AC: 20/04/2024

Item No: 6.7 Sem. II (11a)

As Per NEP 2020

University of Mumbai

Syllabus of Minor Board of Studies in Chemistry				
			UG First Year Programme	
Semester	II			
Title of Paper	Credits 2/4			
I) Fundamentals in Physical, Inorganic and Organic Chemistry	2			
From the Academic Year	2024-2025			

Fundamentals in Physical, Inorganic and Organic Chemistry

Sr.	Heading	Particulars		
No.				
1	Description the Course:	The course aims to acquaint the students to the fundamental		
		concepts of Physical, Inorganic and Organic Chemistry and		
2	Vertical:	their applications Minor		
3	Type:	Theory		
4	Credits:	2 Credits		
		(1 Credit = 15 Hours for Theory)		
5	Hours Allotted:	30 Hours		
6	Marks Allotted:	50 Marks		
7	Course Objectives (CO):			
	CO-1 To understand the concepts of concentration units and its calculations			
	CO-2 To reveal the concept of pH, pOH and buffer solution			
	CO-3 To understand the basics of atomic structure			
	CO-4 To understand the arrangement of elements in periodic table and periodicity in the			
	properties of elements			
	CO-5 To introduce the students with organic compounds and its IUPAC nomenclature			
	CO-6 To acquaint with hybridization of carbon and fundamentals of organic reaction			
	mechanism	mechanism		
8	Course Outcomes (OC):			
	Student will be able to -			
	OC- Prepare solution of different concentration			
	OC-2 Use the concept of pH, pH Scale and its relevance to acidity and basicity			
	OC-3 Design the structure of atom and understand the location of subatomic particles			
	OC-4 Express periodic changes in the properties of elements			
	OC-5 Draw the structure and identify the name of organic compounds			
	OC-6 Spell about the hybrid	C-6 Spell about the hybridization of carbon in organic compounds		

9 Modules

Semester	Paper	Module	Description	Credits
II	Paper I:	I	Physical Chemistry	
	MN1:		1.1 Introduction to the Concept of Concentration for	
	Fundamentals		Solutions: (05L)	
	in		1.2 Chemistry of Acid and Bases (05L)	
	Physical	II	Inorganic Chemistry	
	Inorganic and Organic		2.1 Atomic Structure (05L)	
	Chemistry		2.2 Periodic Table and Periodicity (05L)	
	Chemistry	III	Organic Chemistry	
			3.1 Classification and Nomenclature of Organic	
			Compounds (04L)	
			3.2 Bonding and Structure of Organic Compounds	
			(03L)	
			3.3 Fundamentals of Organic Reaction Mechanism	
			(03L)	

Module	Physical Chemistry		
I	1 hysical Chemistry		
1.1	Introduction to Concept of Concentration for Solutions: (5L)		
	Concepts of Normality, Molarity, Molality, Mole Fraction, PPM, PPB		
	(Numerical problems are expected)		
1.2	Chemistry of Acid and Bases (5L)		
	Lewis Theory of Acid Bases, Types of acid bases - Strong and weak acids and bases,		
	Ionization of water, Concept of pH and pOH, pH scale, Buffer solutions, Henderson's		
	Equation		
Module	le Inorganic Chemistry		
II			
2.1	Atomic structure: (5L)		
	Historical Perspectives of the Atomic Structure: J.J. Thomson Model, Rutherford's		
	Atomic Model- alpha particle scattering experiment, Bohr's theory- Theory, its		
	limitations and atomic spectrum of hydrogen atom.		
2.2	Periodic Table and Periodicity: (5L)		
	2.2.1 Long form of Periodic Table; Classification for elements as main group, transition		
	and inner transition elements.		
	2.2.2 Periodicity in the Following Properties		
	Atomic and ionic size, electron gain enthalpy, ionization enthalpy, effective nuclear		
	charge, electronegativity.		
Module	Organic Chemistry		
III			
3.1	Classification and Nomenclature of Organic Compounds (4L)		
	Nomenclature of mono and bi- functional aliphatic compounds on the basis of priority		
	order of the following classes of compounds- Alkanes, alkenes, alkynes		
3.2	Bonding and Structure of Organic Compounds (3L)		
	Overlap of atomic orbitals- Overlaps of atomic orbitals to form sigma and pi bonds		
	Hybridization- sp3, sp2, sp hybridization of carbon		
3.3	Fundamentals of Organic Reaction Mechanism (3L)		

Basic terms and concepts- Homolytic and heterolytic fission with curly arrows with				
suitable examples. Electrophiles and nucleophiles				
Reactive intermediates in organic reaction- Carbocations. Carbanions and Free radicals				

10. Reference Books:

Physical Chemistry

- 1) Concise Graduate Chemistry I, II, III & IV, University Text Book of Chemistry, University of Mumbai.
- 2) Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 10th Ed., Oxford University Press (2014).
- 3) Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).
- 4) Keith J. Laidler & John H. Meiser, Physical Chemistry, 2nd Ed. (2004)
- 5) Puri B. R., Sharma L. R. & Pathania M. S. Principles of Physical Chemistry, Vishal Publishing Company, 2008

Inorganic Chemistry

- 1. Concise Graduate Chemistry I, II, III & IV, University Text Book of Chemistry, University of Mumbai.
- 2. Lee, J.D. Concise Inorganic Chemistry ELBS, 1991.
- 3. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry, Oxford, 1970
- 4. Atkins, P.W. & Paula, J. Physical Chemistry, 10th Ed., Oxford University Press, 2014. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962.

Organic Chemistry

- 1. Concise Graduate Chemistry I, II, III & IV, University Text Book of Chemistry, University of Mumbai.
- 2. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt Ltd. (Pearson Education).2012
- 3. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 4. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt Ltd. (Pearson Education).
- 5. Bahl and Bahl, Advanced Organic chemistry by S. Chand publication.2010
- 6. Peter Sykes. Guidebook to the mechanism in Organic chemistry, 6th edition

11	Internal Continuous Assessment: 40% (20 Marks)	External, Semester End Examination: 60% Individual Passing in Internal and External Examination (30 Marks)	
12	Continuous Evaluation through: Quizzes, Class Tests, presentation, project, role play, creative writing, assignment etc.(at least 3)	As per the Format of Question Paper	
13	Format of Question Paper: for the final examina	ition	

Question Paper Pattern for 30 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **one hour** duration.
- 2. Theory question paper pattern:
 - a. There shall be **03** questions each of **10 marks** on each unit
 - b. All questions shall be compulsory with internal choice within the questions

Question	Particulars	Marks	Questions Based on	
Q.1	A) Objective questions 04 out of 06	04	Module I	
	B) Subjective questions 02 out of 03	06		
Q.2	A) Objective questions 04 out of 06	04	Module II	
	B) Subjective questions 02 out of 03	06		
Q.3 A) Objective questions 04 out of 06		04	Module III	
	B) Subjective questions 02 out of 03	06		
	Total	30		

Sign of the Dr. Sunil Patil Co-ordinator, Board of Studies in Chemistry Sign of the Prin. (Dr.) Madhav Rajwade Offg. Associate Dean, Faculty of Science and Technology

Sign of the Prof. (Dr.) Shivram Garje Offg. Dean, Faculty of Science and Technology