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1 
PROBABILITY 

Unit Structure: 

1.0  Objectives 

1.1  Introduction 

1.2  A brief review of probability theory 

 1.2.1 Discrete random variables 

 1.2.2 Fundamental rules 

 1.2.3 Bayes rule 

 1.2.4 Independence and conditional independence 

 1.2.5 Continuous random variables 

 1.2.6 Quantiles 

 1.2.7 Mean and variance 

1.3  Some common discrete distributions 

 1.3.1 Bernoulli distributions 

 1.3.2 Binomial distributions  

 1.3.3 Hypergeometric distribution 

 1.3.4 Poisson distribution 

 1.3.5 Multinomial distribution 

1.4  Some common continuous distributions 

 1.4.1 Gaussian (normal) distribution 

 1.4.2 Degenerate pdf 

 1.4.3 The Laplace distribution 

 1.4.4 The gamma distribution 

 1.4.5 The beta distribution 

1.5  Joint probability distributions 

 1.5.1 Covariance and correlation 

 1.5.2 The multivariate Gaussian 

 1.5.3 Multivariate Student t distribution 
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1.6  Transformations of random variables 

 1.6.1 Linear transformations 

 1.6.2 General transformations 

 1.6.3 Central limit theorem 

1.7  Monte Carlo approximation 

 1.7.1 Example: change of variables, the MC way 

 1.7.2 Example: estimating π by Monte Carlo integration 

 1.7.3 Accuracy of Monte Carlo approximation 

1.8  Information theory 

 1.8.1 Entropy 

 1.8.2 KL divergence 

 1.8.3 Mutual information 

1.9  References 

1.10  Questions 

1.0 OBJECTIVES 

After completing this chapter, you will be able to understand  probability 
theory, Some common discrete distributions, Some common continuous 
distributions and  Joint probability distributions as well as transformations 
of random variables, Monte Carlo approximation, Information theory and 
Directed graphical models and mixture models and EM algorithm like 
Latent variable models, Mixture models, Parameter estimation for mixture 
models, The EM algorithm. 

1.1 INTRODUCTION 

Probability can have several meanings in everyday conversation. 
Probability theory has been developed and applied in two major ways. 
Simple games such as coins, cards, dice, and roulette wheels are examples 
of games that interpret probabilities as relative frequencies. There is some 
regularity to the results of many trials in a game of chance, although the 
outcome of any given trial cannot be predicted with certainty. 

As an example, if a coin is tossed with a probability of one-half, according 
to the relative frequency interpretation, that means the probability of 
receiving "heads" is about one-half in a large number of tosses, despite not 
implying anything about the outcome of any given toss.  

We all know that "the probability that a coin will land heads is 0.5". How 
does that work? Probability can be interpreted in at least two different 
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ways. The frequentist interpretation is one. Probabilities, in this view, 
describe the long run frequency of events. For example, the preceding 
statement implies that if we flip the coin several times, we may anticipate 
it to fall heads around half of the time. 1 The Bayesian interpretation of 
probability is the alternative interpretation. Probability, according to this 
viewpoint, is used to assess our uncertainty about something; hence, it is 
primarily tied to information rather than repeated trials (Jaynes 2003). 
According to the Bayesian perspective, the preceding sentence indicates 
that we expect the coin will land heads or tails on the next toss. 

Probability is the degree of certainty that an unknown event will occur.  

Eg: The probability of raining today is 0.3. 

Event space: All-possible-outcomes space. 

Eg: E= {1,2,3,4,5,6} for a dice; E={H, T} for a coin. 

Random variable: a variable whose values depend on the outcome of a 
random phenomenon.  

Two types of random variables: Discrete and continuous.  

1.2 A BRIEF REVIEW OF PROBABILITY THEORY 

Mathematical study of random phenomena is known as probability theory. 
A random event's outcome can take any of a number of different forms; it 
cannot be predicted before it happens. The final result is thought to have 
been determined by chance. 

1.2.1 Discrete random variables 

The probability that the event A occurs is denoted by the term p(A). A 
may be the logical phrase "it will rain tomorrow," for example. We require 
that 0 ≤ p(A) ≤ 1, where p(A)=0 indicates that the event will almost 
certainly not occur, and p(A)=1 indicates that the event will almost 
certainly occur. The probability of the event not A is denoted by p(A), 
which is defined as p(A)=1 − p(A). We will frequently write A = 1 to 
indicate that event A is true and A = 0 to indicate that event A is false. 

We can extend the concept of binary events by introducing a discrete 
random variable X that can take any value from a finite or countably 
infinite collection X. The probability that X = x is denoted by p(X = x), or 
just p(x) for short. In this context, p() is called as a probability mass 
function, or pmf. This meets the properties 0 ≤ p(x) ≤ 1 and ! 

1.2.2 Fundamental rules 

1. Probability of a union of two events. 

Given two events, A and B, we define the probability of A or B as 
follows:  
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p(A ∨ B)  = p(A) + p(B) − p(A ∧ B)  

= p(A) + p(B)  

If A and B are mutually exclusive 

2. Joint probabilities 

We define the probability of the joint event A and B as follows: 

p(A, B) = p(A ∧ B) = p(A|B)p(B)  

This is known as the product rule. The marginal distribution is defined as 
follows given a joint distribution on two occurrences p(A, B): 

 

where we are summing across all possible states of B. Similarly, we can 
define p(B). This is also known as the sum rule or the total probability 
rule. 

3. Conditional probability 

The conditional probability of event A given that event B is true is defined 
as follows: 

 

1.2.3 Bayes rule 

The Bayes rule, also known as the Bayes Theorem, is obtained by 
combining the definition of conditional probability with the product and 
sum rules. 

 

Example. 

Assume 15 men out of 300 and 25 women out of 1000 are good orators. A 
random orator is chosen. Determine the probability that a man will be 
chosen. Assuming there is an equal number of men and women. 

Solution: 

Let there be 1000 men and 1000 women. 

Let E1 and E2 be the events of choosing a man and a woman respectively. 
Then, 

P(E1) = 1000/2000 = 1/2 , and P(E2) = 1000/2000 = 1/2 

Let E be the event of choosing an orator. Then, 
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P(E|E1) = 50/1000 = 1/20, and P(E|E2) = 25/1000 = 1/40 

Probability of selecting a male person, given that the person selected is a 
good orator  

P(E1/E) = P(E|E1) * P(E1)/ P(E|E1) * P(E1) + P(E|E2) * P(E2) 

            = (1/2 * 1/20) /{(1/2 * 1/20) + (1/2 * 1/40)} 

            = 2/3 

Hence the required probability is 2/3. 

1.2.4 Independence and conditional independence 

Let us first define conditional independence: 

If there are two conditionally independent events A and B given a third 
event Y, then the occurrence/non-occurrence of A provides no information 
about the occurrence and non-occurrence of B (given Y), i.e., A and B are 
conditionally independent iff knowledge of A's occurrence provides no 
information on the likelihood of B occurring and vice versa. 
In terms of probabilities: 

1. P(A ∩ B|Y) = P(A|Y).P(B|Y) 

2. P(A|B∩Y) = P(A|Y) 

Be clear that conditional independence does not imply independence, and 
vice versa. Let's explore some of the basic definitions. 

1. Independence: 

The occurrence of one event for two occurrences A and B has no affect 
whatever on the other event's occurrence. 

Example: P(A∩B)=P(A).P(B) 

P(A|B)=P(A) 

2. Conditional Independence: 

Sometimes it's impossible to determine whether an event is independent of 
another because a third occurrence causes them to become so. 

Given that C means, A is conditionally independent of B 

P(A|B,C) = P(A|C)  

i.e., When C is observed, B has no impact on the value of A. 

We say X and Y are unconditionally independent or marginally 
independent, denoted X ⊥ Y, if we can represent the joint as the product of 
the two marginal,  

i.e., X ⊥ Y ⇐⇒p(X, Y ) = p(X)p(Y ) 
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Theorem: 

X ⊥ Y |Z if there exist function g and h such that 

p(x, y|z) = g(x, z)h(y, z) 

for all x, y, z such that p(z) > 0 

1.2.5 Continuous random variables 

The two forms of random variables are continuous random variables and 
discrete random variables. A random variable is one whose value varies on 
every possibility that could occur during an experiment. A discrete 
random variable is defined at a precise value, whereas a continuous 
random variable is defined throughout a range of values. 

For instance, how long it takes to finish an exam for a 60-minute test. 
Possible values = all real numbers on the interval [0,60] 

A random variable with an infinite number of possible values is referred to 
as a continuous random variable. As a result, there is no chance that a 
continuous random variable will have an exact value. A continuous 
random variable's features are described using the probability density 
function and the cumulative distribution function. 

The probabilities connected to a continuous random variable are expressed 
using the probability density function (pdf) and the cumulative distribution 
function (CDF). Here are the formulas for continuous random variables 
for these functions. 

pdf (probability density function): 

We often use (�) to denote the PDF of � 

(�) ≥ 0 

whaer�(�) can be larger than 1 

 

Example 
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PDF of Continuous Random Variable 

A function that estimates the probability that a continuous random 
variable's value will fall within a given range of values is known as the 
probability density function. Given that X is assumed to be a continuous 
random variable, the pdf's formula, f(x), is as follows: 

 

F(x) is the cumulative distribution function in this case. 

The continuous random variable's pdf must meet the requirements listed 
below in order to be valid: 

 

This specifies that the entire area under the PDF's graph must be equal to 
1. 

f(x) > 0. This implies that a continuous random variable's probability 
density function cannot be negative. 

CDF of Continuous Random Variable 

The probability density function can be integrated to obtain the cumulative 
distribution function of a continuous random variable. It can be 
characterised as the probability that the random variable, X, will have a 
value less than or equal to a specific value, x. The following is the formula 
for the cdf of a continuous random variable, evaluated between two points 
a and b: 

 

1.2.6 Quantiles 

The inverse of the cdf F, which we will refer to as F 1, exists since it is a 
monotonically increasing function. The the value of xα such that P(X ≤ 
xα) = α; if F is the cdf of X. Half of the probability mass is on the left and 
half is on the right, making the value F −1(0.5) the median of the 
distribution. The lower and upper quartiles are represented by the values F 
−1(0.25) and F −1(0.75). 

The tail area probabilities can also be calculated using the inverse cdf. For 
example, if Φ is the cdf of the Gaussian distribution N (0, 1), then points 
to the left of Φ−1(α)/2) contain α/2 probability mass, as illustrated in 
Figure 2.3(b). By symmetry, points to the right of Φ−1(1−α/2) also contain 
α/2 of the mass. Hence the central interval (Φ−1(α/2), Φ−1(1 − α/2)) 
contains 1 − α of the mass. If we set α = 0.05, the central 95% interval is 
covered by the range(Φ−1(0.025), Φ−1(0.975)) = (−1.96, 1.96) 
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If the distribution is N (µ, σ2), then the 95% interval becomes (µ − 1.96σ, 
µ + 1.96σ). This is sometimes approximated by writing µ ± 2σ. 

1.2.7 Mean and variance 

A distribution's mean, or expected value, is its most well-known 
characteristic and is denoted by the symbol µ. It is described in terms of 
discrete RVs - 

 

and continuous RVs - 

 

The mean is not finite if this integral is not. 

The variance is a measure of the “spread” of a distribution, denoted by σ2.  

This is defined as follows: 

 

This gives us the beneficial outcome 

 

This is how the standard deviation is described. 

 

It has the same units as X itself, which makes it helpful. 

1.3 SOME COMMON DISCRETE DISTRIBUTIONS 

There are numerous discrete probability distributions available for use in 
different scenarios. 

1.3.1. Bernoulli Distribution 

When we do an experiment just once, this distribution is produced. There 
are only two possible outcomes: success or failure. These kinds of trials 
are known as Bernoulli trials, and they serve as the foundation for many of 
the distributions detailed below. Let p represent the probability of success, 
and 1 - p represent the probability of failure. 
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PMF is provided as 

 

One example of this would be a single coin flip. 1 - p is the probability of 
having a tail, and p is the probability of moving ahead. Please take note 
that how we define success and failure depends on the situation and is 
subjective. 

 1.3.2. Binomial Distribution 

For random variables with just two possible outcomes, this is generated. 
Let p represent the probability that an event will succeed, which implies 
that 1 - p represents the probability that the event would fail. We obtain 
the Binomial distribution by repeating the experiment and charting the 
probability each time. 

The most typical illustration of the Binomial distribution is the calculation 
of the probability of receiving a specific number of heads after tossing a 
coin n times. Other real-world examples are a company's number of 
productive sales calls or the efficacy of a medicine in treating a sickness. 

PMF is provided as, 

 

where  

n is the number of trials,  

p is the probability of success,  

x is the number of successes. 

 1.3.3. Hypergeometric Distribution 

Think about the scenario where you draw a red marble from a box of 
marbles of various hues. The occurrence of drawing a red ball is 
successful, whereas the event of not drawing one is unsuccessful. The 
probability of drawing a marble in the following trial is impacted by the 
fact that each time a marble is drawn, it is not put back in the box. The 
probability of k successes over n trials, where each trial is carried out 
without replacement, is modelled by the hypergeometric distribution. 
Contrary to the binomial distribution, where the probability changes little 
during the course of the trials. 

PMF is provided as, 
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where  

k is the number of possible successes 

x is the desired number of successes 

N is the size of the population 

n is the number of trials. 

 1.3.4. Poisson Distribution 

The events that take place over a predetermined period of time or space 
are described by this distribution. This could be illustrated with an 
example. Think about the number of calls a customer service centre 
receives per hour. The average number of calls made per hour can be 
estimated, but the precise number and time of calls cannot be known. 
Every instance of an event occurs independently of all other instances. 

PMF is provided as, 

 

where  

λ is the average number of times the event has occurred in a certain period 
of time 

x is the desired outcome 

e is the Euler’s number 

 1.3.5. Multinomial Distribution 

There are just two possible outcomes in the above distributions: success 
and failure. Yet the random variables with numerous alternative outcomes 
are described by the multinomial distribution. Because each potential 
result is considered a distinct category, this is also frequently referred to as 
a categorical distribution. Think about the case where you play a game n 
times. We can calculate the probability that player 1 will win x1 times, 
player 2 will win x2 times, and player k will win xk times using the 
multinomial distribution. 

PMF is provided as, 
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where  

n is the number of trials 

p1,……pk denote the probabilities of the outcomes x1……xk respectively. 

1.4 SOME COMMON CONTINUOUS DISTRIBUTIONS 

We present a few common univariate (one-dimensional) continuous 
probability distributions in this section. 

1.4.1 Gaussian (normal) distribution 

A probability distribution that is symmetric about the mean is the normal 
distribution, sometimes referred to as the Gaussian distribution. It 
demonstrates that data that are close to the mean occur more frequently 
than data that are far from the mean. 

The normal distribution appears as a "bell curve" on a graph. 

The normal distribution is defined by a number of important 
characteristics and attributes. 

The first thing to note is that the data's mean, median, and mode (the most 
common observation) are all identical to one another. Furthermore, each 
of these values represents the distribution's peak, or highest point. The 
distribution then deviates symmetrically from the mean, with the standard 
deviation serving as a measure of its width. 

The normal distribution uses the formula below. Keep in mind that only 
the  mean (μ ) and standard deviation (σ) numbers are required. 

 

where: 

x = value of the variable or data being examined and f(x) the probability 
function 

μ = the mean 

σ = the standard deviation 

1.4.2 Degenerate pdf 

A degenerate random variable is a constant with probability of 1, and its 
distribution is known as a degenerate distribution (also known as a 
constant distribution). In other words, there is just one potential value for 
the random variable X. 

The Gaussian becomes an indefinitely tall and infinitely thin "spike," 
centred atμ, in the limit that σ2 → 0. 
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where δ is called a Dirac delta function, and is defined as 

 

like that 

 

The sifting property of delta functions is a helpful characteristic since it 
allows one term to be chosen from a sum or integral: 

 

since x − μ = 0 is the only case when the integrand is not zero. 

The log probability of the Gaussian distribution only decays quadratically 
with distance from the centre, which makes it susceptible to outliers. The 
Student t distribution is a more reliable distribution. Its pdf looks like this: 

 

where  

μ is the mean  

σ2> 0 is the scale parameter 

ν > 0 is called the degrees of freedom. 

Some properties of the distribution- 

 

1.4.3 The Laplace distribution 

The Laplace distribution, commonly referred to as the double-sided 
exponential distribution, is another distribution with heavy tails. This pdf 
includes the following: 
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where 

μ is a location parameter 

b > 0 is a scale parameter.  

Here are some properties of this distribution: 

mean = μ 

mode = μ 

var = 2b2 

Some properties of the distribution- 

 

1.4.4 The gamma distribution 

For positive real valued rv's, with x > 0, the gamma distribution is a 
flexible distribution. The shape a > 0 and the rate b > 0 are the two 
parameters used to define it: 

 

where Γ(a) is the gamma function: 

 

There are several distributions which are just special cases of the Gamma, 
which we discuss below: 

 Exponential distribution  

This is defined by 

 

where λ is the rate parameter.  

This distribution describes the times between events in a Poisson process, 
i.e. a process in which events occur continuously and independently at a 
constant average rate λ. 
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 Erlang distribution 

This is the same as the Gamma distribution where a is an integer. It is 
common to fix a = 2, yielding the one-parameter Erlang distribution- 

Erlang(x|λ) =Ga(x|2,λ) 

where λ is the rate parameter. 

 Chi-squared distribution  

This is defined by 

 

This is the distribution of the sum of squared Gaussian random variables. 
More precisely, if Zi ∼N(0, 1), and 

 

Some properties of the distribution- 

 

1.4.5 The beta distribution 

The definition of the beta distribution, which has support between [0, 1], is 
as follows: 

 

Here B(p, q) is the beta function- 

 

Some properties of the distribution- 

 

1.5 JOINT PROBABILITY DISTRIBUTIONS 

We have mostly focused on modelling univariate probability distributions 
up to this point. The more difficult task of creating joint probability 
distributions on numerous related random variables is introduced in this 
section, which will serve as the book's main focus. A joint probability 
distribution, which describes the (stochastic) correlations between the 
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variables, takes the form p(x1,...,xD) for a set of D > 1 variables. If each 
variable is discrete, the joint distribution can be represented as a large, 
multi-dimensional array with one variable per dimension. However, 
O(KD), where K is the number of states for each variable, is the minimum 
number of parameters required to define such a model.  

1.5.1 Covariance and correlation 

The covariance between two rv’s, X and Y, gauges how closely (linearly) 
X and Y are connected. In terms of covariance, 

 

 

Image source: 
https://en.wikipedia.org/wiki/File:Correlation_examples.png 

In above image a number of sets of (x, y) points, together with the x and y 
correlation coefficients for each set. It should be noted that the correlation 
(top row) indicates the noise and direction of a linear relationship but not 
its slope or many other aspects of nonlinear relationships (bottom). 

If x is a d-dimensional random vector, then the following symmetric, 
positive definite matrix is its covariance matrix: 

 

Covariance’s can range from 0 to infinity. Working with a normalised 
measure with a finite upper bound is sometimes more convenient. The 
formula for the (Pearson) correlation coefficient between X and Y is 
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A correlation matrix has the following 
structure:

 

For example,  

If  X=(X1,X2,X3)
T and Y=(Y1,Y2)

T  are random vectors, then RXY is 
a3x2 matrix whose (i,j)-th entry is E[XiYj]. 

1.5.2 The multivariate Gaussian 

The joint probability density function that is most frequently used for 
continuous variables is the multivariate Gaussian or multivariate normal 
(MVN). The pdf of the MVN in D dimensions is defined by the following: 

 

where 

is the mean vector 

 Σ = cov[x] is the D × D covariance matrix. 

Sometimes we'll work in terms of the concentration or precision matrix. 
Simply put, Λ = Σ−1 is the inverse covariance matrix. The pdf integrates 
to 1 due to the normalization constant- 

 

1.5.3 Multivariate Student t distribution 

The multivariate Student t distribution is a more accurate alternative for 
the MVN, and its pdf is given by- 

 

where  

Σ is called the scale matrix (since it is not exactly the covariance matrix) 

V = νΣ. 
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Compared to a Gaussian, this has fatter tails. The tails get fatter as the ν → 
∞ gets smaller. 

The distribution is more likely to be Gaussian, as stated. These are the 
properties of the distribution. 

 

1.6 TRANSFORMATIONS OF RANDOM VARIABLES 

What is the distribution of y if x is some random variable, x ∼p(), and 
y=f(x)? 

The following will reveal the answer- 

1.6.1 Linear transformations 

If  f() is a linear function, then: 

y=f(x)=Ax+b  

The mean and covariance of y in this situation can be easily derived as 
follows. First, we have for the mean: 

E[y]=E[Ax+b]=Aµ+b  

where µ = E [x]. This is called the linearity of expectation.  

If f ()is a scalar-valued function, 

f(x)= aTx + b, the corresponding result is 

 

For the covariance, we have 

  

where Σ = cov [x].  

We leave the proof of this as an exercise. If f() is scalar valued, the 
result becomes 

 

1.6.2 General transformations 

The probability mass for all the x's such that f(x) = y can be summed 
together to obtain the pmf for y if X is a discrete rv. 
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1.6.3 Central limit theorem 

Now imagine N random variables, each with mean and variance σ2, and 
pdfs (not necessarily Gaussian) p(xi). We take for granted that all of the 
variables have independent and identical distributed, or iid. 

Let 

 

be the sum of the rv’s. This conversion of RVs is simple yet very 
common. One can demonstrate how the distribution of this sum 
approaches uniformity as N rises. 

 

And hence, the quantity's distribution 

 

the standard normal is reached, where 

 

is the sample mean.  

This is called the central limit theorem. 

1.7 MONTE CARLO APPROXIMATION 

In general, it might be challenging to compute the distribution of a 
function of a rv using the change of variables formula. Here is a simple yet 
effective alternative. We first create S samples from the distribution, 
denoted by the letters x1,..., xS. Using the empirical distribution of, we 
may approximatively determine the distribution of f(X) given the data. 

 

This is known as a Monte Carlo approximation, after the European city 
famous for its plush gambling casinos. Although they were initially 
created in the field of statistical physics, specifically during the 
development of the atomic bomb, Monte Carlo techniques are now widely 
used in both statistics and machine learning. 

Any function of a random variable can have an expected value, and we 
can use Monte Carlo to approximate it. We only create samples, after 
which we calculate the function's arithmetic mean when it is applied to the 
samples. The following can be written: 
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where xs∼ p(X).  

This process, known as Monte Carlo integration, has the benefit of only 
evaluating the function at locations where there is a non-zero probability, 
as opposed to numerical integration, which is predicated on doing so at a 
set grid of points. 

Many values of interest can be approximated by changing the value of the 
function f(), such as: 

 

1.7.1 Example: change of variables, the MC way 

Let y = x2 and x ~ Unif(-1, 1). By taking many samples from p(x), 
squaring them, and then estimating the resulting empirical distribution, we 
can approximate p(y), explained in the image below. 

