University of Mumbai

No. AAMS_UGS/ICC/2024-25/ 102

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges, Directors of the Recognized Institutions and the Head, University Departments is invited to this office circular No. AAMS_UGS/ICC/2023-24/23 dated 08th September, 2023 relating to the NEP UG & PG Syllabus.

They are hereby informed that the recommendations made by the **Board of Studies in Statistics** at its meeting held on 05th July, 2024 and subsequently passed by the Board of Deans at its meeting held on 10th July, 2024 <u>vide</u> item No. 6.3 (N) have been accepted by the Academic Council at its meeting held on 12th July, 2024 <u>vide</u> item No. 6.3 (N) and that in accordance therewith <u>syllabus</u> for the **M.Sc** (Statistics) (Sem. III & IV) is introduced as per appendix (NEP 2020) with effect from the academic year 2024-25.

(The circular is available on the University's website www.mu.ac.in).

MUMBAI – 400 032 22nd August, 2024 To (Prof.(Dr) Baliram Gaikwad) I/c Registrar

The Principals of the Affiliated Colleges, Directors of the Recognized Institutions and the Head, University Department.

A.C/6.3(N)/12/07/2024

Copy forwarded with Compliments for information to:-

- 1) The Chairman, Board of Deans,
- 2) The Dean, Faculty of Science & Technology,
- 3) The Chairman, Board of Studies in Statistics,
- 4) The Director, Board of Examinations and Evaluation,
- 5) The Director, Board of Students Development,
- 6) The Director, Department of Information & Communication Technology,
- 7) The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari.
- 8) The Deputy Registrar, Admissions, Enrolment, Eligibility & Migration Department (AEM),

Cop	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), dr@eligi.mu.ac.in
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari cap.exam@mu.ac.in
6	The Deputy Registrar, College Affiliations & Development Department (CAD), deputyregistrar.uni@gmail.com
7	The Deputy Registrar, PRO, Fort, (Publication Section), Pro@mu.ac.in
8	The Deputy Registrar, Executive Authorities Section (EA) <u>eau120@fort.mu.ac.in</u>
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), rape@mu.ac.in
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, thanesubcampus@mu.ac.in
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentre@gmail.com

Сор	y for information :-
1	P.A to Hon'ble Vice-Chancellor, vice-chancellor@mu.ac.in
2	P.A to Pro-Vice-Chancellor pvc@fort.mu.ac.in
3	P.A to Registrar, registrar@fort.mu.ac.in
4	P.A to all Deans of all Faculties
5	P.A to Finance & Account Officers, (F & A.O), camu@accounts.mu.ac.in

1	The Chairman, Board of Deans
2	The Dean, Faculty of Humanities,
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation, <pre>dboee@exam.mu.ac.in</pre>
5	The Director, Board of Students Development, dsd@mu.ac.in@gmail.com DSW directr@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology,
7	The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari, director@idol.mu.ac.in

As Per NEP 2020

University of Mumbai

Title of the program M.Sc. (Statistics)

Syllabus for

Semester – Sem.- III & IV Ref: GR dated 16th May, 2023 for Credit Structure of PG

(With effect from the academic year 2024-25)

University of Mumbai

(As per NEP 2020)

Sr.No.	Heading	Particulars
1	Title of program O:B	M.Sc. (Statistics)
2	Scheme of Examination R:	NEP 50% Internal 50% External, Semester End Examination Individual Passing in Internal and External Examination
3	Standards of Passing R:	40%
4	Credit Structure R: SP-35A R: SP-35B	Attached herewith
5	Semesters	Sem. III & iV
6	Program Academic Level	6.5
7	Pattern	Semester
8	Status	New
9	To be implemented from Academic Year	2024-25

Sign of the BOS Chairman Dr. Santosh Gite Board of Studies in Statistics Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology

Preamble

1) Introduction

M.Sc. Statistics is a two years (four semesters) program. The program consists of 88 credits, for each semester there are 22 credits. In semester I, "Research Methodology" is a mandatory course. In semester I, II and semester III, there are three mandatory courses each of four credits and one course can be selected from the available list of elective courses whereas in semester IV there are two mandatory courses each of four credits and one course can be selected from the available list of elective courses. An elective course consists of a theory course of two credits and practical course of two credits. In addition there is one practical course of two credits in each semester.

2) Aims and Objectives

The program accentuates both the core and modern applications of statistics. The program is structured so that students will have in depth knowledge of Statistics for pursuing their higher studies and also necessary skills in statistics for the employability in corporate. The program has the unique features like, field projects, internships, research project, and adequate amount of courses in core as well as in applied Statistics.

3) Learning Outcomes

On completion of this program learners will have,

- a) Knowledge of ethical values to become a responsible researcher in Statistics.
- b) Fair knowledge of core statistics such as probability theory, distribution theory, statistical modeling, multivariate techniques etc.
- c) Fluency in statistical computing using R- language, Python, SQL etc.
- d) Knowledge of reframing real situation information into statistical language, analyzing the data and to draw valid inferences based on it.

4) Any other point (if any)

5) Baskets of Electives

For semester III:

- Elements of Data Science-I and Statistics Practical VI,
- Statistical Process Control-II and Statistics Practical VI.
- Financial Mathematics-I and Statistics Practical VI
- Statistics in Insurance-I and statistical practical-VI

For semester IV:

- Elements of Data Science-II and Statistics Practical VIII,
- Financial Mathematics-II and Statistics Practical –VIII,
- Statistics in Insurance-I and Statistics Practical VIII,
- Statistical Decision Theory and Statistics Practical VIII

6) Credit Structure of the Program (Table as per (Parishishth 1) with sign of HOD and Dean):

R: <u>SP-</u>	35A								
Year (2 Yr PG)	Level	Sem. (2 Yr)	M	Iajor	RM	OJT / FP	RP	Cu m. Cr.	Degree
·		, ,	Mandatory*	Electives Any one					
I	6.0	Sem I	502: Probability Theory (04) 503: Linear Models (04) 504: Statistical Inference -I (04) 505: Statistics Practical I (02)	E1 506 (A): Sampling Techniques (02) E1 506 (B): Statistics Practical II (02) OR E2 506 (A): Optimization Techniques (02) E2 506 (B): Statistics Practical II (02) OR E3 506 (A): Basic Statistics for Data Analysis (02) E3 506 (B): Statistics Practical II	501: Research Methodolo gy in Statistics (04)			22	PG Diploma (after 3 Year Degree)
		Sem II	507: Multivariate Analysis – I (04) 508: General Linear Models (04) 509: Statistical Inference- II (04) 510: Statistics Practical -III (02)	(02) E1 511 (A): Nonparametric Inference (02) E1 511 (B): Statistics Practical IV (02) OR E2 511 (A): Statistical Process Control - I (02) E2 511 (B): Statistics Practical IV (02) OR E3 511 (A): Operations Management (02) E3 511 (B): Statistics Practical IV (02) OR E4 511 (B): Statistics Practical IV (02) E4 511 (A): Elementary Statistics for Data Analysis (02) E4 511 (B): Statistics Practical IV (02)		04		22	
Cum. (Diplon	Cr. For I 1a	PG	28	8	4	4	-	44	

R: <u>SP</u>									
	Exit	option: PG	Diploma (44 Credit	s) after Three Year UG	Degree				
		Sem III	601: Multivariate Analysis II (04)	E1 605 (A): Elements of Data Science – I			04	22	PG Degree
II	6.5		602: Design of Experiments (04)	(02) E1 605 (B): Statistics Practical VI (02) OR					After 3 Yr UG
			603: Stochastic Processes (04)	E2 605 (A): Statistical Process Control - II (02)					
			604: Statistics Practical V (02)	E2 605 (B): Statistics Practical VI (02) OR					
				E3 605 (A): Financial Mathematics – I (02) E3 605 (B): Statistics Practical VI (02) OR					
				E4 605 (A): Statistics in Insurance – I (02) E4 605 (B): Statistics Practical VI (02)					
		Sem IV	607: Time series Analysis (04)	E1 611 (A): Elements of Data Science – II (02)			6	22	
			608: Reliability and Survival Analysis (04)	E1 611 (B): Statistics Practical VIII (02) OR					
			609: Structural Equation Modeling (02)	E2 611 (A): Financial Mathematics – II (020 E2 611 (B): Statistics Practical VIII (02) OR					
			610: Statistics Practical VII (02)	E3 611 (A): Statistics in Insurance- II (02) E3 611 (B): Statistics Practical VIII (02)					
				OR E4 611 (A): Statistical Decision Theory (02) E4 611 (B): Statistics Practical VIII (02)					
Degre			26	8			10	44	
Cum. Degre	Cr. for 2	Yr PG	54	16	4	4	10	88	

Syllabus M.Sc. (Statistics) Part - II (Semester III and Semester IV) Academic year 2024-2025

STRUCTURE OF THE SYLLABUS

M.Sc. Statistics is a two years (four semesters) program. The program consists of 88 credits, for each semester there are 22 credits. In semester one "Research methods in Statistics" is a compulsory course. In semester I, II and semester III, there are three mandatory courses each of four credits and one course can be selected from the available list of elective courses whereas in semester IV there are two mandatory courses each of four credits and one course can be selected from the available list of elective courses. An elective course consists of a theory course of two credits and practical course of two credits. In addition there is one practical course of two credits in each semester.

Following is the table showing the proposed courses (mandatory and elective) to be covered in semester I and semester II of first year M.Sc. program.

SEMESTER III

MANDATORY COURSES

	Mandatory cour	ses		Elective courses	RP
Course code	Course Title	Credits	Total number of lectures		
601	Multivariate Statistics-II	04	60	Learner can select one	04
602	Design of Experiment	04	60	theory course as an	
603	Stochastic Process	04	60	elective course from the	
604	Statistics Practical – V	02	60	following list of subjects and practical course based on the selected theory course.	

LIST OF ELECTIVES.

	Elective courses		
Course code	Course Title	Credits	Total number of lectures
E1 605 (A):	Elements of Data Science – I	02	30
E1 605 (B):	and		
	Statistics Practical VI	02	60
E2 605 (A):	Statistical Process Control - II	02	30
	and		
E2 605 (B):	Statistics Practical - VI	02	60
E3 605 (A)	Financial Mathematics – I	02	30
	and		
E3 605 (B)	Statistics Practical VI	02	60

E4 605 (A)	Statistics in Insurance – I	02	30
E4 605 (B)	and Statistics Practical VI	02	60

SEMESTER IV

MANDATORY COURSES

	Mandatory cours	es		Elective courses	RP
Course	Course Title	Credits	Total		
code			number		
			of		
			lectures		
607	Time series Analysis	04	60	Learner can select one	06
608	Reliability and Survival	04	60	theory course as an	
	Analysis.			elective course from	
609	Structural Equation	02	60	the following list of	
	Modeling.			subjects and practical	
610	Statistics Practical – III	02	60	course based on the	
				selected theory course.	

LIST OF ELECTIVES

	Elective courses		
Course code	Course Title	Credits	Total number of lectures
E1 611 (A)	Elements of Data science-II	02	30
	and		
E1 611 (B)	Statistics Practical – VIII	02	60
E2 611 (A)	Financial Mathematics-II	02	30
	and		
E2 611 (B)	Statistics Practical – VIII	02	60
E3 611 (A)	Statistics in Insurance-II	02	30
	and		
E3 611 (B)	Statistics Practical – VIII	02	60
E4 11 (A)	Statistical Decision Theory	02	30
	and		
E4 511 (B)	Statistics Practical-VIII	02	60

DURATION OF THEORY COURSE

Duration of each of the theory course will be 60 hours for entire semester. Each theory course will be of four credits having four hours of classroom teaching per week. Syllabus of each theory course is divided into two modules each should be covered in 30 lectures each of one hour.

DURATION OF PRACTICAL COURSE

Duration of each of the practical course will be 60 hours for entire semester. Each practical course will be of two credits. Each practical will have four hours of practical session per week per batch of practical. Each batch of practical consists of 10 students.

PROGRAM LEARNING OUTCOMES

The program accentuates both the core and modern applications of statistics. The program is structured so that students will have in depth knowledge of Statistics for pursuing their higher studies and also necessary skills in statistics for the employability in corporate. The program has the unique features like, field projects, internships, research project, and adequate amount of courses in core as well as in applied Statistics.

On completion of this program learners will have,

- PO 1) Knowledge of ethical values to become a responsible researcher in Statistics.
- PO 2) Fair knowledge of core statistics such as probability theory, distribution theory, statistical modeling, multivariate techniques
- PO 3) Fluency in statistical computing using R- language, Python.
- PO 4) Knowledge of reframing real situation information into statistical language, analyzing the data and to draw valid inferences based on it.

DETAILED SYLLABUS Semester III Mandatory courses

501: Multivariate Statistics-II

Progran	ıme	M.Sc.	Course Code	601: Multivariate				
Name:		Statistics	and Name:	Statistics-II				
Total Cr		04	Total Marks:	100				
Universi	•	50	College	50				
assessme		 Matrix theory	assessment:	eigenvectors, symmetric				
		watin theory	. eigenvalue and e	ergenvectors, symmetric				
matrices								
Course of	outcom	es: After com	pletion of the cou	rse learners will,				
CO 1) U1	nderstaı	nd data reduct	tion techniques.					
CO 2) un	derstan	ds to extract i	important factors	using exploratory factor				
analysis.			_	·				
•	le to ur	iderstand how	to find correlation	n between two set of variables.				
ŕ								
CO 4) ab	le to kr	now how to m	ake clusters using	cluster analysis methods.				
MODUI	E I:			(2 CREDITS)				
Unit 1:	Principal Component Analysis: population and sample principal							
	components, principal components for special structure of							
	_		_	orrelation matrix, sample				
	•			•				
	variation, interpretation of sample principal components, graphing the principal components, large sample inference, large sample							
	confidence interval for eigenvalues, test for equal correlation structure.							
TT 1/ 5			1 2 4 1	6	1.5			
Unit 2:		-		s of estimation: principal	15			
	components method, maximum likelihood method. Factor rotation,							
	factor	scores.						
MODUI	E II:							
(2 CREI	OITS)							
Unit 3:	Canonical Correlation and Variates: introduction, interpretation, sample							
				ge sample inference.				
Unit 4:								
· · ·								
	non hi	erarchical metl	nods. Multidimension	onal scaling				

- Anderson, T. W. (2003): An Introduction to Multivariate Statistical Analysis.
 John Wiley. 3rd edition.
- Giri, N. C. (2003): Multivariate Statistical Analysis. CRC Press. 2nd edition.
- Hardle, W. K. and Hlavka, Z. (2015): Multivariate Statistics: Exercise and solutions. Springer.
- Johnson, R. A. and Wichern, D. W. (2015): Applied Multivariate Statistical Analysis. 6th Edition. PHI Learning Private Limited.
- Kshirsagar, A. M. (1979): Multivariate Analysis, Marcel Dekker Inc. New York.
- Mukhopadhyay, P. (2008): Multivariate Statistical Analysis. World Scientific.
- Srivastava, M. S. (2002): Methods of Multivariate Statistics. John Wiley.
 Muralidhar, K. Ghosh, A. and Singhvi, A. K. (2019): Ethics in science education. Research and Governance, Indian national science academy,
 New Delhi

502: Design of Experiments.

