University of Mumbai

No. AAMS_UGS/ICC/2024-25/145

CIRCULAR:-

Attention of all the Principals of the Affiliated Colleges, Directors of the Recognized Institutions and the Heads, University Departments is invited to this office Circular No. AAMS_UGS/ICC/2024-25/170 dated 30th September, 2024 relating to the syllabus of B.Voc (Big Database and Cloud Computing) (Sem – I to II) (CBCS).

They are hereby informed that the recommendations made by the **Board of Studies in Information Technology** at its meeting held on 22nd August, 2024 and subsequently passed by the Board of Deans at its meeting held on 3rd September, 2024 <u>vide</u> item No. 6.20 (N) have been accepted by the Hon'ble Vice Chancellor as per the power confirmed upon him under section 12(7) of the Maharashtra Public Universities Act, 2016 and that in accordance therewith to introduce syllabus B.Voc (Big Database and Cloud Computing) Sem – III & IV with effect from the academic year 2024-25.

(The Circular is available on the University's website www.mu.ac.in).

MUMBAI – 400 032 30th September, 2024

(Dr. Prasad Karande) REGISTRAR

To

All the Principals of the Affiliated Colleges, Directors of the Recognized Institutions and the Heads, University Departments.

BOD 6.20(N) 03/09/2024

Copy forwarded with Compliments for information to:-

- 1) The Chairman, Board of Deans,
- 2) The Dean, Faculty of Technology,
- 3) The Chairman, Faculty of Information Technology
- 4) The Director, Board of Examinations and Evaluation,
- 5) The Director, Department of Students Development,
- 6) The Director, Department of Information & Communication Technology,
- 7) The Director, Centre for Distance and Online Education (CDOE) Vidyanagari,
- 8) The Deputy Registrar, Admission, Enrolment, Eligibility & Migration Department (AEM),

Cop	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), dr@eligi.mu.ac.in
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari cap.exam@mu.ac.in
6	The Deputy Registrar, College Affiliations & Development Department (CAD), deputyregistrar.uni@gmail.com
7	The Deputy Registrar, PRO, Fort, (Publication Section), Pro@mu.ac.in
8	The Deputy Registrar, Executive Authorities Section (EA) eau120@fort.mu.ac.in
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), rape@mu.ac.in
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, thanesubcampus@mu.ac.in
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentar@gmail.com
17	The Director, Centre for Distance and Online Education (CDOE), Vidyanagari, director@idol.mu.ac.in
18	Director, Innovation, Incubation and Linkages, Dr. Sachin Laddha pinkumanno@gmail.com
19	Director, Department of Lifelong Learning and Extension (DLLE), dlleuniversityofmumbai@gmail.com

Сор	y for information :-
1	P.A to Hon'ble Vice-Chancellor, vice-chancellor@mu.ac.in
2	P.A to Pro-Vice-Chancellor pvc@fort.mu.ac.in
3	P.A to Registrar, registrar@fort.mu.ac.in
4	P.A to all Deans of all Faculties
5	P.A to Finance & Account Officers, (F & A.O), camu@accounts.mu.ac.in

To,

1	The Chairman, Board of Deans
	pvc@fort.mu.ac.in

2 Faculty of Humanities,

Dean

1. Prof.Anil Singh
Dranilsingh129@gmail.com

Associate Dean

- 2. Dr.Suchitra Naik Naiksuchitra27@gmail.com
- 3.Prof.Manisha Karne mkarne@economics.mu.ac.in

Faculty of Commerce & Management,

Dean

1. Dr.Kavita Laghate kavitalaghate@jbims.mu.ac.in

Associate Dean

- 2. Dr.Ravikant Balkrishna Sangurde Ravikant.s.@somaiya.edu
- 3. Prin.Kishori Bhagat <u>kishoribhagat@rediffmail.com</u>

	Faculty of Science & Technology
	Dean 1. Prof. Shivram Garje ssgarje@chem.mu.ac.in
	Associate Dean
	2. Dr. Madhav R. Rajwade Madhavr64@gmail.com
	3. Prin. Deven Shah sir.deven@gmail.com
	Faculty of Inter-Disciplinary Studies,
	Dean
	1.Dr. Anil K. Singh
	aksingh@trcl.org.in
	Associate Dean
	2.Prin.Chadrashekhar Ashok Chakradeo
	cachakradeo@gmail.com
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation,
	dboee@exam.mu.ac.in
5	The Director, Board of Students Development,
J	dsd@mu.ac.in DSW director@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology,
	director.dict@mu.ac.in

BOD - 3/9/2024 12 (7) of M.P.U.A. 2016 Item No. — 6.20 (N)

UNIVERSITY OF MUMBAI

Title of the U.G. Program
B. Voc. (Big Database and Cloud
Computing)

Syllabus for Semester III & IV

(As per AICTE guidelines with effect from the academic year 2024–2025)

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	B.Voc. (Big Database and Cloud Computing)
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	No. of Years / Semesters	Sem. III & IV
5	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
6	Pattern	Yearly / Semester (Strike out which is not applicable)
7	Status	New / Revised (Strike out which is not applicable)
8	To be implemented from Academic Year	With effect from Academic Year: 2024-2025

Offg. Associate Dean Dr. Deven Shah Faculty of Science and Technology Technology University of Mumbai Offg. Dean Prof. Shivram S. Garje Faculty of Science and University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of the accreditation process is to measure the outcomes of the program that is being accredited. In line with this, the Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance the learner's learning process. Choice based Credit and grading systems enables a much-required shift in focus from teacher-centered to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum was more focused on providing information and knowledge across various domains of the said program, which led to heavy loading of students in terms of direct contact hours. In this regard, the faculty of science and technology resolved that to minimize the burden of contact hours, total credits of the entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in the second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for the First Year of Engineering from the academic year 2023-24. Subsequently this will be carried forward for Second Year and Third Year Engineering in the academic years 2024-25, 2025-26, respectively.

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge components, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of the AICTE model curriculum, overall credits are reduced to 171, to provide opportunities of self-learning to learners. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institutes are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Preface by Board of Studies in Big Database and Cloud Computing

Dear Students and Teachers, we, the members of Board of Studies B.Vocational, are very happy to present the First Year B.Vocational (Big Database and Cloud Computing) syllabus effective from the Academic Year 2023-24. We are sure you will find this syllabus interesting and challenging.

Big Database and Cloud Computing is one of the most sought-after courses amongst engineering students hence there is a continuous requirement of revision of syllabus. The syllabus focuses on providing a sound theoretical background as well as good practical exposure to students in the relevant areas. It is intended to provide a modern, industry-oriented education in Big Database and Cloud Computing. It aims at producing trained professionals who can successfully become acquainted with the demands of the industry worldwide. They obtain skills and experience in upto-date knowledge to analysis, design, implementation, validation, and documentation of computer software and systems.

The syllabus falls in line with the objectives of affiliating University, AICTE, UGC, and various accreditation agencies by keeping an eye on the technological developments, innovations, and industry requirements.

The salient features of the syllabus are:

- 1. Syllabus is designed to ensure that students have more time for extracurricular activities, innovations, and research.
- 2. Introduction of Skill Based Lab and Mini Project to showcase their talent by doing innovative projects that strengthen their profile and increase the chance of employability.
- 3. Students are encouraged to take up part of course through MOOCs platform SWAYAM

We would like to place on record our gratitude to the faculty, students, industry experts and stakeholders for having helped us in the formulation of this syllabus.

Board of Studies in Computer Engineering

: Chairman

: Member

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester I

Course Code	Course Name		aching So Contact H			Credits Assigned					
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total		
General Edi	ucation Component										
BV-BDCCG 101	Professional Skill-I (Communication skills)	3			1*	3		1	4		
BV-BDCCG 102	Applied Mathematics	3			1*	3		1	4		
BV-BDCCG	Object Oriented Programming – C++	3	2			3	1		4		
103	Total	9	2		2	9	1	2	12		
Skill Compo	onent										
BV-BDCCS 101	Data Structures and Algorithm	3	2			3	1		4		
BV-BDCCS 102	Computer Network	3	2			3	1		4		
BV-BDCCS 103	Operating System	3	2			3	1		4		
BV-BDCCS 104	On-Job Training/ Skill based Internship		12	2			6#		6		
	Total	9	18	3		9	9		18		
Grand Total		18	20)	2	18	10	2	30		
			l	·	Exa	amination Scheme					
Course				Theor	y		Term Pract Work & oral Total				
Code	Course Name	Internal Assessment End Sem. Exan				Exam. Duration (in Hrs)					
		Test 1	Test 2	Avg							
General Edi	ucation Component										
BV-BDCCG 101	Professional Skill-I (Communication skills)	10	10	10	40	2			50		
BV-BDCCG 102	Applied Mathematics	20	20	20	80	3	25		125		
	Object Oriented Programming – C++	20	20	20	80	3	25	25	150		
Skill Compo	onent										
BV-BDCCS 101	Data Structures and Algorithm	20	20	20	80	3	25	25	150		
BV-BDCCS 102	Computer Network	20	20	20	80	3	25	25	150		
BV-BDCCS 103	Operating System	20	20	20	80	3	25	25	150		
BV-BDCCS 104	On-Job Training/ Skill based Internship						50#		50		
	Total			110	440		175	100	825		

^{*}Should be conducted batch wise

[#] indicates practical and oral marks includes report and presentation

Program Structure for First Year Big Database and Cloud Computing UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester II

