be copying because selection does not create directly 

anything, but presupposes a large population to work on. 

2.  Variation must be small-scaled in practice. Species do not appear 

suddenly. 

3.  Variation is undirected. This is also known as the blind watch maker 

paradigm. 

While the natural sciences approach to evolution has for over a century been 

to analyse and study different aspects of evolution to find the underlying 

principles, the engineering sciences are happy to apply evolutionary 

principles, that have been heavily tested over billions of years, to arrack the 

most complex technical problems, including protein folding. 

4A.5  GENETIC ALGORITHM VS. TRADITIONAL 

ALGORITHMS 

The principle of Gas is simple: emirate genetics and natural selection by a 

computer program: The parameters of the problem are coded most naturally 

as a DNA- like linear data structure, a vector or a suing. Sometimes, when 

the problem is naturally two or three dimensional, corresponding array 

structures are used. 

A set, called population, of these problem-dependent parameter value 

vectors is processed by GA. To start, there is usually a totally random 

population, the values of different parameters generated by a random 

number generator. Typical population size is from few dozens to thousands. 

To do optimization we need a cost function or fitness function as it is usually 

called when Gas are used. By a fitness function we can select the best 

solution candidates from the population and delete the not so good 

specimens. 

The nice thing when comparing GAs to other optimization methods is that 

the fitness function can be nearly anything that can be evaluated by a 

computer or even something that cannot In the latter case it might be a 

human judgment that cannot be seated as a crisp program, like in the case 

of eye witness, where a human being selects from the alternatives generated 

by GA. So, there are not any definite mathematical restrictions on the 

properties of the fitness fraction. It may be discrete, multimodal, etc. 

The main criteria used to classify optimization algorithms are as follows: 

continuous/discrete, constrained/unconstrained and sequential/parallel. 

There is a clear difference between discrete and continuous problems. 

Therefore, it is instructive to notice that continuous methods are sometimes 

used to solve inherently discrete problems and vice versa. Parallel 
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algorithms are usually used to speed up processing. There are, however, 

some cases in which it is more efficient to run several processors in parallel 

rather than sequentially. These cases include among others those in which 

there is high probability of each individual search run to get stuck into a 

local extreme. 

Irrespective of the above classification, optimization methods can be further 

classified into deterministic and non-deterministic methods. In addition, 

optimization algorithms can be classified as local or global. Interns of 

energy and entropy local search correspond to entropy while global 

optimization depends essentially on the fitness, i.e., energy landscape. 

GA differs from conventional optimization techniques in following ways: 

1.  GAs operate with coded versions of the problem parameters rather 

than parameters themselves, i.e., GA works with the coding of 

solution sec and nor with the solution itself. 

2.  Almost all conventional optimization techniques search from a single 

point, but GAs always operate on a whole population of points 

(strings), i.e., GA uses population of solutions rather than a single 

solution for searching. This plays a major role to the robustness of 

GAs. It improves the chance of reaching the global optimum and also 

helps in avoiding local stationary point. 

3.  GA uses fitness fiction for evaluation rather than derivatives. As a 

result, they can be applied to any kind of continuous or discrete 

optimization problem. The key point to be performed here is to 

identify and specify a meaningful decoding function. 

4.  GAs use probabilistic transition operates while conventional methods 

for continuous optimization apply deterministic transition operates, 

i.e., Gas does not use deterministic rules. 

These are the major differences that exist between GA and conventional 

optimization techniques. 

4A.6  BASIC TERMINOLOGIES IN GENETIC 

ALGORITHM 

The two distinct elements in the GA are individuals and populations. An 

individual is a single solution while the population is the set of individuals 

currently involved in the search process. 

4a.6.1 Individuals 

An individual is a single solution. Individual groups together two forms of 

solutions as given below: 



   

 
186 

Soft Computing Techniques I.  The chromosome which is the raw "genetic" information (genotype) 

that the GA deals. 

2.  The phenotype which is the expressive of the chromosome in the 

terms of the model. 

A chromosome is subdivided into genes. A gene is the GA's representation 

of a single factor for a control factor. Each factor in the solution set 

corresponds to a gene in the chromosome. Figure 9-9 shows the 

representation of a genotype. 

A chromosome should in some way contain information about the solution 

that it represents. The morphogenesis function associates each genotype 

with its phenotype. It simply means that each chromosome must define one 

unique solution, but it does not mean that each solution is encoded by 

exactly one chromosome. Indeed, the morphogenesis function is not 

necessarily objective, and it is even sometimes impossible (especially with 

binary representation). Nevertheless, the morphogenesis function should at 

least be subjective. Indeed; 

Solution Set Phenotype 

Factor 1 

 

Factor 2 Factor 3 

 

 

… Factor N 

 

 

 

 

Figure 9·9   Representation of genotype and phenotype. 

101010111010110 

Figure 9·10 Representation of a chromosome. 

all the candidate solutions of the problem must correspond to at least one 

possible chromosome, to be sure that the whole search space can be 

exploited. When the morphogenesis function that associates each 

chromosome to one solution is not injective. i.e., different chromosomes 

can encode the same solution, the representation is said to be degenerated. 

A slight degeneracy is not so worrying, even if the space where the 

algorithm is looking for the optimal solution is inevitably enlarged. Bur a 

too important degeneracy could be a more serious problem. It can badly 

affect the behaviour of the GA, mostly because if several chromosomes can 

represent the same phenotype, the meaning of each gene will obviously not 

Gene 1 Gene 2 Gene 3 … Gene N 

Chromosome Genotype 
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correspond to a specif1c characteristic of the solution. It may add some kind 

of confusion in the search. Chromosomes encoded by bit strings are given 

in Figure 9-10. 

4a.6.2 Genes 

Genes are the basic "instructions" for building a GA. A chromosome is a 

sequence of genes. Genes may describe possible solution to a problem, 

without actually being the solution. A gene is a bit string of arbitrary 

lengths. The bit string is a binary representation of number of intervals from 

a lower bound. A gene is the GNs representation of a single factor value for 

a control factor, where control factor must have an upper bound and a lower 

bound. This range can be divided into the number of intervals that can be 

expressed by the gene's bit string. A bit string of length "n" can represent 

(2n1 - 1) intervals. The size of the interval would be (range)/ (2n- 1). 

The structure of each gene is defined in a record of phenotyping parameters. 

The phenotype parameters are instructions for mapping between genotype 

and phenotype. It can also be said as encoding a solution set into a 

chromosome and decoding a chromosome to a solution set. The mapping 

between genotype and phenotype is necessary to convert solution sets from 

the model into a form that the GA can work with, and for converting new 

individuals from the GA into a form that the model can evaluate. In a 

chromosome, the genes are represented as shown in Figure 9-11. 

4a.6.3 Fitness 

The fitness of an individual in a GA is the value of an objective function for 

its phenotype. For calculating fitness, the chromosome has to be first 

decoded and the objective function has to be evaluated. The fitness 

1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 

 

                      Gene 1            Gene2             Gene 3   Gene4 

Figure 9·11 Representation of a gene. 

not only indicates how good the solution is, but also corresponds to how 

does the chromosome is to the optimal one. 

In the case of multicriterion optimization, the fitness function is definitely 

more difficult to determine. In multicriterion optimization problems, there 

is often a dilemma as how to determine if one solution is better than another. 

What should be done if a solution is better for one criterion but worse for 

another? But here, the trouble comes more from the definition of a "better" 

salmon rather than from how to implement a GA to resolve it. If sometimes 

a fitness function obtained by a simple combination of the different criteria 

can give good result, it supposes that criterions can be combined in a 

consistent way. But, for more advanced problems, it may be useful to 

consider something like Pareto optimally or other ideas from multicriterian 

optimization theory. 
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A population is a collection of individuals. A population consists of a 

number of individuals being reseed, the phenotype parameters defining the 

individuals and some information about the search space. The two 

important aspects of population used in GAs are: 

1.  The initial population generation. 

2.  The population size. 

For each and every problem, the population size will depend on the 

complexity of the problem. It is often a random initialization of population. 

In the case of a binary coded chromosome this means chat each bit is 

initialized to a random 0 or 1. However, there may be instances where the 

initialization of population is carried out with some known good solutions. 

Ideally, the first population should have a gene pool as large as possible in 

order to be able to explode the whole search space. All the different possible 

alleles of each should be present in the population. To achieve this, the 

initial population is, in most of the cases, chosen randomly. Nevertheless, 

sometimes a kind of heuristic can be used to seed ·the initial population. 

Thus, the mean fitness of the population is already high and it may help the 

GA to find good solutions faster. Bur for doing this one should be sure that 

the gene pool is spillage enough. Otherwise, if the population badly lacks 

diversity, the algorithm will just explode a small part of the search space 

and never find global optimal solutions. 

The size of the population raises few problems too. The larger the 

population is, the easier it is m explode the search space. However, it has 

been established that the time required by a GAm converge is O (n log n) 

function evaluations where n is the population size. We say that the 

population has converged when all the individuals are very much alike and 

further improvement may only be possible by mutation. Goldberg has also 

shown that GA efficiency to reach global optimum instead of local ones is 

largely determined by the size of the population. To sum up, a large 

population is quite useful. However, it requires much more computational 

cost memory and time. Practically, a population size of around 100 

individuals is quite frequent, but anyway this size can be changed according 

to the time and the memory disposed on the machine compared to the 

quality of the result to be reached. 

Population 

Chromosome 1 1 1 1 0 0 0 1 0 

Chromosome 2 2 0 1 1 1 1 0 1 1 

Chromosome 3 1 0 1 0 1 0 1 0 

Chromosome 4 1 1 0 0 1 1 0 0 

Figure 9-12 Population. 
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Population being combination of various chromosomes is represented as in 

Figure 9-12. Thus the population in Figure 9-12 consists of four 

chromosomes. 

4A.7  SIMPLE GA 

GA handles a population of possible solutions. Each solution is represented 

through a chromosome, which is just an abstract representation. Coding all 

the possible solutions into a chromosome is the first part, but certainly not 

the most straightforward one of a GA. A set of reproduction operators has 

to be determined, coo. Reproduction operators are applied directly on the 

chromosomes, and are used to perform mutations and recombination over 

solutions of the problem. Appropriate representation and reproduction 

operators are the determining factors, as the behaviour of the GA is 

extremely dependent on it. Frequency, it can be extremely difficult to find 

a representation that respects the structure of the search space and 

reproduction operators that are coherent and relevant according to the 

properties of the problems. 

The simple form of GA is given by the following. 

1.  Scan with a randomly generated population. 

2.  Calculate the fitness of each chromosome in the population. 

3.  Repeat the following steps until n offspring’s have been created: 

* Select a pair of parent chromosomes from the current 

population. 

* With probability Pc crossover the pair at a randomly chosen 

point co forms two offspring’s. 

* Mutate le two offspring’s at each locus with probability Pm. 

4.  Replace the current population with the new population. 

5.  Go to seep 2. 

Now we discuss each iteration of this process. 

Generation: Selection: is supposed to be able to compare each individual in 

the population. Selection is done by using a fitness function. Each 

chromosome has an associated value corresponding to the fitness of the 

solution it represents. The fitness should correspond to an evaluation of how 

good the candidate solution is. The optimal solution is the one which 

maximizes the fitness function. GAs deal with the problems that maximize 

the fitness function. Bur, if the problem consists of minimizing a cost 

function, the adaptation is quite easy. Either the cost function can be 

transformed into a fitness function, for example by inverting it; or the 

selection can be adapted in such way that they consider individuals with low 

evaluation functions as better. Once the reproduction and the fitness 

function have been properly defined, a GA is evolved according to the same 

basic structure. It starts by generating an initial population of chromosomes. 

This first population must offer a wide diversity of genetic materials. The 

gene pool should be as large as possible so that any solution of the search 
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randomly. Then, the GA loops over an iteration process to make the 

population evolve. Each iteration consists of the following steps: 

1.  Selection: The first step consists in selecting individuals for 

reproduction. This selection is done randomly with a probability 

depending on the relative fitness of the individuals so that best ones 

are often chosen for reproduction rather than the poor ones. 

2.  Reproduction: In the second step, offspring are bred by selected 

individuals. For generating new Chromosomes, the algorithm can use 

both recombination and mutation. 

3.  Evaluation: Then the fitness of the new chromosomes is evaluated. 

4.  Replacement: During the last step, individuals from the old 

population are killed and replaced by the new ones. 

 

 

The algorithm is stopped when the population converges toward the optimal 

solution. 

BEGIN/* genetic algorithm"/ 

Generate initial population; 

Compare fitness of each individual; 

WHILE NOT finished DO LOOP 

BEGIN 

Select individuals from old generations 

For mating; 

Create offspring by applying 

Recombination and/or mutation 

The selected individuals; 

Compute fitness of the new individuals; 

Kill old individuals w make room for 

New chromosomes and insert 

Offspring in the new generalization; 

IF Population has converged 

THEN finishes: =TRUE; 

END 

END 

Genetic algorithms are not too hard to program or understand because they 

are biological based. An example of a flowchart of a GA is shown in Figure 

9-13. 
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Figure 9·13 Flowchart for genetic algorithm. 

4A.8 SUMMARY 

Genetic algorithms are original systems based on the supposed functioning 

of the living. The method is very different & the classical optimization 

algorithms as it: 

 

1.  Uses the encoding of the parameters, not the parameters themselves. 

2.  Works on a population of points, not a unique one. 

3.  Uses the only values of the function to optimize, not their derived 

function or other auxiliary knowledge. 

4.  Uses probabilistic transition function and not determinist ones. 

lt is important to understand that the functioning of such an algorithm does 

not guarantee success. The problem is in a stochastic system and a genetic 

pool may be too far from the solution, or for example, a too fast convergence 

may hair the process of evolution. These algorithms are, nevertheless, 

extremely efficient, and are used in fields as diverse as stock exchange, 

production scheduling or programming of assembly robots in the 

automotive industry. 

GAs can even be faster in finding global maxima that conventional methods, 

in particular when derivatives provide misleading information. It should be 

noted that in most cases where conventional methods can be applied, GAs 

are much slower because they do not take auxiliary information such as 

derivatives into account. In these optimization problems, there is no need to 
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computation time. The enormous potential of GAs lies elsewhere- in 

optimization of non-differentiable or even discontinuous functions, discrete 

optimization, and program in junction. 

lt has been claimed that via the operations of selection, crossover and 

mutation, the GA will converge over successive generations towards the 

global (or near global) optimum. This simple operation should produce a 

fast, useful and to bust technique largely because of the face that GAs 

combine direction and chance in the search in an effective and efficient 

manner. Since population implicity contain much more information than 

simply the individual fitness stores, GAs combine the good information 

hidden in a solution with good information from another solution to produce 

new solutions with good information inherited from both parents, 

inevitable}' (hopefully) leading towards optimality. 

In this chapter we have also discussed the various classifications of GAs. 

The class of parallel GAs is very complex, and its behavior is affected by 

many parameters. It seems that the only way to achieve a greater 

understanding of parallel GAs is to study individual facets independent!}', 

and we have seen that some of the most influential publications in parallel 

GAs concentrate on only one inspect (migration rates, communication 

topology or deme size) either ignoring or making simplifying assumptions 

on the others. Also the hybrid GA, adaptive GA, independent sampling GA 

and messy GA has been included with the necessary information. 

Genetic programming has been used to model and control a multitude of 

processes and to govern their behavior according to fitness based 

automatically generated algorithm. Implementation of generic 

programming will benefit in the coming year from new approaches which 

include research from developmental biology. Also, it will be necessary to 

learn to handle the redundancy forming pressures in the evolution of to the. 

Application of genetic programming will continue to broaden. Many 

applications focus on controlling behaviour of real or virtual agents. In this 

role, genetic programming may contribute considerably to the growing field 

of social and behavioural simulations. A brief discussion on Holland 

classifier system is also included in this chapter. 

4A.9 REVIEW QUESTIONS 

1.  State Charles Darwin's theory of evulsions. 

2.  What is meant by genetic algorithm? 

3.  Compare and contrast traditional algorithm and genetic algorithm. 

4.  Stare the importance of genetic algorithm. 

5.  Explain in detail about the various operators involved in genetic 

algorithm. 

6.  What the various types of crossover and mutation techniques? 

7.  With a neat flowchart, explain the operation of a simple genetic 

algorithm. 
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8.  State the general genetic algorithm. 

9.  Discuss in detail about the various types of genetic algorithm in derail. 

10.  State schema theorem. 

11.  Write than note on Holland classifier systems. 

12.  Differentiate between messy GA and parallel GA 

13.  What is the importance of hybrid GAs? 

14.  Describe the concepts involved in real-coded genetic algorithm. 

15. What is genetic programming? 

16.  Compare genetic algorithm and genetic programming. 

17.  List the characteristics of genetic programming. 

18.  With a neat flowchart, explain the operation of genetic programming. 

19.  How are data represented in genetic programming? 

20.  Mention the application of genetic algorithm. 

Exercise Problems 

1.  Determine the maximum of function x x x5 (0.007x+ 2) using genetic 

algorithm by wiring a program. 

2.  Determine the maximum of function exp( -3x) + sin(6 r x) using 

genetic algorithm. Given range = [0.004 0.7]; bits = 6; population = 

12; generations = 36; mutation = 0.005; mutation = 0.3. 

3.  Optimize the logarithmic function using a genetic algorithm by 

writing a program. Genetic Algorithm 

4.  Solve the logical AND function using genetic algorithm by writing a 

program. 

5.  Solve the XNOR problem using genetic algorithm by writing a 

program. 

6.  Determine the maximum of function exp(5x) + sin (7rr x) using 

genetic algorithm. Given range = [0.002 0.6]; bits = 3; population == 

14; generations = 36; mutation = 0.006; matenum = 0.3. 
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4b 
GENETIC ALGORITHM 

Unit Structure 

4b.0   Introduction 

4b.1  General Genetic Algorithm 

4b.2  Operators in Genetic Algorithm 

4b.3  Stopping Condition for Genetic Algorithm Flow 

4b.4  Constraints in Genetic Algorithm 

4b.5  Problem Solving Using Genetic Algorithm 

4b.6  The Schema Theorem 

4b.7  Classification of Genetic Algorithm 

4b.8  Holland Classifier Systems 

4b.9  Genetic Programming 

4b.10  Advantages and Limitations of Genetic Algorithm 

4b.11  Applications of Genetic Algorithm 

4b.12  Summary 

4b.13  Review Questions  

4b.14  REFERENCES 

LEARNING OBJECTIVES  

 Gives an introduction to natural evolution.  

 Lists the basic operators (selection, crossover, mutation) and other 

terminologies used in Genetic Algorithms (GAs). 

 Discusses the need for schemata approach. 

 Details the comparison of traditional algorithm with GA. 

 Explains the operational flow of simple GA. 

 Description is given of the various classifications of GA- Messy GA, 

adaptive GA, hybrid GA, parallel GA and independent sampling GA. 

 The variants of parallel GA (fine-grained parallel GA and coarse-

grained parallel GA) are included. 

 Enhances the basic concepts involved in Holland classifier system. 

 The various features and operational properties of genetic 

programming are provided. 

 The application areas of GA are also discussed. 
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the eye could have been formed by natural selection is enough to stagger 

any one; yet in the case of any organ, if we know of a long series of 

gradations in complexity, each good for its possessor, then, under changing 

conditions of life, there is no logical impossibility in the acquirement of any 

conceivable degree of perfection through natural selection." 

4B.0 INTRODUCTION 

Thales Darwin has formulated the fundamental principle of natural 

selection as the main evolutionary tool. He put forward his ideas without 

the knowledge of basic hereditary principles. In 1865, Gregory Mendel 

discovered these hereditary principles by the experiments he carried out on 

peas. After Mendel's work genetics was developed. Morgan experimentally 

found that chromosomes were the carriers of hereditary information and that 

genes representing the hereditary factors were lined up on chromosomes. 

Darwin's natural selection theory and natural genetics remained unlinked 

until 1920s when it was proved that genetics and selection were in no way 

contrasting each other. Combination of Darwin’s and Mendel’s ideas leads 

to the modern evolutionary theory. 

In The Origin of Species, Thales Darwin stated the theory of natural 

evolution. Over many generations, biological organisms evolve according 

to the principles of natural selection like "survival of the fittest" to reach 

some remarkable forms of accomplishment. The perfect shape of the 

albatross wing, the efficiency and the similarity between sharks and 

dolphins and so on are good examples of what random evolution with 

absence of intelligence can achieve. So, if it works so well in nature, it 

should be interesting to simulate natural evolution and try to obtain a 

method which may solve concrete search and optimization problems. 

