University of Mumbai

No. AAMS_UGS/ICC/2024-25/15

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology is invited to this office Circular No. UG/08 of 2018-19 dated 12th June, 2018 relating to the revised syllabus as per the (CBCS) for the T.Y.B.Sc. in Physics including Applied Component - Electronic Instrumentation (EI) & Computer Course (CS) (Sem -V & VI).

They are hereby informed that the recommendations made by the Board of Studies in Physics at its meeting held on 29th February, 2024 and subsequently passed by the Board of Deans at its meeting held on 18th April, 2024 vide item No. 6.3 (R) have been accepted by the Academic Council at its meeting held on 20^h April, 2024 vide item No. 6.3 (R) and that in accordance therewith the revised syllabus T.Y. B.Sc. Applied Component (Electronic Instrumentation) - (Sem V & VI) (CBCS) has been brought into force with effect from the academic year 2024-25.

(The said circular is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 01st July, 2024

(Prof. (Dr.) Baliram Gaikwad) I/c. REGISTRAR

To.

The Principals of the Affiliated Colleges and Directors of the Recognized Institutions in Faculty of Science & Technology.

A.C/6.3 (R) /20/04/2024

Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies Physics,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Director, Department of Information & Communication Technology,
- 6) The Co-ordinator, MKCL,
- 7) The Deputy Registrar, Admissions, Enrolment, Eligibility & Migration Department (AEM),
- 8) The Deputy Registrar, Result Unit,
- 9) The Deputy Registrar, College Affiliations Development Department (CAD)

Copy for information and necessary action :-

- 1. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 2. College Teachers Approval Unit (CTA),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA)
- 5. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 6. The Deputy Registrar, Executive Authorities Section (EA)
 He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
- 7. The Deputy Registrar, PRO, Fort, (Publication Section),
- 8. The Deputy Registrar, Special Cell,
- 9. The Deputy Registrar, Fort Administration Department (FAD) Record Section,
- 10. The Deputy Registrar, Vidyanagari Administration Department (VAD),

Copy for information:-

- 1. The Director, Dept. of Information and Communication Technology (DICT), Vidyanagari,
 - He is requested to upload the Circular University Website
- 2. The Director of Department of Student Development (DSD),
- 3. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,
- 4. All Deputy Registrar, Examination House,
- 5. The Deputy Registrars, Finance & Accounts Section,
- 6. The Assistant Registrar, Administrative sub-Campus Thane,
- 7. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 8. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 9. P.A to Hon'ble Vice-Chancellor,
- 10. P.A to Pro-Vice-Chancellor,
- 11. P.A to Registrar,
- 12. P.A to All Deans of all Faculties,
- 13. P.A to Finance & Account Officers, (F & A.O),
- 14. P.A to Director, Board of Examinations and Evaluation,
- 15. P.A to Director, Innovation, Incubation and Linkages,
- 16. P.A to Director, Department of Lifelong Learning and Extension (DLLE),
- 17. The Receptionist,
- 18. The Telephone Operator,

Copy with compliments for information to :-

- 19. The Secretary, MUASA
- 20. The Secretary, BUCTU.

UNIVERSITY OF MUMBAI

Revised Syllabus for
T.Y.B.Sc. Applied Component
(Electronic Instrumentation)
Semester – (Sem. V and VI)
(Choice Based Credit System)

(With effect from the academic year 2024-25)

University of Mumbai

Syllabus for Approval

O: Title of Course	T.Y.B.Sc. Applied Component (Electronic Instrumentation)
O: Eligibility	As per University Ordinance
R: Passing Marks	40
No. of years/Semesters:	1 Year (2 Semesters)
Level:	U.G.
Pattern:	Semester
Status:	Revised
To be implemented from Academic Year :	From Academic Year: 2024-25

