As Per NEP 2020

University of Mumbai

Title of the program

A- P.G. Diploma in Microbiology

B- MSc (Microbiology) (Two years)

2023-24

C- MSc (Microbiology) (One year) - 2027-28 Syllabus for

Semester - Sem I and Sem II

Ref: GR dated 16th May 2023 for Credit Structure of PG

(With effect from the academic year 2023-24)

Preamble

1) <u>Introduction</u>

This two-year M. Sc. program is designed to develop competent Microbiologists who can progress in diverse fields of microbiological interests that include industry, research, teaching, medical science, and entrepreneurship. The course is aimed at adding to the knowledge base of Microbiology graduates through significant inputs of the latest information on the subject. It also envisages that the students read original research publications and develop the ability of critical evaluation of the study.

The aims of the course will enhance the basic knowledge of microbiology graduates. The course ensures that the learners develop the habit of reading original research papers and hence the ability of critical analysis of the study. The main objective of this program is the planning and execution of laboratory work as well as teamwork. It will help the students to develop communication skills and creative minds. In the core courses, the students study the basics of Microbiology along with the basics of subjects allied to and useful in Microbiology. The specializations and subject-specific elective courses include topics such as Cell Biology, Genetics, Molecular Biology, Biochemistry, Medical Microbiology, Environmental and Food microbiology, proteomics, bioanalytical instrumentation, and Immunology in the first year of the program.

Students are required to undergo an on-job training program/field project and take up online courses as a part of their internal evaluation. The student should study microbiological aspects in the industry and submit their report. They will also have to write a literature survey, a scientific report, and a research proposal for internal evaluation. This will prepare them well for the Research Project in the final Semester. Students will have to undertake an educational tour organized by the Department each year) to diverse places of Microbiological interest /Research institutions compulsorily for understanding the practical aspects of the subject.

R	<u> </u>	

1) Credit Structure of the Program (Sem I, II, III & IV) (Table as per Parishisht 1 with sign of HOD and Dean)

		NEP Syllabus -Microbiology - MS	C -Part 1-Semo	ester I		
Semester	Course Number	Course Title	Course code	Credits		Cumula tive Credits
Level 6.0		Major -Core courses		Theory	Practical	
I	I	Microbial Genetics -I	Microbial Genetics -	02	02	04
I	II	Medical Microbiology and Immunology	Medical Microbiolo gy and Immunolo gy	02	02	04
I	III	Microbial Biochemistry	Microbial Biochemist ry	02	02	04
I	IV	Bioinformatics & Biostatistics	Bioinform atics & Biostatistic s	02	-	02
I	V	Discipline-Specific Electives (Any one) Role of microorganisms in Food technology OR Microbial Biotechnology	Role of microorga nisms in Food technolog y OR Microbial Biotechn ology	02	02	04
I	VI	Research Methodology	Research Methodolo gy	04		04
		Online Job Training / Field Project	-	1		
		Research Project	-	-		
		Cumulative Credits		14	08	22

	N	NEP Syllabus -Microbiology - MS	C -Part 1-Semo	ester II		
Semester	Course Number	Course Title	Course code	Credits		Cumulat ive Credits
II	I	Microbial Genetics-II	Microbial Genetics-II	02	02	04
II	II	Microbial Pathogenesis and Applied Immunology	Microbial Pathogenes is and Applied Immunolo gy	02	02	04
II	III	Applied Biochemistry	Applied Biochemist ry	02	02	04
II	IV	Environmental Microbiology	Environme ntal Microbiolo gy	02	-	02
II	V	Discipline-Specific Electives (Anyone) Molecular biology tools and Immunodiagnostics OR Advances in industrial microbiology	Molecula r biology tools and Immunod iagnostics OR Advances in industrial microbiolo gy	02	02	04
II	VI	Research Methodology	Research Methodolo gy	-	-	
		On-Job Training (OJT) /Field Project (FP)	-	04	-	
		Research Project	-	-	-	
		Cumulative Credits for PG Diploma		14	08	22
	Exi	for PG Diploma it Option: PG Diploma (44 credits)	after Three Yea	r UG D	egree	egree

	NEP Syllabus -Microbiology - MSC -Part II-Semester III								
Semester	Course Number	Course Title	Course code	Cree	dits	Cumulative Credits			
		Major -Core courses		Theory	Practical				
III	I	Pharmaceutical & Cosmetic Microbiology	Pharmaceuti cal & Cosmetic Microbiolog y	02	02	04			
III	II	Cell Biology	Cell Biology	02	02	04			
III	III	Advances in Biotechnology Biological sample preparation and Modified analytical techniques	Advances in Biotechnolo gyBiological sample preparation and Modified analytical techniques	02	02	04			
III	IV	Tools and Techniques in Microbiology	Tools and Techniques in Microbiolog y	02	-	02			
III	V	Discipline Specific Electives Algal technology and bacteriophages	Algal technology and bacterioph ages	02	02	04			
1	VI	Research Methodology	Research Methodolog y	04		04			
		Research Proposal	-	-					
		Cumulative Credits		14	08	22			

]	NEP Syllabus -Microbiology ·	· MSC -Part II-S	Semester I	V	
Seme	Course	Course Title	Course	Credit		Cumulative
ster	Number		code	s		Credits
IV	I	Industrial & Food	Industrial	02	02	04
		Microbiology	and Food			
			Microbiolog			
			У			
II	II	Applied	Applied	02	02	04
		Microbiology	Microbiolog			
			у			
II	III	Plant, Agriculture, and	Plant,	02	02	04
		Animal Biotechnology	Agriculture,			
			and Animal			
			Biotechnolo			
			gy			
II	IV	Mycology, Virology &	Mycology,	02	-	02
		Protozoology	Virology			
			and			
			Protozoolog			
			У			
II	V	Discipline Specific	Application	08		04
		Electives (any one)/Skill based training program	s of			
		/Online Job Training	microbial			
		/Field Project/ Research	technology			
		Project	in food			
			processing			
		Discipline Specific Electives	-	-	-	
		Applications of				
		microbial technology in				
		food processing				
		CumulativeCredits		14	08	22
		for PG Diploma				
	Exi	t Option: PG Diploma (44 cred	its) after Three Y	ear UG De	gree	

Head of the Department Department in Microbiology

Dean, Science and Technology University of Mumbai

University of Mumbai NEP -Microbiology _Syllabus Framing Committee

Post Graduate program

		NEP Syllabus -Microbiolog	y - MSc -Part 1-Sem	ester I		
Semester	Course Number	Course Title	Course code	Credits		Cumula tive Credits
Level		Major -Core courses		Theory	Practical	
6.0						
I	I	Microbial Genetics -I	Microbial Genetics -I	02	02	04
I	II	Medical Microbiology and Immunology	Medical Microbiology and Immunology	02	02	04
I	III	Microbial Biochemistry	Microbial Biochemistry	02	02	04
I	IV	Bioinformatics & Biostatistics	Bioinformatic & Biostatistics	02	-	02
I	V	Discipline-Specific Electives (Any one) A.Role of microorganisms in Food technology OR B. Microbial Biotechnology Research Methodology Online Job Training / Field Project	Role of microorganisms in Food technology OR Microbial Biotechnology Research Methodology	04	02	04
		Research Project	-	-		
		Cumulative Credits		14	08	22
		NEP Syllabus -Microbiology	y - MSc -Part 1-Seme	ester II		
Semester	Course Number	Course Title	Course code	Credits		Cumulat ive Credits
II	I	Microbial Genetics-II	Microbial Genetics-II	02	02	04
II	II	Microbial Pathogenesis and	Microbial Pathogenesis and	02	02	04

