As Per NEP 2020

University of Mumbai

Syllabus for				
Basket of Minor				
Board of Studies in Information Technology				
UG First Year Programme				
Semester	II			
Title of Paper	Credits 2/ 4			
I. IT_Problem Solving using Computer(Minor)	2			
II.				
From the Academic Year	2024-2025			

Name of the Course: IT_Problem Solving Using Computer

Sr.No.		Heading	Particulars
1		iption the	This course, Problem Solving Using Computer, is
-	course	•	designed to teach students how to solve complex
	Includ	ing but Not	problems using computational thinking, logical and
	limited	_	algorithmic thinking, and effective problem-solving
			strategies. Students will learn how to anticipate and
			deal with errors while testing and debugging their
			code to ensure optimal functionality. The course
			also places an emphasis on evaluation, as students
			will be taught how to evaluate their solutions for correctness, efficiency, elegance, usability, and
			trade-offs.
		tiade-ons.	
	Module 2 of this course introduces Python and		Module 2 of this course introduces Python and its
			basic types, operations, and functions. It also
			covers more advanced constructs such as program
			state and tkinter, organizing code using modules and packages, using abstractions and patterns to
			simplify programming, and effective modelling.
			Students will also learn how to test and evaluate
			their programs, verifying and validating them in
			parts and as a whole.
2	Vertica	al:	Minor
3	Type:		Theory
4	Credit		2 credits (1 credit = 15 Hours for Theory)
5	Hours	Allotted :	30 Hours
6		Allotted:	50 Marks
7	Course Objectives(CO):		
	CO 1. To introduce students to computational thinking and how it is used		
		to solve problems using a computer.	
	CO 2.	2. To develop logical and algorithmic thinking skills in students, with	
	an emphasis on identifying and avoiding common mistakes.		
	CO 3.	CO 3. To equip students with the necessary problem-solving skills to	
		tackle real-world challenges by breaking down the problem,	
	devising a solution and implementing an effective strategy.		
	CO 4.	O 4. To teach students how to use abstraction to simplify complex	
		problems and how to create models to make predictions and	
		enhance understanding.	
	CO 5.	O 5. To prepare students for the reality of dealing with errors by teaching	
			nticipate, detect and mitigate program bugs through
		effective testing	g and debugging techniques.
	l		

8 Course Outcomes (OC):

- OC 1. Students will be able to analyze a given problem and select an appropriate computational strategy to solve it.
- OC 2. Students will be able to apply logical and algorithmic thinking to develop error-free computer programs that solve complex problems.
- OC 3. Students will be able to decompose a problem into smaller components and devise a solution strategy, effectively using patterns and generalization to design an effective solution.
- OC 4. Students will be able to use abstraction to simplify complex problems and effectively create models that simulate real-world scenarios.
- OC 5. Students will be able to anticipate and handle errors by implementing testing and debugging procedures while also efficiently evaluating their own solutions with respect to their correctness, efficiency, and usability.

9 Modules:-

Module 1: 15 hours

- Computational Thinking: Objectives, What is it? How is it used? Disclaimers
- 2. **Logical and Algorithmic thinking:** Objectives, Approach, Logical thinking, Algorithmic thinking, 'Gotchas'
- 3. **Problem Solving and Decomposition:** Objectives, Where to start? Defining a problem, devising solution, decomposition, other effective strategies, patterns and generalization
- 4. Abstraction and Modelling: Objectives, Abstraction, Modelling
- 5. **Anticipating and dealing with errors:** Objectives, coming to terms with bugs, Designing out the bugs, Mitigating errors, Testing, Debugging, deciding which errors to fix
- 6. **Evaluation a solution:** Objectives, Solution evaluation, Is it correct? Is it efficient? Is it elegant? Is it usable? Trade-offs

Module 2: (15 hours)

- 7. **Introducing Python:** Objectives, Introduction, First steps, Basic types, Basic operations, Function, Comments
- 8. **Effective Building Blocks:** Logic, Basic arithmetic constructs, Program state, Advanced constructs
- 9. **Organising Code:** Objectives, tkinter, Separating concerns, defining information scope, using modules, packages
- 10. **Using abstractions and patterns:** Objectives, finding patterns in programs, abstractions in programming, built-in types, creating own types, ready-made patterns
- 11. **Effective modelling:** Objectives, entities, relationships, processes, usage, modelling tips
- 12.**Testing and evaluation programs:** Objectives, introduction, anticipating bugs, verification and validation, testing in parts, testing the whole, debugging

		13. Example			
10		 Text and References: COMPUTATIONAL THINKING: A beginner's guide to problem-solving and programming, Karl Beecher, BCS Learning & Development Ltd, 2017 Problem Solving with Computers, Greg W. Scragg, Jones and Barlett Publishers, 1997 			
11		In 10 above			
12		ternal Continuous Assessment: 9%	Semester End Examination: 60%		
13	CI CI Av	ass test of 1 of 15 marks ass test of 2 of 15 marks /erage of the two: 15 marks	Format of Question Paper: External Examination (30 Marks)– 1 hr duration		
	Quizzes/ Presentations/ Assignments: 5 marks Total: 20 marks				
14	Dı Q	ormat of Question Paper: (Semester End Examination: 30 Marks. uration:1 hour) 1: Attempt any two (out of four) from Module 1 (15 marks) 2: Attempt any two (out of four) from Module 2 (15 marks)			

Sign of Chairperson Dr. Mrs. R. Srivaramangai Ad-hoc BoS (IT) Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology

Sign of Offg. Dean, Prof. Shivram S. Garje Faculty of Science & Technology