Program		Lectures					
Name: Total	Statistics 04	100	alloted				
Credits:	04	Total Marks:	100				
Universi	ty 50	College	50				
assessme		assessment:					
Pre req							
Course	outcomes: After	completion of the co	ourse learners will have,	15			
CO 1) knowledge in basic principles of design, general block design (GBD).							
CO 2) kı	nowledge in bala	nced incomplete blo	ock design (BIBD), optimality of				
block des	sign.						
CO 3) Kr	nowledge in facto	orial designs such as	2^2 , 2^3 and 2^k .				
CO 4) Kr	nowledge in bloc	king and confoundin	ıg.				
CO 5) Kr	nowledge to find	behavior of sequenc	e of random variables for large n.				
MODUL	Æ I:		(2 CREDITS)				
Unit 1:	Brief History of	f Statistical Design.	Basic principles of design.	15			
	Contrast, ortho	gonal contrast and	l mutual orthogonally of				
	contrasts. General block design (GBD) - an example. C-						
	Matrix and its properties. Properties of design -						
	Connectedness, Balance and orthogonal. Statistical analysis of						
	GBD. Randomized Block Design as a particular case of GBD						
Unit 2:	Balanced incomplete block design (BIBD). C-matrix,						
	properties, statistical analysis of BIBD. Optimality of						
	block design. : A,D,E – optimality.						
MODUL	E II:		(2 CREDITS)				
Unit 3:	Factorial design	gn – an example	. Basic definitions and	15			
	principles .The	advantage of factori	al designs. The 2^2 factorial				
	design. The gen	neral 2 ^k factorial desi	gn with r replications A				
	single replicate	of 2 ^k design. NPP	method, half NPP method,				
	hidden replicati	ition of center points to the					
	design.						
	Basic introducti	on of 3 ² and 3 ³ fac	torial design.				
Unit 4:	Blocking and c	onfounding of a rep	olicated 2 ^k factorial design. Das	15			
	method, contras	st method and sign m	nethod to obtain principal block.				
	Total and par	tial confounding.	Two level fractional factorial				

designs. The one half fractions and one quarter fraction of the 2^k design. General $2^{(k-p)}$ fractional factorial design, Das method. Alias structure. Complete defining relation. Resolution – III designs. Resolution -IV and Resolution - V designs. Statistical analysis of all these designs. Fitting response curves and response surfaces.

References:

- Chakraborti, M. C. (1962): Mathematics of Design and analysis of Experiments. Asia Publishing House.
- Cochran, W. G. and cox, G. M. (1959): Experimental Design. 2nd
 Edition, Asia Publishing House
- Davies, O. L. (1954): The Design and analysis of Industrial Experiments. Oliver and Boyd.
- Das, M. N. and Giri, N. C. (2015): Design and analysis of Experiments. 2nd edition. New Age International Publishers.
- Fisher, R. A. (1935): The Design of Experiments. Oliver and Boyd.
- Montgomery, D. C. (2016): Design and analysis of Experiments. 8th edition, Wiley.

603: Stochastic Process

Progran Name:	ıme	603: Stochastic Processes				
Total Cr	edits:	04	and Name: Total Marks:	100		
Universi	v	50	College	50		
assessme		Probability theory.	assessment:			
•		After completion of	C .1 1	'11		
CO	Have a good understanding of the key concepts of stochastic					
01)	processe					
СО	Have ba	asic theory of Mark	ov chain, Branchin	ng process, Renewal		
02)	process,	, Birth and Death pr	rocess, Wiener pro	ocess.		
CO	Able to	classify states of M	Iarkov chain.			
03)						
CO	Able to	obtain higher step t	transition probabil	ity matrix, stationary		
04)	distribu	tion of Markov cha	in.			
CO	Able to	concepts and theor	y behind Poisson p	process, Birth and		
05)	Death p	rocess.				
CO	Able to	find extinction pro	bability of branchi	ng process.		
06)						
MODUI	MODULE I: (2					
CREDIT	ΓS)					
Unit 1:	Introduct	ion to stochastic pro	ocesses, real life ap	oplications of stochastic	15	
	processes	, introduction to diff	erent types of stoch	nastic processes.		
	Markov	chain, real life ex	xamples of Mark	ov chain, order of a		
	Markov	chain, transition	probabilities, (Chapman-Kolmogorov		
	equations	s, classification of	states, periodicity,	closed class, minimal		
	closed cl	lass, stationary dis	tribution of a Ma	rkov chain. Gamblers		
	ruin problem, random walk. Concept of absorption probabilities,					
	Statistica					
Unit 2:	Continuous time Processes: Poisson process, Generalizations of Poisson				15	
	process,					
MODUI	LE II:			(2 CREDITS)		
Unit 3:	Renewal	nuous time, renewal	15			
		,	<u> </u>			

equation, stopping time, renewal theorem. Real life applications.					
Branching Process: Introduction to branching process, probability	15				
generating function of branching process, moments, classification					
of states, identification of criticality parameter, extinction					
probability, relationship between criticality parameter and					
extinction probability of the process, Expression for mean and					
variance of the process. Extinction probability, Some applications.					
<u>es:</u>					
hat, B.R. (2000). Stochastic Models: Analysis and Applications, New					
ge International.					
Bhat, U. N. and Miller, G. K. (2002): Elements of Applied Stochastic					
Processes. 3 rd Edition. Wiley					
Basu, S (2012): Applied Stochastic Processes. New Central book					
agency.					
Durrett, R. (1999): Essentials of Stochastic Process.					
Hoel, P. G., Port, S. C. and Stone, C. J. (1972): Introduction to Stochastic					
Processes, Houghton Mifflin					
Carlin, S. and Taylor, H. M. (1975): First Course in Stochastic					
rocesses second edition.					
Culkarni, V. G. (2011): Modeling and Analysis of Stochastic Systems,					
Chapman and Hall, London.					
Medhi, J. (1994): Stochastic Processes Second edition, Wiley Eastern.					
oss, S. M. (2004): Introduction to Probability Models, Wiley Eastern.					
	Branching Process: Introduction to branching process, probability generating function of branching process, moments, classification of states, identification of criticality parameter, extinction probability, relationship between criticality parameter and extinction probability of the process, Expression for mean and variance of the process. Extinction probability, Some applications. SE: hat, B.R. (2000). Stochastic Models: Analysis and Applications, New ge International. hat, U. N. and Miller, G. K. (2002): Elements of Applied Stochastic rocesses. 3 rd Edition. Wiley asu, S (2012): Applied Stochastic Processes. New Central book gency. surrett, R. (1999): Essentials of Stochastic Process. oel, P. G., Port, S. C. and Stone, C. J. (1972): Introduction to Stochastic rocesses, Houghton Mifflin arlin, S. and Taylor, H. M. (1975): First Course in Stochastic rocesses second edition. sulkarni, V. G. (2011): Modeling and Analysis of Stochastic Systems, hapman and Hall, London. Iedhi, J. (1994): Stochastic Processes Second edition, Wiley Eastern.				

604: Statistics Practical - V

Programme Name:	M.Sc. Statistics	Course Code and	604: Statistics
		Name:	Practical V
Total Credits:	02	Total Marks:	50
University	50	College	
assessment:		assessment:	

Pre requisite: Courses:601,602,603

Course outcomes: After completion of the course learners will,

- CO 1) Able to understand how to reduce variable from large number of variables by principal component analysis and how to identify latent variables by exploratory factor analysis.
- CO3) understand the how
- CO 2) Have introduction to R language.
- CO 3) Able to solve numerical problems based on one-way and two-way analysis of variance.

MODULE I: (2 CREDITS)

- **Unit 1:** Following practicals must be completed using software's.
 - 1. Principal component Analysis
 - 2. Factor Analysis
 - 3. Canonical correlation and variates.
 - 4. Cluster Analysis.
 - 5. General Block Design (GBD) and Randomized Block Design (RBD)
 - 6. Balanced Incomplete Block Design (BIBD)
 - 7. Factorial Experiments
 - 8. 2^k factorial experiments
 - 9. 2^k factorial experiments- Single replicate
 - 10. Confounding in 2^k factorial design
 - 11. 2-level fractional factorial design.

Elective Courses.