		Applied	Applied			
		Immunology	Immunology			
II	III	Applied	Applied	02	02	04
		Biochemistry	Biochemistry			
II	IV	Environmental	Environmental	02	-	02
İ		Microbiology	Microbiology			
II	V	Discipline-Specific	Molecular	02	02	04
		Electives	biology tools and			
		Molecular biology tools	Immunodiagnost			
		and Immunodiagnostics	ics			
		OR	OR			
		Advances in industrial	Advances in			
		microbiology	industrial			
			microbiology			
I	VI	Research Methodology	Research	-	-	
			Methodology			
		On-Job Training (OJT)	-	04	-	
		/Field Project (FP)				
		Research Project	-	-	-	
		Cumulative		14	08	22
		Credits for PG				
		Diploma				
	Ex	it Option: PG Diploma (44 cr	redits) after Three Year	r UG Degre	ee	

2) Aims and Objectives

Course Code	Title				
	Microbial Genetics -I				
Aims and Objectives	To provide insights to the transfer of genes, genetic exchange and DNA repair. To understand the regulation of gene expression in prokaryotes. To understand the genetic basis of Cancer				
	Medical Microbiology and Immunology				
Aims and Objectives	Modern techniques have helped to elucidate mechanisms of pathogenicity expression, evasion of host defense and better understanding of disease mechanisms. Microbes too are devising new mechanisms to overpower the antibiotics used as therapeutics, compelling us to understand and combat the threat of antibiotic resistance. The curriculum will touch upon the recent growing interest on the concept of Microbiome. • To introduce the students to molecular mechanisms of pathogenesis, their regulation and mechanisms of delivery.				

	 To introduce to the student the concept of the Microbiome- its significance in health and disease To acquaint the student to emerging/ re-emerging diseases in India
	Microbial Biochemistry
Aims and Objectives	To understand the broad domains of biochemistry and strengthen the basic concepts of Biochemistry. To undertake training of students, so as to design and carry out various projects. To improve the practical biochemistry knowledge while preparing media for the experiments and to reason out chemical reactions observed during experiments. To improve their logical skills so as to efficiently find solutions to problems encountered during research activity.
	Bioinformatics and Biostatistics
Aims and Objectives	To equip the learners to carry out hypothesis testing for normal distributed and distribution-free data To understand the importance and make use of different test of significance To make use of different parametric and nonparametric tests in research Proper selection of test of significance Choose the proper test of significance
	Discipline Specific Electives Role of microorganisms in Food technology
Aims and Objectives	To understand the significance of microbes in different fermentations. The learner would develop insights into certain basic food fermentations Acquire knowledge about probiotics and prebiotics and their application
	Discipline Specific Electives Microbial Biotechnology
Aims and Objectives	 To understand importance and scope of microbial biotechnology in different fields and the importance of microorganisms in the production of valuable metabolites. To explain the concept of molecular cloning
	Research Methodology
Aims and Objectives	 To introduce the importance of research, process of research and analysis of data to draw correct conclusions. To explain the concept of scientific writing.

Learning Outcomes

Course Code	Title
	Microbial Genetics -I
Learning Outcome	The learner will be appraised with The molecular mechanism of DNA transfer, and Homologous recombination in <i>E.coli</i> and in eukaryotes that will enable the learner to have a a complete view of genetic transfer and exchange mechanisms. To reason out the correlation between Oncogenes, Cellular Proto-Oncogenes, and Tumor Suppressor Genes and thus realizes their role in the development of Cancer To understand the molecular levels the different types of operons in <i>E.coli</i> work Transposable elements in eukaryotes
	Medical Microbiology and Immunology
Learning Outcome	 Student will be able to correlate molecular mechanisms of virulence expression, regulation and secretion to disease by different pathogens that cause chronic infections, toxin associated, and biofilm mediated infections Students will be able to reason out the threat of antibiotic resistance and can create awareness the importance of microbiome and can be equipped to research on it Student will be well informed about Emerging and re-emerging diseases in India and clinical lab practices in bacteriology like QC and AST
	Microbial Biochemistry
Learning Outcome	Student will be able to: Perform better in competitive exams Learn practical skills to gain employability in the industry and take on research- oriented careers. Think independently and work in the laboratory
	Bioinformatics and Biostatistics
Learning Outcome	The learner would be able to understand the concept and procedure of hypothesis testing. Importance of parametric and nonparametric tests in research Selection of statistical tests of significance for research data Use bioinformatic tools in various aspects of research
	Discipline Specific Electives Role of microorganisms in Food technology
Learning Outcome	To develop employable skills concurrently with an understanding of various fermentation process.

	To develop the skill for the production & assessment of probiotic microbes.
	Discipline Specific Electives Microbial Biotechnology
Learning Outcome	 Students will be able to comprehend the value of microbial biotechnology in various domains and the significance of microorganisms in the synthesis of important metabolites. Students will be able to understand the principle and procedure of molecular cloning.
	Research Methodology
Learning Outcome	 Students will be able to understand the fundamentals of Research, process of research. Students will learn to write research proposals and Scientific writing.

SEMESTER I DETAIL SYLLABUS

Semester 1

Cor	urse Code	Unit	Sub unit	Title	No of lectures	Credits
				Molecular Genetics-1		
	Theory	1	1.1.1 1.1.2 1.1.3	Transformation: Development of Competence in Gram positive bacteria and Gram-negative bacteria. Role of natural transformation- Nutrition, Repair, Recombination. Importance of natural transformation for forward and reverse genetics. Artificially induced competence- Calcium ion induction, transformation of plasmids, transfection by phage DNA, and Electroporation.	07L	01
			1.2.1 1.2.1 1.2.3 1.2.4	Homologous Recombination at the Molecular Level : Single Stranded and double stranded Models for Homologous recombination : Homologous recombination in E. coli (RecBCD pathway) : Homologous recombination in eukaryotes (overview) Site Specific recombination	08L	

Practical			PRACTICALS BASED ON PSMB 101 1. Isolation of plasmid DNA using miniprep and maxiprep 2.Detection of plasmid DNA using Agarose Gel Electrophoresis	15 L 60L	02
		2.2.1 2.2.2 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5	DNA repair Eukaryotic Nucleotide Excision repair, Mismatch repair mechanism in humans 2.2.3 non-homologous end joining (NHEJ) pathway for repairing double-stranded breaks Transposable genetic elements in eukaryotes: : Transposable Ac and Ds Elements in Maize, P Elements and Hybrid Dysgenesis in Drosophila. Retrovirus and Retrotransposons: Retovirus, Retrovirus-like elements, Retroposons Transposable elements in Humans The Genetic and Evolutionary Significance of Transposable Elements: Transposons as mutagens, Genetic transformation with transposons, Transposons and Genome organization, Evolutionary Issues Concerning Transposable Elements	08L	
	2	1.3.1 1.3.2 2.1.1 2.1.2 2.1.3	The E. coli Lac Operon The Trp Operon Genetic Basis Of Cancer : Cancer: A Genetic Disease, Forms of Cancer, Cancer, and the Cell Cycle Oncogenes: Tumor-Inducing Retroviruses and Viral Oncogenes, Cellular ProtoOncogenes, protein products of protooncogenes, Changing cellular protooncogenes into oncogenes, Chromosome Rearrangement and Cancer. Tumor Suppressor Genes: the Retinoblastoma tumor suppressor gene- RB, P53, Breast cancer tumor suppressor genes, The multistep nature of cancer	15 L 07L	01

			3. Preparation of competent <i>E. coli</i> cells 4. Transformation of competent cells using plasmid DNA 5. Qualitative and Quantitative detection of Betagalactosidase activity 6. Response of nutrient stress on the growth of Bacillus spps 7. Problems on transformation and operon 8. Cancer genetics- Visit to ACTREC, TIFR, BARC etc. Medical Microbiology & Immunology		
Theory	1		Mechanisms of Pathogenesis-1		01
Theory	1		Virulence Mechanisms		
			i. Overview of bacterial mechanisms of evading/surviving host defense		
		1.1	ii. Bacterial persistence within the host-	05 L	
		1.1	a. Surviving phagocytosis eg: <i>Legionella</i> , <i>Salmonella</i> , and <i>Mycobacterium</i>		
			b. Chronic infections eg: Brucellosis and typhoid fever		
			Toxins		
			i. Bacterial toxins and intoxications- eg Diphtheria and Botulism-its regulation, mode of action		
		1.2	Mechanisms of Virulence Regulation:	04L	
			i. Types of Regulation		
			ii. Bacterial communication and virulence:		
		1.3	a. Quorum Sensing signaling molecules	06L	
			b. Mechanisms of quorum sensing in Gram Negative and Gram-positive bacteria.		
				15 L	

	2		Pathogenesis and Human Microbiome		01
			Microbial biofilms		
	2.3	2 1	i. Structure, properties and formation		
		2.1	ii. Biofilm-related Infections on Tissue Surfaces	05L	
			Antibiotic Resistance		
		2.2	i. Genetic Basis of antimicrobial resistance	05L	
			ii. Mechanistic basis of antimicrobial resistance- modification of antibiotic molecules, decreased penetration and efflux, changes in target sites, Resistance Due to Global Cell Adaptations.		
			The Human Microbiome:		
		2.3	i. Introduction to the concept of Microbiome, The Human Microbiome Projectii. Gut microbiome- types of organisms, functions, role in health and disease	05L	
				15 L	
Practical			1. Study of few virulence mechanisms in pathogens		02
			2. Study of Quorum Sensing and Quorum sensing inhibitors in <i>C.violaecium</i>		
			3. Microbial Biofilm formation on various surfaces		
			4. Determination of Minimum Biofilm Inhibition Concentration of an Antibiotic.		
			5. Detection of specific types of Antibiotic Resistance.	60L	
			o MRSA o VRE		
ı			6. Antibiotic susceptibility testing- Conventional		
			micro broth dilution method according to CLSI guideline.		
			_		

(ID)	1		n: : 1 1		0.1
Theory	1	1.1.	Bioorganic molecules Protein Chemistry: peptides and the peptide bond, protein structures, protein types, factors determining structure, Chaperonins, prion motifs, and domains	6L	01
		1.2.	Coenzymes, antioxidants, and metals	2L	
		1.3.	Carbohydrates: derivatives of monosaccharides, glycoconjugates, and carbohydrates as informational molecules.	4L	
		1.4	Lipids: structural lipids, lipids as signal, cofactors, and pigments	3L	
				15 L	
	2		Degradation and transformation of organic molecules		01
		2.1	Biotic reactions, mechanistic aspects Environmental factors affecting biodegradation	4L	
		2.2	Persistence and biomagnification of xenobiotics	3L	
		2.3	Transformation of aromatic compounds: monocyclic, polycyclic, carboxylates, and related compounds.	4L	
		2.4.	Transformation of halogenated hydrocarbons	4L	
				15 L	
Practical			1. Extraction, isolation, partial purification (if necessary), calculation of percentage yield, and performing a confirmatory test for the following:		02
			a. lactose from milk		
			b. Albumins and globulins from egg white By protein estimation method	60L	
			2. Interpretation of Ramachandran plot		
			3. Degradation of aromatic compounds		

			Enrichment and isolation of a monocyclic/polycyclic aromatic compound Study of phenol degradation / (enrichment, isolation, and degradation) of phenol from various samples		
			Bioinformatics and Biostatistics		
Theory	1	1.1	Biological databases-nucleic acid sequence databases- GenBank/ EMBL/ DDBJ	02L	01
		1.2	Protein sequence databases- (UniProtKB), Derived databases (Prosite, BLOCKS, Pfam/Prodom) Structural databases (PDB, NDB) and Enzyme databases	02L	
		1.2	The concept in sequence analysis- Needleman &	02L	
		1.3	Wunsch, Smith & Waterman alignment algorithms Scoring Matrix for nucleic acids and protein-	02L	
		1.4	MDM.BLOSUM.CSW	01L	
			Alignment: Pairwise BLAST, FASTA	02L	
		1.5 1.6 1.7	Multiple sequence alignment, PRAS, CLUSTAL W Structure predictions for proteins- Basic approaches for protein structure predictions, comparative modeling, fold recognition	02L	
		1.8	Chemo-informatics- Introduction, applications in pharmaceutical industries, Immuno-informatics-Overview, Revers	02L	
				15 L	
	2	1 2.	Hypothesis testing and test of significance Normal Distribution: Properties of standard normal distribution Parametric or Standard Tests of Hypotheses i. Basic concepts concerning the testing of hypotheses ii. Hypothesis testing of means iii. Large sample Tests: Testing significance of	01 08	01

ii. Characteristics of Non-parametric Tests	15 L	
2. Nonparametric or Distribution-free Tests i. Important Nonparametric Test		
ii.Testing Goodness of fit iii. Testing association between two attributes		
1. χ2 test I. Testing single population variance	03	
coefficient, F-test and ANOVA		
mean, two correlated normal population mean, Testing significance of correlation	03	
between two independent normal population		
iv. Small sample Tests: Testing significance of single population mean, Testing difference		
single population mean, two population mean		

Discipline-Specificic Electives (Any one)

			Role of microorganisms in Food technology		
Theory	1		Role of microorganisms in Food technology		01
		1.1.1	Starter culture of bacteria, yeast and mold used in food fermentation		
		1.1.2 1.1.3 1.1.4 1.1.5	Fermented Foods: - General methods of fermented food production Fermented cereals: - Bread production Fermented vegetables: - Sauerkraut production. Production of microbial flavoring compounds: - Vanilla flavor	07	
		1.2.1 1.2.2 1.2.3	Prebiotic and Probiotic Probiotics Screening of Potential Probiotics Industrial Aspects of Probiotic Production Prebiotics	08	
				15 L	

	2	2.1.1	Microbial production of Rosmeric acid & Caffeic acid		01
		2.1.2 2.1.3	Production of bacterial polysaccharides & Commercially produced Polysaccharides	07	
		2.1.4 2.1.5	Microbial Production of Riboflavin Microbial Production of Antibiotics:-	08	
			Cephalosporin, Tetracycline	15 L	
Practical			 Isolation & Characterization of organisms with probiotic potential from food samples. Effect of prebiotic and probiotic culture Sauerkraut preparation and Microbiological analysis Production of antibiotic and assay 	60L	02
			Microbial Biotechnology		
Theory	1		Importance and Scope of Microbial Biotechnology 1.1 Importance of Biotechnology: Biotechnology as an interdisciplinary area, Global impact and current excitements of Biotechnology,	05L	01
			1.2 Bodiversity, and its preservation.1.2 Scope of Microbial biotechnology.	05L	
			1.3 Microbial production and applications of primary metabolites: Citric acid, Ethanol, L Glutamic acid, L Lysine, Vitamins B	05L	
			1.4 Industrially important microbial enzymes: Types, mode of action and industrial applications of microbial amylases and proteases.	15 L	

	2			15 L	01
			Tools and Techniques in Genetic Engineering		
			Cutting and joining of DNA: Exonucleases, Endonucleases, Restriction Endonucleases (Type I, II, III). Examples of some enzymes – DNA ligases, Alkaline Phosphatases, DNA polymerases, Use of Linkers and Adaptors		
		2.1	Cloning Vectors: Properties of good vector, Cloning and Expression vectors. E. coli vectors – Plasmid, Cosmid, Bacteriophage vectors. Shuttle vectors, east vectors.	05L	
		2.2	Steps in gene cloning. Isolation of desired gene, cDNA library, Genomic library, Chemical synthesis of gene. Gene amplification by PCR. Introduction of vector into suitable bacterial host (various transformation methods). Selection of recombinant	05L	
		2.3	clones, selection of clones containing recombinant vector, selection of clones containing specific DNA inserts, colony hybridization test.	05L	
				15 L	
Practical			 Production of Microbial polysaccharide and determination of yield. Isolation and cultivation of Azotobacter, Rhizobium, Phosphate solubilizers and preparation of biofertilizers. Study of Growth curve of E. coli in synthetic and 	60L	02
			complex medium. 4. Isolation of plasmid DNA from E. coli 5. Restriction digestion of DNA and study of		

restriction gene map.	
6. Gel electrophoresis of DNA	
7. Isolation of genomic DNA (bacterial / yeast or	
onion)	
8. PAGE for proteins.	
9. Quantitation of DNA and Protein using U.V	
absorption.	
Research Methodology	
Theory 1 Fundamentals of Research	1
i. Significance of Research	
ii. General characteristics of research	
iii. Objectives of research	
iv. Classification and types of research	
v. Types of research methods	
vi. Research and Scientific methods	
vii. Criteria of good research	
viii. Identification and formulation of research	
problem ix. Study design	
15	L
DATA COLLECTION AND PROCESSING	1
i. Definition, scope and limitations of data	
collection and processing	
ii. Sampling – sampling frame, importance of	
probability sampling, simple random	
sampling, systemic sampling, stratified 07	
random sampling, cluster sampling.	
iii. Types of data, collection of data,	
classification and tabulation – diagrammatical	
and graphical representation, primary data,	
secondary data.	
iv. Measurement scales, variables and their	
measurements Validity offset measure and choice of	
v. Validity, effect measure and choice of statistical test	
HYPOTHESIS WRITING	
i. Meaning, nature of hypothesis	

	 ii. Function of hypothesis iii. Importance of hypothesis iv. Kinds of hypothesis v. Characteristics of good hypothesis vi. Formulation of hypothesis 	08 15 L	
3	i. Measures of central tendency – mean, median, mode, geometric mean ii. Measures of dispersion – range, Q.D., M.D., variance, standard deviation iii. Correlation and Regression analysis- • Correlation and regressions relation between two variables, • Scatter diagram, • Definition of correlation and their equations, • Interpretation of regression coefficients, • Principles of least squares, • Two regression lines, • Curve fitting Karl Pearson's coefficient of correlation, • Spearman's coefficient of correlation.	06	1
4	COMMUNICATION & SCIENTIFIC WRITING	15 L	1
	 i. The importance of communication through English ii. The process of communication and factors that influence communication sender, receiver, channel, code, topic, message, context, feedback, noise, filters, and barriers. iii. Verbal and non-verbal communication: Body language iv. Comparison of general communication and business communication, science communication v. Presentation skills –the structurethe of presentation, types of presentation, oral, PowerPoint- Handling power point, slides organization, content, body language, 	09	

gastures, voice modulation		
Research Proposal and Publications i. Research Proposal and different funding agencies ii. Types and impact factors of the journal iii. UGC care list, Peer reviewed and Refereed Journals iv. Research paper/dissertation/thesis writing	06	
	15 L	

Sem 1: References

Microbial	1. iGenetics- A Molecular Approach, Russell, P.J., 3rd edition, 2010,				
Genetics -I	Pearson				
	International edition				
	2. Fundamental Bacterial Genetics, Trun Trempy, 1s				
	edition, 2004, Blackwell Publishing				
	3. Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine,				
	Losick, 7th edition,				
	2007, Pearson Education				
	4. Genes IX, Lewin, B., 2006, Jones and Bartlett Publishers				
	5. Genetics: A Conceptual Approach, Benjamin Pierce 4th				
	edition, 2008, W. H. Freeman & Co				
	6. Principals of Genetics, Snustad & Simmons, 6th edition, 2012, John				
	Wiley & Sons Inc				
	7. Molecular biology –Genes to proteins 3rd ed. by Burton E. Tropp (Jones				
	& Bartlett				
	publishers)				
	8. Molecular Genetics of bacteria, 3rd Edition by Larry Snyder and Wendy				
	Champness				
	(ASM Press)				
Medical					
Microbiology	Text Books:				
and Immunology	Bacterial Pathogenesis- A Molecular Approach by Brenda Wilson,				
	Abigail Saylers et al, Third ed, ASM Press, 2011				
	Abigan Saylers et al, Timu eu, ASWI Fress, 2011				
	2. Virulence Mechanisms of Bacterial Pathogens, by Indira Kudva, Nancy				
	Cornick et al, Fifth ed, ASM Press, 2016				
	3. Medical Biofilms-Detection Prevention and Control by Jana Jass,				

Susanne Surman et al, Wiley, 2003

- 4. The Human Microbiota and Microbiome ed by Julian Marchesi, Advances in Molecular and Cellular Microbiology 25, CAB International, 2014.
- 5. Understanding emerging and re-emerging infectious diseases by Suparna Duggal and Jyoti Mantri Himalaya Publishing House
- 6. Handbook of Microbiological Quality Control, Pharmaceutical and Medical Devices- Rosamund M Baird. (CRC Press)
- 8. Ananthanarayan and Paniker's Textbook of Microbiology, by Reba Kanungo, 10thedUniversities Press; Tenth edition, 2017

REFERENCE ARTICLES

- 1. Micromanagement in the gut: micro environmental factors govern colon mucosal biofilm structure and functionality by Rosemarie De Weirdt and Tom Van de Wiele, Biofilms and Microbiomes (2015) 1, 15026; doi:10.1038/npjbiofilms.2015.26
- 2. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges, Clin Microbiol Rev 30:409–447.https://doi.org/10.1128/CMR.00058-16.Published on 14th Dec, 2016
- 4. Special Article on Quality Assurance in Microbiology by D.R. Arora-Indian Journal of Medical Microbiology, (2004) 22 (2): 81-86.

Microbial Biochemistry

Unit I:

- 1. Biochemistry 3rd edition, Mathew, Van Holde, and Ahern, Pearson Education
- 2. Lehninger-Principles of Biochemistry, Michael M. Cox and David L. Nelson, 5th Edition. W.H. Freeman and Company, New York reprinted 2008
- 3. Biochemistry, Voet D. and Voet J.G., 4th edition, 1995, John Willey and Sons Inc.

Unit II:

- 1. Lehninger-Principles of Biochemistry, Michael M. Cox and David L. Nelson, 5th Edition. W.H. Freeman and Company, New York reprinted 2008.
- 2. Biochemistry, Voet D. and Voet J.G., 4th edition, 1995, John Willey and Sons Inc.
- 3. Biochemistry 3rd edition, Mathew, Van Holde, and Ahern, Pearson Education

Unit III

1. Environmental degradation and transformation of organic chemicals-Alasdair H. Neilson and Ann-Safie Allard. CRC Press, 2008

2. Environmental Microbiology. Raina M. Maier, Ian L. Pepper, Charles P. Gerba. Academic Press (Elsevier) 2000 Unit IV: 1. Biotransformations: Microbial degradation of health-risk compounds edited by Ved Pal Singh. Elsevier 1995. 2. Microbial Ecology: Fundamentals and Applications 4th ed. Ronald H. Atlas and Richard Bartha. Reprint 2005. Pearson Education. ADDITIONAL READING MATERIAL 1. Biochemistry and Physiology of anaerobic bacteria. Lars G. Ljungdahl, Michael Adams, Larry L. Barton et al. 2003 Springer-Verlag New York, Inc. 2. Principles of Biochemistry, Zubay, G., 4th edition, 1998, Wm.C. Brown Publishers. 15 Bioinformatics & 1. Fundamentals of Research methodology and statistics- Yogesh Kumar **Biostatistics** Singh, New Age International Publishers 2. Biostatistics: A foundation for analysis in health sciences. Daniel WW, Cross CL. 10th Edn, Wiley.2013 3. Research Methodology: A guide for Researchers in Agricultural Science, Social Science and other related fields. Pradip kumar Sahu. Springer 2006 4.Ranjit Kumar, 2005 Research Methodology- A step-by-step Guide for beginners, 3rd edition, Sage publications. 1. Mount, D. W. (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, New York. 2. Introduction to Bioinformatics T.K. Attwood and D.J Perry-Smith 3. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by Baxevanis A.D. and Ouellette, Third Edition. John Wiley and Son Inc., 2005 Discipline-1. Petra Foerst, Chalat Santivarangkna 2016 Advances in Probiotic **Specific** Technology ,CRC Press A Science Publishers Book **Electives** 2. Prescott and Dunn's 'Industrial Microbiology'. 1982 4th Edition, Role of McMillan microorganisms in Food technology **Publishers** 3. Okafor Nkuda 2007 "Modern Industrial Microbiology and OR Biotechnology", Science Publications Enfield, NH, USA. 4. Wilfried Schwab, Bernd Markus Lange, Bernd Markus Lange

	"Biotechnology of natural products" Springer International Publishing,						
	5. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1						
	&2,						
	Academic Press						
	6. Adams and Moss, Food Microbiology, 3rd edition, RSC Publishing						
	(2008)						
	7. Robert E.C., Wildman 2nd Ed. "Handbook of Neutraceuticals &						
	Functional Foods "CRC Press A SCIENCE PUBLISHERS BOOK						
Microbial	8. Ronald Ross Watson, Victor R. Preedy 1st Edition 2010 "Bioactive Foods						
Biotechnology	in						
	Promoting Health: Probiotics and Prebiotics" Academic Press is an imprint						
	of						
	9. Semih Otles. "Probiotics and Prebiotics in Food, Health and Nutrition".						
	Taylor and Francis, CRC Press.						
	1. R. C. Dubey. A Textbook of Biotechnology. 2006 S. Chand and						
	Company Ltd.						
	2. Bernard R Glick and Jack J Pasternak. Molecular Biotechnology:						
	Principles and Applications of recombinant DNA. 3rd Edition.						
	3. B. D. Singh. Biotechnology. Kalyani Publishers.						
	4. S. B. Primrose. Modern Biotechnology 1989. Blackwell Scientific Publ.						
	5. Primrose. Principles of Gene manipulations. 6th edition. 2004 Blackwell Science.						
	6. Aluizino Borent. Understanding Biotechnology. 2004 Pearson Education.						
	7. James Watson. Recombinant DNA. 2001. Scientific American Books.						
Research	1. Research Methodology: A guide for Researchers in Agricultural						
Methodology	Science, Social Science and other related fields. Pradip kumar Sahu.						
	Springer 2006						
	2. Ranjit Kumar, 2005 Research Methodology- A step – by- step Guide						
	for beginners, 3 rd ed., Sage publications.						
	3. Fundamentals of Research Methodology and statistics-Yogesh						
	Kumar Singh, New Age International Publishers						
	4. Biostatistics: A foundation for analysis in health Sciences. Daniel						
	WW, Cross CL. 10 th ed. Wiley 2013.						
	<u> </u>						

SEMESTER II DETAIL SYLLABUS

	Title			
	Microbial Genetics -II			
Learning Objectives	The learner will know about different model organisms used for studying the genetic basis of Life. The learner will be understanding the translation and transcription process in procaryotes and Eucaryotes. The learner will also be conversant about Population genetics Hardy-Weinberg Law and related topics. The learner will get elaborate knowledge about Polymerase Chain Reaction			
Learning Outcome	The learner will be appraised with Model organisms developmental stages which are the traditional geneticist's and embryologist 's tool. Prokaryotic translation and replication process in eukaryotes The role of genetics in conservation Biology Significance of Organelle DNA			
	Microbial Pathogenesis and Applied Immunology			
Learning Objectives	One of the most important areas of immunology is Applied Immunology which encompasses the study of Adversarial strategies during various infections, Immunodeficiency disorders, Immune Tolerance, Advances in Allergy and other hypersensitivities, Autoimmune diseases that are enlisted and properly covered in the syllabus. This course will help students to build on the advance information regarding the applications of the basic immunology they have studied during their undergraduate course.			
Learning Outcome	 Students should be able to- Comment on the organs, tissue transplantation and blood transfusion-principle involved, types of transfusion reactions and their control, tests to be performed for safe transplantation. Correlate the causes, principles involved, examples, control and treatment of immunodeficiency disorders, hypersensitivity reactions, autoimmune diseases and cancer. Give details of the adversarial strategies during various infections, recent advances in vaccine production and difficulties encountered in it. 			

	Applied Biochemistry
Learning Objectives	To open the domains of applied biochemistry. To gain an insight in the multifaceted field of enzymology. To practically train students to understand the challenges and problems encountered while dealing with biomolecules like proteins. Commercial outcomes are understood through pharmaceutical products and proteomics-an already established field with extensive applications in diverse fields of biological sciences.
Learning Outcome	At the end of the course learners will be able to Understand and relate to metabolic and physiological complexities shown by living organisms.
	Apply the biological processes at molecular level for production and synthesis of bioactive molecules of commercial significance. Learning the unusual biomolecules and bioactive compounds will open new avenues for research to the young scientists. Obtain Knowledge of Proteomics which will give them a new perspective about diagnosis of diseases and make them competent to handle new challenges if they are employed in modern diagnostic laboratories. Undertake advanced studies on enzyme kinetics will help them alter conditions favorably to increase industrial productions.
	Environmental Microbiology
Learning Objectives	 To Develop the understanding about microbial Life in extreme environments To know the physiological and molecular adaptation on extremophiles
Learning Outcome	 Biotechnological application of the metabolites of extremophiles Understanding the world of exobiology and geo microbiology would open the new doors
	Discipline Specific Electives Molecular biology tools and Immuno diagnostics
Learning Objectives	 To know the fundamentals of the PCR technique and its types Molecular tools for studying genes and gene activity To achieve the theoretical understanding of immunodiagnostic techniques
Learning Outcome	The knowledge of advanced molecular tools would help the student to perceive the jobs in molecular biology laboratories
	Discipline Specific Electives Advances in industrial microbiology
Learning	Develop the learner's ability to study the techniques used in different phases

Objectives	of industrial microbiology. • To understand and apply the knowledge of technology for related products.
Learning Outcome	 Students should be able to describe the applications of microbes in Industries. Students should be able to understand the commercial and economic aspects of Applied Microbiology.

	Unit	Sub unit	Title	No of lectures	Credits
			Molecular Genetics -II		
Theory	1	1.1.1 1.1.2 1.1.3 1.1.4 1.2.1 1.2.2	Model Organisms Characteristics of a model organism Prokaryotic models - E.coli and S.cerevisiae Eukaryotic models - Mice, Drosophila, Arabidopsis Examples of studies undertaken using prokaryotic and eukaryotic model organisms. Translation in Prokaryotes and Eukaryotes Genetic code - Nature of genetic code and characteristics of genetic code. Translation process - Transfer RNA, structure of tRNA, tRNA genes, Recognition of the tRNA anticodon by the mRNA codon, Adding of amino acid to tRNA , Ribosomal RNA and Ribosomes, Ribosomal RNA Genes, Initiation of translation, Initiation in Bacteria and eukaryotes, Elongation of the polypeptide chain in Bacteria and eukaryotes, termination of translation Bacteria and eukaryotes Protein sorting and modifications in the cell.	10	01
		1.3.1 1.3.2	Eukaryotic Replication Eukaryotic DNA replication - Molecular details of DNA synthesis, replicating the ends of the chromosomes assembling newly replicated DNA into nucleosomes.	05	

