S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

SOFTWARE ENGINEERING

SUBJECT CODE: USCS404

© UNIVERSITY OF MUMBAI

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor
University of Mumbai, Mumbai

Prin. Dr. Ajay Bhamare Prof. Prakash Mahanwar
Offg. Pro Vice-Chancellor, Director,
University of Mumbai IDOL, University of Mumbai
Programme Co-ordinator : Shri Mandar Bhanushe

Head, Faculty of Science and Technology IDOL,
Univeristy of Mumbai — 400098

Course Co-ordinator : Ms. Mitali Vijay Shewale
Doctoral Researcher,
Veermata Jijabai Technological Institute
HR Mahajani road, Matunga, Mumbai

Editor : Akshata Laddha,
Assistant Professor,
Dilkap Research Institute of Engineering and
Management Studies, Neral.

Course Writers ¢ Ms. Mitali Vijay Shewale
Doctoral Researcher,
Veermata Jijabai Technological Institute
HR Mabhajani road, Matunga, Mumbai

: Sameera Salim Ibrahim
Assistant Professor,
SIES(NERUL) college of Arts, Science and
Commerce, Navi Mumbai.

: Sandhya Pandey
Assistant Professor,
The S.I.A. College of Higher Education,
Dombivli(E)

June 2023, Print - 1

Published by : Director,
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by: Mumbai University Press

CONTENTS

Unit No. Title Page No.
I INtrOAUCHION.....ciiiiiiiiiiiicc ettt e e 1
2 Requirement Analysis and System Modeling..........ccccceeeeriiiiiniiiieiiniiieeeeeen 21
3 SYStEM DESIZIN cueiiiiiiiiiiiee ettt e et ee e 38
4 Software Measurement and METIICSccuveiirriiiiiiiiiiiiieeieiiee e 50
5 Software Project Management........ccceeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeee e ee e e ee e e eeee e 64
6 Project SChedUlingcoiiiiiiiiiiiiiiiiee e e 76
7 RiSK ManagemeNtc..eeiiiiiiiiiiiiiiiiee ettt et e e et e e 84
8 Software QUality ASSUTANCE.......eeviiiieiiiiiiiiiieeeeeeeeiiieeee e e e e e eee e e e e e e ennreeeeeaeens 91
O SOftWAre TeSTIMEeeeeeiiiieee ettt e e e e e e et e e e e e e e e 101

S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

SOFTWARE ENGINEERING
SYLLABUS

Course:

USCS404

TOPICS (Credits : 02 Lectures/Week: 03)

Software Engineering

Unit I

Introduction: The Nature of Software, Software Engineering, The
Software Process, Generic Process Model, The Waterfall Model,
Incremental Process Models, Evolutionary Process Models, Concurrent
Models, Component-Based Development, The Unified Process Phases,
Agile Development- Agility, Agile Process, Extreme Programming

Requirement Analysis and System Modeling: Requirements

Engineering, Eliciting Requirements, SRS Validation, Components of

15L

SRS, Characteristics of SRS , Object-oriented design using the UML -
Class diagram, Object diagram, Use case diagram, Sequence diagram,
Collaboration diagram, State chart diagram, Activity diagram,

Component diagram, Deployment diagram

Unit 11

System Design: System/Software Design, Architectural Design,
Low-Level Design Coupling and Cohesion, Functional-Oriented Versus
The Object-Oriented Approach, Design Specifications, Verification for
Design, Monitoring and Control for Design

Software Measurement and Metrics: Product Metrics — Measures,
Metrics, and Indicators, Function-Based Metrics, Metrics for
Object-Oriented Design, Operation-Oriented Metrics, User Interface
Design Metrics, Metrics for Source Code, Halstead Metrics Applied to
Testing, Metrics for Maintenance, Cyclomatic Complexity, Software
Measurement - Size-Oriented, Function-Oriented Metrics, Metrics for
Software Quality

Software Project Management: Estimation in Project Planning Process
—Software Scope And Feasibility, Resource Estimation, Empirical
Estimation Models — COCOMO II, Estimation for Agile Development,
The Make/Buy Decision, Project Scheduling - Basic Principles,
Relationship Between People and Effort, Effort Distribution, Time-Line
Charts

15L

Risk Management - Software Risks, Risk Identification, Risk Projection
and Risk Refinement, RMMM Plan

Software Quality Assurance: Elements of SQA, SQA Tasks, Goals,
and Metrics, Formal Approaches to SQA, Six Sigma, Software
Reliability, The ISO 9000 Quality Standards, Capability Maturity Model

Unit ITI 15L
Software Testing : Verification and Validation, Introduction to Testing,
Testing Principles, Testing Objectives, Test Oracles, Levels of Testing,
White-Box Testing/Structural Testing, Functional/Black-Box Testing,
Test Plan, Test-Case Design
Text book(s):

1) Software Engineering, A Practitioner’s Approach, Roger S, Pressman.(2014)

Additional Reference(s):

1) Software Engineering, lan Sommerville, Pearson Education

2) Software Engineering: Principles and Practices”,Deepak Jain,OXFORD University Press,

3) Fundamentals of Software Engineering, Fourth Edition, Rajib Mall, PHI

4) Software Engineering: Principles and Practices, Hans Van Vliet, John Wiley & Sons

5) A Concise Introduction to Software Engineering, Pankaj Jalote, Springer

INTRODUCTION

Unit Structure :

1.0 Objectives

1.1 Introduction

1.2 The Nature of Software

1.3 Software Engineering

1.4 The Software Process

1.5 Generic Process Model

1.6 The Waterfall Model

1.7 Incremental Process Models
1.8 Evolutionary Process Models
1.9 Component-Based Development
1.10 The Unified Process Phases
1.11 Agile Development- Agility
1.12 Agile Process

1.13 Extreme Programming

Let us Sum Up

List of References

Bibliography

Unit End Exercises

1.0 OBJECTIVES

After going through this chapter, you will be able to:

° Software
e Software Engineering
° Different Process Models used in software Engineering

1.1 Introduction

The end product that software developers create and provide ongoing
support for is computer software. It includes computer programmes that run
on machines of every size and architecture, content displayed while
computer programmes run, and descriptive data in both physical and digital
formats that cover almost any electronic medium.Software engineers can
create high-quality computer software through the use of a methodology, a
set of techniques, and a variety of tools.

1.2 THE NATURE OF SOFTWARE

Software serves two functions. It is both a product and a vehicle used to
transport a product. As a product, it provides the processing power
embodied by computer hardware or, more broadly, by a network of

Software Engineering

computers accessible via local hardware. Software is an information
transformer, whether it is found in a mobile phone or a mainframe
computer. It produces, manages, acquires, modifies, displays, or transmits
data.As the vehicle used to deliver the product, software serves as the
foundation for computer control (operating systems), information
communication (networks), as well as the creation and control of additional
programs (software tools and environments).

1.2.1 Defining Software

Software is instructions (computer programs) that when executed
provide desired features, function, and performance.

Software is developed or engineered; it is not manufactured in the
classical sense

Software doesn’t “wear out”.

o When something is no longer of any use, it reaches the “wear
out” state. That is, it can not perform the function it was built
for. For example, a printer reaches “wear out” state and it can't
print anymore. This doesn’t include the recycling options. One
makes use of a dead printer to do anything else but printing.

o On the other hand, software does not wear out. Like hardware,
software also shows a high failure rate at its infant state. Then
it gets modifications and the defects get corrections and thus it
comes to the idealized state. This idealized state continues.

o alternative software with implementation of current user
demands can replace a software. Though, not having a recent
feature is not a defect, users tend to use the latest alternatives.
If we consider this as failure for the software then the failure
rate increases with time. This will make the software deteriorate
due to change, but still the software can perform it’s operation
as it was performing in the beginning. That is why software
doesn’t wear out.

1.2.2 Software Application Domain

There are seven categories of software

1.

System software:is a collection of programs written to service other
programs. Some system software (e.g., compilers, editors, and file
management utilities) processes complex, but
determinate,information structures. Other systems applications (e.g
Operating system components, drivers, networking software,
telecommunications processors) process largely indeterminate data.

Application software:is a stand-alone program that solves a specific
business need. Applications in this area process business or technical
data in a way that facilitates business operations or
management/technical decision making.One of the significant and

essential things to note about application software is that it cannot run
independently. To run application software, you have to use a system
platform capable of supporting it.

3. Engineering/scientific software:has been characterized by “number
crunching” algorithms. Applications range from astronomy to
volcanology, from automotive stress analysis to space shuttle orbital
dynamics, and from molecular biology to automated manufacturing.

4. Embedded software:resides within a product or system and is used
to implement and control features and functions for the end user and
for the system itself.e.g., keypad control for a microwave oven,
digital functions in an automobile such as fuel control, dashboard
displays, and braking systems.

5. Product-line software:It is designed to provide a specific capability
for use by many different customers. Product-line software can focus
mass consumer markets (e.g., word processing, spreadsheets,
computer graphics, multimedia, entertainment, database
management, and personal and business financial applications).

6. Web applications:It is called “WebApps,” this network-centric
software category spans a wide array of applications. In their simplest
form, WebApps can be little more than a set of linked hypertext files
that present information using text and limited graphics.

7. Artificial intelligence software—makes use of nonnumerical
algorithms to solve complex problems that are not amenable to
computation or straightforward analysis. Applications within this area
include robotics, expert systems, pattern recognition (image and
voice), artificial neural networks, theorem proving, and game playing.

1.3 SOFTWARE ENGINEERING

e Software engineering is an engineering discipline that is concerned
with all aspects of software production from the early stages of system
specification through to maintaining the system after it has gone into
use.

° Software Engineering is defined as the systematic approach to the
development, operation, maintenance, and retirement of software.

e Software engineering is a layered technology. Referring to Figure 1.1,
any engineering approach (including software engineering) must rest
on an organizational commitment to quality. Total quality
management, Six Sigma, and similar philosophieslO foster a
continuous process improvement culture, and it is this culture that
ultimately leads to the development of increasingly more effective
approaches to software engineering.

e Quality focus: The bedrock that supports software engineering is a
quality focus.

INTRODUCTION

Software Engineering

Process Layer:The foundation for software engineering is the
process layer. The software engineering process is the glue that holds
the technology layers together and enables rational and timely
development of computer software. Process defines a framework that
must be established for effective delivery of software engineering
technology. The software process forms the basis for management
control of software projects and establishes the context in which
technical methods are applied, work products (models, documents,
data, reports, forms, etc.) are produced, milestones are established,
quality is ensured, and change is properly managed.

Method:Software engineering methods provide the technical how-
to’s for building software. Methods encompass a broad array of tasks
that include communication, requirements analysis, design modeling,
program construction, testing, and support. Software engineering
methods rely on a set of basic principles that govern each area of the
technology and include modeling activities and other descriptive
techniques.

Tools:Software engineering tools provide automated or semi
automated support for the process and the methods. When tools are
integrated so that information created by one tool can be used by
another, a system for the support of software development, called
computer-aided software engineering, is established

Tools
Method

Process Layer

Quality Focus

Fig 1.1 Software Engineering Layers

1.4 SOFTWARE PROCESS

A process is a collection of activities, actions, and tasks that are
performed when some work product is to be created.

In the context of software engineering, a process is not a rigid
prescription for how to build computer software. Rather, it is an
adaptable approach that enables the people doing the work (the
software team) to pick and choose the appropriate set of work actions
and tasks. The intent is always to deliver software in a timely manner
and with sufficient quality to satisfy those who have sponsored its
creation and those who will use it.

e A process framework establishes the foundation for a complete
software engineering process by identifying a small number of
framework activities that are applicable to all software projects,
regardless of their size or complexity.

Process Framework Activities:

For the purpose of illustrating typical process activities, the process
framework is necessary. A process framework for software engineering lists
five framework tasks. Framework activities include, for instance, planning,
modeling, building, and implementation. A set of required work outputs,
project milestones, and software quality assurance (SQA) points are
included in each engineering action specified by a framework activity.

e Communication: By communication, customer requirement
gathering is done. Communication with consumers and stakeholders
to determine the system’s objectives and the software’s requirements.

e Planning: Establish engineering work plan, describes technical risk,
lists resources requirements, work produced and defines work
schedule.

e Modeling: Architectural models and design to better understand the
problem and for work towards the best solution. The software model
is prepared by:

o Analysis of requirements
0 Design

e Construction: Creating code, testing the system, fixing bugs, and
confirming that all criteria are met. The software design is mapped
into a code by:

o Code generation
0 Testing

e Deployment: In this activity, a complete or non-complete product or
software is represented to the customers to evaluate and give
feedback. On the basis of their feedback, we modify the product for
the supply of better products.

Umbrella Activities:

Software engineering process framework activities are complemented by a
number of umbrella activities. In general, umbrella activities are applied
throughout a software project and help a software team manage and control
progress, quality, change, and risk. Typical umbrella activities include:

e Software project tracking and control—allows the software team
to assess progress against the project plan and take any necessary
action to maintain the schedule. Risk management—assesses risks
that may affect the outcome of the project or the quality of the product.

° Software quality assurance—defines and conducts the activities
required to ensure software quality.

INTRODUCTION

Software Engineering

e Technical reviews—assesses software engineering work products in
an effort to uncover and remove errors before they are propagated to
the next activity.

° Measurement—defines and collects process, project, and product
measures that assist the team in delivering software that meets
stakeholders’ needs; can be used in conjunction with all other
framework and umbrella activities.

e Software configuration management—manages the effects of
change throughout the software process.

° Reusability management—defines criteria for work product reuse
(including software components) and establishes mechanisms to
achieve reusable components.

e Work product preparation and production—encompasses the
activities required to create work products such as models,
documents, logs, forms, and lists

1.5 GENERIC PROCESS

A process was defined as a collection of work activities, actions, and tasks
that are performed when some work product is to be created. Each of these
activities, actions, and tasks reside within a framework or model that defines
their relationship with the process and with one another. Each software
engineering action is defined by a task set that identifies the work tasks that
are to be completed, the work products that will be produced, the quality
assurance points that will be required, and the milestones that will be used
to indicate progress.

A generic process framework for software engineering defines five
framework activities— communication, planning, modeling, construction,
and deployment. In addition, a set of umbrella activities—project tracking
and control, risk management, quality assurance, configuration
management, technical reviews, and others—are applied throughout the
process.

1. Alinear process flow executes each of the five framework activities
in sequence, beginning with communication and culminating with
deployment (Figure 1.2 a).

2. Aniterative process flow repeats one or more of the activities before
proceeding to the next (Figure 1.2b).

3. An evolutionary process flow executes the activities in a “circular”
manner. (Figure 1.2c).

4. A parallel process flow (Figure 1.2d) executes one or more activities
in parallel with other activities.

Fig 1.2 Process Flow INTRODUCTION

e | Cornmunicotion e Planning | - Maodeling fe| Construction J—=| Deoployment J—=

[a) Lineor process Row

! Communication f— Planning — Maodeling —={ Comstruction §—=| Deployment J—

—

[b) herative process flow

P‘nnnlng [r——

e | Communication

Increment g
e ment Construction
'ﬂ‘ﬂ(l‘m‘ p‘Or s - ~

fe) lvw.Juhunuly process flow

e | Communicolion e Plonning

L Maodeling J Time ——
L Conatruction f—=| Deployment J—

(d) Porallel process flow

Identifying a Task Set

First, choose a task set that best accommodates the needs of the
project and the characteristics of your team.

A task set defines the actual work to be done to accomplish the
objectives of a software engineering action.

< Alist of the task to be accomplished
< Alist of the work products to be produced

< Alist of the quality assurance filters to be applied

Process Pattern

A process pattern describes a process-related problem that is
encountered during software engineering work, identifies the
environment in which the problem has been encountered, and
suggests one or more proven solutions to the problem.

In more general terms, a process pattern provides us with a template,
a consistent method for describing problem solutions within the
context of the software process. By combining patterns, a software
team can solve problems and construct a process that best meets the
needs of a project.

Software Engineering

° Process pattern types-

Stage patterns — defines a problem associated with a framework
activity for the process.

Task patterns — defines a problem associated with a software
engineering action or work task and relevant to successful software
engineering practice

Phase patterns — define the sequence of framework activities that
occur with the process, even when the overall flow of activities is
iterative in nature.

1.6 THE WATERFALL MODEL

The waterfall model, sometimes called the classic life cycle, suggests a
systematic, sequential approach to software development that begins with
customer specification of requirements and progresses through planning,
modeling, construction, and deployment.

Requirement
Analysis Waterfall Model
System
Design

[Implementation J

Deployment

A variation in the representation of the waterfall model is called the V-
model. Represented in Figure 1.4. As a software team moves down the left
side of the V, basic problem requirements are refined into progressively
more detailed and technical representations of the problem and its solution.
Once code has been generated, the team moves up the right side of the V,
essentially performing a series of tests (quality assurance actions) that
validate each of the models created as the team moved down the left side.

Fig 1.3 WaterFall Model

INTRODUCTION

Requirement

Analy=is System Toesting

High Leveld N > Integration
Desizn Testing
Lor';:‘l::;‘cl - . Unit Testing

Coding

Fig 1.4 V-model
Advantages of waterfall model-

° This model works for small projects because the requirements are
understood very well.

) The waterfall model is simple and easy to understand, implement,
and use.

e All the requirements are known at the beginning of the project, hence
it is easy to manage.