	Г		56	emester	11						
Course Code	Course Name		aching So Contact H			Credits Assigned					
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total		
General Edu	cation Component										
BV-BDCCG 201	Professional Skill-II (Business communication Ethics)	3			1*	3		1	4		
	Probability and Statistics	3			1*	3		1	4		
	Introduction to Data Science	3	2			3	1		4		
	Total	9	2		2	9	1	2	12		
Skill Compo	nent										
BV-BDCCS 201	Advanced Operating System	3	2			3	1		4		
BV-BDCCS 202	Introduction to Cloud Computing	3	2			3	1		4		
BV-BDCCS 203	Software Engineering	3	2			3	1		4		
BV-BDCCS 204	On-Job Training/ Skill based Internship		12	2			6#		6		
	Total	9	18	3		9	9		18		
Grand Total		18	20)	2	18	10	2	30		
		Examination Scheme									
Course				Theor	y	Term Pract Work & oral Tot					
Code	Course Name	Internal	rnal Assessment End Sem Exa			Exam. Duration (in Hrs)					
		Test 1	Test 2	Avg							
General Edu	cation Component										
BV-BDCCG 201	Professional Skill-II (Business communication Ethics)	10	10	10	40	2			50		
BV-BDCCG 202	Probability and Statistics	20	20	20	80	3	25		125		
BV-BDCCG 203	Introduction to Data Science	20	20	20	80	3	25	25	150		
Skill Compo	nent										
BV-BDCCS 201	Advanced operating system	20	20	20	80	3	25	25	150		
BV-BDCCS 202	Introduction to Cloud Computing	20	20	20	80	3	25	25	150		
BV-BDCCS 203	Software Engineering	20	20	20	80	3	25	25	150		
BV-BDCCS 204	On-Job Training/ Skill based Internship						50#		50		
	Total			110	440		175	100	825		

^{*}Should be conducted batch wise

[#] indicates practical and oral marks includes report and presentation

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester III

Course Code	Course Name		aching So Contact H			Credits Assigned					
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total		
General Edu	cation Component										
	Professional Skill-III (Entrepreneurship)	3			1*	3		1	4		
BV-BDCCG 302	Computer Organization and architecture	3			1*	3		1	4		
	Statistics for Data Science	3	2			3	1		4		
	Total	9	2		2	9	1	2	12		
Skill Compo	nent										
BV-BDCCS 301	Python Programming	3	2			3	1		4		
BV-BDCCS 302	Database Management Systems	3	2			3	1		4		
BV-BDCCS 303	Web Development	3	2			3	1		4		
BV-BDCCS 304	On-Job Training/ Skill based Internship		12	2			6#		6		
	Total	9	18	3		9	9		18		
Grand Total		18	20)	2	18	10	2	30		
			•	•	Exa	mination Sch	eme				
Course				Theor	y		Term Work	Pract & oral	Total		
Code	Course Name	Internal	Internal Assessment Exam			Exam. Duration (in Hrs)					
		Test 1	Test 2	Avg							
General Edu	ncation Component										
BV-BDCCG 301	Professional Skill-III (Entrepreneurship)	10	10	10	40	2			50		
BV-BDCCG 302	Computer Organization and architecture	20	20	20	80	3	25		125		
BV-BDCCG 303	Statistics for Data Science	20	20	20	80	3	25	25	150		
Skill Compo	nent										
BV-BDCCS 301	Python Programming	20	20	20	80	3	25	25	150		
BV-BDCCS 302	Database Management Systems	20	20	20	80	3	25	25	150		
BV-BDCCS 303	Web Development	20	20	20	80	3	25	25	150		
BV-BDCCS 304	On-Job Training/ Skill based Internship						50#		50		
501	riiteriisii p										

^{*}Should be conducted batch wise and

[#] indicates practical and oral marks includes report and presentation

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester IV

Course Code	Course Name		eaching So Contact H			Credits Assigned						
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total			
General Edu	ncation Component											
BV-BDCCG 401	Professional Skill-IV (Aptitude and Logic Building)	3			1*	3		1	4			
BV-BDCCG 402	Soft Computing	3			1*	3		1	4			
	Information Storage Concept	3	2			3	1		4			
	Total	9	2		2	9	1	2	12			
Skill Compo	nent											
BV-BDCCS 401	Data Mining and Data ware Housing	3	2			3	1		4			
BV-BDCCS 402	Introduction to Big Data	3	2			3	1		4			
BV-BDCCS 403	Network Security & Cryptography	3	2			3	1		4			
BV-BDCCS 404	On-Job Training/ Skill based Internship		12	!			6#		6			
	Total	9	18	3		9	9		18			
Grand Total	I	18	20	•	2	18	10	2	30			
		Examination Scheme										
Course				Theor	y	Term Pract Work & oral						
Code	Course Name	Interna	Internal Assessment			Exam. Duration (in Hrs)						
		Test 1	Test 2	Avg								
General Edu	ication Component											
BV-BDCCG 401	Professional Skill-IV (Aptitude and Logic Building)	10	10	10	40	2			50			
	Soft Computing	20	20	20	80	3	25		125			
	Information Storage Concept	20	20	20	80	3	25	25	150			
Skill Compo	nent											
BV-BDCCS 401	Data Mining and Data Warehousing	20	20	20	80	3	25	25	150			
BV-BDCCS 402	Introduction to Big Data	20	20	20	80	3	25	25	150			
	Network Security & Cryptography	20	20	20	80	3	25	25	150			
	On-Job Training/ Skill based Internship						50#		50			
	Total			110	440		175	100	825			

^{*}Should be conducted batch wise and

[#] indicates practical and oral marks includes report and presentation

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester V

Course Code	Course Name		eaching So Contact H			Credits Assigned							
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total				
	ication Component												
	Professional Skill-V (R- Programming)	3			1*	3		1	4				
BV-BDCCG 502	Management Information System	3			1*	3		1	4				
DI DDGGG	Information Retrieval system	3	2			3	1		4				
	Total	9	2		2	9	1	2	12				
Skill Compo	nent												
BV-BDCCS 501	Machine Learning-1	3	2			3	1		4				
BV-BDCCS 502	Cloud Network and Security	3	2			3	1		4				
BV-BDCCS 503	Big data analytics	3	2			3	1		4				
BV-BDCCS 504	Major Project-I (Cloud Computing or Big Data)		12	2			6#		6				
	Total	9	18	3		9	9		18				
Grand Total		18	20	•	2	18	10	2	30				
		Examination Scheme											
Course	Course Name			Theor	y	Term Pract Work & oral Total							
Code		Interna	l Assessm	ent	End Sem. Exam	Exam. Duration (in Hrs)							
		Test 1	Test 2	Avg									
General Edu	ication Component												
	Professional Skill-V (R- Programming)	10	10	10	40	2			50				
	Management Information System	20	20	20	80	3	25		125				
BV-BDCCG 503	Information Retrieval system	20	20	20	80	3	25	25	150				
Skill Compo	nent												
BV-BDCCS 501	Machine Learning-1	20	20	20	80	3	25	25	150				
BV-BDCCS 502	Cloud Network and Security	20	20	20	80	3	25	25	150				
BV-BDCCS 503	Big data analytics	20	20	20	80	3	25	25	150				
BV-BDCCS	Major Project-I (Cloud						50#		50				

Total 110 440 175 100	825

^{*}Should be conducted batch wise and

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester VI

Course Code	Course Name		aching Sc Contact H			Credits Assigned					
		Theory	Prac	et.	Tut.	Theory	Pract.	Tut.	Total		
General Edu	ication Component										
BV-BDCCG 601	Professional Skill-I (Cloud Computing using any one platform AWS, Azure, etc)	3			1*	3		1	4		
BV-BDCCG 602	Environment Management	3			1*	3		1	4		
BV-BDCCG 603	Internet of Things	3	2			3	1		4		
	Total	9	2		2	9	1	2	12		
Skill Compo	nent										
BV-BDCCS 601	Cyber Security	3	2			3	1		4		
	Distributed Computing	3	2			3	1		4		
BV-BDCCS 603	Machine Learning-II	3	2			3	1		4		
BV-BDCCS 604	Major Project-II (Cloud Computing or Big Data)		12				6#		6		
	Total	9	18			9	9		18		
Grand Total		18	20)	2	18	10	2	30		
				·	Exa	amination Scheme					
Course				Theor	y	Term Pract Work & oral					
Code	Course Name	Internal	Internal Assessment Se Ex			Exam. Duration (in Hrs)					
		Test 1	Test 2	Avg							
General Edu	ication Component										
BV-BDCCG 601	Professional Skill-I (Cloud Computing using any one platform AWS, Azure, etc)	10	10	10	40	2			50		
BV-BDCCG 602	Environment Management	20	20	20	80	3	25		125		
BV-BDCCG 603	Internet of Things	20	20	20	80	3	25	25	150		
Skill Compo	nent										
BV-BDCCS 601	Cyber Security	20	20	20	80	3	25	25	150		
BV-BDCCS	Distributed Computing	20	20	20	80	3	25	25	150		

^{\$} indicates workload of Learner (Not Faculty), Students can form groups with minimum 2 (Two) and not more than 4 (Four), Faculty Load: 1 hour per week per four groups

[#] indicates practical and oral marks includes report and presentation

BV-BDCCS 603	Machine Learning-II	20	20	20	80	3	25	25	150
	Major Project-II (Cloud Computing or Big Data)						50#		50
Total				110	440		175	100	825

^{*}Should be conducted batch wise and # indicates practical and oral marks includes report and presentation

UNIVERSITY OF MUMBAI (With Effect from 2024-2025) Semester III

Semester III

Course Code:	Course Title	Credit
BVBDCCG 301	Professional Skill-III (Entrepreneurship)	4

Pr	Prerequisite: Business Communication Ethics				
Co	Course Objectives:				
1	To provide a detailed overview of entrepreneurship as the foundation of business growth				
2	To teach to adopt entrepreneurship as value creation in the national economy.				
3	It provides multiple constructs for entrepreneurs to be successful.				
4	It provides multiple pathways for their companies to achieve sustainable growth.				
C	ourse Outcomes:				
1	To understand key concepts underpinning entrepreneurship				
2	To apply knowledge in the recognition and exploitation of product/ service/ process opportunities				
3	To demonstrate key concepts underpinning innovation and the issues associated with developing and sustaining innovation within organizations				
4	To understand, how to design creative strategies for pursuing, exploiting and further developing new opportunities				
5	To understand Issues associated with securing and managing financial resources in new and established organizations.				

