
  T.Y.B.Sc. (C. S.)
SEMESTER - V (CBCS)

ARCHITECTING OF IOT 

SUBJECT CODE: USCS505



© UNIVERSITY OF MUMBAI

				  

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

August 2023, Print - 1    			 

DTP composed and Printed by: Mumbai University Press

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		  Head, Faculty of Science and Technology IDOL,
			   Univeristy of Mumbai – 400098

Course Co-ordinator		  :   Ms. Mitali Vijay Shewale			 
		  Doctoral Researcher,  
		  Veermata Jijabai Technological Institute 
		  HR Mahajani road, Matunga, Mumbai

Editor	 :	 Mr. Santosh Patilshirke				 
		  Assistant Professor,  
		  Shivaji University. Mumbai

Course Writers	 :	 Trupti Kulkarni Kaujalgi,			 
		  Assistant Professor,  
		  ICLES’ Motilal Jhunjhunwala College, 
		  Vashi, Navi Mumbai.

		  :	 Aarti Sahitya
			   Assistant Professor,  

		  K. J. Somaiya Institute of Engineering and 		
		  Information Technology, Sion East,  
		  Mumbai  400022.

		  :	 Ms. Mitali Vijay Shewale			 
		  Doctoral Researcher,  
		  Veermata Jijabai Technological Institute 
		  HR Mahajani road, Matunga, Mumbai

			 

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor

University of Mumbai, Mumbai

Prof. Prakash Mahanwar
Director,

IDOL, University of Mumbai

Prin. Dr. Ajay Bhamare 
Offg. Pro Vice-Chancellor,  

University of Mumbai



CONTENTS

Unit No.	 Title	 Page No.

1.		  Iot-An Architectural Overview................................................................................1

2.		  Iot Architecture-State of the Art.............................................................................13 

3. 		  Iot Data Link Layer And Network Layer Protocols and Network Layer..............23

4. 		  Transport Layer......................................................................................................55

5.		  Session Layer.........................................................................................................70

6.		  Service Layer Protocol...........................................................................................85



  T.Y.B.Sc. (C. S.) 
SEMESTER - V (CBCS)

ARCHITECTING OF IOT

SYLLABUS

Stallings, Pearson,2010 

Additional Reference(s): 

1) Cryptography and Network Security, Atul Kahate, Tata McGraw-Hill, 2013. 

2) Cryptography and Network, Behrouz A Fourouzan, Debdeep Mukhopadhyay, 2nd 

Edition,TMH,2011 

 
 
Course: 

USCS505 

TOPICS (Credits : 03 Lectures/Week:03)  

Architecting of IoT 

 

Objectives:  

Discovering the interconnection and integration of the physical world. Learner should get knowledge 

of the architecture of IoT.  

Expected Learning Outcomes: 

Learners are able to design & develop IoT Devices. They should also be aware of the evolving world of 

M2M Communications and IoT analytics. 

Unit I 

IoT-An Architectural Overview: Building architecture, Main design principles 

and needed capabilities, An IoT architecture outline, standards considerations.  

IoT Architecture-State of the Art : Introduction, State of the art, Reference 

Model and architecture, IoT reference Model - IoT Reference Architecture 

Introduction, Functional View, Information View, Deployment and Operational 

View, Other Relevant architectural views 

15L 

Unit II 

IoT Data Link Layer and Network Layer Protocols: 

PHY/MAC Layer(3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless 

HART,Z-Wave, Bluetooth Low Energy, Zigbee Smart Energy DASH7  

Network Layer:IPv4, IPv6, 6LoWPAN, 6TiSCH,ND, DHCP, ICMP, RPL, 

CORPL, CARP 

15L 



Unit III 

Transport layer protocols : 

Transport Layer (TCP, MPTCP, UDP, DCCP, SCTP)-(TLS, DTLS) 

Session layer: 

Session Layer-HTTP, CoAP, XMPP, AMQP, MQTT 

Service layer protocols:  

Service Layer -oneM2M, ETSI M2M, OMA, BBF 

15L 

Textbook(s): 

1. From Machine-to-Machine to the Internet of Things: Introduction to a New Age of 

Intelligence, Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis 

Karnouskos, David Boyle,1st Edition, Academic Press, 2014. 

2. Learning Internet of Things, Peter Waher, PACKT publishing, BIRMINGHAM – 

MUMBAI,2015  

Additional References(s): 

1. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M 

Communications, Daniel Minoli, Wiley Publications,2013 

2. Internet of Things (A Hands-onApproach), Vijay Madisetti and ArshdeepBahga,1st Edition, 

VPT, 2014. 

3. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html 

 
 

Course: 

USCS506 

TOPICS (Credits : 03 Lectures/Week:03) 

Web Services 

Objectives: 

To understand the details of web services technologies like SOAP, WSDL, and UDDI. To learn 

how to implement and deploy web service client and server. To understand the design principles 

and application of SOAP and REST based web services (JAX-Ws and JAX-RS).To understand 

WCF service. To design secure web services and QoS of Web Services 

Expected Learning Outcomes: 

Emphasis on SOAP based web services and associated standards such as WSDL. Design SOAP 

based / RESTful / WCF services Deal with Security and QoS issues of Web Services 





   
1 

1 

IOT-AN ARCHITECTURAL OVERVIEW 

Unit Structure : 

1.0  Objectives  

1.1  Introduction 

1.2  Building architecture 

1.3  Main design principles and needed capabilities 

1.4  An IoT architecture outline 

1.5  Standards considerations 

Summary 

List of References  

Unit End Exercises  

1.0 OBJECTIVES  

• To understand the working of an IoT system and components 

• To get familiar with the building blocks and the architectural 

functioning mechanism of IoT 

• To acquaint with the design principles and considerations when 

developing an IoT prototype 

1.1 INTRODUCTION 

What is Internet of Things? - the idea of connecting any gadget to the 

Internet and other linked devices (as long as it has an on/off switch). The 

Internet of Things (IoT) is a vast network of interconnected devices and 

people, all of which gather and exchange information about their 

environments and how they are used. 

How does it function? Connected to an Internet of Things platform, which 

combines data from many devices and applies analytics to share the most 

useful information with applications created to answer particular needs, are 

gadgets and objects having built-in sensors. 

These robust IoT solutions can precisely identify which information is 

helpful and which may be safely disregarded. This data can be used to 

identify trends, generate recommendations, and identify potential issues 

before they arise. 

For instance, a company that makes cars might want to know which add-

ons, like leather seats or alloy wheels, are the most popular. Technology 

based on the Internet of Things makes it feasible to: 



   

 
2 

Architecturing of IoT 1]  Employ sensors to identify which showroom spaces are the busiest 

and where clients remain the longest; 

2]  Analyze the sales data to determine which components are selling the 

quickest; 

3]  Automatically match supply and sales data to ensure that in-demand 

items don't run out of stock. 

Making informed decisions about which components to stock up on based 

on real-time information using the data collected by linked devices helps 

save time and money. 

The ability to improve procedures comes with the insight sophisticated 

analytics offers. You can automate some jobs thanks to smart devices and 

systems, especially if they are monotonous, time-consuming, repetitive, or 

even hazardous. 

1.2 BUILDING ARCHITECTURE 

The IoT system's fundamental building parts include sensors, processors, 

gateways, and applications. To create a useful IoT system, each of these 

nodes must have unique properties. 

 

Figure 1:  Simplified block diagram of the basic building blocks of the IoT 

1]  Sensors 

• They make up the IoT devices' front end. These are the system's 

purported "Things." Their primary function is to gather data 

from their environment (sensors) or to disseminate data to their 

environment (actuators). 

• To be easily recognized across a wide network, these must be 

uniquely recognizable devices having a unique IP address. 



 

 
3 

 

IoT-An Architectural 

Overview 
• They must be active, which means they must be able to gather 

data in real time. Depending on the user's demands, these can 

either function independently (autonomous in nature) or be 

modified to function independently (user-controlled). 

• Gas sensors, water quality sensors, moisture sensors, and other 

types of sensors are examples. 

2]  Processors 

• The IoT system's brain is its processor. Their primary duty is to 

process the information obtained by the sensors and separate the 

useful information from the vast amounts of raw information 

gathered. In a single sentence, we may claim that it offers the 

data intelligence. 

• Most processors operate in real-time and are simple for 

programs to regulate. They are also in charge of encrypting and 

decrypting data in order to secure the data. 

• Because they have processors attached to them, embedded 

hardware devices, microcontrollers, etc., are the ones that 

process the data. 

3]  Gateways 

• Gateways are in charge of sending the processed data to the 

appropriate areas for proper utilization. 

• In other words, we can say that a gateway facilitates the 

communication of data between two points. It gives the data 

network connectivity. Any IoT system must have network 

connectivity in order to interact. 

• Network gateways include LAN, WAN, PAN, etc. 

4]  Applications 

• Another component of an IoT system is applications. Apps are 

necessary for the effective use of all obtained data. 

• These cloud-based applications are in charge of giving the 

obtained data an effective meaning. Users control applications, 

which are used to deliver certain services. 

• Applications include things like security systems, industrial 

control hubs, and apps for home automation. 

The far right component in Figure 2 represents the application end of the 

Internet of Things architecture. 



   

 
4 

Architecturing of IoT 

 
Figure 2: Basic building blocks of IoT 

The information obtained by the sensing node (end node) is processed 

initially, and then via connectivity it reaches the embedded processing 

nodes which can be any embedded hardware devices where it is processed 

again. The data is transferred to the application node for proper application 

of the acquired data as well as for data analysis via big data after passing 

via the connectivity nodes once more. The remote cloud-based processing 

can be any software at this point. 

1.3 MAIN DESIGN PRINCIPLES AND NEEDED 

CAPABILITIES 

Designing IoT solutions presents whole new design difficulties for 

designers that are primarily focused on building SW services, screen-based 

user interfaces, or physical goods. IoT solutions are made up of several 

components, including physical devices like sensors, actuators, and 

interactive devices, the network that connects them, the data collected from 

these devices and analyzed to produce a meaningful experience, and last but 

not least, the actual physical environment in which the user interacts with 

the solution. You must do a variety of design tasks, including service and 

business design as well as industrial product design. The whole user 

experience (UX) of the IoT system is influenced by all of these aspects, and 

designing in this environment may seem fairly daunting. Following points 

represents the design principles and considerations of IoT. 

1]  Focus on value 

 User research and service design are more important than ever in the 

IoT age. Early adopters are eager to test out new technology, while 

many others are hesitant to do so and cautious when using it because 

they lack confidence in it. You must go deeply into user demands to 

identify where a problem actually merits solving and what the 

solution's true end user value is if you want your IoT solution to be 

broadly embraced. Also, you need to be aware of any potential 

obstacles to the adoption of your particular solution as well as new 

technology in general. You also need to conduct study to choose your 

feature set. You must carefully consider which features to include and 

in what order, as things that might be valuable and highly relevant for 



 

 
5 

 

IoT-An Architectural 

Overview 

tech early adopters may not be appealing to the majority of consumers 

and vice versa. 

2]  Take a holistic view 

 IoT solutions frequently include both physical and digital touchpoints, 

as well as a variety of devices with various capabilities. The answer 

might also be offered in conjunction with a variety of other service 

providers. It is not sufficient to effectively design just one of the 

touchpoints; rather, you must consider the entire system, the function 

of each device and service, and the conceptual model of how the user 

understands and perceives the system. To produce a memorable 

experience, the entire system must operate without a hitch. 

3]  Put safety first 

 IoT solutions are used in the real world, so when something goes 

wrong, the repercussions could be severe. Building trust should be 

one of your major design drivers because consumers of IoT solutions 

may have different comfort levels with new technology. You must 

take care to ensure that every interaction with the product or service 

strengthens rather than undermines the trust because it is established 

gradually and lost easily. What does it actually mean? Understanding 

potential mistake scenarios connected to the use environment, 

hardware, software, and network, as well as user interactions, is the 

first step in trying to prevent them. The user must be properly 

informed about mistake circumstances and assisted in recovering if 

they continue to occur. Second, it involves making data security and 

privacy important design components. Users must have the 

confidence that their personal information is secure, that their homes, 

places of employment, and ordinary items cannot be compromised, 

and that their loved ones are not in danger. Thirdly, quality assurance 

is essential, and it should concentrate on evaluating the entire system 

in a real-world setting rather than just the SW. 

4]  Consider the text 

 At the nexus of the physical and digital worlds are IoT solutions. 

Digital interface commands may have real-world consequences, but 

unlike digital commands, real-world consequences often cannot be 

reversed. Many unanticipated events can occur in the real world, but 

users still need to feel secure and in control. Several kinds of criteria 

for the design are also imposed by the context. Depending on the 

physical environment, the objective can be to reduce user distraction 

or, for example, to design equipment that can withstand changing 

weather conditions. IoT solutions are often multi-user systems in 

homes, offices, and public spaces, making them less personal than, 

say, screen-based solutions used in smartphones. This also considers 

the social context in which the solution is utilized and its design needs. 

 



   

 
6 

Architecturing of IoT 5]  Build a strong band 

 No matter how carefully you design things and try to establish trust, 

something unexpected will happen at some point and your solution is 

going to fail in some way because of the real-world environment of 

IoT solutions. It is crucial in times like this that you have developed 

a powerful brand that connects with them on an authentic level. They 

will be more understanding of system flaws and continue to use your 

solution if they feel a connection to your brand. Trust should be a 

crucial component of your brand and one of its basic brand principles. 

This is something you must keep in mind while you create your brand. 

This core principle should be mirrored in all other aspects of the 

brand, such as color scheme, writing style, images, etc. 

6]  Prototype early and often 

 Normally, HW and SW have lifespans that are somewhat dissimilar, 

but since a successful IoT solution requires both HW and SW 

components, the lifespans should be coordinated. IoT solutions are 

also difficult to upgrade because once a connected object is installed, 

it is difficult to replace it with a newer model, especially if the user 

must pay for the upgrade. Moreover, the connected object's software 

may be difficult to update for security and privacy concerns. It's 

essential to get the solution right from the start of implementation due 

to these factors and to prevent expensive hardware iterations. From a 

design standpoint, this means that early project stages require quick 

prototyping and iteration of both the HW and the entire solution. We 

need new, inventive approaches to fake the solution and prototype it. 

7]  Use data responsibly 

 IoT systems can potentially produce enormous amounts of data. The 

goal is to discover the data points required to make the solution work 

and be valuable, not to collect as much data as you can. The designer 

must comprehend the potential of data science and how to interpret 

the data because the volume of data may be enormous. Data science 

offers several chances to lower user friction, i.e., to consume less time, 

energy, and attention, or to experience less stress. It can be used to 

understand intent from partial or insufficient input, to automate 

repetitive context-dependent judgements, to filter out noise from 

relevant signals, and more. Designing successful IoT services requires 

a thorough understanding of the data that is available and how it can 

be used to benefit the user. 

1.4 AN IOT ARCHITECTURE OUTLINE 

 The complex arrangement of elements that make up IoT networking 

systems, including sensors, actuators, cloud services, protocols, and layers, 

is referred to as IoT architecture. It is typically separated into layers that let 

administrators assess, keep an eye on, and uphold the integrity of the 

system. Data moves from connected devices to sensors, through a network, 



 

 
7 

 

IoT-An Architectural 

Overview 

to the cloud for processing, analysis, and storage in a four-step process 

known as the IoT architecture. The Internet of Things is poised to expand 

much further with time, offering users fresh and enhanced experiences. 

 

Different layers of IoT architecture 

IoT technology has been more well-liked recently and has a wide range of 

uses. IoT apps function in accordance with how they were created 

depending on the many application domains. There isn't a set standard 

defined architecture of work, nevertheless, that is rigidly followed 

everywhere. Depending on the particular business job at hand, different 

architectural layers and levels of complexity are used. The most common 

and standard architecture is a four-layer one. 

 

As you can see from the above image, there are four layers present i.e., the 

Perception Layer, Network Layer, Processing Layer, and Application 

Layer. 

1]  Perception/ Sensing layer  

 Any IoT system's first layer is made up of "things" or endpoint devices 

that act as a link between the real world and the digital one. The 



   

 
8 

Architecturing of IoT physical layer, which contains sensors and actuators capable of 

gathering, accepting, and processing data across a network, is referred 

to as perception. Wireless or wired connections can be used to connect 

sensors and actuators. The components' range and locations are not 

constrained by the design. 

2]  Network layer 

 An overview of the data flow throughout the programme is given by 

the network layers. Data Acquisition Systems (DAS) and 

Internet/Network gateways are present in this tier. Data aggregation 

and conversion tasks are carried out by a DAS (collecting and 

aggregating data from sensors, then converting analogue data to 

digital data, etc.). Data gathered by the sensor devices must be 

transmitted and processed. The network layer performs that function. 

It enables connections and communication between these gadgets and 

other servers, smart gadgets, and network gadgets. Also, it manages 

each device's data transmission.  

3]  Processing layer 

 The IoT ecosystem's processing layer functions as its brain. Before 

being transported to the data center, data is typically evaluated, pre-

processed, and stored here. It is then retrieved by software 

applications that handle the data and prepare future actions. This is 

where edge analytics or edge IT comes into play. 

4]  Application layer 

 The application layer, which provides the user with application-

specific services, is where user interaction occurs. A dashboard that 

displays the status of the devices in a system or a smart home 

application where users may turn on a coffee maker by touching a 

button in an app are two examples. The Internet of Things can be used 

in a variety of applications, including smart homes, smart cities, and 

smart health. 

Stages of IoT solutions architecture 

How can organizations take advantage of the IoT layers after learning about 

them and how can they increase the value of IoT? Although linked devices 

and protocols are referred to as part of the Internet of Things (IoT), the data 

produced by these devices is actually siloed, fragmented, and isolated. As a 

result, these fragmented insights do not alone offer sufficient data to support 

an IoT strategy that entails a large resource investment. Enterprises must 

leverage device and system synergies and allow devices to freely interact in 

order to benefit from IoT. Make sure your infrastructure is compatible with 

the IoT architecture. The various phases of IoT architecture implementation 

in businesses are as follows: 



 

 
9 

 

IoT-An Architectural 

Overview 

 

• Connected objects/devices 

The physical layer within the environment must be built as a first step 

towards IoT architecture. The Internet of Things would not exist 

without "smart" or linked objects. On the perception layer, these are 

frequently wireless sensors or actuators. 

Sensors gather and process environmental data to make it useful for 

additional research. The change that the sensors register is measured 

by actuators. Wired or wireless connections can be made between 

sensors and actuators to accomplish sensing and actuation. Sensors 

and actuators can be connected using Personal Area Networks (PANs) 

and Local Area Networks (LANs). 

• Internet gateway 

   After properly completing step one, the next task is to set up an 

internet gateway. We need a way to convert analogue data that is 

being collected by the sensors and actuators into digital data so that 

we can process it. The internet gateway is used to do this activity. 

Before being transferred to the cloud, raw data from the devices will 

be received at the internet gateway stage and pre-processed. 

 Analog data can be transformed into digital data using data 

acquisition systems. It establishes connections with the sensors and 

actuators, collects all the data, and transforms it into digital form so 

that the internet gateway may send it across the network. It is in charge 

of conversion and data aggregation. To improve performance and 

effectiveness, we can also add extra features like analytics and 

security. 

• Edge IT systems 

 Pre-processing and improved data analytics are part of the third stage 

of an IoT architecture. Edge IT systems are essential in easing the 

burden on the main IT infrastructure due to the sizeable volume of 

data collected by IoT systems and the ensuing bandwidth 

requirements. Machine learning and visualization techniques are used 

by edge IT systems to derive insights from gathered data. While 

visualization tools make the data more comprehensible, machine 

learning algorithms offer insights into the data. 

 The system's speed, as well as the LAN or routers' bandwidth, would 

suffer if data is sent directly to the server or data center. Analog data 

is produced very quickly and takes up a lot of storage space. As a 



   

 
10 

Architecturing of IoT result, it is always advised to convert data to digital format. Only the 

necessary data is processed and communicated to data centers and 

servers because the majority of the data acquired by sensors and 

actuators is not valuable to the enterprise. 

• Data centers and cloud storage 

 The data is delivered to the data centers and servers for final analysis 

and reporting once it has been appropriately preprocessed, examined, 

and any gaps have been filled. The management services area includes 

data centers and cloud services, which often handle data using 

analytics, device management, and security controls. Data can also be 

transferred to end-user applications like healthcare, retail, 

environment, emergency, energy, etc. thanks to the cloud. 

The data might be transmitted to data centers or cloud-based servers for 

final processing after analysis. Hardware expenses can be reduced by using 

the cloud platform, but data security is still a worry. Physical servers and 

data centers are safer, but they are also more expensive. 

1.5 STANDARDS CONSIDERATIONS 

Manufacturers who want to maintain their competitiveness in their sector 

must connect their devices to the Internet of Things (IoT). IoT capabilities 

expand the options available to users. Additionally, it enables the 

manufacturer to maintain contact with their clientele while they explore new 

product use cases and applications that present them with opportunities for 

new revenue streams. There are ten considerations to make while creating 

your first Internet of Things device: 

1]  Cost 

 IoT or "smart" products benefit producers and customers equally, 

although they are more expensive. Consider networking in your next 

product because both Ethernet and wireless technology have dropped 

below $10. 

2]  Network 

 The network technology you choose for your IoT product has 

concerns with gateways and routers as well as distance. Ethernet/Wi-

Fi is required if you need to connect to the Internet; ZigBee, Z-Wave, 

and Bluetooth are available if you are self-contained in a room or 

building. Remember that the FCC must approve all wireless 

technology. 

3]  Features 

 Businesses may now add features to their products that were either 

impossible or unimaginable without an IoT-connected product. For 

updates, maintenance, and new revenue opportunities, you can obtain 

direct access to the consumer with the help of these capabilities. 



 

 
11 

 

IoT-An Architectural 

Overview 

4]  User interface 

 It matters how a user interacts with a product. On the product, are you 

intending to use buttons, LEDs, or a display? What web and app 

interfaces will you offer as well? 

5]  Power 

 The choice of a power source should be among the first. All design 

choices must take power conservation into account if the item will be 

battery-powered. Many networking technologies won't operate well 

on batteries. Power selection is also influenced by communication 

frequency. 

6]  Size 

 Size does matter. Think about how the size of the device will be 

affected by the network. Certain networks' requirements for 

connectors and antennae will increase the size. 

7]  Antenna 

 Whether inside or exterior to the product, an antenna is used by all 

wireless networks. If the enclosure is plastic, the antenna is 

increasingly being moved inside. External antennas would be 

necessary for all metal enclosures. 

8]  Cloud 

 Products have a user interface to the product and the data thanks to 

cloud applications. There are public clouds and private clouds. Most 

clouds have a common API that you may use to create your 

application.  

9]  Interoperability 

 Is communication between your product and those of other vendors 

required? If so, you must use a common set of protocols, like Apple's 

HomeKit, to interact with other devices. 

10]  Security 

 You must incorporate as many layers of security as you can because 

security is starting to become a serious concern. The bare minimum 

is SSL and a password. 

SUMMARY 

Rapid technological development in the modern era has connected people 

and things worldwide. IoT solutions have ingrained themselves into our 

daily lives in recent years. For instance, you can instantly get a response or 

results by simply speaking or tapping the screen of your smartphone. 

Regardless of how IoT architecture varies from project to project, managing 



   

 
12 

Architecturing of IoT vast amounts of data will always be a crucial component of every IoT 

project. 

Enterprises can automate business operations by employing technology like 

cloud platforms, embedded devices with sensors and actuators, and internet-

based communication. The insights drawn from IoT data sets will become 

a useful source of information for businesses thanks to big data analytics. 

We may anticipate the deployment of IoT systems in an increasing number 

of consumer, commercial, industrial, and infrastructural applications in the 

near future. In terms of technology and device connectivity, the upcoming 

years will see the emergence of a whole new ecosystem. 

LIST OF REFERENCES  

1]  From Machine-to-Machine to the Internet of Things: Introduction to 

a New Age of Intelligence, Jan Holler, Vlasios Tsiatsis, Catherine 

Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle,1st 

Edition, Academic Press, 2014. 

2]  Learning Internet of Things, Peter Waher, PACKT publishing, 

BIRMINGHAM – MUMBAI,2015. 

3]  Building the Internet of Things with IPv6 and MIPv6: The Evolving 

World of M2M. Communications, Daniel Minoli, Wiley 

Publications,2013. 

4]  Internet of Things (A Hands-onApproach), Vijay Madisetti and 

ArshdeepBahga,1st Edition, VPT, 2014. 

5]  http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html. 

UNIT END EXERCISES  

1]  Define IoT and its functioning. 

2]  Write a note on building blocks of IoT architecture. 

3]  What are the main design principles and needed capabilities of an 

IoT system? 

4]  Describe an IoT architecture 

5]  What are the standards considerations of an IoT system? 

 

 



   
13 

2 

IOT ARCHITECTURE-STATE OF THE ART 

Unit Structure : 

2.0  Objectives  

2.1  Introduction: State of the art 

2.2  Reference Model and architecture 

2.3  Functional View 

2.4  Information View  

2.5  Deployment and Operational View 

Summary 

List of References  

Unit End Exercises  

2.0 OBJECTIVES  

• To understand the state of art of an IoT system 

• To get familiar with the IoT reference model architectural layers 

• To acquaint with the different views associated with an IoT system 

2.1 INTRODUCTION: STATE OF THE ART 

The Internet of Things (IoT) can be viewed as a dynamic, worldwide 
networked infrastructure that controls autonomous items in a highly 
intelligent manner. As a result, new apps and services that can enhance 
human lives can be developed by connecting IoT devices that share 
information. At the beginning, Kevin Ashton, the founder of the MIT Auto 
Identification Center, originally suggested the idea of the IoT in 1999. The 
Internet of Things has the potential to revolutionize the world, much like 
the Internet did, according to Ashton. possibly even more so Eventually, the 
International Telecommunication Union (ITU) formally introduced the 
Internet of Things in 2005. There are numerous definitions of the IoT 
offered by numerous organizations and researchers. 

However, the ITU's 2012 definition is the one that is most frequently used. 
According to what was said, there would be "a global infrastructure for the 
information society, enabling improved services by connecting (physical 
and virtual) things based on, existing and developing, interoperable 
information and communication technologies." Moreover, Guillemin and 
Friess in have offered one of the most straightforward formulations that 
accurately sum up the Internet of Things. According to the statement, "The 
Internet of Things enables people and things to be connected Whenever, 
Anywhere, with Anything and Anybody, ideally via Any Path/Network and 
Any Service." Many academics have offered many definitions of the 
Internet of Things (IoT) system from various angles, but the most crucial 



   

 
14 

Architecturing of IoT point on which most experts have agreed is that the IoT was developed to 
build a better world for all people. 

 

Figure 1. The IoT can connect anything in anywhere using any path 

2.2 REFERENCE MODEL AND ARCHITECTURE 

In October 2014, the IoT reference model was announced by the IoT World 

Forum (IWF) architecture committee. The industry may speed IoT 

deployments with the support of this model, which serves as a common 

framework. This reference model aims to promote and consolidate IoT 

deployment model development and collaboration. The IoT's seven-level 

architecture model is depicted in Figure 2. This reference model has seven 

layers, with each layer offering more details to help build a standard 

nomenclature. The initial step in enabling suppliers to develop IoT solutions 

that are compatible and interoperable is provided by this document, which 

also defines where particular types of processing are optimized across 

various layers of the system. In addition, this model made the IoT as a real 

and approachable system, instead of simply conceptual. 

 

Figure 2: The IoT World Forum Reference Model 



 

 
15 

 

IoT Architecture- 

State of the Art 

The physical layer of the Open System Interconnection (OSI) model of the 

network architecture is analogous to Layer 1. It is made up of mechanical 

components and object-controlling controllers. These things stand in for the 

Internet of Things and encompass a variety of information-sending and -

receiving gadgets. For instance, sensors that gather various types of data 

about the surroundings. 

Layer 2 deals with connectivity and communication. This layer consists of 

the hardware components used to build local and wide-area networks and 

enable Internet connectivity, such as routers, switches, gateways, and 

firewalls. Moreover, this layer facilitates communication between devices 

and with application platforms like PCs, remote controls, and cellphones. 

The edge computing layer's function is to transform network data flows into 

data that can be stored and processed at a higher level. Processing 

components at this layer may handle large amounts of data and carry out 

data transformation activities, which leads to the storage of much smaller 

amounts of data. 

The data buildup occurs at layer 4. This layer is responsible for storing data 

from various IoT devices. The edge computing layer, which takes in 

enormous amounts of data and stores it in storage so that higher levels can 

access it, filters and processes this data. The edge computing layer may be 

supplying data for storage in a variety of forms and from heterogeneous 

processors. Although the data abstraction layer gathers and organizes stored 

data so that programs can access it in a more manageable and effective 

manner. 

Information interpretation takes place at layer 6, which is the application 

layer. Numerous applications that use IoT input data or manage IoT devices 

fall under this layer. The collaboration and processes layer identifies people 

who can interact and work together to improve the utility of the IoT system. 

Several applications are used on this layer to share data and manage 

information via the Internet. Table 1 lists the layers of the IoT architecture 

along with what each layer does. 

Table 1. A summary of IoT architecture layers with its functions 

 



   

 
16 

Architecturing of IoT 2.3 FUNCTIONAL VIEW 

In order to address the concerns of concrete IoT architecture and 

stakeholders, the reference architecture is presented as a set of architectural 

views mainly the functional view; information view; deployment and 

operational view. 

The functional view provides the description of what the system does, and 

its main functions. 

Figure 3: The IoT functional view 

Device and Application functional group  

• Device FG contains the Sensing, Actuation, Tag, Processing, Storage 

FCs, or simply components. 

• These components represent the resources of the device attached to 

the Physical Entities of interest. The Application FG contains either 

standalone applications (e.g. for iOS, Android, Windows phone), or 

Business Applications that connect the IoT system to an Enterprise 

system 

 Communication functional group  

• The Communication FG contains the End-to-End Communication, 

Network Communication, and Hop by-Hop communication 

components 

• The Hop-by-Hop Communication is applicable in the case that 

devices are equipped with mesh radio networking technologies such 

as IEEE 802.15.4 for which messages have to traverse the mesh from 

node to-node (hop-by-hop) until they reach a gateway node which 

forwards the message (if needed) further to the Internet 

 



 

 
17 

 

IoT Architecture- 

State of the Art 

Network FC  

• The Network FC is responsible for message routing & forwarding and 
the necessary translations of various identifiers and addresses.  

• The translations can be (a) between network layer identifiers to MAC 
and/or physical network identifiers, (b) between high-level human 
readable host/node identifiers to network layer addresses (e.g. Fully 
Qualified Domain Names (FQDN) to IP addresses, a function 
implemented by a Domain Name System (DNS) server), (c) 
translation between node/service identifiers and network locators in 
case the higher layers above the networking layer use node or service 
identifiers that are decoupled from the node addresses in the network 
(e.g. Host Identity Protocol) 

End to End Communication 

• The End-to-End Communication FC is responsible for end-to-end 
transport of application layer messages through diverse network and 
MAC/PHY layers. 

• In turn, this means that it may be responsible for end to-end 
retransmissions of missing frames depending on the configuration of 
the FC.  

• For example, if the End-to-End Communication FC is mapped in an 
actual system to a component implementing the Transmission Control 
Protocol (TCP) protocol, reliable transfer of frames dictates the 
retransmission of missing frames 

IoT Service functional group- The IoT Service FC  

• IoT Service functional group-The IoT Service FG consists of two 
FCs: The IoT Service FC and the IoT Service Resolution FC 

• The IoT Service FC is a collection of service implementations, which 
interface the related and associated Resources.  

• For a Sensor type of a Resource, the IoT Service FC includes Services 
that receive requests from a User and returns the Sensor Resource 
value in synchronous or asynchronous (e.g. subscription/notification) 
fashion. 

IoT Service functional group 

• The IoT Service Resolution FC-The IoT Service Resolution FC 
contains the necessary functions to realize a directory of IoT Services 
that allows dynamic management of IoT Service descriptions and 
discovery/lookup/resolution of IoT Services by other Active Digital 
Artifacts.  

• Dynamic management includes methods such as 
creation/update/deletion (CUD) of Service description, and can be 
invoked by both the IoT Services themselves, or functions from the 
Management FG. 



   

 
18 

Architecturing of IoT • The discovery/lookup and resolution functions allow other Services 

or Active Digital Artifacts to locate IoT Services by providing 

different types of information to the IoT Service Resolution FC. 

Virtual Entity functional group  

• The Virtual Entity FG contains functions that support the interactions 

between Users and Physical Things through Virtual Entity services. 

• An example of such an interaction is the query to an IoT system of 

the form, “What is the temperature in the conference room Titan?” 

• The Virtual Entity is the conference room “Titan,” and the conference 

room attribute of interest is “temperature.”  

• The Virtual Entity Service FC enables the interaction between Users 

and Virtual Entities by means of reading and writing the Virtual Entity 

attributes (simple or complex), which can be read or written.  The 

Virtual Entity Registry FC maintains the Virtual Entities of interest 

for the specific IoT system and their associations. The component 

offers services such as creating/reading/updating/deleting Virtual 

Entity descriptions and associations. 

Virtual Entity resolution functional group 

• The Virtual Entity Resolution FC maintains the associations between 

Virtual Entities and IoT Services, and offers services such as 

creating/reading/updating/deleting associations as well as lookup and 

discovery of associations. 

• The Virtual Entity and IoT Service Monitoring FC includes: (a) 

functionality to assert static Virtual Entity - IoT Service associations, 

(b) functionality to discover new associations based on existing 

associations or Virtual Entity attributes such as location or proximity, 

and (c) continuous monitoring of the dynamic associations between 

Virtual Entities and IoT Services and updates of their status in case 

existing associations are not valid any more. 

IoT process management functional group  

• The IoT Process Management FG aims at supporting the integration 

of business processes with IoT-related services.  

• It consists of two FCs: i] The Process Modeling FC provides that right 

tools for modeling a business process that utilizes IoT-related 

services. 

ii] The Process Execution FC contains the execution environment of the 

process models created by the Process Modelling FC and executes the 

created processes by utilizing the Service Organization FG in order to 

resolve high-level application requirements to specific IoT services. 

 



 

 
19 

 

IoT Architecture- 

State of the Art 

Service Organization functional group 

• The Service Organization FG acts as a coordinator between different 

Services offered by the system. It consists of the following FCs: The 

Service Composition FC manages the descriptions and execution 

environment of complex services consisting of simpler dependent 

services. An example of a complex composed service is a service 

offering the average of the values coming from a number of simple 

Sensor Services.  

• The Service Orchestration FC resolves the requests coming from IoT 

Process Execution FC or User into the concrete IoT services that fulfil 

the requirements. 

• The Service Choreography FC is a broker for facilitating 

communication among Services using the Publish/Subscribe pattern. 

Security functional group  

• The Security FG contains the necessary functions for ensuring the 

security and privacy of an IoT system.  

• It consists of the following FCs:   

• The Identity Management FC manages the different identities of the 

involved Services or Users in an IoT system in order to achieve 

anonymity.  

• The Authentication FC verifies the identity of a User and creates an 

assertion upon successful verification.  

• It also verifies the validity of a given assertion.  

• The Authorization FC manages and enforces access control policies. 

It provides services to manage policies (CUD), as well as taking 

decisions and enforcing them regarding access rights of restricted 

resources. The term “resource” here is used as a representation of any 

item in an IoT system that needs a restricted access.  

• Such an item can be a database entry (Passive Digital Artifact), a 

Service interface, a Virtual Entity attribute (simple or complex), a 

Resource/Service/Virtual Entity description, etc. 

• The Key Exchange & Management is used for setting up the 

necessary security keys between two communicating entities in an 

IoT system. This involves a secure key distribution function between 

communicating entities.  

• The Trust & Reputation FC manages reputation scores of different 

interacting entities in an IoT system and calculates the service trust 

levels. 

 



   

 
20 

Architecturing of IoT Management functional group  

• The Management FG contains system-wide management functions 

that may use individual FC management interfaces. It is not 

responsible for the management of each component, rather for the 

management of the system as a whole. It consists of the following 

FCs:  

• The Configuration FC maintains the configuration of the FCs and the 

Devices in an IoT system (a subset of the ones included in the 

Functional View).  

• The component collects the current configuration of all the FCs and 

devices, stores it in a historical database, and compares current and 

historical configurations.  

• The component can also set the system-wide configuration (e.g. upon 

initialization), which in turn translates to configuration changes to 

individual FCs and devices.  

• The Fault FC detects, logs, isolates, and corrects system-wide faults 

if possible. This means that individual component fault reporting 

triggers fault diagnosis and fault recovery procedures in the Fault FC.  

• The Member FC manages membership information about the relevant 

entities in an IoT system. Example relevant entities are the FGs, FCs, 

Services, Resources, Devices, Users, and Applications. Membership 

information is typically stored in a database along with other useful 

information such as capabilities, ownership, and access rules & rights, 

which are used by the Identity Management and Authorization FCs.  

• The State FC is similar to the Configuration FC, and collects and logs 

state information from the current FCs, which can be used for fault 

diagnosis, performance analysis and prediction, as well as billing 

purposes. This component can also set the state of the other FCs based 

on system-wise state information.  

• The Reporting FC is responsible for producing compressed reports 

about the system state based on input from FCs. 

2.4 INFORMATION VIEW  

Information view provides description of the data and information that the 

system handles. 

• The information view consists of: (a) the description of the 

information handled in the IoT System, and (b) the way this 

information is handled in the system; in other words, the information 

lifecycle and flow (how information is created, processed, and 

deleted), and the information handling components. 

• The pieces of information handled by an IoT system it can be 



 

 
21 

 

IoT Architecture- 

State of the Art 
• Virtual Entity context information, i.e. the attributes (simple or 

complex) as represented by parts of the IoT Information model. 

• IoT Service output itself is another important part of information 

generated by an IoT system. For example, this is the information 

generated by interrogating a Sensor or a Tag Service  

• Virtual Entity descriptions in general, which contain not only the 

attributes coming from IoT Devices (e.g. ownership information).  

• Associations between Virtual Entities and related IoT Services 

2.5 DEPLOYMENT AND OPERATIONAL VIEW 

• Deployment and Operational View provides description of the main 

real world components of the system such as devices, network routers, 

servers, etc. 

• Devices that form networks in the M2M Area Network domain must 

be selected, or designed, with certain functionality in mind. 

• At a minimum, they must have an energy source (e.g. batteries, 

increasingly EH), computational capability (e.g. an MCU), 

appropriate communications interface (e.g. a Radio Frequency 

Integrated Circuit (RFIC) and front end RF circuitry), memory 

(program and data), and sensing (and/or actuation) capability.  

• These must be integrated in such a way that the functional 

requirements of the desired application can be satisfied 

SUMMARY 

It is difficult to predict the many applications of IoT  

once it has reached the stage of ubiquitous expansion. 

- “The Technical Foundations of IoT”, Adryan, Obermaier, and Fremantle 

The Internet of Things will succeed when it blends into the background and 

we stop noticing how new it is to have something connected to the Internet 

that interacts with other systems, services, and gadgets. While some goods 

are beginning to accomplish this, others still have a way to go. The 

development of serverless computing platforms as well as the concepts and 

design patterns of reactive systems will be crucial to the success of the IoT. 

The Internet of Things (IoT) is thought to be the next step in the 

development of the Internet. To promote information sharing, it has the 

ability to connect and communicate with practically all real-world objects 

over the Internet. The Internet of Things (IoT) can gather, analyze, and 

deploy a significant quantity of data with the use of sensors. This data will 

then be transformed into knowledge and information that can be utilized to 

develop new applications and services that can enhance our quality of life. 