For a better understanding of this theory, it is important first to understand 

the biological terminology used in evolutionary computation. It is discussed 

in Section 1.2 

In 1975, Holland developed this idea in Adaptation in Natural and Artificial 

Systems. By describing how to apply the principles of natural evolution to 

optimization problems, he laid down the first GA. Holland’s theory has 

been further developed and now GAs stand up as powerful adaptive 

methods to solve search and optimization problems. Today, GAs are used 

to resolve complicated optimization problems, such as, organizing the time 

table, scheduling job shop, playing games. 

What are Genetic Algorithms? 

GAs is adaptive heuristic search algorithms based on the evolutionary ideas 

of natural selection and genetics. As such they represent an intelligent 

exploitation of a random search used to solve optimization problems. 

Although randomized, GAs are by no means random; instead they exploit 

historical information to direct the search into the region of better 

performance within the search space. The basic techniques of the GAs are 
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Genetic Algorithm designed to simulate processes in natural systems necessary for evolution, 

especially those that follow the principles first laid down by Thales Darwin, 

"survival of the fittest," because in nature, competition among individuals 

for seamy resources results in the fittest individuals dominating over the 

weaker ones. 

Why Genetic Algorithms? 

They are better than conventional algorithms in that they are more robust. 

Unlike older AI systems, they do not break easily even if the inputs are 

changed slightly or in the presence of reasonable noise. Also, in searching 

a large state-space, multimodal state-spare or n-dimensional source, a GA 

may offer significant benefits over more typical optimization techniques 

(linear programming, heuristic, depth-first and praxis.) 

4B.1  GENERAL GENETIC ALGORITHM 

The general GA is as follows: 

Step 1: Create a random initial state: An initial population is created from 

a random selection of solutions J (which are analogous to chromosomes). 

This is unlike the situation for symbolic AI systems, where the initial State 

in a problem is already given. 

Step 2: Evaluate fitness: A value for fitness is assigned to each solution 

(chromosome) depending on how close it actually is w solving the problem 

(thus arriving to the answer of the desired problem). 

(These "solutions" are not to be confused with "answers" to the problem; 

think of them as possible 

Characteristics that the system would employ in order to reach the answer.) 

Step 3 Reproduce (and children mutate): Those chromosomes with a higher 

fitness value are more likely to reproduce offspring (which can mutate after 

reproduction). The offspring is a product of the father and mother, whose 

composition consists of a combination of genes from the row (this process 

is known as "crossing over"). 

Step 4:  Nat generation: If the new generation contains a solution that 

produces an output that is dose enough or equal to the desired answer then 

the problem has been solved. If this is not the case, then the new generation 

will go through the same process as their parents did. This will continue L 

until a solution is reached. 

Table 4b.1 : Fitness value for corresponding 

Chromosomes (Example 4a.1) 

Chromosome  Fitness 

A : 00000110  2 

B : 11101110  6 

C :  00100000  1 

D :  00110100  3 
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Chromosomes 

Chromosome  Fitness 

A : 01101110  5 

B : 00100000  1 

C : 10110000  3 

D : 01101110  5 

 

Figure 4b.1    Roulette wheel sampling for proportionate selection 

Example 4b.1: Consider 8-bitchromosomes with the following properties: 

1.  Fitness function f(x) = number of 1 bits in chromosome; 

2.  Population size N = 4; 

3.  Crossover probability Pc= 0.7; 

4.  Mutation probability Pm = 0.001; 

Average fitness of population= 12/4 = 3.0. 

1.  If B and C are selected, crossover is not performed. 

2.  If B is mutated, then 

B : 11101110 B' : 01101110 

3.  If B and D are selected, crossover is performed. 

B : 11101110 E : 10110100 D : 00110100 F : 01101110 

4.  If E is mutated, then 

E : 10110100 E' : 10110000 

Best-fit string from previous population is lost, but the average fitness of 

population is as given below: 

Average fitness of population 14/4 = 3.5 

Tables 4b-2 and 4b-3 show the fitness value for the corresponding 

chromosomes and Figure 9-14 shows the Roulette wheel selection for the 

fitness proportionate selection. 
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Genetic Algorithm 4B.2  OPERATORS IN GENETIC ALGORITHM 

The basic operators that are to be discussed in this section include: 

encoding, selection, recombination and mutation operators. The operators 

with their various types are explained with necessary examples. 

4b.2.1  Encoding 

Encoding is a process of representing individual genes. The process can be 

performed using bits, numbers, trees, arrays, lists or any other objects. The 

encoding depends mainly on solving the problem. For example, one can 

encode directly real or integer numbers. 

4b.2.1.1 Binary Encoding 

The most common way of encoding is a binary string, which would be 

represented as in Figure 4b-2. 

Each chromosome encodes a binary (bit) suing. Each bit in the suing can 

represent some characteristics of the solution. Every bit string therefore is a 

solution but not necessarily the best solution. Another possibility is that the 

whole string can represent a number. The way bit strings can code differs 

from problem to problem. 

Binary encoding gives many possible chromosomes with a smaller number 

of alleles. On the other hand, this encoding is not natural for many problems 

and sometimes corrections must be made after genetic operation is 

completed. Binary coded strings with Is and Os are mostly used. The length 

of the string depends on the accuracy. In such coding 

1.  Integers are represented exactly. 

2.  Finite number of real numbers can be represented. 

3.  Number of real numbers represented increases with string length. 

4b.2.1.2 Octal Encoding 

This encoding uses string made up of octal numbers (0-7) (see Figure 9-16). 

Chromosome 1 1 1 0 1 0 0 0 1 1 0 1 0 

Chromosome 2 I 0 1 1 1 1 1 1 1 1 1 0 0 

Figure 4b.2    Binary encoding. 

Chromosome 1 03467216 

Chromosome 2 9723314 

Figure 4b.3  Octal encoding 

Chromosome1 9CE7 

Chromosome 2 3DBA 

Figure 4b.4 Hexadecimal encoding. 

Chromosome A 1 5 3 2 6 4 7 9 8 

Chromosomes 8 5 6 7 2 3 1 4 9 

Figure 4b.5    Permutation encoding. 
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Soft Computing Techniques 4b.2.1.3 Hexadecimal Encoding 

This encoding uses string made up of hexadecimal numbers (0-9, A-F)  

(see Figure 9-17). 

4b.2.1.4 Permutation Encoding (Real Number Coding) 

Every chromosome is a string of numbers, represented in a sequence. 

Sometimes corrections have to be done after genetic operation is complete. 

In permutation encoding, every chromosome is a suing of integer/real 

values, which represents number in a sequence. 

Permutation encoding (Figure 9-18) is only useful for ordering problems. 

Even for this problem, some types of crossover and mutation corrections 

must be made to leave the chromosome consistent (i.e., have real sequence 

in it). 

4b.2.1.5 Value Encoding 

Every chromosome is a string of values and the values can be anything 

connected w the problem. This encoding produces best results for some 

special problems. On the other hand, it is often necessary to develop new 

genetic operator's specific to the problem. Direct value encoding can be 

used in problems, where some complicated values, such as real numbers, 

are used. Use of binary encoding for this type of problems would be very 

difficult. 

In value encoding (Figure 9-19), every chromosome is a string of some 

values. Values can be anything connected to problem, form numbers, real 

numbers or characters to some complicated objects. Value encoding is very 

good for some special problems. On the other hand, for this encoding it is 

often necessary to develop some new crossover and mutation specific for 

the problem. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 

Chromosome C (back), (back), (right), (forward), (left) 

Figure 4b.6     Value encoding. 

4b.2.1.6 Tree Encoding 

This encoding is mainly used for evolving program expressions for genetic 

programming. Every chromosome is a tree of some objects such as 

functions and commands of a programming language. 

4b.2.2 Selection 

Selection is the process of choosing two parents from the population for 

crossing. After deciding on an encoding, the next step is to decide how to 

perform selection, i.e., how to choose individuals in the population that will 

create offspring for the next generation and how many offspring each will 
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Genetic Algorithm create. The purpose of selection is in emphasize fitter individuals in the-

population in hopes that their offspring have higher fitness. Chromosomes 

are selected from the initial population to be parents for reproduction. The 

problem is how to select these chromosomes. According to Darwin’s theory 

of evolution the best ones survive to create new offspring. Figure 4b.7 

shows the basic selection process. 

Selection is a method that randomly picks chromosomes out of the 

population according to their evaluation function. The higher the fitness 

function, the better chance that an individual will be selected. The selection 

pressure is defined as the degree to which the better individuals are 

favoured. The higher selection pressured, the more the better individuals are 

favoured. This selection pressure drives the GA to improve the population 

fitness over successive generations. 

The convergence rate of GA is largely determined by the magnitude of the 

selection pressure, with higher selection pressures resulting in higher 

convergence rates. GAs should be able to identify optimal or nearly optimal 

solutions under a wide range of selection scheme pressure. However, if the 

selection pressure is too low, the convergence rate will be slow, and the GA 

will take unnecessarily longer to find the optimal solution. If the selection 

pressure is too high, there is an increased change of the GA prematurely 

converging to an incorrect (sub-optimal) solution. In addition to providing 

selection pressure, selection schemes should also preserve population 

diversity, as this helps to avoid premature convergence. 

Typically we can distinguish two types of selection scheme, proportionate-

based selection and ordinal based selection. Proportionate-based selection 

picks out individuals based upon their fitness values relative to the fitness 

of the other individuals in the population. Ordinal-based selection schemes 

select individuals not upon their raw fitness, bur upon their rank within the 

population. This requires that the selection pressure is independent of the 

fitness distribution of the population, and is solely based upon the relative 

ordering (ranking) of the population. 

 

Figure 4b-7   Selection. 
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Soft Computing Techniques It is also possible to use a scaling function to redistribute the fitness range 

of the population in order to adapt the selection pressure. For example, if all 

the solutions have their finesses in the range [999, 1000], the probability of 

selecting a better individual than any other using a proportionate based 

method will note important. If the fitness every individual is bringing to the 

range [0, 1] equitable, the probability of selecting good individual instead 

of bad one will be important. Selection has to be balanced with variation 

from crossover and mutation. Too strong selection means sub-optimal 

highly fit individuals will take over the population, reducing the diversity 

needed for change and progress; too weak selection will result in too slow 

evolution. The various selection methods are discussed in the following 

subsections. 

4b.2.2.1 Roulette Wheel Selection 

Roulette selection is one of the traditional GA selection techniques. The 

commonly used reproduction operator is the proportionate reproductive 

operator where a string is selected from the mating Pool with a probability 

proportional to the fitness. The principle of Roulette selection is a linear 

search through a Roulette wheel with the store in the wheel weighted in 

proportion to the individual's fitness values. A target value is set, which is 

a random proportion of the sum of the finesses in the population. The 

population is stepped through until the target value is reached. This is only 

a moderately strong selection technique, since fir individuals are not 

guaranteed to be selected for, bur somewhat have a greater chance. A fit 

individual will contribute more to the target value, but if it does not exceed 

it, the next chromosome in line has a chance, and it may be weak. It is 

essential that the population not be sorted by fitness, since this would 

dramatically bias the selection. 

The Roulette process can also be explained as follows: The expected value 

of an individual is individual’s fitness divided by the actual fitness of the 

population. Each individual is assigned a slice of the Roulette wheel, the 

size of the slice being proportional to the individual's fitness. The wheel is 

spun N times, where N is the number of individuals in the population. On 

each spin, the individual under the wheel's marker is selected to be in the 

pool of parents for the next generation. This method is implemented as 

follows: 

1.  Sum the total expected value of the individuals in the population. Let 

it be T. 

2.  Repeat N times: 

i.  Choose a random integer "r" between 0 and T. 

ii.  Loop through the individuals in the population, summing the 

expected values, until the sum is greater than or equal to "r." 

The individual whose expected value puts the sum over this 

limit is the one selected. 

Roulette wheel selection is easier to implement bur is noisy. The rate of 

evolution depends on the variance of fitness's in the population. 
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Genetic Algorithm 4b.2.2.2 Random Selection 

This technique randomly selects a parent from the population. In terms of 

disruption of genetic codes, random selection is a little more disruptive, on 

average, than Roulette wheel selection. 

4b.2.2.3 Rank Selection 

The Roulette wheel will have a problem when the fitness values differ very 

much. If the best chromosome fitness is 90%, its circumference occupies 

90% of Roulette wheel, and then other chromosomes have too few chances 

to be selected. Rank Selection ranks the population and every chromosome 

receives fitness from the ranking. The worst has fitness 1 and the best has 

fitness N. It results in slow convergence but prevents too quick convergence. 

It also keeps up selection pressure when the fitness variance is low. It 

preserves diversity and hence leads to a successful search. In effect, 

potential parents are selected and a tournament is held to decide which of 

the individuals will be the parent. There are many ways this can be achieved 

and two suggestions are: 

1.  Select a pair of individuals at random. Generate a random number R 

between 0 and 1. If R <ruse the first individual as a parent. If the R >r 

then use the second individual as the parent. This is repeated to select 

the second parent. The value of r is a parameter to this method. 

2.  Select two individuals at random. The individual with the highest 

evaluation becomes the parent. Repeat to find a second parent. 

4b.22.4 Tournament Selection 

An ideal selection strategy should be such that it is able to adjust its selective 

pressure and population diversity so as to fine-rune GA search performance. 

Unlike, the Roulette wheel selection, the tournament selection strategy 

provides selective pressure by holding a tournament competition among Nu 

individuals. 

The best individual from the tournament is the one with the highest fitness, 

who is the winner of Nu. Tournament competitions and the winner are then 

inserted into the mating pool. The tournament competition is repeated until 

the mating pool for generating new offspring is filled. The mating pool 

comprising the tournament winner has higher average population fitness. 

The fitness difference provides the selection pressure, which drives GA to 

improve the fitness of the succeeding genes. This method is more efficient 

and leads to an optimal solution. 

4b.2.2.5 Boltzmann Selection 

SA is a method of function minimization or maximization. This method 

simulates the process of slow cooling of molten metal to achieve the 

minimum function value in a minimization problem. Controlling a 

temperature-like parameter introduced with the concept of Boltzmann 

probability distribution simulates the cooling phenomenon. 
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Soft Computing Techniques In Boltzmann selection, a continuously varying temperature controls the 

rate of selection according to a preset schedule. The temperature starts out 

high, which means that the selection pressure is low. The temperature is 

gradually lowered, which gradually increases the selection pressure, thereby 

allowing the GA to narrow in more closely to the best part of the search 

space while maintaining the appropriate degree of diversity. 

A logarithmically decreasing temperature is found useful for convergence 

without getting stuck to a local minima state. However, it takes time to cool 

down the system to the equilibrium state. 

Let fax be the fitness of the currently available best string. If the next string 

has fitness f (X:) such that f(X;)>fmax• then the new string is selected. 

Otherwise it is selected with Bole/Mann  

P= exp[-{fmax- f(Xi)} /T] ……………(17) 

probability where T = To (1- )k and k = (1 + 100 *g/G); g is the current 

generation number; G the maximum value of g. The value of CI:' can be 

chosen from the range [0, 1] and that of T0 from the range [5, 100]. The 

final stare is reached when computation approaches zero value of T, i.e., the 

global solution is achieved at this point. 

The probability that the best string is selected and introduced into the mating 

pool is very high. However, Elitism can be used to eliminate the chance of 

any undesired loss of information during the mutation stage. Moreover, the 

execution time is less. 

 

Figure 4b·8 Stochastic universal sampling. 

Elitism 

The first best chromosome or the few best chromosomes are copied to the 

new population. The rest is done in a classical way. Such individuals can be 

lost if they are not selected to reproduce or if crossover or mutation destroys 

them. This significantly improves the GA's performance. 

4b.2.2.6 Stochastic Universal Sampling  

Stochastic universal sampling provides zero bias and minimum spread. The 

individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness exactly as in Roulette 
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Genetic Algorithm wheel selection. Here equally spaced pointers are placed over the line, as 

many as there are individuals to be selected. Consider N Pointer the number 

of individuals to be selected, then the distance between the pointers are 1/N 

Pointer and the position of the first pointer is given by a randomly generated 

number in the range [0, 1/N Pointer]. For 6 individuals to be selected, the 

distance between the pointers is 1/6 = 0.167. 

Figure 4a.21 shows the selection for the above example. 

Sample of 1 random number in the range [0, 0.167]: 0.1. 

After selection the mating population consists of the individuals, 

1,2,3,4,6,8 

Stochastic universal sampling ensures selection of offspring that is closer to 

what is deserved as compared to Roulette wheel selection. 

4b.2.3 Crossover (Recombination) 

Crossover is the process of taking two parent solutions and producing from 

them a child. After the selection (reproduction) process, the population is 

enriched with better individuals. Reproduction makes clones of good strings 

but does not create new ones. Crossover operator is applied to the mating 

pool with the hope that it creates a better offspring. 

Crossover is a recombination operator that proceeds in three steps: 

1.  The reproduction operator selects at random a pair of two individual 

strings for the mating. 

2.  A cross site is selected at random along the string length. 

3.  Finally, the position values are swapped between the two strings 

following the cross site. 

That is the simplest way how to do that is to choose randomly some 

crossover point and copy everything before this point &on the first parent 

and then copy everything after the crossover point from the other parent. 

The various crossover techniques are discussed in the following 

subsections. 

Parent1 1 0 1 1 0  0 1 0  

Parent2 1 0 1 0 1  1 1 1 

   

Child1 1 0 1 1 0  1  1  1 

Chiled2 1 0 1 0 1  0  1  0 

Figure 4b.9: Single-point crossover 
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Soft Computing Techniques 4b.2.3.1 Single-Point Crossover 

The traditional genetic algorithm uses single-point crossover, where the two 

mating chromosomes are cut once at corresponding points and the sections 

after the cuts exchanged. Here, a cross site or crossover point is selected 

randomly along the length of the mated strings and bits next to the cross 

sites are exchanged. Inappropriate site is chosen, bender children can be 

obtained by combining good parents, else it severely hampers string quality. 

Figure 4b-22 illustrates single point crossover and it can be observed that 

the bits next to the crossover point are exchanged to produce children. The 

crossover point can be chosen randomly. 

4b.2.3.2 Two Point Crossover 

Apart from single point crossover, many different crossover algorithms 

have been devised, often involving more than one cut point. It should be 

noted that adding further crossover points reduces the performance of the 

GA. The problem with adding additional crossover points is that building 

blocks are more likely to be disrupted. However, an advantage of having 

more crossover points is that the problem space may be searched more 

thoroughly. 

In two-point crossover, two crossover points are chosen and the contents 

between these points are exchanged between two mated parents. 

In Figure 4b-23 the dotted lines indicate the crossover points. Thus the 

comments between these points are 

exchanged between the parents to produce new children for mating in the 

next generation. 

Parent1 1 1 0 1 1 0 1 0 

Parent2 0 1 1 0 1 1 0 0 

   

Child 1 1 1 1 0 1   0 1 0 

Child2 0 1 0 1 1   1 0 0 

Figure 4b-10 Two-point crossover 

Originally, GAs were using one point crossover which cuts two 

chromosomes in one point and splices the two halves to create new ones. 

But with this one-point crossover, the head and the rail of one chromosome 

cannot be passed together to the offspring. If both the head and the rail of a 

chromosome contain good genetic information, none of the offspring 

obtained directly with one-point crossover will share the two good features. 

Using a two-point crossover one can avoid this drawback, and so it is 

generally considered better than one-point crossover. In fact, this problem 
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Genetic Algorithm can be generalized to each gene position in a chromosome. Genes that are 

close on a chromosome have more chance to be passed together to the 

offspring obtained through N-points crossover. It leads to an unwanted 

correlation between genes next to each other. Consequently, the efficiency 

of an N-point crossover will depend on the position of the genes within the 

chromosome. In a genetic representation, genes that encode dependent 

characteristics of the solution should be close together. To avoid all the 

problem of genes locus, a good thing is to use a uniform crossover as 

recombination operator. 

4b.2.3.3 Multipoint Crossover (N·Point Crossover) 

There are two ways in this crossover. One is even number of cross sires and 

the other odd number of cross sites. In the case of even number of cross 

sires, the cross sites are selected randomly around a circle and information’s 

exchanged. In the case of odd number of cross sites, a different cross point 

is always assumed at the string beginning. 

4b.2.3.4 Uniform Crossover 

Uniform crossover is quite different from the N-point crossover. Each gene 

in the offspring is created by copying the corresponding gene from one or 

the other parent chosen according to a random generated binary crossover 

mask of the same length as the chromosomes. Where there is a 1 in the 

crossover mask, the gene miscopied from the first parent, and where there 

is a 0 in the mask the gene is copied from the second parent. Anew crossover 

mask is randomly generated for each pair of parents. Offspring, therefore, 

contain a mixture of genes from each parent. The number of effective 

crossing point is not fixed, but will average L/2 (where L is the chromosome 

length). 