Module		Content	Hrs
1		Introduction to Entrepreneurial Journey	8
	1.1	Entrepreneurial Journey	
	1.2	Entrepreneurial Discovery	
2		Ideation and Prototyping	8
	2.1	Ideation and Prototyping.	
	2.2	Testing, Validation and Commercialization, Disruption as a Success Driver	
3		Technological Innovation and Entrepreneurship	8
	3.1	Technological Innovation and Entrepreneurship – 1	
	3.2	Technological Innovation and Entrepreneurship – 2 ,Raising Financial Resources	
4		Education and Entrepreneurship	7
	4.1	Education and Entrepreneurship.	
	4.2	Beyond Founders and Founder-Families, India as a Start-up Nation	
5		National Entrepreneurial Culture	7
	5.1	National Entrepreneurial Culture.	

	5.2	Entrepreneurial Thermodynamics, Entrepreneurship and Employment.	
6		Start-up Case Studies.	7
	6.1	Discuss at least five case studies.	
		Total	45

Tex	Textbooks:		
1	Peter Thiel "Zero to One: Notes on Startups, or How to Build the Future", Crown, 16 Sept 2014 -		
	Business & Economics - 224 pages.		
2	Eric Ries "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create		
	Radically Successful Businesses" published January 1, 2011, Board Book		

Ref	Referecebooks:		
1	C B Rao "India as Global Start-up Hub: Mission with Passion" Notion Press, 2018,		
2	Ashlee Vance,"Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future", Ecco		
	Press, Publish Year: 2015		
3	Walter Isaacson "Steve Jobs", October 1, 2011		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 10 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination: Question paper will comprise of total six questions. All question carries equal marks Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3) Only Four question need to be solved. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

U	seful Links
1	https://onlinecourses.nptel.ac.in/noc20_mg35/preview.
2	https://www.business-school.ed.ac.uk/msc/entrepreneurship-innovation/overview/learning-outcomes

List of Tutorial:

Tutorial Number	Tutorial Topic
1	Field study of Industries offices in vicinity.
2	Visit to Atal incubation Center.
3	Create Business Model on any project.

Course Code	Course Name	Credits
BVBDCCG 302	Computer Organization and Architectures	4

Cours	Course Objectives: The course aims:				
1	To conceptualize the basics of organizational and architectural issues of a digital computer.				
2	To analyze performance issues in processor and memory design of a digital computer.				
3	To understand various data transfer techniques in digital computer.				
4	To analyze processor performance improvement using instruction level parallelism.				
Cour	se Outcomes: On successful completion, of course, learner/student will be able to:				
1	To understand basic structure of computer.				
2	To perform computer arithmetic operations.				
3	To understand control unit operations.				
4	To design memory organization that uses banks for different word size operations.				
5	To understand the concept of cache mapping techniques.				

Module	Deta	ailed Contents	Hours
1	Overview of Computer Architecture & Organization		8
	1.1	Introduction of Computer Organization and Architecture.	
	1.2	Basic organization of computer and block level description of the functional units, Evolution of Computers, Von Neumann model.	
	1.3	Performance measure of Computer Architecture.	
	1.4	Introduction to buses and connecting I/O devices to CPU and Memory, bus structure	
2	Dat	ta Representation and Arithmetic Algorithms:	7
	2.1	Number representation: Binary Data representation, two's complement representation and Floating-point representation. IEEE 754 floating point number representation	
	2.2	Integer Data computation: Addition, Subtraction. Multiplication: Signed multiplication, Booth's algorithm.	
	2.3	Division of integers: Restoring and non-restoring division	
3	Pro	ocessor Organization and Architecture	8
	3.1	CPU Architecture, Register Organization, Instruction formats, basic instruction cycle. Instruction interpretation and sequencing.	
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming.	

	6.2	Flynn's classifications Pipeline processing, instruction pipelining,	-
	6.1	Introduction to parallel processing concepts	
6		roduction to parallel processing systems:	7
	5.3	Peripheral Devices: Introduction to peripheral devices, scanner, plotter, joysticks, touch pad.	
	5.2	Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	
	5.1	Input/output systems, I/O modules and 8089 IO processor	
5	I/O	Organization and Peripherals:	7
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies	
		techniques. Cache Coherency, Interleaved and Associative memory.	
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping	-
		primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics.	
•	4.1	Introduction to Memory and Memory parameters. Classifications of	
4	Me	configuration and addressing modes. mory Organization:	8
	3.4	Case study on 8085 microprocessor: Features, architecture, pin	
	3.3	Introduction to RISC and CISC architectures and design issues.	

Text	Text Books:		
1	Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth		
	Edition, Tata McGraw-Hill.		
2	John P. Hayes, "Computer Architecture and Organization", Third Edition.		
3	William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth		
	Edition, Pearson		
4	B. Govindarajulu, "Computer Architecture and Organization: Design Principles and		
	Applications", Second Edition, Tata McGraw-Hill.		

Refe	References:		
1	Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First		
	Edition, Wiley-India		
2	"Computer Organization" by ISRD Group, Tata McGraw-Hill		
3	Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085,		
	Penram		

Us	Useful Links		
1	https://archive.nptel.ac.in/content/storage2/courses/106103068/		
2	https://www.javatpoint.com/computer-organization-and-architecture-tutorial		

Term Work:	
General Instructions:	

1	Batch wise tutorials have to be conducted. The number of students per batch will be as per
	University pattern for practical.
2	Students must be encouraged to write at least 6 class tutorials on the entire syllabus.
3	A group of 4-6 students should be assigned a self-learning topic. Students should prepare a
	presentation of 10-15 minutes.

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1st class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2nd class test has to be conducted (Internal Assessment II) when an additional 35% syllabus is Completed. The duration of each test will be for one hour.

End Semester Theory Examination:

1211	End beliester Theory Examination.		
1	The question paper will comprise a total of 6 questions, each carrying 20 marks.		
2	Out of the 6 questions, 4 questions have to be attempted.		
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from		
	module 3 then part (b) will be from any module other than module 3)		
4	In question paper weightage of each module will be proportional to number of		
	respectivelecture hours as mentioned in the syllabus.		

Course Code	Course Name	Credit
BVBDCCG 303	Statistics for Data Science	4

Course Objective: The course aims:

1 To understand basic statistical foundations for roles of Data Scientist.

- 2 To develop problem-solving skills.
- 3 To infer about the population parameters using sample data and perform hypothesis testing.
- 4 To understand importance and techniques of predicting a relationship between data and determine the goodness of model fit

Course Outcome: On successful completion, of course, learner/student will be able to:

- 1 Develop various visualizations of the data in hand.
- 2 Analyze a real-world problem and solve it with the knowledge gained from sampling and probability distributions.
- 3 Analyze large data sets and perform data analysis to extract meaningful insights.
- 4 Develop and test a hypothesis about the population parameters to draw meaningful conclusions.
- Fit a regression model to data and use it for prediction

Module		Detailed Content	Hours
1		Introduction to Statistics:	
	1.1	Categorical and Quantitative Data, Cross-Sectional and Time Series	8
		Data.	

		Total	45
	6.1	Time Series Analysis: ARIMA Models, Forecasting Bayesian Statistics: Bayes' Theorem	
6		Advanced Statistical Techniques	4
		Cluster Analysis and Discriminant Analysis	
		Factor Analysis and Principal Component Analysis	
	5.1	Multiple Regression and Logistic Regression	
5		Multivariate Analysis and Machine Learning	7
	4.3	Non-parametric Tests: Chi-Square Test, Correlation and Regression Analysis	
	4.2	Parametric Tests: t-Test, ANOVA,	
	4.1	Hypothesis Testing: Null and Alternative Hypotheses, Type I and II Errors	
4	-	Inferential Statistics	10
		Importance in Statistics, Confidence Intervals and Margin of Error	
	3.2	Probability Distributions: Binomial, Poisson, Normal Central Limit Theorem and its	
	3.1	Events, Sample Space, Probability Rules	
3		Probability	8
		Software Fackages, K, Fytholi	
	2.2	Data Visualization: Histograms, Box Plots, Scatter Plots, introduction to Statistical Software Packages: R, Python	
		, c	
	2.1	Mean, Median, Mode Measures of Dispersion: Range, Variance, Standard Deviation	0
2		Measures of Central Tendency:	8
		Between Two Variables	
		Location, and Detecting Outliers, Box Plot, Measures of Association	
		Measures of Variability, Measures of Distribution Shape, Relative	
	1.3	Descriptive Statistics: Numerical Measures: Measures of Location,	
		Statistical Inference,	
		Summarizing, Quantitative Data, Cross Tabulations and Scatter Diagram.	

Te	extbooks:
1	Mathematics and Statistics for Economics, 2/e, G.S. Monga, Vikas Publishing
2	Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons
3	An Introduction to Probability Theory and its Applications, W. Feller Wiley
4	Engineering Mathematics Veerarajan T. Tata McGraw-Hill
5	A textbook of Engineering Mathematics, N.P. Bali and Manish, Goyal Laxmi Publications
Re	eferences:
1	Applied Multivariate Statistical Analysis, Richard A. Johnson, Dean W. Wichern Pearson
2	A.1.
2	STATISTICS FOR BUSINESS AND ECONOMICS,11th Edition, David R. Anderson, Dennis J.
	Sweeney, Thomas A. Williams, South-Western Cengage Learning
3	Probability and Statistics for Engineering and the Sciences, Jay L. Devore, Cengage Publications.
4	Data Science for Dummies Paperback, Wiley Publications, Lillian Pierson
5	Storytelling with Data: A Data Visualization, Guide for Business Professionals, Wiley Publications,
	Cole Nussbaumer Knaflic

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Use	Useful Links	
1	https://study.iitm.ac.in/ds/course_pages/BSMA1002.html	
2	https://study.iitm.ac.in/ds/course_pages/BSMA1004.html	
3	https://onlinecourses.swayam2.ac.in/imb23_mg64/preview	

sugges	sted List of Experiments
1	Descriptive Statistics: Given a dataset, Compute and interpret the mean, median, mode, variance,
	and standard deviation
2	Data Visualization: Generate a histogram, box plot, and scatter plot for a given dataset? What
	insights can you infer from these visualizations
3	Probability Distributions: Identify whether a given dataset follows a normal distribution? If not, can you determine which distribution it follows
4	Hypothesis Testing: Conduct a t-test on a given dataset? What conclusions can you draw at a 5% significance level
5	Correlation: Compute the correlation between two variables in a dataset? How would you interpret
	the correlation coefficient
6	Simple Linear Regression: Build a simple linear regression model on a given dataset? How would
	you evaluate the fit of your model
7	Multiple Linear Regression: Construct a multiple linear regression model on a dataset? How do the
	results compare with the simple linear regression model
8	Logistic Regression: Implement a logistic regression model on a given dataset? How would you
	assess the classification performance of your model
9	ANOVA: Perform an Analysis of Variance (ANOVA) on a given dataset? What conclusions can
	you draw from the ANOVA table
10	Chi-Square Test: Conduct a Chi-Square test of independence on a given dataset? Can you determine
	if there is a significant relationship between the variables

Course Code:		Course Title	Credit
BV	BDCCCS301	Python Programming	3
	Prerequisite:	Programming principles with C	
Cou	urse Objectives:		
1	Implementing d	ata types, statement, operators and strings	
2	Implementing C	OOPs concept in Python	
3	To learn except	on & file handling in Python.	
4	Connecting with	n databases	
Cor	urse Outcomes: (On successful completion of course, learner will be able to	
1	Apply the conce	ept of Program structure, Interactive Shell.	
2	To understand I	Data Structures and Program control flow,	
3	Apply the cond manipulation.	cept Functions and Modules & Packages for list manipulation	and string
4	Understand Class	sses & Objects for User Defined Data Type, Objects as Instances	of Classes.

Test Exception Handling & File Operations for Default Exception and Errors.

Apply the concept of Database, GUI & Turtle Programming.

6

Module		Content	Hrs
1		Introduction to Python	8
	1.1	History & need of Python, Application of Python, Advantages of Python, Disadvantages of Python,	
	1.2	Installing Python, Program structure, Interactive Shell, Executable or script files, 1.3 User Interface or IDE Working with Interactive mode, Working with Script mode, 1.4 Python Character Set, Python Tokens, Keywords, Identifiers, Literals, Operators, Variables and Assignments, Input and Output in Python, DataTypes.	
2		Data Structures and Program control flow	8
	2.1	Data Structures: String Manipulation, List Manipulation, Tuples and Dictionaries, Set and Frozenset.	
	2.2	Program Control Flow:	
	2.3	Conditional Statements: if Statement, if-else Statement, if-elif Statement, Nested if Statements, Python Indentation.	
	2.4	Looping and Iteration: For Loop, While Loop, Loop else Statement, Nested Loops, Break and Continue.	
	2.5	Range Function: Introduction to range(), Types of range() function, Use of range() function.	
3		Functions and Modules & Packages	8

	3.1		
		Built-In Functions: Introduction to Functions, Python Function Types, Structure of Python Functions,	
		E.g map, zip, reduce, filter, any, chr, ord, sorted, globals, locals, all, etc.	
	3.2	User Defined Functions: Structure of a Python Program w.r.t. UDF, Types of Functions, Invoking UDF, Flow of Execution, Arguments and Parameters, Default Arguments, Named Arguments, Scope of Variables, Lambda function	
	3.3	Recursion Function: Use of recursion function	
	3.4	Modules & Packages: Importing Modules in Python Programs, Working with Random Modules, E.g builtins, os, time, datetime, calendar, sys, etc	
4		Classes & Objects	6
	4.1	Introduction to OOP's: Procedural Vs Modular Programming, Object Oriented Programming, Data Abstraction, Data Hiding, Encapsulation, Modularity, Inheritance, Polymorphism	
	4.2	Classes & Objects: Classes as User Defined Data Type, Objects as Instances of Classes, Creating Class and Objects, Creating Objects By Passing Values, Variables & Methods in a Class	
5		Exception Handling & File Operations	8
	5.1	Exception Handling: Default Exception and Errors, Catching Exceptions, Raise anexception, Try -except statement, Raise, Assert, Finally blocks, User defined exception.	
	5.2	File Operations: opening a file, Reading and Writing Files, Other file tools, Regular Expressions.	
6		Database, GUI	7
	6.1	Database and GUI.	
	6.2	Database: Introduction to MySQL, PYMYSQL Connections, Executing queries, Transactions, Handlingerror.	
	6.3	GUI Programming: Introduction, Tkinter programming, Tkinter widgets, Frame, Button, Label, Entry	
		Total	45

Tex	tbooks:
1	Dr. R. Nageswara Rao: Core Python Programming, Dreamtech Press Wiley Publication, 2018 2 nd Edition.
2	Zed A. Shaw: Learn Python 3 The Hard Way, Pearson Education, 2017 1st Edition.
Ref	erences:
1	Paul Barry: Head First Python: A Brain-Friendly Guide, Shroff/ O. Reilly, 2016 2 nd Edition.
2	Charles Dierbach: Introduction to ComputerScience Using Python: AComputational
	Problem-Solving Focus, Wiley Publication, 2012 1st Edition.
Use	ful Links for E-resources:
1	https://www.tutorialspoint.com/python/python_basi c_syntax.html
2	https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
3	https://towardsdatascience.com/beginners-guide-to- machine-learning-with-python-b9ff35bc9c51
4	https://nptel.ac.in/courses/106106145

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination: 1 Question paper will comprise of total six questions. 2 All question carries equal marks 3 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3) 4 Only Four question need to be solved. 5 In question paper weightage of each module will be proportional to number of respective lectures hours as mention in the syllabus.

List of Practical/ Experiments:

Sr. No	Торіс
1	To implement Python program to check whether the given number is even or not.
2	To implement Python program to convert the temperature in degree centigrade to Fahrenheit
3	Python program to find the area of a triangle whose sides are given
4	To Python program to find out the average of a set of integers
5	Python program to find the product of a set of real numbers
6	To implement Python program to find the circumference and area of a circle with a given radius.
7	Python program to check whether the given integer is a multiple of 5
8	To implement Python program to check whether the given integer is a multiple of both 5 and 7.

9	To implement Python program to find the average of 10 numbers using while loop.
10.	To implement Python program to display the given integer in a reverse manner.
11	To implement Python program to find the geometric mean of n numbers.
12	To implement Python program to find the sum of the digits of an integer using a while loop.
13	To implement Python program to display all the multiples of 3 within the range 10 to 50.

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments on content of theory and practical of "Software Engineering"		
3	The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks)		
O	Oral & Practical exam		
	Based on the entire syllabus.		

Course Code	Course Name	Credit
BVBDCCS 302	Database Management Systems	4

Course Objective: The course aims:

- 1 Students will be able to identify and recall the fundamental concepts, principles, and applications of database systems.
- 2 Students will be able to interpret and describe the principles of relational database design and the roles of various SQL commands.
- 3 Students will be able to implement and use ER and Relational data models in database design, and construct queries using SQL.
- 4 Students will be able study and implement transaction management in a database.

Course Outcome: On successful completion, of course, learner/student will be able to:

- 1 Describe core concepts of database and model a database management system through ER modeling.
- Apply knowledge of relational algebra and structured query language to retrieve and manage data from relational database.
- 3 Demonstrate the use of normalization for database design.
- 4 Use modern database techniques such as NoSQL.

Module		Detailed Content	Hours
1		Introduction	
	1.1	Database System Applications,	8
	1.2	Purpose of Database Systems, View of Data, Database Languages	
	1.3	Data Models, Database Users and Administrator	
2		Database Design and the E-R Model	8
	2 1	Overview of the Design Process, The Entity-Relationship Model,	
	2.1	Constraints, Entity Relationship Diagrams	
	2.2	Reduction to Relational Schemas, Schema Diagrams, Entity-Relationship Design	
	2.2	Issues, Extended ER features	
3		Introduction to the Relational Model	8
	3.1	Structure of Relational Databases, Database Schema,	
	3.2	Keys, Relational Algebra, Basic operators of Relational Algebra	
	3.3	Modification of Databases using Relational Algebra, Database Constraints	
4		Structured Query Language	6
	4.1	Overview of the SQL Query Language, SQL Data Definition,	
	4.2	SQL Constraints, Basic Structure of SQL Queries, Additional Basic Operations	
	4.3	DML operations, Set operations, Aggregate Functions, Nested Sub-queries, Joins, views.	

5		Relational Database Design	8
	F 1	Features of Good Relational Designs, Problems with bad design, Decomposition	
	5.1	using concept of functional dependencies, Armstrong's axioms	
	5.2	Closure of functional dependency, Closure of attribute	
	5.2	Introduction to process of Normalization and denormalization,	
	5.3	Normal Forms- 1NF, 2NF, 3NF, BCNF, Denormalization	
5		Transactions	7
	6.1	What is Transactions? Properties of transaction, Transaction states,	
	6.2	Issues with concurrent executions, Schedules, Serializability- Conflict and View	
	1	Total	45

Textbooks:

- Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", 7th Edition, McGraw Hill Education, 2019.
- 2 Gaurav Vaish, Getting Started with NoSQL, 1st edition, Packt Publication, March 2013
- 3 Brad Daylel, NoSQL with MongoDB in 24 Hours, 1st edition, Sams Teach Yourself, January 2015

References:

- R. Elmasri and S. Navathe," Fundamentals of Database Systems", 7th Edition, Pearson Education, 2017.
- 2 Bob Bryla, Kevin Loney Oracle Database 12C The Complete Reference, 1st edition, Tata McGraw Hill, 2017

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- Question paper will comprise a total of six questions.

 All question carries equal marks

 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)

 Only Four questions need to be solved.

 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Useful Links

 1 https://www.geeksforgeeks.org/dbms/

 2 https://www.javatpoint.com/dbms-tutorial

 3 https://www.tutorialspoint.com/dbms/index.htm

Sr	Suggested List of Experiments
1	Explore various fundamental concepts of DBMS and its future prospective. Introduction to the Oracle, mysql.
2	Apply Data Definition language [DDL] on the relational model designed and apply below constraints on the relational model designed. • Primary key • Unique constraint • Not Null constraint • Foreign key • Check constraint The DDL commands to be implemented are • Create • Alter • Drop
3	Apply Data Manipulation language [DML] on the relational model designed and apply certain constrains on the relational model designed. The commands to be implemented are • Select (without where clause) • Delete • Update
4	To design Entity Relationship and relational model for the given case study.
5	Apply DML select statement with where clause, and, or, not, in, between and like clauses and implement built in functions of SQL.
6	To apply order by clause and concept of different types of Joins for solving queries.
7	To implement group by, having clause, aggregate functions for solving queries.
8	To implement sub queries, set operation and views for solving queries.
9	Demonstrate the use of normalization.
10	To study transaction management commands like commit, Rollback.

Course Code	Course Name	Credits
BV-BDCCS 303	Web Development	3

Cour	rse Objectives: The course aims:
1	To gain proficiency in HTML5 syntax and semantics, as well as CSS3 for styling
	and layout, including modern techniques like responsive design and animations.
2	To learn JavaScript basics and DOM manipulation, enabling students to create dynamic
	and interactive web applications.
3	To understand the role of server-side scripting using PHP and data handling with XML,
	including database interactions.
4	To familiarize with popular front-end frameworks like React, Angular, and Vue, and
	understand their benefits and use cases.
5	To understand and utilize XML, including DTD, XML Schema, DOM and SAX
	parsers, and XSL for data presentation and transformation.
6	To learn how to set up, customize, and manage WordPress blogs, including themes,
	plugins, and various content management features.
~	
	rse Outcomes: On successful completion of course
1	Students will be able to create well-structured HTML5 documents and apply CSS3 for
	visual design, including advanced features like animations and media queries.
2	Students will demonstrate the ability to write JavaScript code for basic programming tasks,
	handle events, and manipulate the DOM to create interactive web pages.
3	Students will develop server-side scripts using PHP and interact with databases.
4	Students will be able to set up and develop applications using front-end frameworks like
	React, manage state, and implement routing.
5	Students will manage data in XML format, utilizing both DOM and SAX parsers.
6	Students will be able to install and configure WordPress, customize themes, use plugins,
	and create and manage various types of content on a WordPress site.

Module	e Detailed Contents	
1	Introduction to Web Development	10
	1.1 Introduction to Internet: World wide web, Internet Addressing ,Browser, URL, Web Server , website , homepage , Domain Name	
	1.2 Software for Web Designing: Notepad/Notepad++,Dreamweaver , Blue Griffon, Net beans, Sea Monkey, Word press, Sublime	

1.3 HTML5: fundamental syntax, Tables, Lists, Image, HTML5 control	
elements, Drag and Drop, Audio, Video controls.	
1.4 CSS3 :Inline, embedded and external style sheets – Rule cascading,	
Inheritance, Backgrounds, Border Images, Colors, Shadows, Text,	
Transformations, Transitions, Animation, Basics of Bootstrap.	
2 JavaScript and DOM Manipulation	7
2.1 JavaScript Basics: Variables, data types, and operators, Functions, loops,	
and conditionals Event handling	
2.2 Document Object Model (DOM): DOM tree and manipulation, Selecting and modifying elements, Event listeners and event delegation	
3 PHP	8
3.1 Introduction to PHP, PHP Programming Techniques (Data types,	
Operators, Arrays, Loops, Conditional statements, Functions, Regular	
expressions).	
3.2 Form Data Handling with PHP, Database connectivity and handling using	1
PHP-MySQL.	
4 Front-End Frameworks and Libraries	10
4.1 Introduction to Front-End Frameworks: Overview of popular frameworks	
(React, Angular, Vue), Pros and cons of using frameworks	
4.2 React Basics: Components, JSX, and props, State and lifecycle methods ,Hooks (useState, useEffect)	
4.3 Building a Simple React Application: Project setup and tooling, Routing with React Router, State management with Context API or Redux	
5 XML	5
5.1 XML –DTD (Document Type Definition), XML Schema, Presenting	
XML, Using XML Parsers: DOM and SAX, XSL-eXtensible Stylesheet	
Language	
6 WORDPRESS	5
6.1 What is WordPress?, Installing WordPress ,Themes , WordPress Plug-ins,	_
Theme Customiser, Menus	
6.2 Menus, Posts ,Widgets, Posts, Creating pages ,Contact Form 7	
Total	45

Tex	Textbooks:		
1	Ralph Moseley, M.T. Savliya, "Developing Web Applications", Willy India, Second		
	Edition, ISBN: 978-81-265-3867-6		
2	"Web Technology Black Book", Dremtech Press, First Edition, 978-7722-997		
3	Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition,		
	O'REILLY, 2014.		
4	Alex Banks and Eve Porcello, Learning React Functional Web Development with React		
	and Redux,OREILLY, First Edition		
D (
Kei	ferences:		
1	Achyut S Godbole and AtulKahate, —Web Technologies, Second Edition, Tata McGraw		
	Hill, 2012.		
2	Thomas A Powell, Fritz Schneider, —JavaScript: The Complete Reference, Third Edition,		
	Tata McGraw Hill, 2013		
3	Steven Holzner —The Complete Reference - PHP, Tata McGraw Hill, 2008		

Use	Useful Links	
1	www.w3schools.com	
2	2 https://books.goalkicker.com/ReactJSBook/	
3	https://archive.nptel.ac.in/courses/106/105/106105084/	

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1st class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2nd class test has to be conducted (Internal Assessment II) when an additional 40% syllabus is Completed. The duration of each test will be for one hour.

End Semester Theory Examination:

- The question paper will comprise a total of 6 questions, each carrying 20 marks.
- 2 Out of the 6 questions, 4 questions have to be attempted.
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- In question paper weightage of each module will be proportional to number of respectivelecture hours as mentioned in the syllabus.

Suggested List of Practical/ Experiments:

Practical Number	Practical/ Experiment
1	Design a home page which displays information about your college
	department using headings, HTML entitites and paragraphs
2	Create a web page having two frames, Frame 1 containing links and another
	with contents of the link. When link is clicked appropriate contents should
	be displayed on Frame 2.
3	Demonstrate difference between "get" and "post" method of form tag in a
	form with name and password text fields
4	Design an admission form for any course in your college with text, password
	fields, drop-down list, check-boxes, radio buttons, submit and reset button
	etc.
5	Create a HTML form with the use of cascading style sheets.
6	Write a JavaScript program to check whether a given positive number is
	a multiple of 3.
7	Write a JavaScript program to change the case of a string.(i.e upper case to
	lower case and vice-versa).
8	Develop and demonstrate a HTML file that includes JavaScript script for
	taking a number n as input using prompt and display first n Fibonacci
	numbers in a paragraph.
9	Design HTML form for keeping student record, apply JavaScript validation in
	it for restriction of mandatory fields, numeric field, email-address field,
	specific value in a field etc.
10	Create a simple React application that displays the current date and time.
11	Create an Angular application that calculates and displays the area of a
11	triangle based on user input.
12	Create a PHP application to insert and display student records from a MySQL
	database.
13	Setting Up and Customizing a WordPress Site

Term Work:

- 1 Term work should consist of 10 experiments.
- 2 Journal must include at least 2 assignments on content of theory and practical of "Software Engineering"
- 3 The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.
- 4 Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks, Assignments: 05-marks)

Oral & Practical exam

Based on the entire syllabus.

UNIVERSITY OF MUMBAI (With Effect from 2023-2024) Semester IV

Course Code:	Course Title	Credit
BVBDCCG 401	Professional Skill-IV (Aptitude and Logic Building)	4

Prerequisite:			
Course	Course Objectives:		
1	This course aims to provide an exposure in creating and delivering effective multimedia presentations that,		
2	To convey the key points for effective communications		
3	Able to analyzing data in spreadsheet and writing a technical report.		
Course	Course Outcomes:		
1	Understand Programs and Computers		
2	Learn how programs and codes operate by using code and scratch.		
3	To develop your critical thinking and reasoning skills.		
4	The capacity to comprehend searching and sorting		
5	Capacity to use formal mathematics to define computer programs (such as recursive functions)		
6	Determine the truth value of unquantified phrases by using logical principles to define sets using the list or set builder notation and connecting symbolic laws of logic.		

I	Introduction to Computers	Computer Systems, Computer Languages, Software Development, Operating System, Number Systems and their conversion, Crypt arithmetic Problems, Pseudocode and Flowchart	8
II	Introduction to Code and Scratch	Introduction to code (Sequence, ifelse and Loops) Design a small code in scratch(animation)	8

III	Critical	Critical Thinking: What does it mean to think critically? An	8
	thinking and	overview of definition, Computer programming and logical	
	logical	thinking	
	reasoning		
IV	Searching	Searching Techniques: Linear Search, Binary Search Sorting	10
	and Sorting	Techniques: Selection, Insertion,	
	Techniques		
V	Quantitative	Problems on Ages Problems on Profit and Loss Problems on Simple and Compound Interest Problems on Time	6
	Abilities	and Distance	
VI	Logical	Number Series Alpha Numerical, Letter & Symbol Series	5
	Reasoning &	Numerical and Alphabet Puzzles Seating Arrangement	
	Verbal	Para – Jumble, Text Completion	
	Reasoning		
		Total	45

Textb	Textbooks:		
1	Computational Thinking, Karl Beecher BCS, The Chartered Institute for IT, 1th Edition,2017		
2	Introduction to Algorithm ,Thomas Corman,PHI,3th Edition,2010		
Refere	ences:		
1	1 Think Smarter: Critical Thinking to Improve Problem-Solving and		
	Decision-Making Skills Michael Kallet, Wiley, 2nd Edition, 2014		
Asses	sment:		
Intern	al Assessment:		
when	Assessment consists of two class tests of 10 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and the second class test when an additional 40% syllabus is completed. Duration of each test shall be one hour.		
End S	Semester Theory Examination:		
1	Question paper will comprise a total of six questions.		
2	All question carries equal marks		

3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
4	Only Four questions need to be solved.
5	In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Use	Useful Digital Links		
1	https://www.tutorialspoint.com/basics_of_computers/basics_of_ computers_introduction.htm		
2	https://plato.stanford.edu/entries/critical-thinking/		
3	https://studio.code.org/s/courseb-2020		
4	https://scratch.mit.edu/projects/editor/?tutorial=getStarted		
5	https://www.careerride.com/mcq/logical-reasoning-quantitative- aptitude-mcq-questions-319.aspx		

Suggest	ggested List of Experiments		
Sr. No.	Title of Experiment		
1	A Case study of comparison of different Computer Languages		
2	A case study on different Operating Systems		
3	Design Pseudocode and Flowchart for a given problem		
4	Perform practical on code (Sequence)		
5	Perform practical on code (ifelse)		
6	Perform practical on code (Loops)		
7 Perform different events of scratch(animation)			
8	Design an animation in scratch.		
9	Problems based on Searching Techniques: Linear Search, Binary Search Sorting Techniques:		
	Selection, Insertion,		
10	Problems based on Quantitative Abilities and Logical Reasoning & Verbal Reasoning		

Course Code	Course Name	Credit
BV-BDCCG 402	Soft Computing	4

Prereq	Prerequisite: Probability and Statistics, C++/Java/ Matlab		
Course	Course Objectives:		
1	To familiarize with soft computing concepts.		
2	To introduce the fuzzy logic concepts, fuzzy principles and relations.		
3	To Basics of ANN and Learning Algorithms.		
4	Ann as function approximation.		
5	Genetic Algorithm and its applications to soft computing.		
6	Hybrid system usage, application and optimization.		
Course	e Outcomes:		
1	List the facts and outline the different process carried out in fuzzy logic, ANN and Genetic Algorithms.		
2	Explain the concepts and meta-cognitive of soft computing.		
3	Apply Soft computing techniques the solve character recognition, pattern classification, regression and similar problems.		
4	Outline facts to identify process/procedures to handle real world problems using soft computing.		
5	Evaluate various techniques of soft computing to defend the best working solutions.		
6	Design hybrid system to revise the principles of soft computing in various applications.		

I	Fuzzy Set Theory	Fuzzy Sets: Basic definition and terminology, Basic concepts of fuzzy sets, Fuzzy set operations, Fuzzy relations: Cardinality of fuzzy relations, operations on fuzzy relations, properties of fuzzy relations, Fuzzy composition Fuzzification and Defuzzification: Features of the membership Functions, Fuzzification, Lambda-Cuts for Fuzzy Sets, Lambda-Cuts for Fuzzy Relations, Defuzzification methods	
II	Fuzzy Rules, Reasonin g, and Inference System	Fuzzy Rules: Fuzzy If-Then Rules, Fuzzy Reasoning Fuzzy Inference System (FIS): Mamdani FIS, Sugeno FIS, Comparison between , Mamdani and Sugeno FIS.	4

III	Neural Network -I	What is a Neural network? Fundamental Concepts, Basic Models of Artificial Neural Networks, Arificial Intelligence and Neural Networks, McCulloch-Pitts Neuron Learning:Error-Correction Learning, Memory based Learning, Hebbian learning, Competitive Learning, Boltzmann Learning Percepton:Percepton Learning Rule, Perceptron Learning Algorithm, Perceptron Convergence Theorem, Perceptron learning and Non-separable sets. Rule-Based Approach: Classification, Tests, Rules Artificial Neural Network:	6
IV	Neural Network s -II	Back propagation: Multilayered Network Architecture, Back porpagation Algorithm, Practical Consideration in impin Implementing the Back propagation Algorithm. Back propagation and XOR problem. Adaptive resonance Theory: Noise-Saturation Dilemma, Solving the Noise-Saturation Dilemma, Recurrent On-center-Off-surround Networks, Adaptive Resonance Theory I (ART I), Neurophysiological Evidence for ART Mechanism Character Recognition: Introduction, General Algorithm Architecture for Character Recognition:	10
V	Genetic Algorit hm	An Introduction to genetic Algorithms: What Are Genetic Algorithms? Robustness of Traditional Optimization and Search Methods, The Goals of Optimization, How Are Genetic Algorithms Different from Traditional Methods?, A Simple Genetic Algorithm Genetic Algorithms at Work. Genetic Algorithms: Mathematical Foundations Who Shall Live and Who Shall Die? The Fundamental Theorem, Schema Processing at Work: An Example by Hand Revisited, The Two-armed and ŭ-armed Bandit Problem, Implementation of a Genetic Algorithm: Data Structures, Reproduction, Crossover, and Mutation, Algorithm for Handwriting Recognition Using GA Generation of Graph, Fitness Function of GA: Deviation between Two Edges, Deviation of a Graph, Crossover: Matching of Points, Generate Adjacency Matrix, Find Paths, Removing and Adding Edges, Generation of Graph.	10
VI	Hybrid Computing	Introduction, Neuro-Fuzzy Hybrid Systems, Adaptive Neuro-Fuzzy Inference System (ANIFS): Introduction, ANFS Architecture, Hybrid Learning Algorithm, ANFIS as a Universal Approximator, Simulation Examples: Two-input Sinc Function and Three Input Nonlinear Function Genetic Neuro-Hybrid Systems: Properties of Genetic Neuro-Hybrid Systems, genetic Algorithm based Back-propagation Network, Advantages of Neuro-Genetic Hybrids, Genetic Fuzzy Hybrid and Fuzzy Genetic Hybrid Systems	10

	Genetic Fuzzy Rule based Systems, Advantages of Genetic Fuzzy Hybrids	
	Total	45

Text	books:
1	1 S.N. Sivanandan and S.N. Deepa, Principles of Soft Computing, Wiley India, 2007, ISBN: 10: 81-265-1075-7.
2	JS. R. Jang, C. –T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, A Computational
	Approach to Learning and Machine Intelligence, PHI Learning Private Limited-2014
3	Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004/2007
4	Simon Haykin, Neural Networks A Comprehensive Foundation, Second Edition, Pearson
	Education-2004
5	David E. Goldberg, Genetic Algorithms, in search, optimization and Machine Learning, Pearson
Refe	rences:
1	Anupam Shukla, Ritu Tiwari, Rahul Kala, Real Life Applications of Soft Computing, CRC Press, Taylor & Francis Group, 2010.
2	Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications © 2009 Michael Affenzeller, Stephan Winkler, Stefan Wagner, and Andreas Beham, CRC Press
3	Laurene V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms And
	Applications, Pearson
Asse	ssment:
Inter	nal Assessment:
wher	ssment consists of two class tests of 20 marks each. The first class test is to be conducted approximately 40% syllabus is completed and the second class test when an additional 40% bus is completed. Duration of each test shall be one hour.
End	Semester Theory Examination:
1	Question paper will comprise a total of six questions.
2	All question carries equal marks