The IoT system has been reviewed in this essay. The IoT's cutting-edge 



   

 
22 

Architecturing of IoT layered architecture is described. In addition, IoT essential features and 

different communication technologies are presented. 

LIST OF REFERENCES  

1]  From Machine-to-Machine to the Internet of Things: Introduction to 

a New Age of Intelligence, Jan Holler, Vlasios Tsiatsis, Catherine 

Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle,1st 

Edition, Academic Press, 2014. 

2]  Learning Internet of Things, Peter Waher, PACKT publishing, 

BIRMINGHAM – MUMBAI,2015. 

3]  Building the Internet of Things with IPv6 and MIPv6: The Evolving 

World of M2M. Communications, Daniel Minoli, Wiley 

Publications,2013. 

4]  Internet of Things (A Hands-onApproach), Vijay Madisetti and 

ArshdeepBahga,1st Edition, VPT, 2014. 

5]  http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html. 

UNIT END EXERCISES  

1]  Discuss the state of the art of an IoT architecture. 

2] Explain the reference Model and architecture. 

3]  Discuss the functional view of an IoT system. 

4]  Explain the Information view of an IoT system. 

5]  Write a note on Deployment and Operational view of an IoT system. 

 



   
23 

3 

IOT DATA LINK LAYER AND NETWORK 

LAYER PROTOCOLS AND NETWORK 

LAYER 

Unit Structure : 

3.0 Objectives 

3.1  Introduction 

3.2 An Overview 

3.2.1 PHY/MAC Layer  

3.2.2 3GPP MTC 

3.2.3 IEEE 802.11 

3.2.4 IEEE 802.15 

3.2.5 Wireless HART 

3.2.6 Z-Wave 

3.2.7 Bluetooth Low Energy 

3.2.8 Zigbee Smart Energy  

3.2.9 DASH7 

3.3 Network Layer  

3.3.1 IPv4  

3.3.2 IPv6  

3.3.3 6LoWPAN 

3.3.4 6TiSCH 

3.3.5 DHCP 

3.3.6 ICMP 

3.3.7 RPL 

3.3.8 CORPL 

3.3.9 CARP 

3.4 List of References 

3.5 Bibliography 

3.6 Unit End Exercises 

3.0 OBJECTIVES 

After going through this unit, you will be able to: 

• Design & develop IoT Devices  



   

 
24 

Architecturing of IoT • Understand the importance of networking in IOT filed. 

• be aware of the evolving world of M2M Communications 

• IoT analytics  

• interconnection and integration of the physical world 

• get knowledge of the architecture of IoT.  

3.1 INTRODUCTION 

IoT is based on networking of things where smart devices communicate 

with each other by sending and receiving data. So, for that several network 

protocols (Communication protocols) are used to connect the IoT enabled 

devices and to establish the communication. 

The data link layer is the protocol layer in a program that handles the 

moving of data into and out of a physical link in a network. The data link 

layer ensures an initial connection has been set up, divides output data into 

data frames and handles the acknowledgements from a receiver that the data 

arrived successfully. It also ensures incoming data has been received 

successfully by analyzing bit patterns at special places in the frames. 

An important aspect of the Internet of Things is that devices are networked 

in some way, and often connected to the Internet. Networking enables 

devices to communicate with other IoT devices and larger cloud-based 

servers. IoT devices can often be thought of as small parts of a much larger 

collective system which includes large servers based in the cloud. This 

module will introduce the basics of networking and the Internet protocol in 

particular. Eventually, most IoT devices are connected to the Internet, so 

understanding the protocols associated with the Internet is important to the 

design of IoT devices 

3.2.1 PHY/MAC Layer  

Most network protocols use the concept of layers to separate different 

components and functions into independent modules that developers can 

assemble in different ways. 

The characteristics required by applications, such as coverage area, 

scalability, transmission data rate, and applicability, refer to the Physical 

and Medium Access Control (MAC) layer designs of protocols. 

The PHY layer defines the physical and electrical characteristics of the 

network. It is responsible for managing the hardware that modulates and 

demodulates the RF bits. 

The perception layer is the physical layer, which has sensors for sensing and 

gathering information about the environment. It senses some physical 

parameters or identifies other smart objects in the environment.  

Internet of Things (IoT) enables physical objects to sense, communicate, 

and perform certain actions on demand, which can facilitate a multitude of 



 

 
25 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

applications, such as smart home, smart city, and intelligent transportation 

system  

For achieving high throughput in an energy-efficient manner, it is crucial to 

design an efficient medium access control (MAC) protocol because the 

MAC layer is responsible for coordinating access among the IoT devices in 

the shared wireless medium 

The MAC layer is responsible for sending and receiving RF frames. As part 

of each packet, there is a MAC layer data header that has addressing 

information as well as packet options. This layer implements packet 

acknowledgments (ACKs), packet tracking to eliminate duplicates, and so 

forth. 

• When a device is transmitting, it cannot receive packets. 

• When a device is not sleeping, it is either receiving or transmitting. 

• There are no beacons or master/slave requirements in the design of 

the MAC/PHY. 

3.2.2 3GPP MTC 

3GPP (3rd generation partnership project) technologies and machine type 

communications (MTC) refer to small amounts of data that are 

communicated between machines (devices to back-end services and vice 

versa) without the need for any human intervention. In the 3rd Generation 

Partnership Project (3GPP), MTC is used to refer to all M2M 

communication (Jain et al. 2012). Thus, they are interchangeable terms. 

Machine Type Communications — MTC (or Machine to Machine (M2M) 

communications) are about enabling direct communications among 

electronic devices, dubbed MTC devices, and/or enabling communications 

from MTC devices to a central MTC server or a set of MTC servers. 

Communications can use both wireless and fixed networks. 

MTC will enable an endless number of applications in a wide plethora of 

domains, impacting different environments and markets. It will connect a 

potential number of MTC devices to the Internet and other networks, 

forming the Internet of Things. Several forecasts state a significant market 

growth over the next few years for both the MTC device and the MTC 

connectivity segments. 

 



   

 
26 

Architecturing of IoT 

            

 

3.2.3 IEEE 802.11        

• IEEE 802.11ah is a light (low-energy) version of the original IEEE 

802.11 wireless medium access standard. It has been designed with 

less overhead to meet IoT requirements. IEEE 802.11 standards (also 

known as Wi-Fi) are the most commonly used wireless standards. 

They have been widely used and adopted for all digital devices 

including laptops, mobiles, tablets, and digital TVs. However, the 

original WiFi standards are not suitable for IoT applications due to 

their frame overhead and power consumption. Hence, IEEE 802.11 

working group initiated 802.11ah task group to develop a standard 

that supports low overhead, power friendly communication suitable 

for sensors. 

• EEE 802.11ah task group is working on a new amendment of the 

IEEE 802.11 standard, suitable for high density WLAN networks in 

the sub 1 GHz band. It is expected to be the prevalent standard in 

many Internet of Things (IoT) and Machine to Machine (M2M) 

applications where it will support long-range and energy-efficient 

communication in dense network environments.  

• Therefore, significant changes in the legacy 802.11 standards have 

been proposed to improve the network performance in high 

contention scenarios, most important of which is the Restricted 

Access Window (RAW) mechanism described in the amendment. In 

this paper we analyze the performance of the RAW mechanism in the 

Non-Cross Slot Boundary case under various possible holding 

schemes.  

• There are proposed new holding schemes as well as a new grouping 

scheme for RAW mechanism based on backoff states of the stations. 

The proposed schemes are there to improve the saturation throughput 

and energy efficiency of the network through extensive simulations. 

These schemes can therefore be adapted in practical deployment 



 

 
27 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

scenarios of the IEEE 802.11ah use cases to improve the overall 

network performance. Overall, these advanced features make 

802.11ah standard a true IoT-enabling technology towards seamless 

integration of massive number of connected devices in the future. 

 

• MAC layer features 

 

 

 

                                                   

 

 

 

 

o Synchronization Frame: A station is not allowed to transmit 

unless it has valid medium information that allows it to capture 

the medium and stop packet exchange by others. It can know 

such information if it receives the duration field packet 

correctly. If it does not receive it correctly, then it should wait 

for a duration called Probe Delay. Probe Delay can be 

configured by the access points in 802.11ah and announced by 

transmitting a synchronization frame at the beginning of the 

time slot. 

o Efficient Bidirectional Packet Exchange: This feature allows 

the sensor device to save more power by allowing both uplink 

and downlink communication between the access point and the 

sensor and allowing it to go to sleep as soon as it finishes the 

communication. 

o Short Mac Frame: The normal IEEE 802.11 frame is about 30 

bytes, which is too large for IoT applications. IEEE 802.11ah 

mitigates this problem by defining a short MAC frame with 

about 12 bytes. 

Increase Sleep Time 

Null Data Packet 

Efficient Bidirectional 

Packet Exchange 

Synchronization Frame 

Short Mac Frame 



   

 
28 

Architecturing of IoT o Null Data Packet: In IEEE 802.11 the control frames, such as 

Acknowledgment (ACK) frames, are about 14 bytes and have 

no data, which adds a lot of overhead. IEEE 802.11ah mitigates 

this problem by replacing the ACK frame with a preamble, a 

tiny signal. 

o Increase Sleep Time: 802.11ah is designed for low-power 

sensors and, hence, it allows a long sleep period of time and 

waking up infrequently to exchange data only. 

3.2.4 IEEE 802.15 

• IEEE 802.15.4 is the most commonly used IoT standard for MAC. It 

defines a frame format, headers including source and destination 

addresses, and how nodes can communicate with each other. The 

frame formats used in traditional networks are not suitable for low 

power multi-hop networking in IoT due to their overhead. 

• IEEE802.15.4e was created to extend IEEE802.15.4 and support 

low power communication. 

• MAC features 

• Slot frame Structure: frame structure is designed for scheduling and 

telling each node what to do. A node can sleep, send, or receive 

information. In the sleep mode, the node turns off its radio to save 

power and stores all messages that it needs to send at the next 

transmission opportunity. When transmitting, it sends its data and 

waits for an acknowledgment. When receiving, the node turns on its 

radio before the scheduled receiving time, receives the data, sends an 

acknowledgement, turn off its radio, delivers the data to the upper 

layers and goes back to sleep. 

• Scheduling: The standard does not define how the scheduling is done 

but it needs to be built carefully such that it handles mobility 

scenarios. It can be centralized by a manager node which is 

responsible for building the schedule, informing others about the 

schedule and other nodes will just follow the schedule. 

• Synchronization: Two approaches can be used: acknowledgment-

based or frame- based synchronization. In acknowledgement-based 

mode, the nodes are already in communication and they send 

acknowledgment for reliability guarantees, thus can be used to 

maintain connectivity as well. In frame-based mode, nodes are not 

communicating and hence, they send an empty frame at pre-specified 

intervals (about 30 second typically). 

• Channel Hopping: IEEE802.15.4e introduces channel hopping for 

time slotted access to the wireless medium. Channel hopping requires 

changing the frequency channel using a pre- determined random 

sequence. 

 



 

 
29 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• Network formation: Network formation includes advertisement and 

joining components. A new device should listen for advertisement 

commands and upon receiving at least one such command, it can send 

a join request to the advertising device. In a centralized system, the 

join request is routed to the manger node and processed there while in 

distributed systems, they are processed locally. Once a device joins 

the network and it is fully functional, the formation is disabled and 

will be activated again if it receives another join request. 

3.2.5 Wireless HART 

• Wireless HART is a datalink protocol that operates on the top of IEEE 

802.15.4 PHY and adopts Time Division Multiple Access (TDMA) 

in its MAC. It is a secure and reliable MAC protocol that uses 

advanced encryption to encrypt the messages and calculate the 

integrity in order to offer reliability. 

• Wireless HART is a wireless sensor networking technology based on 

the Highway Addressable Remote Transducer Protocol (HART). 

Wireless HART was defined for the requirements of process field 

device networks. 

• Developed as a multi-vendor, interoperable wireless standard, 

Wireless HART was defined for the requirements of process field 

device networks. The standard was initiated in early 2004 and 

developed by 37 HART Communications Foundation (HCF) 

companies that - amongst others - included ABB, Emerson, 

Endress+Hauser, Pepperl+Fuchs, Siemens which form WiTECK an 

open, non-profit membership organization whose mission is to 

provide a reliable, cost-effective, high-quality portfolio of core 

enabling system software for industrial wireless sensing applications, 

under a company- and platform-neutral umbrella.More than 30 

million devices worldwide use the HART communication protocol. 

• Wireless HART is a radio communications protocol that adds wireless 

capabilities to the HART protocol while maintaining compatibility 

with existing HART devices, commands, and tools. 

• Wireless HART utilizes a time synchronized, self-organizing, and 

self-healing mesh architecture. 

• Wireless HART supports operation in the 2.4 GHz ISM (license free) 

band using IEEE 802.15.4 standard radios. 

• In a Wireless HART network, every participating device 

simultaneously works as a signal source and a data repeater. 

• Through the routing of the individual signals across the entire 

network, a wide network structure becomes possible. 

• Data repeaters (routers) can be strategically placed to expand the 

network reach throughout the facility or field application. 

 



   

 
30 

Architecturing of IoT There are three main elements in any Wireless HART network: 

• Wireless field devices connect to plant equipment. 

• Gateways enable communication between these devices and hosted 

applications. 

• A network manager, typically integrated into the Gateway, is 

responsible for configuring the network and managing 

communication and message routing. 

 

 

                    

 



 

 
31 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

 

 

• consists of a network manager, a security manager, a gateway to 

connect the wireless network to the wired networks, wireless devices 

as field devices, access points, routers and adapters. The standard 

offers end-to-end, per-hop or peer-to- peer security mechanisms. End 

to end security mechanisms enforce security from sources to 

destinations while per-hop mechanisms secure it to next hop only. 

Advantages of Wireless HART 

• widely used, 

• cost-effective, 

• scalable, 

• platform-neutral, 

• secure, 

• backwards compatible, and 

• it provides a robust wireless protocol for the full range of process 

measurement, control, and asset management applications. 

3.2.6 Z-Wave 

• Z-Wave is a low-power MAC protocol designed for home automation 

and has been used for IoT communication, especially for smart home 

and small commercial domains. It covers about 30- meter point-to-

point communication and is suitable for small messages in IoT 

applications, like light control, energy control, wearable healthcare 

control and others. It uses CSMA/CA for collision detection and ACK 

messages for reliable transmission. It follows a master/slave 

architecture in which the master controls the slaves, send them 

commands, and handling scheduling of the whole network. 



   

 
32 

Architecturing of IoT • Z-Wave technology is the new wireless communication protocol for 

home automation devices. Used in a variety of smart home 

applications like lighting, security, entertainment and others, it’s one 

of the upcoming new communication standards in the world of 

Internet-of-Things (IoT). It’s currently being used by more than 300 

plus manufacturers and thousands of devices, making it one of the 

most popular communication protocols after ZigBee. 

• Unlike the ZigBee protocol that works at 2.4GHz wireless frequency, 

Z-Wave operates at in 900 MHz frequency bands. Due to band 

constraints in different geographies, Z-Wave is a region-specific 

protocol, which means it has different legally permissible frequencies 

in different regions. 

• However, since it operates in the low-frequency region, Z-Wave 

offers superior performance. The longer wavelength and lower 

frequency of the Z-Wave allow it to easily penetrate objects and 

walls, thereby establishing a more reliable and faster communication 

topology between the connected Z-Wave devices. 

• The Z-Wave uses a source-routed mesh network which consist of the 

one primary node – often referred to as the controller or hub in Home 

Automation, and many other secondary nodes referred to as sensors. 

In all the Z-Wave networks, the primary controllers are identified 

by network IDs and the secondary nodes or Z-Wave devices are 

identified by Node IDs.  

• The primary controller assigns Network IDs to all the devices 

configured within its established network. Thus, all the devices within 

a Z-Wave network have the same Network ID because of which they 

are interoperable. Devices with different Network IDs cannot 

communicate with each other. 

Z-Wave Features 

• Z-Wave uses much lower transmission power as compared to Wi-Fi 

ensuring 3-5 years of battery life to its users. 

• Z-Wave operates within the 900 MHz frequency band causing less 

interference and higher penetration. 

• Allows interoperability between version through 6 layers of backward 

compatibility. 

• Z-Wave devices can communicate within the range of 120 feet to 40 

metres. 

• Z-Wave offers data rates of 100 kbps and higher security through 

AES128 encryption. 

• Works across range of household products like lightings, thermostats, 

security sensors, locks etc. 



 

 
33 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• Working on a different frequency, it will not interfere with Wi-Fi or 

any other household signals within the home. 

• A given Z-Wave network can control up to 232 devices configured 

within that network. 

Applications of Z-Wave Technology 

• The widely used application of Z-Wave technology as on date is for 

Home Automation systems. 

• Z-Wave can also be used for efficient energy management systems, 

security power theft etc. 

• The facility of interoperability among devices working on Z-Wave 

help you to club applications like lighting automation, smart security 

automation, entertainment automation etc. 

• Also used in industrial automation for smooth functioning of 

interdependent processes. 

• Widely used in smart home security systems. 

Examples of Z wave devices: 

o Garage Door 

o Lighting Controls 

o On/Off Outlets 

o Remote Controls 

o Smart Home Security Systems 

o Smart Locks 

o Smoke Detectors 

o Thermostats 

 



   

 
34 

Architecturing of IoT 

 

3.2.7 Bluetooth Low Energy 

• Bluetooth low energy or Bluetooth smart is a short-range 

communication protocol with PHY and MAC layer widely used for 

in-vehicle networking. Its low energy can reach ten times less than the 

classic Bluetooth while its latency can reach 15 times. Its access 

control uses a contention- less MAC with low latency and fast 

transmission. It follows master/slave architecture and offers two types 

of frames: adverting and data frames. The Advertising frame is used 

for discovery and is sent by slaves on one or more of dedicated 

advertisement channels. Master nodes sense advertisement channels 

to find slaves and connect them. After connection, the master tells the 

slave its waking cycle and scheduling sequence. Nodes are usually 

awake only when they are communicating and they go to sleep 

otherwise to save their power. 

• Today, most smartphones and tablets are BLE compatible, which 

means they can seamlessly communicate with Bluetooth-enabled 

wireless headphones, digital signage, car stereos, fitness trackers, 

smartwatches, and hardware devices like beacons. 

• How does BLE technology work? 

 BLE data transfer is essentially one-way communication. Let’s 

take an example of BLE beacons trying to communicate with a 

smartphone nearby – a Bluetooth beacon device broadcasts packets of 

data at regular intervals. These data packets are detected by app/pre-

installed services on smartphones nearby. This BLE communication 

triggers actions such as pushing a message or promoting an app. 

 To save energy and provide higher data transfer speed, the entire 

Bluetooth BLE communication framework consists of 40 frequency 

channels, separated by 2MHz. 3 of these channels are the primary 

advertisement channels, while the remaining 37 channels are 

secondary, known as data channels. The Bluetooth communication 

starts with the 3 primary advertisement channels and then offloads to 

the secondary channels.   



 

 
35 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

 

 

3.2.8 Zigbee Smart Energy  

• ZigBee smart energy is designed for a large range of IoT applications 

including smart homes, remote controls and healthcare systems. It 

supports a wide range of network topologies including star, peer-to-

peer, or cluster-tree. A coordinator controls the network and is the 

central node in a star topology, the root in a tree or cluster topology 

and may be located anywhere in peer-to-peer. ZigBee standard 

defines two stack profiles: ZigBee and ZigBee Pro. These stack 

profiles support full mesh networking and work with different 

applications allowing implementations with low memory and 

processing power. ZigBee Pro offers more features including security 

using symmetric-key exchange, scalability using stochastic address 

assignment, and better performance using efficient many-to-one 

routing mechanisms. 

• ZigBee Smart Energy (SE) is the world's leading standard for 

interoperable wireless products that monitor, control and automate 

the delivery and use of energy (and other resources, such as water). 

 



   

 
36 

Architecturing of IoT Zigbee is a wireless technology that supports automation—it allows many 

homes security and smart home devices to interconnect in a single system. 

It sounds complicated, but it works a lot like your home Wi-Fi network, just 

for smart devices. Just like you need a wireless router to create a Wi-Fi 

network, you also need a hub to set up and control a Zigbee network.  

The hub coordinates the system, and each device also acts as a node to create 

a mesh network of devices. 

 

3.2.9 DASH7 

• DASH7 is an “instant-on,” long-range, low power wireless 

communications standard for applications requiring modest 

bandwidth like text messages, sensor readings, or location-based 

advertising coordinates. 

• It is an open-source RFID-standard for wireless sensor networking, 

which operates in the 433 MHz unlicensed ISM band/SRD band. 

DASH7 provides multi-year battery life, range of up to 2 km, indoor 

location with 1 meter accuracy, low latency for connecting with 

moving things, a very small open-source protocol stack, AES 128-bit 

shared key encryption support, and data transfer of up to 200 kbit/s. 

• DASH7 Alliance Protocol originates from the ISO/IEC 18000-

7 standard describing a 433 MHz ISM band air interface for active 

RFID. This standard was mainly used for military logistics. 

• The DASH7 Alliance re-purposed the original 18000-7 technology in 

2011 and made it evolve toward a wireless sensor network technology 

for commercial applications. The DASH7 Alliance Protocol covers 

all sub-GHz ISM bands, making it available globally. The name of 

the new protocol was derived from the section seven denoted as -7 of 

the original standard documents. 

• The current version of the DASH7 Alliance protocol is no longer 

compliant with the ISO/IEC 18000-7 standard. 



 

 
37 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• DASH7 networks serves applications in which low power usage is 

essential and data transmission is typically much slower and/or 

sporadic, like basic telemetry.  

• DASH7 is a wireless communication protocol for active RFID that 

operates in globally available Industrial Scientific Medical (ISM) 

band and is suitable for IoT requirements. It is mainly designed for 

scalable, long range outdoor coverage with higher data rate compared 

to traditional ZigBee. It is a low-cost solution that supports encryption 

and IPv6 addressing. It supports a master/slave architecture and is 

designed for burst, lightweight, asynchronous and transitive traffic. 

 

• Its MAC layer features 

 

 

 

 

 

 

• Filtering: Incoming frames are filtered using three processes; cyclic 

redundancy check (CRC) validation, a 4-bit subnet mask, and link 

quality assessment. Only the frames that pass all three checks are 

processed further. 

• Addressing: DASH7 uses two types of addresses: the unique 

identifier which is the EUI-64 ID and dynamic network identifier 

which is 16-bit address specified by the network administrator. 

• Frame format: The MAC frame has a variable length of maximum 

255 bytes including addressing, subnets, estimated power of the 

transmission and some other optional fields. 

Filtering 

Addressing 

Frame Format 



   

 
38 

Architecturing of IoT 3.3 NETWORK LAYER 

3.3.1 IPv4 

• Internet Protocol Version 4 (IPv4) is the fourth revision of the Internet 

Protocol and a widely used protocol in data communication over 

different kinds of networks. IPv4 is a connectionless protocol used in 

packet-switched layer networks, such as Ethernet. It provides the 

logical connection between network devices by providing 

identification for each device. There are many ways to configure IPv4 

with all kinds of devices – including manual and automatic 

configurations – depending on the network type. 

• It is one of the core protocols of standards-based internetworking 

methods in the Internet, and was the first version deployed for 

production in the ARPANET in 1983. IPv4 is a connectionless 

protocol for use on packet-switched networks.  

• It operates on a best effort delivery model, in that it does not guarantee 

delivery, nor does it assure proper sequencing or avoidance of 

duplicate delivery. These aspects, including data integrity, are 

addressed by an upper layer transport protocol, such as the 

Transmission Control Protocol (TCP). 

• IPv4 is based on the best-effort model. This model guarantees neither 

delivery nor avoidance of duplicate delivery; these aspects are 

handled by the upper layer transport. 

• IPv4 is defined and specified in IETF publication RFC 791. It is used 

in the packet- switched link layer in the OSI model. 

• IPv4 uses 32-bit addresses for Ethernet communication in five 

classes: A, B, C, D and E. Classes A, B and C have a different bit 

length for addressing the network host. Class D addresses are reserved 

for multicasting, while class E addresses are reserved for future use. 

Eg. 

 



 

 
39 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

3.3.2 IPv6 

• An Ipv6 address uses 128 bits as opposed to 32 bits in IPv4. 

• IPv6 provides for end devices to have multiple addresses and an even 

more distributed routing mechanism than the IPv4 Internet. This 

allows different stakeholders to assign IoT end-device addresses that 

are consistent with their own application and network practices.  

• IPv6 provides strong features and solutions to support mobility of 

end-nodes, as well as mobility of the routing nodes of the network. 

• IPv6 provides an address self-configuration mechanism (Stateless 

mechanism). The nodes can define their addresses in very 

autonomous manner. 

• IPv6 Gateways can be fully Internet compliant. In other words, it is 

possible to build a proprietary network of smart things or to 

interconnect one’s own smart things with the rest of the World via a 

gateway that is fully compliant with IP requirements towards the 

Internet. 

• Thus, multiple stakeholders can deploy their own applications, 

sharing a common sensor/actuation infrastructure, without impacting 

the technical operation or governance of the Internet. 

• IPv6 addresses are written using hexadecimal, as opposed to dotted 

decimal in IPv4. 

• Because a hexadecimal number uses 4 bits this means that an IPv6 

address consists of 32 hexadecimal numbers. 

• These numbers are grouped in 4’s giving 8 groups or blocks. The 

groups are written with a: (colon) as a separator. 

• group1: group2: group3: group4: group5: group6: group7: group8. 

Eg  

 



   

 
40 

Architecturing of IoT 3.3.3 6LoWPAN 

• IPv6 over Low power Wireless Personal Area Network (6LoWPAN) 

is the first and most commonly used standard in this category. It 

efficiently encapsulates IPv6 long headers in IEEE802.15.4 small 

packets, which cannot exceed 128 bytes. The specification supports 

different length addresses, low bandwidth, different topologies 

including star or mesh, power consumption, low cost, scalable 

networks, mobility, unreliability and long sleep time. The standard 

provides header compression to reduce transmission overhead, 

fragmentation to meet the 128-byte maximum frame length in 

IEEE802.15.4, and support of multi-hop delivery. 

• A key IP (Internet Protocol)-based technology is 6LowPAN (IPv6 

Low-power wireless Personal Area Network). Rather than being an 

IoT application protocols technology like Bluetooth or ZigBee, 

6LowPAN is a network protocol that defines encapsulation and 

header compression mechanisms. The standard has the freedom of 

frequency band and physical layer and can also be used across 

multiple communications platforms, including Ethernet, Wi-Fi, 

802.15.4 and sub-1GHz ISM.  

• A key attribute is the IPv6 (Internet Protocol version 6) stack, which 

has been a very important introduction in recent years to enable the 

IoT. IPv6 is the successor to IPv4 and offers approximately 5 x 

1028 addresses for every person in the world, enabling any embedded 

object or device in the world to have its own unique IP address and 

connect to the Internet.  

• Especially designed for home or building automation, for example, 

IPv6 provides a basic transport mechanism to produce complex 

control systems and to communicate with devices in a cost-effective 

manner via a low-power wireless network. 

▪ Designed to send IPv6 packets over IEEE802.15.4-based networks 

and implementing open IP standards including TCP, UDP, HTTP, 

COAP, MQTT, and WebSocket, the standard offers end-to-end 

addressable nodes, allowing a router to connect the network to IP. 

6LowPAN is a mesh network that is robust, scalable and self-healing. 

Mesh router devices can route data destined for other devices, while 

hosts are able to sleep for long periods of time.  

Frames in 6LoWPAN use four types of headers: 

➢ No 6loWPAN header (00), 

➢ Dispatch header (01), 

➢ Mesh header (10) and 

➢ Fragmentation header (11). 

• In No 6loWPAN header case, any frame that does not follow 

6loWPAN specifications is discarded. 



 

 
41 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• Dispatch header is used for multicasting and IPv6 header 

compressions. 

• Mesh headers are used for broadcasting; while Fragmentation headers 

are used to break long IPv6 header to fit into fragments of maximum 

128-byte length. 

 

 

 

3.3.4 6TiSCH 

• 6TiSCH has been developed by the Internet Engineering Task Force 

(IETF), the standards body behind most of the technical solutions 

used in the today’s Internet.  

• The IETF adopts an open standardization approach: participation to 

the standardization activities is open to all, contributions are judged 

on their technical merit only, and the resulting standards are available 

at no charge. 

• Industrial networks using 6TiSCH seamlessly integrate into the 

Internet architecture, without the need to bridge or handle protocol 

translation at the application layer. Therefore, 6TiSCH fully enables 

the vision of a “cloudified” industry, where sensor and actuator 

devices connect to cloud-based SCADA (Supervisory control and 

data acquisition) systems 

• 6TiSCH working group in IETF is developing standards to allow IPv6 

to pass through Time-Slotted Channel Hopping (TSCH) mode of 

IEEE 802.15.4e datalinks. 



   

 
42 

Architecturing of IoT • 6TiSCH builds on IEEE 802.15.4 compliant hardware and its TSCH 

MAC layer. The IEEE 802.15.4 standard expects an “upper layer” to 

perform several critical management tasks that are needed for the 

network operation.  

• The 6TiSCH specifies these solutions: inter-operable and zero-

configuration network bootstrap, network access authentication and 

parameter distribution and the management of the wireless medium 

through scheduling. 

• The component in the 6TiSCH architecture that is in charge of 

dynamically adapting the schedule is called a Scheduling Function 

(SF). 

• It defines a Channel Distribution usage matrix consisting of available 

frequencies in columns and time-slots available for network 

scheduling operations in rows. This matrix is portioned into chucks 

where each chunk contains time and frequencies and is globally 

known to all nodes in the network. 

• The nodes within the same interference domain negotiate their 

scheduling so that each node gets to transmit in a chunk within its 

interference domain. Scheduling becomes an optimization problem 

where time slots are assigned to a group of neighboring nodes sharing 

the same application. The standard does not specify how the 

scheduling can be done and leaves that to be an application specific 

problem in order to allow for maximum flexibility for different IoT 

applications. The scheduling can be centralized or distributed 

depending on application or the topology used in the MAC layer. 

 



 

 
43 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

 

 

3.3.5 DHCP 

• DHCP Architecture 

o  The DHCP architecture consists of DHCP clients, DHCP 

servers, and DHCP relay agents on a network. The clients 

interact with servers using DHCP messages in a DHCP 

conversation to obtain and renew IP address leases. 

 

• DHCP Client Functionality 

o  A DHCP client is any network-enabled device that supports the 

ability to communicate with a DHCP server in compliance with 

RFC 2131, for the purpose of obtaining dynamic leased IP 

configuration and related optional information. 



   

 
44 

Architecturing of IoT • Lease Durations 

o  When a scope is created, the lease duration is set to eight days 

by default. However, there are situations when the administrator 

might want to change the lease duration. 

• DHCP Messages 

                               

                                     

 

 

 

 

             

• DHCP Discover 

o Broadcast by a DHCP client when it first attempts to connect to 
the network. The DHCP Discover message requests IP address 
information from a DHCP server. 

• DHCP Offer 

o Broadcast by each DHCP server that receives the client DHCP 
Discover message and has an IP address configuration to offer 
to the client. The DHCP Offer message contains an unleased IP 
address and additional TCP/IP configuration information, such 
as the subnet mask and default gateway. More than one DHCP 
server can respond with a DHCP Offer message. The client 
accepts the best offer, which for a Windows DHCP client is the 
first DHCP Offer message that it receives. 

• DHCP Request 

o Broadcast by a DHCP client after it selects a DHCP Offer. The 
DHCP Request message contains the IP address from the DHCP 
Offer that it selected. If the client is renewing or rebinding to a 
previous lease, this packet might be unicast directly to the 
server. 

• DHCP Ack 

o Broadcast by a DHCP server to a DHCP client acknowledging 
the DHCP Request message. At this time, the server also 
forwards any options. Upon receipt of the DHCP Ack, the client 
can use the leased IP address to participate in the TCP/IP 
network and complete its system startup. This message is 
typically broadcast, because the DHCP client does not officially 
have an IP address that it can use at this point. If the DHCP Ack 
is in response to a DHCP Inform, then the message is unicast 
directly to the host that sent the DHCP Inform message. 

DHCP Offer DHCP Decline 

DHCP Request DHCP Release 

DHCP Inform DHCP Ack 

DHCP Nack DHCP Discover 



 

 
45 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• DHCP Nack 

o Broadcast by a DHCP server to a DHCP client denying the 
client’s DHCP Request message. This might occur if the 
requested address is incorrect because the client moved to a new 
subnet or because the DHCP client’s lease has expired and 
cannot be renewed. 

• DHCP Decline 

o Broadcast by a DHCP client to a DHCP server, informing the 
server that the offered IP address is declined because it appears 
to be in use by another computer. 

• DHCP Release 

o Sent by a DHCP client to a DHCP server, relinquishing an IP 
address and canceling the remaining lease. This is unicast to the 
server that provided the lease. 

• DHCP Inform 

o Sent from a DHCP client to a DHCP server, asking only for 

additional local configuration parameters; the client already has 

a configured IP address. 

 

• DHCP Lease Process 

o A DHCP-enabled client obtains a lease for an IP address from a 

DHCP server. Before the lease expires, the DHCP client must 



   

 
46 

Architecturing of IoT renew the lease or obtain a new lease. Leases are retained in the 

DHCP server database for a period of time after expiration. By 

default, this grace period is four hours and cleanup occur once 

an hour for a DHCP server running Windows Server 2003. This 

protects a client’s lease in case the client and server are in 

different time zones, the internal clocks of the client and server 

computers are not synchronized, or the client is off the network 

when the lease expires. 

 

• Obtaining a New Lease 

o DHCP client initiates a conversation with a DHCP server when 

it is seeking a new lease, renewing a lease, rebinding, or 

restarting. The DHCP conversation consists of a series of DHCP 

messages passed between the DHCP client and DHCP servers. 

The following figure shows an overview of this process when 

the DHCP server and DHCP client are on the same subnet. 

3.3.6 ICMP 

• ICMP (Internet Control Message Protocol) is an error-reporting 

protocol network devices like routers use to generate error messages 

to the source IP address when network problems prevent delivery of 

IP packets. ICMP creates and sends messages to the source IP address 

indicating that a gateway to the Internet that a router, service or host 

cannot be reached for packet delivery. Any IP network device has the 

capability to send, receive or process ICMP messages. 

• It is a network layer protocol used to address network communication 

problems across network devices. It is not a transport protocol that 

sends the data between the machine. The most common internet 

control message protocol has been used in the router. Internet Control 

Message protocol has used for sending an IP packet larger than the 

bytes permitted under the IP Protocol for executing dos attacks. 

• ICMP is not a transport protocol that sends data between systems. 

• While ICMP is not used regularly in end-user applications, it is used 

by network administrators to troubleshoot Internet connections in 

diagnostic utilities including ping and traceroute. 

• One of the main protocols of the Internet Protocol suite, ICMP is used 

by routers, intermediary devices or hosts to communicate error 

https://internetofthingsagenda.techtarget.com/definition/gateway
https://searchnetworking.techtarget.com/definition/ping
https://whatis.techtarget.com/definition/traceroute
https://searchunifiedcommunications.techtarget.com/definition/Internet-Protocol


 

 
47 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

information or updates to other routers, intermediary devices or hosts. 

The widely used IPv4 (Internet Protocol version 4) and the newer 

IPv6 use similar versions of the ICMP protocol (ICMPv4 and 

ICMPv6, respectively). 

 

 3.3.7 RPL 

• RPL offers different level of security by utilizing a Security field after 

the 4-byte ICMPv6 message header. Information in this field indicates 

the level of security and the cryptography algorithm used to encrypt 

the message.  

• RPL offers support: 

                            

 

 

 

 

 

 

 

➢ Data Authenticity:   

    Data can be assumed to be authentic if it is provable that it has 

not been    corrupted after its creation. 

 

Data authenticity 

Semantic security 

Protection against replay attacks 

Confidentiality 

Key management 

https://searchenterprisewan.techtarget.com/definition/IPv6


   

 
48 

Architecturing of IoT ➢ Semantic security: 

  In cryptography, a semantically secure cryptosystem is one 

where only negligible information about the plaintext can be 

feasibly extracted from the ciphertext 

➢ Protection against replay attack: 

▪ Replay attack is a form of network attack in which valid 

data transmission is maliciously or fraudulently repeated 

or delayed. 

▪ Replay attacks can be prevented by tagging each 

encrypted component with a session ID and a component 

number. 

➢ Confidentiality: 

  Confidentiality involves a set of rules or a promise usually 

executed through confidentiality agreements that limits access 

or places restrictions on certain types of information.  

➢ Key Management: 

  It deals with the key generation, exchange, storage, use, crypto-

shredding (destruction) and replacement of keys. 

• Levels of security in RPL include: 

 

 

 

 

 

 

➢ Unsecured:  

  The RPL messages are sent without any security protection. 

➢ Preinstalled: 

  key assumed to be already present in each node at boot time 

➢ Authenticated: 

  The RPL messages are protected 

 

Unsecured 

Preinstalled 

Authenticated 



 

 
49 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

• RPL attacks include: 

 

 

                          

 

 

 

 

 

➢ Selective Forwarding: 

     Malicious nodes turn down the request of facilitating some 

packets of information and makes sure that they are not passed 

on any further. 

➢ Sinkhole: 

  Compromised node tries to attract network traffic by advertise 

its fake routing update. 

➢ Sybil: 

  The attacker subverts the reputation system of a network service 

by creating a large number of pseudonymous identities and uses 

them to gain a disproportionately large influence. 

➢ Hello Flooding: 

  Illegal node in the network can flood hello request to any 

legitimate node and break the security of WSN. 

➢ Wormhole: 

▪ It is a grave attack in which two attackers locate 

themselves strategically in the network.  

▪ Then the attackers keep on listening to the network, and 

record the wireless information. 

➢ Black hole: 

  In this attack, malicious node capture all the data and without 

having any active route it falsely replies for any route request 

thus prevent the source node to communicate with the 

destination node. 

Selective Forwarding 

Sinkhole Wormhole 

Black hole 

Denial of Service 

attacks 

Sybil 

Hello Flooding 

Sinkhole 

Black hole 

Hello Flooding 



   

 
50 

Architecturing of IoT ➢ Denial of Service attacks. 

  An attack meant to shut down a machine or network, making it 

inaccessible to its intended users. 

 

3.3.8 CORPL 

• An extension of RPL is CORPL, or cognitive RPL, which is designed 

for cognitive networks and uses DODAG topology generation but 

with two new modifications to RPL. CORPL utilizes opportunistic 

forwarding to forward the packet by choosing multiple forwarders 

(forwarder set) and coordinates between the nodes to choose the best 

next hop to forward the packet to.  

 

                              

 

 

 

 

 

 

 

 

 

• DODAG is built in the same way as RPL. Each node maintains a 

forwarding set instead of its parent only and updates its neighbor with 

its changes using DIO messages. Based on the updated information, 

each node dynamically updates its neighbor priorities in order to 

A 

B 

D E F 

C 



 

 
51 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

construct the forwarder set.                                

 

 

 

                  

 

 

 

 

 

 

 

 

 

3.3.9 CARP 

• Channel-Aware Routing Protocol (CARP) is a distributed routing 

protocol designed for underwater communication. It can be used for 

IoT due to its lightweight packets. It considers link quality, which is 

computed based on historical successful data transmission gathered 

from neighboring sensors, to select the forwarding nodes. 

• There are two scenarios: network initialization and data forwarding. 

o In network initialization, a HELLO packet is broadcasted from 

the sink to all other nodes in the networks. 

o In data forwarding, the packet is routed from sensor to sink in a 

hop- by-hop fashion. Each next hop is determined 

independently. 

• The main problem with CARP is that it does not support reusability 

of previously collected data. In other words, if the application requires 

sensor data only when it changes significantly, then CARP data 

forwarding is not beneficial to that specific application. An 

enhancement of CARP was done in E-CARP by allowing the sink 

node to save previously received sensory data. When new data is 

needed, E-CARP sends a Ping packet which is replied with the data 

from the sensor’s nodes. Thus, E-CARP reduces the communication 

overhead drastically. 

A 

B 

D E F 

C 

Leaf Nodes 

Router Nodes 



   

 
52 

Architecturing of IoT 

 

3.4 LIST OF REFERENCES 

1. From Machine-to-Machine to the Internet of Things: Introduction to 

a New Age of Intelligence, Jan Holler, Vlasios Tsiatsis, Catherine 

Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle,1st 

Edition, Academic Press, 2014. 

2. Building the Internet of Things with IPv6 and MIPv6: The Evolving 

World of M2M Communications, Daniel Minoli, Wiley 

Publications,2013 

3.5 BIBLIOGRAPHY 

1. https://www.dataversity.net/brief-history-internet-things/ 

2. https://iot-analytics.com/internet-of-things-definition/  

3.6 UNIT END EXERCISES 

1. Which level is the network layer in the OSI model? 

a) Third level 

b)  Fourth level 

c) Second level 

d)  Fifth layer 

2.  Data in network layer is transferred in the form of ____________ 

a) Layers 

b) Packets 

c) Bytes 

d) Bits 

https://www.dataversity.net/brief-history-internet-things/
https://iot-analytics.com/internet-of-things-definition/


 

 
53 

 

IoT Data Link Layer and 

Network Layer Protocols and 

Network Layer 

3. What are the functions of the transport layer? 

a) Multiplexing/ Demultiplexing 

b) Connection less Services 

c) Connection oriented service 

d) Congestion control 

4. Which services are provided by transport layer? 

a) Error control 

b) Connection service 

c) Connection less service 

d) Congestion control 

5. TCP and UDP are called ________ 

a) Application protocols 

b) Session protocols 

c) Transport protocols 

d) Network protocols 

6.  Security based connection is provided by which layer? 

a) Network layer 

b) Session layer 

c) Application layer 

d) Transport layer 

7. Using which method in transport layer data integrity can be ensured? 

a) Checksum 

b) Repetition codes 

c) Cyclic redundancy checks 

d) Error correcting codes 

8. Transport layer can identify the symptoms of overload nodes using 

_____________________ 

a) Flow control 

b) Traffic control 

c) Byte orientation 

d) Data integrity 

9. Transport layer receives data in the form of __________ 

a) Packets 

b) Byte streams 

c) Bits stream 

d) Both packets and Byte stream 

10. UDP packets are called as _________ 

a) Segments 

b) Checksum 

c) Frames 

d) Datagrams 

 



   

 
54 

Architecturing of IoT 11.  Which of the following IoT networks has a very short range? 

a) Short Network 

b) LPWAN 

c) Sig Fox 

d) Short-range Wireless Network 

12.  What is the full form of the LPWAN? 

a) Low Protocol Wide Area Network 

b) Low Power Wide Area Network 

c) Long Protocol Wide Area Network 

d) Long Power Wide Area Network 

13.  An IoT network is a collection of ______ devices. 

a) Signal 

b) Machine to Machine 

c) Interconnected 

d) Network to Network 

14.  What is the full form of HART? 

a) Highway Application Remote Transport 

b) Highway Addressable Remote Transducer 

c) High Address Reduce Transport 

d) High Application Remote Transport 

15.  What is the frequency rate of z-wave? 

a) 908.42 GHz 

b) 928.49 GHz 

c) 888.42 GHz 

d) 708.49 GHz 

 



   
55 

4 

TRANSPORT LAYER 

Unit Structure : 

4.1  Objectives 

4.2  TCP 

4.3  MPTCP 

4.4  UDP 

4.5  DCCP 

4.6  SCTP 

4.7  TLS 

4.8  DTLS 

4.9  Summary 

4.10  Questions 

4.11  References 

4.1 OBJECTIVES 

At the end of this unit, the student will able to  

✓ Understand the use of all IOT transport layer protocol. 

✓ Explain the challenges associated with these protocols in IOT 

architecture. 

✓ Illustrate the architecture of these transport layer protocol. 

4.2 TRANSPORT LAYER 

1. TCP (Transmission Control Protocol) is a widely used transport layer 

protocol that provides reliable and ordered delivery of data between 

applications over IP networks. TCP is one of the most commonly used 

protocols in the Internet of Things (IoT) as it ensures reliable data 

transfer between IoT devices and applications. 

2. In the IoT, TCP is used to provide a reliable and secure 

communication channel between IoT devices and applications. IoT 

devices often have limited processing power and memory, and may 

operate in low-bandwidth or high-latency environments.  

3. TCP's reliability mechanisms such as flow control, congestion 

control, and error detection and recovery help ensure that data is 

delivered correctly and in a timely manner, even in these challenging 

environments. 



   

 
56 

Architecturing of IoT 4. TCP operates on top of the Internet Protocol (IP) and uses a 

connection-oriented communication model. A connection is 

established between two devices (the sender and the receiver) before 

data is exchanged.  

5. The connection setup process involves a three-way handshake, where 

the sender sends a SYN (synchronize) packet to the receiver, the 

receiver responds with a SYN-ACK (synchronize-acknowledge) 

packet, and the sender acknowledges the receipt of the SYN-ACK 

packet with an ACK (acknowledge) packet. 

6. Once the connection is established, data is exchanged using TCP 

segments. TCP segments consist of a header and a payload. The 

header contains control information such as sequence and 

acknowledgement numbers, window size, and flags. The payload 

contains the data being transferred. 

7. TCP provides several mechanisms to ensure reliable data transfer. 

These include are as follows  

8. Flow control: TCP uses a sliding window mechanism to control the 

amount of data sent by the sender at any given time. The receiver 

advertises a window size that specifies the amount of data it is willing 

to receive. The sender can then send data up to the size of the window. 

This helps prevent the receiver from being overwhelmed with data it 

cannot handle. 

9. Congestion control: TCP's congestion control mechanism prevents 

the network from becoming congested with too much traffic. TCP 

monitors network congestion by tracking packet loss and adjusting 

the sending rate accordingly. 

10. Error detection and recovery: TCP uses a checksum to detect errors 

in transmitted data. If an error is detected, TCP requests the 

retransmission of the corrupted data. 

11. TCP is a reliable and secure protocol, but it has some drawbacks in 

the IoT. It requires a significant amount of overhead for connection 

setup and maintenance, which can be a problem in low-power, low-

bandwidth devices. TCP is also not well-suited for real-time 

applications that require low latency and high throughput. 

12. To address these limitations, several variants of TCP have been 

developed for the IoT, such as Lightweight TCP (LwTCP) and 

Constrained Application Protocol (CoAP). These protocols are 

designed to be lightweight and energy-efficient, while still providing 

reliable and secure communication. 

13. In conclusion, TCP is an important protocol in the IoT that provides 

reliable and secure communication between IoT devices and 

applications. Its reliability mechanisms ensure that data is delivered 

correctly and in a timely manner, even in challenging environments. 



 

 
57 

 

Transport Layer However, its high overhead and latency make it unsuitable for some 

IoT applications. 

14. TCP (Transmission Control Protocol) is a widely used transport layer 

protocol in the Internet Protocol (IP) suite. It provides reliable, 

ordered, and error-checked delivery of data between applications 

running on devices connected to the Internet. In the context of the 

Internet of Things (IoT), TCP is an important protocol for facilitating 

communication between IoT devices and applications. 

15. TCP provides a number of important features that make it well-suited 

for IoT applications. One of the most important is reliable, error-

checked data delivery. TCP uses a system of acknowledgments and 

retransmissions to ensure that data sent from one device to another is 

received without errors. This is particularly important in IoT 

applications where data may be critical for safety, security, or 

operational purposes. 

16. Another important feature of TCP is its ability to manage congestion 

in the network. TCP uses a mechanism called "congestion control" to 

detect and respond to congestion in the network. When congestion is 

detected, TCP reduces the rate at which data is transmitted to prevent 

the network from becoming overloaded. This is important in IoT 

applications where devices may be located in remote or difficult-to-

reach locations and network resources may be limited. 

17. TCP is also designed to work seamlessly with IP, the underlying 

protocol used for communication on the Internet. TCP and IP together 

form the TCP/IP protocol suite, which is the foundation of the 

Internet. This means that TCP can be used to transmit data between 

any two devices connected to the Internet, regardless of their location 

or the type of device. 

18. One of the challenges of using TCP in IoT applications is that TCP 

was originally designed for use in traditional computer networks and 

may not be optimized for the unique characteristics of IoT networks. 

For example, IoT networks may include devices with limited 

processing power and memory, and may operate in low-power, low-

bandwidth environments. These factors may affect the performance 

of TCP in IoT applications. 

19. To address these challenges, there have been efforts to develop TCP 

variants that are specifically designed for use in IoT networks. One 

example is TCP-LP (Low-Priority Transport Control Protocol), which 

is designed to reduce the amount of energy consumed by IoT devices 

during communication by using a low-priority data transmission 

mechanism. Another example is TCP-NUD (Network Unresponsive 

Detection), which is designed to improve the performance of TCP in 

mobile IoT networks by detecting network congestion and adjusting 

TCP's congestion control algorithms accordingly. 



   

 
58 

Architecturing of IoT 20. In summary, TCP is an important protocol for facilitating 

communication between IoT devices and applications. Its reliable, 

error-checked data delivery and congestion control mechanisms make 

it well-suited for IoT applications where data may be critical for 

safety, security, or operational purposes. However, challenges remain 

in optimizing TCP for the unique characteristics of IoT networks, and 

ongoing efforts are being made to develop TCP variants that are 

specifically designed for use in IoT applications. 

4.3 MPTCP 

1. MPTCP (Multipath TCP) is an extension to the traditional TCP 

protocol that enables the simultaneous use of multiple network paths 

for data transmission. In the context of the Internet of Things (IoT), 

MPTCP can provide improved reliability and performance by 

enabling data to be transmitted over multiple paths simultaneously. 

2. Traditional TCP is designed to work over a single network path 

between two devices. If the network path fails, TCP will 

automatically attempt to retransmit the data over the same path until 

it is successful or until a timeout occurs. This can be problematic in 

IoT applications where devices may be located in remote or difficult-

to-reach locations, and network paths may be prone to failure. 

3. MPTCP enables data to be transmitted over multiple network paths 

simultaneously. This can provide improved reliability by reducing the 

likelihood of data loss due to network failures. In addition, MPTCP 

can provide improved performance by using multiple paths to 

transmit data, which can increase the available bandwidth and reduce 

the overall latency of the transmission. 

4. MPTCP works by splitting data into subflows and sending them over 

different network paths. Each subflow is assigned a sequence number, 

which enables the receiver to reconstruct the original data once all 

subflows have been received. MPTCP also includes mechanisms for 

detecting and responding to network failures and congestion, 

including the ability to dynamically adjust the number of subflows 

used for data transmission. 

5. MPTCP has been shown to be effective in improving the reliability 

and performance of IoT applications. For example, in a study of 

MPTCP for IoT sensor networks, researchers found that MPTCP was 

able to significantly improve data delivery rates and reduce the 

amount of data loss due to network failures. 

6. However, there are also challenges associated with using MPTCP in 

IoT applications. One of the main challenges is the increased 

overhead associated with using multiple network paths, which can 

consume additional processing power and memory on IoT devices. In 

addition, MPTCP may not be well-suited for certain types of IoT 

applications, such as those that require real-time data transmission. 



 

 
59 

 

Transport Layer 7. In summary, MPTCP is an extension to the traditional TCP protocol 

that enables the simultaneous use of multiple network paths for data 

transmission. It can provide improved reliability and performance for 

IoT applications by reducing the likelihood of data loss due to 

network failures and increasing the available bandwidth for data 

transmission. However, challenges remain in optimizing MPTCP for 

the unique characteristics of IoT networks, and ongoing research is 

being conducted to address these challenges. 

8. Traditional TCP uses a single network path for communication 

between two devices. If this path is congested or experiences network 

failures, the performance of the communication can be negatively 

affected. MPTCP addresses this issue by allowing data to be 

transmitted over multiple network paths simultaneously. This 

provides several benefits for IoT applications: 

9. Improved reliability: By using multiple network paths, MPTCP can 

provide more reliable data transmission. If one path becomes 

congested or fails, data can be seamlessly rerouted through another 

path. 

10. Faster data transmission: MPTCP can use multiple paths to transmit 

data simultaneously, resulting in faster data transmission rates. This 

is particularly useful for IoT applications that require real-time data 

processing. 

11. Better resource utilization: MPTCP can distribute data transmission 

across multiple network paths, which can help to balance the load on 

each path and reduce the risk of network congestion. This can help to 

improve the overall performance of the network. 

12. MPTCP is particularly well-suited for IoT applications that involve 

devices with multiple network interfaces, such as smartphones, 

tablets, and IoT gateways. These devices can use multiple wireless or 

wired network connections to communicate with other devices or 

applications. MPTCP can be used to take advantage of these multiple 

network interfaces, providing improved performance and reliability. 

13. There are several challenges associated with using MPTCP in IoT 

applications. One challenge is the increased complexity of managing 

multiple network paths. MPTCP requires additional processing power 

and memory to manage multiple network paths, which may be a 

limitation for devices with limited computing resources. 

14. Another challenge is the increased power consumption associated 

with using multiple network paths. MPTCP may increase power 

consumption by requiring devices to maintain multiple network 

connections simultaneously. This can be a limitation for IoT devices 

that operate on battery power. 



   

 
60 

Architecturing of IoT 15. In summary, MPTCP is an extension of the TCP protocol that enables 

the use of multiple network paths for communication between two 

devices. MPTCP can provide improved reliability, faster data 

transmission, and better resource utilization for IoT applications. 

However, there are several challenges associated with using MPTCP 

in IoT applications, including increased complexity and power 

consumption. 

4.4 UDP 

1. UDP (User Datagram Protocol) is a transport layer protocol that 

provides a connectionless and unreliable data transfer mechanism 

between devices in the Internet of Things (IoT) ecosystem. Unlike 

TCP (Transmission Control Protocol), which provides reliable data 

transfer, UDP does not establish a virtual circuit between devices and 

does not guarantee the delivery of data packets. 

2. UDP is commonly used in IoT applications that require fast and 

lightweight data transfer. Examples include real-time data streaming, 

such as video and audio streaming, and IoT applications that require 

low-latency communication, such as smart home automation systems. 

3. One advantage of using UDP in IoT applications is its low overhead, 

which makes it an efficient protocol for small, low-power devices that 

have limited processing power and battery life. UDP also allows for 

multicast and broadcast communication, enabling a single message to 

be sent to multiple devices simultaneously, which is particularly 

useful in IoT applications that involve group communication. 

4. However, the lack of reliability in UDP means that data packets may 

be lost or arrive out of order, which can be problematic for some IoT 

applications. For example, in a smart home automation system, a lost 

packet could result in a failure to control a device, such as a thermostat 

or light switch. In addition, UDP does not provide congestion control, 

which can lead to network congestion and degraded performance in 

high-traffic environments. 

5. To address these issues, some IoT applications may use a combination 

of UDP and other protocols, such as TCP or SCTP (Stream Control 

Transmission Protocol), to provide a balance between reliability and 

efficiency. For example, an IoT application may use UDP for real-

time data streaming, while using TCP for configuration and control 

messages. 

6. In summary, UDP is a lightweight and efficient protocol that is well-

suited for IoT applications that require fast and low-latency 

communication. However, the lack of reliability and congestion 

control in UDP can be a limitation for some IoT applications, which 

may require a combination of UDP and other protocols to provide a 

balance between efficiency and reliability. 



 

 
61 

 

Transport Layer 7. UDP (User Datagram Protocol) is a connectionless, unreliable 

transport protocol that is often used in IoT applications. Unlike TCP 

(Transmission Control Protocol), which guarantees reliable data 

transmission by implementing a range of error checking mechanisms, 

UDP does not provide any such guarantees. Instead, UDP is a 

lightweight protocol that is designed for applications that require fast 

data transmission and can tolerate some level of data loss. 

8. In the context of IoT, UDP is often used for applications that require 

real-time data processing, such as multimedia streaming, voice over 

IP (VoIP), and sensor data collection. These applications can benefit 

from the reduced overhead and latency that UDP provides. 

9. One advantage of UDP in IoT applications is its simplicity. UDP is a 

lightweight protocol that requires fewer computing resources than 

TCP, making it ideal for devices with limited processing power, such 

as sensors and actuators. Additionally, UDP is a connectionless 

protocol, which means that it does not require the establishment and 

maintenance of a connection before data transmission can occur. This 

can help to reduce network latency and improve the responsiveness 

of IoT applications. 

10. However, one disadvantage of UDP is its lack of reliability. Because 

UDP does not implement any error checking mechanisms, there is no 

guarantee that data will be transmitted successfully from the sender to 

the receiver. This can be a limitation for IoT applications that require 

reliable data transmission, such as those that involve critical 

infrastructure or medical devices. 

11. Another disadvantage of UDP is the potential for network congestion. 

Because UDP does not implement any congestion control 

mechanisms, it is possible for UDP packets to be dropped or delayed 

if network congestion occurs. This can lead to a reduction in overall 

network performance and can impact the performance of other 

applications that share the same network resources. 

12. In summary, UDP is a lightweight transport protocol that is often used 

in IoT applications that require fast data transmission and can tolerate 

some level of data loss. While UDP provides advantages in terms of 

simplicity and reduced latency, its lack of reliability and potential for 

network congestion can be limitations for certain IoT applications. As 

with any protocol, the decision to use UDP in an IoT application 

should be based on an understanding of the specific requirements and 

limitations of the application. 

4.5 DCCP  

1. DCCP (Datagram Congestion Control Protocol) is a transport 

protocol designed for use in applications that require congestion 

control over unreliable network connections, such as the Internet of 

Things (IoT). Unlike TCP (Transmission Control Protocol) and UDP 



   

 
62 

Architecturing of IoT (User Datagram Protocol), DCCP is designed specifically for real-

time multimedia streaming and other time-sensitive applications. 

2. One of the main advantages of DCCP is its ability to provide 

congestion control while maintaining low latency. This is achieved 

through the use of a congestion control mechanism that is designed to 

be responsive to changes in network conditions. DCCP uses feedback 

mechanisms to monitor network congestion and adjust the rate at 

which data is transmitted accordingly. This can help to prevent 

network congestion and maintain a high level of network 

performance. 

3. Another advantage of DCCP is its support for different congestion 

control algorithms. This allows applications to choose the algorithm 

that is best suited for their specific requirements. For example, some 

applications may require a more aggressive congestion control 

algorithm to ensure reliable data transmission, while others may 

prioritize low latency and prefer a less aggressive algorithm. 

4. DCCP also provides support for a range of reliability options. 

Applications can choose between reliable and unreliable delivery 

modes, depending on their specific requirements. Reliable delivery 

mode ensures that all packets are delivered to the destination, while 

unreliable delivery mode allows for faster data transmission at the 

cost of some potential data loss. 

5. However, one disadvantage of DCCP is its relatively limited support 

in comparison to TCP and UDP. DCCP is not widely supported by all 

network devices and operating systems, which can make it difficult to 

implement in certain IoT environments. Additionally, DCCP is not 

designed to provide the same level of reliability as TCP, which can be 

a limitation for some applications that require reliable data 

transmission. 

6. In summary, DCCP is a transport protocol designed for use in IoT 

applications that require congestion control over unreliable network 

connections. DCCP provides low latency and support for different 

congestion control algorithms, but its limited support and lack of 

reliability may be limitations in certain IoT environments. As with 

any protocol, the decision to use DCCP in an IoT application should 

be based on an understanding of the specific requirements and 

limitations of the application. 

7. DCCP (Datagram Congestion Control Protocol) is a transport 

protocol that is designed for use in applications that require low 

latency and congestion control, making it a good fit for IoT 

applications. DCCP is based on UDP (User Datagram Protocol) and 

provides congestion control capabilities that are not present in UDP. 

8. One advantage of DCCP is its ability to support congestion control 

for real-time applications, such as multimedia streaming, voice over 

IP (VoIP), and gaming. Unlike UDP, which does not provide any 



 

 
63 

 

Transport Layer congestion control, DCCP implements a range of congestion control 

mechanisms that enable it to adapt to changing network conditions 

and ensure that data is transmitted efficiently and reliably. 

9. Another advantage of DCCP is its support for multiple streams within 

a single connection. This can help to improve network efficiency by 

enabling multiple data streams to be transmitted over a single 

connection, reducing the number of connections required and the 

associated overhead. 

10. In the context of IoT, DCCP is well-suited for applications that 

require low latency and reliable data transmission, such as industrial 

automation, remote sensing, and monitoring. These applications can 

benefit from the congestion control capabilities provided by DCCP, 

which can help to ensure that data is transmitted efficiently and 

reliably over the network. 

11. However, one limitation of DCCP is its lack of widespread adoption. 

While DCCP has been standardized and is supported by some 

operating systems and network devices, it is not as widely adopted as 

other transport protocols such as TCP and UDP. This can limit its 

usefulness in certain IoT applications where interoperability with 

existing systems is important. 

12. In summary, DCCP is a transport protocol that provides congestion 

control capabilities for applications that require low latency and 

reliable data transmission. While DCCP has some advantages over 

UDP and other transport protocols, its lack of widespread adoption 

may limit its usefulness in certain IoT applications. As with any 

protocol, the decision to use DCCP in an IoT application should be 

based on an understanding of the specific requirements and 

limitations of the application. 

4.6 SCTP 

1. SCTP (Stream Control Transmission Protocol) is a transport protocol 

that is designed to provide reliable, ordered, and flow-controlled 

delivery of data over IP networks. It is particularly well-suited for IoT 

applications that require high reliability and fault tolerance, such as 

industrial automation, medical devices, and smart grids. 

2. One of the main advantages of SCTP is its support for multiple 

streams and the ability to transmit data in separate streams within a 

single connection. This can be useful in IoT applications where 

different types of data are transmitted over the same connection, as it 

allows for better organization and management of the data. In 

addition, SCTP provides several congestion control mechanisms that 

enable it to adapt to changing network conditions and ensure reliable 

transmission of data. 

3. Another advantage of SCTP is its support for multi-homing, which 

allows a single endpoint to have multiple IP addresses and network 



   

 
64 

Architecturing of IoT interfaces. This provides additional fault tolerance and can help to 

ensure that data is transmitted even in the event of network failures or 

outages. 

4. In the context of IoT, SCTP is particularly useful in applications that 

require high reliability and fault tolerance, such as those in industrial 

automation and healthcare. These applications can benefit from the 

advanced features provided by SCTP, such as support for multiple 

streams and multi-homing, which help to ensure reliable transmission 

of data over the network. 

5. However, like any protocol, there are some limitations to the use of 

SCTP. One potential drawback is its relatively low adoption rate 

compared to other transport protocols such as TCP and UDP. This can 

limit interoperability with other devices and systems, which may be 

important in some IoT applications. 

6. SCTP is a transport protocol that provides advanced features such as 

support for multiple streams and multi-homing, making it particularly 

well-suited for IoT applications that require high reliability and fault 

tolerance. While SCTP has some advantages over other transport 

protocols, its relatively low adoption rate may limit its usefulness in 

certain IoT applications. As with any protocol, the decision to use 

SCTP in an IoT application should be based on an understanding of 

the specific requirements and limitations of the application. 

7. SCTP (Stream Control Transmission Protocol) is a transport protocol 

that is designed to provide reliable, message-oriented communication 

between network endpoints. SCTP is a good fit for IoT applications 

that require reliable transmission of messages, as it provides features 

such as message fragmentation, retransmission, and flow control. 

8. One advantage of SCTP is its ability to support multiple streams 

within a single connection. This can help to improve network 

efficiency by enabling multiple data streams to be transmitted over a 

single connection, reducing the number of connections required and 

the associated overhead. In addition, SCTP provides congestion 

control mechanisms that enable it to adapt to changing network 

conditions and ensure that data is transmitted efficiently and reliably. 

9. Another advantage of SCTP is its support for multi-homing, which 

allows a single endpoint to have multiple IP addresses. This can 

provide increased reliability and resilience in IoT applications where 

network connectivity may be unreliable or where redundancy is 

required. 

10. In the context of IoT, SCTP is well-suited for applications that require 

reliable, message-oriented communication, such as smart grid 

systems, remote sensing, and monitoring. These applications can 

benefit from the message-oriented nature of SCTP, which can help to 

ensure that data is transmitted reliably and efficiently over the 

network. 



 

 
65 

 

Transport Layer 11. However, one limitation of SCTP is its lack of widespread adoption. 

While SCTP has been standardized and is supported by some 

operating systems and network devices, it is not as widely adopted as 

other transport protocols such as TCP and UDP. This can limit its 

usefulness in certain IoT applications where interoperability with 

existing systems is important. 

12. In summary, SCTP is a transport protocol that provides reliable, 

message-oriented communication for IoT applications. While SCTP 

has some advantages over other transport protocols, its lack of 

widespread adoption may limit its usefulness in certain IoT 

applications. As with any protocol, the decision to use SCTP in an IoT 

application should be based on an understanding of the specific 

requirements and limitations of the application. 

4.7 TLS 

1. TLS (Transport Layer Security) is a cryptographic protocol that is 

used to provide secure communication over the Internet. TLS is 

widely used in IoT applications to ensure that data is transmitted 

securely and confidentially over the network. 

2. One of the main advantages of TLS is its ability to provide end-to-end 

encryption of data. This means that data is encrypted before it is 

transmitted over the network, and decrypted only by the intended 

recipient. This helps to ensure that data is protected from unauthorized 

access and that it remains confidential throughout its transmission. 

3. Another advantage of TLS is its support for authentication and 

integrity verification. TLS uses digital certificates to verify the 

identity of the sender and receiver of data, and to ensure that data has 

not been tampered with during transmission. This helps to prevent 

man-in-the-middle attacks and other types of attacks that can 

compromise the security of IoT applications. 

4. In addition, TLS provides support for different encryption algorithms 

and key sizes, which can be customized to meet the specific security 

requirements of an IoT  

5. application. This allows IoT applications to balance security 

requirements against performance and resource constraints. 

6. However, the use of TLS in IoT applications can also introduce some 

challenges. For example, TLS requires significant processing power 

and memory resources, which can be a limitation for IoT devices with 

limited resources. In addition, TLS can introduce additional latency 

and overhead, which can impact the performance of real-time IoT 

applications. 

7. In summary, TLS is a widely used cryptographic protocol that 

provides end-to-end encryption, authentication, and integrity 

verification for IoT applications. While TLS has some advantages 



   

 
66 

Architecturing of IoT over other security protocols, it can also introduce some challenges 

related to resource constraints and performance. As with any security 

protocol, the decision to use TLS in an IoT application should be 

based on an understanding of the specific requirements and 

limitations of the application. 

8. TLS (Transport Layer Security) is a protocol that provides security 

for communication over the internet. TLS is widely used to secure 

web traffic and is also used in many IoT applications to provide secure 

communication between devices and servers. 

9. TLS provides encryption of data that is transmitted over the network, 

which helps to prevent unauthorized access to sensitive information. 

In addition, TLS provides authentication of the communicating 

devices, which helps to prevent spoofing and man-in-the-middle 

attacks. 

10. In the context of IoT, TLS is often used to secure communication 

between IoT devices and cloud servers. For example, a smart home 

device may use TLS to securely communicate with a cloud server that 

provides remote management and control of the device. TLS can also 

be used to secure communication between IoT devices, which is 

important in applications where the devices are located in public or 

unsecured areas. 

11. TLS uses a system of digital certificates to authenticate the 

communicating devices. When a device connects to a server using 

TLS, the server sends a certificate to the device, which contains a 

public key that is used to encrypt the data transmitted between the two 

devices. The device verifies the certificate to ensure that it was issued 

by a trusted authority and that the public key belongs to the server that 

it is trying to connect to. This helps to prevent man-in-the-middle 

attacks, where an attacker intercepts the communication and 

impersonates one of the devices. 

12. One challenge with using TLS in IoT applications is that it can be 

resource-intensive, requiring significant processing power and 

memory. This can be a problem for resource-constrained IoT devices 

that have limited processing power and memory. To address this 

issue, lightweight versions of TLS have been developed, such as TLS-

PSK (Pre-Shared Key) and TLS-PSK-Identity, which are optimized 

for use in IoT devices with limited resources. 

13. In summary, TLS is a protocol that provides security for 

communication over the internet and is widely used in IoT 

applications to provide secure communication between devices and 

servers. TLS provides encryption of data, authentication of devices, 

and protection against man-in-the-middle attacks. While TLS can be 

resource-intensive, lightweight versions of the protocol have been 

developed to support IoT devices with limited resources. 

 



 

 
67 

 

Transport Layer 4.8 DTLS 

1. DTLS (Datagram Transport Layer Security) is a protocol that is used 

to provide security for communication between devices in the Internet 

of Things (IoT). DTLS is a variant of the TLS protocol that is 

designed to work with datagram transport protocols, such as User 

Datagram Protocol (UDP), which are commonly used in IoT 

applications. 

2. DTLS provides encryption, authentication, and integrity protection 

for datagram traffic, which helps to protect against eavesdropping, 

tampering, and other attacks. Like TLS, DTLS uses digital certificates 

to authenticate devices and provides protection against man-in-the-

middle attacks. 

3. In IoT applications, DTLS is commonly used to secure 

communication between devices, such as sensors and gateways, or 

between gateways and cloud servers. For example, a smart city 

application may use DTLS to secure communication between sensors 

and a gateway, and between the gateway and a cloud server that 

provides analytics and management services. 

4. One advantage of using DTLS in IoT applications is that it can 

provide security for real-time communication, such as video 

streaming or voice over IP (VoIP), which may require low latency and 

high throughput. DTLS can also support devices with low processing 

power and memory by using a lightweight version of the protocol. 

5. However, DTLS has some limitations in IoT applications. One 

limitation is that it can be vulnerable to denial-of-service (DoS) 

attacks, where an attacker floods the network with traffic, causing the 

devices to become unresponsive. To address this issue, techniques 

such as rate limiting and session resumption can be used to reduce the 

impact of DoS attacks. 

6. DTLS is a protocol that is used to provide security for communication 

between devices in IoT applications. DTLS provides encryption, 

authentication, and integrity protection for datagram traffic, and is 

commonly used to secure real-time communication and low-power 

devices. However, DTLS has some limitations in IoT applications, 

such as vulnerability to DoS attacks, which need to be addressed to 

ensure secure and reliable communication. 

7. DTLS (Datagram Transport Layer Security) is a variation of the TLS 

protocol that is specifically designed for use with datagram protocols 

such as UDP. DTLS is commonly used in IoT applications to provide 

secure communication between devices over unreliable networks 

such as wireless or cellular networks. 

8. Like TLS, DTLS provides encryption of data transmitted over the 

network and authentication of the communicating devices. However, 

because DTLS is designed to work with datagram protocols, it uses a 



   

 
68 

Architecturing of IoT different set of security mechanisms that are optimized for datagram 

transmission. DTLS uses a similar system of digital certificates to 

TLS to authenticate the communicating devices, but also includes 

mechanisms to handle packet loss, reordering, and duplication. 

9. DTLS is particularly useful in IoT applications where devices have 

limited processing power and memory, as it can be implemented with 

minimal overhead. Additionally, because DTLS is designed to work 

with datagram protocols, it can provide real-time performance and 

low latency, making it well-suited for use in IoT applications such as 

smart homes and industrial automation. 

10. One challenge with using DTLS in IoT applications is that it can be 

vulnerable to certain attacks, such as DoS (Denial of Service) attacks, 

which can overwhelm the device with a large number of requests. To 

address this issue, DTLS includes mechanisms to limit the number of 

requests that can be sent to a device, and to detect and respond to 

malicious requests. 

11. In summary, DTLS is a variation of the TLS protocol that is optimized 

for use with datagram protocols such as UDP. DTLS provides 

encryption of data, authentication of devices, and mechanisms to 

handle packet loss, reordering, and duplication. DTLS is particularly 

useful in IoT applications where devices have limited processing 

power and memory, and where real-time performance and low latency 

are important. However, DTLS can be vulnerable to certain attacks, 

and must be implemented with appropriate security mechanisms to 

ensure the security and reliability of the IoT system. 

4.9 SUMMARY 

In this chapter we learnt about the following things  

➢ TCP is an important protocol for facilitating communication between 

IoT devices and applications. Its reliable, error-checked data delivery 

and congestion control mechanisms make it well-suited for IoT 

applications where data may be critical for safety, security, or 

operational purposes. 

➢ DTLS is a variation of the TLS protocol that is optimized for use with 

datagram protocols such as UDP. 

➢ TLS can be resource-intensive, lightweight versions of the protocol 

have been developed to support IoT devices with limited resources. 

➢ SCTP is a transport protocol that provides reliable, message-oriented 

communication for IoT applications. 

➢ DCCP is a transport protocol that provides congestion control 

capabilities for applications that require low latency and reliable data 

transmission. 



 

 
69 

 

Transport Layer 4.10 QUESTIONS 

Q1.  Explain in brief about TCP 

Q2.  Explain in brief about UDP 

Q3. Illustrate the use of DCCP in IOT 

Q4. Determine why there is need of SCTP protocol in IOT 

Q5. Explain the importance of MPTCP in IOT 

4.11 REFERENCES 

1. https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html  

 

https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html


   

 
70 

Architecturing of IoT 

5 

SESSION LAYER 

Unit Structure : 

5.1  Objectives 

5.2  HTTP 

5.3  COAP 

5.4  XMPP 

5.5  AMQP 

5.6  MQTT 

5.7  Summary 

5.8  Questions 

5.9  References 

5.1 OBJECTIVES 

At the end of this unit, the student will be able to 

• Understand the difference between the HTTP and MQTT. 

• Illustrate the concept of COAP and XMPP. 

• Explain the Use of AMQP with respect to IOT. 

5.2 HTTP  

1. It is used by World Wide Web (WWW) for defining how its 

messages are going to be transmitted and formatted. This protocol is 

responsible for the action that a server has to take while sending 

information over the network.  

2. When a URL is being entered into the browser, this protocol sends 

an HTTP request to the server and then an HTTP response is sent 

back to the browser. This protocol is also responsible for the 

controlling of webpages on the World Wide Web for their formatting 

and representation. 

3. HTTP was created to make documents available across the internet. 

HTTP servers only respond to requests from clients. HTTP deals with 

requests one at a time, with overhead such as authentication being 

carried out each time. HTTP does have some ability to pool TCP 

connections, but the overhead for each message remains. 

4. It is most familiar to us as one of the enabling technologies that allows 

web browsers to work. Servers contain resources that are identified 

https://www.geeksforgeeks.org/world-wide-web-www/


 

 
71 

 

Session Layer by the URLs that have the basic familiar form: 

https://www.hivemq.com/mqtt-essentials/ 

5. To which HTTP clients can make requests: GET, PUT, DELETE and 

POST, to name the most common. In a normal web environment the 

simple model is a web browser retrieving web pages from a server 

with the GET method: 

 
Fig 1 HTTP Get request 

5.1 In an IoT environment, a common use of HTTP is to allow devices 

to POST to a resource that represents the device state on the IoT 

service: 

 

https://www.w3.org/Addressing/
https://www.hivemq.com/mqtt-essentials/


   

 
72 

Architecturing of IoT Fig 2 HTTP Put request 

 

TABLE I HTTP performance 

Points  HTTP bytes 

Establish connection 2261 

Disconnect 0 

For each message published 3285 

Sum for 1 message 5546 

Sum for 10 messages 55,460 

Sum for 100 messages 554,600 

6.  The equivalent “overhead” for HTTP has to be included with every 

request which is why the per message overhead is much bigger. 

7.  In the context of IoT, HTTP is often used for communication between 

IoT devices and the cloud. IoT devices collect data and send it to the 

cloud via HTTP requests. The cloud processes the data and sends back 

instructions to the devices via HTTP responses. 

8.  One of the benefits of using HTTP in IoT is its simplicity and 

widespread use. Many devices and software systems are already 

designed to support HTTP, making it easy to integrate IoT devices 

with existing systems. In addition, HTTP supports encryption through 

the use of SSL/TLS, which provides security for data transmission. 

9.  However, there are also some challenges with using HTTP in IoT. For 

example, HTTP was designed for use in human-readable web 

browsers, and as a result, it may not be the most efficient protocol for 

transmitting large amounts of data between IoT devices. In addition, 

the use of HTTP may result in higher power consumption and latency, 

which can be important considerations in IoT applications where 

energy efficiency and real-time response are critical. 

10.  Overall, HTTP can be a useful protocol for transmitting data in IoT 

applications, but its suitability depends on the specific requirements 

of the application. Other protocols such as MQTT, CoAP, and 

WebSocket may also be appropriate in different IoT contexts. 

11.  HTTP is a stateless protocol, which means that each request is treated 

as an independent transaction without any knowledge of previous 

requests. In IoT applications, HTTP is used to send and receive data 

between devices and web services, allowing for remote control and 

monitoring of devices. 

12.  Some common use cases for HTTP in IoT include: 



 

 
73 

 

Session Layer 12.1  Remote control: HTTP can be used to control IoT devices 

remotely from a web browser or mobile application. For 

example, a user could use a mobile app to turn on the lights in 

their home while they are away. 

12.2  Data collection: HTTP can be used to send sensor data from IoT 
devices to a web service or cloud platform for processing and 
analysis. For example, a smart thermostat could send 
temperature data to a cloud platform to optimize energy usage. 

12.3  Firmware updates: HTTP can be used to update the firmware on 
IoT devices remotely. For example, a security camera could 
receive a firmware update over HTTP to fix a security 
vulnerability. 

12.4  Overall, HTTP is a versatile and widely used protocol in IoT 
applications, allowing for seamless communication between 
devices and web services or cloud platforms. 

13.  The principal advantage of HTTP for use in IoT is its familiarity to 
developers, many of whom have implemented web solutions of one 
kind or another. A consequence of this is the availability of client 
libraries and servers. However, MQTT is not far behind these days, a 
search for MQTT software will show up lots of options including 
HiveMQ’s open source software. HTTP has no equivalent of many 
MQTT features that are useful for IoT such as queuing, QoS, retained 
messages and message push. Top of Form 

5.3 COAP 

1. CoAP (Constrained Application Protocol) is a protocol designed 
specifically for IoT devices with limited processing power and 
memory, low bandwidth and unreliable networks.  

2. It is a lightweight protocol that uses UDP (User Datagram Protocol) 
for transmission and is suitable for low-power and lossy networks. 

3. CoAP is based on the REST (Representational State Transfer) 
architectural style and allows IoT devices to interact with each other 
using simple request-response transactions.  

4. It provides features such as caching, resource discovery, and 
observability, making it a suitable protocol for resource-constrained 
devices. 

5. Some common use cases for CoAP in IoT include: 

5.1  Smart homes: CoAP can be used to control smart home devices 
such as thermostats, lighting systems, and security cameras. For 
example, a user can send a CoAP request to turn on the lights in 
their home. 

5.2  Industrial IoT: CoAP can be used in industrial IoT applications 
to monitor and control devices such as sensors and actuators. 
For example, a factory can use CoAP to monitor temperature 
and humidity levels in a production line. 



   

 
74 

Architecturing of IoT 5.3  Healthcare: CoAP can be used in healthcare applications to 
monitor patients' vital signs and send alerts in case of 
emergencies. For example, a wearable device can use CoAP to 
send heart rate and blood pressure data to a healthcare provider. 

6.  Overall, CoAP is a lightweight and efficient protocol that is well-

suited for IoT devices with limited resources. It allows IoT devices to 

communicate with each other and with web services, making it an 

essential component of the IoT ecosystem. 

7.  CoAP is a lightweight protocol that is designed to be more efficient 

than HTTP (Hypertext Transfer Protocol) in terms of bandwidth 

usage, memory usage, and power consumption. 

8.  CoAP is a client-server protocol that uses UDP (User Datagram 

Protocol) as the transport layer protocol, rather than TCP 

(Transmission Control Protocol) used by HTTP.  

9. CoAP has built-in support for reliable messaging, resource discovery, 

and lightweight security mechanisms. 

10.  CoAP in IoT include: 

10.1  Low-power devices: CoAP is designed to be used on low-power 

devices that have limited processing capabilities and memory. 

CoAP can be used to communicate between these devices and 

web services or cloud platforms. 

10.2  Resource-constrained networks: CoAP is designed to be used in 

networks with limited bandwidth and high latency, such as 

sensor networks. CoAP allows for efficient communication 

between devices and web services or cloud platforms in these 

networks. 

10.3  Machine-to-machine communication: CoAP is designed to be 

used for machine-to-machine communication, where devices 

need to communicate with each other without human 

intervention. CoAP can be used to enable devices to exchange 

information and control each other. 

10.4  Sensor data collection: CoAP can be used to collect sensor data 

from IoT devices and transmit it to a server or cloud platform 

for analysis. CoAP's lightweight design makes it suitable for use 

in low-power devices such as sensors. 

10.5  Actuator control: CoAP can be used to control actuators such as 

switches or motors in IoT devices. For example, a smart 

thermostat could use CoAP to adjust the temperature in a room. 

10.6  Firmware updates: CoAP can be used to remotely update 

firmware in IoT devices. For example, a security camera could 

receive a firmware update over CoAP to fix a security 

vulnerability. 

11.  Overall, CoAP is a useful protocol for IoT applications, particularly 

in resource-constrained environments where efficiency and low 

power consumption are critical. 



 

 
75 

 

Session Layer 5.4 XMPP 

1.  XMPP (Extensible Messaging and Presence Protocol) is a protocol 

that allows for real-time messaging and presence information 

exchange between devices over the internet. It is an open standard 

protocol that is widely used in instant messaging and chat 

applications.  

2.  In recent years, XMPP has gained popularity as a protocol for IoT 

(Internet of Things) applications due to its simplicity, scalability, and 

security. 

3.  XMPP protocol in the context of IoT applications, covering its 

architecture, key features, and use cases. 

4.  XMPP Architecture: 

4.1  XMPP is based on a client-server model, where clients 

communicate with each other or with servers over the internet. 

Each client or server is identified by a unique JID (Jabber ID), 

which is similar to an email address. XMPP messages are XML 

(eXtensible Markup Language) documents that can contain 

various types of information, including text, files, and 

commands. 

4.2  XMPP uses a publish-subscribe model for messaging, where 

devices subscribe to specific topics or channels and receive 

messages published by other devices or servers. XMPP servers 

also support presence information exchange, where devices can 

share their availability and status with other devices. 

 

Fig 1 A simple XMPP Architecture 

 

Fig 2 A Complex XMPP Architecture 



   

 
76 

Architecturing of IoT 5. XMPP Key Features: 

 XMPP has several key features that make it a popular choice for IoT 

applications: 

5.1. Scalability: XMPP is designed to be scalable, allowing for large 

numbers of devices to connect and communicate over the 

internet. 

5.2. Security: XMPP supports encryption and authentication, 

ensuring that messages are sent and received securely. 

5.3. Real-time messaging: XMPP is designed for real-time 

messaging, allowing for fast and responsive communication 

between devices. 

5.4. Customization: XMPP is highly customizable, allowing for 

developers to add their own extensions and features to the 

protocol. 

6.  XMPP Use Cases: 

 XMPP is used in a variety of IoT applications, including: 

6.1 Home automation: XMPP can be used to control and monitor 

home automation devices such as thermostats, lights, and 

security systems. 

6.2  Health monitoring: XMPP can be used to transmit health data 

from wearable devices to healthcare providers for monitoring 

and analysis. 

6.3  Industrial IoT: XMPP can be used to control and monitor 

industrial equipment and machines, allowing for real-time 

monitoring and predictive maintenance. 

7. XMPP is a flexible and scalable protocol that is well suited for IoT 

applications. Its simplicity, real-time messaging capabilities, and 

security features make it a popular choice for developers looking to 

build IoT applications.  

8. With its open standard and customizable architecture, XMPP is likely 

to continue to be a key protocol for IoT applications in the future. 

9.  Decentralized architecture: XMPP is based on a decentralized 

architecture, meaning that there is no single point of failure. This 

makes it more resilient and scalable than centralized protocols. 

10. Real-time communication: XMPP is designed for real-time 

communication, with low latency and high throughput. This makes it 

well suited for IoT applications where quick response times are 

critical. 



 

 
77 

 

Session Layer 11. Security: XMPP supports end-to-end encryption and authentication, 

ensuring that messages are secure and private. 

12. Extensibility: XMPP is highly extensible, with a wide range of 

extensions and plugins available to support various use cases. 

13. Advantages of XMPP in IoT: 

 XMPP has several advantages when used in IoT applications. These 

include: 

13.1 Interoperability: XMPP is a standardized protocol, ensuring 

interoperability between devices and services from different 

vendors. 

13.2 Flexibility: XMPP can be used for a wide range of IoT 

applications, including sensor data collection, device control, 

and firmware updates. 

13.3 Scalability: XMPP's decentralized architecture makes it highly 

scalable, allowing it to support large-scale IoT deployments. 

13.4 Low cost: XMPP is an open-source protocol, with no licensing 

fees, making it a cost-effective solution for IoT applications. 

14  Limitations of XMPP in IoT: 

14.1 While XMPP has several advantages, there are also some 

limitations to its use in IoT applications. These include: 

14.2 Resource consumption: XMPP can consume a significant 

amount of resources, such as memory and processing power, 

particularly in low-power IoT devices. 

14.3 Complex implementation: XMPP's decentralized architecture 

and extensibility can make it complex to implement and 

maintain, particularly for small-scale deployments. 

14.4 Limited support for certain use cases: While XMPP can be used 

for a wide range of IoT applications, it may not be the best 

choice for certain use cases, such as high-bandwidth video 

streaming. 

15  In conclusion, XMPP is a promising protocol for IoT applications, 

offering several advantages such as interoperability, flexibility, 

scalability, and low cost. However, it also has some limitations, 

particularly in terms of resource consumption and complex 

implementation. Overall, XMPP is well suited for IoT deployments 

where low latency and real-time communication are critical, and 

where interoperability and security are important considerations. 

 

 



   

 
78 

Architecturing of IoT 5.5 AMQP 

1. AMQP (Advanced Message Queuing Protocol) is a messaging 
protocol that is commonly used in IoT deployments to enable 
communication between devices, sensors, and applications.  

2. AMQP provides a reliable, secure, and interoperable way to exchange 
messages between IoT devices, as well as between IoT devices and 
backend systems. 

3. AMQP is designed to handle large-scale, distributed systems, making 
it well-suited for IoT deployments where multiple devices and sensors 
need to communicate with each other and with backend systems. It 
uses a publish-subscribe model, where messages are published to a 
topic or exchange, and subscribers can receive messages from that 
topic or exchange based on their subscription. 

4. Features of AMQP in IoT: 

 AMQP has several features that make it well-suited for IoT 
deployments, including: 

4.1  Reliability: AMQP provides a reliable way to exchange 
messages between devices, ensuring that messages are 
delivered even in the event of network failures or other 
disruptions. 

4.2  Security: AMQP provides a secure way to exchange messages 
between devices, with support for encryption and 
authentication. 

4.3  Interoperability: AMQP is a standardized protocol, ensuring 
interoperability between devices and applications from 
different vendors. 

4.4  Scalability: AMQP is designed to handle large-scale, 
distributed systems, making it well-suited for IoT deployments 
with multiple devices and sensors. 

5. Advantages of AMQP in IoT: 

 AMQP has several advantages when used in IoT deployments, 
including: 

5.1  High throughput: AMQP is designed for high throughput, with 
support for both asynchronous and synchronous messaging. 

5.2  Low latency: AMQP supports real-time messaging, with low 
latency and high reliability. 

5.3  Flexibility: AMQP can be used for a wide range of IoT 
applications, including sensor data collection, device control, 
and firmware updates. 

5.4  Wide support: AMQP is supported by a wide range of devices, 
platforms, and programming languages. 



 

 
79 

 

Session Layer 6. Limitations of AMQP in IoT: 

6.1  While AMQP has several advantages, there are also some 

limitations to its use in IoT deployments. These include: 

6.2  Complexity: AMQP can be complex to implement and 

maintain, particularly for small-scale deployments. 

6.3  Resource consumption: AMQP can consume significant 

resources, such as memory and processing power, particularly 

in low-power IoT devices. 

6.4  Cost: Some AMQP implementations may require licensing 

fees, which can increase the cost of IoT deployments. 

7.  AMQP is a reliable, secure, and interoperable messaging protocol that 

is well-suited for IoT deployments. It provides high throughput, low 

latency, and flexibility, making it a good choice for a wide range of 

IoT applications.  

8.  However, it can be complex to implement and may consume 

significant resources, particularly in low-power IoT devices. Despite 

these limitations, AMQP is a popular choice for IoT deployments 

where reliability and interoperability are important considerations. 

9. The Internet of Things (IoT) is a rapidly growing field with a wide 

range of applications, from home automation to industrial control 

systems. As the number of connected devices continues to grow, the 

need for standardized communication protocols becomes increasingly 

important. One such protocol that has gained popularity in recent 

years is the Advanced Message Queuing Protocol (AMQP).  

10. AMQP is an open-source messaging protocol designed for reliable, 

asynchronous communication between applications. It was developed 

by a group of vendors and industry experts in response to the growing 

need for a standardized messaging protocol.  

11. AMQP provides a way for applications to exchange messages in a 

scalable, secure, and efficient manner. 

12. Features of AMQP: 

 AMQP has several features that make it well suited for IoT 

applications. These include: 

12.1 Reliable messaging: AMQP guarantees reliable messaging, 

ensuring that messages are delivered and received in the correct 

order. 

12.2 Asynchronous communication: AMQP supports asynchronous 

communication, allowing messages to be sent and received 

without the need for a synchronous request/response model. 



   

 
80 

Architecturing of IoT 12.3 Scalability: AMQP is highly scalable, allowing it to handle 

large volumes of messages and devices. 

12.4  Security: AMQP supports encryption and authentication, 

ensuring that messages are secure and private. 

13  Advantages of AMQP in IoT: 

 AMQP has several advantages when used in IoT applications. These 

include: 

13.1 Interoperability: AMQP is a standardized protocol, ensuring 

interoperability between devices and services from different 

vendors. 

13.2 Flexibility: AMQP can be used for a wide range of IoT 

applications, including sensor data collection, device control, 

and firmware updates. 

13.3 Scalability: AMQP's scalability makes it well suited for large-

scale IoT deployments. 

13.4  Fault tolerance: AMQP supports fault tolerance, allowing 

devices to recover from errors and continue operation. 

14  Limitations of AMQP in IoT: 

14.1  While AMQP has several advantages, there are also some 

limitations to its use in IoT applications. These include: 

14.2  Complex implementation: AMQP can be complex to implement 

and maintain, particularly for small-scale deployments. 

14.3  Resource consumption: AMQP can consume significant 

resources, such as memory and processing power, particularly 

in low-power IoT devices. 

14.4  Latency: AMQP's reliability guarantees can lead to increased 

latency, which may not be suitable for real-time applications. 

15  In conclusion, AMQP is a promising protocol for IoT applications, 

offering several advantages such as interoperability, flexibility, 

scalability, and fault tolerance. However, it also has some limitations, 

particularly in terms of complex implementation and resource 

consumption. Overall, AMQP is well suited for IoT deployments 

where reliable messaging and fault tolerance are critical, and where 

interoperability and security are important considerations. 

5.6 MQTT 

1.  The Internet of Things (IoT) is rapidly evolving, and communication 

protocols play a critical role in connecting IoT devices. One of the 



 

 
81 

 

Session Layer most popular IoT protocols is the Message Queuing Telemetry 

Transport (MQTT) protocol.  

2.  MQTT is an open-source, lightweight, and flexible messaging 

protocol that allows devices to communicate with each other over the 

Internet. In this essay, we will discuss MQTT in the context of IoT, 

exploring its features, advantages, and limitations. 

3. MQTT is a messaging protocol that enables devices to communicate 

with each other over a network. It was developed by IBM in 1999 and 

has since become an open-source standard maintained by the Eclipse 

Foundation.  

4.  MQTT is designed to be lightweight and efficient, making it suitable 

for use in resource-constrained environments such as IoT devices. 

5.  Features of MQTT: 

 MQTT has several features that make it well suited for IoT 

applications. These include: 

5.1  Lightweight: MQTT is designed to be lightweight, making it 

suitable for use in low-power, low-bandwidth IoT devices. 

5.2 Publish-subscribe architecture: MQTT uses a publish-subscribe 

architecture, where devices can subscribe to topics and receive 

messages from other devices that publish to those topics. 

5.3  Quality of Service (QoS): MQTT supports three levels of QoS, 

allowing devices to choose the level of reliability they require 

for message delivery. 

5.4  Security: MQTT supports encryption and authentication, 

ensuring that messages are secure and private. 

6.  Advantages of MQTT in IoT: 

 MQTT has several advantages when used in IoT applications. These 

include: 

6.1  Efficiency: MQTT's lightweight design makes it highly 

efficient, reducing the resource requirements of IoT devices. 

6.2  Scalability: MQTT is highly scalable, allowing it to handle large 

volumes of messages and devices. 

6.3  Flexibility: MQTT can be used for a wide range of IoT 

applications, including sensor data collection, device control, 

and firmware updates. 

6.4  Reliability: MQTT's QoS levels ensure reliable message 

delivery, making it suitable for critical IoT applications. 

 



   

 
82 

Architecturing of IoT 7  Limitations of MQTT in IoT: 

 While MQTT has several advantages, there are also some limitations 

to its use in IoT applications. These include: 

7.1  Limited data size: MQTT has a limited data size of 256 MB, 

which may not be sufficient for some IoT applications. 

7.2  Centralized broker: MQTT requires a centralized broker, which 

can be a point of failure in large-scale IoT deployments. 

7.3  Security risks: MQTT's security features may not be sufficient 

for highly sensitive IoT applications. 

8.  MQTT is a popular messaging protocol for IoT applications, offering 

several advantages such as efficiency, scalability, flexibility, and 

reliability. However, it also has some limitations, particularly in terms 

of limited data size, reliance on a centralized broker, and security 

risks.  

9.  Overall, MQTT is well suited for IoT deployments where lightweight 

messaging and reliable message delivery are critical, and where 

security and scalability are important considerations. 

10. The Internet of Things (IoT) has revolutionized the way devices 

communicate with each other, and one of the key components of this 

communication is the messaging protocol. One such protocol that has 

gained popularity in recent years is the Message Queuing Telemetry 

Transport (MQTT). 

11.  Extra added features of MQTT: 

 MQTT has several features that make it well suited for IoT 

applications. These include: 

11.1  Lightweight: MQTT is a lightweight protocol that can be used 

in low-bandwidth and high-latency environments. 

11.2  Scalable: MQTT is highly scalable, allowing it to handle large 

volumes of messages and devices. 

11.3 Asynchronous communication: MQTT supports asynchronous 

communication, allowing messages to be sent and received 

without the need for a synchronous request/response model. 

11.4  Quality of service (QoS): MQTT supports three levels of QoS, 

allowing devices to control the level of message delivery 

reliability. 

12.  Advantages of MQTT in IoT: 

 MQTT has several advantages when used in IoT applications. These 

include: 



 

 
83 

 

Session Layer 12.1  Efficiency: MQTT's lightweight nature makes it efficient in 

terms of bandwidth and power consumption, making it well 

suited for low-power IoT devices. 

12.2  Scalability: MQTT's scalability makes it well suited for large-

scale IoT deployments. 

12.3 Asynchronous communication: MQTT supports asynchronous 

communication, allowing devices to operate independently of 

each other. 

 12.4 QoS: MQTT's QoS levels allow devices to control the reliability 

of message delivery. 

13.  Limitations of MQTT in IoT: 

 While MQTT has several advantages, there are also some limitations 

to its use in IoT applications. These include: 

13.1 Security: MQTT does not provide built-in security, requiring 

additional security measures to be implemented. 

13.2  Compatibility: MQTT is not compatible with all IoT devices, 

requiring the use of a gateway or broker to translate between 

MQTT and other protocols. 

13.3  Complexity: MQTT's publish/subscribe model can be complex 

to implement, particularly for small-scale deployments. 

14.  MQTT is a promising protocol for IoT applications, offering several 

advantages such as efficiency, scalability, and QoS. However, it also 

has some limitations, particularly in terms of security, compatibility, 

and complexity. Overall, MQTT is well suited for IoT deployments 

where low-power devices, scalability, and asynchronous 

communication are critical, and where additional security measures 

can be implemented to ensure secure messaging. 

5.7 SUMMARY 

In this chapter we learned the following topics 

➢ HTTP is a versatile and widely used protocol in IoT applications, 

allowing for seamless communication between devices and web 

services or cloud platforms. 

➢ MQTT supports three levels of QoS, allowing devices to control the 

level of message delivery reliability. 

➢ AMQP is a promising protocol for IoT applications, offering several 

advantages such as interoperability, flexibility, scalability, and fault 

tolerance. 



   

 
84 

Architecturing of IoT ➢ XMPP is well suited for IoT deployments where low latency and real-

time communication are critical, and where interoperability and 

security are important considerations. 

5.8 QUESTIONS  

Q1.  Explain the HTTP Protocol in deail? 

Q2.  Explain why MQTT is better than HTTP. 

Q3.  Illustrate the concept of COAP in brief. 

Q4.  Explain the importance of XMPP in IOT session layer. 

5.9 REFERENCES 

1. https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html 

 

https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html


   
85 

6 

SERVICE LAYER PROTOCOL 

Unit Structure : 

6.1  Objectives 

6.2  OneM2M 

6.3  ETSI & M2M 

6.4  OMA 

6.5  BBF 

6.6  Summary 

6.7  Questions 

6.8  References 

6.1 OBJECTIVES 

At the end of this unit, the student will be able to  

➢ Understand the concept of OneM2m, ETSI. 

➢ Create differentiate between M2M and OneM2m. 

➢ Illustrate the concept of OMA and BBF. 

6.2 ONEM2M 

1. The Internet of Things (IoT) has enabled a wide range of connected 

devices, sensors, and platforms to communicate with each other, 

creating a network of interconnected devices. To achieve this 

interoperability and connectivity, a standardized framework is 

required.  

2. The oneM2M standard is an initiative that aims to provide a common 

platform for IoT devices and services to communicate with each 

other. In this essay, we will discuss oneM2M in the context of IoT, its 

architecture, and its benefits. 

3. oneM2M is a global standard for Machine to Machine (M2M) 

communications and the IoT. It was established in 2012, and it is 

based on the work of a number of existing standards organizations.  

4. oneM2M provides a common framework for IoT devices, platforms, 

and services to communicate with each other. The main goal of 

oneM2M is to ensure interoperability between different IoT devices 

and services. 



   

 
86 

Architecturing of IoT 5. oneM2M Architecture: 

The oneM2M architecture is based on a horizontal layering approach 

that consists of four layers, as shown below: 

5.1 Application Layer: The application layer is responsible for 

managing the IoT applications and services that interact with 

the oneM2M platform. 

