As Per NEP 2020

University of Mumbai

Syllabus for				
Basket of OE Life Sciences				
Board of Studies in Life Sciences				
UG First Year Programme				
Semester I				
Title of Paper	Credits 2/ 4			
I) Model Organisms in Biology	2			
From the Academic Year	2024 – 2025			

I. Name of the course: Life Sciences - Model Organisms in Biology

Sr.No.	Heading	Particulars	
1	Description the course : Including but Not limited to:	This course aims at describing molecular and metabolic similarities and differences between plants, animals and humans. It also aims at emphasizing the merits and demerits of studying model systems in biological research.	
2	Vertical :	Open Elective	
3	Туре :	Theory	
4	Credits :	2 credits (1 credit = 15 Hours for Theory)	
5	Hours Allotted :	30 hours	
6	Marks Allotted:	50 Marks	
7	CO2 Bring in si organisms an	concept of model organisms. milarities and differences between model	

8 Course Outcomes (OC): The learner would be able to: OC 1. Understand the concept of model organisms and their significance in biological research. OC 2. Identify and describe commonly used model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Zebra fish. OC 3. Apply knowledge of model organisms to address specific biological questions or problems in research or practical applications, especially to humans. OC 4. Analyze the versatility of model organisms for studying various aspects of microbiology, genetics, and molecular biology, etc, including its applications in biotechnology, medicine, and environmental science. OC 5. Communicate scientific concepts effectively through written reports, oral presentations, and other forms of scientific communication, demonstrating clarity, accuracy, and professionalism. OC 6. Apply knowledge to address specific research questions or challenges, demonstrating the ability to generate hypotheses, design experiments, and analyze results in a research context. 9 Module 1 Lectures 15 **Model Organisms** Definition, historical context and evolution of model organism studies. Basic principles of experimental design and research methodologies **Characteristics of Model Organisms** Common traits and features shared by model organisms Criteria for selecting suitable model organisms for research purposes Importance of genetic tractability (lineage), ease of maintenance, and experimental manipulability Advantages and Limitations of Model Organisms: Correlation/ application to human studies, challenges of maintenance and application. Ethical Considerations: Humanitarianism and animal testing and ethics in animal testing.

Modu	le 2	Lecture 15
1.	E. coli:	
	a. Growth curve of <i>E. coli</i>	
	b. Simplicity of <i>E. coli</i> genome	
	c. E. coli as a bioreactor	
2.	Saccharomyces cerevisiae (Yeast)	
	Characteristics of Saccharomyces cerevisiae as a	
	model organism	
	b. Applications in molecular biology and genetics	
	c. Role in biotechnology and industrial processes	
3.	Caenorhabditis elegans (Roundworm)	
	a. Introduction to Caenorhabditis elegans as a model	
	organism	
	 Study of developmental biology and neurobiology 	
	using <i>C. elegans</i>	
	c. Use in drug discovery and aging research	
4.	Drosophila melanogaster (Fruit Fly)	
	a. Introduction and overview of <i>Drosophila</i> as a model	
	organism ,	
	b. Genetics and developmental biology research using	
	Drosophila	
	c. Applications in understanding human diseases	
_		
5.	Danio rerio (Zebrafish)	
	a. Introduction to the zebrafish model system	
	b. Advantages of zebrafish model organism	
	c. Importance of zebrafish as a versatile research and	
	education model	1

10		Text and Reference Books:			
and				M. Carroll and Mark	
11. Fishman					
	2. "Model Organisms: A Laboratory Guide" by Michael W. Klym			ael W. Klymkowsky and	
	David L. Stern				
	3. "Model Organisms in Evolutionary Biology: From Genomics to				
	Morphology" edited by Ralf J. Sommer and Michael M. Shifman			ael M. Shifman	
	4. "Model Organisms in Biological Research" edited by David L. Stern				
12	Inter	rnal C	ontinuous Assessment: 40%	Semester End Examination: 60%	
12			ontinuous Assessment: 40% us Evaluation through:		
	Con	tinuo		Examination: 60%	
	Con	tinuo zes,	us Evaluation through:	Examination: 60% Theory evaluation:	
	Con: Quiz crea	tinuo zes, tive w	us Evaluation through: class test, presentation, project, role play,	Examination: 60% Theory evaluation:	
	Con Quiz crea Atter	tinuo zes, tive w	us Evaluation through: class test, presentation, project, role play, riting, assignment etc.: 15 marks e and Participation: 05 marks.	Examination: 60% Theory evaluation:	
	Con Quiz crea Atter	tinuo zes, tive w	us Evaluation through: class test, presentation, project, role play, riting, assignment etc.: 15 marks e and Participation: 05 marks.	Examination: 60% Theory evaluation:	
	Con Quiz crea Atter Tota	tinuo zes, tive w ndanc I 20 m	us Evaluation through: class test, presentation, project, role play, riting, assignment etc.: 15 marks e and Participation: 05 marks.	Examination: 60% Theory evaluation: 30 marks.	

Evaluation for Open Elective Course: 50 Marks

The evaluation of these courses would include continuous evaluation (internal assessment) and Semester end examinations (External assessment). The evaluation pattern would be as follows:

Internal Assessment: 20 marks.

Theory Component: 20 marks.

Quizzes, class test, presentation, project, role play, creative writing, assignment etc: 15 marks

Attendance and Participation: 05 marks.

External Assessment: 30 marks.

Theory Component: 30 marks.

Duration: 1 Hour

• Theory question paper pattern:

Question No.	Unit	Question	Marks
Q1.	1	Any 1 out of 2 (1 or 1a, b)	12
Q2	II	Any 1 out of 2 (2 or 2a, b)	12
Q3.	I and II	Any 2 out of 4 (3: a, b, c, d)	06
		Total	30

Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology Sign of the Offg. Associate Dean Dr. Madhav R. Rajwade Faculty of Science & Technology Sign of the Offg. Dean Prof. Shivram S. Garje Faculty of Science & Technology