 

Image source: Machine Learning: A Probabilistic Perspective: Kevin P 
Murphy, The MIT Press Cambridge (2012). 

Monte Carlo integration is used to estimate π. The circle has red crosses 
outside and blue points inside. 

1.7.2 Example: estimating π by Monte Carlo integration 

Not only for statistical purposes, but also for a wide range of other uses. 
Let's say we wish to calculate π. We are aware that the area of a circle 
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with radius r is equal to πr2, but it is also equal to the following definite 
integral- 

 

Hence π = I/(r2). Let us approximate this by Monte Carlo integration. Let 
f(x, y) = 

I(x2 + y2 ≤ r2) be an indicator function that is 1 for points inside the 
circle, and 0 outside, and let p(x) and p(y) be uniform distributions on [−r, 
r], so p(x) = p(y) = 1/(2r). Then 

 

We find ˆπ = 3.1416 with standard error 0.09 

1.7.3 Accuracy of Monte Carlo approximation 

Example 1: 

The probability that the actual return will be within one standard deviation 
of the rate that is considered to be the most likely ("expected") is 68%. 
There is a 95% chance that it will be within two standard deviations and a 
99.7% chance that it will be within three. 

Yet, there is no guarantee that the outcome will be as expected or that real 
movements won't exceed the most extreme predictions. 

Example 2: 

If we denote the exact mean by μ = E [f(X)], and the MC approximation 
by ˆμ, one can show that, with independent samples, 

 

where 

 

This is a consequence of the central-limit theorem. Of course, σ2is 
unknown in the above expression, but it can also be estimated by MC: 
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Then we have 

 

The term is called the (numerical or empirical) standard error, and 
is an estimate of our uncertainty about our estimate of μ. 

1.8 INFORMATION THEORY 

Data compression, also known as source coding, is the process of 
encoding data in a little amount of space. Information theory is also 
concerned with how to transport and store data in a way that is robust to 
errors (a task known as error correction or channel coding). Although at 
first glance it might appear that this has little to do with probability 
theory's concerns, there is actually a close connection. Consider the fact 
that compactly expressing data necessitates allocating short code words to 
highly probable bit strings and reserving longer code words for less 
probable bit strings to demonstrate this. Similar to how frequent words (as 
such "a," "the," and "and") likely to be much shorter than rare ones in 
natural language. 

1.8.1 Entropy 

A random variable's entropy, indicated by �(X) or sometimes �(p), is a 
measure of its uncertainty. It is defined by, in specifically, for a discrete 
variable with K states- 

 

Typically, log base 2 is used, in which case the units are referred to as bits 
(short for binary digits). The units are referred to as nats if we use log base 
e. For instance, we find � = 2.2855 if X ∈ {1, . . . , 5} with histogram 
distribution p = [0.25, 0.25, 0.2, 0.15, 0.15]. The uniform distribution is 
the discrete distribution with the highest entropy. The entropy is therefore 
maximum for a K-ary random variable if p(x = k) = 1/K; in this case, 
�(X) = log2 K. In contrast, any delta-function that concentrates all of its 
mass in one state is the distribution with minimum entropy, which is zero. 
There is no uncertainty in this distribution. 
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Image source: Machine Learning: A Probabilistic Perspective: Kevin P 
Murphy, The MIT Press Cambridge (2012). 

Entropy of a Bernoulli random variable as a function of θ.  

The maximum entropy is log2 2 = 1. 

For the special case of binary random variables, X ∈ {0, 1}, we can write 
p(X = 1) = θ and p(X = 0) = 1 − θ. Hence the entropy becomes 

 

This is called the binary entropy function, and is also written H(θ). 

1.8.2 KL divergence 

The Kullback-Leibler Divergence score, or KL divergence score, 
quantifies how much one probability distribution differs from another 
probability distribution. 

The KL divergence between two distributions q and p is often stated using 
the following notation: 

KL(p || q) 

Where the “||” operator indicates “divergence” or p’s divergence from q. 

This is defined as follows: 

 

We can rewrite this as 

 

 

 



 

 

Probability 

23 

where H (p, q) is called the cross entropy, 

 

The value within the sum is the divergence for a given event. 

1.8.3 Mutual information 

Think about the two random variables X and Y. Let's say we want to see 
how much understanding one variable can reveal about the other. We 
could compute the correlation coefficient, but this is a highly limiting 
measure of dependence since it is only defined for random variables with 
real values. Determine how comparable the joint distribution p(X, Y) is to 
the factored distribution p(X)p(Y ). The mutual information, or MI, is 
what is meant by the following: 

 

We have I (X; Y ) ≥ 0 with equality iff p(X, Y) = p(X)p(Y).  

In other words, if the variables are independent, the MI is zero. It is 
helpful to re-express MI in terms of joint and conditional entropies to 
better understanding of its significance. The pointwise mutual information, 
or PMI, is a quantity that is closely connected to MI. This is defined as 
follows for two occurrences (not random variables) x and y: 

 

This calculates the difference between the probability of these occurrences 
happening together and what would be anticipated by chance. 
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1.10 QUESTIONS 

 Explain Bayes rule in Probability. 
 Write a note on Independence and conditional independence. Give 

example. 
 Describe Continuous random variables and Quantiles. 
 What is Mean and variance? Explain Some common discrete 

distributions in short. 
 Write a note on Bernoulli distributions and Binomial distributions. 
 Write a note on Some common continuous distributions. 
 Write a note on gamma distribution and beta distribution. 
 Describe Multivariate Student t distribution. 
 Explain Linear transformations and General transformations. 
 Write a note on Monte Carlo approximation. 
 What is Entropy? Explain KL divergence. 

 


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2 
DIRECTED GRAPHICAL MODELS 

Unit Structure: 

2.0  Objectives 

2.1  Directed graphical models (Bayes nets):  

 2.1.1 Introduction 

 2.1.2 Examples 

 2.1.3 Inference 

 2.1.4 Learning 

 2.1.5 Conditional independence properties of DGMs 

2.2  Mixture models and EM algorithm:  

 2.2.1 Latent variable models  

 2.2.2 Mixture models 

 2.2.3 Parameter estimation for mixture models 

 2.2.4 The EM algorithm 

2.3  References 

2.3  Questions 

2.0 OBJECTIVES 

After completing this chapter, you will be able to understand directed 
graphical models (Bayes nets), inference, learning, conditional 
independence properties of DGMs. Mixture models and EM algorithm in 
that Latent variable models, Mixture models, Parameter estimation for 
mixture models, The EM algorithm. 

2.1 DIRECTED GRAPHICAL MODELS (BAYES NETS):  

A Bayesian network is a directed acyclic graph(DAG), and directed 
graphical models are sometimes referred to as directed edges give 
causality links between random variables. 

2.1.1 Introduction 

Graphical models give a visual representation of a joint probability 
distribution's underlying structure. The structure encodes information on 
the conditional independence relationships between the random variables, 
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as we'll see shortly. Remember that these links between independence are 
crucial for comprehending the computational costs of representation and 
inference for a given joint probability distribution. Our first objective is to 
utilise the model to respond to straightforward inquiries like "Are the 
random variables XA and XB independent?" or "Is the random variable XA 
independent of the random variable XB conditioned on the random 
variable XC?" Although these questions appear straightforward, the Bayes 
rule is the only method we have found so far to provide the answer. 

Chain rule 

The general product rule is another name for the Chain Rule of 
Conditional Probabilities. Any number of the associated distributions of a 
set of random variables can be calculated using it. By only using 
conditional probabilities, it is possible. 

The Chain rule can be obtained by rearranging the conditional probability 
formula: 

P (A, B) = P (A|B) P (B) 

This can be scaled for three different variables: 

P(A,B,C) = P(A| B,C) P(B,C) = P(A|B,C) P(B|C) P(C) 

and commonly to n variables: 

P(A1, A2, …, An) = P(A1| A2, …, An) P(A2| A3, …, An) P(An-1|An) 
P(An) 

This is generally referred to as the chain rule. 

For Bayesian Belief Nets, this formula is important. It provides a method 
for finding out the complete joint probability distribution. A probability 
measure is the conditional probability of the aforementioned.  

Example 

The chain rule is applicable to four events (n=4). 

 

Conditional independence 

Applying some assumptions regarding conditional independence(CI) is 
essential for effectively representing large joint distributions . If and only 
if (iff) the conditional joint can be represented as a product of the 
conditional marginal, then X and Y are conditionally independent given Z, 
denoted X ⊥ Y|Z, 
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Let's examine how this might be helpful. Assume that xt+1 ⊥ x1:t−1|xt, or, 
to put it another way, "the future is independent of the past given the 
present." This is referred to as the (first order) Markov assumption. The 
joint distribution can be expressed as follows using this assumption and 
the chain rule: 

 

A (first-order) Markov chain is what this is. A state transition matrix p(xt 
= j|xt−1 = i) in combination to an initial distribution over states, p(x1 = 
i) can be used to describe them.  

Graphical models 

A framework for reasoning about uncertain quantities and their structural 
links is provided by graphical models. They combine graph theory and 
probability. Random variables are represented as nodes, while their 
connections or relationships are shown as edges. 

Similar to a circuit diagram, graphic representations of a problem are 
recorded to help with visualisation and comprehension. 

Graphical models can be viewed as a: 

 A communication tool that makes it easier to succinctly convey how 
many opinions about a system are interconnected. 
 

 A tool for reasoning that enables the extraction of connections that 
were not immediately apparent when the problem was formulated. 
Visualizing conditional independence is made possible, in particular, 
by graphical models. 
 

 A computational skeleton that improves the way we compute with 
random variables. 
 

Graph terminology 

A graph G = (V, E) includes a set of nodes or vertices, V = {1, . . . , V }, 
and a set of edges, E = {(s, t) : s, t ∈ V}. The graph's adjacency matrix 
allows us to represent it, in which we write G(s, t) = 1 to denote (s, t) ∈ E, 
that is, if s → t is an edge in the graph. 

1. Parent: Node an is the parent of node b if there is an edge connecting 
them. 
 

2. Child: If node a and node b are connected by an edge, then node b is a 
child of node a. 
 

3. Root: A root is a node that has no parents.  It only has outgoing edges.  
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4. Leaves or Leaf: A leaf is a node that has no children. There are no 
outgoing edges. 
 

5. Ancestors and Descendants: If a directed path connects node a to node 
b, node a is a descendant of node b and vice versa. 
 

6. Acyclic: For each node I anc(i) does not contain i, i.e. ∀i, i /∈anc(i). 
 

7. Degree: A node's degree is determined by how many neighbours it 
has. We use the terms in-degree and out-degree, which count the 
number of parents and kids, respectively, for directed graphs. 
 

8. Cycle and loop: An edge connecting a vertex to itself is called a loop. 
A cycle is a path that starts and ends at the same node. 
 

9. DAG: A directed graph without any directed cycles is known as a 
directed acyclic graph, or DAG. 
 

10. Topological ordering: For a DAG, a topological ordering, also known 
as a total ordering, is a node numbering in which parents are given less 
nodes than their children. 
 

11. Path or trail: From s ↝ t, a path or trail is formed by a series of 
directed edges. 
 

12. Tree: An undirected tree is an undirectecd graph with no cycles.  
 

13. Forest: A forest is a set of trees. 
 

14. Clique: For an undirected graph, a clique is a set of nodes that are all 
neighbours of each other. 

2.1.2 Examples 

In this part, we demonstrate how many different commonly used 
probabilistic models can be simply described as DGMs. 

Bayes net model describing the performance of a student on an exam. The 
distribution can be represented a product of conditional probability 
distributions specified by tables. The form of these distributions is 
described by edges in the graph: 
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Image Source: https://ermongroup.github.io/cs228-notes/assets/img/grade-
model.png 

Naive Bayes classifiers  

A collection of classification algorithms built on the Bayes' Theorem are 
known as naive Bayes classifiers. It is a family of algorithms rather than a 
single method, and they are all based on the idea that every pair of features 
being classified is independent of the other. The following joint 
distribution: 

 

The naïve Bayes assumption is relatively naive because it thinks the 
characteristics are conditionally independent. Using a graphical model is 
one method of capturing correlation between the features. If the model is a 
tree, the method is known as a tree-augmented naive Bayes classifier, or 
TAN model. 

Markov and hidden Markov models 

A hidden Markov model (HMM) is one in which you witness a sequence 
of emissions but have no idea what states the model went through to 
generate the emissions. The goal of hidden Markov model analyses is to 
reconstruct the sequence from the observed data. 

The assumption that the near past, xt1xt−1, has all of the information we 
need to know about the entire history, x1:t−2, is a bit too strong. By 
including a dependency from xt-2 to xt as well, we can loosen it up a bit; 
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this is known as a second order Markov chain. The relevant joint is shaped 
as follows: 

 

Similar techniques can be used to build higher-order Markov models. 

Example 

Imagine you have a bag of marbles with two red and two blue marbles 
inside, totaling four marbles. A marble is drawn at random from the bag, 
its colour noted, and it is then placed back in the bag. When you go 
through this process repeatedly, you start to see a pattern: A red marble is 
always two out of four times, or 50%, likely to be chosen. This is so 
because the quantity of a certain marble colour in the bag affects the 
likelihood of choosing that colour. 

This example demonstrates the Markov model concept: the future state of 
a system is determined by its current state and past history. The present 
state of the bag of marbles is defined by the number of each colour of 
marble in the bag. The contents of the bag symbolise the previous history, 
and they determine the chances of selecting each colour of marble. 

Medical Scenario: Hidden Markov models are utilized in various of 
medical applications to try to discover the hidden states of a human body 
system or organ. Cancer diagnosis, for example, can be done by 
examining specific sequences and deciding how dangerous they may be to 
the patient. Hidden Markov models are also used to evaluate biological 
data such as RNA-Seq, ChIP-Seq, and others that assist researchers 
understand gene regulation. Doctors can forecast people's life expectancy 
based on their age, weight, height, and body type using the hidden Markov 
model. 

2.1.3 Inference 

We've seen how graphical models can be used to define joint probability 
distributions in a concise manner. 

What can we do with such a joint distribution? The major application of 
such a joint distribution is to do probabilistic inference. This task involves 
estimating unknown quantities from known quantities. In general, the 
inference problem can be stated as follows. Consider a collection of 
correlated random variables with the joint distribution p(x1:V |θ). Let us 
divide this vector into visible variables xv that are observed and hidden 
variables xh that are unobserved. Inference is the process of calculating 
the posterior distribution of unknowns given knowns: 
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We're just conditioning the data by clamping the visible variables to their 
observed values, xv, and then normalising to get from p(xh, xv) to 
p(xh|xv). The likelihood of the data, also known as the probability of the 
evidence, is represented by the normalisation constant p(xv|θ). 

Example- A Bernoulli (Boolean) random variable, could express the event 
that John has cancer. A variable of this type could have a value of 1 (John 
has cancer) or 0. (John does not have cancer). Infernce use probabilistic 
inference to calculate the likelihood that the random variable will take the 
value 1: a probability of 0.78 indicates that John is 78% likely to develop 
cancer. 

2.1.4 Learning 

Inference and learning are frequently distinguished in the works on 
graphical models. Computing (functions of) p(xh|xv, θ), where v are the 
visible nodes, h are the hidden nodes, and are the model's parameters, 
which are assumed to be known, is what is meant by inference. Most of 
the time, learning involves calculating a MAP estimate of the parameters 
given data: 

 

where xi,v are the visible variables in case i.  

If we have a uniform prior, p(θ) ∝ 1, this reduces to the MLE, as usual. 
According to a Bayesian perspective, the parameters are likewise 
unknown variables that need to be inferred. Hence, there is no difference 
between inference and learning to a Bayesian. In fact, all we have to do is 
add the parameters as nodes to the graph, apply a condition based on D, 
and infer the values of each node. 

According to this perspective, the primary distinction between hidden 
variables and parameters is that the number of hidden variables typically 
increases with the amount of training data (because there is typically a set 
of hidden variables for each observed data case) (at least in a parametric 
model). This indicates that in order to prevent overfitting, we must 
integrate out the hidden variables, but for the parameters, which are few in 
number, we might be able to get away with point estimation methods. 

Plate Notation 

In a graphical model, repeating variables are represented using plate 
notation. A plate or rectangle is used to organise variables into a subgraph 
that repeats collectively rather than drawing each repeated variable 
separately, and a number is drawn on the plate to show the number of 
repetitions of the subgraph in the plate. 

Think about the next simple model. A Gaussian with mean µ and standard 
deviation σ is used to create a data set of N points: 
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This is illustrated graphically as follows: 
 

 

Image source: 
http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin3.pdf 

Example 

Students and their Grades. 

 

A=student, B=grade 

Learning from complete data 

We say the data is complete if all variables are fully observed in each case, 
therefore there is no missing data and no hidden variables. The probability 
for a DGM with complete data is provided by: 

 

where Dt is the data associated with node t and its parents, i.e., the t’th 
family.  
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This is a collection of terms, one for each CPD. The probability 
decomposes according to the graph structure, as the name implies. 

Assume that the preceding factorises as well: 

 

The posterior then obviously factors as well: 

 

This enables us to independently calculate the posterior of each CPD. In 
other words, factored prior and probability together imply factored 
posterior. 

Learning with missing and/or latent variables 

When we have missing data and/or hidden variables, the probability no 
longer factorises and is no longer convex. This means that we can usually 
only compute a locally optimal ML or MAP estimate. Bayesian parameter 
inference is even more difficult. 

2.1.5 Conditional independence properties of DGMs 

A set of conditional independence (CI) assumptions is at the heart of any 
graphical model. Using the semantics provided below, we write xA⊥G 
xB|xC if A is independent of B given C in the graph G. Let I(G) be the 
collection of all CI statements encoded by the graph. G is an I-map 
(independence map) for p, or p is Markov with respect to G, iff I(G) 
⊆ I(p), where I(p) is the set of all CI statements that hold for distribution 
p. In other words, the graph is an I-map if it makes no CI assertions that 
are false about the distribution. When reasoning about p's CI properties, 
we can use the graph as a safe proxy for p. This is essential for designing 
algorithms that operate for a large variety of distributions, regardless of 
their specific numerical parameters θ. 

d-separation and the Bayes Ball algorithm (global Markov properties) 

First, we introduce some definitions. We say an undirected path P is d-
separated by a set of nodes E (containing the evidence) iff at least one of 
the following conditions hold: 

1. P contains a chain, s → m → t or s ← m ← t, where m ∈ E 

2. P contains a tent or fork, s ↙m↘ t, where m ∈ E 

3. P contains a collider or v-structure, s ↘m↙ t, where m is not in E and 
nor is any descendant of m. 
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Next, we say that a set of nodes A is d-separated from a different set of 
nodes B given a third observed set E iff each undirected path from every 
node a ∈ A to every node b ∈ B is d-separated by E. Finally, we define the 
CI properties of a DAG as follows: 

xA⊥G xB|xE⇐⇒ A is d-separated from B given E 

2.2 MIXTURE MODELS AND EM ALGORITHM:  

A mixture model in statistics is a probabilistic model for describing the 
presence of subpopulations within an aggregate population that does not 
require an observed data set to identify the subpopulation to which an 
individual observation belongs. A mixture model is defined as the mixture 
distribution, which represents the probability distribution of observations 
in the whole population. 

2.2.1 Latent variable models  

A statistical model that links a group of observable variables to a group of 
latent variables is known as a latent variable model. An alternate strategy 
is to assume that the correlation between the observed variables results 
from a shared "cause" that is hidden. Latent variable models, or LVMs, 
are another name for models with hidden variables. They may, however, 
offer a number of benefits for two major reasons. Secondly, compared to 
models that directly reflect correlation in the visible space, LVMs 
frequently have fewer parameters. The computation of a compressed 
version of the data is slowed down by the hidden variables in an LVM, 
which might act as a bottleneck. 

There are L latent variables, zi1,..., zIL, and D visible variables, xi1,..., xiD, 
where D ≫ L is usually L. If L > 1, we have a many-to-many mapping 
since each observation is affected by numerous latent variables. Zi is 
typically discrete in this scenario, and we have a one-to-many mapping if 
L = 1. Otherwise, we only have a single latent variable. 

2.2.2 Mixture models 

A mixture model is a type of probabilistic model that assumes the data 
were generated by the following process: 

- Choose at random one of the mixture's ingredients.  

-Get a sample of the data from the distribution corresponding to that 
mixed component. 

Let's say our goal is to simulate the cost of a particular book. It could 
make sense to model the price of paperback books separately from 
hardback books since paperback books are often less expensive than 
hardbacks. We'll use a mixture model to simulate the cost of a book in this 
example. Our model will have two mixture components: one for 
hardbacks and one for paperback books. 
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The simplest form of LVM is when zi∈ {1, . . . , K}, representing a 
discrete latent state. We will use a discrete prior for this, p(zi) = Cat(π). 
For the likelihood, we use p(xi|zi = k) = pk(xi), where pk is the k’th base 
distribution for the observations; this can be of any type. The overall 
model is known as a mixture model, since we are mixing together the K 
base distributions as follows: 

 

This is a convex combination of the pk’s, since we are taking a weighted 

sum, where themixing weights πk satisfy 0 ≤ πk ≤ 1 and . 

Mixtures of Gaussians 

The mixture of Gaussians (MOG), often known as a Gaussian mixture 
model or GMM, is the most frequently used mixture model. Each base 
distribution in the mixture in this model is a multivariate Gaussian with a 
mean μk and a covariance matrix of length Σk. the model has the following 
form: 

 

Several sets of eliptical contours are used to represent the various mixture 
components. A GMM can be used to approximate any density defined on 
�D if there are enough mixing components. 

 

Image Source: https://ermongroup.github.io/cs228-
notes/assets/img/gmm2.png 

Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) 
Contours of constant density for each of the mixture components, in which 
the 3 components are denoted red, blue and green, and the values of the 
mixing coefficients are shown below each component. (b) Contours of the 
marginal probability density p(x) of the mixture distribution. (c) A surface 
plot of the distribution p(x). 
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2.2.3 Parameter estimation for mixture models 

The concept of optimization is used to offer a strategy for parameter 
estimation. Assuming the parameters are known, we have shown how to 
compute the posterior over the hidden variables given the observed 
variables. 

We shown in Section Learning from Complete Data that when we have 
complete data and a factored prior, the posterior over the parameters 
likewise factors, making calculation very straightforward. Unfortunately, 
if we have hidden variables and/or missing data, this is no longer the 
case.If the zi were seen, then the posterior will factorise since, according to 
d-separation, θz⊥θx|D. The posterior does not factorise and the parameters 
are no longer independent in an LVM because of the hidden zi, which 
makes computation much more difficult. Moreover, this makes it more 
difficult to calculate MAP and ML estimates. 