		15 L	
2 2.	Population genetics - Genetic structure of population - Hardy-Weinberg Law - Genetic variation in space and time - Genetic		01
2.	variation in Natural population. Forces that change gene frequencies in populations: i. Mutation, ii. Random genetic drift iii. Migration iv. Natural selection v. Balance between mutation and selection vi. Assertive mating vii. Inbreeding	05	
2	Summary of the effects of evolutionary forces on the genetic structure of population - The role of genetics in conservation Biology		
	Polymerase Chain Reaction-Fundamentals of the PCR, Variations/ Modifications of PCR: 2.2.2. Reverse transcriptase PCR, Differential display PCR, 2.2.3. Real time Fluorescent PCR, Hot- Start PCR, Multiplex PCR, Nested PCR, 2.2.4. PCR Applications and Advantages	05	
	Organelle DNA: - 2.3.1.The genetics of organelle encoded traits, - The endosymbiotic theory, 2.3.2. Mitochondrial DNA - The gene structure and organization of mitochondrial DNA, - Non universal codons in Mitochondrial DNA, replication, transcription and translation of Mitochondrial DNA, Evolution of Mitochondrial DNA,		
	Evolution of Mitochondrial DNA, 2.3.3 Chloroplast DNA - Properties similar to Eubacterial DNA - Gene structure and	05	

			organization of chloroplast DNA, Replication, transcription and translation of chloroplast		
			DNA	15 L	
Practical			Use of E coli as a model organism to understand the effect of UV light on its growth. 2. Use of S cerevisiae as a model organism to understand the effect of UV light on its growth. 3. Pot experiment using model plant-Arabidopsis thaliana 4. PAGE for proteins 5. Western Blotting (Demonstration) 6. Design of primer & PCR 7. Problems on population genetics 8. Visit to research institute	60L	02
			Microbial Pathogenesis and Applied Immunology		
Theory	1		Adversarial strategies during infection	15 L	01
		1.1	Bacterial survival strategies - Evading complement, - Evading killing by macrophages	03L	
		1.2	The host counter attack against bacteria - Toxin neutralization	03L	
		1.3	- Opsonization of bacteria The habitat of intracellular bacteria: Bacterial survival strategies		
			- Defence against intracellular bacteria - Role of activated Macrophages Viral survival strategies	04L	
		1.4	Viral survival strategies - antigenic variations - nonfunctional T- cell epitopes	051	
				05L	

				- interference with antigen processing		
				and/ or presentation		
				- interference with immune effector mechanism		
		2			15 L	01
				Advances in Allergy and other hypersensitivities	13 L	
			2.1	Hypersensitivities		
				2.1 Type –I hypersensitivity	05L	
				2.2 Type –II hypersensitivity		
				2.3 Type –III hypersensitivity		
				2.4 Type –IV hypersensitivity		
				2.5 Type -V hypersensitivity		
				(Mechanism/principle, examples)		
			2.2	Transplantation and Transfusion Immunology		
			2.2	2. 2.1 Types of Graft		
				2.2.2 Types of graft rejection		
				2.2.3 Immuno suppression	05L	
				2.2.4 Blood transfusion		
				- Blood grouping and cross matching		
				- Transfusion reactions		
				- Criteria for selection and rejection of Blood Donor		
				Autoimmune diseases		
			2.3	2.3.1 Causes		
				2.3.2 Mechanisms		
				2.3.3 Pathogenic effects of autoantibody		
				2.3.4 Pathogenic effects of complexes with auto antigens	05L	

Practical		 Hemoglobin estimation by Cyanmethaemoglobin method using Drabkins Fluid as one of the criteria used for selection of blood donor during collection of blood for safe transfusion. Blood grouping and Compatibility testing /cross matching of blood for safe blood transfusion. Determination Of Enzymes Of Oxidative Stress (SOD And Catalase) NBT Analysis Of Blood Sample Serum Lysozyme Activity Serum Myeloperoxidase Activity (MPO) Rheumatoid factor test for laboratory diagnosis of Rheumatoid arthritis 	60L	02
Theory	1 1.1 1.2 1.3	8. RIST and RAST- Principle, Procedure and Significance to be explained during the practicals using power point presentation/ you tube. Applied Biochemistry Enzymes: the catalysts of Cells and Classes of Natural Products Information from kinetics, specificity of enzymatic action, mechanisms of catalysis Enzyme isolation and purification Polyketides, terpenes and steroids, alkaloids, phenylpropanoids, Flavonoids. Noncoding RNAs	5L 3L 7L	01

	2.1 2.2 2.3 2.4	Natural and Unusual bio-molecules and bioactive compounds and Proteomics Bioactive proteins and peptides: peptides as bioactive agents, peptides with anti-oxidative activity, antimicrobial peptides, enzyme-based antimicrobial proteins, non-enzyme-based antimicrobial proteins-Definition, and examples Commercialization of antimicrobial proteins and peptides. Lectins, surfactants, albumin, cryoprotectants, lyoprotectants Proteomics and the proteome, branches Applications: Disease diagnosis [cancer biology, autoimmune, allergic response], Glycomics, use of protein biomarkers	05 L 03L 04L 04L	01
Practical		 Isolation, partial purification, and study of enzyme kinetics of amylase. Effect of substrate concentration, temperature, and pH on the activity of the enzyme Isolation of amylopectin and amylose from potato starch. Isolation of Lycopene from tomatoes Preparation of lectin from a plant source and its application Environmental Microbiology	60L	02

Theory	1		Microbial Life in Extreme Environments	09	01
		2	Physiology, Molecular adaptation and biotechnological Applications of - Thermophiles Psychrophiles Halophiles Acidophiles Alkalophiles Piezophiles Radiation resistant organisms Extremophiles and Exobiology	01	
		3	Geo Microbiology Biocorrosion and Bioleaching	05	
				15L	
	2	2	Evolution i) History of evolution Theories of organic evolution -Lamarckism - Darwinism -Modern synthetic theory -Germplasm theory -Mutation theory ii) Neutral theory of evolution - Polymorphism - Divergence - Near neutral theory of evolution Microbial diversity: i) Estimates of total number of species, measures and indices of diversity, the species concept for prokaryotes and eukaryotes ii) Culture-dependent microbiology iii) Newer approaches for exploring uncultivable bacteria: Culture-independent molecular methods	07	01
			iv) Methods of extracting total bacterial DNA	08	

			from a habitat; the metagenomics approach		
			arom a naonat, the metagenomics approach		
				15 L	
		Di	iscipline-Specific Electives (Any one)	_	
			A. Molecular biology tools and		
			Immunodiagnostics		
Theory	1		Molecular biology tools		01
		1	Polymerase Chain Reaction-		
		1	i. Fundamentals of the PCR	04	
			ii. Variations/ Modifications of PCR:		
			Reverse transcriptase PCR, Differential		
			display PCR, Real time Fluorescent		
			PCR, Hot- Start PCR, Multiplex PCR,		
			Nested PCR, Applications		
			Molecular tools for studying genes and gene		
		2	activity		
		_	i. Molecular separations: Gel		
			electrophoresis, Two-dimensional gel	11	
			electrophoresis		
			ii. Labelled tracers: Autoradiography, Liquid		
			scintillation counting Nonradioactive		
			tracers		
			iii. Using nucleic acid hybridization:		
			Southern blots, DNA fingerprinting and		
			DNA typing, In situ hybridization:		
			Locating genes in chromosomes, Immunoblots		
			iv. DNA sequencing and physical mapping:The Sanger Chain-Termination		
			Sequencing method, High-throughput		
			Sequencing, Restriction Mapping, Site-		
			directed mutagenesis		
			v. Mapping and quantifying transcripts,		
			Northern blots, S1 mapping, Primer		
			extension, Run-off transcription and G-		
			less cassette transcription		
			vi. Knockouts: Gene knock out in yeast,		
			Knocking down expressed gene by RNA		

				interference (RNAi)		
					15L	
]	2		Immunological Diagnostic		01
				Procedures		
			1	Antibody generation	0.1	
			1		01	
				Monoclonal Antibodies		
			2	Formation and Selection of Hybrid Cells, Identification of Specific Antibody-Producing	04	
			2	Hybrid Cell Lines (Mol Bio Glick 334-339),		
				Hybrid Human-Mouse Monoclonal		
				Antibodies 403 Human Monoclonal Antibodies 406 (Glick)		
				Detection of molecules using ELISA, RIA, western blot		
				western blot	04	
			_	Detection of molecules in living cells		
			3	Immunoprecipitation	03	
			4	Flow cytometry		
			4	Immunofluorescence microscopy		
					02	
			5	In situ localization of molecules by techniques such as FISH and GISH		
			6	Immune Quantitative Real-Time PCR	01	
					1.51	
-	TD 41 1				15L	02
	Practical			1 Couthorn hybridization		02
				Southern hybridization technique [Demonstration]		
				2 Northern Blotting Technique		
				[Demonstration]		
				3 Western blotting		
				[Demonstration]		
				4 Restriction digestion of DNA	60L	
				Restriction mapping (virtual		
				mapping and problems Based		
				on restriction mapping) 5 PCR [Demonstration]		
				6 Isolation and detection of		
				plasmid DNA		
				7 Preparation of Antigen and its		
				confirmation using standard		