In Figure 4a.24, new children are produced using uniform crossover 

approach. It can be noticed that while producing child 1, when there is a 1 

in the mask, the gene is copied from parent 1 else it is copied from parent 

2. On producing child 2, when there is a 1 in the mask, the gene is copied 

from parent 2, and when there is a 0 in the mask, the gene is copied from 

the parent 1. 

4b.2.3.5 Three Parent Crossover 

In this crossover technique, three parents are randomly chosen. Each bit of 

the first parent is compared with the bit of the second parent. If both are the 

same, the bit is taken for the offspring; otherwise the bit from the third 

parent is taken for the offspring. This concept is illustrated in Figure 9-25. 

Parent 1 1 0 1 1 0 0 1 1 

Parent 2 0 0 0 1 1 0 1 0 

Mask 1 1 1 0 1 0 1 1 0 

Child 1 1 0 0 1 1 0 1 0 

Child 2 0 0 1 1 0 0 1 1 
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Soft Computing Techniques Figure 4b.11 Uniform crossover 

Parent 1 11010001 

Parent 2 01101001 

Parent 3 01101100 

Child 01101001 

Figure 4b.12   Three parent crossover 

4b.2.3.6 Crossover with Reduced Surrogate 

The reduced surrogate operator constraints crossover to always produce 

new individuals wherever possible. This is implemented by restricting the 

location of crossover points such that crossover points only occur where 

gene values differ. 

4b.2.3.7 Shuffle Crossover 

Shuffle crossover is related to uniform crossover. A single crossover 

position (as in single point crossover) is decreed. But before the variables 

are exchanged, they are randomly shuffled in both parents. After 

recombination, the variables in the offspring are unstuffed. This removes 

positional bias as the variables are randomly reassigned each time crossover 

is performed. 

4b.2.3.8 Precedence Preservative Crossover 

Precedence preservative crossover (PPX) was independently developed for 

vehicle touting problems by Blanton and Wainwright (1993) and for 

scheduling problems by Bierwirth et al. (1996). The operator passes on 

precedence relations of operations given in two parental permutations to one 

offspring at the same race, while no new precedence relations are 

introduced. PPX is illustrated below for a. problem consisting of six 

operations A-F. The operator works as follows: 

l.  A vector of length Sigma, sub i == 1 tomi, representing the number 

of operations involved in the problem, is randomly filled with 

elements of the set {1, 2). 

2.  This vector defines the order in which the operations are successively 

drawn from parent I and parent 2. 

3.  We can also consider the parent and offspring permutations as lists, 

for which the operations "append “and "delete'' are defined. 

4.  First we scan by initializing an empty offspring. 

5.  The leftmost operation in one of the two parents is selected in 

accordance with the order of parents given in the vector. 

6.  After an operation is selected, it is deleted in both parents. 

7. Finally the selected operation is appended to the offspring. 
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Genetic Algorithm 8.  Step 7 is repeated until both parents are empty and the offspring 

domains all operations involved. 

Note that PPX does not work in a uniform crossover manner due tithe 

"deletion-append" scheme used. Example is shown in Figure 9-26. 

4b.2.3.9 Ordered Crossover 

Ordered two-point crossover is used when the problem is order based, for 

example in U shaped assembly line balancing, etc. Given two parent 

chromosomes, two random crossover points are selected partitioning 

Parent permutation 1  A  B  C  D  E  F 

Parent permutation 2  C  A  B  F  D  E 

Select parent no. (1/2)  1  2  1  1  2  2 

Offspring permutation  A  C  B  D  F  E 

Figure 4b.26  Precedence preservative crossover (PPX). 

Parent 1:4 2 | 1 3 | 65 Child 1:4 2 | 31 | 65 

Parent 2:2 3 | 1 4 | 56 Child 2:2 3 | 41 | 56 

Figure 4b.13    Ordered crossover 

them into a left, middle and right portions. The ordered two point crossover 

behaves in the following way: child 1 inherits its left and right section from· 

parent l, and its middle section is determined by the genes in the middle 

section of parent 1 in the order in which the values appear in parent 2. A 

similar process is applied to determine child 2. This is shown in Figure 

4a.27. 

4b.2.3. 10 Partially Matched Crossover 

Finally matched crossover (PMX) can be applied usefully in the TSP. 

Indeed, TSP chromosomes are simply sequences of integers, where each 

integer represents a different city and the order represents the time at which 

acidy is visited. Under this representation, known as permutation encoding, 

we are only interested in labels and not alleles. It may be viewed as a 

crossover of permutations that guarantees that all positions arc found 

exactly once in each offspring, i.e., both offspring receive a full complement 

of genes, followed by the corresponding filling in of alleles from their 

parents. PMX proceeds as follows: 

1.  The two chromosomes are aligned. 

2.  Two crossing sires are selected uniformly at random along the strings, 

defining a marching section. 

3.  The matching section is used to effect a cross through position-by-

position exchange operation. 
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Soft Computing Techniques 4.  Alleles are moved to their new positions in the offspring. 

The following illustrates how PMX works. 

Name  9 8 4  . 5 6 7 . 1 8 2 1 0     Allele 1 0 1 . 0 0 1 . 1 1 0 0 

Name  8 7 1 . 2 3 1 0 . 9 5 4 6      Allele 1 1 1 . 0 1 1 . 1 1 0 1 

Figure 4b·14     Given strings 

Consider the two strings shown in Figure 9-28, where the dots mark the 

selected cross points. The marching section defines the position-wise 

exchanges that must take place in both parents to produce the offspring. The 

exchanges are read from the marching section of one chromosome to that 

of the other. In the example illustrate in Figure 9-28, the numbers that 

exchange places are 5 and 2, 6 and 3, and 7 and 10. The resulting offspring 

are as shown in Figure 4a.29. PMX is dealt in derail in the next chapter. 

Name  9 8 4 . 2 3 1 0 . 1 6 5 7                 Allele 1 0 1 . 0 1 0 . 1 0 0 1 

Name  8 1 0 1 . 5 6 7 . 9 2 4 3               Allele 1 1 1 . 1 1 1 . 1 0 0 1 

Figure 4b.15   partially matched crossover. 

4b.2.3.11 Crossover Probability 

The basic parameter in crossover technique is the crossover probability 

(Pt).Crossover probability is a parameter to describe how often crossover 

will be performed. If there is no crossover, offspring are exact copies of 

parents. If there is crossover, offspring are made from parts of both parents' 

chromosome. If crossover probability is 100%, then all offspring are made 

by crossover. If it is O%, whole new- generation is made from exact copies 

of chromosomes from old population (but this does not mean that the new 

generation is the same!). Crossover is made in hope that new chromosomes 

will contain good parts of old chromosomes and therefore the new 

chromosomes will be better. However, it is good to leave some part of old 

population survive to next generation. 

4b.2.4 Mutation 

After crossover, the strings are subjected to mutation. Mutation prevents the 

algorithm to be trapped in a local minimum. Mutation plays the tale of 

recovering the lost genetic materials as well as for randomly distributing 

genetic information. It is an insurance policy against the irreversible loss of 

genetic material. Mutation has been traditionally considered as a simple 

search operator. If crossover is supposed to exploit the current solution to 

find better ones, mutation is supposed to help for the exploitation of the 

whole search space. Mutation isvie¥1ed as a background operator to 

maintain genetic diversity in the population. It introduces new genetic 

structures in the population by randomly modifying some of its building 

blocks. Mutation helps escape from local minima's trap and maintains 

diversity in the population. It also keeps the gene pool well stocked, thus 
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Genetic Algorithm ensuring periodicity. A search space is said to be argotic if there is a non-

zero probability of generating any solution from any population state. 

There are many different forms of mutation for the different kinds of 

representation. For binary representation, a simple mutation can consist in 

inverting the value of each gene with a small probability. The probability is 

usually taken about 1/ L, where L is the length of the chromosome. It is also 

possible to implement kind of hill climbing mutation operators that do 

mutation only if it improves the quality of the solution. Such anoperawr can 

accelerate the search; however, care should be taken, because it might also 

reduce the diversity in the population and make the algorithm converge 

toward some local optima. Mutation of a bit involves flipping a bit, 

changing 0 to1 and vice-versa. 

4b.2.4 1 Flipping 

Flipping of a bit involves changing 0 to 1 and 1 to 0 based on a mutation 

chromosome generated. Figure 4a.30 explains mutation flipping concept. A 

parent is considered and a mutation chromosome is randomly generated. 

For a 1 in mutation chromosome, the corresponding bit in parent 

chromosome is flipped (0 to 1 and1 to 0) and child chromosome is 

produced. In the case illustrated in Figure 41.30, 1 occurs at 3 places of 

mutation chromosome, the corresponding bits in parent chromosome are 

flipped and the child is generated. 

4b.2.4.2  Interchanging 

Two random positions of the string are chosen and the bits corresponding 

to those positions are interchanged (Figure 4a.31). 

Parent 1 0 1 1 0 1 0 1 

Mutation chromosome 1 0 0 0 1 0 0 1 

Child 0 0 1 1 1 1 0 0 

Figure 4b.16 Mutation flipping. 

Parent 1 0 1 1 0 1 0 1 

Child 1 1 1 1 0 0 0 1 

Figure 4b.17 Interchanging 

Parent 1 0 1 1 0 1 0 1 

Child 1 0 1 1 0 11 1 

Figure 4b·18 Reversing. 
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A random position is chosen and the bits next to that position is reversed 

and child chromosome is produced (Figure 9-32). 

4b.2.4.4 Mutation Probability 

An important parameter in the mutation technique is the mutation 

probability (P,). It decides how often parts of chromosome will be mutated. 

If there is no mutation, offspring are generated immediately after crossover 

(or directly copied) within any change. If mutation is performed, one or 

more parts of a chromosome are changed. If mutation probability is 100%, 

whole chromosome is changed; if it is 0%, nothing is changed. Marion 

generally prevents the GA from falling into local extremes. Mutation should 

not occur very often, because then GA will in fact change to ralidom search. 

4B.3 STOPPING CONDITION FOR GENETIC 

ALGORITHM FLOW 

In short, the various stopping condition are listed as follows: 

1.  Maxim 11m generations:. The GA stops when the specified number 

of generations has evolved. 

2.  Elapsed time: The genetic process will end when a specified time has 

elapsed. 

 Note: If the maximum number of generation has been reached before 

the specified time has elapsed, the process will end. 

3.  No change in fitness: The genetic process will end if there is no 

change tithe population's best fitness for a specified number of 

generations. 

 Note: If the maximum number of generation has been reached before 

the specified number of generation with too changes has been 

reached, the process will end. 

4.  Stall generations: The algorithm stops if there is no improvement in 

the objective function for a sequence of consecutive generations of 

length "Stall generations." 

5.  Stall time limit. The algorithm stops if there is no improvement in the 

objective function during animerval of time in seconds equal to "Stall 

time limit."· 

The termination or convergence criterion finally brings the search to a halt. 

The following are the few methods of termination techniques. 

4b.3.1 Best Individual 

A best individual convergence criterion stops the search once the minimum 

fitness in the population drops below the convergence value. This brings the 

search w a faster conclusion, guaranteeing at least one good solmion. 
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Genetic Algorithm 4b.3.2 Worst Individual 

Worst individual terminates the search when the least fir individuals in the 

population have fitness less than me convergence criteria. This guarantees 

the entire population w be of minimum standard, although the best 

individual may not be significantly better than the worst. In this case, a 

stringent convergence value may never be met, in which case the search will 

terminate after the maximum has been exceeded. 

4b.3.3 Sum of Fitness 

In this termination scheme, the search is considered to have satisfaction 

converged when the sum of the fitness in the entire population is less than 

or equal to the convergence value in the population record. This guarantees 

that virtually all individuals in the population will be within a particular 

fitness range, although it is bener to pair this convergence criteria with 

weakest gene replacement, otherwise a few unfit individuals in the 

population will blow out the fitness sum. The population size has to be 

considered while setting the convergence value. 

4b.3.4 Median Fitness 

Here at least half of the individuals will be better than or equal to the 

convergence value, which should give a good range of solutions to choose 

from. 

4B.4 CONSTRAINTS IN GENETIC ALGORITHM 

If the GA considered consists of only objective function and no information 

about the specifications of variable, then it is called unconstrained 

optimization problem. Consider, an unconstrained optimization problem of 

the form 

Minimize f(x) = x2  …………(18) 

and there is no information about "x" range. GA minimizes this function 

using its operators in random specifications. 

In the case of constrained optimization problems, the information is 

provided for the variables under consideration. Constraints are classified as: 

1.  Equality relations. 

2.  Inequality relations. 

GA geneses a sequence of parameters to be rested using the system under 

consideration, objective function (to be maximized or minimized) and the 

constraints. On running. the system, the objective function is evaluated and 

constraints are checked to see if there are any violations. If there are no 

violations, the parameter set is assigned the fitness value corresponding to 

the objective function evaluation. When the constraints are violated, the 

solution is infeasible and thus has no fitness. Many practical problems are 

constrained and it is very difficult to find a feasible point that is best. As a 
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irrespective of their fitness ranking in relation tithe degree of constraint 

violation. Thesis performed in penalty method. 

Penalty method is one where a constrained optimization problem is 

transformed to an unconstrained optimization problem by associating a 

penalty or cost with all constraint violations. This penalty is included in the 

objective function evaluation. 

Consider the original constrained problem in maximization form: 

Maximize f(x) 

Subject to gi(x)>0,     i = 1, 2, 3, ... , n 

where x is a k-vector. Transforming this to unconstrained form: 

Maximize f(x) + P ∑ 𝜑[𝑔, (𝑥)]𝑁
𝑖=1  ……..(19) 

where  is the penalty function and P is the penalty coefficient. There exist 

several alternatives for this penalty function. The penalty function can be 

squared for all violated constraints. In certain situations, the unconstrained 

solution converges to the constrained solution as the penalty coefficient p 

rends to infinity. 

4B.5 PROBLEM SOLVING USING GENETIC 

ALGORITHM 

4b5.1 Maximizing a Function 

Consider the problem of maximizing the function, 

f (x )= x2 …..(20) 

where x is permitted to vary between 0 and 31. The steps involved in solving 

this problem are as follows: 

Step I: For using GA approach, one must first code the decision variable "x" 

into a finite length string. I Using a five bit (binary integer) unsigned integer, 

numbers between 0(00000) and 31(11111) can be obtained. 

The objective function here is f(x) = x2 which is to be maximized. A single 

generation of a GA is performed here with encoding, selection, crossover 

and mutation. To start with, select initial population at random. Here initial 

population of size 4 is chosen, but any number of populations can be 

selected based on the requirement and application. Table 9-4 shows an 

initial population randomly selected. 
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Genetic Algorithm Table 4b·4 Selection 

String No. Initial 

population 

(randomly 

selected) 

x 

valu

e 

Fitness 

f(x) = 

x2 

Probi Percentage 

Probability 

(%) 

Expected 

count 

Actual 

count 

1 0 1 1 0 0 12 144 0.1247 11.47 0.4987  1 

2 1 1 0 0 1 25 625 0.5411 54.11 2.1645  2 

3 0 0 1 0 1 5 25 0.0216 2.16 0.0866  0 

4 1 0 0 1 1 19 361 0.3126 31.26 1.2502 1 

Sum   195 1.0000 100 4.0000 4 

Average   288.75 0.2500 25 1.0000 1 

Maximum   625 0.5411 54.11 2.1645 2 

 

Step 2: Obtain the decoded x values for the initial population generated. 

Consider string 1. 

01100 = 0 * 24 + 1 * 23 + I * 22 + 0 * 21 + 0 * 20 

                                      = 0+ 8 + 4 + 0 + 0 

                                      = 12 

Thus for all the four strings the decoded values are obtained. 

Step 3: Calculate the fitness or objective function. This is obtained by 

simply squaring the “x”  

value, since the given function is f(x) = x2 When x = 12, the fitness value is 

f(x) = x2 = (12) 2 = 144 

For x = 25,  f(x) = x2 = (25) 2 = 625 

and so on, until the entire population is computed. 

Step 4: Compute the probability of selection, 

𝑃𝑟𝑜𝑏𝑖 =
𝑓(𝑥)𝑖

∑ 𝑓(𝑥)𝑖
𝑛
𝑖=1

 ….(21) 

where n is the number of populations; f(x) is the fitness value corresponding 

to a particular 
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 f(x) is the summation of all the fitness value of the entire population. 

Considering string l, 

Fitness  f (x) = 144 

              f (x) = 195 

The probability that string 1 occurs is given by 

P1 = 144/195 = 0.1247 

The percentage probability is obtained as 

0.1247 * 100 = 12.47% 

The same operation is done for all the strings. It should be noted that 

summation of probability select is l. 

Step 5: The next step is to calculate the expected count, which is calculated 

as 

   Expected count = 
f(x)𝑖

[𝐴𝑣𝑔 𝑓(𝑥)]𝑖
 …………(22) 

Where 

   (𝐴𝑣𝑔 𝑓(𝑥))𝑖  =  [
∑ 𝑓(𝑥)𝑖

𝑛
𝑖=1

𝑛̅
] ……………..(23) 

For string 1, 

Expected count = Fitness/Average = 144/288.75 = 0.4987 

We then compute the expected count for the entire population. The expected 

count gives an idea of which population can be selected for further 

processing in the mating pool. 

Step 6: Now the actual count is to be obtained to select the individuals who 

would participate in the crossover cycle using Roulette wheel selection. The 

Roulette wheel is formed as shown Figure 9-33. 

The entire Raul we wheel covers 100%  and the probabilities of selection as 

calculated in step 4 for the entire populations are used as indicators to fit 

into the Roulette wheel. Now the wheel may be spun and the number of 

occurrences of population is noted to get actual count. 

1.  String I occupies 12.47%, so there is a chance for it to occur at least 

once. Hence its actual count may be I. 

2.  With string 2 occupying 54.11% of the Roulette wheel, it has a fair 

chance of being selected twice. Thus its actual count can be 

considered as 2. 



 

 
217 

 

Genetic Algorithm 3.  On the other hand, string 3 has the least probability percentage of 

2.16%, so their occurrence for next cycle is very poor. As a result, ire 

actual count is 0. 

 

Figure 4b.19 Selection using Roulette wheel. 

 

 

Table 4b·5 Crossover 

String 

no. 

Mating 

Pool 

Crossover 

point 

Offspring 

after 

crossover 

x 

value 

Fitness 

value                       

f(x) = x2 

1 

2 

3 

4 

0 1 1 0 0 

1 1 0 0 1 

1 1 0 0 1 

1 0 0 1 1 

4 

4 

2 

2 

0 1 1 0 1 

1 1 0 0 0 

1 1 0 1 1 

1 0 0 0 1 

13 

24 

27 

17 

169 

576 

729 

289 

Sum 

Average 

Maximum 

    1763 

440.75 

729 

4.  String 4 with 31.26% has at least one chance for occurring while 
Roulette wheel is spun, thus its actual count is 1. 

The above values of actual count are tabulated as shown is Table 9-5. 

Step 7: Now, write the mating pool based upon the actual count as shown 
in Table 9-5. 
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Soft Computing Techniques The actual count of string no. 1 is I; hence it occurs once in the mating pool. 
The actual count of string no. 2 is 2, hence it occurs twice in the mating 
pool. Since the actual count of string no. 3 is 0, it does not occur in the 
mating pool. Similarly, the actual count of string no. 4 being I, it occurs 
once in the mating pool. Based on this, the mating pool is formed. 

Step 8: Crossover operation is performed w produce new offspring 
(children). The crossover point is specified and based on the crossover 
point, single-point crossover is performed and new offspring is produced. 
The parents are 

Parent 1  0 1 1 0 0 

Parent 2  1 1 0 0 1 

The offspring is produced as 

Offspring 1  0 1 1 0 1 

Offspring 2  1 1 0 0 0 

In a similar manner. crossover is performed for the next strings. 

Step 9: After crossover operations. new offspring are produced and "x .. 
value.\ are decoded and I mess is calculated. 

Step 10: In this step, mutation operation is performed to produce new 
offspring. After crossover operation. As discussed in Section 4a.9.4.1 
mutation-Aipping operation is performed and new offspring are produced. 
Table 4a.6 shows the new offspring after mutation. Once the offspring are 
obtained L after mutation, they are decoded tax value and the fitness values 
are computed.  

This completes one generation. The mutation is performed on a bit-bit by 
basis. The crossover probability and mutation probability were assumed to 
be 1.0 and 0.001, respectively. Once selection, crossover and mutation are 
performed, the new popular ion is now ready to be rested. This is performed 
by decoding the new strings created by the simple GA after mutation and 
calculates the fitness function values from the x values thus decoded. The 
results for successive cycles of simulation are shown in Tables 9-4 and 96. 

Table 4b-6 Mutation 

String 

no. 