Disadvantages of the waterfall model

e The problems with this model are uncovered, until the software
testing.

e The amount of risk is high.

° This model is not good for complex and object oriented projects.

1.7 INCREMENTAL PROCESS MODEL

The incremental model combines elements of linear and parallel process
flows Referring to Figure 1.5, the incremental model applies linear
sequences in a staggered fashion as calendar time progresses. Each linear
sequence produces deliverable “increments” of the software. When an
incremental model is used, the first increment is often a core product. That
is, basic requirements are addressed but many supplementary features
(some known, others unknown) remain undelivered. The core product is
used by the customer (or undergoes detailed evaluation) As a result of use
and/or evaluation, a plan is developed for the next increment. The plan
addresses the modification of the core product to better meet the needs of
the customer and the delivery of additional features and functionality. This
process is repeated following the delivery of each increment, until the
complete product is produced. The incremental process model focuses on
the delivery of an operational product with each increment. Early
increments are stripped-down versions of the final product, but they do
provide capability that serves the user and also provide a platform for
evaluation by the user.

Software Engineering Advantages of incremental model

e This model is flexible because the cost of development is low and
initial product delivery is faster.

° It is easier to test and debug during the smaller iteration.

e The working software generates quickly and early during the software
life cycle.

e The customers can respond to its functionalities after every increment.
Disadvantages of the incremental model

) The cost of the final product may cross the cost estimated initially.
° This model requires very clear and complete planning.

e The planning of design is required before the whole system is broken
into small increments.

e The demands of customer for the additional functionalities after every
increment causes problem during the system architecture.

Analysis [™ Design [7] code |7} test Increment-1
Analysis |-+ Design || code || test Increment-2
Analysis | Design || code |1 test Increment-3

Incremental Model

Fig 1.5 Incremental Model

1.8 EVOLUTIONARY PROCESS MODELS

Evolutionary models are iterative type models. They allow to develop more
complete versions of the software. Following are the evolutionary process
models.

1. The prototyping model
2. The spiral model

3. Concurrent development model

10

1.8.1. The Prototyping model

Prototype is defined as the first or preliminary form using which
other forms are copied or derived.

Prototype model is a set of general objectives for software. It does not
identify the requirements like detailed input, output.

It is a software working model of limited functionality.In this model,
working programs are quickly produced.
Implement

Quick Build User Refining 2

Requirements
design P! Yp L ke Maintain

Figl.6 Prototyping Model

The different phases of Prototyping model are

Communication:

In this phase, developers and customers meet and discuss the overall
objectives of the software.

Quick design

Quick design is implemented when requirements are known.lIt
includes only the important aspects like input and output format of the
software.It focuses on those aspects which are visible to the user
rather than the detailed plan.It helps to construct a prototype.

Modeling quick design

This phase gives a clear idea about the development of software
because the software is now built.It allows the developer to better
understand the exact requirements.

Construction of prototype
The prototype is evaluated by the customer itself.
Deployment, delivery, feedback

If the user is not satisfied with the current prototype then it refines
according to the requirements of the user.The process of refining the
prototype is repeated until all the requirements of users are met. When
the users are satisfied with the developed prototype then the system is
developed on the basis of final prototype.

INTRODUCTION

11

Software Engineering Advantages of Prototyping Model:

Prototype models need not know the detailed input, output, processes,
adaptability of the operating system and full machine interaction.

In the development process of this model users are actively involved.

The development process is the best platform to understand the
system by the user.

Errors are detected much earlier.

Gives quick user feedback for better solutions.

It identifies the missing functionality easily.

It also identifies the confusing or difficult functions.

Disadvantages of Prototyping Model:

The client involvement is more and it is not always considered by the
developer.

It is a slow process because it takes more time for development.
Many changes can disturb the rhythm of the development team.
It is a thrown away prototype when the users are confused with it.

1.8.2. The Spiral model

Spiral model is arisk driven process model.It is used for generating software
projects.

In a spiral model, an alternate solution is provided if the risk is found in the
risk analysis, then alternate solutions are suggested and implemented.

It is a combination of prototype and sequential model or waterfall model.

In one iteration all activities are done, for large project's the output is small.

The framework activities of the spiral model are as shown in the following
figure.

12

Planning
Estimation
Scheduling
Risk analysis

Communication
Modeling

Analysis
Design

_ t¥/ Construction
ep oymen Code generation
Delivery Testing

Feedback

Fig. - The Spiral Model

NOTE: The description of the phases of the spiral model is same as that
of the process model.

Advantages of Spiral Model

° It reduces a high amount of risk.

° It is good for large and critical projects.

) It gives strong approval and documentation control.

) In the spiral model, the software is produced early in the life cycle
process.

Disadvantages of Spiral Model

) It can be costly to develop a software model.

° It is not used for small projects.

1.8.3. The concurrent development model

e The concurrent development model is called a concurrent model.

e The communication activity has completed in the first iteration and
exits in the awaiting changes state.

e The modeling activity completed its initial communication and then
went to the underdevelopment state.

) If the customer specifies the change in the requirement, then the
modeling activity moves from the under development state into the
awaiting change state.

e The concurrent process models activities moving from one state to

another state.
Advantages of the concurrent development model

e This model is applicable to all types of software development
processes.

° It is easy to understand and use.

° It gives immediate feedback from testing.

) It provides an accurate picture of the current state of a project.
Disadvantages of the concurrent development model

° It needs better communication between the team members.

° This may not be achieved all the time.

° It requires us to remember the status of the different activities.

INTRODUCTION

13

Software Engineering

14

1.8.4 Component Based Models

e Component based development is a software system development
methodology where the system is developed using reusable software
components. Component based development aims at improved
efficiency, performance and quality of the system by recycling
components.

) Commercial off-the-shelf (COTS) software components, developed
by vendors who offer them as products, provide targeted functionality
with well-defined interfaces that enable the component to be
integrated into the software that is to be built.

e The component-based development model incorporates many of the
characteristics of the spiral model.The component-based
development model incorporates the following steps (implemented
using an evolutionary approach):

1. Available component-based products are researched and evaluated
for the application domain in question.

2 Component integration issues are considered.

3. Asoftware architecture is designed to accommodate the components.
4. Components are integrated into the architecture.

5 Comprehensive testing is conducted to ensure proper functionality

1.9 UNIFIED PROCESS MODEL

The life of a software system can be represented as a series of cycles. A
cycle ends with the release of a version of the system to customers.Within
the Unified Process, each cycle contains Five phases. A phase is simply the
span of time between two major milestones, points at which managers
make important decisions about whether to proceed with development and,
if so, what's required concerning project scope, budget, and schedule.

Inception

The primary goal of the Inception phase is to establish the case for the
viability of the proposed system.

The tasks that a project team performs during Inception include the
following:

. Defining the scope of the system (that is, what's in and what's out)

. Outlining a candidate architecture, which is made up of initial
versions of six different models

. Identifying critical risks and determining when and how the project
will address them

. Starting to make the business case that the project is worth doing,
based on initial estimates of cost, effort, schedule, and product quality

Elaboration

The primary goal of the Elaboration phase is to establish the ability to
build the new system given the financial constraints, schedule constraints,
and other kinds of constraints that the development project faces.

The tasks that a project team performs during Elaboration include the
following:

o Capturing a healthy majority of the remaining functional
requirements

. Expanding the candidate architecture into a full architectural
baseline, which is an internal release of the system focused on
describing the architecture

. Addressing significant risks on an ongoing basis

. Finalizing the business case for the project and preparing a project
plan that contains sufficient detail to guide the next phase of the
project (Construction)

Construction

e The primary goal of the Construction phase is to build a system
capable of operating successfully in beta customer environments.

° During Construction, the project team performs tasks that involve
building the system iteratively and incrementally (see "Iterations and
Increments™ later in this chapter), making sure that the viability of the
system is always evident in executable form.

e The major milestone associated with the Construction phase is called
Initial Operational Capability. The project has reached this
milestone if a set of beta customers has a more or less fully operational
system in their hands.

Transition

e The primary goal of the Transition phase is to roll out the fully
functional system to customers.

) During Transition, the project team focuses on correcting defects and
modifying the system to correct previously unidentified problems.

e The major milestone associated with the Transition phase is called
Product Release.

Production

The production phase of the UP coincides with the deployment activity of
the generic process. During this phase, the ongoing use of the software is
monitored, support for the operating environment (infrastructure) is
provided, and defect reports and requests for changes are submitted and
evaluated.

INTRODUCTION

15

Software Engineering

16

1.10 AGILE DEVELOPMENT-AGILITY

Agility means effective (rapid and adaptive) response to change,
effective communication among all stockholders.

Drawing the customer onto a team and organizing a team so that it is
in control of work performed.

The agile process forces the development team to focus on software
itself rather than design and documentation.

The agile process believes in iterative methods.

The aim of agile process is to deliver the working model of software
quickly to the customer For example: Extreme programming is the
best known of agile process.

Agility can be applied to any software process. However, to
accomplish this, it is essential that the process be designed in a way
that allows the project team to adapt tasks and to streamline them,
conduct planning in a way that understands the fluidity of an agile
development approach, eliminate all but the most essential work
products and keep them lean, and emphasize an incremental delivery
strategy that gets working software to the customer as rapidly as
feasible for the product type and operational environment.

1.11 AGILE PROCESS

Any agile software process is characterized in a manner that addresses a
number of key assumptions about the majority of software projects:

1.

It is difficult to predict in advance which software requirements will
persist and which will change. It is equally difficult to predict how
customer priorities will change as the project proceeds.

For many types of software, design and construction are interleaved.
That is, both activities should be performed in tandem so that design
models are proven as they are created. It is difficult to predict how
much design is necessary before construction is used to prove the
design.

Analysis, design, construction, and testing are not as predictable
(from a planning point of view) as we might like.

Agility Principles

Agility principles for those who want to achieve agility:

1.

2.

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout
the project.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

Human Factors

If members of the software team are to drive the characteristics of the
process that is applied to build software, a number of key traits must
exist among the people on an agile team and the team itself

Competence:“competence” encompasses innate talent, specific
software-related skills, and overall knowledge of the process that the
team has chosen to apply.

Common focus:All team members should be focused on one goal—
to deliver a working software increment to the customer within the
time promised.

Collaboration: Software engineering (regardless of process) is about
assessing, analyzing, and using information that is communicated to
the software team; creating information that will help all stakeholders
understand the work of the team; and building information (computer
software and relevant databases) that provides business value for the
customer. To accomplish these tasks, team members must
collaborate—with one another and all other stakeholders.

Decision-making ability.:The team is given autonomy—decision-
making authority for both technical and project issues.

Fuzzy problem-solving ability. Software managers must recognize
that the agile team will continually have to deal with ambiguity and
will continually be buffeted by change.

Self-organization:In the context of agile development, self-
organization implies three things: (1) the agile team organizes itself
for the work to be done, (2) the team organizes the process to best
accommodate its local environment, (3) the team organizes the work
schedule to best achieve delivery of the software increment.

INTRODUCTION

17

Software Engineering

18

1.12 EXTREME PROGRAMMING

° Extreme programming uses an object-oriented approach as its
preferred development paradigm.

° Extreme programming encompasses a set of rules and practices that
occur within the context of four framework activities: planning,
design, coding, and testing.

simple design spike solutions
CRC cords profofypes
3 £ poir programming
project velocity computed conhinuous integration
51.'.'9:‘:"1.'“(8 testing
Fig. Extreme Programming Process

1. Planning:

e The planning activity begins with the creation of a set of stories that
describe required features and functionality for software to be built.

° Each story is written by the customer and is placed on an index card.
The customer assigns a value to the story based on the overall business
value of the feature of function.

) Members of the XP (Extreme Programming) team then assess each
story and assign a cost — measured in development weeks — to it.

° If the story will require more than three development weeks, the
customer is asked to split the story into smaller stories, and the
assignment of value and cost occurs again.

° Customers and the XP team work together to decide how to group
stories into the next release to be developed by the XP team.

e Once a basic commitment is made for a release, the XP team orders

the stories that will be developed in one of three ways:
1. All stories will be implemented immediately.

2. The stories with highest value will be moved up in the schedule
and implemented first.

3. The riskiest stories will be moved up in the schedule and
implemented first.

w

SN

As development work proceeds, the customer can add stories, change INTRODUCTION
the value of an existing story, split stories or eliminate them.

The XP team then reconsiders all remaining releases and modifies its
plan accordingly.

. Design :

XP design follows the KIS (Keep It Simple) principle. A simple
design is always preferred over a more complex representation.

The design provides implementation guidance for a story as it is
written — nothing less, nothing more.

XP encourages the use of CRC (Class Responsibility Collaborator)
cards as an effective mechanism for thinking about the software in an
object oriented context.

CRC cards identify and organize the object oriented classes that are
relevant to current software increment.

The CRC cards are the only design work product produced as a part
of XP process.

If a difficult design is encountered as a part of the design of a story,
XP recommends the immediate creation of that portion of the design
called a ‘spike solution’.

XP encourages refactoring — a construction technique.
. Coding

XP recommends that after stories are developed and preliminary
design work is done, the team should not move to cord, but rather
develop a series of unit test that will exercise each story.

Once the unit test has been created, the developer is better able to
focus on what must be implemented to pass the unit test.

Once the code completes, it can be unit tested immediately, thereby
providing instantaneous feedback to the developer.

A key concept during the coding activity is pair programming. XP
recommends that two people work together at one computer
workstation to create code for a story. This provides a mechanism for
real time problem solving and real time quality assurance.

As pair programmers complete their work, the code they developed is
integrated with the work of others.

This continuous integration strategy helps to avoid compatibility and
interfacing problems and provides a smoke testing environment that
helps to uncover errors early.

. Testing :
The creation of unit tests before coding is the key element of the XP
approach.

The unit tests that are created should be implemented using a
framework that enables them to be automated. This encourages
regression testing strategy whenever code is modified.

Individual unit tests are organized into a “Universal Testing Suit”, 19

Software Engineering

20

integration and validation testing of the system can occur on a daily
basis. This provides the XP team with a continual indication of
progress and also can raise warning flags early if things are going
away.

° XP acceptance tests, also called customer tests, are specified by the
customer and focus on the overall system feature and functionality
that are visible and reviewable by the customer.

LET US SUM UP

This chapter provides a clear Software . It covers different models used in
software engineering. It also presents different unified process phases.The
Second half of the chapter focuses on Agile Development.The chapter
concludes with a clear overview of Extreme programming.

QUESTIONS

1.What are the nature of software.Explain

2.Explain the term “software doesn't wear out”

3.Explain Software Engineering

4.Explain Software Process

5.What are the umbrella activities involved in software process
6.Explain generic process

7.Explain waterfall Model

8.Explain Incremental Model,Iterative Model,prototyping Model
9.Explain Unified Process Model

10.what are Agility Principles?

11.Explain Extreme Programming.

REFERENCES:

e https://technostacks.com/blog/types-of-application-software/
e http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf

e https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%
20process%20structure%20and%20model-doc.pdf

e https://www.informit.com/articles/article.aspx?p=24671&seqNum=7

e https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-
engineeri-1/

® Roger S.,Pressman,ed.(2010)Software Engineering: A Practitioner’s
Approach.McGraw-Hill Companies.

ke o o ke o e ke

https://technostacks.com/blog/types-of-application-software/
http://stg-tud.github.io/sedc/Lecture/ws16-17/6-SPL.pdf
https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%20process%20structure%20and%20model-doc.pdf
https://edscl.in/pluginfile.php/1659/mod_resource/content/1/Software%20process%20structure%20and%20model-doc.pdf
https://www.informit.com/articles/article.aspx?p=24671&seqNum=7
https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-engineeri-1/
https://www.ques10.com/p/8333/what-is-agility-in-context-of-software-engineeri-1/

REQUIREMENT ANALYSIS AND
SYSTEM MODELING

Unit Structure :

2.0 Objectives

2.1 Introduction

2.2 Requirements Engineering
2.3 Eliciting Requirements
2.4 SRS Validation

2.5 Components of 15L SRS
2.6 Characteristics of SRS
2.7 Object-oriented design using the UML - Class diagram
2.8 Object diagram

2.9 Use case diagram

2.10 Sequence diagram
2.11Collaboration diagram
2.12 State chart diagram
2.13 Activity diagram

2.14 Component diagram
2.15 Deployment diagram
Let us Sum Up

List of References
Bibliography

Unit End Exercises

2.0 OBJECTIVES

After going through this chapter, you will be able to:

e Requirement Engineering
° SRS
) UML in software Engineering

2.1 INTRODUCTION

The intent of requirements engineering is to provide all parties with a
written understanding of the problem. This can be achieved through a
number of work products: usage scenarios, functions and features lists,
requirements models, or a specification.

21

Software Engineering

22

2.2 REQUIREMENTS ENGINEERING

Requirements engineering refers to the wide range of jobs and methods that
help one understand requirements. Requirements engineering is a
significant software engineering activity that starts during the
communication activity and continues through the modeling activity from
the standpoint of the software process. It needs to be modified to meet the
requirements of the work being done, the project, the product, and the
process.It encompasses seven distinct tasks: inception, elicitation,
elaboration, negotiation, specification, validation, and management.

Inception:

Stakeholders from the business community (e.g., business managers,
marketing people, product managers) define a business case for the idea, try
to identify the breadth and depth of the market, do a rough feasibility
analysis, and identify a working description of the project’s scope.

Elicitation.:

Ask the customer, the users, and others what the objectives for the system
or product are, what is to be accomplished, how the system or product fits
into the needs of the business, and finally, how the system or product is to
be used on a day-to-day basis.

Elaboration:

The information obtained from the customer during inception and
elicitation is expanded and refined during elaboration.Elaboration is driven
by the creation and refinement of user scenarios that describe how the end
user (and other actor)will interact with the system.

Negotiation:

It isn’t unusual for customers and users to ask for more than can be
achieved, given limited business resources.These conflicts can be
reconciled through a process of negotiation.Customers, users, and other
stakeholders are asked to rank requirements and then discuss conflicts in
priority. Using an iterative approach that prioritizes requirements, assesses
their cost and risk, and addresses internal conflicts, requirements are
eliminated, combined, and/or modified so that each party achieves some
measure of satisfaction.

Specification:

In the context of computer-based systems (and software), the term
specification means different things to different people. A specification can
be a written document, a set of graphical models, a formal mathematical
model, a collection of usage scenarios, a prototype, or any combination of
these.

Validation: The work products produced as a consequence of requirements
engineering are assessed for quality during a validation step. Requirements

validation examines the specification to ensure that all software
requirements have been stated unambiguously; that inconsistencies,
omissions, and errors have been detected and corrected; and that the work
products conform to the standards established for the process, the project,
and the product.

Requirements management:

Requirements management is a set of activities that help the project team
identify, control, and track requirements and changes to requirements at any
time as the project proceeds.

functions and features lists, requirements models, or a specification.

2.3 ELICITING REQUIREMENTS

Requirements elicitation (also called requirements gathering) combines
elements of problem solving, elaboration, negotiation, and specification.

1. Collaborative requirements gathering

° Gathering the requirements by conducting the meetings between
developer and customer.

° Fix the rules for preparation and participation.

e The main motive is to identify the problem, give the solutions for the
elements, negotiate the different approaches and specify the primary
set of solution requirements in an environment which is valuable for
achieving the goal.

N

. Quality Function Deployment (QFD)

° In this technique, translate the customer need into the technical
requirement for the software.

e The QFD system designs software according to the demands of the
customer.

QFD consist of three types of requirement:
Normal requirements

° The objective and goal are stated for the system through the meetings
with the customer.

° For customer satisfaction these requirements should be there.
Expected requirement
° These requirements are implicit.

e These are the basic requirements that are not clearly told by the
customer, but also the customer expects that requirement.

Requirement Analysis
and System Modeling

23

Software Engineering

24

Exciting requirements
e These features are beyond the expectation of the customer.

e The developer adds some additional features or unexpected features
into the software to make the customer more satisfied.
For example, the mobile phone with standard features, but the
developer adds few additional functionalities like voice searching,
multi-touch screen etc. then the customer is more excited about that
feature.

w

. Usage scenarios

° Until the software team does not understand how the features and
function are used by the end users it is difficult to move technical
activities.

e To achieve the above problem the software team produces a set of
structures that identify the usage for the software.

° This structure is called 'Use Cases'.
4. Elicitation work product

e The work product created as a result of requirement elicitation that is
depending on the size of the system or product to be built.

e The work product consists of a statement need, feasibility, statement
scope for the system.

° It also consists of a list of users participate in the requirement
elicitation.

2.4 SRS VALIDATION

A software requirements specification (SRS) is a document that is created
when a detailed description of all aspects of the software to be built must be
specified before the project is to commence. It is important to note that a
formal SRS is not always written. In fact, there are many instances in which
effort expended on an SRS might be better spent in other software
engineering activities. However, when software is to be developed by a third
party, when a lack of specification would create severe business issues, or
when a system is extremely complex or business critical, an SRS may be
justified. The work products created as a result of requirements engineering
are checked for consistency, omissions, and ambiguity during the validation
process. The main goal is to guarantee that the SRS correctly and clearly
represents the real needs.

Requirements validation is similar to requirements analysis as both
processes review the gathered requirements. Requirements validation
studies the ‘final draft’ of the requirements document while requirements
analysis studies the ‘raw requirements’ from the system stakeholders

(users). Requirements validation and requirements analysis can be
summarized as follows:

Requirements validation: Have we got the requirements right?
Requirements analysis: Have we got the right requirements?

Requirements validation determines whether the requirements are
substantial to design the system. The problems encountered during
requirements validation are listed below.

° Unclear stated requirements

e Conflicting requirements are not detected during requirements
analysis

e Errors in the requirements elicitation and analysis
) Lack of conformance to quality standards.

To avoid the problems stated above, a requirements review is conducted,
which consists of a review team that performs a systematic analysis of the
requirements.

Requirements Validation Checklist

It is often useful to examine each requirement against a set of checklist
questions

e Are requirements stated clearly? Can they be misinterpreted?

e |s the source (e.g., a person, a regulation, a document) of the
requirement identified? Has the final statement of the requirement been
examined by or against the original source?

® |s the requirement bounded in quantitative terms?

e What other requirements relate to this requirement? Are they clearly
noted via a cross-reference matrix or other mechanism?

e Does the requirement violate any system domain constraints?

¢ |stherequirement testable? If so, can we specify tests (sometimes called
validation criteria) to exercise the requirement?

e |sthe requirement traceable to any system model that has been created?

e |sthe requirement traceable to overall system/product objectives?

e s the specification structured in a way that leads to easy understanding,
easy reference, and easy translation into more technical work products?

e Has an index for the specification been created?

e Have requirements associated with performance, behavior, and
operational characteristics been clearly stated? What requirements
appear to be implicit?

Requirement Analysis
and System Modeling

25

Software Engineering

26

2.4 COMPONENTS OF SRS

SRS should have these components

1.

Functional Requirements

Functional requirements specify what output should be produced
from the given inputs. So they basically describe the connectivity
between the input and output of the system. For each functional
requirement:

1. Adetailed description of all the data inputs and their sources,
the units of measure, and the range of valid inputs be specified:

2. All the operations to be performed on the input data obtain
the output should be specified, and

3. Care must be taken not to specify any algorithms that are not
parts of the system but that may be needed to implement the
system.

4. It must clearly state what the system should do if system
behaves abnormally when any invalid input is given or due to
some error during computation. Specifically, it should specify
the behavior of the system for invalid inputs and invalid outputs.

Performance Requirements (Speed Requirements)

This part of an SRS specifies the performance constraints on the
software system. All the requirements related to the performance
characteristics of the system must be clearly specified. Performance
requirements are typically expressed as processed transactions per
second or response time from the system for a user event or screen
refresh time or a combination of these. It is a good idea to pin down
performance requirements for the most used or critical transactions,
user events and screens.

Design Constraints

The client environment may restrict the designer to include some
design constraints that must be followed. The various design
constraints are standard compliance, resource limits, operating
environment, reliability and security requirements and policies that
may have an impact on the design of the system. An SRS should
identify and specify all such constraints.

Standard Compliance: It specifies the requirements for the standard
the system must follow. The standards may include the report format
and according procedures.

Hardware Limitations: The software needs some existing or
predetermined hardware to operate, thus imposing restrictions on the

design. Hardware limitations can include the types of machines to be
used, operating system availability, memory space etc.

Fault Tolerance: Fault tolerance requirements can place a major
constraint on how the system is to be designed. Fault tolerance
requirements often make the system more complex and expensive, so
they should be minimized.

Security: Currently security requirements have become essential and
major for all types of systems. Security requirements place
restrictions on the use of certain commands, control access to
databases, provide different kinds of access, requirements for
different people, require the use of passwords and cryptography
techniques, and maintain a log of activities in the system.

External Interface Requirements
For each external interface requirements:

All the possible interactions of the software with people hardware and
other software should be clearly specified,

The characteristics of each user interface of the software product
should be specified and

The SRS should specify the logical characteristics of each interface
between the software product and the hardware components for
hardware interfacing.

2.5 CHARACTERISTICS OF SRS

Following are the Characteristics of a good SRS document:

1.

Correctness: User review is used to provide the accuracy of
requirements stated in the SRS. SRS is said to be perfect if it covers
all the needs that are truly expected from the system.

Complete: software system will perform each and every function as
per the SRS.A SRS is complete if everything the software is supposed
to do and the responses of the software to all classes of input data are
specified in SRS.To ensure completeness, one has to detect the
absence of specification which is much harder to determine.

Consistency: Requirements at all levels must be consistent with each
other .any conflict between requirements within the SRS must be
identified and resolved. The types of conflicts that generally occur
are: For example, The format of an output report may be described in
one requirement as tabular but in another as textual.

Clarity: The documented requirement should lead to only a single
interpretation, independent of the person or the time when the
interpretation is done. The SRS needs to be unambiguous to the
authors, the users, other reviewers as well as the developers and
testers who will use the document. So SRS writers should be careful
about ambiguity.

Requirement Analysis
and System Modeling

27

Software Engineering

28

Ranking : Generally, the requirements stated according to their
priorities are critical, others are important but not critical, and there
are some which are desirable but not very important.

Modifiability: SRS should be made as modifiable as likely and
should be capable of quickly obtaining changes to the system to some
extent.

Traceability: The SRS is traceable if the origin of each of the
requirements is clear and if it facilitates the referencing of each
condition in future development or enhancement documentation.

There are two types of Traceability:

1.

Backward Traceability: This depends upon each requirement
explicitly referencing its source in earlier documents.

Forward Traceability: This depends upon each element in the SRS
having a unique name or reference number.The forward traceability
of the SRS is especially crucial when the software product enters the
operation and maintenance phase. As code and design documents are
modified, it is necessary to be able to ascertain the complete set of
requirements that may be concerned by those modifications.

Testability: An SRS should be written in such a method that it is
simple to generate test cases and test plans from the report.

2.6 OBJECT-ORIENTED DESIGN USING THE UML

Object Oriented Design (OOD) is the process of defining the objects and
their interactions to solve a problem that was identified and documented
during the Object Oriented Analysis (OOA). OOD is a design model that is
considered as a blueprint for software construction.

The general steps that a software engineer should take to execute
object-oriented design are as follows:

1.
2.

Identify each subsystem and assign responsibilities to it.

Select a design approach for putting task management, interface
support, and data management into practice.

Create a system-appropriate control mechanism.

Create procedural representations for each action and data structures
for class attributes to do object design.

Perform message design using collaborations between objects and
object relationships.

Create the messaging model
Examine the design model and iterate as necessary

UML

The Unified Modelling Language, or the UML, is a graphical modeling
language that provides us with a syntax for describing the major elements
(called artifacts in the UML) of software systems.UML has a lot of different
diagrams (models). The reason for this is that it is possible to look at a
system from different viewpoints. UML being a graphical language
includes nine such diagram models):

e Class diagram

° Object diagram

° Use case diagram

° Sequence diagram

° Collaboration diagram
e Statechart diagram

° Activity diagram

e Component diagram

° Deployment diagram

2.6.1 Class Diagram

In software engineering, a class diagram in the Unified Modeling Language
(UML) is a type of static structure diagram that describes the structure of a
system by showing the system's classes, their attributes, operations (or
methods), and the relationships among objects.A class represent a concept
which encapsulates state (attributes) and behavior (operations). Each
attribute has a type. Each operation has a signature. The class name is the
only mandatory information.

Class Notation

A class notation consists of three parts:

1. Class Name

o The name of the class appears in the first partition.
2. Class Attributes

o Attributes are shown in the second partition.

o The attribute type is shown after the colon.

o Attributes map onto member variables (data members) in code.
3. Class Operations (Methods)

o Operations are shown in the third partition. They are services
the class provides.

Requirement Analysis
and System Modeling

29

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

Software Engineering °

The return type of a method is shown after the colon at the end
of the method signature.

The return type of method parameters is shown after the colon
following the parameter name.

Operations map onto class methods in code

The +, - and # symbols before an attribute and operation name
in a class denote the visibility of the attribute and operation.

Public Attribute

! MyClas sName
+attribute : int

Private Aftribute = =—»{atiribute2 : float
#Hattributed : Circle

y, +0p1{in p1 : boolean, in p2): String
Protected Atfributes [abantoeraeies

2.6.2 Object Diagram

Object is an instance of a class in a particular moment in runtime that can
have its own state and data values.Before creating a class diagram, their
might need to create an object diagram to discover facts about specific
model elements and their links.They are useful to explain smaller portions
of your system, when your system class diagram is very complex, and also
sometimes modeling recursive relationship in diagram.

Super closs
|
Y
Customer Order ¢ Cuslomer
Lame : Sting date Date
ocation : sing . -numer : Sting
endOnter) confimi)
Weceive0rde] Wohse)
Generalization = = = -p[ﬁ 01.0rdr 01,0 03:0rtur
ﬂ b= 12 umber= 61 e 8
NormalOrder SpacalOrdor
dalo: Dalo gale: Dato
number g | |-number: Sting -
Sub closs = = * feymi | i) ipoloe | | Suipclr || SSpoilde
+thse) Hciosel) nurher= 43 numoer= 50 nurher= 17
Hdpalch) Hdpath)
aceie)

30

Fig 2.6.2 Class Diagram

Object Diagram

Every object is actually symbolized like a rectangle, that offers the
name from the object and its class underlined as well as divided with
a colon.

Similar to classes, a list of object attributes inside a separate
compartment can be listed. However, unlike classes, object attributes
should have values assigned for them.

2.6.3. Use Case Diagram

A use case diagram can summarize the details of your system's users
(also known as actors) and their interactions with the system.

use case diagrams are ideal for:

o Representing the goals of system-user interactions

o Defining and organizing functional requirements in a system
o Specifying the context and requirements of a system

o Modeling the basic flow of events in a use case

The Common components of use case diagram include:

Actors: The users that interact with a system. An actor can be a
person, an organization, or an outside system that interacts with your
application or system. They must be external objects that produce or
consume data.

System: A specific sequence of actions and interactions between
actors and the system. A system may also be referred to as a scenario.

Goals: The end result of most use cases. A successful diagram should
describe the activities and variants used to reach the goal.

usccasc

Actor

Figure : Basic Notation of a Use Case Diagram

Requirement Analysis
and System Modeling

31

Software Engineering

32

2.6.4 Sequence Diagram

The sequence diagram is used primarily to show the interactions between
objects in the sequential order that those interactions occur. One of the
primary uses of sequence diagrams is in the transition from requirements
expressed as use cases to the next and more formal level of
refinement.Sequence Diagrams are driven by the Use Cases which are the
system requirements. In this form objects are shown as vertical lines with
the messages as horizontal lines between them. The sequence of messages
is indicated by reading down the page (read left to right and descending).
Sequence Diagrams are about deciding and modeling "how" the system will
achieve "what" we described in the Use Case model.

Example of a "Make a Cup of Tea" sequence diagram generated from its
corresponding use case description is as shown in Figure below.

Make a Cup Of Tea
FEE oA Kettle Cup
Description Maker
[Hieke s Fill With Water

CupefTea

Fill Kettle =
Turn ON Kettle I
Turn On

Put Tea BAg in Cup
Pu Sugar and Milk into Cup
etc etc Add Tea Bag -

—_—

Add Milk and Sugar [_]

Figure: A Sequence Diagram for "Make a Cup of Tea" Use Case

2.6.5. Collaboration diagram

Communication diagrams, formerly known as collaboration diagrams, are
almost identical to sequence diagrams in UML, but they focus more on the
relationships of objects—how they associate and connect through messages
in a sequence rather than interactions.A communication diagram offers the
same information as a sequence diagram, but while a sequence diagram
emphasizes the time and order of events, a communication diagram
emphasizes the messages exchanged between objects in an application.

Symbols and notations of communication diagrams

) Rectangles represent objects that make up the application.

° Lines between class instances represent the relationships between
different parts of the application.

e Arrows represent the messages that are sent between objects.

e Numbering lets you know in what order the messages are sent and
how many messages are required to finish a process.

https://www.lucidchart.com/pages/uml-sequence-diagram

~Assistant

4: gcl(tnly
/

return{(book)

Jdibrarian \3 look up(title)
1 bookRe(l"eﬂT 1%?;\ index
(title) .
¢ 6:return(book)
lender

Figure: Example of a Collaboration Diagram

2.6.6 State Chart Diagram

A state diagram depicts how classes behave in response to external inputs.
A state diagram, in particular, illustrates the behavior of a single item in
response to a series of events in a system. It is sometimes referred to as a
Harel state chart or a state machine diagram. This UML diagram depicts the
dynamic flow of control from one state to the next of a specific item inside
a system.

Notation of a State Machine Diagram

. Initial state

State
[] State-box

Decision-box

© Final State

e State:States represent situations during the life of an object.

e Transition:A solid arrow represents the path between different states
of an object. Label the transition with the event that triggered it and
the action that results from it. A state can have a transition that points
back to itself.

) Decision:It is of diamond shape that represents the decisions to be
made on the basis of an evaluated guard.

Requirement Analysis
and System Modeling

33

Software Engineering ° Initial State:A filled circle followed by an arrow represents the
object's initial state.

° Final State:An arrow pointing to a filled circle nested inside another
circle represents the object's final state.

