T.Y.B.Sc. (C. S.)
SEMESTER -V (CBCS)

GAME PROGRAMMING

SUBJECT CODE: USCS507

© UNIVERSITY OF MUMBAI

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor
University of Mumbai, Mumbai

Prin. Dr. Ajay Bhamare Prof. Prakash Mahanwar
Offg. Pro Vice-Chancellor, Director,
University of Mumbai IDOL, University of Mumbai

Programme Co-ordinator

Course Co-ordinator

Editor

Course Writers

: Shri Mandar Bhanushe
Head, Faculty of Science and Technology IDOL,
Univeristy of Mumbai — 400098

Ms. Mitali Vijay Shewale

Doctoral Researcher,

Veermata Jijabai Technological Institute
HR Mahajani road, Matunga, Mumbai

: Palash Ingle
Assistant Professor,
Mumbai

: Saba Ansari,
Assistant Professor,
J.k college of science and commerce
Ghansoli, Navi Mumbai

: Ninad Dani
Assistant Professor,
Vijayalakshmi Vishwanath Dalvie College,
Talere Kankavali
Sindhudurg, Maharashtra.

August 2023, Print - 1

Published by : Director,
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by: Mumbai University Press

CONTENTS

Unit No. Title Page No.
1. Cartesian Coordinate SYSLEccooiuiiiiiiiiiieeiiiiiee ettt eesiaee e e 1
2 VBCEOT ettt e e ettt e e e e et e e e e e e e 11
3. Transformation........oociiiiiiiiiiiieiiicete et e 30
4. Graphics Processing Unit.........oooooiiiiiiiiieieeieee ettt e e e e 48
5 DIFECEX L1ttt 54
6. Direct3D 11 Rendering Pipeline..........oooeeiiiiiiiieiieeiiieeee e 65
7. Interpolation And Character ANImMation.............cceeveeiuriiieeeeeeeeriiiireeeeeeeeeeeennnee 127
8. Introduction To Rendering ENginesccccceviieieiiiiiiiiiee e, 174
9. Unity ENGINeccoiiiiiiiiiiiiie e 192
LO. SCIIPHNEZ ettt ettt e e et e s ettt e e e ettt e e e eabbteeeeeaseeeeeaans 211

T.Y.B.Sc. (C. S.)
SEMESTER - V (CBCS)

PROGRAMMING
SYLLABUS
Course: TOPICS (Credits : 03 Lectures/Week: 03)
USCS507 Game Programming
Objectives:

Learner should get the understanding computer Graphics programming using Directx or Opengl.

Along with the VR and AR they should also aware of GPU, newer technologies and programming

using most important API for windows.

Expected Learning Outcomes:

Learner should study Graphics and gamming concepts with present working style of developers where

everything remains on internet and they need to review it, understand it, be a part of community and

learn.

Unit I

Mathematics for Computer Graphics, DirectX Kickstart:

Cartesian Coordinate system: The Cartesian XY-plane, Function Graphs,
Geometric Shapes, Polygonal Shapes, Areas of Shapes, Theorem of Pythagoras
in 2D, Coordinates, Theorem of Pythagoras in 3D, 3D Polygons, Euler’s Rule

Vectors: Vector Manipulation, multiplying a Vector by a Scalar, Vector
Addition and Subtraction, Position Vectors, Unit Vectors, Cartesian Vectors,
Vector Multiplication, Scalar Product, Example of the Dot Product, The Dot
Product in Lighting Calculations, The Dot Product in Back-Face Detection, The
Vector Product, The Right-Hand Rule, deriving a Unit Normal Vector for a
Triangle Areas, Calculating 2D Areas

Transformations: 2D Transformations, Matrices, Homogeneous Coordinates,
3D Transformations, Change of Axes, Direction Cosines, rotating a Point about
an Arbitrary Axis, Transforming Vectors, Determinants, Perspective Projection,

Interpolation

DirectX: Understanding GPU and GPU architectures. How they are different
from CPU Architectures? Understanding how to solve by GPU?

15L

DirectX Pipeline and Programming:

Introduction To DirectX 11: COM, Textures and Resources Formats, The
swap chain and Page flipping, Depth Buffering, Texture Resource Views,
Multisampling Theory and MS in Direct3D, Feature Levels

Direct3D 11 Rendering Pipeline: Overview, Input Assembler Stage (IA),
Vertex Shader Stage (VS), The Tessellation Stage (TS), Geometry Shader Stage
(GS), Pixel Shader Stage (PS), Output merger Stage (OM)

Understanding Meshes or Objects, Texturing, Lighting, Blending.

Unit 11 Interpolation and Character Animation: 15L
Trigonometry: The Trigonometric Ratios, Inverse Trigonometric Ratios,
Trigonometric Relationships, The Sine Rule, The Cosine Rule, Compound
Angles, Perimeter Relationships

Interpolation: Linear Interpolant, Non-Linear Interpolation, Trigonometric
Interpolation, Cubic Interpolation, Interpolating Vectors, Interpolating
Quaternions

Curves: Circle, Bezier, B-Splines

Analytic Geometry: Review of Geometry, 2D Analytic Geometry, Intersection

Points, Point in Triangle, and Intersection of circle with straight line.

Introduction to Rendering Engines: Understanding the current market
Rendering Engines. Understanding AR, VR and MR.Depth Mappers, Mobile
Phones, Smart Glasses, HMD’s

Unity Engine: Multi-platform publishing, VR + AR: Introduction and
Unit III | working in Unity, 2D, Graphics, Physics, Scripting, Animation, Timeline, | 15L
Multiplayer and Networking, Ul, Navigation and Pathfinding, XR, Publishing.

Scripting: Scripting Overview, Scripting Tools and Event Overview

XR: VR, AR, MR, Conceptual Differences. SDK, Devices

Text Book(s):
1) Mathematics for Computer Graphics, John Vince, Springer-Verlag London, 5™ Edition,2017

2) Mathematics for 3D Game Programming and Computer Graphic, Eric Lengyel, Delmar
Cengage Learning, Delmar Cengage Learning,2011

3) Introduction To 3D Game Programming With Directx® 11,Frank D Luna, Mercury Learning
And Information,2012.
4) https://docs.unity3d.com/Manual/index.html - Free
Additional Reference(s):
1) Computer Graphics, C Version, Donald Hern and Pauline Baker, Pearson Education, 2nd
Edition, 1997
2) HLSL Development Cookbook, Doron Feinstein, PACKT Publishing,2013

CARTESIAN COORDINATE SYSTEM

Unit Structure :
1.0 Objective

1.1 Introduction of Cartesian Coordinate system
1.2 The Cartesian XY-plane,
1.2.1 Function Graphs
1.2.2 Geometric Shapes
1.2.3 Polygonal Shapes
1.2.4 Areas of Shapes
1.2.5 Theorem of Pythagoras in 2D
1.3 3D Coordinates
1.3.1 Theorem of Pythagoras in 3D
1.3.2 3D Polygons
1.3.3 Euler’s Rule
1.4 Summary
1.5 Questions

1.6 References

1.0 OBJECTIVES:

This chapter would make you understand the following concept:

J Use of Cartesian Plane in Graphic
o Representation of various function on graph
o Calculating area of a shapes using graph.

° Euler rule

1.1 INTRODUCTION

Cartesian Co-ordinate system is used to locate the position of a point in a
plane using two perpendicular lines. Points are represented in the form of
coordinates (X, y) in two-dimension with respect to x- and y- axes.

Game programming

A Cartesian coordinate system in two dimensions is commonly defined by
two axes, at right angles to each other, forming a plane (an xy-plane). The
horizontal axis is normally labelled x, and the vertical axis is normally
labelled y. In a three—dimensional coordinate system, another axis, normally
labelled z, is added, providing a third dimension of space measurement. A
plane consists of axes and quadrants. Thus, we call the plane the Cartesian
Plane, or the Coordinate Plane, or the Cartesian x-y plane. The axes are
called the coordinate axes.The figl.1 shows the cartesian coordinate system

with four quadrants.

Quadrant I Quadrant I

Negative Axis Positive Axis
X

Quadrant IIT Quadrant IV

Negative Axis Positive Axis

Ve

Fig:1.1 Cartesian Coordinate System with four Quadrant

1.2 The Cartesian XY-plane

o The Cartesian xy-plane provides a mechanism for translating
variables (Paired variables) into a graphical format.

. The variables are normally x and y that are used to describe a function

such as:-

y = 3x+2.

o Every value of x has a corresponding value of y.

Cartesian Coordinate
System

'
I
I
I
I
r
:

I
1
r
I
I
I
I
I
I

'
]
1
]
i it Bl
0 0
0 0
I A A M
X i i
i [[
[[[
[[[
[Y Y A _l____:_
[I [[
[I [[' :
I | 1 1
e e et I ____,____|____|____|____|____:_
I | I I
[| [[:
: ____i_____'r____' ____|____l___J____l____I____:_
A |
1 | | | !
| ——==———g-—F T i it s b
| 1

Fig:1.2The equation ¥y =3x + 2 using the xy Cartesian plane.

o A Cartesian XY plane consists of axes and quadrants in the cartesian
coordinate system.

o Descartes suggested that the letters x and y should be used to represent
variables, and letters at the other end of the alphabet should substitute
numbers. That is why equations such as 'y = ax2 + bx + ¢ is written
the way as it is.

o By convention, in cartesian coordinate system, the axis for the
independent variable x is horizontal, and the dependent variable y is
vertical. The axes intersect at 90 at a point called the origin.

o Measurements to the right and left of the origin are positive and
negative respectively, and measurements above and below the origin
share a similar sign convention. Together, the axes are said to create
a left-handed set of axes, because it is possible, using one’s left hand,
to align the thumb with the x -axis and the first finger with the y-axis.

o Any point P on the Cartesian plane is identified by an ordered pair of
numbers (X, y) where x and y are called the Cartesian coordinates of
P.

o Mathematical functions and geometric shapes can then be represented
as lists of coordinates inside a program.

1.2.1 Function Graphs
o A Different type of functions, such as
y = mx + ¢ (linear function),

y = ax? + bx + ¢ (quadratic function),

Game programming y= axC+bx?+cx +d (CUbiC),
y = asin(x) (trigonometric), etc.
will create familiar shapes that permit the function to be easily identified.

o Linear functions are straight lines, quadratics are parabolas, cubic will
have an ‘s’ shape, and trigonometric functions will have a wave-like
trace.

J Fig: 1.3 Shows examples of each type of function.

i i | '

___'l____|'___+____"____J'__'
i

i i !

i i !

_‘____4____1___.

ic
we | 1L

Y'.‘

Fig: 1.3: Graph of four _function type.

o Such graphs are used in computer animation to control the movement
of objects, lights and the virtual camera.

o But instead of describing the relationship between x and y, the graphs
show the relationship between an activity such as movement, rotation,
size, brightness, colour, etc., with time. Figure 1.4 shows an example
where the horizontal axis marks the progress of time in animation
frames, and the vertical axis records the corresponding brightness of
a virtual light source.

A Cartesian Coordinate
System
¢
8
=
2
&
1234567891011 1213 14 15 16 17 18 19 20
Frames
Fig:1.4: Graph showing relationship between Brightness and
frames

Such a graph helps animator to make changes to the function with the aid
of interactive software tools and achieve appropriate animation.

1.2.2 Geometric Shapes

o Computer graphics requires that 2D shapes and 3D objects have a
numerical description of some sort.

o Shapes can include polygons, circles, arbitrary curves, mathematical
functions, fractals, etc., and objects can be faceted, smooth, bumpy,
furry, gaseous, etc.

o The Cartesian plane also provides a way to represent 2D shapes
numerically, which permits them to be manipulated mathematically.

1.2.3 Polygonal Shapes

o A polygon is constructed from a sequence of vertices (points) as
shown in Figure 1.5.

o A straight line is assumed to link each pair of neighbouring vertices;
intermediate points on the line are not explicitly stored.

o There is no convention for starting a chain of vertices, but software
will often state whether polygons have a clockwise or anti-clockwise
vertex sequence.

Game programming

Y X Y
- r 3 1 2
(1.4) 4 2
4 3
1 4
o (4.3)
Tablel.1:
Polygon’s
cl Coordinate
(1.2) (4.2)
1 2 3 4 X

Fig:1.5 A simple polygon created with four vertices shown in the

If the vertices in Figure 1.5 had been created in an anti-clockwise
sequence, they could be represented in a tabular form as shown in the
above table 1.1, where the starting vertex is (1, 1), but this is arbitrary.

We can now perform various arithmetic and mathematical operations
on this list of vertex coordinates.

For example, if we double the values of x and y and redraw the
vertices, we discover that the form of the shape is preserved, but its
size is doubled with respect to the origin.

Similarly, if we divide the values of x and y by 2, the shape is still
preserved, but its size is halved with respect to the origin.

On the other hand, if we add 1 to every x -coordinate and 2 to every
y-coordinate and redraw the vertices, the shape’s size remains the
same but it is moved 1 unit ahead horizontally and 2 units ahead
vertically.

1.2.4 Area of a Shape

The area of a polygonal shape is readily calculated from its list of
coordinates. For example, using the list of coordinates shown in Table
1.2 :the area is computed by

X Y
X0 YO0
X1 Y1
X2 Y2
X3 Y3

Table 1.2 Polygon’s
Coordinates

Area=1/2 [(x0yl — x1y0) + (x1y2 — x2y1) + (x2y3 — x3y2) + (x3y0 —
x0y3)]

You will observe that the calculation sums the results of multiplying
an x by the next y, minus the next x by the previous y. When the last
vertex is selected, it is paired with the first vertex to complete the
process. The result is then halved to reveal the area.

As asimple test, let’s apply this formula to the shape described in Fig.
1.5

Area=12 [(1x2—4x2)+ (@ x3-4x2) + (4x4-1x3)+(1x2-1x4

)]

=1/2[-6 +4 + 13 - 2]

=4.5

The beauty of this technique is that it works with any number of
vertices and any arbitrary shape.

Another feature of this technique is that if the original set of
coordinates is clockwise, the area is negative. Which means that the
calculation computes vertex sequence as well as area. To illustrate this
feature, consider the below table for the above fig: 1.5 with list of
polygon’s coordinates in clockwise sequence:

X Y
1 2
1 4
4 3
4 2

Area=1/2 [(x0yl — x1y0) + (x1y2 — x2y1) + (x2y3 — x3y2) + (x3y0 —
x0y3)]

=12[(1x4 -1x2)+(1x3-4x4)+(4x2-4x3)+(4x2-1x2)]

=1/2[2 -13 -4 + 6]

=-45

The minus sign indicates that the vertices are in a clockwise sequence.

1.2.5 Theorem of Pythagoras in 2D

Pythagoras proved that the squared length of a plus the squared
length of b equals the squared length of ¢, if a, b and ¢ form a triangle
where angle ab is 90°.

Cartesian Coordinate
System

Game programming o This results in the equation:
a2+ h2=c2
Solving it for ¢ we will get
c=V(a?+b?

o We can calculate the distance between two points by applying the
theorem of Pythagoras.

YA
Py
Yo ;
Ay a4
Py _—
Y- q-
|
- -
X1 Ax X3 X

Fig:1.6: Calculating the distance between two

Figure 1.6 shows two arbitrary points P1(x1, y1) and P2(x2, y2). The
distance Ax = x2—x1 and Ay = y2—y1. Therefore, the distance d between P1
and P2 is given by

d = Ax? + Ay2.

1.3 3D COORDINATES

. In the 2D Cartesian plane a point is located by its x - and y-
coordinates.

o But when we move to 3D there are two ways in which the third z-axis
can be positioned.

o Figure 1.6 shows the two ways, which are described as left- and right
handed axial systems.

v Y Cartesian Coordinate
System

X z Z X
Left Handed Axial Right Handed Axial
Svstem System

Fig:1.6 Two Axial Svstem in 3D

The left-handed system allows us to align our left hand with the axes
such that the thumb aligns with the x -axis, the first finger aligns with
the y-axis and the middle finger aligns with the z -axis.

The right-handed system allows the same system of alignment, but
using our right hand.

The choice between these axial systems is arbitrary, but one should
be aware of the system employed by commercial computer graphics
packages.

1.3.1 Theorem of Pythagoras in 3D

The theorem of Pythagoras in 3D is a natural extension of the 2D rule.
It is also applicable to higher dimensions.

Given two arbitrary points P1(x1, y1, z1) and P2(x2, y2, z2),

the distance Ax =x2 —x1, Ay =y2 —yl and Az= 22 — z1.

Therefore, the distance d between P1 and P2 is given by

d =V (AX? + Ay? + AZ?)

1.3.2 3D Polygons

The simplest 3D polygon is a triangle, which is always planar, i.e., the
three vertices lie on a unique plane.

Planarity is very important in computer graphics because rendering
algorithms assume that polygons are planar.

For instance, it is quite easy to define a quadrilateral in 3D where the
vertices are not located on one plane. When such a polygon is
rendered (presented) and animated, improper highlights can result,

Game programming

10

simply because the geometric techniques (which assume the polygon
is planar) give rise to errors.

1.3.3 Euler’s Rule

o In 1619, Descartes discovered relationship between vertices, edges
and the faces of a 3D polygonal object.

o According to him, faces + vertices = edges + 2.
o For example, consider a cube;
o it has 12 edges, 6 faces and 8 vertices, which satisfies this equation.

. This rule can be applied to a geometric database to discover whether
it contains any false features.

o Unfortunately for Descartes, for some unknown reason, the rule is
named after Euler

1.4 SUMMARY

The Cartesian plane and its associated coordinates are the basis for all
mathematics used for computer graphics. Shapes can be manipulated using
simple functions, and the plane can be extended into a 3D Cartesian space
that becomes the domain for creating objects, curves, surfaces, and a virtual
environment where they can be animated and visualized.

1.5 QUESTION

1) Explain in detail the Cartesian xy-plane.

2) Write a short note on Theorem of Pythagoras in 2D.
3) Write a short note on Theorem of Pythagoras in 3D.
4) Explain Euler’s Rule with suitable example.

5) Describe cartesian xy plane and explain the concept of function graph.

1.6 REFERENCES

Mathematics for Computer Graphics, John Vince, Springer-Verlag
London,2" Edition.

ke o ok ke o e ke

VECTOR

Unit Structure :
2.0 Objectives
2.1 Introduction
2.2 2d Vector
2.2.1 Vector Notation
2.2.2 Graphical representation of a vector
2.2.3 magnitude of a vector
2.3 3D Vectors
2..3.1 Vector Manipulation
2.3.1.1 Multiplying a Vector by a Scalar
2.3.1.2 Vector Addition and Subtraction
2.3.2 position Vector
2.3.3 Unit Vector
2.3.4 Cartesian Vectors
2.3.5 Vector Multiplication
2.3.5.1 Scalar Product
2.3.5.1.1 Example of the Dot Product
2.3.5.1.2 The Dot Product in Lighting Calculations
2.3.5.1.3 The Dot Product in Back-Face Detection
2.3.5.2 The Vector Product
2.3.5.2.1 The Right-Hand Rule
2.4 Deriving a Unit Normal Vector for a Triangle
2.5 Areas
2.5.1 Calculating 2D Areas
2.6 Summary
2.7 Questions
2.8 References

2.0 OBJECTIVES:

This chapter would make you understand the following concept:

o Basic operations on vector.

o Use of dot product and cross product in computer graphics

Game programming

12

Power of unit vector in calculation
Position vector

Cartesian Vectors

2.1 INTRODUCTION:

Vectors are a relatively new arrival to the world of mathematics,
dating only from the 19th century.

Vectors, in Maths, are objects which have both, magnitude and
direction. Magnitude defines the size of the vector. It is represented
by a line with an arrow, where the length of the line is the magnitude
of the vector and the arrow shows the direction.

Vectors provide us with some elegant and powerful techniques for
computing angles between lines and the orientation of surfaces.

They also provide a clear framework for computing the behaviour of
dynamic objects in computer animation and illumination models in
rendering.

We always use single number to represent quantities such as, height,
age, shoe size, waist and chest measurements. Such quantities are
called scalars.

In computer graphics scalar quantities include colour, height, width,
depth, brightness, number of frames, etc.

On the other hand, there are some things such as wind, force, weight,
velocity and sound etc, that require more than one number to represent
them.

For example, any sailor knows that wind has a magnitude and a
direction. The force we use to lift an object also has a value and a
direction. Similarly, the velocity of a moving object is measured in
terms of its speed (e.g., miles per hour) and a direction such as north-
west. Sound, too, has intensity and a direction. These quantities are
called vectors.

In computer graphics, vectors are generally made of two or three
numbers.

Mathematicians such as Caspar Wessel (1745-1818), Jean Argand
(1768 1822) and John Warren (1796-1852) were simultaneously
exploring complex numbers and their graphical representation. In
1837, Sir William Rowan Hamilton (1788-1856) made his
breakthrough with quaternions. In 1853, Hamilton published his book
Lectures on Quaternions in which he described terms such as vector,
transvector and provector. Hamilton’s work was not widely accepted
until 1881, when the American mathematician Josiah Gibbs (1839—
1903) published his treatise Vector Analysis, describing modern
vector analysis.

2.22D VECTORS Vector

o In computer graphics we use 2D and 3D vectors.
o It is a vector in 2D space.

2.2.1 Vector Notation
o A scalar such as x is a name for a single numeric quantity.

. However, because a vector contains two or more numbers, its
symbolic name is printed using a bold font to make it different from
a scalar variable.

Examples are n, i and Q.

o When a scalar variable is assigned a value, we use the standard
algebraic notation

X=3

o However, when a vector is assigned its numeric values, the following
notation is used:

n= 3 which is called a column vector.

o The numbers 3 and 2 are called the components of n, and their
position within the brackets is significant.

o A row vector transposes the components horizontally, n = [3 2]"
,where the superscript T means transposition.

2.2.2 Graphical Representation of Vectors

o As Vectors have to express direction as well as magnitude, an arrow
could be used to indicate direction and a number can be used to
specify magnitude.

o Cartesian coordinates provide an excellent mechanism for visualizing
vectors and allowing them to be included within the classical
framework of mathematics.

o Figure 2.1 shows a vector represented by a short line segment. The
length of the line represents the vector’s magnitude, and its orientation
defines its direction. But as we can see from the figure, the line does
not have a direction. Even if we attach an arrowhead to the line, which
is standard practice for annotating vectors in books and scientific
papers, the arrowhead has no mathematical reality.

13

,S
=
Q
o .
wn
S
. 23
| 1 ' !
.“.|||_I.-nnnl_.:nn.”innl.“inn!_in! M.o > R S S
| 1 1] “ o] 1 | “
| 1 1 ! e c ! ! H
_ R A I S Lo
Bt e e e 7 U A SR (U N (S P S T
T 2 e
i |
e T ;£ b
| i i ! ! = o C | i |
! R g =5 A
KN E— LR R S L 2o LS SO S
| oo - = S oo
! A I ° ¥ 9 A
. L S e g s LI S S
I ! i | | g ie) I I !
| 1 ! “ H =]) | 1 1
i S A R g oE]
A I e S E 25 I S
i f=T ! ! ! . @ m c | I i
| 1 [H H @ o | ! !
| | ! | Vl. 1= m o 1 1 !
' | | T ! B c . ; "
| o g 28 R
|
! ' i i | i L 8 ! ! |
e R e S S O -
| 1 | 1 ! m o 0 1 1 !
INERE 2 2% e
I (@)]
e L 5 g8 e
1 1 ! ! Q = 1 1 1
i 1 1 ! ! e — I | !
“ ! “ ' | — o > | | i
B e SRR R S S o S 3 S
| T w5 D Co
! I M D E A
TR S R, [N R S Sy = I S S
! A A S5 T
! ! ! | | N ..hl. | | 1
| l | | [1) = 1 [!
T T e it Tttt s e
£ c
- — @®
b P
=i

Game programming

(2,2)and

2, 3).

Fig:2.2 Two vectors r and s have the same magnitude and opposite
2) and its head by (x2, y2)

directions

For example, in Figure 2.2 the vector r has its tail defined by (x1, y1)
(1

its head by (x4, y4) = (1, 1).

Vector s, on the other hand, has its tail defined by (x3, y3)

14

o The x - and y-components for r are computed as follows:
Xr=(x2-x1) x=2-1=1
yr=u2-yl) yr=3-2=1

o whereas the components for s are computed as follows:

Xs=(x4—x3) xs=1-2=-1
Ys=(y4-y3) ys=1-2=-1
Xs=—1and ys=—1
The negative value of xs and ys shows the direction of the vector s.

In general, if the coordinates of a vector’s head and tail is given by (xh, Yh)
and (x, Yt respectively, then its components Ax and Ay are given by

AX = (Xh — Xt)
Ay = (yh = 1)

One can readily see from this notation that a vector does not have a unique
position in space. It does not matter where we place a vector: so long as we
preserve its length and orientation, its components will not alter.

2.2.3 Magnitude of a Vector

o The magnitude of a vector r is expressed by |Irll and is computed by
applying the theorem of Pythagoras to its components:

Irll = Ax? + Ay?

To illustrate this idea, consider a vector defined by (xn, yn) = (3, 4) and (Xt,
y) = (1, 1).

The x - and y-components are 2 and 3 respectively.
Therefore, its magnitude is equal to

V22 + 32 =3.606

2.3 3D VECTORS

o It is extremely simple to extend the notation of 2D vector to include
an extra dimension. Figure 2.3 shows a 3D vector r with its head, tail,
components and magnitude annotated.

Vector

15

Game programming

16

Fig:;2.3 The 3D vector with its components Ax, Ay, Az, which are the
differences between the head and tail coordinates.

As it is a 3D vector, it will be having 3 components, i.e., Ax, Ay and
Az.

The components and magnitude of a 3D vector are given by

AX = (Xh — Xt)
Ay = (yn = 1)
AZ = (znh — zv)

[t = V (AX? + Ay? + AZ?)

2.3.1 Vector Manipulation

As vectors are different from scalars, a set of rules has been developed
to control how the two mathematical entities interact with one
another.

For example, we need to consider vector addition, subtraction and
multiplication, and how a vector can be modified by a scalar.

Vector manipulation is the power to manipulate the properties of
objects described via vectors by modifying these vectors directly.

2.3.1.1 Multiplying a Vector by a Scalar Vector

o When a vector is multiplied by a positive scalar quantity, then
the magnitude of the vector changes in accordance with the
magnitude of the scalar butthe direction of the vector remains
unchanged.

o But if the vector is multiplied by a negative scalar quantity, then the
direction of the vector will be just opposite to the original direction.

. Given a vector n, 2n means that the vector’s components are doubled.

3 6
. For example, if n = [6] then 2n= [12] which seems logical.
5 10

o Similarly, if we divide n by 2, its components are halved.
2.3.1.2 Vectors Addition and Subtraction

Given two vectors r and s, r = s is defined as :-

Xr XS xXr + xs
r= lyrl S= lysl rts==|yrtys
zr A zZr + zs

Vectors addition is commutative in nature: i.e.,a+b=b+a

of] B~ -

However, like scalar subtraction, vector subtraction is not commutative. a

And

5
7
9

—b#b—a
3 2 1 2 3 -1
Eg. H H :[5 And 1] H :H
5 4 1 4 5 -1
So,a—b#b-a.

Position Vectors

o Given any point P (X, Yy, z), a position vector p can be created by
assuming that P is the vector’s head and the origin is its tail.

o In other words, position vector is a vector whose tail is the origin. That
is the coordinates of the tail of the position vector will be (0,0,0).

° Because the tail coordinates are (0, 0, 0), the position vector’s
components are x,y, z.

. Consequently, the position vector’s magnitude ||p|| will be equal to ¥
(X% +y?+ 7%

17

Game programming o For example, the point P(4, 5, 6) creates a position vector p relative
to the origin:

4
P :H and ||p|| = V (4% + 5% + 62) = 20.88

' 9
i i 1 1 i
S T S R R
1
TSI TTTTTT T T TTTTT T T T____f____:_____ll_____r___ :
]]]]]
i i i i i ' ' ' H 1 '
1 1 ' ' 1 L : : H 0 :
[R T [S [e,
i i 1 1 1 ' T [[
1 1]] 1 [! H H ' [
]] ' '] ! H H H i !
i i i i i N H H H 1 H
HE HE e e T oy 0 T
[[[[" 'Hﬂﬂd : : H
' [[l [l [H H [H H
S N B e e
i i i i S ! : : !
[] [] [] [] ! H H [} H
------------------------------------ S S
H H H . ' [' \ [
' ' ' ' t Tail H i ' ! L X
;
X ! ! ! ! : H 4 1 ! ..‘
;
[' ' ' ' 0 [' H H '
' ']] ' ! H ' 1 i '
Vo] b b L ___ - S, A ___ 1
[a r r a o 3 H) i T
[[[[[
i i i i i [! ! j : [
' ' [[' ' ' ' H H '
[! I I ' ! H H H i !
[ttt it I i I i a---—f---- it ettt itk Attt 2
]] [} [}]
1 1 I I 1 [! ! \ H [
i i i i i ! H ! H 1 !
1 1]] 1 ! H L H 1 !
[it St q==--= q==--= ity it it Sl vt Siiied Bt
1 1 I I 1
1 1 I I 1 ! ! ! \ 1 !
i i i i i ! ! ! H i !
i i | |] ! ! ! L I !
VT T T I N
1
I I | | I | ! ! ! I |
1 i !
' 1 l 1 ! !
Y’

Fig:2.4: Graphical representation of Position Vector S

. The figure 2.4 show a position vector S whose tail is its origin and
coordinates of head is (2,2).

2.3.3 Unit Vectors
. By definition, a unit vector has a magnitude of 1.
J A simple example isi , where

1
0 il =1
0

o Unit vectors are extremely useful when we come to vector
multiplication.

o It is because multiplication of vectors involves taking their
magnitude, and if this is unity, the multiplication is greatly simplified.

o Furthermore, in computer graphics applications, vectors are used to
specify the orientation of surfaces, the direction of light sources and
the virtual camera. Again, if these vectors have a unit length, the
computation time associated with vector operations can be
minimized.

18

o Converting a vector into a unit form is called normalizing and is
achieved by dividing a vector’s components by its magnitude.

o To formalize this process, consider a vector r whose components are
X, Y, Z.

The magnitude ||r][=V (x*+y?+2?)

And the unit form of r are given by

X
o= ——
e [yl

Z

Consider the conversion of r into a unit form :

1§

1] = V12 + 22+3%)=\14

) 1 0.267
ru:m 21=10.535
3 0.802

2.3.4 Cartesian Vectors

o We have studied the scalar multiplication of vectors, vector addition
and unit vectors.

o we can combine all three to permit the algebraic manipulation of
vectors.

o To begin with, we will define three Cartesian unit vectors i, j, k that
are aligned with the x -, y- and z -axes respectively.

1 0 0
0 0 1
o Therefore, any vector aligned with the x-, y- or z -axes can be defined

by a scalar multiple of the unit vectors i, j and k respectively.

o For example, a vector 10 unit long aligned with the x -axis is simply
10i, and a vector 20 units long aligned with the z -axis is 20K.

o By employing the rules of vector addition and subtraction, we can
compose a vector r by adding three Cartesian vectors as follows:

r=ai+ bj+ck

Vector

19

Game programming

20

This is equivalent to writing r as

which means that the magnitude of r is readily computed as
| =V (2® + b?+ ¢?)

Any pair of Cartesian vectors such as r and s can be combined as follows:
r=ai+bj+ck

s=di+ej+fk

rts=(azxd)i+(bze)j+(cxf)k

For example, given

r=3i+2j+4kands=2i+5j+6k

then

r+s=>5i+7j+10k

and

Ir +s||=(5%+ 72+ 10%) =~ 174 = 13.19

2.3.5 Vector Multiplication

o Although vector addition and subtraction are useful in resolving
various problems, vector multiplication provides some powerful ways
of computing angles and surface orientations.

. The multiplication of two scalars is very familiar: for example, 6x7
or 7x 6 =42.

o However, when we consider the multiplication of vectors, we are
basically multiplying two 3D lines together, which is not an easy
operation to visualize.

o Mathematicians have discovered that there are two ways to multiply
vectors together: one gives rise to a scalar result and the other give
rise to a vector result.

o When the multiplication of two vectors give rise to a scalar result then
it is known as the scalar product.

o When the multiplication of two vectors give rise to a vector result then
it is known as the vector product.

2.3.5.1 Scalar Product Vector

We could multiply two vectors r and s by using the product of their
magnitudes:

el - fIsfl-

Although this is a valid operation, it does not get us anywhere because
it ignores the orientation of the vectors, which is one of their important
features.

But this concept is developed into a useful operation by including the
angle between the vectors.

K "
4/’/5//*

Fig;2.5 The projection of r on s creates the basis for the scaler product.

Figure 2.5 shows two vectors r and s that have been drawn, for
convenience, such that their tails touch.

Taking s as the reference vector, which is an arbitrary choice, we
compute the projection of r on s, which takes into account their
relative orientation.

The length of r on s is

[Irll cos(B).

We can now multiply the magnitude of s by the projected length of r:
[IslI-lIr[| cos(B).-

This scalar product is written

- r=|sll - [Irl| cos(B)

21

Game programming

22

. The dot symbol ‘-’ is used to represent scalar multiplication, to
distinguish it from the vector product.

o Because of this symbol, the scalar product is often referred to as the
dot product.

o To compute dot product, we define two Cartesian vectors r and s, and
proceed to multiply them together using the dot product definition:

r=ai+bj+ck
s=di+ej+fk
therefore

r-s=(ai+bj+ck)-(di +ej+fk)=ai- (di +ej+fk)+ bj-(di + ej + fk)
+ ck-(di + ej + fk)

r-s=ad (i-i)+ae(i-j)+af(i-k) +bd(ji)+be(-j)+bf(-Kk) +cd
(k - i) +ce (k - j) + cf (k - k)

Using the definition of the dot product, terms such as (i - i), (j - j) and (k -
k) = 1, because the angle between i and i, j and j, or k and K is 0¢; and cos
(0°) = 1.

But because the other vector combinations are separated by 90°, and cos
(90°) = 0, all remaining terms will be equal to zero.

Bearing in mind that the magnitude of a unit vector is 1, we can write
lIsll - lIrll cos(B) = ad + be + cf
This result confirms that the dot product is indeed a scalar quantity.
2.3.5.1.1 Example of the Dot Product
To find the angle between two vectors r and s,
2 5
r :[—3] and s :[6
4 10
lIr]| =+ (2% + (-3)?+ 4%) =5.385 and

lIs|| =V (52 + 62 + 10?)= 12.689

Therefore

lIsl| - Ir|| cos(B) =2 x 5+(=3) x 6+4 x 10 =32
12.689 x 5.385 x cos(P) = 32

cos(B) = ——2— = 0.468

12.689 X 5.385

B=cos—1 (0.468) = 62.1°

The angle between the two vectors is 62.1°
2.3.5.1.2 The Dot Product in Lighting Calculations

o Lambert’s law states that the intensity of illumination on a diffuse
surface is proportional to the cosine of the angle between the surface
normal vector and the light source direction.

o This is shown in Figure 2.6. The light source is located at (20, 20, 40)
and the illuminated point is (0, 10, 0). In this situation we are
interested in calculating cos(p), which when multiplied by the light
source intensity gives the incident light intensity on the surface.

Light
Source

Fig:2.6 : . Lambert’s law representation

o To begin with, we are given the normal vector n to the surface. In this
case N is a unit vector, and its magnitude Inl =1.

4

The direction of the light source from the surface is defined by the vector s:

20-0 20
$=|20—-10| =10
40-0 40

lIsl| =V (207 + 10% + 40?) = 45.826
IInll - IIs| cos(B)=0 x 20 + 1 x 10 + 0 x 40 = 10
1 x 45.826 x cos(B) = 10

cos(B) =

Therefore, the light intensity at the point (0, 10, 0) is 0.218 of the original
light intensity at

10
45.826

=0.218

(20, 20, 40).

Vector

23

Game programming 2.3.5.1.3 The Dot Product in Back-Face Detection

Back-face detection means determination of whether a face of an
object is facing backward and therefore that face is invisible.

A standard way of identifying back-facing polygons relative to the
virtual camera is to compute the angle between the polygon’s surface
normal and the line of sight between the camera and the polygon.

If this angle is less than 90° the polygon is visible.
If it is equal to or greater than 90° the polygon is invisible.

An Example is shown in Figure 2.7. It is clear from the figure that the
right-hand polygon is invisible to the camera,

o Vig%

>90° Invisibl

Camera

Fig:2.7 Polygon’s Visibility

Let’s prove this concept algebraically. Let the camera be located at
(0,0,0) and the polygon’s vertex is (10, 10, 40). The normal vector is
[55-2]"

15

Inl=V(5%+5%+(-2)%)=7.348

The camera vector c is

—10
A
0 — 40
llcll =V (—10)? + (—10)? + (—40)?) = 42.426
Therefore
Il - llell cos(B)=5 x (=10) + 5 x (=10) + (=2) x (—40)

7.348 x 42.426 x cos(B) = —20

20

cos(B) = T7348 x 42426 —0.0634

B =cos—1 (—0.0634) =93.635¢

24 which shows that the polygon is invisible.

2.3.5.2 The Vector Product

o As mentioned above, there are two ways to obtain the product of two
vectors.

o The first is the scalar product, and the second is the vector product,
which is also called the cross product because of the ‘<’ symbol used
in its notation.

o It is based on the definition that two vectors r and s can be multiplied
together to produce a third vector t:

rxs=t

where |[t]| = ||r]| - ||s||sin(B), and B is the angle between r and s.

The vector t is normal (90°) to the plane containing the vectors r and s.
Once again, let’s define two vectors and proceed to multiply them together:
r=ai+bj+ck

s=di+ej+fk

rxs=(ai+bj+ck) x (di +ej +fk) =ai x (di + ej + k) + bj x (di +¢j +
fk) + ck x(di + ej + fk)

rxs=ad(ixi)+ae(ixj)+af(ixk)+hd(jxi)+bejxj)+bf(jxk)+
cd (k x i) + ce (k x j) +cf (k x k)

Using the definition for the cross product, operations such as (ixi), (jxj) and
(k x k) result in a vector whose magnitude is 0. This is because the angle
between the vectors is 0°, and sin(0°) = 0. Consequently, these terms
disappear and we are left with

rxs=ae(i x j) +af(i x k) + bd(j x i) + bf(j x k) + cd(k x i) + ce(k x j)

The mathematician Sir William Rowan Hamilton assumed that ixj = k , jxk
=iand kxi = J, but he also thought that j x i =- k, k x j=-iand i x k = -J.

Proceeding, then, with Hamilton’s rules, we reduce the cross-product terms
rxsto

r x s = ae(k) + af(—j) + bd(—k) + bf(i) + c¢d(j) + ce(—i) = (bf — ce)i + (cd —
af)j + (ae — bd)k

We now modify the middle term to create a symmetric result:
r x s =(bf —ce)i — (af — cd)j + (ae — bd)k

|b cl. 1@ €. . 1a b
rxs-|e f||- |d f|J + |d e|k

Remember that r x s does not equal s x r.

Vector

25

Game programming 2.3.5.2.1 The Right-Hand Rule

. The right-hand rule is an helper for working out the orientation of the
cross-product vector.

o Given the operation r x s, if the right-hand thumb is aligned with r,
the first finger with s, and the middle finger points in the direction of
L.

2.4 DERIVING A UNIT NORMAL VECTOR FOR A
TRIANGLE

. Figure 2.8 shows a triangle with vertices defined in an anti-clockwise
sequence from its visible side. This is the side we want the surface
normal to point upwards.

V1(0.2.2)

-

V2(0.1.4)

X

Fig:2.8 The normal vector t is derived from the cross-productr xs.

o Using the following information, we will compute the surface normal
using the cross product and then convert it to a unit normal vector.

J Create vector r between v1 and v3, and vector s between v2 and v3:
r=—i+j

s=—i+2k
rxs=t=(1x2-0x0)i—(-1x2-0x-1)J+-1x0—-1x-1)k
t=2i+2j+k

It =~ @2+ 22 +1%) =3

=2 34242
- tu—3l+3j+3k

The unit vector t, can now be used in illumination calculations, and as it has Vector
unit length, dot product calculations are simplified.

2.5 AREAS

Figure 2.9 shows two 2D vectors, r and s. The height h =[|s|| sin(B), therefore
the area of the parallelogram is

[[effb = {[r] - {Is[|sin(P)

Y

Fig:2.9 The area of the parallelogram formed by two vectors r and s equals
lIl] - lIs|sin B

But this is the magnitude of the cross product vector t.

Thus, when we calculate rxs, the length of the normal vector t equals the
area of the parallelogram formed by r and s. Which means that the triangle
formed by halving the parallelogram is half the area.

area of parallelogram = ||t||
area of triangle :% |[t]|

This means that it is a relatively easy exercise to calculate the surface area
of an object constructed from triangles or parallelograms. In the case of a
triangulated surface, we simply sum the magnitudes of the normal and halve
the result.

2.5.1 Calculating 2D Areas

o Figure 2.10 shows three vertices of a triangle Po(x0, y0), P1(x1, y1)
and P2(x2, y2) formed in an anti-clockwise sequence. We can imagine
that the triangle exists on the z = 0 plane, therefore the z-coordinates

are zero.
27

Game programming

L J

Fig:2.10 The area of the triangle formed by the vectors r and s is half the
magnitude of their cross product.

The vectors r and s are computed as follows:

x1—x0 x2 —x0
r Z[yl - yO] S :[yZ - yO]
0 0
r=(x1-—x0)i+(yl —y0)
s=(x2 —x0)i + (y2 —y0)j
I % sl| = (x1 = x0)(y2 — y0) — (x2 = x0)(y1 — y0)
=x1(y2 —y0) — x0(y2 — y0) — x2(yl — y0) + x0(y1 — y0)
=x1y2 —x1y0 — x0y2 — x0y0 — x2y1 + x2y0 + x0y1 — x0y0
=x1y2 —x1y0 — x0y2 — x2y1 + x2y0 + x0y]1
= (x0yl —x1y0) +(x1y2 — x2yl) +(x2y0 — x0y2)
But the area of the triangle formed by the three vertices is %Ilrxsll

Therefore

area =% [(x0y1 — x1y0) +(x1y2 — x2y1) + (x2y0 — x0y2)]

2.6 SUMMARY:

Vectors are of fundamental importance in the study of 3D computer
graphics, and we make extensive use of operations such as the dot product
and cross product throughout the computer graphics.

28

2.7 QUESTIONS: Vector

1)
2)

1)

2)
3)
4)

5)

6)

Explain in detail 3D vector manipulation.
Explain the following terms-

a. Position Vectors

b. Unit Vectors

c. Cartesian Vectors

How Dot product helps in Back Face Detection?
OR

What is back face detection problem? State and explain how dot
product is used to calculate back face detection.

Explain in detail Dot or Scalar product with suitable example.
How does Dot product help in Light Intensity calculation?

Applying the idea of dot product obtain the angle between two vectors
givenr (2,-3,4) and s (5,6,10).

Given a light source at (20,20,40) and the illuminated source as
(0,10,0) and unit vector n (0,1,0) check the visibility of the object.

Explain how to drive a unit normal vector for a triangle.

2.8 REFERENCES:

Mathematics for Computer Graphics, John Vince, Springer-Verlag
London,2" Edition.

o e o ke e ek

29

Game programming

30

TRANSFORMATION

Unit Structure :

3.0 Obijective:
3.1 Introduction:
3.2 2D Transformation

3.2.1 Translation

3.2.2 Rotation

3.2.3 Scaling

3.2.4 Reflection

3.2.5 Homogenous Coordinates
3.3 Matrices

3.3.1 Determinant of a Matrix
3.4 3D Transformation:

3.4.1 Rotation in 3D

3.4.2 Translation in 3D

3.4.3 Scaling in 3D

3.4.4 Homogenous Transformation Matrices for 3D
3.5 2D Rotation about an Arbitrary Point
3.6 Change of Axes

3.6.1 2D Change of Axes
3.7 Direction Cosines
3.8 Transforming Vectors
3.9 Perspective Projection
3.10 Summary
3.11 Question
3.12 References

3.0 OBJECTIVE:

In this chapter, we would investigate matrices as a tool for performing
transformations

such as translations, rotations, and scales. We introduce the concept of four-
dimensional homogeneous coordinates, which are widely used in 3D
graphics systems to move between different coordinate spaces.

3.1 Introduction:

Transformation means changing some graphics into something else
by applying rules.

In other words, we can define transformation as a change in object’s
properties.

In computer graphics we can have various types of transformation
such as translation, rotation, scaling etc.

When a transformation takes place on 2D plane it is called as 2D
transformation and when a transformation takes place on 3D plane it
is called as 3D transformation.

Transformation plays an important role in computer graphics to
reposition the graphic on the screen or change their size or orientation.

Although algebra is the basic notation for transformations, it is also
possible to express them as matrices, which provide certain
advantages for viewing the transformation and for interfacing to
various types of computer graphics hardware.

Transformations are used to scale, translate, rotate, reflect and shear
shapes and objects.

3.2 2D TRANSFORMATION

When a transformation takes place on 2D plane it is called as 2D
transformation.

3.2.1 Translation

Translation is a type of transformation that moves an object to a
different position on the screen.

You can translate a point in 2D by adding translation coordinate(tx,ty)
to the original coordinate (x.y) to get the new coordinate (x’,y’).

tx is a translation of an object about x-axis and ty is a translation of an
object about y-axis.

Cartesian coordinates provide a one-to-one relationship between
number and shape, such that when we change a shape’s coordinates,
we change its geometry.

Transformation

31

Game programming

32

Y

F 9
w
“ P(x.y)
- |CRTTTTTTTTTTTTTT ":

&y :
- Ij(m) ;
. Vou
' 1

1\
L
i

Fig:3.1 Translation of a point in 2D

From the above fig3.1 we can write:

X =x+tx

y =y Tty

tx,ty is called as translation vector or shift vector.
The above equation can be written in matrix form as:
716114

3.2.2 Rotation

o In rotation we rotate the object at particular angle from its origin

. From the following figure 3.2 we can see that the point p(x ,y) is
rotated is located at angle ¢ from horizontal x-axis and at distance r
from the origin.

L J

Fig:3.2 Rotation of a point in 2D

Let us suppose we want to rotate it at angle 0. After rotating a point p(X,y)

we will get new point p’(x’,y’).

Using standard trigonometry the original coordinates of point p(X,y) can be

represented as :

x=rcos¢p (1)

y=rsing. ... (2)

Same way we can represent the point p’(x’,y’) as —

x'=r cos(¢p+0) =r cospcosO — r sinpsin® ... 3)

y'=r sin(¢+0) = r cosdsind + r singpcosd ... (4)

substituting equation 1 and 2 in 3 and 4 we will get:

X' =X cosh — ysinb

y'=x sinf + ycosf

Representing the above equation in matrix form,

cosO sinb

(X' y1=[xy] [—sine cos0

OR
p=p.R
Where R is the rotation matrix

_[cos®6 sin0
—sin® cosO

Transformation

33

Game programming

34

The rotation angle can be positive and negative.

For positive rotation angle, we can use the above rotation matrix. However,
for negative angle of rotation, the matrix will change as shown below —

[cos(—=8) sin(—0)
“[—sin(—8) cos(—0)

3.2.3 Scaling
o To change the size of an object, scaling transformation is used.

o In the scaling process, you either expand or compress the dimensions
of the object.

o Scaling can be achieved by multiplying the original coordinates of the
object with the scaling factor to get the desired result.

Let us assume that the original coordinates are X, Y, the scaling factors are
(Sx, Sy), and the produced coordinates are X', Y'. This can be
mathematically represented as shown below —

X'=X.Sx and Y'=Y.Svy

The scaling factor Sx, Sy scales the object in X and Y direction respectively.
The above equations can also be represented in matrix form as below —

EERLE)

yl lyl'o Sy

Or

p’=p-S

Where S is the scaling matrix.

The scaling process is shown in the following figure 3.3.

)

X

Scaled

Original

v
W

Fig:3.3 Scaling of an objectin 2D

3.2.4 Reflection Transformation

Reflection is the mirror image of original object.

To make a reflection of a shape relative to the y-axis, we simply
reverse the sign of the x -coordinate, leaving the y-coordinate
unchanged

x=—xandy=y
To reflect a shape relative to the x -axis we reverse the y-coordinates:
x=xandy=-y

Y Y

Original
g Reflection Original

A A

A
A X

Reflection

(a) (b)

Fig:3.4 (a) A reflection of a shape relative to the x-axis (b) a reflectionofa
shape relative to the y-axis

3.2.5 Homogenous Coordinates

To perform a sequence of transformation such as translation followed
by rotation and scaling, we need to follow a sequential process —

Translate the coordinates,
Rotate the translated coordinates, and then

Scale the rotated coordinates to complete the composite
transformation.

To shorten this process, we have to use 3x3 transformation matrix
instead of 2x2 transformation matrix.

To convert a 2x2 matrix to 3x3 matrix, we have to add an extra
dummy coordinate W.

In this way, we can represent the point by 3 numbers instead of 2
numbers, which is called Homogenous Coordinate system. 35

Game programming

36

o In this system, we can represent all the transformation equations in
matrix multiplication.

o Following are matrix for two-dimensional transformation in
homogeneous coordinate:

10 tx 100
TranslationT=[0 1 ty| OR =| 0 1 0]
001 tx ty 1

Rotation (Clockwise) R=| sin8 Cos6 0

0 0 1
Cos0 sinf O]

Cosf — sinf 0]

Rotation (Anticlockwise) R= | —sin8 Cos6 O

0 0 1
Sx 0 0
Scaling S:[O Sy 0]
0 0 1

1 0 O
Reflection against x-axis=| 0 —1 0
0

0 1
-1 0 0
Reflection against y-axis=| 0 1 0
0 0 1

3.3 MATRICES

o Matrix notation was investigated by the British mathematician
Arthur Cayley around 1858.

o Caley formalized matrix algebra, along with the American
mathematicians Benjamin and Charles Pierce.

. Also, by the start of the 19th century Carl Gauss (1777-1855) had
proved that transformations were not commutative, i.e. T1 X T2 # T2
x T1, and Caley’s matrix notation would clarify such observations.

o For example, consider the transformation T1:

- ¥ = axr+ by
1 Yy = cx+dy

and another transformation T2 that transforms T1:

Transformation

" = Ax" + By
TZ X Tl 17 ! Jr
y' = Cx' + Dy
If we substitute the full definition of T1 we get
" = A(ax + by) + B(cx + dy)
TQ X Tl i
y" = Clax + by) + D(cx + dy)

which simplifies to

" = (Aa+ Be)x + (Ab+ Bd)y
Tg X T1))
(Ca+ De)x+ (Cb+ Dd)y

y"

Caley proposed separating the constants from the variables, as follows:

T T’ a b T
i = '
Y c d Y

where the square matrix of constants in the middle determines the
transformation.

= ax + by
Yy = cx + dy
Using Caley’s notation, the product T2 % T1 is
"1 [A B a!
y'| [C D Y

But the notation also intimated that

a” A B a b T
' | | C D ¢ d Y
and when we multiply the two inner matrices together they must produce

" = (Aa+ Be)r + (Ab+ Bd)y
y" = (Ca+ De)r+ (Ch+ Dd)y

37

Game programming

38

or in matrix form

" Ab+ Bd X

' | Cb+ Dd 1
otherwise, the two systems of notation will be inconsistent. This implies

that
B A B a b
| ¢ D c d

which demonstrates how matrices must be multiplied. Here are the rules for
matrix multiplication:

Aa + Be
C'a+ De

Aa + Be
C'a+ De

Ab+ Bd
Ch+ Dd

Aa+Be

e
i
|
i

E -1 B i

e m e ——mmmmm——————

1. The top left-hand corner element Aa+Bc is the product of the top row
of the first matrix by the left column of the second matrix.

S _— ——————

Ab+Bd A B ’ b

A ey T ey @

I T A

2. The top right-hand element Ab + Bd is the product of the top row of
the first matrix by the right column of the second matrix.

r_———— - - ———
H H

H 1
I 1
1 ! ! 1

Ca+Dc - C D c i

3. The bottom left-hand element Ca + Dc is the product of the bottom
row of the first matrix by the left column of the second matrix.

: Ch+Dd

-
i]]
! H I]

b !

Iffi

4. The bottom right-hand element Cb+Dd is the product of the bottom
row of the first matrix by the right column of the second matrix.

It is now a trivial exercise to confirm Gauss’s observation that T1 X T2 #

T2 x T1, because if we reverse the transforms T2 x T1to T1 x T2 we get

Aa+ Be Ab+ Bd a b A B
Ca+ De Cb+ Dd c d c D
which shows conclusively that the product of two transforms is not

commutative.
3.3.1 Determinant of a Matrix
The determinant of a 2 x 2 matrix is a scalar quantity computed. Given a
matrix
a b
c d

its determinant is ad — c¢b and is represented by

a b
c d

For example, the determinant of ll 9

2] is3x2-1x2=4

3.4 3D TRANSFORMATION:

When a transformation of an object takes place in 3D Plane that it is known
as 3D Transformation.

3.4.1 Rotation in 3D
. 3D rotation is not same as 2D rotation.

o In 3D rotation, we have to specify the angle of rotation along with the
axis of rotation.

. We can perform 3D rotation about X, Y, and Z axes.

o They are represented in the matrix form as below —

1 0 0

0 cosf8 —sinf

Ru(6)= 0 sin@ cos@
0 0 0

= o OO

Transformation

39

Game programming

40

Ry(0)=

Rz(0)= 0

cos@ 0 sind
0 1 0

—sinf@ 0 cos6
0 0 0

cosfd —sin8 0
sind Cosf8 O

0 1
0 0 0

RO OO R, OOoOOo

The above rotations are also known as yaw, pitch and roll.
The roll, pitch and yaw angles can be defined as follows:
roll is the angle of rotation about the z -axis

pitch is the angle of rotation about the x -axis

yaw is the angle of rotation about the y-axis

3.4.2 Translation in 3D

In Computer graphics,3D Translation is a process of moving an object
from one position to another in a three-dimensional plane.

The process of translation in 3D is similar to 2D translation.

A point can be translated in 3D by adding translation coordinates
(tx,ty,tz) to the original coordinates (x,y,z) to get the new coordinates

(xy’,z).

Translation matrix is given by:-

1 0 0 0 1 0 0 tx
o 1 0 o0 01 0 ty
™o 0o 1 0/° |0 0 1 ¢

tx ty tz 1 0 0 0 1

3.4.3 Scaling in 3D

You can change the size of an object using scaling transformation.

In the scaling process, you either expand or compress the dimensions
of the object.

Scaling can be achieved by multiplying the original coordinates of the
object with the scaling factor to get the desired result.

In 3D scaling operation, three coordinates are used.

Let us assume that the original coordinates are X,Y,Z scaling factors
are (SX,SY,Sz) respectively, and the produced coordinates
are X,Y'.Z'.

This can be mathematically represented as shown below —

Sx 0 0 O Transformation
S= 0 Sy 0 0
0O 0 Sz O
O 0 o0 1

It can be written as

Sx 0 0 O

] 1] r OS:)/OO
=X VA

oy ZI=EF Y A G s o

0 0 0 1

3.4.4 Homogenous Transformation Matrices for 3D

Transformation matrices is a basic tool for transformation usually 3x3 or
4x4 matrix are used for transformation. The following are the homogenous
matrices for various operation:

1 0 0 O 1 0 0 tx
o1 0 0 01 0 ty
TranslationT=1, 1 o] O |5 5 1 [
tx ty tz 1 0O 0 O 1
Sx O 0 O
) _10 Sy 0 O
Scaling S = 0 0 Sz 0
0 0 0 1
1 0 0 0
_ . 0 cos8 —sinf 0
Rotation about x axis Rx(0)= 0 sind cosf O
0 0 0 1
cos§ 0 sinf O
_ _ 0 1 0 0
Rotation abouty-axisRy(0) = _ . » o .. <0 o
0 0 o0 1
cos@ —sind 0 O
) _sin@ Cosf 0 0
Rotation about Rz(0) 0 0 1 0
0 0 0 1
3.52D ROTATION ABOUT AN ARBITRARY POINT

A rotation about the origin is given by

cos@ —sin6 0
l sin® cosG 0

1

Therefore, using matrices, we can develop a rotation about an arbitrary point
(px, py) as follows:

41

Game programming

42

!

X
/

x
= [translate(px, py)] - [rotate 0] - [translate(—px, —py)] - lyl
1

1

Which expands to

1 0 px] [cos® —sin® 0 1 0 —px X
==10 1 py sme cose 1 —py . yl
001 1

We can now concatenate these matrices into a single matrix by multiplying
them together. Let’s begin by multiplying the rotate 6 and the translate (—px,
—py) matrices together. This produces

x' 1 0 px] [cos® —sinB® —pxcos(0) + pysin(8)] rx
y" =10 1 py]| |sin@ cos® —pxsin(B) — py cos(G)]- l}’l
1 001 0 0 1 1

and finally we will get :-

cos® —sin® px(1 — cos(0)) + py sin(6)
] [sme cos® py(l — cos(8)) — px sm(e)] l l
1

Above is the matrix for 2D Rotation about an Arbitrary Point.

3.6 CHANGE OF AXES

o Points in one coordinate system often have to be referenced in another
one.

o For example, to view a 3D scene from an arbitrary position, a virtual
camera is positioned in the world space using a series of
transformations. An object’s coordinates, which are relative to the
world frame of reference, are computed relative to the camera’s axial
system, and then used to develop a perspective projection.

3.6.1 2D Change of Axes

o Figure 3.5 shows a point p(x, y) relative to the XY -axes, but we
require to know the coordinates relative to the X’Y” -axes.

Fy Y Ly
pEY)DPX.Y
. p(X,y)=p(x’,y

el

Fig.3.5 The XY -axes are translated by (tx, tv).

. To do this, we need to know the relationship between the two
coordinate systems, and ideally, we want to apply a technique that
works in 2D and 3D.

. I the second coordinate system is a simple translation (tx, ty) relative
to the reference system, as shown in Figure 3.5, the point p(x, y) has
coordinates relative to the translated system (x — tx, y — ty):

x' 1 0 —tx]px
y|=[0 1 -ty J'l
1 0 O 11t

If the X’ Y’ -axes are rotated 0 relative to the XY -axes, as shown in Figure
3.6, a point P(x, y) relative to the XY -axes has coordinates (x’, y’) relative
to the rotated axes given by

cos(—0) -—sin(—0) O
] l [sm(0) cos(—6) 0]
0 1

which simplifies to

y

x'l X1 [cos(®) sin(B) O
/)<L |

—sin(B) cos(B) O

1 0 0 1

Y
~
Al

~ X

*
v

Fig. 3.6 The secondary set of axes are rotated by 0.

o

the new axes given by
X
:
1
which simplifies to

o When a coordinate system is rotated and translated relative to the
x' cos(0) sin(0) 011 0 —tx

y’] = [—sin(e) cos(0)][O 1 —ty

x' cos(B) sin(B) —txcos(0) — tysin(0)] x

y'] = [—sin(e) cos(0) txsin(0) — ty cos(0)] [l

reference system, a point p (x, y) has coordinates (x’ , y’) relative to
1 0 0 1110 0 1
1 0 0 1

Transformation

43

Game programming

44

3.7 DIRECTION COSINES

Direction cosines are the cosines of the angles between a vector and
the axes, and for unit vectors they are the vector’s components.

Figure 3.7 shows two unit vectors X’ and Y’ , and by inspection the
direction cosines for X’ are cos(p) and cos(90° —f), which can be
rewritten as cos(f) and sin(f), and the direction cosines for Y’ cos(90e
+ B) and cos(P), which can be rewritten as — sin(p) and cos(p).

Y
.
S

N X

*
v

Fig. 3.6 The secondary set of axes are rotated by 0.

But these direction cosines cos(p), sin(f), — sin() and cos(p) are the
four elements of the rotation matrix used above

[cosf sinf

—sinf3 cosf

The top row contains the direction cosines for the X’ -axis and the
bottom row contains the direction cosines for the Y’ -axis.

This relationship also holds in 3D.

3.8 TRANSFORMING VECTORS

The transforms described in this chapter have been used to transform
single points. However, a geometric database will contain not only
pure vertices, but also vectors, which must also be subject to any usual
transform.

A generic transform Q of a 3D point can be represented by

!

X X
v _ y
V=)
1 1

and as a vector is defined by two points we can write

x' x2 —x1 Transformation
V'l |72 -1

7z Q] z2 —2z1

1 1-1

where we see the homogeneous scaling term collapse to zero. This
implies that any vector [x ¥ 2] T can be transformed using

!

X X
y'|_ y
1=,
1 1

3.9 PERSPECTIVE PROJECTION

. Of all the projections employed in computer graphics, the perspective
projection is the one most widely used.

. There are two stages to its computation: the first stage involves
converting world coordinates to the camera’s frame of reference, and
the second stage transforms camera coordinates to the projection
plane coordinates.

. We have already looked at the transforms for locating a camera in
world space, and the inverse transform for converting world
coordinates to the camera’s frame of reference.

. Let’s now investigate how these camera coordinates are transformed
into a perspective projection.

We begin by assuming that the camera is directed along the z -axis as shown
in Figure 3.8. Positioned d units along the axis is a projection screen, which
will be used to capture a perspective projection of an object.

o
T e Yz
e
=
Yp

- M
s

Fig 3.8 The axial systems used to produce a perspective projection.

o Figure 3.8 shows that any point (xc, yc, zc) becomes transformed to
(xs, ys, d). It also shows that the screen’s x -axis is pointing in the
opposite direction to the camera’s x -axis, which can be compensated
for by reversing the sign of xs when it is computed.

45

Game programming

46

Figure 3.9 shows plan and side views of the scenario depicted in
Figure 3.8, which enables us to inspect the geometry and make the
following observations:

X —Xxp _ dx Yy

z d P = z xp_z/d
y_p _ v
2 d YP =7

This can be expressed in matrix as

XS -1 0

ys| _ 10 O

zs| |0 0
0

w 0 01/d

=N R

If we multiply it out we get,

[xp yp zp W]T= [-x y z 2z/d]T

X

Plan view E:' . z)

screan

(Xps ¥p) f e
o

M| z

Side view

screen

(Xp. ¥p) ¥
Yo i

- d- | z
£

Fig:3.9: The plan and side views for computing the perspective projection
transform.

The idea behind homogeneous coordinates says that we must divide
the terms xp, yp, zp by W to get the scaled terms, which produces the
following:-

_* _ Y _z _
P = 2d YP=7%1d PT7d "

3.10 SUMMARY::

Transformation means change in object’s property. It can be 2D or 3D
transformation.

Translation will move the object to the new position, rotation will
rotate the object by some angle of degree, and scaling will expand or
collapse the object

Homogeneous Coordinate matrix are used to make calculation easy.

3.11 QUEST' ON: Transformation

1)
2)
3)
4)

5)

6)
7)
8)
9)
10)

Explain 3D translation, 3D Scaling with suitable examples.
Write a short note on 3D rotation.
Write a short note on 2D transformations.

What is 3D transformation? State and explain scaling and translation
in 3D.

What is transformation? State and explain the concept of translation
in 2D and 3D.

Write a short note on 2D rotation.

Explain the concept of perspective projection.
Explain the concept of direction cosine.
Write a short note on Change of axis.

Give homogeneous coordinate matrix for various transformation
operation in 3D.

3.12 REFERENCES:

Mathematics for Computer Graphics, John Vince, Springer-Verlag
London,2" Edition.

ke o o ke e e s

47

Game programming

48

GRAPHICS PROCESSING UNIT

Unit Structure :

4.0 Objectives

4.1 Introduction to DirectX

4.2 Understanding GPU (Graphics processing unit)
4.3 How GPU Works

4.4 GPUvs. CPU

45 GPU Architecture

4.6 Summary

4.7 Questions

4.8 References

4.0 OBJECTIVES:

This chapter would make you understand the following concept:

What is DirectX?
Differences between GPU and CPU.
How GPU works?

4.1 INTRODUCTION TO DIRECTX

Microsoft DirectX is a collection of application programming
interfaces (APIs) for handling tasks related to multimedia, especially
game programming and video, on Microsoft platforms.

DirectX is a series of application programming interfaces (API) that
provide low-level access to hardware components like video cards,
the sound card, and memory. At a basic level, DirectX allows games
to "talk" to video cards.

In the DOS days, games had direct access to video cards and the
motherboard, and you could directly edit the configuration file to
make changes.

But with Windows 95, Microsoft restricted access to low-level
hardware as a security measure.

That meant that games could no longer interact with low-level
hardware features, and it was a problem. So, to facilitate that access,

Microsoft introduced DirectX — think of DirectX as a middleman
that facilitates communication between a game and a video card.

Originally, the names of these APIs all began with "Direct", such as
Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound, and so
on. The name DirectX was coined as a shorthand term for all of these
APIs (the X standing in for the particular APl names) and soon
became the name of the collection.

DirectX lets developers unlock the full potential of your computer's
hardware.

4.2 UNDERSTANDING GPU (GRAPHICS PROCESSING

UNIT)

A graphics processing unit (GPU) is a computer chip that renders
graphics and images by performing rapid mathematical calculations.

GPUs are used for both professional and personal computing.

Traditionally, GPUs are responsible for the rendering of 2D and 3D
images, animations and video. Even now, they have a wider use range.

In the early days of computing, the central processing unit (CPU)
performed these calculations. As more graphics-intensive
applications were developed, however, their demands put a stress on
the CPU and decreased performance.

GPUs were developed as a way to unload those tasks from CPUs and
to improve the rendering of 3D graphics.

GPUs work by using a method called parallel processing, where
multiple processors handle separate parts of the same task.

GPUs are well known in PC (personal computer) gaming, allowing
for smooth, high-quality graphics rendering. Developers also began
using GPUs as a way to accelerate workloads in areas such as artificial
intelligence (Al).

Some examples of GPU use cases include:

GPUs can accelerate the rendering of real-time 2D and 3D graphics
applications.

Video editing and creation of video content has improved with GPUs.
Video editors and graphic designers, for example, can use the parallel
processing of a GPU to make the rendering of high-definition video
and graphics faster.

Video game graphics have become more intensive computationally,
so in order to keep up with display technologies -- like 4K and high
refresh rates -- emphasis has been put on high-performing GPUs.

Graphics
Processing Unit

49

Game programming

50

o GPUs can accelerate machine learning. With the high-computational
ability of a GPU, workloads such as image recognition can be
improved.

o GPUs can share the work of CPUs and train deep learning neural
networks for Al applications. Each node in a neural network performs
calculations as part of an analytical model. Programmers eventually
realized that they could use the power of GPUs to increase the
performance of models across a deep learning matrix -- taking
advantage of far more parallelism than is possible with conventional
CPUs.

4.3 HOW GPU WORKS

o A GPU may be found integrated with a CPU on the same electronic
circuit, on a graphics card or in the motherboard of a personal
computer or server.

o GPUs and CPUs are fairly similar in construction.

o However, GPUs are specifically designed for performing more
complex mathematical and geometric calculations. These calculations
are necessary to render graphics.

o GPUs may contain more transistors than a CPU.

o GPUs will use parallel processing, where multiple processors handle
separate parts of the same task. A GPU will also have its own RAM
(random access memory) to store data on the images it processes.

o Information about each pixel is stored, including its location on the
display.

. A digital-to-analog converter (DAC) is connected to the RAM and
will turn the image into an analog signal so the monitor can display it.
Video RAM will typically operate at high speeds.

o GPUs will come in two types: integrated and discrete. Integrated
GPUs come embedded alongside the GPU, while discrete GPUs can
be mounted on a separate circuit board.

o For companies that require heavy computing power, or work with
machine learning or 3D visualizations, having GPUs fixated in the
cloud may be a good option. An example of this is Google's Cloud
GPUs, which offer high-performance GPUs on Google Cloud.
Hosting GPUs in the cloud will have the benefits of freeing up local
resources, saving time, cost and scalability.

o Users can choose between a range of GPU types while gaining
flexible performance based on their needs.

4.4 GPU VS. CPU Graphics

Processing Unit

. GPUs are fairly similar to CPU architectures. However, CPUs are
used to respond to and process the basic instructions that drive a
computer, while GPUs are designed specifically to quickly render
high-resolution images and video. Essentially, CPUs are responsible
for interpreting most of a computer's commands, while GPUs focus
on graphics rendering.

o In general, a GPU is designed for data-parallelism and applying the
same instruction to multiple data-items (SIMD). A CPU is designed
for task-parallelism and doing different operations.

CPU (Multiple Cores) GPU (Hundreds of Cores)

Fig: 4.1 CPU V/s GPU

. Both are also differentiated by the number of cores. The core is
essentially the processor within the processor. Most CPU cores are
numbered between four and eight, though some have up to 32 cores.
Each core can process its own tasks, or threads. Because some
processors have multithreading capability in which the core is divided
virtually, allowing a single core to process two threads -- the number
of threads can be much higher than the number of cores. This can be
useful in video editing and transcoding. CPUs can run two threads
(independent instructions) per core (the independent processor unit).
A GPU core can have four to 10 threads per core.

. A GPU is able to render images more quickly than a CPU because of
its parallel-processing architecture, which allows it to perform
multiple calculations at the same time. A single CPU does not have
this capability, although multicore processors can perform
calculations in parallel by combining more than one CPU onto the
same chip.

. A CPU also has a higher clock speed, meaning it can perform an
individual calculation faster than a GPU, so it is often better equipped
to handle basic computing tasks.

51

Game programming

52

4.5 GPU ARCHITECTURE

If we inspect the high-level architecture overview of a GPU (again,
strongly depended on make/model), it looks like the nature of a GPU
is all about putting available cores to work and it’s less focused on
low latency cache memory access.

GDDR-5 RAM

Memory Controller Memeory Controller

High speed hub

o
®
=
b
=
17
o
L
Q
™
©
X
o
)
o

A single GPU device consists of multiple Processor Clusters (PC) that
contain multiple Streaming Multiprocessors (SM).

Each SM accommodates a layer-1 instruction cache layer with its
associated cores.

Typically, one SM uses a dedicated layer-1 cache and a shared layer-
2 cache before pulling data from global GDDR-5 memory.

Its architecture is tolerant of memory latency.

Compared to a CPU, a GPU works with fewer, and relatively small,
memory cache layers.

Reason being is that a GPU has more transistors dedicated to
computation meaning it cares less how long it takes the retrieve data
from memory.

The potential memory access ‘latency’ is masked as long as the GPU
has enough computations at hand, keeping it busy.

A GPU is optimized for data parallel throughput computations.

Looking at the numbers of cores it quickly shows you the possibilities
on parallelism that is it is capable of.

When examining the current NVIDIA flagship offering, the Tesla
V100, one device contains 80 SM’s, each containing 64 cores making
a total of 5120 cores! Tasks aren’t scheduled to individual cores, but
to processor clusters and SM’s.

That’s how it’s able to process in parallel. Now combine this powerful
hardware device with a programming framework so applications can
fully utilize the computing power of a GPU.

In 2020, some of the top GPUs and graphics cards have included:

GeForce RTX 3080
GeForce RTX 3090
GeForce RTX 3060 Ti
AMD Radeon RX 6800 XT
AMD Radeon RX 5600 XT

4.6 SUMMARY:

Modern GPUs are very efficient at manipulating computer graphics
and image processing, and their highly parallel structure makes them
more efficient than general-purpose CPUs for algorithms where the
processing of large blocks of data is done in parallel.

The CPU (central processing unit) has often been called the brains of
the PC. But increasingly, that brain is being enhanced by another part
of the PC — the GPU (graphics processing unit), which is its soul.

GPU are very useful for rendering 2D and 3D Graphics.

4.7 QUESTIONS:

1)
2)
3)
4)
5)

What is DirectX?

Write a note on GPU.

What is the difference between the CPU and GPU?
Explain in detail GPU architecture.

Explain how GPU works.

4.8 REFERENCES:

https://searchvirtualdesktop.techtarget.com/

https://blogs.vmware.com/

e etk e ke e ik

Graphics
Processing Unit

53

https://searchvirtualdesktop.techtarget.com/

Game programming

54

DIRECTX 11

Unit Structure :

5.0 Objectives

5.1 Introduction to DirectX 11

52 COM

5.3 Textures and Resource Formats
5.4 The swap chain and Page flipping
5.5 Depth Buffering

5.6 Texture Resource Views,

5.7 Multisampling Theory

5.8 MSin Direct3D

5.9 Feature Levels

5.10 Questions

5.0 OBJECTIVES:

1. To obtain basic understanding of Direct3D’s role in programming 3D
H/W.

2. Tounderstand the role of COM.
3. To learn fundamentals of Graphics concepts.

4. To understand how to initialize Direct3D.

5.1 OVERVIEW:

Graphics API Direct3D is used to render 3D scenes with 3D hardware
acceleration. There are various software interfaces that are provided by
Direct3D to control hardware for example, to instruct the graphics hardware
to clear the render target, like the screen, method like
ID3D11DeviceContext::ClearRenderTargetView is used.

For any Direct3D 11 capable device Direct3D plays important role as an
interface between software and graphics hardware. A Direct3D 11 capable
graphics device must support the entire Direct3D 11 capability set. In the
case of Direct3D 9, a device only had to support a subset of Direct3D 9
capabilities. In Direct3D 11 device capability checking is not required
because it is mandatory to implement entire capability list.

5.2COM

Component Object Model (COM) technology allows DirectX to be
independent of any programming language and provides backwards
compatibility.

COM is used as a C++ class and referred as an interface. Details are usually
hidden from programmers when using COM.

We obtain pointers to COM interfaces through some special functions of
another COM interface; C++ new keyword is not used as we generally do.
Release method is called after we are done with any COM interface and it
performs memory management.

COM interfaces are prefixed with a capital 1. For example, the COM
interface that represents a 2D texture is called ID3D11Texture2D.

5.3 TEXTURES AND RESOURCES FORMATS

Textures are used for creating image data. A 2D texture is a matrix of data
elements. In an image a texture stores pixel colors of that image.

However, in an advanced technique called normal mapping, each element
in the texture stores a 3D vector instead of a color. Textures are more
general purpose than just storing image data. A 1D texture is equivalent to
a 1D array of data elements, and a 3D texture is as a 3D array of data
elements.

Textures are more than just arrays of data; they can have mipmap levels,
and the GPU operations on them, as applying filters and multisampling. A
texture can only store certain kinds of data formats, which are described by
the DXGI_FORMAT enumerated type.

Some example formats are:

DXGI_FORMAT_R32G32B32_
FLOAT

Every element has three 32-bit
floating-point components.

DXGI_FORMAT _R16G16B16
A16_UNORM

Every element has four 16-bit
components mapped to the [0, 1]
range.

DXGI_FORMAT_R32G32_Ul
NT

Every element has two 32-bit
unsigned integer components.

DXGl_FORMAT _RS8GS8B8AS_
UNORM

Every element has four 8-bit
unsigned components mapped to
the [0, 1] range.

DXGl_FORMAT RS8GS8B8AS_
SNORM

Every element has four 8-bit
signed components mapped to
the [—1, 1] range.

Directx 11

55

Game programming

56

DXGI_FORMAT _R8G8B8A8 | Every element has four 8-bit
SINT signed integer components
mapped to the [-128, 127] range.

DXGI_FORMAT_R8G8B8A8_ | Every element has four 8-bit
UINT unsigned integer components
mapped to the [0, 255] range.

Here R, G, B, A letters are used to stand for red, green, blue, and alpha,
respectively. Colors are created by combinations of R, G, B.

The format
DXGI_FORMAT _R32G32B32_FLOAT

has three floating-point components and can therefore store a 3D vector
with floating-point coordinates.

The typeless formats are also present, where we just reserve memory and
then specify how to reinterpret the data at a later; for example, the following
typeless format reserves elements with four 8-bit components, but does not
have any specific data type :

DXGI_FORMAT_R8G8B8A8_TYPELESS

5.4 THE SWAP CHAIN AND PAGE FLIPPING

Flickering is one of the problem we may face when drawing a scene on
screen, to avoid this, we use a screen texture known as back buffer. To make
sure the end user will see the entire scene or animation on screen, first we
draw it on the back buffer and after the completion, it will be passed to the
screen.

For implementation, we require another buffer known as front buffer, which
stores the display data to be drawn currently on the monitor and the next
scene/frame of animation is drawn on the back buffer.

The role of back and front buffers will be reversed after the frame is
completely drawn on the screen: hence, for the next frame back buffer
becomes front buffer and front becomes back buffer.

This swapping mechanism is also known as presenting. This presenting
actually swaps the pointers of back and front buffer. Figure 5.1 illustrates
the process.

This continuous operation of swapping the two buffers forms a swap chain.
To represent this swap chain the IDXGISwapChain interface is used. This
interface is used for storing the textures of front and back buffers and
provides methods for resizing and presenting
(IDXGISwapChain::ResizeBuffers, IDXGISwapChain::Present).
Using two buffers for this purpose is known as double buffering.

Note that even though the back buffer is a texture (so an element should be
called a texel), we often call an element a pixel because, in the case of the
back buffer, it stores color information.

Front Buffer Ptr Back Buffer Ptr

Front Buffer Ptr Back Buffer Ptr

Front Buffer Ptr Back Buffer Ptr

Figure 5.1. From top-to-bottom, we first render to Buffer B, which is serving as the current
back buffer. Once the frame is completed, the pointers are swapped and Buffer B becomes
the front buffer and Buffer A becomes the new back buffer. We then render the next frame
to Buffer A. Once the frame is completed, the pointers are swapped and Buffer A becomes
the front buffer and Buffer B becomes the back buffer again.

5.5 DEPTH BUFFERING

The third buffer we use not to store image data but to store the depth of the
particuar pixel. Depth values range from 0.0 to 1.0, where 0.0 means the
object is closest to the viewer and 1.0 means the object is farther from the
viewer.

The pixel value is back buffer and the depth buffer has one to one
correspondence i.e ijth element in back buffer corresponds to ijth element
in the depth buffer. So we can say that the number of pixel we have in back
buffer are same as the entries we will have in depth buffer.

Directx 11

57

Game programming

58

Figure 5.2 shows a simple scene, where some objects partially obscure the objects behind
them. In order for Direct3D to determine which pixels of an object are in front of another,
it uses a technique called depth buffering or z-buffering. Let us emphasize that with depth
buffering, the order in which we draw the objects does not matter.

Consider the example given in Figure 5.3 to understand the concept of a
depth buffer, the example shows the volume the viewer sees and a 2D side
view of that volume. From the figure, we see three different pixels are
competing to be rendered onto the pixel P position on the view window. We
as humans know that the closest pixel will be drawn as position P but
computer doesn’t. Before the rendering starts, the back buffer will be
cleared to one of the default color (black or white), and similarly depth
buffer will be cleared to the default value of 1.0 (the farthest depth value for
the pixel). Consider objects are rendered in the order of cylinder, sphere,
and cone as given in the diagram. The table given below sums up how the
pixel P and its depth value d will be updated after every object is drawn; a
similar process happens for all the remaining pixels.

Operation P d Description

Clear Black 1.0 | Pixel and corresponding depth entry

Operation initialized.

Draw P3 ds; | Since d3 <= d = 1.0 the depth test passes

Cylinder and we update the buffers by setting P =
Psand d =ds

Draw Sphere | P; di | Since d1 <=d = d3 the depth test passes
and we update the buffers by setting P =
Piandd=d;

Draw Cone P1 di | Since d2 > d = d the depth test fails and
we do not update the buffers.

View Window

Eye

Eye

View Window

Figure 5.3. The view window corresponds to the 2D image (back buffer) we generate of
the 3D scene. We see that three different pixels can be projected to the pixel P. Intuition
tells us that P1 should be written to P because it is closer to the viewer and blocks the other
two pixels. The depth buffer algorithm provides a mechanical procedure for determining
this on a computer. Note that we show the depth values relative to the 3D scene being
viewed, but they are actually normalized to the range [0.0, 1.0] when stored in the depth
buffer.

We only update the pixel and its related depth value in the depth buffer as
we find a pixel with a smaller depth value.