Offspring 

after 

crossover 

Mutation 

chromosomes 

for Ripping 

Offspring 

after 

crossover 

x 

value 

Fitness                       

f(x) = 

x2 

1 

2 

3 

4 

0 1 1 0 1 

1 1 0 0 0 

1 1 0 1 1 

1 0 0 0 1 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

1 1 1 0 1 

1 1 0 0 0 

1 1 0 1 1 

1 0 1 0 0 

29 

24 

27 

20 

841 

576 

729 

400 

Sum 

Average 

Maximum 

    2546 

636.5 

841 
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Genetic Algorithm From the rabies, it can be observed how GAs combine high-performance 

notions to achieve bercer performance. In the rabies, it can be noted how 

maximal and average performances have improved in the new population. 

The population average fitness has improved from 288.75 to 636.5 in one 

generation. The maximum fitness has increased from 625 to 841 during the 

same period. Though random processes make this best solution, its 

improvement can also be seen successively. The best string of the initial 

population (1 1 0 0 1) receives no chances for its existence because of its 

high, above-average performance. When this combines at random with the 

next highest string (1 0 0 1 1) and is crossed at crossover point 2 (as shown 

in Table 9-5), one of the resulting strings (1 1 0 1 1) proves to be a very best 

solution indeed. Thus after mutation at random, a new offspring (1 1 1 0 1) 

is produced which is an excellent choice. 

This example has shown one gene ion of a simple GA. 

4B.6 THE SCHEMA THEOREM 

In this section. we will formulate and prove the fundamental research on the 

behaviour of GAs- the so-called Schema Theorem. Although being 

completely incomparable with convergence research’s for conventional 

optimization methods, it still provides valuable insight two the intrinsic 

principles of GAs. Assume a GA with proportional selection and an 

arbitrary bur fixed fitess function f Let us make the following notations: 

 

1.  The number of individuals which fulfil H at time step tare denoted as 

rH,r = \Br  H\ 

2.  The expression f (t) refers to the observed average fitness at time t: 

.

1

1
( ) ( )

m

i t

i

f t f b
m 

   

3.  The term f (H, t) stands for the observed average fitness of schema H 

in time step t: 

.

{ }

1
( , ) ( )

.
ix

i t

i Ab H

f H t f b
rH s  

   

Theorem (Schema Theorem - Holland 1975). Assuming we consider a 

simple GA. the following inequality holds for eveq schema H: 

( )

1

( , ) ( )
[ . ] (1 (1 )

( ) 1

O H

t c

f H t H
E rh rHs p pM

f t n



  


 

Proof. The probability that we select an individual fulfilling H is 



   

 
220 

Soft Computing Techniques 

,

,

{ | }

,

1

( )

( )

j t

i t

i j b H

m

i t

i

f b

f b

 






 

This probability does not change throughout the execution of the selection 

loop. Moreover, each of them individuals is select::d independent of the 

others. Hence the number of selected individuals. which fulfil H, is 

binomially distributed with sample amount m and the probability. We 

obtain, therefore, that the expected number of selected individuals fulfilling 

H is 

……(24) 

If  two individuals at crossed, which bmh fulfil H, the two offspring’s again 

fulfil H. The number of strings fulfilling H can only decrease if one string. 

which fulfils H, is crossed with a string which does not fulfil H. but, 

obviously, only if the cross sire is chosen somewhere in between the 

specifications of H. The probability that the cross sire is chosen within the 

detaining length of H is 

( )

1

H

n




………………..(25) 

Hence the survival probability ps of H, i.e., the probability that a string 

fulfilling H produces an offspring also fulfilling H. can be estimated as 

follows (crossover is only done with probability): 

( )
1 .

1

H
ps pc

n


 


………..(26) 

Selection and crossover are carried our independently, so we may compute 

the expected number of strings fulfilling H after crossover simply as 

, ,

( , ) ( , ) ( )
. . . .(1 . )

( ) ( ) 1
t t

f H t f H t H
rH ps rH pc

f t f t n


 


………..(27) 

After crossover, the number of strings fulfilling H can only decrease if a 

suing fulfilling His ahered by mutation at a specification of H. The 

probability that all specifications of H remain untouthed by mutation is 

obviously 



 

 
221 

 

Genetic Algorithm ( )(1 )O HPM  ………..(28) 

The arguments in the proof of the Sthema Theorem can be applied 

analogously too many other crossover and mutation operations. 

4b.6.1 The Optimal Allocation of Trials 

The Sthema Theorem has provided the insight that building blocks receive 

exponentially increasing trials in future generations. The question remains, 

however, why this could be a good strategy. This leads to an important and 

well analyzed problem from statistical decision theory- the two-armed 

bandit problem and its generalization, the k-armed bandit problem. 

Although this seems like a detour from our main concern, we shall soon 

understand the connection to GAs. 

Suppose we have a gambling machine with two slots for coins and two 

arms. The gambler can deposit the coin either two the left or the right slot. 

After pulling the corresponding arm, either a reward is given or the coin is 

lost. For mathematical simplicity, we just work with outcomes, i.e., the 

difference between the reward (which can be zero) and the value of the coin. 

Let us assume that the left arm produces an outcome with mean value 2 

and a variance  22 while the right arm produces an outcome with mean 

value 2 and variance  12. Without loss of generality, although the gambler 

does not know this, assume that 1 > 2· 

Now the question arises which arm should be played. Since we do not know 

beforehand which arm is associated with the higher outcome, we are faced 

with an interesting dilemma. Not only must we make a sequence of 

decisions about which arm to play, we have to collect, at the same time, 

information about which is the bener arm. This trade-off between 

exploitation of knowledge and its exploitation is the key issue in this 

problem and, as rums out later, in GAs, too. 

A simple approach to this problem is to separate exploitation from 

exploitation. More specifically, we could perform a single experiment at the 

beginning and thereafter make an irreversible decision that depends on the 

results of the experiment. Suppose we have N coins. If we  allocate an equal 

number n {where 2n N) of trials to both arms, we could allocate the 

remaining N- 2n uials to the observed bener arm. Assuming we know all 

involved parameters, the expected loss is given as 

L(N. n) = (1 - 2){(N - n)q(n) + n[l - q(n)l} 

where q(n) is the probability that the worst arm is the observed best arm 

after 2n expetimental trials. The underlying idea is obvious: In case that we 

observe that the worse arm is the best, which happens with probability q(n), 

the total number of trials allothed to the right arm is N - 11. The loss is, 

therefore, (J1 1 -Jl2 )(N- n). In the reverse case where we actually observe 

that the best arm is the best, which happens with probability I - q(n), the 

loss is only whir we get less because we played the worse arm 11 times, i.e., 
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approximate q (n) with the rail of a normal distribution: 

2 /21
( )

2

te
q n

c




  ………..(29) 

where 

1 2

2 2

1 2

c n
 

 





 

Now we have m specify a reasonable experiment size n. obviously, if we 

choose 

 n = 1, the obtained information is potentially unreliable. If we choose, 

however,  

n = N/2 there are no trials left to make use of the information gained though 

the experimental phase. What we see is again the trade-off between 

exploitation with almost no exploitation (n = 1) and exploitation without 

exploitation {n = N/2).  

It does not take a Nobel prize winner to see that the optimal way is 

somewhere in the middle. Holland has studied this problem in detail. He 

came to the conclusion that the optimal strategy is given by the following 

equation: 

   

2
4 2

4 2
ln( )

8 ln

N
b

b N



 ………..(30) 

where 

1

1 2

b


 



 

Making a few transformations, we obtain that 

44 4 2 28 ln 12N n b N e b ………..(31) 

That is, the optimal strategy is m allocate slightly more than an 

exponentially increasing number of trials to the observed best arm. 

Although no gambler is able to apply this strategy in practice, because it 

requires knowledge of the mean values Jll and JLz, we still have found an 

important bound of performance a decision strategy should try to approach. 

A GA, although the direct connection is not yet fully clear, actually comes 

close to this ideal, giving at least an exponentially increasing number of 

trials to the observed best building blocks. However, one may still wonder 

how the two-armed bandit problem and GAs are related. Let us consider an 
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Genetic Algorithm arbitrary string position. Then there are two sthemata of order one which 

have their only specification in this position. According to the Sthema 

Theorem, the GA implicitly decides between these two sthemata, where 

only incomplete data are available (observed average fitness values). In this 

sense, a GA solves a lot of two-armed problems in parallel.  

The Sthema Theorem, however, is not restricted to sthemata of order one. 

Looking at competing sthemata (different sthemata which are specified in 

the same positions). We observe that a GA is solving an enormous number 

of k-armed bandit problems in parallel. The k-armed bandit problem, 

although much more complicated, is solved in an analogous way - the 

observed better alternatives should receive an exponentially increasing 

number of trials. This is exactly what a GA does. 

4b.6.2 Implicit Parallelism 

So far we have discovered two distinct, seemingly conflicting views of 

genetic algorithms: 

1.  The algorithmic view that GAs operate on strings; 

2.  The sthema-based interpretation. 

So, we may ask what a GA really processes, strings or sthemata? The 

answer is surprising: Both. Now a day, the common interpretation is chat a 

GA processes an enormous amount of sthemata implicitly. This is 

accomplished by exploiting the currently available, incomplete information 

about these sthemata continuously, while trying to explore more 

information about them and other, possibly better sthemata. 

This remarkable property is commonly called the implicit parallelism of 

GAs. A simple GA has only m structures in one time step, without any 

memory or bookkeeping about the previous generations. We will now ny to 

get a feeling how many sthemata a GA actually processes. 

Obviously, there are 3n sthemata of length n. A single binary string fulfils n 

sthema of order 1, (2n) sthemata of order 2, in general, (kn) sthemata of order 

k. Hence, a string fulfils 

1

( ) 2
n

n n

k

k

 ………..(32) 

Theorem. Consider a randomly generated start population of a simple GA 

and let e E (0, 1) be a fixed error bound. Then sthemata of length 

1,  < E (n - l) + l 

have a probability of at least (1-) to survive one-point crossover (compare 

with the proof of the Sthema Theorem). If the population size is chosen as 

m = 21/2, the number of sthemata, which survive for the next generation, is 

of order O(m3). 
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There exist wide variety of GAs including simple and general GAs 

discussed in Sections 4a.4 and 4a.5, respectively. Some or her variants of 

GA are discussed below. 

4b.7.1 Messy Genetic Algorithms 

In a "classical" GA, the genes are encoded in a fixed order. The meaning of 

a single gene is determined by its position inside the string. We have seen 

in the previous chapter that a GA is likely to converge well if the 

optimization risk can be divided two several short building blocks. What, 

however, happens if the coding is chosen such that couplings occur between 

distant genes? Of course, one-point crossover rends to disadvantage long 

sthemata {even if they have low order) over short ones. 

Messy GAs try w overcome this difficulty by using a variable-length, 

position-independent coding. The key idea is to append an index to each 

gene which allows identifying its position. A gene, therefore, is no longer 

represented as a single allele value and a fixed position, but as a pair of an 

index and an allele. Figure 9-34(A) shows how this "messy" coding works 

for a string of length 6. 

Since with the help of the index we can identify the genes uniquely, genes 

may be swapped arbitrarily without changing the meaning of the string. 

With appropriate genetic operations, which also change the order of the 

paits, the GA could possibly group coupled genes to get her automatically. 

 

Figure 4b.20 (A) Messy coding and (B) positional preference; Genes with 

indices 1 and 6 occur twice, the firm occurrences are used. 
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Figure 4b.21 the cut and splice operation. 

Owing to the free arrangement of genes and the variable length of the 

encoding, we can, however, run into. Problems, which do not occur, in a 

simple GA. First of all, it can happen that there are two entries in a string, 

which correspond to the same index but have conflicting alleles. The most 

obvious way to overcome this "over-specification" is positional preference- 

the first entry, which refers to a gene, is taken. Figure 9-34(B) shows an 

example. The reader may have observed that the genes with indices 3 and 5 

do not occur at all in the example in Figure 9-34(B). This problem of “under 

specification" is more complicated and its solution is not as obvious as for 

over=-specification. Of course, a lot of variants are reasonable. 

One approach could be to theck all possible combinations and to rake the 

best one (fork missing genes, there are 2k combinations). With the objective 

to reduce this effort, Goldberg ct al. have suggested using so-called 

competitive templates for finding specifications for missing genes.  It is 

nothing else than applying a local hill climbing method with random initial 

value to the k missing genes. 

While messy GAs usually work with the same mutation operator as simple 

GAs (every allele is altered with a low probability pM), the crossover 

operator is replaced by a more general cut and splice operator which also 

allows to mate parents with different lengths. The basic idea is to choose 

cut sites for both parents independently and to splice the four fragments. 

Figure 9-35 shows an example. 

4b.7.2 Adaptive Genetic Algorithms 

Adaptive GAs are those whose parameters, such as the population size, the 

crossing over probability, or the mutation probability, are varied while the 

GA is running. A simple variant could be the following: The mutation rate 

is changed according to changes in the population- the longer the population 

does not improve, the higher the mutation rare is chosen. Vice versa, it is 

decreased again as soon as an improvement of the population occurs. 

4b.7.2.1 Adaptive Probabilities of Crossover and Mutation 

It is essential to have two characteristics in GAs for optimizing multimodal 

functions. The first characteristic is the capacity to converge wan optimum 
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second characteristic is the capacity to explore new regions of the solution 

space in search of the global optimum. The balance between these 

characteristics of the GA is dictated by the values of Pw and Pn and the type 

of crossover employed. Increasing values of Pw and Pr promote 

exploitation at the expense of exploitation. Moderately large values of Pc 

(in the range 0.5-1.0) and small values of Pw (in the range 0.001-0.05) are 

commonly employed in GA practice. In this approach, we aim at achieving 

this trade-off between exploitation and exploitation in a different manner, 

by varying, and Pm adaptively in response to the fitness values of the 

solutions; Pr and Pm are increased when the population tends to get stuck 

at a local optimum and are decreased when the population is scattered in the 

solution space. 

4b.7.2.2  Design of Adaptive pc and Pm 

To vary Pr and Pm adaptively for preventing premature convergence of the 

GA to a local optimum, it is essential to identify were the GA is converging 

to an optimum. One possible way of detecting is to observe average fitness 

value f of the population in relation to the maximum fitness value fmax of 

the population. The value fmax - f is likely to be less for a population that 

has converged to an optimum solution than that for a population scattered 

in the solution space. We have observed the above property in all our 

experiments with GAs, and Figure 9-36 illustrates the property for a typical 

case. In Figure 9-36 we notice that fmax – f decreases when the GA 

converges to a local optimum with a fitness value of 0.5. (The globally 

optimal solution has a fitness value of 1.0.) We use the difference in the 

average and maximum fitness value, fmax - f, as a yardstick for detecting 

the convergence of the GA. The values of Pc and Pm are varied depending 

on the value of fmax. - f. Since Pc and Pm have to be increased when the 

GA converges to a local optimum, i.e., when fmax - f decreases, Pc and Pm 

will have to be varied inversely with fmax - f. The expressions that we have 

chosen for Pc and Pm are of the form 

Pc = k1/ (fmax - f) 

Pm = k2/ (fmax - f) 

 

Figure 4b.22 Variation of fmax – f  and f best (best fitness). 



 

 
227 

 

Genetic Algorithm It has to be observed in the above expressions that Pc and Pm do not depend 

on the fitness value of any particular solution, and have the same values for 

all the solution of the population. Consequently, solutions with high fitness 

values as well as solutions with low fitness values are subjected to the same 

levels of mutation and crossover. When a population converges to a globally 

optimal solution (or even a locally optimal solution), Pc and Pm increase 

and may cause the disruption of the neat-optimal solutions. The population 

may never converge to the global optimum. Though we may prevent the 

GA from getting stuck at a local optimum, the performance of the GA (in 

terms of the generations required for convergence) will certainly 

deteriorate.  

To overcome the above-stated problem, we need to preserve "good" 

solutions of the population. This can be achieved by having lower values of 

Pc and Pm for high fitness solutions and higher values of Pc and Pm for 

low fitness solutions. While the high fitness solutions aid in the convergence 

of the GA, the low fitness solutions prevent the GA from getting stuck at a 

local optimum. The value of Pm should depend not only on fmax – f but 

also on the fitness value f of the solution. Similarly, Pc should depend on 

the fitness values of both the parent solutions. The closer f is to fmax the 

smaller Pm should be, i.e., Pm should vary directly as fmax – f. Similarly, 

Pc should vary directly as fmax – f1', where f1 is the larger of the fitness 

value of the solutions to be crossed. The expressions for Pc and Pm now 

take the forms  

'

1 max 1

'

2 max 2

[( ) / ( )], 1.0

[( ) / ( )], 1.0

c max

m max

p k f f f f k

p k f f f f k
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   
………..(33) 

(Here k1 and k2 have to be less than 1.0 to constrain Pc and Pm to the 

range 0.0-1.0.) 

Note that Pc and Pm are zero for the solution with the maximum fitness. 

Alsop, = k1 for a solution with f = f, and Pm = k2 for a solution with f = f. 

For solution with subaverage fitness values, i.e., f < f, Pc and Pm might 

assume values larger than 1.0. To prevent the overshooting of Pc and Pm 

beyond 1.0, we also have the following constraints: 
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, '

,

c

m

p k f f
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 

 
………..(34) 

where k3, k4 < 1.0. 

4b.7.2.3  Practical Considerations and Choice of Values for k1, k2, k3 

and k4 

In the previous subsection, we saw that for a solution with the maximum 

fitness value Pc and Pm are both zero. The best solution in a population is 

transferred undisrupted into the next generation. Together with the selection 
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population and may cause premature convergence. To overcome the above-

mued problem, we introduce a default mutation rate (of 0.005) for every 

solution in the Adaptive Genetic Algorithm (AGA). 

We now discuss the choice of values for k1, kz, k3 and k4. For convenience, 

the expressions for Pc and Pm are given as 
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where k1, k2, k3, k4  < 1.0. 

It has been well established in GA literature that moderately large values of 

Pc (0.5 < Pc < 1.0) and small values of Pm (0.001 < Pm < 0.05) are essential 

for the successful working of GAs. The moderately large values of Pc 

promote the extensive recombination of sthemata, while small values of Pm 

are necessary to prevent the disruption of the solutions. These guidelines, 

however, are useful and relevant when the values of Pc and Pm do not vary. 

One of the goals of the approach is to prevent the GA from getting stuck at 

a local optimum. To achieve this goal, we employ solutions with subaverage 

fitnesses to search the search space for the region containing the global 

optimum. Such solutions need to be completely disrupted, and for this 

purpose we use a value of 0.5 for k4. Since solutions with a fitness value of 

f should also be disrupted completely, we assign a value of 0.5 to k2 as well. 

Based on similar reasoning, we assign k1and k3 a value of 1.0. This ensures 

that all solutions with a fitness value less than or equal to f compulsorily 

undergo crossover. The probability of crossover decreases as the fitness 

value (maximum of the fitness values of the parent solutions) tends to fmax 

and is 0.0 for solutions with a fitness value equal to fmax.  

4b.7.3 Hybrid Genetic Algorithms 

As they use the fitness function only in the selection step, GAs are blind 

oprimizers which do not use any auxiliary information such as derivatives 

or other specific knowledge about the special strucrure of theobjective 

function. If there is such knowledge, however, ir is unwise and inefficient 

not to make use of ir.Several investigations have shown that a lot of 

synergism lies in the combination of genetic alj!orirhms andconventional 

methods. 

The basic idea is co divide the optimization task into two complementary 

parts. The GA does the coarse, global optimization while local refinement 

is done by the conventional method (e.g. gradient-based, hill climbing, 
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Genetic Algorithm greedy algorithm, simulated annealing, ere.). A number of variants are 

reasonable: 

1. The GA performs coarse search first. Afrer the GA is completed, local 

refinement is done. 

2. The local method is integrated in the GA. For instance, every K 

generations, the population is doped witha locally optimal individual. 

3. Both methods run in parallel: All individuals are continuously used as 

initial values for the local method. The locally optimized individuals 

are re-implanred into the current generation. 

In this section a novel optimization approach is used that switthes between 

global and local search methods based on the local topography of the design 

space. The global and local optimizers work in concert to efficiently locate 

quality design points better than either could alone. To determine when it is 

apptopriate to execute a local search, some characteristics about the local 

area of the design space need to be determined. One good source of 

information is contained in the population of designs in the GA. By 

calculating the relative homogeneity of the population we can get a good 

idea of whether there are multiple local optima located within this local 

region of the design space. 

To quantify the relative homogeneity of the population in each subspace, 

the coefficient of variance of the objective function and design variables is 

calculated. The coefficient of variance is a normalized measure of variation, 

and unlike the actual variance, is independent of the magnitude of the mean 

of the population. A high coefficient of variance could be an indication that 

there are multiple local optima present. Very low values could indicate that 

the GA has converged to a small area in the design space, warranting the 

use of alocal search algorithm to find the best design within this region. 

By calculating the coefficient of variance of the both the design variables 

and the objective function as the optimization progresses, it can also be used 

as a criterion to switch from me global to the local optimizer. As the 

variance of the objective values and design variables of the population 

increases, it may indicate that the optimizer is exploting new areas of the 

design space or hill climbing. If the variance is decreasing, the optimizer 

may be converging toward local minima and the optimization process could 

be made more efficient by switching to a local search algorithm. 

The second method, regression analysis, used in this section helps us 

determine when to switch between the global and local optimizer. The 

design data present in the current population of the GA can be used 

toprovide information as to the local topography of the design space by 

attempting to fit models of various order to it. 

The use of regression analysis to augment optimization algorithms is not 

new. In problems in which the objective function or consrrainrs are 

computationally expensive, approximations to the design space are created 

by sampling the design space and then using regression or other methods to 
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design space, which may be highly nonlinear. The design space can then be 

exploted to find regions of good designs or optimized to improve the 

performance of the system using the predictive surrogate approximation 

models instead of the computarionally expensive analysis code, resulting in 

large computational savings. The most common regression models are 

linear and quadratic polynomials created by performing ordinary least 

squares regrssion on a set of analysis data. 

To make dear the use of regression analysis in this way, consider Figure 9-

37, which represents a complex design space. Our goal is to minimize this 

function, and as a first step the GA is run. Suppose that afrer acertain 

number of generarions the population consists of the sampled points shown 

in the figure. Since the population of the GA is spread throughout the design 

space, having yet to converge into one of the local minima, it seems logical 

to continue the GA for additional generations. Ideally, before the local 

optimizer is run it would be beneficial to have some confidence that its 

starting point is somewhere within the mode that contains the optimum. 

Fitting a second-order response surface to the data and noting the large error 

(the R2 value is 0.13), ther is a dear indication that the GA is currently 

exploting multiple modes in the design space. 

In Figure 9-38, the same design space is shown but afrer the GA has begun 

to converge into the part of the design space containing the optimal design. 

Once again a second-order approximation is fir to GA's population. The 

dotted line connects the points predicted by the response surface. Note how 

much smaller the error is in the approximation (the R2 is 0.96), which is a 

good indication that the GA is currently exploting a single mode within the 

design space. At this point, the local optimizer can be made to quickly 

converge to the best solution within this area of the design space, thereby 

avoiding the slow convergence propenies of the GA. 

After each generarion of the global optimizer the values of the coefficient 

of determination and the coefficient of variance of the enrire population are 

compared with the designer specified threshold levels. 

 

Figure 4b.23 Apptoximating multiple modes with a second-order model. 
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Figure 4b.24 : Apptoximating a single mode with a  

second-order model. 

The first threshold simply states that if coefficient of determination of the 

population exceeds a designer set value when a second-order regression 

analysis is performed on the design data in the current GA population, then 

a local search is started from the current 'best design' in the population. The 

second threshold is based on the value of the coefficient of variance of the 

entire population. This threshold is also set by the designer and can range 

upwards from O%. If it increases at a rate greater than the threshold level 

then a local sarch is execuced from the best point in the population. 

The flowchart in Figure 9-39 illustrates the stages in the algorithm. The 

algorithm can switch repeatedly between the global search (Stage 1) and the 

local search (Stage 2) during execution. In Stage I, the global search is 

initialized and then monitored. This is also where the regression and 

statistical analysis occurs.  

In Stage 2 the local search is executed when the threshold levels are 

exceeded, and then this solution is passed back and integrated two the global 

search. The algorithm scops when convergence is achieved for the global 

optimization algorithm. 

4b.7.4 Parallel Genetic Algorithm 

GAs are powerful search techniques that are used successfully to solve 

problems in many different disciplines. Parallel GAs (PGAs) are 

particularly easy to implement and promise substantial gains in 

performance. As such, there has been extensive research in this field. The 

section describes some of the most significant problems in modeling and 

designing multi-population PGAs and presents some recent advancemenrs. 

One of the major aspects of GA is their ability to be parallelized. Indeed, 

because natural evolution deals with an entire population and not only with 

particular individuals, it is a remarkably highly parallel process. Except in 

the selection phase, during which there is competition between individuals, 

the only interactions between remembers of the population occur during the 

reproduction phase, and usually, no more than two individuals are necessary 
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in particular the evaluation of each member of the population, can be done 

separately. So, neatly all the operations in a genetic algorithm are implicitly 

parallel.  

PGAs simply consist in distributing the task of a basic GA on different 

processors. As those tasks are implicitly parallel, little time will be spent on 

communication; and rhus, the algorithm is expected to run much faster or 

to find more accurate this. 

It has been established chat GA's efficiency co find optimal solution is 

largely determined by the population size. With a larger population size, the 

genetic diversity increases, and so the algorithm is more likdy to find a 

global optimum! A  large population requires more memory to be scored; it 

has also been ptoved that it takes a longer time to converge. If n is the 

population size, the convergence is expected aft:er n log(n) function 

evaluations. 

 

Figure 4b.25 : Steps in two·stage hybrid optimization approach. 

The use of mday's new parallel computers not only provides more storage 

space but also allows the use of  several processors to produce and evaluate 

more solutions in a smaller amount of time. By parallelizing the algorithm, 

it is possible D increase population size, reduce the computational cost, and 

so improve the performance of the GA. 

Probably the first attempt to map GAs to existing parallel computer 

architectures was made in 1981 by John Grefensrerre. But obviously today, 

with the emergence of new high-performance computing (HPC), PGA is 

really a flourishing area. Researthers try to improve performance of GAs. 
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Genetic Algorithm The stake is to show that GAs are one of the besr optimization methods to 

be used with HPC. 

4b.7.4.1 Global Parallelization 

The first attempt to parallelize GAs simply consists of global 

parallelization. This approach nics to explicitly parallelize the implicit 

parallel tasks of the "sequential" GA. The nature of the problems remains 

unchanged. The algorithm still manipulates a single population where each 

individual can mare with any other, but the breeding of new children and/or 

their evaluation are now made in parallel. The basic idea is that different 

processors can create new individuals and compme their fir ness in parallel 

almost without any communication among each other. 

To start with, doing the evaluation of the population in parallel is something 

really simple co implement. Each processor is assigned a subset of 

individuals to be evaluated. For example, on a shared memory computer, 

individuals could be stored in shared memory, so that each processor can 

read the chtomosori:tes assigned and c:an write back the resnlr of the fitness 

computation. This method only supposes iliat the GA works with a 

generational update of the population. Of course, some synchtonization is 

needed between generations. 

Generally, most of the computational time in a GA is spent calling the 

evaluation function. The time spent in manipulating the chromosomes 

during the selection or recombination phase is usually negligible. By 

assigning to each processor a subset of individuals m evaluate, a speedup 

proportional to the number of processors can be expeaed if there is a good 

load balancing between them. However, load balancing should not be a 

problem as generally the time spent for the evolution of an individual does 

not really depend on dle individual. A simple dynamic stheduling algorithm 

is usually enough to share the population between each processor equally. 

On a distribmed memory compUter, we can smre the population in one 

"master" processor responsible for sending the individuals to the other 

processors, i.e., "slaves." The master processor is also responsible for 

collecting the result of the evaluation. A drawback of this distributed 

memory implementation is that a bottleneck may occur when slaves are idle 

while only the master is working. But a simple and good use of the master 

processor can improve the load balancing by distributing individuals 

dynamically tothe slave processors when they finish their jobs. 

A further seep could consist in applying thegenetic operators in parallel. In 

fact, the interaction inside the population only occurs during selection. The 

breeding, involving only two individuals to generate he offspring, could 

easily be done simultaneously over n/2 paits of individuals. But it is not chat 

clear if it worth doing so. Crossover is usually very simple and not so time-

consuming; the point is nor that too much time will be lost during the 

communication, but that the time gain in the algorithm will be almost 

nothing compared to the effort produced to change the code. 

This kind of global parallelization simply shows how easy it can be to 

transpose any GA onto a parallel machine and how a speed-up sublinear to 

the number of processors may be expected. 
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The basic idea behind most parallel programs is to divide a cask into chunks 

and co solve the chunkssimulraneously using multiple processors. This 

divide-and-conquer approach can be applied toGAs in many different ways, 

and the literature contains many examples of successful parallel 

implementations. Some parallelizacion methods use a single population, 

while others divide the population into several relatively isolated 

subpopulacions. Some methods can exploit massively parallel computer 

architectures, while others are better suited to multicomputers with fewer 

and more powerful processing elements. 

There are three main cypes of PGAs: 

1.  global single-population master-slave GAs, 

2.  single-population fine-grained, 

3.  multiple-population coarse-grained GAs. 

In a master-slave GA there is a single panmicric population (just as in a 

simple GA), but the evaluation of fitness is distributed among several 

processors (see Figure 9-40). Since in this type of PGA, selection and 

crossover consider the entire population it is also known as global PGA. 

Fine-grained PGAs are suited for massively parallel computers and consist 

of one spatially structured population. Selection and mating are resrricred 

to a small neighbothood, but neighbothoods overlap permitting some 

interaction among all the individuals (see Figure 9-41 for a sthematic of this 

class of GAs). The ideal case is co have only one individual for every 

processing element available. 

Multiple-popuJarion (or multiple-deme) GAs are more sophisticated, as 

they consist in several subpopulacions which exchange individuals 

occasionally (Figure 9-42 has a sthematic). This exchange of individuals 

Master Workers 

 

Figure 4b.26 A sthematic of a master-slave PGA. The master stores the 

population, executes GA operations and distributes individuals to the 

slaves. The slaves only evaluate the fitness of the individuals. 
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Figure 4b.27 A sthematic of a fine-grained PGA. This class ofPGAs has 

one spadally distributed popularion, and ir can be implemented very 

efficiently on massively parallel compmers. 

 

Figure 4b.28 A sthematic of a mulciple-populaTion PGA. Each process is 

a simple GA, and there is (infrequent) communicadon between the 

populations. 

is called migration and, as we shall see in later sections, it is conttolled by 

several parameters. Multiple-deme GAs are very popular, but also are the 

class ofPGAs which is most difficult to understand, because the effects of 

migration are not fully understood. Multiple-deme PGAs introduce 

fundamental changes in the operation of the GA and have a different 

behavior than simple GAs. 

Multiple-deme PGAs are known with different names. Sometimes they are 

known as "distributed" GAs, because they are usually implemented on 

distributed memory MIMD computers. Since the computation to 

communication ratio is usually high, they are occasionally called coarse-

grained GAs. Finally, multipledeme GAs resemble the "island model" in 

Population Genetics which considers relatively isolated demes, so the PGAs 

are also known ·as "island" PGAs. Since the size of the demes is smaller 

than the population used by a serial GA, we would expect that lhe PGA 

converges faster. However, when we compare the performance of the serial 

and the parallel algorithms, we must also consider the qualicy of the 

solutions found in each case. Therefore, while it is true that smaller demes 
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poorer. 

It is important  to emphasize that while the master-slave parallelization 

method does not affect the behaviour of the algorithm, the last two methods 

change the way the GA works. For example, in master-slave PGAs, 

selection takes into account all the population, but in the other two PGAs, 

seleccion only considers a subset of individuals. Also, in the mascerslave 

any two individuals in the population can mare (i.e., there is random 

mating), but in the other methods mating is restricted to a subset of 

individuals. 

The final merhod to parallelize GAs combines multiple demes with 

masrerslave or finegrained GAs. We call this class of algorithms 

hierarchical PGAs, because at a higher level they are multipledeme 

algorithms with single-population PGAs (either master-slave or 

finegrained) at the lower level. A hierarchical PGA combines the benefits 

of its components, and it ptomises bener performance than any of them 

alone. 

Master-slave parallelization: This section reviews the masterslave (or 

global) parallelization method. The algorithm uses a single population and 

the evaluation of the individuals and/or the application of genetic operators 

are done in parallel. As in the serial GA, each individual may compete and 

mate with any other (thus selection and mating are global). Global PGAs 

are usually implemented as masrer-slave programs, where the master stores 

the population and the slaves evaluate the fitness. 

The most common operation iliac is parallelized is the evaluation of the 

individuals, because the fitness of an individual is independent from the rest 

of the population, and there is no need to communicme during this phase. 

The evaluation of individuals is parallelizcd by assigning a fraction of the 

population to each of the processors available. Communication occurs only 

as each slave receives its subset of individuals to evaluate and when the 

slaves return the fitness values. If the algorithm stops and waits to receive 

the fitness values for all the population before proceeding into the next 

generation, then the algorithm is synchronous. A synchronous master slave 

GA has exactly the same properties as a simple GA, with speed being the 

only difference. However, ir is also possible to implement an a synchronous 

master-slave GA where the algorithm does not stop to wait for any slow 

processors, but it does not work exactly like a simple GA. Most global PGA 

implementations are synchtonous and the rest of the paper assumes that 

global PGA carry our exactly the same search of simple GAs. 

The global paralleliz. An ion model does not assume anything about the 

underlying computer architecture, and it can be implemented efficiently on 

shared memory and distributed-memory computers. On a shared memory 

multiprocessor, the population could be slotted in shared memory and each 

processor can read the individuals assigned co it and write the evaluation 

results back without any conflicts. 
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processor. This "master" processor would be responsible for explicitly 

sending the individuals to the other processors {the "slaves") for evaluation, 

collecting the results and applying the genetic operators to produce the next 

generation. The number of individuals assigned to any processor may be 

constant, but in some cases (like in a multiuser environment where the 

utilize. action of processors is variable)  it may be necessary to balance the 

computational load among the processors by using a dynamic scheduling 

algorithm (e.g., guided self scheduling). 

Multiple-deme parallel GAs: The important characteristics of multiple-

deme PGAs are the use of a few relatively large subpopulations and 

migration. Multiple-deme GAs are the most popular parallel method, and 

many papers have been written describing innumerable aspects and derails 

of their implementation. 

Probably the first systematic srudy of PGA<i with multiple populations was 

Grosso's dissertation. His objective was to simulate the interaction of 

several parallel subcomponents of an evolving population. Grosso 

simulated diploid individuals (so there were two subcomponents for each 

"gene"), and the population was divided into five demes. Each deme 

exchanged individuals with all the others with a fixed migration rate.  

With controlled experiments, Gtosso found cha the improvement of the 

average population fitness was faster in the smaller demes than in a single 

large panmictic population. This confirms a long held principle in 

Population Genetics: favourable traits spread faster when the demes are 

small chain when the demes are large. However, he also observed that when 

the demes were isolated, the rapid rise in fitness stopped at a lower fitness 

value than with the large population. In other words, the quality of the 

solution found after convergence was worse in the isolated case chain in the 

single population. 

With a low migration rate, the demes still behaved independently and 

exploited different regions of the search space. The migrants did not have a 

significant effect on the receiving deme and the quality of the solutions was 

similar to the case where the demes were isolated. However, at intermediate 

migration rates the divided population found solutions similar to those 

found in the panmictic population. These observations indicate that there is 

a critical migration rate below which the performance of the algorithm is 

obstructed by the isolation of the demes, and above which the partitioned 

population finds solutions of the same quality as the panmictic population. 

It is interesting that such important observations were made so long ago, at 

the same time that other systematic studies of PGAs were underway. For 

example, Tanese proposed a PGA with the demes connected on a four-

dimensional hypercube topology. In Tanese's algorithm, migration occurred 

at fixed intervals between processors a Jong one dimension of the 

hypercube. The migrants were chosen probabilistically from the best 

individuals in the subpopulation, and they replaced the worst individuals in 

the receiving deme. Tanese carried out three sees of experiments. In the 
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number of processors varied. In tests with two migration rates and varying 

the number of processors, the PGA found results of the same quality as the 

serial GA. However, it is difficult to see from the experimental results if the 

PGA found the solutions sooner than the serial GA, because the range of 

the chimes is too large. In the second set of experiments, Tanese varied the 

mutation and crossover rates in each deme, attempting to find parameter 

values to balance exploration and exploitation. The third set of experiments 

studied the effect of the exchange frequency on the search, and the results 

showed than migrating too frequency or too infrequently degraded the 

performance of the algorithm.  

The multimember PGAs are popular due to the following several reasons: 

l.  Multiple-deme GAs seem like a simple extension of the serial GA. 

The recipe is simple: take a few conventional (serial) GAs, run each 

of them on a node of a parallel computer, and at some predetermined 

times exchange a few individuals. 

2.  There is relatively little extra effort needed to convert a serial GA into 

a multiple-deme GA. Most of the program of the serial GA remains 

the same and only a few subtoutines need to be added co implement 

migration. 

3.  Coarse-grain parallel computers are easily available, and even when 

they are not, it is easy co simulate one with a network of workstations 

or even on a single processor using free software (like MPI or PVM). 

There are a few important issues noted from the above sections. For 

example, PGAs are very promising in terms of the gains in performance. 

Also, PGAs are more complex than their serial counterparts. In particular, 

the migration of individuals from one deme to another is conttolled by 

several p:uameters like (a) the topology that defines the connections 

between the subpopulations, (b) a migr;uion r;Ht:: rh.lt controls how many 

individuals migrate and (c) a migration interval that affects the frequency 

<'lK· of mir.1inn. In rht.' btl' 1 1lS(h .ullll·arl· 1990 the research on PGA:; 

began to explote alternatives to make PGAs faster and to understand better 

how they worked. 

Around this time the first theoretical studies on PGAs began to appear and 

the empirical research attempted to identify favourable parameters. This 

section reviews some of that early theoretical work and experimental studies 

on migration and topologies. Also in this period, more researchers began to 

use multiple population GAs co solve application problems, and this section 

ends with a brief review of their work. 

One of the directions in which the field matured is that PGAs began to be 

tested with very large and difficult test functions. 

Fine-grained PGAs: The development of massively paralel compmers 

triggers a new approach of PGAs. To take advantage of new architectures 

with even a greater number of processors and less communication coslS, 
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Genetic Algorithm fine-grained PGAs have been devoted. The population is now partitioned 

into a la..tge number of very small subpopulations. The limit (and may be 

ideal) case is to have just one individual for every processing element 

available. 

"Basically, the population is mapped onto a connected processor graph, 

usually, one individual on each processor. (But it works also more than one 

individual on each processor. In this case, it is preferable to choose a 

multiple of the number of processors for the population size.) Mating is only 

possible between neighbouring individual, i.e, individuals stored on 

neighbouring processors. The selection is also done in a neighbourhood of 

each individual and so depends only on local information. A motivation 

behind local selection is biological. In nature there is no global selection, 

instead natural selection is a local phenomenon, raking place in an 

individual's local environment. 

If we want to compare this model to the island model, each neighborhood 

can be considered as a different deme. But here, the demes overlap 

providing a way w disseminate good solutions across the entire population. 

Thus, the topology does not need w explicitly define migration toads and 

migration rare. 

It is common to place the population on a two-dimensional or three-

dimensional torus grid because in many massively parallel computers the 

processing elements are connected using this topology. Consequently each 

individual has four neighbours. Experimentally, it seems that good results 

can be obtained using a topology with a medium diameter and 

neighborhoods nor too large. Like the coarse-grained models, it worth 

trying to simulate this model even on a single processor to improve the 

results. Indeed, when the population is stored in a grid like this, after few 

generations, different optima could appear in different places on the grid. 

To sum up, with parallelization of GA, all the different models proposed 

and all the new models we can imagine by mixing those ones, can 

demonstrate how well GA are adapted to parallel comparison. In fact, the 

too many implementations reponed in the literature may even be confusing. 

We really need to understand what truly affects the performance of PGAs. 

Fine-grained PGAs have only one population, but have a spatial structure 

that limits the interactions between individuals. An individual can only 

compere and mate with its neighbours; but since the neighbothoods overlap 

good solutions may disseminate across the entire population. 

Robertson parallelized the GA of a classifier system on a Connection 

Machine 1. He parallelized the selection of parents, the selection of 

classifiers to replace, mating, and cl-ossover. The execution time of his 

implementation was independent of the number of classifiers (up to 16K, 

the number of processing elements in the CM-1). 

Hierarchical parallel algorithms: A few researchers have cried to combine 

two of the methods to parallelize GAs, producing hierarchical PGAs. Some 

of these new hybrid algorithms add a new degree of complexity to .the 
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same complexity as one of their components. When two methods of 

parallelizing GAs are combined they form a hierarchy. At the upper level 

most of the hybrid PGAs ace multiple-population algorithms. 

Some hybrids have a fine-grained GA at the lower level (see Figure 9-43). 