3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
4	Only Four questions need to be solved.
5	In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Use	Useful Digital Links		
1	http://www.digimat.in/nptel/courses/video/106105173/L01.html		
2	http://www.digimat.in/nptel/courses/video/127105006/L37.html		
3	https://www.digimat.in/nptel/courses/video/106105173/L38.html		
4	https://www.youtube.com/watch?v=Z_8MpZeMdD4		
5	https://www.youtube.com/watch?v=Fs5ZIjp1hUk		

Suggeste	ggested List of Experiments	
Sr. No.	Title of Experiment	
1	Implement different fuzzy operations	
2	Implement different fuzzy membership functions	
3	Implement different fuzzy relations	
4	Implement fuzzy controller	
5	Implement any supervised learning algorithm	
6	Implement an unsupervised Learning algorithm	
7	Implement any application using genetic algorithm	
8	Case Study on Fuzzy Logic challenges	
9	Case Study on Neural Network	
10	Mini Project on Fuzzy Logic and Neural Network for Engineering Application	

Course Code	Course Name	Credit
BV-BDCCG 403	Information Storage Concept	4

Prereq	Prerequisite: Database Management Systems, Computer Networks.		
Course	Course Objectives:		
1	To understands key elements of a data center environment		
2	To introduce to Disk Performance		
3	To introduce to RAID and intelligence of storage system		
4	To understand storage connectivity technologies		
Course	Outcomes:		
1	Explain the key elements of a data center environment.		
2	Determine storage design based on application requirements and disk performance.		
3	Apply RAID and intelligent storage systems for flexible information-centric strategy.		
4	Apply storage connectivity technologies.		
5	Analyze network-attached storage and object-based storage. (L4)		

I	Introduction to Information Storage Technology:	Review data creation and the amount of data being created and understand the value of data to a business, Challenges in Data Storage and Management, Data Storage Infrastructure. Storage Systems Environment: Components of a Storage System Environment: Disk drive components, Disk Drive Performance, Logical Components	8
П	Data protection	Concept of RAID and its Components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Comparison of Levels. Intelligent Storage Systems: Components, Intelligent Storage Array, Highlevel architecture and working of an intelligent storage system.	8
III	Introduction to Networked Storage	Evolution of networked storage, Architecture, Overview of FC-SAN, NAS, and IP-SAN. Network-Attached Storage (NAS): Benefits of NAS, Components, Implementations, File Sharing, I/O operations, Performance and Availability.	5

IV	Content	features and Benefits of a CAS. CAS Architecture, Storage and Retrieval,	10
	Addressed	Examples. Storage Virtualization: Forms, Taxonomy, Configuration,	
	Storage	Challenges, Types of Storage Virtualizations.	
	(CAS)		
V	Information	Information Availability, Business continuity, Failure Analysis, Business	6
	Availability	impact Analysis, Differentiate between business continuity (BC) and disaster	
	&	recovery (DR). Disaster Recovery: Backup, Methods, And Technologies,	
	Monitoring	Replication technologies: Local replicas, Technologies, Restore and Restart,	
	& Managing	Multiple Replicas. Remote Replication. DR in practice	
	Datacenter		
VI	Storage Security and Managemen	Security Framework, Storage security domains, List and analyzes the common threats in each domain, Security Implementations.	8
	t	Managing The Storage Infrastructure: Monitoring the Storage Infrastructure, Storage Management Activities, Challenges and solutions.	
	•	Total	45

Textbooks:			
1	G.Somasundaram, A.Shrivastava, —Information Storage and Management: Storing, Managing and Protecting Digital Information in Classic, Virtualized and Cloud Environment, 2 nd Edition, Wiley publication, 2012, Reprint 2016		
Refer	ences:		
1	Nigel Poulton, —Data Storage Networking , 1st Edition, Wiley publication, 2014.		
2	Tom Clark, —Storage Virtualization: Technologies for Simplifying Data Storage and Management, 1st Edition, Pearson Education, 2018.		
Asses	Assessment:		
Intern	al Assessment:		
when	sment consists of two class tests of 20 marks each. The first class test is to be conducted approximately 40% syllabus is completed and the second class test when an additional 40% us is completed. Duration of each test shall be one hour.		
End S	Semester Theory Examination:		
1	Question paper will comprise a total of six questions.		
2	All question carries equal marks		
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)		

4	Only Four questions need to be solved.
5	In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Useful Digital Links		l Digital Links
	1	http://www.ictacademy.in/Pages/Information-Storage-and-Management.aspx
	2	https://nptel.ac.in/courses/106/108/106108058

Suggested List of Experiments	
Sr. No.	Title of Experiment
1	Case study on development storage drives
2	Case study on HDD, SDD
3	Practical on File sharing and security.
4	Case study on data centers infrastructure
5	Study of RAID technology and their implementation

Course Code	Course Name	Credit
BV-BDCCS 401	Data Mining and Data ware Housing	4

Course Objective: The course aims: Students will be able to describe and explain the principles, architectures, applications, design, and implementation of data warehousing and data mining. 2 Students will be able to utilize the mathematical foundations of data mining tools in various scenarios. Students will be able to examine and interpret classical models and algorithms in data warehouses and data mining. Students will be able to assess and judge the kinds of patterns that can be discovered by association rule mining, classification, and clustering. Course Outcome: On successful completion, of course, learner/student will be able to: Students will be able to articulate the principles, architectures, applications, design, and implementation of data warehousing and data mining. 2 Students will be able to apply the mathematical foundations of data mining tools to solve complex 3 Students will be able to implement and optimize classical models and algorithms in data warehouses and data mining. 4 Students will be able to identify and interpret patterns discovered by association rule mining, classification, and clustering.

Module		Detailed Content	Hours
1		Data Mining Introduction	
	1.1	Data Mining definitions, KDD vs Data Mining, DBMS vs DM, DM Techniques, Issues and Challenges in DM, DM Applications	8
		Association Rules: What is an Association Rule?, Methods to Discover Association Rules, A Priori Algorithm, Partition Algorithm, FP-Tree Growth Algorithm, Discussion on Different Algorithms, Generalized Association Rule, Association Rules with Item Constraint	
II		Clustering Techniques	8
	2.1	Clustering Paradigms, Partitioning Algorithms, k-Medoid Algorithms, CLARA, CLARANS	
	2.2	Hierarchical Clustering, DBSCAN, CURE, Categorical Clustering Algorithms, STIRR, ROCK,	
III		Decision Trees:	8
	3.1	What is a Decision Tree?, Tree Construction Principle, Best Split, Splitting Indices, Splitting Criteria	

	3.2	Decision Tree Construction Algorithms, CART, ID3, C4.5, Decision Tree	
		Construction with Presorting	
IV		Data Warehouse Fundamentals	10
	4.1	Introduction to Data Warehousing, OLTP Systems vs Data Warehouses, Data	
		Warehouse Development, Planning and Requirements	
	4.2		
V		Data Warehouse Architecture	6
	5.1	Introduction to Data Warehouse Components,	
	5.2	Dimensional Modelling, Data Warehouse Schemas, Extract, Transform and Load	
		(ETL)	
X7T			
VI		Data Warehouse & OLAP	5
	6.1	Introduction to OLAP, Multidimensional Data	
	6.2	OLAP Architectures, Metadata Management in Data Warehouse	
		Total	45

Te	Textbooks:		
1	Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata cGraw – Hill Edition, Tenth Reprint 2007.		
2	K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.		
3	Data Mining Techniques, Arun K Pujari, University Press		
4	Data Mining: Concepts and Techniques, 3rd Edition, Jiawei Han, Micheline Kamber, Jian Pe		
5	Database Systems: Introduction to Databases and Data Warehouses 1st Edition by NenadJukic ,Susan Vrbsky , SvetlozarNestorov		
Re	eferences:		
1	G. K. Gupta "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.		
2	Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Mining", Pearson Education, 2007.		
3	The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition by Ralph Kimball		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End S	End Semester Theory Examination:	
1	Question paper will comprise of 6 questions, each carrying 20 marks.	
2	The students need to solve total 4 questions.	
3	Question No.1 will be compulsory and based on entire syllabus.	
4	Remaining question (Q.2 to Q.6) will be selected from all the modules.	