E1 605 (A) Elements of Data Science - I

Name: and Name: Elements of Data Science - I Total Credits: University assessment: Pre requisite: 502: Linear Models and 508: General Linear Models. Course outcomes: After completion of the course learners will, CO 01) Know fundamental concepts statistical learnings.	d					
Total Credits: 02 Total Marks: 50 University 25 College 25 assessment: assessment: Pre requisite: 502: Linear Models and 508: General Linear Models. Course outcomes: After completion of the course learners will, CO 01) Know fundamental concepts statistical learnings.						
University assessment: Pre requisite: 502: Linear Models and 508: General Linear Models. Course outcomes: After completion of the course learners will, CO 01) Know fundamental concepts statistical learnings.						
assessment: Pre requisite: 502: Linear Models and 508: General Linear Models. Course outcomes: After completion of the course learners will, CO 01) Know fundamental concepts statistical learnings.						
Course outcomes: After completion of the course learners will, CO 01) Know fundamental concepts statistical learnings.						
CO 01) Know fundamental concepts statistical learnings.						
CO 02) Know advanced methods of tree based classification method.						
CO 03) Able to generate optimum decision tree to classify a new						
observation.						
CO 04) Able to fit best neural network.						
MODULE I:						
(2 CREDITS)						
Unit 1: Concept of statistical learning, supervised, unsupervised learning. 15						
Classification problem, naïve Bayes classification, k-nearest						
neighbor, support vector machine, CART: pruning, optimal	neighbor, support vector machine, CART: pruning, optimal					
pruning. Bagging, boosting, AdaBoost, XGBoost, Random	pruning. Bagging, boosting, AdaBoost, XGBoost, Random					
forests, model performance measures.	forests, model performance measures.					
Unit 2: Training and testing data, bootstrap method, cross-validation 15	Training and testing data, bootstrap method, cross-validation 15					
approach for model accuracy. Feature selection and extraction.						
Neural Networks: single, multilayer neural network,						
convolutional neural network, types of activation						
functions, fitting of neural network. Real life examples.						
Statistical techniques for unsupervised learning.						
References:						
Breiman, L., Friedman, J. H., Olschen, R. A. and Stone, C.J. (1984):						
Classification of Regression Trees, Wadsowrth Publisher.						
Hand, D. J. , Mannila, H. and Smith, P. (2001): Principles of Data Mining,						
MIT Press, Cambridge.						
Hassoun, M. H. (1998): Fundamentals of Artificial Neural Networks,						
Prentice-Hall of India, New Delhi.						

- Hastie, T., Tibshirani, R. and Friedman, J. H. (2001): The elements of
 Statistical Learning: Data Mining, Inference & Prediction, Springer Series in
 Statistics, Springer- Verlag.
- Hastie, T., Tibshirani, R. and Wainwright, M. (2015): Statistical Learning with Sparsity: The Lasso and generalizations.

E1 605 (B) Statistics Practical- VI

Programme Name:		M.Sc. Statistics	Course Code and Name:	E1 605 (B): Statistics		
Total Cu	adita.	02	Total Marks:	Practical VI 50		
Total Credits: 02 University 50		College				
assessme	•		assessment:			
Pre requ						
Course outcomes: After completion of the course learners will,						
CO	Know fu	undamental concept	ts of python.			
01)						
CO	Able to	solve practical prob	olems on classifica	tion problems		
02)	using R/	python.				
CO	Able to	handle and visualiz	e the real life data	using python.		
03)						
CO	Able to	fit neural network t	o the real life data	using R/python.		
04)						
MODUL	E I:					
(2 CREE						
Unit 1:	Practical	must be completed	using R-Environn	nent/ python	15	
	language on following topics of E1(A): Elements of Data Science					
	- I;					
	naïve Bayes classification, k-nearest neighbor, support vector					
	machine					
	CART, R	Random forests, sing	gle, multilayer neu	ral network.		
Unit 2:	40 sessio	ns should be condu	cted on python lar	iguage;	15	
	Introduct	ion: basic data type	es, lists, tuples, dic	tionaries. Numpy		
	arrays and array operations, Pandas, creating data frames.					
	Reading	and writing data, ex	xporting and impor	rting data files,		
	control st	tatements, defining	functions, built-in	functions.		
	Data Han	ndling and Visualiza	ation: dropping, re	naming variables,		

sub-setting data, creating new variables, indexing, diagrammatic
and graphical visualization, Box plot, scatter plot, heat map,
higher-dimensional Plots.
Multiple linear and logistic regressions.
18

E2 605 (A): Statistical Process control-II

Programn Name:	M.Sc. Statistics Course Code and Name: E2 506 (A): Statistical Process Control- II					
Total Cred	dits:	50				
University		25	College assessment:	25		
assessmen Pre requi						
		: After completion	of the course learn	ners will.		
		•		ods, robust design.		
		oncept of six sigma				
etc.			_			
CO 3) unde	erstands	improve phase met	hods.			
CO 4) unde	erstands	ISO 9000.				
MODULE	Z I:					
(2 CREDI	TS)					
Unit 1:	Enginee	ring Process Control,	, Process Design and	d Improvement with	15	
	Designed Experiments, Process Optimization with Designed					
	Experiments, Robust Deign and Signal to Noise Ratios.					
Unit 2:	Introduction to Lean and six – sigma: Definition of Lean, 5 S in Lean, 7 15					
	wastes in lean, 5 principles of lean. Definition of six – sigma and					
	definition of Lean six – sigma. DMAIC over view, Define phase :					
	VOC,VO					
	Storming					
	definitio	ping, sigma				
	calculati	on using sigma calcu	ılator, Gage R and R	. Improve Phase:		
	Multi vo	ting, Delphi Techniq	ue, Nominal group	technique, Kaizen. ISO		
	9000.					
Reference	<u>s:</u>					
• Du	ncan, A.	J. (1986): Quality (Control and Indust	trial Statistics.		
Irwin. 5th Edition.						
• Gr						
Cor	Control. McGraw Hill. 7th Edition.					
• Jol	• Johnson, N. L. (1977): Statistics and Experimental Design in					
Eng	Engineering and Physical Science. John Wiley.					
• Mo	ontgome	ry, D. C. (2004): In	troduction to Stati	stical Quality		

Control. John Wiley. 4th Edition.

- Muralidharan, K. (2015): Six sigma for organizational Excellence:
 A statistical approach. Springer.
- Phadke, M. S. (1989): Quality Engineering Using Robust Design. Pearson.
- Taguchi, G. (1986): Introduction to Quality Engineering: Designing quality into products and processes. Quality resources.

E2 605 (B): Statistics Practical VI

Programme		M.Sc. Statistics	Course Code	E2 605 (B):	
Name:			and Name:	Statistics	
				Practical VI	
Total Credits:		02	Total Marks:	50	
Universi	•	50	College		
assessme			assessment:		
Pre requisite:					
Course outcomes: After completion of the course learners will,					
CO 01) Know fu	undamental concepts	s of python.		
CO 02) Able to	solve practical probl	ems on statistical pro	ocess control.	
CO 03) Able to	handle and visualize	the real life data usin	ng python.	
CO 04) Able to	fit neural network	to the real life data	using R/python	
MODUI	E I:				
(2 CREI	OITS)				
Unit 1:	3 to 4 Practicals must be completed on topics covered in E3 605				
	(A): Statistical Process Control-II				
Unit 2:	40 sessions should be conducted on python language;				
	Introduction: basic data types, lists, tuples, dictionaries. Numpy				
	arrays and array operations, Pandas, creating data frames.				
	Reading	and writing data, ex	xporting and import	ing data files,	
	control statements, defining functions, built-in functions.			functions.	
	Data Han	dling and Visualiza	ation: dropping, ren	aming variables,	
	sub-settir	ng data, creating ne	w variables, indexir	ng, diagrammatic	
	and graphical visualization, Box plot, scatter plot, heat map,				
	higher-di	mensional Plots.			
	Multiple linear and logistic regression.				

E3 605 (A): Financial Mathematics – I

Program Name:	me	M.Sc. Statistics	Course Code and Name:	E3 605 (A): Financial	Lectures alloted	
Total Cm	. J:4	02	Total Manka	Mathematics - I		
Total Cro Universit		25	Total Marks: College	50 25		
assessme	•	25	assessment:	25		
Pre requ						
Course outcomes: After completion of the course learners will,						
CO 01)	Know fur	ndamental concepts	of markets, types o	f trading.		
CO 02)	Able to d	letermine forward ar	nd future price.			
CO 03)	Know dif	ferent types of inter	est rates.			
CO 04)	Able to n	nodel behavior of sto	ock prices.			
MODUL	E I:					
(2 CRED	OITS)					
Unit 1:	Introduct	ion, future markets	s, determination of	forward and future	15	
	prices, he	edging markets, int	erest rates, Binom	ial trees		
Unit 2:	Binomial	trees, model of th	e behavior of stoc	k prices, Markov	15	
	property,	Wiener processes,	Ito's lemma, The	Black-Scholes-		
	Merton n	nodel				
Reference	<u>:s:</u>					
• Da	avid, R. (20	04): Statistics and Fi	nance: An Introduc	tion. Springer.		
• Hu	ıll, J. C. (20	06): Options, Future	s and Other Derivat	ives, 6 th Edition.		
• Lir	ndstorm, E.	., Madsen, H. and Ni	elsen, J. N. (2015). S	Statistics for Finance,		
CF	CRC Press					
• Rc	oss, S. M. (2	2011): An Elementary	y Introduction to Ma	athematical Finance.		
Ca	Cambridge University Press. 3 rd Edition.					
• Ru	ippert, D. (2015). Statistics and	Data Analysis for F	inancial Engineering:		
wi	ith R exam _l	oles, 2nd Ed., Springe	er			

E3 605 (B): Statistics Practical VI

Programme Name:	M.Sc. Statistics	Course Code and	E3 605 (B):
		Name:	Statistics Practical
			VI
Total Credits:	02	Total Marks:	50
University	50	College	
assessment:		assessment:	
Pre requisite:			

Course	outcomes: After completion of the course learners will,				
CO 01)	Know fundamental concepts of python.				
CO 02)	Able to solve practical problems on Financial Mathematics.				
CO 03)	Able to handle and visualize the real life data using python.				
CO 04)	Able to fit neural network to the real life data using R/python				
MODUL	E I: (2 CREDITS)				
Unit 1:	3 to 4 Practicals must be completed on topics covered in E3 605 (A): Financial				
	Mathematics – I				
Unit 2:	40 sessions should be conducted on python language;				
	Introduction: basic data types, lists, tuples, dictionaries. Numpy arrays and				
	array operations, Pandas, creating data frames. Reading and writing data,				
	exporting and importing data files, control statements, defining functions, built-				
	in functions.				
	Data Handling and Visualization: dropping, renaming variables, sub-setting				
	data, creating new variables, indexing, diagrammatic and graphical				
	visualization, Box plot, scatter plot, heat map, higher-dimensional Plots.				
	Multiple linear and logistic regression.				

E4 605 (A) Statistics in Insurance - I

Program Name:	ıme	M.Sc. Statistics	Course Code and Name:	E4 605 (A): Statistics in		
Total Cr	edite:	02	Total Marks:	Insurance - I 50		
Universi						
	assessment: assessment/Department:					
Pre requ	iisite:					
Course or	utcomes:	After completi	on of the course learners will,			
CO 01)	Know r	need of insurance	e and applications of Statistics in	insurance.		
CO 02)	Know o	different types of	insurance.			
CO 03)	Know r	ole of an Actuary	<i>1</i> .			
MODUL	E I:			(2		
CREDIT	TS)					
Unit 1:	Princip	les of Insurance	. Need of Insurance. (Utility T	Theory).	15	
	Differe	nce between Ba	nks and Insurance Companies	. Brief		
	history	of Insurance.				
Unit 2:	Types of	f Insurance & Ins	urance products		15	
	a. Lif	e insurance - Te	erm Assurance, Endowment Ass	urance, Annuities		
	etc.					
	b. Noi	n-life insurance				
	c. Hea	alth insurance				
	Role of	an Actuary. Ac	etuarial Principles of Life and	Health insurance		
	includir	ng time value of	f money.			
Reference	<u>es:</u>					
• B	lack, K.	and Skipper, H.	D. (2015): Life insurance. Lu	cretian		
• B	owers, N	I. L. Gerber, H.	U., Hickman, J. C., Jones, D.	A. and Nesbitt,		
C	. J. (1997	7): Actuarial Ma	athematics. Society of Actuarie	es of London.		
2 ^r	nd Edition	1.	•			
2 ^r	nd Edition	ı.				

E4 605 (B) Statistics Practical VI

M.Sc. Statistics	Course Code and	E4 605 (B):
	Name:	Statistics Practical
		VI
)2	Total Marks:	50
50	College	
	assessment:	
_		2 Total Marks: 0 College

Course	outcomes: After completion of the course learners will,
CO 01)	Know fundamental concepts of python
CO 02)	Able to solve insurance based practical problems.
CO 03)	Able to handle and visualize the real life data using python.
CO 04)	Able to fit neural network to the real life data using R/python.
MODUL	E I: (2 CREDITS)
Unit 1:	3 to 4 Practicals must be completed on topics covered in E4 605 (A): Statistics
	in Insurance - I
Unit 2:	40 sessions should be conducted on python language;
	Introduction: basic data types, lists, tuples, dictionaries. Numpy arrays and
	array operations, Pandas, creating data frames. Reading and writing data,
	exporting and importing data files, control statements, defining functions, built-
	in functions.
Data Handling and Visualization: dropping, renaming variables, sub-sett	
	data, creating new variables, indexing, diagrammatic and graphical
	visualization, Box plot, scatter plot, heat map, higher-dimensional Plots.
	Multiple linear and logistic regression.

605: Research Project-I

Programme	M.Sc.	Course Code and Name:	605: Research
Name:	Statistics		Project-I
Total Credits:	04	Total Marks:	100
University	50	College	50
assessment:		assessment/Department:	

Pre requisite:501: Research Methodology in statistics.

Course outcomes: After completion of the course learners will,

- CO1) Understand how to collect literature on chosen research problem.
- CO2) Understand how to collect real life data, coding, analyze the data using advanced statistical methods and interpretation of results.
- CO3) understand how to make project presentations using advanced software like Beamer and how to write reports in Latex software.

Evaluation Pattern

Total Marks	Project	Project	Viva

		Report	presentation		
External	50	20	20	10	
Internal	50	Internal evalu	ation will be d	one by	
		allotted super	visor.		

EXAMINATION PATTERN FOR THEORY COURSES

Each course will be evaluated in two components,

Component A] Continuous Internal Evaluation (CIE) and

Component B] Semester End Examination (SEE)

CIE will be of 50 marks which will include,

- one test of 30 marks of one and half hour duration and
- other 20 marks are composed of any one or combinations of group discussion, presentation, viva-voce, open notebook test, surprise test, assignments, data analysis etc. to be conducted by respective teacher.

SEE will be a theory examination of 50 marks of two hours duration based on entire syllabus. The question paper will consist of six questions of 10 marks each. Student should answer any five questions out of six questions.

EXAMINATION PATTERN FOR PRACTICAL COURSES

At the end of semester there will be a practical examination of 50 marks and of two hours duration for each of the practical course. The distribution of total of 50 marks is as given below.

Practical Examination	Viva	Journal	Total
40 marks	10 marks	Compulsory	50 marks

M.Sc. (Statistics) Part II Semester IV <u>Mandatory courses</u>

607 : Time series Analysis.

Program	ıme	M.Sc. Statistics	Course Code	607: Time		
Name: Total Cr	adita.	04	and Name: Total Marks:	Series Analysis 100		
Universi		50	College	50		
	ssessment: assessment:					
Pre requ	isite:					
Course	outcomes:	After completion of	f the course learner	rs will,		
CO 01)	Know t	he essential knowle	edge and concepts of	of time series.		
CO 02)	Know a	comprehensive set	of tools and techn	iques for		
	analyzii	ng time series.				
CO 03)	Know c	concepts of trend, pe	eriodic, irregular fl	uctuations,		
	stationa	rity.				
CO 04)	Know A	ARMA, ARIMA, SA	ARIMA, ARCH, C	GARCH		
	process	es.				
CO 05)	Able to	carry out explorato	ory analysis of a tin	ne series.		
CO 06)	Able to	identify different c	omponents of a tin	ne series.		
CO 07)	Able to	analyze different ti	me series processe	es.		
CO 08)	Able to d	etermine best fitted	time series process t	to the real life data.		
MODUL	E I:					
(2 CRED	OITS)					
Unit 1:	Real life	examples of time se	eries, types of varia	ation in time series,	15	
	explorato	ory time series a	nalysis, auto-cova	ariance and auto-		
	correlatio	on functions, proper	rties of auto-correl	ation function of a		
	stationary	y process. Estimat	tion of mean, au	to covariance and		
	autocorre	elation functions	of stationary p	process. Tests of		
	randomne	rtmanteau tests for				
	noise seq	uences, Gaussian p	rocess.			
	Moving	average smoothing	g. Exponential ar	nd Holt -Winters		
	smoothin	g, adaptive sm	oothing. Forecas	sting based on		
	smoothin	g.				
	stationary autocorre randomne noise seq Moving smoothin	y process. Estimate lation functions less, tests for trend uences, Gaussian paraverage smoothing g, adaptive smoothing	cion of mean, au of stationary pl, seasonality, Por rocess. g. Exponential ar	to covariance and process. Tests of rtmanteau tests for and Holt -Winters		