Chairman,

Dr. T.N.GHORUDE Board of Studies in

Jundl

Physics

Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science &

Technology

Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science &

Technology

SEMESTER V				
	Theory			
USACEI501 Analog Circuits, Instruments and Consumer Appliances. No. of Credits Lectures/				
Unit I	Transducers, Sensors and Optoelectronics Devices			
Unit II	Signal conditioning, SMPS and Measuring Instruments	02	04	
Unit III	Data Acquisition and Conversion			
Unit IV	Modern Techniques and Consumer Appliances			
	Practicals			
USACEI5P1	USACEI5P1 Analog Circuits, Instruments and Consumer Appliances. 02			

SEMESTER VI				
	Theory			
USACEI601	Digital Electronics, Microprocessor, Microcontroller and OOP.		Lectures/Week	
Unit I	Digital Electronics.			
Unit II	Advanced 8085 Programming and 8255 (PPI) interfacing.	02	04	
Unit III	Introduction to Microcontrollers.			
Unit IV	Basic Concepts of Object Oriented Programming and C++.			
Practicals				
USACEI6P1	Digital Electronics, Microprocessor, Microcontroller and OOP.	02	04	

The revised syllabus under the credit based grading system in the subject of **Electronic Instrumentation** (Applied Component) for Third Year B.Sc. Physics (Single/Twin major subject) will be implemented **from the academic Year 2024-25.**

The scheme of examination in the subject of Electronic Instrumentation (Applied Component) will be as follows:

Semester V & VI: Theory

Course Code: USACEI501 & USAEI601

Theory Examination: 75 marks

- Duration of each Theory paper will be of **two and half** hours.
- Each theory paper shall consist of **five questions**, one from each unit and the fifth question will be from all the units. All questions are compulsory and will have internal choice.
- Each theory paper of each semester will have 25% internal assessment (IA) & 75% external assessment (EA). All external examination will be held at end of each semester & will be conducted by the university as per the existing norms.
- The theory examination will be conducted by the respective colleges and the marks will be forwarded to the University

Objectives

The objective of these papers is to introduce the students to sensors and transducers, Signal conditioning, data acquisition systems and measuring instruments used in the laboratory. Students are to be exposed to know, in principle, the modern techniques in the field of medical science. To learn PCB designing and working of consumer electronic devices. To develop logic circuit design and implementation. To know advanced programming skills interfacing techniques. To understand basic building blocks of microcontrollers. To know the terminologies like embedded, CISK and RISK processors. To master Programming and interfacing skills of microprocessor and microcontrollers. To develop object oriented programming skills and programming in C++. To develop various experimental skills.

Expected learning outcomes

Learner will be able to:

- Understand the difference between a transducer and a sensor.
- Understand the construction, working and uses of different types of transducers.
- Understand the concept of signal conditioning, devices used and their operations.
- Get acquainted with the measuring instruments used in laboratory.
- Get the insight of the modern medical instruments in principle, which are used in day to day life.
- Analyze/design and implement combinational logic circuits.
- Develop assembly language programing skills and real time applications of microprocessor.
- Illustrate how to interface the I/O peripheral (PPI) with 8085 microprocessor
- Understand architecture, silent features, instruction set, programming and interfacing of 8051 microcontroller.
- Develop the programming skills in programming Language C++.
- Train their practical knowledge through lab experiments.
- Get practical training to interface different programmable peripherals and I/O devices to microprocessor and microcontroller.

Semester V & VI: Practical

Course Code: USACEI5P1 & USACEI6P1

The practical examination will be conducted as per the following scheme by the respective colleges and the marks will be forwarded to the University:

Particulars of External Practical Sr. No **Examination Marks** 1 Laboratory Work 80 2 10 Journal Viva 3 10 TOTAL 100

Total Marks in each semester: 100 Marks

- Duration of each Practical paper will be of 3 Hours per semester.
- A certified Journal of Electronic Instrumentation must contain a minimum of EIGHT Experiments in each semester. At least TWO experiments from each sub groups & two experiments from any two groups, as mentioned in the syllabus, should be performed and reported in journal.
- Every candidate will be required to perform ONE experiment (from subgroups A or B or C) at the semester end practical examination.
- A candidate will be allowed to appear for the Practical Examination only
 if the candidate submits his/her certified Journal or a certificate from
 the Head of the Department of Physics stating that the candidate has
 completed the practical Course of Electronic Instrumentation of the
 respective semester as per requirements.