Us	Useful Links	
https://www.tutorialspoint.com/data_mining/index.htm		
2	https://www.tutorialspoint.com/market/index.asp	
3	https://www.geeksforgeeks.org/data-warehousing/	

Suggested List of Experiments		
1	Star Schema Design: Construct a star schema for a retail business, incorporating dimensions such	
1	as time, product, location, and customer.	
2	K-Means Clustering: Utilize a dataset of your choice and implement the k-means clustering	
2	algorithm. Analyze and interpret the resulting clusters.	
3	ETL Process Design: Given a raw dataset, devise an ETL process to clean, transform, and load	
3	the data into a data warehouse.	
4	OLAP Operations: Execute various OLAP operations like roll-up, drill-down, slice, and dice on a	
4	multi-dimensional dataset.	
5	Apriori Algorithm: Implement the Apriori algorithm on a transaction dataset to discover frequent	
3	itemsets and generate association rules.	
6	Snowflake Schema Design: Develop a snowflake schema for a healthcare system, including	
0	dimensions such as time, patient, doctor, and hospital.	
7	Naive Bayes Classifier: Apply the Naive Bayes classifier on a dataset of your choice to predict a	
/	specific outcome. Evaluate the model's performance.	
8	Data Reduction Techniques: Implement data reduction techniques such as aggregation, histogram	
8	analysis, and dimensionality reduction on a given dataset.	
9	Decision Tree Algorithm: Use the decision tree algorithm on a dataset to classify instances.	
9	Interpret the resulting decision tree.	
10	OLAP Operations on Data Cube: Perform various OLAP operations on a data cube and interpret	
10	the results	

Course Code	Course Name	Credit
BV-BDCCS 402	Introduction to Big Data	4

Course Objective: The course aims:

- 1 Students will be able to explain the concept of Big Data and the 4 V's of Big Data Applications.
- 2 Students will be able to identify and describe the trends of computing for Big Data including high-performance computing, grid computing, cloud computing, and mobile computing.
- 3 Students will be able to understand and use various Big Data tools, techniques, and systems such as HDFS, HBase, NoSQL, MapReduce, Spark, Hive, etc.
- 4 Students will be able to apply advanced analytical theory and methods such as recommendation, clustering, classification, and regression using Hadoop/Mahout.

Course Outcome: On successful completion, of course, learner/student will be able to:

- Students will be able to articulate the principles and applications of Big Data, demonstrating a clear understanding of its attributes and structures.
- 2 Students will be able to utilize high-performance computing, grid computing, cloud computing, and mobile computing for Big Data processing.
- 3 Students will be able to effectively use various Big Data tools and systems to analyze and interpret data.
- 4 Students will be able to apply advanced analytical theory and methods to solve complex problems using Big Data

Module		Detailed Content	Hours
1		Introduction	8
	1.1	Introduction to Big data, benefits, infrastructure requirement	
	1.2	4 V's of Big Data Applications	
II		Trends of Computing for Big Data	8
	2.1	Trends of computing for big data and developments	
	2.2	High-performance Computing (Supercomputers and Clusters), Grid Computing	
		Cloud Computing, Mobile Computing	
III		Big Data for analytics	8
	3.1	Drivers of Big Data, Big Data Attributes,	
	3.2	Data Structures, Big Data Ecosystem, Examples of Data Analytics	
IV		Dig Data Taala Taahniguag and Systems	10
1 V		Big Data Tools, Techniques, and Systems	10
	4.1	Exascale Computing, HDFS, HBase, and NoSQL (Document Store, Graph DB, etc.)	

		Total	45
	6.2	Big Data Scientific Workflow Management and Optimization	
	6.1	Big Data Visualization, High-performance Networking for Big Data Movement	
VI		Advanced Topics	5
	5.3	Classification, Regression	
	5.2	Recommendation, Clustering	
	5.1	Hadoop/Mahout	
V		Advanced Analytical Theory and Methods	6
T 7	4.2	MapReduce, Spark, Oozie, Tez, Hive, Pig, etc., Hadoop 1 and Hadoop 2 (YARN)	(
	1.0	7. P. 1. G. 1. G. 1. W. 1. W. 1. A. 1. V. 1. A. (V. 1. D.)	

Te	Textbooks:		
1	Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques,		
	NoSQL, and Graph. By David Loshin, Elsevier, August 23, 2013		
2	Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,		
3	Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.		
4	Dan McCreary and Ann Kelly "Making Sense of NoSQL" – A guide for managers and the rest of us,		
	Manning Press.		
5	Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With		
	Advanced Analytics", Wiley		
Re	eferences:		
1	Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kaufman, "Big Data for Dummies", Wiley		
	India		
2	Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data Big Analytics: Emerging Business		
	Intelligence And Analytic Trends For Today's Businesses", Wiley India		
3	Phil Simon, "Too Big To Ignore: The Business Case For Big Data", Wiley India		
4	Paul Zikopoulos, Chris Eaton, "Understanding Big Data: Analytics for Enterprise Class Hadoop and		
	Streaming Data', McGraw Hill Education.		
5	Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley		
	India.		

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

2	The students need to solve total 4 questions.
3	Question No.1 will be compulsory and based on entire syllabus.
4	Remaining question (Q.2 to Q.6) will be selected from all the modules.

Use	Useful Links		
1	https://www.analyticsvidhya.com/blog/2014/05/hadoop-simplified/		
2	https://www.analyticsvidhya.com/blog/2014/05/introduction-mapreduce/		
3	https://www.tutorialspoint.com/big_data_analytics/index.htm		

Sugges	Suggested List of Experiments		
1	Study of Hadoop ecosystem		
2	Two programming exercises on Hadoop		
3	Two programming exercises in No SQL		
4	Implementing simple algorithms in Map- Reduce (3) - Matrix multiplication,		
5	Aggregates, joins, sorting, searching etc.		
6	Implementing any one Frequent Itemset algorithm using Map-Reduce		
7	Implementing any one Clustering algorithm using Map-Reduce		
8	Implementing any one data streaming algorithm using Map-Reduce		
9	Mini Project: One real life large data application to be implemented (Use standard Datasets		
	available on the web)		
	a) Twitter data analysis		
	b) Fraud Detection		
	c) Text Mining etc.		

Course Code	Course Name	Credit
BV-BDCCS 403	Network Security & Cryptography	4

Prereq	Prerequisite: Computer Network	
Course	Course Objectives:	
1	To understand Security Trends And Cryptography Concepts.	
2	To know the Symmetric Key Cryptography and Asymmetric Key Cryptography	
3	To understand Authentication And system security.	
Course	Course Outcomes:	
1	Understand Security Trends And Concepts.	
2	Explore Classical And Modern Cryptography.	
3	Master the Mathematics Of Symmetric Key Cryptography.	
4	Understand Asymmetric Key Cryptography.	
5	Understand Authentication And Network Access Control.	

I	Introduction	Security trends – Legal, Ethical and Professional Aspects of Security, Need for Security at Multiple levels, Security Policies – Model of network security – Security attacks, services and mechanisms – OSI security architecture – Classical encryption techniques: substitution techniques, transposition techniques, steganography- Foundations of modern cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.	
II	Symmetric Key Cryptography	MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures – Modular arithmetic-Euclid?s algorithm-Congruence and matrices -Groups, Rings, Fields- Finite fields-SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis – Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard – RC4 –Key distribution.	08
III	Public Key Cryptograph y	MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing –Factorization – Euler's totient function, Fermat's and Euler's Theorem – Chinese Remainder Theorem – Exponentiation and logarithm – ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman	12

VI	Advance Topics		2
V	Network Security	Network Access Control: Network Access Control, Extensible Authentication Protocol, IEEE 802.1X Port-Based Network Access Control Electronic Mail security – PGP, S/MIME – IP security – Web Security – SYSTEM SECURITY: Intruders – Malicious software – viruses – Firewalls.	10
IV	Message Authenticatio n And Integrity	Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – SHA –Digital signature and authentication protocols – DSS- Entity Authentication: Biometrics, Passwords, Challenge Response protocols- Authentication applications – Kerberos, X.509	8
		key exchange -ElGamal cryptosystem – Elliptic curve arithmetic- Elliptic curve cryptography.	

Textbooks:		
1	Cryptography and Network Security Principles And Practice William Stallings, Pearson Education, Eigth Edition.	
Refe	References:	
1	Cryptography and Network Security ,Behrouz A Forouzan, Debdeep Mukhopadh yay ,McGrawHill ,3rd Edition, 2015	
2	Bruce Schneier, "Applied Cryptography", John Wiley & Sons Inc, 2001	
3	Maiwald, "Fundamentals of Network Security", Wiley Student Edition, 2006	
4	Charles B. Pfleeger and Shari Lawrence Pfleeger, "Security in Computing", 3rd Edition, PearsonEducation, 2003	
5		
Asse	Assessment:	

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and the second class test when an additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

1	Question paper will comprise a total of six questions.
2	All question carries equal marks
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
4	Only Four questions need to be solved.
5	In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Usefu	Useful Digital Links	
1	https://www.youtube.com/watch?v=rA_ZmWPormM	
2	https://youtu.be/C7vmouDOJYM	

Suggest	Suggested List of Experiments		
Sr. No.	Title of Experiment		
1	Simulate Buffer overflow attack using Splint		
2	To implement a program in java for password cracking using Brute Force.		
3	Implementation of Caesar cipher		
4	Implementation of Playfair cipher		
5	Implement RSA algorithm.		
6	Implement Diffie Hellman Algorithm		
7	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, ns lookup to gather information about networks and domain registrars.		
8	Study of packet sniffer tools: wireshark,:		
	1. Download and install wireshark and capture icmp, tcp, and http packets in promiscuous mode.		
	2. Explore how the packets can be traced based on different filters		

Offg. Associate Dean Dr. Deven Shah Faculty of Science and Technolog University of Mumbai Offg. Dean Prof. Shivram S. Garje Faculty of Science and Technology University of Mumbai