Unit 2:	General linear process, Auto regressive (AR), Moving average	15
	(MA) and Autoregressive moving average (ARMA) processes,	
	autocorrelation and partial autocorrelation functions, stationary	
	and invertibility conditions of ARMA process. Computations of π	
	weights, ψ weights.	
MODUI	LE II:	
(2 CREI	DITS)	
Unit 3:	Preliminary estimates: Yule-Walker estimation, Durbin-	15
	Levinson algorithm, innovations algorithm. Maximum	
	likelihood estimators, least square estimators of ARMA process	
	parameters. Forecasting of ARMA process.	
Unit 4:	Model building: identification techniques, order selection,	15
	residual analysis and diagnostic checking.	
	Nonstationary and seasonal time series models: Auto regressive	
	integrated moving average (ARIMA) models, Seasonal ARIMA	
	(SARIMA) models, estimation and forecasting.	
	Introduction to ARCH and GARCH models, introduction to	
	count time series.	
Reference	es:	
• B	rockwell, P. J. and Davis, R. A. (2003): Introduction to Time	
S	eries Analysis, Springer	
• C	Chatfield, C. (2001): Time Series Forecasting, Chapman & Hall.	
• F	uller, W. A. (1996): Introduction to Statistical Time Series, 2nd Ed.	
V	Viley.	
• B	ox, G.E. P., Jenkins, G. M., Reinsel, G. C. and Lung, G. M. (2016):	
Т	ime series analysis: Forecasting and control. 5 th Ed. Wiley.	
• H	familton, N. Y. (1994): Time Series Analysis, Princeton University	
p	ress.	
• K	Lendall, M. and Ord, J. K. (1990): Time Series, 3rd Ed. Edward	
A	arnold.	
• L	utkepohl, H. (2005): New Introduction to Multiple Time Series	
	analysis, Springer	
	Montgomery, D. C., Jennings, C. L. and Kulahci, M. (2015):	
	ntroduction to time series analysis and forecasting. 2 nd Ed. Wiley.	
	humway, R. H. and Stoffer, D. S. (2010): Time Series Analysis &	
- 5	nam. a _j , 10. 11. and Storiet, D. S. (2010). Time Series I marysis &	

Its Applications, Springer.

• Tsay, R. S. (2010): Analysis of Financial Time Series, Wiley.

608: Reliability and Survival Analysis

Programn	1e	M.Sc.	Course Code	608:Reliability	Lectures alloted
Name:		Statistics	and Name:	and Survival	Lectures unoted
				Analysis.	
Total Cred	dits:	04	Total Marks:	100	
University	•	50	College	50	
assessmen			assessment:		
Pre requi	site: C	ourse 503			
Course or	utcome	s: After completion	on of the course le	arners will,	
CO 1) Able	e to und	erstand concept o	f survival analysis	and reliability of	
products.					
CO 2) Able	e to uses	s of different distr	ibution in life time	e data.	
CO 3) Able	e to und	erstand parametri	c and nonparametr	ric estimation of	
time to eve	ent data.				
CO4) Able	to unde	erstand concept of	fraility models ar	nd their uses in real	
life situation	on.				
MODULE	: I:				
(2 CREDI	TS)				
Unit 1:	Introdu	ction to Survival A	nalysis: need of sur	vival analysis,	15
	Surviva	al function, Hazaro	l function, cumulat	ive hazard function,	
	reverse	d hazard function	, nature of hazard	l function, bath-tub	
	shape	hazard function,	, class of incre	asing failure rate	
	distribu	itions, decreasing	failure rate distr	ributions, theorems.	
				lity function, hazard	
			-	d reversed hazard	
	functio		·		
	Lifetim	ne distributions: e	xponential, Weibul	ll, gamma, extreme	
	value d	istributions, log-no	rmal distribution.		
Unit 2:	Censor	ing: left censorin	g, right censoring	, interval censoring,	15
	random	n censoring, time	es censoring, orde	er censoring, hybrid	
	censori	ng. Kaplan-Meier	estimator of surviva	al function, properties	
	of Kap	lan-Meier estimato	or, Nelson-Aalen es	timator of cumulative	
	hazards	s function. Linear	and log-transforme	ed confidence interval	

	for survival function and cumulative hazard function. Q-Q plot,						
	hazards plot for lifetime distributions. Competing risk models.						
MODU							
	(2 CREDITS)						
Unit 3:	<u> </u>	15					
Omt 3.	model, Accelerated failure time model, Cox proportional	13					
	hazards model, residual analysis of proportional hazards						
	models.						
	Frailty models: Univariate frailty, multivariate frailty models,						
	shared frailty, correlated frailty, additive frailty models. Using						
	Weibull as baseline and gamma as frailty distribution.						
Unit 4:		15					
	series system, parallel system, k-out-of-n system, coherent system,						
	path sets and path vectors, minimal path sets, cut sets and cut						
	vector, minimal cut sets, reliability of coherent system, reliability						
D.C.	bounds.						
Referen							
•	Barlow, R. E. and Proschan, F. (1965): Mathematical theory of reliability						
•	Barlow, R. E. and Proschan, F. (1975): Statistical theory of reliability						
	and life testing. Holt, Reinhart and Winston.						
•	Deshpande, J. V. and Purohit, S. G. (2005). Life Time Data: Statistical						
	Models and Methods, World Scientific.						
•	Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models.						
	CRC Press.						
•	Hosmer, D. and Lemeshow, S. (1999). Applied Survival Analysis:						
	Regression Modeling of Time to Event Data, Wiley, New York.						
•	Kalbfleisch, J. D. and Prentice, R.L. (1986): The Statistical Analysis of						
	Failure Time Data, John Wiley.						
•	Kleinbaum, D. G. and Klein, M. (2012). Survival Analysis: A Self-						
	Learning Text, 3rd Ed, Springer, New York.						
•	Lawless, J.F.(1982): Statistical models and methods for life time data.						
	John Wiley.						
•	Lee, E. T. and Wang, J. W. (2003). Statistical Methods for Survival Data						
	Analysis, 3rd Edition. John Wiley.						
•	Liu, X. (2012). Survival Analysis: Models and Applications, Wiley, New						
	York.						

- Ross S. M. (2014): Introduction to Probability Models. Elsevier. 11th Edition.
- Smith, P.J. (2002): Analysis of Failure and Survival data. CRC.
- Wienke, A. (2011). Frailty Models in Survival Analysis, CRC.

609: Structural Equation Modeling.

Programn	ne	M.Sc.	Course Code	608:Structural	
Name:	-	Statistics	and Name:	Equation	
				Modeling	
Total Cre		02	Total Marks:	50	
University		25	College	25	
assessmen Pre requi		ourse 508, 601	assessment:		
_					
Course of	utcome	s: After completion	on of the course lea	rners will,	
CO 1) Und	lerstand	the concept of Sta	ructural equation n	nodel and real life	
application	1.				
CO 2) Und	lerstand	how to build-up r	nodel using softwa	are.	
		-	C		
CO 3) und	erstand	the how to modify	model if not fit w	rell.	
MODULE	E I:				
(2 CREDI	TS)				
Unit 1:	Introduction to SEM, Measurement scale, Measurement				15
	variab				
	structu				
	Specif				
	Confir	matory factor a	nalysis (CFA), E	Exploratary factor	
	analys	is vs Confirmator	y factor analysis (CFA), Regression	
	model	. Path model			
Unit 2:	Model	fit indices: Go	odness of fit inc	dex(GFI), Adjusted	15
	goodn	ess of fit index	(AGFI),Root mea	an square residual	
	(RMR), Standardized (R	RMR) is SRMR, R	Root mean square of	
	approximation (RMSEA)				
	Mode	l comparison: Tu	icker-Lewis index	(TLI), Normed fit	
	index	(NFI),			
	Model	Parsimony: Pars	imony fit index (l	PNFI) Comparative	
	fit in	dex(CFI), Non	normed fit index	x(NNFI), Akaike	

	information criterion(AIC). Modification Indices.	
Reference		
• Raı	ndall E. Schumacker, A beginner's guide to Structural Equation	
Mo	delling, Third Edition, Routledge, Taylor and Francies	
pub	olication.	
•		

610: Statistics Practical - VII

Programme Name:	M.Sc. Statistics	Course Code and	610: Statistics
		Name:	Practical VII
Total Credits:	02	Total Marks:	50
University	50	College	
assessment:		assessment:	

Pre requisite: Courses 607, 608, 609

Course outcomes: After completion of the course learners will,

- CO 1) be able to solve time series models using softwares.
- CO 2) understand how to apply time series models to real life situation
- CO 3) understand how to estimate survival function , hazard function using parametric as well as non-parametric methods.
- CO4) be able to create path models using software's in structural equation modeling and their real life application.

List of Practicals

- 1. Survival Analysis.
- 2. Non-parametric function of Survival Function
- 3. Data Plotting
- 4. Structural Equation Modelling
- 5. Smoothing
- 6. Elementary Time Series
- 7. Fitting of Time series.

Elective Courses

E1 611 (A) Elements of Data Science - II

Program Name:	me	M.Sc. Statistics	Course Code and Name:	E1 611 (A): Elements of data	Lectures alloted
				science - II	
Total Cr		02	Total Marks:	50	
Universit assessme	·	25	College assessment:	25	
Pre requisite: 503: Linear Models, 508: General Linear Models.					
Course	outcomes:	After completion of	f the course learner	rs will,	
CO 01)	Know bas	sic concepts of advan	ced regression meth	ods.	
CO 02)	Know per	nalized regression, di	mension reduction re	egression	
	methods.				
CO 03)	Know diff	ferent nonlinear regr	ession methods.		
CO 04)	Know the	fundamental conce	ots of nonparametric	regression	
	methos.				
MODUL	E I:				
(2 CRED	OITS)				
Unit 1:	Penalized	l regression: ridge,	generalized ridge, l	asso regression,	15
	selection of tuning parameter, principle component, partial least				
	squares regression. Introduction to high-dimension data problem.				
Unit 2:	Introduct	ion to Nonlinear reg	gression, polynomia	al regression,	15
	regression	n, smoothing spline	es, generalized addi	tive models,	
	introduction to Nonparametric regression, kernel methods.				
Reference	<u>:s:</u>				
• Ha	ardle, W.(19	990): Applied Nonpar	rametric Regression,	Cambridge	
Uı	niversity Pro	ess.			
• Ha	astie, T. and	d Tibshirani, R.(1990)	: Generalized Additiv	e Models, Chapman	
ar	and Hall, London.				
• Ha	Hastie, T., Tibshirani, R. and Friedman, J. H. (2001): The elements of				
St	Statistical Learning: Data Mining, Inference & Prediction, Springer Series				
in	in Statistics, Springer- Verlag.				
• Ha	astie, T., Tib	oshirani, R. and Wain	wright, M. (2015): St	atistical Learning	
wi	with Sparsity: The Lasso and generalizations.				
• Se	ber, G. A. F	and Wild, C. J. (198	39): Nonlinear Regres	ssion, John Wiley.	

E1 611 (B) Statistics Practical VIII

Programme Name:	M.Sc. Statistics	Course Code and Name:	E1 611 (B): Statistics Practical VIII
Total Credits:	02	Total Marks:	50
University	50	College	
assessment:		assessment:	
Dra raquisita:			

Pre requisite: ---

Course outcomes: After completion of the course learners will,

- CO 01) Know fundamental concepts of SQL language.
- CO 02) Able to solve practical problems on advanced regression problems using R-Environment/python language.
- CO 03) Able to handle and visualize the real life data using SQL language.
- CO 04) Able to fit neural network to the real life data using SQL language.

(2 CREDITS)	
thon language on	
squares regression,	
ng database, data editing:	
ere, group by, having order	
tion, summary statistics.	

E3 611 (A) Financial Mathematics – II

Program Name:	ıme	M.Sc. Statistics	Course Code and Name:	E3 611 (A): Financial	
T-4-1 C	- 194	02	T-4-1 Ml	Mathematics- II	
Total Cr Universit		25	Total Marks: College	50 25	
assessme	•	23	assessment:	23	
Pre requ			l		
Course or	utcomes: A	After completion of	the course learners	s will,	
CO 01)	Know vol	latility smiles.			
CO 02)	Know the	e concept of VaR me	asure.		
CO 03)	Able to m	nodel VaR measure.			
CO 04)	Able to e	stimate current and	future levels of vola	tilities and	
	correlation	ons using EWMA, AR	CH, GARCH models.		
MODUL	E I:				
(2 CRED	OITS)				
Unit 1:	Volatility,	, value at Risk: VaR	measure, linear, quad	dratic model	15
	building a	pproach.			
Unit 2:	Estimating	g volatilities and cor	relations: exponentia	lly weighted	15
	moving av	verage, ARCH, GAR	RCH models, stochast	tic volatility	
	models.				
Reference	<u>es:</u>				
• Da	avid, R. (200	04): Statistics and Fi	nance: An Introducti	on. Springer.	
• Ht	ull, J. C. (20	06): Options, Future	s and Other Derivativ	ves, 6 th Edition.	
• Lindstorm, E., Madsen, H. and Nielsen, J. N. (2015). Statistics for Finance,					
CRC Press					
Ross, S. M. (2011): An Elementary Introduction to Mathematical Finance.					
Ca	Cambridge University Press. 3 rd Edition.				
• Ru	uppert, D. (2015). Statistics and	Data Analysis for Fir	nancial Engineering:	
W	ith R examp	oles, 2nd Ed., Springe	er		

E3 611 (B) Statistics Practical VIII

Programm	ne Name:	M.Sc. Statistics	Course Code and Name:	E3 611 (B): Statistics Practical VIII
Total Cre	dits:	02	Total Marks:	50
University	y	50	College	
assessmen	ıt:		assessment:	
Pre requis	site:			
Course or	utcomes: Aft	ter completion of the	course learners will,	
CO 01)	Know fu	ndamental concepts of	of SQL language.	
CO 02)	Able to s	olve practical problems on financial mathematics.		
CO 03)	Able to h	andle and visualize the real life data SQL language.		
CO 04) Able to fit neur		it neural network to t	he real life data using S	QL language.
MODULE I:			(2 CREDITS)	
Unit 1:	Practicals m	ust be completed on t	topics covered in E3 61	1 (A): Financial
	Mathematics	s - II;		
Unit 2: 40 sessions should		should be conducted	on SQL language;	
	Database ma	nagement system, intro	oduction to SQL, creating	database, data editing:
	count, update	e, delete, unique, drop	. Logical operators, where	e, group by, having order
	by, querying	using database office, s	statistical data visualizatio	on, summary statistics.

E4 611 (A) Statistics in Insurance - II

Program	me Name:	M.Sc. Statistics	Course Code and Name:	E4 611 (A): Statistical in Insurance – II
Total Cr	edits:	02	Total Marks:	50
Universi	ty	25	College	25
assessme	ent:		assessment:	
Pre requ	isite:			
Course of	utcomes: Afte	r completion of the cou	ırse learners will,	
CO 01)	CO 01) Able to calculate risk premiums.			
CO 02)	CO 02) Able to determine pension plans.			
CO 03)	CO 03) know different risks and managing it			
MODULE I: (2 CREDITS			(2 CREDITS)	
Unit 1:	Gross Premium and Net Premium calculation. Life Insurance Reserves.			
	Risk Premium calculation. Statistical distributions useful in General			
	Insurance.			
Unit 2:	Credibility Theory and Bayes' Theorem. Pension plans and Wealth Management.			

Risks - Types of Risk and Risk Management including Underwriting.

References:

- Black, K. and Skipper, H. D. (2015): Life insurance. Lucretian
- Bowers, N. L. Gerber, H. U., Hickman, J. C., Jones, D. A. and Nesbitt, C. J.
 (1997): Actuarial Mathematics. Society of Actuaries of London. 2nd Edition.