SEMESTER V

COURSE CODE: USACEI501

ANALOG CIRCUITS, INSTRUMENTS AND CONSUMER APPLIANCES.

Unit- I:		Transducers, Sensors and Optoelectronic Devices	(15 lect.)
1.	. Transducers: Definition, Classification, Selection of transducer.		
2.	2. Electrical transducers: Thermistor, Thermocouple, Pressure Transducer: Strain gauges (wire, foil, & semiconductor), Displacement transducer: LVDT, [Ref. 2, 3, 6 & 9]		
3.		cal sensors: PH sensor, Gas sensor (Fundamental ity sensor (Resistive). [R6, R7].	aspects),
4.	Applica Display Photot	lectronic Devices: LDR, LED (Construction, Woations), Multicolour LED, Seven Segment Display, Liquid (LCD), Photodiode (construction, Characteristics & appransistor. [Ref. 1, 2 & 3]	id Crystal lications),
Un	it-II:	Signal Conditioning, SMPS and Measuring Instruments	(15 lect.)
1.		ave precision rectifier, Active Peak detector, Active Positive], Active Positive and Negative Clippers [G]	Clamper
2.	2. Microphones: characteristics, types (list only), carbon microphone and dynamic type microphone (principle, construction and working) [R4].		
3.	Loud speakers: Characteristics, Dynamic (Moving coil type) speaker, Multi-way speaker system (woofer and tweeter) [R4]		
4.	Switching Regulators: Basic and Monolithic Switching regulators (buck, boost and buck – boost) (Only basic Configurations) Ref M: 24.7		
5.	 Digital Storage Oscilloscope: Digital Storage Oscilloscope [R3 &10]. DMM: 3 ½ Digit, resolution and sensitivity, general specification. [R3] 		
Un	Unit- III: Data Acquisition and Conversion (15 lect.)		
1.	1. Data acquisition system: Objectives of DAS, Signal conditioning of inputs, Single channel Data Acquisition system, Multichannel Data Acquisition system. [Data Transmission systems IEEE-488 GPIB*] [Ref. 11]		•

D to A Converters: Resistive divider network, Binary ladder network [Ref 7 & 8]
 A to D Converters: Successive approximation type, Voltage to Time(Single slope, Dual slope). [Ref. 7 & 8]
 Unit-IV: Modern Techniques and Appliances (15 lect.)
 Printed Circuit Board: Idea of PCB, advantages, copper clad, Etching processes, Principle of Photolithography (For PCB). [Ref. 4, 14 & 15].
 Microwave Oven: Operating principle, block diagram, features. [Ref. 12 & 13]
 Medical instruments: Bio-Potential, Types of electrodes, ECG, EEG, EMG, CT Scan and MRI (principle, block diagram and features),

Ultrasonography: working principle [R 16, 17 and 18].

References:

1.	A Textbook of Applied Electronics – R S Sedha, S Chand & Company, New Delhi.
2.	Basic Electronics Solid state - B. L. Thereja, S Chand & Company, New Delhi.
3.	Electronic Instrumentation – H S Kalsi, Tata McGraw-Hill Publishing Company Limited, New Delhi.
4.	Electronic components and materials: Principles, Manufacture and Maintenance- S. M. Dhir, Tata McGraw-Hill Publishing Company Limited, New Delhi.