				antibodies 8 Qualitative and quantitative detection of antibodies: Widal, VDRL, Coombs, forward and backward typing, Isoagglutinin titer 9 Assignment 1- Engineered products/activities used for the enhancement of human health 1 Assignment 2 - Search for 0 drugs among unculturable microorganisms 1 Report on Visit to Research 1 Laboratory Advances in industrial microbiology		
 ,	Theory	1		Selection, improvement, and applications of beneficial microorganisms		01
			1.	Isolation, enrichment and testing of organism-producing metabolites with bioactive activity		
			2.	Strain improvement (Self-study topic)		
			3.	Application of genetic engineering in Industrial Microbiology i. Production and enhancing the activities of industrial enzymes ii. Engineered products/activities used for the enhancement of human health 1. Production of Biofuel i. Biofuel – Types, feedstock and production processes ii. Industrial alcohol production-properties, uses, Denatured alcohol (Self-study topic) iii. Manufacture and developments in alcohol production 2. Production of Biofertilizers and Bioinsecticides	10	
				i. Biofertilizers – types, mass production, applications	10	

			ii. iii. iv. v. vi.	Constraints in biofertilizer technology Biofertilizer strains developed economics Cost and availability of biofertilizers Biopesticides – types and technical aspects Major biopesticides produced and used in India (Self-study topic) Biopesticide formulations	15 L	
	2	prop	nerties 1. Converties i. discovi i. ii. iii.	entional processes of drug very Cell-based assays Receptor binding assays Enzyme assays or methods of drug discovery Computer-aided drug design Combinatorial chemistry Genomic methods in search of new drugs (self-study topic) Search for drugs among unculturable microorganisms Approval of new drugs by the regulatory agency (Self-study topic)	07 08	01
Praction	cal		mutag 2. Repli and ch auxotr 3. Gradie resista 4. Product labora 5. Product	ion of mutants using UV enesis. ca Plate technique for selection haracterization of mutants — rophs ent Plate technique for analog ant mutants. ction of biofertilizer in the tory (Group Experiment) ction and detection of amylase tion of the antimicrobial	2	

		compound by Wilkins agar overlayer method & Agar Strip method 7. Testing of drug using Kirby – Bauer method. 8. Bioassay of drugs (Ampicillin / Penicillin) 9. Assignment 1- Engineered products/activities used for the enhancement of human health 10. Assignment 2 - Search for drugs among unculturable microorganisms 11. Report on Industrial visit	
VI	Research Methodol ogy	On-Job Training (OJT) / Field Project (FP)	04

Sem 2: References

Microbial	1. iGenetics- A Molecular Approach, Russell, P.J., 3rd edition, 2010, Pearson
Genetics-II	International Edition
	2. Fundamental Bacterial Genetics, Trun Trempy, 1s
	edition, 2004, Blackwell Publishing
	3. Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, Losick, 7th
	edition,
	2007, Pearson Education
	4. Genes IX, Lewin, B., 2006, Jones and Bartlett Publishers
	5. Genetics: A Conceptual Approach, Benjamin Pierce 4th
	edition, 2008, W. H. Freeman & Co
	6. Principals of Genetics, Snustad & Simmons, 6th edition, 2012, John Wiley & Sons
	Inc
	7. Molecular biology –Genes to proteins 3rd ed. by Burton E. Tropp (Jones & Bartlett
	publishers)
	8. Molecular Genetics of bacteria, 3rd Edition by Larry Snyder and Wendy
	Champness
	(ASM Press)
	Recombinant DNA J.D. Watson 2nd ed

	12. PCR, Clive R. Newton, Alex Graham. (1997); BIOS Scientific Publishers.
	13. Molecular Biology by R. F. Weaver 3rd edition, McGraw-Hill international
	edition
Microbial	
Pathogenesis	Textbooks
and Applied Immunology	1. Roitt's Essential Immunology 13th Ed. –Wiley Blackwell
	2. Kuby Immunology 6th Ed – W. H. Freeman and Company, New York
	Reference Books:
	1. Immunology –Essential and Fundamental – Sulbha Pathak, Urmi Palan,3rd Ed. Capital Publishing Company (New Delhi-Kolkata)
	2. Kuby Immunology 7th Ed – W. H. Freeman and Company, New York
	3. Elements of Immunology- Fahim Halim Khan –Pearson Education
	4. Medical Laboratory Technology - Kanai Mukherjee vol. 1
Applied	REFERENCES
Biochemistry	Unit I
	1. Biochemistry: The chemical reactions of living cells (Vol 1) David E. Metzler. Academic Press.
	2. Fundamentals of enzymology. 2nd edition. Nicholas C. Price and Lewis Stevens.
	Oxford Science Publication. Reprint 1998.
	Unit II 1. Chemistry of Natural products by SV Bhat, BA Nagasampagi& M Sivakumar,
	Berlin Springer (2005) (ISBN 3-540-40669-7).
	Unit III
	1. Bioactive food proteins & peptides Applications in human health, ed Navam S. Hettiarachchy, CRC Press, 2012
	2. Natural products: the secondary metabolites. James R. Hansen. Royal Society of Chem.
	3. Development & manufacture of Protein Pharmaceuticals. Ed Steven L. Nail and
	Michael J. Akers. Springer Science 2002 [ISBN 978-1-4615-0549-5]
	4. Functional food carbohydrates. Costas G. Biliaderis and Marta S. Izydorczyk. CRC press 2007.
	5. The physiology and biochemistry of prokaryotes, White D., Drummond, T. J. and Fuqua C., 3rd edition, 2007, Oxford University Press
	Unit IV
	1. Introduction to proteomics Tools for the new Biology. Daniel C. Liebler. Humana Press 2002
	2. OMICS Applications in Biomedical, Agricultural, and Environmental Sciences. Ed

	Debmalya Barh, Vasudeo Zambare, Vasco Azevedo. CRC press. 2013
Environmental	REFERENCE BOOKS 1. Laboratory manual in biochemistry by Jayaraman J., New Age International Publishers. 2. Enzymes 3rd edition. Malcolm Dixon and Edwin C. Webb. Longman Group 1979. 3. An introduction to practical biochemistry 3rd. edition, David T Plummer, Tata McGraw Hill edition 1998 4. Experimental biochemistry —A student companion, Rao Beedu, S. Deshpande, IK International Pvt. Ltd. 5. Laboratory manual in biochemistry, Immunology and Biotechnology, Nigam A and Ayyagiri A. Tata McGraw Hill edition 6. Source of Experiments for teaching Microbiology, Primrose and Wardlaw 7. Microbial Physiology and Biochemistry Laboratory manual: A quantitative approach, David White 1. Environmental Microbiology: Fundamentals and Applications Microbial
Microbiology	 Edwindinental Microbiology. Fundamentals and Applications Microbial Ecology, Jean-Claude Bertrand · Pierre Caumette Philippe Lebaron · Robert Matheron Philippe Normand · Télesphore Sime-Ngando Editors Gerday, C., Glansdorff, N., & American Society for Microbiology. (2007). Physiology and biochemistry of extremophiles. Washington, D.C: ASM Press. Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F.T., Stetter, K.O. (Eds.) (2011), Extremophiles Handbook. Springer Fred A. Rainey and Aharon Oren (2006). Methods in Microbiology - Volume 35, Extremophiles, 1st edi., Academic Press. S.K.Kawatra and K.A. Natarajan, "Mineral Biotechnology- Microbial Aspects of Mineral Beneficiation, Metal Extraction, and Environmental Control", published by SME, Littleton, CO (USA) 2001 S.W.Borenstein, Microbiologically influenced corrosion handbook, Woodhead pub. Ltd., Cambridge (1994) . Microorganisms In Biofouling and Biocorrosion: https://nptel.ac.in/courses/113108055/module7/lecture34.pdf
Discipline- Specific Electives Molecular biology tools and Immunodiagno stics	 Molecular Biology by R. F. Weaver 3rd edition, McGraw-Hill International edition Molecular Biotechnology Principles and applications of Recombinant DNA 4th edi Glick, Pastermak, Patten iGenetics- A Molecular Approach, Russell, P.J., 3rd edition, 2010, Pearson International edition Recombinant DNA J.D. Watson 2nd ed 12. PCR, Clive R. Newton, Alex Graham.