Unidentifiability 

The fundamental issue with determining  p(θ|D) for an LVM is that the 
posterior may have several modes. Think about a GMM to see why. If all 
of the zi were observed, the parameters would have a unimodal posterior: 

 

Hence, we can quickly identify the MAP estimate that is globally optimal 
(and hence globally optimal MLE). 

But let's say the zi's aren't visible. In this scenario, we obtain a different 
unimodal probability for each potential method of "filling in" the zi's. As a 
result, when we ignore the zi's, weget a multi-modal posterior for 
p(θ|D).These modes correspond to various cluster labelings. This is 
illustrated in following Figure (b), where we plot the likelihood function, 
p(D|μ1, μ2),for a 2D GMM with K = 2 for the data is shown in following 
Figure (a).  
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Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d, 
with πk = 0.5, σk = 5, μ1 = −10 and μ2 = 10. Right: Likelihood surface 
p(D|μ1, μ2), with all other parameters set 

to their true values. We see the two symmetric modes, reflecting the 
unidentifiability of the parameters. 

Image Source: Machine Learning: A Probabilistic Perspective: Kevin P 
Murphy, The MIT Press Cambridge (2012). 

We see two peaks, onecorresponding to the case where μ1 = −10, μ2 = 10, 
and the other to the case where μ1 = 10,μ2 = −10. We say the parameters 
are not identifiable, since there is not a unique MLE. 

Therefore there cannot be a unique MAP estimate (assuming the prior 
does not rule out certainlabelling), and hence the posterior must be 
multimodal. The question of how many modes there are in the parameter 
posterior is hard to answer. There are K! possible labelings, but some of 
the peaks might get merged. Nevertheless, there can be an exponential 
number, since finding the optimal MLE for a GMM is NP-hard (Aloise et 
al. 2009; Drineas et al. 2004). 

Unidentifiability can cause a problem for Bayesian inference. For 
example, suppose we draw some samples from the posterior, θ(s) ∼p(θ|D), 
and then average them, to try to approximate the posterior mean,  

  If the samples come from different modes, the average 
will be meaningless. Note, however, that it is reasonable to average the 

posterior predictive distributions, , since the 
likelihood function is invariant to which mode the parameters came from. 

Only two latent parameters, each of which receives N data points, are 
present. As a result, the posterior uncertainty about the parameters is 
usually significantly smaller than the posterior uncertainty regarding the 
latent variables. 

The parameters have the ability to communicate with one another. This 
would not be achievable if we were to use a point estimate. 

Computing a MAP estimate is non-convex 

We have stated, rather heuristically, in the preceding sections that getting 
a MAP or ML estimate will be challenging since the likelihood function 
has numerous modes. In this section, we demonstrate this finding using 
more algebraic techniques, which provides some additional insight for the 
issue: 

 

Unfortunately, it is challenging to achieve this goal. therefore we are 
unable to insert the log into the sum. This rules out some algebraic 
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inferences, but it doesn't show that the issue is difficult. Now suppose the 

joint probability distribution  is in the exponential family, 
which means it can be written as follows: 

 

where φ(x, z) are the sufficient statistics, and Z(θ) is the normalization 
constant. With this assumption, the complete data log likelihood can be 
written as follows: 

 

The first term in θ  is obviously linear. As Z(θ) can be demonstrated to be 
a convex function (thanks to the minus sign), the total objective is concave 
and so has a single maximum. Now think about what transpires when we 
lack data. The likelihood of the observed data is provided by: 

 

One can show that the log-sum-exp function is convex, and we know that 
Z(θ) is convex. On the other hand, the difference between two convex 
functions is typically not convex. Hence, the objective has local 
optima and is neither convex nor concave. 

The downside of non-convex functions is that it is sometimes difficult to 
identify their global optimum. 

A local optimum is all that the majority of optimization algorithms can 
find; which one they find depends on where they start. 

In real-world scenarios, we'll run a local optimizer and possibly employ a 
number of random restarts to improve our chances of locating a "good" 
local optimum. Obviously, careful initialization can be quite beneficial as 
well. 

2.2.4 The EM algorithm 

For many models in machine learning and statistics, computing the ML or 
MAP parameter estimate is easy if we see all the values of all the relevant 
random variables, i.e., if we have complete data.When we have missing 
data and/or latent variables, however, computing the ML/MAP estimate 
becomes difficult. Finding a local minimum of the negative log likelihood, 
or NLL, as provided by- 
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Constraints like the need that covariance matrices be positive definite and 
mixing weights total to one, among others, must frequently be fulfilled, 
which can be tricky. The expectation maximisation algorithm, or EM for 
short, is frequently significantly easier (though not always faster) under 
such circumstances. The procedure is straightforward and iterative, 
frequently requiring closed-form updates at each stage. Moreover, the 
algorithm automatically applies the required constraints.The fact that the 
ML/ MAP estimate would be simple to calculate if all of the data were 
observed is used by EM. In particular, EM is an iterative algorithm which 
alternates between inferring the missing values given the parameters (E 
step), and then optimizing the parameters given the “filled in” data (M 
step). 

Basic idea 

Automatically, the latent variables Zi should help us find the MLEs. In the 
beginning, we try to compute the posterior distribution of Zigiven the 
observations: 

 

Equation 1 

The derivative of the log-likelihood with respect to μk in equation (1) can 
now be written as follows: 

 

Equation 2 

Even though γZi(k) is dependent on μk, we can assume that it is not. We 
can now find μk in this equation by solving for it: 

 

Equation 3 

Where we set Nk represents the actual number of 

points given to component k. We see that   is thus a weighted average 
of the data with weightsγZi(k).Similarly, if we use a similar approach to 

find and  we find that: 
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Equation 4 

 

Equation 5 

The two observations mentioned above serve as the motivation for the EM 
algorithm, which goes like this: 

1. Initialize the μk’s, σk’s and πk’s and evaluate the log-likelihood with 
these parameters. 

2. E-step: Evaluate the posterior probabilitiesγZi(k) using the current 
values of the μk’s and σk’swith equation (2) 

3. M-step: Estimate new parameters  and with the current 
values ofγZi(k) using following equations (3), (4) and (5). 

4. Evaluate the log-likelihood with the new parameter estimates. If the log 
likelihood has changed by less than some small, stop. Otherwise, go back 
to step2. 
 

2.3 REFERENCES 

 https://stephens999.github.io/fiveMinuteStats/intro_to_em.html 
 Machine Learning: A Probabilistic Perspective: Kevin P Murphy, The 

MIT Press Cambridge (2012). 
 https://en.wikipedia.org/wiki/Probability 
 https://www.analyticsvidhya.com/blog/2021/01/discrete-probability-

distributions/ 
 https://en.wikipedia.org/wiki/Inequalities_in_information_theory 
 https://theclevermachine.wordpress.com/2012/09/22/monte-carlo-

approximations/ 
 Introducing Monte Carlo Methods with R, Christian P. Robert, George 

Casella, Springer, 2010. 
 Introduction to Machine Learning (Third Edition): EthemAlpaydın, 

The MIT Press (2015). 
 Pattern Recognition and Machine Learning: Christopher M. Bishop, 

Springer (2006). 
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2.4 QUESTIONS 

 Write a note on Chain rule. 

 Explain Unidentifiabilityin Parameter estimation for mixture models 

 Describe Graph terminology. 

 Write a note on Mixtures of Gaussians. 

 Explain how many different commonly used probabilistic models can 
be simply described as DGMs with an example. 
 

 Describe Naive Bayes classifiers. 

 Write a note on Markov and hidden Markov models. 

 Write a note on Inference 

 Explain learning on Graphical Models. 

 Describe Parameter estimation for mixture models 

 Write a note on EM algorithm. 

 How to compute a MAP estimate is non-convex? 

 Explain Plate Notation with an example. 

 


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3 
KERNELS 

Unit Structure 

3.0  Objective 

3.1  Introduction 

3.2  Kernel Function 

3.3  Kernel trick 

3.4  Support Vector Machines 

3.5  Comparison of discriminative kernel methods 

3.6  Summary 

3.7  References 

3.8  Questions 

3.0 OBJECTIVE 

 To study the importance and benefits of Kernel in machine learning 

 To study support vector machine 

 To study various methods of kernel  

3.1 INTRODUCTION 

In machine learning, Kernel is a method that will help us to apply linear 
classifiers to the non-linear problems by using mapping from non-linear 
data into a higher-dimensional space. 

The study of kernels gives computers the ability to learn without being 
explicitly programmed. Kernel technique or trick are useful to enter the 
dataset into a higher dimensional space, and then use the different 
classification methods for the algorithm. 

In the large field of machine learning, we want a machine to learn without 
having to be explicitly programmed. Regression, classification, and 
pattern recognition issues are dealt with in ML. We have a variety of 
techniques for solving classification problems, where the goal is to divided 
into several classes based on input labels that are known (supervised 
learning). One is SVM (Support Vector Machine), which employs kernel 
techniques. To deal with the nonlinearity in the dataset, machine learning 
uses kernels. The dataset gains a new dimension through the addition of a 
user-specified kernel function (similarity function), which allows the 
dataset to be classified using a linear hyperplane. 
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Need of Kernel 

Kernels are very important in machine learning as it is used to transform 
the data from one dimensional to the other dimensional so that the 
classification of the data set is very easy and we can get the good 
performance of the algorithm. 

Kernel in Machine Learning is a measuring the similarities between the 
given two points, it depends on the task as well, for example suppose, for 
instance, that one’s objective is to identify several categories. Using kernel 
will help to give one set of items in the data a low value and another set of 
objects with a high value. The most important thing is in this case that 
kernel offers a quicker method of finding similarities than comparing 
similarity point by point. 

Let takes the examplefor text processing if we use the kernel then kernel 
will assign the high value to the similar types of the data strings and for 
non-similar type of data strings will get the low-value. 

Kernel function takes data from the original dimension and provides scalar 
output by using dot products of the vector in a higher dimension. So, the 
output of a kernel method is a scalar, in this way the higher dimensionality 
is reduced, and we can easily avoid high dimensional computation to 
classify categories. This is the magic of the kernel trick. 

Let’s see a simple an example: 

I = (i1, i2, i3); 

J = (j1, j2, j3). 

Simple function to address nonlinearity: a refers to i,j 

f = (a1a1, a1a2, a1a3, a2a1, a2a2, a2a3, a3a1, a3a2, a3a3) 

kernel method is K(i, j ) = (i.j)^2 

we will use some arbitrary data. 

i = (1, 2, 3); 

j = (4, 5, 6). 

Then: 
f(i) = (1, 2, 3, 2, 4, 6, 3, 6, 9) 

f(j) = (16, 20, 24, 20, 25, 30, 24, 30, 36) 

f(i). f(j) = 16 + 40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024 

A lot of calculation, because f is trying to map from a 3-D to a 9-D space. 

Now if we use kernel trick then: 

K(i. j) = (4 + 10 + 18 ) ^2 = 32^2 = 1024 
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For every classification problem with higher dimensionality and 
nonlinearity, we cannot use the kernel, without putting any extra effort. It 
increases flexibility in the model if we use the kernel for complex and 
higher dimensions. So, idea is to use simple kernels which can reduce 
computation time and complexity. Because with more flexibility there are 
chances of overfitting on the training set. Overfitting ruins the model. 

It is hard to choose which kernel one should be used for a specific 
problem. Generally, it is recommended to try all possible kernels in the 
small-small training set and use the best one. 

Let us see another example why do we need a kernel? 

Suppose we have two-dimensional dataset that contains two different 
classes of observations, and we need to find a specific function which will 
use for separating the two classes. The data is not linearly separable in 
two-dimensional space. 

 

Figure 3.1 2D dataset 

[source: programmathically.com] 

Now our aim is to fit a polynomial function to separate the data, which 
complicates our classification problem, if we transform this data into the 
higher-dimensional (3D) space where the data is separable by a linear 
classifier? 
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Figure: 3.2 3D Dataset 

[source:programmathically.com] 

If we find a mapping from 2Dimentional space into the 3Dimentional 
space where we can find our observations are linearly separable, whereas 

 Transform the given data from 2 dimensional into 3 dimensional 
 Find the linear decision boundary by fitting a linear classifier (a plane 

separating the data) in the 3-dimensional space. 
 Map the linear decision boundary back into 2-dimensional space. The 

resultant gives a non-linear decision boundary in 2 dimensional 

We found that a non-linear decision boundary while doing the work of 
finding a linear classifier. 

Aim is to build a linear classifier; we can transform our input data into 
3-dimensional space. 

With the help of Kernels and Kernel trick, we can find a linear 
decision boundary in a 3-dimensional space while working with input 
data in the form of 2 dimensional. 

Let us see how we can do this, 

Use of Kernel helps us to separate data with a non-linear decision 
boundary using a linear classifier.  
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Working of Kernel 

Consider a linear regression model in the following form: 

 

If we package all weights into a vector w = {w_0,w_1,w_2}, we can 
express this as a simple dot product between the weight vector and the 
observation x_i 

 

The dot product between xl and the weights gives us the predicted 
point o the line for the actual observation yi. The difference is the error 
€_1 

 

Figure 3.3 Linear classifier 

[source:researchgate] 

Dot product is central to the prediction operation in a linear classifier. 

Role of Kernel 

Let’s assume we have two vectors, namely x and x*, in 2-dimensional 
space, and we want to perform a dot product between them to find a 
linear classifier. But our data is not linearly separable in our current 2-
dimensional vector space. 

To solve this problem, we can map the two vectors to a 3-dimensional 
space. 
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Where φ(x) and φ(x*) are 3 dimensional representations of x and x* 

 

Figure 3.4 2D representation and 3D representation 

[programmathically.com] 

Now we can perform the dot product between φ(x) and φ(x*) to find 
the linear classifier into 3-dimensional space and then map back to the 
2-Dimensional space. 

 

But mapping our features explicitly into the higher dimensional space 
is very expensive.  The exact use of kernel is that, representation of 
higher dimensional mapping without actually performing this type of 
mapping. 

A Kernel is a function of lower-dimensional vectors x, and x* that 
represents a dot product of φ(x) and φ(x*) in higher-dimensional space. 

 

To simplify this, we do the square of dot product. 

 

Recall that x and x* are vectors in a 2-dimensional input space. 
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If we expand the function, we get the following result. 

 

This result can be neatly decomposed into the product of 2 3-
dimensional vectors. 

 

For Kernel, we never have to create the full feature map. Instead, we 
just insert the original kernel function into out calculation in place of 
the dot product between x and x*. 

 

This is very useful method of kernel; it is the heart of support vector 
machines. 

Benefits 

Benefits of using the kernel trick in ML. 

 Kernel reduces the complexity of calculation and makes it faster. 

 The kernel gives an output that is scalar. 

 We can use the kernel to address infinite dimensions. 

 Kernel helps in dealing with nonlinear data by introducing linearity. 

 Kernel helps to distinguish similar objects easily. 

3.2 KERNEL FUNCTION 

Kernel function is a method that takes the data as input and transform it 
into the required form of processing data.  

For understanding the kernel function first, we understand the terms like 
SVM (support vector machines) in those classifications with the 
supervised learning algorithm for the machine learning.  

Let us understand with the help of example 

From various types of machines learning the task is to predict the 
particular breed of a dog with the help of the supervised learning 
algorithm. Firstly, we have to load all the details of various types of breeds 
of dogs with the information or the properties like type, skin color, height, 
body hair length and more details about dog. In machine learning it is 
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known as features, Single entry of these list of various features are known 
as a data instance, whereas the collection of everything is the training data 
set which is used for the basis if your prediction. It means if you know the 
skin color along with the body hair length as well as height and more 
details of a particular dog then you can predict the breed it will probably 
belong to. 

Support vector machine are supervised learning models with the 
associated learning algorithms are generally used. That analyzes the data 
for classification. 

Classifications means knowing that what belong to what for example 
‘banana’ belongs to class ‘fruit’ whereas ‘cat’ or ‘dog’ belongs to class 
‘animals’ 

 

 

 

 

 

 

 

 

 

 

Figure3.5: classification with the help of support vector machine  

[source: towardsdatascience.com] 

The use of support vector machine is as a classifier formally defined bya 
separating hyperplane. Hyperplane is a subspace of one dimension less 
than its ambient place. The term dimension in mathematical space or 
object is defined as the minimum number of co ordinatesi.e. x, y, z axis 
which needed to specify any point for example blue color point and the 
red color point i.e. the mathematical object which has an ambient space.  

A mathematical object is an abstract object which arising in mathematics. 
An abstract object is an object which does not exist at any particular time 
or place, but rather exists as a type of thing, may be an idea or abstraction 
etc. 

Let us see the hyperplane of a two-dimensional space in the following 
figure where one dimensional line dividing the red color dots and the blue 
color dots. 
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Figure 3.6: SVM for breeds of dog 

[source: towardsdatascience.com] 

From this figure we are trying to predict the breed of a particular dog, it 
goes like this 

1. Data of all breeds of dog 
2. Features like the hair length, skin color and other features 
3. Learning algorithm 

With the help of following figure, we understand the need of Kernel 

 
 
Figure 3.7: Need of Kernel 
[source: towardsdatascience.com] 

With the help of figure SVM for breed of dog we are not able to solve the 
problem linearly. 

Red color dots and the blue color dots cannot be separated by a straight 
line as they are randomly distributed. In real world problem as well, the 
data are randomly distributed. 
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With the help of machine learning, a kernel is used with the help of kernel 
trick the various method for linear classifier is used to solve a non-linear 
problem.  

The kernel function is applied on each data instance to map the original 
non linear observations into a higher-dimensional space in which they 
become separable. 

Example of dog breed prediction, kernel offers a better alternative, 
defining the various features of a dog instead of that we can define a single 
kernel function to compute similarity between breeds of dog. Kernel will 
work with the data and the labels to the learning algorithm, and shows the 
classifier. 

Working: 

To understand the Kernel working, we will take the help of Lili Jiang’s 
mathematical model. 

It shows: 

Mathematical definition: K(x, y) = <f(x), f(y)>. Here K is the kernel 
function, x, y are n dimensional inputs. f is a map from n-dimension to m-
dimension space. <x,y> denotes the dot product. usually, m is much larger 
than n. 

normally calculating <f(x), f(y)> requires us to calculate f(x), f(y) first, 
and then do the dot product. These two computation steps can be quite 
expensive as they involve manipulations in m dimensional space, where m 
can be a large number. But after all the trouble of going to the high 
dimensional space, the result of the dot product is really a scalar: we come 
back to one-dimensional space again! Now, the question we have is: do 
we really need to go through all the trouble to get this one number? do we 
really have to go to the m-dimensional space? The answer is no, if you 
find a clever kernel. 

Simple Example: x = (x1, x2, x3); y = (y1, y2, y3). Then for the function 
f(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3), the kernel 
is K(x, y) = (<x, y>)². 

Let’s plug in some numbers to make this more intuitive: suppose x = (1, 2, 
3); y = (4, 5, 6). Then: 

f(x) = (1, 2, 3, 2, 4, 6, 3, 6, 9) 

f(y) = (16, 20, 24, 20, 25, 30, 24, 30, 36) 

<f(x), f(y)> = 16 + 40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024 

A lot of algebra, mainly because f is a mapping from 3-dimensional to 9-
dimensional space. 
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Now let us use the kernel instead: 

K(x, y) = (4 + 10 + 18 ) ^2 = 32² = 1024 

With the help of Kernel, we can calculate easily. 

3.3 KERNEL TRICK 

It transforms the data into an understandable or easily readable form. 
Because of mapping input space to another feature space, it is possible to 
transform in understandable form. 

In support vector machine (SVM) the inner product is calculated of two 
vectors and the result of this is always a single number, so when we 
replace this product of inner by using kernel the it is called as kernel trick. 

Use of Kernel tricks for transforming the data set which are in nonlinearly, 
to reduce the number of calculations of tasks, Kernel tricks are used with 
the linearity. Kernel always provides a similarity of dataset function which 
are further helps in data categorization easily with the help of providing 
scalar output. 

Support Vector Machine 

support vector machine classifies the observations by constructing a 
hyperplane that separate out these observations. These observations are lie 
on the margin surrounding the data separating hyperplane. The margin 
defines the minimum distance observations should have from the plane, 
the observations that lie on the margin impact the orientation and position 
of the hyperplane. 

 

Figure 3.8: Support Vector Machine 
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[source: abalyticsvidhya.com] 

If the data is in linear for then the separation of data points are very easy 
with the help of hyperplane. 

 

Figure 3.9:Classification of data points 

[source: analyticsvidhya.com] 

 

Figure 3.10: Hyperplanes in SVM 

[source: analyticsvidhya.com] 

In the above example, hyperplanes are perfectly separate the data points or 
the observations. 

We want the classifier to optimize the overall distance between the 
classifier and the points in addition to separating the training data. This 
provides us with a specific margin that increases our level of confidence in 
the forecast. We can be more certain that any subsequent observations that 
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retain that minimal distance are classified correctly if all the training sites 
have had a specific minimum distance from the hyperplane. 

On the other hand, if some observations are very close to the hyperplane, 
fresh observations with slightly off-plane characteristics may wind up on 
the opposite side. As a result, the red hyperplane is preferable than the 
green ones. 

Data points or the observations that are closest to the hyperplane are very 
important because they lie directly on the margin. They influence the 
orientation and position of the hyperplane the most and determine how 
wide the margin is. 

 

Figure 3.11: Optimal Hyperplane 

[source: analyticsvidhya.com] 

If we add one more data-points or observation that is closer to the margin, 
then the hyperplane gives changeable result. 

Uses of Support Vector Machine 

SVM is useful for classification as well as regression analysis. Generally, 
it is preferred for classification. The main aim of Support vector Machine 
is to find a hyper plane from the created a boundary between the various 
types of data. 

In 2-dimensionaldata set or space, the hyper plane is a line but we can plot 
each item in the data set in N-dimensional data set or space, with number 
of various features or the attributes of the data set (N). 
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With the help of support vector machine, we can find the hyperplane it is 
known as optimal hyperplane. By using hyperplane, we can separate the 
various data set. We can able to perform by using classification of binary 
numbers or datasets, for this we have to select any two classes and then for 
multi-class classification problem we can resolve by using different 
techniques. 

Multiclass classification for Support Vector Machine: 

We have to create a binary classifier for each class of the set of data. Then 
we can get two results of each classifier as follows: 

1. Class belonging data points 
2. Class does not belong data points 

 
Example 
Suppose there is a class of fruits, for multi class classification 
performance, creation of binary classifier for each fruit. example class as 
Mango, then there will be a binary classifier we will use for prediction, if 
it is a mango or it is not a mango. The classifier with the highest score is 
selected as the output of the SVM. 
 
SVM for complex i.e., for non-linearly separable model works well 
without any modifications and without any error for linearly separable 
data set.  
 
With the help of straight line in support vector machine we can plot a 
graph of linearly separable data, into classes. 
 
Support Vector Machine Kernel 
The Support Vector Machine kernel function is that converts non-
separable problems into separable problems by taking low-dimensional 
input space and transforming it into higher-dimensional space. It works 
best in non-linear separation issues. Simply explained, the kernel 
determines how to split the data depending on the labels or outputs defined 
after performing some incredibly sophisticated data transformations. 
 
Advantages of Support Vector Machine: 
1. Effective in high dimensional cases 

 
2. Different kernel functions can be specified for the decision functions 

and possible to specify custom kernels. 
 

3. Its memory efficient as it uses a subset of training points in the decision 
function called support vectors. 
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3.5 COMPARISON OF DISCRIMINATIVE KERNEL 
METHODS 

1. Polynomial kernel 
It is mostly used in image processing methods. 
Polynomial kernel is represented as, 

 

 
Here P represents the degree of the polynomial 

2. Gaussian kernel 
There are some applications where prior knowledge is not 
available. For this type of applications Gaussian kernel is used. 
Gaussian kernel is defined as, 
 

 
 

3. Gaussian radial basis function (RBF) 

This is also used for the applications where prior knowledge is not 
available. 

Gaussian radial basis function is defined as, 

 

Sometimes it is parametrized using the value of y as 1/20" 

4. Laplace RBF kernel 
Laplace RBF kernel is defined as, 
 

 
  

5. Hyperbolic tangent kernel 
It is used in neural networks, and is defined as, 

 
6. Sigmoid kernel 

It can be used as a proxy for neural networks, and defined as, 

 
 

7. Bassel function of the first kind Kernel 
Cross terms in mathematical functions can be removed by using 
this type of kernel function, and is defined as, 
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Here j represented the Bessel function of first type. 
 

8. Anova radial basis kernel 
In case of regression problem Anova radial basis kernel can be 
used, and is defined as, 
 
 

2) d 

 

3.6 SUMMARY 

Kernel in machine learning helps computers to learn without being 
explicitly programmed. Basically, we use a kernel method or trick to move 
the input dataset into a higher dimensional space, and then we use any of 
the available classification algorithms in this higher dimensional area. This 
is how a hyperplane that divides the two categories linearly is created. In 
the Figure it shows how this hyperplane can now clearly distinguish 
between the two groups. 

In other words, the kernel in machine learning is a task-dependent measure 
of similarity between two points. Suppose, for instance, that one's 
objective is to identify several categories. When using machine learning, 
the kernel will attempt to give one set of items in the data a low value and 
another set of objects a high value. The important thing to note in this case 
is that kernel offers a quicker method of finding similarity than comparing 
similarity point by point. 

3.7 QUESTIONS 

1) What is Kernel? 

2) Explain Kernel function in detail. 

3) What is kernel trick? Explain in detail. 

4) Describe Support Vector Machine 

5) Explain different Kernel methods. 

6) Discuss comparison of discriminative kernel methods. 

7) Elaborate the use of support vector machine in machine learning. 
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4 
MARKOV AND HIDDEN MARKOV 

MODELS 

Unit Structure : 

4.0  Objective 

4.1  Markov models 

4.2  Hidden Markov Models (HMM) 

4.3  Inference in HMMs 

4.4  Learning for HMMs 

4.5  Undirected graphical models (Markov random fields):  

 4.5.1 Conditional independence properties of UGMs 

 4.5.2 Parameterization of MRFs 

 4.5.3 Examples of MRFs 

 4.5.4 Conditional random fields (CRFs) 

 4.5.5 Applications of CRFs 

4.6 Summary 

4.7 References 

4.8 Questions 

4.0 OBJECTIVE 

1. To study the Markov model in detail. 

2. To study the Hidden Markov Models (HMM). 

3. To understand various applications of Conditional Random Fields 
(CRFs). 

4.1 MARKOV MODELS 

It is a discrete finite system that has N distinct states. The model starts at 
time t=1 called as initial state. 

As per the time step increases the system moves from present state to next 
state with the transition probabilities that are assigned to present state. 
Such type of system is known as a discrete, or finite Markov model. 
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Discrete Markov Model every aijindicates the probability of transition to 
state j from state i. The aijare stored in A = [aij] matrix. P1 is the 
probability to begin from a given state i. These start probabilities are 
indicated by vector p. 

4.2 HIDDEN MARKOV MODELS (HMM) 

Markov model is an un précised model where it is used in the systems that 
does not have any fixed patterns of occurrence i.e. randomly changing 
system. Markov Model is based on the fact of having random probability 
distribution or pattern that can be analyzed by statistical methods but 
cannot be predicted precisely. 

With the help of Markov models, we can consider that the future states are 
only depends on the current states and does not depend on the previously 
occurred states. 

There are four common Markov models generally used in the Hidden 
Markov model. 

 

Figure :4.1 Markov Model 

Markov Model Property 

At t+1 time the state of the system depends only on the state of the system 
at time t. 

P (Xt+1 = xt+1 | Xt = xt. Xt-1 = xt-1………X1 = x1.X0 = x0) 

=P (Xt+1 =xt+1 | Xt =xt) 
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Figure 4.2 Markov chains 

Markov Chains: It is probabilities independent of t when process is 
“stationary” 

So, for all t, P (Xt+1 = xt+1 | Xt = xt) = Pij 

This can be inferred as Pijrepresents the probability with which the system 
will be present in the next system without depending on the value of t, if 
the present system is in state i. 

The probability of being in a state j depends only on the previous state, 
and not on what happened before. 

Example 

1) Suppose a person has purchased milk, then there is a 90% chance 
that his next purchase will also be milk. 
If the same person purchased bread, then there is an 80% chance that his 
next purchase will also be bread. 
Let us assume that a person currently purchased milk, what is the 
probability that he will purchase bread two purchase from now and three 
purchases from now? 
 

  
Figure 4.3 Example 1 
 
Solution 
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   The probability of he will purchase bread three purchases from now is 
0.219 
 
Example 2) Consider Markov chain model for ‘Rain’ and ‘Dry’ is shown 
in the following figure Two states: ‘Rain’ and ‘Dry’ transition 
probabilities : P(‘Rain’|’Rain’) = 0.2, P(‘Dry’|’Rain’) = 0.65, 
P(‘Rain’|’Dry’) = 0.3, P(‘Dry’|’Dry’) = 0.7, Initial probabilities: say 
P(‘Rain’) = 0.4, P(‘Dry’) = 0.6. Calculate a probability of a sequence of 
states {‘Dry’, ‘Rain’, ‘Rain’, ‘Dry’}. 

 
 

Figure 4,4 Example 2 
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Solution: P(O | Model)  =  P (Dry, Rain, Rain, Dry | Model)  
                                = P (Dry) P (Rain | Dry) P (Rain | Rain) P (Dry | Rain) 
                                       = 0.6 * 0.3 * 0.2 * 0.65 = 0.0234 
 

4.3 INFERENCE IN HIDDEN MARKOV MODEL 
 
A hidden Markov Model (HMM) is graphical model as shown in the 
diagram below. The top chain is a Markov chain representing the sate of 
the system (some).  We can notobserved state directly. Whereas we can 
observe the function of the state which is known as probabilistic function 
of the state. 
 
For example, the Markov chain can represent the health status of a patient 
and the observations are symptoms such as temperature, blood pressure 
etc. 
 
One more example, As the Markov chain can represent the part of speech 
of the words in a text, and the observation is the actual word. 
 
It is also known as left to right chain model. 
 

 
 
Figure 4.5 Left to right chain model 
 
Probability distribution for the chain model is factorizes as follows: 

 

 

Assume that the Markov chain and the observations are both on discrete 
spaces, we can complete the model by specifying � = (π, A,B), where, 

- The probability distribution π for x1, 

                                                    πi=  p (x1 = i). 

- The transition matrix A of the Markov chain, 
            Aij= p (xt+1  = j | xt = i). 
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- The emission matrix B describing the probabilities of the 
observations given in the state as, 
Bij   = p ( yt   = j | xt  = i)  
 
By using three common inference problems associated with Hidden 
Markov Models and the methods for solving   them. We will not derive 
the solutions but they can be found in one of the above statements 
 
1. Evaluation :  forward – backward algorithm (sum-

product). 
2. Decoding :  Viterbi algorithm (max-

product). 
3. Learning:  Baum – Welch algorithm (EM) 

 
4.4 Learning for Hidden Markov Models 
With the help of learning parameters for Hidden Markov models we are 
able to maximizes the performance of the model. 
 
Learning Hidden Markov Models from data  
 Parameter estimation 
 If we knew the state sequence then it is very easy to estimate the 

parameters. 
 But when we need to work with hidden state sequences 
 Use “expected” counts of state transitions 
 

The approach is maximum likelihood, and we would like to calculate λ∗ 
that maximizes the likelihood of the sample of training sequences, 
X={Ok}K k=1, namely, P (X|λ). We start by defining a new variable that 
will become handy later on. We define ξt(i, j) as the probability of being in 
Si at time t and in Sj at time t + 1, given the whole observation O and λ: 

ξt(i, j) ≡ P (qt = Si (15.25) , qt+1 = Sj |O, λ) 

which can be computed as follows (see the following figure) 

ξt(i, j) ≡ P (qt = Si, qt+1 = Sj |O, λ) 

 

Figure 4.6: Computation of arc probabilities, ξt(i, j) 
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ξt(i, j) ≡ P (qt = Si, qt+1 = Sj |O, λ) 

 

 

αt(i) explains the first t observations and ends in state Si at time t. We 
move on to state Sj with probability aij , generate the (t+1)st observation, 
and continue from Sj at time t + 1 to generate the rest of the observation 
sequence. We normalize by dividing for all such possible pairs that can be 
visited at time t and t + 1. If we want, we can also calculate the probability 
of being in state Si at time t by marginalizing over the arc probabilities for 
all possible next states: 

 

Note that if the Markov model were not hidden but observable, both γt(i) 
and ξt(i, j) would be 0/1. In this case when they are not, we estimate them 
with posterior probabilities that give us soft counts. This is just like the 
difference between supervised classification and unsupervised clustering 
where we did and did not know the class labels, respectively. In 
unsupervised clustering using EM algorithm, it not knowing the class 
labels, we estimated them first E-step and then calculated the parameters 
with these estimates in the M-step. 

Baum-Welch algorithm: In this algorithm an EM procedure is same, 
where at each iteration, first the E-step where we compute ξt(i, j) and γt(i) 
values for the given current equation λ = (A, B, Π), and then in the M-
step, we recalculate λ given ξt(i, j) and γt(i).  

These are the two steps which will iterate alternate until convergence 
during which, it has been shown, P (O|λ) never decreases. 
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Assume indicator variables as 

 

And  

 

These are 0/1 in the case of an observable Markov model and are hidden 
random variables in the case of an Hidden Markov Model. For later case 
of E-step as, 

 

In the M-step, we calculate the parameters given these estimated values. 
The expected number of transitions from Si to Sj is  t ξt(i, j) and the total 
number of transitions from Si is  t γt(i). The ratio of these two gives us the 
probability of transition from Si to Sj at any time: 

 

The probability of observing vm in Sj is the expected number of times vm 
is observed when the system is in Sj over the total number of times the 
system is in Sj : 

 

When there are multiple observation sequences 

 

Which we assume to be independent 

 

 

 



 

 

Markov and hidden 
Markov Models 

67 

The parameters are now averages over all observations in all sequences: 

 

4.5 UNDIRECTED GRAPHICAL MODELS (MARKOV 
RANDOM FIELDS) 

Undirected graphical model or Markov network: It is a set of random 
variables with the Markov property which is described by an undirected 
graph. 

Or 

A random field is said to be a Markov random field which satisfies 
Markov properties. The original concept comes from the Sherrington-
Kirkpatrick model. 

It is similar to a Bayesian network where it shows the representation of 
dependencies.  

The difference between Bayesian network and directed and acyclic graph 
whereas in Markov networks are undirected and may be cyclic. 

A Markov network or MRF is similar to a Bayesian Network in its 
representation of dependencies; the differences being that Bayesian 
networks are directed and acyclic, whereas Markov networks are 
undirected and may be cyclic. Thus, a Markov network can represent 
certain dependencies that a Bayesian network cannot (such as cyclic 
dependencies; on the other hand, it can't represent certain dependencies 
that a Bayesian network can such as induced dependencies; The 
underlying graph of a Markov random field may be finite or infinite. 
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Figure 4.7: An example of a Markov random field. Each edge represents 
dependency. In this example: A depends on B and D. B depends on A and 
D. D depends on A, B, and E. E depends on D and C. C depends on E. 

When the joint probability density of the random variables is strictly 
positive, it is also referred to as a Gibbs random field, because, according 
to the Hammersley Clifford theorem, it can then be represented by a Gibbs 
measure for an appropriate (locally defined) energy function. The 
prototypical Markov random field is the Ising model; indeed, the Markov 
random field was introduced as the general setting for the Ising model. In 
the domain of artificial intelligence, a Markov random field is used to 
model various low to medium level tasks related to the image processing 
and the computer vision. 

4.5.1 Conditional Independence properties of UGM 

Definition 

Given an undirected graph G = (V,E), a set of random variables  X =  
 indexed by V form a Markov random field with respect to G if 

they satisfy the local Markov properties. 

Pairwise Markov Property: 

Any two non-adjacent variables are conditionally independent given all 
other variables: 

 

Local Markov Property: A variable is conditionally independent of all 
other variables given its neighbours: 

 

Where N(v) is the set of neighbours of v, and N[v] = v U N(v) is the 
closed neighbourhood of v. 

Global Markov Property: Any two subsets of variables are conditionally 
independent given a separating subset: 

 

Where every path from a node in A to a node in B passes through S. 

The relation between the three Markov properties is particularly clear in 
the following formulations: 

1. Pairwise 
2. Local 
3. Global 
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4.5.2 Parameterization of Markov Random Fields: 

To calculate the Markov parameters   from the system 

Firstly 

 

For the case when G(z-1) is parameterized in the Markov Field form (i.e. 
G(z-1) 

= Q-1(z-1)R(z-1)), the system Markov parameters can be determined from 
the equation: 

(  

By the following iterative calculations starting from  

 

If the parameterized in the derivation of the system in Markov parameters is almost 

the same as: 

one starts with and continues with the following iterative procedure: 

 

4.5.3 Examples of Markov Random Fields 

Let’s try to understand what these steps correspond to in our chain 
example. In that case, the chosen ordering was x1, x2,……,xn−1. Starting 
with x1, we collected all the factors involving x1, which were p(x1) 
and p(x2 ∣ x1). We then used them to construct a new 
factor τ(x2)=∑x1p(x2 ∣ x1) . This can be seen as the results of steps 1 and 
2 of the VE algorithm: first we form a large factor σ(x2,x1)=p(x2 ∣ 
x1)p(x1); then we eliminate x1 from that factor to produce τ. Then, we 
repeat the same procedure for x2x2, except that the factors are now p(x3 ∣  
x2),τ(x2). 
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Figure 4.8: Bayes net model of a student’s grade gg on an exam; in 
addition to gg, we also model other aspects of the problem, such as the 
exam’s difficulty dd, the student’s intelligence ii, his SAT score ss, and 
the quality ll of a reference letter from the professor who taught the 
course. Each variable is binary, except for gg, which takes 3 possible 
values. 

Let us take one example, recall the graphical model of a student’s grade 
that we introduce earlier. The probability specified by the model is of the 
form 

P(l, g, i, d, s) = p(l | g)p(s  | i)p(i)p(g | I,d)p(d). 

Let us assume that we are computing p(l) and are eliminating variables in 
their topological ordering in the graph. Firstly we eliminate d, which 
corresponds to creating a new factor  

τ(g,i)=∑dp(g∣i,d)p(d). Next is to eliminate i to produce a factor  
τ2(g,s)=∑iτ1(g,i)p(i)p(s ∣i). Then the next step is to eliminate s yielding 
τ3(g)=∑sτ2(g, s) and so on.. 

These operations are equivalent to summing out the factored probability 
distribution as follows: 

 

p(l)=∑gp(l ∣ g) ∑s∑ip(s∣i) p(i)∑dp (g∣i,d)p(d).p (l)=∑gp(l∣g)∑s∑ip (s∣i) 
p(i)∑dp(g∣i,d)p(d). 
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This example calculates at the most k3 operations per step. Since each 
factor is at the most over two variable is summed out at each step, 
dimensionality of k for this example is either 2 or 3. 

4.5.4 Conditional Random Field 

Conditional random fields (CRFs) are a class of statistical modeling 
methods often applied in pattern recognition and machine learning and 
used for structured prediction. Whereas a classifier predicts a label for a 
single sample without considering "neighbouring" samples, a CRF can 
take context into account. To do so, the predictions are modelled as a 
graphical model, which represents the presence of dependencies between 
the predictions. What kind of graph is used depends on the application. 
For example, in natural language processing, "linear chain" CRFs are 
popular, for which each prediction is dependent only on its immediate 
neighbours. In image processing, the graph typically connects locations to 
nearby and/or similar locations to enforce that they receive similar 
predictions. 

Other examples where CRFs are used are: labelling or parsing of 
sequential data for natural language processing or biological sequences,  
part-of-speech tagging, shallow parsing, named entity recognition, gene 
finding, peptide critical functional region finding, and object recognition  
and image segmentation in computer vision. 

CRFs are a type of discriminative undirected probabilistic graphical 
model. 

Lafferty, McCallum and Pereira definition of CRF on observations X and 
random variables Y as follows: 

Let G = (V, E) be a graph such that Y =  so that Y is indexed by 
the vertices of G. 

Then (X,Y) is a conditional random field when each random variable  
conditioned on X,  

With the help of Markov random field property w.r.to the graph 
(probability is dependent only on its neighbours in G) 

G : P(Y  

Where  :  

It means a CRF is an undirected graphical model whose nodes can be 
divided into exactly two disjoint sets X and Y, the observed and output 
variables, respectively; the conditional distribution p(Y|X) is then 
modelled. 
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4.5.5 Applications of Hidden Markov model 

1. Motion Sensing and Analysis 
2. Speech Recognition 
3. Language Recognition 
4. Gesture Recognition 
5. Search Engine Algorithm 
6. Marketing applications like Analysis of consumer brand switching ( 

It is based on loyalty of consumer to a particular brand of a product, 
store or supplier ) 

7. Weather Forecast (real life application) 
8. Finance (Share market stock price movement) 
 

4.6 SUMMARY 
 
Hidden Markov model is an temporal probabilistic model for which a 
single discontinuous random variable determines all the states of the 
system. The possible values of variable = Possible states in the system. 
For example, sunlight can be the variable and sun can be the only possible 
state. The structure of Hidden Markov model is restricted to the fact that 
basic algorithms can be implemented using matrix representation. 
 
1. In Hidden Markov Model, every individual states has limited number 

of transitions and emissions. 
2. Probability is assigned for each transition between states. 
3. Hence, the past states are totally independent of future states. 
4. The fact that Hidden Markov Model is called hidden because of its 

ability of being a memory less process i.e. its future and past states are 
not dependent on each other. 

5.  Since, HMM is rich in mathematical structure it can be implemented 
for practical applications. 

6. This can be achieved on two algorithms called as: 
1. Forward Algorithm. 
2. Backward Algorithm. 
 

4.7 QUESTIONS: 
 
Q.1) What is Markov Model? Explain in detail. 

Q,2) Elaborate in detail Hidden Markov Model. 

Q.3) Explain Markov chain. 

Q.4) Explain Markov Random Field (MRF) in detail. 

Q.4) Give the applications of Hidden Markov Model. 

Q.5) What is CRF. Explain in detail. 
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5 
MONTE CARLO INFERENCE-SAMPLING 

Unit structure : 

5.0 Objectives 

5.1  Introduction  

5.2  Sampling from standard distributions 

5.3 Rejection sampling 

5.4 Importance sampling 

5.5 Particle filtering 

5.6 Applications 

5.7     Rao-Blackwellised particle filtering (RBPF) 

5.8 Summary 

5.9 Exercise  

5.10 References 

5.0 OBJECTIVES  

After going through this chapter, students will able to learn 

 Techniques for randomly sampling a probability distribution. 

 To find the expectation of some function f(x) with respect to a 
probability distribution p(x). 

 To enhance decision-making under highly vague conditions. 

5.1 INTRODUCTION  

In this chapter, we discourse an alternate class of algorithms that are  
based on the knowledge of Monte Carlo approximation.There are 
numerous problem areas where estimating or describing the probability 
distribution as in earlier chapters is relatively straightforward, but 
calculating a desired quantity is obstinate. This may be due to several 
reasons, such as the stochastic or random in  nature of the domain or an 
exponential number of random variables. 

As an alternative, a desired quantity can be estimated by using random 
sampling, described as Monte Carlo methods. These methods were 
originally used around the time that the first computers were created and 
remain persistent through all fields of science and engineering, including 
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artificial intelligence and machine learning.Monte Carlo methods are a 
class of techniques for randomly sampling a probability distribution. 

We can attain any desired level of accuracy we need by generating 
adequate samples,. The main issue is  how do we effectively particularly 
in high dimensions generate samples from a probability distribution? In 
this chapter, we consider non-iterative methods for generating independent 
samples. In the next chapter, we discuss an iterative method known as 
Markov Chain Monte Carlo, or MCMC for short. This method produces 
dependent samples which works greatly in high dimensions.  

5.2 SAMPLING FROM STANDARD DISTRIBUTIONS 

In this section, we will discuss in brief some ways to sample from 1 or 2 
dimensional distributions of standard form. These methods are often used 
as subprograms by more complex methods. 

The easiest method for sampling from a univariate distribution is based on 
the inverse probability transform. Let F be a CDF(cumulative Distribution 
Function) of some distribution we want to sample from.Let F-1be its 
inverse. Then we have the following result : 

Theorem 1:  If U ∼U(0, 1) is a uniform random variable , then  

F−1(U) ∼ F.  

Proof :Pr(F−1(U) ≤ x) = Pr(U ≤ F(x)) (applying F to both sides)  

                                     = F(x) (because Pr(U ≤ y) = y  

where the first line follows since F is a monotonic function, and the 
second line follows since U is uniform on the unit interval. 

 

Figure 1 :Sampling using an inverse CDF 

Therefore, we can sample from any univariate distribution. In order to find 
this  we can evaluate its inverse cdf, as follows:  

 generate a random number u ∼U(0, 1) using a pseudo random number 
generator.  

 Let u represent the height up the y axis.  
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 Then “slide along” the x axis until you intersect the F curve, and then 
“drop down” and return the corresponding x value.  

 This corresponds to computing x = F −1(u). Look into Figure 1  

Example : consider the exponential distribution given by : 

E(X) = λe−λx (x ≥ 0, λ is parameter) 

The cdf is F(x) =1 − e−λx (x ≥ 0)  

whose inverse is the quantile function F −1(p) = −ln(1 − p)/ λ 

By the above theorem, if U ∼Unif(0, 1), we know that F −1(U) ∼ E(λ). 
Besides, since 1 − U ∼Unif(0, 1) as well, we can sample from the 
exponential distribution by first sampling from the uniform and then 
transforming the results using − ln(u)/λ. 

Next we describe a method to sample from a Gaussian. The aim here  is 
we sample uniformly from a circle of  radius one  and then use the change 
of variables formula to derive samples from a spherical 2d Gaussian. This 
can be thought of as two samples from a 1d Gaussian.Also known as a  
Box Muller method or transform,it takes a continuous, two dimensional  
uniform distribution and transforms it to a normal distribution. 

It is extensively used in statistical sampling. It is an easy to run, smart way 
to come up with a standard normal or Gaussian model. Since it can be 
used to generate normally distributed random numbers, it was originally 
developed as a better and computationally efficient alternative to inverse 
sampling. To discuss in detail we do the following : 

 First sample z1, z2∈ (−1, 1) uniformly. 

 Then discard pairs that do not satisfy the condtion : (z1)
2 + (z2)

2 ≤ 1. 

 The result will be points uniformly distributed inside the unit circle, 
so p(z) = 1 /π (z inside circle).  

 Now define for i =1:2, where r2 = (z1)
2 + (z2)

2. 

 

Applying the multivariate change of variables formula, we have 

 

 



 

 

Monte Carlo Inference-
Sampling 

77 

Hence x1 and x2 are two independent samples from a univariate Gaussian. 
This is known as the Box-Muller method. 

To sample from a multivariate Gaussian, we first compute the Cholesky 
decomposition of its covariance matrix, Σ = LLT , where L is lower 
triangular. Next we sample x ∼ N (0, I) using the Box-Muller method. 
Finally we set y = Lx + µ. 

5.3 REJECTION SAMPLING  

In last section we discussed inverse cdf method for sampling .When this 
method cannot be used one alternative that can be used is rejection 
sampling. 

Rejection sampling is a Monte Carlo algorithm to sample data from a 
difficult to sample from distribution with the help of a proxy distribution. 

Rejection sampling is based on the observation that to sample a random 
variable in one dimension, one can perform a uniformly random sampling 
of the two-dimensional Cartesian graph, and keep the samples in the 
region under the graph of its density function. 

We will use the following notations here: 

 Target (distribution) function f(x) — The “difficult to sample from” 
distribution. That is our distribution of interest. 
 

 Proposal (distribution) function g(x) — The proxy distribution from 
which we can sample. 

The basic idea that is present in almost all Monte Carlo methods is that if 
you can not sample from your target distribution function then use another 
distribution function (and hence called as proposal function). 

However, a sampling procedure must “follow the target distribution”. 
Following a “target distribution” indicates that we should end up with 
several samples per their likelihood of occurrence. In simple words, there 
should be more samples from regions of high probability. 

This also means that when we use a proposal function we must introduce 
the necessary corrections to make sure that our sampling procedure is 
following the target distribution function! This “corrective” aspect then 

takes the form of an acceptance criterion. 

The algorithm for  rejection sampling for drawing a sample from the target 
density f is  

1) Simulate U∼Unif(0,1) 
2) Simulate a candidate X∼g from the candidate density 
3) IfU≤f(X)/[cg(X) ] then “accept” the candidate X.  
4) Otherwise, “reject” X and go back to the beginning. 
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The algorithm can be repeated until the desired number of samples from 
the target density f has been accepted. 

Example : suppose we want to generate samples from a N(0,1) density.  

We could use the t2 distribution as our candidate density as it has heavier 
tails than the Normal. Plotting those two densities, along with a sample 
from the t2 density gives us the figure below. 

 

Figure 2 : Normal  and t densities 

Example source :https://bookdown.org/rdpeng/advstatcomp/rejection-
sampling.html 

Given what we know about the standard Normal density, most of the 
samples should be between −3 and +3, except perhaps in very large 
samples (this is a sample of size 200).  

From the figure, there are samples in the range of 4–6. In order to 
transform the t2 samples into N(0,1) samples, we will have toto reject 
many of the samples out in the tail. On the other hand, there are 
too few samples in the range of [−2,2] and so we will have to 
disproportionaly accept samples in that range until it represents the 
proper N(0,1)density. 

Next we describe a method called Adaptive rejection sampling (ARS).It 
is a method for efficiently sampling from any univariate probability 
density function which is log-concave. It is very useful in applications of 
Gibbs sampling, where full-conditional distributions are algebraically very 
messy yet often log-concave. 

The idea is to upper bound the log density with a piecewise linear 
function, as illustrated in Figure 3(a). We choose the initial locations for 
the pieces based on a fixed grid over the support of the distribution. We 
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then evaluate the gradient of the log density at these locations, and make 
the lines be tangent at these points. 

 

Figure 3 : (a)  Idea behind adaptive rejection sampling 

(b) and (c)  Using ARS to sample from a half-Gaussian 

Since the log of the envelope is piecewise linear, the envelope itself is 
piecewise exponential:  

q(x) = Miλiexp(−λi(x − xi−1)), xi−1< x ≤ xi 

where xi are the grid points.  

It is reasonably simple to sample from this distribution. If the sample x is 
rejected, we create a new grid point at x, and thereby refine the envelope. 
The tightness of the envelope improves,as the number of grid points is 
increased and the rejection rate goes down. This is known as adaptive 
rejection sampling (ARS) Figure 3(b and c) gives an example of the 
method in action. Similar to standard rejection sampling, it can be applied 
to unnormalized distributions. 

It is evident that we want to make our proposal function g(x) as close as 
possible to the target distribution f(x), while still being an upper bound. 
But this is quite hard to achieve, especially in high dimensions.We will 
describe MCMC sampling, which is a more efficient way to sample from 
high dimensional distributions in next chapter. Sometimes this uses 
(adaptive) rejection sampling as a subroutine, which is known as adaptive 
rejection Metropolis sampling. 

5.4 IMPORTANCE SAMPLING 

Importance sampling is an approximation method instead of sampling 
method. It derives from a little mathematic transformation and is able to 
formulate the problem in another way. 

We will now describe a Monte Carlo method known as importance 
sampling for approximating integrals of the form 

 

The basic idea is to draw samples x in regions which have high 
probability, p(x), but also where |f(x)| is large. The result can be super 
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efficient, means it needs less samples than if we were to sample from the 
exact distribution p(x).  

The reason is that the samples are focussed on the important parts of 
space. For example, suppose we want to estimate the probability of a rare 
event. Define f(x) = I(x ∈ E), for some set E. Then it is better to sample 
from a proposal of the form q(x) ∝ f(x)p(x) than to sample from p(x) 
itself. 

Importance sampling samples from any proposal, q(x). It then uses these 
samples to estimatethe integral as follows: 

 

where ws  are the importance weights. In Contrast to rejection sampling, 
we use all the samples. 

How must we choose the proposal? A natural condition is to minimize the 
variance of the estimate  . 

When we don’t have a particular target function f(x) in mind, we 
frequently just try to make q(x) as close as possible to p(x). In general, this 
is difficult, especially in high dimensions, but it is possible to amend the 
proposal distribution to improve the approximation. This is known as 
adaptive importance sampling. 

Now we will describe a way to use importance sampling to generate 
samples from a distribution which can be represented as a directed 
graphical model(DGM) (discussed in later chapter). If we don’t have 
proof, we can sample from the unconditional joint distribution of a DGM 
p(x) as follows:  

 First sample the root nodes, then sample their children, then sample 
their children, etc. This is known as ancestral sampling.  

 It works because, in a DAG, we can always topologically order the 
nodes so that parents preceed children.  

 Now suppose we have some evidence, so some nodes are “clamped” 
to observed values, and we want to sample from the posterior p(x|D). 
If all the variables are discrete, we can use the following simple 
procedure:  

 Perform ancestral sampling, but as soon as we sample a value that is 
inconsistent with an observed value, reject the whole sample and start 
again. This is known as logic sampling . 

 Logic sampling is very inefficient, and it cannot be applied when we 
have real-valued evidence. But, it can be modified as follows: 
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o Sample unobserved variables as before, conditional on their parents. 
But don’t sample observed variables; instead we just use their observed 
values.This procedure is known as likelihood weighting. 

 It is possible to draw unweighted samples from p(x) as follows : 

 First by using importance sampling (with proposal q) to generate a 
distribution of the form 

 

Where wsare the normalized importance weights. 

 Then sample with replacement from the above equation in first step, 
where the probability that we choosexs is ws. 

This processinduce a distribution denoted by  .This is known as sampling 
importance resampling (SIR). 

5.5 PARTICLE FILTERING 

The idea of the particle filter is based on Monte Carlo methods, which 
utilize particle sets to represent probabilities and can be used in any form of 
state space model. The core idea is to express its distribution by extracting 
random state particles from the posterior probability. It is a sequential 
importance sampling method (Sequential Importance Sampling). 

It is an algorithm for recursive Bayesian inference. That is, it 
approximates the predict-update cycle described in earlier Section of 
filtering. It is  extensivelyapplied in many areas, including tracking, time-
series forecasting, online parameter learning, etc.  

In simple terms, the particle filtering method refers to the process of 
obtaining the state minimum variance distribution by finding a set of 
random samples propagating in the state space to approximate the 
probability density function and replacing the integral operation with the 
sample mean.This method also handles nonlinear dynamic models and can 
tackle nonnormally distributed random instability to the state and 
measurement. 

Sequential importance sampling The basic idea is to appproximate the 
belief state (of the entire state trajectory) using a weighted set of particles : 
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We can easily compute the marginal distribution over the most recent state 
from this representation,p(zt|y1:t) and by simply disregarding the previous 
parts of the trajectory, z1:t−1.We update this belief state using importance 
sampling.The basic algorithm is as follows : 

 for each old sample s, propose an extension using ∼q(zt| , yt), and 

give this new particle weight   using Equation  

 
 This basic algorithm unfortunatelydoes not work very well, as we 

discuss further down. 

The basic sequential importance sampling algorithm stop working after a 
few steps because most of the particles will have negligible weight. This is 
called the degeneracy problem, and occurs because we are sampling in a 
high-dimensional space (in fact, the space is growing in size over time), 
using a biased proposal distribution.There are two principal solutions to 
the degeneracy problem:  

1. Adding a resampling step, and  
2. Applying a good proposal distribution. 
 
1. The resampling step :In the resampling step, the particles with 
negligible weights are replaced by new particles in the vicinity of the 
particles with higher weights. From the statistical and probabilistic point 
of view, particle filters may be interpreted as mean-field particle 

interpretations of Feynman-Kac probability measures.There are a variety 
of algorithms for peforming the resampling step. The simplest is 
multinomial resampling, which computes 
(K1,...,KS) ∼ Mu(S,( ,...,  ))  

 
We then make Ks copies of  . Various enhancements exist, such as 

systematic resampling residual resampling, and stratified sampling, which 
can reduce the variance of the weights.  
 
Although the resampling step helps with the degeneracy problem, it 
introduces difficulties of its own. In particular, since the particles with 
high weight will be selected many times, there is a loss of diversity 
amongst the population. This is known as sample impoverishment. 
 
In extreme case of no process noise (for example, if we have static but 
unknown parameters as part of the state space), then all the particles will 
collapse to a single point within a few iterations. To moderate this 
problem, several solutions have been proposed.  
 
(1) Only resample when necessary, not at every time step. (The original 
bootstrap filter (Gordon 1993) resampled at every step, but this is 
suboptimal.)  
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(2) After replicating old particles, sample new values using an MCMC 
step which leaves the posterior distribution invariant.  
 
(3) Create a kernel density estimate on top of the particles, We then 
sample from this smoothed distribution. This is known as a regularized 
particle filter . 
 
(4) When performing inference on static parameters, add some artificial 
process noise. 
 
2. The proposal distribution: The simplest and most widely used 
proposal distribution is to sample from the prior: 

 

we sample values from the dynamic model, and then evaluate how good 
they are after we see the data. This is the approach used in the 
condensation algorithm (which stands for “conditional density 
propagation”) used for visual tracking.However, if the likelihood is 
narrower than the dynamical prior that is the sensor is more informative 
than the motion model, (which is often the case), this is a very inefficient 
approach, since most particles will be assigned very low weight. 

5.6 APPLICATIONS 

In this section we will see some applications of particle filtering. 

1. Robot localization : Robot localization is the process of determining 
where a mobile robot is located with respect to its environment. 
Localization is one of the most fundamental capabilities required by an 
autonomous robot as the knowledge of the robot's own location is an 
essential precursor to making decisions about future actions.For 
example,consider a mobile robot wandering around an office environment. 
We will assume that it already has a map of the world, represented in the 
form of an occupancy grid, which just specifies whether each grid cell is 
empty space or occupied by an something solid like a wall. The goal is for 
the robot to estimate its location. This can be solved optimally using an 
HMM filter, since we are assuming the state space is discrete. However, 
since the number of states, K, is often very large, the O(K2) time 
complexity per update is prohibitive. We can use a particle filter as a 
sparse approximation to the belief state. This is known as Monte Carlo 
localization. 
 
2. Visual object tracking: It is one of the principal challenges in 
Computer Vision, where the task is to locate a certain object in all frames 
of a video, given only its location in the first frame.It is concerned with 
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tracking an object (for example  a remote-controlled helicopter) in a video 
sequence. The method uses a simple linear motion model for the centroid 
of the object, and a color histogram for the likelihood model, using 
Bhattacharya distance to compare histograms. The proposal distribution is 
obtained by sampling from the likelihood. 
 
3. Time series forecasting : InearlierSection , we discussed how to use 
the Kalman filter to perform time series forecasting. This assumes that the 
model is a linear-Gaussian state-space model. There are many models 
which are either non-linear and/or non-Gaussian. For example, stochastic 
volatility models, which are widely used in finance, assume that the 
variance of the system and/or observation noise changes over time. 
Particle filtering is widely used in such settings.  

5.7    RAO-BLACKWELLISED PARTICLE FILTERING 
(RBPF) 

RBPFs are an extension to particle filters (PFs) which are applicable to 
conditionally linear-Gaussian state-space models. 

In some models, we can partition the hidden variables into two kinds, qt 
and zt, such that we can analytically integrate out zt provided we know the 
values of q1:t. This means we only have sample q1:t, and can represent 
p(zt|q1:t) parametrically. Thus each particle s represents a value for  and 

a distribution of the form p(zt|y1:t, ). These hybrid particles are are 

sometimes called distributional particles or collapsed particles.The 
advantage of this approach is that we reduce the dimensionality of the 
space in which we are sampling, which reduces the variance of our 
estimate. Hence this technique is known as Rao-Blackwellised particle 
filtering or RBPF for short. 

Some of the applications of RBPF are : 

 Tracking a maneuvering target: It is to track moving objects that 
have piecewise linear dynamics. For example, suppose we want to track 
an airplane or missile; qt can specify if the object is flying normally or is 
taking evasive action. This is called maneuvering target tracking. 

 Fast SLAM: It is an algorithm that recursively estimates the full 
posterior distribution over robot pose and landmark locations, yet scales 
logarithmically with the number of landmarks in the map.in earlier section 
we introduced the problem of simultaneous localization and mapping or 
SLAM for mobile robotics. The main problem with the Kalman filter 
implementation is that it is cubic in the number of landmarks.An 
additional advantage of this techniques is ,it is easy to use sampling to 
handle the data association ambiguity, and that it allows for other 
representations of the map, such as occupancy grids. This idea was first 
suggested in (Murphy 2000), and was subsequently extended and made 
practical in (Thrun et al. 2004), who christened the technique FastSLAM.  
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5.8 SUMMARY 

In this chapter we consider approximate inference methods based on 
numerical sampling, also known as Monte Carlo techniques. Although for 
some applications the posterior distribution over unobserved variables will 
be of direct interest in itself, for most situations the posterior distribution 
is required primarily for the purpose of evaluating expectations, for 
example in order to make predictions. The fundamental problem that we 
therefore wish to address in this chapter involves finding the expectation 
of some function f(z) with respect to a probability distribution p(z).we 
considered some simple strategies for generating random samples from a 
given distribution. 

5.9 EXERCISE  

1 Show how to use inverse probability transform to sample from a 
standard Cauchy, T (x|0, 1, 1). 

2 Explain sampling from standard distributions. 

3 Explain various types of sampling. 

4 What are applications of sampling. 

5 Write a note on Partilcle filtering. 
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Unit structure : 
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6.3 Metropolis Hastings algorithm 

6.4 Speed and accuracy of MCMC 

6.5 Summary 

6.6 Exercise  

6.7  References 

6.0 OBJECTIVES  

After going through this chapter, students will able to learn 

 To carry out sampling from high-dimensional distributions is Markov 
chain Monte Carlo or MCMC. 

 Learn about some algorithms of MCMC 

 Speed and accuracy of MCMC. 

6.1 INTRODUCTION  

In Chapter 5, we introduced some simple Monte Carlo methods, including 
rejection sampling and importance sampling. The difficulty with these 
methods is that they do not work well in high dimensional spaces. The 
most popular method for sampling from high-dimensional distributions is 
Markov chain Monte Carlo or MCMC. These methods encompass a class 
of algorithms for sampling from a probability distribution. By creating 
a Markov chain that has the anticipated distribution as its equilibrium 
distribution, one can acquire a sample of the desired distribution by 
recording states from the chain. The more steps that are included, the more 
closely the distribution of the sample matches the actual desired 
distribution. Various algorithms exist for constructing chains, including 
the Metropolis–Hastings algorithm. MCMC allow for parameter 
estimation such as means, variances, expected values, and exploration of 
the posterior distribution of Bayesian models. To review the properties of 
a “posterior”, many representative random values should be sampled from 
that distribution. 
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The MCMC algorithm has an exciting history. It was discovered by 
physicists working on the atomic bomb at Los Alamos during World War 
II, and was first published in the open literature in a chemistry journal. An 
extension was published in the statistics literature in (Hastings 1970), but 
was largely unnoticed. A special case of Gibbs sampling was 
independently invented in 1984 in the context of Ising models and was 
published in Geman and Geman 1984. But it was not until Gelfand and 
Smith 1990 that the algorithm became well-known to the wider statistical 
community. Since then it has become wildly popular in Bayesian statistics, 
and is becoming increasingly popular in machine learning. 
 
The basic idea behind MCMC is to construct a Markov chain on the state 
space X whose stationary distribution is the target density p∗(x) of interest 
(this may be a prior or a posterior). That is, we perform a random walk on 
the state space, in such a way that the fraction of time we spend in each 
state x is proportional to p∗(x). By drawing correlated samples x0, x1, x2,..., 
from the chain, we can perform Monte Carlo integration with respect to p∗. 

If we try comparing MCMC to variational inference, then it is as follows: 
The advantages of variational inference are  

(1) for small to medium problems, it is usually faster; 

(2) it is deterministic; 

(3) is it easy to determine when to stop; 

(4) it often provides a lower bound on the log likelihood.  

Whereas ,the advantages of sampling are:  

(1) it is often easier to implement; 

(2) it is applicable to a broader range of models, such as models whose 
size or structure changes depending on the values of certain variables (e.g., 
as happens in matching problems), or models without nice conjugate 
priors;  

(3) sampling can be faster than variational methods when applied to really 
huge models or datasets. 

6.2 GIBBS SAMPLING 

In this section, we exhibit one of the most popular MCMC algorithms, 
known as Gibbs sampling. In physics, this method is known as Glauber 
dynamics or the heat bath method. This is the MCMC analog of 
coordinate descent. 

Like other MCMC methods, the Gibbs sampler constructs a Markov Chain 
whose values converge towards a target distribution. Gibbs Sampling is in 
fact a specific case of the Metropolis-Hastings algorithm wherein proposals 
are always accepted. 
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For instance suppose we wanted to sample a multivariate probability 
distribution(A multivariate probability distribution is a function of 
multiple variables (i.e. 2 dimensional normal distribution)). We don’t know 
how to sample from the latter directly. Though, because of some 
mathematical convenience, we happen to know the conditional 
probabilities. This is where Gibbs sampling comes in. Gibbs Sampling is 
appropriate when the joint distribution is not known explicitly or is difficult 
to sample from directly, but the conditional distribution of each variable is 
known and is easier to sample from. 
 
Gibbs sampling is commonly used as a means of statistical inference, 
especially Bayesian inference. It is a randomized algorithm (i.e. an 
algorithm that makes use of random numbers), and is an alternative to 
deterministic algorithms for statistical inference such as the expectation-
maximization algorithm (EM). 

The main idea of Gibbs sampling is that given a multivariate distribution, 
it’s simpler to sample from a conditional distribution than from a joint 
distribution. For instance, instead of sampling directly from a joint 
distribution P(x,y),Gibbs sampling propose sampling from two conditional 
distribution P(x|y)  and P(y|x). 
For a joint distribution P(x,y) , we start with a random sample (x(0), y(0)). 
Then we sample x(1)  from the conditional distribution P(x|x(0) ) and 
y(1)from the conditional distribution P(y|y(0)).Analogously,we sample  
 x(k)  from the conditional distribution P(x|x(k1) ) and y(k)from the 
conditional distribution P(y|y(k-1))  
Consider the distribution p(z) = p(z1,...,zM) from which we wish to sample, 
and suppose that we have chosen some initial state for the Markov chain. 
Each step of the Gibbs sampling procedure involves replacing the value of 
one of the variables by a value drawn from the distribution of that variable 
conditioned on the values of the remaining variables. Thus we replace zi 
by a value drawn from the distribution p(zi|z\i), where zi denotes the ith 
component of z, and z\i denotes z1,...,zM but with zi omitted. This 
procedure is repeated either by cycling through the variable in some 
particular order or by choosing the variable to be updated at each step at 
random from some distribution.For example, if we have D = 3 variables, 
we use 

 

This readily generalizes to D variables. If xi is a visible variable, we do not 
sample it, since its value is already known. 

The expression p(xi|x−i) is called the full conditional for variable i.  
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In general, xi may only depend on some of the other variables. If we 
represent p(x) as a graphical model, we can infer the dependencies by 
looking at i’s Markov blanket, which are its neighbors in the graph. Thus 
to sample xi, we only need to know the values of i’s neighbors.  
In this sense, Gibbs samplingis a distributed algorithm. However, it is not 
a parallel algorithm, since the samples must be generated sequentially.For 
reasons that will be  explain in later sections , it is necessary to discard 
some of the initial samples until the Markov chain has burned in, or 
entered its stationary distribution. We will discuss how to estimate when 
burnin has occured next section . In the examples below, we just discard 
the initial 25% of the samples, for simplicity. 
 
To better explain Gibbs Sampling , let us consider a simple example. 
Suppose we assume that we have two events A and B. Assume that the 
joint probability that the event will happen is given as: 

 P(A and B) = 0.2 (both events will happen) 
 P(A and not B) = 0.4 (only event A will happen) 
  P(not A and B) =  0.3 (only event B will happen) 
  P(not A and not B) = 0.1 (neither A nor B will happen) 

Suppose now we want to sample fro the joint distribution above. We need 
to generate a sequence of pairs (x,y) where x,y  {0,1}. For 
example, (1,0)  indicates that only event A has happened. 

Obviously there is a simple way of sampling from the joint distribution 
above by taking a unit interval and dividing it into four parts, where the 
area of each part is equal to the probability above. 

For example, we can generate a random number n between 0 and n. If n is 
between 0 and 0.2 , then our sample is (1,1), if n  is between 0.2 and 0.6, 
our sample is (1,0)  and analogously for others. For this simple example, 
the method with unit interval is more convenient than Gibbs sampling but 
for some more complicated examples, especially with continuous 
distributions, we can’t use this method 

Gibbs sampling can be applied to the following examples : 

1. Isingmodel : 

In many cases where we are interested in doing inference, we can't do it 
exactly. With such cases, we can approximate the true distribution using 
samples from it. Let's look at a model where we need to use techniques 
like the Ising model . 
The Ising model isn't the only one where sampling techniques like the 
ones we'll discuss are useful, and these techniques aren't the only way to 
do approximate inference here, but they provide a convenient story for 
illustrating both ideas. 
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Gibbs sampling in pairwise MRF/CRF takes the form: 

 

In the case of an Ising model with edge potentials ψ(xs, xt) = exp(Jxsxt), 
where xt∈{−1, +1} 

2. For inferring the parameters of a GMM : 

It is straightforward to derive a Gibbs sampling algorithm to “fit” a 
mixture model, specifically if we use conjugate priors. We will 
emphasis on the case of mixture of Gaussians, although the results are 
easily extended to other kinds of mixture models.  

Suppose we use a semi-conjugate prior. Then the full joint distribution 
is given by: 

 

The same prior is used  for each mixture component. 

Even though it is easy to implement, Gibbs sampling for mixture 
models has a major weakness. The problem is that the parameters of 
the model θ, and the indicator functions z, are unidentifiable, since we 
can arbitrarily permute the hidden labels without affecting the 
likelihood. Accordingly, we cannot just take a Monte Carlo average of 
the samples to compute posterior means, since what one sample 
considers the parameters for cluster 1 may be what another sample 
considers the parameters for cluster 2. Indeed, if we could average 
over all modes, we would find E [µk|D] is the same for all k (assuming 
a symmetric prior). This is called the label switching problem. 

In certain cases, we can analytically integrate out some of the 
unknown quantities, and just sample the rest. This is called a collapsed 
Gibbs sampler, and it tends to be much more efficient, since it is 
sampling in a lower dimensional space. 

Suppose we sample z and integrate out θ. Thus the θ parameters do not 
participate in the Markov chain; therefore we can draw conditionally 
independent samples which will have much lower variance than 
samples drawn from the joint state space .This process is called Rao-
Blackwellisation.This process can reduce statistical variance, it is only 
worth doing if the integrating out can be done quickly, otherwise we 
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will not be able to produce as many samples per second as the naive 
method. 

Gibbs sampling for hierarchical GLMs: Frequently we have data 
from multiple related sources. If some sources are more reliable and/or 
data-rich than others, it makes sense to model all the data 
simultaneously, so as to enable the borrowing of statistical strength. 
One of the most natural way to solve such problems is to use 
hierarchical Bayesian modeling, also called multi-level modeling. In 
earlier section  wedeliberated a way to perform approximate inference 
in such models using variational methods. It can also be done using 
Gibbs sampling.  

Example : Suppose we have data on studentsin diferent schools. Such 
data is naturally modeled in a two-level hierarchy:  

 we let yij be the response variable we want to predict for student i in 
school j.  

 This prediction can be based on school and student specific covariates, 
xij . 

 Since the quality of schools varies, we want to use a separate parameter 
for each school. So our model becomes yij = xij

Twj + �ij 

We might fit each wj separately, but this can give poor results if the 
sample size of a given school is small. We can get better results if we 
construct a hierarchical Bayesian model, in which the wj are assumed to 
come from a common prior: wj∼ N (µw, Σw) 

In this model, the schools with small sample size borrow statistical 
strength from the schools with larger sample size, because the wj ’s are 
correlated via the latent common parents (µw, Σw). 

Gibbs sampling is so popular since it is possible to design general 
purpose software that will work for almost any model which is one of 
the reason. This software just needs a model specification, usually in 
the form a directed graphical model (specified in a file, or created with 
a graphical user interface), and a library of methods for sampling from 
diferent kinds of full conditionals. BUGS is an example of an 
packagewhich stands for “Bayesian updating using Gibbs Sampling”. 
BUGS is very broadly used in biostatistics and social science. Another 
more recent, but very similar, package is JAGS which stands for “Just 
Another Gibbs Sampler”. This uses a similar model specification 
language to BUGS. 

The Imputation Posterior or IP algorithm is a special case of Gibbs 
sampling in which we group the variables into two classes:  

 hidden variables z and  
 parameters θ.  
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It is basically an MCMC version of EM, where the E step gets replaced 
by the I step, and the M step gets replaced the P step. This is an 
example of a more general strategy called data augmentation, whereby 
we introduce auxiliary variables in order to simplify the posterior 
computations (here the computation of p(θ|D)).  

Gibbs sampling can be quite slow, since it only updates one variable at 
a time (so-called single site updating). If the variables are highly 
correlated, it will take a long time to move away from the current state. 
If the variables are highly correlated, the algorithm will move very 
slowly through the state space. In particular, the size of the moves is 
controlled by the variance of the conditional distributions. If this is ℓ in 
the x1 direction, and the support of the distribution is L along this 
dimension, then we need O((L/ℓ)2) steps to obtain an independent 
sample. In some cases we can efficiently sample groups of variables at 
a time. This is called blocking Gibbs sampling or blocked Gibbs 
sampling. 

6.3 METROPLOIS HASTINGS ALGORITHM  

Even though Gibbs sampling is simple, it has some drawbacks : 

 It is somewhat restricted in the set of models to which it can be 
applied. For example, it is not much help in computing p(w|D) for a 
logistic regression model, since the corresponding graphical model has 
no useful Markov structure.  

 Gibbs sampling can be quite slow. 

Fortunately, there is a more general algorithm that can be used, known as 
the Metropolis Hastings or MH algorithm. 

The Metropolis-Hastings algorithm is one of the most popular Markov 
Chain Monte Carlo (MCMC) algorithms. Like other MCMC methods, the 
Metropolis-Hastings algorithm is used to generate serially correlated 
draws from a sequence of probability distributions. The sequence 
converges to a given target distribution. 

The Metropolis-Hastings algorithm requires only two things: 
1. The ability to compute unnormalized probabilities of samples pX(x): 
here, unnormalized is okay because we'll only be interested in ratios 
2. A proposal distribution V (x|x), which tells us how to generate the next 
sample x given the current sample x. 
 
The elementary idea in MH is that at each step, we propose to move from 
the current state x to a new state x′ with probability q(x′ |x), where q is 
called the proposal distribution (also called the kernel). The user is free to 
use any kind of proposal they want, subject to some conditions which we 
explain below. This makes MH quite a flexible method. A commonly used 
proposal is a symmetric Gaussian distribution centered on the current 
state, q(x′ |x) = N (x′ |x, Σ); this is called a random walk Metropolis 
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algorithm. If we use a proposal of the form q(x′ |x) = q(x′ ), where the new 
state is independent of the old state, we get a method known as the 
independence sampler, which is similar to importance sampling. Having 
proposed a move to x′ , we then decide whether to accept this proposal or 
not according to some formula, which ensures that the fraction of time 
spent in each state is proportional to p∗(x). If the proposal is accepted, the 
new state is x′ , otherwise the new stateis the same as the current state, x 
(i.e., we repeat the sample). If the proposal is symmetric, so q(x′ |x) = 
q(x|x′ ), the acceptance probability is given by the following formula: r = 
min(1, p∗(x′ )/ p∗(x). 

We see that if x′ is more probable than x, we definitely move there (since 
p∗(x′ )/ p∗(x) > 1), but if x′ is less probable, we may still move there 
anyway, depending on the relative probabilities. So instead of greedily 
moving to only more probable states, we occasionally allow “downhill” 
moves to less probable states. 

If the proposal is asymmetric, so q(x′ |x) �= q(x|x′ ), we need the Hastings 
correction, given by the following: 

 

This correction is needed to compensate for the fact that the proposal 
distribution itself (rather than just the target distribution) might favor 
certain states. 

It turns out that Gibbs sampling,  is a special case of MH. In particular, it 
is equivalent to using MH with a sequence of proposals of the form q(x′ 
|x) = p(xi′ |x−i)I(x−i′ = x−i). That is, we move to a new state where xi is 
sampled from its full conditional, but x−i is left unchanged. 

Some important points to note for MH: 
(a) Choosing a good proposal distribution can be tricky, and is 

usually problem-dependent. 

(b) Notice that we initialized completely arbitrarily: in many cases, 
this initialization could be in a particularly low-probability 
location. A common practice is to wait K iterations before 
collecting any samples, to avoid any artifacts from initialization. 
In this case, K is known as the burn-in time. 

(c) Another somewhat common practice is to not save every single 
sample, but rather to wait a _xed number of iterations between 
each save. This prevents samples from beingdependent on each 
other, but is not necessarily a problem for a well-chosen proposal 
distribution with enough samples. 

 
Proposal distributions: For a given target distribution p∗, a proposal 
distribution q is valid or admissible if it gives a non-zero probability of 
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moving to the states that have non-zero probability in the target. Formally, 
we can write this as supp(p∗) ⊆∪xsupp(q(·|x)) 

Following types of proposal distribuitons can be used : 

1. Gaussian proposals: If we have a continuous state space, the Hessian 
H at a local mode  can be used to define the covariance of a Gaussian 
proposal distribution. This approach has the advantage that the Hessian 
models the local curvature and length scales of each dimension; this 
approach therefore avoids some of the slow mixing behavior of Gibbs 
sampling. 

2. Mixture proposals: If one doesn’t know what kind of proposal to use, 
one can try a mixture proposal, which is a convex combination of base 
proposals. 

 

where wk are the mixing weights. As long as each qk is 
individually valid, the overall proposal will also be valid. 

3. Data-driven MCMC: The most efficient proposals depend not just on 
the previous hidden state, but also the visible data, i.e., they have the 
form q(x′ |x, D). This is called data-driven MCMC. To create such 
proposals, one can sample (x, D) pairs from the forwards model and 
then train a discriminative classifier to predict p(x|f(D)), where f(D) 
are some features extracted from the visible data. 

Adaptive MCMC: One can change the parameters of the proposal as the 
algorithm is running to increase efficiency. This is called adaptive 
MCMC. This allows one to start with a broad covariance , allowing large 
moves through the space until a mode is found, followed by a narrowing 
of the covariance to ensure careful exploration of the region around the 
mode. 

It is essential to start MCMC in an initial state that has non-zero 
probability. If the model has deterministic constraints, finding such a legal 
configuration may be a hard problem in itself. It is therefore common to 
initialize MCMC methods at a local mode, found using an optimizer. 

Reversible jump (trans-dimensional) MCMC:  Suppose we have a set 
of models with diferent numbers of parameters, e.g., mixture models in 
which the number of mixture components is unknown. Sampling in spaces 
of differing dimensionality is called transdimensional MCMC. 

The difficulty with this approach arises when we move between models of 
diferent dimensionality. The problem is that when we compute the MH 
acceptance ratio, we are comparing densities defined in diferent 
dimensionality spaces, which is meaningless. It is like trying to compare a 
sphere with a circle. The solution, proposed by (Green 1998) and known 
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as reversible jump MCMC or RJMCMC, is to enhance the low 
dimensional space with extra random variables so that the two spaces have 
a common measure. 

6.4 SPEED AND ACCURACY OF MCMC 

In this section, we discuss a number of important theoretical and practical 
issues to do with MCMC.  

1. The burn-in phase: We begin MCMC from an arbitrary initial state. 
Only when the chain has “forgotten” where it started from will the 
samples be coming from the chain’s stationary distribution. Samples 
collected before the chain has reached its stationary distribution do not 
come from p∗, and are usually thrown away. The initial period, whose 
samples will be ignored, is called the burn-in phase. 

2. Mixing rates of Markov chains: The amount of time it takes for a 
Markov chain to converge to the stationary distribution, and forget its 
initial state, is called the mixing time. 

3. Practical convergence diagnostics: Computing the mixing time of a 
chain is in general quite difcult, since the transition matrix is usually 
very hard to compute. In practice various heuristics have been 
proposed to diagnoseconvergence. Firmly speaking, these methods do 
not diagnose convergence, but rather non-convergence. That is, the 
method may claim the chain has converged when in fact it has not. 
This is a flaw common to all convergence diagnostics, since 
diagnosing convergence is computationally intractable in general One 
of the simplest methods to evaluating when the method has converged 
is to run multiple chains from very diferentoverdispersed starting 
points, and to plot the samples of some variables of interest. This is 
called a trace plot. If the chain has mixed, it should have “forgotten” 
where it started from, so the trace plots should converge to the same 
distribution, and thus overlap with each other 

Accuracy of MCMC:The samples produced by MCMC are auto-
correlated, and this reduces their information content relative to 
independent or “perfect” samples. 

A natural question to ask is: how many chains should we run? We could 
either run one long chain to ensure convergence, and then collect samples 
spaced far apart, or we could run many short chains, but that wastes the 
burnin time. In practice it is common to run a medium number of chains 
(say 3) of medium length (say 100,000 steps), and to take samples from 
each after discarding the first half of the samples. If we initialize at a local 
mode, we may be able to use all the samples, and not wait for burn-in. 

6.5 SUMMARY 

In this chapter we saw Markov chain Monte Carlo (MCMC) methods 
which encompass a class of algorithms for sampling from a probability 
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distribution. By constructing a Markov chain that has the desired 
distribution as its equilibrium distribution, one can obtain a sample of the 
desired distribution by recording states from the chain. The more steps that 
are included, the more closely the distribution of the sample matches the 
actual desired distribution. Various algorithms exist for constructing 
chains, like Gibbs sample, Metropolis–Hastings algorithm were discussed. 

6.6 EXERCISE  

1. What is Markov chain Monte Carlo (MCMC) inference? Why it is 
needed? 
 

2. What is Gibbs sampling? Give an example 

3. Explain working of Gibbs sampling with an example. 

4. Explain briefly Metropolis Hastings algorithm. 

5. What is proposal distribution ? what are its types? 

6. What is reversible jump MCMC? 

7. Discuss Speed and accuracy of MCMC. 
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7 
GRAPHICAL MODEL STRUCTURE 

LEARNING 

Unit Structure : 

7.0  Objectives 

7.1  Introduction 

7.2.  Structure learning for knowledge discovery 

 7.2.1 Relevance networks 

 7.2.2 Dependency networks 

7.3 Learning tree structures 

 7.3.1 Directed or undirected tree 

 7.3.2 Chow-Liu algorithm for finding the ML tree structure 

 7.3.3 Finding the MAP forest 

 7.3.4 Mixtures of trees 

7.4 Learning DAG structure with latent variables 

 7.4.1 Approximating the marginal likelihood for missing data 

  7.4.2 Structural EM 

 7.4.3 Discovering hidden variables 

 7.4.4 Structural equation models 

7.5  Learning causal DAGs 

 7.5.1   Causal interpretation of DAGs 

 7.5.2   Using causal DAGs to resolve Simpson’s paradox 

 7.5.3   Learning causal DAG structures 

7.6  Learning undirected Gaussian graphical models 

 7.6.1   MLE for a GGM 

 7.6.2   Graphical lasso 

 7.6.3   Bayesian inference for GGM structure 

 7.6.4   Handling non-Gaussian data using copulas 
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7.7  Learning undirected discrete graphical models 

 7.7.1   Graphical lasso for MRFs/CRFs 

 7.7.2   Thin junction trees 

7.8    Summary 

7.9 References 

7.0 OBJECTIVES 

At end of the course the students will be able to: 

 Describe the Structured learning and DAGs Learning 

 Explain the Gaussian and discrete undirected graph models 

 Analyse the different types of graph models to the applications 

7.1 INTRODUCTION 

A graphical model is a way to represent the dependencies between random 
variables using a graph. In a graphical model, each node represents a 
random variable, and each edge represents a conditional dependence 
between variables. 

Graphical models are commonly used in machine learning, statistics, and 
artificial intelligence to model complex systems and make predictions. 
They can be used to solve problems such as classification, regression, and 
clustering. 

There are two main types of graphical models: (i) Bayesian networks (ii) 
Markov networks.  

(i)Bayesian networks, also known as belief networks, represent the joint 
probability distribution of a set of random variables as a directed acyclic 
graph.  

(ii)Markov networks, also known as undirected graphical models or 
Markov random fields, represent the joint probability distribution as an 
undirected graph. 

Graphical models provide a compact and intuitive way to represent 
complex probabilistic relationships between variables, and they have been 
widely used in a variety of fields including computer vision, natural 
language processing, and bioinformatics. 
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7.2 STRUCTURE LEARNING FOR KNOWLEDGE 
DISCOVERY 

Since computing the MAP graph or the exact posterior edge marginal is in 
general computationallyintractable. 

Methodsfor learning graph structures used to visualize one’s data are: 

(i) Relevance networks                 (ii) Dependency networks 

Limitations: 

The resulting models donot constitute consistent joint probability 
distributions, so they cannot be used for prediction,and they cannot even 
be formally evaluated in terms of goodness of fit. 

Benefit: 

Thesemethods are a useful ad hoc tool based on theirspeed and simplicity. 

7.2.1 Relevance networks 

A relevance network is a way of visualizing the pairwise mutual 
information between multiple random variables:  

Choose a threshold and draw an edge from node i to node j if∥ (Xi;Xj) is 
above this threshold.  

In the Gaussian case 

 

Where ρij is the correlation coefficient,  

Figure 7.1Part of a relevance network constructed from the 20-news 
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Illustrate the idea using natural languagetext. Figure 7.1 gives an example, 
where MI (Mutual Information)is visualizedbetween words in the 
newsgroupdataset from Figure 7.2.  

Subset of size 16242 x 100 of the 20-newsgroups data. Each row is a 
document (represented as a bag-of-words bit vector), each column is a 
word. The red lines separate the 4 classes, which are (in descending order) 
comp, rec, sci, talk,there are subsets of words whose presence or absence 
is indicative of the class.  

Drawback: 

The graphs are usually very dense,since most variables are dependent on 
most other variables, even after thresholding the MIs. 

For example, suppose X1 directly influences X2 which directly influences 
X3. Then X1 has non-zero MI with X3, so there will be a 1 − 3 edge in the 
relevance network.  

Indeed, most pairs will beconnected.  

A better approach is to use graphical models, which represent conditional 
independence, rather than dependence. In the above example, X1 is 
conditionally independent of X3 given X2, so there will not be a 1 − 3 
edge. Consequently graphical models are usually much sparser than 
relevance networks, and hence are a more useful way of visualizing 
interactions between multiple variables 

7.2.2 Dependency networks 

Dependency network :A simple and efficient way to learn a graphical 
model structure is to independently fit D sparsefull-conditional 
distributions p(xt| X−t). 

The chosen variables constitute the inputs to the node, i.e., its Markov 
blanket. Then the resulting sparse graph can be visualized.  

Figure 7.2 Newsgroup dataset 
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Advantage over relevance networks: Redundant variables will not be 
selected as inputs. 

Any kind of sparse regression or classification method is used to fit each 
CPD (Conditional Probability Distribution) uses classification/ regression 
trees, use ℓ1-regularized linear regression, use ℓ1-regularized logistic 
regression,uses Bayesian variable selection, etc.  

Figure 7.3 shows a dependency network that was learned from the 20-
newsgroup data using ℓ1 regularized logistic regression, where the penalty 
parameter λ was chosen by Bayesian Information Criterion (BIC). Many 
of the words present in these estimated Markov blankets represent fairly 
natural associations  However, some of the estimated statistical 
dependencies seem less intuitive, such as baseball:windows and 
bmw:christian. We can gain more insight if we look not only at the 
sparsity pattern, but also the values of the regression weights. For 
example, here are the incoming weights for the first 5 words shown in 
Table 7.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Words in italic red have negative weights, which represents a dissociative 
relationship. Forexample, the model reflects that baseball:windows is an 
unlikely combination. It shows thatmost of the weights are negative (1173 
negative, 286 positive, 8541 zero) in this model. 

 

 

Figure 7.3 Dependency networkfrom the 20-
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7.3 LEARNING TREE STRUCTURES 

The fully specified joint probability models can be used for density 
estimation, prediction and knowledge discovery.The problem of structure 
learning for general graphs is NP-hard, so start by considering the special 
case of trees.  

 

 

 

 

 

 

Table 7.1 

7.3.1 Directed or undirected tree 

A directed tree, with a single root node r, defines a joint distribution as 
follows: 

where we define pa(r) = ∅. For example, 
in Figure 7.4(b-c),  

 

The choice of root does not matter: both of these models are equivalent. 

To make the model more symmetric, it is preferable to use an undirected 
tree. This can berepresented as follows: 

Words Relationship and Weights 

aids 
children  

(0.53) 

disease 
(0.84) 

Fact 

 (0.47) 

health  

(0.77) 

president 
(0.50) 

research 
(0.53) 

 
    

Base 

ball 

christian 

(-0.98) 

drive 

(-0.49) 

games 
(0.81) 

God 

(-0.46) 

government 
(-0.69) 

hit 

(0.62) 

memory 

(-1.29) 

players  

(1.16) 

season 
(0.31) 

Software 

(-0.68) 

Windows 

(-1.45) 

bible 
Card 

(-0.88) 

christian 
(0.49) 

Fact 

(0.21) 

god 

(1.01) 

Jesus 

(0.68) 

orbit  

(0.83) 

Car 

(-0.72) 

program 

(-0.56) 

religion 
(0.24) 

version 
(0.49) 

 

bmw 
car 

(0.60) 

christian  

(-11.54) 

engine 
(0.69) 

god 

(-0.74) 

government 
(-1.01) 

help 

(-0.50) 

windows  

(-1.43) 

    

cancer 
Disease 

 (0.62) 

medicine 
(0.58) 

patients 
(0.90) 

research 
(0.49) 

studies  

(0.70) 
  

    

Figure 7.4 An undirected tree and two equivalent directed trees 
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where p(xs, xt) is an edge marginal and p(xt) is a node marginal. For 
example, in Figure 7.4(a) 

 

 

A tree can be represented as either an undirected or directed graph: the 
number ofparameters is the same, and hence the complexity of learning is 
the same. Theinference is the same in both representations. 

The undirected representation, which issymmetric, is useful for structure 
learning, but the directed representation is more convenientfor parameter 
learning. 