https://books.google.co.in/books?id=sGbwj4J76tEC&pg=PA384&lpg=PA 384&dq=4.+Electronic+components+and+materials:+Principles,+Manufa cture+and+Maintenance-+S.+M.+Dhir,+Tata+McGraw-Hill+Publishing+Company+Limited,+New+Delhi.&source=bl&ots=U1ekai N3pB&sig=viKj6soAvVom4Hx9W-53QkogFM&hl=en&sa=X&ved=0ahUKEwjCg97viYXaAhUEPo8KHfMNBaQQ6 AEIMiAC#v=onepage&g=4.%20Electronic%20components%20and%20ma terials%3A%20Principles%2C%20Manufacture%20and%20Maintenance-%20S.%20M.%20Dhir%2C%20Tata%20McGraw-Hill%20Publishing%20Company%20Limited%2C%20New%20Delhi.&f=fa lse. https://books.google.co.in/books?id=bftp5ZG8v5kC&pg=PP1&lpg=PP1& dq=digital+Electronics+-+by+A.P+Godse+%26+D.A+Godse+Technical+publications,+Pune,+Revise d+third+edition,+2008&source=bl&ots= ApVT8Km H&sig=hfrgOdJHfzdZ wEv1 JPogAeRhLE&hl=en&sa=X&ved=0ahUKEwif3ZbKssraAhVFPI8KHV a[BKIQ6AEINTAB#v=onepage&q=digital%20Electronics%20-%20by%20A.P%20Godse%20%26%20D.A%20Godse%20Technical%20pu blications%2C%20Pune%2C%20Revised%20third%20edition%2C%2020 08&f=false 5. Measurement and Instrumentation Principles: Alan S. Morris., Butterworth-Heinemann. Transducers and display systems: B. S. Sonde, Tata McGraw-Hill 6. Publishing Company Limited, New Delhi. Digital principles and applications: A.P. Malvino and D. P. Leach. Tata 7. McGraw-Hill. 8. Data Converters - B. S. Sonde, Tata McGraw-Hill Publishing Company Limited, New Delhi. Modern Electronic Instruments and Measurement techniques- Albert 9. D. Helfrick, Willam D. Cooper, Prentice Hall India Pvt. Ltd, New Delhi. 10. A course in electrical and electronic Measurements and Instrumentation: A. K. Sawhney, DhanpatRai and Sons. https://www.scribd.com/document/258017718/A-K-sawhney-A-Course-in-Electrical-and-Electronic-Measurements-and-Instrumentation 11. Instrumentation Devices & Systems, 2nd Edition Tata McGrawHill- C.S. Rangan, G.R. Sarma, V.S. Mani Consumer Electronics R. P. Bali, Pearson Education (2008) 12. 13. S.P Bali, "Consumer Electronics", Pearson Education Asia Pvt., Ltd., 2008 Edition. 14. Printed Circuits Handbook pdf, Clyde F. Coombs. Jr., McGraw Hill Handbooks, 6th ed. PCB design basics, Mahmoud Wahby, EDN Networks, Nov 2013. 15.

16.	Introduction to Bio-medical Electronics: Joseph-Du-bary, McGraw Hill Co. Ltd.
17.	Medical instrumentation Application and design- J. C. Wobster
18.	Biomedical instruments and measurements – L. Cromwell, F. J. Weibell, Printice hall of India of India Pvt. Ltd, New Delhi.

PRACTICALS (Semester V)

Course Code: USACEI5P1

Note: 1. Perform Minimum EIGHT Experiments (at least two experiments from each group & two experiments from any two groups).

2. Group C experiments must be performed on Bread Boards.

	GROUP - A	
Sr. No.	Name of the Experiments	
1	Characteristics of Photo diode and photo transistors.	
2	Thermistor as sensor in temperature to voltage converter using OPAMP. (C&D Ch.8)	
3	Study of LVDT characteristics. (K Ch. 13)	
4	Study of Load Cell / Strain Guage. (K Ch. 13)	
5	Study of seven segment display.	
6	BasicInstrumentation Amplifier using 3 Op-Amps coupled toresistance bridge. (C & D Ch. 8)	
	GROUP - B	
Sr. No.	Name of the Experiments	
1	Temperature to frequency Conversion using 555 timer. (C & D Ch.13)	
2	OPAMP D/A Converter: Binary weighted resistors.	
3	OPAMP D/A Converter: Ladder network. (M & L Ch. 12)	
4	Half wave precision rectifier using precision op-amps (OPA177) (C & D Ch. 7)	
5	Positive and Negative Clippers/Clampers using op-amp. (124/324). (GCh. 8)	
6	Second Order active Low/ High Pass filter (frequency response & phase relation) (K.Ch15)	

	GROUP - C
Sr. No.	Name of the Experiments
1.	Study of variable dual power supply using LM 317& LM 337 (± 3v to ± 15v). (C&D Ch.13)
2.	Constant Current source using OPAMP and PNP transistor (o/p current less than 50 mA) (C & D Ch 5)
3.	Simple microphone amplifier using a transistor.
4.	Low voltage audio amplifier using IC LM386
5.	Construction of Audio power amplifier using IC TBA 810.
6.	Square and Triangular wave generator using OPAMPs with concept of duty cycle (M.Ch 23)

References:

1.	H & C: Modern Electronic Instrumentation & Measurement Techniques by Albert D. Helfrick & William D. Cooper PHI) Edition.
2.	C & D: OPAMPs and linear integrated circuits" by Coughlin & F. F. Driscoll (6 th edition PHI)
3.	G: OPAMPs and linear integrated circuits by R.A. Gayakwad (4th edition, PHI).
4.	M: Electronic Principles by A. P. Malvino, (PHI), 6th edition.
5.	K: Electronic Instrumentation by H. S. Kalsi, (TMH) 2 nd Edition
6.	M & L: Digital Principle and Applications" by Malvino and Leach, (TMH), 5 th edition,
7.	RPJ: Modern Digital Electronics, R .P. Jain, (TMH), 3 rd edition.

SEMESTER VI

COURSE CODE: USACEI602

DIGITAL ELECTRONICS, MICROPROCESSOR, MICROCONTROLLER AND OOP

Uni	t- I: Digital Electronics	(15 lect.)	
1.	Combinational Logic Design: Introduction, Boolean identities (2, 3 and 4 variable), Ref: N G P 4.1 – 4.8. (additional ref. RI		
	(2) 0 4114 1 (4414010), 11011 11 4 1 112		
2.	Design and implementations of: Decoders, Encoders, Multip multiplexers, Use of MUX and DEMUX in Combinational Lo	•	
	Code Converters (based on – binary, BCD, Gray and Excess Tri-State logic, buffers, D latch.	_	
	Ref: N G P - 5.1 (only introduction), 5.3, 7.1 -7.6 (except 7.5) F RG: 3.5.1, 3.5.2, 3.5.3, 3.5.4 & 3.5.5	RPJ - 4.20.	
	NGP: Digital Electronics and Logic design by N G PALAN, https://archive.org/details/hellomr82k gmail_DE		
	RG: Microprocessor Architecture, Programming and Applications with the 8085, Ramesh Gaonkar, 5 th Edition.		
	RPJ: R. P. Jain, Modern Digital Electronics, Tata McGraw Hill, 4 th Edition.		
Uni	Unit-II: Advanced 8085 Programming (15 lect.)		
1.	Introduction to advanced instructions and applications Ref. RG: 10.7, 10.8, 10.9		
2.	Stack and Subroutines: Stack, Subroutine Ref. RG: 9.1, 9.1.1, 9.2&9.2.1		
3.	The 8255 Programmable Peripheral Interface: Block Diagram of 8255, Mode 0 – Simple Input / Output mode, BSR (Bit Set/Reset Modern Ref. RG: 15.1.1, 15.1.2& 15.1.3		
	RG: Microprocessor Architecture, Programming and Application the 8085, Ramesh Gaonkar, 5^{th} Edition.	ons with	