For example Gruau invented a "mixed" PGA. In his algorithm, the 

population of each deme was placed on a two-dimensional grid, and the 

demes themselves were connected as a two-dimensional to M. Migration 

between demes occurred at regulate intervals, and good results were 

reported for a novel neucal network design and uaining application. 

Another type of hierarchical PGA uses a master-slave on each of the demes 

of a multi-population GA (see Figure 9-44). Migration occurs between 

demes, and the evaluation of the individuals is handled in parallel. This 

approach does not introduce new analytic problems, and it can be useful 

when working with complex applications with objective functions that need 

a considerable amount of computation time. Bianchini and 

 

Figure 4b.29 Hierarchical GA combines a multiple-deme GA (ar the upper 

level) and a fine-grained GA {at the lower level). 

 

Figure 4b.30 A schematic of a hierarchical PGA. At the upper level this 

hybrid is a mulci-deme PGA where each node is a master-slave GA. 
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Figure 4b.31 This hybrid uses mulciple-deme GAs ar both the upper and 

the lower levels. At the lower level the migration rate is faster and the 

communications topology is much denser than at the upper level. 

Btown presented an example of this method of hybridizing PGAs, and 

showed that it can find a solution of the same quality as of a masrerslave 

PGA or a multipledeme GAin less time. 

Interestingly, a very similar concept was invented by Goldberg in the 

context of an objecr·oriented implementation of a "community model" 

PGA. In each "community" there are multiple houses where parents 

reproduce and the offsprings are evaluated. Also, there are multiple 

communities and ir is possible that individuals migrate to other places. 

A third method of hybridizing PGAs is to use multiple-deme GAs at both 

the upper and the lower levels (see Figure 9-45). The idea is to force 

panmiaic mixing ar the lower level by using a high migration rate and a 

dense topology, while a low migration rate is used at the high level. The 

complexity of this hybrid would be equivalent to a multiplepopularion GA 

if we consider the gtoups of panmicric subpopularions as a single deme. 

This method has nor been implemented yet. Hierarchical implementations 

can reduce the execution time more than any of their components alone. 

4b.7.4.3 Coarse· Grained PGAs - The Island Model 

The second class of PGA is once again inspired by nature. The population 

is now divided into a few subpopulations or demes, and each of these 

relatively large demes evolves separately on different processors. Exchange 

between subpopularions is possible via a migration operator. The term 

island model is easily understandable; the GA behave as if the world was 

constituted of islands where populations evolve isolated from each other. 

On each island the population is free to converge award different optima. 

The migration operator allows "merissage" of the different sub populations 

and is supposed to mix good features that emerge locally in the different 

demes. 
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individual can no longer breed with any other from the entire population, 

but only with individuals of the same island. Amazingly, even if this 

algorithm has been developed to be used on several processors, it is wonh 

simulating it sequentially on one processor. It has been shown on a few 

problems that better results can be achieved using this model. This 

algorithm is able to give different suboptimal solutions, and in many 

problems, it is an advantage if we need to determine a kind of landscape in 

the search space to know where the good solutions are located. Another 

great advantage of the island model is iliat cite population in each island can 

evolve wiili different rules. That can be used for multicriterion optimization. 

On each island, selection can be made according to different fitness 

functions, representing different criterions. For example it can be useful to 

have as many islands as criteria, plus another central island where 'selection 

is done with a multicriterion fitness function. 

The migration operator allows individuals to move betwen islands, and 

therefore, m mix criteria. 

In lirerarure this model is sometimes also referred as the coarsegrained 

PGA. (In parallelism, grain size refers m the ratio of time spent in 

computation and time spent in communication; when the ratio is high the 

processing is called coarsegrained). Sometimes, we can also find the term 

"distributed" GA, since they are usually implemented on distributed 

memory machines (MIMD Computers).  

Technically there are three important features in the coarsegrained PGA: 

the topology that defines connections between sub populations, migration 

rare that conttols how many individuals migrate, migration intervals chat 

affect how often the migration occurs. Even if a lot of work has been done 

to find optimal mpology and migration parameters, here, intuition is still 

used more often than analysis with quite good results.  

Many topologies can be defined m connect the demes, but the most common 

models are the island model and the steppingstones model. In the basic 

island model, migration can occur between any subpopulations, whereas in 

the Stepping stone demes are disposed on a ring and migration is restricted 

to neighbouring demes. Works have shown that cite topology of the space 

is nor so important as long as ir has high connectivity and small diameter to 

ensure adequate mixing as time proceeds. 

Choosing the right time for migration and which individuals should migrate 

appears to be more complicated. Quite a lot of work is done on this subject, 

and problems come from the following dilemmas. We can observe that 

species are converging quickly in small isolated populations. Nevertheless, 

migrations should occur after a time long enough for allowing the 

development of goods characteristics in each subpopulation. It also appears 

that, immigration is a trigger for evolutionary changes. If mjgrarion occurs 

after each new generation, the algorithm is more or le equivalent to a 

sequencia\ GA with a larger population. In praaice, migration occurs either 

after a fixed number of iterations in each deme or at uniform periods of time. 
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population and they replace the worst in the receiving deme. In fact, 

intuition is still mainly used to fix migration rare and migration intervals; 

there is absolurely nothing rigid, each personal cooking recipe may give 

good results. 

4b.7.5 Independent Sampling Genetic Algorithm (ISGA) 

In the independent sampling phase, we design a core stheme, named the 

"Building Block Detecting Strategy" (BBDS), to extract relevam building 

block information of a fitness landscape. In this way, an individual is able 

to sequentially construct more highly fir partial solutions. For Toyal Toad 

Rl, the global optimum can be attained easily. For other more complicared 

fitness landscapes, we allow a number of individuals to adopt the BBDS 

and independently evolve in parallel so that each sthema region can be given 

samples indepcndently. During this phase, the population is expected to be 

seeded with ptomising genetic material. Then follows the breeding phase, 

in which individuals are paired for breeding based on two mate-selection 

sthemes (Huang, 2001): individuals being assigned mates by natural 

selection only and individuals being allowed to actively choose their mares. 

In the Iauer case, individuals are able to distinguish candidate mates that 

have the same fitness yet have different string structures, which may lead to 

quite different performance after crossover. This is nor achievable by 

natural selection alone since it assigns individuals of the same fitness the 

same probability for being mares, without explicitly raking into account 

string suucrures. In short, in the breeding phase individuals manage to 

construct even more ptomising sthemata thtough the recombination of 

highly fir building blocks found in the first phase. Owing to the thatacteristic 

of independent sampling of building blocks that distinguishes the ptoposed 

GAs from tonventional GAs, we name this type of GA independent 

sampling genetic algorithms (ISGAs). 

4b.7.6 Tomparison of ISGA with PGA 

The independent sampling phase of ISGAs is similar m the fine-grained 

PGAs in the sense that each individual evolves autonomously, although 

ISG.As do not adopt the population scrucrure. An initial population is 

randomly generated. Then in every cycle each individual does local hill 

climbing, and creates the next population by mating with a parmer in its 

neighbothood and replacing parents if offsprings are better. By tontrast, IS 

Gas partition the genetic processing into two phases: the independent 

sampling phase and the breeding phase as described in the preceding 

section. Third, the approach employed by each individual for improvement 

in IS GAs is different from that of the PGAs. During the independent 

sampling phase of ISGAs, in each cycle, through the BBDS, each individual 

attempts to extract relevant informacion of potential building blocks 

whenever its fitness increases. Then, based on the sthema information 

accumulated, individuals tontinue to tonstruct more tomplicated building 

blocks. However, the individuals of fine-grained PGAs adopt a local hill 

climbing algorithm that does not manage to extract relevant information of 

potential sthemata. 
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genetic algorithms (mGAs). The two stages employed in the mGA.s are 

"prtwordial phase" and "juxtaPositional phase," in which the mGAs first 

emphasize candidate building blocks based on the guess at the order k of 

small sthemata, then just aposing them to build up global optima in the 

second phase by "cut" and "splice" operators. However, in the first phase, 

the mGAs still adopt centralized selection to emphasize some candidate 

sthemata; this in rum results in the loss of samples of other potentially 

ptomising sthemata. By tontrast, IS GAs manage to postpone the emphasis 

of candidate building blocks to the latter stage, and highlight the fearure of 

independent sampling of building blocks to suppress hitchhiking in the first 

phase. As a result, population is more diverse and implicit parallelism can 

be fulfiUed to a larger degree. Thereafter, during the second phase, ISGA.s 

implement population breeding thtough two mateselecrion sthemes as 

discussed in the preceding section. In the following subsections, we present 

the key tomponenrs of ISGAs in detail and show the tomparisons between 

the expetimental results of the ISGAs and those of several other GAs on two 

benchmark test functions. 

4b.7.6 .1 Tomponents of ISGAs 

ISGAs are divided into two phases: the independent sampling phase and the 

breeding phase. We describe them as follows. 

Independent sampling phase: To implement independent sampling of 

various building blocks, a number of strings are allowed w evolve in parallel 

and each individual searthes for a possible evolutionary path entirely 

independent of others. 

In this section, we develop a new searching strategy, BBDS, for each 

individual to evolve based on the accumulated knowledge for potentially 

useful building blocks. The idea is to allow each individual to probe 

valuable information toncerning beneficial sthemata thtough resting its 

fitness increase since each time a fitness increase of a string tould tome from 

the presence of useful building blocks on it. In short, by systematically 

resting each bit to examine whether this bit is associated with the fitness 

increase during each cycle, a cluster of bits tonstituting potentially 

beneficial sthemata will be untovered. Iterating this process guarantees the 

formation oflonger and longer candidate building blocks. 

The operation of BBDS on a string can be described as follows: 

1.  Generate an empty set for tollecting genes of candidate sthemata and 

create an initial string with uniform probability for each bit until its 

fitness exceeds 0. (Retord the current fitness as Fit.) 

2.  Except the genes of candidate schemata collected, from lefr to right, 

successively all the other bits, one at a time, evaluate the resuhing 

string. If the resulting fitness is less than Fit, retord this bit's position 

and original value as a gene of candidate sthemata. 
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string until the resulting string's fitness exceeds Fit. Replace Fit by 

the new fitness. 

4.  Go to steps 2 and 3 until some end criterion. The idea of this strategy 

is that the tooperation of certain genes (bits) makes for good fitness. 

Once these genes tome in sight simultaneously, [hey tontribute a fitness 

increase w the string tontaining them; thus any .loss of one of these genes 

leads to the fitness decrease of the string. This is essentially what step 2 

does and after this step we should be able to tollect a set of genes of 

candidate sthemata. Then at step 3, we keep the tollected genes of candidate 

sthel) lata fixed and randomly generate other bits, awaiting other building 

blocks to appear and bring forth another fitness in crease. 

However, step 2 in this strategy only emphasizes the f1mess dtop due to a 

particular bit. It ignores the possibility that the same bit leads to a new 

fitness rise because many loci tould interact in an extremely non linear 

fashion. To rake this into actount, the second version ofBBDS is inttoduced 

thtough the change in seep 2 as follows. 

Step 2: Except the genes of candidate sthemata tollected, from left to right, 

successively all the other bits, one at a time, evaluate the resulting string. If 

the resulting fitness is less than Fit, retord this bit's position and original 

value as a gene of candidate sthemata. If the resulting fitness exceeds Fit, 

substitute this bit's 'new' value for the old value, replace Fit by this new 

fitness, retord this bit's posicion and 'new' value as a gene of candidate 

sthemata, andre-execute this step. 

Because this version of BBDS cakes into consideration the fitness increase 

resulted from that particular bit, iris expected to cake less time for detecting. 

Other versions of RBDS are of tourse possible. For example, in step 2, if 

the same bit resuhs in a fitness increase, ir can be retorded as a gene of 

candidate sthemata, and the ptocedure tontinues to test the residual bits 

yetwithour tompletely traveling back to the first bit to reexamine each bit. 

However, the empirical results obtained rhus far indicate that the 

performance of this alternative is quire similar to that of the second version. 

More expetimental results are needed to distinguish the difference between 

them. 

The overall implementation of the independent sampling phase of ISGAs is 

thtough the ptoposed BBDS to get autonomous evolution of each string 

until all individuals in the population have reathed some end criterion. 

Breeding phase: After the independent sampling phase, individuals 

independendy build up their own evolutionary avenues by various building 

blocks. Hence the population is expected to tontain diverse beneficial 

sthemata and premature tonvergence is alleviated to some degree. However, 

factors such as deception and intompatible sthemata (i.e., two sthemata have 

different bit values ar common defining positions) still could lead 

individuals to arrive at suboptimal regions of a fitness landscape. Since 

building blocks for some strings to leave suboptimal regions may be 
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exploiting the building blocks on them are critical for overwhelming the 

difficulty of strings being trapped in undesired regions. In Huang (2001) the 

importance of mate selection has been investigated and the results showed 

that the GAs is able to improve their performance when the individuals are 

allowed to select maces to a larger degree. 

In this section, we adopt two mate-selection sthemes analyzed in Huang 

(2001) w breed the population: individuals being assigned mates by natural 

selection only and individuals being allowed to actively choose their mares. 

Since natural selection assigns strings of the same fitness the same 

probability for being parents, individuals of identical fitness yet distinct 

string structures are treated equally. This may result in significant loss of 

performance improvement after crossover. 

We adopt the tournament selection stheme (Mitthell, 1996) as the tole of 

natural selection and the mechanism for choosing mates in the breeding 

phase is as follows: 

During each mating evem, a binary tournament selection with ptobabilicy 

1.0 is performed to select the first individual out of the two fittest randomly 

sampled individuals according to the following sthemes: 

1.  Run the binary tournament selection again to choose the partner. 

2.  Run another two times of the binary tournament selection to choose 

two highly fit candidate partners; then the one more dissimilar to the 

first individual is selected for mating. 

The implementation of the breeding phase is thtough iterating each breeding 

cycle which consists of (a) two parents obtained on the basis of the 

mateseleccion sthemes above. (b) Two-point crossover operator (crossover 

rate 1.0) is applied to these parents. (c) Both parents are replaced with both 

offsprings if any of the two offsprings is better than them. Then steps (a), 

(b) and (c) are repeated until the population size is reathed and this is a 

breeding cycle. 

4b.7.6 Real-Coded Genetic Algorithms  

The variant of GAs for rea.lvalued optimization that is closest to the original 

GA are socalled realcoded GAs. Let us assume that we are dealing with a 

free Ndimensional realvalued optimization problem, which means X  =  RN 

without tonstraints. In a real-coded GA, an individual is then represented as 

an N-dimensional vector of real numbers: 

b = (Xi, ….,XN) 

As selection does not involve the particular toding, no adaptation needs to 

be made- all selection sthemes discussed so far are applicable withour any 

restriction. What has to be adapted to £his special structure are the genetic 

oper.uions crossover and mutation. 

 



 

 
247 

 

Genetic Algorithm 4b.7.6.1 Crossover Operators for Real-Coded GAs 

So far, the following crossover sthemes are most common for real-coded 

GAs: 

Flat crossover: Given two parents b1 = (x1/2, ... , x
1/N) and b2 = (x2/1, ... , 

x2/N), a vector of random values from the unit interval (AJ , ... , AN) is 

chosen and the offspring b = (x{, ... , xfv) is tomputed as a vector of linear 

tombinations in the following way (for all i = 1, ... , N): 

x1
i = i - x

1
i  + (1 - i) – x2

i 

BLX-α crossover is an extension of flat crossover, which allows an 

offspring allele to be also located outside the interval 

[min(x1
i, x

2
j), max(x1

i, x
2
i)] 

In BLX- α crossover, each offspring allele is chosen as a uniformly 

disuibuted random value from the imerval 

[min (x1
i, x

2
j), max(x, 1i, x

2
i) + 1-α] 

where l = max(x1
i,x

2
i) – min (x1

i,x
2
i). The parameter a has to be chosen in 

advance. For a = 0, BLX-a crossover becomes identical to flat crossover. 

Simple crossover is nothing else but classical one-point crossover for real 

vectors, i.e., a crossover site k  2{ 1, ... , N- 1} is chosen and cwo offspring 

are created in the following way: 

b1 = (x1
i, ……, x1

k, x
1
k+1 …., x2

N)  

bN = (x2
1, ……, x2

k, x
1
k+1 …., x1

N)  

Discrete crossover is analogous to classical uniform crossover for real 

vectors. An offspring b of the two parents b1 and b2 is composed from 

alleles, which are randomly chosen either as x1
i or x2

i. 

4b.7.6.2 Mutation Operators for Real-Coded GAs 

The following mutation operators are most common for real-coded GAs: 

1.  Random mutation: For a randomly chosen gene i of an individual b = 

(xl, ... , XN), the allele x; is replaced by a randomly chosen value from 

a predefined interval Ia, b,]. 

2.  Nonuniform mutation : In nonuniform mutation, the possible impact 

of mutation decreases with the number of generations. Assume that 

fmax is the predefined maximum number of generations. Then, with 

the same setup as in random mumion, the allele xi is replaced by one 

of the two values 

= x1+A (t,b;- x1) 

:if= x;-A (r,x;- a;) 



   

 
248 

Soft Computing Techniques The choice as to which of the two is taken is determined by a random 
expetiment with two outtomes that have equal probabilities 1/2 and I /2. The 
random variable A (t, x) determines a mutation step from the range 10, xl 
in the following way: 

D. (t,x) = x(J-),IHd•m•IJ') 

In this formula, A is a uniformly distributed random value from the unit 
interval. The parameter r determines the influence of the generation index 
ton the disrribution of mutation step sizes over the imerval IO,xl. 

4B.9 HOLLAND CLASSIFIER SYSTEMS 

A Holland classifier system is a classifier system of the Michigan type 
which processes binary messages of a fixed length thtough a rule base 
whose rules are adapted actording to response of the envitonment. 

4b.9.1 The Production System 

First of all, the tommunication of theproduction system with the 
envitonment is done via an arbitrarily long list of messages. The derectors 
translate responses from the environment two binary messages and place 
them on the message list which is then scanned and changed by the rule 
base. Finally, the effectors translate output messages two actions on the 
envitonment, such as forces or movements. 

Messages are binaty strings of the same length k. More formally, a message 
belongs w {0, l}k. The rule base consists of a fixed number (m) of rules 
(classifiers) which tonsist of a fixed number (r) of conditions and an acrion, 
where both conditions and actions are strings oflength k over the alphabet 
{0, 1, *}.The asterisk plays the tole of a wildcard, a 'don't care' symbol. 

A condition is matthed if and only if there is a message in the list which 
matthes the tondition in all nonwildcard positions. Moreover, conditions, 
except the first one, may be negated by adding a'-' prefix. Such a prefixed 
tondition is satisfied if and only if there is no message in the list which 
marthes the string associated with the tondition. Finally, a rule fires if and 
only if all the conditions are satisfied, i.e., the conditions are tonnected with 
AND. Such 'firing' rules tompere to put their action messages on the 
message list. 

In the action pans, the wildcard symbols have a different meaning. They 
take thetole of 'pass through' element. The outpm message of a firing rule, 
whose action parr tontains a wildcard, is composed from the actually the 
reason why Ilegations of the first conditions are not allowed. More formally; 
the outgoing message m is defined as 

 

where a is the action part of the classifier and m is the.(Ilessage which 
matthes the first tondition. Formally, a classifier is a suing of the form 

Cond1,|’-‘|| Cond2, ……, |’-‘ Cond,/Action 
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Genetic Algorithm where the brackets shouJd express the optionalicy of the "-" prefixes. 
Depending on the toncrete nee¢; of the task to be solved, it may be desirable 
to allow messages to be preserved for the next step. More specifically, if a 
message is not interpreted and removed by the effectors interface, it can 
make another classifier fire in the next step. In practical applications, this is 
usually actomplished by reserving a few bits of the messages for identifying 
the origin of the messages (a kind of variable index called tag). 

Tagging offers new opportunities to transfer information about the current 
step intothe next step simply by placing ragged messages on the list, which 
are not interpreted, by the output interface. These messages, which 
obviously tontain information about the previous step, can support the 
decisions in the next step. Hence, apptopriate use of rags permits rules to be 
toupled to act sequenrially. In some sense, such messages are the memory 
of the system. 

A single execmion cycle of the production system consists of the following 
steps: 

1.  Messages from the environment are appended tothe message list. 

2.  All the conditions of all classifiers are thecked against the message 
list w obtain the set of firing rules. 

3.  The message list is erased. 

4.  The firing classifiers participate in a tompetition to place their 
messages on the list. 

5.  The winning classifiers place their actions on the list. 

6.  The messages directed to the effectors are executed. 

This ptocedure is repeated iteratively. How step 6 is done, if these messages 
are deleted or nor, and so on, depends on the toncrete implementation. It is, 
on the one hand, possible to choose a representation such that the effectors 
can interpret each output message. On the other hand, it is possible to direct 
messages explicitly to the effectors with a special tag. If no messages are 
directed to the effectors, the system is in a iliinking phase. 

A classifier Rl is called tonsumer of a classifier R2 if and only if there is a 
message mO which fulfills at least one ofRl's conditions and has been 
placed on the list by R2. Tonversely, R2 is called a supplier of Rl. 

4b.9.2 The Bucket Brigade Algorithm 

As already mentioned, in each time step t, we assign a strength value ui,t to 
each classifier Ri. This strength value represents the torrectness and 
importance of a classifier. On the one hand, the strengrh value influences 
the chance of a classifier to place its action on the output list. On the other 
hand, the suength values are used by the rule distovery system, which we 
will soon discuss. 

In Holland classifier systems, the adaptation of the strength values 
depending on the feedback (payoff) from the envitonment is done by the 
so.called bucket brigade algorithm. It can be regarded as a simulared 
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an auction, where the chance to buy the right to post the action depends on 
the strength of the agents. 

The bid of classifier Ri at timet is defined as 

B;,, = CLrJ;,,S; 

where CL E [0, 1] is a learning parameter, similar to learning rates in 
anificial neural nets, and s,- is the specificity, the number of nonwildcard 
symbols in the tondition pan of the classifier. If CL is chosen small, the 
system adapts slowly. If it is chosen too high, the strengths rend to oscillate 
chaotically. Then the rules have to tompete for the right for placing 
their"output messages on the list. In the simplest case, this can be done by 
a random expetiment like the selection in a genetic algorithm. For i:h 
bidding classifier it is decided randomly if it wins or not, where the 
probability that it wins is proportional to its bid: 
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In rhis equation, Sar1 is the set of indices of all classifiers which are satisfied 
at timet. Classifiers which get the right to post their output messages are 
called winning classifiers. 

Obviously, in this approach more than one winning classifier is allowed. C 
f tourse, or her selection sthemes are reasonable, for instance, the highest 
bidding agent wins alone. This is necessary to avoid the conflict between 
two winning classifiers. Now let us discuss how payoff from the 
envitonment is disrtibuted and how the strengths are adapted. For this 
purpose, let us denme the set of classifiers, which have supplied a winning 
gent R; in step t with 5;,1• Then the new strength of a winning agent is 
reduced by its bid and increased by its portion of the payoff P1 received 
&om the environment: 

, 1 , ,
t

i t i t i t

t

P
B

w
    

 

where w1 is the number of winning agents in the actual time step. A winning 
agent pays its bid to its suppliers which share the bid among each other 
equally in the simplest case: 

 

If a winning agent has also been active in the previous step and supplies 
another winning agent, the value above is additionally increased by one 
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Genetic Algorithm portion of the bid the tonsumer offers. In the case that two winning agents 
have supplied each other mutually, the portions of the bids are exchanged 
in the above manner. The SHengrhs of all other classifiers Rm which are 
neither winning agents nor suppliers of winning agents, are reduced by a 
certain factor (they pay a rax): 

un,1+1 = Nn,1 (1 – T) 

T is a small value lying in the interval [0, 1]. The intention of taxation is to 
punish classifiers which never contribute anything to the output of the 
system. With this concept, redundant classifiers, which never become 
active, can be filtered out. 

The idea behind credit assignment in general and bucket brigade in 
particular is w increase the strengths of rules, which have ser the stage for 
later successful actions. The problem of determining such classifiers, which 
were responsible for conditions under which it was later on possible to 
receive a high payoff, can be very difficult. Consider, for instance, the game 
of thess again, in which very early moves can be significant for a late 
success or failure. In fact, the bucker brigade algorithm can solve this 
problem, although strength is only transferred to the suppliers, which were 
active in the previous step. Each time the same sequence is activated, 
however, a little bir of the payoff is transferred one step back in the 
sequence. It is easy to see that repeated successful execution of a sequence 
increases the mengrhs of all involved classifiers.  

 

Figure 4b.32 The bucker brigade principle. 

Figure 4b.32 shows a simple example of how the bucker brigade algorithm 

works. For simplicity, we consider a sequence of five classifiers which 

always bid 20% of their strength. Only after the fifth step, after the 

activation of the fifth classifier, a payoff of 60 is received. The further 
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Soft Computing Techniques development of the strengths in this example is shown in the Table lS-7. It 

is easy to see from this example that the reinforcement of the strengths is 

slow at the beginning, but it accelerates later. Exactly this property 

tontributes much to the robustness of classifier systems - they tend to be 

cautious at the beginning, trying not to rush conclusions, but, after a certain 

number of similar situations, the system adopts the rules more and more. 

It might be clear that a Holland classifier system only works if successful 

sequences of classifier activations are observed sufficiently often. 

Otherwise the bucket brigade algorithm does not have a chance to reinforce 

the strengths of the successful sequence ptoperly. 

4b.9.3 Rule Generation 

The purpose of the rule distovery system is to eliminate low-firred rules and 

to replace them by hopefully better ones. The fitness of a rule is simply its 

strength. Since the classifiers of a Holland classifier system themselves are 

strings, the application of a GA to the problem of rule induction is 

straightforward, though many variants are reasonable. Almost all variants 

have one thing in common: the GA is nor invoked in each time step, but 

only every nth step, where 11 has to be set such that enough information 

about the performance of new classifiers can be obtained in the meantime. 

A. Geyer-Schuh., for instance, suggests the following ptocedure, where the 

strength of new classifiers is initialized with the average strength of the 

current rule base: 

1.  Select a subpopulation of a certain size at random. 

2.  Compute a new set of rules by applying the genetic operations- 

selection, crossingover and muration - to this subpopularion. 

3.  Merge the new sub population with the rule base omitting duplicates 

and replace the worst classifiers. 

Table 9·7  An example for repeated propogation of payoffs 

 ______________________________________________________ 

 Strength after the 

 3rd  100.00  100.00  101.60  120.80  172.00 

 4th  100.00  100:32  103.44  136.16  197.60 

 5th  100.06  101.34  111.58  92.54  234.46 

 6th  100.32  103.39  119.78  168.93  247.57 

  . 

  . 

  . 

 10th 106.56  124.17  164 .44  224.84  278.52 

  . 

  . 

  . 

 25th  29.86  253.20  280.36  294.52  299.24 

  . 

  . 

  . 

 execution of the sequence 

 ______________________________________________________ 
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Genetic Algorithm This process of acquiring new rules has an interesting sideffect. Iris more 

rhan just the exchange of parts of conditions and actions. Since we have nor 

stared restrictions for manipulating rags, the GA can retombine parts of 

already existing rags m invent new tags. In the following. rags spawn related 

rags establishing new touplings. These new tags survive if they tonrribute 

to useful interactions. In this sense, the GA additionally creates experience-

based internal structures autonomously. 

4B.10 GENETIC PROGRAMMING 

Genetic programming (GP) is also part of the gtowing set of evolutionary 

algorithms that apply the search principles of natural evolution in a variety 

of differem problem domains, notably parameter optimization. 

Evolutionary algorithms and GP in particular, follow Darvin's principle of 

differential natural selection. This principle states that the follow"ing 

preconditions must be fulfilled for evolution to occur via (natural) selection: 

1.  There are entities called individuals which form a population. These 

entities can reproduce or can be reproduced. 

2.  There is herediry in reproduction, rhat is to say that individuals 

produce similar offspring. 

3.  In the tourse of reproduction, there is variery which affects the 

likelihood of survival and therefore of reproducibility of individuals. 

4.  There are finite resources which cause the individuals to tompete. 

Owing to over reproduction of individuals nor all can survive the 

struggle for existance. Differential natural selections will exert a 

tontinuous pressure towards improved individuals. 

In the long run, GP and other evolutionary computing technologies will 

revolutionize program devel opmem. Present methods are not mamre 

enough for deploymem as automatic programming systems. Nevertheless, 

GP has already made intoads two automatic programming and will tontinue 

to do so in the foreseeable fmure. Likewise, the application of evolution in 

machine-learning problems is one of the potentials we will exploit over the 

coming decade. 

GP is part of a more general Held known as evolutionary tomputation. 

Evolutionary tomputation is based on the idea that basic concepts of 

biological reproduction and evolution can serve as a metaphor on which 

computer-based, goal-directed problem solving can be based. The general 

idea is that a computer program can maintain a population of artifacts 

represented using some suitable computer-based data structures. Elements 

of that population can then mare, mutate, or otherwise reproduce and 

evolve, directed by a fitness measure that assesses the quality of the 

population with respect to the goal of the task at hand. 
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Soft Computing Techniques GP is an automated method for creating a working computer program from 

a high-level problem statement of a problem. GP starts from a high-level 

statement of 'what needs to be done' and automarically creates a computer 

program to solve the problem. 

One of the central challenges of computer science is to get a computer to do 

what needs to be done, without telling it how to do it. GP addresses this 

challenge by ptoviding a method for automatically creating a working 

tompmer program from a high-level problem statement of the problem. GP 

achieves this goal of automatic programming (also sometimes called 

program synthesis or program induction) by genetically breeding a 

population of computer programs using the principles of Darwinian natural 

selection and biologically inspired operations. The operations include 

reproduction, crossover, mutation and architecture-altering operations 

patterned after gene duplication and gene deletion in nature. 

GP is a domain-independent method that genetically breeds a population of 

computer programs to solve a problem. Specifically, GP iteratively 

transforms a population of computer programs into a new generation of 

programs by applying analogs of naturally occurring genetic operations. 

The genetic operations include crossover, mutation, reproduction, gene 

duplication and gene deletion. GP is an excellent problem solver, a superb 

function apptoximator and an effective tool for writing functions to solve 

specific tasks. However, despite all these areas in which it excels, it still 

does not replace programmers; rather, it helps them. A human still must 

specify the fitness function and identify the problemto which GP should be 

applied. 

4b.10.1 Working of Genetic Programming 

GP typically starts with a population of randomly generated tom purer 

programs composed of the available programmatic ingredients. GP 

iteratively transforms a population of computer programs into a new 

generation of the population by applying analogs of naturally occurring 

genetic operations. These operations are applied to individual(s) selected 

from the population. The individuals are ptobabilisrically selected to 

participate in the genetic operations based on their fitness (as measured by 

the f1tness measure provided by the human user in the third preparatory 

step). The iterative transformation of the population is executed inside the 

main generational loop of the run of G P. 

The executional steps of GP (i.e., the flowchart of GP) are as follows; 

1.  Randomly create an initial population (generation 0) of individual 

computer programs composed of the available functions and 

terminals. 
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Genetic Algorithm 2.  Iteratively perform the following subsreps (called a genemtion) on the 

population until the termination criterion is satisfied: 

* Execute each program in the population and ascertain its fitness 

(explicitly or implicitly) using the problem's fitness measure. 

* Select one or two individual program(s) from the population 

with a probability based on fitness (with reselecrion allowed) to 

participate in the genetic operations in the next subsrep. 

* Create new individual program(s) for the populaiion by 

applying the following genetic operations with specified 

probabilities: 

(a)  Reproduction: Topy the selected individual program to the new 

population. 

(b)  Crossover: Create new offspring program(s) for the new population 

by recombining randomly chosen parts from two selected programs. 

(c)  Mutation: Create one new offspring program for the new population 

by randomly mutating a randomly chosen part of one selected 

program. 

(d)  Archirecrure-altring operation - Choose an architecture altering 

operation from the available repertoire of such operations and create 

one new offspring program for the new population by applying the 

chosen architecture-altering operation to one selected program. 

3.  After the termination criterion is satisfied, the single best program in 

the population produced during the run (the besr-so-far individual) is 

harvested and designated as the result of the run. If the run is 

successful, the result may be a solution (or approximate solution) to 

the problem. 

GP is problem-independent in the sense that the flowchart specifying the 

basic sequence of executional steps is not modified for each new run or each 

new problem. There is usually no discretionary human intervention or 

interaction during a run of genetic programming (although a human user 

may exercise judgment as to whether to terminate a run). 

Figure 9-47 below is a flowchart showing the executional steps of a run 

ofGP. The flowchart shows the genetic operations of crossover, 

reproduction and mutation as well as the architecrurealrering operations. 

This flowchart shows a two-offspring version of the crossover operation. 
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Figure 4b.33 Flowchart of genetic programming. 

The flowchart of GP is explained as follows: GP starts with an initial 

population of computer programs composed of functions and terminals 

apptopriate to the problem. The individual programs in the initial population 

are typically generated by recursively generating a rooted point-labeled 

program tree composed of random choices of the primitive functions and 

terminals (provided by the human user as part of the first and setond 

preparatory steps, a run ofGP). The initial individuals are usually generated 

subject to a pre-established maximum size (specified by the user as a minor 

parameter as pan of the founh preparatory step}. In general, the programs 

in the population are of different sizes (number of functions and terminals) 

and of different shapes (the particular graphical arrangement of functions 

and terminals in the program tree). 
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Genetic Algorithm Each individual program in the population is executed. Then, each 

individual program in the population is either measured or tompared in 

rerms of how well it performs the task at hand (using the fitness measure 

provided in the third preparatory step). For many problems, this 

measurement yields a single explicit numerical value called fitness. The 

fitness of a program may be measured in many different ways, including, 

for example, in terms of the amount of error between its output and the 

desired output, the amount of time (fuel, money, etc.) required to bring a 

system to a desired target stare, the accuracy of the program in retognizing 

patterns or classifying objects into classes, the payoff that a game-playing 

program produces, or the tompliance of a tomplex structure (such as an 

antenna, circuit, or tonttoller) with user-specifted design criteria. The 

execution of the program sometimes returns one or more explicit vaJues. 

Alternatively, the execution of a program may tonsist only of side effecrs 

on the stare of a world (e.g., a robot's actions). Alternatively, the execution 

of a program may produce both return values and side effects.  

The fitness measure is, for many practical problems, mulriobjecrive in the 

sense that it tombines two or more differem elements. The different 

elements of the fitness measure are often in tompetition with one another to 

some degree. 

For many problems, each program in the population is executed over a 

representative sample of different fituess cases. These fitness cases may 

represent different values of the program's inpur(s), differem initial 

conditions of a system, or different envitonments. Sometimes the fitness 

cases are tonstructed probabilistically. 

The creation of the initial random population is, in effect, a blind random 

search of the search space of the problem. It provides a baseline for judging 

future search effons. Typically, the individual programs in generation 0 all 

have exceedingly poor fitness. Nevertheless, some individuals in the 

population are {usually) more fir than odters. The difference. in fitness are 

dten exploited by GP. GP applies Darwinian selection and the genetic 

operations to create a new population of offspring programs from the 

current population. 

The genetic operations include crossover, mutation, reproduction and the 

architecture-altering operations. These genetic operations are applied to 

individual(s) that are ptobabilistically selected from the population based 

on fitness. In this ptobabilistic selection process, better individuals are 

favored over inferior individuals. However, the best individual in the 

population is not necessarily selected and the worst individual in the 

population is not necessarily passed over. 

After the genetic operations arc performed on the current population, the 

population of offspring (i.e. the new generation) replaces the current 

population {i.e., the now-old generation). This iterative process of 

measuring fitness and performing the genetic operations· is reeated over 

many generations. 
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fifth preparatory step) is satisfied. The outcome of the run is specified by 

the method of result designation. The best individual ever encountered 

during the run (i.e., the best-so-far individual) is typically designated as the 

result of the run. 

All programs in the initial random population {generation 0) of a run of GP 

are symmetrically valid, executable programs. The genetic operations that 

are performed during the run (i.e., crossover. mutation, reproduction and the 

architecture-altering operations) are designed to produce offspring that art: 

syntactically valid, executable programs. Thus, ever individual created 

during a run of genetic programming (including, in pmicular, the best-of-

run individual) is'' syntactically valid, executable program. 

4b.10.2 Characteristics of Genetic Programming 

GP now toutinely delivers high-return human-competitive machine 

intelligence, the next four subsections explain what we mean by the terms 

human-competitive, high-return, routine and machine intelligence. 

4b.10.2.1 Human-Competitive 

In attempting to evaluate an automated problem-solving method, the 

question arises as to whether there is any real substance tothe demonstrative 

problems that are published in connection with the method. Demonstrative 

problems in the fields of artificial intelligence and machine learning are 

often connived to problems that circulate exclusively inside academic 

groups that study a particular methodology. These problems typically have 

little relevance to any issues pursued by any scientist or engineer outside 

the fields of artificial intelligence and machine learning. 

ln his 1983 talk entitled "Al: Where It Has Been and Where It Is Going," 

machine learning pioneer Arthur Samuel said: 

The aim is …… to get machines to exhibit behaviour, which of done by 

human, would be assumed to involve the use of intelligence. 

Samuel’s statement reflects the common goat articulated by the pioneers of 

the 1950s in the fields of artificial intelligence and machine learning. 

Indeed, getting machines to produce human like results is the reason for the 

existence of the fields of artificial intelligence and machine learning. To 

make this goal more concrete, we say that a result is “human-competitive” 

if it satisfies one or more of the eight criteria in Table 9-8. These eight 

criteria have the desirable attribute of being at arms-length from the fields 

of artificial intelligence, machine learning and GP. That is a result cannot 

acquire the rating of ‘human-competitive’ merely because it is endorsed by 

researchers inside the specialized fields that are attempting to create 

machine intelligence, machine learning and GP. That is, a result cannot 

acquire the rating of ‘human-competitive’ merely because it is endorsed by 

researchers inside the specialized fields that are attempting to create 

machine intelligence. Instead a result produced by an automated method 
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Genetic Algorithm must earn the rating of human-competitive dependent of the fact that it was 

generated by an automated method. 

4b.10.2.2 High-Return 

What is delivered by the accrual automated operation of an artificial method 

in comparison to the amount of knowledge, information, analysis and 

intelligence that is pre-supplied by the human employing the method? 

We define the AI ratio (the 'artificial-to-intelligence' ratio) of a problem-

solving method as the ratio of that which is delivered by the automated 

operation of the artificial method to the amount of intelligence that is 

supplied by the human applying the method to a particular problem. 

Table 9·8   Eight criteria for saying that an automatically created research 

is human-competitive 

------------------------------------------------------------------------------------------

Criterion 

------------------------------------------------------------------------------------------ 

A The result was patented as an invention in the past, is an improvement 

over a parented invention or would quality today as a permeable new 

invention. 

B  The result is equal to or beuer than a result that was accepted as a new 

scientific result at the time when it was published in a peer-reviewed 

scientific journal. 

C  The result is equal to better than a result that was placed into a 

database or archive of results maintained by an internationally 

recognized panel of scientific experts. 

D  The result is publishable in its own right as a new scientific result-

independent of the fact that the result was mechanically created. 

E  The result is equal to or better than the most recent human-created 

solution to a long-standing problem for which there has been a 

succession of increasingly better human-created solutions. 

F  The result is equal to or better than a research that was considered an 

achievement in its field at the time it was first discovered. 

G  The result solves a problem of indisputable difficulty in its field. 

H  The result holds its own or wins a regulated tom petition involving 

human contestants (in the form of either live human players or human-

written computer programs). 

------------------------------------------------------------------------------------------ 

The AI ratio is especially pertinent to methods for getting computers to 

automatically solve problems because it measures the value added by the 

artificial problem-solving method. Manifestly, the aim of the fields of 
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competitive results with a high AI ratio. 

Deep Blue: An Arnficin/ lme//igence Milestone (Newborn, 2002) describes 

the 1997 defeat of the human world thess champion Garry Kaspatov by the 

Deep Blue computer system. This commanding example of machine 

indigence is clearly a human-competitive result (by virtue of satisfying 

criterion H of Table 9-8). Feng-Suing Hsu (the system architect and chip 

designer for the Deep Blue project) recounts the intensive work on the Deep 

Blue project at IBM's T. J. Watson Research Centre between 1989 and 1997 

{Hsu, 2002). The team of scientists and engineers spent years developing 

the software and the specialized computer chips to efficiently evaluate large 

numbers of alternative moves as part of a massive parallel state-space 

search. In short, the human developers invested an enormous amount of "!" 

in the project. In spite of the fact that Deep Blue delivered a high {human-

competitive) amount of "A," the project has a low return when measured in 

terms of the A-to-l ratio. 

The aim of the fields of artificial intelligence and machine learning is to get 

computers to automatically generate human-competitive results with a high 

AI ratio- not to have humans generate human-competitive results 

themselves. 

4b.10.2.3 Routine 

Generality is a precondition to what we mean when we say that an 

automated problem-solving method is "combine" Once the generality of a 

method is established, "routineness" means that relatively little human 

effort is required to get the method to successfully handle new problems 

within a particular domain and to successfully handle new problems from a 

different domain. The ease of making the transition to new problem lies at 

the hearr of what we mean by routine. A problem-solving method cannot be 

considered routine if its executional steps must be substantially augmented, 

deleted, rearranged, reworked or customized by the human user for each 

new problem. 