	(1997); BIOS Scientific Publishers						
	5 Molecular Biology of the Gene, Watson, Baker, Bell, Gann, Levine, Losick, 7th						
	edition, 2007, Pearson Education						
	6 Molecular biology -Understanding the Genetic Revolution by David P.						
	Clark(Elsevier Academic press)						
	7 Molecular biology –Genes to proteins 3rd ed. by Burton E. Tropp (Jones & Bartlett						
	publishers)						
O.D.							
OR	1. Okafor Nakuda (2007), "Modern Industrial Microbiology and						
Advances in	Biotechnology", Science Publications Enfield, NH, USA.						
industrial	Unit 1 - Ch-7, Pg. Nos. 219-226						
microbiology	Unit 2 – Pg. Nos. 423 – 434						
Research Methodology	2. Agritech.tnau.ac.in/org_farm/orgfarm_biofertilizertechnology.html						
Wethodology	Unit 1- Biofertilizers						
	3. Biopesticides: An eco-friendly approach for pest control Journal Biopesticides						
	3(1 Special Issue) 186-188 (2010) 186, Suman Gupta and A.K.Dikshit. Unit						
	1- Biopesticides						
	4. Biopesticide Formulations, Possibility of Application and Future Trends,						
	Slavica Gasic and Brankica, Pestic. Phytomed (Belgrade), 28(2), 2013, 97-						

102 Review Paper. Unit 1- Biopesticides

5. Agritech.tnau.ac.in/farm.enterpri. Unit 1- Biopesticides

Modality of Assessment

A. Internal Assessment- 50%

Sr. No.	Evaluation type	Total Marks
1	Review article/Book review/Case study/Research paper writing /Presentation /NPTEL Courses/Hands-on training (4 days cumulative)/Industrial/Research centre visit and its report/MCQs	30
2	Active participation in routine class instructional deliveries	10
3	Attendance – (0-25%=0 marks, 25-50%=1mark,50-75%=3 marks and 75-100%= 5 marks)	05
4	Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular, etc.	05

B. External examination- 50%

a) Semester End **Theory** Assessment- 50%

50 Marks

- i. Duration These examinations shall be of two hours duration for each paper.
- ii. Theory Question Paper Pattern:
 - There shall be five questions each of 10 marks. The first question will be based on the entire syllabus.
 - All questions shall be compulsory with internal choice within the questions. Each question will be 20 marks with options.
 - Questions may be subdivided into sub-questions A, B, C and D and the allocation of marks will depend on the topic's weightage.

b) **Practicals** (All Courses)

Total: 100 Marks

University of Mumbai

M.Sc. (MICROBIOLOGY)

Semester I / Semester II EXAMINATION

Maximum Marks: 50 Duration: 2.0 Hours Marks Option: 80 Question 1: Based on Units I to IV (Mixed Questions) Question 2 Question 3 Question 4 Question 5 **Instructions:** i.All questions are compulsory. ii.All questions carry equal marks. iii.Draw neat and labelled diagrams wherever necessary. 1. Answer any two questions from the following (Based on all 4 units). (10 Marks) A) B) C) D) 2. Answer any two questions from the following. (10 Marks) A) B) C) D) 3. Answer any two questions from the following. (10 Marks) A) B) C) D) 4. Answer any two questions from the following. (10 Marks) A) B) C) D) 5. Answer any two questions from the following. (10 Marks) A) B)

> C) D)

Letter Grades and Grade Points:

Semester GPA/ Programme CGPA	% of Marks	Alpha-Sign/ Letter
Semester/ Programme		Grade Result
9.00 - 10.00	90.0 - 100	O (Outstanding)
8.00 - < 9.00	80.0 - < 90.0	A+ (Excellent)
7.00 - < 8.00	70.0 - < 80.0	A (Very Good)
6.00 - < 7.00	60.0 - < 70.0	B+ (Good)
5.50 - < 6.00	55.0 - < 60.0	B (Above
		Average)
5.00 - < 5.50	50.0 - < 55.0	C (Average)
4.00 - < 5.00	40.0 - < 50.0	P (Pass)
Below 4.00	Below 40.0	F (Fail)
Ab (Absent)	ı	Absent

Syllabus M.Sc. (Microbiology) (Sem. I & II)

Team for Creation of Syllabus NEP -Microbiology _Syllabus Framing Committee Post Graduate Program

No	Name		No	Name	
•	Coordinator: Dr. Sandhya Mulchandani	Sign	•		Sign
1.	Dr. Sandhya Mulchandani Assistant Professor Smt. C.H.M. College Mobile No. – 9657944876 e-mail ID – bharti.mul@gmail.com	Sandhya M.	2.	Dr. Bela Nabar Professor, Smt. C.H.M. College, Ulhasnagar Mobile No. – 9322760417 e-mail ID – belamsn23@gmail.com	Bela Nabar
3.	Dr. Sunil R. Jagiasi Associate Professor, R.K.T. College Mobile No. – 9850416645 e-mail ID – sunilrjagiasi@gmail.com	Smil L.V	4.	Dr. Ranjana Khade Associate Professor, R.K.T. College Mobile No. – 9969259379 e-mail ID – khaderanjana@gmail.com	Rkhade
5.	Dr. Rasika Pawar Assistant Professor Smt. C.H.M. College Mobile No. – 9869118328 e-mail ID – rasikapawarchm@gmail.c om	RSP	6.	Dr. Pranali Shete Assistant Professor Smt. C.H.M. College Mobile No. – 9869876636 e-mail ID – pranalikale2@gmail.com	Janah
7.	Dr. Ashish Jain Assistant Professor Smt. C.H.M. College Mobile No. – 7666059751 e-mail ID – ashishchm20@gmail.com	Que .	8.	Dr. Nitinkumar Patil Assistant Professor Smt. C.H.M. College Mobile No. – 9822626862 e-mail ID – nitinkumarpatil1@gmail.c om	Mari
9.	Ms. Renu N Jaisinghani Assistant Professor Smt. C.H.M. College Mobile No. – 7977174401 e-mail ID – chmmicrorj@gmail.com	Renu N.)			

Bela Wabar

Head of the Department Department in Microbiology Dean, Science and Technology University of Mumbai

Justification for M.Sc. (Microbiology)

1.	The necessity for starting the course:	To strengthen the capability of students by
		studying the latest updated courses so as to
		compete in various microbiological fields.
2.	Whether the UGC has recommended the	
	course:	YES
3.	Whether all the courses have commenced	No
	from the academic year 2023-24	UG courses will commence from
		2024-2025
4.	The courses started by the University are	
	self-financed, whether an adequate	Government aided
	number of eligible permanent faculties	
	are available?	YES
5.	To give details regarding the duration of	2 years
	the Course and is it possible to compress	
	the course?	No
6.	The intake capacity of each course and	As per the number of seats sanctioned by the
	no. of admissions given in the current	University
	academic year:	
7.	Opportunities of Employability /	Will enhance the skill sets of students and
	Employment available after undertaking	employability prospects will ameliorate.
	these courses:	

Head of the Department Department in Microbiology Dean, Science and Technology University of Mumbai