5.2 Platform Services Layer: The platform services layer provides 

a set of common services that are used by IoT applications and 

services, such as security, device management, and data 

management. 

5.3 Infrastructure Layer: The infrastructure layer provides the 

underlying network and computing infrastructure required to 

support IoT applications and services. 

5.4 Device Layer: The device layer consists of the IoT devices and 

sensors that are connected to the oneM2M platform. 

 

Fig 1 OneM2m Functional Architecture 

6. Benefits of oneM2M in IoT: 

oneM2M offers several benefits when used in IoT applications. These 

include: 

6.1 Interoperability: oneM2M provides a common platform for IoT 

devices and services to communicate with each other, enabling 

interoperability between different IoT devices and platforms. 

6.2 Scalability: oneM2M can support a large number of devices and 

services, making it well suited for large-scale IoT deployments. 

6.3 Security: oneM2M provides a set of security mechanisms that 

can be used to secure IoT communications and data. 

6.4 Flexibility: oneM2M is a flexible standard that can be adapted 

to different IoT use cases and requirements. 

6.5 Global Reach: oneM2M is a global standard that can be used by 

IoT deployments worldwide, ensuring compatibility between 

different regions and countries. 



 

 
87 

 

Service Layer Protocol 6.6 oneM2M provides a common platform for IoT devices and 

services to communicate with each other, enabling 

interoperability between different IoT devices and platforms. 

The oneM2M architecture consists of four layers, providing a 

flexible and scalable framework for IoT deployments. The 

benefits of oneM2M include interoperability, scalability, 

security, flexibility, and global reach, making it a promising 

standard for the future of IoT. 

6.7 OneM2M is a standard developed by a consortium of global 

organizations to provide a common platform for the 

interoperability of different IoT devices and services. It is a 

hierarchical architecture that enables seamless communication 

between different IoT devices and services, regardless of the 

underlying network technology. 

7  OneM2M has several features that make it well suited for IoT 

applications. These include: 

7.1  Interoperability: OneM2M provides a common platform for 

different IoT devices and services to communicate with each 

other, regardless of the underlying network technology. 

7.2  Scalability: OneM2M is highly scalable, enabling it to support 

a large number of devices and services. 

7.3  Security: OneM2M provides built-in security features, 

including authentication, authorization, and encryption. 

7.4  Device management: OneM2M provides a standardized way of 

managing IoT devices, including registration, discovery, and 

configuration. 

8  Advantages of OneM2M in IoT: 

OneM2M has several advantages when used in IoT applications. 

These include: 

8.1  Interoperability: OneM2M's common platform enables 

different IoT devices and services to communicate with each 

other, regardless of the underlying network technology. 

8.2  Scalability: OneM2M's scalability makes it well suited for 

large-scale IoT deployments. 

8.3  Security: OneM2M's built-in security features provide a secure 

platform for IoT communications. 

8.4  Standardization: OneM2M provides a standardized platform 

that enables different IoT devices and services to communicate 

with each other, reducing the complexity of integrating different 

devices and services. 

 



   

 
88 

Architecturing of IoT 9  Limitations of OneM2M in IoT: 

While OneM2M has several advantages, there are also some 
limitations to its use in IoT applications. These include: 

9.1  Complexity: OneM2M's hierarchical architecture can be 
complex to implement and maintain. 

9.2  Compatibility: OneM2M is not compatible with all IoT devices 
and services, requiring the use of gateways or translators to 
translate between OneM2M and other protocols. 

9.3  Adoption: OneM2M is a relatively new standard, and its 
adoption may be limited in some industries. 

10  In conclusion, OneM2M is a promising standard for IoT applications, 
offering several advantages such as interoperability, scalability, 
security, and standardization. However, it also has some limitations, 
particularly in terms of complexity, compatibility, and adoption. 
Overall, OneM2M is well suited for IoT deployments where 
interoperability, security, and scalability are critical, and where 
additional security measures can be implemented to ensure secure 
messaging. 

6.3 ETSI 

1. The Internet of Things (IoT) has gained significant attention in recent 
years as it has become increasingly popular to use interconnected 
devices to automate and optimize a variety of processes.  

2. To support this, a range of standards and protocols have been 
developed to ensure interoperability and facilitate the development of 
IoT applications.  

3. One of these standards is ETSI M2M. In this essay, we will discuss 
ETSI M2M in the context of IoT, outlining its features, advantages, 
and limitations. 

4. ETSI M2M is a standard developed by the European 
Telecommunications Standards Institute (ETSI) to provide a common 
platform for the interoperability of different IoT devices and services. 
It is a set of specifications and guidelines that define the requirements 
for M2M (machine-to-machine) communication. 

5.  Features of ETSI M2M: 

ETSI M2M has several features that make it suitable for IoT 
applications. These include: 

5.1 Interoperability: ETSI M2M provides a common platform for 
different IoT devices and services to communicate with each 
other, regardless of the underlying network technology. 

5.2 Scalability: ETSI M2M is highly scalable, enabling it to support 
a large number of devices and services. 

5.3 Security: ETSI M2M provides built-in security features, 
including authentication, authorization, and encryption. 



 

 
89 

 

Service Layer Protocol 5.4 Device management: ETSI M2M provides a standardized way 
of managing IoT devices, including registration, discovery, and 
configuration. 

6 Advantages of ETSI M2M in IoT: 

ETSI M2M has several advantages when used in IoT applications. 
These include: 

6.1 Interoperability: ETSI M2M's common platform enables 
different IoT devices and services to communicate with each 
other, regardless of the underlying network technology. 

6.2 Scalability: ETSI M2M's scalability makes it well suited for 
large-scale IoT deployments. 

6.3 Security: ETSI M2M's built-in security features provide a 
secure platform for IoT communications. 

6.4 Standardization: ETSI M2M provides a standardized platform 
that enables different IoT devices and services to communicate 
with each other, reducing the complexity of integrating different 
devices and services. 

7. Limitations of ETSI M2M in IoT: 

7.1  While ETSI M2M has several advantages, there are also some 
limitations to its use in IoT applications. These include: 

7.2 Complexity: ETSI M2M's specifications and guidelines can be 
complex to implement and maintain. 

7.3  Compatibility: ETSI M2M is not compatible with all IoT 
devices and services, requiring the use of gateways or 
translators to translate between ETSI M2M and other protocols. 

7.4  Adoption: ETSI M2M is a relatively new standard, and its 
adoption may be limited in some industries. 

8  ETSI M2M is a promising standard for IoT applications, offering 
several advantages such as interoperability, scalability, security, and 
standardization. However, it also has some limitations, particularly in 
terms of complexity, compatibility, and adoption.  

9  Overall, ETSI M2M is well suited for IoT deployments where 
interoperability, security, and scalability are critical, and where 
additional security measures can be implemented to ensure secure 
messaging. 

10  The ETSI M2M architecture is designed to provide a standardized 
framework for machine-to-machine (M2M) communications in the 
Internet of Things (IoT). It is a layered architecture that defines the 
key components and interfaces necessary for M2M communications. 
The ETSI M2M architecture comprises the following layers: 



   

 
90 

Architecturing of IoT 10.1  Application Layer: This layer includes the M2M applications 
that use the ETSI M2M platform for communication. The 
applications communicate with the platform using standard 
protocols, such as HTTP or CoAP, and use ETSI M2M APIs to 
interact with other components of the architecture. 

10.2  Service Layer: This layer provides services to M2M 
applications, such as device management, data management, 
and security. The services are exposed as RESTful APIs, and 
applications can use them to manage and interact with M2M 
devices. 

10.3  Network Layer: This layer provides connectivity for M2M 
devices, including cellular networks, Wi-Fi, Ethernet, and 
others. The network layer also includes gateways that provide 
translation between different network technologies and 
protocols. 

10.4 Device Layer: This layer includes M2M devices that connect to 
the network layer. The devices can be sensors, actuators, or 
other types of devices that collect or act on data. The devices 
are managed by the service layer and can be configured, 
monitored, and updated remotely. 

11 The ETSI M2M architecture also includes several interfaces that 
enable communication between the layers. These interfaces include: 

M2M Service Interface: This interface provides access to M2M 
services in the service layer. 

11.1 Device Management Interface: This interface enables the 
service layer to manage M2M devices in the device layer. 

11.2 Application Service Interface: This interface enables M2M 
applications to interact with the service layer. 

11.3  Network Service Interface: This interface provides access to 
network services in the network layer. 

 

Fig 2 ETSI Architecture 



 

 
91 

 

Service Layer Protocol 12 The ETSI M2M architecture is designed to be modular and flexible, 

allowing different components to be added or removed as needed. It 

is also designed to be scalable and secure, with built-in security 

features such as authentication, authorization, and encryption. 

13 Overall, the ETSI M2M architecture provides a comprehensive 

framework for M2M communications in the IoT, enabling 

interoperability, scalability, and security across different devices, 

networks, and applications. 

7.4 OMA 

1. OMA (Open Mobile Alliance) is a standards organization that 

develops specifications for mobile and IoT devices. In the context of 

IoT, OMA has developed several standards that define 

communication protocols, data models, and device management 

techniques. These standards are intended to enable interoperability 

between different IoT devices and platforms. 

2. Some of the key standards developed by OMA for IoT include: 

2.1 Lightweight M2M (LwM2M): This is a device management 

protocol that enables remote management of IoT devices. It is 

designed to be lightweight and efficient, making it suitable for 

use in constrained environments. LwM2M defines a set of 

standard objects and interfaces for device management, and it 

uses CoAP as its underlying protocol. 

2.2 OMA DM (Device Management): This is a device management 

protocol that is used in mobile devices and IoT devices. It 

enables remote management of devices over various types of 

networks, including cellular, Wi-Fi, and Ethernet. OMA DM 

defines a set of standard objects and interfaces for device 

management, and it uses HTTP or CoAP as its underlying 

protocol. 

2.3 OMA Lightweight Machine-to-Machine (OMA LwM2M) 

Enabler: This is a set of specifications that define a standardized 

framework for IoT device management. It includes 

specifications for device management, data management, and 

security.  

2.4 OMA LwM2M Enabler is designed to be scalable and flexible, 

allowing it to support a wide range of IoT devices and 

applications. 

2.5 OMA SensorThings API: This is a standard API for IoT sensors 

and devices that collect data. It provides a standardized way to 

access and manage sensor data, making it easier to integrate 

data from different sources. SensorThings API is based on 

RESTful principles and uses JSON as its data format. 



   

 
92 

Architecturing of IoT 3. Overall, the OMA standards for IoT provide a comprehensive set of 

specifications that enable interoperability, security, and 

manageability in IoT devices and platforms. These standards are 

widely used in the industry and are supported by a large ecosystem of 

vendors and developers. 

4. OMA (Open Mobile Alliance) architecture for IoT is designed to 

enable interoperability, security, and manageability in IoT devices 

and platforms. The OMA architecture is based on a client-server 

model, where the IoT devices act as clients and the servers manage 

the devices and provide services. 

5. The OMA architecture consists of several layers, each with a specific 

function: 

5.1 Application layer: This layer contains the applications and 

services that run on the IoT devices. The application layer 

interacts with the services provided by the server layer. 

5.2 Device layer: This layer consists of the hardware and firmware 

that make up the IoT devices. The device layer interacts with 

the services provided by the server layer through the application 

layer. 

5.3 Server layer: This layer provides the services that manage and 

control the IoT devices. The server layer consists of several 

components, including the device management server, data 

management server, and security server. 

5.4 Gateway layer: This layer provides connectivity between the 

IoT devices and the server layer. The gateway layer may include 

devices such as routers, gateways, and access points. 

6. The OMA architecture uses standardized protocols and data models 

to enable interoperability between different IoT devices and 

platforms. Some of the key protocols and data models used in the 

OMA architecture include: 

6.1 Lightweight M2M (LwM2M): This protocol is used for device 

management and enables remote management of IoT devices. 

LwM2M uses CoAP as its underlying protocol. 

6.2 OMA DM (Device Management): This protocol is used for 

device management and enables remote management of IoT 

devices. OMA DM uses HTTP or CoAP as its underlying 

protocol. 

6.3 OMA Lightweight Machine-to-Machine (OMA LwM2M) 

Enabler: This set of specifications defines a standardized 

framework for IoT device management. It includes 

specifications for device management, data management, and 

security. 



 

 
93 

 

Service Layer Protocol 6.4 OMA Sensor Things API: This API is used to access and 

manage sensor data from IoT devices. 

7 Overall, the OMA architecture provides a comprehensive framework 

for building and managing IoT devices and platforms. It enables 

interoperability, security, and manageability, making it easier to 

develop and deploy IoT solutions. 

7.5 BBF  

1.  BBF (Broadband Forum) is a global consortium of over 100 industry-

leading companies that develop and promote broadband network 

technologies, including those related to the Internet of Things (IoT).  

2. The BBF's work in the IoT space is focused on defining standards and 

best practices for connecting IoT devices to broadband networks, 

enabling the development of more reliable, scalable, and secure IoT 

solutions. 

3.  The BBF's IoT work is organized around several key areas: 

3.1  Device management: The BBF's work in this area is focused on 

developing standards and best practices for managing large 

numbers of IoT devices connected to broadband networks. This 

includes defining protocols for device discovery, configuration, 

firmware updates, and diagnostics. 

3.2  Security: The BBF recognizes the importance of security in IoT 

deployments and has developed a range of security standards 

and best practices for IoT devices and networks. These include 

guidelines for securing IoT devices, as well as protocols for 

secure communication between devices and the network. 

3.3  Data analytics: The BBF is working to develop standards and 

best practices for collecting, analyzing, and using data 

generated by IoT devices. This includes developing standards 

for data formats, protocols for data transfer and storage, and best 

practices for data analytics and machine learning. 

3.4  Interoperability: The BBF is committed to promoting 

interoperability between IoT devices and networks. This 

includes developing standards for device interoperability, as 

well as protocols for interoperable data exchange and 

communication. 

3.5  One of the BBF's key contributions to the IoT space is its Open 

Broadband – IoT (OB-IoT) project, which aims to define a 

standardized architecture for IoT deployments on broadband 

networks. The OB-IoT architecture consists of several layers, 

each with a specific function: 



   

 
94 

Architecturing of IoT 3.6  Device layer: This layer consists of the IoT devices themselves, 

as well as the software and firmware that enable them to connect 

to broadband networks. The BBF has developed standards and 

best practices for device management, security, and data 

analytics in this layer. 

3.7  Gateway layer: This layer provides connectivity between IoT 

devices and the broadband network. Gateways may be 

dedicated devices or integrated into broadband modems or 

routers. The BBF has developed standards and best practices for 

gateway management, security, and interoperability. 

3.8 Network layer: This layer includes the broadband network 

infrastructure, including switches, routers, and other network 

devices. The BBF has developed standards and best practices 

for network management, security, and interoperability. 

3.9  Application layer: This layer includes the applications and 

services that run on top of the broadband network, including 

cloud-based services and analytics platforms. The BBF has 

developed standards and best practices for application 

development, security, and interoperability. 

4  The OB-IoT project is supported by a range of BBF members, 

including network operators, equipment vendors, and service 

providers. The project aims to accelerate the development and 

deployment of IoT solutions on broadband networks, promoting 

interoperability, security, and scalability. 

5  In addition to the OB-IoT project, the BBF is involved in a range of 

other initiatives related to IoT, including the development of 

standards and best practices for smart home networks, smart cities, 

and industrial IoT deployments. 

6  Overall, the BBF's work in the IoT space is focused on defining 

standards and best practices that enable the development of more 

reliable, scalable, and secure IoT solutions. The OB-IoT project is a 

key part of this work, providing a standardized architecture for IoT 

deployments on broadband networks. With the support of its 

members, the BBF is well-positioned to drive innovation and promote 

interoperability in the IoT space. 

7.  Provide an overview of the BBF's work in IoT, focusing on the key 

standards and specifications developed by the consortium. 

8. TR-069 is a specification developed by the BBF for the management 

of broadband networks. It provides a standard protocol for the remote 

management of network devices, including IoT devices.  

9. The TR-069 specification enables the management of devices over a 

wide range of network types, including Ethernet, Wi-Fi, and cellular 

networks. The specification supports a range of management 



 

 
95 

 

Service Layer Protocol functions, including configuration, software updates, and 

performance monitoring. 

10. The TR-069 specification has been widely adopted by the industry 

and is used by many service providers to manage their IoT networks. 

It has also been adopted by the European Telecommunications 

Standards Institute (ETSI) as a standard for the management of IoT 

devices. 

11. The User Services Platform (USP) is a specification developed by the 

BBF for the management of IoT devices. USP is designed to provide 

a standard, secure, and scalable framework for the management of IoT 

devices, including those that are deployed in homes and businesses. 

12. The USP specification is based on the TR-069 protocol and provides 

a standardized framework for the management of IoT devices, 

regardless of the type of network they are connected to.  

13. USP includes a range of management functions, including device 

discovery, configuration, and software updates. It also includes 

support for remote diagnostics, troubleshooting, and security 

management. 

14. USP has been adopted by the industry and is being used by many 

service providers to manage their IoT networks. It is also being 

promoted by the BBF as a standard for the management of IoT 

devices. 

15. G.hn is a standard developed by the BBF for the provision of high-

speed broadband services over any wired home network, including 

powerline, coaxial, and telephone line networks.  

16. G.hn provides a standard protocol for the transmission of data over 

these networks, enabling the delivery of high-speed broadband 

services to IoT devices. 

17. The G.hn standard has been widely adopted by the industry and is 

being used by many service providers to deliver broadband services 

to homes and businesses.  

18. It is also being used to provide connectivity for IoT devices, enabling 

the deployment of IoT solutions over existing home networks. 

19. FAN (Fixed Access Network) is a specification developed by the BBF 

for the management of broadband access networks. FAN provides a 

standardized framework for the management of broadband access 

networks, including those that are used for the delivery of IoT 

services. 

20. FAN includes a range of management functions, including network 

discovery, topology discovery, and service discovery. It also includes 

support for network security, device management, and service 

management. 



   

 
96 

Architecturing of IoT 21. FAN has been adopted by the industry and is being used by many 

service providers to manage their broadband access networks. It is 

also being used to manage IoT networks, providing a standardized 

framework for the management of IoT devices. 

22. Open Broadband - Broadband Access Abstraction (OB-BAA)-OB-

BAA is a specification developed by the BBF for the management of 

broadband access networks.  

23. OB-BAA provides a standardized framework for the management of 

broadband access networks, including those that are used for the 

delivery of IoT services. 

24. OB-BAA includes a range of management functions, including 

network discovery, topology discovery, and service discovery. It also 

includes support for network security, device management, and 

service management. 

25. OB-BAA is being promoted by the BBF as a standard for the 

management of broadband access networks. 

 

Fig 3 USP Agent and controller Architecture 



 

 
97 

 

Service Layer Protocol 6.6 SUMMARY 

In this chapter we learned about various protocols under service layer 

1. OneM2M is a promising standard for IoT applications, offering 

several advantages such as interoperability, scalability, security, and 

standardization. 

2. The OMA architecture provides a comprehensive framework for 

building and managing IoT devices and platforms. 

3. The ETSI M2M architecture is designed to be modular and flexible, 

allowing different components to be added or removed as needed. 

4. OB-BAA is being promoted by the BBF as a standard for the 

management of broadband access networks 

6.7 QUESTIONS 

1.  Explain the concept of OneM2M in detail? 

2.  What is the need for ETSI framework in IOT service layer? 

3.  Explain in detail the OMA framework? 

4.  Illustrate the concept of BBF in brief. Justify its protocols which are 

a part of BBF? 

6.8 REFERENCES 

1. https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html 

  

 

https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

	01-Unit 1 Module 1
	02-Unit 1 Module 2
	03-TYCS Unit 2_structure
	04-Transport Layer
	05-IOTSessionlayer
	06-Service Layer Protocol