4b.10.2.4  Machine Intelligence 

We use the term machine intelligence to refer to the broad vision articulated 

in AJan Turing's 1948 paper emided "Intelligent Machinery" and his 1950 

paper entitled "Computing Machinery and Intelligence." 

In the 1950s, the terms machine intelligence, artificial intelligence and 

machine learning all referred to the goal of getting "machines to exhibit 

behaviour, which if done by humans, would be assumed to involve the use 

of intelligence" {to again quote Arthur Samuel). 

However, in the intervening five decades, the terms "artificial intelligence" 

and "machine learning" progressively diverged from their original goal-

oriented meaning. These terms are now primarily associated with particular 

methodologies for attempting to achieve the goal of getting computers to 

automatically solve problems. Thus, the term "artificial intelligence" is 
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Genetic Algorithm today primarily associated with attempts to get computers to solve problems 

using methods that rely on knowledge, logic, and various analytical and 

mathematical methods. The term "machine learning" is today primarily 

associated with attempts to get computers to solve problems that use a 

particular small and somewhat arbitrarily chosen set of methodologies 

(many of which are statistical in nature). The narrowing of these terms is in 

marked contrast to the broad field envisioned by Samuel at the time when 

he toned the term "machine learning" in the 1950s, the thatter of the original 

founders of the field of artificial indigence, and the broad vision 

encompassed by Turing's term "machine intelligence." Of course, the shift 

in focus from broad goals to narrow methodologies is an all too common 

sociological phenomenon in academic research. 

Turing's term "machine intelligence" did not undergo this arteriosclerosis 

because, by accident of history, it was never appropriated or monopolized 

by any group of academic researchers whose primary dedication is to a 

particular methodological approach. Thus, Turing's term remains catholic 

today. We prefer to use Turing's term because it still communicates the 

broad goal of getting computers to automatically solve problems in a 

human-like way. , 

In his 1948 paper, Turing identified three broad approaches by which 

human competitive\'e machine intelligence might be achieved: The first 

approach was a logic-driven search. Turing's interest in this approach is not 

surprising in light of Turing's own pioneering work in the 1930s on the 

logical foundations of computing. The second approach for achieving 

machine intelligence was what he called a "cultural search" in which 

previously acquired knowledge is accumulated, stored in libraries and 

brought to bear in solving a problem - the approach taken by modern 

knowledge-based expert systems. Turing's first two approaches have been 

pursued over the past 50 years by the \'past majority of researchers using 

the methodologies that are today primarily associated with the term 

"artificial inelegance.'' 

4b.10.3 Data Representation 

Without any doubt, programs can be considered as strings. There are, 

however, two important limitations which make it impossible to use the 

representations and operations from our simple GA: 

l.  It is mostly inappropriate to assume a fixed length of programs. 

2.  The probability to obtain syntactically correct programs when 

applying our simple initialization crossover and mutation procedures 

is hopelessly low. 

Lt is, therefore, indispensable to modify the data representation and the 

operations such that syntactical correctness is easier to guarantee. The 

common approach to represent programs in GP is to consider programs as 

trees. By doing so, initialization can be done recursively, crossover can be 

done by exchanging sub trees and random replacement of sub trees can 

serve as mutation operation. 
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already have a kind of tree-like Structure. Figure 9-48 shows an example 

how the function 3x + sin(x + I) can be implemented in a LISP like language 

and how such an LISP-like Function can he split up into a tree. Let can be 

noted that the tree n: presentation corresponds to the nested lists. The 

program consists of tonic expressions, like variables and constants, which 

act as leave nodes while functions act as no leave nodes 

 

Figure 4b.34 The tree representation of 3x+ sin (x + 1). 

There is one important disadvantage of the LISP approach-iris difficult to 

introduce type checking. In case of a purely numeric function like in the 

above example, there is no problem at all. However, it can be desirable to 

process numeric data, .mings and logical expressions simultaneously. This 

is difficult to handle if we use a tree representation like that in Figure 948. 

A. Geyer-Schulz bas proposed a very general approach, which overcomes 

this problem allowing maximum flexibility. He suggested representing 

programs by their syntactical derivation trees with respect to a recursive 

'definition of underlying language in Backus-Naur form (BNF). This works 

for any ton text-free language. He is far beyond the stop of this lecture to go 

into much derail about formal languages. We will explain the basics with 

the help of a simple example. Consider the following language which is 

suitable for implementing binary logical expressions: 

   S   :=  <exp>; 

<exp> := (var) | “(“<neg> <exp>”)” | “(“<exp> <bin> 

<exp>”)”; 

<var>  := “x” | “y”; 

<neg> := “NOT” 

<bin>  := “AND” | “OR”; 

 

The BNF description consists of so-called syntactical rules. Symbols in 

angular brackets < > are called nomerminal symbols, i.e. symbols which 

have to be expanded. Symbols between quotation marks are called terminal 
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Genetic Algorithm symbols, i.e., they cannot be expanded any further. The first rule S:=<exp> 

defines the staining symbol. A BNF rule of the general shape, 

< non terminal > := < deriv1 > | < deriv2> | ... | < deriv11 >; 

defines how a non-terminal symbol may be expanded, where the different 

varies are separated by vertical bars. 

In order to get a feeling of how to work with the BNF grammar description, 

we will now show step-by-step how the expression (NOT (x OR y)) can be 

derivated from the above language. For simplicity, we omit quotation marks 

for the terminal symbols: 

1.  We have to begin with the start symbol: <exp> 

2.  We replace hexpi with the second possible derivation: 

<exp>  (<neg><exp>) 

3.  The symbol <neg> may only he expanded with the terminal symbol 

NOT: 

(<neg>  <exp>)   (NOT <exp>i 

4.  Next. we replace: <exp> with the third possible derivation: 

(NOT <exp>)  (NOT {<exp><bin><exp>)) 

5.  We expand the second possible derivation for <bin>: 

(NOT (<exp> <bin> <exp>))  (NOT (<exp> OR <exp>)) 

6.  The first occurrence of <exp> is expanded with the first derivation: 

(NOT (<exp> OR <exp>))  (NOT (<var>  OR <exp>)) 

7. The .second occurrence of <exp> is expanded with the first 

derivation, too: 

(NOT ( <virr> OR <exp> ))  (NOT ( <var> OR <var>)) 

8. Now we replace the first <var> with the corresponding first 

alternative: 

(NOT ( <var> OR <var>))  (NOT tx OR <var> )) 

9.  Finally, the last non-terminal symbol is expanded with the second 

alternative: 

(NOT ix OR <var>))  (NOT tx OR y)) 

Such a recursive derivation has an inherent tree structure. For the above 

example, this derivation tree has been visualized in Figure 4a.49. The syntax 

of modern programming languages can be specified in BNF. Hence, our 

data model would be applicable to all of them. The question is whether this 

is useful. Koza’s hypothesis includes that the programming language has to 

be chosen such that the given problem is solvable. This does not necessarily 

imply that we have no choose the language such that virtually any solvable 

problem can be solved. It is obvious that the size of the search grows with 

the complexity of the language. We know that the size of the search space 
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the size of the search space influences the performance of a GA – the larger 

the slower. 

It is therefore, recommendable to restrict the language to necessary 

constructs and to avoid superfluous constructs. Assume, for example, that 

we want to do symbolic regression, but we are only interested in 

polynomials with integer coefficients. For such an application, it would be 

an overkill to introduce rational constants or to include exponential 

functions in the language. A good choice could be the following. 

   S   := <func>; 

<func> := (var) | “(“<const>) | “(“<func> <bin> <func>”)”; 

<var>  := “x”; 

<const> :=  <int> | <const> <int>; 

<int>   := “0” | … | “9” ; 

<bin>  := “+” | “-” | “+”; 

 

For representing rational functions with integer coefficients, it.is sufficient 

to add the division symbol  "f" to the possible derivations of the binary 

operator <bin>. 

 

Figure 4b.35 The derivation tree of (NOT (x OR y)). 

Another example: The following language could be appropriate for 

discovering trigonometric identities: 
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Genetic Algorithm  S   := <func>; 

<func> := (var) | “(“<const>) | <trig> “(“<func>”) | 

“(“<func> <bin> <func>”)”; 

<var>  := “x”; 

<const> := “0” | “1” | “π”; 

<trig>  := “sin” | “cos”; 

<bin>  := “+” | “-” | "+”; 

 

There are basically two different variants of how w generate random 

programs with respect to a given BNF grammar: 

l.  Beginning from the starting symbol, it is possible to expand 

nonterminal symbols recursively, where we have to choose randomly 

if we have more than one alternative derivation. This approach is 

simple and fast, but has some disadvantages: First, it is almost 

impossible to realize a uniform distribution. Second, one has to 

implement some constraints with respect to the depth of the derivation 

trees in order to avoid excessive growth of the programs. Depending 

on the complexity of the underlying grammar, this can be a tedious 

task. 

2.  Geyer-Schulz has suggested to prepare a list of all possible derivation 

trees up to a certain depth and to select from this list randomly 

applying a uniform distribution. Obviously, in this approach, the 

problems in terms of depth and the resulting probability distribution 

are elegantly solved, but these advantages go along with considerably 

long computation times. 

4b.10.3. 1 Crossing Programs 

It is trivial to see that primitive string-based crossover of programs almost 

never yields syntactically correct program. Instead, we should use the 

perfect syntax information a derivation tree provides. Already in the USP 

times of Gp, sometime before the BNF-based representation was known, 

crossover was usually implemented as the exchange of randomly selected 

subtrees. In case that the subtrees (sub expressions) may have different 

types of return values (e.g., logical and numerical), it is not guaranteed iliar 

crossover preserves syntactical correctness. 

The derivation tree based representation overcomes this problem in a very 

elegant way. If we only exchange subtrees which start from the same 

nonterminal symbol, crossover can never violate syntactical correctness. In 

this sense, the derivation tree model provides implicit type checking. In 

order to demonstrate in more detail how this crossover operation works, let 
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the following expressions: 

(NOT (x OR y)) 

((NOT x) OR (x AND y)) 

Figure l5-50 shows graphically how the two children (NOT (x OR (x AND 

y))) ((NOT x) OR y) are obtained. 

 

 

 

 

 

 

 

 

 

 

Figure 4b.36 An example for crossing two binary logical expressions. 
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Figure 4b.37 An example for making a derivation tree 

4b.10.3.2 Mutating Programs 

We have always considered mutation as the random deformation of a 

chromosome. It is therefore, not surprising that the most common mutation 

in genetic programming is the random replacement of a randomly selected 

subtree. The only modification is that we do not necessarily start from the 

start symbol but from the nonterminal symbol at the root of the subtree we 

consider. Figure 4a.51 shows as example where in the logical expression 

(NOT (x OR y)). Te variable y is replaced by (NOT y). 

4b.10.3.3  The Fitness Function 

There is no common recipe for specifying an appropriate fitness functions 

which wrongly depends on the given problem. It is, however, worth 

emphasizing that it is necessary to provide enough information to guide the 

GA to the solution. More specifically, it is not sufficient to define a fitness 

function which assigns 0 to a program which does not solve the problem 

and 1 to a problem. Such a fitness function would correspond to needle-in-

haystack problem.  In the sense a proper fitness measure should be a gradual 

concept for judging the correctness of programs. 

In many applications, the fitness function is based on a comparison of 

desired and actually obtained output. Koza, for instance, uses the simple 

sum of quadriatic errors for symbolic regression and the discover of 

trigonometric identities: 

 

In this definition, F is the mathematical function which corresponds to the 

program under evaluation. The list (xi, y), 1 < 1 < N consists of reference 

pairs – a desired output y, is assigned to each input 1.  Check the samples 
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sufficiently well. 

Numeric error-based fitness functions usually imply minimization problem.  

Some other applications may imply maximization tasks.  There are basically 

two well-known transformation which allow to standardize fitness functions 

such that always minimization or maximization tasks are obtained. 

Consider an arbitrary “raw” fitness function f. Assuming that the number of 

individuals in the population is not fixed (m, at time t), the standardized 

fitness is computed as 

 

It f has to be maximized and as 

 

If f has to be minimized. One possible variant is to consider the best 

individual of the last k generations instead of only considering the actual 

generation. 

Obviously, standardized fitness transform’s any optimization problem into 

a minimization task. Roulette wheel selection relies on the fact that the 

objective is maximization of the fitness function. Koza has suggested a 

simple transformation such that, in any case, a maximization problem is 

obtained. 

With the assumptions of previous definition, the adjusted fitness is 

computed as 

 

Another variant of adjusted fitness is defined as 

 

For applying GP w a given problem, the following points have to be 

satisfied. 
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Genetic Algorithm 1. An appropriate fitness function, which provides enough information 

to guide the GA to the solution (mostly based on examples). 

2.  A syntractical description of a programming language, which contains 

as much elements as necessary for solving the problem. 

3.  An interpreter for the programming language. 

The main application areas of GP include: Computer Science, Science, 

Engineering, and entertainment. 

4B.11 ADVANTAGES AND LIMITATIONS OF GENETIC 

ALGORITHM 

The advantages of GA are as follows: 

1. Parallelism. 

2. Liability. 

3. Solution space is wider. 

4. The fitness landscape is complex. 

5. Easy to discover global optimum. 

6. The problem has multi objective function. 

The limitations of GA are as follows: 

1.  The problem of identifying fitness function. 

2.  Definition of representation for the problem. 

3.  Premature convergence occurs. 

4.  The problem of choosing various parameters such as the size of the 

population, mutation rare, crossover rare, the selection method and its 

strength. 

4B.12  APPlICATIONS OF GENETIC ALGORITHM 

An effective GA representation and meaningful fitness evaluation are the 

keys of the success in GA applications. The appeal of GAs tomes & on their 

simplicity and elegance as to bust search algorithms as well as from their 

power to discover good solutions rapidly for difficult high-dimensional 

problems. GAs are useful and efficient when 

1.  the search space is large, complex or poorly understood; 

2.  domain knowledge is scarce or expert knowledge is difficult to 

encode to narrow the search space;· . 

3.  no mathematical analysis is available; 

4.  traditional search methods fail. 

The advantage of the GA approach is the ease with which it can handle 

arbitrary kinds of constraints and objectives; all such things can be handled 
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GA scheduler to the particular requirements of a very wide range of possible 

overall objectives. 

GAs have been used for problem-solving and for modeling. GA are applied 

to many scientific, engineering problems, in business and entertainment 

including: 

1.  Optimization: GAs have been used in a wide variety of optimization 

tasks, including numerical optimization and combinatorial 

optimization problems such as traveling salesman problem (TSP), 

circuit design (Louis, 1993), job shop scheduling (Goldstein, 1991) 

and video &sound quality optimization. 

2.  Automatic programming. GAs have been used to evolve computer 

programs for specific tasks and to design other commercial structures, 

for example, cellular automata and sorting networks.  

3.  Machine and robot learning. GAs have been used for many machine-

learning applications, including classifications and prediction, and 

protein structure prediction. GAs have also been used to design neural 

networks, to evolve rules for learning classifier systems or symbolic 

production systems, and to design and control robots. 

4.  Economic models: GAs have been used to model processes of 

innovation, the development of bidding strategies and the emergence 

of economic markets. 

5.  Immune system models: GAs have been used to model various 

aspects of the natural immune system, including somatic mutation 

during an individual's lifetime and the discovery of multi-gene 

families during evolutionary time. 

6.  Ecologjcal models: GAs have been used to model ecological 

phenomena such as biological arms races, host-parasite to evolutions, 

symbiosis and resource flow in ecologies. 

7.  Population genetics models: GAs have been used to study questions 

in population genetics, such as 'under what conditions will a gene for 

recombination be evolutionarily viable?' 

8.  Interactions between evolution and learning. GAs have been used to 

study how individual learning and species evolution affect' one 

another. 

9.  Models of social systems: GAs have been used to study evolutionary 

aspects of social systems, such as the evolution of cooperation 

(Chughtai, 1995), the evolution of communication and trail-following 

behavior in ants. 
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Genetic algorithms are original systems based on the supposed functioning 

of the living. The method is very different & the classical optimization 

algorithms as it: 

 

1.  Uses the encoding of the parameters, not the parameters themselves. 

2.  Works on a population of points, not a unique one. 

3.  Uses the only values of the function to optimize, not their derived 

function or other auxiliary knowledge. 

4.  Uses probabilistic transition function and not determinist ones. 

lt is important to understand that the functioning of such an algorithm does 

not guarantee success. The problem is in a stochastic system and a genetic 

pool may be too far from the solution, or for example, a too fast convergence 

may hair the process of evolution. These algorithms are, nevertheless, 

extremely efficient, and are used in fields as diverse as stock exchange, 

production scheduling or programming of assembly robots in the 

automotive industry. 

GAs can even be faster in finding global maxima that conventional methods, 

in particular when derivatives provide misleading information. It should be 

noted that in most cases where conventional methods can be applied, GAs 

are much slower because they do not take auxiliary information such as 

derivatives into account. In these optimization problems, there is no need to 

apply a GA, which gives less accurate solutions after much longer 

computation time. The enormous potential of GAs lies elsewhere- in 

optimization of non-differentiable or even discontinuous functions, discrete 

optimization, and program in junction. 

lt has been claimed that via the operations of selection, crossover and 

mutation, the GA will converge over successive generations towards the 

global (or near global) optimum. This simple operation should produce a 

fast, useful and to bust technique largely because of the face that GAs 

combine direction and chance in the search in an effective and efficient 

manner. Since population implicity contain much more information than 

simply the individual fitness stores, GAs combine the good information 

hidden in a solution with good information from another solution to produce 

new solutions with good information inherited from both parents, 

inevitable}' (hopefully) leading towards optimality. 

In this chapter we have also discussed the various classifications of GAs. 

The class of parallel GAs is very complex, and its behavior is affected by 

many parameters. It seems that the only way to achieve a greater 

understanding of parallel GAs is to study individual facets independent!}', 

and we have seen that some of the most influential publications in parallel 

GAs concentrate on only one inspect (migration rates, communication 
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on the others. Also the hybrid GA, adaptive GA, independent sampling GA 

and messy GA has been included with the necessary information. 

Genetic programming has been used to model and control a multitude of 

processes and to govern their behavior according to fitness based 

automatically generated algorithm. Implementation of generic 

programming will benefit in the coming year from new approaches which 

include research from developmental biology. Also, it will be necessary to 

learn to handle the redundancy forming pressures in the evolution of to the. 

Application of genetic programming will continue to broaden. Many 

applications focus on controlling behaviour of real or virtual agents. In this 

role, genetic programming may contribute considerably to the growing field 

of social and behavioural simulations. A brief discussion on Holland 

classifier system is also included in this chapter. 

4B.14 REVIEW QUESTIONS 

1.  State Charles Darwin's theory of evulsions. 

2.  What is meant by genetic algorithm? 

3.  Compare and contrast traditional algorithm and genetic algorithm. 

4.  Stare the importance of genetic algorithm. 

5.  Explain in detail about the various operators involved in genetic 

algorithm. 

6.  What the various types of crossover and mutation techniques? 

7.  With a neat flowchart, explain the operation of a simple genetic 

algorithm. 

8.  State the general genetic algorithm. 

9.  Discuss in detail about the various types of genetic algorithm in derail. 

10.  State schema theorem. 

11.  Write than note on Holland classifier systems. 

12.  Differentiate between messy GA and parallel GA 

13.  What is the importance of hybrid GAs? 

14.  Describe the concepts involved in real-coded genetic algorithm. 

15. What is genetic programming? 

16.  Compare genetic algorithm and genetic programming. 

17.  List the characteristics of genetic programming. 

18.  With a neat flowchart, explain the operation of genetic programming. 

19.  How are data represented in genetic programming? 

20.  Mention the application of genetic algorithm. 
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Genetic Algorithm Exercise Problems 

1.  Determine the maximum of function x x x5 (0.007x+ 2) using genetic 

algorithm by wiring a program. 

2.  Determine the maximum of function exp( -3x) + sin(6 r x) using 

genetic algorithm. Given range = [0.004 0.7]; bits = 6; population = 

12; generations = 36; mutation = 0.005; mutation = 0.3. 

3.  Optimize the logarithmic function using a genetic algorithm by 

writing a program. Genetic Algorithm 

4.  Solve the logical AND function using genetic algorithm by writing a 

program. 

5.  Solve the XNOR problem using genetic algorithm by writing a 

program. 

6.  Determine the maximum of function exp(5x) + sin (7rr x) using 

genetic algorithm. Given range = [0.002 0.6]; bits = 3; population == 

14; generations = 36; mutation = 0.006; matenum = 0.3. 
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