E4 611 (B) Statistics Practical VIII

Program	me Name:	M.Sc. Statistics	Course Code and Name:	E4 611 (B): Statistics Practical VIII
Total Cr	edits:	02	Total Marks:	50
Universi		50	College	
assessme	ent:		assessment:	
Pre requ	isite:			
Course	outcomes: Aft	ter completion of the c	ourse learners will,	
CO 01)) Know fu	ndamental concepts of	SQL Language.	
CO 02)) Able to so	olve practical problems o	n insurance.	
CO 03) Able to h		nandle and visualize the real life data using SQL Language.		
CO 04) Able to f		it neural network to the	e real life data using So	QL Language.
MODULE I: (2 CR)		(2 CREDITS)		
Unit 1: Practicals m		ust be completed on to	pics covered in E4 61	(A): Statistics in
	Insurance.			
Unit 2:	nit 2: 40 sessions should be conducted on SQL language;			
Database ma		se management system, introduction to SQL, creating database, data editing:		database, data editing:
	count, update	e, delete, unique, drop. I	ogical operators, where	, group by, having order
	by, querying	using database office, st	atistical data visualizatio	n, summary statistics.

E4 611 (A): Statistical Decision Theory

Programme	M.Sc. Statistics	Course Code and	E4 611 (A):
Name:		Name:	Statistical Decision
			Theory
Total	02	Total Marks:	50
Credits:			
University	25	College	25
assessment:		assessment:	

Pre requisite: ---

Course outcomes: After completion of the course learners will,

- CO 1) Understand concept of decision problem and real life application.
- CO 2) Able to understand how to find loss function ,risk function.
- CO 3) Understand concepts of optimum decision rules, minimax rule.

MODULE I:	(2 CREDITS)

Unit 1:	Formulation of decision problems, randomized and nonrandomized decision rules,
	illustrative examples, loss function, risk function, prior distributions, conjugate priors,
	posterior distributions.
Unit 2:	Optimum decision rules, Bayes' rule, minimax rule, admissibility of rules, sufficiency
	and Rao-Blackwellization.

References:

- Gross, D. and Harris, C. M. (2002): Fundamentals of queueing theory. John Wiley.
- Kambo, N. S. (2008): Mathematical Programming Techniques. Affiliated East West Press Pvt.
- Taha, H. A. (2010): Operations Research: An introduction. Pearson. 9th Edition.
- Winston, W. L. (2003): Operations Research: Applications and Algorithms. Cengage Learning. 4th Edition.
- Swarup, K., Gupta, P. K. and Mohan, M. (1992): Operations Research. Sultan Chand and Sons.

E4 611 (B) Statistics Practical VIII

Programme Name:	M.Sc. Statistics	Course Code and	E4 611 (B):
		Name:	Statistics Practical
			VIII
Total Credits:	02	Total Marks:	50
University	50	College	
assessment:		assessment:	
Pre requisite:			

Course outcomes: After completion of the course learners will,

CO 01)	Know fundamental concepts of SQL Language.	
CO 02)	Able to solve practical problems on insurance.	
CO 03) Able to handle and visualize the real life data using SQL Language.		
CO 04)	Able to fit neural network to the real life data using SQL Language.	
MODUL	LE I: (2 CREDITS)	
Unit 1:	Practical must be completed on topics covered in E4 611 (A): Statistical	
	decision theory.	
Unit 2:	40 sessions should be conducted on SQL language;	
	Database management system, introduction to SQL, creating database, data editing	
	count, update, delete, unique, drop. Logical operators, where, group by, having orde	
	by, querying using database office, statistical data visualization, summary statistics.	

605: Research Project-II

Programme	M.Sc.	Course Code and Name:	605: Research
Name:	Statistics		Project-II
Total Credits:	06	Total Marks:	150
University	75	College	75
assessment:		assessment/Department:	
D : 1, 501 D 1 M (1 11 : 1, 2)			

Pre requisite:501: Research Methodology in statistics.

Course outcomes: After completion of the course learners will,

- CO1) Understand how to formulate research problem and their objectives.
- CO2) Understand how to collect literature on given research problem.
- CO3) Understand how to collect real life data, coding, analyze the data using advanced statistical methods and interpretation of results.
- CO4) understand how to write research paper and publish paper in journal or one presentation in state/national/ International conferences.

Note: Student must publish paper in peer-reviewed journal or one presentation in state/national/International conferences.

Evaluation Pattern

		Total	Project	Paper	Project	Viva
		Marks	Report	publication/	presentation	
				Presentations		
				in		
				conferences		
Exte	ernal	75	20	20	20	15

Internal	75		
		Internal evaluation will be done by allotted	
		supervisor.	

EXAMINATION PATTERN FOR THEORY COURSES

Each course will be evaluated in two components,

Component A] Continuous Internal Evaluation (CIE) and

Component B] Semester End Examination (SEE)

CIE will be of 50 marks which will include,

- one test of 30 marks of one and half hour duration and
- other 20 marks are composed of any one or combinations of group discussion, presentation, viva-voce, open notebook test, surprise test, assignments, data analysis etc. to be conducted by respective teacher.

SEE will be a theory examination of 50 marks of two hours duration based on entire syllabus. The question paper will consist of six questions of 10 marks each. Student should answer any five questions out of six questions.

EXAMINATION PATTERN FOR PRACTICAL COURSES

At the end of semester there will be a practical examination of 50 marks and of two hours duration for each of the practical course. The distribution of total of 50 marks is as given below,

Practical Examination	Viva	Journal	Total
40 marks	10 marks	Compulsory	50 marks

LETTER GRADES AND GRADE POINTS

Semester GPA / Program	Percentage of Marks	Alpha-sign / Letter Grade
CGPA Semester /		Result
Program		
09.00 - < 10.00	90.00 – 100	O (Outstanding)
08.00 - < 09.00	80.00 - < 90.00	A+ (Excellent)
07.00 - < 08.00	70.00 - < 80.00	A (Very Good)
06.00 - < 07.00	60.00 - < 70.00	B+(Good)
05.50 - < 06.00	55.00 - < 60.00	B (Above Average)
05.00 - < 05.50	50.00 - < 55.00	C (Average)
04.00 - < 05.00	40.00 - < 50.00	P (Pass)
Below 04.00	Below 40.00	F (Fail)
Absent		Absent

List of B.O.S, Members in Statistics.

Sr.No	Name	Signature
1.	Dr. Santosh P. Gite	Emife.
2.	Dr. C.S. Kakde	Skakade
3.	Dr. Manoj Mishra	W.K.Wizhua
4.	Dr. Alok Dabade	B2=6.
5.	Dr. Sujata Suvarnapatki	Spallindo

Appendix-B

Justification for M.Sc. (Statistics)

1.	Necessity for starting the course:	Now days Statistics is required to analyze data in every field. This program accentuates both the core and modern applications of Statistics. The program is structured so that students will have in depth knowledge of Statistics for pursuing their higher studies and also necessary skills in statistics for the employability in corporate.
2.	Whether the UGC has recommended the course:	Yes
3.	Whether the course have commenced from the academic year 2022-23.	The course has already commenced from the academic year 1948 and in academic year 2022-23, it is restructured under NEP, 2020.
4.	The course started by the university is self-financed, whether adequate number of eligible permanent faculties is available?	This course is not self-financed. Currently three permanent faculty members are working in the department out of ten sanctioned faculty positions.
5.	To give details regarding the duration of the course and is it possible to compress the course?	Duration of the program is two years (four semesters). It is not possible to compress the course. Under NEP, 2020 students have option of exit at the end of first year with PG Diploma in Statistics.
6.	The intake capacity of each course and number of admissions given in the current academic year;	The intake capacity of program is 60. Number of admissions for the academic year 2022-23 is 60.
7.	Opportunity of Employability / Employment available after undertaking these courses:	There is a good opportunity for employment. Students have employability in education and research. Also they can get employment in corporate, multinational companies as a statistician, like finance, banks sector, pharmaceutical sector, IT sector etc.

Sign of the BOS Chairman Dr. Santosh Gite Board of Studies in Statistics Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology