
 S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

SOFTWARE ENGINEERING

SUBJECT CODE: USCS404

© UNIVERSITY OF MUMBAI

				

Published by : Director,
Institute of Distance and Open Learning,

University of Mumbai,
Vidyanagari,Mumbai - 400 098.

June 2023, Print - 1 			

DTP composed and Printed by: Mumbai University Press

Programme Co-ordinator	 :	 Shri Mandar Bhanushe
		 Head, Faculty of Science and Technology IDOL,
			 Univeristy of Mumbai – 400098

Course Co-ordinator		 : Ms. Mitali Vijay Shewale			
		 Doctoral Researcher,
		 Veermata Jijabai Technological Institute
		 HR Mahajani road, Matunga, Mumbai

Editor	 :	 Akshata Laddha,
			 Assistant Professor,

		 Dilkap Research Institute of Engineering and 	
		 Management Studies, Neral.

Course Writers	 :	 Ms. Mitali Vijay Shewale			
		 Doctoral Researcher,
		 Veermata Jijabai Technological Institute
		 HR Mahajani road, Matunga, Mumbai

		 :	 Sameera Salim Ibrahim				
		 Assistant Professor,
		 SIES(NERUL) college of Arts, Science and 	
		 Commerce, Navi Mumbai.

		 :	 Sandhya Pandey
			 Assistant Professor,

		 The S.I.A. College of Higher Education, 		
		 Dombivli(E)

			

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor

University of Mumbai, Mumbai
Prof. Prakash Mahanwar

Director,
IDOL, University of Mumbai

Prin. Dr. Ajay Bhamare
Offg. Pro Vice-Chancellor,

University of Mumbai

CONTENTS

Unit No.	 Title	 Page No.

1	 Introduction..1

2	 Requirement Analysis and System Modeling...21

3	 System Design...38

4	 Software Measurement and Metrics..50

5	 Software Project Management...64

6	 Project Scheduling...76

7	 Risk Management..84

8	 Software Quality Assurance...91

9	 Software Testing..101

S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

SOFTWARE ENGINEERING

SYLLABUS

Switches, Routers,

Introduction to Network Layer, network layer services, Packetizing, Routing

and Forwarding, Other Services, IPv4 addresses, Address Space, Classful

Addressing.

Unicast Routing, General Idea, Least-Cost Routing, Routing Algorithms,

Distance-Vector Routing, Link-State Routing, Path-Vector Routing,

Introduction to Transport Layer, Transport-Layer Services, Connectionless and

Connection-Oriented Protocols.

Transport-Layer Protocols, Service, Port Numbers, User Datagram Protocol,

User Datagram, UDP Services, UDP Applications, Transmission Control

Protocol, TCP Services, TCP Features, Segment.

Textbook(s):

1) Data Communications and Networking, Behrouz A. Forouzan, Fifth Edition, TMH, 2013.

2) Computer Network, Andrew S. Tanenbaum, David J. Wetherall, Fifth Edition, Pearson

Education, 2011.

Additional Reference(s):

1) Computer Network, Bhushan Trivedi, Oxford University Press

2) Data and Computer Communication, William Stallings, PHI

Course:

USCS404

TOPICS (Credits : 02 Lectures/Week: 03)

Software Engineering

Unit I

Introduction: The Nature of Software, Software Engineering, The

Software Process, Generic Process Model, The Waterfall Model,

Incremental Process Models, Evolutionary Process Models, Concurrent

Models, Component-Based Development, The Unified Process Phases,

Agile Development- Agility, Agile Process, Extreme Programming

Requirement Analysis and System Modeling: Requirements

Engineering, Eliciting Requirements, SRS Validation, Components of

15L

SRS, Characteristics of SRS , Object-oriented design using the UML -

Class diagram, Object diagram, Use case diagram, Sequence diagram,

Collaboration diagram, State chart diagram, Activity diagram,

Component diagram, Deployment diagram

Unit II

System Design: System/Software Design, Architectural Design,

Low-Level Design Coupling and Cohesion, Functional-Oriented Versus

The Object-Oriented Approach, Design Specifications, Verification for

Design, Monitoring and Control for Design

Software Measurement and Metrics: Product Metrics – Measures,

Metrics, and Indicators, Function-Based Metrics, Metrics for

Object-Oriented Design, Operation-Oriented Metrics, User Interface

Design Metrics, Metrics for Source Code, Halstead Metrics Applied to

Testing, Metrics for Maintenance, Cyclomatic Complexity, Software

Measurement - Size-Oriented, Function-Oriented Metrics, Metrics for

Software Quality

Software Project Management: Estimation in Project Planning Process

–Software Scope And Feasibility, Resource Estimation, Empirical

Estimation Models – COCOMO II, Estimation for Agile Development,

The Make/Buy Decision, Project Scheduling - Basic Principles,

Relationship Between People and Effort, Effort Distribution, Time-Line

Charts

15L

Unit III

Risk Management - Software Risks, Risk Identification, Risk Projection

and Risk Refinement, RMMM Plan

Software Quality Assurance: Elements of SQA, SQA Tasks, Goals,

and Metrics, Formal Approaches to SQA, Six Sigma, Software

Reliability, The ISO 9000 Quality Standards, Capability Maturity Model

Software Testing : Verification and Validation, Introduction to Testing,

Testing Principles, Testing Objectives, Test Oracles, Levels of Testing,

White-Box Testing/Structural Testing, Functional/Black-Box Testing,

Test Plan, Test-Case Design

15L

SRS, Characteristics of SRS , Object-oriented design using the UML -

Class diagram, Object diagram, Use case diagram, Sequence diagram,

Collaboration diagram, State chart diagram, Activity diagram,

Component diagram, Deployment diagram

Unit II

System Design: System/Software Design, Architectural Design,

Low-Level Design Coupling and Cohesion, Functional-Oriented Versus

The Object-Oriented Approach, Design Specifications, Verification for

Design, Monitoring and Control for Design

Software Measurement and Metrics: Product Metrics – Measures,

Metrics, and Indicators, Function-Based Metrics, Metrics for

Object-Oriented Design, Operation-Oriented Metrics, User Interface

Design Metrics, Metrics for Source Code, Halstead Metrics Applied to

Testing, Metrics for Maintenance, Cyclomatic Complexity, Software

Measurement - Size-Oriented, Function-Oriented Metrics, Metrics for

Software Quality

Software Project Management: Estimation in Project Planning Process

–Software Scope And Feasibility, Resource Estimation, Empirical

Estimation Models – COCOMO II, Estimation for Agile Development,

The Make/Buy Decision, Project Scheduling - Basic Principles,

Relationship Between People and Effort, Effort Distribution, Time-Line

Charts

15L

Unit III

Risk Management - Software Risks, Risk Identification, Risk Projection

and Risk Refinement, RMMM Plan

Software Quality Assurance: Elements of SQA, SQA Tasks, Goals,

and Metrics, Formal Approaches to SQA, Six Sigma, Software

Reliability, The ISO 9000 Quality Standards, Capability Maturity Model

Software Testing : Verification and Validation, Introduction to Testing,

Testing Principles, Testing Objectives, Test Oracles, Levels of Testing,

White-Box Testing/Structural Testing, Functional/Black-Box Testing,

Test Plan, Test-Case Design

15L

Text book(s):

1) Software Engineering, A Practitioner’s Approach, Roger S, Pressman.(2014)

Additional Reference(s):

1) Software Engineering, Ian Sommerville, Pearson Education

2) Software Engineering: Principles and Practices”,Deepak Jain,OXFORD University Press,

3) Fundamentals of Software Engineering, Fourth Edition, Rajib Mall, PHI

4) Software Engineering: Principles and Practices, Hans Van Vliet, John Wiley & Sons

5) A Concise Introduction to Software Engineering, Pankaj Jalote, Springer

Course:

USCS405

TOPICS (Credits : 02 Lectures/Week: 03)

Linear Algebra using Python

Objectives:

To offer the learner the relevant linear algebra concepts through computer science applications.

Expected Learning Outcomes:

1. Appreciate the relevance of linear algebra in the field of computer science.

2. Understand the concepts through program implementation

3. Instill a computational thinking while learning linear algebra.

Unit I

Field: Introduction to complex numbers, numbers in Python , Abstracting over

fields, Playing with GF(2), Vector Space: Vectors are functions, Vector

addition, Scalar-vector multiplication, Combining vector addition and scalar

multiplication, Dictionary-based representations of vectors, Dot-product,

Solving a triangular system of linear equations. Linear combination, Span, The

geometry of sets of vectors, Vector spaces, Linear systems, homogeneous and

otherwise

15L

Unit II

Matrix: Matrices as vectors, Transpose, Matrix-vector and vector-matrix

multiplication in terms of linear combinations, Matrix-vector multiplication in

terms of dot-products, Null space, Computing sparse matrix-vector product,

Linear functions, Matrix-matrix multiplication, Inner product and outer product,

15L

1

1

INTRODUCTION

Unit Structure :

1.0 Objectives

1.1 Introduction

1.2 The Nature of Software

1.3 Software Engineering

1.4 The Software Process

1.5 Generic Process Model

1.6 The Waterfall Model

1.7 Incremental Process Models

1.8 Evolutionary Process Models

1.9 Component-Based Development

1.10 The Unified Process Phases

1.11 Agile Development- Agility

1.12 Agile Process

1.13 Extreme Programming

Let us Sum Up

List of References

Bibliography

Unit End Exercises

1.0 OBJECTIVES

After going through this chapter, you will be able to:

● Software

● Software Engineering

● Different Process Models used in software Engineering

1.1 Introduction

The end product that software developers create and provide ongoing

support for is computer software. It includes computer programmes that run

on machines of every size and architecture, content displayed while

computer programmes run, and descriptive data in both physical and digital

formats that cover almost any electronic medium.Software engineers can

create high-quality computer software through the use of a methodology, a

set of techniques, and a variety of tools.

1.2 THE NATURE OF SOFTWARE

Software serves two functions. It is both a product and a vehicle used to

transport a product. As a product, it provides the processing power

embodied by computer hardware or, more broadly, by a network of

2

Software Engineering computers accessible via local hardware. Software is an information

transformer, whether it is found in a mobile phone or a mainframe

computer. It produces, manages, acquires, modifies, displays, or transmits

data.As the vehicle used to deliver the product, software serves as the

foundation for computer control (operating systems), information

communication (networks), as well as the creation and control of additional

programs (software tools and environments).

1.2.1 Defining Software

● Software is instructions (computer programs) that when executed

provide desired features, function, and performance.

● Software is developed or engineered; it is not manufactured in the

classical sense

● Software doesn’t “wear out”.

○ When something is no longer of any use, it reaches the “wear

out” state. That is, it can not perform the function it was built

for. For example, a printer reaches “wear out” state and it can't

print anymore. This doesn’t include the recycling options. One

makes use of a dead printer to do anything else but printing.

○ On the other hand, software does not wear out. Like hardware,

software also shows a high failure rate at its infant state. Then

it gets modifications and the defects get corrections and thus it

comes to the idealized state. This idealized state continues.

○ alternative software with implementation of current user

demands can replace a software. Though, not having a recent

feature is not a defect, users tend to use the latest alternatives.

If we consider this as failure for the software then the failure

rate increases with time. This will make the software deteriorate

due to change, but still the software can perform it’s operation

as it was performing in the beginning. That is why software

doesn’t wear out.

1.2.2 Software Application Domain

There are seven categories of software

1. System software:is a collection of programs written to service other

programs. Some system software (e.g., compilers, editors, and file

management utilities) processes complex, but

determinate,information structures. Other systems applications (e.g

Operating system components, drivers, networking software,

telecommunications processors) process largely indeterminate data.

2. Application software:is a stand-alone program that solves a specific

business need. Applications in this area process business or technical

data in a way that facilitates business operations or

management/technical decision making.One of the significant and

3

INTRODUCTION essential things to note about application software is that it cannot run

independently. To run application software, you have to use a system

platform capable of supporting it.

3. Engineering/scientific software:has been characterized by “number

crunching” algorithms. Applications range from astronomy to

volcanology, from automotive stress analysis to space shuttle orbital

dynamics, and from molecular biology to automated manufacturing.

4. Embedded software:resides within a product or system and is used

to implement and control features and functions for the end user and

for the system itself.e.g., keypad control for a microwave oven,

digital functions in an automobile such as fuel control, dashboard

displays, and braking systems.

5. Product-line software:It is designed to provide a specific capability

for use by many different customers. Product-line software can focus

mass consumer markets (e.g., word processing, spreadsheets,

computer graphics, multimedia, entertainment, database

management, and personal and business financial applications).

6. Web applications:It is called “WebApps,” this network-centric

software category spans a wide array of applications. In their simplest

form, WebApps can be little more than a set of linked hypertext files

that present information using text and limited graphics.

7. Artificial intelligence software—makes use of nonnumerical

algorithms to solve complex problems that are not amenable to

computation or straightforward analysis. Applications within this area

include robotics, expert systems, pattern recognition (image and

voice), artificial neural networks, theorem proving, and game playing.

1.3 SOFTWARE ENGINEERING

● Software engineering is an engineering discipline that is concerned

with all aspects of software production from the early stages of system

specification through to maintaining the system after it has gone into

use.

● Software Engineering is defined as the systematic approach to the

development, operation, maintenance, and retirement of software.

● Software engineering is a layered technology. Referring to Figure 1.1,

any engineering approach (including software engineering) must rest

on an organizational commitment to quality. Total quality

management, Six Sigma, and similar philosophies10 foster a

continuous process improvement culture, and it is this culture that

ultimately leads to the development of increasingly more effective

approaches to software engineering.

● Quality focus: The bedrock that supports software engineering is a

quality focus.

4

Software Engineering ● Process Layer:The foundation for software engineering is the

process layer. The software engineering process is the glue that holds

the technology layers together and enables rational and timely

development of computer software. Process defines a framework that

must be established for effective delivery of software engineering

technology. The software process forms the basis for management

control of software projects and establishes the context in which

technical methods are applied, work products (models, documents,

data, reports, forms, etc.) are produced, milestones are established,

quality is ensured, and change is properly managed.

● Method:Software engineering methods provide the technical how-

to’s for building software. Methods encompass a broad array of tasks

that include communication, requirements analysis, design modeling,

program construction, testing, and support. Software engineering

methods rely on a set of basic principles that govern each area of the

technology and include modeling activities and other descriptive

techniques.

● Tools:Software engineering tools provide automated or semi

automated support for the process and the methods. When tools are

integrated so that information created by one tool can be used by

another, a system for the support of software development, called

computer-aided software engineering, is established

Fig 1.1 Software Engineering Layers

1.4 SOFTWARE PROCESS

● A process is a collection of activities, actions, and tasks that are

performed when some work product is to be created.

● In the context of software engineering, a process is not a rigid

prescription for how to build computer software. Rather, it is an

adaptable approach that enables the people doing the work (the

software team) to pick and choose the appropriate set of work actions

and tasks. The intent is always to deliver software in a timely manner

and with sufficient quality to satisfy those who have sponsored its

creation and those who will use it.

5

INTRODUCTION ● A process framework establishes the foundation for a complete

software engineering process by identifying a small number of

framework activities that are applicable to all software projects,

regardless of their size or complexity.

Process Framework Activities:

For the purpose of illustrating typical process activities, the process

framework is necessary. A process framework for software engineering lists

five framework tasks. Framework activities include, for instance, planning,

modeling, building, and implementation. A set of required work outputs,

project milestones, and software quality assurance (SQA) points are

included in each engineering action specified by a framework activity.

● Communication: By communication, customer requirement

gathering is done. Communication with consumers and stakeholders

to determine the system’s objectives and the software’s requirements.

● Planning: Establish engineering work plan, describes technical risk,

lists resources requirements, work produced and defines work

schedule.

● Modeling: Architectural models and design to better understand the

problem and for work towards the best solution. The software model

is prepared by:

o Analysis of requirements

o Design

● Construction: Creating code, testing the system, fixing bugs, and

confirming that all criteria are met. The software design is mapped

into a code by:

o Code generation

o Testing

● Deployment: In this activity, a complete or non-complete product or

software is represented to the customers to evaluate and give

feedback. On the basis of their feedback, we modify the product for

the supply of better products.

Umbrella Activities:

Software engineering process framework activities are complemented by a

number of umbrella activities. In general, umbrella activities are applied

throughout a software project and help a software team manage and control

progress, quality, change, and risk. Typical umbrella activities include:

● Software project tracking and control—allows the software team

to assess progress against the project plan and take any necessary

action to maintain the schedule. Risk management—assesses risks

that may affect the outcome of the project or the quality of the product.

● Software quality assurance—defines and conducts the activities

required to ensure software quality.

6

Software Engineering ● Technical reviews—assesses software engineering work products in

an effort to uncover and remove errors before they are propagated to

the next activity.

● Measurement—defines and collects process, project, and product

measures that assist the team in delivering software that meets

stakeholders’ needs; can be used in conjunction with all other

framework and umbrella activities.

● Software configuration management—manages the effects of

change throughout the software process.

● Reusability management—defines criteria for work product reuse

(including software components) and establishes mechanisms to

achieve reusable components.

● Work product preparation and production—encompasses the

activities required to create work products such as models,

documents, logs, forms, and lists

1.5 GENERIC PROCESS

A process was defined as a collection of work activities, actions, and tasks

that are performed when some work product is to be created. Each of these

activities, actions, and tasks reside within a framework or model that defines

their relationship with the process and with one another. Each software

engineering action is defined by a task set that identifies the work tasks that

are to be completed, the work products that will be produced, the quality

assurance points that will be required, and the milestones that will be used

to indicate progress.

A generic process framework for software engineering defines five

framework activities— communication, planning, modeling, construction,

and deployment. In addition, a set of umbrella activities—project tracking

and control, risk management, quality assurance, configuration

management, technical reviews, and others—are applied throughout the

process.

1. A linear process flow executes each of the five framework activities

in sequence, beginning with communication and culminating with

deployment (Figure 1.2 a).

2. An iterative process flow repeats one or more of the activities before

proceeding to the next (Figure 1.2b).

3. An evolutionary process flow executes the activities in a “circular”

manner. (Figure 1.2c).

4. A parallel process flow (Figure 1.2d) executes one or more activities

in parallel with other activities.

7

INTRODUCTION Fig 1.2 Process Flow

Identifying a Task Set

● First, choose a task set that best accommodates the needs of the

project and the characteristics of your team.

● A task set defines the actual work to be done to accomplish the

objectives of a software engineering action.

❖ A list of the task to be accomplished

❖ A list of the work products to be produced

❖ A list of the quality assurance filters to be applied

Process Pattern

● A process pattern describes a process-related problem that is

encountered during software engineering work, identifies the

environment in which the problem has been encountered, and

suggests one or more proven solutions to the problem.

● In more general terms, a process pattern provides us with a template,

a consistent method for describing problem solutions within the

context of the software process. By combining patterns, a software

team can solve problems and construct a process that best meets the

needs of a project.

8

Software Engineering ● Process pattern types-

 Stage patterns — defines a problem associated with a framework

activity for the process.

 Task patterns — defines a problem associated with a software

engineering action or work task and relevant to successful software

engineering practice

 Phase patterns — define the sequence of framework activities that

occur with the process, even when the overall flow of activities is

iterative in nature.

1.6 THE WATERFALL MODEL

The waterfall model, sometimes called the classic life cycle, suggests a

systematic, sequential approach to software development that begins with

customer specification of requirements and progresses through planning,

modeling, construction, and deployment.

Fig 1.3 WaterFall Model

A variation in the representation of the waterfall model is called the V-

model. Represented in Figure 1.4. As a software team moves down the left

side of the V, basic problem requirements are refined into progressively

more detailed and technical representations of the problem and its solution.

Once code has been generated, the team moves up the right side of the V,

essentially performing a series of tests (quality assurance actions) that

validate each of the models created as the team moved down the left side.

9

INTRODUCTION

Fig 1.4 V-model

Advantages of waterfall model-

● This model works for small projects because the requirements are

understood very well.

● The waterfall model is simple and easy to understand, implement,

and use.

● All the requirements are known at the beginning of the project, hence

it is easy to manage.

Disadvantages of the waterfall model

● The problems with this model are uncovered, until the software

testing.

● The amount of risk is high.

● This model is not good for complex and object oriented projects.

1.7 INCREMENTAL PROCESS MODEL

The incremental model combines elements of linear and parallel process

flows Referring to Figure 1.5, the incremental model applies linear

sequences in a staggered fashion as calendar time progresses. Each linear

sequence produces deliverable “increments” of the software. When an

incremental model is used, the first increment is often a core product. That

is, basic requirements are addressed but many supplementary features

(some known, others unknown) remain undelivered. The core product is

used by the customer (or undergoes detailed evaluation) As a result of use

and/or evaluation, a plan is developed for the next increment. The plan

addresses the modification of the core product to better meet the needs of

the customer and the delivery of additional features and functionality. This

process is repeated following the delivery of each increment, until the

complete product is produced. The incremental process model focuses on

the delivery of an operational product with each increment. Early

increments are stripped-down versions of the final product, but they do

provide capability that serves the user and also provide a platform for

evaluation by the user.

10

Software Engineering Advantages of incremental model

● This model is flexible because the cost of development is low and

initial product delivery is faster.

● It is easier to test and debug during the smaller iteration.

● The working software generates quickly and early during the software

life cycle. •

● The customers can respond to its functionalities after every increment.

 Disadvantages of the incremental model

● The cost of the final product may cross the cost estimated initially.

● This model requires very clear and complete planning.

● The planning of design is required before the whole system is broken

into small increments.

● The demands of customer for the additional functionalities after every

increment causes problem during the system architecture.

 Fig 1.5 Incremental Model

1.8 EVOLUTIONARY PROCESS MODELS

 Evolutionary models are iterative type models.They allow to develop more

complete versions of the software. Following are the evolutionary process

models.

1. The prototyping model

2. The spiral model

3. Concurrent development model

11

INTRODUCTION 1.8.1. The Prototyping model

● Prototype is defined as the first or preliminary form using which

other forms are copied or derived.

● Prototype model is a set of general objectives for software.It does not

identify the requirements like detailed input, output.

● It is a software working model of limited functionality.In this model,

working programs are quickly produced.

 Fig1.6 Prototyping Model

The different phases of Prototyping model are

● Communication:

 In this phase, developers and customers meet and discuss the overall

objectives of the software.

● Quick design

 Quick design is implemented when requirements are known.It

includes only the important aspects like input and output format of the

software.It focuses on those aspects which are visible to the user

rather than the detailed plan.It helps to construct a prototype.

● Modeling quick design

 This phase gives a clear idea about the development of software

because the software is now built.It allows the developer to better

understand the exact requirements.

● Construction of prototype

 The prototype is evaluated by the customer itself.

● Deployment, delivery, feedback

 If the user is not satisfied with the current prototype then it refines

according to the requirements of the user.The process of refining the

prototype is repeated until all the requirements of users are met. When

the users are satisfied with the developed prototype then the system is

developed on the basis of final prototype.

12

Software Engineering Advantages of Prototyping Model:

● Prototype models need not know the detailed input, output, processes,

adaptability of the operating system and full machine interaction.

● In the development process of this model users are actively involved.

● The development process is the best platform to understand the

system by the user.

● Errors are detected much earlier.

● Gives quick user feedback for better solutions.

● It identifies the missing functionality easily.

● It also identifies the confusing or difficult functions.

Disadvantages of Prototyping Model:

● The client involvement is more and it is not always considered by the

developer.

● It is a slow process because it takes more time for development.

● Many changes can disturb the rhythm of the development team.

● It is a thrown away prototype when the users are confused with it.

1.8.2. The Spiral model

Spiral model is a risk driven process model.It is used for generating software

projects.

In a spiral model, an alternate solution is provided if the risk is found in the

risk analysis, then alternate solutions are suggested and implemented.

It is a combination of prototype and sequential model or waterfall model.

In one iteration all activities are done, for large project's the output is small.

The framework activities of the spiral model are as shown in the following

figure.

13

INTRODUCTION NOTE: The description of the phases of the spiral model is same as that

of the process model.

Advantages of Spiral Model

● It reduces a high amount of risk.

● It is good for large and critical projects.

● It gives strong approval and documentation control.

● In the spiral model, the software is produced early in the life cycle

process.

Disadvantages of Spiral Model

● It can be costly to develop a software model.

● It is not used for small projects.

1.8.3. The concurrent development model

● The concurrent development model is called a concurrent model.

● The communication activity has completed in the first iteration and

exits in the awaiting changes state.

● The modeling activity completed its initial communication and then

went to the underdevelopment state.

● If the customer specifies the change in the requirement, then the

modeling activity moves from the under development state into the

awaiting change state.

● The concurrent process models activities moving from one state to

another state.

Advantages of the concurrent development model

● This model is applicable to all types of software development

processes.

● It is easy to understand and use.

● It gives immediate feedback from testing.

● It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

● It needs better communication between the team members.

● This may not be achieved all the time.

● It requires us to remember the status of the different activities.

14

Software Engineering 1.8.4 Component Based Models

● Component based development is a software system development

methodology where the system is developed using reusable software

components. Component based development aims at improved

efficiency, performance and quality of the system by recycling

components.

● Commercial off-the-shelf (COTS) software components, developed

by vendors who offer them as products, provide targeted functionality

with well-defined interfaces that enable the component to be

integrated into the software that is to be built.

● The component-based development model incorporates many of the

characteristics of the spiral model.The component-based

development model incorporates the following steps (implemented

using an evolutionary approach):

1. Available component-based products are researched and evaluated

for the application domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality

1.9 UNIFIED PROCESS MODEL

The life of a software system can be represented as a series of cycles. A

cycle ends with the release of a version of the system to customers.Within

the Unified Process, each cycle contains Five phases. A phase is simply the

span of time between two major milestones, points at which managers

make important decisions about whether to proceed with development and,

if so, what's required concerning project scope, budget, and schedule.

Inception

The primary goal of the Inception phase is to establish the case for the

viability of the proposed system.

The tasks that a project team performs during Inception include the

following:

● Defining the scope of the system (that is, what's in and what's out)

● Outlining a candidate architecture, which is made up of initial

versions of six different models

● Identifying critical risks and determining when and how the project

will address them

● Starting to make the business case that the project is worth doing,

based on initial estimates of cost, effort, schedule, and product quality

15

INTRODUCTION Elaboration

The primary goal of the Elaboration phase is to establish the ability to

build the new system given the financial constraints, schedule constraints,

and other kinds of constraints that the development project faces.

The tasks that a project team performs during Elaboration include the

following:

● Capturing a healthy majority of the remaining functional

requirements

● Expanding the candidate architecture into a full architectural

baseline, which is an internal release of the system focused on

describing the architecture

● Addressing significant risks on an ongoing basis

● Finalizing the business case for the project and preparing a project

plan that contains sufficient detail to guide the next phase of the

project (Construction)

Construction

● The primary goal of the Construction phase is to build a system

capable of operating successfully in beta customer environments.

● During Construction, the project team performs tasks that involve

building the system iteratively and incrementally (see "Iterations and

Increments" later in this chapter), making sure that the viability of the

system is always evident in executable form.

● The major milestone associated with the Construction phase is called

Initial Operational Capability. The project has reached this

milestone if a set of beta customers has a more or less fully operational

system in their hands.

Transition

● The primary goal of the Transition phase is to roll out the fully

functional system to customers.

● During Transition, the project team focuses on correcting defects and

modifying the system to correct previously unidentified problems.

● The major milestone associated with the Transition phase is called

Product Release.

Production

The production phase of the UP coincides with the deployment activity of

the generic process. During this phase, the ongoing use of the software is

monitored, support for the operating environment (infrastructure) is

provided, and defect reports and requests for changes are submitted and

evaluated.

16

Software Engineering 1.10 AGILE DEVELOPMENT- AGILITY

● Agility means effective (rapid and adaptive) response to change,

effective communication among all stockholders.

● Drawing the customer onto a team and organizing a team so that it is

in control of work performed.

● The agile process forces the development team to focus on software

itself rather than design and documentation.

● The agile process believes in iterative methods.

● The aim of agile process is to deliver the working model of software

quickly to the customer For example: Extreme programming is the

best known of agile process.

● Agility can be applied to any software process. However, to

accomplish this, it is essential that the process be designed in a way

that allows the project team to adapt tasks and to streamline them,

conduct planning in a way that understands the fluidity of an agile

development approach, eliminate all but the most essential work

products and keep them lean, and emphasize an incremental delivery

strategy that gets working software to the customer as rapidly as

feasible for the product type and operational environment.

1.11 AGILE PROCESS

Any agile software process is characterized in a manner that addresses a

number of key assumptions about the majority of software projects:

1. It is difficult to predict in advance which software requirements will

persist and which will change. It is equally difficult to predict how

customer priorities will change as the project proceeds.

2. For many types of software, design and construction are interleaved.

That is, both activities should be performed in tandem so that design

models are proven as they are created. It is difficult to predict how

much design is necessary before construction is used to prove the

design.

3. Analysis, design, construction, and testing are not as predictable

(from a planning point of view) as we might like.

Agility Principles

Agility principles for those who want to achieve agility:

1. Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive advantage.

17

INTRODUCTION 3. Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout

the project.

5. Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

Human Factors

If members of the software team are to drive the characteristics of the

process that is applied to build software, a number of key traits must

exist among the people on an agile team and the team itself

● Competence:“competence” encompasses innate talent, specific

software-related skills, and overall knowledge of the process that the

team has chosen to apply.

● Common focus:All team members should be focused on one goal—

to deliver a working software increment to the customer within the

time promised.

● Collaboration: Software engineering (regardless of process) is about

assessing, analyzing, and using information that is communicated to

the software team; creating information that will help all stakeholders

understand the work of the team; and building information (computer

software and relevant databases) that provides business value for the

customer. To accomplish these tasks, team members must

collaborate—with one another and all other stakeholders.

● Decision-making ability.:The team is given autonomy—decision-

making authority for both technical and project issues.

● Fuzzy problem-solving ability. Software managers must recognize

that the agile team will continually have to deal with ambiguity and

will continually be buffeted by change.

● Self-organization:In the context of agile development, self-

organization implies three things: (1) the agile team organizes itself

for the work to be done, (2) the team organizes the process to best

accommodate its local environment, (3) the team organizes the work

schedule to best achieve delivery of the software increment.

18

Software Engineering 1.12 EXTREME PROGRAMMING

● Extreme programming uses an object-oriented approach as its

preferred development paradigm.

● Extreme programming encompasses a set of rules and practices that

occur within the context of four framework activities: planning,

design, coding, and testing.

1. Planning:

● The planning activity begins with the creation of a set of stories that

describe required features and functionality for software to be built.

● Each story is written by the customer and is placed on an index card.

The customer assigns a value to the story based on the overall business

value of the feature of function.

● Members of the XP (Extreme Programming) team then assess each

story and assign a cost – measured in development weeks – to it.

● If the story will require more than three development weeks, the

customer is asked to split the story into smaller stories, and the

assignment of value and cost occurs again.

● Customers and the XP team work together to decide how to group

stories into the next release to be developed by the XP team.

● Once a basic commitment is made for a release, the XP team orders

the stories that will be developed in one of three ways:

1. All stories will be implemented immediately.

2. The stories with highest value will be moved up in the schedule

and implemented first.

3. The riskiest stories will be moved up in the schedule and

implemented first.

19

INTRODUCTION ● As development work proceeds, the customer can add stories, change
the value of an existing story, split stories or eliminate them.

● The XP team then reconsiders all remaining releases and modifies its
plan accordingly.

2. Design :

● XP design follows the KIS (Keep It Simple) principle. A simple
design is always preferred over a more complex representation.

● The design provides implementation guidance for a story as it is
written – nothing less, nothing more.

● XP encourages the use of CRC (Class Responsibility Collaborator)
cards as an effective mechanism for thinking about the software in an
object oriented context.

● CRC cards identify and organize the object oriented classes that are
relevant to current software increment.

● The CRC cards are the only design work product produced as a part
of XP process.

● If a difficult design is encountered as a part of the design of a story,
XP recommends the immediate creation of that portion of the design
called a ‘spike solution’.

● XP encourages refactoring – a construction technique.

3. Coding

● XP recommends that after stories are developed and preliminary
design work is done, the team should not move to cord, but rather
develop a series of unit test that will exercise each story.

● Once the unit test has been created, the developer is better able to
focus on what must be implemented to pass the unit test.

● Once the code completes, it can be unit tested immediately, thereby
providing instantaneous feedback to the developer.

● A key concept during the coding activity is pair programming. XP
recommends that two people work together at one computer
workstation to create code for a story. This provides a mechanism for
real time problem solving and real time quality assurance.

● As pair programmers complete their work, the code they developed is
integrated with the work of others.

● This continuous integration strategy helps to avoid compatibility and
interfacing problems and provides a smoke testing environment that
helps to uncover errors early.

4. Testing :

● The creation of unit tests before coding is the key element of the XP
approach.

● The unit tests that are created should be implemented using a
framework that enables them to be automated. This encourages
regression testing strategy whenever code is modified.

● Individual unit tests are organized into a “Universal Testing Suit”,

20

Software Engineering integration and validation testing of the system can occur on a daily
basis. This provides the XP team with a continual indication of
progress and also can raise warning flags early if things are going
away.

● XP acceptance tests, also called customer tests, are specified by the
customer and focus on the overall system feature and functionality
that are visible and reviewable by the customer.

LET US SUM UP

This chapter provides a clear Software . It covers different models used in
software engineering. It also presents different unified process phases.The
Second half of the chapter focuses on Agile Development.The chapter
concludes with a clear overview of Extreme programming.

QUESTIONS

1.What are the nature of software.Explain

2.Explain the term “software doesn't wear out”

3.Explain Software Engineering

4.Explain Software Process

5.What are the umbrella activities involved in software process

6.Explain generic process

7.Explain waterfall Model

8.Explain Incremental Model,Iterative Model,prototyping Model

9.Explain Unified Process Model

10.what are Agility Principles?

11.Explain Extreme Programming.

REFERENCES:

● https://technostacks.com/blog/types-of-application-software/

● http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

● https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%
20process%20structure%20and%20model-doc.pdf

● https://www.informit.com/articles/article.aspx?p=24671&seqNum=7

● https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-
engineeri-1/

● Roger S.,Pressman,ed.(2010)Software Engineering: A Practitioner’s

Approach.McGraw-Hill Companies.



https://technostacks.com/blog/types-of-application-software/
http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf
https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%20process%20structure%20and%20model-doc.pdf
https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%20process%20structure%20and%20model-doc.pdf
https://www.informit.com/articles/article.aspx?p=24671&seqNum=7
https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-engineeri-1/
https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-engineeri-1/

21

2

REQUIREMENT ANALYSIS AND

SYSTEM MODELING

Unit Structure :

2.0 Objectives

2.1 Introduction

2.2 Requirements Engineering

2.3 Eliciting Requirements

2.4 SRS Validation

2.5 Components of 15L SRS

2.6 Characteristics of SRS

2.7 Object-oriented design using the UML - Class diagram

2.8 Object diagram

2.9 Use case diagram

2.10 Sequence diagram

2.11Collaboration diagram

2.12 State chart diagram

2.13 Activity diagram

2.14 Component diagram

2.15 Deployment diagram

Let us Sum Up

List of References

Bibliography

Unit End Exercises

2.0 OBJECTIVES

After going through this chapter, you will be able to:

● Requirement Engineering

● SRS

● UML in software Engineering

2.1 INTRODUCTION

The intent of requirements engineering is to provide all parties with a

written understanding of the problem. This can be achieved through a

number of work products: usage scenarios, functions and features lists,

requirements models, or a specification.

22

Software Engineering

2.2 REQUIREMENTS ENGINEERING

Requirements engineering refers to the wide range of jobs and methods that

help one understand requirements. Requirements engineering is a

significant software engineering activity that starts during the

communication activity and continues through the modeling activity from

the standpoint of the software process. It needs to be modified to meet the

requirements of the work being done, the project, the product, and the

process.It encompasses seven distinct tasks: inception, elicitation,

elaboration, negotiation, specification, validation, and management.

Inception:

Stakeholders from the business community (e.g., business managers,

marketing people, product managers) define a business case for the idea, try

to identify the breadth and depth of the market, do a rough feasibility

analysis, and identify a working description of the project’s scope.

Elicitation.:

Ask the customer, the users, and others what the objectives for the system

or product are, what is to be accomplished, how the system or product fits

into the needs of the business, and finally, how the system or product is to

be used on a day-to-day basis.

Elaboration:

The information obtained from the customer during inception and

elicitation is expanded and refined during elaboration.Elaboration is driven

by the creation and refinement of user scenarios that describe how the end

user (and other actor)will interact with the system.

Negotiation:

It isn’t unusual for customers and users to ask for more than can be

achieved, given limited business resources.These conflicts can be

reconciled through a process of negotiation.Customers, users, and other

stakeholders are asked to rank requirements and then discuss conflicts in

priority. Using an iterative approach that prioritizes requirements, assesses

their cost and risk, and addresses internal conflicts, requirements are

eliminated, combined, and/or modified so that each party achieves some

measure of satisfaction.

Specification:

In the context of computer-based systems (and software), the term

specification means different things to different people. A specification can

be a written document, a set of graphical models, a formal mathematical

model, a collection of usage scenarios, a prototype, or any combination of

these.

Validation: The work products produced as a consequence of requirements

engineering are assessed for quality during a validation step. Requirements

23

Requirement Analysis

 and System Modeling
validation examines the specification to ensure that all software

requirements have been stated unambiguously; that inconsistencies,

omissions, and errors have been detected and corrected; and that the work

products conform to the standards established for the process, the project,

and the product.

Requirements management:

Requirements management is a set of activities that help the project team

identify, control, and track requirements and changes to requirements at any

time as the project proceeds.

functions and features lists, requirements models, or a specification.

2.3 ELICITING REQUIREMENTS

Requirements elicitation (also called requirements gathering) combines

elements of problem solving, elaboration, negotiation, and specification.

1. Collaborative requirements gathering

● Gathering the requirements by conducting the meetings between

developer and customer.

● Fix the rules for preparation and participation.

● The main motive is to identify the problem, give the solutions for the

elements, negotiate the different approaches and specify the primary

set of solution requirements in an environment which is valuable for

achieving the goal.

2. Quality Function Deployment (QFD)

● In this technique, translate the customer need into the technical

requirement for the software.

● The QFD system designs software according to the demands of the

customer.

QFD consist of three types of requirement:

Normal requirements

● The objective and goal are stated for the system through the meetings

with the customer.

● For customer satisfaction these requirements should be there.

Expected requirement

● These requirements are implicit.

● These are the basic requirements that are not clearly told by the

customer, but also the customer expects that requirement.

24

Software Engineering

Exciting requirements

● These features are beyond the expectation of the customer.

● The developer adds some additional features or unexpected features

into the software to make the customer more satisfied.

For example, the mobile phone with standard features, but the

developer adds few additional functionalities like voice searching,

multi-touch screen etc. then the customer is more excited about that

feature.

3. Usage scenarios

● Until the software team does not understand how the features and

function are used by the end users it is difficult to move technical

activities.

● To achieve the above problem the software team produces a set of

structures that identify the usage for the software.

● This structure is called 'Use Cases'.

4. Elicitation work product

● The work product created as a result of requirement elicitation that is

depending on the size of the system or product to be built.

● The work product consists of a statement need, feasibility, statement

scope for the system.

● It also consists of a list of users participate in the requirement

elicitation.

2.4 SRS VALIDATION

A software requirements specification (SRS) is a document that is created

when a detailed description of all aspects of the software to be built must be

specified before the project is to commence. It is important to note that a

formal SRS is not always written. In fact, there are many instances in which

effort expended on an SRS might be better spent in other software

engineering activities. However, when software is to be developed by a third

party, when a lack of specification would create severe business issues, or

when a system is extremely complex or business critical, an SRS may be

justified.The work products created as a result of requirements engineering

are checked for consistency, omissions, and ambiguity during the validation

process. The main goal is to guarantee that the SRS correctly and clearly

represents the real needs.

Requirements validation is similar to requirements analysis as both

processes review the gathered requirements. Requirements validation

studies the ‘final draft’ of the requirements document while requirements

analysis studies the ‘raw requirements’ from the system stakeholders

25

Requirement Analysis

 and System Modeling
(users). Requirements validation and requirements analysis can be

summarized as follows:

Requirements validation: Have we got the requirements right?

Requirements analysis: Have we got the right requirements?

Requirements validation determines whether the requirements are

substantial to design the system. The problems encountered during

requirements validation are listed below.

● Unclear stated requirements

● Conflicting requirements are not detected during requirements

analysis

● Errors in the requirements elicitation and analysis

● Lack of conformance to quality standards.

To avoid the problems stated above, a requirements review is conducted,

which consists of a review team that performs a systematic analysis of the

requirements.

Requirements Validation Checklist

It is often useful to examine each requirement against a set of checklist

questions

 Are requirements stated clearly? Can they be misinterpreted?

 Is the source (e.g., a person, a regulation, a document) of the

requirement identified? Has the final statement of the requirement been

examined by or against the original source?

 Is the requirement bounded in quantitative terms?

 What other requirements relate to this requirement? Are they clearly

noted via a cross-reference matrix or other mechanism?

 Does the requirement violate any system domain constraints?

 Is the requirement testable? If so, can we specify tests (sometimes called

validation criteria) to exercise the requirement?

 Is the requirement traceable to any system model that has been created?

 Is the requirement traceable to overall system/product objectives?

 Is the specification structured in a way that leads to easy understanding,

easy reference, and easy translation into more technical work products?

 Has an index for the specification been created?

 Have requirements associated with performance, behavior, and

operational characteristics been clearly stated? What requirements

appear to be implicit?

26

Software Engineering

2.4 COMPONENTS OF SRS

SRS should have these components

1. Functional Requirements

 Functional requirements specify what output should be produced

from the given inputs. So they basically describe the connectivity

between the input and output of the system. For each functional

requirement:

1. A detailed description of all the data inputs and their sources,

the units of measure, and the range of valid inputs be specified:

2. All the operations to be performed on the input data obtain

the output should be specified, and

3. Care must be taken not to specify any algorithms that are not

parts of the system but that may be needed to implement the

system.

4. It must clearly state what the system should do if system

behaves abnormally when any invalid input is given or due to

some error during computation. Specifically, it should specify

the behavior of the system for invalid inputs and invalid outputs.

2. Performance Requirements (Speed Requirements)

 This part of an SRS specifies the performance constraints on the

software system. All the requirements related to the performance

characteristics of the system must be clearly specified. Performance

requirements are typically expressed as processed transactions per

second or response time from the system for a user event or screen

refresh time or a combination of these. It is a good idea to pin down

performance requirements for the most used or critical transactions,

user events and screens.

3. Design Constraints

 The client environment may restrict the designer to include some

design constraints that must be followed. The various design

constraints are standard compliance, resource limits, operating

environment, reliability and security requirements and policies that

may have an impact on the design of the system. An SRS should

identify and specify all such constraints.

 Standard Compliance: It specifies the requirements for the standard

the system must follow. The standards may include the report format

and according procedures.

 Hardware Limitations: The software needs some existing or

predetermined hardware to operate, thus imposing restrictions on the

27

Requirement Analysis

 and System Modeling
design. Hardware limitations can include the types of machines to be

used, operating system availability, memory space etc.

 Fault Tolerance: Fault tolerance requirements can place a major

constraint on how the system is to be designed. Fault tolerance

requirements often make the system more complex and expensive, so

they should be minimized.

 Security: Currently security requirements have become essential and

major for all types of systems. Security requirements place

restrictions on the use of certain commands, control access to

databases, provide different kinds of access, requirements for

different people, require the use of passwords and cryptography

techniques, and maintain a log of activities in the system.

4. External Interface Requirements

 For each external interface requirements:

1. All the possible interactions of the software with people hardware and

other software should be clearly specified,

2. The characteristics of each user interface of the software product

should be specified and

3. The SRS should specify the logical characteristics of each interface

between the software product and the hardware components for

hardware interfacing.

2.5 CHARACTERISTICS OF SRS

Following are the Characteristics of a good SRS document:

1. Correctness: User review is used to provide the accuracy of

requirements stated in the SRS. SRS is said to be perfect if it covers

all the needs that are truly expected from the system.

2. Complete: software system will perform each and every function as

per the SRS.A SRS is complete if everything the software is supposed

to do and the responses of the software to all classes of input data are

specified in SRS.To ensure completeness, one has to detect the

absence of specification which is much harder to determine.

3. Consistency: Requirements at all levels must be consistent with each

other .any conflict between requirements within the SRS must be

identified and resolved. The types of conflicts that generally occur

are: For example, The format of an output report may be described in

one requirement as tabular but in another as textual.

4. Clarity: The documented requirement should lead to only a single

interpretation, independent of the person or the time when the

interpretation is done. The SRS needs to be unambiguous to the

authors, the users, other reviewers as well as the developers and

testers who will use the document. So SRS writers should be careful

about ambiguity.

28

Software Engineering

5. Ranking : Generally, the requirements stated according to their

priorities are critical, others are important but not critical, and there

are some which are desirable but not very important.

6. Modifiability: SRS should be made as modifiable as likely and

should be capable of quickly obtaining changes to the system to some

extent.

7. Traceability: The SRS is traceable if the origin of each of the

requirements is clear and if it facilitates the referencing of each

condition in future development or enhancement documentation.

There are two types of Traceability:

1. Backward Traceability: This depends upon each requirement

explicitly referencing its source in earlier documents.

2. Forward Traceability: This depends upon each element in the SRS

having a unique name or reference number.The forward traceability

of the SRS is especially crucial when the software product enters the

operation and maintenance phase. As code and design documents are

modified, it is necessary to be able to ascertain the complete set of

requirements that may be concerned by those modifications.

3. Testability: An SRS should be written in such a method that it is

simple to generate test cases and test plans from the report.

2.6 OBJECT-ORIENTED DESIGN USING THE UML

Object Oriented Design (OOD) is the process of defining the objects and

their interactions to solve a problem that was identified and documented

during the Object Oriented Analysis (OOA). OOD is a design model that is

considered as a blueprint for software construction.

The general steps that a software engineer should take to execute

object-oriented design are as follows:

1. Identify each subsystem and assign responsibilities to it.

2. Select a design approach for putting task management, interface

support, and data management into practice.

3. Create a system-appropriate control mechanism.

4. Create procedural representations for each action and data structures

for class attributes to do object design.

5. Perform message design using collaborations between objects and

object relationships.

6. Create the messaging model

7. Examine the design model and iterate as necessary

29

Requirement Analysis

 and System Modeling
UML

The Unified Modelling Language, or the UML, is a graphical modeling

language that provides us with a syntax for describing the major elements

(called artifacts in the UML) of software systems.UML has a lot of different

diagrams (models). The reason for this is that it is possible to look at a

system from different viewpoints. UML being a graphical language

includes nine such diagram models):

● Class diagram

● Object diagram

● Use case diagram

● Sequence diagram

● Collaboration diagram

● Statechart diagram

● Activity diagram

● Component diagram

● Deployment diagram

2.6.1 Class Diagram

In software engineering, a class diagram in the Unified Modeling Language

(UML) is a type of static structure diagram that describes the structure of a

system by showing the system's classes, their attributes, operations (or

methods), and the relationships among objects.A class represent a concept

which encapsulates state (attributes) and behavior (operations). Each

attribute has a type. Each operation has a signature. The class name is the

only mandatory information.

Class Notation

A class notation consists of three parts:

1. Class Name

• The name of the class appears in the first partition.

2. Class Attributes

• Attributes are shown in the second partition.

• The attribute type is shown after the colon.

• Attributes map onto member variables (data members) in code.

3. Class Operations (Methods)

• Operations are shown in the third partition. They are services

the class provides.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

30

Software Engineering

• The return type of a method is shown after the colon at the end

of the method signature.

• The return type of method parameters is shown after the colon

following the parameter name.

• Operations map onto class methods in code

• The +, - and # symbols before an attribute and operation name

in a class denote the visibility of the attribute and operation.

2.6.2 Object Diagram

Object is an instance of a class in a particular moment in runtime that can

have its own state and data values.Before creating a class diagram, their

might need to create an object diagram to discover facts about specific

model elements and their links.They are useful to explain smaller portions

of your system, when your system class diagram is very complex, and also

sometimes modeling recursive relationship in diagram.

Fig 2.6.2 Class Diagram

31

Requirement Analysis

 and System Modeling
Object Diagram

• Every object is actually symbolized like a rectangle, that offers the

name from the object and its class underlined as well as divided with

a colon.

• Similar to classes, a list of object attributes inside a separate

compartment can be listed. However, unlike classes, object attributes

should have values assigned for them.

2.6.3. Use Case Diagram

● A use case diagram can summarize the details of your system's users

(also known as actors) and their interactions with the system.

● use case diagrams are ideal for:

○ Representing the goals of system-user interactions

○ Defining and organizing functional requirements in a system

○ Specifying the context and requirements of a system

○ Modeling the basic flow of events in a use case

The Common components of use case diagram include:

● Actors: The users that interact with a system. An actor can be a

person, an organization, or an outside system that interacts with your

application or system. They must be external objects that produce or

consume data.

● System: A specific sequence of actions and interactions between

actors and the system. A system may also be referred to as a scenario.

● Goals: The end result of most use cases. A successful diagram should

describe the activities and variants used to reach the goal.

32

Software Engineering

2.6.4 Sequence Diagram

The sequence diagram is used primarily to show the interactions between

objects in the sequential order that those interactions occur. One of the

primary uses of sequence diagrams is in the transition from requirements

expressed as use cases to the next and more formal level of

refinement.Sequence Diagrams are driven by the Use Cases which are the

system requirements. In this form objects are shown as vertical lines with

the messages as horizontal lines between them. The sequence of messages

is indicated by reading down the page (read left to right and descending).

Sequence Diagrams are about deciding and modeling "how" the system will

achieve "what" we described in the Use Case model.

Example of a "Make a Cup of Tea" sequence diagram generated from its

corresponding use case description is as shown in Figure below.

2.6.5. Collaboration diagram

Communication diagrams, formerly known as collaboration diagrams, are

almost identical to sequence diagrams in UML, but they focus more on the

relationships of objects—how they associate and connect through messages

in a sequence rather than interactions.A communication diagram offers the

same information as a sequence diagram, but while a sequence diagram

emphasizes the time and order of events, a communication diagram

emphasizes the messages exchanged between objects in an application.

Symbols and notations of communication diagrams

● Rectangles represent objects that make up the application.

● Lines between class instances represent the relationships between

different parts of the application.

● Arrows represent the messages that are sent between objects.

● Numbering lets you know in what order the messages are sent and

how many messages are required to finish a process.

https://www.lucidchart.com/pages/uml-sequence-diagram

33

Requirement Analysis

 and System Modeling

2.6.6 State Chart Diagram

A state diagram depicts how classes behave in response to external inputs.

A state diagram, in particular, illustrates the behavior of a single item in

response to a series of events in a system. It is sometimes referred to as a

Harel state chart or a state machine diagram. This UML diagram depicts the

dynamic flow of control from one state to the next of a specific item inside

a system.

Notation of a State Machine Diagram

● State:States represent situations during the life of an object.

● Transition:A solid arrow represents the path between different states

of an object. Label the transition with the event that triggered it and

the action that results from it. A state can have a transition that points

back to itself.

● Decision:It is of diamond shape that represents the decisions to be

made on the basis of an evaluated guard.

34

Software Engineering

● Initial State:A filled circle followed by an arrow represents the

object's initial state.

● Final State:An arrow pointing to a filled circle nested inside another

circle represents the object's final state.

Fig 2.6.6 State Chart Diagram

2.6.7 Activity Diagram

A UML activity diagram depicts the dynamic behavior of a system or part

of a system through the flow of control between actions that the system

performs. It is similar to a flowchart except that an activity diagram can

show concurrent flows.

● The main component of an activity diagram is an action node,

represented by a rounded rectangle.

● Arrows from one action node to another indicate the flow of control.

● A solid black dot forms the initial node that indicates the starting

point of the activity.

● A black dot surrounded by a black circle is the final node

indicating the end of the activity.

● A fork represents the separation of activities into two or more

concurrent activities. It is drawn as a horizontal black bar with one

arrow pointing to it and two or more arrows pointing out from it

35

Requirement Analysis

 and System Modeling

Fig 2.6.7 Activity Diagram

2.6.8 Component Diagram

The purpose of a component diagram is to show the relationship between

different components in a system.The term "component" refers to a module

of classes that represent independent systems or subsystems with the ability

to interface with the rest of the system.A component diagram is similar to

the package diagram. It works in the same way as the package diagram,

showing the organizations and dependencies among a set of components.

Component diagrams address the static implementation view of a system.

Component diagrams emphasize the physical software entity e.g. files

headers, executables, link-libraries etc, rather than the logical partitioning

of the package diagram. It is based heavily on the package diagram, but has

added ".dll" to handle I/O, and has added a test harness executable. Not

heavily used, but can be 188 helpful in mapping the physical, real life

software code and dependencies between them. Figure 2.8 shows a symbol

used for a software component.

36

Software Engineering

2.6.9 Deployment Diagram

In UML, deployment diagrams model the physical architecture of a system.

Deployment diagrams show the relationships between the software and

hardware components in the system and the physical distribution of the

processing.Deployment diagrams, which you typically prepare during the

implementation phase of development, show the physical arrangement of

the nodes in a distributed system, the artifacts that are stored on each node,

and the components and other elements that the artifacts implement. Nodes

represent hardware devices such as computers, sensors, and printers, as well

as other devices that support the runtime environment of a system.

Communication paths and deploy relationships model the connections in

the system.

Deployment diagrams are effective for visualizing, specifying, and

documenting the following types of systems:

● Embedded systems that use hardware that is controlled by external

stimuli; for example, a display that is controlled by temperature

change

● Client/server systems that typically distinguish between the user

interface and the persistent data of a system

● Distributed systems that have multiple servers and can host multiple

versions of software artifacts, some of which might even migrate from

node to node.

LET US SUM UP

This chapter provides understanding about requirement engineering.It

covers about SRS and its validation .The Second half of the chapter focuses

on different diagrams available as part of UML which provide a rich set of

representational forms for the design model.

QUESTIONS

1. Explain different tasks in Requirement Engineering.

2. Describe Eliciting requirements.

3. Explain SRS and its Validation

4. What are the components of SRS?Explain it

5. What are the characteristics of SRS

6. Explain Class diagram

7. Explain Object diagram

8. Explain Use case diagram

37

Requirement Analysis

 and System Modeling
9. Explain Sequence diagram

10. Explain Collaboration diagram

11. Explain Statechart diagram

12. Explain Activity diagram

13. Explain Component diagram

14. Explain Deployment diagram

REFERENCES:

● https://www.tutorialride.com/software-engineering/software-

requirements-

engineering.htm#:~:text=Collaborative%20requirements%20gather

ing&text=Fix%20the%20rules%20for%20preparation,is%20valuab

le%20for%20achieving%20goal.

● https://www.tutorsglobe.com/homework-help/software-

engineering/components-of-the-srs-7746.aspx

● https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/uml-class-diagram-tutorial/

● https://developer.ibm.com/articles/the-sequence-diagram/

● https://www.lucidchart.com/pages/uml-sequence-diagram

● https://www.lucidchart.com/pages/uml-communication-diagram



https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorsglobe.com/homework-help/software-engineering/components-of-the-srs-7746.aspx
https://www.tutorsglobe.com/homework-help/software-engineering/components-of-the-srs-7746.aspx
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://developer.ibm.com/articles/the-sequence-diagram/
https://www.lucidchart.com/pages/uml-sequence-diagram

38

Software Engineering
 3

SYSTEM DESIGN

Unit Structure :

3.0 Objectives

3.1 Introduction

3.2 System/Software Design

3.3 Architectural Design

3.4 Coupling

3.5 Cohesion

3.6 Functional-Oriented Versus the Object-Oriented Approach

3.7 Design Specifications

3.8 Verification for Design

3.9 Monitoring and Control for Design

Summary

List of References

Unit End Exercises

3.0 OBJECTIVES

The objectives of this chapter consist of:

• Understanding the open-closed principle, connection, coherence, and

modularity design principles

• Getting familiar with function-oriented system's structure using the

structure chart notation and the structured design process used to

create the system's structure chart

• Fundamentals and process of object-orientation design for a system

• Understanding the guidelines for creating thorough designs, methods

for confirming designs, and measures for measuring design

complexity

• comprehend the significance of software architecture

• understand the choices that need to be taken during the architectural

design process regarding the system architecture

• to learned about architectural patterns, tried-and-true methods of

structuring system architectures that can be used to system designs

3.1 INTRODUCTION

When the architecture and document illustrating project has been created

that needs to produced is presented, the design process may start. We further

39

System Design enhance the architecture during design. Design is typically concentrated on

what we have dubbed the module perspective. That is, we decide which

modules need to be developed and which ones the system should have

during the design phase. Often, the module view can be thought of as the

architecture's individual components organized into modules. Here, the

framework establishes component's development architecture. This

straightforward component to module mapping, nevertheless, might not

always be accurate. In that instance, it is imperative that we make sure the

module view we produced during design adheres to the architecture.

A system's design is simply a blueprint or strategy for resolving a problem

with the system. Here, a system is viewed as a collection of elements that

communicate with one another to provide a particular behaviour or set of

services for its environment.

There are typically two levels to the architecture development process.

Choosing required elements, their parameters, and how they should be

connected are the main concerns at the initial level. This is what is referred

to as the high-level or module design. The intramural module architecture

and how the requirements can be satisfied is decided at the second stage. To

make the system design sufficiently complete for coding, framework

incorporated detailing architecture. A methodology is a methodical process

that involves using a set of techniques and principles to create a design.

While most design approaches concentrate on architecture, they don’t boil

down the process to set of instructions the designer may follow without

thinking.

3.2 SYSTEM/SOFTWARE DESIGN

If a system constructed exactly in accordance with the specification meet

needs of that model, the architecture of that system is correct. Producing

accurate designs is undoubtedly the aim of the design process. There can be

several accurate designs, thus accuracy is not the only factor considered

throughout the design phase. Not just creating a model architecture is the

objective. Instead, it aims at coming up with the greatest design you can

while staying within the constraints set through specifications.

We must define some evaluation criteria before we can assess a design. We

shall concentrate on a system's modularity, determined by architecture, as

primary requirement for analysis. It is obvious that modularity is a desired

quality. System debugging is facilitated by modularity because it makes it

simpler to isolate a system issue to a specific module. Modularity also

facilitates system repair since replacing a component of the system only

impacts a small number of other components.

Simply dividing a software system into a number of modules won't make it

modular. Each module must have a clearly illustrated set of rules and

specifications & a transparent alliance for communication with different

entities in order to be considered modular. Two modularization criteria that

are frequently employed together are coupling and cohesion.

40

Software Engineering

3.3 ARCHITECTURAL DESIGN

Understanding how a system should be structured and creating that system's

general structure are both aspects of architectural design. The architectural

design level of the s/w architecture process is first one in the system

evolution procedure. It determines primary entities of a model& their

connections, requirements engineering serves as the important connectivity

between architecture and engineering needs.

It is widely acknowledged that in agile processes, the establishment of a

generic system architecture should take place early in the development

process. Architectural progress that takes place incrementally rarely works.

Restructuring design is costly, whereas refactoring components in reaction

to changes typically rather simple.

To understand the concept, consider about Figure 1. The components that

need to be built are shown in an abstract model of the architecture for a

packing robot system. This robotic system is capable of packing a variety

of objects. It picks out items on a conveyor, determines the kind of item,

and chooses the appropriate packing all using a vision component. After

that, the system transports items off of the delivery belt for packaging. It

loads packaged goods onto a different conveyor. These elements and the

connections between them are displayed in the architectural model.

Figure 1: The architecture of a packing robot control system

Architectural design and requirements engineering procedures frequently

overlap one another in practise. A system specification should ideally not

contain any design data. With the exception of very small systems, this is

41

System Design unrealistic. The specification must typically be organised and structured

using architectural decomposition. As a result, you might suggest an

abstract system architecture where link collections of system features or

functions to substantial parts or subsystems is established. The system's

requirements and features can then be discussed with stakeholders using this

breakdown.

There are two degrees of abstraction available when designing software

architectures:

1] Small-scale architecture focusses on design of specific projects. Here

interested lies in how a programme is broken down into its component

parts.

2] Architecture, in its broadest sense, refers to the design of intricate

module incorporating different sub modules, programmes &

programme elements. This corporate model dispersed across

numerous computers, some of which may be owned and operated by

various businesses.

3.4 COUPLING

If one module can run entirely on its own without the other, they are said to

be independent. It goes without saying that if two modules are independent,

they can be solved and modified independently. The modules of a system

must interact with one another in order to achieve the desired outward

behaviour of the system, hence they cannot all be independent of one

another. The more linkages there are between modules, the more

interdependent they are in that it takes a deeper understanding of one

module to comprehend or address the problem in the other. Therefore, it is

simpler to understand one module without understanding the other links

between them. The concept of coupling makes an attempt to express this

idea of "how strongly" certain modules are related.

The degree of linkages or the degree of interdependence between modules

is referred to as coupling. In general, A and B are more tightly related the

more information we need to grasp module A before we can fully

comprehend module B. While "loosely coupled" have frail connectivity,

"highly coupled" are connected by strong interconnections. There are no

linkages between independent components. The s/w modules are developed

during architectural formulation, therefore connection across them is

primarily determined at that time and cannot be lessened during

implementation.

The more complicated and obscure the interface between modules, the more

coupling there is. The number of alliances should be kept to a minimum in

order to maintain low coupling. Information is passed to and from other

modules through a module's interface.

Another element affecting coupling is interface complexity. The degree of

coupling will be larger the more intricate each interaction is. For instance,

both the quantity and complexity of the items supplied as parameters affect

42

Software Engineering

how complicated the entry interface for a procedure is. Interface complexity

must support the necessary communication between modules to some

extent. However, this minimum is frequently exceeded. We are

unnecessarily increasing the coupling by breaking the record. Basically, we

should keep a module's interface as straightforward and condensed as

possible.

The third key element influencing coupling is the data workflow process at

the alliances. Data and control are the two types of information that can

travel via an interface. It is more challenging to comprehend & offer when

control is passed or received. A module transfers data information when it

provides some data as input & receives some as o/p. Table 1 summarises

how these three elements affect coupling.

Table 1: Parameters influencing coupling

Due to fact that objects have a greater semantic richness than functions,

coupling takes on a slightly different appearance in OO systems. They are

of three types:

– Interaction

– Component

– Inheritance

Methods of one class calling methods of another cause’s interaction

coupling. This circumstance resembles a function calling another function

in many respects, and as a result, this coupling resembles coupling between

functional modules. Within this group, coupling is smaller when only data

is sent, but it increases when data flows since the invoked type affects how

calling function is executed. Additionally, coupling increases as data

transmission volume rises.

When two classes communicate and one class contains variables from the

other class, this is referred to as component coupling. There are three

distinct circumstances in which this may occur. If a class C has an instance

variable of type C1, a method with a parameter of type C1, a method with a

local variable of type C1, or all three, the class C can be a component

connected with another class C1. Because any object from any subclass may

be used at runtime, when C is component coupled with C1, it has the

43

System Design potential to be component coupled with all subclasses of C1. It should be

obvious that there will almost always be interaction coupling whenever

there is component coupling. If the variables of class C1 are either in the

signatures of the methods of class C or in some properties of class C,

component coupling is thought to be weakest (and hence most desirable). If

there is interaction through local variables, this interaction is not apparent

from the outside, increasing coupling.

3.5 COHESION

This indicates how closely related its internal components are to one

another. The cohesion of a module informs the designer of whether the

various components of a module should be placed together in the same

module. Coupling and cohesion are connected. Typically, there is less

coupling between modules the more cohesive each module is within the

system. Although this association is not exact, it has been seen in real-world

situations. Different levels of cohesiveness exist: Coincidental, logical,

temporal, procedural, communicational, sequential and functional.

The levels are coincidental (lowest) and functional (highest). When there is

no significant relationship between the components of a module, there is

accidental cohesiveness. An existing programme can be "modularized" by

breaking it up into smaller bits and turning each of those pieces into a

separate module. A module is likely to exhibit coincidental coherence if it

combines a portion of code that appears in multiple places in order to reduce

duplicate code.

If a module's components perform tasks that belong to the same logical class

and there is some logical relationship between them, the module is said to

have logical cohesiveness. A module that handles all the inputs or all the

outputs is a common illustration of this type of cohesiveness. If we want to

enter or output a certain record in such a scenario, we must to communicate

this to the module. This is frequently accomplished by including a specific

status flag that will be utilised to select which module statements to execute.

Such a module typically has complex and awkward code, in addition to

creating hybrid information flow between modules, which is typically the

worst type of coupling between modules. In general, it's best to stay away

from logically cohesive units.

Similar to logical coherence, temporal cohesion refers to the execution of

elements that are related in time. Typically, modules that carry out tasks like

"initialization," "cleanup," and "termination" are time-bound. The pieces in

a temporally bound module are logically related, but because they are all

executed simultaneously, temporal cohesiveness is stronger than logical

cohesion. By doing so, the issue of passing the flag is avoided, and the code

is typically shorter.

A procedurally cohesive module is made up of components from a single

procedural unit. A module's loop or series of decision statements, for

instance, could be concatenated to create a new module. When a modular

structure is derived from a type of flowchart, procedurally coherent modules

frequently appear. Functional boundaries are frequently crossed through

44

Software Engineering

procedural coherence. Several functions or merely a portion of a function

may be present in a module with only procedural cohesiveness.

Elements in a module with communicational cohesion are connected by a

reference to the same input or output data. In other words, in a

communication-bound module, the components are grouped together

because they share input or output data. This might include a module to

"print and punch record," for instance. Modules with good communication

may serve multiple purposes. However, if alternative structures with

stronger cohesion cannot be readily recognised, communicational

cohesiveness is high enough to be generally accepted.

Sequential cohesiveness occurs when components are grouped together in

a module because the output of one serve as the input to another. Sequential

cohesion does not offer any recommendations for how to group elements

into modules if the result of one element serves as the input to another.

The strongest coherence is functional cohesion. Every component of a

module that is functionally bound is connected to carrying out a single

function. We don't just mean mathematical functions when we say

"function"; we also include modules that achieve a specific task.

Functionally cohesive modules can be seen in actions like "calculate square

root" and "sort the array."

Cohesion in object-oriented systems has three aspects:

- Method cohesion

- Class cohesion

- Inheritance cohesion

Cohesion in functional modules is the same as method cohesion. It focuses

on the rationale behind grouping the various method's code components

together. When all of a method's statements work together to implement a

single, clearly defined function, this is referred to as cohesiveness at its

highest level.

Class cohesiveness examines the rationale behind the grouping of various

characteristics and methods in this class. The objective is to have a class

that implements a single abstraction or concept, with each component

working to support that concept. A designer should attempt to adjust the

design such that each class encapsulates a single notion since, generally

speaking, anytime many concepts are wrapped within a class, the cohesion

of the class is not as high as it could be.

The focus of inheritance cohesion is on the rationale for the grouping of

classes in a hierarchy. Inheritance is mostly used to represent

generalization-specialization relationships and to reuse code. If the

hierarchy encourages generalization-specialization of a certain concept,

which is likely to naturally result in code reuse, cohesion is deemed to be

good. If the hierarchy's main purpose is code sharing and the superclass and

subclass relationships are weak conceptually, it is regarded as lower.

45

System Design 3.6 FUNCTIONAL-ORIENTED VERSUS THE OBJECT-

ORIENTED APPROACH

Functional programming uses immutable data to tell the program exactly

what to do. Object-oriented programming tells the program how to achieve

results through objects altering the program's state. Both paradigms can be

used to create elegant code. Table 2 illustrates the detailed comparison

between function oriented and object-oriented design approach.

Table 2: Comparison between function oriented and object-oriented design

approach

3.7 DESIGN SPECIFICATIONS

The Functional Needs set forth in Design Specifications indicate how a

system fulfils those requirements. This may include guidelines for testing

particular conditions, configuration options, or a review of functions or

code, depending on the system. The functional specification's requirements

should all be met.

Design specifications examples:

Good requirements can be tested and are unbiased. Design requirements

could consist of

• Data types and specific inputs that must be entered into the system

• Code or calculations used to fulfil specified requirements

46

Software Engineering

• outputs the system produces

• describing the technical safeguards to make systems secure

• Indicate how the system complies with any applicable legal

requirements.

The Installation Qualification typically includes tests of the System

Requirements and the installation procedure. In the operational

qualification, input, processing, output, and security testing are often tested.

There is now some discussion in the industry over who needs to examine

the Design Specification due to the highly technical nature of most design

papers. The System Owner, System Developer, and Quality Assurance must

all examine and accept the Design Specification. Quality Assurance

certifies that the document complies with the necessary laws and that all

requirements were satisfactorily met, although they are not required to

review technical data.

The functional requirements document and the design specification may be

integrated, depending on the length and complexity of the programme.

3.8 VERIFICATION FOR DESIGN

Before starting the following phase's activities, the design activity's output

needs to be confirmed. If the design is expressed in a formal notation for

which analysis tools are available, then it can be checked for internal

consistency using tools (for example, the modules used by others are

defined, a module's interface is consistent with how others use it, data usage

is consistent with declaration, etc.). The design cannot be processed using

tools if it is not stated in a formal, executable language, hence alternative

methods of verification must be utilised. Design review is the method of

verification that is most frequently used.

Design reviews are conducted to make sure that the design meets the

specifications and is of high quality. If mistakes are committed during the

design phase, they will eventually show up in the code and the finished

system. It is desirable if design problems are discovered early, before they

reveal themselves in the system, as the cost of fixing faults brought on by

design errors rises with the delay in recognising the errors. The goal of

design reviews is to find design flaws.

Similar to the inspection process, the system design review process involves

a group of people meeting to discuss the design in order to identify any

flaws or undesired characteristics. A member of the system design team, a

member of the detailed design team, the author of the requirements

document, the author in charge of maintaining the design document, and an

independent software quality engineer are all required to be on the review

group. As with any review, it is important to remember that the meeting's

goal is to identify design flaws rather than attempt to remedy them; fixing

is done later.

47

System Design Only the designer's imagination can constrain how many ways faults might

creep into a design. The fact that the design does not fully fulfil some

requirements, however, is the most significant design flaw. For instance, a

scenario for an exception situation cannot be handled or a design constraint

has not been met. Modularity is the primary factor in determining design

excellence. Efficiency is another important factor for which a design is

assessed, though, as it is necessary to test whether it can meet performance

requirements.

3.9 MONITORING AND CONTROL FOR DESIGN

Control is a management function that aids in error detection and the

implementation of corrective measures. This is done to ensure that the

organization's stated goals are fulfilled in the desired manner and to reduce

deviation from standards.

Monitoring is the process of routinely observing and documenting the

actions occurring within a project or programme. It is a procedure for

regularly compiling data on every facet of the project.

Project control includes the tools, process, people skills and experience,

when integrated provide the right information at the right time to enable the

right decision to be made. It mainly focusses on attributes such as Why,

What, When, Where, and How.

Project monitoring helps to track project performance and progression using

key performance indicators (KPIs) agreed during project planning.

• Project monitoring and control

 The methods of tracking, reviewing, and regulating the project's

performance are known as monitoring and controlling. It also detects

any places where adjustments to the project management

methodology are necessary and starts making those adjustments.

 Eleven processes make up the Monitoring & Controlling process

group, and they are as follows:

48

Software Engineering

1] Monitor and control project work: The first stage, known as "monitor

and control project work," is the umbrella step for all further

monitoring and regulating operations.

2] Perform integrated change control: The procedures necessary to

modify the project plan. The program is modified and reapproved by

the project sponsor if adjustments to the schedule, budget, or any other

aspect of the project management plan are required.

3] Validate scope: The procedures necessary to obtain project

deliverable approval.

4] Control scope: Making sure that the project's scope does not change

and that no unapproved actions are taken in accordance with the plan

(scope creep).

5] Control schedule: The activities involved in making sure that project

work is carried out in accordance with the schedule and that project

deadlines are reached.

6] Control costs: The activities necessary to guarantee that the project

expenses adhere to the approved budget.

7] Control quality: Assuring the project deliverables meet the quality

standards outlined in the project management strategy.

8] Control communications: Attending to each project stakeholder's

communication demands.

9] Control risks: preventing unforeseen occurrences that could have a

detrimental influence on the project's budget, schedule, stakeholder

requirements, or any other criterion for project success.

10] Control procurements: Ensuring that the project's vendors and

subcontractors achieve the project's objectives.

11] Control stakeholder engagement: The activities necessary to

guarantee that each project's stakeholders are happy with the outcome.

SUMMARY

A system's design is a strategy for a course of action that, if carried out, will

satisfy the system's requirements and maintain its architectural integrity.

The detailed design explains the processing logic of modules, whereas the

module-level design identifies the modules that must exist in the system to

execute the architecture.

If each module in a system has a clear abstraction and changes to one

module have little effect on other modules, the system is said to be modular.

Cohesion and coupling are two factors that are taken into account while

assessing a design's modularity. Cohesion is a measurement of the degree

to which the various components of a module are connected, whereas

coupling depicts how dependent modules are on one another. In a design,

coupling should typically be reduced and cohesiveness should be increased.

The open-closed principle, which states that modules should be available

49

System Design for extension but closed for alteration, should also be supported by the

design.

According to the structured design technique, a design should be created

(shown as a structure chart) so that the modules have a low amount of

coupling and a high level of cohesiveness. In order to accomplish this, the

technique divides the system into a number of subsystems, one for

managing each significant input, one for managing each major output, and

one for managing each major transformation. This neatly divides the system

into sections that each independently address various issues.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman

(2014).

2] Software Engineering, Ian Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,

PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John

Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,

Springer.

UNIT END EXERCISES

1] Explain the concept of system/ software design.

2] Write a note on architectural design.

3] Discuss on coupling.

4] Write a note on cohesion.

5] Illustrate the comparison between function-oriented and object-

oriented approach.

6] Write a note on design specification.

7] Explain the concept of verification for design.

8] Define control and monitoring. Explain in brief the eleven steps

involved in project monitoring and control process.



50

Software Engineering
 4

SOFTWARE MEASUREMENT

AND METRICS

Unit Structure :

4.0 Objectives

4.1 Introduction

4.2 Product Metrics – Measures, Metrics, and Indicators

4.3 Function-Based Metrics

4.4 Metrics for Object-Oriented Design

4.5 Operation-Oriented Metric

4.6 User Interface Design Metrics

4.7 Metrics for Source Code

4.8 Halstead Metrics Applied to Testing

4.9 Metrics for Maintenance

4.10 Cyclomatic Complexity

4.11 Software Measurement: Size-Oriented Metrics

4.12 Function-Oriented Metrics

4.13 Metrics for Software Quality

 4.13.1 Measuring quality

 4.13.2 Defect removal efficiency

Summary

List of References

Unit End Exercises

4.0 OBJECTIVES

• To understand the applicability of metrics in software engineering

• To get familiar with how the real time entities are associated with

metrics and measurement

• To understand how metrics are used to evaluate the product's quality

• To get real time indication of effectiveness of test cases

4.1 INTRODUCTION

Measurement is a crucial component of every engineering process. You can

evaluate the qualities of the engineered goods or systems you produce using

metrics for knowing the characteristics of system you develop. SE however,

is not based on fundamental rules of science of matter, unlike other

51

Software Measurement

and Metrics
engineering fields. In the domain of software, direct measurements are rare.

Metrics and measures are debatable since they are frequently indirect.

Fenton speaks to this matter when he says:

Measurement is the process through which the characteristics of real-world

entities are given numerical or symbolic values in order to define them in

accordance with predetermined guidelines. We can now measure qualities

that were once believed to be immeasurable. Even though these were not as

accurate as others used to support crucial judgements.

This chapter describes metrics that can be used to evaluate the product's

quality as it is being engineered.

4.2 PRODUCT METRICS – MEASURES, METRICS, AND

INDICATORS

Perhaps these terms are frequently utilized synonymously, it's crucial to be

aware of their little variations. It can be difficult to define measure because

it can be employed as a verb or a noun. A measure offers a numerical

manifestation of degree, quantity, capability, magnitude of certain feature.

A measurement has been established once a individual datum has been

gathered, such as amount of faults. The act of measuring results from the

gathering of one or more data points.

A software engineer gathers data and creates metrics in order to produce

indicators. An indicator offers perception into the s/w development

procedure, a s/w project, or finished result. Indication offers information

allowing to improve project, procedure, or system.

4.3 FUNCTION-BASED METRICS

A useful tool for assessing the functionality a system provides is the

function point (FP) metric and is used for forecasting following:

(1) the measure or endeavour necessary to describe, write & deploy

programme;

(2) quantitative error measurement to discover during deployment

(3) measure of entity to predicted line of codes in the incorporated model.

A quantitative evaluation of software complexity and countable (direct)

metrics are used to produce function points. The following definitions apply

to information domain values:

The quantity of external inputs (EIs): They delivers unique control driven

data and knowledge, whether it comes directly from a user or is sent from

another application. It's common practise to reform internal logical files

using i/p’s (ILFs). It is important to distinguish between inputs and

enquiries, that are measured individually.

52

Software Engineering

The number of external outputs (EOs): Every EO is procured information

from the domain giving the user instruction. External output acknowledges

screens, document, fault measurement, etc. A report does not count every

piece of data independently.

Number of external enquiries (EQs): It is a web-based i/p triggering an

S/W reply through accessible outcome.

Number of internal logical files (ILFs): There are a certain nos. of ILFs,

of which is a rational collection of information kept up to date by external

inputs and located within the application's boundaries.

Number of external interface files (EIFs): It is a rational collection of

information kept apart from the application but contains data that the

application may find useful.

 Fig 1 is finished & difficulty metric is assigned to every measure once

these data have been gathered. Organizations that employ function point

methodologies create standards for classifying entries as easy, medium &

difficult. Assessment of difficulty is, nevertheless, rather arbitrary.

Figure 1: Computing function points

 To calculate FP below equation is used:

Value adjustment factors (VAF) Fi (i =1 to 14) are determined by the

answers to the following inquiries:

1. Is dependable backup and recovery required for the system?

2. Will the application need specialised data communications to send or

receive information?

3. Do distributed processing operations exist?

4. Is performance a top priority?

53

Software Measurement

and Metrics
5. Can the system operate in a current, highly trafficked operational

environment?

6. Is online data entry required by the system?

7. Do numerous screens or activities need to be included into the input

transaction for online data entry?

8. Are the ILFs recovered?

9. How complicated are i/p’s, o/p’s, binder, or investigations?

10. Is internal processing sophisticated?

11. Was the code created with reuse in mind?

12. Is installation and conversion taken into account in the design?

13. Can the system be installed more than once in various organisations?

14. Is the programme created with the user's ability to alter and use it

easily in mind?

 Answers to all the above set of questionaries are given on scale from

0 (not useful) to 5 (very useful).

4.4 METRICS FOR OBJECT-ORIENTED DESIGN

As the size and complexity of an OO design model increase, a more

impartial assessment of the design's attributes can be advantageous to both

the experienced designer and the beginner designer by providing them with

information about the design's quality that they would not otherwise have.

Whitmire offers nine different and measurably observable properties of an

OO design in a thorough examination of S/W:

• Size: Four perspectives - population, volume, length, and

functionality are used to define size. A fixed measure or actions, is

used to determine population. Volumetric measurements is similar to

populace measurements gathered at specific moment. A chain of

related design elements can be measured by their length & is used as

a metric of length. Functionality measurements offer a hazy picture of

the value an OO application brings to the consumer.

• Complexity: Similar to size, there are many different opinions on

what constitutes complexity in software. Whitmire analyses the

relationships between classes in an OO architecture to understand

complexity in terms of structural traits.

• Coupling: In an OO system, this is represented through interlinks

across components of the architecture.

• Sufficiency: From perspective of the current application, sufficiency

is defined by Whitmire as "extent to which an extraction incorporates

the characteristics expected". In other words, we search for: "Which

qualities is required to have for me finding it essential?"

Fundamentally, a design element is enough if it accurately captures

54

Software Engineering

each the characteristics of modelling process, i.e., if the abstraction

(class) has all of the features that are necessary.

• Completeness: "The characteristic set through which we assess the

extraction or architectural module" is only distinction between

completeness and sufficiency. According to the current use,

sufficiency compares the abstraction. Completeness takes into

account several viewpoints and poses the following query: "What

qualities are necessary to fully represent the issue domain object?"

This indirectly implied by the criterion for completeness'

consideration of many points of view.

• Cohesion: An OO module must be created in such a way that every

computation cooperates to fulfil individual, clear goal, just as its

analogue in traditional software. The extent of "the collection of

qualities it holds is proportion of difficulty or architecture framework"

is used to assess a class's cohesion.

• Primitiveness: This implies along with operations; classes are a

quality akin for simplicity. It describes how atomic an operation is,

how easily it cannot be created from a series of other actions found

within a class. A class with a lot of primitive behaviour only contains

primitive operations.

• Similarity: This measure indicates how similar multiple objects are in

accordance of their structural formulation and its functionality,

behaviour, or requirements.

• Volatility: Architectural modifications might take place when

necessities are altered or alterations take place in areas necessary in

adaption of the questioned design component. An OO design

component's volatility gauges how likely a change is to occur.

4.5 OPERATION-ORIENTED METRIC

 By looking at typical characteristics for approaches, some new

information can be discovered (operations). According to Lorenz and Kidd,

three straightforward measurements are pertinent:

• Average operation size (OSavg): The amount of lines of program

forwarded through manipulations can be used to calculate the average

operation size (OSavg). It is probably the case that duties have not been

fairly distributed within a class when the volume of messages

delivered by a single operation increase.

• Operation complexity (OC): Any complexity measure suggested for

traditional software can be used to calculate an operation's

complexity. The designer should make an effort to keep OC as low as

feasible since operations should be restricted to a single task.

• Average number of parameters per operation (NPavg): Complexity of

object collaboration increases with the number of operation

parameters. NPavg is generally maintained at lower values.

55

Software Measurement

and Metrics
4.6 USER INTERFACE DESIGN METRICS

There is a dearth of data on the metrics that would reveal the interface's

usability and quality.

Layout Appropriateness (LA), according to Sears, is valuable development

measure for articulation. Conventional GUI aids users in executing tasks by

using layout items. Client using a GUI must switched from one format to

another in order to complete a job.

According to a research of Web page metrics, the layout's simple qualities

can also have a big impact on how well the architectural pattern is received.

Amount of text, references, pictures, colours, and typefaces (among other

features) on a Web page determine how sophisticated and high-quality the

page is regarded to be.

The choice is influenced by measures like LA, but user feedback based on

GUI prototypes should be the ultimate arbitrator. According to Nielsen and

Levy, "if one selects amongst interface [designs] based simply on users'

opinions, one has a relatively large likelihood of success. There is a strong

correlation between a user's subjective happiness with a GUI and their

average task performance.

4.7 METRICS FOR SOURCE CODE

The first analytic "laws" for computer software were proposed by Halstead's

"software science" hypothesis. Halstead used a collection of crude

measurements that is determined after program is written or calculated after

completion of architectural pattern to create the firmware. These are as

follows:

 Above fundamental measurements are used by Halstead to create

formulations for the complete program.

56

Software Engineering

Where V denotes the amount of information (in bits) needed to express a

programme, varies depending on the programming language.

Theoretically, a specific algorithm must have a minimal volume. According

to Halstead, a volume L is proportion between the vol of a program's dense

form and its actual volume. L must actually always be smaller than 1.

Primitive measurements allow us to express the volume ratio as

L = [(2 / n1) * (n2 / N2)]

4.8 HALSTEAD METRICS APPLIED TO TESTING

Utilizing metrics generated from Halstead measurements, testing effort can

be calculated. Halstead effort e can be calculated as

The following relationship can be used to estimate the proportion of

deployment to be assigned to division k:

where denominator represents total Halstead effort put forth by all of the

system's modules.

4.9 METRICS FOR MAINTENANCE

 Both the creation & upkeep of latest firmware can make use of all the

firmware measures discussed here. However, metrics specifically created

for maintenance tasks have been put forth.

Software maturity index (SMI), which is recommended by IEEE Std. 982.1-

1988 [IEE93], offers a sign of the solidity of a firmware legacy (required

for modifications taking place for every version). The below details are

discovered:

57

Software Measurement

and Metrics
As SMI gets closer to 1, it starts to sustain. SMI can be utilized as statistic

while scheduling firmware monitoring tasks. It is possible to create

empirical models for maintenance effort and to associate the average pattern

to generate a reveal of a firmware.

4.10 CYCLOMATIC COMPLEXITY

This measure offers numerical assessment of the logical difficulty of a

programme. Graph theory serves as the basis for cyclomatic complexity,

which offers you a very helpful software metric. One of three methods is

used to compute complexity:

58

Software Engineering

4.11 SOFTWARE MEASUREMENT: SIZE-ORIENTED

METRICS

 Size-oriented software metrics are created by averaging productivity

and/or quality measurements while taking into account the size of the

software that has been created. A table of size-oriented measurements, like

the one in Figure 2, can be made if a software organisation keeps simple

records. The table includes a list of all finished software development

projects over the previous few years together with the relevant project

measures. According to the table entry (Figure 2) for project alpha,

$168,000 was spent to create 12,100 lines of code over 24 person-months.

Figure 2: Size-oriented metrics

It should be noted that the work and costs listed in the table cover all

software engineering activities, not only coding, including analysis, design,

coding, and testing. According to additional data for project alpha, 365

pages of documentation were created, 134 faults were discovered prior to

the software's release, and 29 problems were found within the first year of

operation after the software's release to the client. The software for project

alpha was developed by three persons.

59

Software Measurement

and Metrics
You can decide to use the number of lines of code as a normalisation

variable in order to create metrics that can be combined with comparable

metrics from other projects. A set of straightforward size-oriented measures

may be constructed for each project from the basic data in the table:

• Errors per KLOC (thousand lines of code)

• Defects per KLOC

• $ per KLOC

• Pages of documentation per KLOC

In addition, other interesting metrics can be computed:

• Errors per person-month

• KLOC per person-month

• $ per page of documentation

Not everyone agrees that the best method to evaluate the software process

is through size-oriented measures. The usage of lines of code as a crucial

indicator is where the majority of the disagreement centres. The LOC

measure's proponents assert that LOC is an easily countable "artefact" of all

software development projects, that many current software estimation

models employ LOC or KLOC as a crucial input, and that a substantial body

of research and data based on LOC already exist. Opponents counter that

LOC measures are dependent on the programming language being used,

that they penalise well-designed but shorter programmes when productivity

is taken into account, that they cannot easily accommodate nonprocedural

languages, and that their use in estimation necessitates a level of detail that

may be challenging to achieve (i.e., the planner must estimate the LOC to

be produced long before analysis and design have been completed).

4.12 FUNCTION-ORIENTED METRICS

A measure of the functionality provided by the programme is used as a

normalisation value in function-oriented software metrics. The function

point is the most used function-oriented measure (FP). The information

domain and complexity properties of the software are used to compute the

function point.

Like the LOC measure, the function point is debatable. According to

supporters, FP is more appealing as an estimation strategy because it is

based on data that are more likely to be known early in the lifecycle of a

project and is independent of programming language, making it perfect for

applications employing traditional and nonprocedural languages. The

method's detractors assert that it requires some "sleight of hand" because

the computation is based on subjective rather than objective data, that it can

be challenging to gather counts of the information domain (and other

dimensions) after the fact, and that FP has no immediate physical

significance – it’s just a number.

60

Software Engineering

4.13 METRICS FOR SOFTWARE QUALITY

Producing a high-quality system, application, or product in a timely manner

that answers a market need is the primary objective of software engineering.

You must use efficient techniques along with cutting-edge tools inside the

framework of an established software process in order to accomplish this

goal. If high quality is to be achieved, a competent software engineer (and

effective software engineering managers) must measure.

A system, application, or product is only as good as its requirements, which

outline the issue, design, which represents the solution, code, which creates

an executable program, and tests, which put the software to the test to find

bugs. As the software is being developed, measurement can be used to

evaluate the quality of the test cases, source code, and requirements and

design models that have been produced. You use product metrics to evaluate

the quality of the work products produced by software engineering in order

to complete this real-time review in an objective rather than subjective

manner.

As the project advances, a project manager must also assess quality.

Software engineers' private measurements are pooled to produce outcomes

at the project level. The main focus at the project level is to measure

mistakes and defects, despite the fact that various quality measurements can

be gathered. Metrics derived from these measurements show how well both

individual and group software quality assurance and control efforts are

doing.

Metrics that measure the effectiveness of each of the actions implied by the

metric, such as work product errors per function point, errors discovered per

review hour, and errors discovered per testing hour, can be used. The defect

removal efficiency (DRE) for each process framework activity can also be

calculated using error data.

4.13.1 Measuring quality

Although there are numerous ways to gauge software quality8, the project

team can utilize correctness, maintainability, integrity, and usability as

valuable benchmarks. Gilb suggests definitions and measures for each

• Correctness: A program must function properly in order to be useful

to its users. The degree to which the software fulfils its necessary

purpose is known as correctness. Defects per KLOC, where a defect

is defined as a validated lack of conformity to requirements, is the

most popular metric for correctness. Defects are issues that a user of

the program reports after the program has been made available for

general use. These issues are taken into account when evaluating the

overall quality of a software product. Defects are counted over a

defined time period, usually one year, for quality evaluation purposes.

• Maintainability: Compared to other software engineering tasks,

software maintenance and support need the most work. A program's

61

Software Measurement

and Metrics
maintainability refers to how easily it can be fixed when an error

occurs, adjusted when its environment changes, or improved when the

client requests a change in requirements. Since maintainability cannot

be measured directly, indirect methods must be used. Mean-time-to-

change (MTTC), which measures the time required to study a change

request, develop an acceptable modification, implement the change,

test it, and distribute the change to all users, is a straightforward time-

oriented statistic. For equivalent types of modifications, maintainable

programs often have a lower MTTC than unmaintainable programs.

• Integrity: In the era of online hackers and terrorists, software integrity

has grown in importance. This characteristic evaluates a system's

resistance to security threats, both unintentional and intentional.

Programs, data, and documentation are the three elements of software

that are vulnerable to attacks.

Threat and security are two additional variables that must be defined in

order to quantify integrity. Threat is the likelihood that an attack of a

particular type will take place within a certain period of time (which can be

estimated or inferred from empirical evidence). Security is the likelihood

that an assault of a particular type will be thwarted, which can be calculated

or determined from empirical evidence. Thus, the definition of a system's

integrity is

Integrity = Σ [1 – (threat x (1 – security))]

• Usability: Even if a program performs valuable functions, it is

typically destined to failure if it is difficult to use. Usability is an

attempt to measure usability.

4.13.2 Defect removal efficiency

 Defect removal efficiency is a quality indicator that benefits both

projects and processes (DRE). DRE essentially measures the effectiveness

of quality assurance and control actions as they are applied throughout all

activities governed by the process framework.

When taken into account for a project as a whole, DRE is described as

follows:

DRE = [E / (E +D)]

where E is the number of mistakes discovered before to the software being

delivered to the end user and D is the number of flaws discovered following

delivery.

DRE should be set to a value of 1. In other words, the software has no flaws.

Realistically, D will be bigger than 0, but as E rises for a particular value of

D, the value of DRE can still get closer to 1. In reality, it is likely that the

final value of D will decrease as E increases (errors are filtered out before

they become defects). DRE urges a team working on software projects to

use methods for locating as many errors as feasible before delivery if used

62

Software Engineering

as a metric that shows the effectiveness of quality control and assurance

efforts.

 DRE may also be used inside to a project to evaluate a team's capacity

to identify mistakes before they are forwarded to the following framework

or software engineering activity. A requirements model, for instance, is

created by a requirements analysis and may be checked over to identify and

fix flaws. The design phase is where any errors that were not discovered

during the requirements model review may or may not be discovered. DRE

is redefined as follows in this context:

where Ei is the total number of mistakes made in software engineering

action I and Ei+1 is the total number of mistakes made in software

engineering action I + 1 that can be linked to mistakes made in software

engineering action i. Achieving DREi that is close to 1 is a quality goal for

a software team (or a single software developer). In other words, faults

ought to be caught before being passed on to the subsequent activity or

action.

SUMMARY

You can evaluate quality before the product is produced thanks to software

metrics, which offer a quantifiable technique to evaluate the quality of

internal product attributes. Metrics give you the knowledge you need to

produce effective requirements and design models, reliable code, and

exhaustive tests. A software measure needs to be straightforward,

calculable, compelling, consistent, and objective in order to be helpful in

real-world settings. It should be independent of the programming language

you're using and give you useful feedback.

Function, data, and behavior: the model's three component are the main

metrics for the requirements model. Design metrics take into account

concerns with architecture, component-level design, and interface design.

Metrics for architectural design take into account the model's structural

elements. By creating proximate measures for cohesion, coupling, and

complexity, component-level design metrics give an indicator of module

quality.

At the source code level, Halstead gives a fascinating collection of metrics.

Software science offers a range of metrics to evaluate program quality based

on the number of operators and operands contained in the code. There aren't

many product metrics that have been directly suggested for use in software

testing and maintenance. The testing process can be guided by a variety of

additional product criteria, which can also be used to evaluate a computer

program's maintainability. The testability of an OO system has been

evaluated using a wide range of OO metrics.

63

Software Measurement

and Metrics
LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman

(2014).

2] Software Engineering, Ian Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,

PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John

Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,

Springer.

UNIT END EXERCISES

1] What are the aspects of product metrics?

2] Explain the terminologies: Measures, Metrics and Indicators.

3] What do you mean by function-based metrics?

4] Write a note on metrics for object-oriented design.

5] Explain operation-oriented metrics.

6] What do you mean by user interface design metrics?

7] Discuss on metrics for source code.

8] Explain the Halstead metrics applied to testing.

9] Write a note on metrics for maintenance.

10] What do you mean by cyclomatic complexity? Discuss with examples

to find the cyclomatic complexity of the graph.

11] Explain size-oriented metrics.

12] Discuss on function-oriented metrics.

13] Write a note on metrics for software quality.

14] Explain the term: Measuring quality.

15] Discuss the concept of defect removal efficiency.



64

Software Engineering
 5

SOFTWARE PROJECT MANAGEMENT

Unit Structure :

5.0 Objectives

5.1 Introduction

5.2 Estimation in Project Planning Process

5.3 Software Scope and Feasibility

5.4 Resource Estimation

5.4.1 Human resources

5.4.2 Reusable software resources

5.4.3 Environmental resources

5.5 Empirical Estimation Models – COCOMO II

5.6 Estimation for Agile Development

5.7 The Make/Buy Decision

5.7.1 Creating a decision tree

5.7.2 Outsourcing

Summary

List of References

Unit End Exercises

5.0 OBJECTIVES

• To understand the process involve in project planning

• To get acquaint with the scope and feasibility related to the software

• To get familiar with different estimation model and their workflow

5.1 INTRODUCTION

Project planning, a collection of related tasks, serves as the foundation for

software project management. The software team must determine how

much work will need to be done, what resources will be needed, and how

much time it will take for completing the reckon before it can start. After

completing these steps, the firmware management group must create a

project schema outlining the firmware highlights, assigns accountability for

each job, and details any inter-task dependencies that could significantly

affect progress.

Steve McConnell offers a practical perspective on project planning in his

outstanding manual for "software project survival":

65

Software Project Management Many technical personnel would prefer to do technical tasks than to prepare.

Many technical managers lack the technical management training necessary

to be confident that their planning will enhance the success of a project. No

one wants to plan; thus, it frequently doesn't get done.

Efficient organization is required for handling issues upstream than

downstream at high expense. However, failing to prepare is one of the most

crucial mistakes a project can make. Rework, or correcting errors from

earlier in the project, takes up an average of 80% of a project's time.

5.2 ESTIMATION IN PROJECT PLANNING PROCESS

Goal is to give the manager a complete schema so they can estimate

resources, costs, and schedules in a fair manner. In order for project

outcomes to be bounded, estimates should also make an effort to specify

best scenarios and worst phase situations. The firmware group starts out on

objectives formed as a result of these occupants, despite fact that there is a

certain amount of inherent unpredictability. Therefore, as the project

advances, the schema should be modified and refurbished.

Iterative planning begins with the creation of a starting schema in the

launching stage. Fig 1 depicts a project planning process' framework. Plans

will inevitably alter. You should routinely amend to subjective necessities,

plan of action, and threaten measures as additional details about the module

and the group come to light for the execution stage. Project plans alter as a

result of shifting corporate objectives. Any initiatives that are affected by

shifting corporate objectives may need to be rescheduled.

Figure 1: Project planning process

You should evaluate the project's limits before commencing a planning

process. These limitations include the deadline for delivery, the number of

employees on hand, the overall budget, the tools at hand, and others. One

must specify the glimpses and highlights in conjunction with this.

Milestones are dates on the timetable that can be used to gauge progress,

such as when the system is turned over for deployment.

66

Software Engineering

The procedure loops back on itself. You create an estimated project
timetable, and the tasks outlined in it are started or given the go-ahead to
continue. You should examine your work after certain time stamp & make
notice of any deviations from the original timeline. Few of the changes are
common and one must need to modify the actual framework because early
estimations of project parameters are inherently approximate.

When drafting a project plan, it's crucial to be practical. During a project,
some sort of issue almost always arises, and this might cause project delays.
So, instead of being optimistic, your first assumptions and scheduling
should be pessimistic. Your plan should include enough contingency
restrictions through the cycle.

You must start risk mitigation steps if any substantial issues with the
enlargement task expected causing a considerable detain in order to lower
the risks of project failure exists. Along with these steps, the project needs
to be replanned. Renegotiating the project's restrictions and deliverables
with the client may be necessary for this. Additionally, a new timeline for
when the job should be finished must be devised and approved by the client.

You should set up a formal project technical review if the measures are
insufficient. The goals of this review are to discover a different strategy
enabling the task to proceed & to determine whether the task, its estimate,
the customer's aim, and the firmware goals are in alignment.

A review may result in the recommendation to halt a task. This could be the
outcome of managerial or technological errors but frequently results from
outside changes that have an impact on the project. Large software projects
can take several years to create. The business's goals and priorities will
unavoidably alter during that time. These adjustments can indicate that
firmware is not necessary or that the original needs are insufficient.

5.3 SOFTWARE SCOPE AND FEASIBILITY

The term "software scope" refers to a system's performance, limitations,
interfaces, and dependability as well as the features and functions that must
be provided to users as well as the i/p & o/p information along with the
"content" the users see as a result of using the system. One of two methods
is used to define scope:

1. Following discussions with all stakeholders, a chronicle explanation
of the firmware span is created.

2. End users create a collection of use cases.

Prior to the start of estimation, the functions outlined in the context assessed
and, in few of the instances, improved in offering information. Due to
functional orientation estimations, some level of decomposition is
frequently helpful. Processing and reaction times are taken into account
while evaluating performance. Constraints are boundaries imposed on the
software by other systems already in place, available memory, or external
hardware.

After the scope is determined (with the customer's approval), it’s
appropriate in inquiring, "Can we design firmware to satisfy the described

67

Software Project Management projection? Can it be completed? Frequently managers force software
engineers to skip through these questions, which leads to them being bogged
down in a project that is doomed from the start. When they write, Putnam
and Myers address this problem.

No matter how ephemeral it might seem to outsiders, not everything that
can be imagined is possible, not even in software. Contrarily, software
viability has four dependable dimensions:

• Technology: Using current technology, can a project be completed?
Is it up to date with technology? Can flaws be minimized to a level
appropriate for the application?

• Financial viability: Is it possible? Can the cost of development be kept
within the means of firmware company, its user, or the space
captured?

• Time: Will the project's time to market outperform that of the
competition?

• Resources: Has the company acquires necessities for gaining profits
and capturing the market?

Although sometimes disregarded, these are important step in the estimating
process.

5.4 RESOURCE ESTIMATION

 Estimating the necessities required for completion of the software
development project is the second planning step. Figure 2 shows the
development environment, reusable software components, and people as 3
main criteria of SE (hardware and S/W tools). Four features are listed for
each resource: a detail illustrating the requirement, a list of available
quantities, the time required for resource estimation, & the number of
instances it get used. You might think of the final two attributes as a time
frame. The availability should be determined as soon as is practically
possible.

Figure 2: Project resources

68

Software Engineering

5.4.1 Human resources

One must start through assessing the firmware extent and choosing required

talents necessary for finishing the deployment. Twain organisational

orientation and the specificity are mentioned. One person may do all

software engineering activities consulting with experts as needed. The

software crew may be geographically scattered over several distinct sites

for larger projects. As a result, each human resource's location is given.

Only once a development effort estimate (e.g., person-months) is developed

can the required staff for a software project be estimated.

5.4.2 Reusable software resources

Reusability - the production and usage of software building blocks is

emphasised by component-based software engineering (CBSE). Such

building blocks, also known as components, need to be standardised for

easy use, validated for easy integration, and catalogued for easy reference.

As planning moves forward, Bennatan recommends taking into account the

following four categories of software resources:

Components available from stores: existing software that is available from

a previous project or from a third party. Components that are COTS

(commercial off-the-shelf) are bought from arbitrator, completely vetted,

and prepared for usage on the present project.

Full experience elements: Past projects' specifications, designs, codes, or

test data comparable to firmware that is developed for present task.

Protuberance of the ongoing firmware development group has extensive

circumstance in the domain they represent. As a result, the chance of

adjustments needed will be reduced.

Fragmentary experience modules: Partially developed requirements,

frameworks, codes, or deployment information that are connected to the

software to be developed for the present project but will need to be

significantly modified. The current software team has only a little amount

of expertise working with the application domain that these components

represent. Therefore, there is a moderate amount of risk associated with

adjustments needed for partial-experience components.

New components: The software team must create new software components

expressly to meet the demands of the ongoing framework.

Recyclable firmware modules, ironically frequently overlooked across

planning but addresses a top priority later in the firmware development

procedure. Early software resource requirements definition is preferable.

This allows for the technical assessment of the alternatives and prompt

procurement.

5.4.3 Environmental resources

Software engineering environment (SEE), which enables firmware projects,

combines both hardware and software. The firmware needed for creating

the entities is a result of strong SE practise are supported by hardware. One

69

Software Project Management should specify the formulation range necessary for H/W and S/W & ensure

its availability.

The S/W group can need approaching to H/W pieces created by different

group members. For instance, as part of the validation test phase, S/W used

in a production environment could need particular robot according to its

operation intended to perform. Planning must include the specification of

each hardware component.

5.5 EMPIRICAL ESTIMATION MODELS – COCOMO II

To aid in estimating the effort, timing, and expenses of a software project,

a number of models have been put forth. An empirical model called

COCOMO II was created by compiling data from numerous software

applications. These data were examined in order to identify the formulas

that best suit the observations. These equations related the effort to construct

the system to the system's size as well as to project, team, and product

factors. A well-documented and open-source estimating model is

COCOMO II.

Earlier COCOMO cost estimating models, which mostly relied on original

code creation, served as the foundation for COCOMO II. The COCOMO II

model takes into account more contemporary methods of software

development, including component-based development, quick development

using dynamic languages, and database programming. The spiral model of

development is supported by COCOMO II, which also incorporates sub

models that result in ever-more-detailed estimations.

As shown in the figure 3, the sub models that are a part of COCOMO II

model are:

Figure 3: COCOMO estimation models

70

Software Engineering

1] An application-composition model: This represents the effort needed

to design systems made up of scripting, database programming, or

reusable components. Application points are utilised to evaluate

software size, and a straightforward size/productivity calculation is

employed to calculate the work needed. A program's application

points are a weighted average of the number of distinct screens that

are shown, the number of reports generated, the number of modules

in imperative programming languages (like Java), and the number of

lines of scripting language or database programming code.

2] An early design model: After the requirements have been identified,

this model is employed in the early stages of the system design. With

a condensed set of seven multipliers, the estimate is based on the

common estimating formula I covered in the introduction. The

number of source code lines are translated from function points, on

which the estimates are based, into function points. A language-

independent method of measuring programme functionality is using

function points. You can determine how many external inputs and

outputs, user interactions, external interfaces, and files or database

tables that the system uses by counting or estimating them.

3] A reuse model: It is used to determine how much work is involved in

integrating reusable parts and/or automatically generated computer

code. It frequently functions in tandem with the post-architecture

model.

4] A post-architecture model: After the system architecture is created, it

is possible to determine the software size with more accuracy. It

includes a larger set of 17 multipliers that reflect project, product, and

personnel aspects.

Of However, with huge systems, not every component needs to be estimated

with the same level of precision because different system components may

have been designed using various technologies. In such circumstances, you

can combine the findings to get a composite estimate by using the

appropriate sub model for each component of the system.

Following the determination of complexity, the number of screens, reports,

and components is weighted in accordance with the table shown in Figure

4. The object point count is then calculated by averaging the overall object

point count after multiplying the initial number of object instances by the

weighting factor in the figure. The object point count is updated and the

percent of reuse (%reuse) is estimated when component-based development

or generic software reuse is to be used:

Where, NOP = new object points

71

Software Project Management

Figure 4: Complexity weighting for object types

 To derive an estimate of effort based on the computed NOP value, a

“productivity rate” must be derived

for different levels of developer experience and development environment

maturity.

Once the productivity rate has been determined, an estimate of project effort

is computed using

In more advanced COCOMO II models, a variety of scale factors, cost

drivers, and adjustment procedures are required.

5.6 ESTIMATION FOR AGILE DEVELOPMENT

Due to the fact that an agile project's needs are established by a collection

of user scenarios (such as the "stories" in Extreme Programming), it is

possible to create an estimation method that is informal, moderately

disciplined, and useful for project planning for each software increment.

Agile projects estimate using a decomposition method that includes the

following steps:

1] For estimation purposes, each user scenario - the project's equivalent

of a miniature use case created by end users or other stakeholders at

the outset is taken into account separately.

2] The collection of software engineering tasks that will be necessary to

create the scenario are broken down.

3a] Each task's effort requirement is estimated separately. Note: An

estimation may be supported by empirical modelling, historical facts,

or "experience."

3b] Alternatives include estimating the "volume" of the scenario in LOC,

FP, or another volume-oriented measure (e.g., use-case count).

72

Software Engineering

4a] To build an estimate for the scenario, the estimates for each task are

added up.

4b] Alternatively, using historical data, the volume estimate for the

scenario is converted into effort.

5] The effort estimates for a given software increment is created by

adding the work estimates for all of the scenarios that need to be

implemented.

This estimation approach serves two functions because the project length

needed to produce a software increment is fairly brief (usually three to six

weeks):

(1) to ensure that the number of scenarios included in the increment is in

accordance with the resources available, and

(2) to create a framework for dividing up work as the increment develops.

5.7 THE MAKE/BUY DECISION

It is frequently more economical to buy software than to produce it in many

software application domains. Software engineering managers must decide

whether to make or buy, which can be compounded further by a variety of

acquisition options:

(1) Off-the-shelf software can be purchased (or licenced),

(2) Software components with "full-experience" or "partial-experience"

may be purchased, modified, and combined to fulfil particular

demands, or

(3) A third option is for an outside contractor to create software

specifically to the buyer's requirements.

The criticality of the software to be purchased and the final cost determine

the phases involved in software acquisition. In some circumstances (such as

low-cost PC software), it is less expensive to make a one-time purchase and

experiment than it is to carry out a thorough study of available software

options. In the end, the choice to make or buy is dependent on the following

factors:

(1) Will the software product's delivery date be earlier than the date for

internally generated software?

(2) Will the price of customisation and acquisition be less than the price of

in-house software development?

(3) Will external support (such a maintenance contract) be cheaper than

internal support? Each of the acquisition possibilities is subject to these

requirements.

73

Software Project Management 5.7.1 Creating a decision tree

Statistical methods like decision tree analysis can be added to the just-

described procedures. Figure 5 shows a decision tree for software-based

system X as an illustration. The software engineering organisation can in

this situation

1) build system X from the scratch,

2) To build the system, reuse existing partial-experience components,

3) Purchase a pre-existing software item and change it to match local

requirements, or

4) assign the software development to a third-party contractor

Figure 5: Decision-tree to support the make/buy decision

A 70% chance exists that the task of creating the system from scratch will

be challenging. The project planner calculates that a challenging

development endeavour will cost $450,000 using the estimation

approaches. The anticipated cost of a "basic" development project is

$380,000. Calculated along any decision tree branch, the predicted value

for cost is

74

Software Engineering

The "purchase" option has the lowest predicted cost based on the probability

and projected costs shown in Figure. It's crucial to remember, though, that

while making a purchase, a variety of factors more than just price must be

taken into account. A few factors that could influence whether to build,

reuse, buy, or contract include availability, experience of the developer,

vendor, or contractor, compliance to specifications, local "politics," and the

chance of change.

5.7.2 Outsourcing

Every business that creates computer software eventually wonders the same

fundamental question: "Is there a way we can get the software and systems

we need for a lesser price?" The answer to this question is not

straightforward, and the heated debates that follow the subject always come

down to one word: outsourcing.

Outsourcing is quite straightforward in theory. A third party is hired to

perform software engineering tasks at a reduced cost and, ideally, a higher

standard. A company's internal software development is really just contract

management.

The choice to outsource might be tactical or strategic. Business managers

analyse whether a sizable fraction of all software work may be outsourced

at the strategic level. A project manager decides whether subcontracting the

software work is the most effective way to complete all or a portion of a

project at the tactical level. Regardless of the scope of the decision,

outsourcing is frequently a financial one.

On the bright side, lowering the number of software employees and the

infrastructure (such as computers) that supports them typically results in

cost savings. On the down side, a business loses some control over the

necessary software. A business risks the danger of entrusting a third party

with the fate of its competitiveness because software is a technology that

distinguishes its systems, services, and products.

Without a doubt, the trend toward outsourcing will persist. The only way to

stop the trend is to acknowledge how fiercely competitive software work is

at all levels. The only way to survive is to match the outsourcing providers'

level of competition.

SUMMARY

Before a project starts, a software project planner must make three

estimations: how long it will take, how much work it will require, and how

many people it will involve. The planner must also forecast the risk involved

as well as the resources (hardware and software) that will be needed.

Various graphical representations of the project plan are created as part of

the scheduling process. The most popular schedule representations are bar

charts, which display activity duration and staffing timelines.

75

Software Project Management A project milestone is an expected result of a task or series of tasks. A

documented report of progress should be given to management at each

milestone. A deliverable is a piece of work that is given to the project's

client.

We also talked about how the COCOMO II costing model is an advanced

computational cost model that incorporates project, product, hardware, and

employee attributes when estimating costs.

At least two of the three aforementioned methods are often used to produce

accurate project estimates. The planner is more likely to arrive at an accurate

estimate by comparing and reconciling estimates created using several

methodologies. Although software project estimation will never be a precise

science, it can be made more accurate by using a combination of reliable

historical data and methodical procedures.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman

(2014).

2] Software Engineering, Ian Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,

PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John

Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,

Springer.

UNIT END EXERCISES

1] Explain the estimation in project planning process.

2] Write a note on software scope and feasibility.

3] Discuss on resource estimation.

4] What are the factors included in human resources?

5] Explain in brief the concept of reusable software resources.

6] What are environmental resources?

7] Discuss COCOMO II model in detailed.

8] What are the fundamentals of estimation for agile development?

9] Explain the process of make/buy decision.

10] How will you create a decision tree. Explain suing concept of make/

buy decision.

11] Explain the outsourcing involved in make/buy decision.



76

Software Engineering
 6

PROJECT SCHEDULING

Unit Structure :

6.0 Objectives

6.1 Introduction

6.2 Basic Principles

6.3 Relationship Between People and Effort

6.4 Effort Distribution

6.5 Time-Line Charts

Summary

List of References

Unit End Exercises

6.0 OBJECTIVES

• To understand the workflow involved in project scheduling

• To get familiar with the principles involved in software engineering

• To get acquaint with the relationships and their interconnectivities

with respect to the project scheduling

• To know the steps and the outline procedure associated with project

scheduling

6.1 INTRODUCTION

When software projects run behind schedule, Fred Brooks was once

questioned about it. One day at a time, was his profound though understated

reply.

The actual scenario of a technological task is that thousands of minor jobs

must be completed in order to achieve a greater goal, whether it is

developing an operating system or building a hydroelectric facility. Some

of these jobs are not commonplace and can be completed without worrying

about how it will affect the project's deadline. On the "critical route," there

are other tasks. The project's overall completion date is in peril if these

"essential" tasks are delayed.

As a opportunity team leader, the goal is in declaring all the modules and

its sub components, develop a strong connections describing the

interrelationships, analyse the modules that are most important & combat

the achievable. To achieve all the above-mentioned criteria’s, one should

77

Project Scheduling maintain a detailed timetable so that the outcomes can be measured at every

time stamp.

S/W project scheduling is the process of distributing estimated effort by

assigning the effort to particular software engineering jobs over the course

of the anticipated project duration. But it's crucial to remember that the

schedule changes throughout time. A macroscopic timetable is created in

the initial stages of project planning. This kind of schedule lists all

significant activities that make up the process framework. Each item on

macroscopic timetable is transformed into a detailed schedule as the project

progresses. Here, precise software tasks and actions that must be completed

in order to complete an activity are scheduled.

There are two very distinct ways to approach scheduling for software

engineering projects. In the first, a final release date for a desktop-based

model has been decided upon (& cannot be changed). The S/W company

confines at allocating resources cross the allotted framework. Another

perspective presupposes the broad sequential constraints that are negotiated,

but SE organisation sets the end date. An end date is established after

comprehensive examination of the programme and distribution of effort is

made to make the greatest use of available resources. Sadly, the first

circumstance arises multiple times than the later scenario.

6.2 BASIC PRINCIPLES

Software project scheduling is governed by a few fundamental rules, just

like all other aspects of software engineering:

• Project compartmentalization: The project needs to be broken down

into a number of doable tasks and activities. The process and the

product are both improved to achieve compartmentalization.

• Interdependence: It is necessary to assess the interdependence of each

segregated task or activity. While certain jobs must be completed in

order, others can be completed concurrently. Some tasks can't start

until someone else's finished result is accessible. Other things can

happen on their own.

• Time assignment: Every module that needs to be managed must be

given a certain amount of grind measure in terms of time.

Additionally, every module needs to be given a beginning and an end

period that rely on the alliance & if the task be done on time.

• Validating attempt: The software team for each project consists of a

specific number of individuals. You must make sure that allotted nos.

of person are organized and managed at particular moment as

assigned. Take a forecast with 3 S/W engineers as an example. Seven

concurrent tasks must be completed on any given day. It takes 0.50

person-days to complete each activity. There are more persons

assigned to the task than there are available workers.

78

Software Engineering

• Assigned liability: Each subsystem organized ought to be given a

particular group leader.

• Assigned objectives: Each work that is organized must be clearly

stated objective. The end result of software projects often consists of

a product or its counterpart. Deliverables frequently integrate sub

modules.

• Declared highlights: Each module, or set of modules, must be

connected to specific glimpse or highlights. When multiple by-

products have undergone a qualitative evaluation & approval, a

milestone is reached.

6.3 RELATIONSHIP BETWEEN PEOPLE AND EFFORT

One person can evaluate requirements, carry out design, create code, and

run tests in small S/W expansion system. A project requires more

participation as it grows in size. (We hardly ever have the splendour of

doing a 10-people attempt with a single individual doing for 10 yrs)

Many managers in charge of software development projects still hold fast

to the popular misconception that "if we are way back than our timeline, we

recruit more employees and try to come up to the level of meeting the

specifications". Unintentionally, employing more personnel at the end of a

project frequently disrupts it and pushes back deadlines. The newly added

individuals must learn the system, and those who were performing the work

are also the ones who are instructing them. Since no work is done while

lecturing, the project is further behind schedule.

Many employees escalate the amount of divulgence pathways & the

difficulty of conveyance in a system, which adds to the effort & schedule

set required to master the modules. Although effective communication is

crucial for the creation of good software, every new communication line

involves more work, which adds time.

Project timetables are flexible, as shown by empirical data and theoretical

study over time. In other words, a planned project completion date can be

somewhat shortened (by adding more resources). It makes feasible in

postponing a deadline (by making less use of materials).

A software project's association between endeavour put out and time

required to achieve a specified outcome is depicted by the Putnam-Norden-

Rayleigh (PNR) Curve. Figure 1 depicts a variant of the curve that plots

project effort against delivery time. It shows minimal quantity to indicating

least delivery expenditure. The curve climbs nonlinearly moving towards

left side of to (i.e., striving hard to speed up dispatch process).

79

Project Scheduling

Figure 1: Association of effort & dispatch time

 Assume that a manager involved in the task has calculated the amount

of endeavour Ed necessary in accomplishing a usual dispatch time td which

is ideal with respect to the schedule and resource availability. Although

delivery can be sped up, the graph increases quite abruptly towards left of

td. In reality, the PNR curve suggests that beyond 0.75td, the amount of

quantifiable outcome measurement is significantly reduced. The project

enters "the impracticable domain" and the chance of collapse increases if

we attempt any further compression. The PNR curve also shows that to =

2td is the least expensive delivery choice. The implication is that postponing

project completion can drastically lower expenses. Of course, this needs to

be compared to the lost revenue caused by the obstruction.

The S/W formulation, obtained from through PNR curve, illustrates

extremely unpredictable and irregular association between the amount of

time required to accomplish a task chronologically & the amount of labour

put into it. The following equation relates effort and development time to

the supplied lines of code (source statements), L:

The above S/W formulation can be rearranged to yield an objective function

and a mathematical formulation for enhancement endeavour E:

80

Software Engineering

In above scenario t implies development period in terms of years and E is

the endeavour put forth during a course of the software development and

maintenance life cycle. By including a encumber labour cost component

($/person-year), the formulation for enhancement endeavour and cost will

be connected.

This produces some intriguing outcomes. Assume a challenging real-time

S/W task that would require 12 person-years and 33,000 LOC. The project

can be finished in roughly 1.3 years if the project team consists of eight

persons. The grater uncertain and unpredictable character of the systeml

stated in the aforementioned formulation, however, results in:

This suggests that we can lower the number of participants from eight to

four by delaying the finish date by six months! The veracity of these results

is debatable, but it is evident that using fewer people for a little bit longer

to achieve the same goal can be advantageous.

6.4 EFFORT DISTRIBUTION

The work units (such as person-months) necessary to finish software

development are estimated using each of the software project estimation

approaches. The 40-20-40 rule is a recommended way to distribute effort

throughout the software development lifecycle. The front-end analysis and

design portion of the project receives 40% of the total effort. Back-end

testing uses a comparable percentage. You are correct to assume that

deemphasis on code development (20% of work) is present.

Only use this effort distribution as a general reference. The distribution of

work is determined by the specifics of each project. Unless the plan commits

an organisation to significant expenditures with high risk, work put into

project planning rarely accounts for more than 2 to 3 percent of effort. 10 to

25% of the project effort may be devoted to customer interaction and

requirements analysis. The amount of effort put into analysis or prototyping

should grow in direct proportion to the size and complexity of the project.

Typically, software design requires 20 to 25 percent of the labour. You must

also take into account the time needed for design review and future

iterations.

The work put into software design should make it reasonably easy for code

to follow. It is possible to attain a range of 15 to 20 percent of total effort.

Debugging after testing might take up to 40% of the time spent developing

software. The quantity of testing necessary is frequently determined by the

software's criticality. Even higher percentages are normal if software is

human graded, meaning that failure of the software could lead to fatalities.

81

Project Scheduling 6.5 TIME-LINE CHARTS

The work breakdown structure is the first collection of tasks you use to start

a software project schedule. The work breakdown is entered as a task

network or task outline if automated technologies are employed. Next, each

task's effort, duration, and start date are entered. Tasks may also be

delegated to particular people.

A time-line chart, often known as a Gantt chart, is produced as a result of

this input. For the entire project, a timeline chart can be created. As an

alternative, distinct flowcharts can be created for each project function or

for each person involved.

The structure of a time-line chart is shown in Figure 2. It shows a section of

a software project schedule that places emphasis on the work of concept

scoping for a word-processing (WP) software application. The left-hand

column contains a list of all project tasks (for concept scoping). The

horizontal bars show how long each activity took. Task concurrency is

implied when multiple bars appear on the calendar at the same time.

Milestones are marked with diamonds.

Figure 2: An example time-line chart

The majority of software project scheduling tools create project tables, a

tabular listing of all project tasks, their planned and actual start and end

dates, and various related information, once the data required for the

creation of a time-line chart has been provided (Figure 3). You may monitor

development by using project tables in conjunction with the timeline

graphic.

82

Software Engineering

Figure 3: An example project table

SUMMARY

The conclusion of a planning activity, which is a crucial part of software

project management, is scheduling. Scheduling provides the project

manager with a roadmap when used in conjunction with estimating

techniques and risk assessments.

Decomposing the process is the first step in scheduling. A suitable task set

is modified based on the project's characteristics and the work that has to be

done. Each engineering task, together with its dependence on other

activities and its anticipated length, is represented by a task network. The

critical route, a time-line chart, and other project data are computed using

the task network. You may monitor and manage each phase of the software

development process using the timetable as a reference.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman

(2014).

2] Software Engineering, Ian Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,

PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John

Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,

Springer.

83

Project Scheduling UNIT END EXERCISES

1] Explain the term project scheduling.

2] What are the basic principles involved in software project scheduling?

3] Explain the terms: Project compartmentalization, Interdependence

and time allocation.

4] Discuss the term validating effort associated with project scheduling.

5] What do you mean by Defined responsibilities, defined objectives and

defined milestones.

6] Write a note on relationship between people and effort.

7] With the help of suitable diagram explain the relationship between

effort and delivery time.

8] What do you mean by effort distribution?

9] What are time-line charts? Illustrate with suitable figure



84

Software Engineering
 7

RISK MANAGEMENT

Unit Structure :

7.0 Objectives

7.1 Introduction

7.2 Software Risks

7.3 Risk Identification

7.4 Risk Projection and Risk Refinement

7.5 RMMM Plan

Summary

List of References and Bibliography and further Reading

Model Questions

7.0 OBJECTIVE:

After going through this unit, you will be able to:

• Understand what Software Risk is?

• Define risk projection and risk refinement.

• Know about RMMM

7.1 INTRODUCTION:

Risk is a problem that could origin some loss or hover the progress of the

project, but which has not happened yet. These possible issues might harm

cost, schedule or technical attainment of the project and the quality of our

software device, or project team confidence. Risk Management is the

system of recognising addressing and abolishing these problems before they

can damage the project. We need to distinguish risks, as potential issues,

from the current problems of the project.

7.2 SOFTWARE RISKS

A software project can be alarmed with a large variety of risks. In order to

be proficient to systematically identify the substantial risks which might

affect a software project, it is necessary to classify risks into diverse classes.

The project manager can then check which risks from each class are

applicable to the project.

85

Risk Management Software Risk Management is the process of identifying, evaluating, and

mitigating potential risks that may affect the success of a software

development project. The goal of software risk management is to reduce the

negative power of risks and to ensure that the project is delivered on time,

with the desired quality within budget and functionality.

There are three main classifications of risks which can affect a software

project:

1. Project risks

2. Technical risks

3. Business risks

7.2.1. Project risks: Project risks concern differ forms of resource,

schedule, budgetary, personnel, and customer-related problems. A vibrant

project risk is plan slippage. Since the software is intangible, it is very hard

to monitor and resistor a software project. It is always very tough to control

something which dismiss to be identified. For any engineering program,

such as the manufacturing of cars, the plan executive can identify the

product taking shape.

7.2.2. Technical risks: Technical risks apprehension potential method,

maintenance issue, testing, implementation, and interfacing. It also consists

of an uncertain specification, inadequate specification, altering

specification, technical ambiguity, and technical obsolescence. Most

technical risks look like due to the development team's inadequate

knowledge about the project.

7.2.3. Business risks: This type of risks (losing budgetary or personnel

commitments, etc.) cover risks of building an excellent product that no one

need.

7.2.4 Additional Risk categories:

a. Schedule Risks: These risks are associated to the timeline of the

project. This type covers potential for postponements or missed

deadlines.

b. Resource Risks: These risks are related to the obtainability and

sharing of resources, such as personnel, funding, or equipment.

c. Quality Risks: These risks are associated to the quality of the

software being developed, including the probable for bugs, security

weaknesses, or user experience issues.

d. Regulatory and Legal Risks: These risks are related to legal and

regulatory agreement issues, i.e. data privacy, intellectual property, or

export controls.

e. Identified risks: This type of risks can be exposed after careful

valuation of the project program, the business and technical

86

Software Engineering

environment in which the plan is being developed, and more reliable

data sources (for example impractical delivery date)

f. Expected risks: Those risks that are assumed from previous project

experience.

g. Unpredictable risks: These type of risks that can, and do occur, but

are tremendously tough to identify in advance.

7.2.5 Methods for Identifying Risks:

There are some methods to plan for risk management:

• Transfer the risk: This method comprises the risky element

developed by a third party, i.e. buying insurance cover, etc.

• Avoid the risk: This may take numerous ways such as discussing

with the client to change the requirements to decrease the scope of the

work. To give incentives to the resources to avoid the risk of human

resources throughput, etc.

• Risk decline: This means scheduling method to include the loss due

to risk. For example, if there is a risk that some key personnel might

leave, new recruitment can be planned.

It is significant for software development teams to recognize and evaluate

these risks, and to put justification strategies in place to minimize their

effect on the project. This can include contingency planning, regular risk

assessments, and risk management processes.

7.3 RISK IDENTIFICATION:

The first step in software risk management is to find probable risks that may

influence the project. This may include technical risks, schedule risks,

resource risks, quality risks, business risks, and legal and regulatory risks.

Actual risk management begins with detecting and assessing risks,

including vulnerabilities and potential threats, and arranging them based on

their potential impact and prospect.

Previously, there were no easy procedures available that will surely detect

all risks. But currently, there are some supplementary approaches available

for classifying risks. Some of approaches for risk identification are as

follows:

1. Checklist Analysis – Checklist Analysis is type of method generally

used to detect or find risks and manage it effectively. The

specification is basically developed by listing items, steps, or even

tasks and is then further examined against criteria to just classify and

determine if process is completed correctly or not. It is list of risk that

is just found to happen regularly in progress of software project.

Below is the list of software development risk by Barry Boehm-

modified version.

87

Risk Management

Risk Risk Reduction Technique

Personnel Shortages Various methods include training and career

development, job-matching, teambuilding, etc.

Unrealistic time and

cost estimates

Various techniques include incremental

development, standardization of methods,

recording, and analysis of the past project, etc.

Development of

wrong software

functions

Various techniques include formal specification

methods, user surveys, etc.

Development of the

wrong user interface

Various techniques include user involvement,

prototyping, etc.

2. Brainstorming – This procedure provides and gives free and exposed

methodology that usually increases each and every one on project

team to add. It also results in better sense of ownership of project risk,

and team usually committed to dealing risk for given time period of

project. It is creative and exclusive technique to gather risks freely by

team members. The team members identify and govern risks in ‘no

wrong answer’ atmosphere. This technique also delivers chance for

team members to always improve on each other’s ideas. This

technique is also used to define best possible solution to difficulties

and issue that rises and develop.

3. Casual Mapping – It is method that shapes or develops on replication

and review of failure factors in reason and result of the diagrams. It is

very useful for assisting learning with an organization or system

simply as method of project-post assessment. It is also crucial tool for

risk assessment.

4. SWOT Analysis – Strengths-Weaknesses-Opportunities-Threat

(SWOT) is very important and helpful technique for identifying risks

inside greater organization context. It is generally used as scheduling

tool for analysing business, its resources, and also its atmosphere

simply by looking at inside strengths and weaknesses, opportunities

and threats in outer environment. It is technique often used in

preparation of strategy. The suitable time and effort should be spent

on thinking completely about faults and threats of organization for

SWOT analysis to more effective and effective in risk identification.

5. Flowchart Method – This method permits for go-ahead process to be

diagrammatically denoted in paper. This method is generally used to

represent actions of process graphically and serially to simply identify

the risk.

88

Software Engineering

7.4 RISK PROJECTION AND RISK REFINEMENT

There are two essential steps in the course of software risk management -

Risk Projection and Risk Refinement.

Risk Projection contains historical data and expert conclusion to estimate

the prospect and impact of potential risks that may impact the software

development project. This helps to arrange the risks and to assign resources

and effort to address the most acute risks.

Risk Refinement involves apprising and refining the risk projections based

on new information, changing situations, and the implementation of risk

mitigation strategies. This helps to ensure that the risk management plan

remains significant and effective during the software development lifecycle.

Risk Refinement may include reviewing the possibility and impact of risks,

updating risk mitigation approaches, and re-evaluating the urgency of the

risks. It may also involve observing the implementation of the risk

management plan and gathering feedback from stakeholders to detect areas

for improvement.

Risk Projection and Risk Refinement are serious to the success of software

risk management because they support to ensure that the risk management

plan remains related and effective throughout the software development

lifecycle. By frequently updating and refining the risk managing plan,

organizations can better formulate for potential risks and reduce the

negative impact of risks on the project.

7.5 RMMM PLAN

RMMM (Risk Management, Monitoring, and Mitigation) Plan is a all-

inclusive plan that summaries the method for assessing, identifying, and

mitigating risks in software development projects. The RMMM plan helps

as a roadmap for managing risks during the software development lifecycle

and delivers a structured approach for certifying that risks are succeeded

efficiently.

The RMMM plan usually includes the below components:

7.5.1 Risk Identification: This component outlines the procedure for

identifying possible risks that may affect the software development project.

This may include technical risks, schedule risks, resource risks, quality

risks, business risks, and legal and regulatory risks.

7.5.2 Risk Assessment: This component shapes the process for evaluating

and analysing the identified risks to control their impact and likelihood. This

information is used to arrange the risks and to distribute resources and effort

to report the most critical risks.

7.5.3 Risk Mitigation: This component summaries the strategies and

arrangements to be taken to moderate the risks, such as decreasing the

likelihood of the risk happening or reducing the influence if it does occur.

89

Risk Management This may include developing possibility plans, allocating further resources,

or altering the project method or schedule.

7.5.4 Risk Monitoring: This element plans the process for constantly

monitoring and revising the risks to ensure that they are being managed

excellently and to identify new risks as they rise. This may include regular

risk assessments, stakeholder communication, and risk management

reports.

7.5.5 Risk Evaluation: It supports the process for evaluating the RMMM

plan after the project is completed to regulate its effectiveness and to find

opportunities for improvement in upcoming projects.

The RMMM plan should be reviewed and restructured regularly during the

software development lifecycle to certify that it remains appropriate and

effective.

SUMMARY

Software development is an advanced activity that works a wide range of

technological developments. Every software development project

comprises elements of ambiguity due to these and other factors. The amount

of risk connected with each project activity governs the success of a

software development project. It is not enough to just be aware of the

threats. To achieve success, project management must assess, prioritize,

identify, and manage all foremost risks.

• Pressman, R. S. (2010). Software engineering: a practitioner's

approach (7th ed.). McGraw-Hill.

• ISO/IEC 12207:2017 - Information technology — Software life

cycle processes.

• IEEE Standard for Software Project Management Plans (IEEE 1058-

1998).

• Boehm, B. W. (1981). Software Engineering Economics. Prentice-

Hall.

• McConnell, S. (1996). Rapid Development: Taming Wild Software

Schedules. Microsoft Press

• De Marco, T. (2002). Slack: Getting Past Burnout, Busywork, and

the Myth of Total Efficiency. Broadway Business.

• Standish Group. (1994). Chaos report.

• Fink, A. L. (2002). Conducting literature reviews: From the Internet

to paper. Sage.

• Clark, B., & Gorsky, P. (2010). A practitioner's guide to software

risk management. John Wiley & Sons.

• Hazards, Risks and Disasters in Society. (2015). Butterworth-

Heinemann.

• https://www.geeksforgeeks.org/methods-for-identifying-risks/

90

Software Engineering

MODEL QUESTIONS:

• What is Software Risk? Explain different categories of Risks.

• How to identify Risk? Explain different techniques of risk

Identification.

• Explain Risk Projection and Risk Refinement

• Describe RMMM Plan in detail.



91

8

SOFTWARE QUALITY ASSURANCE

Unit Structure :

8.0 Objectives

8.1 Introduction

8.2 Elements of SQA

8.3 SQA Tasks

8.4 Goals and Matrics

8.5 Formal Approaches to SQA

8.6 Six Sigma

8.7 Software reliability

8.8 The ISO 9000 Quality Standards

8.9 Capability Maturity Model

Summary

List of References and Bibliography and further Reading

Model Questions

8.0 OBJECTIVES

After going through this unit, you will be able to:

• Understand what Software Quality Assurance is?

• Understand about task and Matrix of SQA.

• Know about ISO 9000 Quality standards and CMM.

• Apprehend Six Sigma.

8.1 INTRODUCTION

Quality states to any measureable characteristics such as accuracy,

reliability, efficiency, maintainability, portability, testability, usability,

integrity, reusability, and interoperability.

Software quality assurance is a strategic and systematic plan of all actions

required to provide suitable confidence that an item or product conforms to

create technical requirements. A set of activities considered to calculate the

method by which the products are developed.

8.2 ELEMENTS OF SQA

Software quality assurance focus on the management of software quality

using following elements.

92

Software Engineering

• Standards: The ISO, IEEE and other standards groups have produced

a broad range of software engineering standards and associated

documents. Standards may be approved freely by a software

engineering. The job of SQA is to certify that standards that have been

approved are followed and that all effort products follow to them.

• Reviews and audits: Technical evaluations are a quality control

activity executed by software engineers for their intent is to expose

errors. Audits are a type of evaluation performed by SQA staffs with

the intent of certifying that quality strategies are being followed for

software engineering work.

• Testing: Software testing is a quality regulator function that has one

primary goal “to find errors”. The work of SQA is to certify that

testing is conducted correctly and efficiently.

• Error/defect collection and analysis: SQA collects and analyses

error and defect data to well understand how errors are familiarised

and what software engineering activities are best suited to abolishing

them.

• Change management: Change is one of the most unruly features of

any software project. If it is not properly succeeded, change can lead

to misunderstanding, and confusion practically leads to poor quality.

• Education: Every software organization wants to increase its

software engineering practices. A vital contributor to upgrading is

education of software engineers, their managers, and stakeholders.

• Security management: With the increase in cyber-crime and new

government guidelines regarding privacy, every software group

should institute policies that shelter data at all levels, establish firewall

security for Web Apps, and ensure that software has not been

damaged with internally.

• Safety: Because software is almost always a crucial component of

human graded system. SQA may be responsible for calculating the

impact of software failure and for originating those steps required to

reduce risk.

• Risk management: SQA organization confirms that risk

management actions are properly directed and that risk–related

exigency plans have been established.

8.2.1 There are two kinds of Quality:

93

Software Quality Assurance • Quality of Design: It refers to the characteristics that inventers

specify for an item. The status of materials, acceptances, and

performance provisions that all contribute to the quality of design.

• Quality of conformance: This is the degree to which the design

specifications are followed during work. Greater the degree of

conformance, the higher is the level of quality of conformance.

• Software Quality: Software Quality is distinct as the conformance to

clearly state functional and performance supplies, clearly documented

development standards, and natural characteristics that are projected

of all professionally developed software.

• Quality Control: Quality Control comprises a series of inspections,

reviews, and tests used during the software process to certify each

work product meets the requirements place upon it. Quality control

consist of a feedback loop to the process that formed the work

product.

• Quality Assurance: Quality Assurance is the anticipatory set of

activities that provide greater assurance that the project will be

completed successfully.

8.2.2 Importance of Quality

As we expect the quality to be a concern of all manufacturers of goods and

services. However, the distinct characteristics of software and in particular

its intangibility and complexity, make superior demands.

• Growing criticality of software: The final customer or user is

naturally worried about the general quality of software, especially its

reliability. This is aggregate in the case as organizations become more

dependent on their computer systems and software is used more and

more in safety-critical areas.

• The intangibility of software: This makes it stimulating to know that

a particular task in a project has been completed adequately. The

results of these tasks can be made concrete by demanding that the

developers produce 'deliverables' that can be inspected for quality.

8.3 SQA TASKS

Software Quality Assurance (SQA) comprises a number of tasks that are

performed to confirm that software products meet the stated quality

standards and requirements. Some of the crucial SQA tasks include:

• Quality Planning: This involves the development of a quality plan

that summaries the activities, processes, and procedures that will be

used to confirm software quality.

94

Software Engineering

• Requirements Analysis: This includes the review and evaluation of

the software requirements to ensure that they are complete, accurate,

and steady.

• Test Planning: This involves the improvement of a test plan that

outlines the testing activities, test cases, and test procedures that will

be used to verify that the software meets the identified requirements.

• Test Case Design: This consist of the creation of test cases that are

used to validate that the software works as planned.

• Test Execution: This involves the effecting of test cases to identify

flaws in the software.

• Test Reporting: This implicates the documentation of test results and

the identification of defects that need to be determined.

• Defect Resolution: This involves the purpose of defects identified

during testing and the execution of corrective actions.

• Configuration Management: This involves the identification and

control of the software artifacts and structures to ensure that the

accurate versions are being used.

• Process Evaluation: This involves the estimate of the software

development processes to ensure that they are actual and efficient.

• Process Improvement: This involves the implementation of

continuous improvement events to enhance software excellence over

time.

• Audits: This involves the free review of software processes to

confirm that they adapt to the specified quality standards.

• Metrics Collection and Analysis: Involves the collection and

exploration of software quality data to recognize areas for

improvement.

8.4 - GOALS AND MATRICS

Following table shows Software quality goals, attributes, and metrics:

Goal Attribute Metric

Requirement

quality

Ambigully Number of ambiguous modifiers

(e.., many, large, human–

friendly)

Totality Number of TBA, TBD

Understandability Number of sections/subsections

Volatility Number of changes per

requirement Time (by activity)

when change is requested

Traceability Number of requirements not

traceable to design/code

95

Software Quality Assurance

Model clarity Number of UML models

Number of descriptive pages per

model

Number of UML errors

Design

quality

Architectural

integrity

Component

completeness

Interface

complexity

Patterns

Existence of architectural model

Number of components that trace

to architectural model

Complexity of procedural design

Average number of pick to get to

a typical function or content

Layout appropriateness

Number of patterns used

Code quality Complexity

Maintainability

Understandability

Reusability

Documentation

Cyclomatic complexity

Design factors (Chapter 8)

Percent internal comments

Variable naming conventions

Percent reused components

Readability index

QC

effectiveness

Resource allocation

Completion rate

Review

effectiveness

Testing

effectiveness

Staff hour percentage per activity

Actual vs. budgeted completion

time

See review metrics

Number of errors found and

criticality

Effort required to correct an error

Origin of error

8.5 - FORMAL APPROACHES TO SQA:

There are several formal approaches to Software Quality Assurance (SQA)

that organizations can use to ensure the delivery of high-quality software

products. Some of the most commonly used formal approaches include:

• ISO/IEC 15504 (SPICE)

• CMMI (Capability Maturity Model Integration)

• ITIL (Information Technology Infrastructure Library)

• Six Sigma

• Agile Methods

Each of these formal approaches to SQA has its own strong point and faults,

and organizations can choose the method that best fits their necessities

based on the size and complexity of their software projects and their overall

96

Software Engineering

organizational culture and goals. By using a formal method to SQA,

organizations can certify that their software development procedures are

well-defined, effective, and efficient, and that they distribute high-quality

software products to their customers.

8.6 - SIX SIGMA

Six Sigma is the procedure of improving the quality of the production by

identifying and eliminating the cause of faults and reduce variability. The

maturity of a manufacturing process can be defined by a sigma rating

indicating its percentage of defect-free products it creates.

8.6.1 Characteristics of Six Sigma

The Characteristics of Six Sigma are as follows:

1. Statistical Quality Control

2. Methodical Approach

3. Fact and Data-Based Approach

4. Project and Objective-Based Focus

5. Customer Focus

6. Teamwork Method to Quality Management

8.6.2 Six Sigma Methodologies

Six Sigma projects carries two project methodologies:

1. DMAIC

2. DMADV

1. DMAIC

 It states a data-driven quality strategy for enlightening processes. This

methodology is used to enhance an existing business process.

The DMAIC project methodology has five phases:

1. Define: It covers the process plotting and flow-charting, project

approval development, problem-solving tools.

2. Measure: It includes the principles of measurement,

continuous and discrete data, and scales of measurement, an

outline of the principle of variations and repeatability and

reproducibility (RR) studies for continuous and discrete data.

3. Analyze: It covers creating a process baseline, how to

determine process improvement goals, knowledge discovery,

including descriptive and exploratory data analysis and data

mining tools, the basic principle of Statistical Process Control

(SPC), specialized control charts, process capability analysis,

97

Software Quality Assurance correlation and regression analysis, analysis of categorical data,

and non-parametric statistical methods.

4. Improve: It covers project management, risk assessment,

process simulation, and design of experiments (DOE), robust

design concepts, and process optimization.

5. Control: It covers process control planning, using SPC for

operational control and PRE-Control.

2. DMADV

I t specifies a data-driven quality approach for designing products and

processes. This method is used to generate new product designs or

process designs in such a way that it results in a more expectable,

mature, and discover free performance.

The DMADV project methodology has five phases:

1. Define: The problem or project goal that needs to be addressed.

2. Measure: It measures and defines the customer's needs and

provisions.

3. Analyze: It analyses the method to meet customer needs.

4. Design: It can design a procedure that will meet customer needs.

5. Verify: It can verify the design presentation and ability to meet

customer needs.

8.7 SOFTWARE RELIABILITY

Software Reliability means Operational reliability. It described as the

capability of a system or component to accomplish its required functions

under static conditions for a specific period.

Software reliability is also defined as the prospect that a software system

fulfils its assigned task in a given atmosphere for a predefined number of

input cases, assuming that the hardware and the input are free of error.

Software Reliability is a necessary connect of software quality, composed

with functionality, usability, performance, serviceability, capability, install

ability, maintainability, and documentation. It is hard to achieve because the

complexity of software turn to be high. While any system with a high degree

of complexity, containing software, will be hard to reach a certain level of

consistency, system developers tend to push complexity into the software

layer, with the speedy growth of system size and ease of doing so by

advancement the software.

98

Software Engineering

8.8 THE ISO 9000 QUALITY STANDARDS

ISO (International Standards Organization) is a group or consortium of 63

countries established to plan and fosters standardization. ISO declared its

9000 series of standards in 1987. It serves as a reference for the contract

between independent parties. The ISO 9000 standard determines the

guidelines for maintaining a quality system. The ISO standard mainly

addresses operational methods and organizational methods such as

responsibilities, reporting, etc. ISO 9000 defines a set of guidelines for the

production process and is not directly concerned about the product itself.

8.8.1-Types of ISO 9000 Quality Standards

The ISO 9000 series of standards is based on the hypothesis that if a proper

stage is followed for production, then good quality products are bound to

follow spontaneously. The types of industries to which the various ISO

standards apply are as follows.

1. ISO 9001: This standard relates to the organizations involved in

design, development, production, and servicing of goods. This is the

standard that applies to most software development organizations.

2. ISO 9002: This standard applies to those organizations which do not

design products but are only involved in the production. Therefore,

ISO 9002 does not apply to software development organizations.

3. ISO 9003: This standard applies to organizations that are involved

only in the installation and testing of the products. For example, Gas

companies.

8.8.2 Steps to get ISO 9000 Certification:

An organization decides to obtain ISO 9000 certification applies to ISO

registrar office for registration. The process involves of the following

stages:

Application -> Pre-Assessment -> Document review and Adequacy of

Audit -> Compliance Audit -> Registration-> Continued Inspection.

8.9 CAPABILITY MATURITY MODEL

The Software Engineering Institute (SEI) Capability Maturity Model

(CMM) states an increasing strings of levels of a software development

business. The higher the level, the improved the software development

process, therefore reaching each level is a costly and time-consuming

method.

99

Software Quality Assurance 8.9.1 Levels of CMM

• Level 1: Initial - The software process is considered as unpredictable,

and irregularly even disordered. Defined processes and standard

practices that exist are unrestricted during a crunch. Success of the

organization majorly be determined by on an individual effort. The

heroes finally move on to other organizations taking their prosperity

of knowledge or lessons learnt with them.

• Level 2: Repeatable - This level of Software Development

Organization has a basic and steady project management procedures

to track cost, schedule, and functionality. The process is in place to

repeat the earlier achievements on projects with similar applications.

• Level 3: Defined - The software process for both management and

engineering actions are documented, standardized, and integrated into

a usual software process for the entire organization and all projects

crosswise the organization use an approved, custom-made version of

the organization's typical software process for developing, testing and

maintaining the application.

• Level 4: Managed - Management can efficiently control the software

development effort using specific measurements. At this level,

organization set a quantifiable quality objective for both software

process and software maintenance.

• Level Five: Optimizing - The Main characteristic of this level is

fixing on continually improving process performance through both

incremental and inventive technological improvements.

SUMMARY

Software Quality Assurance (SQA) is a set of activities for certifying

quality in software engineering procedures. It ensures that developed

100

Software Engineering

software happens and fulfils with the defined or standardized quality

provisions. SQA is an ongoing process within the Software Development

Life Cycle (SDLC) that regularly checks the developed software to confirm

it meets the anticipated quality measures.

LIST OF REFERENCES AND BIBLIOGRAPHY AND

FURTHER READING:

• https://www.javatpoint.com/six-sigma

• https://www.computersprofessor.com/2017/09/sqa-tasks-goals-

attributes-and-metrics.html

MODEL QUESTIONS

• What is the purpose of Software Quality Assurance?

• What are the elements of a SQA process?

• What are some common SQA activities and tasks?

• What is the role of metrics in SQA?

• What is the purpose of software quality standards (e.g., ISO 9001)?

• What is the Capability Maturity Model (CMM), and how is it used

in SQA?

• What is the difference between verification and validation in the

context of SQA?

• What is the purpose of software reliability engineering, and how

does it relate to SQA?



101

9

SOFTWARE TESTING

Unit Structure :

9.0 Objectives

9.1 Introduction

9.2 Verification and Validation

9.3 Introduction to Testing

9.4 Testing Principles,

9.5 Testing Objectives

9.6 Test Oracles

9.7 Levels of Testing

9.8 White-Box Testing/Structural Testing

9.9 Functional/Black-Box Testing

9.10 Test Plan

9.11 Test-Case Design

Summary

List of References and Bibliography and further Reading

Model Questions

9.0 OBJECTIVES

After going through this unit, students will be able to:

• Study fundamental concepts in software testing.

• Understand different levels and types of software testing.

• Understand the distinctions between software verification and

software validation.

9.1 INTRODUCTION

Software testing is not anything but an art of examining software to ensure

that its quality under test is in line with the requirement of the client.

Software testing is carried out in an organized manner with the resolved of

finding defects in a system. It is required for evaluating the system.

Software testing is now a very major and essential part of software

development. Ideally, it is best to introduce software testing in every

segment of software development life cycle. Actually, a common of

software development time is now spent on testing.

102

Software Engineering

9.2 VERIFICATION AND VALIDATION

Verification and validation are important concepts in software testing.

Verification refers to the process of calculating the software design and

implementation to regulate whether it meets the listed requirements.

Verification is a anticipatory process that aims to identify any defects and

errors early in the software development lifecycle, before they become more

tough and costly to fix. Verification activities include activities such as code

assessments, design reviews, walkthroughs, and static analysis.

On the other hand, Validation, is the process of estimating the software

during or at the end of the development process to regulate whether it

satisfies the specified requirements. Validation is a remedial process that

aims to identify defects and errors that may have been hosted during the

implementation phase. Different types of Validation activities include unit

testing, integration testing, system testing, and acceptance testing.

It's important to note that verification and validation are balancing processes

and both are essential to ensure software quality. Verification helps to

identify possible defects and errors early in the development process,

whereas validation helps to identify faults and errors that may have been

introduced later in the method. Effective verification and validation help to

confirm that software meets the specified requirements, is free of faults and

errors, and is suitable for its intended purpose.

9.3 INTRODUCTION TO TESTING

Testing is an important part of the software development process. It is the

process of calculating a software system or its components with the

determined to identify any defects or errors and to consider its functionality.

The primary goal of testing is to ensure that the software meets the specified

requirements and works as anticipated.

The choice of testing methods and techniques will depend on the specific

needs and purposes of the software project, as well as the development

methodology being used.

103

Software Testing Effective testing involves a thorough understanding of the software

requirements, as well as the development and testing methods. It's also

important to develop a well-designed test plan, comprising a clear definition

of the testing objectives, testing methods, and estimated outcomes.

Effective testing is essential to ensure software quality and to minimize the

risk of defects and errors in the final product.

Testing can be performed with the use of automated testing tools or

manually. Automated testing can increase the proficiency and accuracy of

the testing process, but it also requires a important investment of time and

resources to develop and maintain.

9.4 TESTING PRINCIPLES

There are some principles that form the base of effective software testing:

• Early Testing: Testing should start early in the software development

lifecycle and continue all over the process. This helps to identify defects and

errors timely, when they are easier and less costly to fix.

• Defect Prevention: The focus should be on defect prevention rather than

defect detection. This can be achieved by using proven software

development methodologies, following best practices for software design

and coding, and performing regular code reviews and walkthroughs.

• Testing Throughout the Development Life Cycle: Testing should be

performed at all stages of the development life cycle, from requirements

gathering and design through to implementation, testing, and deployment.

• Test Planning and Design: A well-designed test plan is essential for

effective testing. The test plan should include a clear definition of the testing

objectives, testing methods, and expected outcomes.

• Independent Testing: Testing should be performed by an independent team

or individuals to ensure objectivity and to minimize the risk of bias.

• Test-Driven Development: Tests should be developed and executed before

the implementation of the software components. This helps to ensure that

the software meets the specified requirements and reduces the risk of

defects.

• Automation: Automated testing can be an effective way to increase the

efficiency and accuracy of the testing process. However, it's important to

use automation appropriately and not rely solely on automated testing

methods.

• Continuous Testing: Testing should be an ongoing process, not a one-time

event. Continuous testing helps to ensure that changes to the software are

tested and validated throughout the development life cycle.

In summary, these principles provide a framework for effective software

testing and help to ensure that the software meets the specified

requirements, is free of defects and errors, and is fit for its intended

purpose.

104

Software Engineering

9.5 TESTING OBJECTIVES

The objectives of software testing can vary depending on the specific

needs of a software project. However, some common testing objectives

include:

• Verifying requirements: Ensure that the software meets the detailed

requirements and works as intended.

• Finding defects: Identify and separate defects and errors in the software.

• Improving quality: Improve the overall quality of the software by

recognizing and fixing defects and successful the design and

implementation.

• Increasing confidence: Increase confidence in the software by providing

evidence that it meets the specified requirements and works as intended.

• Evaluating risk: Evaluate the potential risk associated with the software,

including the risk of defects and the risk of security vulnerabilities.

• Demonstrating compliance: Demonstrate compliance with regulatory and

industry standards, such as ISO 9001 or PCI DSS.

• Improving reliability: Improve the reliability of the software by reducing

the frequency and severity of defects and errors.

• Improving performance: Improve the performance of the software by

identifying and fixing performance bottlenecks and optimizing resource

utilization.

• Supporting maintenance: Support ongoing software maintenance by

providing information about the software's behavior and performance.

In summary, the objectives of software testing are to ensure that the

software meets the specified requirements, works as intended, and is of high

quality. Testing also helps to minimize the risk of defects and errors,

improve performance, and support ongoing software maintenance.

9.6 TEST ORACLES

It is a mechanism, different from the program itself, that can be used to test the

accuracy of a program’s output for test cases. Conceptually, we can consider

testing a process in which test cases are given for testing and the program under

test. The output of the two then compares to determine whether the program

behaves correctly for test cases. This is shown in figure.

105

Software Testing Testing oracles are required for testing. Ideally, we want an automated oracle,

which always gives the correct answer. However, often oracles are human beings,

who mostly calculate by hand what the output of the program should be. As it is

often very difficult to determine whether the behavior corresponds to the expected

behavior, our “human deities” may make mistakes. Consequently, when there is a

discrepancy, between the program and the result, we must verify the result

produced by the oracle before declaring that there is a defect in the result.

The human oracles typically use the program’s specifications to decide what the

correct behavior of the program should be. To help oracle determine the correct

behavior, it is important that the behavior of the system or component is explicitly

specified and the specification itself be error-free. In other words, actually specify

the true and correct behavior.

There are some systems where oracles are automatically generated from the

specifications of programs or modules. With such oracles, we are assured that the

output of the oracle conforms to the specifications. However, even this approach

does not solve all our problems, as there is a possibility of errors in specifications.

As a result, a divine generated from the specifications will correct the result if the

specifications are correct, and this specification will not be reliable in case of

errors. In addition, systems that generate oracles from specifications require formal

specifications, which are often not generated during design.

9.7 LEVELS OF TESTING

Testing can be divided into several levels, each of which serves a specific

purpose and focuses on different aspects of the software. It is an important

process in software development that helps ensure the quality and

trustworthiness of a software product. Some most common levels of testing

are as follows:

• Unit Testing: This is the first level of testing and involves testing individual

components or units of code to ensure that each one functions as proposed.

Unit tests are typically automated and are performed by developers.

• Integration Testing: This level of testing focuses on testing the interactions

between different components or units of code. Integration testing helps to

identify any issues that may arise from the integration of individual

components.

• System Testing: System testing focuses on testing the entire software

system as a whole, to ensure that it meets the specified requirements and

behaves as expected. This level of testing may include functional testing,

performance testing, and security testing.

• User Acceptance Testing (UAT): User Acceptance Testing is the final

stage of testing, in which the software is tested by end-users or customers.

The purpose of UAT is to ensure that the software meets the business

requirements and satisfies the needs of the customers.

• Performance Testing: Performance testing is a type of testing that focuses

on measuring the performance and scalability of a software system under

different conditions, such as heavy load or high traffic. The goal of

performance testing is to identify and resolve performance bottlenecks and

ensure that the system can meet the expected performance requirements.

106

Software Engineering

• Security Testing: Security testing is a type of testing that focuses on

identifying and mitigating security vulnerabilities and threats in a software

system. This level of testing includes vulnerability scans, penetration

testing, and security assessments.

These levels of testing can be performed at different times during the

software development lifecycle, and the exact testing process will depend

on the specific requirements and constraints of the software project.

However, it is generally recommended to perform testing at each level to

ensure the quality and reliability of the final product.

9.8 WHITE-BOX TESTING/STRUCTURAL TESTING

Structural testing also known as White box testing, or code-based testing, is

a type of software testing that emphases on the internal structure and design

of a software program. It involves testing the individual components,

functions, and modules of the code, as well as their collaborations with each

other.

The goal of white box testing is to identify and correct any errors, bugs, or

other issues in the code, and to ensure that it meets the specified

requirements and design specifications. White box testing is often

performed by developers and requires a detailed understanding of the code

and how it works.

During white box testing, the tester has access to the source code and can

test it at a low level, such as checking for proper syntax, data flow, and

control flow. This type of testing is also used to validate the implementation

of algorithms and data structures, as well as to test error handling and

exception management.

White box testing complements other types of testing, such as black box

testing and gray box testing, and is typically performed early in the software

development lifecycle, before the software is released to the end-users. It is

an important part of the software development process, as it helps to identify

and resolve problems in the code, and ensures that the software is of high

quality and reliable.

9.9 FUNCTIONAL/BLACK-BOX TESTING

Functional testing, also known as black box testing, is a type of software

testing that focuses on verifying that the software meets the functional

requirements and behaves as expected. Unlike white box testing, which

focuses on the internal structure of the code, functional testing is performed

from the perspective of an end-user, and does not require access to the

source code.

The goal of functional testing is to validate the functionality of the software,

including its inputs, outputs, and behavior. This type of testing focuses on

testing the software's features and functions, and verifying that they work

as intended.

107

Software Testing Functional testing typically involves creating test cases and test scenarios

that simulate real-world scenarios and interactions with the software. This

can include manual testing, automated testing, or a combination of both.

Black box testing is performed at different stages of the software

development lifecycle, and can be used to test the software as a whole, or

individual components and functions. This type of testing is essential for

ensuring that the software meets the user requirements and behaves as

expected, and can help identify and resolve issues early in the development

process, before the software is released to end-users.

In summary, functional testing is a crucial part of the software development

process, and helps to ensure the quality and reliability of the software

product. By performing functional testing, developers can validate that the

software meets the specified requirements and behaves as expected, and can

identify and resolve issues before the software is released to the end-users.

9.10 TEST PLAN

A test plan is a document that outlines the testing strategy, approach, and

resources for a software project. It provides a roadmap for testing activities

and helps ensure that the testing process is consistent, comprehensive, and

aligned with the project requirements.

A typical test plan includes the following information:

• Introduction: A brief overview of the purpose and scope of the test

plan.

• Objectives: The objectives of the testing process, such as verifying

that the software meets the functional requirements, verifying the

quality and reliability of the software, and identifying any issues or

defects in the software.

• Scope: The scope of the testing process, including the components

and functions that will be tested, and any areas or functionality that

will not be tested.

• Test approach: The approach and methodology for testing, including

the types of testing that will be performed (e.g., functional testing,

performance testing, security testing, etc.), the testing tools and

techniques that will be used, and the testing schedule.

• Test environment: The specifications and details of the testing

environment, including the hardware, software, and network

configurations, and the test data that will be used.

• Test cases: The test cases that will be used to verify the functionality

and behavior of the software, including the steps, inputs, expected

results, and pass/fail criteria.

108

Software Engineering

• Test schedule: The testing schedule, including the start and end dates,

the testing milestones, and the responsibilities of the testing team.

• Test resources: The resources required for testing, including the

testing tools, personnel, and budget.

• Risks and assumptions: A description of the risks associated with the

testing process and any assumptions that have been made.

• Approval: The approval process and sign-off criteria for the test plan.

The test plan is an important document that helps to ensure that the testing

process is well-planned, well-organized, and consistent with the project

requirements. It serves as a reference for the testing team and stakeholders,

and helps to ensure that the testing process is completed on time, within

budget, and with high quality.

9.11 TEST-CASE DESIGN

Test case design is the process of creating a set of tests to validate that the

software functions as intended. Test cases are used to verify the

functionality and behavior of the software, and to identify any issues or

defects in the software.

Test case design involves several steps:

• Identify requirements: Start by identifying the functional

requirements for the software and understanding what the software is

expected to do.

• Determine test conditions: Based on the requirements, determine the

conditions under which the software will be tested, such as different

inputs, scenarios, and edge cases.

• Design test cases: Based on the test conditions, design test cases that

will verify the functionality and behavior of the software. A test case

should include a clear and concise description of the test steps, inputs,

expected results, and pass/fail criteria.

• Prioritize test cases: Prioritize the test cases based on the risk and

impact of each test. High-priority test cases should be designed and

executed first, as they are more likely to uncover critical issues and

defects.

• Execute test cases: Execute the test cases to verify the functionality

and behavior of the software. Document the results and any issues or

defects that are identified.

• Update test cases: Update the test cases based on the results of the

testing, and make any necessary changes to the software. Repeat the

testing process until all the test cases have been executed and the

software meets the specified requirements.

109

Software Testing Test case design is an iterative process that requires careful planning and

organization. It is important to design test cases that are comprehensive,

effective, and efficient, and to prioritize the test cases based on the risk and

impact of each test. A well-designed set of test cases helps to ensure that

the software functions as intended and is of high quality and reliability.

SUMMARY

• Software testing is required to check the reliability of the software

• Software testing ensures that the system is free from any bug that

can cause any kind of failure

• Software testing ensures that the product is in line with the

requirement of the client

• It is required to make sure that the final product is user friendly

• At the end software is developed by a team of human developers all

having different viewpoints and approach. Even the smartest person

has the tendency to make an error. It is not possible to create

software with zero defects without incorporating software testing in

the development cycle.

• No matter how well the software design looks on paper, once the

development starts and you start testing the product you will find

lots of defects in the design.

You cannot achieve software quality without software testing. Even if

testers are not involved in actual coding, they should work closely with

developers to improve the quality of the code. For best results it is

important that software testing and coding should go hand in hand.

LIST OF REFERENCES AND BIBLIOGRAPHY AND

FURTHER READING

• "Software Testing: A Craftsman's Approach" by Paul Jorgensen

• "Effective Software Testing: 50 Specific Ways to Improve Your

Testing Process" by Elfriede Dustin, Thom Garrett, and Bernie Gauf

• "Introduction to Software Testing" by Paul Ammann and Jeff Offutt

• "Exploratory Software Testing: Tips, Tricks, Tours, and Techniques

to Guide Test Design" by James A. Whittaker

• "Software Testing: An ISTQB-BCS Certified Tester Foundation

Guide" by Rex Black, et al.

110

Software Engineering

MODEL QUESTIONS

• What is software testing and why is it important?

• What are the different types of software testing?

• What is the difference between white box testing and black box testing?

• What is the purpose of test case design?

• What is the difference between functional testing and non-functional

testing?

• What is the importance of test planning in software testing?

• What is the difference between verification and validation in software

testing?

• What is the purpose of test automation and why is it important?

• What is the difference between bug and defect in software testing?

• What is the difference between static testing and dynamic testing?

• What is the difference between acceptance testing and user acceptance

testing?

• What is the importance of test documentation in software testing?



	01 SE
	02 SE
	03 SE
	04 SE
	05 SE
	06 SE
	07 SE
	08 SE
	09 SE