Fig 2.6.6 State Chart Diagram

Full
Fibsadd (Full Power ™\
[Do:Set Power |
Waiting ™\
‘—’ Do: Displa:
m Y Operation
Do: Operate |
Oen_/
Half / \
Power | Cancel
\ \\LL
g:g 7/~ Waiting
Do: Set Power Do: Display
=300 !’ur]le
e '
Door Closed
/| P
®

[Disabled
: Do: Display |
Waiting'

2.6.7 Activity Diagram

A UML activity diagram depicts the dynamic behavior of a system or part
of a system through the flow of control between actions that the system
performs. It is similar to a flowchart except that an activity diagram can
show concurrent flows.

e The main component of an activity diagram is an action node,
represented by a rounded rectangle.

° Arrows from one action node to another indicate the flow of control.

e A solid black dot forms the initial node that indicates the starting
point of the activity.

° A black dot surrounded by a black circle is the final node
indicating the end of the activity.

e A fork represents the separation of activities into two or more
concurrent activities. It is drawn as a horizontal black bar with one
arrow pointing to it and two or more arrows pointing out from it

34

Requirement Analysis
and System Modeling

-

Mix dry Mix wet
ingredients ingradients

ﬁ.,f -

(et dene)

(dane)
Remove from oven

The purpose of a component diagram is to show the relationship between
different components in a system.The term "component™ refers to a module
of classes that represent independent systems or subsystems with the ability
to interface with the rest of the system.A component diagram is similar to
the package diagram. It works in the same way as the package diagram,
showing the organizations and dependencies among a set of components.
Component diagrams address the static implementation view of a system.
Component diagrams emphasize the physical software entity e.g. files
headers, executables, link-libraries etc, rather than the logical partitioning
of the package diagram. It is based heavily on the package diagram, but has
added ".dll" to handle I/O, and has added a test harness executable. Not
heavily used, but can be 188 helpful in mapping the physical, real life
software code and dependencies between them. Figure 2.8 shows a symbol
used for a software component.

Fig 2.6.7 Activity Diagram

2.6.8 Component Diagram

Package

Attributes

Component Diagram Node Symbol Package Symbol

35

Software Engineering

36

2.6.9 Deployment Diagram

In UML, deployment diagrams model the physical architecture of a system.
Deployment diagrams show the relationships between the software and
hardware components in the system and the physical distribution of the
processing.Deployment diagrams, which you typically prepare during the
implementation phase of development, show the physical arrangement of
the nodes in a distributed system, the artifacts that are stored on each node,
and the components and other elements that the artifacts implement. Nodes
represent hardware devices such as computers, sensors, and printers, as well
as other devices that support the runtime environment of a system.
Communication paths and deploy relationships model the connections in
the system.

Deployment diagrams are effective for visualizing, specifying, and
documenting the following types of systems:

° Embedded systems that use hardware that is controlled by external
stimuli; for example, a display that is controlled by temperature
change

° Client/server systems that typically distinguish between the user
interface and the persistent data of a system

° Distributed systems that have multiple servers and can host multiple
versions of software artifacts, some of which might even migrate from
node to node.

LET US SUM UP

This chapter provides understanding about requirement engineering.It
covers about SRS and its validation .The Second half of the chapter focuses
on different diagrams available as part of UML which provide a rich set of
representational forms for the design model.

QUESTIONS

Explain different tasks in Requirement Engineering.
Describe Eliciting requirements.

Explain SRS and its Validation

What are the components of SRS?Explain it

What are the characteristics of SRS

Explain Class diagram

Explain Object diagram

© N o o ~ w hoE

Explain Use case diagram

9. Explain Sequence diagram Requirement Analysis
and System Modeling

10. Explain Collaboration diagram

11. Explain Statechart diagram

12. Explain Activity diagram

13. Explain Component diagram

14. Explain Deployment diagram

REFERENCES:

e https://www.tutorialride.com/software-engineering/software-
requirements-
engineering.htm#:~:text=Collaborative%Z20requirements%?20gather
ing&text=Fix%20the%20rules%20for%20preparation,is%20valuab
1e%20for%20achieving%20goal.

) https://www.tutorsglobe.com/homework-help/software-
engineering/components-of-the-srs-7746.aspx

° https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/uml-class-diagram-tutorial/

° https://developer.ibm.com/articles/the-sequence-diagram/

° https://www.lucidchart.com/pages/uml-sequence-diagram

° https://www.lucidchart.com/pages/uml-communication-diagram

o e e ke e e ke

37

https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorialride.com/software-engineering/software-requirements-engineering.htm#:~:text=Collaborative%20requirements%20gathering&text=Fix%20the%20rules%20for%20preparation,is%20valuable%20for%20achieving%20goal
https://www.tutorsglobe.com/homework-help/software-engineering/components-of-the-srs-7746.aspx
https://www.tutorsglobe.com/homework-help/software-engineering/components-of-the-srs-7746.aspx
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://developer.ibm.com/articles/the-sequence-diagram/
https://www.lucidchart.com/pages/uml-sequence-diagram

Software Engineering

38

SYSTEM DESIGN

Unit Structure :
3.0 Objectives
3.1 Introduction

3.2 System/Software Design

3.3 Architectural Design

3.4 Coupling
3.5 Cohesion
3.6 Functional-Oriented Versus the Object-Oriented Approach

3.7 Design Specifications

3.8 Verification for Design

3.9 Monitoring and Control for Design

Summary

List of References

Unit End Exercises

3.0 OBJECTIVES

The objectives of this chapter consist of:

Understanding the open-closed principle, connection, coherence, and
modularity design principles

Getting familiar with function-oriented system's structure using the
structure chart notation and the structured design process used to
create the system's structure chart

Fundamentals and process of object-orientation design for a system

Understanding the guidelines for creating thorough designs, methods
for confirming designs, and measures for measuring design
complexity

comprehend the significance of software architecture

understand the choices that need to be taken during the architectural
design process regarding the system architecture

to learned about architectural patterns, tried-and-true methods of
structuring system architectures that can be used to system designs

3.1 INTRODUCTION

When the architecture and document illustrating project has been created
that needs to produced is presented, the design process may start. We further

enhance the architecture during design. Design is typically concentrated on
what we have dubbed the module perspective. That is, we decide which
modules need to be developed and which ones the system should have
during the design phase. Often, the module view can be thought of as the
architecture's individual components organized into modules. Here, the
framework establishes component's development architecture. This
straightforward component to module mapping, nevertheless, might not
always be accurate. In that instance, it is imperative that we make sure the
module view we produced during design adheres to the architecture.

A system's design is simply a blueprint or strategy for resolving a problem
with the system. Here, a system is viewed as a collection of elements that
communicate with one another to provide a particular behaviour or set of
services for its environment.

There are typically two levels to the architecture development process.
Choosing required elements, their parameters, and how they should be
connected are the main concerns at the initial level. This is what is referred
to as the high-level or module design. The intramural module architecture
and how the requirements can be satisfied is decided at the second stage. To
make the system design sufficiently complete for coding, framework
incorporated detailing architecture. A methodology is a methodical process
that involves using a set of techniques and principles to create a design.
While most design approaches concentrate on architecture, they don’t boil
down the process to set of instructions the designer may follow without
thinking.

3.2 SYSTEM/SOFTWARE DESIGN

If a system constructed exactly in accordance with the specification meet
needs of that model, the architecture of that system is correct. Producing
accurate designs is undoubtedly the aim of the design process. There can be
several accurate designs, thus accuracy is not the only factor considered
throughout the design phase. Not just creating a model architecture is the
objective. Instead, it aims at coming up with the greatest design you can
while staying within the constraints set through specifications.

We must define some evaluation criteria before we can assess a design. We
shall concentrate on a system's modularity, determined by architecture, as
primary requirement for analysis. It is obvious that modularity is a desired
quality. System debugging is facilitated by modularity because it makes it
simpler to isolate a system issue to a specific module. Modularity also
facilitates system repair since replacing a component of the system only
impacts a small number of other components.

Simply dividing a software system into a number of modules won't make it
modular. Each module must have a clearly illustrated set of rules and
specifications & a transparent alliance for communication with different
entities in order to be considered modular. Two modularization criteria that
are frequently employed together are coupling and cohesion.

System Design

39

Software Engineering

40

3.3 ARCHITECTURAL DESIGN

Understanding how a system should be structured and creating that system's
general structure are both aspects of architectural design. The architectural
design level of the s/w architecture process is first one in the system
evolution procedure. It determines primary entities of a model& their
connections, requirements engineering serves as the important connectivity
between architecture and engineering needs.

It is widely acknowledged that in agile processes, the establishment of a
generic system architecture should take place early in the development
process. Architectural progress that takes place incrementally rarely works.
Restructuring design is costly, whereas refactoring components in reaction
to changes typically rather simple.

To understand the concept, consider about Figure 1. The components that
need to be built are shown in an abstract model of the architecture for a
packing robot system. This robotic system is capable of packing a variety
of objects. It picks out items on a conveyor, determines the kind of item,
and chooses the appropriate packing all using a vision component. After
that, the system transports items off of the delivery belt for packaging. It
loads packaged goods onto a different conveyor. These elements and the
connections between them are displayed in the architectural model.

Vision
Systemn
O'?I.E[t_ Arm Gripper
Identification p———=
Controller Controller
Systemn
[
Packaging
Selection
Systemn
A
i
)
Packing - Conveyor
System = Controller

Figure 1: The architecture of a packing robot control system

Architectural design and requirements engineering procedures frequently
overlap one another in practise. A system specification should ideally not
contain any design data. With the exception of very small systems, this is

unrealistic. The specification must typically be organised and structured
using architectural decomposition. As a result, you might suggest an
abstract system architecture where link collections of system features or
functions to substantial parts or subsystems is established. The system's
requirements and features can then be discussed with stakeholders using this
breakdown.

There are two degrees of abstraction available when designing software
architectures:

1] Small-scale architecture focusses on design of specific projects. Here
interested lies in how a programme is broken down into its component
parts.

2] Architecture, in its broadest sense, refers to the design of intricate
module incorporating different sub modules, programmes &
programme elements. This corporate model dispersed across
numerous computers, some of which may be owned and operated by
various businesses.

3.4 COUPLING

If one module can run entirely on its own without the other, they are said to
be independent. It goes without saying that if two modules are independent,
they can be solved and modified independently. The modules of a system
must interact with one another in order to achieve the desired outward
behaviour of the system, hence they cannot all be independent of one
another. The more linkages there are between modules, the more
interdependent they are in that it takes a deeper understanding of one
module to comprehend or address the problem in the other. Therefore, it is
simpler to understand one module without understanding the other links
between them. The concept of coupling makes an attempt to express this
idea of "how strongly" certain modules are related.

The degree of linkages or the degree of interdependence between modules
is referred to as coupling. In general, A and B are more tightly related the
more information we need to grasp module A before we can fully
comprehend module B. While "loosely coupled” have frail connectivity,
"highly coupled” are connected by strong interconnections. There are no
linkages between independent components. The s/w modules are developed
during architectural formulation, therefore connection across them is
primarily determined at that time and cannot be lessened during
implementation.

The more complicated and obscure the interface between modules, the more
coupling there is. The number of alliances should be kept to a minimum in
order to maintain low coupling. Information is passed to and from other
modules through a module's interface.

Another element affecting coupling is interface complexity. The degree of
coupling will be larger the more intricate each interaction is. For instance,
both the quantity and complexity of the items supplied as parameters affect

System Design

41

Software Engineering

42

how complicated the entry interface for a procedure is. Interface complexity
must support the necessary communication between modules to some
extent. However, this minimum is frequently exceeded. We are
unnecessarily increasing the coupling by breaking the record. Basically, we
should keep a module's interface as straightforward and condensed as
possible.

The third key element influencing coupling is the data workflow process at
the alliances. Data and control are the two types of information that can
travel via an interface. It is more challenging to comprehend & offer when
control is passed or received. A module transfers data information when it
provides some data as input & receives some as o/p. Table 1 summarises
how these three elements affect coupling.

Table 1: Parameters influencing coupling

Interface Type of Type of
Complexity Connection Communication

Low Simple To module Data
obvious by name

Control
High Complicated To internal

obscure elements Hybrid

Due to fact that objects have a greater semantic richness than functions,
coupling takes on a slightly different appearance in OO systems. They are
of three types:

— Interaction
— Component
— Inheritance

Methods of one class calling methods of another cause’s interaction
coupling. This circumstance resembles a function calling another function
in many respects, and as a result, this coupling resembles coupling between
functional modules. Within this group, coupling is smaller when only data
is sent, but it increases when data flows since the invoked type affects how
calling function is executed. Additionally, coupling increases as data
transmission volume rises.

When two classes communicate and one class contains variables from the
other class, this is referred to as component coupling. There are three
distinct circumstances in which this may occur. If a class C has an instance
variable of type C1, a method with a parameter of type C1, a method with a
local variable of type C1, or all three, the class C can be a component
connected with another class C1. Because any object from any subclass may
be used at runtime, when C is component coupled with C1, it has the

potential to be component coupled with all subclasses of C1. It should be
obvious that there will almost always be interaction coupling whenever
there is component coupling. If the variables of class C1 are either in the
signatures of the methods of class C or in some properties of class C,
component coupling is thought to be weakest (and hence most desirable). If
there is interaction through local variables, this interaction is not apparent
from the outside, increasing coupling.

3.5 COHESION

This indicates how closely related its internal components are to one
another. The cohesion of a module informs the designer of whether the
various components of a module should be placed together in the same
module. Coupling and cohesion are connected. Typically, there is less
coupling between modules the more cohesive each module is within the
system. Although this association is not exact, it has been seen in real-world
situations. Different levels of cohesiveness exist: Coincidental, logical,
temporal, procedural, communicational, sequential and functional.

The levels are coincidental (lowest) and functional (highest). When there is
no significant relationship between the components of a module, there is
accidental cohesiveness. An existing programme can be "modularized™” by
breaking it up into smaller bits and turning each of those pieces into a
separate module. A module is likely to exhibit coincidental coherence if it
combines a portion of code that appears in multiple places in order to reduce
duplicate code.

If a module's components perform tasks that belong to the same logical class
and there is some logical relationship between them, the module is said to
have logical cohesiveness. A module that handles all the inputs or all the
outputs is a common illustration of this type of cohesiveness. If we want to
enter or output a certain record in such a scenario, we must to communicate
this to the module. This is frequently accomplished by including a specific
status flag that will be utilised to select which module statements to execute.
Such a module typically has complex and awkward code, in addition to
creating hybrid information flow between modules, which is typically the
worst type of coupling between modules. In general, it's best to stay away
from logically cohesive units.

Similar to logical coherence, temporal cohesion refers to the execution of
elements that are related in time. Typically, modules that carry out tasks like
"initialization,” "cleanup," and "termination™ are time-bound. The pieces in
a temporally bound module are logically related, but because they are all
executed simultaneously, temporal cohesiveness is stronger than logical
cohesion. By doing so, the issue of passing the flag is avoided, and the code
is typically shorter.

A procedurally cohesive module is made up of components from a single
procedural unit. A module's loop or series of decision statements, for
instance, could be concatenated to create a new module. When a modular
structure is derived from a type of flowchart, procedurally coherent modules
frequently appear. Functional boundaries are frequently crossed through

System Design

43

Software Engineering

44

procedural coherence. Several functions or merely a portion of a function
may be present in a module with only procedural cohesiveness.

Elements in a module with communicational cohesion are connected by a
reference to the same input or output data. In other words, in a
communication-bound module, the components are grouped together
because they share input or output data. This might include a module to
"print and punch record,"” for instance. Modules with good communication
may serve multiple purposes. However, if alternative structures with
stronger cohesion cannot be readily recognised, communicational
cohesiveness is high enough to be generally accepted.

Sequential cohesiveness occurs when components are grouped together in
a module because the output of one serve as the input to another. Sequential
cohesion does not offer any recommendations for how to group elements
into modules if the result of one element serves as the input to another.

The strongest coherence is functional cohesion. Every component of a
module that is functionally bound is connected to carrying out a single
function. We don't just mean mathematical functions when we say
"function”; we also include modules that achieve a specific task.
Functionally cohesive modules can be seen in actions like "calculate square
root™" and "sort the array."

Cohesion in object-oriented systems has three aspects:
- Method cohesion

- Class cohesion

- Inheritance cohesion

Cohesion in functional modules is the same as method cohesion. It focuses
on the rationale behind grouping the various method's code components
together. When all of a method's statements work together to implement a
single, clearly defined function, this is referred to as cohesiveness at its
highest level.

Class cohesiveness examines the rationale behind the grouping of various
characteristics and methods in this class. The objective is to have a class
that implements a single abstraction or concept, with each component
working to support that concept. A designer should attempt to adjust the
design such that each class encapsulates a single notion since, generally
speaking, anytime many concepts are wrapped within a class, the cohesion
of the class is not as high as it could be.

The focus of inheritance cohesion is on the rationale for the grouping of
classes in a hierarchy. Inheritance is mostly used to represent
generalization-specialization relationships and to reuse code. If the
hierarchy encourages generalization-specialization of a certain concept,
which is likely to naturally result in code reuse, cohesion is deemed to be
good. If the hierarchy's main purpose is code sharing and the superclass and
subclass relationships are weak conceptually, it is regarded as lower.

3.6 FUNCTIONAL-ORIENTED VERSUS THE OBJECT-
ORIENTED APPROACH

Functional programming uses immutable data to tell the program exactly
what to do. Object-oriented programming tells the program how to achieve
results through objects altering the program's state. Both paradigms can be
used to create elegant code. Table 2 illustrates the detailed comparison
between function oriented and object-oriented design approach.

Table 2: Comparison between function oriented and object-oriented design
approach

COMPARISON FUNCTION ORIENTED DESIGN OBJECT ORIENTED DESIGN

FACTORS

Abstraction The basic abstractions, which are givento The basic abstractions are not the real world functions but are
the user, are real world functions the data abstraction where the real world entities are

represented

Function Functions are grouped together by whicha Function are grouped together on the basis of the data they
higher level function is obtained. operate since the classes are associated with their methods.

execute carried out using structured analysis and Carried out using UML

structured design i.e, data flow diagram

State information In this approach the state information is In this approach the state information is not represented is not
often represented in a centralized shared represented in a centralized memary but is implemented or
memory. distributed among the objects of the system.

Approach Itis atop down approach. Itis a bottom up approach.

Begins basis Begins by considering the use case Begins by identifying objects and classes.

diagrams and the scenarios.

Decompose In function oriented design we decompose ~ We decompose in class level.

in function/procedure level

Use This approach is mainly used for This approach is mainly used for evolving system which mimics a
computation sensitive application. business or business case.

3.7 DESIGN SPECIFICATIONS

The Functional Needs set forth in Design Specifications indicate how a
system fulfils those requirements. This may include guidelines for testing
particular conditions, configuration options, or a review of functions or
code, depending on the system. The functional specification's requirements
should all be met.

Design specifications examples:

Good requirements can be tested and are unbiased. Design requirements
could consist of

o Data types and specific inputs that must be entered into the system
o Code or calculations used to fulfil specified requirements

System Design

45

Software Engineering

46

o outputs the system produces
o describing the technical safeguards to make systems secure

o Indicate how the system complies with any applicable legal
requirements.

The Installation Qualification typically includes tests of the System
Requirements and the installation procedure. In the operational
qualification, input, processing, output, and security testing are often tested.

There is now some discussion in the industry over who needs to examine
the Design Specification due to the highly technical nature of most design
papers. The System Owner, System Developer, and Quality Assurance must
all examine and accept the Design Specification. Quality Assurance
certifies that the document complies with the necessary laws and that all
requirements were satisfactorily met, although they are not required to
review technical data.

The functional requirements document and the design specification may be
integrated, depending on the length and complexity of the programme.

3.8 VERIFICATION FOR DESIGN

Before starting the following phase's activities, the design activity's output
needs to be confirmed. If the design is expressed in a formal notation for
which analysis tools are available, then it can be checked for internal
consistency using tools (for example, the modules used by others are
defined, a module's interface is consistent with how others use it, data usage
is consistent with declaration, etc.). The design cannot be processed using
tools if it is not stated in a formal, executable language, hence alternative
methods of verification must be utilised. Design review is the method of
verification that is most frequently used.

Design reviews are conducted to make sure that the design meets the
specifications and is of high quality. If mistakes are committed during the
design phase, they will eventually show up in the code and the finished
system. It is desirable if design problems are discovered early, before they
reveal themselves in the system, as the cost of fixing faults brought on by
design errors rises with the delay in recognising the errors. The goal of
design reviews is to find design flaws.

Similar to the inspection process, the system design review process involves
a group of people meeting to discuss the design in order to identify any
flaws or undesired characteristics. A member of the system design team, a
member of the detailed design team, the author of the requirements
document, the author in charge of maintaining the design document, and an
independent software quality engineer are all required to be on the review
group. As with any review, it is important to remember that the meeting's
goal is to identify design flaws rather than attempt to remedy them; fixing
is done later.

Only the designer's imagination can constrain how many ways faults might
creep into a design. The fact that the design does not fully fulfil some
requirements, however, is the most significant design flaw. For instance, a
scenario for an exception situation cannot be handled or a design constraint
has not been met. Modularity is the primary factor in determining design
excellence. Efficiency is another important factor for which a design is
assessed, though, as it is necessary to test whether it can meet performance
requirements.

3.9 MONITORING AND CONTROL FOR DESIGN

Control is a management function that aids in error detection and the
implementation of corrective measures. This is done to ensure that the
organization's stated goals are fulfilled in the desired manner and to reduce
deviation from standards.

Monitoring is the process of routinely observing and documenting the
actions occurring within a project or programme. It is a procedure for
regularly compiling data on every facet of the project.

Project control includes the tools, process, people skills and experience,
when integrated provide the right information at the right time to enable the
right decision to be made. It mainly focusses on attributes such as Why,
What, When, Where, and How.

Project monitoring helps to track project performance and progression using
key performance indicators (KPIs) agreed during project planning.

o Project monitoring and control

The methods of tracking, reviewing, and regulating the project's
performance are known as monitoring and controlling. It also detects
any places where adjustments to the project management
methodology are necessary and starts making those adjustments.

Eleven processes make up the Monitoring & Controlling process
group, and they are as follows:

Monitoring and Controlling Process

Monitori 4
ng and ;
control :l'om

project egrate B \yigate

work S| e Control || Control

control Scope Schedul Control Contiol
o e Commun
iaions o Control Control
Procure stakehol
ments ders

engage
ments

System Design

47

Software Engineering

48

1] Monitor and control project work: The first stage, known as "monitor
and control project work,” is the umbrella step for all further
monitoring and regulating operations.

2] Perform integrated change control: The procedures necessary to
modify the project plan. The program is modified and reapproved by
the project sponsor if adjustments to the schedule, budget, or any other
aspect of the project management plan are required.

3] Validate scope: The procedures necessary to obtain project
deliverable approval.

4] Control scope: Making sure that the project's scope does not change
and that no unapproved actions are taken in accordance with the plan
(scope creep).

5] Control schedule: The activities involved in making sure that project
work is carried out in accordance with the schedule and that project
deadlines are reached.

6] Control costs: The activities necessary to guarantee that the project
expenses adhere to the approved budget.

7] Control quality: Assuring the project deliverables meet the quality
standards outlined in the project management strategy.

8] Control communications: Attending to each project stakeholder's
communication demands.

9] Control risks: preventing unforeseen occurrences that could have a
detrimental influence on the project's budget, schedule, stakeholder
requirements, or any other criterion for project success.

10] Control procurements: Ensuring that the project's vendors and
subcontractors achieve the project's objectives.

11] Control stakeholder engagement: The activities necessary to
guarantee that each project's stakeholders are happy with the outcome.

SUMMARY

A system's design is a strategy for a course of action that, if carried out, will
satisfy the system's requirements and maintain its architectural integrity.
The detailed design explains the processing logic of modules, whereas the
module-level design identifies the modules that must exist in the system to
execute the architecture.

If each module in a system has a clear abstraction and changes to one
module have little effect on other modules, the system is said to be modular.
Cohesion and coupling are two factors that are taken into account while
assessing a design's modularity. Cohesion is a measurement of the degree
to which the various components of a module are connected, whereas
coupling depicts how dependent modules are on one another. In a design,
coupling should typically be reduced and cohesiveness should be increased.
The open-closed principle, which states that modules should be available

for extension but closed for alteration, should also be supported by the
design.

According to the structured design technique, a design should be created
(shown as a structure chart) so that the modules have a low amount of
coupling and a high level of cohesiveness. In order to accomplish this, the
technique divides the system into a number of subsystems, one for
managing each significant input, one for managing each major output, and
one for managing each major transformation. This neatly divides the system
into sections that each independently address various issues.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman
(2014).

2] Software Engineering, lan Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,
PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John
Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,
Springer.

UNIT END EXERCISES

1] Explain the concept of system/ software design.
2] Write a note on architectural design.

3] Discuss on coupling.

4] Write a note on cohesion.

5] Illustrate the comparison between function-oriented and object-
oriented approach.

6] Write a note on design specification.
7] Explain the concept of verification for design.

8] Define control and monitoring. Explain in brief the eleven steps
involved in project monitoring and control process.

ke s o ke e ol ke

System Design

49

Software Engineering 4

SOFTWARE MEASUREMENT
AND METRICS

Unit Structure :
4.0 Objectives
4.1 Introduction
4.2 Product Metrics — Measures, Metrics, and Indicators
4.3 Function-Based Metrics
4.4 Metrics for Object-Oriented Design
4.5 Operation-Oriented Metric
4.6 User Interface Design Metrics
4.7 Metrics for Source Code
4.8 Halstead Metrics Applied to Testing
4.9 Metrics for Maintenance
4.10 Cyclomatic Complexity
4.11 Software Measurement: Size-Oriented Metrics
4.12 Function-Oriented Metrics
4.13 Metrics for Software Quality

4.13.1 Measuring quality

4.13.2 Defect removal efficiency
Summary
List of References
Unit End Exercises

4.0 OBJECTIVES

o To understand the applicability of metrics in software engineering

o To get familiar with how the real time entities are associated with
metrics and measurement

o To understand how metrics are used to evaluate the product's quality

o To get real time indication of effectiveness of test cases

4.1 INTRODUCTION

Measurement is a crucial component of every engineering process. You can
evaluate the qualities of the engineered goods or systems you produce using
metrics for knowing the characteristics of system you develop. SE however,

50 is not based on fundamental rules of science of matter, unlike other

engineering fields. In the domain of software, direct measurements are rare.
Metrics and measures are debatable since they are frequently indirect.
Fenton speaks to this matter when he says:

Measurement is the process through which the characteristics of real-world
entities are given numerical or symbolic values in order to define them in
accordance with predetermined guidelines. We can now measure qualities
that were once believed to be immeasurable. Even though these were not as
accurate as others used to support crucial judgements.

This chapter describes metrics that can be used to evaluate the product's
quality as it is being engineered.

4.2 PRODUCT METRICS - MEASURES, METRICS, AND
INDICATORS

Perhaps these terms are frequently utilized synonymously, it's crucial to be
aware of their little variations. It can be difficult to define measure because
it can be employed as a verb or a noun. A measure offers a numerical
manifestation of degree, quantity, capability, magnitude of certain feature.

A measurement has been established once a individual datum has been
gathered, such as amount of faults. The act of measuring results from the
gathering of one or more data points.

A software engineer gathers data and creates metrics in order to produce
indicators. An indicator offers perception into the s/w development
procedure, a s/w project, or finished result. Indication offers information
allowing to improve project, procedure, or system.

4.3 FUNCTION-BASED METRICS

A useful tool for assessing the functionality a system provides is the
function point (FP) metric and is used for forecasting following:

(1) the measure or endeavour necessary to describe, write & deploy
programme;

(2) quantitative error measurement to discover during deployment
(3) measure of entity to predicted line of codes in the incorporated model.

A quantitative evaluation of software complexity and countable (direct)
metrics are used to produce function points. The following definitions apply
to information domain values:

The quantity of external inputs (EIs): They delivers unique control driven
data and knowledge, whether it comes directly from a user or is sent from
another application. It's common practise to reform internal logical files
using i/p’s (ILFs). It is important to distinguish between inputs and
enquiries, that are measured individually.

Software Measurement
and Metrics

51

Software Engineering The number of external outputs (EOs): Every EO is procured information
from the domain giving the user instruction. External output acknowledges
screens, document, fault measurement, etc. A report does not count every
piece of data independently.

Number of external enquiries (EQs): It is a web-based i/p triggering an
S/W reply through accessible outcome.

Number of internal logical files (ILFs): There are a certain nos. of ILFs,
of which is a rational collection of information kept up to date by external
inputs and located within the application's boundaries.

Number of external interface files (EIFs): It is a rational collection of
information kept apart from the application but contains data that the
application may find useful.

Fig 1 is finished & difficulty metric is assigned to every measure once
these data have been gathered. Organizations that employ function point
methodologies create standards for classifying entries as easy, medium &
difficult. Assessment of difficulty is, nevertheless, rather arbitrary.

Information Weighting factor

Domain Value Count Simple Average Complex

Fxternal Inputs [Fls) |:| X 3 4 b = :]
External Qutputs (EOs) —J = 4 3 7 =1
External Inquiries (EQis)] * 3 4 6 = 1
Internal Logjcal Files (ILFs) . x 7 10 15 = [
External Inferfoce Files (EFs) [_] 5 7 0 -]
Count lolal I:

Figure 1: Computing function points

To calculate FP below equation is used:
FP = Total count x [0.65 + 0.01 x E (Fi)]
Where count total 1s the summation of all the FP entries that will be obtained from figure 1.

Value adjustment factors (VAF) Fi (i =1 to 14) are determined by the
answers to the following inquiries:

1. s dependable backup and recovery required for the system?

2. Will the application need specialised data communications to send or
receive information?

Do distributed processing operations exist?
4. Is performance a top priority?

52

5. Can the system operate in a current, highly trafficked operational Software Measurement
environment? and Metrics

6. Isonline data entry required by the system?

7. Do numerous screens or activities need to be included into the input
transaction for online data entry?

8. Arethe ILFs recovered?

9. How complicated are i/p’s, o/p’s, binder, or investigations?

10. s internal processing sophisticated?

11. Was the code created with reuse in mind?

12. s installation and conversion taken into account in the design?

13. Can the system be installed more than once in various organisations?

14. Is the programme created with the user's ability to alter and use it
easily in mind?

Answers to all the above set of questionaries are given on scale from
0 (not useful) to 5 (very useful).

4.4 METRICS FOR OBJECT-ORIENTED DESIGN

As the size and complexity of an OO design model increase, a more
impartial assessment of the design's attributes can be advantageous to both
the experienced designer and the beginner designer by providing them with
information about the design's quality that they would not otherwise have.
Whitmire offers nine different and measurably observable properties of an
OO design in a thorough examination of S/W:

o Size: Four perspectives - population, volume, length, and
functionality are used to define size. A fixed measure or actions, is
used to determine population. Volumetric measurements is similar to
populace measurements gathered at specific moment. A chain of
related design elements can be measured by their length & is used as
a metric of length. Functionality measurements offer a hazy picture of
the value an OO application brings to the consumer.

o Complexity: Similar to size, there are many different opinions on
what constitutes complexity in software. Whitmire analyses the
relationships between classes in an OO architecture to understand
complexity in terms of structural traits.

o Coupling: In an OO system, this is represented through interlinks
across components of the architecture.

o Sufficiency: From perspective of the current application, sufficiency
is defined by Whitmire as "extent to which an extraction incorporates
the characteristics expected”. In other words, we search for: "Which
qualities is required to have for me finding it essential?"
Fundamentally, a design element is enough if it accurately captures

53

Software Engineering

54

each the characteristics of modelling process, i.e., if the abstraction
(class) has all of the features that are necessary.

Completeness: "The characteristic set through which we assess the
extraction or architectural module” is only distinction between
completeness and sufficiency. According to the current use,
sufficiency compares the abstraction. Completeness takes into
account several viewpoints and poses the following query: "What
qualities are necessary to fully represent the issue domain object?"
This indirectly implied by the criterion for completeness'
consideration of many points of view.

Cohesion: An OO module must be created in such a way that every
computation cooperates to fulfil individual, clear goal, just as its
analogue in traditional software. The extent of "the collection of
qualities it holds is proportion of difficulty or architecture framework"
IS used to assess a class's cohesion.

Primitiveness: This implies along with operations; classes are a
quality akin for simplicity. It describes how atomic an operation is,
how easily it cannot be created from a series of other actions found
within a class. A class with a lot of primitive behaviour only contains
primitive operations.

Similarity: This measure indicates how similar multiple objects are in
accordance of their structural formulation and its functionality,
behaviour, or requirements.

Volatility: Architectural modifications might take place when
necessities are altered or alterations take place in areas necessary in
adaption of the questioned design component. An OO design
component's volatility gauges how likely a change is to occur.

4.5 OPERATION-ORIENTED METRIC

By looking at typical characteristics for approaches, some new

information can be discovered (operations). According to Lorenz and Kidd,
three straightforward measurements are pertinent:

Average operation size (OSavg): The amount of lines of program
forwarded through manipulations can be used to calculate the average
operation size (OSavg). It is probably the case that duties have not been
fairly distributed within a class when the volume of messages
delivered by a single operation increase.

Operation complexity (OC): Any complexity measure suggested for
traditional software can be used to calculate an operation's
complexity. The designer should make an effort to keep OC as low as
feasible since operations should be restricted to a single task.

Average number of parameters per operation (NPavg): Complexity of
object collaboration increases with the number of operation
parameters. NPayg is generally maintained at lower values.

4.6 USER INTERFACE DESIGN METRICS

There is a dearth of data on the metrics that would reveal the interface's
usability and quality.

Layout Appropriateness (LA), according to Sears, is valuable development
measure for articulation. Conventional GUI aids users in executing tasks by
using layout items. Client using a GUI must switched from one format to
another in order to complete a job.

According to a research of Web page metrics, the layout's simple qualities
can also have a big impact on how well the architectural pattern is received.
Amount of text, references, pictures, colours, and typefaces (among other
features) on a Web page determine how sophisticated and high-quality the
page is regarded to be.

The choice is influenced by measures like LA, but user feedback based on
GUI prototypes should be the ultimate arbitrator. According to Nielsen and
Levy, "if one selects amongst interface [designs] based simply on users'
opinions, one has a relatively large likelihood of success. There is a strong
correlation between a user's subjective happiness with a GUI and their
average task performance.

4.7 METRICS FOR SOURCE CODE

The first analytic "laws" for computer software were proposed by Halstead's
"software science" hypothesis. Halstead used a collection of crude
measurements that is determined after program is written or calculated after
completion of architectural pattern to create the firmware. These are as
follows:

nl: the number of unique operators in a program
n2: the quantity of unique operands in a program
N1: overall operator occurrences

N2: total number of repetitions of the operand

Above fundamental measurements are used by Halstead to create
formulations for the complete program.

Halstead shows that length N can be estimated using
N=ni logz n1 + n2 log2 m2
And program volume is defined as

V=N loga (n1 + m)

Software Measurement
and Metrics

55

Software Engineering

56

Where V denotes the amount of information (in bits) needed to express a
programme, varies depending on the programming language.

Theoretically, a specific algorithm must have a minimal volume. According
to Halstead, a volume L is proportion between the vol of a program'’s dense
form and its actual volume. L must actually always be smaller than 1.
Primitive measurements allow us to express the volume ratio as

L=[(2/n1)*(n2/N2)]

4.8 HALSTEAD METRICS APPLIED TO TESTING

Utilizing metrics generated from Halstead measurements, testing effort can
be calculated. Halstead effort e can be calculated as

1

FL= [y S 2Z) X (INarT,)

V
L

Cc=

The following relationship can be used to estimate the proportion of
deployment to be assigned to division k:

e(k)
=eli)

Percentage of testing effort (k) =

where denominator represents total Halstead effort put forth by all of the
system's modules.

4.9 METRICS FOR MAINTENANCE

Both the creation & upkeep of latest firmware can make use of all the
firmware measures discussed here. However, metrics specifically created
for maintenance tasks have been put forth.

Software maturity index (SMI), which is recommended by IEEE Std. 982.1-
1988 [IEE93], offers a sign of the solidity of a firmware legacy (required
for modifications taking place for every version). The below details are
discovered:

My = number of modules in the current release
F. = number of modules in the current release that have been changed
F, = number of modules in the current release that have been added

F,; = number of modules from the preceding release that were deleted in the

current release
The software maturity index is computed in the following manner:

Mr—(F, + F.+ Fy)
M,

SMI =

As SMI gets closer to 1, it starts to sustain. SMI can be utilized as statistic Software Measurement
while scheduling firmware monitoring tasks. It is possible to create and Metrics
empirical models for maintenance effort and to associate the average pattern

to generate a reveal of a firmware.

4.10 CYCLOMATIC COMPLEXITY

This measure offers numerical assessment of the logical difficulty of a
programme. Graph theory serves as the basis for cyclomatic complexity,
which offers you a very helpful software metric. One of three methods is
used to compute complexity:

1] The number of regions of the flow graphs corresponds to cyclomatic complexity
2] Cyclomatic complexity V(G) for a flow graph G is defined as

V(G)=E-N+2
Where,
E: Number of flow graph edges
N: Number of flow graph nodes
3] Cyclomatic complexity V(G) for a flow graph G is also defined as

V(G)=P +1

Where,
P: number of predicate nodes contained in the flow graph G

For example: Consider the flow graph as shown in the following figure

Edlgge

Node

Region

57

Software Engineering

58

For this figure the cyclomatic complexity can be computed using each of the

algorithms just noted
1] The flow graph consists of 4 regions
2]V(G)=11edges -9 nodes +2=4
3] V(G) =3 predicate nodes + 1 =4
Therefore, the flow graph in Figure has a cyclomatic complexity of 4.

More importantly, the value for V(G) gives you an upper constraint on the number of
independent routes that make up the basis set, and thus, an upper bound on the number of

tests that must be created and run to ensure that every programme statement is covered.

411 SOFTWARE MEASUREMENT: SIZE-ORIENTED
METRICS

Size-oriented software metrics are created by averaging productivity
and/or quality measurements while taking into account the size of the
software that has been created. A table of size-oriented measurements, like
the one in Figure 2, can be made if a software organisation keeps simple
records. The table includes a list of all finished software development
projects over the previous few years together with the relevant project
measures. According to the table entry (Figure 2) for project alpha,
$168,000 was spent to create 12,100 lines of code over 24 person-months.

Project Loc Effort | $(000) | Pp. doc. | Errors

alpha 12,100 24 168 365 134
beta 27,200 62 440 1224 321
gamma | 20,200 43 314 1050 256

Figure 2: Size-oriented metrics

It should be noted that the work and costs listed in the table cover all
software engineering activities, not only coding, including analysis, design,
coding, and testing. According to additional data for project alpha, 365
pages of documentation were created, 134 faults were discovered prior to
the software's release, and 29 problems were found within the first year of
operation after the software's release to the client. The software for project
alpha was developed by three persons.

You can decide to use the number of lines of code as a normalisation Software Measurement
variable in order to create metrics that can be combined with comparable and Metrics
metrics from other projects. A set of straightforward size-oriented measures

may be constructed for each project from the basic data in the table:

o Errors per KLOC (thousand lines of code)

o Defects per KLOC

e $perKLOC

o Pages of documentation per KLOC

In addition, other interesting metrics can be computed:

. Errors per person-month
J KLOC per person-month
o $ per page of documentation

Not everyone agrees that the best method to evaluate the software process
is through size-oriented measures. The usage of lines of code as a crucial
indicator is where the majority of the disagreement centres. The LOC
measure's proponents assert that LOC is an easily countable "artefact"” of all
software development projects, that many current software estimation
models employ LOC or KLOC as a crucial input, and that a substantial body
of research and data based on LOC already exist. Opponents counter that
LOC measures are dependent on the programming language being used,
that they penalise well-designed but shorter programmes when productivity
is taken into account, that they cannot easily accommodate nonprocedural
languages, and that their use in estimation necessitates a level of detail that
may be challenging to achieve (i.e., the planner must estimate the LOC to
be produced long before analysis and design have been completed).

4.12 FUNCTION-ORIENTED METRICS

A measure of the functionality provided by the programme is used as a
normalisation value in function-oriented software metrics. The function
point is the most used function-oriented measure (FP). The information
domain and complexity properties of the software are used to compute the
function point.

Like the LOC measure, the function point is debatable. According to
supporters, FP is more appealing as an estimation strategy because it is
based on data that are more likely to be known early in the lifecycle of a
project and is independent of programming language, making it perfect for
applications employing traditional and nonprocedural languages. The
method's detractors assert that it requires some "sleight of hand" because
the computation is based on subjective rather than objective data, that it can
be challenging to gather counts of the information domain (and other
dimensions) after the fact, and that FP has no immediate physical
significance — it’s just a number.

59

Software Engineering

60

4.13 METRICS FOR SOFTWARE QUALITY

Producing a high-quality system, application, or product in a timely manner
that answers a market need is the primary objective of software engineering.
You must use efficient techniques along with cutting-edge tools inside the
framework of an established software process in order to accomplish this
goal. If high quality is to be achieved, a competent software engineer (and
effective software engineering managers) must measure.

A system, application, or product is only as good as its requirements, which
outline the issue, design, which represents the solution, code, which creates
an executable program, and tests, which put the software to the test to find
bugs. As the software is being developed, measurement can be used to
evaluate the quality of the test cases, source code, and requirements and
design models that have been produced. You use product metrics to evaluate
the quality of the work products produced by software engineering in order
to complete this real-time review in an objective rather than subjective
manner.

As the project advances, a project manager must also assess quality.
Software engineers' private measurements are pooled to produce outcomes
at the project level. The main focus at the project level is to measure
mistakes and defects, despite the fact that various quality measurements can
be gathered. Metrics derived from these measurements show how well both
individual and group software quality assurance and control efforts are
doing.

Metrics that measure the effectiveness of each of the actions implied by the
metric, such as work product errors per function point, errors discovered per
review hour, and errors discovered per testing hour, can be used. The defect
removal efficiency (DRE) for each process framework activity can also be
calculated using error data.

4.13.1 Measuring quality

Although there are numerous ways to gauge software quality8, the project
team can utilize correctness, maintainability, integrity, and usability as
valuable benchmarks. Gilb suggests definitions and measures for each

o Correctness: A program must function properly in order to be useful
to its users. The degree to which the software fulfils its necessary
purpose is known as correctness. Defects per KLOC, where a defect
is defined as a validated lack of conformity to requirements, is the
most popular metric for correctness. Defects are issues that a user of
the program reports after the program has been made available for
general use. These issues are taken into account when evaluating the
overall quality of a software product. Defects are counted over a
defined time period, usually one year, for quality evaluation purposes.

o Maintainability: Compared to other software engineering tasks,
software maintenance and support need the most work. A program'’s

maintainability refers to how easily it can be fixed when an error
occurs, adjusted when its environment changes, or improved when the
client requests a change in requirements. Since maintainability cannot
be measured directly, indirect methods must be used. Mean-time-to-
change (MTTC), which measures the time required to study a change
request, develop an acceptable modification, implement the change,
test it, and distribute the change to all users, is a straightforward time-
oriented statistic. For equivalent types of modifications, maintainable
programs often have a lower MTTC than unmaintainable programs.

o Integrity: In the era of online hackers and terrorists, software integrity
has grown in importance. This characteristic evaluates a system's
resistance to security threats, both unintentional and intentional.
Programs, data, and documentation are the three elements of software
that are vulnerable to attacks.

Threat and security are two additional variables that must be defined in
order to quantify integrity. Threat is the likelihood that an attack of a
particular type will take place within a certain period of time (which can be
estimated or inferred from empirical evidence). Security is the likelihood
that an assault of a particular type will be thwarted, which can be calculated
or determined from empirical evidence. Thus, the definition of a system's
integrity is

Integrity = X [1 — (threat x (1 — security))]

o Usability: Even if a program performs valuable functions, it is
typically destined to failure if it is difficult to use. Usability is an
attempt to measure usability.

4.13.2 Defect removal efficiency

Defect removal efficiency is a quality indicator that benefits both
projects and processes (DRE). DRE essentially measures the effectiveness
of quality assurance and control actions as they are applied throughout all
activities governed by the process framework.

When taken into account for a project as a whole, DRE is described as
follows:

DRE =[E/ (E +D)]

where E is the number of mistakes discovered before to the software being
delivered to the end user and D is the number of flaws discovered following
delivery.

DRE should be set to a value of 1. In other words, the software has no flaws.
Realistically, D will be bigger than 0, but as E rises for a particular value of
D, the value of DRE can still get closer to 1. In reality, it is likely that the
final value of D will decrease as E increases (errors are filtered out before
they become defects). DRE urges a team working on software projects to
use methods for locating as many errors as feasible before delivery if used

Software Measurement
and Metrics

61

Software Engineering

62

as a metric that shows the effectiveness of quality control and assurance
efforts.

DRE may also be used inside to a project to evaluate a team's capacity
to identify mistakes before they are forwarded to the following framework
or software engineering activity. A requirements model, for instance, is
created by a requirements analysis and may be checked over to identify and
fix flaws. The design phase is where any errors that were not discovered
during the requirements model review may or may not be discovered. DRE
is redefined as follows in this context:

where E; is the total number of mistakes made in software engineering
action | and Ej+1 is the total number of mistakes made in software
engineering action | + 1 that can be linked to mistakes made in software
engineering action i. Achieving DRE; that is close to 1 is a quality goal for
a software team (or a single software developer). In other words, faults
ought to be caught before being passed on to the subsequent activity or
action.

SUMMARY

You can evaluate quality before the product is produced thanks to software
metrics, which offer a quantifiable technique to evaluate the quality of
internal product attributes. Metrics give you the knowledge you need to
produce effective requirements and design models, reliable code, and
exhaustive tests. A software measure needs to be straightforward,
calculable, compelling, consistent, and objective in order to be helpful in
real-world settings. It should be independent of the programming language
you're using and give you useful feedback.

Function, data, and behavior: the model's three component are the main
metrics for the requirements model. Design metrics take into account
concerns with architecture, component-level design, and interface design.
Metrics for architectural design take into account the model's structural
elements. By creating proximate measures for cohesion, coupling, and
complexity, component-level design metrics give an indicator of module
quality.

At the source code level, Halstead gives a fascinating collection of metrics.
Software science offers a range of metrics to evaluate program quality based
on the number of operators and operands contained in the code. There aren't
many product metrics that have been directly suggested for use in software
testing and maintenance. The testing process can be guided by a variety of
additional product criteria, which can also be used to evaluate a computer
program's maintainability. The testability of an OO system has been
evaluated using a wide range of OO metrics.

LIST OF REFERENCES Software Measurement

and Metrics

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman
(2014).

2] Software Engineering, lan Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,
PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John
Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,

Springer.

UNIT END EXERCISES

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]

11]
12]
13]
14]
15]

What are the aspects of product metrics?

Explain the terminologies: Measures, Metrics and Indicators.
What do you mean by function-based metrics?

Write a note on metrics for object-oriented design.

Explain operation-oriented metrics.

What do you mean by user interface design metrics?

Discuss on metrics for source code.

Explain the Halstead metrics applied to testing.

Write a note on metrics for maintenance.

What do you mean by cyclomatic complexity? Discuss with examples
to find the cyclomatic complexity of the graph.

Explain size-oriented metrics.

Discuss on function-oriented metrics.

Write a note on metrics for software quality.
Explain the term: Measuring quality.

Discuss the concept of defect removal efficiency.

ke e ofe ke e ol ke

63

Software Engineering

64

S
SOFTWARE PROJECT MANAGEMENT

Unit Structure :
5.0 Objectives

5.1 Introduction

5.2 Estimation in Project Planning Process
5.3 Software Scope and Feasibility

5.4 Resource Estimation

5.4.1 Human resources

5.4.2 Reusable software resources

5.4.3 Environmental resources

5.5 Empirical Estimation Models — COCOMO 1I
5.6 Estimation for Agile Development

5.7 The Make/Buy Decision

5.7.1 Creating a decision tree

5.7.2 Outsourcing

Summary

List of References

Unit End Exercises

5.0 OBJECTIVES

. To understand the process involve in project planning
. To get acquaint with the scope and feasibility related to the software

o To get familiar with different estimation model and their workflow

5.1 INTRODUCTION

Project planning, a collection of related tasks, serves as the foundation for
software project management. The software team must determine how
much work will need to be done, what resources will be needed, and how
much time it will take for completing the reckon before it can start. After
completing these steps, the firmware management group must create a
project schema outlining the firmware highlights, assigns accountability for
each job, and details any inter-task dependencies that could significantly
affect progress.

Steve McConnell offers a practical perspective on project planning in his
outstanding manual for "software project survival™:

Many technical personnel would prefer to do technical tasks than to prepare.
Many technical managers lack the technical management training necessary
to be confident that their planning will enhance the success of a project. No
one wants to plan; thus, it frequently doesn't get done.

Efficient organization is required for handling issues upstream than
downstream at high expense. However, failing to prepare is one of the most
crucial mistakes a project can make. Rework, or correcting errors from
earlier in the project, takes up an average of 80% of a project's time.

5.2 ESTIMATION IN PROJECT PLANNING PROCESS

Goal is to give the manager a complete schema so they can estimate
resources, costs, and schedules in a fair manner. In order for project
outcomes to be bounded, estimates should also make an effort to specify
best scenarios and worst phase situations. The firmware group starts out on
objectives formed as a result of these occupants, despite fact that there is a
certain amount of inherent unpredictability. Therefore, as the project
advances, the schema should be modified and refurbished.

Iterative planning begins with the creation of a starting schema in the
launching stage. Fig 1 depicts a project planning process' framework. Plans
will inevitably alter. You should routinely amend to subjective necessities,
plan of action, and threaten measures as additional details about the module
and the group come to light for the execution stage. Project plans alter as a
result of shifting corporate objectives. Any initiatives that are affected by
shifting corporate objectives may need to be rescheduled.

[project
asystemn» [unfinished] finished] ~
Project Planner &/

Identify

k\Constraint_S/
| [[Identify [Define Project

._" \ Risks +L Schedule

Define
Milestones
and
\Dplf\mrahlpi

!

=

/ R
Nn the Work j [no problems]
N

Monitor Progre;s\
Against Plan J

[serious
problems]

[minor problems and slippages]

/InitiateRisk (Replan
\Eiﬁgation Actions _ Project

Figure 1: Project planning process

_r

You should evaluate the project's limits before commencing a planning
process. These limitations include the deadline for delivery, the number of
employees on hand, the overall budget, the tools at hand, and others. One
must specify the glimpses and highlights in conjunction with this.
Milestones are dates on the timetable that can be used to gauge progress,
such as when the system is turned over for deployment.

Software Project Management

65

Software Engineering

66

The procedure loops back on itself. You create an estimated project
timetable, and the tasks outlined in it are started or given the go-ahead to
continue. You should examine your work after certain time stamp & make
notice of any deviations from the original timeline. Few of the changes are
common and one must need to modify the actual framework because early
estimations of project parameters are inherently approximate.

When drafting a project plan, it's crucial to be practical. During a project,
some sort of issue almost always arises, and this might cause project delays.
So, instead of being optimistic, your first assumptions and scheduling
should be pessimistic. Your plan should include enough contingency
restrictions through the cycle.

You must start risk mitigation steps if any substantial issues with the
enlargement task expected causing a considerable detain in order to lower
the risks of project failure exists. Along with these steps, the project needs
to be replanned. Renegotiating the project's restrictions and deliverables
with the client may be necessary for this. Additionally, a new timeline for
when the job should be finished must be devised and approved by the client.

You should set up a formal project technical review if the measures are
insufficient. The goals of this review are to discover a different strategy
enabling the task to proceed & to determine whether the task, its estimate,
the customer's aim, and the firmware goals are in alignment.

A review may result in the recommendation to halt a task. This could be the
outcome of managerial or technological errors but frequently results from
outside changes that have an impact on the project. Large software projects
can take several years to create. The business's goals and priorities will
unavoidably alter during that time. These adjustments can indicate that
firmware is not necessary or that the original needs are insufficient.

5.3 SOFTWARE SCOPE AND FEASIBILITY

The term "software scope™ refers to a system's performance, limitations,
interfaces, and dependability as well as the features and functions that must
be provided to users as well as the i/p & o/p information along with the
"content™ the users see as a result of using the system. One of two methods
is used to define scope:

1. Following discussions with all stakeholders, a chronicle explanation
of the firmware span is created.

2. End users create a collection of use cases.

Prior to the start of estimation, the functions outlined in the context assessed
and, in few of the instances, improved in offering information. Due to
functional orientation estimations, some level of decomposition is
frequently helpful. Processing and reaction times are taken into account
while evaluating performance. Constraints are boundaries imposed on the
software by other systems already in place, available memory, or external
hardware.

After the scope is determined (with the customer's approval), it’s
appropriate in inquiring, "Can we design firmware to satisfy the described

projection? Can it be completed? Frequently managers force software
engineers to skip through these questions, which leads to them being bogged
down in a project that is doomed from the start. When they write, Putnam
and Myers address this problem.

No matter how ephemeral it might seem to outsiders, not everything that
can be imagined is possible, not even in software. Contrarily, software
viability has four dependable dimensions:

o Technology: Using current technology, can a project be completed?
Is it up to date with technology? Can flaws be minimized to a level
appropriate for the application?

o Financial viability: Is it possible? Can the cost of development be kept
within the means of firmware company, its user, or the space
captured?

o Time: Will the project's time to market outperform that of the
competition?

o Resources: Has the company acquires necessities for gaining profits
and capturing the market?

Although sometimes disregarded, these are important step in the estimating
process.

5.4 RESOURCE ESTIMATION

Estimating the necessities required for completion of the software
development project is the second planning step. Figure 2 shows the
development environment, reusable software components, and people as 3
main criteria of SE (hardware and S/W tools). Four features are listed for
each resource: a detail illustrating the requirement, a list of available
quantities, the time required for resource estimation, & the number of
instances it get used. You might think of the final two attributes as a time
frame. The availability should be determined as soon as is practically

possible.
Sofrware
o tools
Pecple
Loecation

Hcrd@
Nehwaork
resources
Reusable

sofrware

COTs
components

MNew
components

1—/ 4 ﬂi—j
Fullexperience Part-experience
components components

Figure 2: Project resources

Software Project Management

67

Software Engineering

68

5.4.1 Human resources

One must start through assessing the firmware extent and choosing required
talents necessary for finishing the deployment. Twain organisational
orientation and the specificity are mentioned. One person may do all
software engineering activities consulting with experts as needed. The
software crew may be geographically scattered over several distinct sites
for larger projects. As a result, each human resource's location is given.
Only once a development effort estimate (e.g., person-months) is developed
can the required staff for a software project be estimated.

5.4.2 Reusable software resources

Reusability - the production and usage of software building blocks is
emphasised by component-based software engineering (CBSE). Such
building blocks, also known as components, need to be standardised for
easy use, validated for easy integration, and catalogued for easy reference.
As planning moves forward, Bennatan recommends taking into account the
following four categories of software resources:

Components available from stores: existing software that is available from
a previous project or from a third party. Components that are COTS
(commercial off-the-shelf) are bought from arbitrator, completely vetted,
and prepared for usage on the present project.

Full experience elements: Past projects' specifications, designs, codes, or
test data comparable to firmware that is developed for present task.
Protuberance of the ongoing firmware development group has extensive
circumstance in the domain they represent. As a result, the chance of
adjustments needed will be reduced.

Fragmentary experience modules: Partially developed requirements,
frameworks, codes, or deployment information that are connected to the
software to be developed for the present project but will need to be
significantly modified. The current software team has only a little amount
of expertise working with the application domain that these components
represent. Therefore, there is a moderate amount of risk associated with
adjustments needed for partial-experience components.

New components: The software team must create new software components
expressly to meet the demands of the ongoing framework.

Recyclable firmware modules, ironically frequently overlooked across
planning but addresses a top priority later in the firmware development
procedure. Early software resource requirements definition is preferable.
This allows for the technical assessment of the alternatives and prompt
procurement.

5.4.3 Environmental resources

Software engineering environment (SEE), which enables firmware projects,
combines both hardware and software. The firmware needed for creating
the entities is a result of strong SE practise are supported by hardware. One

should specify the formulation range necessary for H/W and S/W & ensure
its availability.

The S/W group can need approaching to H/W pieces created by different
group members. For instance, as part of the validation test phase, S/W used
in a production environment could need particular robot according to its
operation intended to perform. Planning must include the specification of
each hardware component.

5.5 EMPIRICAL ESTIMATION MODELS - COCOMO I

To aid in estimating the effort, timing, and expenses of a software project,
a number of models have been put forth. An empirical model called
COCOMO Il was created by compiling data from numerous software
applications. These data were examined in order to identify the formulas
that best suit the observations. These equations related the effort to construct
the system to the system's size as well as to project, team, and product
factors. A well-documented and open-source estimating model is
COCOMO II.

Earlier COCOMO cost estimating models, which mostly relied on original
code creation, served as the foundation for COCOMO Il. The COCOMO II
model takes into account more contemporary methods of software
development, including component-based development, quick development
using dynamic languages, and database programming. The spiral model of
development is supported by COCOMO 11, which also incorporates sub
models that result in ever-more-detailed estimations.

As shown in the figure 3, the sub models that are a part of COCOMO Il
model are:

— Systems Developed
Number of Based on Application Used for Using Dynamic
Application Points Composition Model Languages, DB
Programming, etc.
Initial Effort
Number of Function Based on . Used for Estimation Based on
: Early Design Model —————— .
Points System Requirements

and Design Options

Effort to Integrate

Number of Lines of Based on Used tor Reusable Components
Code Reused or Reuse Model)
or Automatically
Generated

Generated Code

Development Effort
Based on System
Design Specification

Number of Lines of Based on Post-Architecture Used for
Source Code Model

Figure 3: COCOMO estimation models

Software Project Management

69

Software Engineering

70

1] An application-composition model: This represents the effort needed
to design systems made up of scripting, database programming, or
reusable components. Application points are utilised to evaluate
software size, and a straightforward size/productivity calculation is
employed to calculate the work needed. A program's application
points are a weighted average of the number of distinct screens that
are shown, the number of reports generated, the number of modules
in imperative programming languages (like Java), and the number of
lines of scripting language or database programming code.

2] An early design model: After the requirements have been identified,
this model is employed in the early stages of the system design. With
a condensed set of seven multipliers, the estimate is based on the
common estimating formula | covered in the introduction. The
number of source code lines are translated from function points, on
which the estimates are based, into function points. A language-
independent method of measuring programme functionality is using
function points. You can determine how many external inputs and
outputs, user interactions, external interfaces, and files or database
tables that the system uses by counting or estimating them.

3] Areuse model: It is used to determine how much work is involved in
integrating reusable parts and/or automatically generated computer
code. It frequently functions in tandem with the post-architecture
model.

4] A post-architecture model: After the system architecture is created, it
is possible to determine the software size with more accuracy. It
includes a larger set of 17 multipliers that reflect project, product, and
personnel aspects.

Of However, with huge systems, not every component needs to be estimated
with the same level of precision because different system components may
have been designed using various technologies. In such circumstances, you
can combine the findings to get a composite estimate by using the
appropriate sub model for each component of the system.

Following the determination of complexity, the number of screens, reports,
and components is weighted in accordance with the table shown in Figure
4. The object point count is then calculated by averaging the overall object
point count after multiplying the initial number of object instances by the
weighting factor in the figure. The object point count is updated and the
percent of reuse (%reuse) is estimated when component-based development
or generic software reuse is to be used:

NOP = (object points) x [(100 — %reuse)/100]

Where, NOP = new object points

Complexity weight

Object type

Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3Gl component 10

Figure 4: Complexity weighting for object types

To derive an estimate of effort based on the computed NOP value, a
“productivity rate” must be derived

|
PROD = —NOP
person-month
for different levels of developer experience and development environment
maturity.

Once the productivity rate has been determined, an estimate of project effort
is computed using

NOP

Estimated effort = PROD

In more advanced COCOMO Il models, a variety of scale factors, cost
drivers, and adjustment procedures are required.

5.6 ESTIMATION FOR AGILE DEVELOPMENT

Due to the fact that an agile project's needs are established by a collection
of user scenarios (such as the "stories" in Extreme Programming), it is
possible to create an estimation method that is informal, moderately
disciplined, and useful for project planning for each software increment.
Agile projects estimate using a decomposition method that includes the
following steps:

1] For estimation purposes, each user scenario - the project's equivalent
of a miniature use case created by end users or other stakeholders at
the outset is taken into account separately.

2] The collection of software engineering tasks that will be necessary to
create the scenario are broken down.

3a] Each task's effort requirement is estimated separately. Note: An
estimation may be supported by empirical modelling, historical facts,
or "experience."”

3b] Alternatives include estimating the "volume" of the scenario in LOC,
FP, or another volume-oriented measure (e.g., use-case count).

Software Project Management

71

Software Engineering

72

4a] To build an estimate for the scenario, the estimates for each task are
added up.

4b] Alternatively, using historical data, the volume estimate for the
scenario is converted into effort.

5] The effort estimates for a given software increment is created by
adding the work estimates for all of the scenarios that need to be
implemented.

This estimation approach serves two functions because the project length
needed to produce a software increment is fairly brief (usually three to six
weeks):

(1) toensure that the number of scenarios included in the increment is in
accordance with the resources available, and

(2) tocreate a framework for dividing up work as the increment develops.

5.7 THE MAKE/BUY DECISION

It is frequently more economical to buy software than to produce it in many
software application domains. Software engineering managers must decide
whether to make or buy, which can be compounded further by a variety of
acquisition options:

(1) Off-the-shelf software can be purchased (or licenced),

(2) Software components with "full-experience™ or "partial-experience”
may be purchased, modified, and combined to fulfil particular
demands, or

(3) A third option is for an outside contractor to create software
specifically to the buyer's requirements.

The criticality of the software to be purchased and the final cost determine
the phases involved in software acquisition. In some circumstances (such as
low-cost PC software), it is less expensive to make a one-time purchase and
experiment than it is to carry out a thorough study of available software
options. In the end, the choice to make or buy is dependent on the following
factors:

(1) Will the software product's delivery date be earlier than the date for
internally generated software?

(2) Will the price of customisation and acquisition be less than the price of
in-house software development?

(3) Will external support (such a maintenance contract) be cheaper than
internal support? Each of the acquisition possibilities is subject to these
requirements.

5.7.1 Creating a decision tree

Statistical methods like decision tree analysis can be added to the just-
described procedures. Figure 5 shows a decision tree for software-based
system X as an illustration. The software engineering organisation can in
this situation

1)
2)
3)

4)

build system X from the scratch,
To build the system, reuse existing partial-experience components,

Purchase a pre-existing software item and change it to match local
requirements, or

assign the software development to a third-party contractor

& o
b $450,000

ifficult (0.70)

Build
Minor changes $275,000
(0.40)
System X . Simple (0.20) $31 0,000
Buy Major
changes @) $490,000
(0.60) Complex (0.80) '
Minor changes
. - $400,000
Maijor changes (0.30)
Without changes $350,000
(0.60) y
@ $500,000

With changes [0.40)

Figure 5: Decision-tree to support the make/buy decision

A 70% chance exists that the task of creating the system from scratch will
be challenging. The project planner calculates that a challenging
development endeavour will cost $450,000 using the estimation
approaches. The anticipated cost of a "basic" development project is
$380,000. Calculated along any decision tree branch, the predicted value
for cost is

Expected cost = Z (path probability); x {estimated path cost),

where I is the decision tree path. For the build path,

Expected costyyq = 0.30 ($380K) + 0.70 ($450K) = $429K

Following other paths of the decision tree, the projected costs for reuse, purchase,

and contract, under a variety of circumstances, are also shown. The expected costs
for these paths are

Expected Costeye = 0.40 ($275K) + 0.60 [0.20 ($310K) + 0.80 ($490K)] = $382K
Expected costy,y = 0.70 ($210K) + 0.30 ($400K) = $267K
Expected cost.gyaq = 0.60 ($350K) + 0.40 ($500K) = $410K

Software Project Management

73

Software Engineering

74

The "purchase" option has the lowest predicted cost based on the probability
and projected costs shown in Figure. It's crucial to remember, though, that
while making a purchase, a variety of factors more than just price must be
taken into account. A few factors that could influence whether to build,
reuse, buy, or contract include availability, experience of the developer,
vendor, or contractor, compliance to specifications, local "politics,” and the
chance of change.

5.7.2 Outsourcing

Every business that creates computer software eventually wonders the same
fundamental question: "Is there a way we can get the software and systems
we need for a lesser price?" The answer to this question is not
straightforward, and the heated debates that follow the subject always come
down to one word: outsourcing.

Outsourcing is quite straightforward in theory. A third party is hired to
perform software engineering tasks at a reduced cost and, ideally, a higher
standard. A company's internal software development is really just contract
management.

The choice to outsource might be tactical or strategic. Business managers
analyse whether a sizable fraction of all software work may be outsourced
at the strategic level. A project manager decides whether subcontracting the
software work is the most effective way to complete all or a portion of a
project at the tactical level. Regardless of the scope of the decision,
outsourcing is frequently a financial one.

On the bright side, lowering the number of software employees and the
infrastructure (such as computers) that supports them typically results in
cost savings. On the down side, a business loses some control over the
necessary software. A business risks the danger of entrusting a third party
with the fate of its competitiveness because software is a technology that
distinguishes its systems, services, and products.

Without a doubt, the trend toward outsourcing will persist. The only way to
stop the trend is to acknowledge how fiercely competitive software work is
at all levels. The only way to survive is to match the outsourcing providers'
level of competition.

SUMMARY

Before a project starts, a software project planner must make three
estimations: how long it will take, how much work it will require, and how
many people it will involve. The planner must also forecast the risk involved
as well as the resources (hardware and software) that will be needed.

Various graphical representations of the project plan are created as part of
the scheduling process. The most popular schedule representations are bar
charts, which display activity duration and staffing timelines.

A project milestone is an expected result of a task or series of tasks. A
documented report of progress should be given to management at each
milestone. A deliverable is a piece of work that is given to the project's
client.

We also talked about how the COCOMO 11 costing model is an advanced
computational cost model that incorporates project, product, hardware, and
employee attributes when estimating costs.

At least two of the three aforementioned methods are often used to produce
accurate project estimates. The planner is more likely to arrive at an accurate
estimate by comparing and reconciling estimates created using several
methodologies. Although software project estimation will never be a precise
science, it can be made more accurate by using a combination of reliable
historical data and methodical procedures.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman
(2014).

2] Software Engineering, lan Sommerville, Pearson Education.
3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,

PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John
Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,
Springer.

UNIT END EXERCISES

1] Explain the estimation in project planning process.

2] Write a note on software scope and feasibility.

3] Discuss on resource estimation.

4] What are the factors included in human resources?

5] Explain in brief the concept of reusable software resources.

6] What are environmental resources?

7] Discuss COCOMO Il model in detailed.

8] What are the fundamentals of estimation for agile development?
9] Explain the process of make/buy decision.

10] How will you create a decision tree. Explain suing concept of make/
buy decision.

11] Explain the outsourcing involved in make/buy decision.

o ke o ke e e ke

Software Project Management

75

Software Engineering

76

PROJECT SCHEDULING

Unit Structure :

6.0 Objectives

6.1 Introduction

6.2 Basic Principles

6.3 Relationship Between People and Effort
6.4 Effort Distribution

6.5 Time-Line Charts

Summary

List of References

Unit End Exercises

6.0 OBJECTIVES

. To understand the workflow involved in project scheduling
. To get familiar with the principles involved in software engineering

. To get acquaint with the relationships and their interconnectivities
with respect to the project scheduling

o To know the steps and the outline procedure associated with project
scheduling

6.1 INTRODUCTION

When software projects run behind schedule, Fred Brooks was once
questioned about it. One day at a time, was his profound though understated

reply.

The actual scenario of a technological task is that thousands of minor jobs
must be completed in order to achieve a greater goal, whether it is
developing an operating system or building a hydroelectric facility. Some
of these jobs are not commonplace and can be completed without worrying
about how it will affect the project's deadline. On the “critical route,” there
are other tasks. The project's overall completion date is in peril if these
"essential” tasks are delayed.

As a opportunity team leader, the goal is in declaring all the modules and
its sub components, develop a strong connections describing the
interrelationships, analyse the modules that are most important & combat
the achievable. To achieve all the above-mentioned criteria’s, one should

maintain a detailed timetable so that the outcomes can be measured at every
time stamp.

S/W project scheduling is the process of distributing estimated effort by
assigning the effort to particular software engineering jobs over the course
of the anticipated project duration. But it's crucial to remember that the
schedule changes throughout time. A macroscopic timetable is created in
the initial stages of project planning. This kind of schedule lists all
significant activities that make up the process framework. Each item on
macroscopic timetable is transformed into a detailed schedule as the project
progresses. Here, precise software tasks and actions that must be completed
in order to complete an activity are scheduled.

