As Per NEP 2020

University of Mumbai

Syllabus for		
Basket of OE		
Board of Studies in Statistics		
UG First Year Programme		
Semester - II		
Title of Paper	Credits 2	
I) Optimization Techniques-II		
	2 credit	
From the Academic Year	2024-25	

Semester II

Open Elective-II
Name of the Course: Optimization Technique-II

Sr. No.	Heading	Particulars
	<u>-</u>	
1	Description the course: Including but not limited to: Introduction: Optimization Technique is a mathematical models, algorithms, and analy making processes. In business, Optimization supply chain management, production production production management, and more. As a sub-field of Asy very interesting position alongside other field Learning. The program has some unique feature to help make better management decisions. On known as OR, is a scientific study that involve techniques to solve complex business problems business landscape, and it plays a crucial root.	tical methods to optimize decision- n Technique is applied to improve cesses, inventory management, risk pplied Operations Research, it has a celds as Data Science and Machine ares like applying analytical methods operations Research (OR), commonly we using mathematical and statistical cms. Its scope is vast in the present
	Application, and Demand: Production Planning and Scheduling: Network optimization, focuses on understanding and interconnected elements. Analyzing how resour flow through networks (e.g., transportation Identifying the most critical activities in a product of the transportation of the transport	d optimizing relationships between arces (such as data, goods, or people) n, communication, supply chains). Project schedule to minimize delays, etermine the best order of production
	Transportation and Logistics Optimization Techniques can be used to open which includes determining the best routes times, and maximizing the use of transportation	for transportation, minimizing travel
	Healthcare Optimization Techniques can be used to optimization appointments, managing patient fliplanning. O.R. models can also be used to opticare.	ow, and improving hospital capacity
	Finance Optimization Techniques can be used to optimasset allocation, risk management, and portfolious be used to forecast financial markets and predictions.	o optimization. O.R. models can also
	Job Prospects: Optimization analyst provides accurate, timely	y and relevant inputs to stakeholders

through complex data analysis, using statistical methodologies and tools. They are in high demand across various job roles such as Data Analyst, Business Analyst, Operations Manager, Risk Analyst, Statistician, Management Consultant

Connection with Other Courses:

Optimization Techniques relates to other courses like Commerce, Applied Economics, Accounting & Finance, Mathematics, Computer Science, Business Management, and Medical Science And Technology.

Additional Areas: Optimization Techniques has a wide range of applications and can be used to solve complex real-world problems. By using mathematical modeling and optimization techniques, organizations can make better decisions and improve their operations.

2	Vertical:	Open Elective
3	Type:	Theory
4	Credits:	2 credits (1 credit = 15
		Hours for Theory or 30
		Hours of Practical work in
		a semester)
5	Hours Allotted:	30 Hours
6	Marks Allotted:	50 Marks
	1	

7 Theory (2 Credit)

Total No of Theory Hours: 30 Total Marks: 50

Course Objectives (CO): (List the course objectives)

- 1. Introducing students to Network Analysis, Critical Path Methods applicable to business contexts.
- 2. To learn mathematical formulation and solution of real-life situations using Decision Theory
- 3. To Explain the methods to Plan and Schedule Projects
- 4. To understand and learn Sequencing of Jobs in Business Models
- 5. To learn how to Solve Game Theory Problems
- 6. To learn the application of Optimization Techniques in Real Life Problems
- 7. To develop students' critical thinking and problem-solving abilities through the application of statistical methods in real-world business scenarios.

8 Course Outcomes (OC): (List the course outcomes)

- 1. Understanding of fundamental optimization techniques and methods applicable to business analysis.
- 2. Identifying the most critical activities in a project schedule to minimize delays.
- 3. Learning to find cost-effective solutions for network design and operation.
- 4. Learning how to ensure timely completion of projects or tasks.
- 5. Understanding Decision theory frameworks for making rational choices under uncertainty.
- 6. Identifying the best course of action given available information and

- potential outcomes under a real life situation.
- 7. Maximizing expected utility (benefits) while considering risks and preferences.
- 8. Learning how to Sequence Jobs and Evaluate Total Elapsed Time
- 9. Applying Game Theory to find out an optimal solution for a given situation.
- 10. Applying Skills in communicating statistical findings effectively to stakeholders.
- 11. Competence in applying statistical methods to solve real-world business Problems.

Module 1:	Network Analysis:	15 hrs
1.1	Critical Path Method (CPM)	5
	Concepts: Activity, Event, Network Diagram, Merge Event,	
	Burst Event, Concurrent and Burst Activity,	
	Construction of a Network Diagram. Node Relationship and	
	Precedence Relationship.	
	Principles of Constructing Network Diagram.	
	Use of Dummy Activity	
	Numerical Consisting of Maximum Ten (10) Activities.	
	Critical Path, Sub-critical Path, Critical and Non-critical	
	Activities, Project Completion Time.	
	Forward Pass and Backward Pass Methods.	
	Calculation of EST, EFT, LST, LFT, Head Event Slack, Tail	
	Event Slack, Total Float, Free Float, Independent Float and	
	Interfering Float	
1.2	Project Crashing	5
	Meaning of Project Crashing.	
	Concepts: Normal Time, Normal Cost, Crash Time, Crash Cost	
	of Activities, Cost Slope of an Activity.	
	Costs involved in Project Crashing: Direct, Indirect, Penalty	
	and Total Costs.	
	Time – Cost Trade off in Project Crashing.	
	Optimal (Minimum) Project Cost and Optimal Project	
	Completion Time.	
	Process of Project Crashing.	
	Numerical Consisting of Maximum Ten (10) Activities.	
	Numerical based on Maximum Four (04) Iterations of Crashing	
1.3	Program Evaluation and Review Technique (PERT)	5
	Three Time Estimates of PERT: Optimistic Time (a), Most	
	Likely Time (m) and Pessimistic Time (b).	
	Expected Time (te) of an Activity Using Three Time Estimates.	
	Difference between CPM and PERT.	
	Numerical Consisting of Maximum Ten (10) Activities.	
	Construction of PERT Network using te values of all	
	Activities. Mean (Expected) Project Completion Time.	
	Standard Deviation and Variance of Activities.	

	Project Variance and Project Standard Deviation.	
	Simple Questions related to PERT Technique.	
Module 2:	Decision Theory, Sequencing and Theory of Games	15 hrs
2.1	Decision Theory	5
	Decision Environments – Risk & Uncertainty, Payoff Table,	
	Regret Table	
	Decision Making under Uncertainty	
	Maximin & Maximax Criteria, Minimax Regret Criterion	
	Laplace Criterion, Hurwitz Criterion	
	Decision Making Under Risk	
	Expected Monetary Value Criterion,	
	Expected Opportunity Loss (E.O.L),	
	Decision Tree Analysis	
2.2	Inventory Management:	5
	Introduction to inventory control problem, type of inventory,	
	Different cost in inventory problem, selective control	
	techniques, techniques of inventory models: Economic order	
	quantity model(EOQ) with known demand, uniform demand,	
	problem of EOQ with shortages, inventory models with	
	stochastic demand, Buffer stock, price discounts, back order	
	inventory models.	
2.3	Theory of Game	5
	Introduction	
	Terminology of Game Theory: Players, Strategies, Play,	
	Payoff, Payoff matrix, Maximin, Maximax, Saddle Point.	
	Types of Games.	
	Numerical based on:	
	Two Person Zero Sum Games	
	Pure Strategy Games (Saddle Point available)	

9 **Reference Books** 1. Kanti Swarup, Gupta, P.K. and Manmohan (2007): Operations Research, 13th Edition, Sultan Chand and Sons 2. J K Sharma, (1989): Mathematical Models in Operations Research ,Tata McGraw Hill Publishing Company Ltd. 3. S.D.Sharma: Operations Research; Theory, Methods and applications,15th Edition, Reprint, Kedarnath 4. Taha, H. A. (2007): Operations Research: An Introduction, 8th Edition, Prentice Hall of India. 5. J.K.Sharma , (2001), Quantitative Techniques For Managerial Decisions: MacMillan India Ltd. 6. Vohra N. D.(2006): Quantitative Techniques in Management, Third edition, McGraw Hill Companies. 7. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959): Operations Research: Methods and Problems, John Wiley & Sons. 8. Schaum Series book in O.R. Richard Broson. Tata Mcgraw Hill Publishing

Company Ltd.		

Format of Question Paper:

Internal Continuous Assessment: (20 marks)

Assignment/viva	Class Test	Total
Quizzes, Class Tests, presentation,		
project, assignment etc		
05	15	20

Semester End Examination: (30 marks)

Semester End Examination will be of 30 marks of 01 hour duration covering entire syllabus of the semester. Examiners should frame sub questions for Q.1, Q2 and Q3. Each question carrying 15 marks. Attempt any two out of three questions.

Theory Question Paper Pattern:

Q 1	Max. marks: 15	
Q 2	Max. marks: 15	Attempts any two questions out of Three.
Q 3	Max. marks: 15	

Sign of the BOS Chairman Dr. Santosh Gite Board of Studies in Statistics Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology