S.Y.B.Sc.

(Computer Science)
SEMESTER - IV (CBCS)

FUNDAMENTALS OF
ALGORITHMS

SUBJECT CODE : USCS401

© UNIVERSITY OF MUMBAI

Prin. Dr. Ajay Bhamare

University of Mumbai,

Offg. Pro Vice-Chancellor,

Prof.(Dr.) D. T. Shirke
Oftg. Vice-Chancellor,
University of Mumbai,

Prof. Prakash Mahanwar
Director,
IDOL, University of Mumbiai,

Programme Co-ordinator :

Course Co-ordinator
and Editor

Writers

Shri Mandar Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai, Mumbai

: Ms. Mitali Shewale

Doctoral Researcher,
Veermata Jijabai Technological Institute,
Mumbai

: Ms. Sonali Tushar Sambare

Assistant Professor,
SIES College of Arts, Science and Commerce,
Nerul

: Ms. Zainab khan

Assistant professor,
Thakur Shyamnarayan Degree College

: Ms. Yaseera T Nevrekar

Assistant Professor,
Mabharashtra College of Arts, Science and
Commerce

June 2023, Print -1

Published by . Director
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed and : Mumbai University Press
Printed by Vidyanagari, Santacruz (E), Mumbai - 400098

CONTENTS

Unit No. Title Page No.
1. Introduction to Algorithm 01
2. Master Theorem 14
3. TreeAlgorithms 26
4. GraphAlgorithms 87
5. Selection Algorithms 159
6. Algorithm and Design Techniques 185
7. Greedy Algorithms 190
8. Divide and Conquer Algorithms 201
9. Dynamic Programming 212

O O, O 0
0® 00 00 o0

SEMESTER IV

THEORY
Course: TOPICS (Credits : 02 Lectures/Week:03)
USCS401 Fundamentals of Algorithms
Objectives:

1. To understand basic principles of algorithm design and why algorithm analysis is important

2. To understand how to implement algorithms in Python

3. To understand how to transform new problems into algorithmic problems with efficient

solutions

4. To understand algorithm design techniques for solving different problems

Expected Learning Outcomes:

1. Understand the concepts of algorithms for designing good program

2. Implement algorithms using Python

Unit |

Introduction to algorithm, Why to analysis algorithm, Running time analysis,
How to Compare Algorithms, Rate of Growth, Commonly Used Rates of
Growth, Types of Analysis, Asymptotic Notation, Big-O Notation, Omega-Q
Notation, Theta-® Notation, Asymptotic Analysis, Properties of Notations,
Commonly used Logarithms and Summations, Performance characteristics of
algorithms, Master Theorem for Divide and Conquer, Divide and Conquer
Master Theorem: Problems & Solutions, Master Theorem for Subtract and

Conquer Recurrences, Method of Guessing and Confirming

15L

Unit 11

Tree algorithms: What is a Tree? Glossary, Binary Trees, Types of Binary Trees,
Properties of Binary Trees, Binary Tree Traversals, Generic Trees (N-ary Trees),
Threaded Binary Tree Traversals, Expression Trees, Binary Search Trees
(BSTs), Balanced Binary Search Trees, AVL (Adelson-Velskii and Landis)
Trees

Graph Algorithms: Introduction, Glossary, Applications of Graphs, Graph
Representation, Graph Traversals, Topological Sort, Shortest Path Algorithms,

Minimal Spanning Tree

15L

Selection Algorithms: What are Selection Algorithms? Selection by Sorting,
Partition-based Selection Algorithm, Linear Selection Algorithm - Median of

Medians Algorithm, Finding the K Smallest Elements in Sorted Order

Unit 111

Algorithms Design Techniques: Introduction, Classification, Classification by
Implementation Method, Classification by Design Method

Greedy Algorithms: Introduction, Greedy Strategy, Elements of Greedy
Algorithms, Advantages and Disadvantages of Greedy Method, Greedy
Applications, Understanding Greedy Technique

Divide and Conquer Algorithms: Introduction, What is Divide and Conquer
Strategy? Divide and Conquer Visualization, Understanding Divide and
Conquer, Advantages of Divide and Conquer, Disadvantages of Divide and
Conquer, Master Theorem, Divide and Conquer Applications

Dynamic Programming: Introduction, What is Dynamic Programming Strategy?
Properties of Dynamic Programming Strategy, Problems which can be solved
using Dynamic Programming, Dynamic Programming Approaches, Examples
of Dynamic Programming Algorithms, Understanding Dynamic Programming,

Longest Common Subsequence

15L

Textbook(s):

1. Data Structure and Algorithmic Thinking with Python, Narasimha Karumanchi , CareerMonk
Publications, 2016

2. Introduction to Algorithm, Thomas H Cormen, PHI

Additional References(s):

1. Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, Michael
H. Goldwasser, 2016, Wiley

2. Fundamentals of Computer Algorithms, Sartaj Sahni and Sanguthevar Rajasekaran Ellis

Horowitz, Universities Press

INTRODUCTION TO ALGORITHM

Unit Structure:

1.1 Objectives
1.2 Introduction to Algorithm
1.3 Why to analysis algorithm
1.4 Running time analysis
1.5 How to Compare Algorithms
1.6 Rate of Growth
1.7 Commonly Used Rates of Growth
1.8 Types of Analysis
1.9 Asymptotic Notation

1. Big-O Notation

2. Omega-Q Notation

3. Theta-® Notation
1.10 Properties of Notations
1.11 Summary
1.12 Questions

1.13 Reference for further reading

1.1 OBJECTIVE

After going through this unit, you will be able to:

Understand the fundamental concepts of algorithm design and why
algorithm analysis is necessary. How to Compare Algorithms, Rates of
Growth and Their Varieties, Analysis Types, and Asymptotic Notation

1.2 INTRODUCTION TO ALGORITHM

A well-defined computing technique that accepts a value or set of values
as input and outputs a value or set of values is referred to informally as an
algorithm. As a result, an algorithm is a series of computations that
converts an input into an output. A tool for resolving a well-defined
computational problem is another way to look at an algorithm. The
required input/output connection is briefly described in the issue

Fundamental of
Algorithms

statement. In order to achieve that input/output connection, the algorithm
specifies a particular computing method. For instance, it can be necessary
to organise a list of integers in non-decreasing order. Numerous common
design strategies and analytical tools may be included into this challenge
because it regularly occurs in real-world settings.

What Makes a Good Algorithm?

>
>

It is important to specify input and output clearly.
The algorithm's steps should all be distinct and understandable.

When compared to other possible solutions, algorithms should be the
most efficient.

There should be no computer code in an algorithm. It is preferable to
write the method in a way that it may be applied to several
programming languages.

Algorithms operate on the basis of input and output. They start with an
input of some value, follow the precise instructions, and end up with
an output.

Characteristics of an algorithm:

1. Input: External input should be given in amounts of zero or more.

2. Output: Must generate at least one outcome.

3. Clearness: The actions to complete the task should be explicit and clear.

4. Finiteness: Must come to an end after a set number of steps.

5. Effectiveness: Must yield the intended outcome.

Example 1

Algorithm for adding two integers the user providedentered by the user.

Step 1: Start

Step 2: Declare three variables nl, n2 and res.

Step 3: Read the value of variables nl and n2.

Step 4: Add the value of variablesnl and n2 and assign the result to res.

res=nl-+n2

Step 5: Display res

Step 6: Stop

Example 2

Algorithm for subtraction two integers the user provided.
Step 1: Start

Step 2: Declare three variables nl, n2 and res.

Step 3: Read the value of variables nl and n2.

Step 4: Subtract the value of variables nl and n2 and assign the result to
res.

res=nl-n2

Step 5: Display res

Step 6: Stop

Example 3

Algorithm for calculating factorial of an integer the user provided.
Step 1: Start

Step 2: Declare two variables n andfact.

Step 3: Read the value of variable n.

Step 4: Variable fact is set as 1

Step 5: fact <= fact *n

Step 6: Decrease n

Step 7: Verify if n is equal to 0

Step 8: If n is equal to zero, goto step 10 (break out of loop)
Step 9: Else goto step 5

Step 10: Display fact

Example 4

Algorithm for calculating square of a number the user provided.
Step 1: Start

Step 2: Declare two variables n and res.

Step 3: Read the value of variable n.

Step 4: res=n*n

Step 5: Display res

Step 6: Stop

Introduction to
Algorithm

Fundamental of
Algorithms

1.3 WHY TO ANALYSIS ALGORITHM

An essential component of computational complexity theory is algorithm
analysis, which offers a theoretical estimate of the resources needed by an
algorithm to solve a particular computing issue. Calculating how much
time and space are needed to execute an algorithm is called algorithm
analysis. As a result, the analysis can only be considered approximate. In
addition, by examining many algorithms, we may contrast them and
choose the most effective one for our needs. The technique of determining
an algorithm's computational complexity is known as algorithm analysis.
The time, space, and any other resources required to execute (run) the
algorithm are all referred to as the method's computational complexity.

Comparing several algorithms that are applied to the same issue is the aim
of algorithm analysis. This is performed to measure which approach uses
less memory and resolves a certain problem more rapidly.

Algorithm Analysis Types:
1. Bestcase

2. Worst case

3. Average case

Best case: Best case: Specify the input for the method that requires the
minimum amount of time. Calculate an algorithm's lower bound in the
best case scenario. The lower bound on the algorithm's running time for
every given input is provided by the best case analysis of algorithms.
Simply stated, it says that every software will require at least (more than
or equal to) that amount of time to do its task.

Example-The perfect scenario occurs in a linear search when the search
data is present at the initial place of large data.

Worst Case: Specify the input for the algorithm to use if you want it to run
quickly. Calculate an algorithm's upper bound as worst case scenario. The
upper bound on the algorithm's running time for any given input is
provided by the worst-case analysis of algorithms. In other words, it says
that any programme will run in a maximum amount of time (less than or
equal to).

Example-The worst case scenario happens in a linear search when there is
no search data at all.

Average case: Consider all random inputs and figure out how long it will
take to process each one on average. The total inputs are then divided by
this number. The average case analysis of algorithms, as the name implies,
adds up the running times on all potential inputs before taking the average.
Therefore, in this instance, the algorithm's execution time serves as both
the lower and upper bounds. In other words, we can determine the
algorithm's typical running time through it.

Example: Introduction to

Find the ace of spades from a deck of 52 cards. Algorithm

One card at a time is flipped until an ace of spades is revealed.

Best case scenario: Everything goes as smoothly as it possibly can, we
complete the task speedily, and we call it a day.

You turned over an ace of spades as your opening card.

Worst case scenario: Everything is getting completely out of control, so
you must put in the most effort to complete your mission.

The final card you flipped was an ace of spades.

Average case scenario: Neither very poorly nor really well, things go.

The ace of spades is not the first or last card that you see.

1.4 RUNNING TIME ANALYSIS

When algorithms are analysed, their computational complexity—the
amount of time, storage, and/or other resources required to run them—is
determined. To put it simply, to gauge how effective a particular algorithm
is.

In order to conduct performance study, we typically applied to calculate
and evaluate the worst-case theoretical running times complexity of
algorithms.

O(1), also known as Constant Running Time, is the quickest possible
running time for any algorithm. In this example, the algorithm runs at the
same speed regardless of the size of the input. An algorithm should have
this runtime, although it's rarely possible.

In fact, the quantity of the input or amount of operations needed for every
entry element, or n, determines an algorithm's runtime (performance).

According to running time complexity, the algorithms can be categorised
as follows in order of best to worst performance where ¢ is a positive
constant and n is the size of the input:

Algorithm category Explanation
logarithmic Running time increases in logarithmic proportion
O(logn) to n.
linear Running time increases directly in proportion to n.
O(n)
superlinear Running time increases in proportion to n.
O(nlogn)

Fundamental of
Algorithms

Polynomial Running time increases faster than previous
o) iterations based on n.

exponential Running time becomes even faster than using the
o(") polynomial approach based on n.

factorial Running time increases the fastest and quickly
O(n!) becomes unsuitable for even tiny values of n.

1.5 HOW TO COMPARE ALGORITHMS

In order to analyse the algorithm, we need to know two fundamental
parameters:

» Space Complexity: The amount of space needed for an algorithm to
operate completely might be thought of as the space complexity.

An algorithm's space complexity is a measure of how much memory it
uses over its existence.

An algorithm's space requirements are equal to the sum of the two factors
listed below.

I. A fixed component is a place needed to hold constants, simple
variables, programme sizes, and other variables that are independent of
the size of the problem.

2. A variable component is the area needed by variables, whose size is
completely based on the scope of the issue. Stack space for recursions,
dynamic memory allocation, etc.

Any algorithm's S(p) space complexity is defined as S(p) = A + Sp (I)
Where S(I), which depends on instance characteristic I, is viewed as the
variable component of the algorithm while A is treated as the fixed part of
the algorithm.

» Time Complexity: Time complexity, which measures how long an
algorithm takes to run completely, is a function of input size n.

The measure of how long an algorithm will take to complete execution is
called the time complexity of the algorithm. Given that each step requires
a fixed amount of time, time requirements can be expressed or defined as a
numerical function t(N), where t(N) can be expressed as the number of
steps.

For instance, N steps are required to add two n-bit integers. As a result, the
total calculation time is given by t(N) = c*n, where c is the amount of time
needed to add two bits. Here, we observe that as input size increases, t(N)
climbs linearly..

1.6 RATE OF GROWTH

An algorithm's growth rate is the rate at which the cost of the algorithm
increases as the size of its input increases. The term "Rate of Growth"
describes how quickly running time grows in response to input.

Let's say you visited a store to purchase a car and a bicycle. If a friend sees
you there and inquires about your purchase, we typically reply that you are
purchasing a car. Because the price of a car is excessively high compared
to the price of a bicycle (approximating the cost of cycle to the cost of a
car).

Overall Cost = Car Cost + Bicycle Cost
Overall Cost = Car Cost (approximation)

For the abovementioned example, we can describe the cost of the car and
the cost of the bike in terms of function, ignoring the low order variables
that are generally irrelevant (for large values of input size, n).

As an example in the below case, n’ , 2n” and 10n are the individual costs
of some function and approximate it to n’. Since, n’ is the highest rate of
growth.

n’+2n’+ 10n~n’

Understanding growth rates is the key to algorithm analysis. How much
more resources will my algorithm need as the volume of data increases, in
other words? Usually, we use a function to express the rate of resource
expansion of a piece of code. This section will look at graphs for various
growth rates, ranging from the most efficient to the least efficient, to assist
comprehend the implications.

> Constant Growth Rate

Where the requirement for resources does not increase, it is said to be
constant. To put it another way, processing 1 piece of data uses the same
resources as processing 1 million pieces of data. A horizontal line appears
on the graph with such a growth rate.

» Logarithmic Growth Rate

When the data is doubled, the resource requirements increase by one unit,
which is known as a logarithmic growth rate. This basically indicates that
the growth rate's curve flattens as big data increases (closer to horizontal
but never reaching it). What a curve of this kind would look like is
depicted in the following graph.

> Linear Growth Rate

A growth rate that is linear is one in which the demand for resources and
the volume of data are precisely proportionate to one another. That is, the
growth rate can be represented by a straight, non-horizontal line.

Introduction to
Algorithm

Fundamental of
Algorithms

> Log Linear

A line with a small curve represents a log linear growth rate. Lower
numbers have a more prominent curve than higher ones.

» Quadratic Growth Rate
One who can describe a parabola as having a quadratic growth rate.
» Cubic Growth Rate

Although this may resemble the quadratic curve very much, it develops
much more quickly.

> Exponential Growth Rate

Each additional unit of data demands a doubling of resources, which is
known as an exponential growth rate. As you can see, the growth rate
initially appears to be flat before rapidly rising to almost vertical (keep in
mind that it cannot actually be vertical).

Following graph showing the rates of growth for six equations with n
input values

n')] 27 n-

in logn

1400 ¢

1200 +
1000 ¢

800 |

600 |

400

200

400 ¢

300 |

2007

1007

10 15

Source: https://opendsa-server.cs.vt.edu/OpenDSA/Books/ CS4104/html/

1mages/plot.png

1.7 COMMONLY USED RATES OF GROWTH

Time Name Example

Complexity

1 Constant A linked list's first element being added.

log n Logarithmic In a sorted array, locating a specific
element.

n Linear Locating a specific element in an unsorted
array.

nlogn Linear Separating n things according to "Divide

Logarithmic and Conquer."

n’ Quadratic The graph's shortest route connecting any
two nodes

n’ Cubic Multiplication of a matrix.

2" Exponential The challenge with the Towers of Hanoi.

Introduction to
Algorithm

Fundamental of
Algorithms

10

Examples
Sequential Statements

If our sentences contain fundamental operations like comparisons,
assignments, and variable reads. We can assume they take the same
amount of time O(1).

Example where we can calculate the square sum of two values.
nl =a* a;

n2=>b *b;

res =nl +n2;

Constant time is spent on each line O(1).

1.8 TYPES OF ANALYSIS

It is a method for illustrating limiting behaviour. The approach is
applicable to all fields of science. It can be used to evaluate how well an
algorithm performs on a significant amount of data.

When analysing algorithms in computer science, it is important to take
into account how well they function when used with very big input
datasets.

The fastest and slowest potential execution times for an algorithm are
expressed using asymptotic notation. These are also known as "best case"
and "worst case," respectively.

We calculate the complexity based on the input size in asymptotic
notations. These notations are essential because they allow us to assess the
complexity of the algorithms without increasing the cost of running them.
(Example in terms of n) " "

The simplest illustration is a function f (n) = n’+3n, where the term 3n
becomes unimportant in comparison to n° when n is very high. The
function " f (n) is stated to be asymptotically equivalent to n° as n — oo "
is expressed symbolically as " f () ~ n°" here.

The significance of asymptotic notation
1. They provide straightforward indicators of an algorithm's effectiveness.

2. They make it possible to compare the results of different algorithms.

1.9 ASYMPTOTIC NOTATION

1. Omega(€2) Notation :

The formal notation for expressing the lowest bound of an algorithm's
execution time is Q (n). It assesses the worst-case time complexity or the

fastest possible runtime for an algorithm. The best-case situation is
depicted in this asymptotic notation, which is the opposite of large o
notation. The lower bound of an algorithm's execution time is presented
formally in this manner. This indicates that this is the shortest amount of
time needed to execute an algorithm. It represents the speed at which an
algorithm can operate.

Assume that the most significant term in the function f(n), g(n), represents
the time complexity of an algorithm.

If f(n) >= C g(n) for all n >=n0, C > 0 and n0 >= 1.
Then we can represent f(n) as Q(g(n)).

f(n) = Q(g(n))
Example

The least amount of time needed to sort 1000 numbers is "10 seconds," if
we are sorting 1000 numbers. These 1000 numbers cannot be sorted in
less than 10 seconds using omega notation. Not 9 or 8 seconds, but 11 or
12 seconds is OK.

2. Big-0(O) Notation :

The formal notation for expressing an algorithm's running time upper
bound is the big-o O. The worst-case time complexity or the longest time
an algorithm might possibly take to finish is measured. By indicating the
function's order of increase, this asymptotic notation measures an
algorithm's efficiency. It gives a function an upper bound, assuring that it
will never grow faster than that of the upper bound.

It measures the algorithm's worst-case complexity. Calculates the
execution time that took the most time. As a result, it provides a formal
means of expressing the maximum allowable execution time for an
algorithm.

Assume that the most significant term in the function f(n), g(n), represents
the time complexity of an algorithm.

If f(n) <= C g(n) for all n >=ny, C >0 and npy>= 1.
Then we can represent f(n) as O(g(n)).

f(n) = O(g(n))

Example:

The maximum amount of time needed to sort 1000 numbers is "50 secs,"
if we are sorting 1000 numbers. These 1000 numbers can be sorted in less
than 50 seconds using big-o notation. 48 or 46 seconds are acceptable but
51 or 52 seconds are not.

Introduction to
Algorithm

11

Fundamental of
Algorithms

12

3. Theta(®) Notation :

In order to express precise asymptotic behaviour, the theta notation
bounds a functions from above and below. The execution time of a given
algorithm will, "on average," be the same for any given input. The typical
case scenario is depicted in this asymptotic notation. When solving a real-
world problem, an algorithm cannot perform worst or best. Theta notation
(), which denotes the average scenario, shows how the temporal
complexity varies between the best case and worst situation. When the
value of the worst-case and best-case scenarios are equal, theta notation is
commonly utilized. It represents both the top and lower bounds of an
algorithm's running time.

Assume that the most significant term in the function f(n), g(n), represents
the time complexity of an algorithm.

If C1 g(n) <= f(n) <= C2 g(n) for all n >=n0, C1 >0, C2 > 0 and n0 >= 1.
Then we can represent f(n) as ®(g(n)).

f(n) = ©(g(n))
Example:

Let's use the example of sorting 1000 numbers once more. The algorithm
takes 10 seconds the first time, 11 seconds the second time, and 7 seconds
the third time.

1.10 PROPERTIES OF NOTATIONS

Let f(n) and g(n) be asymptotically positive functions. Properties of
asymptotic notations:

» Transitivity:
f(n) = ®(g(n)) and g(n) = O(h(n)) = f(n) = O(h(n)). Valid for O and
Q as well.

» Reflexivity:
f(n) = O(f(n)). Valid for O and Q.

» Symmetry:
f(n) = ®(g(n)) if and only if g(n) = O(f(n)).

» Transpose symmetry:
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).

» Iff(n) is in O(kg(n)) for any constant k > 0,
then f(n) is in O(g(n)).

» Iffl(n) is in O(gl(n)) and f2(n) is in O(g2(n)),
then (f1 + £2)(n) is in O(max(gl(n)), (gl(n))).

» Iffl(n) is in O(gl(n)) and f2(n) is in O(g2(n))
then f1(n) f2(n) is in O(gl(n) gl(n)).

1.11 SUMMARY Introduction to

Algorithm
» An algorithm is a set of clear, step-by-step directions for solving a

particular issue.

» We may choose the algorithm that uses the least amount of time and
space by performing an algorithm analysis.

» The objective of an algorithm analysis is to evaluate different
algorithms, mostly in terms of running time but also in terms of other
elements.

» The Best Case, Worst Case, and Average Case are used to evaluate an
algorithm's complexity.

» Upper Bounding Function in Big-O Notation.

» Lower Bounding Function in the Omega-Q Notation.

» Order Function in Theta- ® Notation.

1.12 QUESTIONS

What are the essential properties of an algorithms? Explain.
Define algorithm. State its essential characteristics.

Write an algorithm for adding two integers the user provided.
Write an algorithm for calculating factorial of an integer the user
provided.

5. Explain why analysis of algorithm is important.

6. Explain the running time of an algorithm.

7. Explain how to compare algorithms. Give example.

8

9.

1

el e

. Explain the terms in Rate of growth.
Write a note on Upper and Lower bound of an algorithm.
0. Brief describe Big-O and Omega € in algorithm analysis.

1.13 REFERENCE FOR FURTHER READING

> https://www.geeksforgeeks.org/method-of-guessing-and-confirming/

» Analysis of algorithms. (2022, November 15). In Wikipedia.
https://en.wikipedia.org/wiki/Analysis_of algorithms

> https://bournetocode.com/projects/AQA A Theory/pages/4-3-

>

Algorithms.html
Data Structure and Algorithmic Thinking with Python, Narasimha
Karumanchi, Career Monk Publications, 2016.

» Data Structures and Algorithms in Python, Michael T. Goodrich,
Roberto Tamassia, Michael H. Goldwasser, 2016, Wiley.

» Algorithms by Robert Sedgewick & Kevin Wayne. Addison-Wesley
Professional.

» Python Algorithms: Mastering Basic Algorithms in the Python
Language, Magnus Lie Hetland.

O O 0 L0
0‘0 0‘0 0‘0 0.0

13

14

MASTER THEOREM

Unit Structure :

2.1 Objectives
2.2 Commonly used Logarithms and Summations
2.2.1 Guidelines for Asymptotic Analysis
2.3 Performance characteristics of algorithms
2.4 Master Theorem for Divide and Conquer
2.5 Divide and Conquer Master Theorem: Problems & Solutions
2.6 Master Theorem for Subtract and Conquer Recurrences
2.7 Method of Guessing and Confirming
2.8 Summary
2.9 Questions

2.10 Reference for further reading

2.1 OBJECTIVE

After going through this unit, you will be able to understand:

Basic algorithm properties , Performance characteristics of algorithms,
Master Theorem for Divide and Conquer Problems & Solutions, Master
Theorem for Subtract andConquer Recurrences, Method of Guessing and
Confirming.

2.2 COMMONLY USED LOGARITHMS AND
SUMMATIONS

Because of a number of advantageous characteristics that made complex,
time-consuming calculations simpler, logarithms were quickly adopted by
scientists.

There are numerous uses for the common logarithm in science and
engineering, which is a logarithm to base 10 (b = 10).

A base e logarithm is known as a natural logarithm. Its simpler derivative
makes it useful in both mathematics and science.

The base-2 logarithm known as the binary logarithm is frequently
employed in computer science.

2.2.1 Guidelines for Asymptotic Analysis Master Theorem

There are some rules to help us determine the running time of an
algorithm. I have described with an example using python code

1. Loops: The running time of a loop is, at most, the running time of the
statements inside the loop (including tests) multiplied by the number
of iterations.

2. Nested loops: Analyse from the inside out. Total running time is the
product of the sizes of all the loops.

3. Consecutive statements: Add the time complexities of each statement.

4. If-then-else statements: Worst-case running time: the test, plus either
the then part “the else part (whichever is the larger).

5. Logarithmic complexity: An algorithm is O(logn) if it takes a constant
time to cut the problem size by a fraction (usually by 1/2).

For any positive values of m, n, and r as well as any positive integers a and
b, logarithms have the following arithmetic properties.

1.1og, (xy) = logpx + log,y b**Y = p*p¥
X X

2] (—)Z | —1 x-y — ___

08p y 0gpX — 108pY b "
3.log, (x¥) = y - logyx (b*)Y = p*Y
4.log,1 =0 =1
5.log,(b) = 1 F=p
6.log, (™) = n h® = h®
Source:

https://d2vlem6117ulfs.cloudfront.net/media%2F53d%2F53d266b3-56¢1-
4cea-99a5-4eatbecae629%2FphpjB5pBJ.png

2.3 PERFORMANCE CHARACTERISTICS OF
ALGORITHMS

There are numerous routes we can take to get from city "A" to city "B."
We have the option of travelling by bicycle, bus, train, and aeroplane. We
select the one that best suits us based on accessibility and convenience.
Similar to this, there are other algorithms available in computer science to
address an issue. When there are multiple algorithms available to address a
problem, the best solution must be chosen. We can choose the best

15

Fundamental of
Algorithms

16

algorithm to solve a problem from a variety of algorithms with the use of
performance analysis.

When there are several potential solutions to a problem, we evaluate them
and choose the one that best meets our needs. The official explanation is
as follows:

Making an evaluation of an algorithm is the process of measuring its
performance.

The following definitions are also possible:

An algorithm's performance is measured by how well it can predict the
resources needed to complete its goal.

This indicates that when there are several algorithms available to solve a
problem, we must choose the best algorithm to do so.

To select the best algorithm, we compare algorithms that are solving the
same problem. Algorithms are compared using a set of parameters or
elements, such as the amount of memory needed, how quickly the
algorithm runs, how simple it is to understand and apply, etc.

In general, the following factors affect how well an algorithm performs:
1. Does that algorithm offer a precise solution to the issue?

2. Is it simple to understand?

3. How simple is it to put into practise?

4. How much memory (space) is needed to fix the issue?

5. How long does it take to resolve the issue? Etc.,

When analysing an algorithm, we solely take into account the time and
space needed for that specific method, ignoring all other factors.

These details can also be used to define performance analysis of an
algorithm, which is calculating the amount of time and space an algorithm
needs to run is the process of performing performance analysis on the
algorithm.

2.4 MASTER THEOREM FOR DIVIDE AND CONQUER

One of the various algorithm models is the Divide and Conquer strategy.
Essentially, it consists of three steps. —

Divide : In this stage, the problem is divided into a number of smaller,
related problems.

Conquer : Use recursive solutions to solve the sub problems.

Combine : the solutions to the individual problems to arrive at the
solution.

T(n) = aT(n/b) + f(n)

where n is the size of the problem

a = the number of sub problems in the recursion, where a >= 1
n/b = the size of each sub problem

f(n) = the price of work performed in addition to recursive calls, such as
splitting a problem into smaller ones and the cost of combining those
smaller issues to obtain the answer.

T(n) = aT(wb) + f(n)

where, T(n) has the following asymptotic bounds:
1. If f(n) = O(n'°%*<), then T(n) = O(n'°%?)
2. If f(n) = ©(n'°%?), then T(n) = O(n'°%? * log n)
3. If f(n) = Q(n'°g,*™), then T(n) = O(f(n))

€ > 0 is a constant.

2.5 MASTER THEOREM: PROBLEMS & SOLUTIONS

Example 1: Use Master's theorem to solve the recurrence relation shown
below-

T(n) = 3T(0/2) + n’
Solution:

T(n) = aT(n/b) + f(n)
Here

a=3

b=2

f(n) = n*

logy” = logy’=1.58
means f(n) <n'°%,*"" , where, [] is a constant.
Here, Case 3 suggests-
T(n) = f(n) = O(n?)

Example 2: Use Master's theorem to solve the recurrence relation shown
below-

Master Theorem

17

Fundamental of
Algorithms

18

T(n) = 8T(/4) — n’logn
Solution:

T(n) = aT(n/b) + f(n)
Here

The provided recurrence relation does not match Master's theorem's
general form.

Therefore, the Master's theorem cannot be used to solve it.

Example 3: Use Master's theorem to solve the recurrence relation shown
below-

T(n)=2T(n/2)+n
Solution:

T(n) = aT(n/b) + f(n)
Here

a=2

b=2

f(n) = n’

logy®* = log,*= 1

+ .
log a1 \where, [is a constant.

means f(n) =n
Here, Case 2 suggests-
T(n) = f(n) = O(n'"*%," * log n)= O(n log n)

Example 4: Use Master's theorem to solve the recurrence relation shown
below-

T(n) =3T (0/2)+n’

Solution: T(n) = 3T (n/2) + n’ => T (n) =(n’) (Master Theorem Case 3.a)
Solution:

T(n) = aT(n/b) + f(n)

Here

a=3

b=2

f(n) = n*

logy” = logy’=1.58

+ .
log a1 \where, [is a constant.

means f(n) =n
Here, Case 3 suggests-
T(n) = f(n) = O(n°)

Example 5: Use Master's theorem to solve the recurrence relation shown
below-

T(n) = 4T (n/2)+n?

Solution: T(n) = 4T (n/2) + n> => T (n) = O(nlogn) (Master Theorem Case
2.a)

Solution:

T(n) = aT(n/b) + f(n)
Here

a=4

b=2

f(n) = n®

logy" = 10g24= 2

+ .
log a1 \where, [is a constant.

means f(n) =n
Here, Case 2 suggests-
T(n) = f(n) = O(n'%," * log n)= O(n log n)

Example 6: Use Master's theorem to solve the recurrence relation shown
below-

T(n)=2"T(n/2)+n"
Solution:

T(n) = aT(n/b) + f(n)
Here

The provided recurrence relation does not match Master's theorem's
general form.

Therefore, the Master's theorem cannot be used to solve it.

Master Theorem

19

Fundamental of
Algorithms

20

Problem-7 T(n) = 2T(n/2) + n/logn
Solution: T(n) = 2T(n/2)+ n/logn =>T(n) = B(nloglogn) (Master Theorem Case 2. b)

Problem8 T(n) = 2T (n/4) + n™!
Solution: T(n) = 2T(n/4) + n®' => T (n) = B(n"5!) (Master Theorem Case 3.b)

Problem-9 T(n) =05T(n/2) + 1/n
Solution: T(n) = 0.5T(n/2) + 1/n => Does not apply (a < 1)

Problem-10 T (n) = 6T(n/3)+ n? logn

Solution: T(n) = 6T(n/3) + n*logn => T(n) = B(n’logn) (Master Theorem Case 3.a)
Problem-11 T(n) = 64T(n/8) - n’logn

Solution: T(n) = 64T(n/8) - n’logn => Does not apply (function is not positive)

Problem-12 T(n) = 7T(n/3) + n’
Selution: T(n) = 7T(n/3) + n* => T(n) = B(n’) (Master Theorem Case 3.as)

Problem-13 T(n) = 4T(n/2) + logn
Solution: T(n) = 4T(n/2) + logn => T(n) = &(n*) (Master Theorem Case 1)

Problem-14 T(n) = 16T (n/4) + n!
Solution: T(n) = 16T (n/4) + n! => T(n) = B(n!) (Master Theorem Case 3.a)

Source: https://dotnettutorials.net/lesson/master-theorem/

Problem-15 T(n) = /2T(n/2) + logn
Solution: T(n) = \/2T(n/2) + logn => T(n) = B(Jﬁ}{Master Theorem Case 1)

Problem-16 T(n)=3T(n/2) +n
Solution: T(n) = 3T(n/2) + n =>T(n) = &(n'*%?) (Master Theorem Case 1)

Problem-17 T(n) = 31(n/3) + [
Solution: T(n) = 3T(n/3) + \/j => T(n) = ©(n) (Master Theorem Case 1)

Problem-18 T(n) = 4T(n/2) + cn
Solution: T(n) = 4T(n/2) + cn => T(n) = B(n?) (Master Theorem Case 1)

Problem-19 T(n) = 3T(n/4) + nlogn
Solution: T(n) = 3T(n/4) + nlogn => T(n) = G(nlogn) (Master Theorem Case 3.3)

Problem20 T(n)=3T(n3) + n2
Solution: T(n) = 3T(n/3)+ n/2 => T (n) = B(nlogn) (Master Theorem Case 2.a)

Source: https://dotnettutorials.net/lesson/master-theorem/

2.6 MASTER THEOREM FOR SUBTRACT AND
CONQUER RECURRENCES

Master theorem is used to determine the Big — O upper bound on functions
which possess recurrence, 1. which can be broken into sub problems.

Let T(n) be a function defined on positive n as shown below:

c if n <1,
T(n) < { al'(n—0)+ f(rn), n>1,

for some constants ¢, a>0, b>0, k>=0 and function f(n). If f(n) is O(nk),
then
1. If a<lI then T(n) = O(n")
2. If a=1 then T(n) = O(n**")
3.if a>1 then T(n) = O(nkam b)
1.1fa<1 then T(n) = 0(n¥)
2.1fa=1then T(n) = 0(n*"1)
3.ifa>1then T(n) = 0(n¥a"®)

Example 1: Use Master's theorem for Subtract and Conquer Recurrences
to solve the below-

T(n)=3T(n-1) when a>0
=1 otherwise
Solution:
T(n) < { o . if n <1,
al'(n—056)+ f(n), n>1,
Here
a=3
b=1
d=0
Hence T(n) = O(n03n/1)
Here, Case 2 suggests- (a>1)
Therefore T(n)=0(3n).

Master Theorem

21

Fundamental of
Algorithms

22

Example 2: Use Master's theorem for Subtract and Conquer Recurrences
to solve the below-

T(n) =5T(n-3)+O(n2) when n>0
=1 otherwise

Solution:

e, fn <1,
= { aT(n—b)+ f(n), n>1,

Here

a=5

b=3

d=2

Hence T(n) = O(n25n/3)
Here, Case 2 suggests- (a>1)
Therefore T(n)= O(n25n/3)

2.7 METHOD OF GUESSING AND CONFIRMING

This approach's fundamental premise is to make a well-informed
prediction and then use induction to confirm that it is true. Any recurrence
can be resolved using this technique. In general, either the proof will work
(in which case we are finished) or the proof will fail if a solution is
guessed and then we attempt to check our guess inductively (in that case
the failure will help us refine our guess).

Consider the recurrence T(N) = N*T(N) + N, for instance. The format
demanded by the Master Theorems is not met by this. A careful
examination of the recurrence gives us the idea that it is equivalent to the
divide and conquer strategy, which involves breaking the problem into N
subproblems, each of size N. As can be seen, the first level of recursion's
subproblems are N bytes in size. Therefore, let's assume that T(N) =
O(N*log N) and then attempt to support our assumption. Let’s start by
trying to prove an upper bound:

T(N) \le cN*logN:

T(N) = VWN*T(\VN) + N

T(N) \le VN* c\VN*log\N + N
T(N) = N* clogVN + N

T(N) =N*1/2*c*logN + N
T(N) \le cN*log N

Only that 1 le 1/2*clog N is assumed in the final inequality. If N is large

. Master Theorem
enough and c is constant, regardless of how little it is, this is true.

We can see from the previous proof that we were right about the upper
bound. Let's now establish the bottom bound for its occurrence:

T(N) = VN*T(VN) + N

T(N) \ge VN* kyN*log\N + N
T(N) = N* klogVN + N

T(N) = N*1/2*k*log N + N
T(N) \ge N*k*log N

The final inequality just makes the assumption that 1 ge 1/2*k*log N. If N
is large enough and for any constant k, this is false.

We can see from the previous proof that our assumption regarding the
lower bound is unreliable.

It is clear from the reasoning above that (N*log N) is an excessively large
number. How about ® (N) instead? The direct proof of the lower bound is
simple:

T(N) =VN*T(VN) + N\ge N
Now, let us prove the upper bound for this ®(N):

T(N) = VN*T(IN) + N\\ \le YN*c\VN + N\ = N ¢+ N\ = N (¢ + 1)\
\nleqcN

It is clear from the previous induction that ®(N) is too small and ®(N*log
N)(N*log N) is too large. So what do we need that is greater than N and
less than N*log N? Consider N*Vlog N.

Proving upper bound for N*Vlog N:
T(N) =VN*T(VN) + N
T(N) \le \/n*c\/N*\/(log VN) +N
T(N) = N* 1/\2 *c*log VN + N
T(N) \le N*c*log YN
Proving lower bound for N*Vlog N:
T(N) =VN*T(VN) + N
T(N) \ge VN*kVN*\(log\N) + N
T(N) = N*1/A2*k*log VN + N
T(N) \ngeq N*k*log YN

23

Fundamental of
Algorithms

24

The last step doesn’t work. So, ®@(N*Vlog N) doesn’t work. What else is
between N and N*log N? How about N*log(log N)?

Proving upper bound for N*log(log N):

T(N) = VN*T(VN) + N

T(N) \le \/N*c\/N*log(log YN) + N

T(N) = N*clog(log N) - cN+ N

T(N) \le N*clog(log N), if \ c\ge 1

Proving lower bound for N*log(log N):

T(N) = VN*T(VN) + N

T(N) \ge VN*kVN*log(log VN) + N

T(N) = N*k*log(log N) - kN + N

T(N) \ge N*klog(log N), if \k \le 1

From the above proofs, it can see that T(N) \le N*clog(log N), if \ c \ge 1
and T(N) \ge N*klog(log N), if \k \le 1.

2.8 SUMMARY

>

There are numerous uses for the common logarithm in science and
engineering

An algorithm's performance is measured by how well it can predict the
resources needed to complete its goal.

When analysing an algorithm, we solely take into account the time and
space needed for that specific method, ignoring all other factors.

The master theorem is used in calculating the time complexity of
recurrence relations (divide and conquer algorithms) in a simple and
quick way.

Master theorem is used to determine the Big — O upper bound on
functions which possess recurrence, i.e which can be broken into sub
problems.

The basic idea behind this method is to guess the answer, and then
prove it correct by induction. This method can be used to solve any
recurrence.

2.9 QUESTIONS Master Theorem

—

Use Master's theorem to solve the below:
T (n) =4T(n/2) +n

T (n) =2T(n/2) + logn

T (n) =4T(n/2) + n log n(10g24=2)

T(n) =3T(n/3) +nlogn

T (n) =4T(n/4) +n

T (m)=T1n/2)+1

T (n) =2T(n/2) + n’

What is commonly used Logarithms and Summations.

IS

/e o

Write a note on Master Theorem. Give an example.

A w D@ -0

Write a note on Master Theorem for Subtract and Conquer
Recurrences

Write a note on method of guessing and conforming.

Write a note on Master Theorem for Divide and Conquer.

Explain Guidelines for Asymptotic Analysis.

Which factors affect how well an algorithm performs?

A S A

Write a note on Performance characteristics of algorithms.

2.10 REFERENCE FOR FURTHER READING

https://www.geeksforgeeks.org/method-of-guessing-and-confirming/

Analysis of algorithms. (2022, November 15). In Wikipedia.
https://en.wikipedia.org/wiki/Analysis_of algorithms

» https://bournetocode.com/projects/AQA_A Theory/pages/4-3-
Algorithms.html

» Data Structure and Algorithmic Thinking with Python,
NarasimhaKarumanchi ,CareerMonk Publications, 2016.

» Data Structures and Algorithms in Python, Michael T. Goodrich,
Roberto Tamassia, Michael H. Goldwasser, 2016, Wiley.

» Algorithms by Robert Sedgewick & Kevin Wayne. Addison-Wesley
Professional.

» Python Algorithms: Mastering Basic Algorithms in the Python
Language, Magnus Lie Hetland.

L C R C R C R (4

o O O 0
* 6 6 o

25

26

TREE ALGORITHMS

Unit Structure
3.0 Objectives
3.1 Introduction
3.2 An Overview
3.2.1 What is a tree?
3.2.2 Terminology of TREE?
3.2.3 Characteristics of a Trees?
3.2.4 Advantages of BST
3.2.5 Types of tree?
3.3 Arithematic Tree
3.3.1 Expression Binary Tree
3.3.2 Arithematic VS Expression Binary Tree?
3.3.3 Design of Tree?
3.3.4 Representation of tree
3.3.5 Representation of link list
3.3.6 singly vs doubly link list
3.4 Balanced Tree
3.4.1 From programmers point of view
3.4.2 From users point of view
3.5 What is Binary Search Tree?
3.5.1 What is BST?
3.5.2 What does balanced binary tree?
3.5.3 what is AVL tree?
3.6 Letus Sum Up
3.7 List of References
3.8 Unit End Exercise

3.0 OBJECTIVES

What is the objective of algorithms?

1.

Algorithms define how a particular task is to be performed. They
provide computers with instructions. They tell machines on assembly
lines how specific parts should be put together. Or they evaluate
application forms and recommend the best candidates.

Provides a hierarchical way of storing data. Reflects structural
relationship in a data set. Allows insertion, deletion and searching
operations that yield results faster than an array or linked list. Provides
a flexible way to hold and move data.

Hierarchical Structure: Trees are used to model hierarchical structures,
such as the file system in a computer or the organizational chart in a
company. The tree structure allows for a natural representation of
parent-child relationships, making it easy to understand and
visualize the data.

3.1 INTRODUCTION

A tree is a non-linear abstract data type with a hierarchy-based structure. It
consists of nodes (where the data is stored) that are connected via links.
The tree data structure stems from a single node called a root node and has
subtrees connected to the root.

Root

Level O
C Lewvel 1

Parent Node | F Siblings -+ G | Level 2

A
/\
\/

h

Child Node -+ H Level 3

o

Mg ’ i —

Sub-tree Leaf Node

Important Terms

Following are the important terms with respect to tree.

Path — Path refers to the sequence of nodes along the edges of a tree.

Root — The node at the top of the tree is called root. There is only one
root per tree and one path frocm the root node to any node.

Tree Algorithms

27

Fundamental of
Algorithms

28

Parent — Any node except the root node has one edge upward to a
node called parent.

Child - The node below a given node connected by its edge
downward is called its child node.

Leaf — The node which does not have any child node is called the leaf
node.

Subtree — Subtree represents the descendants of a node.

Visiting — Visiting refers to checking the value of a node when control
is on the node.

Traversing — Traversing means passing through nodes in a specific
order.

Levels — Level of a node represents the generation of a node. If the
root node is at level 0, then its next child node is at level 1, its
grandchild is at level 2, and so on.

Keys — Key represents a value of a node based on which a search
operation is to be carried out for a node.

Types of Trees

There are three types of trees —

General Trees
Binary Trees

Binary Search Trees

General Trees

General trees are unordered tree data structures where the root node has
minimum 0 or maximum ‘n’ subtrees.

The General trees have no constraint placed on their hierarchy. The root
node thus acts like the superset of all the other subtrees.

6N

S &

General Tree Data Structure

Binary Trees

Binary Trees are general trees in which the root node can only hold up to
maximum 2 subtrees: left subtree and right subtree. Based on the number
of children, binary trees are divided into three types.

Full Binary Tree

o A full binary tree is a binary tree type where every node has either 0 or
2 child nodes.

Complete Binary Tree

e A complete binary tree is a binary tree type where all the leaf nodes
must be on the same level. However, root and internal nodes in a
complete binary tree can either have 0, 1 or 2 child nodes.

Perfect Binary Tree

e A perfect binary tree is a binary tree type where all the leaf nodes are
on the same level and every node except leaf nodes have 2 children.

N
(2 4)
5 6) 7 (5
Binary Tree Data Structure

Binary Search Trees

Binary Search Trees possess all the properties of Binary Trees including
some extra properties of their own, based on some constraints, making
them more efficient than binary trees.

The data in the Binary Search Trees (BST) is always stored in such a way
that the values in the left subtree are always less than the values in the root
node and the values in the right subtree are always greater than the values
in the root node, i.e. left subtree < root node < right subtree.

Tree Algorithms

29

Fundamental of
Algorithms

30

Binary Search Tree Data Structure

Advantages of BST

e Binary Search Trees are more efficient than Binary Trees since time
complexity for performing various operations reduces.

o Since the order of keys is based on just the parent node, searching
operation becomes simpler.

e The alignment of BST also favors Range Queries, which are executed
to find values existing between two keys. This helps in the Database
Management System.

Disadvantages of BST

The main disadvantage of Binary Search Trees is that if all elements in
nodes are either greater than or lesser than the root node, the tree
becomes skewed. Simply put, the tree becomes slanted to one side
completely.

This skewness will make the tree a linked list rather than a BST, since the
worst case time complexity for searching operation becomes O(n).

To overcome this issue of skewness in the Binary Search Trees, the
concept of Balanced Binary Search Trees was introduced.

Balanced Binary Search Trees

Consider a Binary Search Tree with ‘m’ as the height of the left subtree
and ‘n’ as the height of the right subtree. If the value of (m-n) is equal to
0,1 or -1, the tree is said to be a Balanced Binary Search Tree.

The trees are designed in a way that they self-balance once the height
difference exceeds 3. Binary Search Trees use rotations as self-balancing
algorithms. There are four different types of rotations: Left Left, Right
Right, Left Right, Right Left.

There are various types of self-balancing binary search trees — Tree Algorithms

e AVL Trees

e Red Black Trees

o B Trees

e B+ Trees

e Splay Trees

e Priority Search Trees

WHAT IS TREE?

Trees: Non-Linear data structure

A data structure is said to be linear if its elements form a sequence or a
linear list. Previous

linear data structures that we have studied like an array, stacks, queues and
linked lists organize data in linear order. A data structure is said to be non
linear if its elements form a hierarchical classification where, data items
appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and
graph structures represent hierarchical relationship between individual
data elements. Graphs are nothing but trees with certain restrictions
removed.

Trees represent a special case of more general structures known as graphs.
In a graph, there is no restrictions on the number of links that can enter or
leave a node, and cycles may be present in the graph. The figure 5.3.1
shows a tree and a non-tree.

olRc
© © ©

A Tree Not a Tree

Figure 5.1.1 A Tree and a not a tree

Tree is a popular data structure used in wide range of applications. A tree
data structure can bedefined as follows...

Tree is a non-linear data structure which organizes data in hierarchical
structure and this is arecursive definition.

A tree data structure can also be defined as follows...A tree is a finite set of
one or more nodes such that:There is a specially designated node called
the root. The remaining nodes are partitioned into n>=0disjoint sets T1, ...,

31

Fundamental of
Algorithms

32

Tn, where each of these sets is a tree. We call T1, ..., Tn are the subtrees of
the root.

Subtree
Subtree

A tree is hierarchical collection of nodes. One of the nodes, known as the
root, is at the top of the hierarchy. Each node can have at most one link
coming into it. The node where the link originates is called the parent
node. The root node has no parent. The links leaving a node (any number
of links are allowed) point to child nodes. Trees are recursive structures.
Each child node is itself the root ofa subtree. At the bottom of the tree are
leaf nodes, which have no children.

Advantages of trees

Trees are so useful and frequently used, because they have some very
serious advantages:

o Trees reflect structural relationships in the data
e Trees are used to represent hierarchies
o Trees provide an efficient insertion and searching

e Trees are very flexible data, allowing to move sub trees around with
minimum effort

3.2 AN OVERVIEW

In a Tree, Every individual element is called as Node. Node in a tree data
structure, stores the actualdata of that particular element and link to next
element in hierarchical structure. Example

7 ™~ TREE with 11 nodes and 10 edges

/ % - In any tree with ‘N’ nodes there
1// /«‘ will be maximum of ‘N-1" edges
@ @ e ® - In a tree every individual

Q‘\ element is called as “NODE’

1. Root

In a tree data structure, the first node is called as Root Node. Every tree
must have root node. Wecan say that root node is the origin of tree data
structure. In any tree, there must be only one root node. We never have
multiple root nodes in a tree. In above tree, A is a Root node

2. Edge

In a tree data structure, the connecting link between any two nodes is
called as EDGE. In a tree with 'N' number of nodes there will be a
maximum of 'N-1' number of edges.

3. Parent

In a tree data structure, the node which is predecessor of any node is called
as PARENT NODE. Insimple words, the node which has branch from it to
any other node is called as parent node. Parentnode can also be defined as
"The node which has child / children". e.g., Parent (A,B,C,D).

4. Child

In a tree data structure, the node which is descendant of any node is called
as CHILD Node. In simple words, the node which has a link from its
parent node is called as child node. In a tree, any parent node can have any
number of child nodes. In a tree, all the nodes except root are child nodes.
e.g., Children of D are (H, LJ).

5. Siblings

In a tree data structure, nodes which belong to same Parent are called as
SIBLINGS. In simple words, the nodes with same parent are called as
Sibling nodes. Ex: Siblings (B,C, D)

6. Leaf

In a tree data structure, the node which does not have a child (or) node
with degree zero is calledas LEAF Node. In simple words, a leaf is a node
with no child.In a tree data structure, the leaf nodes are also called as
External Nodes. External node is also a nodewith no child. In a tree, leaf
node is also called as 'Terminal' node. Ex: (K,L,F,G,M,LJ)

Tree Algorithms

33

Fundamental of
Algorithms

34

7. Internal Nodes

In a tree data structure, the node which has atleast one child is called as
INTERNAL Node. In simplewords, an internal node is a node with atleast
one child.

In a tree data structure, nodes other than leaf nodes are called as Internal
Nodes. The root node isalso said to be Internal Node if the tree has more
than one node. Internal nodes are also called as 'Non-Terminal' nodes.
Ex:B,C,D,E,H

8. Degree

In a tree data structure, the total number of children of a node (or)number
of subtrees of a node is called as DEGREE of that Node. In simple words,
the Degree of a node is total number of children ithas. The highest degree
of a node among all the nodes in a tree is called as 'Degree of Tree'

®‘ Here Degree of Bis 3
. T~ - Here Degree of Ais 2
‘ © Here Degree of Fis O
- - p \\\ In any tree, ‘Degree’ a node is total
@ @ ® @ ® number of children it has
/ N

9. Level

In a tree data structure, the root node is said to be at Level 0 and the
children of root node are at Level 1 and the children of the nodes which
are at Level 1 will be at Level 2 and so on... In simplewords, in a tree each
step from top to bottom is called as a Level and the Level count starts with
'0'and incremented by one at each level (Step). Some authors start root
level with 3.

10. Height

In a tree data structure, the total number of edges from leaf node to a
particular node in the longestpath is called as HEIGHT of that Node. In a
tree, height of the root node is said to be height of thetree. In a tree, height
of all leaf nodes is '0'.

11. Depth

In a tree data structure, the total number of edges from root node to a
particular node is called as DEPTH of that Node. In a tree, the total
number of edges from root node to a leaf node in the

longest path is said to be Depth of the tree. In simple words, the highest
depth of any leaf node in atree is said to be depth of that tree. In a tree,
depth of the root node is '0'".

12. Path Tree Algorithms

In a tree data structure, the sequence of Nodes and Edges from one node to
another node is called as PATH between that two Nodes. Length of a Path
is total number of nodes in that path. In belowexample the path A - B - E -
J has length 4.

- In any tree, ‘Path’ is a sequence
of nodes and edges between two
nodes.

Here, ‘Path’ between A & Jis
A-B-E-J

Here, ‘Path’ between C & K is
C-G-K

13. Sub Tree

In a tree data structure, each child from a node forms a subtree recursively.
Every child node willform a subtree on its parent node.

Subtree
Subtree

Tree Representations

A tree data structure can be represented in two methods. Those methods
are as follows...

1.List Representation

2. Left Child - Right Sibling Representation Consider the following tree...

-~
>
==

1. List Representation

In this representation, we use two types of nodes one for representing the
node with data and anotherfor representing only references. We start with
a node with data from root node in the tree. Then it islinked to an internal

35

Fundamental of
Algorithms

36

node through a reference node and is linked to any other node directly.
This process repeats for all the nodes in the tree.

The above tree example can be represented using List representation as
follows...

1 i

N rl.l-: 'Il._l.:.

i owlome

Fig: List representation of above Tree

List Representation
—(A(B(E(K L) F),C(G),D(H(M),L,1)))
— Theroot comes first, followed by a list of sub-trees

data link1| link2] .. link k

Fig: Possible node structure for a tree of degree k
2. Left Child - Right Sibling Representation

In this representation, we use list with one type of node which consists of
three fields namely Data field, Left child reference field and Right sibling
reference field. Data field stores the actual value ofa node, left reference
field stores the address of the left child and right reference field stores the
address of the right sibling node. Graphical representation of that node is
as follows...

Data

Left Right
Child Sibling

In this representation, every node's data field stores the actual value of that
node. If that node has leftchild, then left reference field stores the address
of that left child node otherwise that field stores NULL. If that node has
right sibling then right reference field stores the address of right sibling
nodeotherwise that field stores NULL.

The above tree example can be represented using Left Child - Right
Sibling representation asfollows...

data

@ left child right sibling

B e) D

ooo
o ()

Representation as a Degree —Two Tree

To obtain degree-two tree representation of a tree, rotate the right- sibling
pointers in the left child- right sibling tree clockwise by 45 degrees. In a
degree-two representation, the two children of anode are referred as left
and right children.

*Ficure 5.6: L eft child-right child tree representation of a tree (p.191)

Binary Trees

Introduction

In a normal tree, every node can have any number of children. Binary tree
is a special type of tree data structure in which every node can have a
maximum of 2 children. One is known as left childand the other is known
as right child.

A tree in which every node can have a maximum of two children is called
as Binary Tree.

In a binary tree, every node can have either 0 children or 1 child or 2
children but not more than 2children. Example

&)
© RG) @
O O ()

Tree Algorithms

37

Fundamental of
Algorithms

38

There are different types of binary trees and they are...Strictly Binary Tree

In a binary tree, every node can have a maximum of two children. But in
strictly binary tree, everynode should have exactly two children or none.
That means every internal node must have exactlytwo children. A strictly
Binary Tree can be defined as follows...

A binary tree in which every node has either two or zero number of
children is called Strictly BinaryTree. Strictly binary tree is also called as
Full Binary Tree or Proper Binary Tree or 2-Tree

1. Complete Binary Tree

In a binary tree, every node can have a maximum of two children. But in
strictly binary tree, everynode should have exactly two children or none
and in complete binary tree all the nodes must haveexactly two children
and at every level of complete binary tree there must be 2 level number of
nodes. For example at level 2 there must be 22 = 4 nodes and at level 3
there must be 2”3 = 8 nodes.

A binary tree in which every internal node has exactly two children and all
leaf nodes are at samelevel is called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree

Full BT VS Complete BT

m A full binary tree of depth Kk is a binary tree of
depth kK hawving 271 nodes, k>=0.

m A binary tree with n nodes and depth kK is
complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of
depth &.

(B =
(o> (g B2 (e

& o

Complete binary tree

e ETES Full binary tree of depth %

2. Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy
nodes to existing nodeswherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is
called as Extended BinaryTree.

Abstract Data TypeDefinition: A binary tree is a finite set of nodes
that is either empty or consists of a root and twodisjoint binary trees
called left subtree and right subtree.

ADT contains specification for the binary tree ADT.

Structure Binary Tree (abbreviated BinTree) is objects: a finite set of
nodes either empty or consisting of a root node, left Binary Tree, and
right Binary Tree. Functions:

For all bt, btl, bt2 €BinTree, item € element Bintree Create()::= creates
an empty binary tree

Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else
return FALSE

BinTree MakeBT(btl, item, bt2)::= return a binary tree whose left subtree
is btl, whose right subtree is bt2, and whose root node contains the data
item

Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left
subtree of bt element Data(bt)::= if (IsSEmpty(bt)) return error else return
the data in the root node of btBintree Rchild(bt)::= if (ISEmpty(bt)) return
error else return the right subtree of bt

We use linked list to represent a binary tree. In a linked list, every node
consists of three fields. Firstfield, for storing left child address, second for
storing actual data and third for storing right child address. In this linked

left child\ data\ right_child

list representation, a node has the following structure...
Type def struct node *tree pointer;typedef struct node {
int data;

tree_pointer left child, right child;};

o {/ \\\‘ \
—-./ s[] -C -‘ - é
/ \\‘ ‘/ 4 N, @ 9 @

F// [o]] [wore]e]woe] [woee] FlmocL] [nui | e | oL

r Ml
Binary Tree Traversals

When we wanted to display a binary tree, we need to follow some order in
which all the nodes ofthat binary tree must be displayed. In any binary tree
displaying order of nodes depends on the traversal method. Displaying
(or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal.

TN

left_child right_child

Tree Algorithms

39

Fundamental of
Algorithms

40

There are three types of binary tree traversals.
1) In- Order Traversal

2) Pre - Order Traversal

3) Post - Order Traversal

Binary Tree Traversals

- 3. In - Order Traversal (leftChild - root -
rightChild)

- I-D-J-B-F- A-G-K-C—H

- 2. Pre - Order Traversal (root - leftChild -
rightChild)

- A-B-D-1-J-F-C-G-K—H

- 3. Post - Order Traversal (leftChild -
rightChild - root)

- I-J-D-F-B- K- G-H-C—A

CHAPTER 5

In - Order Traversal (left Child - root — right Child)

In In-Order traversal, the root node is visited between left child and right
child. In this traversal, theleft child node is visited first, then the root node
is visited and later we go for visiting right child node. This in-order
traversal is applicable for every root node of all subtrees in the tree. This is
performed recursively for all nodes in the tree.

In the above example of binary tree, first we try to visit left child of root
node 'A', but A's left child isa root node for left subtree. so we try to visit
its (B's) left child 'D' and again D is a root for subtree with nodes D, I and
J. So we try to visit its left child 'T" and it is the left most child. So first
wevisit 'I'then go for its root node 'D' and later we visit D's right child 'J'.
With this we have completed the left part of node B. Then visit 'B' and
next B's right child 'F' is visited. With this we have completed left part of
node A. Then visit root node 'A'. With this we have completed left and
root parts of node A. Then we go for right part of the node A. In right of A
again there is a subtree with root C. So go for left child of C and again it is
a subtree with root G. But G does not have left part sowe visit 'G' and then
visit G's right child K. With this we have completed the left part of node
C. Then visit root node'C' and next visit C's right child 'H' which is the
right most child in the tree so westop the process.

That means here we have visited in the order of [-D-J-B-F-A-G-K
- C - H using In-OrderTraversal.

In-Order Traversal for above example of binary treeisI-D-J -B-F - A -
G-K-C-H

Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.Step 2 — Visit root node.
Step 3 — Recursively traverse right subtree.

void inorder(tree_pointer ptr)/* inorder tree traversal */ Recursive

{
if (ptr) {

inorder(ptr->left _child); printf(“%d”, ptr->data); indorder(ptr-
>right_child);

}

}
1. Pre- Order Traversal (root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before left child and right
child nodes. In this traversal, the root node is visited first, then its left
child and later its right child. This pre-order traversal is applicable for
every root node of all subtrees in the tree.

In the above example of binary tree, first we visit root node 'A' then visit
its left child 'B' which is a root for D and F. So we visit B's left child 'D'
and again D is a root for I and J. So we visit D's left child'T which is the
left most child. So next we go for visiting D's right child 'J'. With this we
have completed root, left and right parts of node D and root, left parts of
node B. Next visit B's right child'F'. With this we have completed root and
left parts of node A. So we go for A's rightchild 'C' which is a root
node for G and H. After visiting C, we go for its left child 'G' which is a
root for node K. So next we visit left of G, but it does not have left child
so we go for G's right child 'K'. With this we have completed node C's root
and left parts. Next visit C's right child 'H' which is the right most child
in the tree. So we stop the process.That means here we have visited
in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order Traversal.

Algorithm
Until all nodes are traversed —Step 1 — Visit root node.

Step 2 — Recursively traverse left subtree. Step 3 — Recursively traverse
right subtree.

void preorder(tree pointer ptr) /* preorder tree traversal */ Recursive

{

Tree Algorithms

41

Fundamental of
Algorithms

42

if (ptr) {

printf(“%d”, ptr->data); preorder(ptr->left_child); preorder(ptr-
>right_child);

}

b
2. Post - Order Traversal (leftChild - rightChild - root)

In Post-Order traversal, the root node is visited after left child and right
child. In this traversal, leftchild node is visited first, then its right child and
then its root node. This is recursively performed until the right most node
is visited.

Here we have visited in the order of [-J-D-F-B-K-G-H-C-A
using Post-Order Traversal. Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree. Step 2 — Recursively traverse
right subtree.Step 3 — Visit root node.

void postorder(tree_pointer ptr) /* postorder tree traversal */
Recursive

{
if (ptr) {

postorder(ptr->left child); postorder(ptr->right child); printf(*%d”, ptr-
>data);

b
b

3.3 ARITHMATIC TREE

Arithmetic Expression Using BT

inorder traversal A / B * C * D + E
infix expression preorder traversal

+ * * /S A B C D E prefix expression
postorder traversal A B / C * D * E —+
postfix expression level order traversal

+—*E*D/CAB

®\
=Tl
15 _t Afj%

Trace Operations of Inorder Traversal
Iterative Inorder Traversal (using stack)

voiditer inorder (tree_pointer node)

{

inttop=-1; /* initialize stack */ tree_pointer stackf MAX STACK SIZE];for(;;) {
for (; node; node=node->left child) add(&top,node); /* add to stack */

node=delete(&top);/* delete from stack */if (Inode) break; /* empty stack */
printf{(*“%D”, node->data),

node=node->tight child,
}
}

In iterative in order traversal, we must create our own stack to add and remove nodes
as in recursion.

Analysis: Let n be number of nodes in tree, every node of tree is placed on and
removed from the stack exactly once. So time complexity is O(n). The space
requirement is equal to the depth of tree which is O(n).

Level Order Traversal (Using Queue) — Traversal without Stack
voidlevel order(tree pointerptr) /* level order tree traversal */

{

mt front=rear=0;

tree pointer queue[MAX QUEUE SIZE]; if (Iptr) return; /* empty queue */
addq(front, &rear, ptr);

for(;;) {
ptr=deleteq(&front, rear);if (ptr) {
printf(*%d”, ptr->data);if (ptr->left_child)

Tree Algorithms

43

Fundamental of
Algorithms

44

addq(front, &rear, ptr->left_child);if (ptr->right_child)
addq(front, &rear, ptr->right _child);

}

else break;

b b

Level order Traversal is implemented with circular queue. In this order, we visit the root
first, then root’s left child followed by root’s right child. We continue in this manner,
visiting the nodes at each new level from left most to rightmost nodes.

We begin by adding root to the queue. The function operates by deleting the node at the
front of the queue, printing out the node’s data field, and adding the node’s left and
right children to the queue. The level order traversal for abovearithmetic expression
ist*E*D/CAB.

Binary Search Trees
Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must
have value less than itsparent's value and node's right child must have
value greater than it's parent value.

14 /\ 35
e 7N

\\'-_ - ™ - _.—"} \'-_ o — .

We're going to implement tree using node object and connecting them
through references.

Definition: A binary search tree (BST) is a binary tree. It may be empty. If
it is not empty,then all nodes follows the below mentioned properties —

e Every element has a unique key.

e The keys in a nonempty left subtree (right subtree) are smaller
(larger) than the key in theroot of subtree.

e The keys in a nonempty right subtree larger than the key in the root of
subtree.

e The left and right subtrees are also binary search trees.left sub-tree and
right sub-tree and can be defined as —

left subtree (keys) < node (key) < right subtree (keys)

VA W PN

Fig: Example Binary Search Trees

Tree Algorithms

ADT for Dictionary:
BST Basic Operations

The basic operations that can be performed on binary search tree data
structure, are following —

e Search — search an element in a binary search tree.

e Insert — insert an element into a binary search tree / create a tree.
e Delete — Delete an element from a binary search tree.

e Height -- Height of a binary search tree.

Searching a Binary Search Tree

Let an element k is to search in binary search tree. Start search from root
node of the search tree. If root is NULL, search tree contains no nodes
and search unsuccessful. Otherwise, compare k withthe key in the root.
If k equals the root’s key, terminate search, if k is less than key value,
searchelement k in left subtree otherwise search element k in right subtree.
The function search recursivelysearches the subtrees.

Algorithm:Recursive search of a Binary Search Tree
tree_pointer search(tree pointer root, int key)

{

/* return a pointerto the node that contains key. If there isno such node,
return NULL */

if (Iroot) return NULL;

if (key == root->data) return root;if (key < root->data)

return search(root->left child, key);return search(root->right child,key);
}

Algorithm: Iteraive search of a Binary Search Tree

tree_pointer search2(tree_pointer tree, intkey)
45

Fundamental of
Algorithms

46

{

while (tree) {

if (key=—tree->data) return tree;if (key < tree->data)

tree =tree->left_child; elsetree=tree->right child;

}

retum NULL;

}

Analysis of Recursive search and Iterative Search Algorithms:

Ifh is the height of the binary search tree, both algorithms perform search in O(h) time.
Recursive search requiresadditional stack space which is O(h).

3.4 BALANCED TREE

Inserting into a Binary Search Tree

The very first insertion creates the tree. Afterwards, whenever an element
is to be inserted. First locate its proper location. Start search from root
node then if data is less than key value, search empty location in left sub
tree and insert the data. Otherwise search empty location in right sub tree
and insert the data.In a binary search tree, the insertion operation is
performed with O(log n) time complexity. In binarysearch tree, new node
is always inserted as a leaf node. The insertion operation is performed as
follows...

Step 1: Create a newNode with given value and set its left and right to
NULL.Step 2: Check whether tree is Empty.

Step 3: If the tree is Empty, then set set root to newNode.

Step 4: If the tree is Not Empty, then check whether value of newNode is
smaller or larger than thenode (here it is root node).

Step 5: If newNode is smaller than or equal to the node, then move to its
left child. If newNodeis larger than the node, then move to its right child.

Step 6: Repeat the above step until we reach a node (e.i., reach to NULL)
where search terminates.

Step 7: After reaching a last node, then insert the newNode as left child if
newNode is smaller orequal to that node else insert it as right child.

O/{\b (;{ 5{ 2\\@

Insert 80 Insert 35

Algorithm

Create newnodelf root is NULL

then create root nodereturn

If root exists then

compare the data with node.data

while until insertion position is locatedIf data is greater than node.data
goto right subtreeelse

goto left subtreeendwhile

insert newnodeend If

Implementation

The implementation of insert function should look like this —

void insert(int data) {
struct node *tempNode = (struct node*)
malloc(sizeof(struct node));struct node *current;
struct
node
*parent;
tempNo
de-
>data =
data;
tempNo
de-
>leftChi
Id=
NULL;
tempNode->rightChild = NULL;
//if tree is
empty,

create root

Tree Algorithms

47

Fundamental of
Algorithms

48

retnr 1

//go to right of
the treeelse {

current = current-
>rightChild;

//insert to the

right if(current

== NIITT)\ §
|
|

Deleting a node

Remove operation on binary search tree is more complicated, than insert
and search. Basically, in can be divided into two stages:

e search for a node to remove
e if the node is found, run remove algorithm.
Remove algorithm in detail

Now, let's see more detailed description of a remove algorithm. First stage
is identical to algorithm for lookup, except we should track the parent of
the current node. Second part is more tricky. Thereare three cases, which
are described below.

1. Node to be removed has no children. --This case is quite simple.
Algorithm sets correspondinglink of the parent to NULL and disposes
the node.

Example. Remove -4 from a BST.

(57

(2) 18
D 3

2. Node to be removed has one child. In this case, node is cut from the
tree and algorithm links single child (with it's subtree) directly to the
parent of the removed node.

S S

3. Node to be removed has two children. --This is the most complex case.
The deleted node can be replaced by either largest key in its left
subtree or the smallest in its right subtree. Preferably which node
has one child.

(53 (5)
22 as
= > =
S o @ & @ &3

Deletion Operation in BST

In a binary search tree, the deletion operation is performed with O(log n)
time complexity. Deletinga node from Binary search tree has following
three cases...

Case 1: Deleting a Leaf node (A node with no children)Case 2: Deleting a
node with one child

Case 3: Deleting a node with two childrenCase 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...Step 1: Find
the node to be deleted using search operation

Step 2: Delete the node using free function (If it is a leaf) and terminate
the function.Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from BST...
Step 1: Find the node to be deleted using search operation

Step 2: If it has only one child, then create a link between its parent and
child nodes. Step 3: Delete the node using free function and terminate the
function.

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children from BST...
Step 1: Find the node to be deleted using search operation

Step 2: If it has two children, then find the largest node in its left subtree

Tree Algorithms

49

(OR) the smallest node inits right subtree.
Fundamental of
Algorithms Step 3: Swap both deleting node and node which found in above step.

Step 4: Then, check whether deleting node came to case 1 or case 2 else
goto steps 2Step 5: If it comes to case 1, then delete using case 1 logic.

Step 6: If it comes to case 2, then delete using case 2 logic.
Step 7: Repeat the same process until node is deleted from the tree.
/* deletion in binary search tree */

void deletion(struct treeNode **node, struct treeNode **parent, int data) {
struct treeNode *tmpNode, *tmpParent;

if (*node == NULL)return;

if ((*node)->data == data) {

/* deleting the leaf node */

if (!(*node)->left && !(*node)->right) {if (parent) {
/* delete leaf node */

if ((*parent)->left == *node) (*parent)->left = NULL,;
else

(*parent)->right = NULL;

free(*node);

} else {

/* delete root node with no children */free(*node);

}

/* deleting node with one child */

} else if (!(*node)->right && (*node)->left) {

/* deleting node with left child alone */tmpNode = *node;
(*parent)->right = (*node)->left;free(tmpNode);
*node = (*parent)->right;

} else if ((*node)->right && !(*node)->left) {

/* deleting node with right child alone */tmpNode = *node;
(*parent)->left = (*node)->right;free(tmpNode);
(*node) = (*parent)->left;

50

} else if (!(*node)->right->left) {

/*

* deleting a node whose right child

* is the smallest node in the right

* subtree for the node to be deleted.

*/

tmpNode = *node;

(*node)->right->left = (*node)->left;
(*parent)->left = (*node)->right;free(tmpNode);
*node = (*parent)->left;

} else {

/%

* Deleting a node with two children.

* First, find the smallest node in

* the right subtree. Replace the

* smallest node with the node to be

* deleted. Then, do proper connections
* for the children of replaced node.

*/

tmpNode = (*node)->right;while (tmpNode->left) {tmpParent = tmpNode;
tmpNode = tmpNode->left;

}

tmpParent->left = tmpNode->right; tmpNode->left = (*node)->left;
tmpNode->right =(*node)->right; free(*node);

*node = tmpNode;

}

} else if (data < (*node)->data) {

/* traverse towards left subtree */ deletion(&(*node)->left, node, data);
} else if (data > (*node)->data) {

/* traversing towards right subtree */ deletion(&(*node)->right, node,

Tree Algorithms

51

Fundamental of

Algorithms

52

In

"

data);

}

}
Height of a Binary Search Tree:

Height of a Binary Tree For a tree with just one node, the root node, the
height is defined to be 0, if there are 2 levels of nodes the height is 1 and
so on. A null tree (no nodes except the null node) is defined to have a
height of 3.

The following height function in pseudocode is defined recursively

iNnt height{ BinarvTree Node t) {

if tis a null tree

returm -1;
hl = height({ left subtree of t);
hr = height{ right subtree of t);
h =1+ maximum of hl and hr;

return h;

S T

left subtree :
3 right subiree

4
\

For example. the following tree has a height of 4. Its left subtree has height 2 and its
right subtree 3.

Example

Construct a Binary Search Tree by inserting the following sequence of
numbers...10,12,5,4,20,8,7,15 and 13

Above elements are inserted into a Binary Search Tree as follows...

insert (10) insert (12) insert (5) Tree Algorithms

(19
12 > @

insert (4) insert (20) insert (8)
(10 (10 (10
(5 @ (5) @ (5, @
@ @ @ @ & @
insert (7) insert (15) insert (13)

(10) (10)
(5) @2 (5)

M
(7) (7)

Generic Trees (N-ary Trees)

Generic trees are a collection of nodes where each node is a data
structure that consists of records and a list of references to its
children(duplicate references are not allowed). Unlike the linked list,
each node stores the address of multiple nodes. Every node stores
address of its children and the very first node’s address will be stored in
a separate pointer called root.

The Generic trees are the N-ary trees which have the following
properties:

1. Many children at every node.

2. The number of nodes for each node is not known in advance.

53

Fundamental of
Algorithms

54

Example:

Generic Tree

To represent the above tree, we have to consider the worst case, that is
the node with maximum children (in above example, 6 children) and
allocate that many pointers for each node.

The node representation based on this method can be written as:

struct Node{

int data;

Node *firstchild;
Node *secondchild;
Node *thirdchild;
Node *fourthchild;
Node *fifthchild;
Node *sixthchild;

)

Disadvantages of the above representation are:

1. Memory Wastage — All the pointers are not required in all the cases.
Hence, there is lot of memory wastage.

2. Unknown number of children — The number of children for each
node is not known in advance.

Simple Approach:

For storing the address of children in a node we can use an array or linked
list. But we will face some issues with both of them.

1. In Linked list, we can not randomly access any child’s address. So it
will be expensive.

2. In array, we can randomly access the address of any child, but we can
store only fixed number of children’s addresses in it.

Better Approach:

We can use Dynamic Arrays for storing the address of children’s address.
We can randomly access any child’s address and the size of the vector is
also not fixed.

Inorder traversal of a Binary tree can either be done using recursion
or with the use of a auxiliary stack. The idea of threaded binary trees is
to make inorder traversal faster and do it without stack and without
recursion. A binary tree is made threaded by making all right child
pointers that would normally be NULL point to the inorder successor of
the node (if it exists).

A threaded binary tree is a type of binary tree data structure where the
empty left and right child pointers in a binary tree are replaced with
threads that link nodes directly to their in-order predecessor or successor,
thereby providing a way to traverse the tree without using recursion or a
stack.

Threaded binary trees can be useful when space is a concern, as they can
eliminate the need for a stack during traversal. However, they can be
more complex to implement than standard binary trees.

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the
inorder successor (if successor exists)

Double Threaded: Where both left and right NULL pointers are made
to point to inorder predecessor and inorder successor respectively. The
predecessor threads are useful for reverse inorder traversal and postorder
traversal.

The threads are also useful for fast accessing ancestors of a node.
Following diagram shows an example Single Threaded Binary Tree. The
dotted lines represent threads.

Tree Algorithms

55

Fundamental of
Algorithms

56

C and C++ representation of a Threaded Node
Following is C and C++representation of a single-threaded node.

struct Node
{
int data;
struct Node *left, *right;

bool rightThread;

Java representation of a Threaded Node
Following is Java representation of a single-threaded node.

Since right pointer is used for two purposes, the boolean variable
rightThread is used to indicate whether right pointer points to right child
or inorder successor. Similarly, we can add leftThread for a double
threaded binary tree.

Inorder Traversal using Threads Following is code for inorder
traversal in a threaded binary tree.

Following diagram demonstrates inorder order traversal using threads.

Tree Algorithms

Start at leftmost node, print it Follow thread to right, print node

Follow thread to right, print node Follow link to right, go to
leftmost node and print

~/
Follow link to right, go to Follow thread to right, print node
leftmost node and print

continue same way for remaining node.....

Advantages of Threaded Binary Tree
o In this Tree it enables linear traversal of elements.

o [t eliminates the use of stack as it perform linear traversal, so save

memory.
57

Fundamental of
Algorithms

58

Enables to find parent node without explicit use of parent pointer

Threaded tree give forward and backward traversal of nodes by in-
order fashion

Nodes contain pointers to in-order predecessor and successor

For a given node, we can easily find inorder predecessor and
successor. So, searching is much more easier.

In threaded binary tree there is no NULL pointer present. Hence
memory wastage in occupying NULL links is avoided.

The threads are pointing to successor and predecessor nodes. This
makes us to obtain predecessor and successor node of any node
quickly.

There is no need of stack while traversing the tree, because using
thread links we can reach to previously visited nodes.

Disadvantages of Threaded Binary Tree

Every node in threaded binary tree need extra information(extra
memory) to indicate whether its left or right node indicated its child
nodes or its inorder predecessor or successor. So, the node consumes
extra memory to implement.

Insertion and deletion are way more complex and time consuming
than the normal one since both threads and ordinary links need to be
maintained.

Implementing threads for every possible node is complicated.

Increased complexity: Implementing a threaded binary tree requires
more complex algorithms and data structures than a regular binary
tree. This can make the code harder to read and debug.

Extra memory usage: In some cases, the additional pointers used to
thread the tree can use up more memory than a regular binary tree.
This is especially true if the tree is not fully balanced, as threading a
skewed tree can result in a large number of additional pointers.

Limited flexibility: Threaded binary trees are specialized data
structures that are optimized for specific types of traversal. While
they can be more efficient than regular binary trees for these types of
operations, they may not be as useful in other scenarios. For
example, they cannot be easily modified (e.g. inserting or deleting
nodes) without breaking the threading.

Difficulty in parallelizing: It can be challenging to parallelize
operations on a threaded binary tree, as the threading can introduce
data dependencies that make it difficult to process nodes
independently. This can limit the performance gains that can be
achieved through parallelism.

Applications of threaded binary tree —

Expression evaluation: Threaded binary trees can be used to evaluate
arithmetic expressions in a way that avoids recursion or a stack. The
tree can be constructed from the input expression, and then traversed
in-order or pre-order to perform the evaluation.

Database indexing: In a database, threaded binary trees can be used
to index data based on a specific field (e.g. last name). The tree can
be constructed with the indexed values as keys, and then traversed in-
order to retrieve the data in sorted order.

Symbol table management: In a compiler or interpreter, threaded
binary trees can be used to store and manage symbol tables for
variables and functions. The tree can be constructed with the symbols
as keys, and then traversed in-order or pre-order to perform various
operations on the symbol table.

Disk-based data structures: Threaded binary trees can be used in
disk-based data structures (e.g. B-trees) to improve performance. By
threading the tree, it can be traversed in a way that minimizes disk
seeks and improves locality of reference.

Navigation of hierarchical data: In certain applications, threaded
binary trees can be used to navigate hierarchical data structures, such
as file systems or web site directories. The tree can be constructed
from the hierarchical data, and then traversed in-order or pre-order to
efficiently access the data in a specific order.

Expression Tree

The expression tree is a binary tree in which each internal node
corresponds to the operator and each leaf node corresponds to the
operand so for example expression tree for 3 + ((5+9)*2) would be:

Tree Algorithms

59

Fundamental of
Algorithms

60

Inorder traversal of expression tree produces infix version of given
postfix expression (same with postorder traversal it gives postfix
expression)

Evaluating the expression represented by an expression tree:
Let t be the expression tree
If tis not null then

If t.value is operand then

Return t.value

A = solve(t.left)

B = solve(t.right)

// calculate applies operator 't.value'

// on A and B, and returns value

Return calculate(A, B, t.value)
Construction of Expression Tree:

Now For constructing an expression tree we use a stack. We loop
through input expression and do the following for every character.

1. If a character is an operand push that into the stack

2. If a character is an operator pop two values from the stack make them
its child and push the current node again.

In the end, the only element of the stack will be the root of an expression
tree.

Examples:
Input: A B C*+ D/
Output: A+B*C/D

The first three symbols are operands, so create tree nodes and push
pointers to them onto a stack as shown below.

In the Next step, an operator ‘*’ will going read, so two pointers to trees
are popped, a new tree is formed and a pointer to it is pushed onto the
stack

In the Next step, an operator ‘+’ will read, so two pointers to trees are
popped, a new tree is formed and a pointer to it is pushed onto the stack.

Below is the implementation of the above approach:

import java.util.Stack;

class Node{
char data;
Node left,right;
public Node(char data){
this.data = data;

left = right = null;

public class Main {
public static boolean isOperator(char ch){
if(ch=="+" | ch==""] ch=="*" | ch=="" || ch==""){
return true;

}

return false;

Tree Algorithms

61

Fundamental of public static Node expressionTree(String postfix){
Algorithms
Stack<Node> st = new Stack<Node>();

Node t1,t2,temp;

for(int i=0;i<postfix.length();i++){
if(!isOperator(postfix.charAt(i))){
temp = new Node(postfix.charAt(i));
st.push(temp);
}
else{
temp = new Node(postfix.charAt(i));
t1 = st.pop();
t2 = st.pop();
temp.left = t2;
temp.right =t1;

st.push(temp);

}
temp = st.pop();
return temp;
}
public static void inorder(Node root) {

if(root==null) return;

inorder(root.left);
System.out.print(root.data);

inorder(root.right);

62

Tree Algorithms

}

public static void main(String[] args) {

String postfix = "ABC*+D/";

Node r = expressionTree(postfix);

inorder(r);

Output
The Inorder Traversal of Expression Tree: A + B * C / D

Time complexity: O(n)
Auxiliary space: O(n)

3.5 WHAT IS BINARY SEARCH TREE?

Binary Search Tree is a node-based binary tree data structure which has
the following properties:

o The left subtree of a node contains only nodes with keys lesser than
the node’s key.

e The right subtree of a node contains only nodes with keys greater than
the node’s key.

e The left and right subtree each must also be a binary search tree.

4 7) (13

[Binary Search Tree J

Binary Search Tree

63

Fundamental of
Algorithms

64

Balanced Binary Search Tree

A balanced binary tree is also known as height balanced tree. It is defined
as binary tree in when the difference between the height of the left subtree
and right subtree is not more than m, where m is usually equal to 3. The
height of a tree is the number of edges on the longest path between the
root node and the leaf node.

n,

The above tree is a binary search tree. A binary search tree is a tree in
which each node on the left side has a lower value than its parent node,
and the node on the right side has a higher value than its parent node. In
the above tree, nl is a root node, and n4, n6, n7 are the leaf nodes. The n7
node is the farthest node from the root node. The n4 and n6 contain 2
edges and there exist three edges between the root node and n7 node.
Since n7 is the farthest from the root node; therefore, the height of the
above tree is 3.

Now we will see whether the above tree is balanced or not. The left
subtree contains the nodes n2, n4, n5, and n7, while the right subtree
contains the nodes n3 and n6. The left subtree has two leaf nodes, i.e., n4
and n7. There is only one edge between the node n2 and n4 and two edges
between the nodes n7 and n2; therefore, node n7 is the farthest from the
root node. The height of the left subtree is 2. The right subtree contains
only one leaf node, i.e., n6, and has only one edge; therefore, the height of
the right subtree is 3. The difference between the heights of the left subtree
and right subtree is 3. Since we got the value 1 so we can say that the
above tree is a height-balanced tree. This process of calculating the
difference between the heights should be performed for each node like n2,
n3, n4, n5, n6 and n7. When we process each node, then we will find that
the value of k is not more than 1, so we can say that the above tree is a
balanced binary tree.

In the above tree, n6, n4, and n3 are the leaf nodes, where n6 is the farthest
node from the root node. Three edges exist between the root node and the
leaf node; therefore, the height of the above tree is 3. When we consider
nl as the root node, then the left subtree contains the nodes n2, n4, n5, and
n6, while subtree contains the node n3. In the left subtree, n2 is a root
node, and n4 and n6 are leaf nodes. Among n4 and n6 nodes, n6 is the
farthest node from its root node, and n6 has two edges; therefore, the
height of the left subtree is 2. The right subtree does have any child on its
left and right; therefore, the height of the right subtree is 0. Since the
height of the left subtree is 2 and the right subtree is 0, so the difference
between the height of the left subtree and right subtree is 2. According to
the definition, the difference between the height of left sub tree and the
right subtree must not be greater than 3. In this case, the difference comes
to be 2, which is greater than 1; therefore, the above binary tree is an
unbalanced binary search tree.

N,

N

Ne

The above tree is a binary search tree because all the left subtree nodes are
smaller than its parent node and all the right subtree nodes are greater than
its parent node. Suppose we want to want to find the value 79 in the above
tree. First, we compare the value of node nl with 79; since the value of 79
is not equal to 35 and it is greater than 35 so we move to the node n3, i.e.,

Tree Algorithms

65

Fundamental of
Algorithms

66

48. Since the value 79 is not equal to 48 and 79 is greater than 48, so we
move to the right child of 48. The value of the right child of node 48 is 79
which is equal to the value to be searched. The number of hops required to
search an element 79 is 2 and the maximum number of hops required to
search any element is 2. The average case to search an element is O(logn).

The above tree is also a binary search tree because all the left subtree
nodes are smaller than its parent node and all the right subtree nodes are
greater than its parent node. Suppose we want to find the find the value 79
in the above tree. First, we compare the value 79 with a node n4, i.e., 13.
Since the value 79 is greater than 13 so we move to the right child of node
13, i.e., n2 (21). The value of the node n2 is 21 which is smaller than 79,
so we again move to the right of node 23. The value of right child of node
21 is 29. Since the value 79 is greater than 29 so we move to the right
child of node 29. The value of right child of node 29 is 35 which is smaller
than 79 so we move to the right child of node 35, i.e., 48. The value 79 is
greater than 48, so we move to the right child of node 48. The value of
right child node of 48 is 79 which is equal to the value to be searched. In
this case, the number of hops required to search an element is 5. In this
case, the worst case 1s O(n).

If the number of nodes increases, the formula used in the tree diagraml is
more efficient than the formula used in the tree diagram2. Suppose the
number of nodes available in both above trees is 100,000. To search any
element in a tree diagram?2, the time taken is 100,000us whereas the time
taken to search an element in tree diagram is log(100,000) which is equal
16.6 us. We can observe the enormous difference in time between above
two trees. Therefore, we conclude that the balance binary tree provides
searching more faster than linear tree data structure.

What is AVL Trees?

An AVL tree is a type of binary search tree. Named after it's inventors
Adelson, Velskii, and Landis, AVL trees have the property of dynamic
self-balancing in addition to all the other properties exhibited by binary
search trees.

A BST is a data structure composed of nodes. It has the following
guarantees:

1. Each tree has a root node (at the top)

2. The root node has zero, one, or two child nodes
3. Each child node has zero, one, or two child nodes
4. Each node has up to two children

5. For each node, its left descendants are less than the current node,
which is less than the right descendants

AVL trees have an additional guarantee:

1. The difference between the depth of right and left sub-trees cannot be
more than one. This difference is called the balance factor.

In order to maintain this guarantee, an implementation of an AVL will
include an algorithm to rebalance the tree when adding an additional
element would upset this guarantee

AVL trees have a worst case lookup, insert, and delete time of O(log n),
where nis the number of nodes in the tree. The worst case space
complexity is O(n).

AVL Insertion Process

Insertion in an AVL tree is similar to insertion in a binary search tree. But
after inserting and element, you need to fix the AVL properties using left
or right rotations:

o If there is an imbalance in the left child's right sub-tree, perform a left-
right rotation

o If there is an imbalance in the left child's left sub-tree, perform a right
rotation

o If'there is an imbalance in the right child's right sub-tree, perform a left
rotation

e If there is an imbalance in the right child's left sub-tree, perform a
right-left rotation

Tree Algorithms

67

Fundamental of
Algorithms

68

AVL Tree Rotations

In AVL trees, after each operation like insertion and deletion, the balance
factor of every node needs to be checked. If every node satisfies the
balance factor condition, then the operation can be concluded. Otherwise,
the tree needs to be rebalanced using rotation operations.

There are four rotations and they are classified into two types:
Left Rotation (LL Rotation)

In left rotations, every node moves one position to left from the current
position.

2
A A | ‘w
X i >
B () D
= \ 0 0 / \ 0
c Cc A c
Right unbalanced tree Left Rotation Balanced

Right Rotation (RR Rotation)

In right rotations, every node moves one position to right from the current
position.

Left-Right Rotation (LR Rotation)

Left-right rotations are a combination of a single left rotation followed by
a single right rotation.

First, every node moves one position to the left, then one position to the
right from the current position.

Right-Left Rotation (RL Rotation)

Right-left rotations are a combination of a single right rotation followed
by a single left rotation.

First, every node moves one position to the right then, then one position to
the left from the current position.

Application of AVL Trees

AVL trees are beneficial in cases like a database where insertions and
deletions are not that frequent, but you frequently check for entries.

Python Functions

Define the class and initialize the nodes
class avl Node(object):
def init (self, value):
self.value = value
self.leaf = None
self.root = None

self.height = 1

Define a function to calculate height and Balance Factor.

def avl Height(self, root):
if not root:
return O

return root.height

def avl BalanceFactor(self, root):
//base case for leaf nodes
if not root:
return 0
/limplementing the above mentioned formula
return self.avl Height(root.l) - self.avl Height(root.r)
Define a function to find an empty node
def avl MinValue(self, root):
if root is None or root.left is None:
return root
return self.avl MinValue(root.left)
Define a function to traverse the tree in a preorder way.
def preOrder(self, root):
if not root:
return

print("{0} ".format(root.value), end="")

Tree Algorithms

69

Fundamental of self.preOrder(root.left)
Algorithms self.preOrder(root.right)
Define functions for rotations
def leftRotate(self, b):
a = b.right
T2 = a.left
aleft=>b
b.right =T2
b.height = 1 + max(self.avl Height(b.left),
self.avl Height(b.right))
a.height = 1 + max(self.avl Height(a.left),
self.avl Height(a.right))
return a
def rightRotate(self, b):
a=b.left
T3 = a.right
aright=1z
b.left=T3
b.height = 1 + max(self.avl Height(b.left),
self.avl Height(b.right))
a.height = 1 + max(self.avl Height(a.left),
self.avl Height(a.right))
return a
Define a function for inserting a node in AVL tree in Python
def insert node(self, root, value):
if not root:
return avl Node(value)
elif value < root.value:

root.left = self.insert node(root.left, value)

70

else:

root.right = self.insert node(root.right, value)

root.height = 1 + max(self.avl Height(root.left),
self.avl Height(root.right))
Update the balance factor and balance the tree
balanceFactor = self.avl BalanceFactor(root)
if balanceFactor > 1:
if value <root.left.value:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balanceFactor < -1:
if value > root.right.value:
return self.leftRotate(root)
else:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)

return root

Define a function for deleting a node from the AVL tree in Python

def delete node(self, root, value):
Find the node to be deleted and remove it
if not root:
return root
elif value < root.value:
root.left = self.delete _node(root.left, value)
elif value > root.value:

root.right = self.delete node(root.right, value)

Tree Algorithms

71

Fundamental of else:
Algorithms if root.left is None:
temp = root.right
root = None
return temp
elif root.right is None:
temp = root.left
root = None
return temp
temp = self.avl MinValue(root.right)
root.value = temp.key
root.right = self.delete node(root.right, temp.value)
if root is None:
return root

Update the balance factor of nodes

root.height = 1 + max(self.avl Height(root.left),
self.avl Height(root.right))

balanceFactor = self.avl BalanceFactor(root)
Balance the tree
if balanceFactor > 1:
if self.avl BalanceFactor(root.left) >= 0:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balanceFactor < -1:
if self.avl BalanceFactor(root.right) <= 0:

return self.leftRotate(root)

72

else: Tree Algorithms
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
Complete Code for AVL Tree in Python
class avl Node(object):
def init_ (self, value):
self.value = value
self.left = None
self.right = None
self.height = 1
class AVLTree(object):
def insert_node(self, root, value):
if not root:
return avl Node(value)
elif value < root.value:
root.left = self.insert node(root.left, value)
else:
root.right = self.insert node(root.right, value)
root.height = 1 + max(self.avl Height(root.left),
self.avl Height(root.right))
Update the balance factor and balance the tree
balanceFactor = self.avl BalanceFactor(root)
if balanceFactor > 1:
if value <root.left.value:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)

return self.rightRotate(root)

73

Fundamental of if balanceFactor < -1:
Algorithms if value > root.right.value:
return self.leftRotate(root)
else:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
def avl Height(self, root):
if not root:
return 0
return root.height
Get balance factore of the node
def avl BalanceFactor(self, root):
if not root:
return 0
return self.avl Height(root.left) - self.avl Height(root.right)
def avl MinValue(self, root):
if root is None or root.left is None:
return root
return self.avl MinValue(root.left)
def preOrder(self, root):
if not root:
return
print("{0} ".format(root.value), end="")
self.preOrder(root.left)
self.preOrder(root.right)
def leftRotate(self, b):
a =b.right
T2 = a.left

74

aleft=>b

b.right = T2

b.height = 1 + max(self.avl Height(b.left),
self.avl Height(b.right))

a.height = 1 + max(self.avl Height(a.left),
self.avl Height(a.right))

return a

def rightRotate(self, b):

a=b.left

T3 = a.right

a.right=b

b.left =T3

b.height = 1 + max(self.avl Height(b.left),
self.avl Height(b.right))

a.height = 1 + max(self.avl Height(a.left),
self.avl Height(a.right))

return a

def delete node(self, root, value):
Find the node to be deleted and remove it
if not root:
return root

elif value < root.value:

root.left = self.delete _node(root.left, value)

elif value > root.value:

root.right = self.delete node(root.right, value)

else:
if root.left is None:
temp = root.right

root = None

Tree Algorithms

75

Fundamental of return temp
Algorithms elif root.right is None:
temp = root.left
root = None
return temp
temp = self.avl MinValue(root.right)
root.value = temp.key
root.right = self.delete_node(root.right, temp.value)
if root is None:
return root

Update the balance factor of nodes

root.height = 1 + max(self.avl Height(root.left),
self.avl Height(root.right))

balanceFactor = self.avl BalanceFactor(root)
Balance the tree
if balanceFactor > 1:
if self.avl BalanceFactor(root.left) >= 0:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balanceFactor <-1:
if self.avl BalanceFactor(root.right) <= 0:
return self.leftRotate(root)
else:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)

return root

76

Tree = AVLTree()
root = None
root = Tree.insert_node(root,40)
root = Tree.insert node(root,60)
root = Tree.insert node(root,50)
root = Tree.insert node(root,70)
print("PREORDER")
Tree.preOrder(root)

Output:

PREORDER

5040 60 70

3.6 LET US SUM UP

Give an algorithm for finding the sum of all elements in a binary
tree.

©
& £

In the above binary tree sum = 106.

// Java Program to print sum of
// all the elements of a binary tree
class GFG

{

static class Node

{

int key;
Node left, right;

/* utility that allocates a new

Tree Algorithms

77

Fundamental of
Algorithms

78

Node with the given key */
static Node newNode(int key)

{
Node node = new Node();
node.key = key;
node.left = node.right = null;
return (node);

}

/* Function to find sum
of all the elements*/
static int addBT(Node root)

{

if (root == null)
return 0;
return (root.key + addBT(root.left) +
addBT(root.right));

}

// Driver Code

public static void main(String args[])

{
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.left = newNode(6);
root.right.right = newNode(7);
root.right.left.right = newNode(8);
int sum = addBT(root);
System.out.println("Sum of all the elements is: " + sum);

}

}

Output

Sum of all the elements is: 36

Time Complexity: O(N)

Auxiliary Space: O(1), but if we consider space due to the
recursion call stack then it would be O(h), where h is the height of
the Tree.

Method 2 — Another way to solve this problem is by using Level
Order Traversal. Every time when a Node is deleted from the
queue, add it to the sum variable.

Implementation:
o C++
o Java
o Python3
o C#

o Javascript

Python3 Program to print sum of all
the elements of a binary tree

Binary Tree Node
class newNode:

Utility function to create a new node
def _init_ (self, key):

self.key = key

self.left = None

self.right = None

Function to find sum of all the element
def sumBT(root):

sum variable to track the sum of

all variables.

sum = @

q =[]

Pushing the first level.
g.append(root)

Pushing elements at each level from
the tree.
while len(q) > @:

temp = q.pop(9)

After popping each element from queue
add its data to the sum variable.
sum += temp.key

if (temp.left != None):
g.append(temp.left)

if temp.right != None:
g.append(temp.right)

Tree Algorithms

79

Fundamental of
Algorithms

80

return sum

Driver Code

if name_ == "'_ main__":
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.left = newNode(6)
root.right.right = newNode(7)
root.right.left.right = newNode(8)
print("Sum of all elements in the binary tree is: ",

sumBT(root))

This code is contributed by
Abhijeet Kumar(abhijeet19403)

Output
Sum of all elements in the binary tree is: 36

Time Complexity: O(n)

Auxiliary Space: O(n)

Method 3: Using Morris traversal:

The Morris Traversal algorithm is an in-order tree
traversal algorithm that does not require the use of
a stack or recursion, and uses only constant extra
memory. The basic idea behind the Morris Traversal
algorithm is to use the right child pointers of the
nodes to create a temporary link back to the node's
parent, so that we can easily traverse the tree
without using any extra memory.

Follow the steps below to implement the above idea:

1. Initialize a variable sum to 0 to keep track of the sum of
all nodes in the binary tree.

2. Initialize a pointer root to the root of the binary tree.

3. While root is not null, perform the following steps:
If the left child of root is null, add the value of root to
sum, and move to the right child of root.
If the left child of root is not null, find the rightmost node
of the left subtree of root and create a temporary link
back to root.
Move to the left child of root.

4. After the traversal is complete, return sum.

. . } Tree Algorithms
Below is the implementation of the above approach:

o CH+

// C++ code to implement the morris traversal approach
#include <iostream>
using namespace std;

// Definition of a binary tree node
struct Node {
int val;
Node* left;
Node* right;
Node(int v)
: val(v)
, left(nullptr)
, right(nullptr)

}s

// Morris Traversal function to find the sum of all nodes in
// a binary tree
long int sumBT(Node* root)
{
long int sum = ©;
while (root != nullptr) {
if (root->left
== nullptr) { // If there is no left child, add
// the value of the current node
// to the sum and move to the
// right child
sum += root->val;
root = root->right;
}
else { // If there is a left child
Node* prev = root->left;
while (
prev->right != nullptr
&& prev->right
= root) // Find the rightmost node
// in the left subtree of
// the current node
prev = prev->right;
if (prev->right
== nullptr) { // If the right child of the

81

Fundamental of
Algorithms

82

// rightmost node is null, set
// it to the current node and
// move to the left child
prev->right = root;
root = root->left;
}
else { // If the right child of the rightmost
// node is the current node, set it to
// null, add the value of the current
// node to the sum and move to the right
// child
prev->right = nullptr;
sum += root->val;
root = root->right;

}

return sum;

}

// Driver code
int main()

{
// Example binary tree: 1
// /\
// 2 3
// / \
// 4 5
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
// Find the sum of all nodes in the binary tree
long int sum = sumBT(root);
cout << "Sum of all nodes in the binary tree is " << sum
<< endl;
return 0;
}

// This code is contributed by Veerendra_ Singh Rajpoot

Output
Sum of all nodes in the binary tree is 15

Time Complexity: O(n) , Because of all the nodes are traversing
only once.
Auxiliary Space: O(1)

3.7 LIST OF REFERENCES

http://www.cs.bu.edu/teaching/c/tree/binary/
http://en.wikipedia.org/wiki/Tree_%?28data_structure%29#Common_
uses

3.8 UNIT END EXERCISE

1. What is Inorder Tree Traversal?

2. Write a shorte note on Preorder Tree Traversal?
3. What is Postorder Tree Traversal?

4. Check if two binary trees are identical or not??
5. Print bottom view of a binary tree?

Print top view of a binary tree?

In-place convert a binary tree to its sum tree?

L & @

Determine whether the given binary tree nodes are cousins of each
other?

9. Print cousins of a given node in a binary tree?
10. Check if a binary tree is a sum tree or not?

11. Combinations of words formed by replacing given numbers with
corresponding alphabets?

12. Determine whether a binary tree is a subtree of another binary tree?
13. Find the diameter of a binary tree?

14. Check if a binary tree is symmetric or not?

15. Convert a binary tree to its mirror?

16. Determine if a binary tree can be converted to another by doing any
number of swaps of children?

17. Find the Lowest Common Ancestor (LCA) of two nodes in a binary
tree?

18. Print all paths from the root to leaf nodes of a binary tree?
19. Find ancestors of a given node in a binary tree?

20. Find distance between given pairs of nodes in a binary tree?

Tree Algorithms

83

. . : ()
Fundamental of 21. Find the diagonal sum of a binary tree?
Algorithms 22. Sink nodes containing zero to the bottom of a binary tree?
23. Convert a binary tree to a full tree by removing half nodes?

24. Truncate a binary tree to remove nodes that lie on a path having a
sum less than k'?

25. Find maximum sum root to leaf path in a binary tree?

26. Check if a binary tree is height-balanced or not?

27. Convert binary tree to Left-child right-sibling binary tree?
28. Print all paths from leaf to root node of a binary tree?

29. Tteratively print the leaf to root path for every leaf node in a binary
tree?

30. Build a binary tree from a parent array?
31. Find all nodes at a given distance from leaf nodes in a binary tree?
32. Count all subtrees having the same value of nodes in a binary tree?

33. Find the maximum difference between a node and its descendants in
a binary tree?

34. Find the maximum sum path between two leaves in a binary tree?
35. Construct a binary tree from inorder and preorder traversal?

36. Construct a binary tree from inorder and postorder traversals?

37. Construct a binary tree from inorder and level order sequence?

38. Construct a full binary tree from the preorder sequence with leaf node
information?

39. Construct a full binary tree from a preorder and postorder sequence?

40. Find postorder traversal of a binary tree from its inorder and preorder
sequence?

41. Set next pointer to the inorder successor of all nodes in a binary tree?

42. Find preorder traversal of a binary tree from its inorder and postorder
sequence?

43. Find the difference between the sum of all nodes present at odd and
even levels in a binary tree?

44. Clone a binary tree with random pointers?

45. Threaded Binary Tree — Overview and Implementation?

84

46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
38.
59.
60.
61.
62.
63.

64.
65.

66.

67.
68.
69.
70.
71.

Determine if a binary tree satisfies the height-balanced property of a
red-black tree?

Construct an ancestor matrix from a binary tree?

Find all possible binary trees having the same inorder traversal?
Perform boundary traversal on a binary tree ?

Check if each node of a binary tree has exactly one child?
Evaluate a Binary Expression Tree?

Construction of an expression tree?

Fix children-sum property in a binary tree?

Maximum path sum in a binary tree?

Create a mirror of an m—ary tree?

Print a two-dimensional view of a binary tree?

Construct a binary tree from an ancestor matrix?

Determine whether a given binary tree is a BST or not?

Find inorder successor for the given key in a BST?

Fix a binary tree that is only one swap away from becoming a BST?
Find the size of the largest BST in a binary tree?

Print binary tree structure with its contents in C++?

Maximum Independent Set Problem?Huffman Coding Compression
Algorithm

Construct a Cartesian tree from an inorder traversal?

Calculate the height of a binary tree with leaf nodes forming a
circular doubly linked list?

Link nodes present in each level of a binary tree in the form of a
linked list?

Convert a ternary tree to a doubly-linked list?

Extract leaves of a binary tree into a doubly-linked list?
Find the vertical sum of a binary tree?

In-place convert a binary tree to a doubly-linked list?

Check whether the leaf traversal of given binary trees is the same or
not?

Tree Algorithms

85

Fundamental of
Algorithms

86

72.
73.
74.
75.
76.
77.
78.
79.
80.

81.
82.
83.
84.

85

86.
87.
88.
89.
90.
91.
92.
93.

Efficiently print all nodes between two given levels in a binary tree?
Calculate the height of a binary tree?

Delete a binary tree?

Level order traversal of a binary tree?

Spiral order traversal of a binary tree

Reverse level order traversal of a binary tree?

Print all nodes of a perfect binary tree in a specific order?

Print left view of a binary tree?

Find the next node at the same level as the given node in a binary
tree?

Check if a binary tree is a complete binary tree or not?
Print diagonal traversal of a binary tree?
Print corner nodes of every level in a binary tree?

Invert Binary Tree?

. Convert a binary tree into a doubly-linked list in spiral order?

Check if a binary tree is a min-heap or not?

Invert alternate levels of a perfect binary tree?

Perform vertical traversal of a binary tree?

Compute the maximum number of nodes at any level in a binary tree?
Print right view of a binary tree?

Find the minimum depth of a binary tree?

Depth-First Search (DFS) vs Breadth-First Search (BFS)?

Print nodes of a binary tree in vertical order?

28
XS
28
XS

GRAPH ALGORITHMS

Unit Structure :

4.0 Objectives

4.1 Introduction to Graph

4.2 An Over view
4.2.1 What is a graph algorithms?
4.2.2 Types of graphs
4.2.3 Application of graphs
4.2.4 Depth first search
4.2.5 Breadth first search
4.2.6 Dijkstra’s path algorithm

4.3 Applications of Graphs

4.4 Graph Representation

4.5 Graph traversals

4.6 Topological Sort

4.7 Shortest Path Algorithms

4.8 Minimal Spanning Tree

4.9 conclusions

4.10 Unit End Exercises

4.0 OBJECTIVES

e To learn what a graph is and how it is used.

e To implement the graph abstract data type using multiple internal
representations.

e To see how graphs can be used to solve a wide variety of problems

In this chapter we will study graphs. Graphs are a more general structure
than the trees we studied in the last chapter; in fact you can think of a tree
as a special kind of graph. Graphs can be used to represent many
interesting things about our world, including systems of roads, airline
flights from city to city, how the Internet is connected, or even the

87

Fundamental of
Algorithms

88

sequence of classes you must take to complete a major in computer
science. We will see in this chapter that once we have a good
representation for a problem, we can use some standard graph algorithms
to solve what otherwise might seem to be a very difficult problem.

While it is relatively easy for humans to look at a road map and
understand the relationships between different places, a computer has no
such knowledge. However, we can also think of a road map as a graph.
When we do so we can have our computer do interesting things for us. If
you have ever used one of the Internet map sites, you know that a
computer can find the shortest, quickest, or easiest path from one place to
another.

As a student of computer science you may wonder about the courses you
must take in order to get a major. A graph is good way to represent the
prerequisites and other interdependencies among courses. Figure 1. shows
another graph. This one represents the courses and the order in which they
must be taken to complete a major in computer science at Luther College.

Figure 1: Prerequisites for a Computer Science Major

What is the purpose of graph algorithms?

Graph algorithms are used to solve the problems of representing graphs as
networks like airline flights, how the Internet is connected, or social
network connectivity on Facebook. They are also popular in NLP and
machine learning to form networks.

The course is designed to develop skills to design and analyze simple

.) Graph Algorithms
linear and non linear data structures. P 8

4.1 WHAT IS GRAPHS?

Graph Algorithms: Introduction, Glossary, Applications of Graphs,
Graph

Graph Algorithms

In this article, you would be learning a brief explanation of some of the
most used graph algorithms, which have massive applications in today's
words. Graphs cover most high-level data structure techniques that one
experiences while implementing them and to know which graph algorithm
is best for the moment effectively is what you would be learning here.
First, let's get a clear idea from the very basics about graphs.

4.2 WHAT IS A GRAPH?

A graph is a unique data structure in programming that consists of finite
sets of nodes or vertices and a set of edges that connect these vertices to
them. At this moment, adjacent vertices can be called those vertices that
are connected to the same edge with each other. In simple terms, a graph is
a visual representation of vertices and edges sharing some connection or
relationship. Although there are plenty of graph algorithms that you might
have been familiar with, only some of them are put to use. The reason for
this is simple as the standard graph algorithms are designed in such a way
to solve millions of problems with just a few lines of logically coded
technique. To some extent, one perfect algorithm is solely optimized to
achieve such efficient results.

4.2.1 Types of Graphs

There are various types of graph algorithms that you would be looking at
in this article but before that, let's look at some types of terms to imply the
fundamental variations between them.

89

Fundamental of
Algorithms

920

Order: Order defines the total number of vertices present in the graph.
Size: Size defines the number of edges present in the graph.
Self-loop: It is the edges that are connected from a vertex to itself.

Isolated vertex: It is the vertex that is not connected to any other vertices
in the graph.

Vertex degree: It is defined as the number of edges incident to a vertex in
a graph.

Weighted graph: A graph having value or weight of vertices.
Unweighted graph: A graph having no value or weight of vertices.
Directed graph: A graph having a direction indicator.

Undirected graph: A graph where no directions are defined.

«— Self-loop
Vertex o e Vertex o e
Adjacent
—_— _—
Edge ‘ verticos Edge
solated N
vertex

Path from vertex 1
to vertex 3

Directed Graph Undirected Graph

Let's now carry forward the main discussion and learn about different
types of graph algorithms.

4.2.2 Breadth-First Search

Traversing or searching is one of the most used operations that are
undertaken while working on graphs. Therefore, in breadth-first-
search (BFS), you start at a particular vertex, and the algorithm tries to
visit all the neighbors at the given depth before moving on to the next
level of traversal of vertices. Unlike trees, graphs may contain cyclic paths
where the first and last vertices are remarkably the same always. Thus, in
BFS, you need to keep note of all the track of the vertices you are visiting.
To implement such an order, you use a queue data structure which First-in,
First-out approach. To understand this, see the image given below.

BREADTH FIRST SEARCH

Algorithm

1.
2.

Start putting anyone vertices from the graph at the back of the queue.

First, move the front queue item and add it to the list of the visited
node.

Next, create nodes of the adjacent vertex of that list and add them
which have not been visited yet.

4. Keep repeating steps two and three until the queue is found to be
empty.

Pseudocode

1. Setall nodes to "not visited";

2.

o

N W

10.
11.
12.
13.

q = new Queue();
g.enqueue(initial node);
while (q ? empty) do

{

x = q.dequeue();

if (x has not been visited)

{
visited[x] = true; // ' Visit node x !
for (every edge (x,y) /* we are using all edges ! */)

if ('y has not been visited)

g.enqueue(y); // Use the edge (x,y) !!!

Graph Algorithms

91

Fundamental of
Algorithms

92

14. }

15.}

Complexity: 0(V+E) where V is vertices and E is edges.
Applications

BFS algorithm has various applications. For example, it is used to
determine the shortest path and minimum spanning tree. It is also used
in web crawlers to creates web page indexes. It is also used as powering
search engines on social media networks and helps to find out peer-to-peer
networks in BitTorrent.

4.2.4 Depth-first search

In depth-first-search (DFS), you start by particularly from the vertex and
explore as much as you along all the branches before backtracking. In
DFS, it is essential to keep note of the tracks of visited nodes, and for this,
you use stack data structure.

DEPTH FIRST SEARCH

Algorithm
1. Start by putting one of the vertexes of the graph on the stack's top.
2. Put the top item of the stack and add it to the visited vertex list.

3. Create a list of all the adjacent nodes of the vertex and then add those
nodes to the unvisited at the top of the stack.

4. Keep repeating steps 2 and 3, and the stack becomes empty.
Pseudocode

1. DFS(G,v) (v is the vertex where the search starts)

2. Stack S :={}; (start with an empty stack)

3. for each vertex u, set visited[u] := false;

4. push S, v;

5. while (S is not empty) do
6. u:=popS;

7. if (not visited[u]) then

8. wvisited[u] := true;

9. for each unvisited neighbour w of uu
10. push S, w;

11. end if

12. end while

13. END DFS()
Applications

DFS finds its application when it comes to finding paths between two
vertices and detecting cycles. Also, topological sorting can be done using
the DFS algorithm easily. DFS is also used for one-solution puzzles.

Dijkstra's shortest path algorithm

Dijkstra's shortest path algorithm works to find the minor path from one
vertex to another. The sum of the vertex should be such that their sum of
weights that have been traveled should output minimum. The shortest path
algorithm is a highly curated algorithm that works on the concept of
receiving efficiency as much as possible. Consider the below diagram.

Path = A= D= E =P C

N 2 Ny w o
e > m O

Algorithm
1. Set all the vertices to infinity, excluding the source vertex.

2. Push the source in the form (distance, vertex) and put it in the min-
priority queue.

3. From the priority, queue pop out the minimum distant vertex from the
source vertex.

Graph Algorithms

93

Fundamental of
Algorithms

94

4. Update the distance after popping out the minimum distant vertex and
calculate the vertex distance using (vertex distance + weight <
following vertex distance).

5. If you find that the visited vertex is popped, move ahead without using
it.

6. Apply the steps until the priority queue is found to be empty.
Pseudocode

1. function dijkstra(G, S)

2. for each vertex Vin G

3. distance[V] <- infinite

4. previous[V] <- NULL

5. IfV!=S,add V to Priority Queue Q

6. distance[S] <- 0

7. while Q ISNOT EMPTY

8. U <- Extract MIN from Q

9. for each unvisited neighbour V of U

10. tempDistance <- distance[U] + edge weight(U, V)
11. if tempDistance < distance[V]

12. distance[V] <- tempDistance

13. previous[V] <-U

14. return distance[], previous|]

Applications

Dijkstra's shortest path algorithm is used in finding the distance of travel
from one location to another, like Google Maps or Apple Maps. In
addition, it is highly used in networking to outlay min-delay path problems
and abstract machines to identify choices to reach specific goals like the
number game or move to win a match.

Cycle detection

A cycle is defined as a path in graph algorithms where the first and last
vertices are usually considered. For example, if you start from a vertex and
travel along a random path, you might reach the exact point where you
eventually started. Hence, this forms a chain or cyclic algorithm to cover
along with all the nodes present on traversing. Therefore, cycle detection
is based on detecting this kind of cycle. Consider the below image.

Graph Algorithms

Cycle!

Pseudocode
1. Brent's Cycle Algorithm Example
2. def brent(f, x0):

(98]

main phase: search successive powers of two

4. power =lam =1

5. tortoise = x0

hare = f(x0) # f(x0) is the element/node next to x0.

while tortoise != hare:

8. if power == lam: # time to start a new power of two?

9. tortoise = hare

10. power *=2

I1.lam =0

12. hare = f(hare)

13. lam +=1

14. # Find the position of the first repetition of length ?

15. tortoise = hare = x0

16. for i in range(lam):

17. # range(lam) produces a list with the values 0, 1, ..., lam-1
18. hare = f(hare)

19. # The distance between the hare and tortoise is now ?.

20. # Next, the hare and tortoise move at same speed until they agree
2l.mu=0

22. while tortoise != hare:

95

Fundamental of
Algorithms

96

23. tortoise = f(tortoise)
24. hare = f(hare)

25. mu+=1

26. return lam, mu
Applications

Cyclic algorithms are used in message-based distributed systems and
large-scale cluster processing systems. It is also mainly used to detect
deadlocks in the concurrent system and various cryptographic applications
where the keys are used to manage the messages with encrypted values.

4.2.4 Minimum Spaning Trees

A minimum spanning is defined as a subset of edges of a graph having no
cycles and is well connected with all the vertices so that the minimum sum
is availed through the edge weights. It solely depends on the cost of the
spanning tree and the minimum span or least distance the vertex covers.
There can be many minimum spanning trees depending on the edge
weight and various other factors.

Pseudocode

1. Prim's Algorithm Example

2. ReachSet = {0};

3. UnReachSet = {1, 2, ..., N-1};
4. SpanningTree = {};

5. while (UnReachSet ? empty)

6. {

7. Find edge e = (x, y) such that:
8. 1. x ? ReachSet

0. 2.y ? UnReachSet

10. 3. e has smallest cost

11. SpanningTreeSpanningTree = SpanningTree ? {e};
12. ReachSetReachSet = ReachSet ? {y};

13. UnReachSetUnReachSet = UnReachSet - {y};

14. }

Applications

Minimum spanning tree finds its application in the network design and is
popularly used in traveling salesman problems in a data structure. It can
also be used to find the minimum-cost weighted perfect matching and
multi-terminal minimum cut problems. MST also finds its application in
the field of image and handwriting recognition and cluster analysis.

Applications of Graph Data Structure

A graph is a non-linear data structure, which consists of vertices(or nodes)
connected by edges(or arcs) where edges may be directed or undirected.

Edge

Vertices
[]

Thus the development of algorithms to handle graphs is of major interest
in the field of computer science.

Three Applications of Graphs in the area of computer engineering:
1. The applications of graph split broadly into three categories:

a) First, analysis to determine structural properties of a network, such as
the distribution of vertex degrees and the diameter of the graph. A vast
number of graph measures exist.

b) Second, analysis to find a measurable quantity within the network, for
example, for a transportation network, the level of vehicular flow within
any portion of it.

c¢) Third, analysis of dynamic properties of network. Map of a country can
be represented using a graph. Road network, Air network or rail network
can be represented using a graph. Connection among routers in a
communication network can be represented using a graph. Routing of a
packet between two communicating nodes can be done through the
shortest path.

Graph Algorithms

97

Fundamental of
Algorithms

98

2. Graph theory is useful in biology and conservation efforts where a
vertex can represent regions where certain species exist and the edges
represent migration paths, or movement between the regions. This
information is important when looking at breeding patterns or tracking the
spread of disease.

3. Different activities of a project can be represented using a graph. This
graph can be useful in project scheduling.

Applications of Graphs to Solve Real-World Problems

Graphs are widely used in many fields. Let us take some real-life
examples and solve them through graphs.

Ten Applications of Graphs

Since graphs are powerful abstractions, they can be essential in
modelling data. Given below are some instances for the applications of
graphs.

1. Social network graphs: Graphs show who knows who, how they
communicate with one other, and how they impact each other, as
well as other social structure relationships. The Facebook graph
showing who follows whom or who sends friend invitations to
whom is an example. These can be used to figure out how
information spreads, how topics get popular, how communities
grow, and even who could be a good fit for that person.

2. Graphs in epidemiology: Nowadays, the spread of disease is
widespread worldwide. Analysing such graphs has become an
essential component in understanding and controlling the spread of
diseases.

3. Utility graphs: The power grid, the Internet, and the water
network are graphs with vertices representing connection points
and edges representing the cables or pipes that connect them.
Understanding the reliability of such utilities under failure or
assault and lowering the costs of building infrastructure that meets
desired needs requires analysing the features of these graphs.

4. Transportation networks: In transportation network graphs,
vertices are intersections in road networks, and edges are the road
segments that connect them. Vertices are stops in public transit
networks, and edges are the links that connect them. Many map
systems, such as Google Maps, Bing Maps, and Apple iOS 6 maps,
employ such networks to determine the optimal paths between
sites. They’re also utilised to figure out how traffic flows and how
traffic lights work.

5. Constraint graphs: Graphs are often used to represent constraints
among items. For example, the GSM network for cell phones
consists of a collection of overlapping cells. Any pair of cells that
overlap must operate at different frequencies. These constraints can

be modelled as a graph where the cells are vertices and edges are
placed between overlapping cells.

6. Dependence graphs: Graphs can be wused to represent
dependencies or precedences among items. Such graphs are often
used in large projects in laying out what components rely on other
components and used to minimise the total time or cost to
completion while abiding by the dependences.

7. Document link graphs: The most well-known example is the
web’s link graph, in which each web page is a vertex, and a
directed edge connects each hyperlink. Link graphs are used to
assess the relevancy of online pages, the most acceptable sources
of information, and good link sites, among other things.

8. Finite element meshes: Many models of physical systems in
engineering entail partitioning space into discrete pieces, such as
the flow of air over a vehicle or plane wing, the spread of
earthquakes through the ground, or the structural vibrations of a
building. The elements and the connections between them make up
a graph known as a finite element mesh.

9. Robot planning: The edges represent possible transitions between
states, whereas the vertices represent various states for the robot.
This requires approximating continuous motion as a sequence of
discrete steps. Such graph plans are used to plan paths for
autonomous vehicles, for example.

10. Graphs in compilers: Graphs are used extensively in compilers.
They can be used for type inference, so-called data flow analysis,
register allocation, and many other purposes. They are also used in
specialised compilers, such as query optimisation in database
languages.

Graph Representation

In this article, we will discuss the ways to represent the graph. By Graph
representation, we simply mean the technique to be used to store some
graph into the computer's memory.

A graph is a data structure that consist a sets of vertices (called nodes) and
edges. There are two ways to store Graphs into the computer's memory:

o Sequential representation (or, Adjacency matrix representation)
o Linked list representation (or, Adjacency list representation)

In sequential representation, an adjacency matrix is used to store the
graph. Whereas in linked list representation, there is a use of an adjacency
list to store the graph.

In this tutorial, we will discuss each one of them in detail

Graph Algorithms

929

Fundamental of
Algorithms

100

Now, let's start discussing the ways of representing a graph in the data
structure.

Sequential representation

In sequential representation, there is a use of an adjacency matrix to
represent the mapping between vertices and edges of the graph. We can
use an adjacency matrix to represent the undirected graph, directed graph,
weighted directed graph, and weighted undirected graph.

If adj[i][j] = w, it means that there is an edge exists from vertex i to vertex
J with weight w.

An entry Aj; in the adjacency matrix representation of an undirected graph
G will be 1 if an edge exists between V; and V;. If an Undirected Graph G
consists of n vertices, then the adjacency matrix for that graph is n x n, and
the matrix A = [aij] can be defined as -

a;; = 1 {if there is a path exists from V; to V;}
ajj = 0 {Otherwise}

It means that, in an adjacency matrix, 0 represents that there is no
association exists between the nodes, whereas 1 represents the existence of
a path between two edges.

If there is no self-loop present in the graph, it means that the diagonal
entries of the adjacency matrix will be 0.

Now, let's see the adjacency matrix representation of an undirected graph.

A BCDE
A /_0 1 0 10 R
A B
B|1 01 10
c|0 1 0 01
D e D|fT1T 10 01
E 0o 01 10
— -/
Undirected Graph Adjacency Matrix

In the above figure, an image shows the mapping among the vertices (A,
B, C, D, E), and this mapping is represented by using the adjacency
matrix.

There exist different adjacency matrices for the directed and undirected
graph. In a directed graph, an entry Aj will be 1 only when there is an
edge directed from V; to V;.

Adjacency matrix for a directed graph

In a directed graph, edges represent a specific path from one vertex to
another vertex. Suppose a path exists from vertex A to another vertex B; it
means that node A is the initial node, while node B is the terminal node.

Consider the below-directed graph and try to construct the adjacency
matrix of it.

A B C DE
A /—0 1 0 0O i
B| O O 1 1 0
C| 0 0 0 0 1
D|1 0 0 OO
E 0O 0 01 O
=z =/
Directed Graph Adjacency Matrix

In the above graph, we can see there is no self-loop, so the diagonal entries
of the adjacent matrix are 0.

Adjacency matrix for a weighted directed graph

It is similar to an adjacency matrix representation of a directed graph
except that instead of using the '1' for the existence of a path, here we have
to use the weight associated with the edge. The weights on the graph edges
will be represented as the entries of the adjacency matrix. We can
understand it with the help of an example. Consider the below graph and
its adjacency matrix representation. In the representation, we can see that
the weight associated with the edges is represented as the entries in the
adjacency matrix.

ADVERTISING
ABCDE
-\
A (—O 4 0 0 O
B|O0O O 21 0
8 cC|0 0 O0 0 8
D|5 0 0 0 O
E |0 0 O 100
— =
weighted Directed Graph Adjacency Matrix

In the above image, we can see that the adjacency matrix representation of
the weighted directed graph is different from other representations. It is
because, in this representation, the non-zero values are replaced by the
actual weight assigned to the edges.

Adjacency matrix is easier to implement and follow. An adjacency matrix
can be used when the graph is dense and a number of edges are large.

Though, it is advantageous to use an adjacency matrix, but it consumes
more space. Even if the graph is sparse, the matrix still consumes the same
space.

Graph Algorithms

101

Fundamental of
Algorithms

102

Linked list representation

An adjacency list is used in the linked representation to store the Graph in
the computer's memory. It is efficient in terms of storage as we only have
to store the values for edges.

Let's see the adjacency list representation of an undirected graph.

A gna © | mmme 0 | X

i : (5 pug Al smmgo| mmec X
(c pua © | e £ |

D O (o mud A | mamgs | mmgc [X

(= pmg 0 | gy ¢ | X

Adjacency List

Undirected Graph

In the above figure, we can see that there is a linked list or adjacency list
for every node of the graph. From vertex A, there are paths to vertex B
and vertex D. These nodes are linked to nodes A in the given adjacency
list.

An adjacency list is maintained for each node present in the graph, which
stores the node value and a pointer to the next adjacent node to the
respective node. If all the adjacent nodes are traversed, then store the
NULL in the pointer field of the last node of the list.

The sum of the lengths of adjacency lists is equal to twice the number of
edges present in an undirected graph.

Now, consider the directed graph, and let's see the adjacency list
representation of that graph.

| A pug 8 | X
(o mng c | mamg 0 [X
ke
(0 _mmg A | X
(¢ gug 0 [X|

Directed Graph Adjacency List

For a directed graph, the sum of the lengths of adjacency lists is equal to
the number of edges present in the graph.

Now, consider the weighted directed graph, and let's see the adjacency list
representation of that graph.

A e & | 5 | X!
5 mag c | 2| mmgo (X
K EEEd
£l REE:d
= g 0 [10| X|

Weighted Directed Graph Adjacency List

In the case of a weighted directed graph, each node contains an extra field
that is called the weight of the node.

In an adjacency list, it is easy to add a vertex. Because of using the linked
list, it also saves space.

Implementation of adjacency matrix representation of Graph

Now, let's see the implementation of adjacency matrix representation of
graph in C.

In this program, there is an adjacency matrix representation of an
undirected graph. It means that if there is an edge exists from vertex A to
vertex B, there will also an edge exists from vertex B to vertex A.

Here, there are four vertices and five edges in the graph that are non-
directed.

1. /* Adjacency Matrix representation of an undirected graph in C */

2.

(98]

#include <stdio.h>

4. #define V 4 /* number of vertices in the graph */

5.

6. /* function to initialize the matrix to zero */
7. void init(int arr[][V]) {

8. inti,j;

9. for(i=0;i<V;it+)

10. for(G=0;j<V;j++)

11. arr[i][j]=0;

12. }

13.

14. /* function to add edges to the graph */

15. void insertEdge(int arr[][V], int i, int j) {

Graph Algorithms

103

Fundamental of
Algorithms

104

16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,

arr[i][j] = 1;
arr[j][i] = 1;
}

/* function to print the matrix elements */
void printAdjMatrix(int arr[][V]) {
int i, j;

for 1=0;1<V;itt) {

printf("%d: ", 1);

for j=0;j < V;j++) {

printf("%d ", arr[i][j]);

H

printf("\n");

}

}

int main() {

int adjMatrix[V][V];

init(adjMatrix);

insertEdge(adjMatrix, 0, 1);
insertEdge(adjMatrix, 0, 2);
insertEdge(adjMatrix, 1, 2);
insertEdge(adjMatrix, 2, 0);
insertEdge(adjMatrix, 2, 3);

printAdjMatrix(adjMatrix);

return O;

as. Graph Algorithms

Output:

After the execution of the above code, the output will be -

Implementation of adjacency list representation of Graph

Now, let's see the implementation of adjacency list representation of graph
in C.

In this program, there is an adjacency list representation of an undirected
graph. It means that if there is an edge exists from vertex A to vertex B,
there will also an edge exists from vertex B to vertex A.

1. /* Adjacency list representation of a graph in C */

2. #include <stdio.h>

(98]

#include <stdlib.h>

5. /* structure to represent a node of adjacency list */

6. struct AdjNode {
7. int dest;
struct AdjNode* next;
9. &
10.

11. /* structure to represent an adjacency list */
12. struct AdjList {

13. struct AdjNode* head;

14. };

15.

16. /* structure to represent the graph */

17. struct Graph {

18. int V; /*number of vertices in the graph*/

19. struct AdjList* array;
105

Fundamental of
Algorithms

106

20. };

21.

22.

23. struct AdjNode* newAdjNode(int dest)

24. |

25. struct AdjNode* newNode = (struct AdjNode*)malloc(sizeof(struct
AdjNode));

26. newNode->dest = dest;

27. newNode->next=NULL;

28. return newNode;

29. }

30.

31. struct Graph* createGraph(int V)

32. ¢

33. struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph));
34, graph->V =V;

35. graph-

>array = (struct AdjList*)malloc(V * sizeof(struct AdjList));

36.

37. /* Initialize each adjacency list as empty by making head as NUL
L*/

38. nt i;

39. for(1=0;1<V;++)

40. graph->array[i].head = NULL;

41. return graph;

42. }

43.

44. /* function to add an edge to an undirected graph */

45. void addEdge(struct Graph* graph, int src, int dest)

46. {

47.
g*

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

/* Add an edge from src to dest. The node is added at the beginnin

struct AdjNode* check = NULL;
struct AdjNode* newNode = newAdjNode(dest);

if (graph->array[src].head == NULL) {
newNode->next = graph->array[src].head;
graph->array[src].head = newNode;

}

else {

check = graph->array[src].head;

while (check->next != NULL) {
check = check->next;

}

// graph->array[src].head = newNode;

check->next = newNode;

/* Since graph is undirected, add an edge from dest to src also */
newNode = newAdjNode(src);
if (graph->array[dest].head == NULL) {
newNode->next = graph->array[dest].head;
graph->array[dest].head = newNode;
}
else {
check = graph->array|[dest].head;
while (check->next != NULL) {

check = check->next;

Graph Algorithms

107

Fundamental of
Algorithms

108

76.
7.
78.
79.
80.
81.
82.
&3.
&4.
85.
86.
87.
88.
&9.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.

check->next = newNode;

}

/* function to print the adjacency list representation of graph*/
void print(struct Graph* graph)
{
int v;
for (v =0; v < graph->V; ++v) {
struct AdjNode* pCrawl = graph->array[v].head;
printf("\n The Adjacency list of vertex %d is: \n head ", v);
while (pCrawl) {
printf("-> %d", pCrawl->dest);
pCrawl = pCrawl->next;

}
printf("\n");

int main()

{

int V=4,

struct Graph* g = createGraph(V);
addEdge(g, 0, 1);

addEdge(g, 0, 3);

addEdge(g, 1, 2);

addEdge(g, 1, 3);

addEdge(g, 2, 4);

addEdge(g, 2, 3);

105. addEdge(g, 3, 4);
106. print(g);

107. return 0;

108. }

Output:

In the output, we will see the adjacency list representation of all the
vertices of the graph. After the execution of the above code, the output
will be -

The Adjacency list of
head -> 1-> 3

The Adjacency list of

head -> 0-> Z-> 3

The Adjacency list of
head -»> 1-> 4-> 3

The I-'e.dj.a-::.en-::._lr li=t of
head —-> 0—-> 1-> 2-> 4

Conclusion

Here, we have seen the description of graph representation using the
adjacency matrix and adjacency list. We have also seen their
implementations in C programming language.

So, that's all about the article. Hope, it will be helpful and informative to
you.

Graph traversal

In this section we will see what is a graph data structure, and the traversal
algorithms of it.

The graph is one non-linear data structure. That is consists of some nodes
and their connected edges. The edges may be director or undirected. This
graph can be represented as G(V, E). The following graph can be
represented as G({A, B, C, D, E}, {(A, B), (B, D), (D, E), (B, C), (C, A)})

The graph has two types of traversal algorithms. These are called the
Breadth First Search and Depth First Search.

Graph Algorithms

109

Fundamental of
Algorithms

110

Breadth First Search (BFS)

The Breadth First Search (BFS) traversal is an algorithm, which is used to
visit all of the nodes of a given graph. In this traversal algorithm one node
is selected and then all of the adjacent nodes are visited one by one. After
completing all of the adjacent vertices, it moves further to check another
vertices and checks its adjacent vertices again.

Algorithm
bfs(vertices, start)
Input: The list of vertices, and the start vertex.
Output: Traverse all of the nodes, if the graph is connected.
Begin
define an empty queue que
at first mark all nodes status as unvisited
add the start vertex into the que
while que is not empty, do
delete item from que and set to u
display the vertex u
for all vertices 1 adjacent with u, do
if vertices[i] is unvisited, then
mark vertices[i] as temporarily visited
add v into the queue
mark
done
mark u as completely visited
done
End
Depth First Search (DFS)

The Depth First Search (DFS) is a graph traversal algorithm. In this
algorithm one starting vertex is given, and when an adjacent vertex is
found, it moves to that adjacent vertex first and try to traverse in the same
manner.

Algorithm
dfs(vertices, start)
Input: The list of all vertices, and the start node.
Output: Traverse all nodes in the graph.
Begin
initially make the state to unvisited for all nodes
push start into the stack
while stack is not empty, do
pop element from stack and set to u
display the node u
if u is not visited, then
mark u as visited
for all nodes 1 connected to u, do
if ith vertex is unvisited, then
push ith vertex into the stack
mark ith vertex as visited
done
done

End

4.6 TOPOLOGICAL SORT

The topological sort algorithm takes a directed graph and returns an
array of the nodes where each node appears before all the nodes it points
to.

Since node 1 points to nodes 2 and 3, node 1 appears before them in the
ordering. And, since nodes 2 and 3 both point to node 4, they appear
before it in the ordering.

So[1, 2,3, 4, 5] would be a topological ordering of the graph.

Can a graph have more than one valid topological ordering? Yep! In the
example above, [1, 3, 2, 4, 5] works too.

Graph Algorithms

111

Fundamental of
Algorithms

112

Cyclic Graphs
Look at this directed graph with a cycle:

The cycle creates an impossible set of constraints—B has to be
before and after D in the ordering.

As arule, cyclic graphs don't have valid topological orderings.
The Algorithm
How can we produce a topological ordering for this directed graph?

Well, let's focus on the first node in the topological ordering. That node
can't have any incoming directed edges; it must have an indegree v of
Zero.

Why?

Because if it had incoming directed edges, then the nodes pointing to it
would have to come first.

So, we'll find a node with an indegree of zero and add it to the topological
ordering.

That covers the first node in our topological ordering. What about the next
one?

Once a node is added to the topological ordering, we can take the node,
and its outgoing edges, out of the graph.

Then, we can repeat our earlier approach: look for any node with an
indegree of zero and add it to the ordering.

This is a common algorithm design pattern:

1. Figure out how to get the first thing.

2. Remove the first thing from the problem.

3. Repeat.

Note: this isn't the only way to produce a topological ordering.
Implementation

We'll use the strategy we outlined above:

—

. Identify a node with no incoming edges.
2. Add that node to the ordering.

3. Remove it from the graph.

b

Repeat.

We'll keep looping until there aren't any more nodes with indegree zero.

Graph Algorithms
This could happen for two reasons: phae

e There are no nodes left. We've taken all of them out of the graph and
added them to the topological ordering.

e There are some nodes left, but they all have incoming edges. This
means the graph has a cycle, and no topological ordering exists.

One small tweak. Instead of actually removing the nodes from the graph
(and destroying our input!), we'll use a hash map to track each node's
indegree. When we add a node to the topological ordering, we'll
decrement the indegree of that node's neighbors, representing that those
nodes have one fewer incoming edges.

Let's code it up!

deftopological sort(digraph):
digraph is a dictionary:
key: anode
value: a set of adjacent neighboring nodes
construct a dictionary mapping nodes to their
indegrees
indegrees ={node :0for node in digraph}
for node in digraph:
forneighborin digraph[node]:
indegrees[neighbor]+=1
track nodes with no incoming edges
nodes with no incoming_edges=[]
for node in digraph:
if indegrees[node]==0:
nodes with no_incoming edges.append(node)
initially, no nodes in our ordering
topological ordering=[]
as long as there are nodes with no incoming edges

that can be added to the ordering

113

Fundamental of
Algorithms

114

whilelen(nodes with no incoming_edges)>0:

add one of those nodes to the ordering

node =nodes_with no incoming_edges.pop()

topological ordering.append(node)

decrement the indegree of that node's neighbors

forneighborin digraph[node]:

indegrees[neighbor]-=1

if indegrees[neighbor]==0:

nodes with no incoming_edges.append(neighbor)

we've run out of nodes with no incoming edges

did we add all the nodes or find a cycle?

iflen(topological ordering)==len(digraph):

returntopological ordering# got them all

else:

raiseException("Graph has a cycle! No topological ordering exists.")

Time and Space Complexity

Breaking the algorithm into chunks, we:

Determine the indegree for each node. This is O(M) time (where M is
the number of edges), since this involves looking at each directed edge
in the graph once.

Find nodes with no incoming edges. This is a simple loop through all
the nodes with some number of constant-time appends. O(N) time
(where N is the number of nodes).

Add nodes until we run out of nodes with no incoming edges. This
loop could run once for every node—O(N) times. In the body, we:

Do two constant-time operations on an array to add a node to the
topological ordering.

Decrement the indegree for each neighbor of the node we added. Over
the entire algorithm, we'll end up doing exactly one decrement for
each edge, making this step O(M) time overall.

Check if we included all nodes or found a cycle. This is a
fast (1)O(1) comparison.

All together, the time complexity is O(M+N).

That's the fastest time we can expect, since we'll have to look at all the
nodes and edges at least once.

What about space complexity? Here are the data structures we created:

o indegrees—this has one entry for each node in the graph, so it's
O(N) space.

o nodesWithNolncomingEdges—in a graph with no edges, this would
start out containing every node, so it's O(N) space in the worst case.

e Topological Ordering—in a graph with no cycles, this will eventually
have every node. O(N) space.

All in all, we have three structures and they're all O(N) space. Overall
space complexity: O(N).

This is the best space complexity we can expect, since we must allocate a
return array which costs O(N) space itself.

Uses

The most common use for topological sort is ordering steps of a
process where some the steps depend on each other.

As an example, when making chocolate bundt cake,
o The ingredients have to be mixed before going in the bundt pan.

e The bundt pan has to be greased and floured before the batter can be
poured in.

o The oven has to be preheated before the cake can bake.
o The cake has to be baked before it cools.
o The cake has to cool before it can be iced.

o This process can be represented as a directed graph. Each step is a
node, and we'll add directed edges between nodes to represent that one
step has to be done before another.

Graph Algorithms

115

Fundamental of
Algorithms

Grease / Flour
Pan

Eat Dessert.
&)

Add Batter
to Pan
Mix
Ingredients

Make Frosting
Cool Cake
Preheat Oven

Bake Cake

e Once we have our dependencies represented using a directed graph, we
can use topological sort to provide a valid ordering to tackle all the
steps.

Mix
Ingredients
Grease / Flour
Pan

EatDessert.
©

116

Topological sorting of a graph follows the algorithm of ordering the
vertices linearly so that each directed graph having vertex ordering ensures
that the vertex comes before it. Users can understand it more accurately by
looking at the sample image given below.

Topologically
sorted graph

Unsorted graph

In the above example, you can visualize the ordering of the unsorted graph
and topologically sorted graph. The topologically sorted graph ensures to
sort vertex that comes in the pathway.

Pseudocode

1. topological sort(N, adj[N][N])
2. T=[]

3. visited =[]

4. in_degree =]

5. fori=0toN

6. in_degree[i] = visited[i] =0
7. fori=0toN

8 forj=0toN

9.

if adj[i][j] is TRUE

10. in_degree[j] =in_degree[j] + 1
11. fori=0toN

12. ifin_degree[i] is 0

13. enqueue(Queue, 1)

14. wvisited[i] = TRUE

15. while Queue is not Empty

16. vertex = get front(Queue)

17. dequeue(Queue)

18. T.append(vertex)

Graph Algorithms

117

Fundamental of
Algorithms

118

19. forj=0toN
20. if adj[vertex][j] is TRUE and visited[j] is FALSE

21. in_degree[j] =in_degree[j] - 1

22. if in_degree[j] is 0

23. enqueue(Queue, j)
24. visited[j] = TRUE
25. return T

Application

Topological sorting covers the room for application in Kahn's and DFS
algorithms. In real-life applications, topological sorting is used in
scheduling instructions and serialization of data. It is also popularly used
to determine the tasks that are to be compiled and used to resolve
dependencies in linkers.

Graph coloring

Graph coloring algorithms follow the approach of assigning colors to the
elements present in the graph under certain conditions. The conditions are
based on the techniques or algorithms. Hence, vertex coloring is a
commonly used coloring technique followed here. First, in this method,
you try to color the vertex using k color, ensuring that two adjacent
vertexes should not have the same color. Other method includes face
coloring and edge coloring. Both of these methods should also ensure that
no edge or face should be inconsequent color. The coloring of the graph is
determined by knowing the chromatic number, which is also the smaller
number of colors needed. Consider the below image to understand how it
works.

non-colored graph colored graph
Pseudocode
1. #include <iostream>

2. #include <list>

3. using namespace std;

N S bk

o *

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

/I A class that represents an undirected graph Graph Algorithms

class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
public:
// Constructor and destructor
Graph(int V) { this->VV =V; adj = new list<int>[V]; }
~Graph() { delete [] adj; }
// function to add an edge to graph
void addEdge(int v, int w);
// Prints greedy coloring of the vertices
void greedyColoring();
¥
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
/I Assigns colors (starting from 0) to all vertices and prints
// the assignment of colors
void Graph::greedyColoring()
{
int result[V];
/I Assign the first color to first vertex
result[0] =0;
// Initialize remaining V-1 vertices as unassigned
for (intu=1;u<V;ut+)

resultfu] =-1; // no color is assigned to u

119

Fundamental of
Algorithms

120

33.
34,
35,
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47,
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.

/I A temporary array to store the available colors. True

// value of available[cr] would mean that the color cr is

// assigned to one of its adjacent vertices

bool available[V];

for (int cr = 0; cr < 'V; cr++)

available[cr]| = false;

// Assign colors to remaining V-1 vertices

for (intu=1;u<V;ut+)

{

}

/I Process all adjacent vertices and flag their colors
// as unavailable
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++1)
if (result[*i] !=-1)
available[result[*1]] = true;
// Find the first available color
nt cr;
for (cr=0; cr <V; crt++)
if (available[cr] == false)
break;
result[u] = cr; // Assign the found color
// Reset the values back to false for the next iteration
for (i = adj[u].begin(); 1 != adj[u].end(); ++1)
if (result[*1] !=-1)

available[result[*1]] = false;

// print the result

for (intu=0; u<V;utt)

cout << "Vertex " <<u<<"---> Color"

62. <<result[u] << endl,

63. }

64. // Driver program to test above function
65. int main()

66. {

67. Graph gl(5);

68. gl.addEdge(0, 1);

69. gl.addEdge(0, 2);

70. gl.addEdge(1, 2);

71. gl.addEdge(1, 3);

72. gl.addEdge(2, 3);

73. gl.addEdge(3, 4);

74. cout << "Coloring of graph 1 \n";
75. gl.greedyColoring();

76. Graph g2(5);

77. g2.addEdge(0, 1),

78. g2.addEdge(0, 2);

79. g2.addEdge(1, 2);

80. g2.addEdge(1, 4);

81. g2.addEdge(2, 4);

82. g2.addEdge(4, 3);

83. cout << "\nColoring of graph 2 \n";
84. g2.greedyColoring();

85. return O;

86. }

Application

Graph coloring has vast applications in data structures as well as in
solving real-life problems. For example, it is used in timetable scheduling
and assigning radio frequencies for mobile. It is also used in Sudoko and
to check if the given graph is bipartite. Graph coloring can also be used in
geographical maps to mark countries and states in different colors.

Graph Algorithms

121

Fundamental of
Algorithms

122

Maximum flow

The maximum flow algorithm is usually treated as a problem-solving
algorithm where the graph is modeled like a network flow infrastructure.
Hence, the maximum flow is determined by finding the path of the flow
that has the maximum flow rate. The maximum flow rate is determined
by augmenting paths which is the total flow-based out of source node
equal to the flow in the sink node. Below is the illustration for the same.

1. function: DinicMaxFlow(Graph G,Node S,Node T):

2. Initialize flow in all edges to 0, F=0

3. Construct level graph

4. while (there exists an augmenting path in level graph):
5. find blocking flow f in level graph

6. FF=F+f

7. Update level graph

8. return F

Applications

Like you, the maximum flow problem covers applications of popular
algorithms like the Ford-Fulkerson algorithm, Edmonds-Karp algorithm,
and Dinic's algorithm, like you saw in the pseudocode given above. In real
life, it finds its applications in scheduling crews in flights and image
segmentation for foreground and background. It is also used in games like
basketball, where the score is set to a maximum estimated value having
the current division leader.

Matching

A matching algorithm or technique in the graph is defined as the edges
that no common vertices at all. Matching can be termed maximum
matching if the most significant number of edges possibly matches with as
many vertices as possible. It follows a specific approach for determining
full matches, as shown in the below image.

Applications

Matching is used in an algorithm like the Hopcroft-Karp algorithm and
Blossom algorithm. It can also be used to solve problems using a
Hungarian algorithm that covers concepts of matching. In real-life
examples, matching can be wused resource allocation and travel
optimization and some problems like stable marriage and vertex cover
problem.

Conclusion

In this article, you came across plenty of graph coloring algorithms and
techniques that find their day-to-day applications in all instances of real
life. You learned how to implement them according to situations, and
hence the pseudo code helped you process the information strategically
and efficiently. Graph algorithms are considered an essential aspect in the
field confined not only to solve problems using data structures but also in
general tasks like Google Maps and Apple Maps. However, a beginner
might find it hard to implement Graph algorithms because of their
complex nature. Hence, it is highly recommended to go through this
article since it covers everything from scratch.

Shortest Path Algorithms

Dijkstra's Algorithm finds the shortest path between a given node (which
is called the "source node") and all other nodes in a graph. This algorithm
uses the weights of the edges to find the path that minimizes the total
distance (weight) between the source node and all other nodes.

What is Dijkstra’s Algorithm?

Dijkstra’s algorithm is a popular algorithms for solving many single-
source shortest path problems having non-negative edge weight in the
graphs i.e., it is to find the shortest distance between two vertices on a
graph. It was conceived by Dutch computer scientist Edsger W.
Dijkstra in 1956.

The algorithm maintains a set of visited vertices and a set of unvisited
vertices. It starts at the source vertex and iteratively selects the unvisited

Graph Algorithms

123

Fundamental of
Algorithms

124

vertex with the smallest tentative distance from the source. It then visits
the neighbors of this vertex and updates their tentative distances if a
shorter path is found. This process continues until the destination vertex is
reached, or all reachable vertices have been visited.

e What is Dijkstra’s Algorithm?

e Need of Dijkstra’s Algorithm (Purpose and Use-Cases)

o Basics of Dijkstra’s Algorithm

o Basics requirements for Implementation of Dijkstra’s Algorithm

e Can Dijkstra’s algorithm work on both directed and undirected
graphs?

o Algorithm:

o How Does Dijkstra’s Algorithm Works?

o Pseudo Code for Dijkstra’s Algorithm

o Ways to Implement Dijkstra’s Algorithm

o Implementation of Dijkstra’s Algorithm:

o 1. Dijkstra’s Shortest Path Algorithm using priority_queue (Heap)
o 2. Dijkstra shortest path algorithm using Prim’s Algorithm

o 3. Dijkstra’s shortest path with minimum edges

o 4. Dijkstra’s shortest path algorithm using Set

o Complexity Analysis of Dijkstra’s Algorithm

o Dijkstra’s Algorithm vs Other Algorithms

o Problems Related to Dijkstra’s Algorithm

Need for Dijkstra’s Algorithm (Purpose and Use-Cases)

The need for Dijkstra’s algorithm arises in many applications where
finding the shortest path between two points is crucial.

For example, It can be used in the routing protocols for computer
networks and also used by map systems to find the shortest path between
starting point and the Destination (as explained in How does Google Maps
work?)

Basic Characterstics of Dijkstra’s Algorithm
¢ Below are the basic steps of how Dijkstra’s algorithm works:

So Basically, Dijkstra’s algorithm starts at the node source node we
choose and then it analyzes the graph condition and its paths to find the
optimal shortest distance between the given node and all other nodes in
the graph.

e Dijkstra’s algorithm keeps track of the currently known shortest
distance from each node to the source node and updates the value after
it finds the optimal path once the algorithm finds the shortest path
between the source node and destination node then the specific node is
marked as visited.

. . . . , .
Basics requirements for Implementation of Dijkstra’s Algorithm Graph Algorithms

1. Graph: Dijkstra’s Algorithm can be implemented on any graph but it
works best with a weighted Directed Graph with non-negative edge
weights and the graph should be represented as a set of vertices and
edges.

2. Source Vertex: Dijkstra’s Algorithm requires a source node which is
starting point for the search.

3. Destination vertex: Dijkstra’s algorithm may be modified to terminate
the search once a specific destination vertex is reached.

4. Non-Negative Edges: Dijkstra’s algorithm works only on graphs that
have positive weights this is because during the process the weights of
the edge have to be added to find the shortest path. If there is a negative
weight in the graph then the algorithm will not work correctly. Once a
node has been marked as visited the current path to that node is marked
as the shortest path to reach that node.

Can Dijkstra’s algorithm work on both Directed and Undirected
graphs?

Yes, Dijkstra’s algorithm can work on both directed graphs and undirected
graphs as this algorithm is designed to work on any type of graph as long
as it meets the requirements of having non-negative edge weights and
being connected.

e In a directed graph, each edge has a direction, indicating the direction
of travel between the vertices connected by the edge. In this case, the
algorithm follows the direction of the edges when searching for the
shortest path.

e In an undirected graph,the edges have no direction, and the
algorithm can traverse both forward and backward along the edges
when searching for the shortest path.

Algorithm for Dijkstra’s Algorithm:

e Mark the source node with a current distance of 0 and the rest with
infinity.

e Set the non-visited node with the smallest current distance as the
current node.

o For each neighbor, N of the current node adds the current distance of
the adjacent node with the weight of the edge connecting 0->1. If it is
smaller than the current distance of Node, set it as the new current
distance of N.

e Mark the current node 1 as visited.

e Qo to step 2 if there are any nodes are unvisited.

125

Fundamental of
Algorithms

126

How does Dijkstra’s Algorithm works?
Let’s see how Dijkstra’s Algorithm works with an example given below:

Dijkstra’s Algorithm will generate the shortest path from Node 0 to all
other Nodes in the graph.

Consider the below graph:

Example Graph

Dijkstra's Algorithm

Dijkstra’s Algorithm

The algorithm will generate the shortest path from node 0 to all the other
nodes in the graph.

For this graph, we will assume that the weight of the edges represents
the distance between two nodes.

As, we can see we have the shortest path from,Node 0 to Node 1, from
Node 0 to Node 2, from

Node 0 to Node 3, from

Node 0 to Node 4, from

Node 0 to Node 6.

Initially we have a set of resources given below :

e The Distance from the source node to itself is 0. In this example the
source node is 0.

e The distance from the source node to all other node is unknown so we
mark all of them as infinity.

Example: 0 -> 0, 1-> 00,2-> 00,3-> 00,4-> 00,5-> 00,6-> 0.

o we’ll also have an array of unvisited elements that will keep track of
unvisited or unmarked Nodes.

e Algorithm will complete when all the nodes marked as visited and the
distance between them added to the path. Unvisited Nodes:- 0 1 2 3 4
56.

Step 1: Start from Node 0 and mark Node as visited as you can check in
below image visited Node is marked red.

ﬂ Start from Node 0 and mark Node 0 as Visited and check for adjacent nodes

Unvisited Nodes
{0,1,2,3,4,5,6}

Distance:
0: 0

888888

Dijkstra’'s Algorithm

Dijkstra’s Algorithm

Step 2: Check for adjacent Nodes, Now we have to choices (Either choose
Nodel with distance 2 or either choose Node 2 with distance 6) and
choose Node with minimum distance. In this step Node 1is Minimum
distance adjacent Node, so marked it as visited and add up the distance.

Distance: Node 0 -> Node 1 =2

Mark Node 1 as Visited and add the Distance

Unvisited Nodes
{0,1,2,3,4,5,6}

Distance:

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Step 3: Then Move Forward and check for adjacent Node which is Node
3, so marked it as visited and add up the distance, Now the distance will
be:

Distance: Node 0 -> Node 1 ->Node3=2+5=7

Graph Algorithms

127

Fundamental of ﬂ Mark Node 3 as Visited after considering the Optimal path and add the Distance

Algorithms
Unvisited Nodes

{0,1,2,3.4,56}

] P

e
£ Distance:
)
d

& 7
% %

o

N EwN=O
98 8~Nome

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Step 4: Again we have two choices for adjacent Nodes (Either we can
choose Node 4 with distance 10 or either we can choose Node 5 with
distance 15) so choose Node with minimum distance. In this step Node
4 is Minimum distance adjacent Node, so marked it as visited and add up

the distance.

Distance: Node 0 -> Node 1 -> Node 3 ->Node4=2+5+10=17

m Mark Node 4 as Visited after considering the Optimal path and add the Distance

Unvisited Nodes
{0,1,2,3,4,5,6}

Distance:
0

2

6

7
7

(SRS

co
]
Dijkstra's Algorithm

=9

PURLON=O

Dijkstra’s Algorithm

Step 5: Again, Move Forward and check for adjacent Node which
is Node 6, so marked it as visited and add up the distance, Now the

distance will be:

Distance: Node 0 -> Node 1 -> Node 3 -> Node 4 -> Node 6=2 +5+ 10
+2=19

128

m Mark Node 6 as Visited and add the Distance Graph Algorlthms

Unvisited Nodes
{0,1,2,3,4,5,6}

Distance:

PO S
aNI~vNorme
SR 4 <

Dijkstra’s Algorithm

Dijkstra’s Algorithm

So, the Shortest Distance from the Source Vertex is 19 which is
optimal one

Pseudo Code for Dijkstra’s Algorithm

function Dijkstra(Graph, source):
// Initialize distances to all nodes as infinity, except for the source node.
distances = map infinity to all nodes
distances =0

// Initialize an empty set of visited nodes and a priority queue to keep
track of the nodes to visit.

visited = empty set

queue = new PriorityQueue()

queue.enqueue(source, 0)

// Loop until all nodes have been visited.
while queue is not empty:
// Dequeue the node with the smallest distance from the priority
queue.
current = queue.dequeue()

//'If the node has already been visited, skip it.
if current in visited:
continue

// Mark the node as visited.
visited.add(current)

// Check all neighboring nodes to see if their distances need to be
updated.
for neighbor in Graph.neighbors(current):
// Calculate the tentative distance to the neighbor through the
current node.
tentative distance = distances|[current] +
Graph.distance(current, neighbor)

129

Fundamental of
Algorithms

130

// 1f the tentative distance is smaller than the current distance to the
neighbor, update the distance.
if tentative distance< distances[neighbor]:
distances[neighbor] = tentative distance

// Enqueue the neighbor with its new distance to be considered
for visitation in the future.
queue.enqueue(neighbor, distances[neighbor])

// Return the calculated distances from the source to all other nodes in
the graph.
return distances

Ways to Implement Dijkstra’s Algorithm:

There are several ways to Implement Dijkstra’s algorithm, but the most
common ones are:

1. Using priority queue to keep track of all vertices.

2. Using an array to keep track of Distances.

3. Using a set to keep track of the visited vertices.

1. Dijkstra’s Shortest Path Algorithm using priority queue (Heap)

In this Implementation, we are given a graph and a source vertex in the
graph, finding the shortest paths from the source to all vertices in the given
graph.

Example:

Input: Source =0

Example
Output: Vertex

Vertex Distance from Source

0->0

1 >2
2 >6
3->7
4 ->17
5 ->22
6 >19

Below is the algorithm based on the above idea:

1.
2.

2.
5.

Initialize distances of all vertices as infinite.

Create an empty priority _queuepq. Every item of pq is a pair (weight,
vertex). Weight (or distance) is used as first item of pair as first item is
by default used to compare two pairs

. Insert source vertex into pq and make its distance as 0.
. While either pq doesn’t become empty

. Extract minimum distance vertex from Pq.

Let the extracted vertex be u.
Loop through all adjacent of u and do the following for every vertex v.

If there is a shorter path to v through u.

. Update distance of v, i.e., do dist[v] = dist[u] + weight(u, v)

Insert v into the pq (Even if v is already there)

Print distance array dist[] to print all shortest paths.

Below is the C++ Implementation of the above approach:

// Program to find Dijkstra's shortest path using

// priority queue in STL

#include <bits/stdc++.h>

usingnamespacestd;

#define INF 0x3f3{3{3f

// 1Pair ==> Integer Pair

typedefpair<int, int>iPair;

// This class represents a directed graph using

/I adjacency list representation

Graph Algorithms

131

Fundamental of classGraph {
Algorithms

intV; // No. of vertices
//' In a weighted graph, we need to store vertex
// and weight pair for every edge
list<pair<int, int>>* adj;
public:
Graph(intV); // Constructor
// function to add an edge to graph
voidaddEdge(intu, intv, intw);
// prints shortest path from s
voidshortestPath(ints);
¥
/I Allocates memory for adjacency list
Graph::Graph(intV)
{
this->V =V;
adj = newlist<iPair>[V];
}
voidGraph::addEdge(intu, intv, intw)
{
adj[u].push_back(make pair(v, w));
adj[v].push_back(make pair(u, w));
}
// Prints shortest paths from src to all other vertices
voidGraph::shortestPath(intsrc)
{
/I Create a priority queue to store vertices that

// are being preprocessed. This is weird syntax in C++.

132

// Refer below link for details of this syntax

// https://www.geeksforgeeks.org/implement-min-heap-using-stl/

priority queue<iPair, vector<iPair>, greater<iPair>>
pPq;
// Create a vector for distances and initialize all
// distances as infinite (INF)
vector<int>dist(V, INF);
// Insert source itself in priority queue and initialize
// its distance as 0.
pq.push(make pair(0, src));
dist[src] = 0;
/* Looping till priority queue becomes empty (or all
distances are not finalized) */
while(!pg.empty()) {
// The first vertex in pair is the minimum distance
// vertex, extract it from priority queue.
// vertex label is stored in second of pair (it
// has to be done this way to keep the vertices
// sorted distance (distance must be first item
// in pair)
intu = pq.top().second,
pq.pop();
//'1" 1s used to get all adjacent vertices of a
/I vertex
list<pair<int, int>>::iterator i;
for(i = adj[u].begin(); 1 != adj[u].end(); ++1) {
// Get vertex label and weight of current

// adjacent of u.

Graph Algorithms

133

Fundamental of intv = (*1).first;
Algorithms

intweight = (*1).second;
//'If there is shorted path to v through u.
if(dist[v] >dist[u] + weight) {

// ' Updating distance of v

dist[v] = dist[u] + weight;

pg.push(make pair(dist[v], v));

}

// Print shortest distances stored in dist[]
printf("Vertex Distance from Source\n");
for(inti = 0; i< V; ++1)
printf("%d \t\t %d\n", 1, dist[1]);
}
// Driver program to test methods of graph class
intmain()
{
/I create the graph given in above figure
intV="7;
Graph g(V);
// making above shown graph
g.addEdge(0, 1, 2);
g.addEdge(0, 2, 6);
g.addEdge(1, 3, 5);
g.addEdge(2, 3, 8);
g.addEdge(3, 4, 10);
g.addEdge(3, 5, 15);

134

g.addEdge(4, 6, 2);
g.addEdge(5, 6, 6);
g.shortestPath(0);

returnO;

Output

Vertex Distance from Source

0 0
1 2
2 6
3 7
4 17
5 22
6 19

Final Answer:

Unvisited Nodes
az {0.1,2,3.4586}

@D
6 _~~ 8 10 "-—-"\2
. / e
(0) [[

[N

Distance:

. 6 le

<< <

:0
o
+6

- 17 (2+5+10)
- 22 (2+5+15) %

0
1
2
3: 7 (5+2) vs (6+8)
4
5
6: 19 (2+5+10+2)

Output

Complexity Analysis of Dijkstra’s Algorithm using Priority Queue:

Time complexity : O(E log V)
Space Complexity: O(V?), here V is the number of Vertices.

2. Dijkstra shortest path algorithm using Prim’s Algorithm

Graph Algorithms

135

Given a graph and a source vertex in the graph, find the shortest paths

Fundamental of from the source to all vertices in the given graph.

Algorithms
Example:

Example
Output: 02671722 19

Follow the below steps to implement Dijkstra’s Algorithm using Prim’s
Algorithm:

o Create a set sptSet (shortest path tree set) that keeps track of vertices
included in the shortest-path tree, i.e., whose minimum distance from
the source is calculated and finalized. Initially, this set is empty.

e Assign a distance value to all vertices in the input graph. Initialize all
distance values as INFINITE. Assign the distance value as 0 for the
source vertex so that it is picked first.

o While sptSet doesn’t include all vertices

e Pick a vertex u which is not there in sptSetand has a minimum
distance value.

e Include u to sptSet.
o Then update distance value of all adjacent vertices of u.
o To update the distance values, iterate through all adjacent vertices.

o For every adjacent vertex v, if the sum of the distance value of u (from
source) and weight of edge u-v, is less than the distance value of v,
then update the distance value of v.

Complexity Analysis of Dijkstra’s Algorithm using Prims Algorithm:
Time Complexity: O(V2)
Auxiliary Space: O(V)

136

3. Dijkstra’s shortest path with minimum edges

In this Implementation we are given an adjacency atrix graph representing
paths between the nodes in the given graph. The task is to find the shortest
path with minimum edges 1i. e. if there a multiple short paths with same
cost then choose the one with the minimum number of edges.

Consider the graph given below:

3|—|?’ 2

Example

There are two paths from vertex 0 to vertex 3 with a weight of 12:
0->1->2->3
0->4->3

Since Dijkstra’s algorithm is a greedy algorithm that seeks the minimum
weighted vertex on every iteration, so the original Dijkstra’s algorithm
will output the first path but the result should be the second path as it
contains minimum number of edges.

Examples:

Input: graph[][] = { {0, 1, INFINITY, INFINITY, 10},
{1, 0,4, INFINITY, INFINITY},

{INFINITY, 4, 0, 7, INFINITY},

{INFINITY, INFINITY, 7, 0, 2},

{10, INFINITY, INFINITY, 2, 0} };

Output: 0->4->3

INFINITY here shows that u and v are not neighbors

Input: graph[][] = { {0, 5, INFINITY, INFINITY},
{5, 0,5, 10},

{INFINITY, 5, 0, 5},

{INFINITY, 10, 5, 0} };

Output: 0->1->3

Graph Algorithms

137

Fundamental of
Algorithms

138

Approach: The idea of the algorithm is to use the original Dijkstra’s
algorithm, but also to keep track of the length of the paths by an array that
stores the length of the paths from the source vertex, so if we find a shorter
path with the same weight, then we will take it.

Complexity Analysis:

e Time Complexity: O(V"2) where V is the number of vertices and E is
the number of edges.

o Auxiliary Space: O(V + E)
4. Dijkstra’s shortest path algorithm using Set

Given a graph and a source vertex in graph, find shortest paths from
source to all vertices in the given graph

Example:

Example
Output: 0267172219
Below is algorithm based on set data structure.
1. Initialize distances of all vertices as infinite.

2. Create an empty set. Every item of set is a pair (weight, vertex).
Weight (or distance) is used as first item of pair as first item is by
default used to compare two pairs.

3. Insert source vertex into the set and make its distance as 0.
4. While Set doesn’t become empty, do following
a) Extract minimum distance vertex from Set.
Let the extracted vertex be u.
b) Loop through all adjacent of u and do

following for every vertex v.

//'If there is a shorter path to v through u.
If dist[v] >dist[u] + weight(u, v
(i) Update distance of v, i.e., do dist[v] = dist[u] + weight(u, v)

(i) If v is in set, update its distance in set by removing it first, then
inserting with new distance

(i) If v is not in set, then insert it in set with new distance
5) Print distance array dist[] to print all shortest paths.
Complexity Analysis:

e Time Complexity: O(ELogV), where V is the number of vertices and
E is the number of edges.

o Auxiliary Space: O(V2)
Complexity Analysis of Dijkstra’s Algorithm:

The time complexity of Dijkstra’s algorithm depends on the data structure
used for the priority queue. Here is a breakdown of the time complexity
based on different implementations:

o Using an unsorted list as the priority queue: O(V?), where V is the
number of vertices in the graph. In each iteration, the algorithm
searches for the vertex with the smallest distance among all unvisited
vertices, which takes O(V) time. This operation is performed V times,
resulting in a time complexity of O(V"2).

o Using a sorted list or a binary heap as the priority queue: O(E + V
log V), where E is the number of edges in the graph. In each iteration,
the algorithm extracts the vertex with the smallest distance from the
priority queue, which takes O(log V) time. The distance updates for the
neighboring vertices take O(E) time in total. This operation is
performed V times, resulting in a time complexity of O(V log V + E
log V). Since E can be at most V*2, the time complexity is O(E + V log
V).

Dijkstra’s Algorithms vs Bellman-Ford Algorithm

Dijkstra’s algorithm and Bellman-Ford algorithm are both used to find the
shortest path in a weighted graph, but they have some key differences.
Here are the main differences between Dijkstra’s algorithm and Bellman-
Ford algorithm:

Graph Algorithms

139

Fundamental of
Algorithms

Feature:

Optimization

Relaxation

Time
Complexity

Negative
Weights

Dijkstra’s

optimized for finding the
shortest path between a
single source node and all
other nodes in a graph with
non-negative edge weights

Dijkstra’s algorithm uses a
greedy approach where it
chooses the node with the
smallest distance and
updates its neighbors

Dijkstra’s algorithm has a
time complexity of O(V"2)
for a dense graph and O(E
log V) for a sparse graph,
where V is the number of
vertices and E is the
number of edges in the
graph.

Dijkstra’s algorithm does
not work with graphs that
have negative edge
weights, as it assumes that
all edge weights are non-
negative.

Bellman Ford

Bellman-Ford algorithm
is optimized for finding
the shortest path between
a single source node and
all other nodes in a graph
with negative edge
weights.

the Bellman-Ford
algorithm relaxes all
edges in each iteration,
updating the distance of
each node by considering
all possible paths to that
node

Bellman-Ford algorithm
has a time complexity of
O(VE), where V is the
number of vertices and E
is the number of edges in
the graph.

Bellman-Ford algorithm
can handle negative edge
weights and can detect
negative-weight cycles in
the graph.

Dijkstra’s algorithm vs Floyd-Warshall Algorithm

Dijkstra’s algorithm and Floyd-Warshall algorithm are both used to find
the shortest path in a weighted graph, but they have some key differences.
Here are the main differences between Dijkstra’s algorithm and Floyd-
Warshall algorithm:

140

Feature:

Optimization

Technique

Time
Complexity

Negative
Weights

Dijkstra’s

Optimized for finding the
shortest path between a
single source node and all
other nodes in a graph
with non-negative edge
weights

Dijkstra’s algorithm is a
single-source shortest
path algorithm that uses a
greedy approach and
calculates the shortest
path from the source node
to all other nodes in the
graph.

Dijkstra’s algorithm has a
time complexity of
O(V~2) for a dense graph
and O(E log V) for a
sparse graph, where V is
the number of vertices
and E is the number of
edges in the graph.

Dijkstra’s algorithm does
not work with graphs that
have negative edge
weights, as it assumes that
all edge weights are non-
negative.

Dijkstra’s algorithm vs A* Algorithm

Dijkstra’s algorithm and A* algorithm are both used to find the shortest
path in a weighted graph, but they have some key differences. Here are the

Floyd-Warshall Algorithm

Floyd-Warshall algorithm is
optimized for finding the
shortest path between all
pairs of nodes in a graph.

Floyd-Warshall algorithm,
on the other hand, is an all-
pairs shortest path algorithm
that uses dynamic
programming to calculate
the shortest path between all
pairs of nodes in the graph.

Floyd-Warshall algorithm,
on the other hand, is an all-
pairs shortest path algorithm
that uses dynamic
programming to calculate
the shortest path between all
pairs of nodes in the graph.

Floyd-Warshall algorithm,
on the other hand, is an all-
pairs shortest path algorithm
that uses dynamic
programming to calculate
the shortest path between all
pairs of nodes in the graph.

main differences between Dijkstra’s algorithm and A* algorithm:

Feature:

Search
Technique

A* Algorithm

Optimized for finding the A* algorithm is an informed
shortest path between a search algorithm that uses a

Graph Algorithms

141

Fundamental of
Algorithms

142

Feature:

Heuristic
Function

Time
Complexity

Application

single source node and all
other nodes in a graph
with non-negative edge
weights

Dijkstra’s algorithm, does
not use any heuristic
function and considers all
the nodes in the graph.

Dijkstra’s algorithm has a
time complexity of
O(V”2) for a dense graph
and O(E log V) for a
sparse graph, where V is
the number of vertices
and E is the number of
edges in the graph.

Dijkstra’s algorithm is
used in many applications
such as routing
algorithms, GPS
navigation systems, and
network analysis

A* Algorithm

heuristic function to guide the
search towards the goal node.

A* algorithm uses a heuristic
function that estimates the
distance from the current
node to the goal node. This
heuristic function is
admissible, meaning that it
never overestimates the actual
distance to the goal node

The time complexity of A*
algorithm depends on the
quality of the heuristic
function.

. A* algorithm is commonly
used in pathfinding and graph
traversal problems, such as
video games, robotics, and
planning algorithms.

Conclusion: Overall, Dijkstra’s algorithm is a simple and efficient way to
find the shortest path in a graph with non-negative edge weights.
However, it may not work well with graphs that have negative edge
weights or cycles. In such cases, more advanced algorithms such as the
Bellman-Ford algorithm or the Floyd-Warshall algorithm may be used.

Minimal Spanning Tree

Before knowing about the minimum spanning tree, we should know about
the spanning tree.

To understand the concept of spanning tree, consider the below

graph:

The above graph can be represented as G(V, E), where 'V' is the number
of vertices, and 'E' is the number of edges. The spanning tree of the above
graph would be represented as G'(V", E"). In this case, V' = V means that
the number of vertices in the spanning tree would be the same as the
number of vertices in the graph, but the number of edges would be
different. The number of edges in the spanning tree is the subset of the
number of edges in the original graph. Therefore, the number of edges can
be written as:

E'€E

It can also be written as:

E'=|V|-1

Two conditions exist in the spanning tree, which is as follows:

o The number of vertices in the spanning tree would be the same as
the number of vertices in the original graph.

V=V

o The number of edges in the spanning tree would be equal to the
number of edges minus 1.
E =|V|-1

o The spanning tree should not contain any cycle.

o The spanning tree should not be disconnected.
Note: A graph can have more than one spanning tree.
Consider the below graph:

The above graph contains 5 vertices. As we know, the vertices in the
spanning tree would be the same as the graph; therefore, V' is equal 5. The
number of edges in the spanning tree would be equal to (5 - 1), i.e., 4. The
following are the possible spanning trees:

143

Graph Algorithms

Fundamental of
Algorithms

1
4 2
5
3
4 2
5

144

What is a minimum spanning tree?

The minimum spanning tree is a spanning tree whose sum of the edges is
minimum. Consider the below graph that contains the edge weight:

The following are the spanning trees that we can make from the above
graph.

o

The first spanning tree is a tree in which we have removed the edge
between the vertices 1 and 5 shown as below:
The sum of the edges of the above tree is (1 +4 + 5 +2): 12

The second spanning tree is a tree in which we have removed the edge
between the vertices 1 and 2 shown as below:
The sum of the edges of the above treeis (3 +2+5+4): 14

The third spanning tree is a tree in which we have removed the edge
between the vertices 2 and 3 shown as below:
The sum of the edges of the above treeis (1 +3 +2+5): 11

The fourth spanning tree is a tree in which we have removed the edge
between the vertices 3 and 4 shown as below:
The sum of the edges of the above tree is (1 +3 +2 +4) : 10. The edge
cost 10 is minimum so it is @ minimum spanning tree.

General properties of minimum spanning tree:

o

If we remove any edge from the spanning tree, then it becomes
disconnected. Therefore, we cannot remove any edge from the
spanning tree.

If we add an edge to the spanning tree then it creates a loop. Therefore,
we cannot add any edge to the spanning tree.

In a graph, each edge has a distinct weight, then there exists only a
single and unique minimum spanning tree. If the edge weight is not
distinct, then there can be more than one minimum spanning tree.

Graph Algorithms

145

Fundamental of
Algorithms

146

o

A complete undirected graph can have an n"? number of spanning
trees.

Every connected and undirected graph contains atleast one spanning
tree.

The disconnected graph does not have any spanning tree.

In a complete graph, we can remove maximum (e-n+1) edges to
construct a spanning tree.

Let's understand the last property through an example.

Consider the complete graph which is given below:

The number of spanning trees that can be made from the above complete
graph equals to n"? = 4*2 = 16.

Therefore, 16 spanning trees can be created from the above graph.

The maximum number of edges that can be removed to construct a
spanning tree equals toe-ntl1 =6-4+1=3.

Application of Minimum Spanning Tree

1.

Consider n stations are to be linked using a communication network &
laying of communication links between any two stations involves a
cost.

The ideal solution would be to extract a subgraph termed as minimum
cost spanning tree.

. Suppose you want to construct highways or railroads spanning several

cities then we can use the concept of minimum spanning trees.

. Designing Local Area Networks.

. Laying pipelines connecting offshore drilling sites, refineries and

consumer markets.

5. Suppose you want to apply a set of houses with Graph Algorithms
o Electric Power

o Water

o Telephone lines

o Sewage lines

To reduce cost, you can connect houses with minimum cost spanning
trees.

For Example, Problem laying Telephone Wire.
= &

R
® &

A=

]
[1]
Central Office

Expensive!

147

Fundamental of

Wiring : Better Approach
Algorithms

Central 'Pfﬁce

@ 8

Minimize the total length of wire connecting the customers

Methods of Minimum Spanning Tree

There are two methods to find Minimum Spanning Tree
1. Kruskal's Algorithm

2. Prim's Algorithm

Kruskal's Algorithm:

An algorithm to construct a Minimum Spanning Tree for a connected
weighted graph. It is a Greedy Algorithm. The Greedy Choice is to put the
smallest weight edge that does not because a cycle in the MST constructed
so far.

If the graph is not linked, then it finds a Minimum Spanning Tree.
Steps for finding MST using Kruskal's Algorithm:
1. Arrange the edge of G in order of increasing weight.

2. Starting only with the vertices of G and proceeding sequentially add
each edge which does not result in a cycle, until (n - 1) edges are used.

3. EXIT.
MST- KRUSKAL (G, w)

lLA<0Q

2. for each vertex v € V [G]

3. do MAKE - SET (v)

4. sort the edges of E into non decreasing order by weight w

5. for each edge (u, v) € E, taken in non decreasing order by weight

6. do if FIND-SET (p) # if FIND-SET (v)
148

7.then A «— AU {(u, v)}
8. UNION (u, v)
9. return A

Analysis: Where E is the number of edges in the graph and V is the
number of vertices, Kruskal's Algorithm can be shown to run in O (E log
E) time, or simply, O (E log V) time, all with simple data structures. These
running times are equivalent because:

o Eis at most V? and log V?=2 x log V is O (log V).

o If we ignore isolated vertices, which will each their components of the
minimum spanning tree, V<2 E, so log V is O (log E).

Thus the total time is
1. O(ElogE)=0 (E log V).

For Example: Find the Minimum Spanning Tree of the following graph
using Kruskal's algorithm.

B 8 " / d)
A e A
4 Q
pd .
a""_[:\. 11 14 7
[a) Ty L e JJ
__,{\\ . | | P
. - 6 /
8 \, | w0
(h P ——D
N : \9 5 S

Solution: First we initialize the set A to the empty set and create |v| trees,
one containing each vertex with MAKE-SET procedure. Then sort the
edges in E into order by non-decreasing weight.

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges

Weight Source Destination
1 h g
2 g f
4 a b
6 [g
7 h [
7 C d
8 b C
8 a h
9 d e

10 e f
" b h
14 d f

Now, check for each edge (u, v) whether the endpoints u and v belong to
the same tree. If they do then the edge (u, v) cannot be supplementary.
Otherwise, the two vertices belong to different trees, and the edge (u, v) is

Graph Algorithms

149

added to A, and the vertices in two trees are merged in by union

Fundamental of
procedure.

Algorithms
Step1: So, first take (h, g) edge

8 - 7
(b) © (d
/‘ I 9
g 11 14
\a (i) S
7 6
8 /_/\/ P 10
N P
I'\h_,f M l'\g/ 2 '\.f
Step 2: then (g, f) edge.
8 ~ 7
(b) ©
e
. 11
\a (i)
7 6
8
N P
(h) M 9/ 2

n 8 TN U
(b) (o)
4
\

N
L\h 1 L\gj 2

Step 4: Now, edge (h, 1). Both h and 1 vertices are in the same set. Thus it
creates a cycle. So this edge is discarded.

Then edge (c, d), (b, ¢), (a, h), (d, e), (e, f) are considered, and the forest
becomes.

150

Graph Algorithms

8 — 7 —

"'\\ P {/ Py
(b \&) d

a4 g
,I\‘a 14 e
3 10
s
5)

Step 5: In (e, f) edge both endpoints e and f exist in the same tree so
discarded this edge. Then (b, h) edge, it also creates a cycle.

Step 6: After that edge (d, f) and the final spanning tree is shown as in
dark lines.

~ 7 L~
(‘Ej d
9
14 (é\.
10
-~ -
‘_g/l 2 S

Step 7: This step will be required Minimum Spanning Tree because it
contains all the 9 vertices and (9 - 1) = 8 edges

1. e — f, b—h, d— f[cycle will be formed]

B 8 T o
(b) \cJ (d
4 9
a | {/‘T\I Eﬁ\
) ‘*J_f 6
8 _ \ _ 3 ~
_‘-\l p --\\I 1
(9)
Minimum Cost MST
Prim's Algorithm

It is a greedy algorithm. It starts with an empty spanning tree. The idea is
to maintain two sets of vertices:

o Contain vertices already included in MST.

o Contain vertices not yet included.

151

Fundamental of
Algorithms

152

At every step, it considers all the edges and picks the minimum weight
edge. After picking the edge, it moves the other endpoint of edge to set
containing MST.

Steps for finding MST using Prim's Algorithm:
1. Create MST set that keeps track of vertices already included in MST.

2. Assign key values to all vertices in the input graph. Initialize all key
values as INFINITE (o). Assign key values like 0 for the first vertex so
that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum key value.
Include 'u'to MST set.

b. Update the key value of all adjacent vertices of u. To update, iterate
through all adjacent vertices. For every adjacent vertex v, if the weight
of edge u.v less than the previous key value of v, update key value as a
weight of u.v.

MST-PRIM (G, w, r)
1. foreachu€ V [G]
2. dokey[u] « o

3. m[u] < NIL

4. key[r] <0

6. Q<—VI[QG]

7. While Q 70

8. dou« EXTRACT - MIN (Q)

9. foreach v €Ad) [u]

10. doifv € Q and w (u, v) <key [V]
11. thenm [v] «u

12. key [v] « W (u, V)

Example: Generate minimum cost spanning tree for the following graph
using Prim's algorithm.

Solution: In Prim's algorithm, first we initialize the priority Queue Q. to
contain all the vertices and the key of each vertex to oo except for the root,
whose key is set to 0. Suppose 0 vertex is the root, i.e., r. By EXTRACT -

MIN (Q) procure, now u =r and Adj [u] = {5, 1}.

Removing u from set Q and adds it to set V - Q of vertices in the tree.
Now, update the key and = fields of every vertex v adjacent to u but not in

a tree.
Vertex 0 1 2 3 4 5 6
Key 0 o0 o0 o0 o0 o0 o0
Value
Parent NIL NIL NIL NIL NIL NIL NIL
1. Taking 0 as starting vertex
2. Root=0
3. Adj[0]=5,1
4. Parent,t[5]=0andzn[1]=0
5. Key [5]=wand key [1] =0
6. w[0,5)=10 and w (0,1) =28
7. w(u,v)<key[5],w (u,v)<key[l]
8. Key [5] =10 and key [1] =28
9. So update key value of 5 and 1 is:
Vertex 0 1 2 3 4 5 6
Key 0 28 o0 00 oo 10 o0
Value
Parent NIL 0 NIL NIL NIL 0 NIL

Graph Algorithms

153

Fundamental of
Algorithms

Now by EXTRACT MIN (Q) Removes 5 because key [5] = 10 which is
minimum so u = 5.

1. Adj[5]= {0, 4} and 0 is already in heap
2. Taking 4, key [4] =00 @[4]=5

(98]

(u, v) <key [v] then key [4] =25
4. w(5,4)=25
5. w (5,4) <key [4]

6. date key value and parent of 4.

Vertex 0 1 2 3 4 5 6
Key 0 28 o) o) 25 10 o)
Value

Parent NIL 0 NIL NIL 5 0 NIL

154

Now remove 4 because key [4] = 25 which is minimum, so u =4
1. Adj [4] = {6, 3}

2. Key[3]= key [6] =

3. w(4,3)=22 w (4,6) =24

4. w(u,v)<key[v] w(u,v)<key][v]

5. w(4,3)<key[3] w(4,6)<key]6]

Update key value of key [3] as 22 and key [6] as 24.

And the parent of 3, 6 as 4.

1. n[3]=4 =n[6]=4

Vertex 0 1 2 3 4 5 6
Key 0 28 oo 22 25 10 24
Value
Parent NIL 0 NIL 4 5 0 4
1. u=EXTRACT MIN (3, 6) [key [3] <key [6]]
2.u=3 1e. 22<24

Now remove 3 because key [3] =22 is minimum so u =3.

(o

10 28

1. Adj[3]={4,6,2}

2. 4is already in heap

3. 4+#Q key[6] =24 now becomes key [6] = 18
4. Key[2]=o key [6] =24

5. w(3,2)=12 w(3,6)=18

6. w(3,2)<key|[2] w (3, 6) <key [6]

Graph Algorithms

155

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent of 2 and 6

Fundamental of .
1s 3.

Algorithms
. n[2]=3 =x[6]=3

Now by EXTRACT MIN (Q) Removes 2, because key [2] = 12 is

minimum.
Vertex 0 1 2 3 4 5 [
Key 0 28 12 22 25 10 18
Value
Parent NIL 0 3 4 5 0 3

1. u=EXTRACT MIN (2, 6)
2.u=2 [key [2] < key [6]]
3. 12<18

4. Now the root is 2

5. Adj[2]={3, 1}

6. 3isalready in a heap
7. Taking 1, key [1] =28

8. w(2,1)=16

9 w (2,1) <key [1]

So update key value of key [1] as 16 and its parent as 2.

1. n[1]=2
Vertex 0 1 2 3 4 5 6
Key 0 16 12 22 25 10 18
Value
Parent NIL 2 3 4 5 0 3
—
/\
If 5
S
25

Now by EXTRACT MIN (Q) Removes 1 because key [1] = 16 is
minimum.

156

1. Adj [1]= 10,6, 2} Graph Algorithms
2. 0and 2 are already in heap.

3. Taking 6, key [6] = 18

4. wl[l,6]=14

5. w[l, 6] <key[6]

Update key value of 6 as 14 and its parent as 1.

1. I[6]=1
Vertex 0 1 2 3 4 5 6
Key 0 16 12 22 25 10 14
Value
Parent NIL 2 3 4) 0 1

Now all the vertices have been spanned, Using above the table we get
Minimum Spanning Tree.

1.05-4—>53>52—>1—>6

2. [Because I1 [5]=0,11[4]=5,11[3]=4,I1[2] =3, 11 [1] =2, 11 [6] =1]

Thus the final spanning Tree is

®

10

|/5 /T\-

\ 14_A1)
O
25 N
2 B \/12

&,

NN

2)

Total Cost=10+25+22+12+16 + 14 =99

4.9 QUESTION BANK AND EXCERCISE

1. What is Data Structure: Types, Classifications and Applications
2. Applications, Advantages and Disadvantages of Directed Graph
3. Applications, Advantages and Disadvantages of Unweighted Graph
4. Graph Coloring | Set 1 (Introduction and Applications)
5. Applications, Advantages and Disadvantages of Weighted Graph
157

Fundamental of
Algorithms

158

6. Applications, Advantages and Disadvantages of Graph

7. Check whether the structure of given Graph is same as the game of
Rock-Paper-Scissor

8. Maximum number of edges that N-vertex graph can have such that
graph is Triangle free | Mantel's Theorem

9. Python Program to Find Independent Sets in a Graph using Graph
Coloring

10. What is graphs? Enlist Types of Graphs.

11. Explain Shortest Path First Algorithms?

12. What is BFS & DFS?

13. Explain minimal spanning tree with examples?

14. Explain Graph Representation & Graph Traversal?

15. Enlist Applications of Graphs?

16. Explain Topological Sort in detail?

17. Explain Graph Algorithms in details?

18. Write a short note on Weighted Graphs & Directed graphs?

19. Expalin What is Dijkstra’s Algorithm? Introduction to Dijkstra’s
Shortest Path Algorithm.

20. What is Graph Colouring ?

4.10 CONCLUSION

In this article, you came across plenty of graph coloring algorithms and
techniques that find their day-to-day applications in all instances of real
life. You learned how to implement them according to situations, and
hence the pseudo code helped you process the information strategically
and efficiently. Graph algorithms are considered an essential aspect in the
field confined not only to solve problems using data structures but also in
general tasks like Google Maps and Apple Maps. However, a beginner
might find it hard to implement Graph algorithms because of their
complex nature. Hence, it is highly recommended to go through this
article since it covers everything from scratch.

o O O 0
0.0 0.0 0.0 0.0

SELECTION ALGORITHMS

UnitStructure

5.0 Objectives

5.1 Introduction

5.2 What are the Selection Algorithm

5.3 Selection by Sorting

5.4 Linear Selection Algorithm

5.5 Median of median Algorithms

5.6 Finding the K Smallest Elements in Sorted Order
5.7 List of References

5.8 Bibliography

5.0 OBJECTIVES

A sorting algorithm is a method for reorganizing a large number of items
into a specific order, such as alphabetical, highest-to-lowest value or
shortest-to-longest distance. Sorting algorithms take lists of items as input
data, perform specific operations on those lists and deliver ordered arrays
as output.

5.1 INTRODUCTION OF SELECTION SORT
ALGORITHMS

What Is a Selection Sort Algorithm? Selection sort is an effective and
efficient sort algorithm based on comparison operations. It adds one
element in each iteration. You need to select the smallest element in the
array and move it to the beginning of the array by swapping with the front
element.

Selection Algorithm is an algorithm for finding the kth smallest (or
largest) number in a list or an array. That number is called the kth order
statistic. It includes the various cases for finding the minimum, maximum
and median elements in a list or an array. For finding the minimum (or
maximum) element by iterating through the list, we keep the track of
current minimum (or maximum) elements that occur so far and it is related
to the selection sort. Below are the different ways of selecting the kth
smallest(or largest) element in an unordered list:

159

Fundamental of
Algorithms

160

5.2 WHAT ARE THE SELECTION ALGORITHM

1. Selection by Sorting

Sorting the list or an array then selecting the required element can make
selection easy. This method is inefficient for selecting a single element but
is efficient when many selections need to be made from an array for which
it only needs sorting of an array. For selection in a linked list is O(n) even
if the linked listis sorted due to lack of random access.
Instead of sorting the entire list or an array, we can use partial sorting to
select the kth smallest(or largest) element in a list or an array. Then the kth
smallest(or largest) is the largest(or smallest) element of the partially
sorted list. This takes O(1) to access in an array and O(k) to access in a
list.

e Unordered Partial Sorting

Unordered partial sorting is a sorting algorithm in such a way that first k
element are in sorted order and rest element are in random order. For
finding the kth smallest(or largest) element. The time complexity reduces
to O(k log k). But since K < n, The asymptotic Time Complexity
converges to O(n). Note: Due to the possibility of equality of elements,
one must not include the element less than or equals to the kth element
while sorting a list or an array, as element greater than the kth element
may also be equal to the kth smallest element.

o Partial selection sort

The concept used in Selection Sort helps us to partially sort the array up to
kth smallest(or largest) element for finding the kth smallest(or largest)
element in an array. Thus a partial selection sort yields a simple selection
algorithm that takes O(k*n) time to sort the array. This is asymptotically
inefficient but can be sufficiently efficient if k is small, and is easy to
implement.

Below is the algorithm for partial selection sort:

o functionpartialSelectionSort(arr[0..n], k) {
e foriin [0, k){

o minlndex =1

e minValue = arr][i]

e forjin [i+1, n){

e if (arr[j] <minValue) then

o minlndex =]

o minValue = arr[j]

. swap(arr[i], arrfminIndex])

o }

o }

e returnarr[k]

o }

2. Partition Based Selection:

For partition-based selection, the Quick select Algorithm is used. It is a
variant of quicksort algorithm. In both, we choose a pivot element and
using the partition step from the quicksort algorithm arranges all the
elements smaller than the pivot on its left and the elements greater than it
on its right. But while Quicksort recurses on both sides of the
partition, Quickselect only recurses on one side, the side on which the
desired kth element is present. The partition-based algorithms are done in
place, which results in partially sorting the data. They can be done out of
place by not changing the original data at the cost of O(n) auxiliary space.

3. Median selected as pivot:

A median-selection algorithm can be used to perform a selection algorithm
or sorting algorithm, by selecting the median of the array as the pivot
element in Quickselect or Quicksort algorithm. In practice the overhead of
pivot computation is significant, so these algorithms are generally not
used, but this technique is of theoretical interest in relating selection and
sorting algorithms. The median of an array is the best pivot for sorting of
an array because it evenly divides the data into two parts., and thus
guarantees optimal sorting, assuming the selection algorithm is optimal.

4. selection sort in python:

In this tutorial, we will implement the selection sort algorithm in Python.
It is quite straightforward algorithm using the less swapping.

In this algorithm, we select the smallest element from an unsorted array in
each pass and swap with the beginning of the unsorted array. This process
will continue until all the elements are placed at right place. It is simple
and an in-place comparison sorting algorithm.

5.3 WORKING OF SELECTION SORT

The following are the steps to explain the working of the Selection sort in
Python.

Let's take an unsorted array to apply the selection sort algorithm.
(30, 10, 12, 8, 15, 1]

Step - 1: Get the length of the array.

length = len(array) — 6

Step - 2: First, we set the first element as minimum element.

Selection Algorithms

161

Fundamental of
Algorithms

162

Step - 3: Now compare the minimum with the second element. If the
second element is smaller than the first, we assign it as a minimum.

Again we compare the second element to the third and if the third element
is smaller than second, assign it as minimum. This process goes on until
we find the last element.

Step - 4: After each iteration, minimum element is swapped in front of the
unsorted array.

Step - 5: The second to third steps are repeated until we get the sorted
array.

Selection Sort Algorithm
The selection sort algorithm as follows.
Algorithm

1. selection_sort(array)

2. repeat (0, length - 1) times

3. set the first unsorted element as the minimum
4. for each of the unsorted elements

5. if element < currentMinimum

6. set element as new minimum

7. swap minimum with first unsorted position

8. end selection_sort
Selection Sort Program using Python

The following code snippet shows the selection sort algorithm
implementation using Python.

Code -

1. def selection_sort(array):
2. length = len(array)

3.

4. for iin range(length-1):

5. minlndex =1

6.

7. for j in range(i+1, length):

8. if array[j]<array[minIndex]:

9. minlndex = j

10.

1. array[i], array[minIndex] = array[minIndex], array][i]
12.

13.

14. return array

15. array =[21,6,9,33,3]

16.

17. print("The sorted array is: ", selection_sort(array))
Output:

Explanation -

Let's understand the above code -

o

First, we define the selection_sort() function that takes array as an
argument.

In the function, we get the length of the array which used to determine
the number of passes to be made comparing values.

As we can see that, we use two loops - outer and inner loop. The outer
loop uses to iterate through the values of the list. This loop will iterate
to 0 to (length-1). So the first iteration will be perform (5-1) or 4 times.
In each iteration, the value of the variable 1 is assigned to the variable

The inner loop uses to compare the each value of right-side element to
the other value on the leftmost element. So the second loop starts its
iteration from i+1. It will only pick the value that is unsorted.

Find the minimum element in the unsorted list and update the minIndex
position.

Place the value at the beginning of the array.
Once the iteration is completed, the sorted array is returned.

At last we create an unsorted array and pass to the selection_sort() It
prints the sorted array.

Time Complexity of Selection Sort

Time complexity is an essential in term of how much time an algorithm
take to sort it. In the selection sort, there are two loops. The outer loop
runs for the n times (n is a total number of element).

Selection Algorithms

163

Fundamental of
Algorithms

164

The inner loop is also executed for n times. It compares the rest of the
value to outer loop value. So, there is n*n times of execution. Hence the
time complexity of merge sort algorithm is O(n?).

The time complexity can be categorized into three categories.

5.4 LINEAR SELECTION ALGORITHM

A linear search is the simplest approach employed to search for an element
in a data set. It examines each element until it finds a match, starting at the
beginning of the data set, until the end. The search is finished and
terminated once the target element is located. If it finds no match, the
algorithm must terminate its execution and return an appropriate result.
The linear search algorithm is easy to implement and efficient in two
scenarios:

o When the list contains lesser elements
e When searching for a single element in an unordered array
What Is Searching?

Searching is the process of fetching a specific element in a collection of
elements. The collection can be an array or a linked list. If you find the
element in the list, the process is considered successful, and it returns the
location of that element.

And in contrast, if you do not find the element, it deems the search
unsuccessful.

Two prominent search strategies are extensively used to find a specific
item on a list. However, the algorithm chosen is determined by the list's
organization.

1. Linear Search

2. Binary Search

Moving ahead in this tutorial, you will understand what exactly a linear
search algorithm is.

What Is a Linear Search Algorithm?

Linear search, often known as sequential search, is the most basic search
technique. In this type of search, you go through the entire list and try to
fetch a match for a single element. If you find a match, then the address of
the matching target element is returned.

On the other hand, if the element is not found, then it returns a NULL
value.

Following is a step-by-step approach employed to perform Linear Search
Algorithm.

Searched Element
39

YA YAYA
(13| 9 | 2115 |39 19] 27 |
0 1 2 3 4 5 6

The procedures for implementing linear search are as follows:
Step 1: First, read the search element (Target element) in the array.

Step 2: In the second step compare the search element with the first
element in the array.

Step 3: If both are matched, display "Target element is found" and
terminate the Linear Search function.

Step 4: If both are not matched, compare the search element with the next
element in the array.

Step 5: In this step, repeat steps 3 and 4 until the search (Target) element
is compared with the last element of the array.

Step 6: If the last element in the list does not match, the Linear Search
Function will be terminated, and the message "Element is not found" will
be displayed.

So far, you have explored the fundamental definition and the working
terminology of the Linear Search Algorithm.

Algorithm and Pseudocode of Linear Search Algorithm
Algorithm of the Linear Search Algorithm

Linear Search (Array Arr, Value a) // Arr is the name of the array, and a
is the searched element.

Step 1: Setito 0//1is the index of an array which starts from 0

Step 2: ifi> n then go to step 7 // n is the number of elements in array
Step 3: if Arr[i] = a then go to step 6

Step 4: Setitoi+ 1

Step 5: Goto step 2

Step 6: Print element a found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode of Linear Search Algorithm

Start

Selection Algorithms

165

Fundamental of
Algorithms

166

linear search (Array , value)
For each element in the array
If (searched element == value)
Return's the searched lament location
end if
end for
end

Following your understanding of the linear search algorithm and
pseudocode, in the next segment, you will go through the practical
implementation of the algorithm.

Example of Linear Search Algorithm

Consider an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that
starts with O and ends with size minus one, 6.

Search element = 39

13 | 9 | 21 15| 39 | 19 27
0o 1 2 3 4 5 6

Step 1: The searched element 39 is compared to the first element of an
array, which is 13.

39

13 | 9 | 21 15 39 | 19 | 27
o 1 2 3 4 5 6

The match is not found, you now move on to the next element and try to
implement a comparison.

Step 2: Now, search element 39 is compared to the second element of an
array, 9.

13 | 9 | 21| 15 | 39 | 19 | 27

As both are not matching, you will continue the search. Selection Algorithms

Step 3: Now, search element 39 is compared with the third element,
which is 21.

39

13 | 9 | 21 | 15 39 | 19 | 27
o 1 2 3 4 5 6

Again, both the elements are not matching, you move onto the next
following element.

Step 4; Next, search element 39 is compared with the fourth element,
which is 15.

39
13 | 9 21 15 39| 19 27

0 1 2 3 4 5 6

As both are not matching, you move on to the next element.

Step 5: Next, search element 39 is compared with the fifth element 39.

39

13 | 9 | 21 15| 39 19 | 27
o 1 2 3 4 5 6

A perfect match is found, you stop comparing any further elements and
terminate the Linear Search Algorithm and display the element found at
location 4.

Followed by the practical implementation, you will move on to the
complexity of the linear search algorithm.

The Complexity of Linear Search Algorithm

You have three different complexities faced while performing Linear
Search Algorithm, they are mentioned as follows.

1. Best Case
2. Worst Case

3. Average Case
167

Fundamental of
Algorithms

168

You will learn about each one of them in a bit more detail.

Best Case Complexity

1. The element being searched could be found in the first position.
2. In this case, the search ends with a single successful comparison.

3. Thus, in the best-case scenario, the linear search algorithm performs
O(1) operations.

Worst Case Complexity

o The element being searched may be at the last position in the array or
not at all.

 In the first case, the search succeeds in ‘n’ comparisons.
o In the next case, the search fails after ‘n’ comparisons.

e Thus, in the worst-case scenario, the linear search algorithm performs
O(n) operations.

Average Case Complexity

When the element to be searched is in the middle of the array, the average
case of the Linear Search Algorithm is O(n).

Next, you will learn about the Space Complexity of Linear Search
Algorithm.

Space Complexity of Linear Search Algorithm

The linear search algorithm takes up no extra space; its space
complexity is O(n) for an array of n elements.

Now that you’ve grasped the complexity of the linear search algorithm,
look at some of its applications.

Application of Linear Search Algorithm
The linear search algorithm has the following applications:

e Linear search can be applied to both single-dimensional and multi-
dimensional arrays.

e Linear search is easy to implement and effective when the array
contains only a few elements.

o Linear Search is also efficient when the search is performed to fetch a
single search in an unordered-List.

Finally, in this tutorial, you will implement the linear search algorithm
in code.

Also Read: Arrays in Data Structure

Code Implementation of Linear Search Algorithm
#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

int main()

{

int array[50],i,target,num;

printf("How many elements do you want in the array");

scanf("%d",&num);
printf("Enter array elements:");
for(i=0;1<num;++1)
scanf("%d",&array[1]);
printf("Enter element to search:");
scanf("%d",&target);
for(i=0;i<num;++i)
if(array[i]==target)
break;

if(i<num)

printf("Target element found at location %d",1)

else
printf("Target element not found in an array");
return 0;

}

The output of linear search algorithm code:

Selection Algorithms

169

Fundamental of
Algorithms

170

B C\Users\Seni\Documentslinear.exe -] X

h return value @

5.5 MEDIAN OF MEDIANS ALGORITHM

Median of Medians Algorithm

It is a divide and conquer algorithm in that, it returns a pivot that in
the worst case will divide a list of unsorted elements into sub-
problems of size 3n/10 and 7n/10 assuming we choose a sublist size of
5.

It guarantees a good pivot that in the worst case will give a pivot in the
range between 30th and 70th percentile of the list of size n.
For a pivot to be considered good it is essential for it to be around the
middle, 30-70% guarantees the pivot will be around the middle 40% of the
list.

30% 40% 30%

bad pivots good pivots bad pivots

The algorithm is as follows,
1. Divide the list into sublists if size n, assume 5.

2. Initialize an empty array M to store medians we obtain from smaller
sublists.

3. Loop through the whole list in sizes of 5, assuming our list is divisible
by

4. For n/5 sublists, use select brute-force subroutine to select a median m,
which is in the 3rd rank out of 5 elements.

5. Append medians obtained from the sublists to the array M.

6. Use quickSelect subroutine to find the true median from array M, The

. Selection Algorithms
median obtained is the viable pivot.

7. Terminate the algorithm once the base case is hit, that is, when the
sublist becomes small enough. Use Select brute-force subroutine to find
the median.

Note: We used chunks of size 5 because selecting a median from a list
whose size is an odd number is easier. Even numbers require additional
computation. We could also select 7 or any other odd number as we shall
see in the proofs below.

Here is the procedure pictorially;

Laok for Gth elemert 10 1 67 20 56 8 43 90 54 34 0
1 0 B8 10 56 54 20 90 34 67 43

Look for 2nd element 56 54 20 90 34 67 43

Look for 2nd elemant 54 20 34 43 56 67 90

Pseudocode of Median of Medians Algorithm

medianOfMedians(arr[1...n])
if(n <SreturnSelect(arr[1...n], n/2))

Let M be an empty list

For i from O to n/5-1:

Let m =Select(arr[51 +1...51+5],3)

Add mto M
Return QuickSelect(M[1...n/5], n/10)
End medianOfMedians

It is recursive, it calls QuickSelect which in turn will call Median Of
Medians.

171

Fundamental of
Algorithms

172

Time and Space Complexity of Median of Medians Algorithm

This algorithm runs in O(n) linear time complexity, we traverse the list
once to find medians in sublists and another time to find the true median to
be used as a pivot.

The space complexity is O(logn) , memory used will be proportional to
the size of the lists.

Proofs: Why is this pivot good?
1. Lemma:

The median of medians will return a pivot element that is greater than and
less than at least 30% of all elements in the whole list.

proof:
Array M consists of n/5 medians of sub lists of size 5, these elements in
list M is greater than and less than at-least two elements in the original list.

QuickSelect will return a true median that represents the whole list which
is greater than and less than n/5/2 elements of list M and since each one of
the M elements is greater than and less than at least two other elements in
their previous sublists, therefore the true median is greater than and less
than at least 3n/10, 30 percentile of elements of the whole list.

2. Lemma:

With that, we guarantee that quickselect finds a good pivot in linear time
O(n) which in turn guarantees quickSort's worst case to be O(nlogn).

proof:

Recurrence relation;

T(n)={c if(n<1)

T(n/5) + T(7n/10) +dn if(n>1)
Theorem:

I. Tn)<k.n forn>n’

2. T(n)=T(n/5) + T(7n/10) + dn
Base Case:

n=1

T(1)=c<k. 1 thereforek>c
Induction Hypothesis:

Assume, T(j) <b .k for(k <n)

Induction Step:

T(n) = T(n5) + T(70n/10) + dn
T(n)<k.n/5+k.70/10 + dn=9/10kn + dn
By induction;

Tn)<k.n forn>1

The above proof worked because n/5 + 7n/10 < 1 ,we split the original list
in chunks of 5 assuming the original list is divisible by 5. We could also
use another odd number provided the above equation results in a number
below 1, then our theorem will perform its operations in O(n) linear time.

Therefore we get a big theta(n) time complexity for QuickSelect which
proves using this heuristic for QuickSelect ad QuickSort improves worst
case to O(n) and O(nlogn) for the respective algorithms.

1.6 Find the Kth smallest element in the sorted generated array

Given an array arr[] of N elements and an integer K, the task is to
generate an B[] with the following rules:

1. Copy elements arr[1...N], N times to array BJ[].

2. Copy elements arr[1...N/2], 2*N times to array BJ[].

3. Copy elements arr[1...N/4], 3*N times to array B]].

4. Similarly, until only no element is left to be copied to array BJ[].

Finally print the K™ smallest element from the array B[]. If K is out of
bounds of B[] then return -1.

Examples:

Input: arr[] = {1, 2, 3 K = 4
Output: |

{1, 2, 31,2 3, 1,2 3,1, 1, 1, 1, 1, 1} is the required array B[]
{1, 1,1, 1,1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3} in the sorted form where
1 is the 4th smallest element. Input: arr[] = {2, 4, 5, 1}, K = 13
Output: 2

Approach:

Maintain a Count Array where we must store the count of times every
element occurs in array B[]. It can be done for range of elements by
adding the count at start index and subtracting the same count at end index
+ 1 location.

1. Take cumulative sum of count array.

2. Maintain all elements of arr[] with their count in Array B[] along with
their counts and sort them based on element value.

3. Traverse through vector and see which element has Kth position in B[]
as per their individual counts.

Selection Algorithms

173

Fundamental of 4. If K is out of bounds of B[] then return -1.
Algorithms Below is the implementation of the above approach:
Python3 implementation of the approach
Function to return the Kth element in B[]
def solve(Array, N, K) :
Initialize the count Array
count Arr=[0]*(N +2) ;
factor = 1;
size = N;
Reduce N repeatedly to half its value
while (size) :
start = 1;
end = size;
Add count to start
count_Arr[1] += factor * N;
Subtract same count after end index
count Arr[end + 1] -= factor * N;
factor +=1;
size //= 2;
foriinrange(2, N+ 1):
count_Arr[i] += count Arr[i- 1];
Store each element of Array[] with their count
element = [];
for i in range(N) :
element.append((Array[i], count Arr[i+ 1]));
Sort the elements wrt value
element.sort();
start = 1;

for i in range(N) :

174

end = start + element[i][1] - 1;
If Kth element is in range of element][i]
return element][i]
if (K >= start and K <= end) :
return element[i][0];
start += element[i][1];
If K is out of bound
return -1;
Driver code
if name ==" main ":
arr=1[2,4,51];
N = len(arr);
K=13;
print(solve(arr, N, K));
This code is contributed by AnkitRai0l
Output:
2
Time Complexity: O(N * log N)
Auxiliary Space: O(N)

Find the kth element in the series generated by the given N ranges

Given N non-overlapping ranges L[] and R[] where the every range
starts after the previous range ends i.e. L[i] > R[i — 1] for all valid i. The
task is to find the K™ element in the series which is formed after sorting
all the elements in all the given ranges in ascending order.

Examples:
Imput: /] = {1, 8 21}, R[] = {4, 10, 23}, K = 6
Output: 9
The generated series will be 1, 2, 3, 4, 8 9, 10, 21, 22, 23
And the 6" element is 9

Imput: L/} = {2, 11, 31}, R[] = {7, 15 43}, K = 13
Output: 32

Selection Algorithms

175

Fundamental of
Algorithms

176

Approach: The idea is to use binary search. An array total to store the
number of integers that are present upto i™ index, now with the help of
this array find out the index in which the k™ integer will lie. Suppose that
index is j, now compute the position of the k"™ smallest integer in the
interval L[j] to R[j] and find the k™ smallest integer using binary search
where low will be L[j] and high will be R][j]. Below is the implementation
of the above approach:

Python3 implementation of the approach
Function to return the kth element
of the required series
def getKthElement(n, k, L, R):
1=1
h=n
To store the number of integers that lie
upto the ith index
total=[0 for i in range(n + 1)]
total[0] =0
Compute the number of integers
for 1 in range(n):
total[i + 1] = total[i] + (R[i] - L[i]) + 1
Stores the index, lying from 1
ton,
index = -1
Using binary search, find the index
in which the kth element will lie
while (I <= h):
m=(1+h)//2
if (total[m] > k):
index = m
h=m-1
elif (total[m] < k):

I=m+1

else : Selection Algorithms
index = m
break
1 = L[index - 1]
h = R[index - 1]
Find the position of the kth element
in the interval in which it lies
x =k - total[index - 1]
while (1 <= h):
m=(1+h)//2
if ((m - L[index - 1]) + 1 ==x):
return m
elif ((m - L[index - 1]) + 1 > x):
h=m-1
else:
l=m+1
Driver code
L=[1, 8, 21]
R=[4, 10, 23]
n = len(L)
k=6
print(getKthElement(n, k, L, R))
Output:
9
Time Complexity: O(N) Auxiliary Space: O(N)

5.6 FIND THE KTH SMALLEST ELEMENT FROM AN
ARRAY USING SORTING

Finding thekth smallest element of an array (efficiently) may seem a little
tricky at first; however, it can easily be found using a min-heap or by
sorting the array.

177

Fundamental of Algorithm

Algorithms The following steps are involved in finding thekth smallest element using
sorting.

1. Sort the given array in ascending order using a sorting algorithm
like merge sort, bubble sort, or heap sort.

2. Return the element at index £—1 in the sorted array.
The illustration below further explains this concept:
Implementation
The following code snippet implements the above algorithm in C++:
#include <iostream>
#include<algorithm>
using namespace std,;
int main() {

int arr[] = {10, 1,0, 8, 7, 2};

int size = sizeof(arr)/sizeof(arr[0]);

// Sorting the array

sort(arr, arr + size);

// Finding the third smallest element in the array

cout<< "The third smallest element in the array is: "<<
arr[2]<<end];

return 0;

1
S

Find the Kth smallest element in the sorted generated array

Given an array arr|[] of N elements and an integer K, the task is to
generate an B[] with the following rules:

1. Copy elements arr[1...N], N times to array B[].

2. Copy elements arr[1...N/2], 2*N times to array BJ].

3. Copy elements arr[1...N/4], 3*N times to array B]].

4. Similarly, until only no element is left to be copied to array BJ[].

Finally print the K™ smallest element from the array B[]. If K is out of
bounds of B[] then return -1.

Examples:

Input: arr[] = {1, 2,3}, K =4

Output: |

{1,2,3,1,2,3, 1,23, 1,1, 1, 1, 1, 1} is the required array B[]

178

{1, 1,1,1,1,1,1,1,1, 2, 2, 2,3, 3, 3} in the sorted form where
1 is the 4th smallest element.

Input: arr[] = {2, 4,5, 1}, K=13

Output: 2

Approach:

Selection Algorithms

1. Maintain a Count_Array where we must store the count of times every
element occurs in array B[]. It can be done for range of elements by
adding the count at start index and subtracting the same count at end
index + 1 location.

2. Take cumulative sum of count array.

3. Maintain all elements of arr[] with their count in Array B[] along with
their counts and sort them based on element value.

4. Traverse through vector and see which element has Kth position in
B[] as per their individual counts.

5. If K is out of bounds of B[] then return -1.
Below is the implementation of the above approach:
Python3 implementation of the approach
Function to return the Kth element in B[]
defsolve(Array, N, K) :
Initialize the count Array
count Arr=[0]*(N +2) ;
factor =1;
size =N;
Reduce N repeatedly to half its value
while(size) :
start =1;
end =size;
Add count to start
count Arr[1] +=factor *N;
Subtract same count after end index
count Arr[end +1] -=factor *N;

factor +=1;

179

Fundamental of size //=2;
Algorithms
foriinrange(2, N +1) :

count_Arr[i] +=count_ Arr[i-1];
Store each element of Array[] with their count
element =[];
foriinrange(N) :
element.append((Array[i], count_Arr[i+1]));
Sort the elements wrt value
element.sort();
start =1;
foriinrange(N) :
end =start +element[i][1] -1;
If Kth element is in range of element][i]
return element([i]
if(K >=start andK <=end) :
returnelement[i][0];
start +=element[i][1];
If K is out of bound
return-1;

Driver code

' "

if name =="_main_ "
arr=[2, 4, 5, 1];

N =len(arr);

K=13;

print(solve(arr, N, K));

This code is contributed by AnkitRaiOl

180

Output:

2

Time Complexity: O(N * log N)

Auxiliary Space: O(N)

Exercise end up

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

What is meant by sorting?

What are the two main classifications of sorting based on the source
of data?

What is meant by external and internal sorting?
What is the purpose of quick sort?

What is the advantage of quick sort?

What is the purpose of insertion sort?

Define merge sort.

What are the advantages of merge sort?

What is linear search?

What is binary search?

Differentiate linear search and binary search.
Differentiate quick sort and merge

Give the advantage of merge sort

Distinguish quick sort and insertion sort.
Define sorting.

Narrate insertion sort with example

List examples for various sorting

Give the advantage of Merge sort

List linear search and binary search with example

Narrate insertion sort with example

1. Write and trace the following algorithms with suitable example.

I. Breadth first traversal II. Depth first traversal

2. Sort the sequence 3,1,4,1,5,9,2,6,5 using insertion sort.

3. Give short notes of : (i) Merge sort with suitable example.

Selection Algorithms

181

Fundamental of
Algorithms

182

4. Write an algorithm to sort ‘n’ numbers using quicksort.

5. Show how the following numbers are sorted using quicksort : 42, 28,
90,2, 56. 39, 12, 87 5. Sort the sequence 13,11, 74,37,85,39,22,56,25
using Insertion sort.

6. Explain the operation and implementation of merge sort.
7. Explain the operation and implementation of external sorting.
8. Write quick sort algorithm

9. Trace the quick sort algorithm for the following list of numbers.
90,77,60,99,55,88,66

10. Write down the merge sort algorithm and give its worst case, best
case and average case analysis.

11. Explain linear search algorithm with an example.
12. Explain linear search & binary search algorithm in detail.

13. Briefly differentiate linear search algorithm with binary search
algorithm.

5.7 LIST OF REFERENCES

List of reference materials used in this book.
e Quicksort, C.A.R. Hoare, Comput. J., 5 (1962), p. 10-15.

o Sorting, Lloyd Allison, csse.monash.edu.au/~lloyd/tildeAlgDS/Sort.

e Sequential and parallel sorting algorithms, H.W. Lang, iti.fh-
flensburg.de/lang/algorithmen/sortieren/algoen.htm.

5.8 BIBILOGRAPHY

1 In computer science, selection sortis an in-place comparison sorting
algorithm. It has an O(»n?) time complexity, which makes it inefficient
on large lists, and generally performs worse than the similar insertion
sort. Selection sort is noted for its simplicity and has performance
advantages over more complicated algorithms in certain situations,
particularly where auxiliary memory is limited.

2 The algorithm divides the input list into two parts: a sorted sublist of
items which is built up from left to right at the front (left) of the list and
a sublist of the remaining unsorted items that occupy the rest of the list.
Initially, the sorted sublist is empty and the unsorted sublist is the entire
input list. The algorithm proceeds by finding the smallest (or largest,
depending on sorting order) element in the unsorted sublist, exchanging
(swapping) it with the leftmost unsorted element (putting it in sorted
order), and moving the sublist boundaries one element to the right.

3 The time efficiency of selection sort is quadratic, so there are a number
of sorting techniques which have better time complexity than selection
sort.

Selection Algorithms

4 Example

Here is an example of this sort algorithm sorting five elements:

Sorted sublist Unsorted sublist = Least element in unsorted list
0 (11,25,12,22,64) 11
(11) (25, 12,22, 64) 12
(11, 12) (25,22, 64) 22
(11, 12, 22) (25, 64) 25
(11, 12, 22, 25) (64) 64

(11, 12, 22,25, 64) | ()

arr[] =64 251222 11

// Find the minimum element in arr[0...4]
// and place it at beginning
1125122264

// Find the minimum element in arr[1...4]
// and place it at beginning of arr[1...4]
1112252264

// Find the minimum element in arr[2...4]
// and place it at beginning of arr[2...4]
1112222564

// Find the minimum element in arr[3...4]
// and place it at beginning of arr[3...4]
1112222564

183

Fundamental of
Algorithms

184

Conclusion of selection sort algorithms

Conclusion: Selection sort is sorting algorithm known by its simplicity.
Unfortunately, it lacks efficiency on huge lists of items, and also, it does
not stop unless the number of iterations has been achieved (n-1, n is the
number of elements) even though the list is already sorted.

O O, 0 L0
0‘0 0‘0 0‘0 0‘0

ALGORITHM AND DESIGN
TECHNIQUES

Unit Structure :

6.0
6.1
6.2

Objectives

Introduction

Algorithm & it’s classification

6.2.1 Classification by implementation method
6.2.2 Classification by design method

6.2.3 Classification by design approaches

6.2.4 Other classification

6.3 Summary

6.4 Questions

6.5 References

6.0 OBJECTIVES

After this chapter, you will be

e Able to Understand Algorithm design and techniques.

e Able to develop your own versions for a given computational task and

to compare and contrast their performance.

e Able to apply important algorithmic design paradigms and methods of

analysis.

e Able to select appropriate algorithms for a given problem, integrate

multiple algorithms effectively.

6.1 INTRODUCTION

Before solving a new problem, the general tendency is to look for the
similarity of the current problem to other problems for which we have
solutions. This helps us in getting the solution easily. In this chapter, we
will see different ways of classifying the algorithms and in subsequent
chapters we will focus on a few of them (Greedy, Divide and Conquer,

Dynamic Programming).

185

Fundamental of
Algorithms

186

6.2 ALGORITHM & IT’S CLASSIFICATION

The word Algorithm means ” A set of finite rules or instructions to be
followed in calculations or other problem-solving operations ” Or ” A
procedure for solving a mathematical problem in a finite number of steps
that frequently involves recursive operations”. Therefore an Algorithm is
a procedure to solve a particular problem in a finite number of steps for a
finite-sized input. The algorithms can be classified in various ways. They
are:

Implementation Method
Design Method
Design Approaches

b=

Other Classifications

e The different algorithms in each classification method are discussed
below.

6.2.1 Classification By Implementation Method

An algorithm may be implemented according to different basical
principles. There are primarily three main categories into which an
algorithm can be named in this type of classification. They are:

e Recursion or Iteration:

A recursive algorithm is an algorithm which calls itself again and
again until a base condition is achieved whereas iterative algorithms
use loops and/ or data structures like stacks, queues to solve any
problem. Every recursive solution can be implemented as an iterative
solution and vice versa.

Example: The Tower of Hanoi is implemented in a recursive fashion
while Stock Span problem is implemented iteratively.

e Exact or Approximate:

Algorithms that are capable of finding an optimal solution for any
problem are known as the exact algorithm. For all those problems,
where it is not possible to find the most optimized solution, an
approximation algorithm is used. Approximate algorithms are the type
of algorithms that find the result as an average outcome of sub
outcomes to a problem. Example: For NP-Hard Problems,
approximation algorithms are used. Sorting algorithms are the exact
algorithms.

e Serial or Parallel or Distributed Algorithms:

In serial algorithms, one instruction is executed at a time while
parallel algorithms are those in which we divide the problem into
subproblems and execute them on different processors. If parallel

algorithms are distributed on different machines, then they are known
as distributed algorithms.

6.2.2 Classification By Design Method

There are primarily three main categories into which an algorithm can be
named in this type of classification. They are:

e Greedy Method: Greedy algorithms work in stages. In each stage, a
decision is made that is good at that point. It assumes that the local
best selection also makes for the global optimal solution. In
the greedy method, at each step, a decision is made to choose
the local optimum, without thinking about the future consequences.
Example: Fractional Knapsack, Activity Selec

e Divide and Conquer: The D & C strategy solves a problem by:

o Divide: Breaking the problem into sub problems that are
themselves smaller instances of the same type of problem.

o Recursion: Recursively solving these sub problems.
o Conquer: Appropriately combining their answers.

The Divide and Conquer strategy involves dividing the problem into sub
problem, recursively solving them, and then recombining them for the
final answer. Example: Merge sort, Quick sort.

e Dynamic Programming:

The approach of Dynamic programming is similar to divide and
conquer. The difference is that whenever we have recursive function
calls with the same result, instead of calling them again we try to store
the result in a data structure in the form of a table and retrieve the
results from the table. Thus, the overall time complexity is reduced.
“Dynamic” means we dynamically decide, whether to call a function
or retrieve values from the table. Dynamic programming (DP) and
memoization work together. The difference between DP and divide
and conquer is that in the case of the latter there is no dependency
among the sub problems, whereas in DP there will be an overlap of
sub-problems. By using memoization [maintaining a table for already
solved sub problems] , DP reduces the exponential complexity to
polynomial complexity for many problems.

Example: 0-1 Knapsack, subset-sum problem.
e Linear Programming:

In Linear Programming, there are inequalities in terms of inputs and
maximizing or minimizing some linear functions of inputs.
Example: Maximum flow of Directed Graph.

Algorithm and Design
Techniques

187

Fundamental of
Algorithms

188

Reduction (Transform and Conquer):

In this method, we solve a difficult problem by transforming it into a
known problem for which we have an optimal solution. Basically, the
goal is to find a reducing algorithm whose complexity is not
dominated by the resulting reduced algorithms. Example: Selection
algorithm for finding the median in a list involves first sorting the list
and then finding out the middle element in the sorted list. These
techniques are also called transform and conquer.

Backtracking:

This technique is very useful in solving combinatorial problems that
have a single unique solution. Where we have to find the correct
combination of steps that lead to fulfillment of the task. Such
problems have multiple stages and there are multiple options at each
stage. This approach is based on exploring each available option at
every stage one-by-one. While exploring an option if a point is
reached that doesn’t seem to lead to the solution, the program control
backtracks one step, and starts exploring the next option. In this way,
the program explores all possible course of actions and finds the route
that leads to the solution. Example: N-queen problem, maize problem.

Branch and Bound: This technique is very wuseful in solving
combinatorial optimization problem that have multiple solutions and
we are interested in find the most optimum solution. In this approach,
the entire solution space is represented in the form of a state space
tree. As the program progresses each state combination is explored,
and the previous solution is replaced by new one if it is not the
optimal than the current solution.
Example: Job sequencing, Travelling salesman problem.

6.2.3 Classification By Design Approaches

There are two approaches for designing an algorithm these approaches
include

1.
2.

Top-Down Approach :
Bottom-up approach

Top-Down Approach: In the top-down approach, a large problem is
divided into small sub-problem. and keep repeating the process of
decomposing problems until the complex problem is solved.

Bottom-up approach: The bottom-up approach is also known as the
reverse of top-down approaches. In approach different, part of a
complex program is solved using a programming language and then
this is combined into a complete program.

6.2.4 Other Classifications

Apart from classifying the algorithms into the above broad categories,
the algorithm can be classified into other broad categories like:

e Randomized Algorithms: Algorithms that make random choices for
faster solutions are known as randomized algorithms.

Example: Randomized Quicksort Algorithm.

e C(lassification by complexity: Algorithms that are classified on the
basis of time taken to get a solution to any problem for input size.
This analysis is known as time complexity analysis. Example: Some
algorithms take O(n), while some take exponential time.

e C(lassification by Research Area: In computer science each field
has its own problems and needs efficient algorithms. Examples:
search algorithms, sorting algorithms, merge algorithms, numerical
algorithms, graph algorithms, string algorithms, geometric algorithms,
combinatorial algorithms, machine learning, cryptography, parallel
algorithms, data compression algorithms, parsing techniques, and
more.

e Branch and Bound Enumeration and Backtracking: These are
mostly used in Artificial Intelligence.

6.3 SUMMARY

e In this chapter we have foremost seen an introduction about
algorithm. There are many ways of classifying algorithms and a few
of them we have discuss in brief. We have classify algorithm into
Implementation Method, Design Approaches, Design Method and few
other types of classifications.

6.4 QUESTIONS

1. Explain Classification by implementation method.
2. Explain classification by design approaches.
3. Explain classification by design method.

4. Explain Other Classification types.

6.5 REFERENCES

1. Data Structure and Algorithmic Thinking with Python, Narasimha
Karumanchi , CareerMonk Publications, 2016.

2. Introduction to Algorithm, Thomas H Cormen, PHI

o O O 0
0.0 0.0 0.0 0.0

Algorithm and Design
Techniques

189

GREEDY ALGORITHMS

Unit Structure :
7.0 Objectives
7.1 Introduction
7.2 What is greedy algorithm?
7.3 Greedy strategy
7.3.1 Elements of greedy algorithms
7.3.2 Does greedy always work?
7.3.3 Why to use the greedy algorithm?
7.4 Advantages & disadvantages of greedy algorithm
7.5 Greedy applications
7.6 Understanding greedy technique
7.6.1 Huffman coding
7.6.2 Fractional knapsack problem
7.6.3 Minimum coin change problem
7.7 Summary
7.8 Questions

7.9 References

7.0 OBJECTIVES

e In an algorithm design there is no one 'silver bullet' that is a cure for
all computation problems. Different problems require the use of
different kinds of techniques.

e To be able to be a good programmer we must know to use all the
different techniques based on the type of problem.

e After this chapter the learners will be able to understand how to
build up a solution piece by piece, always choosing the next piece
that offers the most obvious and immediate benefit.

190

7.1 INTRODUCTION

Let us start our discussion with simple theory that will give us an
understanding of the Greedy technique. In the game of Chess, every
time we make a decision about a move, we have to also think about the
future consequences. Whereas, in the game of Tennis (or Volleyball),
our action is based on the immediate situation. This means that in some
cases making a decision that looks right at that moment gives the best
solution (Greedy), but in other cases it doesn’t. The Greedy technique is
best suited for looking at the immediate situation.

7.2 WHAT IS GREEDY ALGORITHM?

e [t simply means to pick up a choice/solution that seems the best at the
moment (being greedy). This technique is best suited when we want
an immediate situation. It helps to solve optimization problems i.e.
which gives either minimum results or maximum results.

e A solution satisfying the condition in the problem is a feasible
solution. The solution having minimum cost out of all possible
feasible solutions is the optimal solution i.e. it is the best solution.

e The goal of the greedy algorithm is to find the optimal solution. There
can be only 1 optimal solution. For Example: Let us consider the
example of the container loading problem. In a container loading
problem, a large ship is loaded with cargo. The cargo has containers of
equal sizes but different weights. The cargo capacity is of the ship is
cp. We need to load the containers in the ship in such a way that the
ship has maximum containers. For example, let us say there are a total
of 4 containers with weights: w1=20, w2=75, w3=40, w4=20. Let cp =
80. Then, to load maximum containers we will load container-1,3, 4.

TN
Ne—
C
1
N—
N C Y
Ne—
4
N—
C . .
3 Cargo with maximum
numbers of containers
C1,C4,C3 :- Cylinder

e We will load the containers in the order of increasing weights so that
maximum containers load inside the ship. Here, the order of loading
is container 1 —container4—container3.

Greedy Algorithms

191

Fundamental of
Algorithms

192

7.3 GREEDY STRATEGY

Greedy algorithms work in stages. In each stage, a decision is made
that is good at that point, without bothering about the future. This
means that some local best is chosen. It assumes that a local good
selection makes for a global optimal solution.

The choice made by the greedy approach does not consider future
data and choices. In some cases making a decision that looks right at
that moment gives the best solution (Greedy), but in other cases, it
doesn’t.

The greedy technique is used for optimization problems (where we
have to find the maximum or minimum of something). The Greedy
technique is best suited for looking at the immediate situation. Let us
study Greedy Strategy with an example:

. Let's start with the root node 20. The weight of the right child is 3

and the weight of the left child is 2.

. Our problem is to find the largest path. And, the optimal solution at

the moment is 3. So, the greedy algorithm will choose 3.

. Finally the weight of an only child of 3 is 1. This gives us our final

result 20 + 3 + 1 = 24.

. However, it is not the optimal solution. There is another path that

carries more weight (20 + 2 + 10 = 32) as shown in the image below.

ee 5

e Therefore, greedy algorithms do not always give an optimal/feasible

solution.

7.3.1 Elements Of Greedy Algorithms

e Assume that you have an objective function that needs to be

optimized (either maximized or minimized) at a given point. A
Greedy algorithm makes greedy choices at each step to ensure that
the objective function is optimized. The Greedy algorithm has only
one shot to compute the optimal solution so that it never goes back
and reverses the decision. The two basic properties of optimal
Greedy algorithms are:

o Greedy choice property.

o Optimal substructure.

» Greedy choice property:- This property says that the globally

optimal solution can be obtained by making a locally optimal
solution (Greedy). The choice made by a Greedy algorithm may
depend on earlier choices but not on the future. It iteratively makes
one Greedy choice after another and reduces the given problem to a
smaller one.

Optimal substructure:- A problem exhibits optimal substructure if
an optimal solution to the problem contains optimal solutions to the
subproblems. That means we can solve subproblems and build up the
solutions to solve larger problems.

7.3.2 Does greedy always work?

Making locally optimal choices does not always work. Hence,
Greedy algorithms will not always give the best solutions.

7.3.3 Why to use the greedy algorithm?

In many cases greedy algorithm is the most intuitive approach to
solve a given optimization problem, that is, it is often the first
guessed solution and is easy to formulate.

Correct greedy algorithms are often more powerful and fast as
compared to other approaches such as dynamic programming. This is
because the greedy approach has to consider only one locally optimal
choice while moving ahead with the solution, while dynamic
programming must check all possible cases.

Greedy algorithms work for a wide range of problems (such listed
here), many of which have real-life applications in fields such as
designing networking protocols and scheduling multiple events.

7.4 ADVANTAGES AND DISADVANTAGES OF

GREEDY METHOD

Easy to understand
Easy to code

We do not have to spend time re-examining the already computed
values.

Typically have less time complexity.

Analyzing the run time for greedy algorithms will generally be
much easier than for other techniques (like Divide and conquer). For
the Divide and conquer technique, it is not clear whether the technique
is fast or slow. This is because at each level of recursion the size of
gets smaller and the number of sub-problems increases.

Greedy Algorithms

193

Fundamental of
Algorithms

194

e Greedy algorithms can be used for optimization purposes or finding

close to optimization in case of Hard problems.

The difficult part is that for greedy algorithms you have to work
much harder to understand correctness issues. Even with the correct
algorithm, it is hard to prove why it is correct.

The local optimal solution may not always be globally optimal.

Not applicable for many problems

7.5 GREEDY APPLICATIONS

Sorting: Selection sort, Topological sort.

Priority Queues: Heap sort.

Huffman coding compression algorithm.

Prim’s and Kruskal’s algorithms.

Shortest path in Weighted Graph [Dijkstra’s].

Coin change problem.

Fractional Knapsack problem.

Disjoint sets-UNION by size and UNION by height (or rank).
Job scheduling algorithm.

Greedy techniques can be used as an approximation algorithm for
complex problems.

7.6 UNDERSTANDING GREEDY TECHNIQUE

7.6.1 Huffman Coding

Huffman Coding is a technique of compressing data to reduce its
size without losing any of the details. It was first developed by David
Huffman.

Huffman Coding is generally useful to compress the data in which
there are frequently occurring characters. We know that each
character takes 8 bits for representation. But in general, we do not
use all of them. Also, we use some characters more frequently than
others. When reading a file, the system generally reads 8 bits at a
time to read a single character. But this coding scheme is inefficient.
The reason for this is that some characters are more frequently used
than other characters. Let’s say that the character ‘e’ is used 10 times
more frequently than the character 'q’. It would then be advantageous
for us to instead use a 7 bit code for e and a 9 bit code for q because
that could reduce our overall message length.

On average, using Huffman coding on standard files can reduce them
anywhere from 10% to 30% depending on the character frequencies.
The idea behind the character coding is to give longer binary codes for

less frequent characters and groups of characters. Also, the character
coding is constructed in such a way that no two character codes are
prefixes of each other.

e An ExampleLet’s assume that after scanning a file we find the
following character frequencies

Character Frequency
a 1.2

e T =T T =
o
w

Given this, create a binary tree for each character that also stores
the frequency with which it occurs (as shown below):-

b-2 c-7 a-12 d-13 e-14 -85

e The algorithm works as follows: In the list, find the two binary trees
that store minimum frequencies at their nodes. Connect these two
nodes at a newly created common node that will store no character
but will store the sum of the frequencies of all the nodes connected
below it. So our picture looks like this:

o
V]
0

=]

a~12 d-13 e-14 f-85

o Repeat this process until only one tree is left:

21 T ‘
9 a-12 d-13 e-14
b-2 c-7

£-85
48
/\
21 27
/\ /\
9 a-12 d-13 e-14
P
b-2 c-7 -85

Greedy Algorithms

195

Fundamental of
Algorithms

196

43 -85
/\
23 o7
/\ /\
=} | a-12 d-13 e-14
/\
b-2 c-7

e Once the tree is built, each leaf node corresponds to a letter with a

code. To determine the code for a particular node, traverse from the
root to the leaf node. For each move to the left, append a 0 to the
code, and for each move to the right, append a 1. As a result, for the
above generated tree, we get the following codes:

Letter Code

001
0000
0001

010

=" o = -

m

011

-
ot

» Calculating Bits Saved

e Now, let us see how many bits that Huffman coding algorithm is

saving. All we need to do for this calculation is see how many bits
are originally used to store the data and subtract from that the
number of bits that are used to store the data using the Huffman
code. In the above example, since we have six characters, let’s
assume each character is stored with a three bit code.

Since there are 133 such characters (multiply total frequencies by 3),
the total number of bits used is 3 * 133 = 399. Using the Huffman
coding frequencies we can calculate the new total number of bits
used:

Letter Code Frequency Total Bits
a 001 12 36
b 0000 2 8
C 0001 7 28
d 010 13 39
o 011 14 42
f 1 85 85
Total 238

e Thus, we saved 399 — 238 = 161 bits, or nearly 40% of the storage

space.

HuffmanCodingAlgorithm(int A[], int n) | Greedy Algorithms
Initialize a priority queue, PQ, to contain the n elements in A;
struct BinaryTreeNode ‘temp;
for (i = 1; i<n; i+#) |
temp = (struct *jmalloc(sizeof(BinaryTreeNode));
temp—left = Delete-Min(PQ);
temp—right = Delete-Min(PQ);
temp—data = temp—left—data + temp—right—data;
Insert temp to PQ;

return PQ;

e Time Complexity: O(nlogn), since there will be one build heap, 2n —
2 delete_mins, and n — 2 inserts, on a priority queue that never has
more than n elements.

7.6.2 Fractional knapsack problem

e The fractional knapsack problem is also one of the techniques which
are used to solve the knapsack problem. In fractional knapsack, the
items are broken in order to maximize the profit. The problem in
which we break the item is known as a Fractional knapsack problem.

e There are basically three approaches to solve the problem:

o The first approach is to select the item based on the maximum
profit.

o The second approach is to select the item based on the minimum
weight.

o The third approach is to calculate the ratio of profit/weight.

e [t is an optimization problem in which we can select fractional items
rather than binary choices. The objective is to obtain a filling
knapsack that maximizes the total profit earned. Consider the below

example:
OBJECTS 1 2 3 4 5 6 7
PROFIT(p) 5 10 15 7 8 9 4
WEIGHT(w) 1 3 5 4 1 3 2
W:Weight of the |15
knapsack
n (no of items) 7

197

Fundamental of
Algorithms

198

» First approach: The first approach is to select the item based on the

maximum profit.

Object Profit

3 15

2 10

6 9

5 8

7 7*% =525

Weight

5

3

Remaining weight
15-5=10

10-3=7

e The total profit would be equal to (15 + 10 + 9 + 8 + 5.25) = 47.25

» Second approach: The second approach is to select the item based on

the minimum weight.

Object Profit

1 5

5 7

7 4

2 10

6 9

4 7

3 15*1/5=3

Weight

1

1

4

1

Remaining weight

15-1=14
14-1=13
13-2=11
11-3=8
8-3=5
5-4=1
1-1=0

e In this case, the total profit would be equalto (5+7+4+10+9 +
7+ 3)=45.

Third approach:

¢ In the third approach, we will calculate the ratio of profit/weight.

¢ In this case, we first calculate the profit/weight ratio.
1.

el

Object 1: 5/1 =5
Object 2: 10/3=3.33
Object 3: 15/5=3
Object 4: 7/4=1.7
Object 5: 8/1 =8

6. Object 6: 9/3 =3
7. Object 7: 4/2=2

Object Profit Weight Remaining weight

5

1

8 1 15-1=14
5 1 14-1=13
10 3 13-3=10
15 5 10-5=5
9 3 5-3=2
4 2 2-2=0

As we can observe in the above table that the remaining weight is zero
which means that the knapsack is full. We cannot add more objects in
the knapsack. Therefore, the total profit would be equal to (8 +5 + 10
+15+9+4),ie.,51.

In the first approach, the maximum profit is 47.25. The maximum
profit in the second approach is 45. The maximum profit in the third
approach is 51. Therefore, we can say that the third approach, i.e.,
maximum profit/weight ratio is the best approach among all the
approaches.

7.7.3 Minimum Coin Change Problem

The Minimum Coin Change problem is actually a variation of the
problem where you find whether a change of the given amount exists
or not

Given a set of coins and a value, we have to find the minimum
number of coins which satisfies the value.
Example

o coins[] = {5,10,20,25}

o value =150

Possible Solutions:- {coin * count}

o {5*10}=50]10 coins].

o {5*8+10* 1} =509 coins] goes on.

{10 * 5} =50 [5 coins].

{20*2+10* 1} =50 [3 coins].

{20 * 2+ 5 *2} =50 [4 coins].

o {25 *2} =502 coins] etc etc

Best Solution:- Two 25 rupees. Total coins two. {25 * 2 }=50.

O

o

O

Greedy Algorithms

199

Fundamental of
Algorithms

200

7.7 SUMMARY

In this chapter you learned what a greedy programming paradigm is and
discovered different techniques and steps to build a greedy solution. The
chapter also discussed applications and mentions the advantages and
disadvantages of greedy algorithm. Towards the end the chapter
introduced different examples to understand greedy techniques.

7.8 QUESTIONS

A

Explain Greedy Strategy with an example.

What are the elements of Greedy Strategy.

Give advantages and disadvantages of greedy method.
Explain in brief Huffman coding.

Write a note on Fractional KnapSack Problem.

7.9 REFERENCES

1.

Data Structure and Algorithmic Thinking with Python, Narasimha
Karumanchi, CareerMonk Publications, 2017.

. Introduction to Algorithm, Thomas H Cormen, PHIL
. https://www javatpoint.com/fractional-knapsack-problem.
. https://www.geeksforgeeks.org/

. https://www.codechef.com/wiki/

& O O 0
0’0 0‘0 0’0 0‘0

3

DIVIDE AND CONQUER ALGORITHMS

Unit Structure :

8.0
8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9

Objectives

Introduction

What is divide and conquer strategy?

Does divide and conquer always work?

Divide and conquer visualization

Understanding divide and conquer

Advantages & disadvantages of divide & conquer
8.6.1 Advantages of divide & conquer (D&C)
8.6.2 Disadvantages of divide & conquer (D&C)
Master theorem

Divide and conquer: problems & solutions

Summary

8.10 Questions

&.11 References

8.0 OBJECTIVE

e After this chapter learners will understand about divide and conquer a

powerful algorithm design technique.

e Learners will be able to

matrix multiplication.

e Learners will be able to solve recursion based problem.

solve many important problems such as
mergesort, quicksort, calculating Fibonacci numbers, and performing

8.1 INTRODUCTION

¢ In the Greedy chapter, we have seen that for many problems the Greedy
strategy failed to provide optimal solutions. Among those problems,
there are some that can be easily solved by using the Divide and
Conquer (D & C) technique. Divide and Conquer is an important

algorithm design technique based on recursion.

201

Fundamental of
Algorithms

202

The D & C algorithm works by recursively breaking down a problem into
two or more sub problems of the same type, until they become simple
enough to be solved directly. The solutions to the sub problems are then
combined to give a solution to the original problem.

8.2 WHAT IS DIVIDE AND CONQUER STRATEGY?

Many useful algorithms are recursive in structure, i.e., to solve the given
problem, they call themselves recursively one or more times to deal with
closely related sub-problems. These algorithms typically follow a divide-
and-conquer algorithm. The divide and conquer algorithm involves three
steps at each level of recursion.

e The D & C strategy solves a problem by:

o Divide: Breaking the problem into sub problems that are themselves
smaller instances of the same type of problem.

o Recursion: Recursively solving these sub problems.

o Conquer: Appropriately combining their answer.

8.3 DOES DIVIDE AND CONQUER ALWAYS WORK?

It’s not possible to solve all the problems with the Divide & Conquer
technique. As per the definition of D & C, the recursion solves the
subproblems which are of the same type. For all problems it is not possible
to find the subproblems which are the same size and D & C is not a choice
for all problems.

8.4 DIVIDE AND CONQUER VISUALIZATION

e Divide and Conquer is an algorithmic pattern. In algorithmic methods,
the design is to take a dispute on a huge input, break the input into
small pieces (sub-problem), decide the problem on each of the small
pieces, and then merge the piecewise solutions into a global solution.
This mechanism of solving the problem is called the Divide & Conquer
Strategy.

e For better understanding, consider the following visualization. Assume
that n is the size of the original problem. As described above, we can
see that the problem is divided into sub problems with each of size n/b
(for some constant b). We solve the sub problems recursively and
combine their solutions to get the solution for the original problem.

e Here's how to view one step, assuming that each divide step creates two
subproblems (though some divide-and-conquer algorithms create more
than two):

Divide and Conquer
Algorithms

E divicdle E

solve solve

Conguer
9 subproblem \ubpruhl em

connrbine

Source:
https://www.khanacademy.org

. If we expand out two more recursive steps, it looks like this:

}mﬂmk

divide

divide divide

(spbien’) (subproviem) (sbprolen) (subprbin) (sbproten) (hpcbim) (sl) (Sabprti

divide divide

solve solve solve solve solve solve solve solve
conguer

Y subproblem ¥ subproblem subproblem y subproblem ¥ subproblem subproblem ¥ subproblem subproblem|

[t | | Sy || S | Sy || S| i || S | S

combine

conibine

Source:
https://www.khanacademy.org

8.5 UNDERSTANDING DIVIDE AND CONQUER

e For a clear understanding of D & C, let us consider a story. There was
an old man who was a rich farmer and had seven sons. He was afraid
that when he died, his land and his possessions would be divided
among his seven sons, and that they would quarrel with one another. So
he gathered them together and showed them seven sticks that he had
tied together and told them that anyone who could break the bundle
would inherit everything. They all tried, but no one could break the
bundle. Then the old man untied the bundle and broke the sticks one by
one. The brothers decided that they should stay together and work
together and succeed together.

203

Fundamental of
Algorithms

204

e The moral for problem solvers is different. If we can’t solve the
problem, divide it into parts, and solve one part at a time. Therefore a
divide and conquer algorithm is a strategy of solving a large problem
by breaking the problem into smaller sub-problems, solving the sub-
problems, and combining them to get the desired output. To use the
divide and conquer algorithm, recursion is used.

e The divide-and-conquer paradigm is often used to find an optimal
solution of a problem. Its basic idea is to decompose a given problem
into two or more similar, but simpler, subproblems, to solve them in
turn, and to compose their solutions to solve the given problem.
Problems of sufficient simplicity are solved directly.

-0
O B SN
. Divide and Conguer .
T ______.---'. -@® ~—

Source https://mobisoftinfotech.com/resources/blog/

e Example of Divide and Conquer Algorithm:- Here, we will sort an
array using the divide and conquer approach, i.e. merge sort.

1. Assume the given array is:

2. Break the array into two segments:- Recursively split each subpart
again into two parts until you have separate elements.

3. Merge the individual parts in an ordered manner. Here, the steps to
conquer and merge go hand in hand.

8.6 ADVANTAGES OF DIVIDE AND CONQUER (D&C)

8.6.1 Advantages Of Divide And Conquer (D&C)

1. Solving difficult problems: D & C is a powerful method for solving
difficult problems. As an example, consider the Tower of Hanoi
problem. This requires breaking the problem into subproblems, solving
the trivial cases and combining the subproblems to solve the original
problem. Dividing the problem into subproblems so that subproblems
can be combined again is a major difficulty in designing a new
algorithm. For many such problems D & C provides a simple solution.

2. Parallelism: Since D & C allows us to solve the subproblems

independently, this allows for execution in multiprocessor machines,
especially shared-memory systems where the communication of data
between processors does not need to be planned in advance, because
different subproblems can be executed on different processors.

. Memory access: D & C algorithms naturally tend to make efficient use

of memory caches. This is because once a subproblem is small, all its
subproblems can be solved within the cache, without accessing the
slower main memory.

8.6.2 DISADVANTAGES OF DIVIDE AND CONQUER (D&C)

One disadvantage of this approach is that recursion is slow. This is
beacause of the overhead of the repeated subproblem calls. Also the
algorithm need stack for storing the calls. Actually this depends upon
the implementation style. With large enough recursive base cases , the
overhead of recursion can become negligible for many problems.

Another problem with D & C is that, for some problems, it may be
more complicated than an iterative approach. For example, to add n
numbers, a simple loop to add them up in sequence is much easier than
a D & C approach that breaks the set of numbers into two halves, adds
them recursively, and then adds the sums.

Since most of its algorithms are designed by incorporating recursion, so
it necessitates high memory management.

An explicit stack may overuse the space.

It may even crash the system if the recursion is performed rigorously
greater than the stack present in the CPU.

8.7 MASTER THEOREM

As stated above, in the D & C method, we solve the sub problems
recursively. All problems are generally defined in terms of recursive
definitions. These recursive problems can easily be solved using Master
theorem.

The above algorithm divides the problem into a subproblems, each of
size n/b and solve them recursively to compute the problem and the
extra work done for problem is given by f(n), i.e., the time to create the
subproblems and combine their results in the above procedure.

So, according to master theorem the runtime of the above algorithm can
be expressed as:

T(n) = aT(n/b) + f(n) where n = size of the problem

a = number of subproblems in the recursion and a >= 1.

n/b = size of each subproblem.

Divide and Conquer
Algorithms

205

Fundamental of
Algorithms

206

f(n) = cost of work done outside the recursive calls like dividing into
subproblems and cost of combining them to get the solution.

o If the recurrence is of the form T(n)ZaTE + 8(n* logP n) , where a >

I, b>1, k>0 and p is a real number, then the complexity can be
directly given as:
1) Ifa > b*, thenT () = @(nmy‘ﬂ)
2) Ifa=b*
a. Ifp>-—-1,thenT(n) = @(;1IOQHI{GQP+1n)
ifp=—1,then T(n) = @(n'°9loglogn)
C. Ifp<—1,thenT({n) = @(nIU.‘.’JH)
3) If a < b*

a. If p = 0, then T(n) = @(nkfogf’n)
b. If p <= 0, then T(r) = O(n%)

1. Example-1: Binary Search — T(n) = T(n/2) + O(1)
a=1,b=2,k=0andp=0
b*=1.So0,a=b* and p > -1 [Case 2.(a)]
T(n) = O(n'°852 [0 gP*1n)
T(n) = 6(logn)
2. Example-2: Merge Sort — T(n) = 2T(n/2) + O(n)
a=2,b=2,k=1,p=0
b* =2.S0,a=b* and p>-1 [Case 2.(a)]
T(n) = O(n'92* lo g?*1n)
T(n) = B(nlogn)
3. Example-3: T(n) = 3T(n/2) + n2
a=3,b=2,k=2,p=0
b* =4.So0,a< b* and p =0 [Case 3.(a)]
T(n) = 0(n* leg¥n)

T(n) = 6(n%)

8.8 DIVIDE AND CONQUER APPLICATIONS

1. Binary Search: Binary Search is a searching algorithm for finding an
element's position in a sorted array. In this approach, the element is
always searched in the middle of a portion of an array.

2. Merge Sort: Merge Sort is one of the most popular sorting algorithms
that is based on the principle of Divide and Conquer Algorithm. Here, a
problem is divided into multiple sub-problems. Each sub-problem is

solved individually. Finally, sub-problems are combined to form the
final solution.

3. Quick Sort: Quicksort is a sorting algorithm based on the divide and
conquer approach where

a. An array is divided into subarrays by selecting a pivot element
(element selected from the array).

b. While dividing the array, the pivot element should be positioned in
such a way that elements less than pivot are kept on the left side and
elements greater than pivot are on the right side of the pivot.

c. The left and right subarrays are also divided using the same
approach. This process continues until each subarray contains a
single element. At this point, elements are already sorted. Finally,
elements are combined to form a sorted array.

4. Median Finding: The median-of-medians algorithm is a deterministic
linear-time selection algorithm. The algorithm works by dividing a list
into sublists and then determines the approximate median in each of the
sublists. Then, it takes those medians and puts them into a list and finds
the median of that list. It uses that median value as a pivot and
compares other elements of the list against the pivot. If an element is
less than the pivot value, the element is placed to the left of the pivot,
and if the element has a value greater than the pivot, it is placed to the
right. The algorithm recurses on the list, honing in on the value it is
looking for.

5. Min and Max Finding: Max-Min problem is to find a maximum and
minimum element from the given array. We can effectively solve it
using divide and conquer approach. Divide and conquer approach for
Max. Min problem works in three stages.

a. If al is the only element in the array, al is the maximum and
minimum.

b. If the array contains only two elements al and a2, then the single
comparison between two elements can decide the minimum and
maximum of them.

c. If there are more than two elements, the algorithm divides the array
from the middle and creates two subproblems. Both subproblems are
treated as an independent problem and the same recursive process is
applied to them. This division continues until subproblem size
becomes one or two.

After solving two subproblems, their minimum and maximum numbers
are compared to build the solution of the large problem. This process
continues in a bottom-up fashion to build the solution of a parent problem.

6. Matrix Multiplication: Matrix multiplication is an important operation
in many mathematical and image processing applications. Suppose we
want to multiply two matrices A and B, each of size n x n,
multiplication is operation is defined as

Divide and Conquer
Algorithms

207

Fundamental of
Algorithms

208

By By
€ Ca Ay Ay By Ba

Cyy= Ay By +4; By
Cy2= Az Byy+ A By

This approach is very costly as it required 8 multiplications and 4
additions.

8.9 DIVIDE AND CONQUER: PROBLEMS &
SOLUTIONS

Problem-1 Let us consider an algorithm A which solves problems by
dividing them into five subproblems of half the size, recursively solving
each subproblem, and then combining the solutions in linear time. What is
the complexity of this algorithm?

Solution: Let us assume that the input size is n and T(n) defines the
solution to the given problem. As per the description, the algorithm
divides the problem into 5 sub problems with each of size =. So we need

to solve 5T(Z). subproblems. After solving these sub problems, the given
array (linear time) is scanned to combine these solutions. The total
recurrence algorithm for this problem can be given as: T(n)=5T (;) + O(n)

. Using the Master theorem (of D & C), we get the complexity O(nlogz)
& O(n*h) ¥ Oo(nd).

Problem 2:- We are given two sorted lists of size n. Give an algorithm for
finding the median element in the union of the two lists.

Solution: We use the Merge Sort process. Use merge procedure of merge
sort. Keep track of the count while comparing elements of two arrays. If
the count becomes n (since there are 2n elements), we have reached the
median. Take the average of the elements at indexes n — 1 and n in the
merged array.

Time Complexity: O(n).

Problem 3:- Can we give the algorithm if the size of the two lists are not
the same?

Solution: The solution is similar to the previous problem. Let us assume
that the lengths of two

lists are m and n. In this case we need to stop when the counter reaches (m
+n)/2.

Time Complexity: O((m + n)/2).

Problem 4:- Can we improve the time complexity of Problem-2 to
O(logn)?

Solution: Yes, using the D & C approach. Let us assume that the given
two lists are L1 and L2.

Algorithm:

1. Find the medians of the given sorted input arrays L1[] and L2[].
Assume that those medians are m1 and m2.

2. If m1 and m2 are equal then return m1 (or m2).

3. If ml is greater than m2, then the final median will be below two sub
arrays.

4. From first element of L1 to m1.
5. From m2 to last element of L2.

6. If m2 is greater than m1, then median is present in one of the two sub
arrays below.

&. From m1 to last element of L1.

&. From first element of L2 to m2.

©

Repeat the above process until the size of both the sub arrays
becomes 2.

10. If size of the two arrays is 2, then use the formula below to get the
median.

11. Median = (max(L1[0],L2[0]) + min(L1[1],L2[1])/2

Problem 5:- We are testing “unbreakable” laptops and our goal is to find
out how unbreakable they really are. In particular, we work in an n-story
building and want to find out the lowest floor from which we can drop the
laptop without breaking it (call this “the ceiling”). Suppose we are given
two laptops and want to find the highest ceiling possible. Give an
algorithm that minimizes the number of tries we need to make f(n)
(hopefully, f(n) is sub-linear, as a linear f(n) yields a trivial solution).

Solution: For the given problem, we cannot use binary search as we
cannot divide the problem and solve it recursively. Let us take an example
for understanding the scenario. Let us say 14 is the answer. That means we
need 14 drops to find the answer. First we drop from height 14, and if

it breaks we try all floors from 1 to 13. If it doesn’t break then we are left
13 drops, so we will drop it from 14 + 13 + 1 = 28" floor. The reason
being if it breaks at the 28™ floor we can try all the floors from 15 to 27 in
12 drops (total of 14 drops). If it did not break, then we are left with 11

Divide and Conquer
Algorithms

209

Fundamental of
Algorithms

210

drops and we can try to figure out the floor in 14 drops. From the above
example, it can be seen that we first tried with a gap of 14 floors, and then
followed by 13 floors, then 12 and so on. So if the answer is k then we are
trying the intervals at k, k — 1, k — 21. Given that the number of floors
is n, we have to relate these two. Since the maximum floor from which we
can try is n, the total skips should be less than n.

This gives:

k+(k-1)+ (k-2) + —+ 1 <n

_ k(ktl) _ n

=

=k< \."'E

8.10 SUMMARY

e In this chapter we studied the Divide and Conquer strategy(D&C)
which works in three stages as follows:

= Divide: This involves dividing the problem into smaller sub-problems.
= Conquer: Solve sub-problems by calling recursively until solved.

= Combine: Combine the sub-problems to get the final solution of the
whole problem.

e We have also understood various advantages and disadvantages of this
strategy.

e We studied about various algorithms under D&C techniques.

e At the end some problems and its solution using D&C technique was
mentioned.

8.11 QUESTIONS

1. Write a short note on Divide and Conquer Strategy.

2. Explain advantages and disadvantages of divide and conquer.
3. Explain disadvantages of divide and conquer.

4. Explain any 5 applications of divide and conquer.

5. Describe master theorem in detail.

8.12 REFERENCES

1.

Data Structure and Algorithmic Thinking with Python, Narasimha
Karumanchi, CareerMonk Publications, 2016.

Introduction to Algorithm, Thomas H Cormen, PHI.
https://www javatpoint.com/fractional-knapsack-problem.
https://www.geeksforgeeks.org/
https://www.codechef.com/wiki/

% 30 4% o2

0’0 0’0 0’0 0

Divide and Conquer
Algorithms

211

212

DYNAMIC PROGRAMMING

Unit Structure
9.0 Objectives
9.1 Introduction
9.2 What is Dynamic Programming Strategy?
9.2.1 What is Recursion?
9.2.2 Difference between dynamic programming & recursion?
9.3 Properties of dynamic programming strategy
9.3.1 Can dynamic programming solve all problems?
9.4 Dynamic programming approaches
9.4.1 Bottom-up versus top-down programming
9.4.2 Which one is better?
9.5 Examples of dynamic programming algorithms
9.6 Understanding dynamic programming
9.7 Longest common subsequence
9.8 summary
9.9 Questions

9.10 References

9.0 OBJECTIVE

e To gain an understanding of the technique of dynamic programming.
To be able to adapt it to new problems. To be able to use dynamic
programming to develop new logic.

e Towards the end of this chapter, you will have a better understanding of
the recursion and dynamic programming approach

e Learners will also be able to analyze and solve various application
using dynamic strategy.

e Learners will also be able to analyze the problem and will be able to
recognize the order in which the sub-problems are solved and will start
solving from the trivial subproblem, up towards the given problem.

e Learners will be able to reason about different dynamic algorithm
correctness and complexity

9.1 INTRODUCTION

In this chapter we will try to solve the problems for which we failed to get
the optimal solutions

using other techniques (say, Divide & Conquer and Greedy methods).
Dynamic Programming (DP) is a simple technique but it can be difficult to
master. One easy way to identify and solve DP problems is by solving as
many problems as possible. The term Programming is not related to
coding but it is from literature, and means filling tables (similar to Linear
Programming).

9.2 WHAT IS DYNAMIC PROGRAMMING STRATEGY?

e Dynamic programming and memoization work together. The main
difference between dynamic programming and divide and conquer is
that in the case of the latter, sub problems are independent, whereas in
DP there can be an overlap of sub problems. By using memorization
[maintaining a table of sub problems already solved], dynamic
programming reduces the exponential complexity to polynomial
complexity (O(n%),0(n?),etc) for many problems.

e The major components of DP are:
o Recursion: Solves sub problems recursively.

o Memoization: Stores already computed values in table
(Memoization means caching).

¢ Dynamic Programming = Recursion + Memoization.

e Therefore, dynamic programming is mainly an optimization over plain
recursion. Wherever we see a recursive solution that has repeated calls
for the same inputs, we can optimize it using Dynamic Programming.

e The idea is to simply store the results of subproblems so that we do not
have to re-compute them when needed later. This simple optimization
reduces time complexities from exponential to polynomial.

9.2.1 What is Recursion?

e The process in which a function calls itself directly or indirectly is
called recursion and the corresponding function is called a recursive
function. Using a recursive algorithm, certain problems can be solved
quite easily.

e Examples of such problems are Towers of Hanoi (TOH),
Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc. A
recursive function solves a particular problem by calling a copy of itself

Dynamic
Programming

213

Fundamental of
Algorithms

214

and solving smaller subproblems of the original problems. Many more
recursive calls can be generated as and when required. It is essential to
know that we should provide a certain case in order to terminate this
recursion process.

So we can say that every time the function calls itself with a simpler
version of the original problem.

9.2.2 Difference between a dynamic programming algorithm and
recursion?

In dynamic programming, problems are solved by breaking them down
into smaller ones to solve the larger ones, while recursion is when a
function is called and executed by itself. While dynamic programming
can function without making use of recursion techniques, since the
purpose of dynamic programming is to optimize and accelerate the
process, programmers usually make use of recursion techniques to
accelerate and turn the process efficiently.

When a function can execute a specific task by calling itself, receive
the name of the recursive function. In order to perform and accomplish
the work, this function calls itself when it has to be executed.

Using dynamic programming, you can break a problem into smaller
parts, called subproblems, to solve it. Dynamic programming involves
solving the problem for the first time, then using memoization to store
the solutions.

Therefore, the main difference between the two techniques is their
intended use; recursion is used to automate a function, whereas
dynamic programming is an optimization technique used to solve
problems.

Recursive functions recognize when they are needed, execute
themselves, then stop working. When the function identifies the
moment it is needed, it calls itself and is executed; this is called a
recursive case. As a result, the function must stop once the task is
completed, known as the base case.

By establishing states, dynamic programming recognizes the problem
and divides it into sub-problems in order to solve the whole scene.
After solving these sub-problems, or variables, the programmer must
establish a mathematical relationship between them. Last but not least,
these solutions and results are stored as algorithms, so they can be
accessed in the future without having to solve the whole problem again.

9.3 PROPERTIES OF DYNAMIC PROGRAMMING

STRATEGY

e The two dynamic programming properties which can tell whether it can

solve the given problem or not are:

o Optimal substructure: Optimal substructure property materializes
when you can arrive at an optimal solution after constructing all the

other solutions that occurred from every subproblem you solved.
The solution you calculate from each overlap applies to the overall
problem in order to function and optimize recursion. In the example
of the Fibonacci sequence, each subproblem contains a solution that
you can apply to each successive subproblem to find the next
number in the series, making the entire problem display optimal
substructure property. Therefore we can conclude it means that an
optimal solution to a problem contains optimal solutions to sub
problems.

o Overlapping sub problems: Subproblems are smaller variations of
an original, larger problem. For example, in the Fibonacci sequence,
each number in the series is the sum of its two preceding numbers
0, 1, 1, 2, 3, 5, 8,...). If you want to calculate the nth Fibonacci
value in the sequence, you can break down the entire problem into
smaller subproblems. These subproblems then overlap with one
another as you find solutions by solving the same subproblem
repeatedly. The overlap in subproblems occurs with any problem,
which allows you to apply dynamic programming to break down
complex programming tasks into smaller parts. Therefore we can
conclude that a recursive solution contains a small number of
distinct sub problems repeated many times.

9.3.1 Can dynamic programming solve all problems?

Like Greedy and Divide and Conquer techniques, DP cannot solve
every problem. There are problems which cannot be solved by any
algorithmic technique [Greedy, Divide and Conquer and Dynamic
Programming].

The difference between Dynamic Programming and straightforward
recursion is in memorization of recursive calls. If the sub problems are
independent and there is no repetition then memorization does not help,
so dynamic programming is not a solution for all problems.

9.4 DYNAMIC PROGRAMMING APPROACHES

1.

Basically there are two approaches for solving DP problems:

Bottom-up dynamic programming.

Top-down dynamic programming

9.4.1 Bottom-Up Dynamic Programming

O

In this method, we evaluate the function starting with the smallest
possible input argument value and then we step through possible
values, slowly increasing the input argument value. While computing
the values we store all computed values in a table (memory). As larger
arguments are evaluated, pre-computed values for smaller arguments
can be used.

Dynamic
Programming

215

Fundamental of
Algorithms

216

o Analyze the problem and see in what order the subproblems are solved,
and work your way up from the trivial subproblem to the given
problem. This process ensures that the subproblems are solved before
the main problem.

2. TOP-DOWN DYNAMIC PROGRAMMING

o In this method, the problem is broken into sub problems; each of
these sub problems is solved; and the solutions remembered, in case they
need to be solved. Also, we save each computed value as the final action
of the recursive function, and as the first action we check if pre-computed
value exists.

o You solve all the related sub-problems first instead of applying
recursion. As bottom-up tabulation requires multiple solvencies, dynamic
programming uses an n-dimensional table, where n represents a value of
zero or greater. As you solve each subproblem within the table, you can
then use the results to compute the original problem.

9.4.1 Bottom-Up Versus Top-Down Programming

e In bottom-up programming, the programmer has to select values to
calculate and decide the order of calculation. In this case, all sub
problems that might be needed are solved in advance and then used to
build up solutions to larger problems. In top-down programming, the
recursive structure of the original code is preserved, but unnecessary
recalculation is avoided. The problem is broken into sub problems,
these sub problems are solved and the solutions remembered, in case
they need to be solved again.

e Let us understand the difference between the two approaches with an
example.

e Apply the Fibonacci sequence, where each number in the series
represents the sum of the first two preceding numbers:

1. Bottom-up Approach- In this example, apply the Fibonacci sequence
to break down the entire computation when you want to calculate the
nth value in the series. With the same number sequence {0, 1, 1, 2, 3, 5,
8,...}, you can see that the next value in the series results in 13, since 5
and 8§ give a sum of 13.

Using the bottom-up method to break down the entire problem Fib(n),
apply the sequence equation [Fib(n - 1) + Fib(n - 2), when n > 1] for each
subproblem you want to find an optimal solution for. Suppose you want to
compute the next nth values when n = 23:

Fib(n) = Fib(n - 1) + Fib(n - 2) =
Fib(23) = Fib(23 - 1) + Fib(23 - 2) =
Fib(23) = Fib(22) + Fib(21) = Fib(43).

The result Fib(43) then applies to the computation of the next values in the

. Dynamic
series when n = 43:

Programming

Fib(n) = Fib(n - 1) + Fib(n - 2) =
Fib(43) = Fib(43 - 1) + Fib(43 - 2) =
Fib(n) = Fib(42) + Fib(41) = Fib(83) then
Fib(83) = Fib(83 - 1) + Fib(83 - 2) =
Fib(83) = Fib(82) + Fib(81) = Fib(163).

You can continue using this optimal solution for each subproblem to
calculate the next values within the Fibonacci sequence, giving you the
ability to break down the initial problem of Fib(n) = Fib(n - 1) + Fib(n -
2), whenn> 1.

2. Top Down Approach: Understanding that the sum of the first two
preceding values is the next number in the series can help you solve the
entire problem when you want to calculate the nth Fibonacci number.
Because you know the pattern for computing the future values in the
series, you can apply a formula to determine the optimal solution without
breaking down the problem into smaller subproblems. Using the
appropriate formula when n > 1, you can compute an optimal solution
with the top-down method when solving for an nth value of 13:

Fib(n) = Fib(n - 1) + Fib(n - 2) =
Fib(13) = Fib(13 - 1) + Fib(13 - 2) =
Fib(n) = Fib(12) + Fib(11) = 23

Using the top-down approach and applying memorization, you can cache
the result of 23 in the database to input and call on your code string for
additional tasks.

9.4.2 Which one is better?

e The top-down approach is typically recursive. It has the overhead of
recursive calls and therefore is slower than the bottom-up approach.

¢ One might find the top-down approach easier to implement because we
use an array of some sort of lookup table to store results during
recursion. While for the bottom-up approach we need to define the
order of iteration and define an n-dimensional table for storing results.

e The top-down approach might also run into stack overflow conditions
in the case of a very deep recursion tree.

217

Fundamental of
Algorithms

218

9.5 EXAMPLES OF DYNAMIC PROGRAMMING

ALGORITHMS

1.

Many String algorithms including longest common subsequence,

longest increasing subsequence, longest common substring, edit distance.

9.6 LONGEST COMMON SUBSTRING

(@)

o

Let m and n be the lengths of the first and second strings respectively.

A simple solution is to one by one consider all substrings of the first
string and for every substring check if it is a substring in the second
string. Keep track of the maximum length substring. There will be
O(m”"2) substrings and we can find whether a string is substring on
another string in O(n) time (See this). So overall time complexity of
this method would be O(n * m?).

Dynamic Programming can be used to find the longest common
substring in O(m*n) time. The idea is to find the length of the longest
common suffix for all substrings of both strings and store these lengths
in a table.

The longest common suffix has following optimal substructure
property.

If last characters match, then we reduce both lengths by 1 :- LCSuff(X,
Y, m, n) = LCSuff(X, Y, m-1, n-1) + 1 if X[m-1] = Y[n-1] .

If last characters do not match, then result is 0, i.e., :-
LCSuff(X, Y, m, n) =0 if (X[m-1] !=Y[n-1]).

Now we consider suffixes of different substrings ending at different
indexes. The maximum length Longest Common Suffix is the longest
common substring.

LCSubStr(X, Y, m, n) = Max(LCSuff(X, Y, i, j)) where | <=1 <=m
and 1 <=j<=n.

Given two strings ‘X’ and ‘Y’, find the length of the longest
common substring.

Input : X = “zxabcdezy”, y = “yzabcdezx”

Output : 6

Explanation:

The longest common substring is “abcdez” and is of length 6.

EDIT DISTANCE

O

Dynamic

Levenshtein (1966) introduced the edit distance between two strings as Programming

the minimum number of elementary operations (insertions, deletions,
and substitutions) needed to transform one string into the other .

The Edit distance is a problem to measure how much two strings are
different from one another by counting the minimum number of
operations required to convert one string into the other. Edit distance
problem can be solved by many different approaches.But the most
efficient approach to solve the Edit distance problem is Dynamic
programming approach which takes the O(N * M) time complexity,
where N and M are sizes of the strings.

Edit distance has different definitions which uses different sets of string
operations. Levenshtein distance operations is the basic set of
operations which is used in Edit distance Problem.

Operation allowed are:
= Delete any character from the string.
= Replace any character with any other.
* Add any character into any part of the string.
d(v,w) = MIN number of elementary operations to transform v — w .

Let us Transform TGCATAT — ATCCGAT to understand the
concept

TGCATAT (delete last T)

TGCATA (delete last A)

ATGCAT (insert A at front)

ATCCAT (substitute C for G)

ATCCGAT (insert G before last A) d(v,w)=5
EXAMPLE:- Input: str1 = “bat”, str2 = “but”

Output: d(v,w)=1 (We can convert strl into str2 by replacing ‘a’ with
‘u’.)

Input: strl = “sunday”, str2 = “saturday” ; Qutput: d(v,w)=3

Last three and first characters are same. We basically need to
convert “un” to “atur”. This can be done using following
operations:-

Replace ‘n’ with ‘r’, insert t, insert a
9 9

219

Fundamental of
Algorithms

220

COMMON SUBSEQUENCE

(@)

Given two sequences VvV = vy, ¥y, ..., ¥, and w=wy, Wy, ..., W, a
common subsequence of v and w is a sequence of positions in

v: 1 <i;<i,<..<i, <mand asequence of positions in

w: 1 <j; <Jj; <...<j; <nsuch that the i,-th letter of v is equal to the
Jj--th letter of w.

Example: v=ATGCCAT, w = TCGGGCTATC. Then take:
i,=2,1, =3,i; =6,i, =7
f1=1,J1 =3,,i3=8,,is=9
This gives us that the common subsequence is TGAT.
Bellman-Ford algorithm :-

The Bellman-Ford Algorithm determines the shortest route from a
particular source vertex to every other weighted digraph vertices. The
Bellman-Ford algorithm can handle graphs where some of the edge
weights are negative numbers and produce a correct answer, unlike
Dijkstra’s algorithm, which does not confirm whether it makes the
correct answer. However, it is much slower than Dijkstra’s algorithm.

The Bellman-Ford algorithm works by relaxation; that is, it gives
approximate distances that better ones continuously replace until a
solution 1is reached. The approximate distances are usually
overestimated compared to the distance between the vertices. The
replacement values reflect the minimum old value and the length of a
newly found path.

This algorithm terminates upon finding a negative cycle and thus can
be applied to cycle-canceling techniques in network flow analysis.

. Floyd-Warshall algorithm

The all pair shortest path algorithm is also known as Floyd-Warshall
algorithm is used to find all pair shortest path problem from a given
weighted graph. As a result of this algorithm, it will generate a matrix,
which will represent the minimum distance from any node to all other
nodes in the graph.

The Floyd-Warshall method uses a technique of dynamic programming
to locate the shortest pathways. It determines the shortest route across
all pairings of vertices in a graph with weights. Both directed and
undirected weighted graphs can use it.

This program compares each pair of vertices’ potential routes through
the graph. It gradually optimizes an estimate of the shortest route
between two vertices to determine the shortest distance between two

vertices in a chart. With simple modifications to it, one can reconstruct
the paths.

This method for dynamic programming contains two subtypes:

Behavior with negative cycles: Users can use the Floyd-Warshall
algorithm to find negative cycles. You can do this by inspecting the
diagonal path matrix for a negative number that would indicate the
graph contains one negative cycle. In a negative cycle, the sum of the
edges is a negative value; thus, there cannot be a shortest path between
any pair of vertices. Exponentially huge numbers are generated if a
negative cycle occurs during algorithm execution.

Time complexity: The Floyd-Warshall algorithm has three loops, each
with constant complexity. As a result, the Floyd-Warshall complexity
has a time complexity of O(n3). Wherein n represents the number of
network nodes.

. Chain matrix multiplication

If a chain of matrices is given, we have to find the minimum number of
the correct sequence of matrices to multiply.

We know that the matrix multiplication is associative, so four matrices
ABCD, we can multiply A(BCD), (AB)(CD), (ABC)D, A(BC)D, in
these sequences. Like these sequences, our task is to find which
ordering is efficient to multiply.

In the give Matrix chain multiplication problem: Determine the optimal
parenthesization of a product of n matrices.

Matrix chain multiplication (or Matrix Chain Ordering Problem,
MCOP) is an optimization problem that to find the most efficient way
to multiply a given sequence of matrices. The problem is not actually to
perform the multiplications but merely to decide the sequence of the
matrix multiplications involved.

The matrix multiplication is associative as no matter how the product is
parenthesized, the result obtained will remain the same.n input there is
an array say arr, which contains arr[] = {1, 2, 3, 4}. It means the
matrices are of the order (1 x 2), (2 x 3), (3 x 4). Input: The orders of
the input matrices. {1, 2, 3, 4}. It means the matrices are {(1 x 2), (2 x
3), (3 x 4)}. Output: Minimum number of operations need multiply
these three matrices. Here the result is 19.

EXAMPLE: Lets take four matrices A, B, C, and D, we would have:
* ((AB)O)D = ((A(BC))D) = (AB)(CD) = A((BC)D) = A(B(CD))

= However, the order in which the product is parenthesized affects the
number of simple arithmetic operations needed to compute the
product.

Dynamic
Programming

221

Fundamental of
Algorithms

222

= For example, if A is a 10 x 30 matrix, B is a 30 X 5 matrix, and C is
a 5 x 60 matrix, then computing (AB)C needs (10x30x5) +
(10x5%x60) = 1500 + 3000 = 4500 operations while computing
A(BC) needs (30x5x60) + (10x30x60) = 9000 + 18000 = 27000
operations.

= (Clearly, the first method is more efficient.

Chain Matrix Multiplication Problem: Given a sequence of matrices
Al, A2,...,An and dimensions p0, pl,....pn where Ai is of dimension
pi—1 x pi, determine the order of multiplication (represented, say, as a
binary tree) that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications,
it just determines the best order in which to perform the multiplications.

. Subset Sum

A subset is a set that contains the elements of a previously defined set.
For eg. {a, b} is a subset of {a,b,c,e,f}. In this, you have to find a subset
or the set of numbers from the given array that amount to the given
value in the input.

Given a set of N non-negative integers and a target sum S, determine if
there exists a subset of the given set such that the sum of the elements
of the subset equals to S. Return 1 if there exists such subset, otherwise
return 0.

Therefore a subset sum problem is that given a subset A of n positive
integers and a value sum is given, find whether or not there exists any
subset of the given set, the sum of whose elements is equal to the given
value of sum.

Let's look at the problem statement: "You are given an array of non-
negative numbers and a value 'sum'. You have to find out whether a
subset of the given array is present whose sum is equal to the given
value."

Input: {10, 0, 5,8, 6,2,4} —15 Output: True

Explanation: The sum of the subset {5,8,2} gives the sum as 15.
Therefore, the answer comes out to be true.

10 |0 5 8 6 2 4

We create a boolean subset[][] and fill it in bottom up manner.

subset[i][j] denotes if there is a subset of sum j with element at index i-
1 as the last element

subset[i][j] = true if there is a subset with: Dynamic
Programming

* the i-th element as the last element
* sum equal to j

o Base cases include:
j=0 then subset[1][0] will be true as the sum for empty set is 0.

If i=0, then subset[0][j] will be false, as with no elements, we can get no
sum.

subset[1][0] = true as sum of {} =0
subset[0][j] = false as with no elements
we can get no sum

o If element at index i1 (E1) is greater than j, then subset[i][j] = false as
we cannot get a subset of positive numbers with E1 as a member. If we
include element at index i1 (E1), we get

subset[i][j] = subset[i-1][j-E1];
where E1 = array[i-1]

6. 0/1 Knapsack:-
o A knapsack (kind of shoulder bag) with limited weight capacity.
o Few items each having some weight and value.

o The Knapsack problem states- Which items should be placed into the
knapsack such that- The value or profit obtained by putting the items
into the knapsack is maximum and the weight limit of the knapsack
does not exceed.

o 0/1 Knapsack Problem is one of the variant of Knapsack problem
where s the name suggests, items are indivisible here.We can not take
the fraction of any item. We have to either take an item completely or
leave it completely.lt is solved using dynamic programming approach.

o Step-01: Draw a table say ‘T’ with (n+1) number of rows and (w+1)
number of columns. Fill all the boxes of 0" row and 0™ column with
zeroes as shown-

223

Fundamental of
Algorithms

224

0 0 0 0) T 0
1 0
2 0
n 0
T-Table

o Step-02: Start filling the table row wise top to bottom from left to right.

Use the following formula- :- T (i,j)=max { T (i-1,j) ,value+ T(i-
1,j—weight+)} . Here, T(i , j) = maximum value of the
selected items if we can take items 1 to i and have weight restrictions of
j. This step leads to completely filling the table.Then, value of the last
box represents the maximum possible value that can be put into the
knapsack.

o Step-03: To identify the items that must be put into the knapsack to
obtain that maximum profit, consider the last column of the table. Start
scanning the entries from bottom to top.On encountering an entry
whose value is not same as the value stored in the entry immediately
above it, mark the row label of that entry.After all the entries are
scanned, the marked labels represent the items that must be put into the
knapsack.

o Time Complexity:- Each entry of the table requires constant time 0(1)
for its computation.It takes 6(nw) time to fill (n+1)(w+1) table entries.It
takes 0(n) time for tracing the solution since tracing process traces the n
rows. Thus, overall 8(nw) time is taken to solve 0/1 knapsack problem
using dynamic programming.

9.6 UNDERSTANDING DYNAMIC PROGRAMMING

¢ Dynamic Programming is mainly an optimization compared to simple
recursion. The main idea is to decompose the original question into
repeatable patterns and then store the results as many sub-answers.
Therefore, we do not have to re-compute the pre-step answers when
needed later. In terms of big O, this optimization method generally
reduces time complexities from exponential to polynomial.

¢ You can imagine we have a tree of a problem and their sub-problems.

e We start with solving the “leaf” level problems and then move on to
their “parent” problems and so on. We save the results as we solve sub-
problems for future reference. Thereby avoiding working on the same
sub-problem if encountered again.

e Dynamic Programming and Recursion are very similar. Both recursion
and dynamic programming are starting with the base case where we
initialize the start. he main difference is that, for recursion, we do not
store any intermediate values whereas dynamic programming do utilize
that.Let’s get a bit deeper with the Fibonacci Number.

Dynamic
Programming

1. FIBONACCI NUMBER

= The Fibonacci numbers are the numbers in the following integer
sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89, 144,

* In mathematical terms, the sequence Fn of Fibonacci numbers is
defined by the recurrence relation F, =F,.; + F,, for n>1with seed
values Fo=0and F; = 1.

* Analyzing Time complexity of both solutions it was clear that the
recursive solution was getting significantly slower for each
additional number in the sequence due to exponential time growth.
There is, however, a smart way of improving this solution and that is
using Memoization.

= For our recursive solution we want to store the arguments of each
function call as well as function’s output, and reuse it later on if the
function was called with the same arguments.Our recursive solution

looked like this:
function fib(n) {
if(n<2){
return n;
}
return fib(n - 1) + fib(n - 2);
§
fib({a) =1 4+1T+1=3
fib(3) fib(2)
fib(2) “:‘_;) | _,[1] ﬂ: E?}
fib(1) fib(0)
= 1 | =0
Source:

= From above visualization you can see the recursive implementation
reaches the correct answer through the addition of 1s (and 0s). It’s good
to understand recursion by visualizing the call stack. In the case of
fib(4), function fib is called 9 times. For a computer keeping track of
the fib function 9 times is not a huge burden, so this is not a big deal. It
will become a big deal as the entered index increases. Incrementing the

225

Fundamental of
Algorithms

226

index by 1 raised the number of fib calls to 15. You can imagine what
problem this will raise once we want to find the Fibonacci number at
higher indexes. Its complexity in Big O notation is O(2”n).Now here
comes memorization.

In computing, memoization or memoisation is an optimization
technique used primarily to speed up computer programs by storing the
results of expensive function calls and returning the cached result when
the same inputs occur again.

How does Memoization help? Calling fib(5) produces a call tree that
calls the function on the same value many times:

fib(5)

fib(4) + fib(3)

(fib(3) + fib(2)) + (fib(2) + fib(1))

((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

fib{5) —_ 3
= 5 | = i
K/ L
Filo{a) i o =ik
__:}::s__. | Fib{(3) —
ﬂ’:g} fib{2) | — 1
i, \
= cache
ﬁ:gﬂ) Fibb{(1) = |
ﬂh['l) Fib{O)
= = O
Source:

= [n the above example, fib(2) was calculated three times (overlapping of

subproblems). If n is big, then many more values of fib (sub problems)
are recalculated, which leads to an exponential time algorithm. Instead
of solving the same sub problems again and again we can store the
previous calculated values and reduce the complexity. Memoization
works like this: Start with a recursive function and add a table that
maps the function’s parameter values to the results computed by the
function. Then if this function is called twice with the same parameters,
we simply look up the answer in the table.

Hence while solving the problems using DP, try to figure out the
following:

» See how the problems are defined in terms of subproblems
recursively.

» See if we can use some table [memoization] to avoid the repeated
calculations.

. Factorial

Let’s create a factorial program using recursive functions. Until the
value is not equal to zero, the recursive function will call itself.
Factorial can be calculated using the following recursive formula.
n!l=n*{n-1)!

nl=1lifn=0o0orn=1

This definition can easily be converted to implementation. Here the
problem is finding the value of n!, and the sub-problem is finding the
value of (n — I)!. In the recursive case, when n is greater than 1, the
function calls itself to find the value of (n — 1)! and multiplies that
with n. In the base case, when n is 0 or 1, the function simply returns
1.

int fact(int n){
{
if (n==1) returni;
else if (n==0) return 1l
else //recursive call
return (n * fact(n-1));

The recurrence implementation can be given as: T(n) =n x T(n—1) =
O(n). Time Complexity: O(n). Space Complexity: O(n), recursive
calls need a stack of size.

In the recursion method as gien above fact(n) is calculated from
fact(n -1) and n and nothing else. Instead of calling fact(n) every time,
we can store the previous calculated values in a table and use these
values to calculate a new value.

int[] factorial DP(int n)
{

int fact[n+1],1,j; // factorials array
fact[0]=1;

for(i=1;i<=n;i++)

{
}

fact[i] =i * fact[i-1];

return fact;

Dynamic
Programming

227

Fundamental of
Algorithms

228

The above implementation clearly reduces the complexity as compared
to recursive implementation. This is because if the fact(n) is already
there, then we are not recalculating the value again. If we fill these
newly computed values, then the subsequent calls further reduce the
complexity.

9.7 LONGEST COMMON SUBSEQUENCE

Given a sequence of elements, a subsequence of it can be obtained by
removing zero or more elements from the sequence, preserving the
relative order of the elements. Note that for a substring, the elements
need to be contiguous in a given string, for a subsequence it need not
be. Eg: SI="ABCDEFG" is the given string. "ACEG", "CDF" are
subsequences, where as "AEC" is not. For a string of lenght n the total
number of subsequences is 2n (Each character can be taken or not
taken). Now the question is, what is the length of the longest
subsequence that is common to the given two Strings S1 and S2. Lets
denote length of S1 by N and length of S2 by M.

. BruteForce:- Consider each of the 2N subsequences of S1 and check if

its also a subsequence of S2, and take the longest of all such
subsequences. Clearly, very time consuming.

. Recursion:- Can we break the problem of finding the LCS of S1[1...N]

and S2[1...M] in to smaller subproblems ?

In dynamic programming, the phrase “largest common subsequence”
(LCS) refers to the subsequence that is shared by all of the supplied
sequences and is the one that is the longest. It is different from the
challenge of finding the longest common substring in that the
components of the LCS do not need to occupy consecutive locations
within the original sequences to be considered part of that problem.

The LCS is characterized by an optimal substructure and overlapping
subproblem properties. This indicates that the issue may be split into
many less complex sub-issues and worked on individually until a
solution is found. The solutions to higher-level subproblems are often
reused in lower-level subproblems, thus, overlapping subproblems.

Therefore, when solving an LCS problem, it is more efficient to use a
dynamic algorithm than a recursive algorithm. Dynamic programming
stores the results of each function call so that it can be used in future
calls, thus minimizing the need for redundant calls.

For instance, consider the sequences (MNOP) and (MONMP). They
have five length-2 common subsequences (MN), (MO), (MP), (NP),
and (OP); two length-3 common subsequences (MNP) and (MOP);
MNP and no longer frequent subsequences (MOP). Consequently,
(MNP) and (MOP) are the largest shared subsequences. LCS can be
applied in bioinformatics to the process of genome sequencing. Longest
Common Subsequence Algorithm

X and Y be two given sequences
Initialize a table LCS of dimension X.length * Y.length
X.label = X
Y.label =Y
LCS[0][]=0
LCS[][0]=0
Start from LCS[1][1]
Compare X][i] and Y[j]
If X[i] = Y[j]
LCS[i][j1=1 + LCS[i-1, j-1]
Point an arrow to LCSJi][j]
Else
LCSJi][j] = max(LCS[i-1][j], LCS[i][j-11)
Point an arrow to max(LCSJi-11[i], LCS[il[i-1T)

e The method of dynamic programming reduces the number of function
calls. It stores the result of each function call so that it can be used in
future calls without the need for redundant calls.

e In the above dynamic algorithm, the results obtained from each
comparison between elements of X and the elements of Y are stored in
a table so that they can be used in future computations.

9.8 SUMMARY

e Recursion which 1is calling a function within itself. Sub-problems
might have to be solved multiple times when a problem is solved using
recursion. At the same time, Dynamic programming is a technique
where you store the result of the previous calculation to avoid
calculating the same once again.

¢ One might find dynamic programming a bit intimidating initially. But if
one understands the basics well, one can master dynamic programming
problems. Having a strong programming foundation is key to getting
comfortable with such problems. Applications of dynamic
programming are common and relevant to everyday challenges, and
mastering dynamic programming gives you the superpower to tackle
them.

e There are numerous applications of dynamic programming in real life.

e Algorithms that are aimed at solving optimization problems use a
dynamic programming approach. Examples of dynamic programming
algorithms are string algorithms like the longest common subsequence,
longest increasing subsequence, and the longest palindromic substring.
Optimizing the order for chain matrix multiplication. The Bellman-
Ford algorithm for finding the shortest distance in a graph.Many of
which we have seen in brief in the chapter.

Dynamic
Programming

229

Fundamental of
Algorithms

230

9.9 QUESTIONS

1.
2.

Write a short note on Dynamic Programming Strategy.

Difference Between A Dynamic Programming Algorithm And
Recursion.

. Explain properties of dynamic programming.
. Bottom-Up Versus Top-Down Programming
. Describe Longest common subsequence.

. Explain Fibonacci number using dynmamic programming approach.

9.10 REFERENCES

1.

Data Structure and Algorithmic Thinking with Python, Narasimha
Karumanchi, CareerMonk Publications, 2016.

. Introduction to Algorithm, Thomas H Cormen, PHI.

. https://www.knowledgehut.com/blog/programming/dynamic-

programming

. https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-

programming/

. https://en.wikipedia.org/wiki/Dynamic_programming
. https://www.geeksforgeeks.org/

. https://www .thelearningpoint.net/computer-science/dynamic-

programming

O O O L0
0‘0 0‘0 0‘0 0‘0