Unit- III:	Introduction to Microcontrollers	(15 lect.)
Microc Microc 16-bit	uction, Microcontrollers and Microprocessors, Fontrollers and Microprocessors, Block diagram ontroller*, Embedded Versus External Memory Device Microcontrollers, CISC and RISC Processors, Harvardan Architectures, Commercial Microcontrollers.	of 8051 es, 8-bit &
Ref. M System Pearso		
Introd	Microcontrollers: action, MCS-Architecture, Registers in MCS-51, ption, 8051 Connections, 8051 Parallel I/O Ports zation.	
AVD-C	th: 2, 3.	
MCS MCS-5	nstruction Set and Programming: 51 Addressing Modes and Instructions: 8051 Address: 1 Instruction Set, 8051 Instructions and Simple Progr Pointer	_
	h: 4 VD: Microcontrollers (Theory and Applications) b ukh, The Tata-McGraw-Hill Companies	oy Ajay V
Ref. In	tel's 8031/8051 Data sheet	
https:/ manua https:/ Macker	/archive.org/details/bitsavers intel8051M4 15073500 /www.8051projects.net/download-d215-intel-mcs-51-80 l.html /archive.org/stream/212656146The8051Microcontroller nzie4th Edition/212656146-The-8051-Microcontr fackenzie-4th-Edition#page/n47/mode/2up	ByIScott
1.The 8 (Jaic 2.8051 3. Prog 4. The	onal Reference books: 3051 Microcontroller & Embedded Systems-Dr. Rajiv Ka o Pub. House) Micro-controller by K.J.Ayala., Penram International. ramming & customizing the 8051 microcontroller By My TMH. 8051 Microcontroller & Embedded Systems by M.A. Ma idiand R.D.Mckinlay, Second Edition, Pearson.	ke Predko,
Unit-IV:	Basic Concepts of Object Oriented Programming and C++	(15 lect.)

1. **Basics of Object-Oriented Programming & Beginning with C++:** Basic concepts of Object-Oriented Programming, Benefits of OOP, Object-Oriented Languages, Applications of OOP.

What is C++?, Applications of C++, A simple C++ program, More C++ Statements, Example with Class, Structure of C++ Program, Creating the Source File, Compiling and Linking.

Ref EB: 1.5, 1.6, 1.7 & 1.8 EB: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 & 2.8

2. Tokens and Expressions in C++:

Introduction, Tokens, Keywords, Identifiers and Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Symbolic Constants, Type Compatibility, Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Dereferencing Operators, Memory Management Operators, Manipulators, Type Cast Operator, Expressions and Their Types, Special Assignment Expressions, Implicit Conversions, Operator Overloading, Operator Precedence.

Ref EB: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22 & 3.23

3. **Control Structures and Functions:**

Control Structures, Functions: The Main Function, Function Prototyping, Call by Reference, Return by Reference, Inline Functions, Default Arguments, Constant Arguments, Function Overloading, Math Library Functions.

Ref EB: 3.24, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 & 4.11

Reference:

EB: Object Oriented Programming with C++ by E Balagurusamy, Third /Fourth Edition, Tata McGraw-Hill Publishing Company Limited.

Additional references:

- 1) Microprocessor and Applications by Vibhute and Borole, Techmax Publications,
- 2) Microprocessor, Principles & Applications by Gilmore (2nd Ed) TMH
- 3) Programming with C++ by D. Ravichandran, Tata McGraw-Hill Publishing Company Limited.
- 4) Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company.
- 5) Digital Electronics by A.P Godse & D.A Godse Technical publications, Pune, Revised third edition, 2008. Pg.No:2.25-2.70 (for K-maps).

https://www.scribd.com/document/103027386/Digital-Electronics-By-D-A-Godse-A-P-Godse

https://books.google.co.in/books?id=JkMrIjNKI7IC&pg=PP1&lpg=PP1&d q=Digital+Electronics+-