The closest pixel from the viewer will be the only one which will be
rendered. You can check by updating the values in the table by shuffling the
order of drawing of the objects.

The depth buffering computes a depth value for every pixel in the frame and
performs a depth test. This depth test is used to compares depths of pixels
which are competing to be written to a particular pixel position on the back
buffer. The pixel which has the depth value closest to the viewer will be
drawn on that position, and that pixel that gets written to the back buffer. Is
simply means pixel closest to the viewer will hide or obscure the pixels
behind it.

Depth buffer is a texture and there are some specific formats used for
drawing the same. The formats are as follows:

DXGI_FORMAT _D32_F | It specifies a 32-bit floating-point depth
LOAT_S8X24 UINT buffer, with 8-bits (unsigned integer)
reserved for the stencil buffer mapped to
the [0, 255] range and 24-bits not used
for padding.

DXGI_FORMAT _D32_F | It specifies a 32-bit floating-point depth
LOAT buffer.

Directx 11

59

Game programming

60

DXGI_FORMAT_D24 U | It specifies an unsigned 24-bit depth
NORM_S8 UINT buffer mapped to the [0, 1] range with 8-
bits (unsigned integer) reserved for the
stencil buffer mapped to the [0, 255]
range.

DXGI_FORMAT_D16 U | It specifies an unsigned 16-bit depth
NORM buffer mapped to the [0, 1] range.

5.6 TEXTURE RESOURCE VIEWS

A texture is bound to different stages in the rendering pipeline; a simple
example is to use a texture as the render target and as the shader resource
(i.e., here the texture will be sampled in a shader). Texture resource can be
created for these two things would be given with following bind flags:

D3D11_BIND_RENDER_TARGET |
D3D11_BIND_SHADER_RESOURCE

which indicates the two pipeline stages that the texture will be bound to.
Here the resources are not directly bound to any pipeline stage; instead their
associated resource views are bound to different pipeline stages.

We will use a texture in both the cases, Direct3D requires us to create a
resource view of that texture at the time of initialization. This is done for
efficiency and mentioned in the SDK documentation as: “This allows
validation and mapping in the runtime and driver to occur at view creation,
minimizing type checking at bind-time.”

Hence to use a texture as a render target and shader resource, we need to
create two views: a render target view (ID3D11RenderTargetView) and a
shader resource view (ID3D11ShaderResourceView).

Two things resource views always do: 1) they tell Direct3D how the
resource will be used means, what stage of the pipeline you will bind it to,
and 2) if the resource format was specified as a typeless at the time of
creation, then we must now assign a type while creating the view. With
typeless formats, we can view elements of a texture as the floating-point
values in one pipeline stage and as the integers in other. To create a specific
view to a resource, we need to create resources with that specific bind flag.
For example, if we won’t create the resource with the
D3D11 BIND _DEPTH_STENCIL bind flag (this indicates the texture
will be bound to the pipeline as a depth/stencil buffer), after this we cannot
create an ID3D11DepthStencilView to that resource.

If you try, you should get a Direct3D debug error like the following:

D3D11: ERROR: ID3D11Device::CreateDepthStencilView: A
DepthStencilView cannot be created of a Resource that did not specify
D3D11 BIND _DEPTH_STENCIL.

5.7 MULTISAMPLING THEORY AND MS IN DIRECT3D

Multisampling Theory:

As the pixels on our display monitor are not infinitely small, the arbitrary
line can not be displayed perfectly on such monitors. Figure 5.4 given below
illustrates a “stair-step” or aliasing effect, which occurs when
approximating a line by a matrix of pixels. Similar kind of aliasing effects
can also occur with edges of triangles as well.

Figure 5.4. On the top we observe aliasing (the stair-step effect when trying to represent a
line by a matrix of pixels). On the bottom, we see an antialiased line, which generates the
final color of a pixel by sampling and using its neighboring pixels; this results in a smoother
image and dilutes the stair-step effect

One way to overcome this effect is to shrink the pixel size by increasing the
monitor resolution which me resolve the issue and the stair-step effect may
not be noticed by users. In the cases where this solution will not work, we
must use antialiasing techniques.

One such technique, called as supersampling, makes the back buffer and
depth buffer 4 times bigger than the screen resolution. Then the 3D scene is
will be rendered to the back buffer at this large resolution. At the time to
present the back buffer to the screen, the back buffer is resolved or
downsampled such that the 4 pixel block colors will be averaged together
to get an averaged value of pixel color. Here, supersampling actually works
by increasing the screen resolution in software.

4
(a) (b)

Figure 5.5. We consider one pixel that crosses the edge of a polygon. (a) The green color
evaluated at the pixel center is stored in the three visible subpixels that are covered by the
polygon. The subpixel in the 4th quadrant is not covered by the polygon and so does not
get updated with the green color—it just keeps its previous color computed from previously
drawn geometry or the Clear operation. (b) To compute the resolved pixel color, we
average the four subpixels (three green pixels and one white pixel) to get a light green

Directx 11

61

Game programming

62

along the edge of the polygon. This results in a smoother looking image by diluting the
stair-step effect along the edge of the polygon.

Supersampling technique is expensive, as it increases the amount of pixel
processing and memory four times as it increases resolution. Direct3D
supports a mild antialiasing technique called multisampling, which actually
shares some of the computational information with subpixels making it less
expensive in terms of processing than supersampling.

Assuming we are using 4 times multisampling (4 subpixels/pixel),
multisampling also uses a back buffer and depth buffer 4 times bigger than
the given screen resolution. Rather than computing the image color for each
given subpixel, multissampling computes it only one time per pixel, at the
pixel center, and then shares that color information with its all subpixels
based on their visibility (the depth/stencil test is evaluated per subpixel) and
coverage (does the subpixel center lie inside or outside the polygon?).
Figure 5.5 shows an example.

Difference between Multisampling and Supersampling is given below:

Supersampling Multisampling

Here the image color is computed | Here image color is computed only
per subpixel, hence having a |once per pixel and that color is
different color replicated into all visible subpixels

It is technically more accurate and | Multisampling is not accurate and
handles texture and shader aliasing | handles texture and shader aliasing

It is expensive It is not expensive

5.8 MULTISAMPLING IN DIRECT3D:

Now we will be required to fill out a DXGI_SAMPLE_DESC structure. It
has two members and is defined like below:

typedef struct DXGI_SAMPLE_DESC {

UINT Count;
UINT Quality;

} DXGI_SAMPLE_DESC, *LPDXGI_SAMPLE_DESC;

Here count is used to specify the number of samples to be taken per pixel,
and Quality member is used for specifying the quality level desired. Quality
levels may vary based on the hardware manufacturers. Sample counts and
quality level which are higher may cost expensive in rendering, so we need
to choose between quality and speed. Quality ranges has many levels that
depend on the texture format and the number of samples to be taken per
pixel. We can use the following method to query the quality levels for
sample count and texture format:

HRESULT ID3D11Device::CheckMultisampleQualityLevels(

DXGI_FORMAT Format, UINT SampleCount, UINT
*pNumQualityLevels);

It returns zero if the format and sample count combination is not supported
by the given device. Else, pNumQualityL evels parameter will be used to
return the number of quality levels for the given combination. The valid
quality level range is from zero to pNumQualityLevels —1.

Maximum number of samples that can be taken per pixel is defined by the
preprocessor directive in C/C++ as:

#define D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT (32)

A sample count of 4 or 8 is common to keep the performance and memory
cost of multisampling reasonable. If we are not using multisampling, we can
set the sample count to one and the quality level to zero. All the devices
which are Direct3D 11 capable support 4 times multisampling for all kinds
of render target formats.

5.9 FEATURE LEVELS

Feature levels concept is introduced in Direct3D 11 which is represented in
code by the using the D3D_FEATURE_LEVEL enumerated type, which
corresponds to various Direct3D versions ranging from version 9 to 11:

typedef enum D3D_FEATURE_LEVEL
{

D3D_FEATURE_LEVEL 9 1 = 0x9100,
D3D_FEATURE_LEVEL_9 2 = 0x9200,
D3D_FEATURE_LEVEL_9 3 = 0x9300,
D3D_FEATURE_LEVEL_10_0 = 0xa000,
D3D_FEATURE_LEVEL_10 1 = 0xal100,

D3D_FEATURE_LEVEL_11_0 = 0xb000,
} D3D_FEATURE_LEVEL;

A strict set of functionalities are defined in feature levels which are
specified in the SDK documentation, for the specific capabilities of each
feature level. In case of a user device not supporting a given feature level,
the application falls back to the older feature level.

For example, as supported by devices of large audience, some application
might support Direct3D 11, 10.1, 10, and 9.3 level hardware. Usually any
application will check the support for feature levels from newest to oldest:
means, the application may first check if Direct3D 11 is supported, second
Direct3D 10.1, then Direct3D 10, and finally Direct3D 9.3. The following
feature level array may be used for supporting the order of testing:

Directx 11

63

Game programming

64

D3D_FEATURE_LEVEL featureLevels[4] =
{

D3D_FEATURE_LEVEL_11 0, // First check D3D 11 support
D3D_FEATURE_LEVEL_10 1, // Second check D3D 10.1 support
D3D_FEATURE_LEVEL_10 0, // Next, check D3D 10 support
D3D_FEATURE_LEVEL_9 3// Finally, check D3D 9.3 support

b

Direct3D initialization function will take this array as an input, and the
output will be the first supported feature level in the array as calculated by
the function. For example, consider Direct3D reported back that the first
feature level in the array that was supported as
D3D_FEATURE_LEVEL_10 0, then that application could disable
Direct3D 11 and Direct3D 10.1 features and use the Direct3D 10 features
for rendering path. In this text, we are considering the support of
D3D_FEATURE_LEVEL_11 0, as our focus is on Direct3D 11. We need
to keep in mind that, real-world applications may not worry about
supporting the older hardware to support the wide array of audience.

5.10 QUESTIONS:

Explain DirectX.

What are textures and data resource formats?
Explain swap chains and page flipping.
What is depth buffering?

What is texture resource view?

What is Multisampling?

N o g ks~ w D

What are feature levels?

ke o ek o ek

DIRECT3D 11 RENDERING PIPELINE

Unit Structure :

6.0 Objectives
6.1 Overview of The rendering Pipeline
6.2 The Input Assembler Stage
6.2.1 Vertices
6.2.2 Primitive Topology
6.2.2.1 Point List
6.2.2.2 Line Strip
6.2.2.3 Line List
6.2.2.4 Triangle Strip
6.2.2.5 Triangle List
6.2.2.6 Primitives with Adjacency
6.2.2.7 Control Point Patch List
6.2.3 Indices
6.3 The Vertex Shader Stage
6.3.1 Local Space and World Space
6.3.2 View Space
6.3.3 Projection and Homogeneous Clip Space
6.3.3.1 Defining a Frustum
6.3.3.2 Projecting Vertices
6.3.3.3 Normalized Device Coordinates (NDC)
6.3.3.4 Writing the Projection Equation with Matrix
6.3.3.5 Normalized Depth Value
6.3.3.6 XMMatrixPerspective for LH
6.4 The Tessellation Stages (TS)
6.5 The Geometry Shader Stage (GS)
6.6 Clipping
6.7 The Rasterization Stage
6.7.1 Viewport Transform
6.7.2 Backface Culling
6.7.3 Vertex Attribute Interpolation
6.8 The Pixel Shader Stage

6

65

Game programming 6.9 The Output Merger Stage
6.10 Understanding Meshes or Objects, Texturing, Lighting, Blending
6.10.1 Understanding Meshes or Objects
6.10.2 Texturing
6.10.3 Texture Coordinates
6.10.4 Creating and Enabling a Texture
6.11 Lighting
6.11.1 Light and Material Interaction
6.11.2 Normal Vectors
6.11.2.1 Computing Normal Vectors
6.11.2.2 Transforming Normal Vectors
6.11.3 Lambert’s Cosine Law
6.11.4 Diffuse Lighting
6.11.5 Ambient Lighting
6.11.6 Specular Lighting
6.11.7 Specifying Materials
6.11.8 Parallel Lights
6.11.9 Point Lights
6.11.9.1 Attenuation
6.11.9.2 Range
6.11.10 Spotlights
6.11.11 Implementation
6.11.11.1 Lighting Structures
6.12 Blending
6.12.1 The Blending Equation
6.12.2 Blend Operations
6.12.3 Blend Factors
6.12.4 Blend State
6.13 Questions

INTRODUCTION

Rendering pipeline is the core and main concept to be understood first along
with its stages. In the geometric and graphical description of a 3D scene
with a virtual camera which is positioned and oriented, the pipeline refers
entire sequence of steps necessary to create the 2 dimensional image as what
virtual camera sees (Figure 6.1).

66

Y ™ a

a
|A - -

Figure 6.1. The left image shows a side view of some objects set up in the
3D world with a camera positioned and aimed; the middle image shows the
same scene, but from a top-down view. The “pyramid” volume specifies the
volume of space that the viewer can see; objects (and parts of objects)
outside this volume are not seen. The image on the right shows the 2D image
created based on what the camera “sees.”

6.0 OBJECTIVES:

1. To understand the rendering pipeline—the process of taking a
geometric description of a 3D scene and generating a 2D image from
it.

2. To learn how to specify the part of a texture that gets mapped to a
triangle.

3. To find out how to create and enable textures.
4. To learn how textures can be filtered to create a smoother image.

5. To gain a basic understanding of the interaction between lights and
materials.

6. To understand the differences between local illumination and global
illumination.

7. To find out how we can mathematically describe the direction a point
on a surface is “facing” so that we can determine the angle at which
incoming light strikes the surface.

8. Tounderstand how blending works and how to use it with Direct3D.

9. To learn about the different blend modes that Direct3D supports.

6.1 OVERVIEW

Rendering pipeline is generally the entire sequence of steps, which is
necessary to generate a 2D image based on what virtual camera is able to
capture which is positioned and oriented in a 3D scene.

In Figure 6.2, we can see the diagram showing connections of stages of the
rendering pipeline, it also includes GPU memory resources off to the side.
Arrows are used to indicate the directions of data and information flow.
Like an arrow from the resource memory pool to a stage means that stage

Directx 11

67

Game programming

68

can access the resources as input; for example, in the pixel shader stage, it
may need to read data from a texture resource stored in the memory in order
to do its work. In the case of an arrow going from a stage to memory means
the stage writes something to GPU resources; for example, in the output
merger stage, it writes data to textures like the back buffer and depth/stencil
buffer.

The arrow for the output merger stage is bidirectional (means it reads from
and writes to GPU resources). Most stages in the pipeine do not write to
GPU resources. Instead, their output is just given in as an input to the next
stage in the pipeline; for example, see the Vertex Shader stage inputs data
from the Input Assembler stage, performs the work, and then outputs its
results to the Geometry Shader stage in pipeline. The next sections will
explain each stage in detail:

X, ‘siafjng 5901050y NdO

Figure 6.2. The stages of the rendering pipeline.

6.2 INPUT ASSEMBLER STAGE (l1A)

The input assembler (IA) stage takes geometric data (i.e vertices and
indices) from memory resources and uses it to calculate and assemble
geometric primitives (e.g., triangles, lines, dots). Triangles and lines are
basic building blocks for animation/geometry in graphics.

6.2.1 Vertices

The vertices of a triangle are where two edges meet according to
mathematics; the vertices of a line are the endpoints connecting each other;
for a single point, the point itself is considered as the vertex.

In Figure 6.3 we can see vertices in pictorial form. It shows that a vertex is
just some special point in a geometric primitive. In Direct3D, vertices are
considered as much more general.

A vertex in Direct3D may also consist of additional data apart from the
spatial (imagery) location, which allows the programmer to perform some
of the more sophisticated rendering effects and transitions. In Direct3D we
have the flexibility to create and define our own vertex formats (i.e., it
allows us to define the components of a vertex).

6.2.2 Primitive Topology

All vertices in 1A stage are bound to the rendering pipeline in one specially
created Direct3D data structure called as a vertex buffer. It is used for
storing the list of vertices in a contiguous memory. But it doesn’t say
anything about how to arrange these vertices to form geometric primitives.
It means, we can’t say that every three vertices will form a triangle and
every set if two vertices will form a line. To serve the purpose of telling
Direct3D about how to draw the geometry by using vertices, we use
primitive topology.

The code example and syntax for the same are given below:
Vi

P1

Po

Vo

Figure 6.3. A triangle defined by the three vertices v0, v1, v2; a line defined
by the two vertices p0, p1; a point defined by the vertex Q.

void ID3D11DeviceContext::1ASetPrimitiveTopology(
D3D11_PRIMITIVE_TOPOLOGY Topology);
typedef enum D3D11 PRIMITIVE_TOPOLOGY
{

D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED = 0
D3D11_PRIMITIVE_TOPOLOGY_POINTLIST = 1
D3D11_PRIMITIVE_TOPOLOGY_LINELIST = 2
D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP = 3,
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST 4
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP = 5

D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ = 10,
D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ = 11,
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ = 12,

D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ = 13,
D3D11_PRIMITIVE_TOPOLOGY_1 _CONTROL_POINT_PATCH
LIST =33,

Directx 11

69

Game programming

70

D3D11_PRIMITIVE_TOPOLOGY_2 CONTROL_POINT_PATCH
LIST 34,

D3D11_PRIMITIVE_TOPOLOGY_32_CONTROL_POINT_PATCH
LIST =64,

} D3D11_PRIMITIVE_TOPOLOGY;

All subsequent drawing calls will use the currently set primitive topology
until the topology is changed. The following code illustrates:

md3dImmediateContext->1ASetPrimitiveTopology(
D3D11_PRIMITIVE_TOPOLOGY_LINELIST);
[* ...draw objects using line list... */

md3dImmediateContext->1ASetPrimitiveTopology(
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
[* ...draw objects using triangle list... */

md3dImmediateContext->1ASetPrimitiveTopology(
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
[* ...draw objects using triangle strip... */

In next subsections, we will understand different types of primitive
topologies:

6.2.2.1 Point List

A point list IS given by the code line
D3D11_PRIMITIVE_TOPOLOGY_POINTLIST. Every vertex in the
draw call is drawn as an individual point while using point list, it is shown
in Figure 6.4a.

6.2.2.2 Line Strip

A line strip IS given by the code line
D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP. The vertices in the
draw call are connected to form lines while using line strip (see Figure 6.4
b); here n + 1 vertices induces n lines.

6.2.2.3 Line List

A line list IS given by code line
D3D11 PRIMITIVE_TOPOLOGY_LINELIST. Every two vertices in
the draw call forms an individual line while using line list (see Figure 6.4c);
so here 2n vertices induces n lines. The main difference in line list and line
strip is that, in line list the lines may be disconnected whereas in line strip
makes them automatically connected; by this connectivity, fewer vertices
can be used because every interior vertex is shared by two lines.

(b)

(d)
Figure 6.4. (a) A point list; (b) a line strip; (c) a line list; (d) a triangle strip.
6.2.2.4 Triangle Strip

A triangle strip IS given by code line
D3D11 PRIMITIVE_TOPOLOGY_TRIANGLESTRIP. It is assumed
the triangles are connected while using Triangle Strip as shown in Figure
6.4d to form a strip. Connectivity is assumed, and we see that vertices are
shared between two adjacent triangles, and n vertices induce n — 2 triangles.

6.2.2.5 Triangle List

A triangle list is given by code line
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST. Every three
vertices in the draw call forms an individual triangle while using triangle
list (see Figure 6.5a); so 3n vertices induces n triangles. The main difference
between triangle list and triangle strip is that, in triangle list the triangles
may or may not be connected but in case of triangle strip, as we have seen,
triangles are connected automatically.

Directx 11

71

Game programming

72

1
3 5
v 44 8
6
4
2
0
(a)
7 15
LJ
3 13 14

1 2 ! p
. 6 8 16
'V 12
AJ' ii® A 17
0

i (b)
Figure 6.5. (a) A triangle list. (b) A triangle list with adjacency—observe
that each triangle requires 6 vertices to describe it and its adjacent
triangles. Thus 6n vertices induces n triangles with adjacency info.

6.2.2.6 Primitives with Adjacency

We can have a triangle list with adjacency where, for every triangle, we
include data of the three adjacent triangles (one for each side); in Figure
6.5b you can observe how these triangles are defined.

This technique is used in the geometry shader, where some geometry
shading algorithms need an access to the adjacent triangles. For this purpose
the geometry shader submits the adjacent triangles to the pipeline in the
vertex/index buffer and the triangle itself, and the
D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ topology
has to be specified because, the pipeline knows how to construct the triangle
and its adjacent triangles from the vertex buffer. We have to note that the
vertices of adjacent primitives are only used as input into the geometry
shader—they are not drawn. Without the geometry shader, the adjacent
primitives are still not drawn. We can also have a line list with adjacency,
line strip with adjacency, and triangle with strip adjacency primitives; all
the details are given in SDK documentation.

6.2.2.7 Control Point Patch List

The code
D3D11 PRIMITIVE_TOPOLOGY_N_CONTROL_POINT_PATCH
LIST topology type is used for indicating that the vertex data should be
interpreted as a patch lists with N number of control points. These will be
optionally used in tessellation stage of the rendering pipeline.

6.2.3 Indices

As we know, triangles are the basic building blocks for the solid 3D objects.
The code given below shows the vertex arrays used to construct a quad and
octagon using triangle lists (i.e., every three vertices form a triangle).

Vertex quad[6] ={

VO, vl, V2, I Triangle 0
V0, v2, v3, // Triangle 1

b

Vertex octagon[24] = {

V0, vl, V2, 1l Triangle 0
VO, V2, V3, I Triangle 1
VO, V3, V4, 1l Triangle 2
VO, V4, V5, I Triangle 3
V0, V5, V6, 1l Triangle 4
VO, V6, V7, I Triangle 5
V0, V7, v8, 1l Triangle 6
V0, v8, v1// Triangle 7

3

(a)

Figure 6.6. (a) A quad built from two triangles. (b) An octagon built from
eight triangles.

As given in figure 6.6, the triangles which are forming a 3D object share lot
of the same vertices. Specifically speaking, each triangle of the quad in
Figure 5.15a shares the vertices v0 and v2. Here, the duplication is worse in
the octagon example (Figure 6.6b), because each triangle in the diagram
duplicates the center vertex v0, also each vertex on the perimeter of the
octagon is shared by two adjacent triangles.

Generally speaking, the number of duplicate vertices increases as the detail
and complexity of the model increases. We need to take into consideration
two reasons why we should not duplicate the vertices:

1. Increased memory requirements. (Why store the same vertex data
more than once?)

2. Increased processing by the graphics hardware. (Why process the
same vertex data more than once?)

We can use triangle strips to solve this problem, given that, the geometry
can be organized in a strip-like fashion (which may not be the case always).
As we know, triangle lists are more flexible because the triangles need not
be connected, and so it is worth creating a method to remove duplicate

Directx 11

73

Game programming

74

vertices for triangle lists. The better solution is to use indices. It works as
follows:

We first create a vertex list and a matching index list. Then the vertex list
consists of all the unique vertices and the index list contains only values that
index into the vertex list to define how the vertices are to be put together to
form triangles. The vertex list of the quad can be constructed as follows:

Vertex v[4] = {v0, v1, v2, v3};

Then the index list needs to define how the vertices in the vertex list are to
be put together to form the two triangles.

UINT indexL.ist[6] = {0, 1, 2, /I Triangle 0
0, 2, 3}; /l Triangle 1

In the index list, every three elements define a triangle. So the previous
index list says, “form triangle 0 by using the vertices v[0], v[1], and v[2],
and form triangle 1 by using the vertices v[0], v[2], and v[3].”Similarly, the
vertex list for the circle would be constructed as follows:

Vertex v [9] = {VvO0, v1, v2, v3, v4, v5, v6, v7, v8};
and the index list would be:

UINT indexList[24] = {

0, 1, 2, Il Triangle 0
0, 2, 3, I Triangle 1
0, 3, 4, Il Triangle 2
0, 4, 5, Il Triangle 3
0, 5, 6, Il Triangle 4
0, 6, 7, Il Triangle 5
0, 7, 8, Il Triangle 6
0,8,1// Triangle 7

3

Once we process unique vertices, index list is used by the graphics card to
put the vertices together to form the triangles. Here we have successfully
moved the duplication to index list, this will not cause a problem because:

1. Indices are simply integers and do not take up as much memory as a
full vertex structure (and vertex structures can get big as we add more
components to them).

2. With good vertex cache ordering, the graphics hardware won’t have
to process duplicate vertices (too often).

6.3 VERTEX SHADER STAGE (VS)

After the IA stage where primitives have been assembled, the created
vertices are fed into the next stage i.e vertex shader (VS).

You can think of a vertex shader stage as a function which takes a vertex as
input parameter and also outputs a vertex. Each vertex drawn will be
pumped through the vertex shader. We can understand the working of this
function by using following code:

for(UINT i = 0; i < numVertices; ++i)
outputVertex[i] = VertexShader (inputVertex[i]);

Remember vertex shader function is implemented by us, but GPU will
execute for every vertex in the diagram, so it is very fast. Vertex shader is
used for creating various special effects line transformations, lighting, and
displacement mapping. Here along with the access to the input vertex data,
we also can access textures and other data which is stored in GPU memory
as transformation matrices and scene lights. Now we will understand the
kinds of transformations that needed to be done using vertex shader stage
in following subsections:

6.3.1 Local Space and World Space

Most of the times when you are working on a scene, consider for creating a
movie, you create small properties and once they are perfectly built, you
can put them into the main scene.

3D artists or programmers do something similar when constructing 3D
objects. Instead of working in the global scene coordinate system (world
space) they specify the things into the local scene coordinate system (local
space); This local coordinate system is related with the coordinate system
aligned to the geometry of an object instead of the whole scene’s geometry,
hence it is very easy to work on that first.

After the vertices in the local scene are created, we can go put the object
into the global system (world space). To achieve this, we need to understand
how the local space and world space are related; this is done by specifying
where we want the origin and axes of the local space coordinate system
relative to the global scene coordinate system. Then we perform the change
of coordinate transformation as it is given in Figure 6.7. This entire process
of changing coordinates related to local system into the global system is
known as the world transform, and the matrix used in this process is called
as the world matrix. Every object in the given scene has its own different
world matrix. After the transformation of every object from its local space
to the world space, all the coordinates of every object are related with the
world space. We can define an object directly into the world space by using
identity world matrix as the coordinate system. Using local coordinate
system for each object is advantageous in following ways:

1. Itis easier. We know that, usually in local space the object will be
created as centered at the origin and symmetrical with respect to one
of it’s major axes. For example, the vertices of a cube are much easier
to specify if we choose a local coordinate system with origin, which
is centered at the cube and with the axes orthogonal to the cube faces;
see Figure 6.8.

Directx 11

75

Game programming

76

2. We can use the same objet in multiple scenes according to our needs,
hence we can not hardcode the object’s coordinates to a particular
scene. It is better to store its coordinates relative to a local coordinate
system for that object and use the coordinate matrix, and transfer the
object to the required scene as per the need.

3. In some cases, we draw the same object multiple times in the same
scene, but in different positions, orientations, and scales (e.g., if we
are creating an animated forest then the tree object may be drawn
several times with different shapes, sizes and positions). We can store
a single copy of the geometry (i.e., vertex and index lists) relative to
its local space. For several times we can draw the object afterwards,
but the world matrix will be different each time to specify the position,
orientation, and scale of the object’s instance in the world space. This
is called instancing.

World System

(a)

(b)

Figure 6.7. (a) The vertices of each object are defined with coordinates
relative to their own local coordinate system. In addition, we define the
position and orientation of each local coordinate system relative to the
world space coordinate system based on where we want the object in the
scene. Then we execute a change of coordinate transformation to make all
coordinates relative to the world space system. (b) After the world
transform, the objects’ vertices have coordinates all relative to the same
world system.

&5

(1,11 2,27

(-1,-1,-1)

Figure 6.8. The vertices of a cube are easily specified when the cube is
centered at the origin and axis-aligned with the coordinate system. It is not
so easy to specify the coordinates when the cube is at an arbitrary position
and orientation with respect to the coordinate system. Therefore, when we
construct the geometry of an object, we usually always choose a convenient
coordinate system near the object and aligned with the object, from which
to build the object around.

The Matrix Representation: Qw = (Qx ,Qy ,Qz ,1), uw = (ux , uy , uz ,0),
vw = (vXx ,vy ,vz ,0), and ww = (wx , wy , wz ,0) describe the origin and
axes of frame A with homogeneous coordinates relative to frame B. This 4
x 4 matrix is called as a change of coordinate matrix or change of frame
matrix, and it converts (or maps) frame A coordinates into frame B
coordinates. The world matrix for an object is given as a description of its
local space with coordinates relative to the world space, and placing these
coordinates as the rows of a matrix. If Qw = (Qx, Qy, Qz, 1), uw = (ux, uy,
uz, 0), vw = (vx, vy, vz, 0), and ww = (wx, wy, wz, 0) describe, respectively,
the origin, x-, y-, and z-axes of a local space with homogeneous coordinates
relative to world space, then we know that the change of coordinate matrix
from local space to world space is

&
=
=

Hﬁ‘e
: =
: =
===

L

We need to figure out the local space origin coordinates and axes which are
relative to world space. It is not very easy.

One common approach can be taken that is to define W as a sequence of
transformations, say W = SRT, it is the product of a scaling matrix S to scale
the object into the world, followed by a rotation matrix R to define the
orientation of the local space relative to the world space, followed by a
translation matrix T to define the origin of the local space relative to the

Directx 11

77

Game programming

78

world space. This sequence of transformations may be interpreted as a
change of coordinate transformation, and that the row vectors of W = SRT
store the homogeneous coordinates of the x-axis, y-axis, z-axis, and origin
of the local space relative to the world space.

6.3.2 View Space

We place the virtual camera into the space to form the 2D image of the
scene. This camera specifies what volume and size of the world the viewer
can see and thus what volume of the world we need to generate using the
2D image.

As shown in Figure 6.9 attach the local coordinate system to the virtual
camera; that is, the camera will be located the origin looking down the
positive z-axis, the x-axis aims to the right of the camera, and the y-axis
aims above the camera.

It is beneficial to describe our scene vertices relative to the camera
coordinate system in rendering pipeline rather than describing them relative
to the world space. This change of coordinate transformation from world
space to view space (camera space) is called as the view transform, and the
corresponding matrix is called the view matrix.

World System

View System

Figure 6.9. Convert the coordinates of vertices relative to the world space
to make them relative to the camera space.

If Qw = (Qx, Qy, Qz, 1), uw = (ux, Uy, Uz, 0), vw = (Vx, Vy, Vz, 0), and ww =
(wx, Wy, W, 0) describe, respectively, the origin, x-, y-, and z-axes of view
space with homogeneous coordinates relative to world space, then the
change of coordinate matrix from view space to world space is given as:

Uy uy, u, 0

This is not the required transformation. We need the transformation from
world space to view space, the reverse transformation. We can achieve this
by using the inverse of matrix, W transforms from world space to view
space. The world and view coordinate systems differ in the position and
orientation properties only, so it makes intuitive The world coordinate
system and view coordinate system generally differ by position and

orientation only, so it makes intuitive sense that W = RT (i.e., the world
matrix can be decomposed into a rotation followed by a translation). The
inverse form can be computer easily as:

V=Wl=RT)1=TIRI=TIR"

1 0 0 0[Ux Uy u, 0

0 1 0 0 [vx v, v, 0
10 0 1 Ofjlw, w, w, 0
-0 -0, -0 1llg, ¢, Q, 1
Uy Uy U, 07

_ [Uy vy vy 0

| owy, wy, w, 0

1.

l—Q.u —Q.v —-Q.w
So the view matrix has the form:

[U Uy U, 0
V=| Vx Vy vy 0
l Wy wy, w, OJ
—Q.u —Q.v —-Qw 1

Another way to construct the vectors needed to build the view matrix.

Now, let Q be the position of the camera and let T be the target point the
camera is aimed at. Then, let j be the unit vector that describes the “up”
direction of the world space. (we generally consider the world xz-plane as
our world “ground plane” and the world y-axis describes the “up” direction;
therefore, j = (0,1,0) is just a unit vector parallel to the world y-axis.)

By the reference to Figure 6.10, the direction the camera is looking is given
by:
T-Q
w =
IT = QI

T o Ground Plane

Figure 6.10. Constructing the camera coordinate system given the camera
position, a target point, and a world “up’ vector.

Directx 11

79

Game programming

80

This vector describes the local z-axis of the camera. A unit vector that aims
to the “right” of w is given by:

jxw

u=-
lixw|

The local x-axis of camera in defined by this vector. The vector that defines
y-axis of the camera is given by:

V=WXuU

Here w and u are the orthogonal unit vectors, w x u is necessarily a unit
vector (by convention), and so it does not need to be normalized. Given the
position of the camera, the target point, and the world “up” direction, we
can derive the local coordinate system of the camera, which can be used to
form the view matrix. The following function provided by the XNA
mathematics library is used for computing the view matrix based on the just
described process:
XMMATRIX XMMatrixLookAtLH(// Outputs resulting view matrix
\

FXMVECTOR EyePosition, // Input camera position Q
FXMVECTOR FocusPosition, // Input target point T
FXMVECTOR UpDirection); // Input world up vector j

Usually the world’s y-axis corresponds to the “up” direction, so the “up”
vector is almost always j = (0,1,0). As an example, suppose we want to
position the camera at the point (5, 3, —10) relative to the world space, and
have the camera look at the origin of the world (0, 0, 0). We can build the

view matrix by writing:
XMVECTOR pos = XMVectorSet(5, 3, -10, 1.0f);
XMVECTOR target = XMVectorZero();
XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

XMMATRIX V = XMMatrixLookAtLH(pos, target, up);
6.3.3 Projection and Homogeneous Clip Space

Yet we have seen the position and orientation of the camera, one other
important component of camera we need to take into consideration, which
is the volume of space the camera sees. A frustum is used to describe this
volume as given in Figure 6.11.

Then we project this frustum from the 3D scene on to the 2D projection
window. This projection must be done in a certain way, that is the parallel
lines must converge to a vanishing point, similarly as the 3D depth of an
object increases, the size of its projection must diminish; a perspective
projection does this, and is illustrated in Figure 6.12.

This line from vertex to the eye point is known as vertex’s line of projection.
After this we define the perspective projection transformation as the
transformation that is used to transform a 3D vertex v to the point v" where
its line of projection intersects the 2D projection plane; we say that v’ is the

projection of v. The projection of a 3D object is the projection of all the
vertices those which make up that object.

Far Plane

B, Near Plane

Eye / Center of Projection

Figure 6.11. A frustum defines the volume of space that the camera “sees.”

A%
vl
Eye Point
?
Projection
Window

Figure 6.12. Both cylinders in 3D space are the same size but are placed at
different depths. The projection of the cylinder closer to the eye is bigger
than the projection of the farther cylinder. Geometry inside the frustum is
projected onto a projection window; geometry outside the frustum gets
projected onto the projection plane but will lie outside the projection
window.

6.3.3.1 Defining a Frustum

Frustum, as we know, is defined in the view space, where the center of
projection at the origin and looking down the positive z-axis, by the
following four quantities: A near plane ‘n’, a far plane ‘f’, a vertical field of
view angle ‘a’, and an aspect ratio ‘r’.

Note that in view space, the near plane and far plane are parallel to the xy-
plane; hence we can simply specify their distance from the origin along the
z-axis. We can use the equation r = w/h to define the aspect ratio where w
is the width of the projection window and h is the height of the projection
window (units in view space). In view space, the projection window that we
are considering is a 2D image. This image here will eventually be mapped
to the back buffer; hence, we like the ratio of the projection window
dimensions to be the same as the ratio of the back buffer dimensions. This
ratio of the back buffer dimensions is called as an aspect ratio (it is a ratio

Directx 11

81

Game programming

82

so it has no units). For example, if the back buffer dimensions are 800 x

800

600, then we specify. r = o0 1.333. In the case where the aspect ratio

of back buffer and projection window is not same, then a nonuniform
scaling becomes necessary to map the projection window to the back buffer,
which would cause a sort of distortion (e.g., a circle on the projection
window might get stretched into an ellipse when mapped to the back buffer).

The horizontal field of view angle is labeled as B, and it is determined by
the vertical field of view angle as o and aspect ratio as r. See Figure 6.13 to
understand how r is used to find the value of . Here the actual dimensions
of the projection window are not important, what is important is the aspect
ratio needs to be maintained. Hence, we will choose the convenient height
of 2, and thus the width must be:

+Y /
I
| a2
f

d n

+Z

Projection
Window

Near Far Plane
Plane

+Z

f

Far Plane

n

Near
pe
Plane

d

B/2 Projection
Window

+X

Figure 6.13. Deriving the horizontal field of view angle p given the vertical
field of view angle a and the aspect ratio r.
r===2 s w=2r

h 2
To have the specified vertical field of view a, the projection window must
be placed a distance d from the origin:

tan (%) = % = d = cot (%)

Here we have fixed the distance d of the projection window along the z-axis
to have a vertical field of view a when the height of the projection window
is 2. Now we can solve for B. By Figure 6.13 given the xz-plane, we now
see that:

- . tan (%)
2

So given the vertical field of view angle a and the aspect ratio r, we can
always get the horizontal field of view angle B:

p = 2tan™?! <r. tan (%))

6.3.3.2 Projecting Vertices

As given in Figure 6.14. Given a point (X, y, z), we want to find its
projection (x, y, d) on the projection plane z = d. Now by using similar
triangles and considering x- and y- coordinates separately, we find:

X' x ooyt = xd xcot(a/2) X

d_z YT 77 z ~ ztan(a/2)
And

Y _ ¥y ._yd_yeot(a/2)

d- 77 z z ztan(a/2)

+Z

+Z

Projection x

Window d
Projection
Window
+X
A—

Figure 6.14. Similar triangles.

Observe that a point (X, y, z) is inside the frustum if and only if

Directx 11

83

Game programming

84

6.3.3.3 Normalized Device Coordinates (NDC)

In the previous section we understood that the coordinated of projected
points are computer in view space. There, the projection window has a
height of 2 and a width of 2r, where ‘r’ is the aspect ratio. Dimensions being
dependent on the aspect ratio is the main problem here.
It also means we would need to tell the hardware the aspect ratio that we
need, since the hardware will later need to do some operations that involve
the dimensions of the projection window (like map it to the back buffer). If
we could remove this dependency, it will become more convenient.

One solution is to scale the projected x-coordinate from the interval [-r, r]
to [-1, 1] like so:

-r<x’<r
-1 <x’/r<li

Once this mapping is done, the x-,y-coordinates are said to be normalized
device coordinates (NDC) (the z-coordinate has not yet been normalized),
and a point (X, y, z) is inside the frustum if and only if

-r<x/r<r
-1<y’<I
n<z<f

This view space to NDC transformation is viewed as a unit conversion. We
have the relationship that one NDC unit equals r units in view space (i.e., 1
ndc = r vs) on the x-axis. So given x view space units, we can use this
relationship to convert units:

1ndc x
XVS. = —ndc
Vs r

It is now easy to modify our projection formulas to give us the projected x-
and y-coordinates directly in NDC coordinates:

;L X
= rztan(a / 2)
, y
y = ztan(a / 2) eq(6-1)

Note that in NDC coordinates, the projection window has a height of 2 and
a width of 2. Now as the dimensions are fixed, and the hardware need not
know the aspect ratio, it is still our responsibility to always supply the
projected coordinates in NDC space.

6.3.3.4 Writing the Projection Equation with a Matrix

We will express the projection transformation by a matrix. Equation 6.1, as
we have seen is nonlinear, and hence it does not have a matrix
representation. We can separate this equation into two parts: 1. a linear part
and 2. a nonlinear part. Nonlinear part of the equation is the
divided by z. We will see in the next section, how to normalize the z-
coordinate; this means we will not have the original z-coordinate for the
division operation.

We must save the input z-coordinate before it is transformed; for that, we
take the advantage of homogeneous coordinates, and copy the input z-
coordinate to the output w-coordinate. As per matrix multiplication, this is
done by setting entry [2][3] = 1 and entry [3][3] = O (zero-based indices).
Our projection matrix looks like this:

1
[rtan(a/z) 0 0 O]

1

P= | tan(a/2) Ol
0 0 A 1J
0 0 B 0

Here we have placed constants A and B into the matrix; they are used to
transform the input z-coordinate into the normalized range. Multiplying an
arbitrary point (x, y, z, 1) by this matrix gives:

1

rtan(a/2) 0 00
1 x y
[xy.z,1] 0 tan(a/2) 0 0]= [rtan(a/z) "tan(a/2)’ Az + B, Z]
0 0 A 1
0 0 B 0

(eq 6.2)

After this multiplication operation the projection matrix (the linear part), we
complete the transformation by dividing each coordinate by w = z (the
nonlinear part):

X y
rztan(a/2) tan(a/2)’

x y
, Az + B, z| dwnde by
[rtan(a/Z) tan(ayz)’ 2 T 07| dwide by w [

A+ B/, 1] (eq.6.3)
There may be a possibility of divide by zero; but, the near plane should be
greater than zero, so such a point would be clipped (we will see clipping
later). This division by w is called the perspective divide or homogeneous
divide. We see that the projected x- and y-coordinates agree with Equation
6.1.

6.3.3.5 Normalized Depth Value

We can discard the original 3D z-coordinate, because all the projected
points now placed on the 2D projection window, which is used to forms the
2D image seen by us. For the depth buffering algorithm we need 3D depth
information. Just like Direct3D wants the projected x- and y-coordinates in

Directx 11

85

Game programming

86

anormalized range, Direct3D wants the depth coordinates in the normalized
range [0, 1]. g(z), which is one order preserving function must be
constructed that maps the interval [n, f] onto [0, 1].
To preserve function order, if z1, z2 € [n, f] and z1 < z2, then g(z1) < g
(z2); although the depth values have been transformed, the relative depth
relationships remain intact, hence we can still correctly compare depths in
the normalized interval, which is we actually want for the depth buffering
algorithm. Mapping [n, f] onto [0, 1] can be done with two operations those
are: scaling and translation. We see from Equation 6.3 that the z-coordinate
undergoes the transformation:

()—A+B
g\z) = ~

Based on the given constraints we need to choose A and B, the conditions
are: Condition 1: g(n) = A + B/n = 0 (the near plane gets mapped to
zero)Condition 2: g(f) = A + B/f = 1 (the far plane gets mapped to one)
When we solve condition 1 for B, it yields: B = —An. Substituting this into
condition 2 and solving for A gives:

A+
=
Af —An
7 =
Af —An=f
_ f
A_f—n
Therefore,
nf
9 = T oy

A graph of g which is given in Figure 6.15 shows it is strictly increasing (i.e
order preserving) and nonlinear. Most of the given range is used up by the
depth values of near plane. The majority of the depth values get mapped to
a small subset of the range. It may lead to depth buffer precision problems.
We can make the near and far planes as close as possible to eliminate the
precision problems. Now that we have solved for A and B, we can state the
full perspective projection matrix:

1
rtan(a/2) 0 0 0
0 ! 0 0
p= tan(a/2)
a f
1
0 0 F=n
0 0 Fon O_
9(2) g(z,n=1,f = 100)

1.0

0.8 g(z,n =10, f = 100)

0.6
0.4

0.2

L 1 1 1 1 1 1 1 L I+Z
0 10 20 30 40 50 60 70 80 90 100

0.0

Figure 6.15. Graph of g(z) for different near planes.

Geometry is homogeneous clip or projection space after multiplying by the
projection matrix. Then after the perspective divide, the geometry is said to
be in normalized device coordinates (NDC).

6.3.3.6 XMMatrixPerspectiveFovLH

The following XNA math function is used for building the perspective
projection matrix:
XMMATRIX XMMatrixPerspectiveFovLH(// returns projection
matrix

FLOAT FovAngleY, /I vertical field of view angle in radians

FLOAT AspectRatio, // aspect ratio = width / height
FLOAT NearZ, Il distance to near plane
FLOAT FarZz); Il distance to far plane

The code below illustrates how to use D3DXMatrixPerspectiveFovLH.
Here, we specify a 45° vertical field of view, a near plane at z =1, and a far
plane at z = 1000 (these lengths are in view space).
XMMATRIX P = XMMatrixPerspectiveFovLH(0.25f*MathX::Pi,
AspectRatio(), 1.0f, 1000.0f);

The aspect ratio is taken to match our window aspect ratio:

float D3DApp::AspectRatio()const
{

return static_cast<float>(mClientWidth) / mClientHeight;
}

Directx 11

87

Game programming

88

6.4 THE TESSELLATION STAGE (TS)

Tessellation is one of the important stages in the pipeline. Tessellation
means to subdivide the triangles (basic components in image) of a mesh to
add new triangles. Newly created triangles can then be offset into new
positions to create the fine mesh details as shown in Figure 6.16.

Tessellation provides various benefits as:

1. It helps us to implement a level-of-detail (LOD) mechanism, the
triangles near the camera are tessellated to add more detail which
leads to a clearer picture, and triangles far away from the camera are
not tessellated, which saves extra usage of resources. In this way, we
only use more triangles where the extra detail will be noticed.

2. We can keep a simpler low-poly mesh (low-poly means low triangle
count in the mesh) in memory, and tessellation can add the extra
triangles on the fly, thus saving memory.

3. We can perform operations like animation and physics on a simpler
low-poly mesh, and only use the tessellated high-poly mesh for
rendering, which helps in producing faster performance.

Tessellation stages are new introduction to Direct3D 11, it mainly provides
a way to tessellate geometry on the GPU. Before it’s introduction, we
needed to perform tessellation activities by using CPU, and then the new
tessellated geometry would have to be uploaded back to the GPU for
rendering. Uploading new geometry from CPU memory to GPU memory is
slow for efficiency, and it also burdens the CPU with computing the
tessellation. Hence at that time, tessellation methods have not been very
popular for real-time graphics prior to Direct3D 11. Direct3D 11 provides
an API to do tessellation operations completely in hardware with a Direct3D
11 capable video card. It makes tessellation an easy to use technique.
Tessellation is optional, you can use it if the application demands.

Figure 6.16. The left image shows the original mesh. The right image shows
the mesh after tessellation

6.5 GEOMETRY SHADER STAGE (GS)

Like Tessellation, Geometry Shader stage is also optional. It takes entire
primitives as an input. For example, consider if we were drawing triangle
lists, then the input to the geometry shader will be the three vertices defining
the triangle. These vertices are already processed through the Vertex Shader
stage. Mainly to create or destroy the geometry, this stage is useful.

Consider the input primitive can be expanded into one or more other
primitives, or the geometry shader can choose not to output a primitive, this
output depends on some condition that we can assign in Geometry Shader
stage.

Geometry Shader is in contrast to a vertex shader, because Vertex Shader
cannot create vertices: it inputs one vertex and outputs one vertex. By using
Geometry Shader we can convert a point into a quad (ex. square) or a line
into the quad. We also notice the “stream-out” arrow from Figure 6.1
(pipeline). Means, the geometry shader can stream-out vertex data into a
buffer in memory, which can later be drawn.

6.6 CLIPPING

Sometimes the geometry falls outside of the viewing frustum (can not be
viewed) which must be discarded, and geometry that partially intersects the
boundary of the frustum must be clipped, in order to preserve only interior
part of it and discard the external part; see Figure 6.17 for the idea
illustrated in 2D.

Far Plane Far Plane

Near Plane Near Plane

(@) (b)

Figure 6.17 (a) Before Clipping (b) After Clipping

Directx 11

89

Game programming

90

(@) - (b)

Figure 6.18 (a) Clipping a triangle against a plane. (b) The clipped
triangle.

The frustum is a region bounded by six different planes: the top, bottom,
left, right, near, and far planes. To perform clipping operation against any
polygon on the frustum, we clip it against each frustum plane one by one.
When performing clipping operation on frustum (Figure 6.18), the part of
the polygon in the positive half space of the plane is kept, and the part in
the negative half space of the polygon is discarded. Remember, clipping a
convex polygon against a plane will always result in a convex polygon.

Clipping basically amounts to finding the intersection points between the
plane and polygon edges, and then ordering the vertices to form the new
clipped polygon. Blinn describes how clipping can be done in 4D
homogeneous space as shown in Figure 6.19. After the perspective divide

. . X Z R R . .
is performed, points (;,%,;,1) inside the view frustum are in
normalized device coordinates and bounded as follows:

-1<xiw<1
-1<yw<l1
0<zw<l1

Hence, in homogeneous clip space, before the divide, 4D points (X, y, zZ, W)
inside the frustum are bounded as follows:

A
\

Figure 6.19. The frustum boundaries in the xw-plane in homogeneous clip
space.

The points are bounded by the simple 4D planes:

Left: w = —X
Right: w = x

Bottom: w = -y

Top: w=y
Near:z = 0
Far:z=w

After knowing frustum plane equations in homogeneous space, we can
apply a clipping algorithm (like Sutherland-Hodgeman).

6.7 THE RASTERIZATION STAGE

Another important stage in the pipeline is the Rasterization stage. Its main
job is to compute pixel colors from the projected 3D triangles.

6.7.1 Viewport Transform

After clipping operation, the hardware can do the perspective divide step
for transforming from homogeneous clip space to normalized device
coordinates (NDC). The 2D x- and y- coordinates forming the 2D image are
transformed to a rectangle on the back buffer called the viewport after
vertices are in NDC space.

Once this operation is performed, the x- and y-coordinates are in units of
pixels. The viewport transformation does not modify the z-coordinate, as it
is used for depth buffering, although it can by modifying the MinDepth and
MaxDepth values of the D3D11 VIEWPORT structure. The range of
MinDepth and MaxDepth values must be between 0 and 1.

Directx 11

91

Game programming

92

6.7.2 Backface Culling

In a triangle, to distinguish between the two sides of it we use the following
convention. In the case where triangle vertices are ordered vo, v1, V2 then we
compute the triangle normal n by using formula like:

€0 =V1—Vpo
€1=V2—\Vp

60X eq
| eoX ey |

The side the normal vector emanates from is the front side and the other
side is the back side. Figure 6.20 illustrates this. If front side of the triangle
is visible to the user then we can say that, the triangle is front facing, and
we say a triangle is back-facing if the viewer sees the back side of a triangle.

With the perspective of Figure 6.20, the left triangle is front-facing while
the right triangle is back-facing. Notice, from our perspective, the left
triangle is ordered in clockwise direction while the right triangle is ordered
in counterclockwise direction.

It is not a coincidence: because with the convention we have chosen (i.e.,
the way we compute the triangle normal), a triangle which is ordered
clockwise (with respect to that viewer) is front-facing, and a triangle which
is ordered counterclockwise (with respect to that viewer) is back-facing.
Most objects in 3D worlds are the enclosed solid objects. So, suppose we
are constructing the triangles for each object in such a way that the normals
are always aimed outward. Then, the camera won’t see the back-facing
triangles of a solid object because the front-facing triangles occlude the
back-facing triangles; as Figure 6.21 illustrates this in 2D and Figure 6.22
in 3D. Because the front-facing triangles occlude the back-facing triangles,
it makes no sense to draw them. Backface culling is a term which refers to
the process of discarding back-facing triangles from the pipeline. This is
helpful in reducing the amount of triangle processing by almost half.

\'Z] p2
P1

Vo
V2
Po

Figure 6.20. The left triangle is front-facing from our viewpoint, and the
right triangle is back facing from our view point

Back Facing

b, .

Front Facing

Eye Eye
@ (b)

Figure 6.21 (a) A solid object with front-facing and back-facing triangle.
(b) The scene after culling the back facing triangles.

Figure 6.22. (Left) We draw the cubes with transperancy so that you can
see all six sides. (Right) We draw the cubes as solid blocks.

Direct3D treats triangles with a clockwise winding order (with respect to
the viewer) by default as front-facing, and triangles with a counterclockwise
winding order (with respect to the viewer) as back-facing. This whole
convention can be reversed with a Direct3D render state setting.

6.7.3 Vertex Attribute Interpolation

We have seen how to define a triangle by specifying its vertices. Along with
position, we can attach other attributes to vertices such as colors, normal
vectors, and texture coordinates as well. After the viewport transform, these
attributes need to be interpolated (the operation we will see later) for each
pixel covering the triangle.

Along with vertex attributes, vertex depth values need to get interpolated so
that each pixel has a depth value for the depth buffering algorithm. The
vertex attributes are interpolated too in screen space in such a way that the
attributes are interpolated linearly across the triangle in 3D space as shown
in Figure 6.23; which requires the so-called perspective correct
interpolation. The interpolation allows us to use the vertex values to
compute values for the interior pixels. We need not worry about the
mathematical details of perspective correct attribute interpolation because
the hardware does it for us. Figure 6.24 gives the basic idea about the
technique.

Directx 11

93

Game programming

94

p(s,t) = vp +s(vy — vp) + t(v; — vp)

fors=>0,t>0,s+t<1

Figure 6.23. An attribute value p(s,t) on a triangle can be obtained by
linearly interpolating between the attribute values at the vertices of the
triangle

Figure 6.24. A 3D line is being projected onto the projection window (the
projection is a 2D line in screen space). We see that taking uniform step
sizes along the 3D line corresponds to taking nonuniform step sizes in 2D
screen space.

6.8 PIXEL SHADER STAGE (PS)

The Pixel Shaders are programs that we write but are executed by GPU as
we have seen for Vertex Shaders. A pixel shader is executed for every pixel
fragment and uses the interpolated vertex attributes as input to compute a
color.

The same way we have seen in VS for each vertex. Main use of pixel shader
is to deal with pixel colors. It can be as simple as returning a constant color,
to doing more complex things like per-pixel lighting, reflections, and
shadowing effects.

6.9 OUTPUT MERGER STAGE (OM)

As the name indicates this stage merges the final outputs. Hence, after pixel
fragments have been generated by the pixel shader stage, they move onto
the output merger (OM) stage of the rendering pipeline. Here, some pixel
fragments may be rejected (like, from the depth or stencil buffer tests).

These pixel fragments which are not rejected are written to the back buffer.
Blending (which we will address later) is also done in this stage, where a
pixel may be blended with the pixel which is currently on the back buffer
instead of overriding it completely.

6.10 UNDERSTANDING MESHES OR OBJECTS,
TEXTURING, LIGHTING, BLENDING

6.10.1 Understanding Meshes or Objects

Mesh is an important aspect in computer graphics. A polygon mesh is
the collection of vertices, edges, and faces (the components we already
know) which is helpful in making attractive and realistic 2D and 3D object.
The polygon mesh contains the shape and contour for every 3D character
and/or object. Further this can be used in animated films, games,
advertisements etc.

We can understand the polygon mesh in an easy manner. Each vertex in that
contains the x, y and z coordinate information. Then the surface information
is contained in every face for that polygon. Which is further used to render
the scene using rendering engine and to calculate lighting and shadows.

We model the polygon mesh which is used to approximate the 3D surface
with lines and polygons. Blender, Maya are some of the popular programs
that are used for creating polygon meshes. For modeling, texturing the
animated objects these tools mostly used.

As we know the 3D objects are solid the polygon mesh are not. Most of the
meshes that we create are rendered as the polygonal quads; then they are
split into the triangles by computer.

There are two faces for every quad the front and back face. The surface
angle is calculated with front face and back face is hidden from the camera.

There are few limitations in polygon meshes, curved surfaces are difficult
to approximate with a series of lines. Small objects like hair and liquid are
difficult to simulate using polygon meshes.

All the animated characters in games and cartoons are made up of meshes.
One important property that meshes have is the ability of deformation;
which helps them to move, run, twist, etc.

Adding a texture and color on the mesh will bring the character to life. And
make it attractive. The modern computer graphics world is made up of
polygon meshes.

Directx 11

95

Game programming

96

6.10.2 Texturing

One important aspect in any animation is the Texture any object has, which
helps the animation to be more attractive and real. The Texture mapping
technique is the one that allows us to map image data onto a triangle, hence
enabling us to increase the details and realism of our scene in significant
manner. For instance, we can build a cube and turn it into a crate by mapping
a crate texture on each side as you can see in Figure 6.25.

= e
B | Crate Demo FPS: 2632 Frame Time: 0.379939 (ms) ‘E‘L@.ﬁ
| ",
|

Figure 6.25. The Crate demo creates a cube with a crate texture
Texture And Resource Recap

We already know that, the depth buffer and back buffer are 2D texture
objects represented by the ID3D11Texture2D interface. In the first section
we will review much of the material on textures. A 2D texture, as we know,
is a matrix of data elements. We use 2D textures to store 2D image data,
where the color of a pixel is stored in each of the element. But, this is not
the only usage of textures; consider, in an advanced technique called as
normal mapping, each element in the texture stores a 3D vector instead of a
color.

Although it is common for textures to store image data, they are very
general purpose than that. Consider a 1D texture (ID3D11TexturelD) is
like a 1D array of data elements, and a 3D texture (ID3D11Texture3D) is
like a 3D array of data elements. Here, the 1D, 2D, and 3D texture interfaces
all inherit from ID3D11Resource. We will see later, how textures are more
than just arrays of data; also they can have mipmap levels, and how the GPU
can do special operations on textures, like to apply filters and
multisampling.

Textures are not arbitrary chunks of data; they can only store certain kinds
of data formats, which are described by the DXGI_FORMAT enumerated
type. Some example are:

DXGI_FORMAT_R32G32B32_FLOAT Every element has
three 32-bit floating-
point components.

DXGI_FORMAT R16G16B16A16 UNORM | Every element has
four 16-bit
components mapped
to the [0, 1] range.

DXGI_FORMAT_R32G32_UINT Every element has
two 32-bit unsigned
integer components.

DXGI_FORMAT_R8G8B8A8_UNORM Every element has
four 8-bit unsigned
components mapped
to the [0, 1] range.

DXGI_FORMAT_R8G8B8A8_SNORM Every element has
four 8-bit signed
components mapped
to the [-1, 1] range.

DXGI_FORMAT_R8G8B8A8 SINT Every element has
four 8-bit signed
integer components
mapped to the [-128,
127] range.

DXGI_FORMAT_R8G8B8A8 UINT Every element has
four 8-bit unsigned
integer components
mapped to the [O,
255] range.

Remember that, the R, G, B, A letters are used to stand for red, green, blue,
and alpha, respectively. However, as we said earlier, textures need not store
color information; for example, the format
DXGI_FORMAT_R32G32B32_FLOAT.

This format has three floating-point components and can therefore store a
3D vector with floating-point coordinates. We can use typeless formats too,
in those we just reserve memory and then specify how to reinterpret the data
later. When the texture is bound to the rendering pipeline; consider example,
the following typeless format reserves elements with four 8-bit components,
but does not specify the data type (e.g., the general data types as integer,
floating-point, unsigned integer):

DXGI_FORMAT_R8G8B8A8_TYPELESS

One texture can be bound to different stages of the rendering pipeline; a
common example is to use a texture as a render target (for instance,

Directx 11

97

Game programming

98

Direct3D draws into the texture) and as a shader resource as well (like, the
texture will be sampled in a shader). This resource which is created for two
purposes is given by following binding flags:

D3D11_BIND_RENDER_TARGET |
D3D11_BIND_SHADER_RESOURCE

It indicates the two pipeline stages the texture will be bound to. The
resources are not directly bound to a pipeline stage; but, their associated
resource views are bound to different pipeline stages. If we are using
textures in any way, Direct3D requires that we create a resource view of
that texture at the time of initialization.

It is done for efficiency, as the SDK documentation points out: “This allows
validation and mapping in the runtime and driver to occur at view creation,
minimizing type checking at bind-time.” For the example of using a texture
as a render target and shader resource, consider creation of two views: a
render target view (ID3D11RenderTargetView) and a shader resource
view (ID3D11ShaderResourceView). Two things are done with Resource
Views: First, they tell Direct3D how the resource will be used, and second,
if the resource format was specified as typeless at creation time, then we
must now state the type when creating a view. Hence, with typeless formats,
it is possible for the elements of a texture to be viewed as floating-point
values in one pipeline stage and as integers in another; this essentially
amounts to a reinterpret cast of the data.

We should only create a typeless resource if we really need it; else, create a
fully typed resource. To create specific view for a resource, the resource
should be created with that specific bind flag. Consider for example, if the
resource was not created with the D3D11 BIND_SHADER_RESOURCE
bind flag (which indicates the texture will be bound to the pipeline as a
depth/stencil buffer), then we cannot create an
ID3D11ShaderResourceView to that resource.

If we will try, we will get an error ike the following:
D3D11: ERROR: [ID3D11Device::CreateShaderResourceView: A
ShaderResourceView cannot be created of a Resource that did not
specify the D3D11_ BIND_SHADER_RESOURCE BindFlag.

6.10.3 Texture Coordinates

There are two texture coordinates used in Direct3D a u-axis that runs
horizontally to the image and a v-axis that runs vertically to the image.
These coordinates, (u, v) such that 0 <u, v < 1, identify texel, an element
on the texture. Notice that, the v-axis is positive in the “down” direction
consider Figure 6.26.

Notice the normalized coordinate interval, [0, 1], which is used because it
gives a range dependent on dimensions for Direct3D to work with; for
example, range like (0.5, 0.5) always specifies the middle texel independent
on if the actual texture dimensions is 256 x 256, 512 x 1024, or 2048 x 2048
in pixels. Similarly, (0.25, 0.75) identifies the texel a quarter of the total

width in the horizontal direction, and three-quarters of the total height in the
vertical direction. We will consider, the texture coordinates always in the
range [0, 1], but later we explain what can happen when you go outside this
range.

(0,0) (1,0) +u

Figure 6.26. The texture coordinate system, sometimes called texture space

We will define a corresponding triangle on texture for each 3D triangle, that
is to be mapped onto the 3D triangle as shown in Figure 6.27. Let p0, p1,
and p2 be the vertices of a 3D triangle with respective texture coordinates
g0, ql, and qg2. Consider any arbitrary point as
(X, Yy, z) on the 3D triangle, the texture coordinates (u, v) are found by the
linear interpolation operation on the vertex texture coordinates across the
3D triangle by the same s, t parameters; that is, if

p1 = (X1,¥1,21)

(ug, vo)
+v

/
Po = (X0, Y0, 20) % =

3D Triangle Corresponding Texture Triangle

Figure 6.27. On the left is a triangle in 3D space, and on the right we define
a 2D triangle on the texture that is going to be mapped onto the 3D triangle.

(X, ¥,2) =p=po+s(pr—po) +t(p2—po) fors=>0,t>0,s+t<1
then,
(U, v) =g =do + (g1 — qo) + t(d2 — qo)

We can see, every point on the triangle has a corresponding texture
coordinate assigned to it. For implementation, we will modify our vertex
structure and add a pair of texture coordinates which will help to identify a
point on the texture.

Directx 11

99

Game programming

100

Here every 3D vertex has a corresponding 2D texture vertex. Hence, every
3D triangle defined by three vertices also defines a corresponding 2D
triangle in texture space.

/[Basic 32-byte vertex structure given by a code:

struct Basic32
{

XMFLOAT3 Pos;
XMFLOAT3 Normal;
XMFLOAT?2 Tex;
|

const D3D11 INPUT_ELEMENT_DESC
InputLayoutDesc::Basic32[3] =
{

{"POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, O,
D3D11 INPUT_PER_VERTEX DATA, 0},
{"NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,
D3D11 INPUT_PER_VERTEX DATA, 0},
{"TEXCOORD", 0, DXGI_FORMAT_R32G32 FLOAT, 0, 24,
D3D11 INPUT_PER_VERTEX DATA, 0}
b

If the 2D triangle is much different than the 3D one then you can create the
‘odd’ texture mappings. Hence, when the 2D texture is mapped onto the 3D
triangle, a lot of stretching and distortion occurs and the result will not look
good. For example, when we map an acute angled triangle to the right
angled triangle, it requires stretching. In general, texture distortion should
be minimized, unless the texture artist desires the distortion look.

See in Figure 6.27, we are mapping whole texture image onto each face of
the cube. This is not required. We can map only a part/subset of a texture
onto geometry. We can play several unrelated images on one big texture
map, and use it for several different objects as shown in Figure 6.28). The
texture coordinates are what will determine what part of the texture gets
mapped on the triangles.

Figure 6.28. A texture atlas storing four subtextures on one large texture.
The texture coordinates for each vertex are set so that the desired part of
the texture gets mapped onto the geometry.

6.10.4 Creating And Enabling A Texture

We usually read texture data from an image file which is stored on disk and
loaded into an ID3D11Texture2D object. Although, texture resources are
not bound directly to the rendering pipeline; you create a shader resource
view (ID3D11ShaderResourceView) to the texture, and then bind the view
to the pipeline. Two steps are to be taken to achieve this as below:

1. Call D3DX11CreateTextureFromFile to create the
ID3D11Texture2D object from an image file stored on disk.

2. Call 1D3D11Device::CreateShaderResourceView to create the
corresponding shader resource view to the texture.

Both the steps can be done at once with the following D3DX function:

HRESULT D3DX11CreateShaderResourceViewFromFile(
ID3D11Device *pDevice,
LPCTSTR pSrcFile,
D3DX11_IMAGE_LOAD_INFO *pLoadInfo,
ID3DX11ThreadPump *pPump,
ID3D11ShaderResourceView **ppShaderResourceView,
HRESULT *pHResult
);

Here,

1. pDevice: Is a Pointer to the D3D device to create the texture with.
2. pSrcFile: Is the Filename of the image to load.

3. plLoadinfo: Is an Optional image info; specify null to use the
information from the source image.

4. pPump: Is used to spawn a new thread for loading the resource. To
load the resource in the main thread, specify null.

5. ppShaderResourceView: It returns a pointer to the created shader
resource view to the texture loaded from file.

6. pHResult: It specify null if null was specified for pPump.

Any format can be loaded with the given function as: BMP, JPG, PNG,
DDS, TIFF, GIF, and WMP. We can refer to a texture and its corresponding
shader resource view as interchangeable. For example, we may say we are
binding the texture to the pipeline, even though we are really binding its
view.

For example consider, to create a texture from an image called
WoodCreate01.dds, we would write the following:

ID3D11ShaderResourceView* mDiffuseMapSRV;
HR(D3DX11CreateShaderResourceViewFromFile(md3dDevice,
L""WoodCrate0l1.dds", 0, 0, &mDiffuseMapSRYV, 0));

Directx 11

101

Game programming

102

Once we load this texture, we need to set it to an effect variable so that
it can be used in a pixel shader. A 2D texture object in an .fx file is
represented by the Texture2D type; for example, we declare a texture
variable in an effect file like so:

/[Nonnumeric values cannot be added to a cbuffer.

Texture2D gDiffuseMap;

As given in comment, texture objects are placed outside of constant buffers.
We can obtain a pointer to an effect’s Texture2D object (which is a shader
resource variable) from our C+ + application code as follows:

ID3DX11EffectShaderResourceVariable* DiffuseMap;
fxDiffuseMap = mFX->GetVariableByName("'gDiffuseMap")-
>AsShaderResource();

Once we have obtained a pointer to an effect’s Texture2D object, we
can update it through the C+ + interface like so:

/I Set the C++ texture resource view to the effect texture variable.
fxDiffuseMap->SetResource(mDiffuseMapSRV);

As with other effect variables, if we need to change them between
draw calls, we must call Apply:

Il set crate texture
fxDiffuseMap->SetResource(mCrateMapSRV);

pass->Apply(0, md3dImmediateContext);

DrawCrate();

/I set grass texture
fxDiffuseMap->SetResource(mGrassMapSRV);

pass->Apply(0, md3dImmediateContext);

DrawGrass();

/I set brick texture
fxDiffuseMap->SetResource(mBrickMapSRV);

pass->Apply(0, md3dImmediateContext);

DrawBricks();

The texture atlases can improve performance because it can lead to drawing
more geometry with one draw call. Suppose we used the texture atlas as
given in Figure 6.28 that contains the crate, grass, and brick textures. Then
adjust the texture coordinates for each object to its corresponding
subtexture, we could draw the geometry in one draw call (assuming no other
parameters needed to be changed per object):

/] set texture atlas

fxDiffuseMap->SetResource(mAtlasSRV);
pass->Apply(0, md3dImmediateContext);
DrawCrateGrassAndBricks();

There is overhead to draw calls, so it is desirable to minimize them with
techniques like this.

A texture resource can actually be used by any shader (vertex, geometry, or
pixel shader). For now, we will just be using them in pixel shaders. We

already know that, textures are essentially special arrays, so it is not hard to
imagine that array data could be useful in vertex and geometry shader
programs, too.

6.11 LIGHTING

See Figure 6.29, which is helpful to understand the significance of lighting
the objects. The left side of figure shows an unlit (without light) sphere, and
on the right hand side, we have a lit sphere. The left sphere looks very flat,
like a circle in 2D. The right side sphere looks like an actual sphere in 3D.
The lighting and shading effects aid in our perception of the solid form and
volume of any object. Our visual understanding and perception of the world
depends on light, which falls on material, and the light itself in the scene,
and physically accurate lighting models play important role in much of the
problem of generating photorealistic scenes.

The expensiveness of model is of course dependent on the accuracy of
model, the more accurate will be more expensive; we must keep a balance
between realism and speed. To understand this, consider the 3D special FX
scenes for films that can be much more complex and utilize very realistic
lighting models than a game because in films we use pre-rendered frame,
whereas in games, we render frames on the go, so films can afford to take
hours or days to process a frame. In games, the frames need to be drawn at
a rate of at least 30 frames per second.

6.11.1 Light And Material Interaction

There is no need to specify vertex colors while using lighting, instead we
specify the materials and lights, after that we apply a lighting equation by
using which machine can compute vertex colors based on the interaction of
light and material. This technique helps us to attain more realistically
colored objects. (you can compare Figure 6.29a and 6.29b again).

(a) (b)

Figure 6.29. (a) An unlit sphere looks 2D. (b) A lit sphere looks 3D.

Materials are the properties that determine how light interacts with a surface
of an object. For example, the material of a surface is made up of the
parameters as the colors of light a surface reflects and absorbs, and also the
reflectivity, transparency, and shininess of surface. In the model that we will
consider in this text, a light source can emit different intensities of red,
green, and blue light; by using the combination of them, we can simulate
many light colors.

Directx 11

103

Game programming

104

When the source emits the light which collides with any object, part of light
may be absorbed and part may be reflected; if object is transparent then light
may pass through it (ex. glass). When the light reflects travels along the new
path and may collide with other objects, and then again may partly absorbed
and reflected.

This partial absorption and reflectance means a light ray may strike many
objects before it is fully absorbed. Some light rays eventually travel into the
eye (refer Figure 6.30 to understand) and strike the light receptor cells
(known as cones and rods) on the retina in the eyes.

(©)
(b)
(@)

<94~

(@)

Figure 6.30. (a) Flux of incoming white light. (b) The light strikes the
cylinder and some rays are absorbed and other rays are scatted toward the
eye and sphere. (c) The light reflecting off the cylinder toward the sphere is
absorbed or reflected again and travels into the eye. (d) The eye receives
incoming light that determines what the eye sees.

The trichromatic theory states, our retina contains three kinds of light
receptors, every one sensitive to red, green, and blue light. The incoming
RGB (Red, Green, and Blue) light stimulates the respective light receptor
with variable intensity, which is based on the strength a light carries. After
this stimulation, some neural impulse is sent down the optic nerve
connected to brain, and brain generates the image based on the stimulus.

See Figure 6.30 again and suppose cylinder material reflects 75% red light,
75% green light, and absorbs the remaining light, and the sphere material
reflects 25% red light and absorbs the remaining light. Suppose the light
source in the scene emits pure white light. When the light rays from source
strike the cylinder, the blue light will be completely absorbed and 75% of
red and green light is reflected (i.e kind of yellow light). This light is
scattered, part of it may travel into eyes and part will fall on sphere. Hence,
we will see the cylinder as a semi-bright shade of yellow. The remaining
light rays travel toward the sphere and strike on it.

As mentioned the sphere reflects 25% red light and absorbs blue and green
completely; hence, the medium-high intensity red light is diluted further and
reflected. This red light then travels into our eyes thus the we see the sphere
as a dark shade of red. We will adopt local illumination lighting models in
this text in particular. Every object is lit independently of another object,

and only the light directly emitted from light sources is taken into account
in the lighting process while using this local model.

The Figure 6.31 shows a consequence of this model. The global
illumination models, on the other hand, not only considers the direct light
from the light sources but also considers the light which is bounced off from
other objects in the scene. They are called global because they take every
light in the scene into consideration, they are expensive and mainly used to
create photorealistic effects in games.

Figure 6.31. Physically, the wall blocks the light rays emitted by the light
bulb and the sphere is in the shadow of the wall. However, in a local
illumination model, the sphere is lit as if the wall were not there.

6.11.2 Normal Vectors

Normal vector is very important concept to be understood before moving
forward. A face normal (unit vector) which describes the direction a
polygon is facing; refer Figure 6.32a for this. Surface normal is also the unit
vector which is orthogonal to the tangent plane of a point on a surface; refer
Figure 6.32b for this.

Direction of a point on a surface is facing is determined by surface normal.
Surface normal is required at each point on the triangle mesh surface for
lighting calculations so that we can determine the angle at which light
strikes the point on the mesh surface. We specify the surface normals only
at the vertex points also known as vertex normals. To obtain a surface
normal approximation at each point on the surface of a triangle mesh, these
vertex normals will be interpolated across the triangle during rasterization
(refer Figure 6.33).

(a) (b)

Figure 6.32. (a) The face normal is orthogonal to all points on the face. (b)
The surface normal is the vector that is orthogonal to the tangent plane of
a point on a surface.

Directx 11

105

Game programming

106

Po P P1
Figure 6.33. The vertex normals n0 and nl are defined at the segment vertex
points p0 and p1. A normal vector n for a point p in the interior of the line
segment is found by linearly interpolating (weighted average) between the
vertex normals; that is, n = n0 + t (n1 — n0), where t is such that p = p0 +
t (p1 - p0). Although we illustrated normal interpolation over a line segment

for simplicity, the idea straightforwardly generalizes to
interpolating over a 3D triangle.

6.11.2.1 Computing Normal Vectors

For finding face normal of triangle with points Apo p1 p2, we will determine
the two vectors lying on the triangle’s edge as:

u = p1 - Po
V =pP2—Jo
Then the face normal calculated as:
uXv
" uxv]

The function given below computes face normal for the front side of the
triangle from the three vertex points.

void ComputeNormal(const D3DXVECTOR3& pO,
const D3DXVECTOR3& pl,
const D3DXVECTOR3& p2,
D3DXVECTOR3& out)
{

D3DXVECTOR3 u = pl - po;
D3DXVECTOR3 % = p2 - po;
D3DXVec3Cross(&out, &u, &V);
D3DXVec3Normalize(&out, &out);
}

If the surface would have been differentiable, we could have used calculus
to compute normal; but triangle mesh is not differentiable. Hence we use a
technique called as vertex normal averaging.

For every polygon in the mesh, which shares a vertex v, the vertex normal
n is calculated by averaging the face normal of that polygon. For example,
consider Figure 6.34, which shows four polygons in the mesh share the
vertex v; thus, the vertex normal for v is given by:

Figure 6.34. The middle vertex is shared by the neighboring four polygons,
so we approximate the middle vertex normal by averaging the four polygon
face normals.

ng+n, +n, +n,

n =
I | ng+ng+n,+ns|

To calculate the average, there is no need to divide by 4 in previous example

because we normalize the result.

We can construct more sophisticated averaging techniques also. For
example, we can use a weighted average where the weights are determined
by the areas of the polygons. The code given below shows the
implementation of this averaging when vertex and index list of triangle
mesh is given:

I/l Input:

/[1. An array of vertices (mVertices). Each vertex has a
Il position component (pos) and a normal component (normal).
/I 2. An array of indices (mIndices).

/I For each triangle in the mesh:

for(UINT i = 0; i < mNumTriangles; ++i)

{

/l indices of the ith triangle

UINT i0 = miIndices[i*3+0];

UINT il = mIndices[i*3+1];

UINT i2 = mIndices[i*3+2];

I vertices of ith triangle

Vertex vO = mVertices[i0];

Vertex vl = mVertices[il];

Vertex v2 = mVertices[i2];

/I compute face normal

Vector3 e0 = v1.pos - v0.pos;

Vector3 el = v2.pos - v0.pos;

Vector3 faceNormal = Cross(e0, el);

/I This triangle shares the following three vertices,
// so add this face normal into the average of these
I/ vertex normals.

mVertices[i0].normal += faceNormal;
mVertices[il].normal += faceNormal;
mVertices[i2].normal += faceNormal;

}

Directx 11

107

Game programming

108

/I For each vertex v, we have summed the face normals of all
/I the triangles that share v, so now we just need to normalize.
for(UINT i = 0; i < mNumVertices; ++i)

mVertices[i].normal = Normalize(&mVertices[i].normal));

6.11.2.2 Transforming Normal Vectors

See Figure 6.35a, which has a tangent vector u = vi — vo orthogonal to a
normal vector n. If ‘A’ is considered as a nonuniform scaling
transformation, we can see from Figure 7.7b that the transformed tangent
vector u A = ViA — VoA doesn’t remain orthogonal to the transformed
normal vector nA.

The problem is described as: Given a transformation matrix A that
transforms points and vectors (non-normal), we want to find a
transformation matrix B that transforms normal vectors such that the
transformed tangent vector is orthogonal to the transformed normal vector
(i.e., UA - nB = 0). For this let us first start with what we have: we know
that the normal vector n is orthogonal to the tangent vector u:

urn= Tangent vector orthogonal to normal vector

wm’ =0 Rewriting the dot product as a matrix multiplication

uAaAn’=0 Inserting the identity matrix 1= AA ~/

(uA)(A‘1 ,lT) =0 Associative property of matrix multiplication

@A) (A" =0 Transpose property (A7) = A

(A) @A HHT =0 Transpose property (AB)” =B A7

uA-n(A)T =0 Rewriting the matrix multiplication as a dot product

A - 0B =0 Transformed tangent vector orthogonal to transformed normal vector

Thus B = (A™1)T (i.e the inverse transpose of A) is used to transform normal
vectors hence, they will be perpendicular to their associated transformed
tangent vector uA.

+Y 4y

= +X -
Vi A +4

(@) (b)

n(A~7

vp

uA
+X

v A

©
Figure 6.35. (a) The surface normal before transformation. (b) After scaling
by 2 units on the x-axis the normal is no longer orthogonal to the surface.
(c) The surface normal correctly transformed by the inverse-transpose of
the scaling transformation.

We do not need to calculate the inverse transpose because as A does the job
here; as if the matrix is orthogonal (AT = A-1), then B = (A-1)T = (A" =
A. To summarize we can say that, use the inverse transpose when

transforming a normal vector by a nonuniform or shear transformation. To Directx 11
compute the inverse-transpose we will use the helper function in
MathHelper.h:

static XMMATRIX InverseTranspose(CXMMATRIX M)

{
XMMATRIX A = M;

A.r[3] = XMVectorSet(0.0f, 0.0f, 0.0f, 1.0f);
XMVECTOR det = XMMatrixDeterminant(A);
return XMMatrixTranspose(XMMatrixInverse(&det, A));

}

Every matrix translation will be cleared now as we are using inverse-
transpose for transforming vectors and as translations are only applied to
points. If we set w=0 for vectors (using homogeneous coordinates), it
prevents vectors from being modified by translations. Hence, there is no
need to zero out the matrix translation.

Concatenation of an inverse-transpose and a matrix doesn’t contain
nonuniform scaling will cause a problem., say the view matrix (A ™)V, the
transposed translation in the 4th column of (A-1)" “leaks” into the product
matrix causing errors. So, we zero out the translation as a precaution to
avoid this kind of an error. To achieve things in proper way is to transform
the normal by ((AV)™)" . Observe the example below showing a scaling
and translation matrix, and how the inverse-transpose looks with a 4th
column not [0, 0, 0, 1]™:

1 0 0 0
410 05 0 0
0 0 05 0
1 1 1 1
100 -1
nr_|0 2 0 =2
@)=l 0 2 -2
00 0 —1

6.11.3 Lambert’s Cosine Law

The Light which strikes a surface point head-on (90° angle) is generally
more intense than light that just glances a surface point; consider Figure
6.36 to understand this. Let a small shaft of incoming light with cross-
sectional area given as dA. We can come up with a function which returns
different intensities based on the alignment of the vertex normal and the
light vector. When the vertex normal and light vector are perfectly aligned
(i.e., the angle 6 between them is 0°) the function should return maximum
intensity and when the angle increases, the intensity diminishes
accordingly. If the angle, 6 > 90°, then the light strikes the back of a surface
and so we set the intensity to zero. The Lambert’s Cosine Law function is

given as,
109

Game programming

110

n
—_
Il \
Y Y & \4 g
dA dA
(a) (b)

Figure 6.36. Consider a small area element dA. (a) The area dA receives
the most light when the normal vector n and light vector L are aligned. (b)
The area dA receives less light as the angle 0 between n and L increases (as
depicted by the light rays that miss the surface dA).

f(68) = max(cos6,0) = max(L.n,0)

where L and n are unit vectors. See Figure 6.9 shows a plot of f (0) to see
how the intensity, ranging from 0.0 to 1.0 (i.e., 0% to 100%), varies with 6.

Intensity
A

1.0
0.9} \
08k / N ‘ f(6) = max(cos 6,0) |
0.7F
0.6/
05+
045
0.3F
02r
0.1

0 - >

e 45 1 05 0 05 1 15 2
Figure 6.37. Plot of the function f (6) = max (cos 6,0) = max (L - n, 0) for —
2<0<2 Notethat /2~ 1.57.

6.11.4 Diffuse Lighting

One of the common type of lighting is Diffuse Lighting. To understand this
consider a rough surface, as shown in Figure 6.38. A diffuse reflection
occurs when light strikes a point on such a rough surface, and light rays
scatter in various random directions. In our modeling this kind of
light/surface interaction, we stipulate that the light scatters equally in all
directions above the surface. Similarly, the reflected light will reach the eye
regardless of theeye position.

Hence, Diffuse lighting calculation is independent of view point, the color
of the surface will always look the same no matter the viewpoint. We can
do the diffuse light calculation in two parts: for the first, diffuse light color
and a diffuse material color are specified. Amount of incoming diffuse light
which the surface reflects and absorbs is specified by the diffuse material;
and, this is handled with a component-wise color multiplication.

Consider for example, some point on a surface reflects 50% incoming red
light, 100% green light, and 75% blue light, the incoming light color is 80%
intensity white light. Then the incoming diffuse light color is given as: 14 =
(0.8, 0.8, 0.8) and the diffuse material color is given by md = (0.5, 1.0, 0.75);
then the amount of light reflected off the point is given by:

D=1 ® mq=(0.8,0.8,0.8) ® (0.5,1.0,0.75) = (0.4,0.8,0.6).
Finally, the Lambert’s cosine law is included to finish this calculation.

Let 1d be the diffuse light color, md be the diffuse material color, and kq =
max (L - n, 0), where L is the light vector, and n is the surface normal. The
amount of reflected diffuse light off the point is given by equation:

Cd=Kd - 1a® mg=kqD (eq. 6.4)

Incoming Light

‘W\—\M.'

Figure 6.38. Incoming light scatters in random directions when striking a
diffuse surface. The idea is that the surface is rough at a microscopic level.

6.11.5 Ambient Lighting

Our lighting model will not take the light bounced off the other objects into
consideration. But, in real world, most of the light that we will notice is the
indirect kind. For example, consider we are sitting in a room with a teapot
on a desk and there is one light source in the room.

Only one side of the teapot is in the direct line of sight of the light source;
nevertheless, the backside of the teapot would not be pitch black. This is
because some light scatters off the walls or other objects in the room and
eventually strikes the backside of the teapot.

For the calculation of this indirect light, we will use ambient term as given
below in the lighting equation:

A=la®ma

Directx 11

111

Game programming

112

The color 1a specifies total amount of indirect (ambient) light that a surface
is receiving from the light source. The ambient material color denoted by
ma gives the amount of incoming ambient light which the surface reflects
and absorbs. Ambient light uniformly brightens up the object by a bit;
hence, we cannot do a specific physical calculation. Here the indirect light
will scatter and bounce in the scene many times and it strikes the object in
every direction equally. If we combine both ambient and diffuse terms, we
will get the new lighting equation:

LitColor = .a @ ma + Kg. u @ mg
=A+ksD (eq 6.5)
6.11.6 Specular Lighting

Consider a smooth surface, as shown in Figure 6.39. Light reflects sharply
when it strikes such a surface in a direction through a cone of reflectance;
this kind of reflection is known as specular reflection.

Specular light may not travel in our eyes as in the case of diffuse light;
because specular light reflects in a specific direction. The specular lighting
calculation is viewpoint dependent. It means if we move eye in the scene
the amount of specular light it receives will change.

n

N5

Figure 6.39. The incoming light ray is denoted by I. The specular reflection
does not scatter in all directions, but instead reflects in a general cone of
reflection whose size we can control with a parameter. If v is in the cone,
the eye receives specular light; otherwise, it does not. The closer is aligned
with the reflection vector r, the more specular light the eye receives.

The cone by which the specular light reflects through is given by an angle
¢max with respect to the reflection vector r. It makes sense to vary the
specular light intensity based on the angle ¢ between the reflected vector r

. E-P . :
and the view vector = eIk We can deifne that the specular light

intensity is maximized when ¢ = 0 and smoothly decreases to zero as ¢
approaches gmax. We can modify the Lambert’s cosine law to represent
this concept mathematically.

See Figure 6.40 to understand the graph of the cosine function for different
powers of p >1. If we choose different p value, then we indirectly control
the cone angle gmax where the light intensity drops to zero. The shininess
of the surface can be controlled with the parameter p; means, highly

polished surfaces will have a smaller cone of reflectance than less shiny
surfaces. Hence, we can use larger p value for shiny surface than for matte
ones.

Intensity

(max(cos ¢,0))*

0.9 (max(cos ¢,0))*®

07 (max(cos ¢, 0))'%*

04

03

+¢

Figure 6.40. Plots of the cosine functions with different powers of p > 1.

Take a note, that because v and r are the unit vectors, we have that cos (¢)
=v - r. The amount of specular light reflected off a point that makes it into
the eye is given by:

Cs = ks . 1s ® Mms
= ksS
Where

k. = {max(v. r,0)P, Ln>0
s o, Ln<0

The color 1s gives the amount of specular light a light source is emitting.
The specular material color ms defines the specular light reflected by the
surface. The factor ks is used for scaling of the intensity of specular light
dependent on angle between r and v. Consider Figure 6.41 which shows
that, it is possible for a surface to receive no (zero) diffuse light (L - n <0),
but only receives specular light. However, if such is the case then it makes
no sense for the surface to receive specular light, so we set ks = 0 in this
case.

Directx 11

113

Game programming

114

Figure 6.41. The eye can receive specular light even though the light strikes
the back of a surface. This is incorrect, so we must detect this situation and
set kS = 0 in this case.

Note that the specular power p should always be greater than or equal to 1.
Our new lighting model is:

LitColor = 1a @ ma + Kg. 11 @ Mg + Ks. 1s @ ms

=A+kiD+ksS

kq = max(L.n,0)

max(v.r,0)?, L.n >0

fes = {0, Ln<0 (eq. 6.6)
Notes: The reflection vector is given by: r =1-2 (n - 1)n; see Figure 6.42.
I N r
0
g
Ef

u(y-u)

Figure 6.42. Geometry of reflection.
6.11.7 Specifying Materials

Material plays an important role in lighting. Depending on the surface,
material values may vary; means, different points on the surface may have
different material values, consider Figure 6.42 to understand this. As an
example, consider a car model, where the frame, windows, lights, and tires
reflect and absorb light differently, and so the material values would need
to vary over the car surface.

To model this variation in material approximately, we can specify material
values on the per vertex basis. Interpolation on these per vertex materials
will be done across triangle during rasterization stage, which gives us
material values for each point on the surface of the triangle mesh. Per vertex
colors add additional data to our vertex structures, and we need to have tools
to paint per vertex colors. We can set the material values to a member of a
constant buffer, and all subsequently drawn geometry will use that material
until it is changed between draw calls. The following pseudocode shows
how we would draw the car:

Set Primary Lights material to constant buffer
Draw Primary Lights geometry

Set Secondary Lights material to constant buffer
Draw Secondary Lights geometry

Set Tire material to constant buffer

Draw Tire geometry

Set Window material to constant buffer

Draw Windows geometry

Set Car Body material to constant buffer

Draw car body geometry

Our material structure looks like this, and is defined in
LightHelper.h:

struct Material

{

Material() { ZeroMemory(this, sizeof(this)); }
XMFLOAT4 Ambient;

XMFLOAT4 Diffuse;

XMFLOAT4 Specular; // w = SpecPower
XMFLOAT4 Reflect;

|

Reflect member will be used when mirror like reflections are used with
mirror like surfaces. We embedded the specular power exponent p into the
4th component of the specular material color as the alpha component is not
needed for lighting, so we might as well use the empty slot to store
something useful. At the vertex level we specify normal to obtain a normal
vector approximation at each point on the surface of the triangle mesh.
These vertex normals will be interpolated across the triangle during
rasterization. Let us now see parallel, point and spot lights in the following
sections.

6.11.8 Parallel Lights

A parallel light (or directional light) approximates a light source that is very
far away. We can also approximate all incoming light rays as parallel to
each other.

A vector is used to define a parallel light source, which specifies the
direction the light rays travel. The same direction vector is used by all light
rays from the same source as light rays are parallel. The light vector aims in
the opposite direction the light rays travel. A equation for a directional light
is exactly as Equation 6.6.

6.11.9 Point Lights

A light bulb, which radiates spherically in all directions is an example of a
point light. For an arbitrary point P, there exists a light ray originating from
the point light position Q traveling toward the point. We define the light
vector to go in the opposite direction; that is, the direction from the point P
to the point light source Q:

Q—P

L=To-r

The light vector calculation is the only differentiation factor in point lights
and parallel lights; which is constant in parallel lights and varies for every
point in point lights.

Directx 11

115

Game programming

116

6.11.9.1 Attenuation

The light intensity weakens as a function of distance based on the inverse
squared law. Also note that, the light intensity at a point a distance d away
from the light source is given by:

Iy
1(d) = Fp
where lo is the light intensity at a distance d = 1 from the light source. This
formula will not give perfect results always. Hence, instead of worrying

about physical accuracy, we make a more general function that gives the
artist/programmer some parameters to control.

To scale intensity we can use formula like:

Iy

1(d) =
C a, +a,d + a,d?

We call ao, a1, and a» as the attenuation parameters, and they are to be
supplied by the artist or programmer. If you actually want the light intensity
to weaken with the inverse distance, then set ap = 0, a1 = 1, and a, = 0. If
you want the actual inverse square law, then setap =0,a1 =0, and a2 = 1. If
we add attenuation equation into the lighting equation we can have:

I,D + kS

LitColor = A+
rLotor a, + a,d + a,d?

Interestingly, attenuation doesn’t affect ambient term as the ambient term is
used to model indirect light that has bounced around.

6.11.9.2 Range

In point lights, we include an additional range parameter. The point who has
more distance from light source than the given range, will not receive any
light from that source. It is useful for localizing a light to a particular area.

The attenuation parameter is useful to be able to explicitly define the max
range of the light source. The range parameter is also useful in shader
optimization. The range parameter does not affect parallel lights, which
model light sources very far away.

6.11.10 Spotlights

Flash light is one of the good physical example of a spotlight. A spotlight
has a position Q, is aimed in a direction d, and radiates light through a cone
refer Figure 6.43.

P

Figure 6.43. A spotlight has a position Q, is aimed in a direction d, and
radiates light through a cone with angle pmax.

To implement a spotlight the light vector is given by:

Q—P

L=To—rl

where P is the position of the point being lit and Q is the position of the
spotlight. Observe in Figure 6.43 that P is inside the spotlight’s cone if and
only if the angle ¢ between - L and d is smaller than the cone angle pmax.

All the light in the spotlight’s cone should not be of equal intensity; the light
at the center of the cone should be the most intense and the light intensity
should fade to zero as ¢ increases from 0 to gmax. We use the following
function which helps us to control the intensity falloff as a function of

@: kspot (¢) = max (cos@,0)s = max (-L -d, 0)s

You can see that, the intensity smoothly fades as ¢ increases; additionally,
by altering the exponent s, we can indirectly control ¢max (the angle the
intensity drops to 0); that is to say we can shrink or expand the spotlight
cone by varying s.

For example, if we set s = 8, the cone has approximately a 45° half angle.
So the spotlight equation is just like the point light equation, except that we
multiply by the spotlight factor to scale the light intensity based on where
the point is with respect to the spotlight cone:

(€9.6.7)

LitColor = kgpot (A+ M)

a0+a1d+ a2d2

If we compare Equation 6.6 and 6.7, we can observe that, a spotlight is more
expensive than a point light because we need to compute the kspot factor and
multiply by it. If we compare Equation 6.5 and 6.6, we can observe that, a
point light is more expensive than a directional light because the distance d
needs to be computed, and we need to divide by the attenuation expression.

To summarize, note that, directional lights are the least expensive light
source, followed by point lights and spotlights are the most expensive light
source.

6.11.11 Implementation
6.11.11.1 Lighting Structures

Directx 11

117

Game programming In LightHelper.h, we define the following structures to represent the three
types of lights we support.

struct Directional Light

{

DirectionalLight() { ZeroMemory(this, sizeof(this)); }
XMFLOAT4 Ambient;

XMFLOAT4 Diffuse;

XMFLOAT4 Specular;

XMFLOATS3 Direction;

float Pad; // Pad the last float so we can
Il array of lights if we wanted.

I

struct Point Light

{

PointLight() { ZeroMemory(this, sizeof(this)); }
XMFLOAT4 Ambient;

XMFLOAT4 Diffuse;

XMFLOAT4 Specular;

I/ Packed into 4D vector: (Position, Range)
XMFLOATS3 Position;

float Range;

I/ Packed into 4D vector: (A0, Al, A2, Pad)
XMFLOAT 3 Att;

float Pad; // Pad the last float so we can set an
Il array of lights if we wanted.

I

struct SpotLight

{

SpotLight() { ZeroMemory(this, sizeof(this)); }
XMFLOAT4 Ambient;

XMFLOAT4 Diffuse;

XMFLOAT4 Specular;

I/l Packed into 4D vector: (Position, Range)
XMFLOAT3 Position;

float Range;

/I Packed into 4D vector: (Direction,

Spot) XMFLOAT3 Direction;

float Spot;

/I Packed into 4D vector: (Att, Pad)
XMFLOAT 3 Att;

float Pad; // Pad the last float so we can set an
/[array of lights if we wanted.

I

1 Ambient: The amount of ambient light emitted by the light source.
2 Diffuse: The amount of diffuse light emitted by the light source.

3. Specular: The amount of specular light emitted by the light source.
4

118 Direction: The direction of the light.

Position: The position of the light.

Range: The range of the light. A point whose distance from the light
source is greater than the range is not lit.

7. Attenuation: Stores the three attenuation constants in the format (a0,
al, a2) that control how light intensity falls off with distance.

8. Spot: The exponent used in the spotlight calculation to control the
spotlight cone.

6.12 BLENDING

Consider Figure 6.44 to understand Blending concept.

Figure 6.44. A semi-transparent water surface.

In order to render the scene given in the Figure, we start rendering the frame
by first drawing the terrain (soil and surroundings) followed by the wooden
crate, so that the terrain and crate pixels are on the back buffer. After that,
draw the water surface to the back buffer using blending, hence the water
pixels get blended (kind of mixed) with the terrain and crate pixels on the
back buffer.

So we can see part of crate and terrain pixels through the water pixels as
well. This is the power of using blending in the scene. We will now examine
different blending techniques which allow us to blend (combine) the pixels
that we are currently rasterizing (the source pixels) with the pixels that are
already present on the back buffer (so-called destination pixels). This
technique allows us to render semi-transparent objects such as water, glass,
fog and gas.

6.12.1 The Blending Equation

Let us consider Csr as the color output from the pixel shader stage for the
ij" pixel which we are rasterizing (also called as source pixel), also let Cast
as the color of the ij"" pixel present on the back buffer (also called as
destination pixel).

Directx 11

119

Game programming

120

If we don’t use blending, Csc would directly overwrite Cgst (by assuming
that, it passes the depth/stencil test) and hence become the new color of the
ij" back buffer pixel. If we use blending, Csc and Cgst Will be blended
together to get the new color C that will overwrite the Cqst. Following
blending equation will be used in Direct3D to blend source and destination
pixels colors:

C =Cesre ® Fsrc EE‘ Cast ® Fast

Here, the colors F (that is source blend factor) and Fqst (that is destination
blend factor, and they also modify the original source and destination pixels
in a variety of ways, hence achieving different effects. Here, the & operator
is used to show component wise multiplication for the color vectors; and
the B3 operator may be any of the binary operators defined in next section.
The blending equation we have seen before, holds only for the RGB
components of the colors. The new alpha component is actually handled by
a separate but similar equation:

A = AsrcFsre EH AdstFdst

This equation also is essentially the same, but it is possible in this that the
blend factors and binary operation are different. To process RGB and alpha
independently and differently, we need to separate them.

Note that blending the alpha components is needed much less frequently
than blending the RGB components.

6.12.2 Blend Operations

The binary FH operator used in the blending equation may be one of the
following:

typedef enum D3D11 BLEND_OP

{
D3D11_BLEND OP_ADD =1,

D3D11 BLEND OP_SUBTRACT =2,
D3D11_BLEND OP_REV_SUBTRACT =3,
D3D11_BLEND OP_MIN =4,
D3D11_BLEND OP_MAX =5,

} D3D11_BLEND_OP;

C = Csrc ® Fsrc + Cast @ Fust
C = Cust @ Fust - Csre @ Fsre
C = Csre ® Fsrc - Cast @ Fast
C = min(Csrc,Cust)
C = max(Csrc,Cast)

Note that the blend factors are ignored in the min/max operation.

For the alpha blending equation these same operators can be used. You can Directx 11
also specify a different operator for RGB and alpha. For example, it is
possible to add the two RGB terms, but subtract the two alpha terms:

C =Csrc @ Fsrc + Cast @ Fast
A = AdstFdst - AsrcFsrc
6.12.3 Blend Factors

Several blend operators are used for setting different combinations for the
source and destination blend factors, and various different blending effects
can be achieved. We will see some of the combinations later. The list given
below gives the basic blend factors; these apply to both Fsc and Fast. You
can refer to the D3D11 BLEND enumerated type in the SDK
documentation for some additional advanced blend factors. Letting Csc =
(rs,0s,bs), Asrc = as, (the RGBA values output from the pixel shader), Cast =
(rd,9d,bd), Adgst = a4 , (the RGBA values already stored in the render target),
F being either Fsc or Fgst and F being either Fsc or Fast, we have the
following:

D3D11 BLEND_ZERO: F =(0,0,0) and F =0D3D11 BLEND_ONE:
F=(111) and F=1D3D11 BLEND_SRC_COLOR: F =(rs, gs, bs)
D3D11_BLEND_INV_SRC COLOR:F=(1—rs,1—gs,1—Dbs)
D3D11 BLEND_SRC _ALPHA: F =(as, as, as) and F = as
D3D11_BLEND_INV_SRC ALPHA:F=(1—as,1—as,1—as)and F
=1-as

D3D11 BLEND _DEST_ALPHA: F =(ad, ad, ad) and F = ad
D3D11_BLEND _INV_DEST ALPHA: F=(1-ad, 1-ad, 1 — ad)
and F=1-ad

D3D11 BLEND_DEST_COLOR: F =(rd, gd, bd)

D3D11_BLEND INV_DEST COLOR:F=(1-rd,1-gd, 1-bd)
D3D11_BLEND_SRC_ALPHA_SAT: F=(ag a;ag) and F = ag and
where ag = clamp(a,, 0,1)

D3D11 BLEND BLEND_FACTOR: F =(r, g, b) and F = a, where the
color (r, g, b, a) is supplied to the second parameter of the
ID3D11DeviceContext::OMSetBlendState method. This allows you to
specify the blend factor color to use directly; however, it is constant until
you change the blend state. D3D11 BLEND INV_BLEND FACTOR:
F=(1-r,1—g,1—b)and F =1 — a, where the color (r, g, b, a) is
supplied by the second parameter of the
ID3D11DeviceContext::OMSetBlendState method. This allows you to
specify the blend factor color to use directly; however, it is constant until
you change the blend state.

6.12.4 Blend State

We have seen the blending operators and blend factors, but where can we
set these values with Direct3D? The settings are controlled by the
ID3D11BlendState interface. This interface can be found by filling out a

121

Game programming

122

D3D11 BLEND_DESC structure and then calling
ID3D11Device::CreateBlendState:

HRESULT ID3D11Device::CreateBlendState(

const D3D11 BLEND_DESC *pBlendStateDesc,
ID3D11BlendState **ppBlendState);

1. pBlendStateDesc: This Pointer to the filled out
D3D11 BLEND_DESC structure describing the blend state to
create.

2. ppBlendState: This Returns a pointer to the created blend state
interface.

The D3D11 BLEND_ DESC: Structure is defined like so:
typedef struct D3D11 BLEND_DESC {

BOOL AlphaToCoverageEnable; // Default: False
BOOL IndependentBlendEnable; // Default: False
D3D11_RENDER_TARGET_BLEND_DESC RenderTarget[8];

} D3D11_BLEND_DESC;

1. AlphaToCoverageEnable: Program will specify true to enable
alpha-to-coverage, which is a multisampling technique useful when
rendering foliage or gate textures. Program will specify false to
disable alpha-to-coverage. This requires multisampling to be enabled.

2. IndependentBlendEnable: Total 8 render targets are supported by
Direct3D 11 simultaneously. If this flag is set to true, then blending
can be performed for each render target in a different way (different
blend factors, different blend operations, blending
disabled/enabled, etc.). When this flag is set to false, then all the
render targets will be blended as described by the first element in the
D3D11 BLEND_DESC::RenderTarget array. Multiple render targets
are used for the advanced algorithms; for this instance, assume we

only render to one render target at a time.

3. RenderTarget: The array

D3D11_RENDER_TARGET_BLEND_DESC elements (total 8),
where the i element describes how blending is done for the i*"
simultaneous render target. If IndependentBlendEnable is set to
false, then all the render targets use RenderTarget[0] for blending.
The D3D11_RENDER_TARGET_BLEND_DESC structure is

defined like so:
typedef struct D3D11_RENDER_TARGET_BLEND_DESC {

BOOL BlendEnable; // Default: False
D3D11 BLEND SrcBlend; // Default: D3D11_BLEND_ ONE
D3D11 _BLEND DestBlend; // Default: D3D11 BLEND ZERO

D3D11_BLEND_OP BlendOp; // Default: D3D11_BLEND_OP_ADD
D3D11 BLEND SrcBlendAlpha; // Default: D3D11 BLEND_ ONE
D3D11_BLEND DestBlendAlpha; // Default: D3D11_BLEND_ZERO
D3D11 BLEND_OP BlendOpAlpha; // Default:
D3D11_BLEND_OP_ADD

UINT8 RenderTargetWriteMask; // Default:
D3D11_COLOR_WRITE_ENABLE_ALL

} D3D11 RENDER_TARGET_BLEND_DESC;
Here;

1. BlendEnable: Specifies true to enable blending and false to disable
it.

2. SrcBlend: Is a member of the D3D11 BLEND enumerated type that
specifies the source blend factor Fsrc for RGB blending.

3. DestBlend: Isamember of the D3D11_BLEND enumerated type that
specifies the destination blend factor Fdst for RGB blending.

4. BlendOp: Is a member of the D3D11 BLEND_ OP enumerated type
that specifies the RGB blending operator.

5. SrcBlendAlpha: Is a member of the D3D11_BLEND enumerated
type that specifies the destination blend factor Fsrc for alpha blending.

6. DestBlendAlpha: Is a member of the D3D11_BLEND enumerated
type that specifies the destination blend factor Fdst for alpha blending.

7. BlendOpAlpha: Is a member of the D3D11 BLEND_OP
enumerated type that specifies the alpha blending operator.

8. RenderTargetWriteMask: Is the combination of one or more of the
following flags:
typedef enum D3D11_COLOR_WRITE_ENABLE {

D3D11_COLOR_WRITE_ENABLE_RED =1,
D3D11_COLOR_WRITE_ENABLE_GREEN =2,
D3D11_COLOR_WRITE_ENABLE_BLUE =4,
D3D11_ COLOR WRITE_ENABLE_ALPHA =8,
D3D11_COLOR WRITE_ENABLE_ALL =
(D3D11_COLOR_WRITE_ENABLE_RED |
D3D11_COLOR_WRITE_ENABLE_GREEN |
D3D11_ COLOR_WRITE_ENABLE_BLUE |
D3D11_COLOR_WRITE_ENABLE_ALPHA)

} D3D11_COLOR_WRITE_ENABLE;

These flags are used for controlling which color channels in the back buffer
are written to after blending. For example, we can disable writes to the RGB
channels, and only write to the alpha channel, it is done by specifying
D3D11 COLOR_WRITE_ENABLE_ALPHA. For advanced techniques
this kind of flexibility is very useful. If blending is disabled, the color

Directx 11

123

Game programming

124

returned from the pixel shader is used with no write mask applied. To bind

a blend state object to the output merger stage of the pipeline, we call:

void ID3D11DeviceContext::OMSetBlendState(
ID3D11BlendState *pBlendState,
const FLOAT BlendFactor,

UINT SampleMask);

1. pBlendState: Is a pointer to the blend state object to enable with the

device.

2. BlendFactor: Is an array of four floats defining an RGBA color

vector. This color vector is used as a blend factor when
D3D11_BLEND BLEND FACTOR or
D3D11 BLEND_INV_BLEND_FACTOR is specified.

3. SampleMask: The 32 samples a multisampling can take is used with
32-bit integer value is used to enable/disable the samples. For
example consider, if you turn off the 5th bit, then the 5th sample will
not be taken. Of course, disabling the 5th sample only has any
consequence if you are actually using multisampling with at least 5
samples. Generally the default of Oxffffffff is used, which does not

disable any samples an application might take from being taken.

There is a default blend state (blending disabled); if we call
OMSetBlendState with null, then it restores the default blend state. This
blending requires additional per-pixel work, so only enable it if you need it,

and turn it off when you are done.

The following code shows an example of creating and setting a blend
state:

D3D11 BLEND_DESC transparentDesc = {0};
transparentDesc.AlphaToCoverageEnable = false;
transparentDesc.IndependentBlendEnable = false;
transparentDesc.RenderTarget[0].BlendEnable = true;
transparentDesc.RenderTarget[0].SrcBlend =

D3D11 BLEND_SRC_ALPHA,;
transparentDesc.RenderTarget[0].DestBlend =
D3D11_BLEND_INV_SRC_ALPHA,;
transparentDesc.RenderTarget[0].BlendOp =
D3D11_BLEND_OP_ADD;
transparentDesc.RenderTarget[0].SrcBlendAlpha =
D3D11_BLEND_ONE;
transparentDesc.RenderTarget[0].DestBlendAlpha =

D3D11 BLEND_ZERO;
transparentDesc.RenderTarget[0].BlendOpAlpha =
D3D11_BLEND_OP_ADD;
transparentDesc.RenderTarget[0].RenderTargetWriteMask =
D3D11_COLOR_WRITE_ENABLE_ALL;

ID3D11BlendState* TransparentBS;
HR(device->CreateBlendState(&transparentDesc,
&TransparentBS));

float blendFactors[] = {0.0f, 0.0f, 0.0f, 0.0f};
md3dImmediateContext->OMSetBlendState(
TransparentBS, blendFactor, Oxffffffff);

As with other state block interfaces, you should create them all at
application initialization time, and then just switch between the state
interfaces as needed. A blend state object can also be set and defined in an
effect file:

BlendState blend
{

// Blending state for first render target.
BlendEnable[0] = TRUE;

SrcBlend[0] = SRC_COLOR;
DestBlend[0] = INV_SRC_ALPHA,;
BlendOpl[0] = ADD;

SrcBlendAlpha[0] = ZERO;
DestBlendAlpha[0] = ZERO;
BlendOpAlpha[0] = ADD;
RenderTargetWriteMask[0] = Ox0F;

// Blending state for second simultaneous render target.
BlendEnable[1] = True;

SrcBlend[1] = One;

DestBlend[1] = Zero;

BlendOp[1] = Add;

SrcBlendAlpha[1] = Zero;

DestBlendAlpha[1] = Zero;
BlendOpAlpha[1] = Add;
RenderTargetWriteMask[1] = OxO0F;

I3
techniquell Tech
{

pass PO
{

}./-Use "blend" for this pass.
SetBlendState(blend, float4(0.0f, 0.0f, 0.0f, 0.0f), OXffffffff);

}
}

Directx 11

125

Game programming

126

The values you assign to the blend state object are like those you assign to
the C++ structure, except without the prefix. For example, instead of
specifyingr D3D11 BLEND SRC_COLOR we just specify
SRC_COLOR in the effect code. Understand also that the value
assignments to the state properties are not case sensitive.

6.13 QUESTIONS:

Explain rendering pipeline.

What the input assembler stage?
Write note on vertex shader stage.
What is primitive topology?
What is frustum?

What Homogenous clip space?
What the tessellation stage?

Explain pixel shader.

© 0o N o a0 ~ w bnpoRE

Write a short note on meshes.

-
©

Write a note on texturing.

-
=

Write a note on blending.

-
no

Write a note lighting.
o the ofe ape ke ke

INTERPOLATION AND CHARACTER
ANIMATION

Unit Structure :

7.0
7.1

7.2

7.3

7.4

7.5

Obijectives

Trigonometry

7.1.1 The Trigonometric Ratios
7.1.2 Example

7.1.3 Inverse Trigonometric Ratios
7.1.4 Trigonometric Relationships
7.1.5 The Sine Rule

7.1.6 The Cosine Rule

7.1.7 Compound Angles

7.1.8 Perimeter Relationships
Interpolation

7.2.1 Linear Interpolation

7.2.2 Non-Linear Interpolation
7.2.2.1 Trigonometric Interpolation
7.2.2.2 Cubic Interpolation

7.2.3 Interpolating Vectors

7.2.4 Interpolating Quaternions
Curves

7.3.1 The Circle

7.3.2 The Ellipse

Beézier Curves

7.4.1 Bernstein Polynomials

7.4.2 Quadratic Bézier Curves
7.4.3 Cubic Bernstein Polynomials
7.4.4 A Recursive Bézier Formula
7.4.5 Bézier Curves using Matrices
B-Splines

7.5.1 Uniform B-Splines

7.5.2 Continuity

7

127

Game programming 7.5.3 Non-Uniform B-Splines
7.5.4 Non-Uniform Rational B-Splines
7.6 Analytic Geometry
7.6.1 Review of Geometry
7.6.1.1 Angles
7.6.1.2 Intercept Theorems
7.6.1.3 Golden Section
7.6.1.4 Triangles
7.6.1.5 Centre of Gravity of a Triangle
7.6.1.6 Isosceles Triangle
7.6.1.7 Equilateral Triangle
7.6.1.8 Right Triangle
7.6.1.9 Theorem of Thales
7.6.1.10 Theorem of Pythagoras
7.6.1.11 Quadrilaterals
7.6.1.12 Trapezoid
7.6.1.13 Parallelogram
7.6.1.14 Rhombus
7.6.1.15 Regular Polygon (n-gon)
7.6.1.16 Circle
7.7 2D Analytic Geometry
7.7.1 Equation of a Straight Line
7.7.2 The Hessian Normal Form
7.7.3 Space Partitioning
7.7.4 The Hessian Normal Form from Two Points
7.8 Intersection
7.8.1 Intersection Point of Two Straight Lines
7.8.2 Intersection Point of Two Line Segments
7.9 Point inside a Triangle
7.9.1 Area of a Triangle
7.9.2 Hessian Normal Form
7.10 Intersection of a Circle with a Straight Line
7.11 Questions

7.12 References
128

70 OBJ ECT|VES Interpolation and

Character Animation

To understand and revise Trigonometry.
To know the concept of Interpolation.
Understanding the use of Interpolation.
Understanding Curves and their equation.
To know the use of Curves.

To understand Analytic geometry.

N o g B~ w DR

To understand intersection of circle with line.

7.1 TRIGONOMETRY

Trigonometry is one of the basic concept that we must understand when
dealing with animation. If the word ‘trigonometry’ is split into its
constituent parts, ‘tri’ ‘gon’ ‘metry’, we see that it is to do with the
measurement of three-sided polygons, means triangles.

Trigonometry is very old, and we need to understand for the analysis and
solution of problems in computer graphics.

Functions provided by trigonometry are used in vectors, transforms,
geometry, quaternions and interpolation.

Main purpose of trigonometry is to calculate the measurement of angles, it
can be achieved by using two units of measurement: degrees and radians.

The degree unit of measure derives from defining one complete rotation of
360°. Every degree divides into 60 min, and every minute divides into 60
seconds.

Radian doesn’t depend on any arbitrary constant. Radian is the angle created
by a circular arc whose length is equal to the circle’s radius. Because the
perimeter of a circle is given by 2xr, 2z radians correspond to one complete
rotation. As we know, 360° correspond to 2z radians, 1 radian corresponds
to 180°/=, which is approximately 57.3". Following is the relationship
between radians and degrees:

3T

g = 90° m = 180° = =270° 2m= 360°

7.1.1 The Trigonometric Ratios:

Historically, the ancient civilizations knew that triangles, possessed some
inherent properties, especially the ratios of sides and their associated angles.

If such ratios were known well in advance, the problems involving triangles
with unknown lengths and angles could be computed by applying these

ratios. 129

Game programming

hypotenise

opposite

adjacent

Fig. 7.1 labeling a right-angle triangle for the trigonometric ratios.

We all know the abbreviations sin, cos, tan, csc, sec, and cot are used in the
trigonometric ratios. In Figure 7.1 a right-angled triangle is shown where
the trigonometric ratios are given by:

ng opposite 8 adjacent tanp
sinff = —— cosff = ——— an
hypotenuse hypotenuse
_ opposite
~ adjacent
1
escp = sinf sech = cosp cotf = tanp

The sin and cos functions have limits £1, whereas tan has limits c. The
four quadrants are given with their signs as:

+l+ |+ -+

sin cos tan

10

50° ’*

b

Fig. 7.2 h and b are unknown.
130

7.1.2 Example

Consider Figure 7.2 which shows another right-angled triangle where the
hypotenuse and one angle are known. The calculation for the other side is
done as follows:

o 50°
g = Sin

h =10sin50° = 10 X 0.76601 = 7.66
b
— 0
10 cos 50

b = 10cos50° = 10 X 0.64279 = 6.4279
7.1.3 Inverse Trigonometric Ratios:

Every angle has its associated ratio in trigonometry, we need functions to
convert one into the other.

The sin, cos and tan functions are used for conversion of angles into ratios,
and respective the inverse functions sin!, cos™ and tan™ are used for
conversion of ratios into angles.

Take example, sin45° = 0.707, therefore sin~? 0.707 = 45",

As sine and cosine functions repeat indefinitely hence known as cyclic
functions, their inverse functions return angles over a specific period.

7.1.4 Trigonometric Relationships:

We can find a strong relationship between the sin and cos definitions, and
they are formally related by

cos B = sin(B + 90°).

The theorem of Pythagoras also can be used to in some other formulas such
as

sin?B + cos?p =1
1+ tan?p = sec?p

1+ cot?B = csc?p

Interpolation and
Character Animation

131

Game programming

132

Fig. 7.3 An arbitrary triangle.

7.1.5 The Sine Rule:

Angles and the side lengths of a triangle can be related by using sine rule.
In Figure 7.3 you can see a triangle labeled in such a way that side a is
opposite angle A, side b is opposite angle B, etc.

We can form the sine rule for the Figure as

a b c

sin A - sin B - sinC’
7.1.6 The Cosine Rule:

The cosine rule is used for expressing the sin? +cos?p = 1 relationship for
any arbitrary triangle as shown in Fig. 4.3. In three ways you can write
cosine rule as follows:

a’ = b®+ c¢?—2bccos A
b? = ¢?+ a%? —2cacosB
c?= a?+ b?—-2abcosC
And three more relationships also hold;
a=bcosC +ccosB
b=ccosA+acosC
c=acosB+bcosA
7.1.7 Compound Angles:

There are various sets of relationships which are compound trigonometric
which shows how to add and subtract two different angles and multiplies of
the same angle. Some of these most common relationships are given below:

sin(A + B) =sinAcosB + cosAsinB
cos(A+ B) =cosAcosB F cosAsinB

tan4 +tanB
1 +tanAtanB

tan(A £+ B) =
sin2f = 2sinf cosf
cos 2 = cos?f — sin?f
cos2f =2 cos?p —1
cos2f =1—2sin?fp
sin3f = 3sinf —4sin3p
cos3B =4 cos3B — 3 cosf

1
cos?pB = > (1 + cos2pB)

sin?p = % (1 —cos2pB).
7.1.8 Perimeter Relationships:

Refer Fig. 7.3, by using which we can create relationships those integrate
angles with the perimeter of a triangle; are given as follows:

1
s = E(a+b+c)

n(l)= [E=00=

\/(s —c)(s—a)
sm

\/(s —a)(s—Db)
sm

o(l)- 52

cos (E) = —S(S —b)

ca

Interpolation and
Character Animation

133

Game programming

134

(9= [152

inA = - b
sin —b—c\/s(s—a)(s—)(s —0¢)

inB = - b
sin —E\/s(s—a)(s—)(s—=¢)

inC = 2 b
sin —%\/s(s—a)(s—)(s —¢)

7.2 INTERPOLATION

Interpolation is a set of techniques in mathematics which is helpful to solve
computer graphics problems. Interpolation is a technique to change one
number to another.

Consider, for changing 2 to 4 we simply add 2 in the original value, which
is very simple, hence not very useful. The interpolant function is usually
used to change one number to another in 10 steps. For the previous example,
we can start with 2 and repeatedly added 0.2, it would generate the sequence
2.0,2.2,24,26, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and eventually we reach to 4.

The interpolated numbers can be used in the applications where gradual or
continuous change is needed like to scale, rotate, translate an object, moving
the camera, changing color or brightness.

We can control this interval spacing in this interpolated values.

We will start the discussion with the simplest of all interpolants: the linear
interpolant.

7.2.1 Linear Interpolation:

As we have seen, to create equal spacing between the interpolated values
we will use linear interpolant. The example shown that increment 0.2 is
calculated by subtracting the first number from the second and dividing the
result by 10, i.e., (4—2)/10=0.2.

Let us express the same problem differently below.

If we take two numbers as nl and n2, given as start and final values
respectively, we will have the interpolated value which is controlled by a
parameter t which ranges between 0 and 1. When the value of t = 0, then
result is n1, and when the value of t = 1, then the result is n2. The solution
can be given as:

0 0.1 02 03 04 05 06 0.7 08 09 1
{

Fig. 7.4 The graphs of (1—t) and t over the range 0 to 1.
n=ny+t(n, —ny)

Forwhenni=2,n,=4andt=0.5;
1
n=2+§(4—2)=3

which is a halfway point. Moving forward, if t=0,n=ng,and ift=1,n =
nz, these values confirm that we have a sound interpolant. We can express
the equation differently as:

n=n,(1—-1t)+n,t (7.2)

Equation 7.1 shows what is really going on. See Figure 7.4 which shows the
graphs of (1-t) and t from the range 0 to 1. We can see that as t changes
from O to 1, the graph of (1—t) term also varies from 1 to 0. As a result the
value of ny is attenuating to zero on the range of t when the term t scales the
value of nz from zero to its actual value. The next Figure 7.5 shows these
two actions with ny = 1 and nz = 5.

1. Theterms (1—t) and t sum to unity is one noticeable fact; and is not a
coincidence. If this interpolant takes a quarter of ny, it balances it with
three quarters of nz, and vice versa. We could obviously design an
interpolant that takes arbitrary portions of ny and n, it also leads to
some arbitrary results.

2. This simple interpolant is widely used in computer graphics software.
For instance, consider the task of moving any object within the two
locations (X1, y1, z1) and (X2, Y2, z2). Then its interpolant position can
be given as below:

x = x(1—1¢)+x,t
y=y1(1-t) +yat

z=z;(1—-1t)+ z,t

Interpolation and
Character Animation

135

Game programming

136

4.5
4.0
3.5
3.0
na2s
2.0
1.5 /
1.0
0.5

5t
1(1-1) % 5¢

1(1-11)

0 01 02 03 04 05 06 07 08 09 1
t

Fig. 7.5 The top line shows the result of linearly interpolating between 1
and 5.

Here, for 0 <t < 1. Within the animation we can generate the parameter t
from two frame values. By this kind of interpolant this can be assured that
equal steps in t result in equal steps in X, y, and z. See Figure 7.6 which
illustrates this linear spacing with a simple 2D example where we
interpolate between the points (1,1) and (4,5). The spacing is equal between
the intermediate interpolated points.

R

X

Fig. 7.6 Interpolating between the points (1,1) and (4,5).

Equation 7.1 can we given in matrix forma as follows:

n=[1-0t) t] [Z;]

Or as

el 0

7.2.2 Non-Linear Interpolation:

Equal steps are ensured in the case of linear interpolant in the parameter t;
but it is often required that equal steps in t may give rise to unequal steps in
the interpolated values. This can be achieved by various mathematical
techniques. For example, consider that we could use trigonometric
functions or polynomials. Let’s start with trigonometric solution.

7.2.2.1 Trigonometric Interpolation:

By trigonometry we know that, sin’p +cos?p = 1, this relation satisfies one
of the requirements of an interpolant: the terms must sum to 1.

If the value of B varies between 0 to /2, then cos®p varies between 1 to O,
and value of sin?p varies between 0 to 1, they can be used to modify the
two interpolated values ni and nz as given below:

n = nycos’t + nysin’t [0<t < m/2].
(7.2)

The interpolation curves are shown in Fig 7.7 .

1.2
'
0.8 1
c 0.6 |
0.4 1
0.2 -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
angle

Fig. 7.7 The curves for cos?s and sin?s .

Let’s make the values of n; = 1 and nz = 3 which were placed in (7.2), the
curves we can obtain are shown in Fig. 7.8.

If we use two 2D points in space like (1,1) and (4,3) and we apply this
interpolant, we will obtain a straight-line interpolation, the distribution of
points will be see as non-linear in Fig.7.9. Equal steps in t gives unequal
distances.

The nature of curve is main problem of this approach here, because it is
sinusoidal, and the slope is given by interpolated values. If we use a
polynomial, we can gain control over this interpolated curve, which we will
understand later.

Interpolation and
Character Animation

137

Game programming

138

3.5
3_
2.5
2_
S 15-
‘I_
0.5
0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
degrees

Fig. 7.8 Interpolating between 1 and 3 using a trigonometric interpolant.

3.5 -

3 4

2.5
> 27
1.5

1 4

0.5 1

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
X

Fig. 7.9 Interpolating between two points (1,1) and (4,3). Note the non-
linear distribution of points.

7.2.2.2 Cubic Interpolation:

In this type, we will develop a cubic blending function first which will be
similar to the previous sinusoidal function. We can extend it to provide more
flexibility. The basis for this interpolant is a cubic polynomial:

vy =atd+bt> +ct+d

The final interpolant can be given in the form of:

n=[v vl [Z;]

To find the values of the constants associated with the polynomials vi1 and
V2. The requirements are:

1. The growth of the cubic function v, must be from0to 1 for 0 <t <1.

2. The slope at a point t must equal the slope at the point (1—t). The
symmetry of slope is ensured by the range of function.

3. The value v» at any point t must also produce (1—Vv>) at (1—t). Which
ensures curve symmetry.

o The first requirement is satisfied by:

vy, =atd+bt*+ct+d

whent =0, v, =0andd =0. Similarly, when t =1, v = at+b+c.

o The second requirement is satisfied when we differentiate v to obtain
the slope

dv,
Ez3at2+2bt+c=3a(1—t)2+2b(1—t)+c

equating constants we discover ¢ = 0 and 0 = 3a+2b.
o The third requirement is satisfied by:
at> +bt> =1—[a(1—1t)3+ b(1 —1t)?]
where we discover 1 = a+b. But 0 = 3a+2b, thereforea=2and b = 3.
Hence,
v, = —2t3 + 3t? (7.3)

We can subtract equation (7.3) from 1 to find the curve’s mirror curve,
which starts at 1 and collapses to 0 as t moves from 0 to 1, as:

v, = —2t3 = 3t? + 1.
Therefore, the two polynomials are
v, = —2t3 - 3t? + 1. (7.4)
v, = —2t3 + 3t? (7.5)
and are shown in Fig.7.9 . Those can be used as interpolants as:
n= ving +vyn,

And the matrix form for the same is given as:

ny
= 3 _ 2 _ 3 2
n=[2c5-3c2+1 —2t3+3t]'[nz]

2 =2
-3 3 ny
— [+3 42
n=[¢t 1|, [nz] (7.6)
1 0
1'?] 23312 + 1 2%+ 3¢2
0.8 4
c 0.6 -
0.4 A
0.2 4
0 ; -

0 01 02 03 04 05 06 07 08 09 1
t

Interpolation and
Character Animation

139

Game programming

140

Fig. 7.10 Two cubic interpolants.
If we let n1 = 1 and n2 = 3 we obtain the curves shown in Fig. 7.11.

After applying the interpolant to the points (1,1) and (4,3) we obtain the
curves which are shown in Fig. 8.9. Any pair of numbers can be blended
together by using this interpolant.

Other qualities can be associated with the numbers n1 and n, such as their
tangent vectors s; and sy. Perhaps we could interpolate these alongside n:
and ny. In fact this can be done, as we will see later.

35
31
25+
ol
| =
1.5+
1]
0.5+

0 - : } } : } } } } : i
0 01 02 03 04 05 06 07 08 09 1
i

Fig. 7.11 Interpolating between 1 and 3 using a cubic interpolant.

The interpolating curve shown in Fig. 7.11 is to be modulated with two
further cubic curves. One that blends out the tangent vector s; associated
with n1, and the other that blends in the tangent vector s, associated with no.
We will start with a cubic polynomial to blend vector s; to zero:

Voue = at3 + bt? + ct +d.

Here, vout must equal zero when t = 0 and t = 1, otherwise it will disturb the
start and end values. Therefore d =0, and

a+b+c =0.

3.5 -
3
2.5 A
2
>\1.5*
14
0.5
0

0 0.5 1 15 2 25 3 3.5 4 4.5
X

Fig. 7.12 A cubic interpolant between points (1,1) and (4,3).

The rate of change of vou relative to t (i.e., dvout /dt) must equal 1 whent =
0, so it can be used to multiply sl1. If t = 1, then, dvou/ dt must equal 0 to
attenuate any trace of s1:

Avoye

=3at® + 2bt + ¢
dt

Avout

But = 1 when t=0 and % = 0 when t=1. Hence, ¢c=1 and

3a+2b+1=0

Using equation 7.6 implies that b= -2 and a=1. Hence, the polynomial vout

has the form

Vout = -2 +1t. (77)

using a similar argument, we can prove that the function to blen in sz equals

Vin =3 — 12 (7.8)
Previous graphs are shown in Fig. 7.13. The complete interpolation function
looks like
1.2
‘| 4
0.8
0.6
< 0.4

t

Fig. 7.13 The four Hermite interpolating curves.

n= [2t3—-3t24+1 —=2t34+3t%2 3 -2t2+¢t t3—t2].

And unpacking the constants and polynomial terms, we will get

2 =2 1 1 ny
-3 3 -2 1| M
0 0 1 0 [s1]
1 0 0 0 S2

n=[t3 2 ¢ 1]

The interpolation given here is called Hermite interpolation type. The
French mathematician Hermite also proved in 1873 that e is transcendental.
To blend a pair of numerical values and their tangent vectors this interpolant
can be used as shown above, or it can be used to interpolate between points
in space. We will see one 2D example to demonstrate the latter part, it is
easy in 3D too. The Figure 7.14 shows how the two points (0,0) and (1,1)
are to be connected by a cubic curve which responds to the initial and final
tangent vectors. At the start point (0,1) the tangent vector is [-50]", and at
the final point (1,1) the tangent vector is [0 —5]". The x and y interpolants

are

Interpolation and
Character Animation

141

Game programming

142

2 =2 1 1 0
x=[t3 2 ¢ 1] _03 g _12 _01 . _15
| 1 0 0 011LO
2 =2 1 1 0
y=e e ¢ 1|7 5 T
| 1 0 0 01 1L-5
Which becomes
-7
x=[e3 ¢ ¢ 1l i35 = —7t3 + 13t*> — 5t

0
-7
y=1[t3 t* ¢ 1] 3 = —7t3 + 8t2.
0

When these polynomials are plotted over the range 0 <t <1 we obtain the
curve shown in Fig.7.13.

8
16
4

3

N]
08 0 -5
0.6
04
5 0194]
. : b : : : : : .
08 -06 -04 -02 0 02 04 06 08 1 12

X

Fig. 7.14 A Hermite curve between the points (0,0) and (1,1) with tangent
vectors

[-50]T and [0 —5]T.
We will now take a look at interpolating vectors.
7.2.3 Interpolating Vectors:

We have been interpolating between a pair of numbers in the previous
sections. We can not use the same interpolants for vectors, because a vector
contains both magnitude and direction, when we interpolating two vectors,
both quantities must be preserved. Let us consider for example, if we
interpolated the x- and y-components of the vectors [2 3]" and [4 7]", the
in-between vectors would carry the change of orientation but ignore the
change in magnitude. We must understand the required operation of
interpolation to preserve both orientation and magnitudes in the result. From
the Figure 7.15 we can see two unit vectors vi1 and v, which are separated

by an angle 6. A proportion of Vi and a proportion of V2 defines the
interpolated vector v as given below:

V = avi+bvo.

L J

- 0 — r'd v

Fig. 7.15 Vector v is derived from a part of v1 and b part of v2.

Let’s define the values of a and b such that they are a function of the
separating angle 0. Vector v is t0 from vi and (1—t)6 from v, and we can
understand from Fig.7.15 that using the sine rule;

a __ b
sin(1-t)0 sint6

(7.9)

And further
m = acostd
n=bcos(1 - #)0
where
m-+n=1. (7.10)
from (7.9)
_asinté
sin(1 —-1t)60
From (7.10) we can have

asintt cos(1 —t)0

to
acostt+ sin(1 —1t)60

Solving for the value of a we can find
sin(1 —1t)60
a=—T——"
sin 6
_sin to

sin@’

Interpolation and
Character Animation

143

Game programming

144

Hence, the final interpolant is

__sin(1-t)0 sin t@

= v
sin 8 1

v,. (7.11)

sin 6
7.2.4 Interpolating Quaternions

The interpolants which are used for vectors, also works with quaternions. It
means, if we have two quaternions as g: and gy, the interpolated quaternion
q is given by equation:

sin(1-t)6 sin t@

- sin 8 71

q2- (7.12)

sin 8

This interpolant is applied individually to the four terms of the quaternion.
0 is used as the angle between the two vectors which we are interpolating.
It can also be derived using the dot product formula:

V1.V,
|v1]|v2|
X1Xy + V1Yo t+ 212

|v1|[v2]

cosfO =

cosfO =

Also, when interpolating the quaternions, 6 is computed by taking the 4D
dot product of the two quaternions:

q1-92
cosf =
| q111q:2|
5152 + X1X2 + V1Y2 + 212,
cosf =
| 911142|
If we are using unit quaternions then,
COSO = S152 + X1X2 + Y1y2 + 2122 (7.13)

We will now show how to interpolate with the pair of quaternions;

As an example, let us say we have two quaternions named as ¢ and g that
rotate 0" and 90" about the z-axis respectively, then:

01=[cos(0%2) + sin(0%2)[0i+0j+1K]]
G2=[c0s(90%/2) + sin(90%2)[0i+0j+1K]]
which becomes

g1 = [1+0i+0j+0K]

G2 = [0.7071+0i+0j+0.7071K] .

We can apply equation (7.12) to find any interpolated quaternion. Before
that, we need to find the value of 0 using equation (7.13) as:

cos 0=0.7071

0 =45°
Now if t = 0.5, then interpolated quaternion is given by the equation,

_ sin(45°/2) sin(45°/2)

Sin 450 [1+0i+0j+0k] + Sin 450 [1+ 0i+ 0j + 0k]

~ 0.541196[1 + 0i + 0j + 0k] + 0.541196[0.7071 + 0i + 0j
+0.7071k]

~ [0.541196 + 0i + 0j + 0k] + [0.382683 + 0i + 0j + 0.382683k]
~ [0.923879 + 0i + 0j + 0.382683k]

The interpolated quaternion is also unit quaternion, as the square root of
sum of square is 1. It should rotate a point abut z-axis, halfway between 0°
and 90°, i.e., 45°. Take a simple example to understand this:

Take point (1,0,0) and subject it to the standard quaternion operation:
P’ =qPq?.

To keep the arithmatic work to a minimum, we substitute a=0.923879 and
b=0.382683.

Hence,

g=[a +0i+0j+bk]

g =[a-0i-0j-bk]

P’ = [a +0i+0j+bk]X[0+1i+0j+0k]X[a-0i-0j-bk]
=[0+ai+bj+0k] X[a-0i-0j-bk]

P’ =[0+0.70711+ 0.7071j + 0k]

Therefore, (1,0,0) is rotated to (0.7071,0.7071,0), which is correct!

7.3 CURVES

Here we investigate the foundations of curves. We can explore many of the
ideas that are essential to understanding the mathematics behind 2D and 3D
curves and how they are developed to produce surface patches.

7.3.1 The Circle

The circle equation can be given with the simple terms:

x+y? = 12

Interpolation and
Character Animation

145

Game programming

146

where r is the radius and (x, y) is a point on the circumference. This equation
is not very convenient for drawing the curve. For drawing curves we need
two functions that generate the coordinates of any point on the
circumference in terms of some parameter t. Figure 7.16 shows a scenario
where the x- and y-coordinates are given by

X = rcost
y=rsint [0<t<2m].

If we vary the parameter t over the range 0 to 27, we trace out the curve of
the circumference. By selecting a suitable range of t we can isolate any
portion of the circle’s circumference.

Fig. 7.16 The circle can be drawn by tracing out a series of points on the
circumference.

7.3.2 The Ellipse

The equation for an ellipse is given as

2 2
Xy
—Zt5—=1
v, r,.
maj min

and its parametric form is given as
X= rmaj cost
Y = I'min SINt [0<t<2m]

where rmaj and rmin are the major and minor radii respectively, and (x, y) is
a point on the circumference, as shown in Fig. 7.17.

YA

win

b Y

FPRAX

Fig. 7.17 An ellipse showing the major and minor radii.

7.4 BEZIER CURVES

Bézier had become known for his special curves and surfaces.
7.4.1 Bernstein Polynomials

Bézier curves employ Bernstein polynomials, which were described by S.
Bernstein in 1912. These polynomials are expressed as follows:

Bi*(t) = (Tll) t'(1 -t (7.14)
Where,
(:L) = (n:'!)!i! (7.15)

where, if we put 3 for n!, 3! (factorial 3) is shorthand for 3 x 2 x 1. When
(7.15) is evaluated for different values of i and n, we discover the pattern of
numbers shown in Table 7.1. This pattern of numbers is known as the
Pascal’s triangle.

Table 7.1 Pascal’s Triangle

011

111 1

271 2 1

371 3 3 1

411 4 6 4 1
S(1 5 10 10 5 1
611 6

15 20 15 6 1

Interpolation and
Character Animation

147

Game programming

148

The pattern represents the coefficients found in binomial expansions. For
example, the expansion of (x+a)" for different values of n is

(x+a)° =1

(x+a)! = 1x+1a

(x+a)? = 1x?+2ax+1a?

(x+a)® = 1x3+3ax?+3a%x+1a°

(x+a)* = 1x*+4ax3+6a2x>+4a%x+1a’

It produces Pascal’s triangle as the polynomial coefficient terms.

Pascal, however, recognized other qualities in the numbers, in that they
describe the odds governing combinations. For example, to determine the
probability of any girl-boy combination in a family of six children, we sum
the numbers in the 6th row of Pascal’s triangle:

1+6+15+20+15+6+1 = 64.

The number (1) at the start and end of the 6th row represent the chances of
getting six boys or six girls, i.e., 1 in 64. The next number (6) represents the
next most likely combination: five boys and one girl, or five girls and one
boy, i.e., 6 in 64. The center number (20) applies to three boys and three
girls, for which the chances are 20 in 64.

The powers of t and (1—t) in equation (7.14) appear as shown in Table 7.2
for different values of n and i. When the two sets of results are combined
we get the complete Bernstein polynomial terms shown in Table 7.3.

Table 7.2 Expansion of the terms t and (1 - t)

n| 0 1 2 3 4
1]zt (1—g

212 t1—n (1-1)?

312 AH1-n t(1-?? (1—1)p

4 |t Pl-n #21-0? t{1-1* (1-pt

Table 7.3 The Bernstein polynomial terms Interpolation and

Character Animation

[
n| 0 1 2 3 4
1] 1z 1{1—1¢)
21122 21— 1(1—-1)?
3018 3A1—1) 31— 11-1)3
4 11t 41— 62(1-0? #(1-1° 1(1-n?

As the sum of (1-t) and tis 1,

[(A-t)+t]"=1 (7.16)

This is the reason we can use the binomial expansion of (1-t) and t as
interpolants. For example, when n = 2 we obtain the quadratic form
(1-t)>+2t(1-t)+t2 = 1. (7.17)

Figure 7.18 shows the graphs of the three polynomial terms of (7.17). The
(1—-t)? graph starts at 1 and decays to zero, whereas the t? graph starts at zero
and rises to 1. The 2t(1—t) graph starts at zero reaches a maximum of 0.5
and returns to zero.

We can use these three terms to interpolate between a pair of values as
follows

v = vI(1-t)?+2t(1—-t)+v22,

1.2

1
0.8+
0.6+
0.4+
0.2+

0

0 01 02 03 04 05 06 07 08 09 1
t

Fig. 7.18 The graphs of the quadratic Bernstein polynomials.

If v1 =1 and v2 = 3 we obtain the curve shown in Fig.7.19. But there is
nothing preventing us from multiplying the middle term 2t(1-t) by any
arbitrary number vc:

v = vI(1-t)?+velt(1—t)+v2e2, (7.18)

149

o)

- M
om=amMNOmLo
1 1 1 1 1 1
I \

Game programming

o

01 0.2 03 04 05 06 07 08 09 1
t

o

Fig. 7.19 Bernstein interpolation between the values 1 and 3.

For example, if v¢ = 3 we obtain the graph shown in Fig.7.20 , which is
totally different from Fig.7.19, with the value of vc we can determining the
shape of the curve between two values.

3.5
3 4
2.5 1
2 4
1.5 1
1 4
0.5
0

0 c1 02 03 04 05 06 07 08 09 1
t

Fig. 7.20 Bernstein interpolation between the values 1 and 3 with v¢ = 3.

Observe Figure 7.21 for a variety of graphs for different values of vc. When
the value of v is set midway between vi and vz very interesting results can
be observed. Consider for example, whenvi =1, vo =3 and v = 2, we obtain
linear interpolation between vi1 and vz, as shown in Fig.7.22.

35
3
25
2
15
1
05
000 010 020 030 040 050 060 070 080 090 1.00
t

Fig. 7.21 Bernstein interpolation between the values 1 for different values
of ve.

3.5

2.5 1

1.5
1 4
0.5

t

Fig. 7.22 Linear interpolation using a quadratic Bernstein interpolant.
150

7.4.2 Quadratic Bézier Curves

We can use Bernstein polynomials to form Quadratic Bézier curves which
will be used to interpolate between the x-, y- and z-coordinates associated
with the start- and end-points forming

the curve. Consider drawing a 2D quadratic Bézier curve between (1,1) and
(4,3) using the equations as follows:

X = 1(1-t)2+x2t(1—t)+4t2 (7.19)
y = 1(1-1)%+y2t(1-1)+3t2 (7.20)

A Bézier curve has the interpolating and the approximating qualities: curve
passes through the end points is the interpolating feature, while how the
curve passes close to control point is determined by the approximating
feature. Let’s make Xc = 3 and yc = 4 we obtain the curve shown as in
Fig.7.23 , it shows how the curve intersects the end-points but miss the
control point.

45
44
3.5
3_
5_
2,
1.5
1_
0.5 -
0

o 2

0 1 2 3 4 5
X

Fig. 7.23 Quadratic B ezier curve between (1, 1) and (4,3), with (3, 4) as
the control.

Bézier curves also has two important features of Bézier curves: the convex
hull property, and the end slopes of the curve. The convex hull property
states that the curve is always contained within the polygon connecting the
start, end and control points. You can see in the diagram also that the curve
is inside the triangle formed by the vertices (1,1), (3,4) and (4,3). Note also
that the slope of the curve at (1,1) is equal to the slope of the line connecting
the start point to the control point (3,4), and the slope of the curve at (4,3)
is equal to the slope of the line connecting the control point (3,4) to the end
point (4,3).

7.4.3 Cubic Bernstein Polynomials
We have to note two more important points:

1. No restrictions are placed upon the position of (Xc, yc) — it can be
anywhere.

2. Simply including z-coordinates for the start, end and control vertices
creates 3D curves.

A cubic curve naturally supports one peak and one valley, which simplifies
the construction of more complex curves.

Interpolation and
Character Animation

151

Game programming

152

When n = 3, we obtain the following terms:

[(A-0)+t]3 = (1-1)3+3t(1—-t)>+3t2(1— 1)+t

which can be used as a cubic interpolant, as

Vv = vi(1—t)3+ve3t(1—t)2+ve3t2(1—t)+vats,

See Figure 7.24 showing the graphs of the four polynomial terms.

1.2

1
0.8+
0.6 +
0.4 +
0.2

0

0 01 02 03 04 05 06 07 08 09 1
t

Fig. 7.24 The cubic Bernstein polynomial curves.

Consider two control values vc and veo. We can set any value, independent
of the values chosen for vi and vo. To illustrate this, let’s consider an
example of blending between values 1 and 3, with vc1 and v set to 2.5 and
—2.5 respectively. The blending curve is shown in Fig.7.25.

3.5
3+
25+
2+
1.5 +
1
0.5+
0

0 01 02 03 04 05 06 07 083 09 1
t

Fig. 7.25 The cubic Bernstein polynomial through the values 1, 2.5, -2.5,
3.

The next step is to associate the blending polynomials with x- and y-
coordinates:

X = X1(1—1)3+Xc13t(1—t)?+xc23t3(1—t) +xat° (7.21)
y = y1(1-1)3+ye13t(1—t)?+yc23t2(1—t)+yat. (7.22)
Evaluating (7.21) and (7.22) with the following points:

(x1, y1) = (1,1) (x2, y2) = (4.3)

(Xe1, Yer) = (2,3) (Xe2, Ye2) = (3,~2)

See the guidelines between the end and control points that we obtain the
cubic Bézier curve as shown in Fig.7.26.

Interpolation and
Character Animation

4 1 2 \3/ 4 5
—2 4

X

Fig. 7.26 A cubic Bézier curve.

let’s set the values to

(X1, y1) = (1,1) (X2, y2) = (4,3)
(Xe1, Yer) = (2,1.666) (Xc2, Ye2) = (3,2.333)

where (X1, Ye1) and (Xc2, Yc2) are points one-third and two-thirds
respectively, between the start and final values. The single control point was
halfway between the start and end values, we obtain linear interpolation as
shown in Fig.7.27 .

3.5
3_
25 1
= 2]
15 1
1_
05 |
0

0 1 2 3 4 5
X

Fig. 7.27 A cubic Bézier line.

Equations (7.19) and (7.20) describe the three polynomial terms for
generating a quadratic B ezier curve and (7.21) and (7.22) describe the four
polynomial terms for generating a cubic B ezier curve. Quadratic equations
are called second-degree equations, and cubics are called third-degree
equations. In the original Bernstein formulation,

BI(t) = (’l‘) t(1 - ¢)r1 (7.23)

Here n represents the degree of the polynomial, and i, which has values
between 0 and n, creates the individual polynomial terms.

If these points are stored as a vector P, the position vector p(t) for a point
on the curve can be written as

153

Game programming

154

p(®) = (7) i1 —)"'P for [0 <i<n]
Or

n ; _i .
p(®) =3, (7) @ -0"ip, for[0<i<n] (7.29)
Or
p(t) =YL, B'(®)P; for[0<i<n]. (7.25)
Let, a point p(t) on a quadratic curve is represented as,

p(t) = 1t°(1 —)?Py + 2t (1 —)P, + 1t%2(1 — t)°P,.

You will discover (7.24) and (7.25) used in more advanced books to
describe Bézier curves.

7.4.4 A Recursive Bézier Formula

Note that the equation (7.24) describes the polynomial terms needed to
create the blending terms. With the use of recursive functions, it is possible
to arrive at another formulation that leads towards an understanding of B-
splines.

As the coefficients of any row in Pascal’s triangle are the sum of the two
coefficients immediately above, we can write

(D=C7D+G20)
Hence, we can write
Bt = (" . i) L1 -+ (’ll__ 11) ti(1 —)"
BM1t) = (1 —t)B1(¢) + tBl*1'(¢).

When the degree is zero this process terminate; as all the recursive functions
will terminate somewhere.

7.4.5 Bézier Curves Using Matrices

Matrices provide a very compact notation for algebraic formulae. Recall
(7.17) which defines the three terms associated with a quadratic Bernstein
polynomial. These can be expanded to

(1-2t +t2) (2t —2t?) (t?)

and can be written as the product:

This means that equation (7.18) can be expressed as Interpolation and

Character Animation
1 -2 11 Y"1
v=_[t2 t 1]=|-2 2 0f.|v

1 0 0] v,
Or
1 -2 11 [~
p®)=[e2 ¢t 1l=|-2 2 0|.|F
1 0 ol Lp,

where p(t) points to any point on the curve, and P, Pc and P2 point to the
start, control and end points respectively.

A similar development can be used for a cubic Bézier curve, and given by
following matrix:

-1 3 =3 1]1[hA
3 -6 3 0| |Pa

= [¢3 2 =
1 0 o0 ollp

7.4.5.1 Linear Interpolation

To interpolate linearly between two values vO and v1 we use the following
interpolant:

v(t) = vo(1—t)+vit for [0 <t <1].

Now let’s invent a linear blending function and we want to compute the
influence of the three values on any interpolated value v(t) as follows:

v(t) = B}(t)vy + Bi(t)v, + Bi()v,. (7.26)

You can note that vo will influence v(t) only when t is between to and t>.
Also, v1 and v2 will influence v(t) only when t is between t; and t3, and t>
and t4 respectively.

When t1 <t <t3, the function must return a value reflecting the proportion of
vi that influences v(t). During the span t; <t <to, v1 has to be blended in,
and during the span t1 <t <ts, v1 has to be blended out. The blending in is
effected by the ratio
(t - tl)
tz - t1

and the blending out is effected by the ratio

=)
ty —ty/) "

155

Game programming

156

Let’s remind ourselves of this requirement by subscripting the ratios

accordingly:
t—t t; —t
o= (=) 6=,
tZ - tl 1,2 t3 - t2 2,3

We can now write the other two blending terms B, (t) and B,(t) as the final

equations:
Bo=(=0), 6=,
B0 = (tz_—t;z)m " (;4_—;3)3,4 '
7.5 B-SPLINES

B-splines also use polynomials to generate a curve segment and employ a
series of control points that determine the curve’s local geometry.

There are two types of B-splines: rational and non-rational splines, which
divide into two further categories: uniform and non-uniform. Rational B-
splines are formed from the ratio of two polynomials given as:
X(t) Y(t) Z(t)
t) =—=, t) =—=, t)=—=.
x(t) WO y(t) T20) z(t) 20
It may lead to some problems, but the division by a second polynomial
brings certain advantages as listed below:

o They are used for describing perfect circles, ellipses, parabolas and
hyperbolas, whereas nonrational curves can only approximate these
curves.

o The polynomials are invariant of their control points when subjected
to rotation, scaling, translation and perspective transformations, but
in case of non-rational curves, they lose this geometric integrity.

o They also allow weights to be used at the control points to push and
pull the curve.

Let’s begin with uniform B-splines.

P,
Pyis 7

Pi+8

Fig. 7.28 The construction of a uniform non-rational B-spline curve.

7.5.1 Uniform B-Splines

A B-spline can be created from a string of curve segments in which the
geometry is determined by a group of local control points. These several
curves are known as piecewise polynomials. This curve segment doesn’t
pass through a control point.

Cubic B-splines provide a geometry that is one step away from simple
quadratics, and possess continuity characteristics that make the joins
between the segments invisible. To understand the construction consider the
scenario as given in Fig.7.28 . In the diagram observe a group of (m+1)
control points Po, P1, P2, ..., Pm Which determine the shape of a cubic curve
constructed from a series of various curve segments So, S1, Sz, ..., Sm-3..

The cubic curve segment S; is influenced by Pi, Pi+1, Pi+2, Pi+3, and curve
segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+s. For the (m+1) control
points, there are (m—2) curve segments.

A single segment Sj(t) of a B-spline curve can be given by an equation:

3
SO =) PugB () for [0<t<1]
r=0

Where
By (t) = —t3+3t62—3t+1 _ (1—6t)3 (7.27)
3t3—6t2+4
By(t) = —— (7.28)
B2 (t) = w (729)
t3
Bs(t) == (7.30)

P

These B-spline basis functions and are shown in Fig. 7.29.

0.7
06T
051

=04

m g3+
02+t
01+t

0

0 0.1 0.2 03 0.4 05 06 07 038 09 1
t

Fig. 7.29 The B-spline basis functions.

These four curve segments are part of one curve. The basis function Bs(t)
starts at zero and rises to 0.1666 at t = 1. It is taken over by B(t) att = 0,
which rises to 0.666 at t = 1. The next segment is B1(t) and takes over att =
0 and falls to 0.1666 at t = 1. Finally, Bo(t) takes over at 0.1666 and falls to
zero att = 1. The above equations can be represented in matrix form as:

Interpolation and
Character Animation

157

Game programming

158

-1 3 =3 11[P

a2 13 -6 3 0] |Pin1
a@®=10 & ¢ Uzl o 3 ol ANk

1 4 1 0l [Py

(7.31)

Let’s understand how (7.31) works. We see the control points Pi, Pi+1, Pi+2,
etc. Let’s consider these be (0,1), (1,3), (2,0), (4,1), (4,3), (2,2) and (2,3).
We can see them in Fig.7.30 connected together by straight lines. Consider
first four control points: (0,1), (1,3), (2,0), (4,1), and subject the x- and y-
coordinates to the matrix in (7.31) over the range 0 <t <1 we obtain the
first B-spline curve segment shown in Fig.7.30 . If we move along one
control point and take the next group of control points (1,3), (2,0), (4,1),
(4,3), we obtain the second B-spline curve segment. This is repeated a
further two times.

Observe Figure 7.30 which shows the four curve segments using two gray
scales, and it is obvious that even though there are four discrete segments,
which are joined perfectly.

3.5
3_

2.5
2,
=,
1.5 >
14

0.5 1
0

0 1 2 3 4 5
X

Fig. 7.30 Four curve segments forming a B-spline curve.
7.5.2 Continuity

If the slope of the abutting curves match then then constructing curves from
several segments can only succeed. It will be necessary to ensure that even
the rate of change of slopes is matched at the join. This aspect of curve
design is called geometric continuity and is determined by the continuity
properties of the basis function. Let’s explore such features.

The first level of curve continuity C°, ensures that the physical end of one
basis curve corresponds with the following, e.g., Si(1) = Si+1(0). We know
that this occurs from the basis graphs as you can see in Fig.7.29. The second
level of curve continuity C!, ensures that the slope at the end of one basis
curve matches that of the following curve. Basis functions can be used to
confirm this:

—3t24+6t-3

B'y(t) = p

(7.31)
ot2-12t

B'1(t) = p

(7.32)

~9t2+6t+3
B(t) =——

(7.33)

B's(t) = % (7.34)

If we evaluate (7.31) — (7.34) for the values t =0 and t = 1, we will get the
slopes 0.5, 0, —0.5, 0 for the joins between Bz, B2, B1, Bo. Then third level
of curve continuity C?, ensures that the rate of change of slope at the end of
one basis curve matches that of the following curve. It can be confirmed by
further differentiation:

B"y(t) =—-t+1 (7.35)

B",(t) =3t—2 (7.36)
B",(t) =-3t+1 (7.37)
B";(t) =t. (7.38)

After evaluating equations (7.35)—(7.38) fort =0 and t = 1, we can get the
values 1, 2, 1, O for the joins between Bs, B2, B1, Bo. These combined
continuity results are tabulated in Table 7.4.

Table 7.4 Continuity properties of cubic B-splines

t t t
c? 0 1t 0 1 c? 0 1
Bs(t) 0 1/6 By(1) 0 05 BYt) 0 1
By(t) 1/6 2/3 By(r) 05 0 B/ 1 -2
Bit) 2/3 1/6 B,() 0 —05 B/ -2 1
Bo(t) 1/6 0 By(1) —0.5 0 BIt) 1 0

7.5.3 Non-uniform B-Splines

Uniform B-splines are constructed from curve segments where the
parameter spacing is at equal intervals. Non-uniform B-splines, with the
support of a knot vector, provide extra shape control and the possibility of
drawing periodic shapes.

7.5.4 Non-uniform Rational B-Splines

Non-uniform rational B-splines (NURBS) combine the advantages of non-
uniform B-splines and rational polynomials: they support periodic shapes
such as circles, and they accurately describe curves associated with the
conic sections. They also play a very important role in describing geometry
used in the modeling of computer animation characters.

Interpolation and
Character Animation

159

Game programming

160

7.6 ANALYTIC GEOMETRY

In computer graphics, basic elements of geometry and analytic geometry
are frequently used. We will see some important concepts of analytic
geometry in this section.

7.6.1 Review of Geometry

Here we will see the Euclidian’s geometry. Although none of these
developments affect computer graphics, they do place Euclid’s theorems in
a specific context: a set of axioms that apply to flat surfaces. We have
probably all been taught that parallel lines don’t meet, and that the internal
angles of a triangle sum to 180-, but these are only true in specific situations.
As soon as the surface or space becomes curved, such rules break down.

7.6.1.1 Angles

As we know, 360° or 2x [radians] measure one revolution. We also must
know how to convert from one to other.

“ []

Fig. 7.31 Examples of adjacent, supplementary, opposite and
complementary angles.

Observe Figure 7.31 which shows the examples of adjacent / supplementary
angles (which sum to 180¢), opposite angles (equal), and complementary
angles (sum to 90¢).

Fig. 7.32 The first intercept theorem.
7.6.1.2 Intercept Theorems

See Figures 7.32 and 7.33, where the diagrams show two intersecting lines
and the parallel lines that give rise to the following observations:

First intercept theorem:

a+b_c+d b
N a

a c

Second intercept theorem:

Fig. 7.33 The second intercept theorem.
7.6.1.3 Golden Section

The golden section is an ‘ideal’ ratio for the height and width of an object.
Its origins from the interaction between a circle and triangle and give rise to
the relationship as given below:

b =%(\/§—1) ~ 0.618a.

The rectangle as shown in Fig. 7.34 has the following proportions:
height = 0.618xwidth.

It is interesting to note that the most widely observed rectangle, the
television, has no relation to this ratio.

2.5

A
Y

1.545

Fig. 7.34 A rectangle with a height to width ratio equal to the golden
section.

7.6.1.4 Triangles

The interior and exterior angles of a triangle has some rules which are very
useful in solving all sorts of geometric problems. You can observe Figure
7.35 which shows two diagrams identifying interior and exterior angles. The
sum of the interior angles is 180-, also, the exterior angles of a triangle are
equal to the sum of the opposite angles:

Interpolation and
Character Animation

161

Game programming o+ +0 = 180°

a =0 +f
B =a+0
0 =a+p.

Fig. 7.35 Relationship between interior and exterior angles.
7.6.1.5 Centre of Gravity of a Triangle

A median is defined as a straight line joining the vertex of a triangle to the
mid-point of the opposite side. If we draw all three medians, they intersect
at a common point, which is also the triangle’s center of gravity. This center
of gravity divides all the medians in the ratio 2 : 1. In Figure 7.36 you can
observe this.

Fig. 7.36 The three medians of a triangle intersect at its center of gravity.
7.6.1.6 Isosceles Triangle

In Figure 7.37 you can see an isosceles triangle, it has two equal sides of
length | and equal base angles o. The triangle’s altitude and area are

h= |- () A=%.

162

Interpolation and
Character Animation

o2 o2
Fig. 7.37 An isosceles triangle.
7.6.1.7 Equilateral Triangle

The equilateral triangle possesses three equal sides of length | and equal
angles of 60c. The triangle’s altitude and area are

3 3
ne3 a=Bpe
2 4

7.6.1.8 Right Triangle

Right angle is one famous type which we all know. The Figure 7.38 shows
a right triangle with its obligatory right angle. The triangle’s altitude and
area are

Fig. 7.38 A right triangle.
7.6.1.9 Theorem of Thales

In Figure 7.39 the Theorem of Thales is illustrated, which states that the
right angle of a right triangle lies on the circumcircle over the hypotenuse.

Fig. 7.39 The Theorem of Thales states that the right angle of a right
triangle lies on the circumcircle over the hypotenuse.

163

Game programming

164

Fig. 7.40 The Theorem of Pythagoras states that a? = b? +¢?.
7.6.1.10 Theorem of Pythagoras

Although the theorem is named after Pythagoras, it was known by the
Babylonians a millennium earlier. However, Pythagoras is credited for the
proof. In Figure 7.40 you can see well-known relationship

a2 = b2+c2

from which one can show that
sin%a +cos?a = 1.

7.6.1.11 Quadrilaterals

Quadrilaterals are known for having four sides and including the square,
rectangle, trapezoid, parallelogram and rhombus, whose interior angles sum
to 360°. As the square and rectangle are familiar shapes, we will only
consider remaining three.

5 A
m

a y

Fig. 7.41 A trapezoid with one pair of parallel sides.
7.6.1.12 Trapezoid

In Figure 7.41 helps to show the trapezoid which has one pair of parallel
sides h apart. The mid-line m and area are given by

a+b
m = > A =mh

7.6.1.13 Parallelogram

The Figure 7.42 shows the parallelogram, which is created from two pairs
of intersecting parallel lines, so it has equal opposite sides and equal
opposite angles. The altitude, diagonal lengths and area are given by

h=bsina

d1,2 = \/az + bZ i Zav b2 - hZ

A=ah

a

a

Fig. 7.42 A parallelogram formed by two pairs of parallel lines.
7.6.1.14 Rhombus

Rhombus as shown in Figure 7.43, which is a parallelogram with four sides
of equal length a. The area is given by

A=a’sina =

Fig. 7.43 A rhombus is a parallelogram with four equal sides.
7.6.1.15 Regular Polygon (n-gon)

In Figure 7.44 you can see a part of the regular n-gon with outer radius Ro,
inner radius R; and edge length an.

Fig. 7.44 Part of a regular n-gon showing the inner and outer radii and
the edge length.

Interpolation and
Character Animation

165

Game programming

166

7.6.1.16 Circle

An annulus is the area between two concentric circles, and its area A is given
by

T
A=mn(R*—-1?) = Z(DZ —d?)

where D=2R and d = 2r.

The area of sector of a circle is given by

0
a
— 2
3600 nr-.

The area of segment of a circle is given by
T'Z
A= > (ax —sina)

7.72D ANALYTIC GEOMETRY

Here we will examine familiar descriptions of geometric elements and ways
of computing intersections.

7.7.1 Equation of a Straight Line

The well-known equation of a line is

y = mx+c

where m is the slope and c the intersection with the y-axis.

You can see this in Fig. 7.45 and this is called the normal form.

A

Fig. 7.45 The normal form of the straight line is y = mx+c.
Consider two points (x1, y1) and (X2, y2) we can state that for any other point
)

Y=V _Y2—N
X—X1 Xp—X

which give
Y2—W1

Xy —Xq

y=(x-x) + ;.

The more general form is much more convenient:
ax+by+c = 0.
7.7.2 The Hessian Normal Form

Consider a line shown in Figure 7.46 whose orientation is controlled by a
normal unit vector ~ n=[ab]". Let P(x, y) is any point on the line, then p
is a position vector where p = [x y]" and d is the perpendicular distance from
the origin to the line.

Fig. 7.46 The orientation of a line can be controlled by a normal vector n
and a distance d.

Hence,
d
Pl = cosa
And
d = |p|cosa.

But the dot product n -p is given by
n -p = |n||p|cosa = ax+by

we can imply

ax+by = d|n|

and because |[n| = 1 we can write
ax+by—d =0

where (X, y) is a point on the line, a and b are the components of a unit vector
normal to the line, and d is the perpendicular distance from the origin to the
line.

Interpolation and
Character Animation

167

Game programming

168

7.7.3 Space Partitioning

The Hessian normal form allows partitioning the space into two zones: the
partition that includes the normal vector, and the opposite partition.

Given the equation
ax+by—d =0

Here a point (X, y) on the line satisfies the equation. But if we substitute
another point (x1, y1) which is in the partition in the direction of the normal
vector, it creates the inequality.

axy+byi;—d > 0.

The point (x2, y2) which is in the partition opposite to the direction of the
normal vector creates the inequality

axptby,—d < 0.

This space-partitioning feature of the Hessian normal form is useful in
clipping lines against polygonal windows.

7.7.4 The Hessian Normal Form from Two Points

Given two points (x, y1) and (X2, y2) we can compute the values of a, b and
d for the Hessian normal form as follows. To begin, we observe:

Y=y _Ya—y1_Ay
X—Xx1 X,—x; Ax

Hence,

(Y-yDA X = (x—x1)Ay

And also,

XA y—yA Xx—(X1A y—y1A x) =0 (7.39)

This is the general straight line equation. In Hessian normal form:
JAxZ +Ay? = 1.

Hence, the Hessian normal form is given by

xAy — yAx — (x1Ay — y1Ax)

VAx? + Ay?

0.

7.8 INTERSECTION POINTS

7.8.1 Intersection Point of Two Straight Lines
Given two line equations of the form

aix+biy+di =0

axx+boy+d> =0
the intersection points are given as,

_ bydy; — bydy
. a b, — azby

_dia; —dyay

Y= a,b, — azby

We can show using determinants:

b, d,

_ by d,
= a, by
a, b,

d, a

_ d, a,
= oy by
a, b,

7.8.2 Intersection Point of Two Line Segments

Line segments in computer graphics represent the edges of shapes and
objects.

Consider two line segments given by their end points as (P1 — P2) and (P3 —
P4). If we locate position vectors to these points, we can write the following
vector equations to identify the point of intersection:

Pi = patt(p2—p1) (7.40)
pi = p3+s(ps—ps) (7.41)
where parameters s and t vary between 0 and 1. We can write

P1+t(p2—p1) = pa+s(pa—pa).

Hence
_ (p1-p3)+t(p2—p1)
$= (P4—D3) (7.42)
_ (p3—p1)+s(pa—p3)
t= (p2-p1) (7.43)
We can write
¢ = (3 — x1) + 5(x4 — x3)
(x2 — x1)
- Y3 —y1) +s(ys — y3)

2 —y1)

Interpolation and
Character Animation

169

Game programming

170

And it gives,

_ x1(y3=y2) +x2(¥y3—y1) +x3(¥2—y1)

B (x2=x1) (Y4—y3)—(x4—x3) (¥2—¥1) (744)
And
t = X1(Ya=y3)+x3(y1=Ya)+x4(y3—y1) (745)

- (xg=x3)(y2—y1)—(x2—x1) (V4—y3)

7.9 POINT INSIDE A TRIANGLE

We can test whether a point is inside, outside or touching a triangle. The
first is related to finding the area of a triangle.

7.9.1 Area of a Triangle

Let’s declare a triangle formed by the anti-clockwise points (x1, Y1), (X2, Y2)
and (Xs, y3)

The area is given as,

A= (e —x) (s —y,) — (x; — x1)2(y2 —y) (- x3)2(y3 —)

(x3 —x) (s —y1)
2

This can be simplified as,

1

A= > [x1(Y2 = ¥3) + x2(y3 —y1) + x3(y1 — ¥2)]

And further simplification can be given as,

1 x1 y1 1
A = E xz yz 1 .
X3 y3 1

the point Py is inside the triangle (P1, P2, P3).

« If the area of triangle (P1, P2, Pt) is positive, Py must be to the left of the
line (Py, P2).

« If the area of triangle (P2, P3, Pt) is positive, Py must be to the left of the
line (P2, Pa3).

« If the area of triangle (Ps, P1, Pt) is positive, Py must be to the left of the
line (P3, P1).

Interpolation and
YA Character Animation

P,

X

Fig. 7.47 If the point Py is inside the triangle, it is always to the left as the
boundary is traversed in an anti-clockwise direction.

7.9.2 Hessian Normal Form

We can find out of a point is inside, touching or outside a triangle by
representing the triangle’s edges in the Hessian normal form. If the normal
vectors are pointing towards the inside of the triangle, any point which is
present inside the triangle will create a positive result when tested against
the edge equation for the triangle.

Observe Fig.7.48 which shows a triangle formed by the points (1, 1), (3, 1)
and (2, 3).

(2,3)

d, 1)

s

Fig. 7.48 The triangle is represented by three line equations expressed in
the Hessian normal form. Any point inside the triangle can be found by
evaluating the equations.

We can computer three line equations as follows:
1: The line between (1, 1) and (3, 1):
O(x—1)+2(1-y)=0
—2y+2 =0.
Now multiply this with —1 to reverse the normal vector and get:
171

Game programming 2y-2=0.
2: The line between (3, 1) and (2, 3):
2(x—3)-1(1-y) =0
2x+y—7=0.
Again multiply by —1 to reverse the normal vector:
—2X=y+7 =0.
3: The last line between (2, 3) and (1, 1):
-2(x—2)—1(3-y) =0.
—2x+y+1 =0.
Finally, multiply by —1 to reverse the normal vector:
2x-y—1=0.
The three line equations for the triangle are
2y—2=0
—2Xx-y+7=0
2x—y—1=0.

We are only interested in the sign of the left-hand expressions:

2y—2 (7.46)
—2X—y+7 (7.47)
2x—y—1 (7.48)

This can be tested for any arbitrary point (X, y). And we can conclude that,
if they are all positive, the point is inside the triangle; if one expression is
negative, the point is outside; if one expression is zero, the point is on an
edge, and if two expressions are zero, the point is on a vertex.

7.10 INTERSECTION OF A CIRCLEWITHA STRAIGHT
LINE

We have seen the equation of a circle previously, now we will compute its
intersection with a straight line. The normal form of line equation is used
for testing:

X2+y2 =r2 and y = mx+c.

By substituting the line equation in the circle’s equation, we discover the
two intersection points:

172

_ —mctyrZ(1+m?)—c? (7 49) Interpolation and

x1,2 - 1+m2 Character Animation
ctmyr2(1+m?)—c?
== 7.50
V1,2 Ttm? ()

These points can be used to calculate the required coordinates.

7.11 QUESTIONS:

What is trigonometry and trigonometric ratio?
Explain sine and cosine rule.

What is interpolation?

Write a note on linear interpolation.

What is trigonometric interpolation?

How to interpolate quaternions?

Explain Bezier curves.

What are B-Splines?

© 0o N o a0 ~ W DR

Write a short note on 2D analytical geometry.

-
©

What is intersection point?

REFERENCES

1. Mathematics for Computer Graphics, John Vince, Springer-Verlag
Londo

2. Introduction To 3D Game Programming With Directx® 11,Frank D
Luna, Mercury Learning and Information

3. https://conceptartempire.com/polygon-mesh/

o e e ke e ek

173

https://conceptartempire.com/polygon-mesh/

Game programming

174

INTRODUCTION TO RENDERING
ENGINES

Unit Structure :

8.0
8.1
8.2
8.3
8.4
8.5

8.6

8.7
8.8

8.9

8.10
8.11
8.12

8.13
8.14
8.15
8.16
8.17

Objectives:

Introduction to Rendering Engines

Current Market Rendering Engines

Rendering Features & Techniques
Understanding the current market of rendering engine
Understanding Augmented Reality

8.5.1 Advantages of Augmented Reality (AR)
8.5.2 Disadvantages of Augmented Reality (AR)
8.5.3 Application of AR

Virtual Reality

8.6.1 Application of VR

Differences between AR and VR

Mixed Reality

8.8.1 Application of Mixed Reality

Introduction to XR

Conceptual Differences between AR, VR, MR and XR
Depth Map

Smart glasses

8.12.1 Application of smart glasses

Mobile Phone

Head Mounted Device (HMD)

Summary

Questions

References

8.0 OBJECTIVES:

This chapter would make you understand the following concept:

Rendering Engines
AR, VR, MR and XR

J Smart Glasses Introduction to
Rendering Engines
. HMD

8.1 INTRODUCTION TO RENDERING ENGINES:

o In a software application the rendering engine is the module that is
reasonable for generating the graphical output. Basically, the job of a
rendering engine is to convert the applications internal model into a
series of pixel brightness's that can be displayed by a monitor (or
another graphical device e.g: a printer).

o For example, in a 3D game, the rendering engine might take a
collection of 3D polygons as inputs (as well as camera and lighting
data) and use that to generate 2D images to be outputted to the
monitor.

o In a type setting application the rendering engine might take a string
a characters and font data (and other assets e.g., images) as inputs and
convert them to well formatted image you see on screen or printed on
a page.

o Rendering engines are often written to take advantage of features of
graphics cards (e.g., highly parallelized matrix operations).

o Programming rendering engines require a strong understanding of
geometry.

o Developing a Rendering Engine requires an understanding of how
OpenGL and GPU Shaders work.

o Rendering engines is one of the few areas where the effort of code
optimization makes sense.

8.2 CURRENT MARKET RENDERING ENGINES

3Delight
Arion
Arnold
Avrtlantis
Clarisse
Corona
FelixRender
FurryBall

© o N o g ks~ wDhdE

Guerilla Render

-
©

Iray

[EY
=

Keyshot

[
N

Blender
175

Game programming

176

A rendered image can be understood in terms of a number of visible
features.

Rendering research and development has been largely motivated by
finding ways to simulate these efficiently. Some relate directly to
particular algorithms and techniques, while others are produced
together.

8.3 RENDERING FEATURES & TECHNIQUES

1.

10.
11.

12.

13.

14.

15.

16.

Shading — how the color and brightness of a surface varies with
lighting

Texture-mapping — a method of applying detail to surfaces

Bump-mapping — a method of simulating small-scale bumpiness on
surfaces

Fogging/participating medium — how light dims when passing
through non-clear atmosphere or air

Shadows — the effect of obstructing light

Soft shadows — varying darkness caused by partially obscured light
sources

Reflection — mirror-like or highly glossy reflection

Transparency (optics), transparency (graphic) or opacity — sharp
transmission of light through solid objects

Translucency — highly scattered transmission of light through solid
objects

Refraction — bending of light associated with transparency

Diffraction — bending, spreading, and interference of light passing by
an object or aperture that disrupts the ray

Indirect illumination — surfaces illuminated by light reflected off other
surfaces, rather than directly from a light source (also known as global
illumination)

Caustics (a form of indirect illumination) — reflection of light off a
shiny object, or focusing of light through a transparent object, to
produce bright highlights on another object

Depth of field — objects appear blurry or out of focus when too far in
front of or behind the object in focus

Motion blur — objects appear blurry due to high-speed motion, or the
motion of the camera

Non-photorealistic rendering — rendering of scenes in an artistic style,
intended to look like a painting or drawing.

8.4 UNDERSTANDING THE CURRENT MARKET OF
RENDERING ENGINE

o There are a lot of varieties in render engines and 3D design software
when considering them for a professional use. This has made 3D
artists, users as well as render farm tend to look at their functional
features when scavenging for the right software. Since this task can
be daunting there is no better option than diving towards render
engines while considering the following capabilities;

Unlike software, render engines comes with only two general categories;
1. CPU based render engine
2. GPU based render engine

There is also another category known as a hybrid render engine. This model
can utilize the power of both the CPU and GPU at the same time.

Generally, render engines have their own ways in which they perform
renderings. While some render engines carry out a biased render, others
work with an unbiased rendering principle.

Biased Render Engine

o Simply put, biased is term used when all information is put together
before the rays are sent to the camera.

o It can be described at the improvement of algorithms to increase the
render time.

o This process does not really define light in its physical form but tries
to arrive at an approximation of how the lighting should look.

o In quotes; Biased means limiting — you are setting the limit to being
realistic.

Some examples of a Biased Render engine include;

. V-Ray
o RedShift
o Mental Ray

° Render Man

From the list above, V-Ray is a hybrid render engine. It is one of those
outstanding engines that can render files using the biased and unbiased
principle.

Unbiased Render Engine

o Unlike biased render, unbiased rendering means there is no cheating.

Introduction to
Rendering Engines

177

Game programming

178

The system already has concrete information that it is sending to the
Processors.

In other words, there are no short turns when calculating rays in an
unbiased rendering situation.

Since the engine will need absolute information before proceeding, it
makes it to produce outstanding render quality. The only disadvantage
here is the rendering speed.

People usually misquote unbiased render as the rendering that is most
accurate physically.

Looking at the specifics, none of the above rendering methods are
accurate. The difference comes in when you look at the use of BRDF
like Blinn or GGX as the approximation of the material is real life.

The unbiased render engine is usually used by film industries. And
examples of such render engines include;

Arnold
Maxwell
Octane
Indigo
Fstorm

Corona

In the list above, one of the render engines in this category that makes use
both the biased and unbiased principle is Corona.

8.5 UNDERSTANDING AUGMENTED REALITY

Augmented reality (AR) is an enhanced version of the real physical
world that is achieved through the use of digital visual elements,
sound, or other sensory stimuli delivered via technology. It is a
growing trend among companies involved in mobile computing and
business applications in particular.

The most famous example of AR technology is the mobile app
Pokemon Go, which was released in 2016 and quickly became an
inescapable sensation. In the game, players locate and capture
Pokémon characters that pop up in the real world—on your sidewalk,
in a fountain, even in your own bathroom.

Augmented reality (AR) is an interactive experience of a real-world
environment where the objects that reside in the real world are
enhanced by computer-generated perceptual information, sometimes
across multiple sensory modalities, including visual, auditory, haptic.

AR can be defined as a system that incorporates three basic features: Introduction to
a combination of real and virtual worlds, real-time interaction, and Rendering Engines
accurate 3D registration of virtual and real objects.

In simple word we can defined AR as adding information and
meaning to real world object.

It is a combination of real scene viewed by a user and a virtual scene
generated by a

computer that augments the scene with additional information.

Goal of augmented reality is to add information and meaning to a real
object or place.

It Enables learner to” EXPLORE” the physical world without
assuming any prior knowledge.

It adds audio commentary, location data, historical context or other
forms of content that can make a user’s experience of a thing or a
place more meaningful.

Augmented reality (AR) adds digital elements to a live view often
by using the camera on a smartphone.

8.5.1 ADVANTAGES OF AUGMENTED REALITY(AR):

Anyone can use it.
When used in medical field to train it can save lives.

Can be used in exposing military personal to real lives situations
without

exposing them to the real life danger.

Can save millions of dollars by testing situations (like new
buildings)to

confirm their success.
Knowledge information increments are possible.
Experiences are shared between people in real time.

Video games provide an even more “real” experience.

5.2 DISADVANTAGES OF AUGMENTED REALITY(AR):

Production is expensive.

Augmented reality games like “first person shooters” have been
believed to increase teen aggression because they increase violence.

Openness: Content layers can be developed by consumers for display.

The use of facial recognition technology combined with geo location

and augmented data will display your Facebook status , tweets etc. 179

Game programming 5.

Information overload and augmenting without permission.

8.5.3 Application of AR

1.

180

Medical Training

From operating MRI equipment to performing complex surgeries, AR
technology holds the potential to boost the depth and effectiveness of
medical training in many areas.

Retail

In today's physical retail environment, shoppers are using their
smartphones more than ever to compare prices or look up additional
information on products they're browsing. For example, Users can
view a motorcycle they might be interesting in buying in the
showroom, and customize it using the app to see which colours and
features they might like.

Design & Modelling

From interior design to architecture and construction, AR is helping
professionals to visualize their final products during the creative
process. Use of headsets enables architects, engineers, and design
professionals’ step directly into their buildings and spaces to see how
their designs might look, and even make virtual on the spot changes.
Urban planners can even model how entire city layouts might look
using AR headset visualization. Any design or modelling jobs that
involve spatial relationships are a perfect use case for AR technology.

Classroom Education

While technology like tablets have become widespread in many
schools and classrooms, teachers and educators are now taking up
student's learning experience with AR. Students learning about
astronomy might see a full map of the solar system, or those ina music
class might be able to see musical notes in real time as they learn to
play an instrument.

Entertainment

In the entertainment industry, it's all about building a strong
relationship with your branded characters and the audience.
Entertainment brands are now seeing AR as a great marketing
opportunity to build deeper bonds between their characters and
audience. As a matter of fact, the makers of AR sensation Pokemon
Go are soon planning to release a Harry Potter-themed AR game that
fans can interact with day in and day out.

Military

Integrated Visual Augmentation System (IVAS) is being developed
by Microsoft in partnership with the US Army to improve soldiers'

situational awareness, comms, battlefield navigation, and overall
operational efficiency.

IVAS integrates Microsoft's HoloLens tech and features a heads-up
display (HUD), thermal imaging, interactive maps, and overhead
compass. With it, soldiers can track and share enemy positions across
the board. It can also detect friendly, neutral, and hostile targets.

It allows you to see in the dark (night vision), to see through smoke,
and even peek around corners, thanks to multiple front-facing head-
mounted cameras. Soldiers can also look back and review ops by
watching a video game-like replay of their last operation, among
many other features.

8.6 VIRTUAL REALITY

Virtual Reality is an artificial environment that is created with the
software and presented to the user in such a way that the user starts to
believe and accept it as a real environment on a computer.

Virtual reality is a computerized simulation of new spaces. It can be
similar to or completely different from the real world.

Virtual reality (VR) implies a complete immersion experience that
shuts out the physical world.

Using VR devices such as HTC Vive, Oculus Rift or Google
Cardboard, users can be transported into a number of real-world and
imagined environments such as the middle of a squawking penguin
colony or even the back of a dragon.

8.6.1 Application of VR

1.

Entertainment

Many video games already have this technology that allows us to
improve 3D graphics, immerse the user in history and, above all,
facilitate their use with increasingly less intrusive and simple
accessories.

Education

It is one of the most extensive fields of use in which technology is
useful, whether for college or university. Virtual reality allows from
visiting museums at a distance as Google did with the exhibition on
Frida Kahlo; to design buildings or learn about constellations and
planets.

Medicine

It is also used in the health field, for example, in cases of specific
surgery to virtualize and simulate body parts before an operation.
Also, for therapies that help treat phobias or traumas.

Introduction to
Rendering Engines

181

Game programming

182

Commercial (Online Shopping & Retail)

Personalized shopping experiences are provided by creating virtual
stores like IKEA Reality Kitchen Experience where customer can
explore the store with your VR headset and examine different
products before completing the purchase without leaving their houses.

The real estate industry has achieved many benefits with virtual
reality applications as you can experience a virtual tour to potential
listings and check the whole location without the need of physical
effort for commuting and checking more and more available listings
till choosing one of them to buy.

Reduced costs and higher returns are competitive advantages of using
VR for commercial purposes in addition to reaching desired levels of
customers’ satisfaction.

Tourism and Hospitality

Virtual Tours for existing real-life locations is an exciting advantage
of virtual reality application as you can motivate potential visitors
with a virtual experience of vacation location, museums, landscapes,
festivals to book their tickets after experiencing how it would be
enjoyable to visit these locations.

Hotels and resorts also can benefit from the advantages of virtual
reality by creating a virtual experience of how customers will be
served to encourage potential customers to choose your hotel over
competitors in addition to training staff with stimulated situations to
improve the clients’ satisfaction.

8.7 DIFFERENCES BETWEEN AR AND VR

AUGMENTED REALITY(AR)

VIRTUAL REALITY(VR)

Augmented reality enhances real
life with artificial images and adds
graphics, sounds to the natural
world as it exists.

Virtual reality replaces the real
world with artificial.

User is not cut from the reality user
can interact with the real world and
at the same time can see both real
and virtual world.

The wuser enters an entirely
immersive world and cut off from
the real world.

AR uses device such as smartphone
or wearable device which contains
software sensors, a compass and
small digital projector which
display images onto real world
objects.

VR might work better for video
games and social networking in a
virtual environment such as second
life or even play station home.

These phones have GPRS which
obtains information about a
particular geographical location
which can be overlaid with tags etc.
images, videos etc can be imposed
onto this location.

Here the head mounted displays
(HMD)&input devices block out
all the external world from the
viewer and present a view that is
under the complete control of the
computer

8.8 MIXED REALITY

o Mixed reality is a blend of virtual reality and augmented reality it is

also known as hybrid reality.

o Mixed reality is the integration of real and virtual worlds to produce
new visualizations, where physical and digital objects co-exist and

interact in real-time.

o Mixed reality technology is just now starting to take off with
Microsoft’s HoloLens one of the most notable early mixed reality

apparatuses.

8.8.1 Application of Mixed Reality

1. Education

Mixed reality technologies are being used within the education
industry to both enhance students’ ability to learn and take in
information. It also gives the students the opportunity to personalize

the way they learn.

Using 3D projections and simulations, students can interact with and
manipulate virtual objects in order to study them in a way that is
relevant to themselves and their studies. By inserting three-
dimensional objects into a classroom as a means of gauging the size,
shape, or other features of a defined “virtual” object, students can gain

a deeper sense of understanding as to what it is they’re studying.

Some ways that MR can help in the classroom?

o Interact with the environment in an immersive experience.

o Touch and manipulate objects.

J It is an engaging and fun way of learning.

o MR can teach any kind of subject.

2. Engineering

Mixed reality in engineering is slowly but surely becoming a game-
changer. From 3D modeling and virtual sculpting to remote repair
guidance and project monitoring apps. There are various ways in
which the engineering sector has begun to take advantage of mixed

reality devices.

Introduction to
Rendering Engines

183

Game programming

184

Some benefits in Engineering?

o Real-time simulation of engineering processes.

o Use MR with an industrial 10T device to monitor services.
o Engineering training.

For example, using 3D modeling apps on mixed reality devices,
professionals are able to build their projects up in a shared virtual
environment. This type of detailed 3D modeling + collaboration gives
engineers the best chance for spotting errors while also allowing real-
time manipulation of their designs. The collaboration environment
allows supervisors to evaluate and check their 3D designs in real-time.

Training Military Personnel

A battlefield simulation can emerge using this technology. However,
it is useful for training military warriors. The real-time experiences
will help them to understand ground strategies and implement better.

Healthcare

When it comes to healthcare, mixed reality technologies have many
potential applications. The most obvious is training and education. An
example is the over the-shoulder surgeries, where surgical students
can be taught remotely by experts as they perform surgeries in real-
time.

Another example is interactive learning. Topics like anatomy with
mixed reality technology can be used to map the different layers of
the human body. Being able to produce three-dimensional models of
the anatomy complete with information accessible by just a simple
gesture could change the way health care and medicine is taught.

MR will also transform the way in which medical students learn,
using three-dimensional holograms in a virtual environment rather
than two-dimensional diagrams from medical textbooks in base
reality.

Business

In business, selling a product evolved for many years. Most
importantly, the mixed reality will bring enormous shifts towards
sales. To clarify, the product catalog helping the customers to choose
will change to digital formats.

This will help us to choose a specific and accurate product. However,
this will increase the production of what the customer needs and
higher sales.

8.9 INTRODUCTION TO XR

Extended Reality (XR) refers to all real-and-virtual environments
generated by computer graphics and wearables.

The 'X"in XR is simply a variable that can stand for any letter.

o XR is the umbrella category that covers all the various forms of
computer-altered reality, including: Augmented Reality (AR), Mixed
Reality (MR), and Virtual Reality (VR).

8.10 CONCEPTUAL DIFFERENCES BETWEEN AR, VR,
MR AND XR

It is important to note that these new technologies come from different
places and they seek to do different things. Still, they can use some similar
technologies. For example, 3D objects and Al are important to all of them.
So, let’s look at the concepts and definitions hiding under these words.

o Virtual Reality (VR)

Virtual Reality (VR) is an immersive experience also called a
computer-simulated reality. It refers to computer technologies using
reality headsets to generate the realistic sounds, images and other
sensations that replicate a real environment or create an imaginary
world. VR is a way to immerse users in an entirely virtual world. A
true VR environment will engage all five senses (taste, sight, smell,
touch, sound), but it is important to say that this is not always possible.

Today, it is easy to say that VR is a well-established new reality-tech.
Moreover, after years of popularity in the gaming industry, we are
now seeing this technology into more practical applications. The
market and the industry are still excited about this tech trend and
further progress is expected in the near future.

o Augmented Reality (AR)

Augmented Reality (AR) is a live, direct or indirect view of a
physical, real-world environment whose elements are augmented (or
supplemented) by computer-generated sensory input such as sound,
video, graphics or GPS data. As AR exists on top of our own world it
provides as much freedom as you are given within your normal life.
AR utilizes your existing reality and adds to it utilizing a device of
some sort. Mobile and tablets are the most popular mediums of AR

Introduction to
Rendering Engines

185

Game programming

186

now, through the camera, the apps put an overlay of digital content
into the environment. Custom headsets are also being used.

o Mixed Reality (MR)

Mixed Reality (MR), sometimes referred to as hybrid reality, is the
merging of real and virtual worlds to produce new environments and
visualizations where physical and digital objects co-exist and interact
in real time. It means placing new imagery within a real space in such
a way that the new imagery is able to interact, to an extent, with what
is real in the physical world we know. The key characteristic of MR
is that the synthetic content and the real-world content are able to react
to each other in real time.

o Extended Reality (XR)

Extended Reality (XR) is a newly added term to the dictionary of the
technical words. For now, only a few people are aware of XR.
Extended Reality refers to all real-and-virtual combined environments
and human-machine interactions generated by computer technology
and wearables. Extended Reality includes all its descriptive forms like
the Augmented Reality (AR), Virtual Reality (VR), Mixed Reality
(MR). In other words, XR can be defined as an umbrella, which brings
all three Reality (AR, VR, MR) together under one term, leading to
less public confusion. Extended reality provides a wide variety and
vast number of levels in the Virtuality of partially sensor inputs to
Immersive Virtuality.

Since past few years, we have been talking regarding AR, VR, and
MR, and probably in coming years, we will be speaking about XR.

8.11 DEPTH MAP

o In 3D computer graphics and computer vision, a depth map is an
image or image channel that contains information relating to the
distance of the surfaces of scene objects from a viewpoint.

. The term is related to and may be analogous to depth buffer, Z-buffer,
Z-buffering and Z-depth.

° The "Z" in these latter terms relates to a convention that the central
axis of view of a camera is in the direction of the camera's Z axis, and
not to the absolute Z axis of a scene.

Examples

Cubic Structure

Depth Map: Nearer is darker

Depth Map: Nearer the Focal Plane is darker

Two different depth maps can be seen here, together with the original model
from which they are derived. The first depth map shows luminance in
proportion to the distance from the camera. Nearer surfaces are darker;
further surfaces are lighter. The second depth map shows luminance in
relation to the distances from a nominal focal plane. Surfaces c loser to the
focal plane are darker; surfaces further from the focal plane are lighter, (both
closer to and also further away from the viewpoint)

8.12 SMART GLASSES

. Smart glasses are wearable devices that add useful information and
functionalities alongside or to what the wearer would normally gather
from the real world.

Introduction to
Rendering Engines

187

Game programming

188

The added information can be shown visually before your eyes
through the display of the glasses or you can get instructions,
notifications and answers to your questions in audio form.

Smart glasses work through a combination of display, sensors and
accelerometers, coupled with smart software and internet connectivity
to make them really useful.

They tend to come with touchpads and/or voice controls to help users
navigate the software that powers them, which can be embedded into
the glasses themselves or incorporated into a handset — or both.

Smart glasses can do a variety of things for you. Among others:

Send and answer messages and phone calls

Take photos and videos from your point of view

Manage your calendar / appointments and get pop-up reminders
Turn-by-turn GPS navigation

Interact with apps (Search, fitness tracking, music, Uber, ...)

They also have endless use cases for enterprises. Some examples are:

Warehouse workers can get real-time information about orders/
inventory and move around with both their hands free

Manufacture/building companies can display real-time assembly
instructions for their employees.

Medical doctors can record and document patient interaction real time
and view medical information from previous visits.

8.12.1 Application of smart glasses

1.

Entertainment

Entertainment, including VR (virtual reality) games, is accessible at
any time with smart glasses. Smart glasses will also help you save on
other things like for example, a television. Now you can pull up a
chair and watch your favourite films in high definition and in 3D right
before your eyes, without ever buying a television (or losing the
remote control for that matter).

Lifelogging

Let’s say you have decided to go for a hike or a holiday somewhere
abroad and you want capture and remember every single moment. The
solution — consider lifelogging and store all your memories and the
sights you have seen by using smart glasses.

Voice Commands

Talking on the phone hands-free while driving may not be a new
thing, but answering the call without lifting a finger is.

Voice recognition incorporated into smart glasses can enable you to
seamlessly schedule events and notifications, control music, get turn-
by-turn navigation and search the web. This list is only scratching the
surface — the possibilities are endless.

Training

Smart glasses might just be the thing, to make your training more
focused and also entertaining. Listening to music while getting real-
time information about the session and measurements from the
sensors connected to the glasses can definitely help with your training
experience.

Facial Recognition

The smart glasses can also include cool security features such as facial
recognition. However, facial recognition has several more impactful
applications. For example, the technology is already used in the
military and also by the police forces in China where smart glasses
can recognize suspicious citizens and travellers in seconds.

8.13 MOBILE PHONE

Now a day, the mobile phones are extensively using AR, VR, MR.
The applications of mobile phone with AR, VR and MR are
1. They are used for gaming

2. They are used to view how furniture will look in home before
buying it.

3. ltcan be used to interact with Remote users.
4. It can be used for seeing menu in plate before making an order.

5. Itcan be used in military for Augmentation of battle field scene.

The following are the mobile devices which supports AR,VR and MR:

Company VR Phones

Apple IPhone 6s, IPhone 6s plus, iphone7,
iphone7 plus etc.

Google Nexus, Pixel, Pixel XL etc

LAVA Z2 Max,Lava Z6,Lava Z4 etc.

Micromax Canvas 2 plus,Infinity N11 etc

Sumsung Galaxy A12,Samsung S9, Samsung
S9 Plus etc

Introduction to
Rendering Engines

189

Game programming

190

8.14 HEAD MOUNTED DEVICE (HMD)

o A Head-mounted Display (HMD) is just what it sounds like -- a
computer display you wear on your head. Most HMDs are mounted
in a helmet or a set of goggles.

. Engineers designed head-mounted displays to ensure that no matter
in what direction a user might look, a monitor would stay in front of
his eyes.

o Most HMDs have a screen for each eye, which gives the user the sense
that the images he's looking at have depth.

o The monitors in an HMD are most often Liquid Crystal Displays
(LCD), though you might come across older models that use Cathode
Ray Tube (CRT) displays.

o LCD monitors are more compact, lightweight, efficient and
inexpensive than CRT displays. The two major advantages CRT
displays have over LCDs are screen resolution and brightness.

. Unfortunately, CRT displays are usually bulky and heavy.

. Almost every HMD using them is either uncomfortable to wear or
requires a suspension mechanism to help offset the weight.

o Many head-mounted displays include speakers or headphones so that
it can provide both video and audio output.

o The HMD allows viewers to look at an image from various angles or
change their field of view by simply moving their heads.

. Major HMD applications include military, government (fire, police,
etc.), and civilian-commercial (medicine, video gaming, sports, etc.).

8.15 SUMMARY

. VR is immersing people into a completely virtual environment.

o AR is creating an overlay of virtual content, but can’t interact with the
environment.

o MR is a mixed of virtual reality and the reality, it creates virtual
objects that can interact with the actual environment.

o XR brings all three Reality (AR, VR, MR) together under one term.

o A depth map is an image or image channel that contains information
relating to the distance of the surfaces of scene objects from a
viewpoint.

o A head-mounted display (HMD) is a display device, worn on the head
or as part of a helmet.

816 QUEST'ONS Introduction to

Rendering Engines

1.

o a ~ w

What is Virtual Reality? Explain any two applications of it in detail.

What is Augmented Reality? Explain any two applications of it in
detail.

What is Mixed Reality? Explain any two applications of it in detail.
State the difference between VR, AR and MR.

Explain the concept of depth mapper.

Explain the following with respect to rendering

a. Mobile phones

b. Smart classes

c. HMD's

8.17 REFERENCES

https://www.inc.com/

https://www.computertechreviews.com/

https://www.viget.com/

https://medium.com/

https://en.wikipedia.org/

https://smartglasseshub.com/

https://www.renderboost.com/

ke e ofe ke e e ke

191

Game programming

192

UNITY ENGINE

Unit Structure :

9.0 Obijectives:

9.1 Introduction:

9.2 Working with Unity
9.2.1 Essential Unity Concept
9.2.2 Unity interface

9.3 Introduction to Unity 2D
9.3.1 Sprites in Unity
9.3.2 Creating Sprites
9.3.3 Modifying Sprites

9.4 Graphics

9.5 Physics
9.5.1 Collider
9.5.2 Triggers

9.5.3 Rigidbody
9.6 Animation System Overview in Unity

9.6.1 Animation workflow

9.6.2 How the various parts of the animation system connect together
9.7 Timeline in unity

9.8 What’s the difference between the Animation window and the
Timeline window?

9.9 Summary
9.10 Questions
9.11 References

9.0 OBJECTIVES:

This chapter would make you understand the following concept:

J Unity
J working in Unity
o GameObject

. Component

Asset
Prefabs
Animation in unity

Timeline in Unity

9.1 INTRODUCTION:

Unity is a game engine developed by Unity Technologies. It is one of
the most widely used engines in the game development industry.

Since it is a cross-platform engine, it can be used to create games for
different platforms like Windows, i0S, Linux, and Android.

The engine has been adopted by industries outside video gaming, such
as film, automotive, architecture, engineering, and construction. As of
now, the engine supports as many as 25 platforms.

It has its own Integrated Development Environment (IDE) and is
famous for creating interactive games.

It contains many elements like Assets, GameObjects, Components,
Scenes, and Prefab.

We Use the Unity Editor to create 2D and 3D games, apps and
experiences.

Unity has been used to develop many renowned games like-

Ghost of a tale

Firewatch

Hearthstone- Heroes of warcraft
Wasteland 2

Battlestar Galactica Online

Rust

Temple Run Trilogy

Escape plan

Pokemon Go

Super Mario Run

9.2 WORKING WITH UNITY

Unity makes the game production process simple by giving you a set
of logical steps to build any conceivable game scenario. Renowned
for being non-game-type specific, Unity offers you a blank canvas and
a set of consistent procedures to let your imagination be the limit of
your creativity.

Unity Engine

193

Game programming

194

9.2.1 Essential Unity Concept

Assets

These are the building blocks of all Unity projects. From graphics in
the form of image files, through 3D models and sound files, Unity
refers to the files you'll use to create your game as assets.

This is why in any Unity project folder all files used are stored in a
child folder named Assets.

Scenes

In Unity, you should think of scenes as individual levels, or areas of
game content (such as menus).

By constructing your game with many scenes, you'll be able to
distribute loading times and test different parts of your game
individually.

Game Objects

When an asset is used in a game scene, it becomes a new Game
Object—referred to in Unity terms—especially in scripting—using
the contracted term "GameObject".

All GameObjects contain at least one component to begin with, that
is, the Transform component.

Transform simply tells the Unity engine the position, rotation, and
scale of an object—all described in X, Y, Z coordinate (or in the case
of scale, dimensional) order.

In turn, the component can then be addressed in scripting in order to
set an object's position, rotation, or scale. From this initial component,
you will build upon game objects with further components adding
required functionality to build every part of any game scenario you
can imagine.

Components

Components come in various forms. They can be for creating
behavior, defining appearance, and influencing other aspects of an
object's function in the game.

By ‘attaching’ components to an object, you can immediately apply
new parts of the game engine to your object.

Common components of game production come built-in with Unity,
such as the Rigidbody component, down to simpler elements such as
lights, cameras, particle emitters, and more.

To build further interactive elements of the game, you'll write scripts,
which are treated as components in Unity.

Scripts

Unity allows you to create your own Components using scripts. These
allow you to trigger game events, modify Component properties over
time and respond to user input in any way you like.

Unity supports the C# programming language natively. C#
(pronounced C-sharp) is an industry-standard language similar to Java
or C++.

In addition to this, many other .NET languages can be used with Unity
if they can compile a compatible DLL.

In other words we can say that Script add functionality to a
GameObject.

Prefabs

Prefabs are like blueprints of a GameObject.

So we can say, Prefabs are a copy of a GameObject that can be
duplicated and put into a scene, even if it didn't exist when the scene
was being made; in other words, prefabs can be used to generate
GameObjects dynamically.

9.2.2 Unity interface

The Unity interface, like many other working environments, has a
customizable layout. Consisting of several dockable spaces, you can pick
which parts of the interface appear where. Let's take a look at a typical Unity
layout:

Fig:9.1 Unity Interface

Unity Engine

195

Game programming

196

The figure 9.1 image demonstrates that there are five different windows
you'll be dealing with:

Scene [1]—where the game is constructed.

Hierarchy [2]—a list of GameObijects in the scene.
Inspector [3]—settings for currently selected asset/object
Game [4]—the preview window, active only in play mode

Project [5]—a list of your project's assets, acts as a library

Scene View

This window is where we will create our scenes. This view allows you
to navigate and edit your scene visually.

The scene view can show a 2D or 3D perspective, depending on the
type of project you are working on.

We are using the scene view to select and position scenery, cameras,
characters, lights, and all other types of GameObject.

Being able to select, manipulate, and modify objects in the scene view
are some of the most important skills you must learn to begin working
in Unity.

Hierarchy Window

‘= Hierarchy
Create
N SampleScene
= Main Camera
I Light
* GameObject

This is the hierarchy window. This is the hierarchical text
representation of every object in the scene. It is where all the objects
in your recently open scene are listed, along with their parent-child
hierarchy.

Each item in the scene has an entry in the hierarchy, so the two
windows are linked. The hierarchy defines the structure of how
objects are attached to one another.

By default, the Hierarchy window lists GameObjects by order of
creation, with the most recently created GameObjects at the bottom.
We can reorder the GameObjects by dragging them up or down, or by
making the parent or child GameObjects.

Inspector Window

8 Inspector

=/ GameObject Static
- Tag ' Untaggec + Layer 'Default
Transform m 3
Position X0 Z [
Rotation X O Z [

Scale X1 zZ1

< Rigidbody m 3
Mass
Drag
Angular Drag
Use Gravity
Is Kinematic
Interpolate
Collision Detection
Constraints
Info

Add Component

The Inspector window allows you to view and edit all the properties
of the currently selected object.

Since different types of objects have different sets of properties, the
layout and contents of the inspector window will vary.

In this window, you can customize aspects of each element that is in
the scene.

You can select an object in the Hierarchy window or double click on
an object in the scene window to show its attributes in the inspector
panel.

The inspector window displays detailed information about the
currently selected GameObiject, including all attached components
and their properties, and allows you to modify the functionality of
GameObijects in your scene.

Unity Engine

197

Game programming

198

4.

Game Window

This window shows the view that the main camera sees when the
game is playing. Means here, you can see a preview window of how
the game looks like to the player.

It is representative of your final game. You will have to use one or
more cameras to control what the player actually sees when they are
playing your game.

Project window

This window displays the files being used for the game. You can
create scripts, folders, etc. by clicking create under the project
window.

In this view, you can access and manage the assets that belong to your
project.

All assets in your project are stored and kept here. All external assets,
such as textures, fonts, and sound files, are also kept here before they
are used in a scene.

The favorites section is available above the project structure list.
Where you can maintain frequently used items for easy access. You
can drag items from the list of project structure to the Favorites and
also save search queries there.

9.3 INTRODUCTION TO UNITY 2D

Unity is available for both 2D and 3D games. When you create a new project
in Unity, you will have a choice to start in 2D or 3D mode. The choice
between starting from 2D or 3D mode determines some settings for the
Unity Editor, such as whether images are imported as sprites or textures.

You can swap between 2D or 3D mode at any time regardless of the mode
you set when you created your project.

9.3.1 Sprites in Unity

o Sprites are simple 2D graphic objects that have graphical images
(called textures) on them. Unity handles sprites by default when the
engine is in 2D mode.

o When you view the sprite in 3D space, sprites will appear to be paper-
thin, because they have no Z-width.

o Sprites always face the camera at a right angle unless rotated in 3D
space

When you create a new sprite, it uses a texture. This texture is then applied
on a fresh GameObject, and the Sprite Renderer component is attached to
it. This makes our GameObject visible with our texture, as well as its
properties related to how it looks on-screen.

9.3.2 Creating Sprites:

To create a sprite to your game, you must supply the engine with a texture.
Let's create a texture first.

o Get an image what you want to add as a sprite in standard image file
such as PNG or JPG that you want to use,

o Save it in your system directory and
o Then drag the image into the Assets region of Unity.
o Now drag the image from the Assets into the Scene Hierarchy.

You will notice that as soon as you let go of the mouse button, a new
GameObject with the name of the texture shows up in the list. You will also
get the image now in the middle of the scene in the scene view.

Let us consider the following points while adding a sprite:

o By dragging from an external source into Unity, we are putting an
asset.

o This added asset is an image, so it becomes a texture.

o By dragging this texture into the scene hierarchy, we are creating a
new GameObject with the same name as our texture, with a sprite
renderer attached.

o This sprite renderer uses that texture draws the image in the game.
9.3.3 Modifying Sprites

o We can manipulate the imported sprites in various ways to change
how it looks.

Unity Engine

199

Game programming

200

If you look at the top left corner of the unity interface, you will get a toolbar,
as shown below:

File Edit Assets GameObject Component

Let's see the functions of these buttons:

A first-Hand tool is used to move around the scene without affecting any
objects.

Q +

Hand Tool hy

The next tool is the Move tool. This is used to move the objects in the game
world around.

The next tool is the Rotate tool, which is used to rotate objects along the Z-
axis of the game world or parent object.

The centered tool is the Scale tool. This tool allows you to modify the size
(scale) of the objects along certain axes.

The next tool is the Rect tool. This tool behaves like a combination of the
Move and the Scaling tool but is prone to loss of accuracy. It is more useful
in arranging the Ul elements.

= Hierarchy

Rect Tool

The next tool is the Move, Rotate, and a Scale tool. It is used to move, Unity Engine
rotate, and scale the selected object.

F,]
&

ke F]

= Hierarch

Move, Rotate or Scale selected objects.

These tools are very useful and worthy as the complexity of the project
increases.

9.4 GRAPHICS

o Unity’s graphics features let you control the appearance of your
application and are highly-customizable.

. You can use Unity’s graphics features to create beautiful, optimized
graphics across a range of platforms, from mobile to high-end
consoles and desktop.

9.5 PHYSICS

o Unity helps you simulate physics in your Project to ensure that the
objects correctly accelerate and respond to collisions, gravity, and
various other forces.

o Unity provides different physics engine implementations which you
can use according to your Project needs: 3D, 2D, object-oriented, or
data-oriented.

o Physics enables objects to be controlled by (an approximation) of the
forces which exist in the real world, such as gravity, velocity and
acceleration.

201

Game programming

202

Add Component
@l)

4 Physics

) Capsule Collider

< Character Controller
\# Character Joint

(. Cloth

% Configurable Joint
@& Constant Force

~ Fixed Joint

% Hinge Joint

. Mesh Collider

2 Rigidbody

) Sphere Collider _
E Spring Joint v

Fig:9.2:Unity Physics Engine Selection
9.5.1 Collider

o Colliders enable Unity to register when GameObjects strike or
Intersect each other.

. GameObijects must have a RigidBody component attached to them for
collisions to occur.

e Types of colliders include:

1. Boxcollider
Capsule collider
Mesh collider

Sphere collider

o w N

Wheel collider

Colliders are included in many of Unity's 3D objects from the GameObject
dropdown menu. To enable the Unity Physics Engine for a separate or
empty game object, click on the Add Component button in the inspector
window, select Physics, and specify the type of collider. (Figure 9.2)

9.5.2 Triggers

Enabled via a checkbox on the collider. Functions the same as a collider,
but disables physics on the component, enabling objects to pass through it
via zone. Events can be called when objects enter or exit the trigger. Figure
9.3

v i [/ Box Collider @ = %
4 | Edit Collider
I Is Trigger ¥4
I rial) | @
Center X [0 [y o |z o |
Size X1 [y [1 |z 1 |

Fig:9.3: Is Trigger checkbox selected in the Box Collider component

One of the objects must have a Rigidbody component attached. As a best
practice, objects that move within a Trigger should have this component.

9.5.3 Rigidbody

The Rigidbody component (Figure 9.4) allows GameObijects to be affected
by physics properties, such as gravity. It also includes properties of mass,
velocity, and air resistance (drag.) Objects of larger mass are less affected
by objects with lower mass and vise versa. Drag affects the dampening of
velocity over time. Angular Drag affects angular velocity.

¥ 2 Rigidbody @ ' %
Mass 1 |
Drag 0 |
Angular Drag [0.05 |
Use Gravity v
Is Kinematic -
Interpolate [None 4]
Collision Detection [Discrete

b Constraints

» Info

Fig:9.4 The Rigidbody component

The Is Kinematic checkbox allows the Rigidbody to affect other objects via
the Unity Physics Engine, but will not be affected themselves. For Example,
a Hand Avatar in a VR game can interact with objects via physics, but we
don’t want physics to act on the hand.

The Is Kinematic checkbox also affects objects controlled by the Animation
Engine. If the Is Kinematic checkbox is selected (on),the Animation Engine
effects objects. If deselected(off),the physics Engine retains control.

Figure 9.5 shows the default setting for the unity physics engine.

Unity Engine

203

Game programming

@ Project Settings

Audio
Editor
Graphics
Input

Physics 2D

Player

Preset Manager
Quality

Seript Execution Qrder
Tags and Layers
TextMesh Pro

Time

VFX

Physics

Gravity

X0
Default Material
Bounce Threshold
Sleep Threshold
Default Contact Offset
Default Solver Iterations
Default Solver Velocity Iterations.
Queries Hit Backfaces
Queries Hit Triggers
Enable Adaptive Force
Contacts Generation
Auto Simulation
Auto Sync Transforms
Reuse Collision Callbacks
Cloth Gravity

Y -9.81 z[o
None (Physic Material) o
2
0.005
0.01

70RO

istent Contact Manifold

NO®

X 0
Contact Pairs Mode
Broadphase Type
World Bounds

¥ -9.81 zo
| Default Contact Pairs.
| Sweep And Prune Broadphase

Center X 0

Yo zZo

Extent X 250
World Subdivisions

Friction Type

Enable Enhanced Determinism
Enable Unified Heightmaps
Default Max Angular Speed

¥ 250 Z 250
8

[Patch Friction Type

~N Q0O

¥ Layer Collision Matrix

1se2ARY 2J0UB|
& xwaredsuely

JalEM
& anegeg

=
Default (v o [
TransparentFX [of ((v [«
Ignore Raycast [(v (v
water (W (¥
Ul
Cloth Inter-Collision o

Fig:9.5 Default setting for the unity Physics Engine.

9.6 ANIMATION SYSTEM OVERVIEW IN UNITY

Unity has a rich and sophisticated animation system (sometimes referred to
as ‘Mecanim’).

It provides:

o Easy workflow and setup of animations for all elements of Unity
including objects, characters, and properties.

o Support for imported animation clips and animation created within
Unity

. Humanoid animation - the ability to apply animations from one
character model onto another.

J Simplified workflow for aligning animation clips.

o Convenient preview of animation clips, transitions and interactions
between them. This allows animators to work more independently of
programmers, prototype and preview their animations before
gameplay code is hooked in.

o Management of complex interactions between animations with a
visual programming tool.

o Animating different body parts with different logic.
204

Layering and masking features.

Fig: 9.6 Typical view of an Animation State Machine in the Animator

window

9.6.1 Animation workflow

Unity’s animation system is based on the concept of Animation Clips,
which contain information about how certain objects should change
their position, rotation, or other properties over time. Each clip can be
thought of as a single linear recording. Animation clips from external
sources are created by artists or animators with 3rd party tools such
as Autodesk® 3ds Max® or Autodesk® Maya®, or come from
motion capture studios or other sources.

Animation Clips are then organised into a structured flowchart-like
system called an Animator Controller. The Animator Controller acts
as a “State Machine” which keeps track of which clip should currently
be playing, and when the animations should change or blend together.

A very simple Animator Controller might only contain one or two
clips, for example to control a powerup spinning and bouncing, or to
animate a door opening and closing at the correct time. A more
advanced Animator Controller might contain dozens of humanoid
animations for all the main character’s actions, and might blend
between multiple clips at the same time to provide a fluid motion as
the player moves around the scene.

Unity’s Animation system also has numerous special features for
handling humanoid characters which give you the ability to retarget
humanoid animation from any source (for example: motion capture;
the Asset Store; or some other third-party animation library) to your
own character model, as well as adjusting muscle definitions. These
special features are enabled by Unity’s Avatar system, where
humanoid characters are mapped to a common internal format.

Each of these pieces - the Animation Clips, the Animator Controller,
and the Avatar, are brought together on a GameObject via the
Animator Component.

Unity Engine

205

Game programming

206

This component has a reference to an Animator Controller, and (if
required) the Avatar for this model. The Animator Controller, in turn,
contains the references to the Animation Clips it uses.

9.6.2 How the various parts of the animation system connect together

o
| Update Mode
Culling Mode

Fig:9.7 Various parts of the animation system connected together

The above Figure 9.7 shows the following:

1.

Animation clips are imported from an external source or created
within Unity. In this example, they are imported motion captured
humanoid animations.

The animation clips are placed and arranged in an Animator
Controller. This shows a view of an Animator Controller in the
Animator window. The States (which may represent animations or
nested sub-state machines) appear as nodes connected by lines. This
Animator Controller exists as an asset in the Project window.

The rigged character model (in this case, the astronaut “Astrella”) has
a specific configuration of bones which are mapped to Unity’s
common Avatar format. This mapping is stored as an Avatar asset as
part of the imported character model, and also appears in the Project
window as shown.

When animating the character model, it has an Animator component
attached. In the Inspector view shown above, you can see the
Animator Component which has both the Animator Controller and the
Avatar assigned. The animator uses these together to animate the
model. The Avatar reference is only necessary when animating a
humanoid character. For other types of animation, only an Animator
Controller is required.

9.7 TIMELINE IN UNITY

Use the Timeline Editor window to create cut-scenes, cinematics, and
game-play sequences by visually arranging tracks and clips linked
to GameObjects in your scene.

Timeline

| Preview | 1ot | 1o | » |1 M| [[#]][0 |10 #|| GroundTimeline (Ground)

SPduROBRe] ©
T —

. Explosion Explosion

=][= Outputl (Audio So| © BackgroundMusic

Fig:9.8 A cinematic in the Timeline Editor window.

For each cut-scene, cinematic, or game-play sequence, the Timeline Editor
window saves the following:

Timeline Asset: stores the tracks, clips, and recorded animations
without links to the specific GameObjects being animated. The
Timeline Asset is saved to the project.

Timeline instance: stores links to the specific GameObjects being
animated by the Timeline Asset. These links, referred to as bindings,
are saved to the scene.

Timeline Asset

The Timeline Editor window saves track and clip definitions as
a Timeline Asset.

If you record key animations while creating your cinematic, cut-
scene, or game-play sequence, the Timeline Editor window saves the
recorded animation as children of the Timeline Asset.

_
P N ca— YL Y

< MiniGame
¥ & Scripts
CameraFollow
PlayerMovement

Timeline
| Preview | M | 14|

Animation Track

B[o] [[r]]0 |[0# | PickupTimeline

n Animation Trackl

. Explosion b Explosion

=][=I Outputl (Audio Sot

Fig: 9.9 Timeline Asset saves tracks and clips (red). If your record key

animation, the recorded clips are saved as children of the Timeline

Asset (blue).

Timeline instance

Although a Timeline Asset defines the tracks and clips for a cut-scene,
cinematic, or game-play sequence, you cannot add a Timeline Asset
directly to a scene.

Unity Engine

207

Game programming

208

To animate GameObijects in your scene with a Timeline Asset, you
must create a Timeline instance.

The Timeline Editor window provides an automated method of
creating a Timeline instance while creating a Timeline Asset.

If you select a GameObject in the scene that has a Playable Director
component associated with a Timeline Asset, the bindings appear in the
Timeline Editor window and in the Playable Director component (Inspector

@ Inspector & -=
v 2 / Playable Director 2
Playable ﬁPickupTimeline (TimelineAsset) \ @
Update Method [Game Time 4]
Play On Awake -
Wrap Mode | None al
Initial Time [0]
¥ Bindings
52 Animation Track ¥ PickupObject @
52 Animation Trackl LpEnemy @
I Audio Track = Outputl (Audio Source) a3
" Timeline | a-
| Preview |1 | 1 | > | wi (o | [[#]][0 |||/ 10 #| PickupTimeline {PickupObject) S
Add- 0 30 60 a0 150 180
I ¥ PickupObject @ D= Recorded Record)
Iu A Enemy Q .= e o Belriea o) Idle VIO aa
IE Explosion = EXpIBEBN
=][= Outputl (Audio So| @ = BackgroundMusic

Fig:9.10 The Playable Director component shows the Timeline Asset

(blue) with its bound GameObjects (red). The Timeline Editor

window shows the same bindings (red) in the Track list.

Reusing Timeline Assets

Since Timeline Assets and Timeline instances are separate, it is
possible to reuse the same Timeline Asset with many Timeline
instances.

For example, you can create a Timeline Asset named VictoryTimeline
with the animation, music, and particle effects that play when the
main game character (Player) is victorious.

To reuse the VictoryTimeline Timeline Asset to animate another
game character (Enemy) in the same scene, you can create another
Timeline instance for the secondary game character.

9.8

WHAT’S THE DIFFERENCE BETWEEN THE
ANIMATION WINDOW AND THE TIMELINE
WINDOW?

The Timeline window

The Timeline window allows you to create cinematic content, game-
play sequences, audio sequences and complex particle effects.

You can animate many different GameObjects within the same
sequence, such as a cut scene or scripted sequence where a character
interacts with scenery.

In the timeline window you can have multiple types of track, and each
track can contain multiple clips that can be moved, trimmed, and
blended between.

It is useful for creating more complex animated sequences that require
many different GameObijects to be choreographed together.

The Timeline window is newer than the Animation window.

It was added to Unity in version 2017.1, and supercedes some of the
functionality of the Animation window.

Timeline

| Preview | Ma | | | M [0e | [[p]][0 Il ID | GruundT\rm:hne{Cround) |# ||

Add- 210 240]
I #PickupObject @ N P corgdad| jlaeopd

In s Enemy @ ®

IE Explosion

Wittory IEnce | e \n'ldory 135

Ey:.\o;\nn

©J[= Outputl (Audio So @

Fig:9.11 Timeline window, showing many different types of clips

arranged in the same sequence

The Animation window

The Animation window allows you to create individual animation
clips as well as viewing imported animation clips.

Animation clips store animation for a single GameObiject or a single
hierarchy of GameObjects.

The Animation window is useful for animating discrete items in your
game such as a swinging pendulum, a sliding door, or a spinning coin.

The animation window can only show one animation clip at a time.
The Animation window was added to Unity in version 4.0.
The Animation window is an older feature than the Timeline window.

It provides a simple way to create animation clips and animate
individual GameObjects.

However, to create more complex sequences involving many
disparate GameObjects you should use the Timeline window.

The animation window has a “timeline” as part of its user interface
(the horiontal bar with time delineations marked out), however this is
separate to the Timeline window.

Unity Engine

209

Game programming

210

IR o 0:00
ation ¢| Samples [0 || @4 | 4]
° £

¥ A prop_robotArm : Rotation

| | | |
P A prop_robetArm_body : Rotat & & & o < | (20K) Eoxed <&
» Aprop_robotArm_arm : Rot @ LA o © o oo [2NE INNE X |
» A prop_robotArm_hand : & & LANEZ NN K23 LIE2NNEX] I
» A prop_robotArm_clanl % OO o | 000 o ¢ OO |
B & LRl O | (20K) GO |
L PS OO &0 | LK ANNE X |
» A prop_robotArm_clan & &< fesed | o0 ® & &< |
= Lo | | LK 2 I
& oo | | o ¢ I

» A prop_robotArm_clz
» Aprop_rebotArm_

Add Property

Fig:9.12 Animation Window

9.9 SUMMARY

Unity is a game engine developed by Unity Technologies. It is one of
the most widely used engines in the game development industry.

Assets are the building blocks of all Unity projects.
Scripts add functionality to a GameObject.

Prefabs are like blueprints of a GameObiject.

Unity is available for both 2D and 3D games.

Physics enables objects to be controlled by (an approximation) of the
forces which exist in the real world, such as gravity, velocity and
acceleration.

Colliders enable Unity to register when GameObjects strike or
Intersect each other.

Unity has a rich and sophisticated animation system.

The Animation window allows you to create individual animation
clips as well as viewing imported animation clips.

The Timeline window allows you to create cinematic content, game-
play sequences, audio sequences and complex particle effects.

9.10 QUESTIONS

1)
2)
3)
4)
5)

Write a short note on Unity rendering engine.
Explain in detail about physics 2D.

Write a note on animation window.

Explain various unity essential component.
Explain timeline window for animation.

9.11 REFERENCES

Unity Game Development Essentials Will Goldstone

https://docs.unity3d.com/

ke o o ke o e ke

SCRIPTING

Unit Structure :

10.0
10.1
10.2

10.3
10.4
10.5

10.6
10.7
10.8
10.9

Obijectives

Introduction to Scripting
Creating and Using Scripts
10.2.1 Creating Scripts

10.2.2 Anatomy of a Script file
10.2.3 Controlling a GameObject
10.2.4 MonoBehaviour Class
Setting up a multiplayer project
Navigation and Path Finding
Creating user interfaces (Ul)
10.5.1 Unity Ul: Unity User Interface
Publishing Builds

Summary

Question

References

10

10.0 OBJECTIVE:

This chapter would make you understand the following concept:

Scripting
Setting up Multiplayer project
Navigation and path finding

Unity Interface

10.1 INTRODUCTION TO SCRIPTING

Scripting is an essential ingredient in all applications you make in

Unity.

211

Game programming

212

Most applications need scripts to respond to input from the player and
to arrange for events in the gameplay to happen when they should.

Beyond that, scripts can be used to create graphical effects, control
the physical behaviour of objects or even implement a custom Al
system for characters in the game.

Scripting is the process of writing blocks of code that are attached like
components to GameObjects in the scene.

10.2 CREATING AND USING SCRIPTS

The behavior of GameObjects is controlled by the Components that
are attached to them. Although Unity’s built-in Components can be
very versatile.

Unity allows you to create your own Components using scripts. These
allow you to trigger game events, modify Component properties over
time and respond to user input in any way you like.

Unity supports the C# programming language natively. C#
(pronounced C-sharp) is an industry-standard language similar to Java
or C++,

In addition to this, many other .NET languages can be used with Unity
if they can compile a compatible DLL.

10.2.1 Creating Scripts

Unlike most other assets, scripts are usually created within Unity
directly. You can create a new script from the Create menu at the top
left of the Project panel or by selecting Assets > Create > C#
Script from the main menu.

The new script will be created in whichever folder you have selected
in the Project panel. The new script file’s name will be selected,
prompting you to enter a new name.

Assets = Scripts

MWewBehaviour!

It is a good idea to enter the name of the new script at this point rather
than editing it later. The name that you enter will be used to create the
initial text inside the file.

10.2.2 Anatomy of a Script file

When you double-click a script Asset in Unity, it will be opened in a
text editor. By default, Unity will use Visual Studio, but you can select
any editor you like from the External Tools panel in Unity’s
preferences (go to Unity > Preferences).

The initial contents of the file will look something like this:

using UnityEngine;

using System.Collections;

public class MainPlayer : MonoBehaviour {

/I Use this for initialization

void Start () {

ks

// Update is called once per frame

void Update ()

{
¥

A script makes its connection with the internal workings of Unity by
implementing a class which derives from the built-in class
called MonoBehaviour.

You can think of a class as a kind of blueprint for creating a new
Component type that can be attached to GameObjects.

Each time you attach a script component to a GameObject, it creates
a new instance of the object defined by the blueprint.

The name of the class is taken from the name you supplied when the
file was created. The class name and file name must be the same to
enable the script component to be attached to a GameObiject.

The main things to note, however, are the two functions defined inside
the class.

The Update function is the place to put code that will handle the frame
update for the GameObject.

This might include movement, triggering actions and responding to
user input, basically anything that needs to be handled over time
during gameplay.

Scripting

213

Game programming

214

To enable the Update function to do its work, it is often useful to be
able to set up variables, read preferences and make connections with
other GameObjects before any game action takes place.

The Start function will be called by Unity before gameplay begins (ie,
before the Update function is called for the first time) and is an ideal
place to do any initialization.

The construction of objects is handled by the editor and does not take
place at the start of gameplay as you might expect. If you attempt to
define a constructor for a script component, it will interfere with the
normal operation of Unity and can cause major problems with the
project.

10.2.3 Controlling a GameObject

As noted above, a script only defines a blueprint for a Component and
so none of its code will be activated until an instance of the script is
attached to a GameObject.

You can attach a script by dragging the script asset to a GameObject
in the hierarchy panel or to the inspector of the GameObject that is
currently selected.

There is also a Scripts submenu on the Component menu which will
contain all the scripts available in the project, including those you
have created yourself. The script instance looks much like any other
Component in the Inspector:

¥ || [Main Player (Script) g %,
Script @I MainPlayer @

Once attached, the script will start working when you press Play and
run the game. You can check this by adding the following code in the
Start function:-

/I Use this for initialization
void Start ()

{
Debug.Log("'l am alive!");

¥

10.2.4 MonoBehaviour Class

MonoBehaviour is the base class from which every Unity script
derives. When you use C#, you must explicitly derive from
MonoBehaviour.

o This class doesn't support the null-conditional operator (?.) and the Scripting
null-coalescing operator (??).

° The functions in this class are:

o Start() - Start is called on the frame when a script is enabled just before
any of the Update methods are called the first time. Start is called
exactly once in the lifetime of the script.

o Update() - Update is called every frame, if the MonoBehaviour is
enabled. Unity calls this method 60 time per second(i.e 60 frames per
second). Not every MonoBehaviour script needs Update.

o FixedUpdate() - The FixedUpdate frequency is more or less than
Update. If the application runs at 25 frames per second (fps), Unity
calls it approximately twice per frame, Alternatively, 100 fps causes
approximately two rendering frames with one FixedUpdate. Use
FixedUpdate when using Rigidbody. Set a force to a Rigidbody and
it applies each fixed frame. FixedUpdate occurs at a measured time
step that typically does not coincide with MonoBehaviour.Update.

o LateUpdate() - LateUpdate is called every frame, if the Behaviour is
enabled. LateUpdate is called after all Update functions have been
called. This is useful to order script execution. For example a follow
camera should always be implemented in LateUpdate because it
tracks objects that might have moved inside Update.

o OnGUI() - OnGUI is called for rendering and handling GUI events.

o OnDisable() - This function is called when the behaviour becomes
disabled.

o OnEnable() - This function is called when the object becomes enabled
and active.

10.3 SETTING UP A MULTIPLAYER PROJECT

o The most basic and common things you need when setting up a
multiplayer project. In terms of what you require in your project, these
are:

1) A Network Manager

2) A user interface (for players to find and join games)

3) Networked Player Prefabs (for players to control)

4) Scripts and GameObjects which are multiplayer-aware

o There are variations on this list; for example, in a multiplayer chess
game, or a real-time strategy (RTS) game, you don’t need a visible
GameObiject to represent the player. However, you might still want

215

Game programming

216

an invisible empty GameObject to represent the player, and attach
scripts to it which relate to what the player is able to do.

There are also some important concepts that you need to understand
and make choices about when building your game. These concepts
can broadly be summarised as:

The Network Manager

The Network Manager is responsible for managing the networking
aspects of your multiplayer game. You should have one (and only
one) Network Manager active in your Scene at a time.

v @ [Network Manager (Script) ﬁ o,
Dont Destroy On Load [+
Run in Background i)
Log Level | Info Ll
Offline Scene Mone (Object) 2]
Online Scene Maone (Object)]
= Network Info
b Spawn Info
Advanced Configuration [
Use Network Simulatar -
Script @ MetworkManager]

Fig:10.1: The Network Manager Component

Unity’s built-in Network Manager component wraps up all of the
features for managing your multiplayer game into one single
component. If you have custom requirements which aren’t covered by
this component, you can write your own network manager in script
instead of using this component. If you’re just starting out with
multiplayer games, you should use this component.

A user interface for players to find and join games

Almost every multiplayer game provides players with a way to
discover, create, and join individual game “instances” (also known as
“matches”). This part of the game is commonly known as the “lobby”,
and sometimes has extra features like chat.

Unity has an extremely basic built-in version of such an interface,
called the NetworkManagerHUD.

It can be extremely useful in the early stages of creating your game,
because it allows you to easily create matches and test your game
without needing to implement your own Ul.

However, it is very basic in both functionality and visual design, so
you should replace this with your own Ul before you finish your
project.

Create Internet Match

Room Name: |default

Find internet Match

Change MM server

MM Uri: https://mm.unet.unity3d.com/

Disable Match Maker

Fig:10.2 Unity’s built-in Network Manager HUD, shown in
MatchMaker mode.

Networked player GameObjects

Most multiplayer games feature some kind of object that a player can
control, like a character, a car, or something else.

Some multiplayer games don’t feature a single visible “player object”
but instead allow a player to control many units or items, like in chess
or real-time strategy games.

Others don’t even feature specific objects at all, like a shared-canvas
painting game.

In all of these situations, however, you usually need to create a
GameObject that conceptually represents the player in your game.
Make this GameObject a Prefab, and attach all the scripts to it which
control what the player can do in your game.

If you are using Unity’s Network Manager component, assign the Prefab to
the Player Prefab field.

v@) HNetwork Manager (Script) [%
Dont Destroy On Loz«
Run in Background [«
Log Level | Info
Offline Scene |ﬂNune (Scene Asset)
Online Scene |€Nune (Scene Asset)
b Network Info
¥ Spawn Info
Player Prefab |UPIa',rer Car | BI
Auto Create Playe(¥
Flayer Spawn Met| Random 4]

[O L

Registered Spawnahble Prefabs:

List is Empty

+= =

Fig:10.3 The network manager with a “Player Car” prefab assigned

to the Player Prefab field.

Scripting

217

Game programming

218

When the game is running, the Network Manager creates a copy (an
“instance”) of your player Prefab for each player that connects to the
match.

However - and this is where it can get confusing for people new to
multiplayer programming - you need to make sure the scripts on your
player Prefab instance are “aware” of whether the player controlling
the instance is using the host computer (the computer that is managing
the game) or a client computer (a different computer to the one that is
managing the game).

This is because both situations will be occurring at the same time.

10.4 NAVIGATION AND PATH FINDING

The navigation system allows you to create characters that can
intelligently move around the game world, using navigation meshes
that are created automatically from your Scene geometry.

Dynamic obstacles allow you to alter the navigation of the characters
at runtime, while off-mesh links let you build specific actions like
opening doors or jumping down from a ledge.

The Navigation System allows you to create characters which can
navigate the game world. It gives your characters the ability to
understand that they need to take stairs to reach second floor, or to
jump to get over a ditch.

The Unity NavMesh system consists of the following pieces:

NavMesh (short for Navigation Mesh) is a data structure which
describes the walkable surfaces of the game world and allows to find
path from one walkable location to another in the game world. The
data structure is built, or baked, automatically from your level
geometry.

NavMesh Agent component help you to create characters which
avoid each other while moving towards their goal. Agents reason
about the game world using the NavMesh and they know how to avoid
each other as well as moving obstacles.

Off-Mesh Link component allows you to incorporate navigation
shortcuts which cannot be represented using a walkable surface. For
example, jJumping over a ditch or a fence, or opening a door before
walking through it, can be all described as Off-mesh links.

NavMesh Obstacle component allows you to describe moving
obstacles the agents should avoid while navigating the world. A barrel
or a crate controlled by the physics system is a good example of an
obstacle. While the obstacle is moving, the agents do their best to
avoid it, but once the obstacle becomes stationary it will carve a hole
in the navmesh so that the agents can change their paths to steer

around it, or if the stationary obstacle is blocking the path way, the Scripting
agents can find a different route.

10.5 CREATING USER INTERFACES (Ul)

o Unity provides three Ul systems that you can use to create user
interfaces (UI) for the Unity Editor and applications made in the Unity
Editor:

1. Ul Toolkit
2. The Unity Ul package (uGUI)
3. IMGUI

Ul Toolkit

J Ul Toolkit is the newest Ul system in Unity. It’s designed to optimize
performance across platforms, and is based on standard web
technologies. You can use Ul Toolkit to create extensions for the
Unity Editor, and to create runtime Ul for games and applications
(when you install the Ul Toolkit package.

Ul Toolkit includes:

o A retained-mode Ul system that contains the core features and
functionality required to create user interfaces.

o Ul Asset types inspired by standard web formats such as HTML,
XML, and CSS. Use them to structure and style UI.

o Tools and resources for learning to use Ul Toolkit, and for creating
and debugging your interfaces.

o Unity intends for Ul Toolkit to become the recommended Ul system
for new Ul development projects, but it is still missing some features
found in Unity Ul (uGUI) and IMGUI.

The Unity Ul (uGUI) package

o The Unity User Interface (Unity Ul) package (also called uGUI) is an
older,GameObject-based Ul system that you can use to develop
runtime Ul for games and applications. In Unity Ul, you use
components and the Game view to arrange, position, and style the user
interface. It supports advanced rendering and text features.

IMGUI

o Immediate Mode Graphical User Interface (IMGUI) is a code-driven
Ul Toolkit that uses the OnGUI function, and scripts that implement
it, to draw and manage user interfaces. You can use IMGUI to create
custom Inspectors for script components, extensions for the Unity

219

Game programming

220

Editor, and in-game debugging displays. It is not recommended for
building runtime UI.

10.5.1 Unity Ul: Unity User Interface

Unity Ul is a Ul toolkit for developing user interfaces for games and
applications. It is a GameObject-based Ul system that uses Components and
the Game View to arrange, position, and style user interfaces.You cannot
use Unity Ul to create or change user interfaces in the Unity Editor.

Canvas

. The Canvas is the area that all Ul elements should be inside. The
Canvas is a Game Object with a Canvas component on it, and all Ul
elements must be children of such a Canvas.

. Creating a new Ul element, such as an Image using the menu
GameObject > Ul > Image, automatically creates a Canvas, if there
isn't already a Canvas in the scene.

° The Ul element is created as a child to this Canvas.

o The Canvas area is shown as a rectangle in the Scene View. This
makes it easy to position Ul elements without needing to have the
Game View visible at all times.

. Canvas uses the EventSystem object to help the Messaging System.

File Edit Assets GameObject Component Window Help

=1Center | [local

€ Game Asset Store
m 0 b g

Text
Text - TextMeshPro

Save Scene
Save Scene As

Save All ace

Raw Image
Button
Button - TextMeshPro

Unload Scene
Remove Scene

Discard changes

Toggle
Select Scene Asset Slider
Add New Scene Scrollbar
GameObject Create Empty Dropdown

3D Object > Dropdown - TextMeshPro
2D Object > Input Field
Project 1sole Effects > Input Field - TextMeshPro
Clear Collaps n Play Clear on Buid €] Light N o
Audio > Panel
Video > Scroll View
ul > Event System

Fig: 10.4 Unity Ul: Unity User Interface

Visual Components

With the introduction of the Ul system, new Components have been added
that will help you create GUI specific functionality. This section will cover
the basics of the new Components that can be created.

1. Text
v o Text (Script) g %

Text

Lorem ipsum

Character
Fant 4 Arial o]
Font Style | Narmal sl
Font Size 14
Line Spacing 1
Rich Text [+

Paragraph
Alignment B:==E==

Align By Geometry [
Horizontal Overfloy Wrap
Vertical Overflow | Truncate

Best Fit]
Color I
Material Nane (Material) @
Raycast Target [+

The Text component, which is also known as a Label, has a Text area
for entering the text that will be displayed. It is possible to set the font,
font style, font size and whether or not the text has rich text capability.

There are options to set the alignment of the text, settings for
horizontal and vertical overflow which control what happens if the
text is larger than the width or height of the rectangle, and a Best Fit
option that makes the text resize to fit the available space.

2. Image

¥ %y [Image (Script) @ %,
Source Image . GUISprite @
Color | | #
Material Mone (Material) @

Raycast Target [+

Preserve Aspect [|
| Set Native Size |

An Image has a Rect Transform component and an Image component.
A sprite can be applied to the Image component under the Target
Graphic field, and its colour can be set in the Color field. A material
can also be applied to the Image component. The Image Type field
defines how the applied sprite will appear; the options are:

Scripting

221

Game programming

222

Simple - Scales the whole sprite equally.

Sliced - Utilises the 3x3 sprite division so that resizing does not
distort corners and only the center part is stretched.

Tiled - Similar to Sliced, but tiles (repeats) the center part rather than
stretching it. For sprites with no borders at all, the entire sprite is tiled.

Filled - Shows the sprite in the same way as Simple does except that
it fills in the sprite from an origin in a defined direction, method and
amount.

Images can be imported as Ul sprites by selecting Sprite(2D / Ul)
from the 'Texture Type' settings. Sprites have extra import settings
compared to the old GUI sprites, the biggest difference is the addition
of the sprite editor. The sprite editor provides the option of 9-
slicing the image, this splits the image into 9 areas so that if the sprite
is resized the corners are not stretched or distorted.

8. 00 Sprite Editor

Raw Image

The Image component takes a sprite but Raw Image takes a texture
(no borders etc). Raw Image should only be used if necessary
otherwise Image will be suitable in the majority of cases.

Mask

A Mask is not a visible Ul control but rather a way to modify the
appearance of a control’s child elements. The mask restricts (ie,
“masks”) the child elements to the shape of the parent. So, if the child
is larger than the parent then only the part of the child that fits within
the parent will be visible.

Effects

Visual components can also have various simple effects applied, such
as a simple drop shadow or outline.

Interaction Components

This section covers components in the Ul system that handles interaction,
such as mouse or touch events and interaction using a keyboard or
controller.

The interaction components are not visible on their own, and must be
combined with one or more visual components in order to work correctly.

1.

Button

A Button has an OnClick UnityEvent to define what it will do when
clicked.

I’

Button

Toggle

A Toggle has an Is On checkbox that determines whether the Toggle
is currently on or off. This value is flipped when the user clicks the
Toggle, and a visual checkmark can be turned on or off accordingly.
It also has an OnValueChanged UnityEvent to define what it will do
when the value is changed.

(V) Toggle

Toggle Group

A Toggle Group can be used to group a set of Toggles that are
mutually exclusive. Toggles that belong to the same group are
constrained so that only one of them can be selected at a time -
selecting one of them automatically deselects all the others.

Choose a character
7| wizard
|| wartior
|| et

Slider

A Slider has a decimal number Value that the user can drag between
a minimum and maximum value. It can be either horizontal or

Scripting

223

Game programming

224

vertical. It also has a OnValueChanged UnityEvent to define what it
will do when the value is changed.

C [))

Scrollbar

A Scrollbar has a decimal number Value between 0 and 1. When the
user drags the scrollbar, the value changes accordingly.

Scrollbars are often used together with a Scroll Rect and a Mask to
create a scroll view. The Scrollbar has a Size value between 0 and 1
that determines how big the handle is as a fraction of the entire
scrollbar length. This is often controlled from another component to
indicate how big a proportion of the content in a scroll view is visible.
The Scroll Rect component can automatically do this.

The Scrollbar can be either horizontal or vertical. It also has
a OnValueChanged UnityEvent to define what it will do when the
value is changed.

[]

Dropdown

A Dropdown has a list of options to choose from. A text string and
optionally an image can be specified for each option, and can be set
either in the Inspector or dynamically from code. It has
a OnValueChanged UnityEvent to define what it will do when the
currently chosen option is changed.

| Option A v

Input Field

An Input Field is used to make the text of a Text Element editable by
the user. It has a UnityEvent to define what it will do when the text
content is changed, and an another to define what it will do when the
user has finished editing it.

Scroll Rect (Scroll View)

A Scroll Rect can be used when content that takes up a lot of space
needs to be displayed in a small area. The Scroll Rect provides
functionality to scroll over this content.

Usually a Scroll Rect is combined with a Mask in order to create a
scroll view, where only the scrollable content inside the Scroll Rect is
visible. It can also additionally be combined with one or
two Scrollbars that can be dragged to scroll horizontally or vertically.

F Y

Scroll View

A Scroll Rect is
usually used to
scroll a large
image or panel of

i1 LN

10.6 PUBLISHING BUILDS

The Build Settings window contains all the settings and options you need
to publish your build to a variety of platforms. From this window you can
create a Development Build to test your application, as well as publishing
a final build. To adjust the publishing settings for your application’s build
go to File > Build Settings.

[JoX] Build Settings

‘Scenes In Build
Creator Kit - FPS/Scenes/ExampleScens

Add Open Scenes

;l PC, Mac & Linux Standalone € ;] PC, Mac & Linux Standalone
OS5 tvOS Target Platform Mac 0S X -
Server Build []
mra PS4 Create Xcode Project []
IOS i0s Development Build
Autoconnect Profiler
';‘ Xbox One Deep Profiling
- Script Debugging
|'| Android Scripts Only Build
E WebGL
Compression Method Default
Learn about Unity Cloud Build

Player Settings... Build Build And Run

Fig: 10.5The Build Settings window

o Use the Scenes in Build panel to manage which Scenes Unity includes
in the build. You can use the Platform section of the window to select
which platform you want to build to, and adjust specific settings such
as the Compression Method. These options vary depending on the
Platform you select. For more information, see the documentation
on Build Settings

o Select the Build or Build and Run button to begin the build process.

Scripting

225

Game programming °

You can choose a name and save location for your application through
the Save dialog that appears. Note: depending on the platform you
build to, Unity might only prompt you to choose a folder.

When you select the Save button, Unity builds your application. If
you are unsure where to save your build, consider making a subfolder
inside your root folder to hold your builds.

You cannot save the build into the Assets folder.

10.7 SUMMARY:

Scripting is the process of writing blocks of code that are attached like
components to GameObjects in the scene.

MonoBehaviour is the base class from which every Unity script
derives.

A Network Manager, A user interface (for players to find and join
games), Networked Player Prefabs (for players to control), Scripts
and GameObjects are required for setting up multiplayer project.

Unity provides three Ul systems viz. Ul Toolkit,The Unity Ul
package (UGUI),IMGUI.

10.8 QUESTIONS

1)

2)
3)
4)
5)

State the difference between update(), FixedUpdate() and
LateUpdate() method in Unity script.

Explain navigation and path finding in unity engine.
Write a note on setting up multiplayer project in unity.
Explain the concept of scripting in unity.

Explain the following Visual Components:

a) Text

b) Image

c) Raw Image

d) Mask

e) Effects

10.9 REFERENCES

https://docs.unity3d.com/

226

ke o o ke o e ke

	TY BSC CS SEM V Game programming Starting pages
	Chapter 01 (1-10)
	Chapter 02 (11-29)
	Chapter 03 (30-00)
	Chapter 04 (48-00)
	Chapter 05 (54-00)
	Chapter 06 (65-00)
	Chapter 07 (127-00)
	Chapter 08 (164-00)
	Chapter 09 (182-00)
	Chapter 10 (201-00)