7.3.2 Chow-Liu algorithm for finding the ML tree structure 

The log-likelihood for a tree is as follows: 

 

 :  the number of times; 

s : node 

 j,I,k : state in node s 

 :Number of times node t in state k 

Rewriting these counts in terms of the empiricaldistribution:  

 =  (  = j,  = k) and  = ( = k). 

 Setting θ to theMLEs, becomes 
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Chow-Liu algorithm : The tree topology that maximizes the likelihood 
can be found bycomputing the maximum weight spanning tree, where the 
edge weights are the pairwise mutualinformations,∥(ys, yt|ˆθst).  

There are several algorithms for finding a max spanning tree (MST).  

Prim’s algorithm and Kruskal’s algorithm are the best algorithms to run in 
O(E log V ) time, 

where E = V2 is the number of edges and V is the number of nodes. 

So, overall running time is O(NV2 + V2 log V ), where thefirst term is the 
cost of computing the sufficient statistics. 

Figure 7.5 gives an example of the method in action, applied to the binary 
20 newsgroupsdata. The tree has been arbitrarily rooted at the node 
representing “email”. 
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7.3.3 Finding the MAP forest 

Since all trees have the same number of parameters, the maximum 
likelihoodscore is used as a model selection criterion  

Since inference in a forest is much faster thanin a tree a forest is fitted 
rather than a single tree,The MLE criterionwill never choose to omit an 
edge. However, if the marginal likelihood or a penalizedlikelihood (such 
as BIC), are used the optimal solution may be a forest. The details for 
themarginal likelihood case resulting expression: 

Figure 7.5The MLE tree on 
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where  are the counts for node t and its parents, and score is 

 

DAGs with at most one parent.  

Associate a weight with each s → t edge, ws,t ! score(t|s) − score(t|0), 
wherescore(t|0) is the score when t has no parents.  

Then the objective as follows: 

 

7.3.4 Mixtures of trees 

 A single tree is rather limited in its expressive power. 
 Amixture of trees is mixture of component may have a different tree 

topology. This is an unsupervised version ofthe TAN classifier. 
 It can be fitted a mixture of trees by using EM: in theE step, compute 

the responsibilities of each cluster for each data point, and in the M 
step,use a weighted version of the Chow-Liu algorithm. 

 It is possible to create an “infinite mixture of trees”, by integrating out 
over all possibletrees. This can be done in V3 time using the matrix tree 
theorem. 

7.4 LEARNING DAG STRUCTURE WITH LATENT 
VARIABLES 

Sometimes the complete data assumption does not hold, either because of 
missing data,and/ or because of hidden variables. In this case, the marginal 
likelihood is given by 

 

where h represents the hidden or missing data. 

In general this is intractable to compute. For example, consider a mixture 
model, wherethe cluster label is not observed. In this case, there are KN 
possible completions of thedata; 
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The inner integral can be evaluated for each one of theseassignments to h. 

7.4.1 Approximating the marginal likelihood for missing data 

The simplest approach is to use standard structure learning methods for 
fully visible DAGs,but to approximate the marginal likelihood.  some 
faster deterministic approximations. 

(i) BIC approximation 

(ii) Cheeseman-Stutz approximation 

(iii) Variational Bayes EM 

(i) BIC approximation 

A simple approximation is to use the BIC score, which is given by 

 

where dim(G) is the number of degrees of freedom in the model  

ˆθ is the MAP(Maximum A Posteriori) or MLestimate.  

(ii) Cheeseman-Stutz approximation (CS) 

Compute a MAP estimate of the parameters ˆθ.  

Denote the expected sufficient statistics of the data by D = D(ˆθ);  

In the case of discretevariables, “fill in” the hidden variables with their 
expectation.  

Then use the exactmarginal likelihood equation on this filled-in data: 

 

 

To sum over all values of h 

 

and then apply a BIC approximation to the last two terms: 
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p(D|G) - Computed by plugging in the filled-in data into the exact 
marginallikelihood.  

p(D|ˆθ ,G) - Computed using an inference algorithm.  

The finalterm p(D|ˆθ,G) can be computed by plugging in the filled-in data 
into the regular likelihood. 

(iii)  Variational Bayes EM 

An even more accurate approach is to use the variational Bayes EM 
algorithm. 

key idea is to make the following factorization assumption: 

 

where zi are the hidden variables in case i. In the E step, update the q(zi), 
and in theM step, update q(θ). The corresponding variational free energy 
provides a lower bound onthe log marginal likelihood.  

Example: college plans revisited 

Let us revisit the college plans dataset. 

 Sex Male or female  
 SES Socio economic status: low, lower middle, upper middle or high.  
 IQ Intelligence quotient: discretized into low, lower middle, upper 

middle or high.  
 PE Parental encouragment: low or high  
 CP College plans: yes or no.  

If ignore thepossibility of hidden variables are ignored there was a direct 
link from socio economic status to IQ in theMAP DAG.  

Figure 7.6The most probable DAG with a single binary hidden variable 

learned from the Sewell-Shah data. MAP estimates of the CPT entries are 
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Alternate: 

 Introduce a hiddenvariable H, which is considered as a parent of both 
SES and IQ, representing a hidden common cause 

 Consider a variant in which H points to SES, IQ and PE.  
 Consider dropping none, one, or both of the SES-PE and PE-IQ edges.  
 Vary the numberof states for the hidden node from 2 to 6.  
 Compute the approximate posterior over8 × 5 = 40 different models, 

using the CS approximation. 
 Most probable model found is shown in Figure 7.6. 
 This is 2 · 1010 timesmore likely than the best model containing no 

hidden variable. 
 It is also 5 · 109 times morelikely than the second most probable model 

with a hidden variable. 
 So again the posterior isvery peaked. 

Results suggest that there is a hidden common cause underlying both 
thesocio-economic status of the parents and the IQ of the children.  

By examining the CPT entries,that both SES and IQ are more likely to be 
high when H takes on the value 1.  

7.4.2 Structural EM 

Structural EM algorithm: Instead of fitting each candidate neighboring 
graph and then filling in its data, fill in the data once, and use this filled-in 
data to evaluate the score of all the neighbors.  

It is a bad approximation to the marginal likelihood, 

It is a good enough approximation of the difference in marginal 
likelihoods between different models, in order to pick the best neighbor. 

More precisely, define D(G0,ˆθ0) to be the data filled in using model G0 
with MAP parameters 

 

Which includes the log prior for the graph and parameters.  

A graph G which increases the BIC score relative to G0 on the 
expecteddata, it will also increase the score on the actual data, i.e., 

 

Algorithm: 

 Initialize with some graphG0 and some set of parameters θ0.  
 Fill-in the data using the current parameters—the expected counts for 

any particular family, Performinference using current model.  
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 Evaluate the BIC score of all of the neighbors usingthe filled-in data, 
and pick the best neighbor.  

 Refit the model parameters, fill-in thedata again, and repeat.  
 For increased speed, choose only refit the model every fewsteps, since 

small changes to the structure hopefully won’t invalidate the parameter 
estimatesand the filled-in data too much. 

Applications: Learn a phylogenetic tree structure., to learn sparse mixture 
models 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.3 Discovering hidden variables 

Performs structure learning in the visible domain, and then look for 
structuralsignatures, such as sets of densely connected nodes (near-
cliques); introduce a hidden variableand connect it to all nodes in this 
near-clique; and then let structural EM sort out the details. 

Limitation:  

This technique does not work too well, since structure learning algorithms 
arebiased against fitting models with densely connected cliques. 

Latentclass model: It is aflat mixture model; the discrete latent variable 
provides a compressed representation of its children.Create hidden 
variables with high mutual information with their children. 

Figure 7.7 Part of a hierarchical latent tree learned from the 20-
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Hierarchical latent class model: Creating a tree-structured hierarchy of  

latent variables, each of whichonly has to explain a small set of children. 
A greedy local search algorithm is used to learn such structures, based on 
addingor deleting hidden nodes, adding or deleting edges, etc.  

Figure 7.7 shows separate clusters concerning medicine, sports and 
religion. Thisprovides an alternative to LDA and other topic models with 
the added advantagethat inference in latent trees is exact and takes time 
linear in the number of nodes. 

In an alternative approach the observed data is notconstrained to be at the 
leaves.  

This method starts with the Chow-Liu tree on the observeddata, and then 
adds hidden variables to capture higher-order dependencies between 
internalnodes.  

This results in much more compact models, as shown in Figure 7.8.  

Advantage: 

Has better predictive accuracy than other approaches, such as mixture 
models, or trees whereall the observed data is forced to be at the leaves.  

 

Figure 7.8 A partially latent tree learned from the 20-newsgroup data. Note that some words 

can have multiple meanings, and get connected to different latent variables, representing 

different “topics”. 
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7.4.4 Structural equation models (SEM) 

Structural equation model (Path Diagrams) : Special kind of directed 
mixed graph possibly cyclic, in which all CPDs are linear Gaussian, and in 
which all bidirectededges represent correlated Gaussian noise.  

SEMsare widely used in economics and social science.  

 SEM - a series of full conditionals as follows: 

 

where � ∼ N(0,Ψ).  

The model is rewritten in matrix form as follows: 

x = Wx+ μ + � ⇒ x = (I −W)−1(� + μ)  

Hence the joint distribution is given by p(x) = N(μ,Σ) where 

Σ = (I −W)−1Ψ(I −W)−T 

Draw an arc Xi ← Xj if |wij | > 0.  

 If W is lower triangular then the graph is acyclic.  
 If,in addition, Ψ is diagonal, then the model is equivalent to a 

Gaussian DGM,; such models are called recursive.  
 If Ψ is not diagonal, then draw a bidirected arc Xi ↔ Xj for each non-

zero off-diagonal term. Such edges represent correlation,  
 When using structural equation models, it is common to partition the 

variables into latentvariables, Zt, and observed or manifest variables 
Yt.  

For example, Figure 7.9 illustrates thefollowing model: 
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The presence of a feedback loop Z1 → Z2 → Z3 is evident from the fact 
that W is not lowertriangular. Also the presence of confounding between 
Y1 and Y2 is evident in the off-diagonalterms in Ψ. 

7.5 LEARNING CAUSAL DAGS 

Causal models are models which can predict the effects of interventions 
to, or manipulationsof, a system.  

Example :    

(i)An electronic circuit diagram implicitly provides a compact encodingof 
what will happen if one removes any given component, or cuts any wire.  

(ii) A causal medicalmodel might predict that if I continue to smoke, I am 
likely to get lung cancer.  

Causal claims are inherently stronger,yet more useful, than purely 
associative claims, such as “people who smoke often have 
lungcancer”.Causal models are often represented by DAGs  

7.5.1 Causal interpretation of DAGs 

Causal Markov Assumption: Directed edge A → B in a DAG to mean 
that “A directly causes B”, 

so if  A is manipulated, then B will change.  

Causal sufficiency assumption:  Assuming that all relevant variables are 
included in the model, i.e., there are nounknown confounders, reflecting 
hidden common causes.  

Perfect intervention:Assuming that the causal Markov and causal 
sufficiency assumptions, use DAGs to answer causal questions.  

This represents the act of setting a variable to some known value, say 
setting Xi to xi.  

A realworld example:  A gene knockout experiment, in which a geneis 
“silenced”.  

Notational conventions used to distinguish this from observing that Xi 
happens to have value xi 

Figure 7.9A cyclic directed mixed graphical model (non-recursive SEM). 
Z1 → Z2 → Z3 → Z1 is feedback loop. 
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Figure 7.10Surgical interventions on X. Based on (Pe’er 2005). 

Use Pearl’s do calculus notation to denote the event that we set Xi to xias: 

do(Xi = xi)  

A causal model can be used to makeinferences of the form p(x|do(Xi = 
xi)), which is different from making inferences of the formp(x|Xi = xi) 

Difference between conditioning on interventions and conditioning 
onobservations: 

Consider a 2 node DGM S → Y ,  

S = 1 if you smoke and S = 0 otherwise,  

Y = 1 if you have yellow-stained fingers,and Y = 0 otherwise.  

If you are observed to having yellow fingers, I am licensed to infer that 
you areprobably a smoker                                      

p(S = 1|Y = 1) > p(S = 1) (26.49) 

However, if I intervene and paint your fingers yellow, I am no longer 
licensed to infer this, sinceI have disrupted the normal causal mechanism. 
Thus 

p(S = 1|do(Y = 1)) = p(S = 1) (26.50) 

graph surgery: (Method to model perfect interventions) represent the 
joint distributionby a DGM, and then cut the arcs coming into any nodes 
that were set by intervention. 

Example :Figure 7.10. This prevents any information flow from the nodes 
that wereintervened on from being sent back up to their parents.  

Theorem. To compute p(Xi|do(Xj))for sets of nodes i, j, we can perform 
surgical intervention on the Xj nodes and then use standardprobabilistic 
inference in the mutilated graph. 
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Augmented DAG: Generalize the notion of a perfect intervention by 
adding interventions as explicitaction nodes to the graph. The result is like 
an influence diagram, except there are no utilitynodes. Define the CPD 
p(Xi|do(Xi)) . 

Fat hand intervention: Allowing an action toaffect multiple nodes; a 
reference to someone trying tochange a single component of some system 
(e.g., an electronic circuit), but accidently touchingmultiple components 
and thereby causing various side effects. 

7.5.2 Using causal DAGs to resolve Simpson’s paradox 

In this section, causal reasoning is performed byapplying d-separation to 
the mutilated graph.  

Simpon’s paradox.: Any statistical relationship between two variables 
can be reversedby including additional factors in the analysis. For 
example, suppose some cause C (say, takinga drug) makes some effect E 
(say getting better) more likely 

P (E|C) >P (E|¬C) 

and yet, when condition on the gender of the patient is provoked, it has 
been found that taking the drug makesthe effect less likely in both females 
(F) and males (¬F): 

P(E|C, F) < P(E|¬C, F) 

P(E|C, ¬F) < P(E|¬C, ¬F) 

This seems impossible, but by the rules of probability, this is perfectly 
possible, because theevent space where the condition triggered on (¬C, F) 
or (¬C, ¬F) can be completely different to theevent space when a 
condition activated on ¬C. The table of numbers below shows a concrete 
example.

 

From this table of numbers,  

p(E|C) = 20/40 = 0.5 > p(E|¬C) = 16/40 = 0.4 (26.51) 

p(E|C, F) = 2/10 = 0.2 < p(E|¬C, F) = 9/30 = 0.3 (26.52) 

p(E|C, ¬F) = 18/30 = 0.6 < p(E|¬, ¬F) = 7/10 = 0.7 (26.53) 
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A visual representation of the paradox is given in in Figure 7.11.  

Line- goes up andto the right: Effect (y-
axis) increases as the cause (x-axis) 
increases.  

Dots - Data for females,  

Crosses-Data for males.  

In eachsubgroup,the effect decreases as 
the cause increase. 

 

 

Effect is real, but it is still very counter-intuitive. The reason the 
paradoxarises is that the statements are interpreted causally, but not using 
proper causalreasoning when performing the calculations. The statement 
that the drug C causes recovery Eis 

(i) P(E|do(C)) > P(E|do(¬C))  

whereas the data shows 

(ii) P(E|C) > P(E|¬C)  

This is not a contradiction. Observing C is positive evidence for E, since 
more males thanfemales take the drug, and the male recovery rate is 
higher (regardless of the drug). SoEquation (i) does not imply Equation 
(ii). 

7.5.3 Learning causal DAG structures 

There are two ways to learn causal DAG structures. 

 (i) Learning from observational data 

 (ii) Learning from interventional data 

(i) Learning from observational data 

Even for infinite data, an optimal method can onlyidentify the DAG up to 
Markov equivalence, it can identify the PDAG(partially directed acylic 
graph), but not the complete DAG structure, because all DAGs which 
areMarkov equivalent have the same likelihood. 

Algorithms such as greedy equivalence search method are  

Consistent estimators of PDAG structure,  

Identify thetrue Markov equivalence class as the sample size goes to 
infinity,  

Figure 7.11 Illustration of Simpson’s paradox 
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(Assumptions: Observe all thevariables. Assume that the generating 
distribution p is faithful tothe generating DAG G).  

All the conditional indepence (CI) properties of p areexactly captured by 
the graphical structure, so I(p) = I(G);  

Stable distribution: A faithful distribution that cannot be any CIproperties 
in p that are due to particular settings of the parameters (such as zeros in a 
regressionmatrix) that are not graphically explicit.  

(ii) Learning from interventional data 

Interventional data: Used to distinguish between DAGs within the 
equivalence class, which have certain variables have been set, and the 
consequences have been measured. 

Example of this is the dataset in Figure 7.12(a) 

In the example proteins in a signalling pathwaywere agitated, and their 
phosphorylation status was measured using a technique called 
flowcytometry. 

It is straightforward to modify the standard Bayesian scoring criteria, such 
as the marginallikelihood or BIC score, to handle learning from mixed 
observational and experimental data:  
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Figure 7.12 (a) A design matrix consisting of 5400 data points (rows) measuring 
the status (using flow cytometry) of 11 proteins (columns) under different 
experimental conditions. The data has been we discretized into 3 states: low 
(black), medium (grey) and high (white). Some proteins were explicitly controlled 
using activating or inhibiting chemicals. 
 
(b) A directed graphical model representing dependencies between various 
proteins (blue circles) and various experimental interventions (pink ovals), which 
was inferred from this data. All edges for which p(Gst = 1|D) >0.5are plotted. 
Dotted edges are believed to exist in nature but were not discovered by the 
algorithm (1 false negative). Solid edges are true positives. The light colored 
edges represent the effects of intervention. 
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Compute the sufficient statistics for a CPD’s parameter by skipping over 
the cases where thatnode was set by intervention For example, when using 
tabular CPDs, the counts are modified as follows: 

 

 

 

Figure 7.12(b) shows the augmented DAG that was learned from the 
interventional flowcytometry data depicted in Figure 7.12(a). 

In particular, plot the median graph, whichincludes all edges for which 
p(Gij = 1|D) > 0.5. It turns out that, in this example, the median model has 
exactlythe same structure as the optimal MAP model, argmaxG p(G|D). 

7.6 LEARNING UNDIRECTED GAUSSIAN GRAPHICAL 
MODELS 

Learning the structure of undirected graphical models is easier than 
learning DAG structure. This precludes thekind of local search methods 
(both greedy search and MCMC sampling) are used to learn 
DAGstructures, because the cost of evaluating each neighboring graph is 
too high, since refitting each model from scratch to be done. 

Solutions to this problem, is arrived in the context of Gaussianrandom 
fieldsor undirected Gaussian graphical models (GGM)s.  

7.6.1 MLE for a GGM 

The task ofcomputing the MLE for a (non-decomposable) GGM is called 
covariance selection  

The log likelihood can be written as 

ℓ(Ω) = logdetΩ − tr(SΩ)  

where Ω = Σ−1 is the precision matrix, and  

 

is the empiricalcovariance matrix.  

The gradient of this is given by 

∇ℓ(Ω) = Ω−1 − S  

However, enforce the constraints that  = 0 if = 0 (structural zeros), 
andthat Ω is positive definite.  

Show that the MLE must satisfy the following property: 

 = if  = 1 or s = t, i.e., the covariance of a pair that are connected 
by an edge must match theempirical covariance. In addition,  = 0 if 
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= 0, by definition of a GGM, i.e.,the precision of a pair that are not 
connected must be 0.  

∑is a positive definitematrix completion of S, since it retains as many of 
the entries in S as possible, correspondingto the edges in the graph, subject 
to the required sparsity pattern on ∑−1, corresponding to theabsent edges; 
the remaining entries in ∑ are filled in so as to maximize the likelihood. 

Example: Use the followingadjacency matrix, representing the cyclic 
structure, X1−X2−X3−X4−X1, and the followingempirical covariance 
matrix: 

 

The constrained elements in Ω,and the free elements in Σ, both of which 
correspond to absent edges, have been highlighted. 

7.6.2 Graphical lasso 

Learn a sparse graph structure by using an objective that encourages 
zerosin the precision matrix. By analogy to lasso one can define the 
following penalized NLL: 

J(Ω) = −log detΩ + tr(SΩ) + λ||Ω||1  

where ||Ω||1 = is the 1-norm of the matrix. This is called the 

graphical lasso or Glasso. 

The objective is convex, but it is non-smooth and is constrained. 
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As an example, let us apply the method to the flow cytometry dataset. A 
discretized version of the data is shown in Figure 7.12(a) which is using 
original continuousdata. However, ignore the fact that the data was 
sampled under intervention.  

InFigure 7.13, the graph structures sweep λ from 0 to a largevalue. These 
represent a range of plausible hypotheses about the connectivity of these 
proteins. 

Advantage of the DAG : Easily model the interventional nature of the 
data,  

Disadvantage: Cannot model the feedback loops that are known to exist in 
this biological pathway  

7.6.3 Bayesian inference for GGM structure  

Graphical lasso is reasonably fast, it only gives a point estimate of the 
structure.It is not model-selection consistent,meaning it cannot recoverthe 
true graph even as N → ∞.  

Figure 7.13Sparse GGMs learned using graphical lasso applied to the flow 

cytometry data.  
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It would be preferable to integrate out the parameters, andperform 
posterior inference in the space of graphs, i.e., to compute p(G|D).  

Extractsummaries of the posterior, such as posterior edge marginal, p(Gij = 
1|D),  

If the graph is decomposable, and if conjugate priors are used,  compute 
the marginallikelihood in closed form.  

The decomposable neighbors of a graph can be identifiable efficiently i.e., 
the set of legal edgeadditions and removals. However, the restriction to 
decomposable graphs is rather limiting if one’s goal is knowledge 
discovery, since the number of decomposable graphs is much less than the 
number of generalundirected graphs 

7.6.4 Handling non-Gaussian data using copulas  

The graphical lasso and variants is inhertently limited to data that is jointly 
Gaussian, which isa rather severe restriction.  

The method can be generalized to handle non-Gaussian,but still 
continuous, data in a fairly simple fashion. The basic idea is to estimate a 
set of Dunivariate monotonic transformations fj, one per variable j, such 
that the resulting transformeddata is jointly Gaussian.  

If this is possible, then data belongs to the nonparametricNormal 
distribution, or nonparanormal distribution. This is equivalent to 
thefamily of Gaussian copulas  

7.7 LEARNING UNDIRECTED DISCRETE GRAPHICAL 
MODELS 

The problem of learning the structure for UGMs with discrete variables is 
harder than theGaussian case, because computing the partition function 
Z(θ), which is needed for parameterestimation, has complexity 
comparable to computing the permanent of a matrix, which ingeneral is 
intractable. 

But in the Gaussian case, computing Z onlyrequires computing a matrix 
determinant, which is at most O(V3). 

Since stochastic local search is not tractable for general discrete UGMs, 
the possible alternative approaches can be tried. 

  (i) Graphical lasso for MRFs/CRFs 

(ii) Thin junction trees 

7.7.1 Graphical lasso for MRFs/CRFs 

the graphical lasso idea can be extended to the discrete MRF and CRF 
case. However, nowthere is a set of parameters associated with each edge 
in the graph, so use the graphanalog of group lasso.   
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For example, consider a pairwise CRF with ternarynodes, and node and 
edge potentials given by 

where assume x begins with a constant 1 term, to account for the offset. 
To learn sparse structure, minimize the following objective: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ||wst||p is the p-norm; common choices are p = 2 or p = ∞,. This 
method is known as CRF structure learning  

Although this objective is convex, it can be costly to evaluate 
(performinference to compute its gradient) 

So use an optimizer that does not make too many calls to the objective 
functionor its gradient, such as the projected quasi-Newton method  

Figure 7.14  MRF estimated from the 20-newsgroup data using group ℓ1 regularization with λ = 256. 
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In addition,we can use approximate inference, such as convex belief 
propagation to computean approximate objective and gradient more 
quickly. Another approach is to apply the grouplasso penalty to the 
pseudo-likelihood. This is much faster, sinceinference is no longer 
required Figure 7.14 shows the result ofapplying this procedure to the 20-
newsgroup data, where yit indicates the presence of word tin document i, 
and xi = 1. 

7.7.2 Thin junction trees 

Learning “sparse” graphs,  do not necessarily havelow treewidth.  

For example, a D × D grid is sparse, but has treewidth O(D). This means 
thatthe models may be intractable to use for inference purposes, which 
defeats the learn graph structure in the first place. 

There have been various attempts to learn graphical models with bounded 
treewidthalso knownas thin junction trees, but the exact problem in 
general is hard. 

An alternative approach is to learn a model with low circuit complexity 
Such models may have high treewidth, but they exploit 
contextspecificindependence and determinism to enable fast exact 
inference. 

7.8 SUMMARY 

This chapter covers the topics about Graphical model structure learning 
which discusses about Structure learning for knowledge discovery, 
Relevance networks and Dependency networks. The   Learning tree 
structures discusses about Directed or undirected tree, Chow-Liu 
algorithm for finding the ML tree structure, finding the MAP forest, 
Mixtures of trees. Learning DAG structure with latent variables discusses 
about Approximating the marginal likelihood for missing data, Structural 
EM, Discovering hidden variables and Structural equation 
models.Learning causal DAGs discusses about Causal interpretation of 
DAGs, Using causal DAGs to resolve Simpson’s paradox, Learning causal 
DAG structures . Learning undirected Gaussian graphical models 
discusses about MLE for a GGM, Graphical lasso, Bayesian inference for 
GGM structure and Handling non-Gaussian data using copulas. Finally 
Learning undirected discrete graphical models discusses about Graphical 
lasso for MRFs/CRFs and Thin junction trees. 
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8 
DEEP LEARNING 

Unit Structure : 

8.0  Objectives 

8.1  Introduction  

8.2  Deep generative models  

8.2.1 Deep directed networks  

8.2.2 Deep Boltzmann machines  

8.2.3 Deep belief networks   

8.2.4 Greedy layer-wise learning of DBNs   

8.3  Deep neural networks  

8.3.1 Deep multi-layer perceptrons 

8.3.2 Deep auto-encoders   

8.3.3 Stacked denoising auto-encoders   

8.4  Applications of deep networks   

8.4.1 Handwritten digit classification using DBNs   

8.4.2 Data visualization and feature discovery using deep auto-
encoders   

8.4.3 Information retrieval using deep auto-encoders (semantic 
hashing)   

8.4.4 Learning audio features using 1D convolutional DBNs   

8.4.5 Learning image features using 2D convolutional DBNs   

8.5  Summary 

8.0 OBJECTIVES 

At the end of Chapter students will be able to: 

 Discuss about the concepts and implementation of deep directed, 
undirected graphical models  

 Describe the role of  various kinds of Deep neural networksin deep 
learning  

 Explain the applications of deep networks in the text,audio and video 
domain 



  

 

Track D: Machine 
Learning –II (Advanced 

Machine Learning) 

126 

8.1 INTRODUCTION 

The human brain engages in multiple layers of processing, with each layer 
acquiring features or representations at progressively higher levels of 
abstraction. For instance, according to the conventional model of the 
visual cortex, the brain initially identifies edges, then moves on to patches, 
surfaces, objects, and so forth. 

This observation has served as a source of inspiration for a recent trend in 
machine learning known as deep learning, as discussed on 
deeplearning.net and the references provided therein. Deep learning aims 
to emulate this hierarchical architecture within computers. Furthermore, 
this concept can be extended beyond visual problems, including 
applications in areas like speech and language. 

Many of the models presented in this context follow a basic architecture 
consisting of two layers, where it can be denoted as either "z → y" for 
unsupervised latent variable models or "x → y" for supervised models. 

8.2 DEEP GENERATIVE MODELS 

Issues in Deep Models: 

 Having millions of parameters.  
 Acquiring enough labeled data to train suchmodels is difficult 
 This approach does not support scaling the complex scenes.For 

example, in simple settings, suchas hand-written character recognition, 
it is possible to generate lots of labeled data by makingmodified copies 
of a small manually labeled training set The unsupervisedlearning is 
used to overcome the problem of needing labeled training data.. The 
most natural way to perform this is to use generative models.  

There are three different kinds of deep generative models such as  
1. Directed 
2. Undirected 
3. Mixed. 

 
               (a)                                          (b)                                                 (c) 

Figure 8.1 Deep multi-layer graphical models. 

 

(a) A directed model (b) An undirected model (c) A mixed directed-
undirected model 
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8.2.1 Deep Directed Networks 

A deep directedgraphical model is constructed as shown in Figure 8.1(a).  

The bottom level contains the observed pixels (orwhatever the data is), 
and the remaining layers are hidden. 3 layers are taken into consideration 
fornotational simplicity.  

The number and size of layers is usually chosen by hand, although onecan 
also use non-parametric Bayesian methods or boosting to infer the model 
structure. 

These model forms are called as Deep Directed Networks or DDNs.  

Sigmoid belief net:All the nodes arebinary, and all Conditional 
Probability Distributions (CPDs) are logistic functions. 

 Inthis case, the model defines the following joint distribution: 

 

Disadvantage: 

 Inference in these is intractable because the posterioron the hidden 
nodes is correlated due to explaining away.  
o To overcome this issue fast mean field approximations or MCMC 

inference can be used, but these may not be very accurate or can 
be quite slow respectively, 

 .Slow inference also results in slow learning. 

8.2.2 Deep Boltzmann machines 

 Deep Boltzmann machine (DBM)Stacks a series of Restricted 
Boltzmann Machines(RBMs) on top of each other (Fig. 8.1 (b)) 

 It is a natural alternative to a directed model is to construct a deep 
undirected model.  

 For 3 hiddenlayers, the model is defined as: 

 

(Ignore constant offset or bias terms) 
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Advantage 

Performs efficient block Gibbs sampling, or block mean field compared to 
directed graph. 

Disadvantage  

o Training undirected models is more difficult, because of the partition 
function.  

o Exact inference is intractable 
o .Approximate inference can be slow 

8.2.3 Deep Belief Networks (DBN) 

 Uses a model that is partially directed and partially undirected. 
 Construct a layered model which has directed arrows, except at thetop, 

where there is an undirected bipartite graph, as shown in Figure 
28.1(c). 

 Top two layers act as an associative memory and the remaining layers 
thengenerate the output. 

For 3 hidden layers, the DBN model is defined as follows: 

 

Advantage: 

The hidden states can be found in afast, bottom-up fashion.  

To see why, suppose we only have two hidden layers, and that 

 

 

so the second level weights are tied to the first level weights (Figure 
8.2(a)). 

This defines a model of the form p(h1, h2, v|W1). 

One can show that the distribution 

has the form 

 

 

which is equivalent to an Restricted Boltzmann Machines(RBM).  
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Since the DBN is equivalent to the RBM as far as p(h1, v|W1)is 
concerned, the posterior p(h1|v,W1) in the DBN exactly as in the RBM. 
Thisposterior is exact, even though it is fully factorized. 

To get a factored posterior is if the prior p(h1|W1) is a 
complementaryprior.  

This is a prior which, when multiplied by the likelihood p(v|h1), results in 
a perfectlyfactored posterior.  

The top level RBM in a DBN acts as a complementary priorfor the bottom 
level directed sigmoidal likelihood function. 

That top-down inference in a DBN is not tractable,so DBNs are usually 
only used in a feedforward manner. 

 

                   (a)                                                   (b)                                  (c) 

Figure 8.2 (a) A DBN with two hidden layers and tied weights that is 
equivalent to an RBM(b) A stack of RBMs trained greedily (c) The 

corresponding DBN. 

8.2.4 Greedy layer-wise learning of DBNs 

Strategy for learning a DBN (The equivalence between DBNs and RBMs) 

 FitanRBMtolearn  using methods likeDeriving the 

gradient,Approximating the expectations,Contrastive divergence 
 Unroll the RBM into a DBN with 2 hidden layers, as in Figure 8.2(a).  
 “Freeze” thedirected weights  and let  be “untied” so it is no 

longer forced to be equal to  . 

 There is a better prior for p(h1| ) by fitting a second RBM.  

 The input data tothis new RBM is the activation of the hidden units 
E[ |v, ]  

 Continue to addmore hidden layers until some stopping criterion is 
satisfied 

  Construct the DBN fromthese RBMs, as illustrated in Figure 8.2(c). 

This procedure always increases a lower bound theobserved data 
likelihood. This procedure might result in overfitting, 
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Figure 8.3.1 Feedforward Network 

. The method can alsobe extended to train DBMs in a greedy way  

After using the greedy layer-wise training strategy, it is standard to “fine 
tune” the weights,using a technique called backfitting.  

Backfitting.(up-down procedure) 

Used to “fine tune” the weights, after using the greedy layer-wise training 
strategy 

 Perform brief Gibbs sampling in the top level RBM. 
 Perform a CD updateof the RBM parameters.  
 Finally, perform a downwards ancestral sampling pass (which is 

anapproximate sample from the posterior), and update the logistic 
CPD parameters using a smallgradient step.  

8.3 DEEP NEURAL NETWORKS 

DBNs are often only used in a feed-forward, or bottom-up, mode, they are 
effectivelyacting like neural networks. It is natural to dispense with the 
generative storyand try to fit deep neural networks directly using Deep 
multi-layer perceptrons, Deep auto-encoders and Stacked denoising auto-
encoders. 

Merits: 

The resulting training methodsare often simpler to implement 

Can be faster. 

Limitation: 

Performance with deep neural nets is sometimes not as good as 
withprobabilistic models One reason for this is that probabilistic models 
support top-down inference as well as bottom-up inference.  

8.3.1 Deep Multi-layer Perceptrons 

Many decision problems can be 
reduced to classification, e.g., 
predict which object (if any) is 

present in an image patch, or 
predict which phoneme is present 
in a given acoustic featurevector. 
Such problems can be solved by 
creating a deep feedforward 
neural network (Figure 8.3.1) or 
multilayerperceptron (MLP), and 
then fitting the parameters using 
gradient descent (aka back-
propagation). 
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Limitations: 

Vanishing gradient problem: The gradient becomesweaker the further 
the process move away from the data;. 

There can be large plateaus inthe error surface, which cause simple first-
order gadient-based methods to get stuck  

Generative pre-training 

A way to initialize the parameters using unsupervised learning; The 
advantage of performing unsupervised learning first is that themodel is 
forced to model a high-dimensional response, namely the input feature 
vector, ratherthan just predicting a scalar response. This acts like a data-
induced regularizer, and helpsbackpropagation find local minima with 
good generalization properties  

8.3.2 Deep auto-encoders 

An auto-encoder is a kind of unsupervised neural network that is used for 
dimensionalityreduction and feature discovery.  

An auto-encoder is a feedforward neural networkthat is trained to predict 
the input itself.  

To prevent the system from learning the trivial identity mapping, the 
hidden layer in the middle is usually constrained to be a narrow 
bottleneck.  

The system can minimize the reconstruction error by ensuring the hidden 
units capture the most relevant aspects of the data. 

Suppose the system has one hidden layer, so the model has the form v → h 
→ v. Further, suppose all the functions are linear. In this case, the weights 
to the Khidden units will span the same subspace as the first K principal 
components of the data 

More powerful representations can be learned by using deep auto-
encoders. But training such models using back-propagation does not work 
well, because the gradient signalbecomes too small as it passes back 
through multiple layers and the learning algorithm oftengets stuck in poor 
local minima. 

One solution to this problem is to greedily train a series of RBMs and to 
use these to initialize 

an auto-encoder, as illustrated in Figure 8.3.2. The whole system can then 
be fine-tuned usingbackprop in the usual fashion. This works much better 
than trying to fit the deep auto-encoder directly starting with random 
weights. 
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8.3.3 Stacked denoising auto-encoders 

A common method for training an auto-encoder involves ensuring that the 
hidden layer has fewer neurons than the visible layer.  

This precautionary measure prevents the model from merely learning to 
replicate its input data, effectively serving as an identity function. 

 The alternative strategies to prevent this trivial solution,  

i. Enforce sparsity constraints on the activation of the hidden units, 
ensuring that only a limited number of neurons are active at any 
given time.  
 

ii. Introducing noise to the input data, resulting in what is known as a 
denoisingautoencoder. For instance, some of the input values can be 
intentionally corrupted, such as setting them to zero, forcing the 
model to learn how to predict the missing or perturbed entries. This 
method can be demonstrated to be akin to a specific form of 
maximum likelihood training, referred to as score matching, when 
applied to a Restricted Boltzmann Machine (RBM). 
 

iii. Stack these autoencoder models atop one another to create a deep 
stacked denoising auto-encoder. Such a deep architecture can be 
discriminatively fine-tuned, similar to a standard feedforward neural 
network, if desired. 

iv.  

Figure 8.3.2 Training a deep autoencoder. (a) Greedily training some 
RBMs. 

(b) Constructing the auto-encoder by replicating the weights. 
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8.4 APPLICATIONS OF DEEP NETWORKS 

In this section the following applications of the models are discussed.. 

 Handwritten digit classification using DBNs 
 Data visualization and feature discovery using deep auto-encoders 
 Information retrieval using deep auto-encoders (semantic hashing) 
 Learning audio features using 1d convolutional DBNs 
 Learning image features using 2d convolutional DBNs 

8.4.1 Handwritten digit classification using DBNs 

DBN consisting of 3 hidden layers is shown in Figure 8.4.1(a).  

The visible layer corresponds to binary images of handwritten digits from 
the MNIST data set.The top RBM is connected to a softmax layer with 10 
units, representing the class label. 

The first 2 hidden layers were trained in a greedy unsupervised fashion 
from 50,000 MNIST digits, using 30 epochs (passes over the data) and 
stochastic gradient descent, with the CD heuristic.  

This process took “a few hours per layer”  

The top layer was trained using as input the activations of the lower 
hidden layer, as well as the class labels. The corresponding generative 
model had a test error of about 2.5%. The network weights were then 
carefully fine-tuned on all 60,000 training images using the up-down 
procedure.  

This process took “about a week”. The model can be used to classify by 
performing a deterministic bottom-up pass, and then computing the free 
energy for the top-level RBM for each possible class label.  

The final error on the test set was about 1.25%. The misclassified 
examples are shown in Figure 8.4.1(b).This was the best error rate of any 
method on the permutation-invariant version of MNIST at that time.  

 

 

 

 

 

 

 

 Figure 8.4.1 (a) A DBN architecture for classifying MNIST digits. 

(b) Errors made by the DBN on the 10,000 test cases of MNIST. 
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Figure 8.4.3. Precision-recall curves for 
document retrieval in the Reuters RCV1-v2 

8.4.2 Data visualization and feature discovery using deep auto-
encoders 

Deep autoencoders can learn informative features from raw data. Such 
features are often used as input to standard supervised learning methods. 

Consider fitting a deep auto-encoder with a 2D hidden bottleneck to 
sometext data. The results are shown in Figure 8.4.2. On the left Figure 
8.4.2 (a)  the 2D embedding produced by LSA is depicted  and on the right 
Figure 8.4.2 (b), the 2D embedding produced by the auto-encoder is 
shown. 

The results show that the low-dimensional representation created by the 
auto-encoder has captured a lot of the meaning of the documents, even 
though class labels were not used. 

 

Figure 8.4.2 Results : 2D visualization of some bag of words data from the 
Reuters RCV1-v2 corpus. (a) Using LSA. (b) Using a deep auto-encoder.  

8.4.3 Information retrieval using deep auto-encoders (semantic 
hashing) 

Though the success of RBMs for information retrieval is achieved, the 
deep models perform even better. The performance of deep model is 
shown in Figure 8.4.3. 

 Use a binary low-
dimensional 
representation in the 
middle layerof the deep 
auto-encoder. 

Thisenables very fast 
retrieval of related 
documents.  

Semantic 
hashing:The binary 
representation of 
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semantically similar documents will be close in Hamming distance. For a 
20-bit code, precompute the binary representation for all the documents, 
and then create a hash-tablemapping codewords to documents.  

For the 402,207 test documents in Reuters RCV1-v2, this translates to 
roughly 0.4 documents per entry listed in the table. 

During the testing phase, the procedure involves calculating the codeword 
associated with the query and subsequently retrieving the relevant 
documents with constant-time efficiency by referencing the corresponding 
memory address. 

To identify additional related documents, the approach entails computing 
all codewords that are within a Hamming distance, such as 4 from the 
original query. This process results in retrieving approximately 6196 × 0.4 
≈ 2500 documents. The key point to emphasize is that the total time 
required for this operation remains unaffected by the size of the corpus. 

In contrast, other methods for rapid document retrieval, like inverted 
indices, rely on the notion that individual words carry significant 
information, allowing for the straightforward intersection of documents 
containing each specific word. It's worth noting that applying inverted 
indexing techniques to real-valued data is a challenging endeavor. 

8.4.4 Learning audio features using 1D convolutional DBNs 

To employ Deep Belief Networks (DBNs) for time series data of infinite 
duration, it becomes imperative to implement a mechanism for parameter 
sharing. One approach to achieve this is by employing convolutional 
DBNs, which employ convolutional Restricted Boltzmann Machines 
(RBMs) as their fundamental building blocks. These models represent a 
generative counterpart of convolutional neural networks.The basic idea is 
illustrated in Figure 8.4.. 

 

 

 

 

 

 

 

 

and    are two diferent “views” of the data in the first window,                      
( , ).  

Figure 8.4.4 A small 1d convolutional RBM with two groups of hidden units,  
each associated with a filter of size 2. 
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The first view is computed using the filter , the second view using 
filter .  

Similarly and  are the views of the data in the second window ( , 
)., computed using  and  respectively 

 The hidden activation vector for each group is computed by 
convolving the input vector withthat group’s filter (weight vector or 
matrix).(Each node within a hidden groupis a weighted combination of 
a subset of the inputs.) 

 Compute the activation of all thehidden nodes by “sliding” this weight 
vector over the input. 

 Each group has its own filter, corresponding to its own pattern 
detector. 

 One task’s “signal” becomesother task’s “noise”, so donot “throw 
away” any irrelevant information 

 For binary 1Dsignal, the full conditionals in a convolutionalRBM can 
be defined as: 

whereWk is the weight vector for group k,  

bt and cs are bias terms,  

a⊗ b represents theconvolution of vectors a and b. 

Integrate both a convolutional layer and a max pooling layer into the 
architecture, where theycalculate the local maximum within the filtered 
response. This introduces a degree of translation invariance and, 
concurrently, reduces the dimensions of the higher layers, leading to a 
significant acceleration in computation. 

Defining this for a neural network is simple, but defining this in a way 
which allows forinformation flow backwards as well as forwards is a bit 
more involved.  

The basic idea is similarto a noisy-OR CPD where a probabilistic 
relationship between the maxnode and the parts it is maxing over can be 
defined. 

When the inputconsists of speech signals, the method recovers a 
representation that is similar to phonemes.To get a good performance 
result, standard features such as MFCCtechniques are used to apply music 
classification and speaker identification. 
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8.4.5 Learning image features using 2D convolutional DBNs 

A convolutional DBN is extended from 1D to 2D in a straightforward 
way. The extended RBM is illustrated in Figure 8.4.5. The results of a 3 
layer system trained on cars, motorbikes, faces and airplanesvisual objects 
having four classes to represent every ones properties, actions and 
behaviours from the Caltech 101 dataset. The same is shown in Figure 
8.4.6. 

The result is shown only for layers 2 and 3, because layer 1 learns Gabor-
like filters that are very similar to those learned by sparse coding. 

 

 

 

 

 

 

 

 

In the figure 8.4.5, the input signal consist of a stack of 2D images (e.g., 
color planes). Each input layer is passed through a different set of filters. 
Each hidden unit is obtained by convolving with the appropriate filter, and 
then summing over the input planes. The final layer is obtained by 
computing the local maximum within a small window. As a result, 

 Layer 2 haslearned some generic visual parts, shared amongst object 
classes, 

 Layer 3 have learned filters like grandmother cells, that are specific 
to individual object classes,and in some cases, to individual 
objects. 

 

 

 

28.5 Summary 

So far, we have been discussing models inspired by low-level processing 
in the brain. Thesemodels have produced useful features for simple 
classification tasks. But can this pure bottom-uptoo early. 
 

7. Source: http://research.microsoft.com/en-
us/news/features/speechrecognition-082911.aspx. 

Figure 8.4.5 A 2d convolutional RBM with max-pooling layers.  

Figure 8.4.6 Visualization of the filters learned by a convolutional DBN in layers two 
and three 
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8.5  SUMMARY 

Until now, our discussions have centered on models inspired by the brain's 
low-level processing mechanisms. These models have proven effective in 
generating valuable features for straightforward classification tasks. 
However, can this purely bottom-up approach effectively tackle more 
complex challenges, such as scene interpretation or natural language 
comprehension? 

To provide some context, let's consider the Deep Belief Network (DBN) 
designed for handwritten digit classification in Figure 28.4(a). This 
network comprises roughly 1.6 million free parameters (calculated as 
28×28×500+500×500+510×2000 = 1,662,000). While this may seem 
substantial, it pales in comparison to the number of neurons present in the 
human brain. 

The Section 8.2 described generative deep learning models in which the 
concepts under Deep directed networks, Deep Boltzmann machines, Deep 
belief networks and Greedy layer-wise learning of DBNs are explained 
clearly. In addition the concept of RBM is compared with remaining 
concepts. 

Next to these the Deep multi-layer perceptrons, Deep auto-encoders and 
Stacked denoising auto-encoders are explained to show how the layers are 
performing their learning part. 

Finally the applications of Applications of deep networks such as 
Handwritten digit classification using DBNs, Data visualization and 
feature discovery using deep auto-encoders, Information retrieval using 
deep auto-encoders, Learning audio features using 1D convolutional 
DBNs andLearning image features using 2D convolutional DBNs are 
described to explain how the deep learning concept is applied in the 
particular domain/scenario. 
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