 $\frac{+by+A.P+Godse+\%26+D.A+Godse+Technical+publications,+Pune,+Revise}{d+third+edition,+2008\&source=bl\&ots=9VG8scIgqH\&sig=d7cyhWaM7cC} \\ \underline{wabgqRMoWz6snI8s\&hl=en\&sa=X\&ved=0ahUKEwiv55-}$

j6cbaAhUBvY8KHUZJBmMQ6AEIPTAD#v=onepage&q=Digital%20Electronics%20-

<u>%20by%20A.P%20Godse%20%26%20D.A%20Godse%20Technical%20publications%2C%20Pune%2C%20Revised%20third%20edition%2C%2020</u>08&f=false

PRACTICALS (Semester VI)

Course Code: USACEI6P1

3. Note: Perform Minimum EIGHT Experiments (at least two experiments from each group & two experiments from any two groups)

	GROUP – A: Digital Electronics		
Sr. No.	Name of the Experiments		
1	Study of 3:8 Decoder (74LS138), 8:3 Priority Encoder (74LS148) and their applications.		
2	Study of 8:1 Multiplexer (74LS151), 1:4 De-multiplexer (74LS155) and their applications.		
3	Study of unidirectional buffer (74LS244) and bidirectional buffer (74LS245).		
4	Design using K –map and implement 4:1 MUX, 1:4 DEMUX, 2bit comparator, Full adder and Full subtractor. [Note: Use suitable circuit simulator for implementation]		
5	Designing (using K -map) and implementation of code convertors. (any two - Binary to Gray, Gray to Binary, BCD to Excess - 3 and Excess-3 to BCD) [Note: Use suitable circuit simulator for implementation]		

GROUP - B: 8085 Advanced Programming and 8255 interfacing

Note: The students should be familiar with Keyboard and Display utilities such as READ KEYBOARD, TO DISPLAY ON ADDRESS FIELD, and TO DISPLAY ON DATA FIELD, mentioned in the 8085 µp kit's manual.

Sr. No.	Name of the Experiments	
8085 programming		
1	Write An ALP: a) To Evaluate simple arithmetic Expression (like Y= a x b + c x d where a, b, c and d are 8-bit HEX numbers) b) To Add parity bit to 7-bit ASCII characters.	
2	Write An ALP for code conversion (any two)	
3	16-bit Data manipulation (Addition, subtraction) Display result on Address field.	

4	Write ALP for Addition/ Subtraction/Multiplication of two, 8-bit hex,
	numbers. [Note: Use Read Keyboard Utility for inputting the hex
	numbers and display the result on the Address field.]

Experiments for 8031 / 8051 / 89C51

Sr.	Name of the Experiments
No.	
	0004/54
5	8031/51 assembly language programming:
	a) Simple data manipulation programs. (8/16-bit addition,
	subtraction, multiplication, division.
	b) 8/16 bit data transfer, cubes of nos., to rotate a 32- bit number
	c) Finding greatest/smallest number from a block of data, decimal /
	hexadecimal counter.
	nexadecimai counter.
6	Study of IN and OUT port of 8031/51 by Interfacing switches,
	LEDs and Relays:
	a) To display hit patterns on LED/a
	a) To display bit pattern on LED's
	b) To count the number of "ON" switches and display on LED's,
	c) To trip a relay depending on the logic condition of switches
	d) Event counter (using LDR and light source)

GROUP - C: C++ Programming

Sr. No.	Name of the Experiments
1.	Program based on Input, Output Statements. (Programs to read any two numbers through keyboard and to perform simple arithmetic operations and to display the result).
2.	Program based on Control Statements a) Program based on if-else statement b) Program based on nested if statement
3.	Program based on for loop, while loop and do-while loop.
4.	Program using switch statements and if-else ladder.
5.	Program to study function declaration, function calling and function prototype.

Chairman,

Dr. T.N.GHORUDE Board of Studies in

Physics

Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology

Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology