M.Sc.

(Computer Science)
SEMESTER - 111 (CBCS)

ELECTIVEII -TRACKD:
MACHINE LEARNING-1I
(ADVANCED MACHINE

LEARNING)

SUBJECT CODE : PSCS 3034

© UNIVERSITY OF MUMBAI

Prof. Ravindra Kulkarni
Vice-Chancellor,

University of Mumbai,
Prin. Dr. Ajay Bhamare Prof. Santosh Rathod
Pro Vice-Chancellor, I/c Director,
University of Mumbai, IDOL, University of Mumbai,

Programme Co-ordinator : Shri. Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

Course Co-ordinator : Mr. Sumedh Shejole
Asst. Professor,
IDOL, University of Mumbai, Mumbai

Editor : Vijay Sudhakar Kothawade
Assistant Professor,
Smt. Janakibai Rama Salvi College,
Kalwa Eest

Course Writers : Sonali Sambare
SIES(Nerul) College of Arts, Science and
Commerce

: Dr. Rajeshri Shinkar
SIES(Nerul) College of Arts, Science and
Commerce

: DrAarti Nayak
S K Somaiya College, Somaiya University

: Dr.J. Ghayathrri
Kongu Arts and Science College

November 2023, Print - I

Published by . Director
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.
1. Probability 01
2. Directed Graphical Models 25
3. Kernels 42
4. Markov and hidden Markov Models 59
5. Monte Carlo Inference-Sampling 74
6. Markov Chain Monte Carlo (MCMC) Inference 86
7. Graphical Model Structure Learning 97
8. Deep Learning 125

PSCS 3034

ELECTIVE I-TRACK D: MACHINE INTELLIGENCE-II
(ADVANCED MACHINE LEARNING TECHNIQUES)

Unit I: Probability

A brief review of probability theory, Some common discrete distributions,
Some common continuous distributions, Joint probability distributions,
Transformations of random variables, Monte Carlo approximation,
Information theory.

Directed graphical models (Bayes nets): Introduction, Examples,
Inference, Learning, Conditional independence properties of DGMs.
Mixture models and EM algorithm:

Latent variable models, Mixture models, Parameter estimation for mixture
models, The EM algorithm.

Unit II: Kernels

Introduction, kernel function, Using Kernel inside GLMs, kernel trick,
Support vector machines, Comparison of discriminative kernel methods.
Markov and hidden Markov models: Markov models, Hidden Markov
Models (HMM), Inference in HMMs, Learning for HMMs. Undirected
graphical models (Markov random fields): Conditional independence
properties of UGMs, Parameterization of MRFs, Examples of MRFs,
Learning, Conditional random fields (CRFs), applications of CRFs.

Unit III: Monte Carlo inference

Introduction, Sampling from standard distributions, Rejection sampling,
Importance sampling, Particle filtering, Applications: visual object
tracking, time series forecasting, Rao-Blackwellised Particle Filtering
(RBPF). Markov chain Monte Carlo (MCMC) inference: Gibbs sampling,
Metropolis Hastings algorithm, Speed and accuracy of MCMC.

Unit IV: Graphical model structure learning

Structure learning for knowledge discovery, Learning tree structures,
Learning DAG structure with latent variables, Learning causal DAGs,
Learning undirected Gaussian graphical models, Learning undirected
discrete graphical models. Deep learning: Deep generative models, Deep
neural networks, Applications of deep networks.

Text book:

Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The
MIT Press Cambridge (2012).

References:

Introducing Monte Carlo Methods with R, Christian P. Robert, George
Casella, Springer, 2010

Introduction to Machine Learning (Third Edition): Ethem Alpaydin,
The MIT Press (2015).

Pattern Recognition and Machine Learning: Christopher M. Bishop,
Springer (2006)

Bayesian Reasoning and Machine Learning: David Barber, Cambridge
University Press (2012).

Statistical And Machine Learning Approaches For Network Analysis,
Edited By Matthias Dehmer, Subhash C. Basak: John Wiley & Sons,
Inc (2012)

Practical Graph Mining with R: Edited by Nagiza-F-Samatova et al,
CRC Press (2014)

https://class.coursera.org/pgm/lecture/preview

o O O 0
0.0 0’0 0.0 0’0

PROBABILITY

Unit Structure:

1.0 Objectives

1.1 Introduction

1.2 A brief review of probability theory
1.2.1 Discrete random variables
1.2.2 Fundamental rules

1.2.3 Bayes rule

1.2.4 Independence and conditional independence

1.2.5 Continuous random variables
1.2.6 Quantiles
1.2.7 Mean and variance

1.3 Some common discrete distributions
1.3.1 Bernoulli distributions
1.3.2 Binomial distributions
1.3.3 Hypergeometric distribution
1.3.4 Poisson distribution
1.3.5 Multinomial distribution

1.4 Some common continuous distributions
1.4.1 Gaussian (normal) distribution
1.4.2 Degenerate pdf
1.4.3 The Laplace distribution
1.4.4 The gamma distribution
1.4.5 The beta distribution

1.5 Joint probability distributions
1.5.1 Covariance and correlation
1.5.2 The multivariate Gaussian

1.5.3 Multivariate Student t distribution

Track D: Machine
Learning —II (Advanced
Machine Learning)

1.6 Transformations of random variables
1.6.1 Linear transformations
1.6.2 General transformations
1.6.3 Central limit theorem
1.7 Monte Carlo approximation
1.7.1 Example: change of variables, the MC way
1.7.2 Example: estimating = by Monte Carlo integration
1.7.3 Accuracy of Monte Carlo approximation
1.8 Information theory
1.8.1 Entropy
1.8.2 KL divergence
1.8.3 Mutual information
1.9 References

1.10 Questions

1.0 OBJECTIVES

After completing this chapter, you will be able to understand probability
theory, Some common discrete distributions, Some common continuous
distributions and Joint probability distributions as well as transformations
of random variables, Monte Carlo approximation, Information theory and
Directed graphical models and mixture models and EM algorithm like
Latent variable models, Mixture models, Parameter estimation for mixture
models, The EM algorithm.

1.1 INTRODUCTION

Probability can have several meanings in everyday conversation.
Probability theory has been developed and applied in two major ways.
Simple games such as coins, cards, dice, and roulette wheels are examples
of games that interpret probabilities as relative frequencies. There is some
regularity to the results of many trials in a game of chance, although the
outcome of any given trial cannot be predicted with certainty.

As an example, if a coin is tossed with a probability of one-half, according
to the relative frequency interpretation, that means the probability of
receiving "heads" is about one-half in a large number of tosses, despite not
implying anything about the outcome of any given toss.

We all know that "the probability that a coin will land heads is 0.5". How
does that work? Probability can be interpreted in at least two different

ways. The frequentist interpretation is one. Probabilities, in this view,
describe the long run frequency of events. For example, the preceding
statement implies that if we flip the coin several times, we may anticipate
it to fall heads around half of the time. 1 The Bayesian interpretation of
probability is the alternative interpretation. Probability, according to this
viewpoint, is used to assess our uncertainty about something; hence, it is
primarily tied to information rather than repeated trials (Jaynes 2003).
According to the Bayesian perspective, the preceding sentence indicates
that we expect the coin will land heads or tails on the next toss.

Probability is the degree of certainty that an unknown event will occur.
Eg: The probability of raining today is 0.3.

Event space: All-possible-outcomes space.

Eg: E= {1,2,3,4,5,6} for a dice; E={H, T} for a coin.

Random variable: a variable whose values depend on the outcome of a
random phenomenon.

Two types of random variables: Discrete and continuous.

1.2 A BRIEF REVIEW OF PROBABILITY THEORY

Mathematical study of random phenomena is known as probability theory.
A random event's outcome can take any of a number of different forms; it
cannot be predicted before it happens. The final result is thought to have
been determined by chance.

1.2.1 Discrete random variables

The probability that the event A occurs is denoted by the term p(A). A
may be the logical phrase "it will rain tomorrow," for example. We require
that 0 < p(A) < 1, where p(A)=0 indicates that the event will almost
certainly not occur, and p(A)=1 indicates that the event will almost
certainly occur. The probability of the event not A is denoted by p(A),
which is defined as p(A)=1 — p(A). We will frequently write A =1 to
indicate that event A is true and A = 0 to indicate that event A is false.

We can extend the concept of binary events by introducing a discrete
random variable X that can take any value from a finite or countably
infinite collection X. The probability that X = x is denoted by p(X = x), or
just p(x) for short. In this context, p() is called as a probability mass
function, or pmf. This meets the properties 0 < p(x) <1 and !

1.2.2 Fundamental rules
1. Probability of a union of two events.

Given two events, A and B, we define the probability of A or B as
follows:

Probability

Track D: Machine
Learning —II (Advanced
Machine Learning)

P(AVB) =p(A)+p(B)-p(AAB)
=p(A) +p(B)
If A and B are mutually exclusive
2. Joint probabilities
We define the probability of the joint event A and B as follows:
P(A, B) = p(A A B) = p(AB)p(B)

This is known as the product rule. The marginal distribution is defined as
follows given a joint distribution on two occurrences p(A, B):

plA) =D p(A. B) =3 plA|B = b)p(B = b)
[:] A

where we are summing across all possible states of B. Similarly, we can
define p(B). This is also known as the sum rule or the total probability
rule.

3. Conditional probability

The conditional probability of event A given that event B is true is defined
as follows:

plA. B)
plB)

PrLA|IEY = i) =0

1.2.3 Bayes rule

The Bayes rule, also known as the Bayes Theorem, is obtained by
combining the definition of conditional probability with the product and
sum rules.

plX=zY=y a X =z)p(¥Y =X =x)
oY =) Y p(X =2"plY =y| X =2

pX=2Y =y)=

Example.

Assume 15 men out of 300 and 25 women out of 1000 are good orators. A
random orator is chosen. Determine the probability that a man will be
chosen. Assuming there is an equal number of men and women.

Solution:
Let there be 1000 men and 1000 women.

Let E; and E; be the events of choosing a man and a woman respectively.
Then,

P(E;) = 1000/2000 = 1/2 , and P(E,) = 1000/2000 = 1/2

Let E be the event of choosing an orator. Then,

P(E|E;) = 50/1000 = 1/20, and P(E|E,) = 25/1000 = 1/40 Probability

Probability of selecting a male person, given that the person selected is a
good orator

P(E//E) = P(E[E:) * P(E1)/ P(E[E1) * P(E1) + P(E[E2) * P(Ey)
= (1/2 * 1/20) /{(1/2 * 1/20) + (1/2 * 1/40)}
=2/3

Hence the required probability is 2/3.

1.2.4 Independence and conditional independence

Let us first define conditional independence:

If there are two conditionally independent events A and B given a third
event Y, then the occurrence/non-occurrence of A provides no information
about the occurrence and non-occurrence of B (given Y), i.e., A and B are
conditionally independent iff knowledge of A's occurrence provides no
information on the likelihood of B occurring and vice versa.
In terms of probabilities:

1. P(A N B|Y) = P(A]Y).P(B|Y)
2. P(A|BNY) = P(A]Y)

Be clear that conditional independence does not imply independence, and
vice versa. Let's explore some of the basic definitions.

1. Independence:

The occurrence of one event for two occurrences A and B has no affect
whatever on the other event's occurrence.

Example: P(ANB)=P(A).P(B)
P(A|B)=P(A)
2. Conditional Independence:

Sometimes it's impossible to determine whether an event is independent of
another because a third occurrence causes them to become so.

Given that C means, A is conditionally independent of B
P(A|B,C) =P(A|C)
i.e., When C is observed, B has no impact on the value of A.

We say X and Y are unconditionally independent or marginally
independent, denoted X L Y, if we can represent the joint as the product of
the two marginal,

e, X LY &=2pX,Y)=pX)p(Y)

Track D: Machine
Learning —II (Advanced
Machine Learning)

Theorem:

X 1Y |Z if there exist function g and h such that
p(x, y|z) = g(x, z)h(y, z)

for all x, y, z such that p(z) > 0

1.2.5 Continuous random variables

The two forms of random variables are continuous random variables and
discrete random variables. A random variable is one whose value varies on
every possibility that could occur during an experiment. A discrete
random variable is defined at a precise value, whereas a continuous
random variable is defined throughout a range of values.

For instance, how long it takes to finish an exam for a 60-minute test.
Possible values = all real numbers on the interval [0,60]

A random variable with an infinite number of possible values is referred to
as a continuous random variable. As a result, there is no chance that a
continuous random variable will have an exact value. A continuous
random variable's features are described using the probability density
function and the cumulative distribution function.

The probabilities connected to a continuous random variable are expressed
using the probability density function (pdf) and the cumulative distribution
function (CDF). Here are the formulas for continuous random variables
for these functions.

pdf (probability density function):
We often use (x) to denote the PDF of x
x)=0

whaerf (x) can be larger than 1

[7 feodx =1
f;lzf(x)dx = P, = < %)

Example

P(15 < x < 20)

PDF of Continuous Random Variable

A function that estimates the probability that a continuous random
variable's value will fall within a given range of values is known as the
probability density function. Given that X is assumed to be a continuous
random variable, the pdf's formula, f(x), is as follows:

dF (x)
dx

fix) = =F'(x)

F(x) is the cumulative distribution function in this case.

The continuous random variable's pdf must meet the requirements listed
below in order to be valid:

7 f(x)dx =1.

This specifies that the entire area under the PDF's graph must be equal to
1.

f(x) > 0. This implies that a continuous random variable's probability
density function cannot be negative.

CDF of Continuous Random Variable

The probability density function can be integrated to obtain the cumulative
distribution function of a continuous random variable. It can be
characterised as the probability that the random variable, X, will have a
value less than or equal to a specific value, x. The following is the formula
for the cdf of a continuous random variable, evaluated between two points
aand b:

P(a < X £b) = F(b) - F(a) = [* f(x)dx

1.2.6 Quantiles

The inverse of the cdf F, which we will refer to as F 1, exists since it is a
monotonically increasing function. The the value of xa such that P(X <
xa) = o if F is the cdf of X. Half of the probability mass is on the left and
half is on the right, making the value F —1(0.5) the median of the
distribution. The lower and upper quartiles are represented by the values F
—1(0.25) and F —1(0.75).

The tail area probabilities can also be calculated using the inverse cdf. For
example, if @ is the cdf of the Gaussian distribution N (0, 1), then points
to the left of ®—1(a)/2) contain o/2 probability mass, as illustrated in
Figure 2.3(b). By symmetry, points to the right of ®—1(1—0/2) also contain
a/2 of the mass. Hence the central interval (O—1(a/2), ®—1(1 — w/2))
contains 1 — a of the mass. If we set a = 0.05, the central 95% interval is
covered by the range(®—1(0.025), ®—1(0.975)) = (—1.96, 1.96)

Probability

Track D: Machine
Learning —II (Advanced
Machine Learning)

If the distribution is N (i, 62), then the 95% interval becomes (1 — 1.960,
u + 1.960). This is sometimes approximated by writing pu + 2.

1.2.7 Mean and variance

A distribution's mean, or expected value, is its most well-known
characteristic and is denoted by the symbol p. It is described in terms of
discrete RVs -

E[X] £ ¥,cx 7 pla)

and continuous RVs -

E[X] £ [,z p(z)de

The mean is not finite if this integral is not.

The variance is a measure of the “spread” of a distribution, denoted by o”.

This is defined as follows:
var[X] 2 E[(X —p)?] = /[.r — p)’p(z)d
= /.rgpi.r}d;r' - “2 /p(.a']d..r — 2u / zp(z)dr =K [‘(_2 - ,u3
This gives us the beneficial outcome
E K-)] = p? + o2
This is how the standard deviation is described.
std [X] £ y/var[X]

It has the same units as X itself, which makes it helpful.

1.3 SOME COMMON DISCRETE DISTRIBUTIONS

There are numerous discrete probability distributions available for use in
different scenarios.

1.3.1. Bernoulli Distribution

When we do an experiment just once, this distribution is produced. There
are only two possible outcomes: success or failure. These kinds of trials
are known as Bernoulli trials, and they serve as the foundation for many of
the distributions detailed below. Let p represent the probability of success,
and 1 - p represent the probability of failure.

PMF is provided as

p, Success
1-p, Failure

PMF = i
One example of this would be a single coin flip. 1 - p is the probability of
having a tail, and p is the probability of moving ahead. Please take note
that how we define success and failure depends on the situation and is
subjective.

1.3.2. Binomial Distribution

For random variables with just two possible outcomes, this is generated.
Let p represent the probability that an event will succeed, which implies
that 1 - p represents the probability that the event would fail. We obtain
the Binomial distribution by repeating the experiment and charting the
probability each time.

The most typical illustration of the Binomial distribution is the calculation
of the probability of receiving a specific number of heads after tossing a
coin n times. Other real-world examples are a company's number of
productive sales calls or the efficacy of a medicine in treating a sickness.

PMF is provided as,

e, p*(1-p)X

where
n is the number of trials,
p is the probability of success,
x is the number of successes.
1.3.3. Hypergeometric Distribution

Think about the scenario where you draw a red marble from a box of
marbles of various hues. The occurrence of drawing a red ball is
successful, whereas the event of not drawing one is unsuccessful. The
probability of drawing a marble in the following trial is impacted by the
fact that each time a marble is drawn, it is not put back in the box. The
probability of k successes over n trials, where each trial is carried out
without replacement, is modelled by the hypergeometric distribution.
Contrary to the binomial distribution, where the probability changes little
during the course of the trials.

PMF is provided as,

B QX
)

PX = x) =

Probability

Track D: Machine
Learning —II (Advanced
Machine Learning)

10

where
k is the number of possible successes
x is the desired number of successes
N is the size of the population
n is the number of trials.

1.3.4. Poisson Distribution

The events that take place over a predetermined period of time or space
are described by this distribution. This could be illustrated with an
example. Think about the number of calls a customer service centre
receives per hour. The average number of calls made per hour can be
estimated, but the precise number and time of calls cannot be known.
Every instance of an event occurs independently of all other instances.

PMF is provided as,
e A"
PX = %) = —
where

A is the average number of times the event has occurred in a certain period
of time

x is the desired outcome
e is the Euler’s number
1.3.5. Multinomial Distribution

There are just two possible outcomes in the above distributions: success
and failure. Yet the random variables with numerous alternative outcomes
are described by the multinomial distribution. Because each potential
result is considered a distinct category, this is also frequently referred to as
a categorical distribution. Think about the case where you play a game n
times. We can calculate the probability that player 1 will win x; times,
player 2 will win x, times, and player k will win xx times using the
multinomial distribution.

PMF is provided as,

PX=x,X=xy,...X=2x) = o P1*1 P *2 L py

xi!lxpl o xg,

where
n is the number of trials

Pleeeee. px denote the probabilities of the outcomes x;...... Xk respectively.

1.4 SOME COMMON CONTINUOUS DISTRIBUTIONS

We present a few common univariate (one-dimensional) continuous
probability distributions in this section.

1.4.1 Gaussian (normal) distribution

A probability distribution that is symmetric about the mean is the normal
distribution, sometimes referred to as the Gaussian distribution. It
demonstrates that data that are close to the mean occur more frequently
than data that are far from the mean.

The normal distribution appears as a "bell curve" on a graph.

The normal distribution is defined by a number of important
characteristics and attributes.

The first thing to note is that the data's mean, median, and mode (the most
common observation) are all identical to one another. Furthermore, each
of these values represents the distribution's peak, or highest point. The
distribution then deviates symmetrically from the mean, with the standard
deviation serving as a measure of its width.

The normal distribution uses the formula below. Keep in mind that only
the mean (p) and standard deviation (¢) numbers are required.

1 1 oy
ez /

f(x) =

oV 27
where:

x = value of the variable or data being examined and f(x) the probability
function

u = the mean
o = the standard deviation
1.4.2 Degenerate pdf

A degenerate random variable is a constant with probability of 1, and its
distribution is known as a degenerate distribution (also known as a
constant distribution). In other words, there is just one potential value for
the random variable X.

The Gaussian becomes an indefinitely tall and infinitely thin "spike,"
centred aty, in the limit that 6* — 0.

Probability

11

Track D: Machine
Learning —II (Advanced
Machine Learning)

12

lim N (x|p, a°) = 8(z — i)
ar—0 E

where 9§ is called a Dirac delta function, and is defined as

oo ifx=0

iy = { 0 ifx#0

like that

jh :_'5{.]"'}(}..!' =] |

The sifting property of delta functions is a helpful characteristic since it
allows one term to be chosen from a sum or integral:

/ f(x)d(x — p)dx = f(u)

since X — 1 = 0 is the only case when the integrand is not zero.

The log probability of the Gaussian distribution only decays quadratically
with distance from the centre, which makes it susceptible to outliers. The
Student t distribution is a more reliable distribution. Its pdf looks like this:

7 —t—=")
r 1 . 2 5
'T{-TLH..(TE,I.-':I oc |i1 ij_ (J ,U)]
E o

where

u is the mean
6>> 0 is the scale parameter
v >0 is called the degrees of freedom.

Some properties of the distribution-
va?

mean = j, mode = j, var = ———
(r — 2)

1.4.3 The Laplace distribution

The Laplace distribution, commonly referred to as the double-sided
exponential distribution, is another distribution with heavy tails. This pdf
includes the following:

. | I —
Lap(z|p,b) = 55 exp (_%)

where
u is a location parameter
b > 0 is a scale parameter.

Here are some properties of this distribution:

mean = L
mode =
var = 2b’

Some properties of the distribution-
mean = f. mode = u, var = 2b°

1.4.4 The gamma distribution

For positive real valued rv's, with x > 0, the gamma distribution is a
flexible distribution. The shape a > 0 and the rate b > 0 are the two
parameters used to define it:

@
b a1 o—Tb

['(a)

||

Ga(T'|shape = a,rate = b)

where I'(a) is the gamma function:

O
r{.rjé/ u* e Mdy
o0

There are several distributions which are just special cases of the Gamma,
which we discuss below:

e Exponential distribution

This is defined by
Expon(x|A) = Ga(z|l.A)

where A is the rate parameter.

This distribution describes the times between events in a Poisson process,
i.e. a process in which events occur continuously and independently at a
constant average rate A.

Probability

13

Track D: Machine
Learning —II (Advanced
Machine Learning)

14

e Erlang distribution

This is the same as the Gamma distribution where a is an integer. It is
common to fix a = 2, yielding the one-parameter Erlang distribution-

Erlang(x|A) =Ga(x|2,A)

where A is the rate parameter.
e Chi-squared distribution
This is defined by

Y (zlv) = Ga(z|%, 3)

This is the distribution of the sum of squared Gaussian random variables.
More precisely, if Zi ~N(0, 1), and

> __ W 2 > 2
S8=Y_. {Z; then §rv]
Some properties of the distribution-

b b i
mode = WAL= — .
a— 1 a—+ 1 (a—1)"{a—2)

mean =

1.4.5 The beta distribution

The definition of the beta distribution, which has support between [0, 1], is
as follows:

_ 1 1
Bf:‘tﬁl:.!'h]‘.: h} = mf“_] t 1 — J'?]b_ i

Here B(p, q) is the beta function-
['{a)I'(b)
@, 0) ['(a + b)
Some properties of the distribution-

a a— 1 ab
, mode = ——— var = - e .
a—+b a+b—2 (a+b)*(a+b+1)

medn =

1.5 JOINT PROBABILITY DISTRIBUTIONS

We have mostly focused on modelling univariate probability distributions
up to this point. The more difficult task of creating joint probability
distributions on numerous related random variables is introduced in this
section, which will serve as the book's main focus. A joint probability
distribution, which describes the (stochastic) correlations between the

variables, takes the form p(x1,...,.xD) for a set of D > 1 variables. If each
variable is discrete, the joint distribution can be represented as a large,
multi-dimensional array with one variable per dimension. However,
O(KD), where K is the number of states for each variable, is the minimum
number of parameters required to define such a model.

Probability

1.5.1 Covariance and correlation

The covariance between two rv’s, X and Y, gauges how closely (linearly)
X and Y are connected. In terms of covariance,

cov[X,Y] & E[(X-E[X])(Y -E[Y])]=E[XY]-E[X]E[Y]

o.a 0.4 o -0.4 -0.8 -1

S OF MW ™ W

1 -1

P - e — ~— S N

0 v}
i \ .-au,%J .
‘*me’* £y
o VY ’ B 8

Image source:
https://en.wikipedia.org/wiki/File:Correlation _examples.png

In above image a number of sets of (x, y) points, together with the x and y
correlation coefficients for each set. It should be noted that the correlation
(top row) indicates the noise and direction of a linear relationship but not
its slope or many other aspects of nonlinear relationships (bottom).

If x is a d-dimensional random vector, then the following symmetric,
positive definite matrix is its covariance matrix:

cov[x] £ E [{x —Ex])(x—E [}{]]T]

var [X1] cov [X7,Xa] -+ cov[Xi,X]
cov [Xa, Xi| var [Xo] -+ cov [Xa, X4
cov [Xg,X1] cov[Xg, Xq] --- var [X4]

Covariance’s can range from 0 to infinity. Working with a normalised
measure with a finite upper bound is sometimes more convenient. The
formula for the (Pearson) correlation coefficient between X and Y is

cov [X, Y]
v/ var [X | var [Y]

corr [X,Y] £

15

Track D: Machine
Learning —II (Advanced
Machine Learning)

16

A correlation matrix has the following
structure:

corr [X1,X1] corr[Xy,Xa] --- corr[Xi, X4
R. = . "

corr [Xg4,X1] corr[X4, X3] --- corr[Xg, Xy

For example,

If X=(X1,X2,X3)T and Y=(Y1,Y2)T are random vectors, then Rxyis
a3x2 matrix whose (i,j)'th entry is E[X;Y]].

1.5.2 The multivariate Gaussian

The joint probability density function that is most frequently used for
continuous variables is the multivariate Gaussian or multivariate normal
(MVN). The pdf of the MVN in D dimensions is defined by the following:

- 1 1 L ,
Nix|p,X) = P LE exp —3{3(—;:._172]gx—,-_r,J

where

B = IE[X] e RP

is the mean vector
X~ =cov[x] is the D x D covariance matrix.

Sometimes we'll work in terms of the concentration or precision matrix.
Simply put, A = X—1 is the inverse covariance matrix. The pdf integrates
to 1 due to the normalization constant-

(2m)~P2|AV?

1.5.3 Multivariate Student t distribution

The multivariate Student t distribution is a more accurate alternative for
the MVN, and its pdf is given by-

) _{etDy
p—— - F(J.#;"E + Df’?] |£ _]"-2 o I. T e—1 % Ll TR
T(x|p, X, v) = T(v/2) vPl2zDi2 ” L+ 1_,[" —u) T (x—p)
/2 + D/2) N1 _ J—(utDy
t“”{_Wif_}]'Jl?r\fl P l+x—p)'Vix—p)]
where

¥ is called the scale matrix (since it is not exactly the covariance matrix)

V =vZ.

Compared to a Gaussian, this has fatter tails. The tails get fatter as the v —
oo gets smaller.

The distribution is more likely to be Gaussian, as stated. These are the
properties of the distribution.

L
mean = g, mode = p, Cov = I}E
3 —2

1.6 TRANSFORMATIONS OF RANDOM VARIABLES

What is the distribution of y if x is some random variable, x ~p(), and
y=1(x)?

The following will reveal the answer-

1.6.1 Linear transformations

If f{) is alinear function, then:
y=f(x)=Ax+b

The mean and covariance of y in this situation can be easily derived as
follows. First, we have for the mean:

E[y]=E[Ax+b]=Au+b
where u = E [x]. This is called the linearity of expectation.
If /" ()is a scalar-valued function,

f(x)= aTx + b, the corresponding result is
Ela"x+bl=aTu+b
For the covariance, we have
cov [y] = cov [Ax +b] = AZAT
where X = cov [x].

We leave the proof of this as an exercise. If f{) is scalar valued, the
result becomes

[aTx 4+ J.T)] —al'¥Ya

var [y| = var

1.6.2 General transformations

The probability mass for all the x's such that f(x) = y can be summed
together to obtain the pmf for y if X is a discrete rv.

py(y) = Z Pz (x)

i f(e)=y

Probability

17

Track D: Machine
Learning —II (Advanced
Machine Learning)

18

1.6.3 Central limit theorem

Now imagine N random variables, each with mean and variance (52, and
pdfs (not necessarily Gaussian) p(x;). We take for granted that all of the
variables have independent and identical distributed, or iid.

Let

. N <
Sn = ¥ %

£_ai=—1

be the sum of the rv’s. This conversion of RVs is simple yet very
common. One can demonstrate how the distribution of this sum
approaches uniformity as N rises.

.-'5 1 1 lll‘ _ ’Iﬂl"‘-l”]2
Sy —=—8)—m—®exp| — ————~
PLoN / V2rNa2 o1 2N 2

And hence, the quantity's distribution

7. 4 Sv —Np X 1
s oV N ﬂ'..-"l\/_-'?

the standard normal is reached, where

T_ . T‘.‘ I

— N L=
is the sample mean.

This is called the central limit theorem.

1.7 MONTE CARLO APPROXIMATION

In general, it might be challenging to compute the distribution of a
function of a rv using the change of variables formula. Here is a simple yet
effective alternative. We first create S samples from the distribution,
denoted by the letters x;,..., Xs. Using the empirical distribution of, we
may approximatively determine the distribution of f(X) given the data.

{fza)}i

This is known as a Monte Carlo approximation, after the European city
famous for its plush gambling casinos. Although they were initially
created in the field of statistical physics, specifically during the
development of the atomic bomb, Monte Carlo techniques are now widely
used in both statistics and machine learning.

Any function of a random variable can have an expected value, and we
can use Monte Carlo to approximate it. We only create samples, after
which we calculate the function's arithmetic mean when it is applied to the
samples. The following can be written:

1 S
B0 = [f@p@ids = gy f)
=1

where x;~ p(X).

This process, known as Monte Carlo integration, has the benefit of only
evaluating the function at locations where there is a non-zero probability,
as opposed to numerical integration, which is predicated on doing so at a
set grid of points.

Many values of interest can be approximated by changing the value of the
function f{(), such as:

T = ;z:_ljg S E[X]
%Zg T)2 — var [X]
%#{1; <c}—+ P(X <¢)

1.7.1 Example: change of variables, the MC way

Let y = x2 and x ~ Unif(-1, 1). By taking many samples from p(x),
squaring them, and then estimating the resulting empirical distribution, we
can approximate p(y), explained in the image below.

Image source: Machine Learning: A Probabilistic Perspective: Kevin P
Murphy, The MIT Press Cambridge (2012).

Monte Carlo integration is used to estimate m. The circle has red crosses
outside and blue points inside.

1.7.2 Example: estimating 7 by Monte Carlo integration

Not only for statistical purposes, but also for a wide range of other uses.
Let's say we wish to calculate m. We are aware that the area of a circle

Probability

19

Track D: Machine
Learning —II (Advanced
Machine Learning)

20

with radius r is equal to @r®, but it is also equal to the following definite
integral-

v + P
I = / I(z? + 5;2 < 'J"QJt'EJ"{EH
—pd—r

Hence n = I/(r2). Let us approximate this by Monte Carlo integration. Let
fix, y) =

I(x2 + y2 < 12) be an indicator function that is 1 for points inside the
circle, and 0 outside, and let p(x) and p(y) be uniform distributions on [,
r], so p(x) = p(y) = 1/(2r). Then

F' o= {E'J‘liz'r"][/f'{.;:. y)p(x)p(y)dzdy

— 4 f/f y)plx)ply)drdy

~ A EZJHH Ys)

=1

We find "n = 3.1416 with standard error 0.09
1.7.3 Accuracy of Monte Carlo approximation
Example 1:

The probability that the actual return will be within one standard deviation
of the rate that is considered to be the most likely ("expected") is 68%.
There is a 95% chance that it will be within two standard deviations and a
99.7% chance that it will be within three.

Yet, there is no guarantee that the outcome will be as expected or that real
movements won't exceed the most extreme predictions.

Example 2:

If we denote the exact mean by p = E [{f(X)], and the MC approximation
by "W, one can show that, with independent samples,

|3,

(fr —) = N(0,
where
a2 = var [f(X)] =E [f{_XJj] —E :j'f,_X}:?

This is a consequence of the central-limit theorem. Of course, o’is
unknown in the above expression, but it can also be estimated by MC:

. o B
nB " 2
¢ = 5 E (f(zs) — i)

g=1

Then we have

& &
P{ﬁ—um <A<p+196—} ~0.95

(S VS

\, b L

J—

The term V 5 is called the (numerical or empirical) standard error, and
is an estimate of our uncertainty about our estimate of .

1.8 INFORMATION THEORY

Data compression, also known as source coding, is the process of
encoding data in a little amount of space. Information theory is also
concerned with how to transport and store data in a way that is robust to
errors (a task known as error correction or channel coding). Although at
first glance it might appear that this has little to do with probability
theory's concerns, there is actually a close connection. Consider the fact
that compactly expressing data necessitates allocating short code words to
highly probable bit strings and reserving longer code words for less
probable bit strings to demonstrate this. Similar to how frequent words (as
such "a," "the," and "and") likely to be much shorter than rare ones in
natural language.

1.8.1 Entropy

A random variable's entropy, indicated by [1(X) or sometimes [I(p), is a
measure of its uncertainty. It is defined by, in specifically, for a discrete
variable with K states-

”
H(X) £ - p(X =k)logap(X =k)

k=1

Typically, log base 2 is used, in which case the units are referred to as bits
(short for binary digits). The units are referred to as nats if we use log base
e. For instance, we find [] = 2.2855 if X € {1, ..., 5} with histogram
distribution p = [0.25, 0.25, 0.2, 0.15, 0.15]. The uniform distribution is
the discrete distribution with the highest entropy. The entropy is therefore
maximum for a K-ary random variable if p(x = k) = 1/K; in this case,
1(X) = log2 K. In contrast, any delta-function that concentrates all of its
mass in one state is the distribution with minimum entropy, which is zero.
There is no uncertainty in this distribution.

Probability

21

Track D: Machine 1F
Learning —II (Advanced
Machine Learning)

0.5 1
X =1)

Image source: Machine Learning: A Probabilistic Perspective: Kevin P
Murphy, The MIT Press Cambridge (2012).

Entropy of a Bernoulli random variable as a function of 0.
The maximum entropy is log, 2 = 1.

For the special case of binary random variables, X € {0, 1}, we can write
p(X=1)=0and p(X=0)=1 — 0. Hence the entropy becomes

H(X) = —[p(X =1)log;p(X =1)+p(X = 0)log, p(X = 0)]
—[flog, 6 + (1 — 8) logy(1 — 6)

This is called the binary entropy function, and is also written H(9).

1.8.2 KL divergence

The Kullback-Leibler Divergence score, or KL divergence score,
quantifies how much one probability distribution differs from another
probability distribution.

The KL divergence between two distributions q and p is often stated using
the following notation:

KL(p || q)
Where the “||” operator indicates “divergence” or p’s divergence from q.

This is defined as follows:

K

KL (p||q) = Z P log f:i
k=1 :

We can rewrite this as

KL (pllq) = Z pr log pr. — Z P log g = —H (p) + H (p. q)
k k

22

where H (p, q) is called the cross entropy, Probability

H(p.q) = — Z P log gi
k

The value within the sum is the divergence for a given event.
1.8.3 Mutual information

Think about the two random variables X and Y. Let's say we want to see
how much understanding one variable can reveal about the other. We
could compute the correlation coefficient, but this is a highly limiting
measure of dependence since it is only defined for random variables with
real values. Determine how comparable the joint distribution p(X, Y) is to
the factored distribution p(X)p(Y). The mutual information, or MI, is
what is meant by the following:

pl i)

I(X:Y)2 KL (p(X.Y)|lp(X)p(Y)) = ’
I(X;Y) =KL (p(X,Y)|[p(X)p(Y)) ZZHE u)k 'p[a}.ﬂuﬂ

We have [(X; Y) > 0 with equality iff p(X, Y) = p(X)p(Y).

In other words, if the variables are independent, the MI is zero. It is
helpful to re-express MI in terms of joint and conditional entropies to
better understanding of its significance. The pointwise mutual information,
or PMI, is a quantity that is closely connected to MI. This is defined as
follows for two occurrences (not random variables) x and y:

plx,y) x|y) W y|x
PMI(z,y) = log ;—J} — log M = luf_ﬂgJI : | _J
plx)ply) plx) ply)

This calculates the difference between the probability of these occurrences
happening together and what would be anticipated by chance.

1.9 REFERENCES

» Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The
MIT Press Cambridge (2012).
https://en.wikipedia.org/wiki/Probability
https://www.analyticsvidhya.com/blog/2021/01/discrete-probability-
distributions/
https://en.wikipedia.org/wiki/Inequalities in_information_ theory
https://theclevermachine.wordpress.com/2012/09/22/monte-carlo-
approximations/
Introducing Monte Carlo Methods with R, Christian P. Robert, George
Casella, Springer, 2010.
» Introduction to Machine Learning (Third Edition): EthemAlpaydin,
The MIT Press (2015).

VV VY

Y

23

Track D: Machine
Learning —II (Advanced
Machine Learning)

24

>

Pattern Recognition and Machine Learning: Christopher M. Bishop,
Springer (2006).

1.10 QUESTIONS

VVVVVVY VYV

Explain Bayes rule in Probability.

Write a note on Independence and conditional independence. Give
example.

Describe Continuous random variables and Quantiles.

What is Mean and variance? Explain Some common discrete
distributions in short.

Write a note on Bernoulli distributions and Binomial distributions.
Write a note on Some common continuous distributions.

Write a note on gamma distribution and beta distribution.

Describe Multivariate Student t distribution.

Explain Linear transformations and General transformations.

Write a note on Monte Carlo approximation.

What is Entropy? Explain KL divergence.

o O O 0
0.0 0.0 0.0 0.0

DIRECTED GRAPHICAL MODELS

Unit Structure:
2.0 Objectives
2.1 Directed graphical models (Bayes nets):
2.1.1 Introduction
2.1.2 Examples
2.1.3 Inference
2.1.4 Learning
2.1.5 Conditional independence properties of DGMs
2.2 Mixture models and EM algorithm:
2.2.1 Latent variable models
2.2.2 Mixture models
2.2.3 Parameter estimation for mixture models
2.2.4 The EM algorithm
2.3 References

2.3 Questions

2.0 OBJECTIVES

After completing this chapter, you will be able to understand directed
graphical models (Bayes nets), inference, learning, conditional
independence properties of DGMs. Mixture models and EM algorithm in
that Latent variable models, Mixture models, Parameter estimation for
mixture models, The EM algorithm.

2.1 DIRECTED GRAPHICAL MODELS (BAYES NETS):

A Bayesian network is a directed acyclic graph(DAG), and directed
graphical models are sometimes referred to as directed edges give
causality links between random variables.

2.1.1 Introduction

Graphical models give a visual representation of a joint probability
distribution's underlying structure. The structure encodes information on
the conditional independence relationships between the random variables,

25

Track D: Machine
Learning —II (Advanced
Machine Learning)

26

as we'll see shortly. Remember that these links between independence are
crucial for comprehending the computational costs of representation and
inference for a given joint probability distribution. Our first objective is to
utilise the model to respond to straightforward inquiries like "Are the
random variables X, and Xp independent?" or "Is the random variable X
independent of the random variable Xp conditioned on the random
variable Xc?" Although these questions appear straightforward, the Bayes
rule is the only method we have found so far to provide the answer.

Chain rule

The general product rule is another name for the Chain Rule of
Conditional Probabilities. Any number of the associated distributions of a
set of random variables can be calculated using it. By only using
conditional probabilities, it is possible.

The Chain rule can be obtained by rearranging the conditional probability
formula:

P (A,B)=P (A|B) P (B)

This can be scaled for three different variables:
P(A,B,C) =P(A| B,C) P(B,C) = P(AB,C) P(B|C) P(C)
and commonly to n variables:

P(Al, A2, ..., An) = P(Al| A2, ..., An) P(A2| A3, ..., An) P(An-1|An)
P(An)

This is generally referred to as the chain rule.

For Bayesian Belief Nets, this formula is important. It provides a method
for finding out the complete joint probability distribution. A probability
measure is the conditional probability of the aforementioned.

Example

The chain rule is applicable to four events (n=4).

PlAinAsnAsndy) =P(da | dsndandy)-P(Azsndan4y)
—P(As | AsN Az N Ay)-P(As | Ay N Ap)-P(A; N Ay)
=P(Ag | A3NA; NA;)-P(Ag | A N Ay)-P(Az | A1) - P(4;)

Conditional independence

Applying some assumptions regarding conditional independence(Cl) is
essential for effectively representing large joint distributions . If and only
if (iff) the conditional joint can be represented as a product of the
conditional marginal, then X and Y are conditionally independent given Z,
denoted X 1 Y|Z,

X 1Y|Zd = p(X.Y|Z) =p(X|Z)p(Y|Z)

Let's examine how this might be helpful. Assume that xt+1 L x1:t—1|xt, or,
to put it another way, "the future is independent of the past given the
present." This is referred to as the (first order) Markov assumption. The
joint distribution can be expressed as follows using this assumption and
the chain rule:

v
p(xi.v) = plx1) (T |Ti—1)
—f

A (first-order) Markov chain is what this is. A state transition matrix p(xt
= jjxt—=1 = 1) in combination to an initial distribution over states, p(x1 =
1) can be used to describe them.

Graphical models

A framework for reasoning about uncertain quantities and their structural
links is provided by graphical models. They combine graph theory and
probability. Random variables are represented as nodes, while their
connections or relationships are shown as edges.

Similar to a circuit diagram, graphic representations of a problem are
recorded to help with visualisation and comprehension.

Graphical models can be viewed as a:

» A communication tool that makes it easier to succinctly convey how
many opinions about a system are interconnected.

» A tool for reasoning that enables the extraction of connections that
were not immediately apparent when the problem was formulated.
Visualizing conditional independence is made possible, in particular,
by graphical models.

» A computational skeleton that improves the way we compute with
random variables.

Graph terminology

A graph G = (V, E) includes a set of nodes or vertices, V= {1,...,V },
and a set of edges, E = {(s, t) : s, t € V}. The graph's adjacency matrix
allows us to represent it, in which we write G(s, t) = 1 to denote (s, t) € E,
that is, if s — t is an edge in the graph.

1. Parent: Node an is the parent of node b if there is an edge connecting
them.

2. Child: If node a and node b are connected by an edge, then node b is a
child of node a.

3. Root: A root is a node that has no parents. It only has outgoing edges.

Directed Graphical
Models

27

Track D: Machine
Learning —II (Advanced
Machine Learning)

28

10.

11.

12.

13.

14.

Leaves or Leaf: A leaf is a node that has no children. There are no
outgoing edges.

Ancestors and Descendants: If a directed path connects node a to node
b, node a is a descendant of node b and vice versa.

Acyclic: For each node I anc(i) does not contain i, i.e. Vi, i /€anc(i).
Degree: A node's degree is determined by how many neighbours it
has. We use the terms in-degree and out-degree, which count the

number of parents and kids, respectively, for directed graphs.

Cycle and loop: An edge connecting a vertex to itself is called a loop.
A cycle is a path that starts and ends at the same node.

DAG: A directed graph without any directed cycles is known as a
directed acyclic graph, or DAG.

Topological ordering: For a DAG, a topological ordering, also known
as a total ordering, is a node numbering in which parents are given less

nodes than their children.

Path or trail: From s ~ t, a path or trail is formed by a series of
directed edges.

Tree: An undirected tree is an undirectecd graph with no cycles.
Forest: A forest is a set of trees.

Clique: For an undirected graph, a clique is a set of nodes that are all
neighbours of each other.

2.1.2 Examples

In

this part, we demonstrate how many different commonly used

probabilistic models can be simply described as DGMs.

Bayes net model describing the performance of a student on an exam. The
distribution can be represented a product of conditional probability
distributions specified by tables. The form of these distributions is
described by edges in the graph:

[/(]
0.6
2,4 | i3
f“.,ﬂ”
3| 0 > .0 |
i d" 109 |0.08] 002 S K
Letter ;
il.d"los |03 |02 i 1095 | 0.05
i o2 |08
’10 [l
g'fo1 |09
g>lo4 |06
2?1099 0.01

Image Source: https://ermongroup.github.io/cs228-notes/assets/img/grade-
model.png

Naive Bayes classifiers

A collection of classification algorithms built on the Bayes' Theorem are
known as naive Bayes classifiers. It is a family of algorithms rather than a
single method, and they are all based on the idea that every pair of features
being classified is independent of the other. The following joint
distribution:

D

p(y.x) =p(v) | [plz;|v)
=1

The naive Bayes assumption is relatively naive because it thinks the
characteristics are conditionally independent. Using a graphical model is
one method of capturing correlation between the features. If the model is a
tree, the method is known as a tree-augmented naive Bayes classifier, or
TAN model.

Markov and hidden Markov models

A hidden Markov model (HMM) is one in which you witness a sequence
of emissions but have no idea what states the model went through to
generate the emissions. The goal of hidden Markov model analyses is to
reconstruct the sequence from the observed data.

The assumption that the near past, xtlxt—1, has all of the information we
need to know about the entire history, x1:t—2, is a bit too strong. By
including a dependency from xt-2 to xt as well, we can loosen it up a bit;

Directed Graphical
Models

29

Track D: Machine this is known as a second order Markov chain. The relevant joint is shaped
Learning —II (Advanced as follows:
Machine Learning)

.
p(x1.1) = p(x1. T9)p(x3|T1, T2)p(T4| T2, T3) . .. = p(T1, T2) H p(x|Ti_1,74_9)
i=3

Similar techniques can be used to build higher-order Markov models.
Example

Imagine you have a bag of marbles with two red and two blue marbles
inside, totaling four marbles. A marble is drawn at random from the bag,
its colour noted, and it is then placed back in the bag. When you go
through this process repeatedly, you start to see a pattern: A red marble is
always two out of four times, or 50%, likely to be chosen. This is so
because the quantity of a certain marble colour in the bag affects the
likelihood of choosing that colour.

This example demonstrates the Markov model concept: the future state of
a system is determined by its current state and past history. The present
state of the bag of marbles is defined by the number of each colour of
marble in the bag. The contents of the bag symbolise the previous history,
and they determine the chances of selecting each colour of marble.

Medical Scenario: Hidden Markov models are utilized in various of
medical applications to try to discover the hidden states of a human body
system or organ. Cancer diagnosis, for example, can be done by
examining specific sequences and deciding how dangerous they may be to
the patient. Hidden Markov models are also used to evaluate biological
data such as RNA-Seq, ChIP-Seq, and others that assist researchers
understand gene regulation. Doctors can forecast people's life expectancy
based on their age, weight, height, and body type using the hidden Markov
model.

2.1.3 Inference

We've seen how graphical models can be used to define joint probability
distributions in a concise manner.

What can we do with such a joint distribution? The major application of
such a joint distribution is to do probabilistic inference. This task involves
estimating unknown quantities from known quantities. In general, the
inference problem can be stated as follows. Consider a collection of
correlated random variables with the joint distribution p(x1:V |0). Let us
divide this vector into visible variables xv that are observed and hidden
variables xh that are unobserved. Inference is the process of calculating
the posterior distribution of unknowns given knowns:

p(Xh,Xu|0) plxh,xu|0)
Jil}[xl'|"-r:".;1 Zx,’_ flilrx;l‘xf'w.}

plxn|xe,) =

30

We're just conditioning the data by clamping the visible variables to their
observed values, xv, and then normalising to get from p(xh, xv) to
p(xhjxv). The likelihood of the data, also known as the probability of the
evidence, is represented by the normalisation constant p(xv|0).

Example- A Bernoulli (Boolean) random variable, could express the event
that John has cancer. A variable of this type could have a value of 1 (John
has cancer) or 0. (John does not have cancer). Infernce use probabilistic
inference to calculate the likelihood that the random variable will take the
value 1: a probability of 0.78 indicates that John is 78% likely to develop
cancer.

2.1.4 Learning

Inference and learning are frequently distinguished in the works on
graphical models. Computing (functions of) p(xh|xv, 0), where v are the
visible nodes, h are the hidden nodes, and are the model's parameters,
which are assumed to be known, is what is meant by inference. Most of
the time, learning involves calculating a MAP estimate of the parameters
given data:

N
f = argmax log p(xi »|@) + log p(@)
8 ;
i=1

where x1,v are the visible variables in case 1.

If we have a uniform prior, p(0) « 1, this reduces to the MLE, as usual.
According to a Bayesian perspective, the parameters are likewise
unknown variables that need to be inferred. Hence, there is no difference
between inference and learning to a Bayesian. In fact, all we have to do is
add the parameters as nodes to the graph, apply a condition based on D,
and infer the values of each node.

According to this perspective, the primary distinction between hidden
variables and parameters is that the number of hidden variables typically
increases with the amount of training data (because there is typically a set
of hidden variables for each observed data case) (at least in a parametric
model). This indicates that in order to prevent overfitting, we must
integrate out the hidden variables, but for the parameters, which are few in
number, we might be able to get away with point estimation methods.

Plate Notation

In a graphical model, repeating variables are represented using plate
notation. A plate or rectangle is used to organise variables into a subgraph
that repeats collectively rather than drawing each repeated variable
separately, and a number is drawn on the plate to show the number of
repetitions of the subgraph in the plate.

Think about the next simple model. A Gaussian with mean p and standard
deviation o is used to create a data set of N points:

Directed Graphical
Models

31

Track D: Machine
Learning —II (Advanced
Machine Learning)

32

Image source:
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin3.pdf

Example

Students and their Grades.

N
A=student, B=grade

Learning from complete data

We say the data is complete if all variables are fully observed in each case,
therefore there is no missing data and no hidden variables. The probability
for a DGM with complete data is provided by:

N N V Vv
p(DI0) = []p(xil0)=]]]]p(wlxipa-0:) =][p(D:]6:)

where Dt is the data associated with node t and its parents, i.e., the t’th
family.

This is a collection of terms, one for each CPD. The probability Directed Graphical
decomposes according to the graph structure, as the name implies. Models

Assume that the preceding factorises as well:

v

p(0) =[] »(6.)

=1
The posterior then obviously factors as well:
v
p(6|D) = p(D|6)p(8) = | | p(D:|6:)p(6:)

i—1

This enables us to independently calculate the posterior of each CPD. In
other words, factored prior and probability together imply factored
posterior.

Learning with missing and/or latent variables

When we have missing data and/or hidden variables, the probability no
longer factorises and is no longer convex. This means that we can usually
only compute a locally optimal ML or MAP estimate. Bayesian parameter
inference is even more difficult.

2.1.5 Conditional independence properties of DGMs

A set of conditional independence (CI) assumptions is at the heart of any
graphical model. Using the semantics provided below, we write xALG
xB|xC if A is independent of B given C in the graph G. Let I(G) be the
collection of all CI statements encoded by the graph. G is an I-map
(independence map) for p, or p is Markov with respect to G, iff I(G)
C I(p), where I(p) is the set of all CI statements that hold for distribution
p. In other words, the graph is an I-map if it makes no CI assertions that
are false about the distribution. When reasoning about p's CI properties,
we can use the graph as a safe proxy for p. This is essential for designing
algorithms that operate for a large variety of distributions, regardless of
their specific numerical parameters 6.

d-separation and the Bayes Ball algorithm (global Markov properties)

First, we introduce some definitions. We say an undirected path P is d-
separated by a set of nodes E (containing the evidence) iff at least one of
the following conditions hold:

1. P contains a chain,s - m — tors <« m « t, where m € E
2. P contains a tent or fork, s “/m\ t, where m € E

3. P contains a collider or v-structure, s Zvmv t, where m is not in E and
nor is any descendant of m.

33

Track D: Machine
Learning —II (Advanced
Machine Learning)

34

Next, we say that a set of nodes A is d-separated from a different set of
nodes B given a third observed set E iff each undirected path from every
node a € A to every node b € B is d-separated by E. Finally, we define the
CI properties of a DAG as follows:

xA LG xB[xE&= A is d-separated from B given E

2.2 MIXTURE MODELS AND EM ALGORITHM:

A mixture model in statistics is a probabilistic model for describing the
presence of subpopulations within an aggregate population that does not
require an observed data set to identify the subpopulation to which an
individual observation belongs. A mixture model is defined as the mixture
distribution, which represents the probability distribution of observations
in the whole population.

2.2.1 Latent variable models

A statistical model that links a group of observable variables to a group of
latent variables is known as a latent variable model. An alternate strategy
is to assume that the correlation between the observed variables results
from a shared "cause" that is hidden. Latent variable models, or LVMs,
are another name for models with hidden variables. They may, however,
offer a number of benefits for two major reasons. Secondly, compared to
models that directly reflect correlation in the visible space, LVMs
frequently have fewer parameters. The computation of a compressed
version of the data is slowed down by the hidden variables in an LVM,
which might act as a bottleneck.

There are L latent variables, zj,..., zi, and D visible variables, Xx;i,..., Xip,
where D > Lis usually L. If L > 1, we have a many-to-many mapping
since each observation is affected by numerous latent variables. Z; is
typically discrete in this scenario, and we have a one-to-many mapping if
L = 1. Otherwise, we only have a single latent variable.

2.2.2 Mixture models

A mixture model is a type of probabilistic model that assumes the data
were generated by the following process:

- Choose at random one of the mixture's ingredients.

-Get a sample of the data from the distribution corresponding to that
mixed component.

Let's say our goal is to simulate the cost of a particular book. It could
make sense to model the price of paperback books separately from
hardback books since paperback books are often less expensive than
hardbacks. We'll use a mixture model to simulate the cost of a book in this
example. Our model will have two mixture components: one for
hardbacks and one for paperback books.

The simplest form of LVM is when z€ {1, . .., K}, representing a
discrete latent state. We will use a discrete prior for this, p(z;) = Cat(m).
For the likelihood, we use p(xi|zi = k) = pk(Xi), where p is the k’th base
distribution for the observations; this can be of any type. The overall
model is known as a mixture model, since we are mixing together the K
base distributions as follows:

K

p(xi|0) = mpi(x:]6)

k=1

This is a convex combination of the pk’s, since we are taking a weighted
K
sum, where themixing weights m satisfy 0 < < 1 and 2#=1 7 = 1,

Mixtures of Gaussians

The mixture of Gaussians (MOG), often known as a Gaussian mixture
model or GMM, is the most frequently used mixture model. Each base
distribution in the mixture in this model is a multivariate Gaussian with a
mean and a covariance matrix of length Xy. the model has the following
form:

-
plx;|0) = Z TN (x| g, i)
k=1

Several sets of eliptical contours are used to represent the various mixture
components. A GMM can be used to approximate any density defined on
1P if there are enough mixing components.

0.5

Image Source: https://ermongroup.github.io/cs228-
notes/assets/img/gmm2.png

[llustration of a mixture of 3 Gaussians in a two-dimensional space. (a)
Contours of constant density for each of the mixture components, in which
the 3 components are denoted red, blue and green, and the values of the
mixing coefficients are shown below each component. (b) Contours of the
marginal probability density p(x) of the mixture distribution. (c¢) A surface
plot of the distribution p(x).

Directed Graphical
Models

35

Track D: Machine
Learning —II (Advanced
Machine Learning)

36

2.2.3 Parameter estimation for mixture models

The concept of optimization is used to offer a strategy for parameter
estimation. Assuming the parameters are known, we have shown how to
compute the posterior over the hidden variables given the observed
variables.

We shown in Section Learning from Complete Data that when we have
complete data and a factored prior, the posterior over the parameters
likewise factors, making calculation very straightforward. Unfortunately,
if we have hidden variables and/or missing data, this is no longer the
case.If the z; were seen, then the posterior will factorise since, according to
d-separation, 0z16x|D. The posterior does not factorise and the parameters
are no longer independent in an LVM because of the hidden z;, which
makes computation much more difficult. Moreover, this makes it more
difficult to calculate MAP and ML estimates.

Unidentifiability

The fundamental issue with determining p(6|D) for an LVM is that the
posterior may have several modes. Think about a GMM to see why. If all
of the zi were observed, the parameters would have a unimodal posterior:

K
p(8|D) = Dir(x|D) | | NIW (g, Bk |D)
k=1

Hence, we can quickly identify the MAP estimate that is globally optimal
(and hence globally optimal MLE).

But let's say the zj's aren't visible. In this scenario, we obtain a different
unimodal probability for each potential method of "filling in" the z's. As a
result, when we ignore the z's, weget a multi-modal posterior for
p(0|D).These modes correspond to various cluster labelings. This is
illustrated in following Figure (b), where we plot the likelihood function,
p(D|ul, p2),for a 2D GMM with K = 2 for the data is shown in following
Figure (a).

35 T T T T T T T T T 18.5F T T T LT T T T g

a0}

Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d,
with otk = 0.5, ok = 5, ul = —10 and u2 = 10. Right: Likelihood surface
p(D\ul, u2), with all other parameters set

to their true values. We see the two symmetric modes, reflecting the
unidentifiability of the parameters.

Image Source: Machine Learning: A Probabilistic Perspective: Kevin P
Murphy, The MIT Press Cambridge (2012).

We see two peaks, onecorresponding to the case where pul =—10, u2 = 10,
and the other to the case where pul = 10,u2 = —10. We say the parameters
are not identifiable, since there is not a unique MLE.

Therefore there cannot be a unique MAP estimate (assuming the prior
does not rule out certainlabelling), and hence the posterior must be
multimodal. The question of how many modes there are in the parameter
posterior is hard to answer. There are K! possible labelings, but some of
the peaks might get merged. Nevertheless, there can be an exponential
number, since finding the optimal MLE for a GMM is NP-hard (Aloise et
al. 2009; Drineas et al. 2004).

Unidentifiability can cause a problem for Bayesian inference. For
example, suppose we draw some samples from the posterior, 6(s) ~p(6|D),
and then average them, to try to approximate the posterior mean,

0 =320 Ifthe samples come from different modes, the average
will be meaningless. Note, however, that it is reasonable to average the
posterior predictive distributions, 7() = ¥ ¥, (x16") gince the
likelihood function is invariant to which mode the parameters came from.

Only two latent parameters, each of which receives N data points, are
present. As a result, the posterior uncertainty about the parameters is
usually significantly smaller than the posterior uncertainty regarding the
latent variables.

The parameters have the ability to communicate with one another. This
would not be achievable if we were to use a point estimate.

Computing a MAP estimate is non-convex

We have stated, rather heuristically, in the preceding sections that getting
a MAP or ML estimate will be challenging since the likelihood function
has numerous modes. In this section, we demonstrate this finding using
more algebraic techniques, which provides some additional insight for the
issue:

logp(D|0) = "log | > " plxi,z|0)
i ;

Unfortunately, it is challenging to achieve this goal. therefore we are
unable to insert the log into the sum. This rules out some algebraic

Directed Graphical
Models

37

Track D: Machine
Learning —II (Advanced
Machine Learning)

38

inferences, but it doesn't show that the issue is difficult. Now suppose the
joint probability distribution P(Zi+%i6)
which means it can be written as follows:

is in the exponential family,

p(x,z|0) = e}:p[HTf_f:[x. z)]

Z(0)

where @(x, z) are the sufficient statistics, and Z(0) is the normalization
constant. With this assumption, the complete data log likelihood can be
written as follows:

(0] = Z log p(x;. z:|@) = HT{Z d(xi,z:)) — NZ(@)

The first term in 0 is obviously linear. As Z(0) can be demonstrated to be
a convex function (thanks to the minus sign), the total objective is concave
and so has a single maximum. Now think about what transpires when we
lack data. The likelihood of the observed data is provided by:

) = Z Iogz plx;, z;|0) = Zlug [Z e':g’r"f”z"’c‘-] — N log £(8)
i Z; i E;

One can show that the log-sum-exp function is convex, and we know that
7(0) is convex. On the other hand, the difference between two convex
functions is typically not convex. Hence, the objective has local
optima and is neither convex nor concave.

The downside of non-convex functions is that it is sometimes difficult to
identify their global optimum.

A local optimum is all that the majority of optimization algorithms can
find; which one they find depends on where they start.

In real-world scenarios, we'll run a local optimizer and possibly employ a
number of random restarts to improve our chances of locating a "good"
local optimum. Obviously, careful initialization can be quite beneficial as
well.

2.2.4 The EM algorithm

For many models in machine learning and statistics, computing the ML or
MAP parameter estimate is easy if we see all the values of all the relevant
random variables, i.e., if we have complete data.When we have missing
data and/or latent variables, however, computing the ML/MAP estimate
becomes difficult. Finding a local minimum of the negative log likelihood,
or NLL, as provided by-

2 : |
NLL(9) = — £ ?luﬂw{ﬂlﬁi

Constraints like the need that covariance matrices be positive definite and
mixing weights total to one, among others, must frequently be fulfilled,
which can be tricky. The expectation maximisation algorithm, or EM for
short, is frequently significantly easier (though not always faster) under
such circumstances. The procedure is straightforward and iterative,
frequently requiring closed-form updates at each stage. Moreover, the
algorithm automatically applies the required constraints.The fact that the
ML/ MAP estimate would be simple to calculate if all of the data were
observed is used by EM. In particular, EM is an iterative algorithm which
alternates between inferring the missing values given the parameters (E
step), and then optimizing the parameters given the “filled in” data (M

step).

Basic idea

Automatically, the latent variables Z; should help us find the MLEs. In the
beginning, we try to compute the posterior distribution of Zigiven the
observations:

P(X,|Z; =k)P(Z =k) mN(uy, 00

P(Z; = k| X3} = = —
P(X;) > N (pk, o)

= vz, (k)

Equation 1

The derivative of the log-likelihood with respect to i in equation (1) can
now be written as follows:

Z'}f .f-f.f.,} —0

Equation 2

Even though yzi(k) is dependent on i, we can assume that it is not. We
can now find p in this equation by solving for it:

W e (k)
phg = i Zw
o - [" 1 'F\"L
£ai=1 13
Equation 3

N = 22501 7.(R).

Nk represents the actual number of

: . L . :
points given to component k. We see that"'* s thus a weighted average

of the data with weightsyZi(k).Similarly, if we use a similar approach to

Where we set

.
—

.
0, TL
find k and 'k we find that:

Directed Graphical
Models

39

Track D: Machine
Learning —II (Advanced
Machine Learning)

40

" n

oy = 1";1; ;T;Jk}{-ﬁ — g’
Equation 4
ﬂ%::ﬁ&
n
Equation 5

The two observations mentioned above serve as the motivation for the EM
algorithm, which goes like this:

1. Initialize the pk’s, ok’s and nk’s and evaluate the log-likelihood with
these parameters.

2. E-step: Evaluate the posterior probabilitiesyZi(k) using the current
values of the pk’s and ok’swith equation (2)

- AQ -
3. M-step: Estimate new parameters Fk: 9k and ™k with the current
values ofyZi(k) using following equations (3), (4) and (5).

4. Evaluate the log-likelihood with the new parameter estimates. If the log
likelihood has changed by less than some small, stop. Otherwise, go back
to step2.

2.3 REFERENCES

https://stephens999.github.io/fiveMinuteStats/intro_to_em.html
Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The
MIT Press Cambridge (2012).
https://en.wikipedia.org/wiki/Probability
https://www.analyticsvidhya.com/blog/2021/01/discrete-probability-
distributions/

https://en.wikipedia.org/wiki/Inequalities_in information theory
https://theclevermachine.wordpress.com/2012/09/22/monte-carlo-
approximations/

Introducing Monte Carlo Methods with R, Christian P. Robert, George
Casella, Springer, 2010.

Introduction to Machine Learning (Third Edition): EthemAlpaydin,
The MIT Press (2015).

Pattern Recognition and Machine Learning: Christopher M. Bishop,
Springer (2006).

VV VY

YV V. V VYV

2.4 QUESTIONS Directed Graphical
Models

A\

Write a note on Chain rule.
Explain Unidentifiabilityin Parameter estimation for mixture models
Describe Graph terminology.

Write a note on Mixtures of Gaussians.

vV V V V

Explain how many different commonly used probabilistic models can
be simply described as DGMs with an example.

Describe Naive Bayes classifiers.

Write a note on Markov and hidden Markov models.
Write a note on Inference

Explain learning on Graphical Models.

Describe Parameter estimation for mixture models
Write a note on EM algorithm.

How to compute a MAP estimate is non-convex?

YV V. V V V V V V

Explain Plate Notation with an example.

o O O 0
0.0 0‘0 0.0 0‘0

41

42

KERNELS

Unit Structure

3.0 Objective

3.1 Introduction

3.2 Kernel Function

3.3 Kernel trick

3.4 Support Vector Machines

3.5 Comparison of discriminative kernel methods
3.6 Summary

3.7 References

3.8 Questions

3.0 OBJECTIVE

e To study the importance and benefits of Kernel in machine learning
e To study support vector machine

e To study various methods of kernel

3.1 INTRODUCTION

In machine learning, Kernel is a method that will help us to apply linear
classifiers to the non-linear problems by using mapping from non-linear
data into a higher-dimensional space.

The study of kernels gives computers the ability to learn without being
explicitly programmed. Kernel technique or trick are useful to enter the
dataset into a higher dimensional space, and then use the different
classification methods for the algorithm.

In the large field of machine learning, we want a machine to learn without
having to be explicitly programmed. Regression, classification, and
pattern recognition issues are dealt with in ML. We have a variety of
techniques for solving classification problems, where the goal is to divided
into several classes based on input labels that are known (supervised
learning). One is SVM (Support Vector Machine), which employs kernel
techniques. To deal with the nonlinearity in the dataset, machine learning
uses kernels. The dataset gains a new dimension through the addition of a
user-specified kernel function (similarity function), which allows the
dataset to be classified using a linear hyperplane.

Need of Kernel

Kernels are very important in machine learning as it is used to transform
the data from one dimensional to the other dimensional so that the
classification of the data set is very easy and we can get the good
performance of the algorithm.

Kernel in Machine Learning is a measuring the similarities between the
given two points, it depends on the task as well, for example suppose, for
instance, that one’s objective is to identify several categories. Using kernel
will help to give one set of items in the data a low value and another set of
objects with a high value. The most important thing is in this case that
kernel offers a quicker method of finding similarities than comparing
similarity point by point.

Let takes the examplefor text processing if we use the kernel then kernel
will assign the high value to the similar types of the data strings and for
non-similar type of data strings will get the low-value.

Kernel function takes data from the original dimension and provides scalar
output by using dot products of the vector in a higher dimension. So, the
output of a kernel method is a scalar, in this way the higher dimensionality
is reduced, and we can easily avoid high dimensional computation to
classify categories. This is the magic of the kernel trick.

Let’s see a simple an example:

I=(il, 12, 13);

I=(1,32,j3).

Simple function to address nonlinearity: a refers to 1,j
f=(alal, ala2, ala3, a2al, a2a2, a2a3, a3al, a3a2, a3a3)
kernel method is K(i, j) = (1.j)"2

we will use some arbitrary data.

1=(1, 2, 3);
j=4,5,6).
Then:

fi)=(1,2,3,2,4,6,3,6,9)

f(j) = (16, 20, 24, 20, 25, 30, 24, 30, 36)

f(1). fG) =16 +40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024

A lot of calculation, because f is trying to map from a 3-D to a 9-D space.

Now if we use kernel trick then:

KG.j)=@+10+18)/2=32/2=1024

Kernels

43

Track D: Machine
Learning —II (Advanced
Machine Learning)

44

For every classification problem with higher dimensionality and
nonlinearity, we cannot use the kernel, without putting any extra effort. It
increases flexibility in the model if we use the kernel for complex and
higher dimensions. So, idea is to use simple kernels which can reduce
computation time and complexity. Because with more flexibility there are
chances of overfitting on the training set. Overfitting ruins the model.

It is hard to choose which kernel one should be used for a specific
problem. Generally, it is recommended to try all possible kernels in the
small-small training set and use the best one.

Let us see another example why do we need a kernel?

Suppose we have two-dimensional dataset that contains two different
classes of observations, and we need to find a specific function which will
use for separating the two classes. The data is not linearly separable in
two-dimensional space.

. @
-
L) L]
-
e o -
L] -
.. -
™ -
L
P L]
L]
L]
. L]
® L]
P -
. L]
-
L]
L] e >
L - L
5 e ®
L]
.. -

Figure 3.1 2D dataset
[source: programmathically.com]

Now our aim is to fit a polynomial function to separate the data, which
complicates our classification problem, if we transform this data into the
higher-dimensional (3D) space where the data is separable by a linear
classifier?

~1.00
¢ a ~0.75
e o | ~ 050
L] s -~ e
.. .-P. :.,., x Dzaz3
o - o .
= .‘ 0. 0.00
) ~-0.25
=-0.50
~-0.75
Zd 12
. 10
e 0.8
100,75 ‘ £
_050_025 ’ ~ 4 06 22
000025 S 0.4
2 050075 -
100 02

Figure: 3.2 3D Dataset

[source:programmathically.com]

If we find a mapping from 2Dimentional space into the 3Dimentional
space where we can find our observations are linearly separable, whereas

Transform the given data from 2 dimensional into 3 dimensional

Find the linear decision boundary by fitting a linear classifier (a plane
separating the data) in the 3-dimensional space.

Map the linear decision boundary back into 2-dimensional space. The
resultant gives a non-linear decision boundary in 2 dimensional

We found that a non-linear decision boundary while doing the work of
finding a linear classifier.

Aim is to build a linear classifier; we can transform our input data into
3-dimensional space.

With the help of Kernels and Kernel trick, we can find a linear
decision boundary in a 3-dimensional space while working with input
data in the form of 2 dimensional.

Let us see how we can do this,

Use of Kernel helps us to separate data with a non-linear decision
boundary using a linear classifier.

Kernels

45

Track D: Machine
Learning —II (Advanced
Machine Learning)

46

Working of Kernel

Consider a linear regression model in the following form:

If we package all weights into a vector w = {w_O,w_1,w 2}, we can
express this as a simple dot product between the weight vector and the
observation x_1i

The dot product between xI and the weights gives us the predicted
point o the line for the actual observation yi. The difference is the error
€1

el - €3

Figure 3.3 Linear classifier

[source:researchgate]

Dot product is central to the prediction operation in a linear classifier.
Role of Kernel

Let’s assume we have two vectors, namely x and x*, in 2-dimensional
space, and we want to perform a dot product between them to find a
linear classifier. But our data is not linearly separable in our current 2-
dimensional vector space.

To solve this problem, we can map the two vectors to a 3-dimensional
space.

Where ¢(x) and (p(x*) are 3 dimensional representations of x and X Kernels

.

Figure 3.4 2D representation and 3D representation
[programmathically.com]

Now we can perform the dot product between ¢(x) and ¢(x') to find
the linear classifier into 3-dimensional space and then map back to the
2-Dimensional space.

e
—

But mapping our features explicitly into the higher dimensional space
is very expensive. The exact use of kernel is that, representation of
higher dimensional mapping without actually performing this type of

mapping.
A Kernel is a function of lower-dimensional vectors x, and X that

represents a dot product of ¢(x) and (p(x*) in higher-dimensional space.

N\ T TR = @I) OlTx])

47

Track D: Machine
Learning —II (Advanced
Machine Learning)

48

If we expand the function, we get the following result.

This result can be neatly decomposed into the product of 2 3-
dimensional vectors.

For Kernel, we never have to create the full feature map. Instead, we
just insert the original kernel function into out calculation in place of
the dot product between x and x .

This is very useful method of kernel; it is the heart of support vector
machines.

Benefits

Benefits of using the kernel trick in ML.

o Kernel reduces the complexity of calculation and makes it faster.

o The kernel gives an output that is scalar.

e We can use the kernel to address infinite dimensions.

o Kernel helps in dealing with nonlinear data by introducing linearity.

o Kernel helps to distinguish similar objects easily.

3.2 KERNEL FUNCTION

Kernel function is a method that takes the data as input and transform it
into the required form of processing data.

For understanding the kernel function first, we understand the terms like
SVM (support vector machines) in those classifications with the
supervised learning algorithm for the machine learning.

Let us understand with the help of example

From various types of machines learning the task is to predict the
particular breed of a dog with the help of the supervised learning
algorithm. Firstly, we have to load all the details of various types of breeds
of dogs with the information or the properties like type, skin color, height,
body hair length and more details about dog. In machine learning it is

known as features, Single entry of these list of various features are known Kernels
as a data instance, whereas the collection of everything is the training data

set which is used for the basis if your prediction. It means if you know the

skin color along with the body hair length as well as height and more

details of a particular dog then you can predict the breed it will probably

belong to.

Support vector machine are supervised learning models with the
associated learning algorithms are generally used. That analyzes the data
for classification.

Classifications means knowing that what belong to what for example
‘banana’ belongs to class ‘fruit” whereas ‘cat’ or ‘dog’ belongs to class
‘animals’

Figure3.5: classification with the help of support vector machine
[source: towardsdatascience.com]

The use of support vector machine is as a classifier formally defined bya
separating hyperplane. Hyperplane is a subspace of one dimension less
than its ambient place. The term dimension in mathematical space or
object is defined as the minimum number of co ordinatesi.e. X, y, z axis
which needed to specify any point for example blue color point and the
red color point i.e. the mathematical object which has an ambient space.

A mathematical object is an abstract object which arising in mathematics.
An abstract object is an object which does not exist at any particular time
or place, but rather exists as a type of thing, may be an idea or abstraction
etc.

Let us see the hyperplane of a two-dimensional space in the following
figure where one dimensional line dividing the red color dots and the blue
color dots.

49

Track D: Machine
Learning —II (Advanced i
Machine Learning)

Figure 3.6: SVM for breeds of dog
[source: towardsdatascience.com]

From this figure we are trying to predict the breed of a particular dog, it
goes like this

1. Data of all breeds of dog
2.Features like the hair length, skin color and other features
3.Learning algorithm

With the help of following figure, we understand the need of Kernel

Figure 3.7: Need of Kernel
[source: towardsdatascience.com]

With the help of figure SVM for breed of dog we are not able to solve the
problem linearly.

Red color dots and the blue color dots cannot be separated by a straight
line as they are randomly distributed. In real world problem as well, the
data are randomly distributed.

50

With the help of machine learning, a kernel is used with the help of kernel
trick the various method for linear classifier is used to solve a non-linear
problem.

The kernel function is applied on each data instance to map the original
non linear observations into a higher-dimensional space in which they
become separable.

Example of dog breed prediction, kernel offers a better alternative,
defining the various features of a dog instead of that we can define a single
kernel function to compute similarity between breeds of dog. Kernel will
work with the data and the labels to the learning algorithm, and shows the
classifier.

Working:

To understand the Kernel working, we will take the help of Lili Jiang’s
mathematical model.

It shows:

Mathematical definition: K(x, y) = <f(x), f(y)>. Here K is the kernel
function, X, y are n dimensional inputs. f is a map from n-dimension to m-
dimension space. <x,y> denotes the dot product. usually, m is much larger
than n.

normally calculating <f(x), f(y)> requires us to calculate f(x), f(y) first,
and then do the dot product. These two computation steps can be quite
expensive as they involve manipulations in m dimensional space, where m
can be a large number. But after all the trouble of going to the high
dimensional space, the result of the dot product is really a scalar: we come
back to one-dimensional space again! Now, the question we have is: do
we really need to go through all the trouble to get this one number? do we
really have to go to the m-dimensional space? The answer is no, if you
find a clever kernel.

Simple Example: x = (x1, x2, x3); y = (y1, y2, y3). Then for the function
f(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3), the kernel
is K(x, y) = (<x, y>).

Let’s plug in some numbers to make this more intuitive: suppose x = (1, 2,
3, y=(4,5,6). Then:

f(x)=(1,2,3,2,4,6,3,6,9)
f(y) = (16, 20, 24, 20, 25, 30, 24, 30, 36)
<f(x), f(y)>= 16 + 40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024

A lot of algebra, mainly because f is a mapping from 3-dimensional to 9-
dimensional space.

Kernels

51

Track D: Machine
Learning —II (Advanced
Machine Learning)

52

Now let us use the kernel instead:
K(x,y)=(4+10+18)"2=322=1024

With the help of Kernel, we can calculate easily.

3.3 KERNEL TRICK

It transforms the data into an understandable or easily readable form.
Because of mapping input space to another feature space, it is possible to
transform in understandable form.

In support vector machine (SVM) the inner product is calculated of two
vectors and the result of this is always a single number, so when we
replace this product of inner by using kernel the it is called as kernel trick.

Use of Kernel tricks for transforming the data set which are in nonlinearly,
to reduce the number of calculations of tasks, Kernel tricks are used with
the linearity. Kernel always provides a similarity of dataset function which
are further helps in data categorization easily with the help of providing
scalar output.

Support Vector Machine

support vector machine classifies the observations by constructing a
hyperplane that separate out these observations. These observations are lie
on the margin surrounding the data separating hyperplane. The margin
defines the minimum distance observations should have from the plane,
the observations that lie on the margin impact the orientation and position
of the hyperplane.

@A Maximum

Margin Positive

¢ Hyperplane

Maximum - / ¢ o

Margin ¥
Hyperplane

/ "-‘ Support

Negative Hyperplane Vectors

>
([x

Figure 3.8: Support Vector Machine

[source: abalyticsvidhya.com] Kernels

If the data is in linear for then the separation of data points are very easy
with the help of hyperplane.

I
&

Figure 3.9:Classification of data points

[source: analyticsvidhya.com]

/

Figure 3.10: Hyperplanes in SVM

[source: analyticsvidhya.com]

In the above example, hyperplanes are perfectly separate the data points or
the observations.

We want the classifier to optimize the overall distance between the
classifier and the points in addition to separating the training data. This
provides us with a specific margin that increases our level of confidence in

the forecast. We can be more certain that any subsequent observations that
53

Track D: Machine
Learning —II (Advanced
Machine Learning)

54

retain that minimal distance are classified correctly if all the training sites
have had a specific minimum distance from the hyperplane.

On the other hand, if some observations are very close to the hyperplane,
fresh observations with slightly off-plane characteristics may wind up on
the opposite side. As a result, the red hyperplane is preferable than the
green ones.

Data points or the observations that are closest to the hyperplane are very
important because they lie directly on the margin. They influence the
orientation and position of the hyperplane the most and determine how
wide the margin is.

J'

SUpport vector ,’

Optimal Hyperplane

Figure 3.11: Optimal Hyperplane
[source: analyticsvidhya.com]

If we add one more data-points or observation that is closer to the margin,
then the hyperplane gives changeable result.

Uses of Support Vector Machine

SVM is useful for classification as well as regression analysis. Generally,
it is preferred for classification. The main aim of Support vector Machine
is to find a hyper plane from the created a boundary between the various
types of data.

In 2-dimensionaldata set or space, the hyper plane is a line but we can plot
each item in the data set in N-dimensional data set or space, with number
of various features or the attributes of the data set (N).

With the help of support vector machine, we can find the hyperplane it is
known as optimal hyperplane. By using hyperplane, we can separate the
various data set. We can able to perform by using classification of binary
numbers or datasets, for this we have to select any two classes and then for
multi-class classification problem we can resolve by using different
techniques.

Multiclass classification for Support Vector Machine:

We have to create a binary classifier for each class of the set of data. Then
we can get two results of each classifier as follows:

1. Class belonging data points
2. Class does not belong data points

Example

Suppose there is a class of fruits, for multi class -classification
performance, creation of binary classifier for each fruit. example class as
Mango, then there will be a binary classifier we will use for prediction, if
it is a mango or it is not a mango. The classifier with the highest score is
selected as the output of the SVM.

SVM for complex i.e., for non-linearly separable model works well
without any modifications and without any error for linearly separable
data set.

With the help of straight line in support vector machine we can plot a
graph of linearly separable data, into classes.

Support Vector Machine Kernel

The Support Vector Machine kernel function is that converts non-
separable problems into separable problems by taking low-dimensional
input space and transforming it into higher-dimensional space. It works
best in non-linear separation issues. Simply explained, the kernel
determines how to split the data depending on the labels or outputs defined
after performing some incredibly sophisticated data transformations.

Advantages of Support Vector Machine:
1. Effective in high dimensional cases

2. Different kernel functions can be specified for the decision functions
and possible to specify custom kernels.

3. Its memory efficient as it uses a subset of training points in the decision
function called support vectors.

Kernels

55

Track D: Machine 3.5 COMPARISON OF DISCRIMINATIVE KERNEL
Learning —II (Advanced

Machine Learning) METHODS

1. Polynomial kernel
It is mostly used in image processing methods.
Polynomial kernel is represented as,

K(x, »,) = [xi'}f.“ -I-l)r

Here P represents the degree of the polynomial

2.Gaussian kernel
There are some applications where prior knowledge is not
available. For this type of applications Gaussian kernel is used.
Gaussian kernel is defined as,

r— 2
K(X,Y)= exp (—" :':”
1o
3. Gaussian radial basis function (RBF)

This is also used for the applications where prior knowledge is not
available.

Gaussian radial basis function is defined as,
K (x,x;) = exp(—yllx—yl|I*) for y = 0
Sometimes it is parametrized using the value of y as 1/20"

4.Laplace RBF kernel
Laplace RBF kernel is defined as,

|1x— vl

)

K (x,y)= exp(—

5.Hyperbolic tangent kernel
It is used in neural networks, and is defined as,
K (x;,x;) = tanh(kx; = x;, + c), for some (not every)k
>0 andc<0.
6.Sigmoid kernel
It can be used as a proxy for neural networks, and defined as,
K(x,y)=tanh{ax%y+c)

7.Bassel function of the first kind Kernel
Cross terms in mathematical functions can be removed by using
this type of kernel function, and is defined as,
Jy+1 (o [—yl])
KOy) = =2 —
|l — yp]|7me+ 8

56

Here j represented the Bessel function of first type.
8. Anova radial basis kernel

In case of regression problem Anova radial basis kernel can be
used, and is defined as,

K(X,¥) = Z exp (o (X — ¥F)??

k=1

3.6 SUMMARY

Kernel in machine learning helps computers to learn without being
explicitly programmed. Basically, we use a kernel method or trick to move
the input dataset into a higher dimensional space, and then we use any of
the available classification algorithms in this higher dimensional area. This
is how a hyperplane that divides the two categories linearly is created. In
the Figure it shows how this hyperplane can now clearly distinguish
between the two groups.

In other words, the kernel in machine learning is a task-dependent measure
of similarity between two points. Suppose, for instance, that one's
objective is to identify several categories. When using machine learning,
the kernel will attempt to give one set of items in the data a low value and
another set of objects a high value. The important thing to note in this case
is that kernel offers a quicker method of finding similarity than comparing
similarity point by point.

3.7 QUESTIONS

1) What is Kernel?

2) Explain Kernel function in detail.

3) What is kernel trick? Explain in detail.

4) Describe Support Vector Machine

5) Explain different Kernel methods.

6) Discuss comparison of discriminative kernel methods.

7) Elaborate the use of support vector machine in machine learning.

Kernels

57

Track D: Machine
Learning —II (Advanced
Machine Learning)

58

3.8 REFERENCES

1.

AN

~

Machine Learning: A Probabilistic Perspective: Kelvin P Murphy, The
MIT Press Cambridge (2012).

Introduction to Machine Learning (Third Edition) EthemAlpaydin,
The MIT Press (2015).

https://programmathically.com/what-is-a-support-vector/
https://programmathically.com/what-is-a-kernel-in-machine-learning/
Introduction to Support Vector Machines (SVM) - GeeksforGeeks

What is Kernel in Machine Learning? | why do we need | Benefits |
(educba.com)

https://towardsdatascience.com/kernel-function-6f1d2be6091

Machine Learning step by step guide to implement machine learning
algorithm wih python by Rudolph Russell

Machine Learning (A Probabilistic Perspective) by Kevin P. Murphy

o O O 0
0.0 0.0 0.0 0.0

4

MARKOV AND HIDDEN MARKOV
MODELS

Unit Structure :

4.0 Objective

4.1 Markov models

4.2 Hidden Markov Models (HMM)

4.3 Inference in HMMs

4.4 Learning for HMMs

4.5 Undirected graphical models (Markov random fields):
4.5.1 Conditional independence properties of UGMs
4.5.2 Parameterization of MRFs
4.5.3 Examples of MRFs
4.5.4 Conditional random fields (CRFs)
4.5.5 Applications of CRFs

4.6 Summary
4.7 References

4.8 Questions

4.0 OBJECTIVE

1. To study the Markov model in detail.
2. To study the Hidden Markov Models (HMM).

3. To understand various applications of Conditional Random Fields
(CRFs).

4.1 MARKOV MODELS

It is a discrete finite system that has N distinct states. The model starts at
time t=1 called as initial state.

As per the time step increases the system moves from present state to next
state with the transition probabilities that are assigned to present state.
Such type of system is known as a discrete, or finite Markov model.

59

Track D: Machine
Learning —II (Advanced
Machine Learning)

60

Discrete Markov Model every ajjindicates the probability of transition to
state j from state i. The ajare stored in A = [a;] matrix. Py is the
probability to begin from a given state i. These start probabilities are
indicated by vector p.

4.2 HIDDEN MARKOV MODELS (HMM)

Markov model is an un précised model where it is used in the systems that
does not have any fixed patterns of occurrence i.e. randomly changing
system. Markov Model is based on the fact of having random probability
distribution or pattern that can be analyzed by statistical methods but
cannot be predicted precisely.

With the help of Markov models, we can consider that the future states are
only depends on the current states and does not depend on the previously
occurred states.

There are four common Markov models generally used in the Hidden
Markov model.

MARKOV MODELS

MARKOV DECISION
PROCESS

PARTIALLY
HIDDEN MARKOV OBSERVIABLE
MODEL MARKOV DECISION
PROCESS

MARKOV CHAIN

Figure :4.1 Markov Model
Markov Model Property

At t+1 time the state of the system depends only on the state of the system
at time t.

P (Xt+1 = Xt+1 | Xt = Xt. Xt-l T Xteleeoononns X1 = Xl.Xo = Xo)
=P (X1 =X¢r1 | Xi =X¢)

Figure 4.2 Markov chains

Markov Chains: It is probabilities independent of t when process is
“stationary”

SO, for all t, P (Xt+1 = Xt+1 | Xt = Xt) = PU

This can be inferred as Pjrepresents the probability with which the system
will be present in the next system without depending on the value of t, if
the present system is in state i.

The probability of being in a state j depends only on the previous state,
and not on what happened before.

Example

1) Suppose a person has purchased milk, then there is a 90% chance
that his next purchase will also be milk.

If the same person purchased bread, then there is an 80% chance that his
next purchase will also be bread.

Let us assume that a person currently purchased milk, what is the
probability that he will purchase bread two purchase from now and three
purchases from now?

01
Eo=C1

02
Figure 4.3 Example 1
Solution
- A
A= 0.9 0.1
0.2 0.8
_ J

Markov and hidden
Markov Models

61

Track D: Machine
Learning —II (Advanced
Machine Learning)

62

Al=
0.9 0.1 0.9 .1
0.2 0.8 0.2 0.8
AE = e —
0.83 0.17
0.34 0.66
— —

The probability of he will purchase bread two purchases from now 1s 0.17.

A} =
0.9 0.1 0.83 0.17
0.2 0.8 0.34 0,66
— ' ——
0.781 0.219
0438 0.562
- —

The probability of he will purchase bread three purchases from now is
0.219

Example 2) Consider Markov chain model for ‘Rain’ and ‘Dry’ is shown
in the following figure Two states: ‘Rain’ and ‘Dry’ transition
probabilities : P(‘Rain’/’Rain’) = 0.2, P(‘Dry’J’Rain’) = 0.65,
P(‘Rain’|’Dry’) = 0.3, P(‘Dry’|’Dry’) = 0.7, Initial probabilities: say
P(‘Rain’) = 0.4, P(‘Dry’) = 0.6. Calculate a probability of a sequence of
states {‘Dry’, ‘Rain’, ‘Rain’, ‘Dry’}.

S
B D
ue q@ 03 <=

Figure 4,4 Example 2

Solution: P(O | Model) = P (Dry, Rain, Rain, Dry | Model)
=P (Dry) P (Rain | Dry) P (Rain | Rain) P (Dry | Rain)
=0.6*0.3*0.2*0.65=0.0234

4.3 INFERENCE IN HIDDEN MARKOV MODEL

A hidden Markov Model (HMM) is graphical model as shown in the
diagram below. The top chain is a Markov chain representing the sate of
the system (some). We can notobserved state directly. Whereas we can
observe the function of the state which is known as probabilistic function
of the state.

For example, the Markov chain can represent the health status of a patient
and the observations are symptoms such as temperature, blood pressure

etc.

One more example, As the Markov chain can represent the part of speech
of the words in a text, and the observation is the actual word.

It is also known as left to right chain model.

States (hidden): Iy . flr_]\ {/‘e_:\l /,[‘f_\\\ aie Ty

Oheervations: @ ' o @ .

Figure 4.5 Left to right chain model

Probability distribution for the chain model is factorizes as follows:
T

T
o0 =P() | |pCums | | PO
t=1

¥ 9

t=12

. "
p{;r.ilr. yf: #) = p(z1) __—[p(;r., |zs—1) Hg}{y, 1T).

t=2 i=1
Assume that the Markov chain and the observations are both on discrete
spaces, we can complete the model by specifying [= (m, A,B), where,
- The probability distribution & for x1,

= p (x1 =1).

- The transition matrix A of the Markov chain,
Ai=p Xet =[x =1).

Markov and hidden
Markov Models

63

Track D: Machine
Learning —II (Advanced
Machine Learning)

64

- The emission matrix B describing the probabilities of the
observations given in the state as,

Bij =p(yt =j[x =1)

By using three common inference problems associated with Hidden
Markov Models and the methods for solving them. We will not derive
the solutions but they can be found in one of the above statements

1. Evaluation : PCx_ |y{;8)> forward — backward algorithm (sum-
product).

2. Decoding : argmaxx; p(x]|y{:6)> Viterbi algorithm (max-
product).

3. Learning: argmax 8P (y];68)~> Baum — Welch algorithm (EM)

4.4 Learning for Hidden Markov Models
With the help of learning parameters for Hidden Markov models we are
able to maximizes the performance of the model.

Learning Hidden Markov Models from data

» Parameter estimation

» If we knew the state sequence then it is very easy to estimate the
parameters.

» But when we need to work with hidden state sequences

» Use “expected” counts of state transitions

The approach is maximum likelihood, and we would like to calculate Ax
that maximizes the likelihood of the sample of training sequences,
X={Ok}K k=1, namely, P (X|A). We start by defining a new variable that
will become handy later on. We define &t(i, j) as the probability of being in
Si at time t and in Sj at time t + 1, given the whole observation O and A:

Et(1,])) =P (qt=S1(15.25),qt+1 =S |O, A)
which can be computed as follows (see the following figure)

&t(i, j) =P (qt = Si, qt+1 = §j |0, 1)

Figure 4.6: Computation of arc probabilities, &t(i, j)

&t(i, j) =P (qt = Si, qt+1 = §j |0, 1)

;P[qui = S;',L]';_] - S_Iu,.ll ””L}f - Sj.{,fp_] = "":".l"-"‘]

P(OIA)
_ P(Ola: = Si@is1 = $j,AP(des1 = Sjlar = S)P (@i = SilA)
_ P(OA)
1 _)
- (pom) PO+ - Orlar = S POt 1dret = S5, 0)
_lui.rf.}:‘.-;_r i GI-_{.h_] = S_jlﬂjﬂéjpi_ﬁfr = Sg‘..’\l}

1 ¥
= (P{G'U)P{'D] v o2 04, = SilA)P(Op411Gr1 = S5, A)

f’{{.}{-.-:j S DI .£h—1 = -S_Il,-"-}fh'l
f‘l’[{”b.j{ﬂ';-l}ﬁt—l{j}ﬂjj
2k 21 P(gr = Sk Qr+1 = S, 0|A)

o (1)aijbj(Or+1)Br+1(J)
Sk 2o (k)agbi(O1)Brsa (1)

at(i) explains the first t observations and ends in state Si at time t. We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t + 1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can be
visited at time t and t + 1. If we want, we can also calculate the probability
of being in state Si at time t by marginalizing over the arc probabilities for
all possible next states:

N
yeli) = > &(i, J)

-,
sk

Note that if the Markov model were not hidden but observable, both yt(i)
and &t(i, j) would be 0/1. In this case when they are not, we estimate them
with posterior probabilities that give us soft counts. This is just like the
difference between supervised classification and unsupervised clustering
where we did and did not know the class labels, respectively. In
unsupervised clustering using EM algorithm, it not knowing the class
labels, we estimated them first E-step and then calculated the parameters
with these estimates in the M-step.

Baum-Welch algorithm: In this algorithm an EM procedure is same,
where at each iteration, first the E-step where we compute &t(i, j) and yt(i)
values for the given current equation A = (A, B, II), and then in the M-
step, we recalculate A given &t(i, j) and yt(i).

These are the two steps which will iterate alternate until convergence
during which, it has been shown, P (O|L) never decreases.

Markov and hidden
Markov Models

65

Track D: Machine
Learning —II (Advanced
Machine Learning)

66

Assume indicator variables z as

' _ 1 ifge =5
_ 0 otherwise

i, o { 1 if g, =S and g4y = S,

77 | 0 otherwise

These are 0/1 in the case of an observable Markov model and are hidden
random variables in the case of an Hidden Markov Model. For later case
of E-step as,

E[z'] = yi(i)

In the M-step, we calculate the parameters given these estimated values.
The expected number of transitions from Si to Sj is t &t(i, j) and the total
number of transitions from Si is t yt(i). The ratio of these two gives us the
probability of transition from Si to Sj at any time:

T-1 ..
~ ZI:] EJ‘II_I}
G | R — . T
Laf=1 }’r f!}
The probability of observing vm in Sj is the expected number of times vim
is observed when the system is in Sj over the total number of times the
system is in Sj :

> 1 yi(N1(0f = Vi)

Er:l };f |:Jj

When there are multiple observation sequences
X-= (0",

Which we assume to be independent

K
P(XIA) = [P(O*|A)
k=1

The parameters are now averages over all observations in all sequences:

W PR < | P

k=1 L.r=1

dij = - Lot
Ek=tz:i] yr i)
K fe -l ;
boim) = ket 21 Yi(LOL = Vim)
J =
k=1 24=1 ¥t J)
K gy
= E_IL:]}JL{.EI'
i =2 g

4.5 UNDIRECTED GRAPHICAL MODELS (MARKOV
RANDOM FIELDS)

Undirected graphical model or Markov network: It is a set of random
variables with the Markov property which is described by an undirected
graph.

Or

A random field is said to be a Markov random field which satisfies
Markov properties. The original concept comes from the Sherrington-
Kirkpatrick model.

It is similar to a Bayesian network where it shows the representation of
dependencies.

The difference between Bayesian network and directed and acyclic graph
whereas in Markov networks are undirected and may be cyclic.

A Markov network or MRF 1is similar to a Bayesian Network in its
representation of dependencies; the differences being that Bayesian
networks are directed and acyclic, whereas Markov networks are
undirected and may be cyclic. Thus, a Markov network can represent
certain dependencies that a Bayesian network cannot (such as cyclic
dependencies; on the other hand, it can't represent certain dependencies
that a Bayesian network can such as induced dependencies; The
underlying graph of a Markov random field may be finite or infinite.

O

B

Markov and hidden
Markov Models

67

Track D: Machine
Learning —II (Advanced
Machine Learning)

68

Figure 4.7: An example of a Markov random field. Each edge represents
dependency. In this example: A depends on B and D. B depends on A and
D. D depends on A, B, and E. E depends on D and C. C depends on E.

When the joint probability density of the random variables is strictly
positive, it is also referred to as a Gibbs random field, because, according
to the Hammersley Clifford theorem, it can then be represented by a Gibbs
measure for an appropriate (locally defined) energy function. The
prototypical Markov random field is the Ising model; indeed, the Markov
random field was introduced as the general setting for the Ising model. In
the domain of artificial intelligence, a Markov random field is used to
model various low to medium level tasks related to the image processing
and the computer vision.

4.5.1 Conditional Independence properties of UGM
Definition

Given an undirected graph G = (V,E), a set of random variables X =
(x,),.r indexed by V form a Markov random field with respect to G if
they satisfy the local Markov properties.

Pairwise Markov Property:

Any two non-adjacent variables are conditionally independent given all
other variables:

Xy 1L X, | X jus)

Local Markov Property: A variable is conditionally independent of all
other variables given its neighbours:

Xy 1L Xy | X

Where N(v) is the set of neighbours of v, and N[v] = v U N(v) is the
closed neighbourhood of v.

Global Markov Property: Any two subsets of variables are conditionally
independent given a separating subset:

X4 Ul Xp | Xs

Where every path from a node in A to a node in B passes through S.

The relation between the three Markov properties is particularly clear in
the following formulations:

1. Pairwise
2. Local
3. Global

4.5.2 Parameterization of Markov Random Fields:
To calculate the Markov parameters ¥;,¥5 ¥; — ... from the system

Firstly

==}

6=) yz"

i=0

For the case when G(z) is parameterized in the Markov Field form (i.e.
G(z'")

= Q' (z"HR(z")), the system Markov parameters can be determined from
the equation:

(Ziﬂ Qiz™") (E;?C:Dyi z_i) = E?:u R, z7,

By the following iterative calculations starting from ¥; = Ry :

V. — Rk—ELQz’Yk_Jg, fork=1, ...,p
k _Ele QiYri, fork=p+1, ..., .

If the parameterized in the derivation of the system in Markov parameters is almost

the same as:

one starts with Yo = For and continues with the following iterative procedure:

Bp—> 0¥, fork=1, ..., p.

P

Y, =
— > 10 Y5, fork=p+1, ..., cc.

4.5.3 Examples of Markov Random Fields

Let’s try to understand what these steps correspond to in our chain
example. In that case, the chosen ordering was x1, x2,...... ,xn—1. Starting
with x1, we collected all the factors involving x1, which were p(x1)
andp(x2 | x1). We then used them to construct a new
factor 1(x2)=) x1p(x2 | x1) . This can be seen as the results of steps 1 and
2 of the VE algorithm: first we form a large factor o(x2,x1)=p(x2 |
x1)p(x1); then we eliminate x1 from that factor to produce 1. Then, we
repeat the same procedure for x2x2, except that the factors are now p(x3 |
x2),1(x2).

Markov and hidden
Markov Models

69

Track D: Machine
Learning —II (Advanced
Machine Learning)

70

.(} .
d(l dl i !I

0.6 0.4

(II
(=]
i%.d" | 03
i%d" | 0.05
=i 0 .0 .|
: 0.9 |0.08 | 0.02 s s
48 Letter
ittd"' o5 |03 |02 i% 1095 | 0.05
i 1o2 |08
[() il
ghlo1 |09
g2lo4 |06
231099 | 0.01

Figure 4.8: Bayes net model of a student’s grade ggon an exam; in
addition to gg, we also model other aspects of the problem, such as the
exam’s difficulty dd, the student’s intelligence ii, his SAT score ss, and
the quality Il of a reference letter from the professor who taught the
course. Each variable is binary, except for gg, which takes 3 possible
values.

Let us take one example, recall the graphical model of a student’s grade
that we introduce earlier. The probability specified by the model is of the
form

P, g, 1,d,s) =p(| g)p(s [Dp(i)p(g | 1,d)p(d).

Let us assume that we are computing p(l) and are eliminating variables in
their topological ordering in the graph. Firstly we eliminate d, which
corresponds to creating a new factor

1(g,1)=Y.dp(gli,d)p(d). Next is to eliminate i to produce a factor
12(g,8)=> itl(g,1)p(i)p(s 11). Then the next step is to eliminate s yielding
13(g)=) s12(g, s) and so on..

These operations are equivalent to summing out the factored probability
distribution as follows:

p) =) _p19)) D> pls|i)p(d)) plg|i,d)p(d).
g 3 i d

p(D=Xgp(1 1 g) ¥s¥ip(sli) p()2dp (gli,d)p(d).p (D=>gp(llg)> s ip (sli)
p()Xdp(gli,d)p(d).

This example calculates at the most k> operations per step. Since each
factor is at the most over two variable is summed out at each step,
dimensionality of k for this example is either 2 or 3.

4.5.4 Conditional Random Field

Conditional random fields (CRFs) are a class of statistical modeling
methods often applied in pattern recognition and machine learning and
used for structured prediction. Whereas a classifier predicts a label for a
single sample without considering "neighbouring" samples, a CRF can
take context into account. To do so, the predictions are modelled as a
graphical model, which represents the presence of dependencies between
the predictions. What kind of graph is used depends on the application.
For example, in natural language processing, "linear chain" CRFs are
popular, for which each prediction is dependent only on its immediate
neighbours. In image processing, the graph typically connects locations to
nearby and/or similar locations to enforce that they receive similar
predictions.

Other examples where CRFs are used are: labelling or parsing of
sequential data for natural language processing or biological sequences,
part-of-speech tagging, shallow parsing, named entity recognition, gene
finding, peptide critical functional region finding, and object recognition
and image segmentation in computer vision.

CRFs are a type of discriminative undirected probabilistic graphical
model.

Lafferty, McCallum and Pereira definition of CRF on observations X and
random variables Y as follows:

Let G = (V, E) be a graph such that Y = (¥,)vewv, so that Y is indexed by
the vertices of G.

Then (X,Y) is a conditional random field when each random variable ¥,
conditioned on X,

With the help of Markov random field property w.r.to the graph
(probability is dependent only on its neighbours in G)

G:PYv|X{¥w: w = v])=P¥vIX,{VYw: wvv}),
Where w~v : w and v are the neighbours in G.

It means a CRF is an undirected graphical model whose nodes can be
divided into exactly two disjoint sets X and Y, the observed and output
variables, respectively; the conditional distribution p(Y|X)is then
modelled.

Markov and hidden
Markov Models

71

Track D: Machine
Learning —II (Advanced
Machine Learning)

72

4.5.5 Applications of Hidden Markov model

A

Motion Sensing and Analysis

Speech Recognition

Language Recognition

Gesture Recognition

Search Engine Algorithm

Marketing applications like Analysis of consumer brand switching (
It is based on loyalty of consumer to a particular brand of a product,
store or supplier)

Weather Forecast (real life application)

Finance (Share market stock price movement)

4.6 SUMMARY

Hidden Markov model is an temporal probabilistic model for which a
single discontinuous random variable determines all the states of the
system. The possible values of variable = Possible states in the system.
For example, sunlight can be the variable and sun can be the only possible
state. The structure of Hidden Markov model is restricted to the fact that
basic algorithms can be implemented using matrix representation.

1.

In Hidden Markov Model, every individual states has limited number
of transitions and emissions.

2. Probability is assigned for each transition between states.

Hence, the past states are totally independent of future states.

4. The fact that Hidden Markov Model is called hidden because of its

N —

ability of being a memory less process i.e. its future and past states are
not dependent on each other.

Since, HMM is rich in mathematical structure it can be implemented
for practical applications.

This can be achieved on two algorithms called as:

. Forward Algorithm.
. Backward Algorithm.

4.7 QUESTIONS:

Q.1) What is Markov Model? Explain in detail.

Q,2) Elaborate in detail Hidden Markov Model.

Q.3) Explain Markov chain.

Q.4) Explain Markov Random Field (MRF) in detail.
Q.4) Give the applications of Hidden Markov Model.
Q.5) What is CRF. Explain in detail.

Mark d hidd
4.8 REFERENCES Mok Models |

1. Baldi, P, and S. Brunak. 1998. Bioinformatics: The Machine
Learning Approach. Cambridge, MA: MIT Press

2. Bilmes, J. A. 2006. “What HMMs Can Do.” IEICE Transactions on
Information and Systems E89-D:869—-891

3. http://www.ece.virginia.edu/~fth8x/docs/teaching/esl/12-Inference-in-
Hidden-Markov-Models.pdf

4. Markov random field - Wikiwand

5. https://www.sciencedirect.com/topics/computer-science/markov-
parameter

6. https://ermongroup.github.io/cs228-notes/inference/ve/

o O O 0
0.0 0‘0 0.0 0‘0

73

74

S

MONTE CARLO INFERENCE-SAMPLING

Unit structure :

5.0 Objectives

5.1 Introduction

5.2 Sampling from standard distributions
5.3 Rejection sampling

5.4 Importance sampling

5.5 Particle filtering

5.6 Applications

5.7 Rao-Blackwellised particle filtering (RBPF)
5.8 Summary

5.9 Exercise

5.10 References

5.0 OBJECTIVES

After going through this chapter, students will able to learn
e Techniques for randomly sampling a probability distribution.

e To find the expectation of some function f(x) with respect to a
probability distribution p(x).

e To enhance decision-making under highly vague conditions.

5.1 INTRODUCTION

In this chapter, we discourse an alternate class of algorithms that are
based on the knowledge of Monte Carlo approximation.There are
numerous problem areas where estimating or describing the probability
distribution as in earlier chapters is relatively straightforward, but
calculating a desired quantity is obstinate. This may be due to several
reasons, such as the stochastic or random in nature of the domain or an
exponential number of random variables.

As an alternative, a desired quantity can be estimated by using random
sampling, described as Monte Carlo methods. These methods were
originally used around the time that the first computers were created and
remain persistent through all fields of science and engineering, including

artificial intelligence and machine learning.Monte Carlo methods are a
class of techniques for randomly sampling a probability distribution.

We can attain any desired level of accuracy we need by generating
adequate samples,. The main issue is how do we effectively particularly
in high dimensions generate samples from a probability distribution? In
this chapter, we consider non-iterative methods for generating independent
samples. In the next chapter, we discuss an iterative method known as
Markov Chain Monte Carlo, or MCMC for short. This method produces
dependent samples which works greatly in high dimensions.

5.2 SAMPLING FROM STANDARD DISTRIBUTIONS

In this section, we will discuss in brief some ways to sample from 1 or 2
dimensional distributions of standard form. These methods are often used
as subprograms by more complex methods.

The easiest method for sampling from a univariate distribution is based on
the inverse probability transform. Let F be a CDF(cumulative Distribution
Function) of some distribution we want to sample from.Let F'be its
inverse. Then we have the following result :

Theorem 1: If U ~U(0, 1) is a uniform random variable , then

F'(U) ~F.

Proof :Pr(F~'(U) < x) = Pr(U < F(x)) (applying F to both sides)
=F(x) (because Pr(U <y)=y

where the first line follows since F is a monotonic function, and the
second line follows since U is uniform on the unit interval.

0 X

Figure 1 :Sampling using an inverse CDF

Therefore, we can sample from any univariate distribution. In order to find
this we can evaluate its inverse cdf, as follows:

e generate a random number u ~U(0, 1) using a pseudo random number
generator.

e Let u represent the height up the y axis.

Monte Carlo Inference-
Sampling

75

Track D: Machine
Learning —II (Advanced
Machine Learning)

76

e Then “slide along” the x axis until you intersect the F curve, and then
“drop down” and return the corresponding x value.

e This corresponds to computing x = F —1(u). Look into Figure 1
Example : consider the exponential distribution given by :

E(X) =2e ™ (x >0, A is parameter)

The cdfis F(x) =1 — ¢ ™ (x > 0)

whose inverse is the quantile function F ~'(p) = —In(1 — p)/ A

By the above theorem, if U ~Unif(0, 1), we know that F —1(U) ~ E(}L).
Besides, since 1 — U ~Unif(0, 1) as well, we can sample from the
exponential distribution by first sampling from the uniform and then
transforming the results using — In(u)/A.

Next we describe a method to sample from a Gaussian. The aim here is
we sample uniformly from a circle of radius one and then use the change
of variables formula to derive samples from a spherical 2d Gaussian. This
can be thought of as two samples from a 1d Gaussian.Also known as a
Box Muller method or transform,it takes a continuous, two dimensional
uniform distribution and transforms it to a normal distribution.

It is extensively used in statistical sampling. It is an easy to run, smart way
to come up with a standard normal or Gaussian model. Since it can be
used to generate normally distributed random numbers, it was originally
developed as a better and computationally efficient alternative to inverse
sampling. To discuss in detail we do the following :

e First sample z;, z,€ (—1, 1) uniformly.
e Then discard pairs that do not satisfy the condtion : (z;)* + (z2)* < 1.

e The result will be points uniformly distributed inside the unit circle,
so p(z) = 1 /n (z inside circle).

o Now define for i =1:2, where 1* = (z))* + (22)".

1
—21Inre\ 2

e

Hence x; and x;, are two independent samples from a univariate Gaussian.
This is known as the Box-Muller method.

To sample from a multivariate Gaussian, we first compute the Cholesky
decomposition of its covariance matrix, £ = LL! , where L is lower
triangular. Next we sample x ~ N (0, I) using the Box-Muller method.
Finally we set y = Lx + p.

5.3 REJECTION SAMPLING

In last section we discussed inverse cdf method for sampling .When this
method cannot be used one alternative that can be used is rejection
sampling.

Rejection sampling is a Monte Carlo algorithm to sample data from a
difficult to sample from distribution with the help of a proxy distribution.

Rejection sampling is based on the observation that to sample a random
variable in one dimension, one can perform a uniformly random sampling
of the two-dimensional Cartesian graph, and keep the samples in the
region under the graph of its density function.

We will use the following notations here:

e Target (distribution) function f(x) — The “difficult to sample from”
distribution. That is our distribution of interest.

e Proposal (distribution) function g(x) — The proxy distribution from
which we can sample.

The basic idea that is present in almost all Monte Carlo methods is that if
you can not sample from your target distribution function then use another
distribution function (and hence called as proposal function).

However, a sampling procedure must “follow the target distribution”.
Following a “target distribution” indicates that we should end up with
several samples per their likelihood of occurrence. In simple words, there
should be more samples from regions of high probability.

This also means that when we use a proposal function we must introduce
the necessary corrections to make sure that our sampling procedure is
following the target distribution function! This “corrective” aspect then

takes the form of an acceptance criterion.

The algorithm for rejection sampling for drawing a sample from the target
density f'is

1) Simulate U~Unif(0,1)

2) Simulate a candidate X~g from the candidate density
3) HUf(X)/[cg(X)] then “accept” the candidate X.

4) Otherwise, “reject” X and go back to the beginning.

Monte Carlo Inference-
Sampling

77

Track D: Machine
Learning —II (Advanced
Machine Learning)

78

The algorithm can be repeated until the desired number of samples from
the target density f has been accepted.

Example : suppose we want to generate samples from a N(0,1) density.

We could use the t2 distribution as our candidate density as it has heavier
tails than the Normal. Plotting those two densities, along with a sample
from the t2 density gives us the figure below.

<
L= —— Normal density
—— tdensity
9 o
o
>
=
2 o |
o o
(=]
=
o
o]
(S} {100 UL 0151

Figure 2 : Normal and t densities

Example source :https://bookdown.org/rdpeng/advstatcomp/rejection-
sampling.html

Given what we know about the standard Normal density, most of the
samples should be between —3 and +3, except perhaps in very large
samples (this is a sample of size 200).

From the figure, there are samples in the range of 4-6. In order to
transform the t2 samples into N(0,1) samples, we will have toto reject
many of the samples out in the tail. On the other hand, there are
too few samples in the range of[-2,2]and so we will have to
disproportionaly accept samples in that range until it represents the
proper N(0,1)density.

Next we describe a method called Adaptive rejection sampling (ARS).It
isa method for efficiently sampling from any univariate probability
density function which is log-concave. It is very useful in applications of
Gibbs sampling, where full-conditional distributions are algebraically very
messy yet often log-concave.

The idea is to upper bound the log density with a piecewise linear
function, as illustrated in Figure 3(a). We choose the initial locations for
the pieces based on a fixed grid over the support of the distribution. We

then evaluate the gradient of the log density at these locations, and make
the lines be tangent at these points.

[a} EEE AR e >
Figure 3 : (a) Idea behind adaptive rejection sampling
(b) and (c) Using ARS to sample from a half-Gaussian

Since the log of the envelope is piecewise linear, the envelope itself is
piecewise exponential:

q(x) = Midiexp(—Ai(X — Xi-1)), Xi1< X < Xj
where x; are the grid points.

It is reasonably simple to sample from this distribution. If the sample x is
rejected, we create a new grid point at x, and thereby refine the envelope.
The tightness of the envelope improves,as the number of grid points is
increased and the rejection rate goes down. This is known as adaptive
rejection sampling (ARS) Figure 3(b and c) gives an example of the
method in action. Similar to standard rejection sampling, it can be applied
to unnormalized distributions.

It is evident that we want to make our proposal function g(x) as close as
possible to the target distribution f(x), while still being an upper bound.
But this is quite hard to achieve, especially in high dimensions.We will
describe MCMC sampling, which is a more efficient way to sample from
high dimensional distributions in next chapter. Sometimes this uses
(adaptive) rejection sampling as a subroutine, which is known as adaptive
rejection Metropolis sampling.

5.4 IMPORTANCE SAMPLING

Importance sampling is an approximation method instead of sampling
method. It derives from a little mathematic transformation and is able to
formulate the problem in another way.

We will now describe a Monte Carlo method known as importance
sampling for approximating integrals of the form

I=E[f]| = / f(x)p(x)dx

The basic idea is to draw samples x in regions which have high
probability, p(x), but also where [f(x)| is large. The result can be super

Monte Carlo Inference-
Sampling

79

Track D: Machine
Learning —II (Advanced
Machine Learning)

80

efficient, means it needs less samples than if we were to sample from the
exact distribution p(x).

The reason is that the samples are focussed on the important parts of
space. For example, suppose we want to estimate the probability of a rare
event. Define f(x) = I(x € E), for some set E. Then it is better to sample
from a proposal of the form q(x) « f(x)p(x) than to sample from p(x)
itself.

Importance sampling samples from any proposal, q(x). It then uses these
samples to estimatethe integral as follows:

x)dx = 52?1' f }—f

where w are the importance weights. In Contrast to rejection sampling,
we use all the samples.

Elj]—

How must we choose the proposal? A natural condition is to minimize the
variance of the estimate I .

When we don’t have a particular target function f(x) in mind, we
frequently just try to make q(x) as close as possible to p(x). In general, this
is difficult, especially in high dimensions, but it is possible to amend the
proposal distribution to improve the approximation. This is known as
adaptive importance sampling.

Now we will describe a way to use importance sampling to generate
samples from a distribution which can be represented as a directed
graphical model(DGM) (discussed in later chapter). If we don’t have
proof, we can sample from the unconditional joint distribution of a DGM
p(x) as follows:

o First sample the root nodes, then sample their children, then sample
their children, etc. This is known as ancestral sampling.

e [t works because, in a DAG, we can always topologically order the
nodes so that parents preceed children.

Now suppose we have some evidence, so some nodes are “clamped”
to observed values, and we want to sample from the posterior p(x|D).
If all the variables are discrete, we can use the following simple
procedure:

e Perform ancestral sampling, but as soon as we sample a value that is
inconsistent with an observed value, reject the whole sample and start
again. This is known as logic sampling .

e Logic sampling is very inefficient, and it cannot be applied when we
have real-valued evidence. But, it can be modified as follows:

o Sample unobserved variables as before, conditional on their parents. Monte Carlo Inference-
But don’t sample observed variables; instead we just use their observed Sampling
values.This procedure is known as likelihood weighting.

It is possible to draw unweighted samples from p(x) as follows :

e First by using importance sampling (with proposal q) to generate a
distribution of the form

p(x) =) wabse(x)

]

Where wgare the normalized importance weights.

o Then sample with replacement from the above equation in first step,
where the probability that we choosex; is ws.

This processinduce a distribution denoted by # .This is known as sampling
importance resampling (SIR).

5.5 PARTICLE FILTERING

The idea of the particle filter is based on Monte Carlo methods, which
utilize particle sets to represent probabilities and can be used in any form of
state space model. The core idea is to express its distribution by extracting
random state particles from the posterior probability. It is a sequential
importance sampling method (Sequential Importance Sampling).

It is an algorithm for recursive Bayesian inference. That is, it
approximates the predict-update cycle described in earlier Section of
filtering. It is extensivelyapplied in many areas, including tracking, time-
series forecasting, online parameter learning, etc.

In simple terms, the particle filtering method refers to the process of
obtaining the state minimum variance distribution by finding a set of
random samples propagating in the state space to approximate the
probability density function and replacing the integral operation with the
sample mean.This method also handles nonlinear dynamic models and can
tackle nonnormally distributed random instability to the state and
measurement.

Sequential importance sampling The basic idea is to appproximate the
belief state (of the entire state trajectory) using a weighted set of particles :

S
P(Zraly1e) &) 030a; , (Z1:)
=1

where w; is the normalized weight of sample s at time f.

81

Track D: Machine
Learning —II (Advanced
Machine Learning)

82

We can easily compute the marginal distribution over the most recent state
from this representation,p(zy;.r) and by simply disregarding the previous
parts of the trajectory, z;+—1.We update this belief state using importance
sampling.The basic algorithm is as follows :

e for each old sample s, propose an extension using z;~q(zzz_;, Y1), and
give this new particle weight w using Equation
. 5] =
g . Plyelzi)p(zi|zi_,)

wy oC wy_4 e
q(z{|z{_1,¥t)

e This basic algorithm unfortunatelydoes not work very well, as we
discuss further down.

The basic sequential importance sampling algorithm stop working after a
few steps because most of the particles will have negligible weight. This is
called the degeneracy problem, and occurs because we are sampling in a
high-dimensional space (in fact, the space is growing in size over time),
using a biased proposal distribution.There are two principal solutions to
the degeneracy problem:

1. Adding a resampling step, and
2. Applying a good proposal distribution.

1. The resampling step :In the resampling step, the particles with
negligible weights are replaced by new particles in the vicinity of the
particles with higher weights. From the statistical and probabilistic point
of view, particle filters may be interpreted as mean-field particle

interpretations of Feynman-Kac probability measures.There are a variety
of algorithms for peforming the resampling step. The simplest is
multinomial resampling, which computes

(K1,...,.KS) ~ Mu(S,(w2,...,w;))

We then make K copies of z; . Various enhancements exist, such as

systematic resampling residual resampling, and stratified sampling, which
can reduce the variance of the weights.

Although the resampling step helps with the degeneracy problem, it
introduces difficulties of its own. In particular, since the particles with
high weight will be selected many times, there is a loss of diversity
amongst the population. This is known as sample impoverishment.

In extreme case of no process noise (for example, if we have static but
unknown parameters as part of the state space), then all the particles will
collapse to a single point within a few iterations. To moderate this
problem, several solutions have been proposed.

(1) Only resample when necessary, not at every time step. (The original
bootstrap filter (Gordon 1993) resampled at every step, but this is
suboptimal.)

(2) After replicating old particles, sample new values using an MCMC
step which leaves the posterior distribution invariant.

(3) Create a kernel density estimate on top of the particles, We then
sample from this smoothed distribution. This is known as a regularized
particle filter .

(4) When performing inference on static parameters, add some artificial
process noise.

2. The proposal distribution: The simplest and most widely used
proposal distribution is to sample from the prior:

q(z¢|2{_1.¥1) = p(2,]2]_,)
In this case, the weight update simplifies to
w; o wy_1p(ye|z;)

we sample values from the dynamic model, and then evaluate how good
they are after we see the data. This is the approach used in the
condensation algorithm (which stands for “conditional density
propagation”) used for visual tracking.However, if the likelihood is
narrower than the dynamical prior that is the sensor is more informative
than the motion model, (which is often the case), this is a very inefficient
approach, since most particles will be assigned very low weight.

5.6 APPLICATIONS

In this section we will see some applications of particle filtering.

1. Robot localization : Robot localization is the process of determining
where a mobile robot is located with respect to its environment.
Localization is one of the most fundamental capabilities required by an
autonomous robot as the knowledge of the robot's own location is an
essential precursor to making decisions about future actions.For
example,consider a mobile robot wandering around an office environment.
We will assume that it already has a map of the world, represented in the
form of an occupancy grid, which just specifies whether each grid cell is
empty space or occupied by an something solid like a wall. The goal is for
the robot to estimate its location. This can be solved optimally using an
HMM filter, since we are assuming the state space is discrete. However,
since the number of states, K, is often very large, the O(K?) time
complexity per update is prohibitive. We can use a particle filter as a
sparse approximation to the belief state. This is known as Monte Carlo
localization.

2. Visual object tracking: It isone of the principal challenges in
Computer Vision, where the task is to locate a certain object in all frames
of a video, given only its location in the first frame.It is concerned with

Monte Carlo Inference-
Sampling

83

Track D: Machine
Learning —II (Advanced
Machine Learning)

84

tracking an object (for example a remote-controlled helicopter) in a video
sequence. The method uses a simple linear motion model for the centroid
of the object, and a color histogram for the likelihood model, using
Bhattacharya distance to compare histograms. The proposal distribution is
obtained by sampling from the likelihood.

3. Time series forecasting : InearlierSection , we discussed how to use
the Kalman filter to perform time series forecasting. This assumes that the
model is a linear-Gaussian state-space model. There are many models
which are either non-linear and/or non-Gaussian. For example, stochastic
volatility models, which are widely used in finance, assume that the
variance of the system and/or observation noise changes over time.
Particle filtering is widely used in such settings.

5.7 RAO-BLACKWELLISED PARTICLE FILTERING
(RBPF)

RBPFs are an extension to particle filters (PFs) which are applicable to
conditionally linear-Gaussian state-space models.

In some models, we can partition the hidden variables into two kinds, q;
and z;, such that we can analytically integrate out z; provided we know the
values of q;r. This means we only have sample q;, and can represent
p(zdqi.t) parametrically. Thus each particle s represents a value for g3,. and

a distribution of the form p(zyi, g3.). These hybrid particles are are

sometimes called distributional particles or collapsed particles.The
advantage of this approach is that we reduce the dimensionality of the
space in which we are sampling, which reduces the variance of our
estimate. Hence this technique is known as Rao-Blackwellised particle
filtering or RBPF for short.

Some of the applications of RBPF are :

e Tracking a maneuvering target: It is to track moving objects that
have piecewise linear dynamics. For example, suppose we want to track
an airplane or missile; g; can specify if the object is flying normally or is
taking evasive action. This is called maneuvering target tracking.

e Fast SLAM: It is an algorithm that recursively estimates the full
posterior distribution over robot pose and landmark locations, yet scales
logarithmically with the number of landmarks in the map.in earlier section
we introduced the problem of simultaneous localization and mapping or
SLAM for mobile robotics. The main problem with the Kalman filter
implementation is that it is cubic in the number of landmarks.An
additional advantage of this techniques is ,it is easy to use sampling to
handle the data association ambiguity, and that it allows for other
representations of the map, such as occupancy grids. This idea was first
suggested in (Murphy 2000), and was subsequently extended and made
practical in (Thrun et al. 2004), who christened the technique FastSLAM.

5.8 SUMMARY

In this chapter we consider approximate inference methods based on
numerical sampling, also known as Monte Carlo techniques. Although for
some applications the posterior distribution over unobserved variables will
be of direct interest in itself, for most situations the posterior distribution
is required primarily for the purpose of evaluating expectations, for
example in order to make predictions. The fundamental problem that we
therefore wish to address in this chapter involves finding the expectation
of some function f(z) with respect to a probability distribution p(z).we
considered some simple strategies for generating random samples from a
given distribution.

5.9 EXERCISE

1 Show how to use inverse probability transform to sample from a
standard Cauchy, T (x|0, 1, 1).

2 Explain sampling from standard distributions.
3 Explain various types of sampling.
4 What are applications of sampling.

5 Write a note on Partilcle filtering.

5.10 REFERENCES

e Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The
MIT Press Cambridge (2012).

¢ Introducing Monte Carlo Methods with R, Christian P. Robert, George
Casella, Springer, 2010

e Introduction to Machine Learning (Third Edition): EthemAlpaydin,
The MIT Press (2015).

e Pattern Recognition and Machine Learning: Christopher M. Bishop,
Springer (2006)

o O O 0
0’0 0‘0 0’0 0‘0

Monte Carlo Inference-
Sampling

85

86

MARKOV CHAIN MONTE CARLO
(MCMC) INFERENCE

Unit structure :

6.0 Objectives

6.1 Introduction

6.2 Gibbs sampling

6.3 Metropolis Hastings algorithm
6.4 Speed and accuracy of MCMC
6.5 Summary

6.6 Exercise

6.7 References

6.0 OBJECTIVES

After going through this chapter, students will able to learn

e To carry out sampling from high-dimensional distributions is Markov
chain Monte Carlo or MCMC.

e Learn about some algorithms of MCMC

e Speed and accuracy of MCMC.

6.1 INTRODUCTION

In Chapter 5, we introduced some simple Monte Carlo methods, including
rejection sampling and importance sampling. The difficulty with these
methods is that they do not work well in high dimensional spaces. The
most popular method for sampling from high-dimensional distributions is
Markov chain Monte Carlo or MCMC. These methods encompass a class
of algorithms for sampling from a probability distribution. By creating
a Markov chain that has the anticipated distribution as its equilibrium
distribution, one can acquire a sample of the desired distribution by
recording states from the chain. The more steps that are included, the more
closely the distribution of the sample matches the actual desired
distribution. Various algorithms exist for constructing chains, including
the Metropolis—Hastings algorithm. MCMC allow for parameter
estimation such as means, variances, expected values, and exploration of
the posterior distribution of Bayesian models. To review the properties of
a “posterior”, many representative random values should be sampled from
that distribution.

The MCMC algorithm has an exciting history. It was discovered by
physicists working on the atomic bomb at Los Alamos during World War
II, and was first published in the open literature in a chemistry journal. An
extension was published in the statistics literature in (Hastings 1970), but
was largely unnoticed. A special case of Gibbs sampling was
independently invented in 1984 in the context of Ising models and was
published in Geman and Geman 1984. But it was not until Gelfand and
Smith 1990 that the algorithm became well-known to the wider statistical
community. Since then it has become wildly popular in Bayesian statistics,
and is becoming increasingly popular in machine learning.

The basic idea behind MCMC is to construct a Markov chain on the state
space X whose stationary distribution is the target density p*(x) of interest
(this may be a prior or a posterior). That is, we perform a random walk on
the state space, in such a way that the fraction of time we spend in each
state x is proportional to p*(x). By drawing correlated samples Xy, X1, Xz,...,
from the chain, we can perform Monte Carlo integration with respect to p*.

If we try comparing MCMC to variational inference, then it is as follows:
The advantages of variational inference are

(1) for small to medium problems, it is usually faster;
(2) it is deterministic;

(3) is it easy to determine when to stop;

(4) it often provides a lower bound on the log likelihood.
Whereas ,the advantages of sampling are:

(1) it is often easier to implement;

(2) it 1s applicable to a broader range of models, such as models whose
size or structure changes depending on the values of certain variables (e.g.,
as happens in matching problems), or models without nice conjugate
priors;

(3) sampling can be faster than variational methods when applied to really
huge models or datasets.

6.2 GIBBS SAMPLING

In this section, we exhibit one of the most popular MCMC algorithms,
known as Gibbs sampling. In physics, this method is known as Glauber
dynamics or the heat bath method. This is the MCMC analog of
coordinate descent.

Like other MCMC methods, the Gibbs sampler constructs a Markov Chain
whose values converge towards a target distribution. Gibbs Sampling is in
fact a specific case of the Metropolis-Hastings algorithm wherein proposals
are always accepted.

Markov Chain Monte
Carlo (MCMC)
Inference

87

Track D: Machine
Learning —II (Advanced
Machine Learning)

88

For instance suppose we wanted to sample a multivariate probability
distribution(A multivariate probability distribution is a function of
multiple variables (i.e. 2 dimensional normal distribution)). We don’t know
how to sample from the latter directly. Though, because of some
mathematical convenience, we happen to know the conditional
probabilities. This is where Gibbs sampling comes in. Gibbs Sampling is
appropriate when the joint distribution is not known explicitly or is difficult
to sample from directly, but the conditional distribution of each variable is
known and is easier to sample from.

Gibbs sampling is commonly used as a means of statistical inference,
especially Bayesian inference. It is a randomized algorithm (i.e. an
algorithm that makes use of random numbers), and is an alternative to
deterministic algorithms for statistical inference such as the expectation-
maximization algorithm (EM).

The main idea of Gibbs sampling is that given a multivariate distribution,
it’s simpler to sample from a conditional distribution than from a joint
distribution. For instance, instead of sampling directly from a joint
distribution P(x,y),Gibbs sampling propose sampling from two conditional
distribution P(x|y) and P(y[x).

For a joint distribution P(x,y) , we start with a random sample (x', y').
Then we sample x" from the conditional distribution P(xx?) and
y"from the conditional distribution P(yly'”). Analogously,we sample

x® from the conditional distribution P(x|x(kl) and y(k)from the
conditional distribution P(y[y*™")

Consider the distribution p(z) = p(zi,...,zm) from which we wish to sample,
and suppose that we have chosen some initial state for the Markov chain.
Each step of the Gibbs sampling procedure involves replacing the value of
one of the variables by a value drawn from the distribution of that variable
conditioned on the values of the remaining variables. Thus we replace z;
by a value drawn from the distribution p(zi|z\i), where z; denotes the ith
component of z, and z\i denotes zj,...,zv but with z; omitted. This
procedure is repeated either by cycling through the variable in some
particular order or by choosing the variable to be updated at each step at
random from some distribution.For example, if we have D = 3 variables,
we use

541

* x| ~plx|T5,T3)

o 23T ~ p(za|xiT,)

o 3T ~ p(zalzitt,zit)

This readily generalizes to D variables. If x; is a visible variable, we do not
sample it, since its value is already known.

The expression p(x;j|x-;) is called the full conditional for variable 1.

In general, x; may only depend on some of the other variables. If we
represent p(x) as a graphical model, we can infer the dependencies by
looking at i’s Markov blanket, which are its neighbors in the graph. Thus
to sample x;, we only need to know the values of i’s neighbors.

In this sense, Gibbs samplingis a distributed algorithm. However, it is not
a parallel algorithm, since the samples must be generated sequentially.For
reasons that will be explain in later sections , it is necessary to discard
some of the initial samples until the Markov chain has burned in, or
entered its stationary distribution. We will discuss how to estimate when
burnin has occured next section . In the examples below, we just discard
the initial 25% of the samples, for simplicity.

To better explain Gibbs Sampling , let us consider a simple example.
Suppose we assume that we have two events A and B. Assume that the
joint probability that the event will happen is given as:

e P(A and B) = 0.2 (both events will happen)

e P(A and not B) = 0.4 (only event A will happen)

e P(not A and B) = 0.3 (only event B will happen)

e P(not A and not B) = 0.1 (neither A nor B will happen)

Suppose now we want to sample fro the joint distribution above. We need
to generate a sequence of pairs (x,y) where x,y € {0,1}. For
example, (1,0) indicates that only event A has happened.

Obviously there is a simple way of sampling from the joint distribution
above by taking a unit interval and dividing it into four parts, where the
area of each part is equal to the probability above.

For example, we can generate a random number n between 0 and n. If n is
between 0 and 0.2 , then our sample is (1,1), if n is between 0.2 and 0.6,
our sample is (1,0) and analogously for others. For this simple example,
the method with unit interval is more convenient than Gibbs sampling but
for some more complicated examples, especially with continuous
distributions, we can’t use this method

Gibbs sampling can be applied to the following examples :
1. Isingmodel :

In many cases where we are interested in doing inference, we can't do it
exactly. With such cases, we can approximate the true distribution using
samples from it. Let's look at a model where we need to use techniques
like the Ising model .

The Ising model isn't the only one where sampling techniques like the
ones we'll discuss are useful, and these techniques aren't the only way to
do approximate inference here, but they provide a convenient story for
illustrating both ideas.

Markov Chain Monte
Carlo (MCMC)
Inference

89

Track D: Machine
Learning —II (Advanced
Machine Learning)

920

Gibbs sampling in pairwise MRF/CREF takes the form:

,”{-IL! ;X—f 7 g}l X H !".:"H! [\.‘TH o i) }

scnbr(t)

In the case of an Ising model with edge potentials (X, X;) = exp(JxXy),
where x€{—1, +1}

2. For inferring the parameters of a GMM :

It is straightforward to derive a Gibbs sampling algorithm to “fit” a
mixture model, specifically if we use conjugate priors. We will
emphasis on the case of mixture of Gaussians, although the results are
easily extended to other kinds of mixture models.

Suppose we use a semi-conjugate prior. Then the full joint distribution
is given by:

K

p(x,z, p. X, w) = p(x|z, p, X)p(z|m)p(w) HP(#A-JP{EA-)
k=1

N K B
= (HH tm-.-\-"{x,m.,E;,-i:i:"‘"'*"]) X
i=1k=1
;;
Dir(m|a) H N (2. |my, Vo) IW (2 |So, %)
k=1

The same prior is used for each mixture component.

Even though it is easy to implement, Gibbs sampling for mixture
models has a major weakness. The problem is that the parameters of
the model 0, and the indicator functions z, are unidentifiable, since we
can arbitrarily permute the hidden labels without affecting the
likelihood. Accordingly, we cannot just take a Monte Carlo average of
the samples to compute posterior means, since what one sample
considers the parameters for cluster 1 may be what another sample
considers the parameters for cluster 2. Indeed, if we could average
over all modes, we would find E [uk|D] is the same for all k (assuming
a symmetric prior). This is called the label switching problem.

In certain cases, we can analytically integrate out some of the
unknown quantities, and just sample the rest. This is called a collapsed
Gibbs sampler, and it tends to be much more efficient, since it is
sampling in a lower dimensional space.

Suppose we sample z and integrate out 6. Thus the 0 parameters do not
participate in the Markov chain; therefore we can draw conditionally
independent samples which will have much lower variance than
samples drawn from the joint state space .This process is called Rao-
Blackwellisation.This process can reduce statistical variance, it is only
worth doing if the integrating out can be done quickly, otherwise we

will not be able to produce as many samples per second as the naive
method.

Gibbs sampling for hierarchical GLMs: Frequently we have data
from multiple related sources. If some sources are more reliable and/or
data-rich than others, it makes sense to model all the data
simultaneously, so as to enable the borrowing of statistical strength.
One of the most natural way to solve such problems is to use
hierarchical Bayesian modeling, also called multi-level modeling. In
earlier section wedeliberated a way to perform approximate inference
in such models using variational methods. It can also be done using
Gibbs sampling.

Example : Suppose we have data on studentsin diferent schools. Such
data is naturally modeled in a two-level hierarchy:

we let y;; be the response variable we want to predict for student i in
school j.

This prediction can be based on school and student specific covariates,
Xjj -

Since the quality of schools varies, we want to use a separate parameter
for each school. So our model becomes yij = x;;'w; + [

We might fit each w; separately, but this can give poor results if the
sample size of a given school is small. We can get better results if we
construct a hierarchical Bayesian model, in which the w; are assumed to
come from a common prior: wj~ N (L, Zw)

In this model, the schools with small sample size borrow statistical
strength from the schools with larger sample size, because the wj ’s are
correlated via the latent common parents (y, Zw).

Gibbs sampling is so popular since it is possible to design general
purpose software that will work for almost any model which is one of
the reason. This software just needs a model specification, usually in
the form a directed graphical model (specified in a file, or created with
a graphical user interface), and a library of methods for sampling from
diferent kinds of full conditionals. BUGS is an example of an
packagewhich stands for “Bayesian updating using Gibbs Sampling”.
BUGS is very broadly used in biostatistics and social science. Another
more recent, but very similar, package is JAGS which stands for “Just
Another Gibbs Sampler”. This uses a similar model specification
language to BUGS.

The Imputation Posterior or IP algorithm is a special case of Gibbs
sampling in which we group the variables into two classes:

e hidden variables z and
e parameters 0.

Markov Chain Monte
Carlo (MCMC)
Inference

91

Track D: Machine
Learning —II (Advanced
Machine Learning)

92

It is basically an MCMC version of EM, where the E step gets replaced
by the I step, and the M step gets replaced the P step. This is an
example of a more general strategy called data augmentation, whereby
we introduce auxiliary variables in order to simplify the posterior
computations (here the computation of p(6|D)).

Gibbs sampling can be quite slow, since it only updates one variable at
a time (so-called single site updating). If the variables are highly
correlated, it will take a long time to move away from the current state.
If the variables are highly correlated, the algorithm will move very
slowly through the state space. In particular, the size of the moves is
controlled by the variance of the conditional distributions. If this is £ in
the x; direction, and the support of the distribution is L along this
dimension, then we need O((L/0)%) steps to obtain an independent
sample. In some cases we can efficiently sample groups of variables at
a time. This is called blocking Gibbs sampling or blocked Gibbs
sampling.

6.3 METROPLOIS HASTINGS ALGORITHM

Even though Gibbs sampling is simple, it has some drawbacks :

e [t is somewhat restricted in the set of models to which it can be
applied. For example, it is not much help in computing p(w|D) for a
logistic regression model, since the corresponding graphical model has
no useful Markov structure.

e (Gibbs sampling can be quite slow.

Fortunately, there is a more general algorithm that can be used, known as
the Metropolis Hastings or MH algorithm.

The Metropolis-Hastings algorithm is one of the most popular Markov
Chain Monte Carlo (MCMC) algorithms. Like other MCMC methods, the
Metropolis-Hastings algorithm is used to generate serially correlated
draws from a sequence of probability distributions. The sequence
converges to a given target distribution.

The Metropolis-Hastings algorithm requires only two things:

1. The ability to compute unnormalized probabilities of samples px(x):
here, unnormalized is okay because we'll only be interested in ratios

2. A proposal distribution V (x'[x), which tells us how to generate the next
sample x' given the current sample x.

The elementary idea in MH is that at each step, we propose to move from
the current state x to a new state x’ with probability q(x" [x), where q is
called the proposal distribution (also called the kernel). The user is free to
use any kind of proposal they want, subject to some conditions which we
explain below. This makes MH quite a flexible method. A commonly used
proposal is a symmetric Gaussian distribution centered on the current
state, q(x' [x) = N (x' |x, X); this is called a random walk Metropolis

algorithm. If we use a proposal of the form q(x’ [x) = q(x"), where the new
state is independent of the old state, we get a method known as the
independence sampler, which is similar to importance sampling. Having
proposed a move to X', we then decide whether to accept this proposal or
not according to some formula, which ensures that the fraction of time
spent in each state is proportional to p*(x). If the proposal is accepted, the
new state is X', otherwise the new stateis the same as the current state, x
(i.e., we repeat the sample). If the proposal is symmetric, so q(x’ [x) =
q(x|x"), the acceptance probability is given by the following formula: r =
min(1, p*(x")/ p*x).

We see that if x" is more probable than x, we definitely move there (since
p*(x")/ p*(x) > 1), but if x" is less probable, we may still move there
anyway, depending on the relative probabilities. So instead of greedily
moving to only more probable states, we occasionally allow “downhill”
moves to less probable states.

If the proposal is asymmetric, so q(x’ [x) [1= q(x[x"), we need the Hastings
correction, given by the following:

r = min(l, a)

p*(x)g(x|x") p*(x')/q(x|x)
rr(x)g(x'|x) pr(x)/q(x|x’)

o =

This correction is needed to compensate for the fact that the proposal
distribution itself (rather than just the target distribution) might favor
certain states.

It turns out that Gibbs sampling, is a special case of MH. In particular, it
is equivalent to using MH with a sequence of proposals of the form q(x’
X) = p(xi" [x-)I(x" = x-;). That is, we move to a new state where x; is
sampled from its full conditional, but x; is left unchanged.

Some important points to note for MH:
(a) Choosing a good proposal distribution can be tricky, and is
usually problem-dependent.

(b) Notice that we initialized completely arbitrarily: in many cases,
this initialization could be in a particularly low-probability
location. A common practice is to wait K iterations before
collecting any samples, to avoid any artifacts from initialization.
In this case, K is known as the burn-in time.

(c) Another somewhat common practice is to not save every single
sample, but rather to wait a xed number of iterations between
each save. This prevents samples from beingdependent on each
other, but is not necessarily a problem for a well-chosen proposal
distribution with enough samples.

Proposal distributions: For a given target distribution p*, a proposal
distribution q is valid or admissible if it gives a non-zero probability of

Markov Chain Monte
Carlo (MCMC)
Inference

93

Track D: Machine
Learning —II (Advanced
Machine Learning)

94

moving to the states that have non-zero probability in the target. Formally,
we can write this as supp(p*) SUxsupp(q(:[x))

Following types of proposal distribuitons can be used :

1. Gaussian proposals: If we have a continuous state space, the Hessian
H at a local mode W can be used to define the covariance of a Gaussian
proposal distribution. This approach has the advantage that the Hessian
models the local curvature and length scales of each dimension; this
approach therefore avoids some of the slow mixing behavior of Gibbs
sampling.

2. Mixture proposals: If one doesn’t know what kind of proposal to use,
one can try a mixture proposal, which is a convex combination of base
proposals.

K

q(x'|x) = Z wiqr (x'|x)

k=1

where wy are the mixing weights. As long as each qx is
individually valid, the overall proposal will also be valid.

3. Data-driven MCMC: The most efficient proposals depend not just on
the previous hidden state, but also the visible data, i.e., they have the
form q(x' [x, D). This is called data-driven MCMC. To create such
proposals, one can sample (x, D) pairs from the forwards model and
then train a discriminative classifier to predict p(x|/f(D)), where f(D)
are some features extracted from the visible data.

Adaptive MCMC: One can change the parameters of the proposal as the
algorithm is running to increase efficiency. This is called adaptive
MCMC. This allows one to start with a broad covariance , allowing large
moves through the space until a mode is found, followed by a narrowing
of the covariance to ensure careful exploration of the region around the
mode.

It is essential to start MCMC in an initial state that has non-zero
probability. If the model has deterministic constraints, finding such a legal
configuration may be a hard problem in itself. It is therefore common to
initialize MCMC methods at a local mode, found using an optimizer.

Reversible jump (trans-dimensional) MCMC: Suppose we have a set
of models with diferent numbers of parameters, e.g., mixture models in
which the number of mixture components is unknown. Sampling in spaces
of differing dimensionality is called transdimensional MCMC.

The difficulty with this approach arises when we move between models of
diferent dimensionality. The problem is that when we compute the MH
acceptance ratio, we are comparing densities defined in diferent
dimensionality spaces, which is meaningless. It is like trying to compare a
sphere with a circle. The solution, proposed by (Green 1998) and known

as reversible jump MCMC or RIMCMC, is to enhance the low
dimensional space with extra random variables so that the two spaces have
a common measure.

6.4 SPEED AND ACCURACY OF MCMC

In this section, we discuss a number of important theoretical and practical
issues to do with MCMC.

1. The burn-in phase: We begin MCMC from an arbitrary initial state.
Only when the chain has “forgotten” where it started from will the
samples be coming from the chain’s stationary distribution. Samples
collected before the chain has reached its stationary distribution do not
come from p*, and are usually thrown away. The initial period, whose
samples will be ignored, is called the burn-in phase.

2. Mixing rates of Markov chains: The amount of time it takes for a
Markov chain to converge to the stationary distribution, and forget its
initial state, is called the mixing time.

3. Practical convergence diagnostics: Computing the mixing time of a
chain is in general quite difcult, since the transition matrix is usually
very hard to compute. In practice various heuristics have been
proposed to diagnoseconvergence. Firmly speaking, these methods do
not diagnose convergence, but rather non-convergence. That is, the
method may claim the chain has converged when in fact it has not.
This is a flaw common to all convergence diagnostics, since
diagnosing convergence is computationally intractable in general One
of the simplest methods to evaluating when the method has converged
is to run multiple chains from very diferentoverdispersed starting
points, and to plot the samples of some variables of interest. This is
called a trace plot. If the chain has mixed, it should have “forgotten”
where it started from, so the trace plots should converge to the same
distribution, and thus overlap with each other

Accuracy of MCMC:The samples produced by MCMC are auto-
correlated, and this reduces their information content relative to
independent or “perfect” samples.

A natural question to ask is: how many chains should we run? We could
either run one long chain to ensure convergence, and then collect samples
spaced far apart, or we could run many short chains, but that wastes the
burnin time. In practice it is common to run a medium number of chains
(say 3) of medium length (say 100,000 steps), and to take samples from
each after discarding the first half of the samples. If we initialize at a local
mode, we may be able to use all the samples, and not wait for burn-in.

6.5 SUMMARY

In this chapter we saw Markov chain Monte Carlo (MCMC) methods
which encompass a class of algorithms for sampling from a probability

Markov Chain Monte
Carlo (MCMC)
Inference

95

Track D: Machine
Learning —II (Advanced
Machine Learning)

96

distribution. By constructing a Markov chainthat has the desired
distribution as its equilibrium distribution, one can obtain a sample of the
desired distribution by recording states from the chain. The more steps that
are included, the more closely the distribution of the sample matches the
actual desired distribution. Various algorithms exist for constructing
chains, like Gibbs sample, Metropolis—Hastings algorithm were discussed.

6.6 EXERCISE

1.

What is Markov chain Monte Carlo (MCMC) inference? Why it is
needed?

2. What is Gibbs sampling? Give an example

3. Explain working of Gibbs sampling with an example.
4. Explain briefly Metropolis Hastings algorithm.

5. What is proposal distribution ? what are its types?

6. What is reversible jump MCMC?

7. Discuss Speed and accuracy of MCMC.

6.7 REFERENCES

Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The
MIT Press Cambridge (2012).

Introducing Monte Carlo Methods with R, Christian P. Robert,
George Casella, Springer, 2010

Introduction to Machine Learning (Third Edition): EthemAlpaydin,
The MIT Press (2015).

Pattern Recognition and Machine Learning: Christopher M. Bishop,
Springer (2006)

o, O O 0
0.0 0.0 0.0 0.0

GRAPHICAL MODEL STRUCTURE
LEARNING

Unit Structure :

7.0
7.1

7.2.

7.3

7.4

7.5

7.6

Objectives

Introduction

Structure learning for knowledge discovery

7.2.1 Relevance networks

7.2.2 Dependency networks

Learning tree structures

7.3.1 Directed or undirected tree

7.3.2 Chow-Liu algorithm for finding the ML tree structure
7.3.3 Finding the MAP forest

7.3.4 Mixtures of trees

Learning DAG structure with latent variables

7.4.1 Approximating the marginal likelihood for missing data
7.4.2 Structural EM

7.4.3 Discovering hidden variables

7.4.4 Structural equation models

Learning causal DAGs

7.5.1 Causal interpretation of DAGs

7.5.2 Using causal DAGs to resolve Simpson’s paradox
7.5.3 Learning causal DAG structures

Learning undirected Gaussian graphical models

7.6.1 MLE for a GGM

7.6.2 Graphical lasso

7.6.3 Bayesian inference for GGM structure

7.6.4 Handling non-Gaussian data using copulas

97

Track D: Machine
Learning —II (Advanced
Machine Learning)

98

7.7 Learning undirected discrete graphical models
7.7.1 Graphical lasso for MRFs/CRFs
7.7.2 Thin junction trees

7.8 Summary

7.9 References

7.0 OBJECTIVES

At end of the course the students will be able to:

e Describe the Structured learning and DAGs Learning
e Explain the Gaussian and discrete undirected graph models

e Analyse the different types of graph models to the applications

7.1 INTRODUCTION

A graphical model is a way to represent the dependencies between random
variables using a graph. In a graphical model, each node represents a
random variable, and each edge represents a conditional dependence
between variables.

Graphical models are commonly used in machine learning, statistics, and
artificial intelligence to model complex systems and make predictions.
They can be used to solve problems such as classification, regression, and
clustering.

There are two main types of graphical models: (i) Bayesian networks (ii)
Markov networks.

(i)Bayesian networks, also known as belief networks, represent the joint
probability distribution of a set of random variables as a directed acyclic
graph.

(ii))Markov networks, also known as undirected graphical models or
Markov random fields, represent the joint probability distribution as an
undirected graph.

Graphical models provide a compact and intuitive way to represent
complex probabilistic relationships between variables, and they have been
widely used in a variety of fields including computer vision, natural
language processing, and bioinformatics.

(i, (e A, SRR S i, A
bible) | case '{mum\ \iewdeme} L chlldreﬂ] mnmﬂ fEauuch]
b o i h e

= Y | =
'Lghrtsmn) \tm:h \Lsmel_, Rgmemmem (enﬂh;(& 'xnm 52 (:Iunnr)

(g-: human) uews\‘ (\-mr\ﬁ ¢ _pl.'ESIliel‘ll ,) (knr‘m[\‘ hhuﬂbe—) (Tnmn Y

&

f \F\ﬂ}) Gampu[frx}\‘_rehgmn umrld] ™ | G @[} T

ghs))

\;{'IME___J i
(:_un'n-'emiry__) '

Figure 7.1Part of a relevance network constructed from the 20-news

7.2 STRUCTURE LEARNING FOR KNOWLEDGE
DISCOVERY

Since computing the MAP graph or the exact posterior edge marginal is in
general computationallyintractable.

Methodsfor learning graph structures used to visualize one’s data are:
(i) Relevance networks (ii) Dependency networks
Limitations:

The resulting models donot constitute consistent joint probability
distributions, so they cannot be used for prediction,and they cannot even
be formally evaluated in terms of goodness of fit.

Benefit:
Thesemethods are a useful ad hoc tool based on theirspeed and simplicity.
7.2.1 Relevance networks

A relevance network is a way of visualizing the pairwise mutual
information between multiple random variables:

Choose a threshold and draw an edge from node 1 to node j if]l (Xi;Xj) is
above this threshold.

In the Gaussian case
—:: - - - _ [; 2
I(X;; X;) =—35log(l — p;

Where pj; is the correlation coefficient,

Graphical Model
Structure Learning

929

Track D: Machine
Learning —II (Advanced
Machine Learning)

100

[llustrate the idea using natural languagetext. Figure 7.1 gives an example,
where MI (Mutual Information)is visualizedbetween words in the
newsgroupdataset from Figure 7.2.

100
200
300
400 E i

500

documeants

500
7o0
o0 B

oo0 {5

1000 B == ' == m
10 20 90 40 50 B0 FO 80 90 100

words

Figure 7.2 Newsgroup dataset

Subset of size 16242 x 100 of the 20-newsgroups data. Each row is a
document (represented as a bag-of-words bit vector), each column is a
word. The red lines separate the 4 classes, which are (in descending order)
comp, rec, sci, talk,there are subsets of words whose presence or absence
is indicative of the class.

Drawback:

The graphs are usually very dense,since most variables are dependent on
most other variables, even after thresholding the MIs.

For example, suppose X; directly influences X, which directly influences
X3. Then X has non-zero MI with X3, so there will be a 1 — 3 edge in the
relevance network.

Indeed, most pairs will beconnected.

A better approach is to use graphical models, which represent conditional
independence, rather than dependence. In the above example, X, is
conditionally independent of X3 given X,, so there will not be a 1 — 3
edge. Consequently graphical models are usually much sparser than
relevance networks, and hence are a more useful way of visualizing
interactions between multiple variables

7.2.2 Dependency networks

Dependency network :A simple and efficient way to learn a graphical
model structure is to independently fit D sparsefull-conditional
distributions p(x| X—t).

The chosen variables constitute the inputs to the node, i.e., its Markov
blanket. Then the resulting sparse graph can be visualized.

Advantage over relevance networks: Redundant variables will not be
selected as inputs.

Any kind of sparse regression or classification method is used to fit each
CPD (Conditional Probability Distribution) uses classification/ regression
trees, use {;-regularized linear regression, use {;-regularized logistic
regression,uses Bayesian variable selection, etc.

Figure 7.3 shows a dependency network that was learned from the 20-
newsgroup data using {; regularized logistic regression, where the penalty
parameter A was chosen by Bayesian Information Criterion (BIC). Many
of the words present in these estimated Markov blankets represent fairly
natural associations However, some of the estimated statistical
dependencies seem less intuitive, such as baseball:windows and
bmw:christian. We can gain more insight if we look not only at the
sparsity pattern, but also the values of the regression weights. For
example, here are the incoming weights for the first 5 words shown in
Table 7.1.

@O0

& @ e @ ()
- & [| 3
&/ @ @ @ @ & ®
=\ |2 e/ | @\ . ® @
&= &\ @] e ® = |\ & =@
@ @e @ | (=) =)
@ | () & |\ =) = () G @) ||| 1) =)
k5 | e | A
&)\] () @) G ® / = ||| | e
Ii \
) N @) @ ® & =
& & (& e @
@ @ (& 0o) =S
)) &

Figure 7.3 Dependency networkfrom the 20-

Words in italic red have negative weights, which represents a dissociative
relationship. Forexample, the model reflects that baseball:windows is an
unlikely combination. It shows thatmost of the weights are negative (1173
negative, 286 positive, 8541 zero) in this model.

Graphical Model
Structure Learning

101

Track D: Machine
Learning —II (Advanced
Machine Learning)

102

7.3 LEARNING TREE STRUCTURES

The fully specified joint probability models can be used for density
estimation, prediction and knowledge discovery.The problem of structure
learning for general graphs is NP-hard, so start by considering the special
case of trees.

O—0O

/|
@ O

(al

O—0

/|
® ®

(b)

O—0
/)

@

(c)

®

Figure 7.4 An undirected tree and two equivalent directed trees

Table 7.1

7.3.1 Directed or undirected tree

A directed tree, with a single root node r, defines a joint distribution as

follows:
Words Relationship and Weights
aids children disease Fact health president research
(0.53) (0.84) 0.47) 0.77) (0.50) 0.53)

Base christian drive games God government hit memory players season | Software | Windows
ball (-0.98) (-0.49) (0.81) (-0.46) (-0.69) (0.62) (-1.29) (1.16) (0.31) (-0.68) (-1.45)
Card christian Fact god Jesus orbit Car program | religion version

bible
(-0.88) 0.49) 0.21) (1.01) 0.68) (0.83) (-0.72) (-0.56) 0.24) 0.49)
b car christian engine god government help windows
(0.60) (-11.54) | (0.69) (-0.74) (-1.01) (-0.50) (-1.43)
Disease | medicine | patients | research studies
cancer
0.62) (0.58) (0.90) (0.49) (0.70)

P(X|TJ = H p(.:l'i_- |I'pat‘1 }}

in Figure 7.4(b-c),

p(x1, 22,23, 24|T)

teV

where we define pa(r) = @. For example,

p(z1)p(x2|z1)p(23|22) (24| 72)
p(z2)p(z1|z2)p(23|22) (24| 72)

The choice of root does not matter: both of these models are equivalent.

To make the model more symmetric, it is preferable to use an undirected
tree. This can berepresented as follows:

P(Ts, Tt)

[T = Ty T Y]
p(x|T) = [(=) p(zs)p(ze)

teV (s.t)eRE

m

where p(Xs, x¢) is an edge marginal and p(x;) is a node marginal. For
example, in Figure 7.4(a)

p(xy, x2)p(T2, 3)p(T2, T4)

p(z1, 22,3, 24|T) = p(z1)p(z2)p(23)p(24)

}P(l‘-zal‘a_}ﬁ(fzﬁﬂ.l}
p(z2) p(x2)
p(z1)p(z2|x1)p(xs|z2)p(T4|T2)
= p(xy)p(zy|2e)p(2a|z2)p(T4]T2)
where p(z¢|zs) = p(zs, 7t)/p(2s).

p(x1, 22,23, 14|T) = p(21,72

A tree can be represented as either an undirected or directed graph: the
number ofparameters is the same, and hence the complexity of learning is
the same. Theinference is the same in both representations.

The undirected representation, which issymmetric, is useful for structure
learning, but the directed representation is more convenientfor parameter
learning.

7.3.2 Chow-Liu algorithm for finding the ML tree structure

The log-likelihood for a tree is as follows:

logp(D|6,T) = Y) Nylogp(z, = k|6)
t k
_ (s = j. 2 = k|O
+ Y Noggulog A2 =18 = HF)
s p(zs = j|0)p(z: = k|0)
N..j1 - the number of times;
s : node

j,Lk : state in node s

N, :Number of times node t in state k

Rewriting these counts in terms of the empiricaldistribution:
Netsie = NPy (5=, 2~ K) and Ny, = NP, (2=).

Setting 6 to theMLEs, becomes

p(z1)p(z2)p(z2)p(73)p(T2)P(74)

Graphical Model
Structure Learning

103

Track D: Machine
Learning —II (Advanced
Machine Learning)

104

log p(D|@,T)
N - Z Z pcmp(-'fg = k) log pcmp(ri =k)

teV k
+ Z W{4is, %e| 0 s
(s,t)CE(T)

where I(z,,7,|60,) > 0 is the mutual information between x, and x, given the empirical
distribution:

; r pcmp(l's = e Ep= k)
1(@s: 2:10t) = Pomp(Ts = J. 7 = k) lo , (26.12)
t‘ t Z}:;p mp Js T 2 Pcmp(irs = .”pcmp(-Tc = ,li‘)

Chow-Liu algorithm : The tree topology that maximizes the likelihood
can be found bycomputing the maximum weight spanning tree, where the
edge weights are the pairwise mutualinformations,|l(ys, Yt Ost).

There are several algorithms for finding a max spanning tree (MST).

Prim’s algorithm and Kruskal’s algorithm are the best algorithms to run in
O(E log V) time,

where E = V? is the number of edges and V is the number of nodes.

So, overall running time is O(NV? + V2 log V), where thefirst term is the
cost of computing the sufficient statistics.

Figure 7.5 gives an example of the method in action, applied to the binary
20 newsgroupsdata. The tree has been arbitrarily rooted at the node
representing “email”.

=
-

&
&

0
@ @ “(EID-...

@@O@ ,,@m@ T
ok 6O j@o@cm@m@@o e
9 f&“O@h@m @
@

®

@m«v‘)
@@%@@@y (,/ \‘:9
- @HEDE
@Q(mo@ Lo ®
Oﬁ@ @Q}Oﬂ@w@@@@@

goe®
Figure 7.5The MLE tree on

7.3.3 Finding the MAP forest

Since all trees have the same number of parameters, the maximum
likelihoodscore is used as a model selection criterion

Since inference in a forest is much faster thanin a tree a forest is fitted
rather than a single tree,The MLE criterionwill never choose to omit an
edge. However, if the marginal likelihood or a penalizedlikelihood (such
as BIC), are used the optimal solution may be a forest. The details for
themarginal likelihood case resulting expression:

Graphical Model
Structure Learning

105

Track D: Machine N

Learning —II (Advanced
Machine Learning) logp(DIT) = " log [Hp (Zit|Xi par)| 00)P(8:)d6; = Zscme (Ni.pag))
telV

where N, ..+ are the counts for node t and its parents, and score is
[

11 - &
score(Ny pae)) = H

c=1

B(N¢c + ayc)
B(a'ic)

DAGs with at most one parent.

Associate a weight with each s — t edge, ws,t ! score(t|s) — score(t|0),
wherescore(t|0) is the score when t has no parents.

Then the objective as follows:
logp(D|T) = Z score(t|pa(t)) = Z Wpa(t),t + Z: score(t|0)
t t t

7.3.4 Mixtures of trees

e A single tree is rather limited in its expressive power.

e Amixture of trees is mixture of component may have a different tree
topology. This is an unsupervised version ofthe TAN classifier.

e It can be fitted a mixture of trees by using EM: in theE step, compute
the responsibilities of each cluster for each data point, and in the M
step,use a weighted version of the Chow-Liu algorithm.

e [t is possible to create an “infinite mixture of trees”, by integrating out
over all possibletrees. This can be done in V* time using the matrix tree
theorem.

74 LEARNING DAG STRUCTURE WITH LATENT
VARIABLES

Sometimes the complete data assumption does not hold, either because of
missing data,and/ or because of hidden variables. In this case, the marginal
likelihood is given by

p(D|G) = fzp('p,h 8, G)p(0)G)do = Z/})(D. h|6, G)p(6|G)do
h h

where h represents the hidden or missing data.

In general this is intractable to compute. For example, consider a mixture
model, wherethe cluster label is not observed. In this case, there are KN
possible completions of thedata;

106

The inner integral can be evaluated for each one of theseassignments to h. Graphical Model
Structure Learning
7.4.1 Approximating the marginal likelihood for missing data

The simplest approach is to use standard structure learning methods for
fully visible DAGs,but to approximate the marginal likelihood. some
faster deterministic approximations.

(1) BIC approximation

(i1) Cheeseman-Stutz approximation
(i11) Variational Bayes EM

(i) BIC approximation

A simple approximation is to use the BIC score, which is given by

. N
BIC(G) 2 log p(D|d. G) — 2

dim(G)

where dim(G) is the number of degrees of freedom in the model
"0 is the MAP(Maximum A Posteriori) or MLestimate.

(ii) Cheeseman-Stutz approximation (CS)

Compute a MAP estimate of the parameters "0.

Denote the expected sufficient statistics of the data by D = D("0);

In the case of discretevariables, “fill in” the hidden variables with their
expectation.

Then use the exactmarginal likelihood equation on this filled-in data:
H(DIG) ~ p(DIG) = [p(DI6, G)p(6IG)d6

To sum over all values of h
log p(D|G) = log p(D|G) + log p(D|G) — log p(D|G)

and then apply a BIC approximation to the last two terms:

— - N -
logp(D|G) —logp(D|G) = {lagp(@'@, G)— 5 dim[ﬂ)}
. N .. i
= [logp('Dw. G) — ?dlll‘l(H]J
= logp(D|8,G) —logp(D|6,G)

log p(DP|G) = log p(D|G) + log p(P|0, G) —log p(D|6, G)

107

Track D: Machine
Learning —II (Advanced
Machine Learning)

108

p(D|G) - Computed by plugging in the filled-in data into the exact
marginallikelihood.

p(D|"0 ,G) - Computed using an inference algorithm.

The finalterm p(D|"0,G) can be computed by plugging in the filled-in data
into the regular likelihood.

(iii) Variational Bayes EM

An even more accurate approach is to use the variational Bayes EM
algorithm.

key idea is to make the following factorization assumption:

p(0,21.8|D) ~ q(0)q(z) = q(qu(zf}

where z; are the hidden variables in case i. In the E step, update the q(zi),
and in theM step, update q(0). The corresponding variational free energy
provides a lower bound onthe log marginal likelihood.

Example: college plans revisited

i ;\ p(H=0) =063

N A plH=D)=037
PE H_pOQ=HgPER) | o o | & eEENeN
T 0 0.098) (T ?“_ﬁg
Tow | 022 i
high 0 021 1 >
high I 049 =
(e

W 5
(19 SES 1Q PE p(CP=yesSESIQPE)

low low low 0011

SES SEX p(PE=highlSES SEX) v law dugh AT
— . low high Tow 0124

B sk 0.3 C -[_‘p> bw hish high 0.53
low female 0.166 —

high low low 0.093
high male 0.86 high low high 0.39
high female 0.81 high high low 024
high high high 0.84

Figure 7.6The most probable DAG with a single binary hidden variable

learned from the Sewell-Shah data. MAP estimates of the CPT entries are

Let us revisit the college plans dataset.

e Sex Male or female
e SES Socio economic status: low, lower middle, upper middle or high.

e [Q Intelligence quotient: discretized into low, lower middle, upper
middle or high.

¢ PE Parental encouragment: low or high
e CP College plans: yes or no.

If ignore thepossibility of hidden variables are ignored there was a direct
link from socio economic status to IQ in theMAP DAG.

Alternate:

e Introduce a hiddenvariable H, which is considered as a parent of both

SES and IQ, representing a hidden common cause

Consider a variant in which H points to SES, IQ and PE.

Consider dropping none, one, or both of the SES-PE and PE-1Q edges.

Vary the numberof states for the hidden node from 2 to 6.

Compute the approximate posterior over8 x 5 = 40 different models,

using the CS approximation.

Most probable model found is shown in Figure 7.6.

e This is 2 - 1010 timesmore likely than the best model containing no
hidden variable.

e Itisalso 5 - 109 times morelikely than the second most probable model
with a hidden variable.

e So again the posterior isvery peaked.

Results suggest that there is a hidden common cause underlying both
thesocio-economic status of the parents and the 1Q of the children.

By examining the CPT entries,that both SES and IQ are more likely to be
high when H takes on the value 1.

7.4.2 Structural EM

Structural EM algorithm: Instead of fitting each candidate neighboring
graph and then filling in its data, fill in the data once, and use this filled-in
data to evaluate the score of all the neighbors.

It is a bad approximation to the marginal likelihood,

It is a good enough approximation of the difference in marginal
likelihoods between different models, in order to pick the best neighbor.

More precisely, define D(Gy, 0y) to be the data filled in using model Gy
with MAP parameters

log N

scoregyc (G, D) = log p(D 6. G) — dim(G) + log p(G) + log p(8|G)

Which includes the log prior for the graph and parameters.

A graph G which increases the BIC score relative to Gy on the
expecteddata, it will also increase the score on the actual data, i.e.,

SCGI'C‘B[C{G{.ﬁ{Gu. 9@]} — SCU['E‘B[(:(G'D.ﬁ['G'g. gﬂ} S SL‘()!'QBlc(G. T)) — SCOI'E‘.Bic(Gg. n

Algorithm:

¢ Initialize with some graphGy and some set of parameters 0.
e Fill-in the data using the current parameters—the expected counts for
any particular family, Performinference using current model.

Graphical Model
Structure Learning

109

Track D: Machine
Learning —II (Advanced
Machine Learning)

110

e Evaluate the BIC score of all of the neighbors usingthe filled-in data,
and pick the best neighbor.

e Refit the model parameters, fill-in thedata again, and repeat.

e For increased speed, choose only refit the model every fewsteps, since
small changes to the structure hopefully won’t invalidate the parameter
estimatesand the filled-in data too much.

Applications: Learn a phylogenetic tree structure., to learn sparse mixture
models

health

Y Y
games 104 ‘hu-‘mnll f\lu;\.‘l-'\‘ .

Figure 7.7 Part of a hierarchical latent tree learned from the 20-

7.4.3 Discovering hidden variables

Performs structure learning in the visible domain, and then look for
structuralsignatures, such as sets of densely connected nodes (near-
cliques); introduce a hidden variableand connect it to all nodes in this
near-clique; and then let structural EM sort out the details.

Limitation:

This technique does not work too well, since structure learning algorithms
arebiased against fitting models with densely connected cliques.

Latentclass model: It is aflat mixture model; the discrete latent variable
provides a compressed representation of its children.Create hidden
variables with high mutual information with their children.

Hierarchical latent class model: Creating a tree-structured hierarchy of

o
=
II|

eI pOwer
- e

Figure 7.8 A partially latent tree learned from the 20-newsgroup data. Note that some words
can have multiple meanings, and get connected to different latent variables, representing

different “topics”.

latent variables, each of whichonly has to explain a small set of children.
A greedy local search algorithm is used to learn such structures, based on
addingor deleting hidden nodes, adding or deleting edges, etc.

Figure 7.7 shows separate clusters concerning medicine, sports and
religion. Thisprovides an alternative to LDA and other topic models with
the added advantagethat inference in latent trees is exact and takes time
linear in the number of nodes.

In an alternative approach the observed data is notconstrained to be at the
leaves.

This method starts with the Chow-Liu tree on the observeddata, and then
adds hidden variables to capture higher-order dependencies between
internalnodes.

This results in much more compact models, as shown in Figure 7.8.
Advantage:

Has better predictive accuracy than other approaches, such as mixture
models, or trees whereall the observed data is forced to be at the leaves.

Graphical Model
Structure Learning

111

Track D: Machine
Learning —II (Advanced
Machine Learning)

112

7.4.4 Structural equation models (SEM)

Structural equation model (Path Diagrams) : Special kind of directed
mixed graph possibly cyclic, in which all CPDs are linear Gaussian, and in
which all bidirectededges represent correlated Gaussian noise.

SEMsare widely used in economics and social science.
SEM - a series of full conditionals as follows:
T = - Z Wiix; + €
J#i
where [~ N(0,'V).
The model is rewritten in matrix form as follows:
X =Wx+p+ [=>x=(I—W)_1(D + 1
Hence the joint distribution is given by p(x) = N(u,X) where
T=1-W)'"¢I-w) "
Draw an arc X; « X if [w;j | > 0.

e [f W is lower triangular then the graph is acyclic.

e I[fjin addition, ¥ is diagonal, then the model is equivalent to a
Gaussian DGM,; such models are called recursive.

e If¥is not diagonal, then draw a bidirected arc Xi <> Xj for each non-
zero off-diagonal term. Such edges represent correlation,

e When using structural equation models, it is common to partition the
variables into latentvariables, Z;, and observed or manifest variables
Y.

For example, Figure 7.9 illustrates thefollowing model:

X] Z]_ 0 0 Wia 0 0 0 Z]_ €1
XQ ZQ a4 0 0 0 0 0 ZQ Ea
de o Z-_; o 0 g 0 0 0 0 Z_; €3
Xal Yl |wa 0 0 0 0 0 Yi * €4
X; Y, 0 wss 0 0 0 O Y, €3
XU T—]_ 0 0 Wega 0 0 0 T—:a, €5

Wy, 0 0 0 0 0

0 Yy O 0 0 0

v_| 0 0 ¥y 0 o0 0

o 0 0 0 @_14 'I—‘_i:, 0

{0 0 0 @5.1 ‘I-';_,[, 0

0 0 0 0 0 '1155

N

i OY:
I |
zZ,.O Oz
\OZ:_a
|

OY;

Figure 7.9A cyclic directed mixed graphical model (non-recursive SEM).
Z1 — 72 — 73 — Z1 is feedback loop.

The presence of a feedback loop Z1 — Z2 — Z3 is evident from the fact
that W is not lowertriangular. Also the presence of confounding between
Y1 and Y2 is evident in the off-diagonalterms in V.

7.5 LEARNING CAUSAL DAGS

Causal models are models which can predict the effects of interventions
to, or manipulationsof, a system.

Example :

(1)An electronic circuit diagram implicitly provides a compact encodingof
what will happen if one removes any given component, or cuts any wire.

(i1) A causal medicalmodel might predict that if I continue to smoke, I am
likely to get lung cancer.

Causal claims are inherently stronger,yet more useful, than purely
associative claims, such as “people who smoke often have
lungcancer”.Causal models are often represented by DAGs

7.5.1 Causal interpretation of DAGs

Causal Markov Assumption: Directed edge A — B in a DAG to mean
that “A directly causes B”,

so if A is manipulated, then B will change.

Causal sufficiency assumption: Assuming that all relevant variables are
included in the model, i.e., there are nounknown confounders, reflecting
hidden common causes.

Perfect intervention:Assuming that the causal Markov and causal
sufficiency assumptions, use DAGs to answer causal questions.

This represents the act of setting a variable to some known value, say
setting X to x;.

A realworld example: A gene knockout experiment, in which a geneis
“silenced”.

Notational conventions used to distinguish this from observing that X;
happens to have value x;

Graphical Model
Structure Learning

113

Track D: Machine
Learning —II (Advanced
Machine Learning)

114

) G.'Eﬂ(X=zx)

AT o

X

O O

Figure 7.10Surgical interventions on X. Based on (Pe’er 2005).
Use Pearl’s do calculus notation to denote the event that we set X; to x;as:
dO(Xi = Xl)

A causal model can be used to makeinferences of the form p(x|do(X; =
Xi)), which is different from making inferences of the formp(x|Xi = x;)

Difference between conditioning on interventions and conditioning
onobservations:

Consider a2 node DGM S —> Y,
S =1 if you smoke and S = 0 otherwise,
Y =1 if you have yellow-stained fingers,and Y = 0 otherwise.

If you are observed to having yellow fingers, I am licensed to infer that
you areprobably a smoker

p(S=1]Y = 1)>p(S = 1) (26.49)

However, if I intervene and paint your fingers yellow, I am no longer
licensed to infer this, sincel have disrupted the normal causal mechanism.
Thus

p(S = 1|do(Y = 1)) = p(S = 1) (26.50)

graph surgery: (Method to model perfect interventions) represent the
joint distributionby a DGM, and then cut the arcs coming into any nodes
that were set by intervention.

Example :Figure 7.10. This prevents any information flow from the nodes
that wereintervened on from being sent back up to their parents.

Theorem. To compute p(Xi|do(Xj))for sets of nodes i, j, we can perform
surgical intervention on the Xj nodes and then use standardprobabilistic
inference in the mutilated graph.

Augmented DAG: Generalize the notion of a perfect intervention by
adding interventions as explicitaction nodes to the graph. The result is like
an influence diagram, except there are no utilitynodes. Define the CPD
p(Xi|do(Xi)) .

Fat hand intervention: Allowing an action toaffect multiple nodes; a
reference to someone trying tochange a single component of some system
(e.g., an electronic circuit), but accidently touchingmultiple components
and thereby causing various side effects.

7.5.2 Using causal DAGs to resolve Simpson’s paradox

In this section, causal reasoning is performed byapplying d-separation to
the mutilated graph.

Simpon’s paradox.: Any statistical relationship between two variables
can be reversedby including additional factors in the analysis. For
example, suppose some cause C (say, takinga drug) makes some effect E
(say getting better) more likely

P (E[C) >P (E[-C)

and yet, when condition on the gender of the patient is provoked, it has
been found that taking the drug makesthe effect less likely in both females
(F) and males (—F):

P(E|C, F) <P(E[-C, F)
P(E|C, —F) < P(E[-C, —F)

This seems impossible, but by the rules of probability, this is perfectly
possible, because theevent space where the condition triggered on (—C, F)
or (—C, —F) can be completely different to theevent space when a
condition activated on —C. The table of numbers below shows a concrete
example.

Combined Male Female
E -E Total Rate | K -F Total Rate | E —-E Total Rate
c 20 20 40 0% | 18 12 30 60% | 2 8 10 20%
-C' | 16 24 40 0% | 7 3 10 0% | 9 21 a0 0%
Total | 36 4 80 25 15 40 1 29 40

From this table of numbers,

p(E|C) =20/40 = 0.5 > p(E|~C) = 16/40 = 0.4 (26.51)
p(EIC, F) =2/10 = 0.2 <p(E[~C, F) =9/30 = 0.3 (26.52)
p(EIC, =F) = 18/30 = 0.6 < p(E|~, =F) = 7/10 = 0.7 (26.53)

Graphical Model
Structure Learning

115

Track D: Machine
Learning —II (Advanced
Machine Learning)

116

A visual representation of the paradox is given in in Figure 7.11.

Line- goes up andto the right: Effect (y-
axis) increases as the cause (x-axis)

increases.
o Dots - Data for females,
=
x
° Crosses-Data for males.
x
In eachsubgroup,the effect decreases as
" the cause increase.

Figure 7.11 Illustration of Simpson’s paradox

Effect is real, but it is still very counter-intuitive. The reason the
paradoxarises is that the statements are interpreted causally, but not using
proper causalreasoning when performing the calculations. The statement
that the drug C causes recovery Eis

(1) P(E|do(C)) > P(E|do(=C))
whereas the data shows
(i1) P(E|C) > P(E|—C)

This is not a contradiction. Observing C is positive evidence for E, since
more males thanfemales take the drug, and the male recovery rate is
higher (regardless of the drug). SoEquation (i) does not imply Equation

(i1).

7.5.3 Learning causal DAG structures

There are two ways to learn causal DAG structures.
(1) Learning from observational data
(i1) Learning from interventional data

(i) Learning from observational data

Even for infinite data, an optimal method can onlyidentify the DAG up to
Markov equivalence, it can identify the PDAG(partially directed acylic
graph), but not the complete DAG structure, because all DAGs which
areMarkov equivalent have the same likelihood.

Algorithms such as greedy equivalence search method are
Consistent estimators of PDAG structure,

Identify thetrue Markov equivalence class as the sample size goes to
infinity,

(Assumptions: Observe all thevariables. Assume that the generating
distribution p is faithful tothe generating DAG G).

All the conditional indepence (CI) properties of p areexactly captured by
the graphical structure, so I(p) = I(G);

Stable distribution: A faithful distribution that cannot be any Clproperties
in p that are due to particular settings of the parameters (such as zeros in a
regressionmatrix) that are not graphically explicit.

(ii) Learning from interventional data

Interventional data: Used to distinguish between DAGs within the
equivalence class, which have certain variables have been set, and the
consequences have been measured.

Example of this is the dataset in Figure 7.12(a)

In the example proteins in a signalling pathwaywere agitated, and their
phosphorylation status was measured using a technique called
flowcytometry.

It is straightforward to modify the standard Bayesian scoring criteria, such
as the marginallikelihood or BIC score, to handle learning from mixed
observational and experimental data:

Graphical Model
Structure Learning

117

Track D: Machine

Learning —II (Advanced

Machine Learning)

118

Sachs Mullipsrametar Flow Gyiomstry Dalasst mmwwm A eriegted

mmmwn |nhibied

&00

1200

1300

2400

3000

data point

FE00
420H])

4300

raf maki2 plcy pp? pipd ek aki phka phc 38 ok
observed biornolaculs

fa)

— Present
— — Missing
Int. edge

(b)

Figure 7.12 (a) A design matrix consisting of 5400 data points (rows) measuring
the status (using flow cytometry) of 11 proteins (columns) under different
experimental conditions. The data has been we discretized into 3 states: low
(black), medium (grey) and high (white). Some proteins were explicitly controlled
using activating or inhibiting chemicals.

(b) A directed graphical model representing dependencies between various
proteins (blue circles) and various experimental interventions (pink ovals), which
was inferred from this data. All edges for which p(Gst = 1|D) >0.5are plotted.
Dotted edges are believed to exist in nature but were not discovered by the
algorithm (1 false negative). Solid edges are true positives. The light colored
edges represent the effects of intervention.

Compute the sufficient statistics for a CPD’s parameter by skipping over
the cases where thatnode was set by intervention For example, when using
tabular CPDs, the counts are modified as follows:

nT A | = . —
1&{,:};: = Z H{J :_! - jl\- }.I'E'.P-Hl't_:' = r:l

i:T;; not set

Figure 7.12(b) shows the augmented DAG that was learned from the
interventional flowcytometry data depicted in Figure 7.12(a).

In particular, plot the median graph, whichincludes all edges for which
p(Gij = 1|D) > 0.5. It turns out that, in this example, the median model has
exactlythe same structure as the optimal MAP model, argmaxG p(G|D).

7.6 LEARNING UNDIRECTED GAUSSIAN GRAPHICAL
MODELS

Learning the structure of undirected graphical models is easier than
learning DAG structure. This precludes thekind of local search methods
(both greedy search and MCMC sampling) are used to learn
DAGstructures, because the cost of evaluating each neighboring graph is
too high, since refitting each model from scratch to be done.

Solutions to this problem, is arrived in the context of Gaussianrandom
fieldsor undirected Gaussian graphical models (GGM)s.

7.6.1 MLE for a GGM

The task ofcomputing the MLE for a (non-decomposable) GGM is called
covariance selection

The log likelihood can be written as
£(Q) = logdetQ — tr(SQ)

where Q = X—1 is the precision matrix, and

s=2¥Y 56 D7)

is the empiricalcovariance matrix.
The gradient of this is given by
Vi(Q)=Q-1-S

However, enforce the constraints that 2., = 0 if G_.= 0 (structural zeros),
andthat Q is positive definite.

Show that the MLE must satisfy the following property:

X =5,ifG,, =1 or s =, i.e., the covariance of a pair that are connected
by an edge must match theempirical covariance. In addition, 1., = 0 if

Graphical Model
Structure Learning

119

Track D: Machine
Learning —II (Advanced
Machine Learning)

120

G..= 0, by definition of a GGM, i.e.,the precision of a pair that are not
connected must be 0.

Y is a positive definitematrix completion of S, since it retains as many of
the entries in S as possible, correspondingto the edges in the graph, subject
to the required sparsity pattern on) —1, corresponding to theabsent edges;
the remaining entries in) are filled in so as to maximize the likelihood.

Example: Use the followingadjacency matrix, representing the cyclic
structure, X1-X2—X3-X4-X1, and the followingempirical covariance
matrix:

010 1 10 1 5 4

L 1010 ., |1 10 2 6

B 010 1}/ = 5 2 10 3

1010 4 6 3 10

The MLE is given by

10.00 1.00 1.31 4.00 012 -001 0 —005
5 1.00 1000 200 0.87 0 — 001 011 -002 0O
— 1131 200 100 300}) 0 -002 011 -0.03
400 087 3.00 10.00 005 0 —003 013

The constrained elements in Q,and the free elements in X, both of which
correspond to absent edges, have been highlighted.

7.6.2 Graphical lasso

Learn a sparse graph structure by using an objective that encourages
zerosin the precision matrix. By analogy to lasso one can define the
following I penalized NLL:

J(Q) = —log detQ + tr(SQ) + A||Q||;

where [|Q|; = X ; Cw, . O is the 1-norm of the matrix. This is called the
graphical lasso or Glasso.

The objective is convex, but it is non-smooth and is constrained.

lamida=36.00, nedpes-1 Bmida=27 00, nedges= 11

Figure 7.13Sparse GGMs learned using graphical lasso applied to the flow

cvtometrv data.

As an example, let us apply the method to the flow cytometry dataset. A
discretized version of the data is shown in Figure 7.12(a) which is using
original continuousdata. However, ignore the fact that the data was
sampled under intervention.

InFigure 7.13, the graph structures sweep A from O to a largevalue. These
represent a range of plausible hypotheses about the connectivity of these
proteins.

Advantage of the DAG : Easily model the interventional nature of the
data,

Disadvantage: Cannot model the feedback loops that are known to exist in
this biological pathway

7.6.3 Bayesian inference for GGM structure

Graphical lasso is reasonably fast, it only gives a point estimate of the
structure.It is not model-selection consistent,meaning it cannot recoverthe
true graph even as N — oo,

Graphical Model
Structure Learning

121

Track D: Machine
Learning —II (Advanced
Machine Learning)

122

It would be preferable to integrate out the parameters, andperform
posterior inference in the space of graphs, i.e., to compute p(G|D).

Extractsummaries of the posterior, such as posterior edge marginal, p(G;; =
1|D),

If the graph is decomposable, and if conjugate priors are used, compute
the marginallikelihood in closed form.

The decomposable neighbors of a graph can be identifiable efficiently i.e.,
the set of legal edgeadditions and removals. However, the restriction to
decomposable graphs is rather limiting if one’s goal is knowledge
discovery, since the number of decomposable graphs is much less than the
number of generalundirected graphs

7.6.4 Handling non-Gaussian data using copulas

The graphical lasso and variants is inhertently limited to data that is jointly
Gaussian, which isa rather severe restriction.

The method can be generalized to handle non-Gaussian,but still
continuous, data in a fairly simple fashion. The basic idea is to estimate a
set of Dunivariate monotonic transformations fj, one per variable j, such
that the resulting transformeddata is jointly Gaussian.

If this is possible, then data belongs to the nonparametricNormal
distribution, or nonparanormal distribution. This is equivalent to
thefamily of Gaussian copulas

7.7 LEARNING UNDIRECTED DISCRETE GRAPHICAL
MODELS

The problem of learning the structure for UGMs with discrete variables is
harder than theGaussian case, because computing the partition function
7(0), which is needed for parameterestimation, has complexity
comparable to computing the permanent of a matrix, which ingeneral is
intractable.

But in the Gaussian case, computing Z onlyrequires computing a matrix
determinant, which is at most O(V3).

Since stochastic local search is not tractable for general discrete UGMs,
the possible alternative approaches can be tried.

(1) Graphical lasso for MRFs/CRFs
(i1) Thin junction trees
7.7.1 Graphical lasso for MRFs/CRFs

the graphical lasso idea can be extended to the discrete MRF and CRF
case. However, nowthere is a set of parameters associated with each edge
in the graph, so use the graphanalog of group lasso.

For example, consider a pairwise CRF with ternarynodes, and node and
edge potentials given by

= A i 1 £ i 2 i

\%x Wr}“x W¥12x W%me
Pe(ye. X) = ‘*’%gx o ae(U Yy X) = W¥21X WsTthx W%gzsx

VigX Wapg1X WiygaX WoyaaX

where assume x begins with a constant 1 term, to account for the offset.
To learn sparse structure, minimize the following objective:

N V v
T = =D D logt(yie xive) + D D, logta(Uis, Ui, Xi, War)

=i t s=1 t=s+1

¥

rs ‘_,' 'L,'
DT D Nwatllp + 22 S lIvel 3

3=1 t=s5+4+1 t=1

Graphical Model
Structure Learning

Figure 7.14 MREF estimated from the 20-newsgroup data using group {1 regularization with A = 256.

where |[wst||p is the p-norm; common choices are p = 2 or p = oo,. This
method is known as CRF structure learning

Although this objective is convex, it can be costly to evaluate
(performinference to compute its gradient)

So use an optimizer that does not make too many calls to the objective
functionor its gradient, such as the projected quasi-Newton method

123

Track D: Machine
Learning —II (Advanced
Machine Learning)

124

In addition,we can use approximate inference, such as convex belief
propagation to computean approximate objective and gradient more
quickly. Another approach is to apply the grouplasso penalty to the
pseudo-likelihood. This is much faster, sinceinference is no longer
required Figure 7.14 shows the result ofapplying this procedure to the 20-
newsgroup data, where yj; indicates the presence of word tin document i,
and x; = 1.

7.7.2 Thin junction trees
Learning “sparse” graphs, do not necessarily havelow treewidth.

For example, a D x D grid is sparse, but has treewidth O(D). This means
thatthe models may be intractable to use for inference purposes, which
defeats the learn graph structure in the first place.

There have been various attempts to learn graphical models with bounded
treewidthalso knownas thin junction trees, but the exact problem in
general is hard.

An alternative approach is to learn a model with low circuit complexity
Such models may have high treewidth, but they exploit
contextspecificindependence and determinism to enable fast exact
inference.

7.8 SUMMARY

This chapter covers the topics about Graphical model structure learning
which discusses about Structure learning for knowledge discovery,
Relevance networks and Dependency networks. The Learning tree
structures discusses about Directed or undirected tree, Chow-Liu
algorithm for finding the ML tree structure, finding the MAP forest,
Mixtures of trees. Learning DAG structure with latent variables discusses
about Approximating the marginal likelihood for missing data, Structural
EM, Discovering hidden variables and Structural equation
models.Learning causal DAGs discusses about Causal interpretation of
DAGs, Using causal DAGs to resolve Simpson’s paradox, Learning causal
DAG structures . Learning undirected Gaussian graphical models
discusses about MLE for a GGM, Graphical lasso, Bayesian inference for
GGM structure and Handling non-Gaussian data using copulas. Finally
Learning undirected discrete graphical models discusses about Graphical
lasso for MRFs/CRFs and Thin junction trees.

7.9 REFERENCES

1. Machine Learning A Probabilistic Perspective Kevin P. Murphy The
MIT Press Cambridge, Massachusetts London, England

2. http://cs.nyu.edu/~roweis/data.html

o O O 0
0.0 0.0 0.0 0.0

DEEP LEARNING

Unit Structure :
8.0 Objectives
8.1 Introduction
8.2 Deep generative models
8.2.1 Deep directed networks
8.2.2 Deep Boltzmann machines
8.2.3 Deep belief networks
8.2.4 Greedy layer-wise learning of DBNs
8.3 Deep neural networks
8.3.1 Deep multi-layer perceptrons
8.3.2 Deep auto-encoders
8.3.3 Stacked denoising auto-encoders
8.4 Applications of deep networks
8.4.1 Handwritten digit classification using DBNs

8.4.2 Data visualization and feature discovery using deep auto-
encoders

8.4.3 Information retrieval using deep auto-encoders (semantic
hashing)

8.4.4 Learning audio features using 1D convolutional DBNs
8.4.5 Learning image features using 2D convolutional DBNs

8.5 Summary

8.0 OBJECTIVES

At the end of Chapter students will be able to:

e Discuss about the concepts and implementation of deep directed,
undirected graphical models

e Describe the role of various kinds of Deep neural networksin deep
learning

e Explain the applications of deep networks in the text,audio and video
domain

125

Track D: Machine
Learning —II (Advanced
Machine Learning)

126

8.1 INTRODUCTION

The human brain engages in multiple layers of processing, with each layer
acquiring features or representations at progressively higher levels of
abstraction. For instance, according to the conventional model of the
visual cortex, the brain initially identifies edges, then moves on to patches,
surfaces, objects, and so forth.

This observation has served as a source of inspiration for a recent trend in
machine learning known as deep learning, as discussed on
deeplearning.net and the references provided therein. Deep learning aims
to emulate this hierarchical architecture within computers. Furthermore,
this concept can be extended beyond visual problems, including
applications in areas like speech and language.

Many of the models presented in this context follow a basic architecture
consisting of two layers, where it can be denoted as either "z — y" for
unsupervised latent variable models or "x — y" for supervised models.

8.2 DEEP GENERATIVE MODELS

Issues in Deep Models:

+» Having millions of parameters.

% Acquiring enough labeled data to train suchmodels is difficult

+» This approach does not support scaling the complex scenes.For
example, in simple settings, suchas hand-written character recognition,
it is possible to generate lots of labeled data by makingmodified copies
of a small manually labeled training set The unsupervisedlearning is
used to overcome the problem of needing labeled training data.. The
most natural way to perform this is to use generative models.

There are three different kinds of deep generative models such as
1. Directed
2. Undirected

(b) (c)
Figure 8.1 Deep multi-layer graphical models.

(a) A directed model (b) An undirected model (¢c) A mixed directed-
undirected model

8.2.1 Deep Directed Networks
A deep directedgraphical model is constructed as shown in Figure 8.1(a).

The bottom level contains the observed pixels (orwhatever the data is),
and the remaining layers are hidden. 3 layers are taken into consideration
fornotational simplicity.

The number and size of layers is usually chosen by hand, although onecan
also use non-parametric Bayesian methods or boosting to infer the model
structure.

These model forms are called as Deep Directed Networks or DDNS.

Sigmoid belief net:All the nodes arebinary, and all Conditional
Probability Distributions (CPDs) are logistic functions.

Inthis case, the model defines the following joint distribution:

p(hy, ha, hs,v|@) = HBer(_t:ﬁsigrn(h?“’g?})HBer(hlj|sign1{]1§u-'u}')

j
H Ber(hay, :_:igm(llgwg;.)) H Ber(hsi|wsg)
k I

Disadvantage:

e Inference in these is intractable because the posterioron the hidden
nodes is correlated due to explaining away.

o To overcome this issue fast mean field approximations or MCMC
inference can be used, but these may not be very accurate or can
be quite slow respectively,

e .Slow inference also results in slow learning.

8.2.2 Deep Boltzmann machines

e Deep Boltzmann machine (DBM)Stacks a series of Restricted
Boltzmann Machines(RBMs) on top of each other (Fig. 8.1 (b))

e [t is a natural alternative to a directed model is to construct a deep
undirected model.

e For 3 hiddenlayers, the model is defined as:

. 1 . . .
p(hy,hy hs, v|8) = Z(0) exp (Z vihijWhij + Z hijho;Waji —I—Z fazkfagglf'gkg)
ij ik kl

(Ignore constant offset or bias terms)

Deep Learning

127

Track D: Machine
Learning —II (Advanced
Machine Learning)

128

Advantage

Performs efficient block Gibbs sampling, or block mean field compared to
directed graph.

Disadvantage

o Training undirected models is more difficult, because of the partition
function.

o Exact inference is intractable

o .Approximate inference can be slow

8.2.3 Deep Belief Networks (DBN)

e Uses a model that is partially directed and partially undirected.

e Construct a layered model which has directed arrows, except at thetop,
where there is an undirected bipartite graph, as shown in Figure
28.1(c).

e Top two layers act as an associative memory and the remaining layers
thengenerate the output.

For 3 hidden layers, the DBN model is defined as follows:

p(hy,hy hs v|8) = HBer(z-',f.sigln[hrjnwu_]HBer{hu|sigm(h§wz}-)

J

1
ex hopha W-
Z(8) p (% 2k 3] 'sk{)

Advantage:
The hidden states can be found in afast, bottom-up fashion.

To see why, suppose we only have two hidden layers, and that
W, = W{,

so the second level weights are tied to the first level weights (Figure
8.2(a)).
This defines a model of the form p(h1, h2, v|W1).

One can show that the distribution

plf]11.V VVL) Zh} 111 ho. 1_,|V5¢1} has the form
{hl, |“ 1} = E[W EK]'!{VT‘E‘lhi}

which is equivalent to an Restricted Boltzmann Machines(RBM).

Since the DBN is equivalent to the RBM as far as p(hl, v|Wl1)is
concerned, the posterior p(hljv,W1) in the DBN exactly as in the RBM.
Thisposterior is exact, even though it is fully factorized.

To get a factored posterior is if the prior p(hl|WIl) is a
complementaryprior.

This is a prior which, when multiplied by the likelihood p(v|h1), results in
a perfectlyfactored posterior.

The top level RBM in a DBN acts as a complementary priorfor the bottom
level directed sigmoidal likelihood function.

That top-down inference in a DBN is not tractable,so DBNs are usually
only used in a feedforward manner.

(a) (b) (c)

Figure 8.2 (a) A DBN with two hidden layers and tied weights that is
equivalent to an RBM(b) A stack of RBMs trained greedily (c) The
corresponding DBN.

8.2.4 Greedy layer-wise learning of DBNs
Strategy for learning a DBN (The equivalence between DBNs and RBMs)

% FitanRBMtolearni#} using methods likeDeriving the
gradient,Approximating the expectations,Contrastive divergence

¢ Unroll the RBM into a DBN with 2 hidden layers, as in Figure 8.2(a).

% “Freeze” thedirected weights W) and let W, be “untied” so it is no
longer forced to be equal to WT; .

% There is a better prior for p(h1|1}) by fitting a second RBM.

++ The input data tothis new RBM is the activation of the hidden units
E[hq]v, W]

« Continue to addmore hidden layers until some stopping criterion is
satisfied

% Construct the DBN fromthese RBMs, as illustrated in Figure 8.2(¢).

This procedure always increases a lower bound theobserved data
likelihood. This procedure might result in overfitting,

Deep Learning

129

Track D: Machine
Learning —II (Advanced
Machine Learning)

130

. The method can alsobe extended to train DBMs in a greedy way

After using the greedy layer-wise training strategy, it is standard to “fine
tune” the weights,using a technique called backfitting.

Backfitting.(up-down procedure)

Used to “fine tune” the weights, after using the greedy layer-wise training
strategy

e Perform brief Gibbs sampling in the top level RBM.

e Perform a CD updateof the RBM parameters.

e Finally, perform a downwards ancestral sampling pass (which is
anapproximate sample from the posterior), and update the logistic
CPD parameters using a smallgradient step.

8.3 DEEP NEURAL NETWORKS

DBN s are often only used in a feed-forward, or bottom-up, mode, they are
effectivelyacting like neural networks. It is natural to dispense with the
generative storyand try to fit deep neural networks directly using Deep
multi-layer perceptrons, Deep auto-encoders and Stacked denoising auto-
encoders.

Merits:

The resulting training methodsare often simpler to implement
Can be faster.

Limitation:

Performance with deep neural nets is sometimes not as good as
withprobabilistic models One reason for this is that probabilistic models
support top-down inference as well as bottom-up inference.

8.3.1 Deep Multi-layer Perceptrons

z = XOR(x, y)

Many decision problems can be
reduced to classification, e.g.,
predict which object (if any) is

present in an image patch, or
predict which phoneme is present
in a given acoustic featurevector.
Such problems can be solved by
creating a deep feedforward
neural network (Figure 8.3.1) or
multilayerperceptron (MLP), and
then fitting the parameters using
gradient descent (aka back-
propagation).

Figure 8.3.1 Feedforward Network

Limitations:

Vanishing gradient problem: The gradient becomesweaker the further
the process move away from the data;.

There can be large plateaus inthe error surface, which cause simple first-
order gadient-based methods to get stuck

Generative pre-training

A way to initialize the parameters using unsupervised learning; The
advantage of performing unsupervised learning first is that themodel is
forced to model a high-dimensional response, namely the input feature
vector, ratherthan just predicting a scalar response. This acts like a data-
induced regularizer, and helpsbackpropagation find local minima with
good generalization properties

8.3.2 Deep auto-encoders

An auto-encoder is a kind of unsupervised neural network that is used for
dimensionalityreduction and feature discovery.

An auto-encoder is a feedforward neural networkthat is trained to predict
the input itself.

To prevent the system from learning the trivial identity mapping, the
hidden layer in the middle is usually constrained to be a narrow
bottleneck.

The system can minimize the reconstruction error by ensuring the hidden
units capture the most relevant aspects of the data.

Suppose the system has one hidden layer, so the model has the form v — h
— v. Further, suppose all the functions are linear. In this case, the weights
to the Khidden units will span the same subspace as the first K principal
components of the data

More powerful representations can be learned by using deep auto-
encoders. But training such models using back-propagation does not work
well, because the gradient signalbecomes too small as it passes back
through multiple layers and the learning algorithm oftengets stuck in poor
local minima.

One solution to this problem is to greedily train a series of RBMs and to
use these to initialize

an auto-encoder, as illustrated in Figure 8.3.2. The whole system can then
be fine-tuned usingbackprop in the usual fashion. This works much better
than trying to fit the deep auto-encoder directly starting with random
weights.

Deep Learning

131

Track D: Machine
Learning —II (Advanced
Machine Learning)

132

Encoder

Pretraining Unrolling Fine-tuning

Figure 8.3.2 Training a deep autoencoder. (a) Greedily training some

RBMs.

8.3.3 Stacked denoising auto-encoders

A common method for training an auto-encoder involves ensuring that the
hidden layer has fewer neurons than the visible layer.

This precautionary measure prevents the model from merely learning to
replicate its input data, effectively serving as an identity function.

The alternative strategies to prevent this trivial solution,

L.

1l

iil.

1v.

Enforce sparsity constraints on the activation of the hidden units,
ensuring that only a limited number of neurons are active at any
given time.

Introducing noise to the input data, resulting in what is known as a
denoisingautoencoder. For instance, some of the input values can be
intentionally corrupted, such as setting them to zero, forcing the
model to learn how to predict the missing or perturbed entries. This
method can be demonstrated to be akin to a specific form of
maximum likelihood training, referred to as score matching, when
applied to a Restricted Boltzmann Machine (RBM).

Stack these autoencoder models atop one another to create a deep
stacked denoising auto-encoder. Such a deep architecture can be
discriminatively fine-tuned, similar to a standard feedforward neural
network, if desired.

8.4 APPLICATIONS OF DEEP NETWORKS

In this section the following applications of the models are discussed..

e Handwritten digit classification using DBNs

e Data visualization and feature discovery using deep auto-encoders
e Information retrieval using deep auto-encoders (semantic hashing)
e Learning audio features using 1d convolutional DBNs

e Learning image features using 2d convolutional DBNs

8.4.1 Handwritten digit classification using DBNs
DBN consisting of 3 hidden layers is shown in Figure 8.4.1(a).

The visible layer corresponds to binary images of handwritten digits from
the MNIST data set.The top RBM is connected to a softmax layer with 10
units, representing the class label.

The first 2 hidden layers were trained in a greedy unsupervised fashion
from 50,000 MNIST digits, using 30 epochs (passes over the data) and
stochastic gradient descent, with the CD heuristic.

This process took “a few hours per layer”

The top layer was trained using as input the activations of the lower
hidden layer, as well as the class labels. The corresponding generative
model had a test error of about 2.5%. The network weights were then
carefully fine-tuned on all 60,000 training images using the up-down
procedure.

This process took “about a week”. The model can be used to classify by
performing a deterministic bottom-up pass, and then computing the free
energy for the top-level RBM for each possible class label.

The final error on the test set was about 1.25%. The misclassified
examples are shown in Figure 8.4.1(b).This was the best error rate of any
method on the permutation-invariant version of MNIST at that time.

| 2000 top-level units | &lvprsroeV1 1
— 1ML D
i i 289117787
~ - 79839349
|10Iabel umtsl | 500 units | 2ed4'9'1’¢y'v 4’y
~ Tj N 4y 5355088569
i v L6 e RV L
This could be the 06’6 'C6 G, ED
top level of T 1INV NT IR RRF
another sensory IR LRI A A B)
pathway 28 % 28 DT BE 1D
pixel 77UV

image A'gdy

Figure 8.4.1 (a) A DBN architecture for classifying MNIST digits.
(b) Errors made by the DBN on the 10,000 test cases of MNIST.

Deep Learning

133

Track D: Machine
Learning —II (Advanced
Machine Learning)

134

8.4.2 Data visualization and feature discovery using deep auto-
encoders

Deep autoencoders can learn informative features from raw data. Such
features are often used as input to standard supervised learning methods.

Consider fitting a deep auto-encoder with a 2D hidden bottleneck to
sometext data. The results are shown in Figure 8.4.2. On the left Figure
8.4.2 (a) the 2D embedding produced by LSA is depicted and on the right
Figure 8.4.2 (b), the 2D embedding produced by the auto-encoder is
shown.

The results show that the low-dimensional representation created by the
auto-encoder has captured a lot of the meaning of the documents, even
though class labels were not used.

) Europaan Community
Interbank Markets Monetary/Economic

Energy Markets - .
; . Disasters and

Leading
Economac
Indicators

ki3 c-- Gover nmeant
-' Borrowing s

Accountsd
Earnings

Figure 8.4.2 Results : 2D visualization of some bag of words data from the
Reuters RCV1-v2 corpus. (a) Using LSA. (b) Using a deep auto-encoder.

8.4.3 Information retrieval using deep auto-encoders (semantic
hashing)

Though the success of RBMs for information retrieval is achieved, the
deep models perform even better. The performance of deep model is
shown in Figure 8.4.3.

Use a binary low- i B L1 T |
dimensional NG '
representation in the e Sl

middle layerof the deep
auto-encoder.

Precision (%:)

Thisenables very fast
retrieval of related

documents. o

Semantic
hashine:The bina Figure 8.4.3. Precision-recall curves for
represeﬁ‘.cation 1(;}; document retrieval in the Reuters RCV1-v2

semantically similar documents will be close in Hamming distance. For a
20-bit code, precompute the binary representation for all the documents,
and then create a hash-tablemapping codewords to documents.

For the 402,207 test documents in Reuters RCV1-v2, this translates to
roughly 0.4 documents per entry listed in the table.

During the testing phase, the procedure involves calculating the codeword
associated with the query and subsequently retrieving the relevant
documents with constant-time efficiency by referencing the corresponding
memory address.

To identify additional related documents, the approach entails computing
all codewords that are within a Hamming distance, such as 4 from the
original query. This process results in retrieving approximately 6196 x 0.4
~ 2500 documents. The key point to emphasize is that the total time
required for this operation remains unaffected by the size of the corpus.

In contrast, other methods for rapid document retrieval, like inverted
indices, rely on the notion that individual words carry significant
information, allowing for the straightforward intersection of documents
containing each specific word. It's worth noting that applying inverted
indexing techniques to real-valued data is a challenging endeavor.

8.4.4 Learning audio features using 1D convolutional DBNs

To employ Deep Belief Networks (DBNs) for time series data of infinite
duration, it becomes imperative to implement a mechanism for parameter
sharing. One approach to achieve this is by employing convolutional
DBNs, which employ convolutional Restricted Boltzmann Machines
(RBMs) as their fundamental building blocks. These models represent a
generative counterpart of convolutional neural networks.The basic idea is
illustrated in Figure 8.4..

1
hj

w] T TG

@ @)

Figure 8.4.4 A small 1d convolutional RBM with two groups of hidden units,
each associated with a filter of size 2.

hlandh? are two diferent “views” of the data in the first window,
(X4, X3).

Deep Learning

135

Track D: Machine
Learning —II (Advanced
Machine Learning)

136

The first view is computed using the filter W', the second view using
filter W=,

Similarlyhjand h3 are the views of the data in the second window (x5,
x5)., computed using W and W2 respectively

e The hidden activation vector for each group is computed by
convolving the input vector withthat group’s filter (weight vector or
matrix).(Each node within a hidden groupis a weighted combination of
a subset of the inputs.)

e Compute the activation of all thehidden nodes by “sliding” this weight
vector over the input.

e FEach group has its own filter, corresponding to its own pattern
detector.

e One task’s “signal” becomesother task’s “noise”, so donot “throw
away’’ any irrelevant information

e For binary 1Dsignal, the full conditionals in a convolutionalRBM can
be defined as:

p(h¥ =1jv) = sigm((w* @ v), +b;)
plvs =1lh) = Higm(Z{wk llL']s + cg)
k

whereW* is the weight vector for group k,
b; and ¢, are bias terms,
a® b represents theconvolution of vectors a and b.

Integrate both a convolutional layer and a max pooling layer into the
architecture, where theycalculate the local maximum within the filtered
response. This introduces a degree of translation invariance and,
concurrently, reduces the dimensions of the higher layers, leading to a
significant acceleration in computation.

Defining this for a neural network is simple, but defining this in a way
which allows forinformation flow backwards as well as forwards is a bit
more involved.

The basic idea is similarto a noisy-OR CPD where a probabilistic
relationship between the maxnode and the parts it is maxing over can be
defined.

When the inputconsists of speech signals, the method recovers a
representation that is similar to phonemes.To get a good performance
result, standard features such as MFCCtechniques are used to apply music
classification and speaker identification.

8.4.5 Learning image features using 2D convolutional DBNs

A convolutional DBN is extended from 1D to 2D in a straightforward
way. The extended RBM is illustrated in Figure 8.4.5. The results of a 3
layer system trained on cars, motorbikes, faces and airplanesvisual objects
having four classes to represent every ones properties, actions and
behaviours from the Caltech 101 dataset. The same is shown in Figure
8.4.6.

The result is shown only for layers 2 and 3, because layer 1 learns Gabor-
like filters that are very similar to those learned by sparse coding.

w ﬂ m Max-pool m

/m //N/ " Hiddenh

Filters W

Image v

Figure 8.4.5 A 2d convolutional RBM with max-pooling layers.

In the figure 8.4.5, the input signal consist of a stack of 2D images (e.g.,
color planes). Each input layer is passed through a different set of filters.
Each hidden unit is obtained by convolving with the appropriate filter, and
then summing over the input planes. The final layer is obtained by
computing the local maximum within a small window. As a result,

e Layer 2 haslearned some generic visual parts, shared amongst object
classes,

e Layer 3 have learned filters like grandmother cells, that are specific
to individual object classes,and in some cases, to individual
objects.

faces, cars, airplanes, motorbikes

(a) (b)

Figure 8.4.6 Visualization of the filters learned by a convolutional DBN in layers two
and three

7. Source: http://research.microsoft.com/en-
us/news/features/speechrecognition-082911.aspx.

Deep Learning

137

Track D: Machine
Learning —II (Advanced
Machine Learning)

138

8.5 SUMMARY

Until now, our discussions have centered on models inspired by the brain's
low-level processing mechanisms. These models have proven effective in
generating valuable features for straightforward classification tasks.
However, can this purely bottom-up approach effectively tackle more
complex challenges, such as scene interpretation or natural language
comprehension?

To provide some context, let's consider the Deep Belief Network (DBN)
designed for handwritten digit classification in Figure 28.4(a). This
network comprises roughly 1.6 million free parameters (calculated as
28x28x500+500x500+510x2000 = 1,662,000). While this may seem
substantial, it pales in comparison to the number of neurons present in the
human brain.

The Section 8.2 described generative deep learning models in which the
concepts under Deep directed networks, Deep Boltzmann machines, Deep
belief networks and Greedy layer-wise learning of DBNs are explained
clearly. In addition the concept of RBM is compared with remaining
concepts.

Next to these the Deep multi-layer perceptrons, Deep auto-encoders and
Stacked denoising auto-encoders are explained to show how the layers are
performing their learning part.

Finally the applications of Applications of deep networks such as
Handwritten digit classification using DBNs, Data visualization and
feature discovery using deep auto-encoders, Information retrieval using
deep auto-encoders, Learning audio features using 1D convolutional
DBNs andLearning image features using 2D convolutional DBNs are
described to explain how the deep learning concept is applied in the
particular domain/scenario.

8.6 REFERENCES

1. Machine Learning A Probabilistic Perspective, Kevin P. Murphy, The
MIT Press Cambridge, Massachusetts London, England

2. https://www.geeksforgeeks.org/
3. https://en.wikipedia.org/wiki/Deep belief network
¢, 0. O 0

0‘0 0‘0 0‘0 0‘0