There are two very distinct ways to approach scheduling for software
engineering projects. In the first, a final release date for a desktop-based
model has been decided upon (& cannot be changed). The S/W company
confines at allocating resources cross the allotted framework. Another
perspective presupposes the broad sequential constraints that are negotiated,
but SE organisation sets the end date. An end date is established after
comprehensive examination of the programme and distribution of effort is
made to make the greatest use of available resources. Sadly, the first
circumstance arises multiple times than the later scenario.

6.2 BASIC PRINCIPLES

Software project scheduling is governed by a few fundamental rules, just
like all other aspects of software engineering:

o Project compartmentalization: The project needs to be broken down
into a number of doable tasks and activities. The process and the
product are both improved to achieve compartmentalization.

o Interdependence: It is necessary to assess the interdependence of each
segregated task or activity. While certain jobs must be completed in
order, others can be completed concurrently. Some tasks can't start
until someone else's finished result is accessible. Other things can
happen on their own.

o Time assignment: Every module that needs to be managed must be
given a certain amount of grind measure in terms of time.
Additionally, every module needs to be given a beginning and an end
period that rely on the alliance & if the task be done on time.

o Validating attempt: The software team for each project consists of a
specific number of individuals. You must make sure that allotted nos.
of person are organized and managed at particular moment as
assigned. Take a forecast with 3 S/W engineers as an example. Seven
concurrent tasks must be completed on any given day. It takes 0.50
person-days to complete each activity. There are more persons
assigned to the task than there are available workers.

Project Scheduling

77

Software Engineering

78

o Assigned liability: Each subsystem organized ought to be given a
particular group leader.

o Assigned objectives: Each work that is organized must be clearly
stated objective. The end result of software projects often consists of
a product or its counterpart. Deliverables frequently integrate sub
modules.

o Declared highlights: Each module, or set of modules, must be
connected to specific glimpse or highlights. When multiple by-
products have undergone a qualitative evaluation & approval, a
milestone is reached.

6.3 RELATIONSHIP BETWEEN PEOPLE AND EFFORT

One person can evaluate requirements, carry out design, create code, and
run tests in small S/W expansion system. A project requires more
participation as it grows in size. (We hardly ever have the splendour of
doing a 10-people attempt with a single individual doing for 10 yrs)

Many managers in charge of software development projects still hold fast
to the popular misconception that "if we are way back than our timeline, we
recruit more employees and try to come up to the level of meeting the
specifications”. Unintentionally, employing more personnel at the end of a
project frequently disrupts it and pushes back deadlines. The newly added
individuals must learn the system, and those who were performing the work
are also the ones who are instructing them. Since no work is done while
lecturing, the project is further behind schedule.

Many employees escalate the amount of divulgence pathways & the
difficulty of conveyance in a system, which adds to the effort & schedule
set required to master the modules. Although effective communication is
crucial for the creation of good software, every new communication line
involves more work, which adds time.

Project timetables are flexible, as shown by empirical data and theoretical
study over time. In other words, a planned project completion date can be
somewhat shortened (by adding more resources). It makes feasible in
postponing a deadline (by making less use of materials).

A software project's association between endeavour put out and time
required to achieve a specified outcome is depicted by the Putnam-Norden-
Rayleigh (PNR) Curve. Figure 1 depicts a variant of the curve that plots
project effort against delivery time. It shows minimal quantity t, indicating
least delivery expenditure. The curve climbs nonlinearly moving towards
left side of t, (i.e., striving hard to speed up dispatch process).

Effort
cost
: Eu =m “ddﬂud]
Impossible | E, = efforf in person-months
region iy = nominal delivery fime for schedule
| i, = opfimal development fime (in terms of cost)
E ! i, = actual delivery time desired
d
I
I
I
E, !
| |
/ g fy Development time
T = 0.75T,

Figure 1: Association of effort & dispatch time

Assume that a manager involved in the task has calculated the amount
of endeavour Ed necessary in accomplishing a usual dispatch time td which
is ideal with respect to the schedule and resource availability. Although
delivery can be sped up, the graph increases quite abruptly towards left of
tq. In reality, the PNR curve suggests that beyond 0.75tq, the amount of
quantifiable outcome measurement is significantly reduced. The project
enters "the impracticable domain™ and the chance of collapse increases if
we attempt any further compression. The PNR curve also shows that to =
2tqis the least expensive delivery choice. The implication is that postponing
project completion can drastically lower expenses. Of course, this needs to
be compared to the lost revenue caused by the obstruction.

The S/W formulation, obtained from through PNR curve, illustrates
extremely unpredictable and irregular association between the amount of
time required to accomplish a task chronologically & the amount of labour
put into it. The following equation relates effort and development time to
the supplied lines of code (source statements), L:

L=PxE"H"

where P is a productivity measure that reflects a number of elements that contribute to
high-quality software engineering work (average values for P vary between 2000 and
12,000), E is development effort in person-months, and t is the project duration in calendar

months.

The above S/W formulation can be rearranged to yield an objective function
and a mathematical formulation for enhancement endeavour E:

Project Scheduling

79

Software Engineering

80

In above scenario t implies development period in terms of years and E is
the endeavour put forth during a course of the software development and
maintenance life cycle. By including a encumber labour cost component
($/person-year), the formulation for enhancement endeavour and cost will
be connected.

This produces some intriguing outcomes. Assume a challenging real-time
S/W task that would require 12 person-years and 33,000 LOC. The project
can be finished in roughly 1.3 years if the project team consists of eight
persons. The grater uncertain and unpredictable character of the systeml
stated in the aforementioned formulation, however, results in:

LZE

E=——=
Pt*

~ 3.8 person-years

This suggests that we can lower the number of participants from eight to
four by delaying the finish date by six months! The veracity of these results
is debatable, but it is evident that using fewer people for a little bit longer
to achieve the same goal can be advantageous.

6.4 EFFORT DISTRIBUTION

The work units (such as person-months) necessary to finish software
development are estimated using each of the software project estimation
approaches. The 40-20-40 rule is a recommended way to distribute effort
throughout the software development lifecycle. The front-end analysis and
design portion of the project receives 40% of the total effort. Back-end
testing uses a comparable percentage. You are correct to assume that
deemphasis on code development (20% of work) is present.

Only use this effort distribution as a general reference. The distribution of
work is determined by the specifics of each project. Unless the plan commits
an organisation to significant expenditures with high risk, work put into
project planning rarely accounts for more than 2 to 3 percent of effort. 10 to
25% of the project effort may be devoted to customer interaction and
requirements analysis. The amount of effort put into analysis or prototyping
should grow in direct proportion to the size and complexity of the project.
Typically, software design requires 20 to 25 percent of the labour. You must
also take into account the time needed for design review and future
iterations.

The work put into software design should make it reasonably easy for code
to follow. It is possible to attain a range of 15 to 20 percent of total effort.
Debugging after testing might take up to 40% of the time spent developing
software. The quantity of testing necessary is frequently determined by the
software's criticality. Even higher percentages are normal if software is
human graded, meaning that failure of the software could lead to fatalities.

6.5 TIME-LINE CHARTS

The work breakdown structure is the first collection of tasks you use to start
a software project schedule. The work breakdown is entered as a task
network or task outline if automated technologies are employed. Next, each
task's effort, duration, and start date are entered. Tasks may also be
delegated to particular people.

A time-line chart, often known as a Gantt chart, is produced as a result of
this input. For the entire project, a timeline chart can be created. As an
alternative, distinct flowcharts can be created for each project function or
for each person involved.

The structure of a time-line chart is shown in Figure 2. It shows a section of
a software project schedule that places emphasis on the work of concept
scoping for a word-processing (WP) software application. The left-hand
column contains a list of all project tasks (for concept scoping). The
horizontal bars show how long each activity took. Task concurrency is
implied when multiple bars appear on the calendar at the same time.
Milestones are marked with diamonds.

Work tasks Week 1 Week 2 Week 3 Week 4 Week 5

.11 Identify needs and benefits |

Meat with ristimars

Identify needs and project constraints 1
Establish producr staternent |
Milestone: Product statement defined
1.1.2 Define desired output/contral /input [OCI)
Scope keyboord funcfions I
Scope voice Input functions
Scope modes of interaction
Srnpe decumant dingnosis |='=1—
Scopa othar WP funclions
Document OC|
FTR: Review OCl with customer
Revise OCI as required
Milastona: (W1 dafinard #
1.1.3 Define the function/behavior
Define keyboord functions
Define voice input functions
Describe modes of interaction
Describe spall/grammar chack
Describe other WF funchons
FTR: Review OC| definition with customer
Raviza as roquired
Milastone: OCI definition complate
1.1.4 |sclation software elements
Milestone: Software elements defined
I.1.5 Research availability of exisfing software
Research text editing companents -
Research voice input companents
Research file manogement components
Research spell/grammar check zampanants
Milestone: Reusable components identified
1.1.6 Define technical feasibility
Evaluate voice input
Evaluate grammar checking
Milestone: Technical feasibility assessed
1.1.7 Make quick estimate of size
I.1.8 Create a scope definifion |

I 1T Gl
-
ol 1]

-

Milestone: Scope document complefe

Revierw s ducunmnl wilh cuslome
Ravise decument as required ﬁ

Figure 2: An example time-line chart

The majority of software project scheduling tools create project tables, a
tabular listing of all project tasks, their planned and actual start and end
dates, and various related information, once the data required for the
creation of a time-line chart has been provided (Figure 3). You may monitor
development by using project tables in conjunction with the timeline
graphic.

Project Scheduling

81

Software Engineering

82

Plonned | Actual | Plonned | Actunl | Assigned| Effort
‘Work rasks start start |complete |complete | person |allocated Motes

L1 kdentily nesds und Lenelils Seuping will

Meet with customers wkl, dl wkl, dl wkl, d2 wkl, d2 BLS 2pd require more

Identify needs and project consiraints wkl, d2 | wkl, d2 | wkl,d2 |wkl,d2 |JFP 1pd affort/time

Establish product statement wkl, d3 wkl, d3 wkl, d3 wil, d3 BLS/ PP 1pd

Milestone: Product statemant defined wkl, d3 | wkl, d3 | wkl, d3 wkl, d3
1.1.2 Define desired cutput/contral finput (OCI)

Scope keyboard functions wkl, dd | wkl dd | wk2, d2 BLS 1.5pd

Scope voice mpurfuncrions wkl, d3 wkl, d3 wk2, d2 PR 2pd

Scope modes of inferaction wkZ, dl wk2, d3 MLL 1pd

Scope document diagnostics wk2, dl w2, d2 BLS 1.5pd

Scope other WP functions wkl, dd | wkl, dd | wk2, d3 Jrp 2pd

Document OCI wk2, dl wk2, d3 MLL ipd

FTR: Review OC| with customer wk2, d3 wk2, d3 all dpd

Revize OCl os required wk2, dd w2, dd all 3pd

Milestone: UL defined whki, db wiZ, di
1.1.3 Define the function/behavior

—
——-...—-..

Figure 3: An example project table

SUMMARY

The conclusion of a planning activity, which is a crucial part of software
project management, is scheduling. Scheduling provides the project
manager with a roadmap when used in conjunction with estimating
techniques and risk assessments.

Decomposing the process is the first step in scheduling. A suitable task set
is modified based on the project's characteristics and the work that has to be
done. Each engineering task, together with its dependence on other
activities and its anticipated length, is represented by a task network. The
critical route, a time-line chart, and other project data are computed using
the task network. You may monitor and manage each phase of the software
development process using the timetable as a reference.

LIST OF REFERENCES

1] Software Engineering, A Practitioner’s Approach, Roger S, Pressman
(2014).

2] Software Engineering, lan Sommerville, Pearson Education.

3] Fundamentals of Software Engineering, Fourth Edition, Rajib Mall,
PHI.

4] Software Engineering: Principles and Practices, Hans Van Vliet, John
Wiley & Sons.

5] A Concise Introduction to Software Engineering, Pankaj Jalote,
Springer.

UNIT END EXERCISES Project Scheduling

1] Explain the term project scheduling.
2] What are the basic principles involved in software project scheduling?

3] Explain the terms: Project compartmentalization, Interdependence
and time allocation.

4] Discuss the term validating effort associated with project scheduling.

5] What do you mean by Defined responsibilities, defined objectives and
defined milestones.

6] Write a note on relationship between people and effort.

7] With the help of suitable diagram explain the relationship between
effort and delivery time.

8] What do you mean by effort distribution?
9] What are time-line charts? Illustrate with suitable figure

o ke e ke ke ek

83

Software Engineering

84

RISK MANAGEMENT

Unit Structure :
7.0 Objectives

7.1 Introduction

7.2 Software Risks

7.3 Risk Identification

7.4 Risk Projection and Risk Refinement

7.5 RMMM Plan

Summary

List of References and Bibliography and further Reading

Model Questions

7.0 OBJECTIVE:

After going through this unit, you will be able to:
. Understand what Software Risk is?
. Define risk projection and risk refinement.

. Know about RMMM

7.1 INTRODUCTION:

Risk is a problem that could origin some loss or hover the progress of the
project, but which has not happened yet. These possible issues might harm
cost, schedule or technical attainment of the project and the quality of our
software device, or project team confidence. Risk Management is the
system of recognising addressing and abolishing these problems before they
can damage the project. We need to distinguish risks, as potential issues,
from the current problems of the project.

7.2 SOFTWARE RISKS

A software project can be alarmed with a large variety of risks. In order to
be proficient to systematically identify the substantial risks which might
affect a software project, it is necessary to classify risks into diverse classes.
The project manager can then check which risks from each class are
applicable to the project.

Software Risk Management is the process of identifying, evaluating, and
mitigating potential risks that may affect the success of a software
development project. The goal of software risk management is to reduce the
negative power of risks and to ensure that the project is delivered on time,
with the desired quality within budget and functionality.

There are three main classifications of risks which can affect a software
project:

1. Project risks
2. Technical risks
3. Business risks

7.2.1. Project risks: Project risks concern differ forms of resource,
schedule, budgetary, personnel, and customer-related problems. A vibrant
project risk is plan slippage. Since the software is intangible, it is very hard
to monitor and resistor a software project. It is always very tough to control
something which dismiss to be identified. For any engineering program,
such as the manufacturing of cars, the plan executive can identify the
product taking shape.

7.2.2. Technical risks: Technical risks apprehension potential method,
maintenance issue, testing, implementation, and interfacing. It also consists
of an uncertain specification, inadequate specification, altering
specification, technical ambiguity, and technical obsolescence. Most
technical risks look like due to the development team's inadequate
knowledge about the project.

7.2.3. Business risks: This type of risks (losing budgetary or personnel
commitments, etc.) cover risks of building an excellent product that no one
need.

7.2.4 Additional Risk categories:

a. Schedule Risks: These risks are associated to the timeline of the
project. This type covers potential for postponements or missed
deadlines.

b. Resource Risks: These risks are related to the obtainability and
sharing of resources, such as personnel, funding, or equipment.

c. Quality Risks: These risks are associated to the quality of the
software being developed, including the probable for bugs, security
weaknesses, or user experience issues.

d. Regulatory and Legal Risks: These risks are related to legal and
regulatory agreement issues, i.e. data privacy, intellectual property, or
export controls.

e. Identified risks: This type of risks can be exposed after careful
valuation of the project program, the business and technical

Risk Management

85

Software Engineering

86

environment in which the plan is being developed, and more reliable
data sources (for example impractical delivery date)

f. Expected risks: Those risks that are assumed from previous project
experience.

g. Unpredictable risks: These type of risks that can, and do occur, but
are tremendously tough to identify in advance.

7.2.5 Methods for Identifying Risks:
There are some methods to plan for risk management:

. Transfer the risk: This method comprises the risky element
developed by a third party, i.e. buying insurance cover, etc.

o Avoid the risk: This may take numerous ways such as discussing
with the client to change the requirements to decrease the scope of the
work. To give incentives to the resources to avoid the risk of human
resources throughput, etc.

o Risk decline: This means scheduling method to include the loss due
to risk. For example, if there is a risk that some key personnel might
leave, new recruitment can be planned.

It is significant for software development teams to recognize and evaluate
these risks, and to put justification strategies in place to minimize their
effect on the project. This can include contingency planning, regular risk
assessments, and risk management processes.

7.3 RISK IDENTIFICATION:

The first step in software risk management is to find probable risks that may
influence the project. This may include technical risks, schedule risks,
resource risks, quality risks, business risks, and legal and regulatory risks.
Actual risk management begins with detecting and assessing risks,
including vulnerabilities and potential threats, and arranging them based on
their potential impact and prospect.

Previously, there were no easy procedures available that will surely detect
all risks. But currently, there are some supplementary approaches available
for classifying risks. Some of approaches for risk identification are as
follows:

1. Checklist Analysis — Checklist Analysis is type of method generally
used to detect or find risks and manage it effectively. The
specification is basically developed by listing items, steps, or even
tasks and is then further examined against criteria to just classify and
determine if process is completed correctly or not. It is list of risk that
is just found to happen regularly in progress of software project.
Below is the list of software development risk by Barry Boehm-
modified version.

Risk

Risk Reduction Technique

Personnel Shortages

Various methods include training and career
development, job-matching, teambuilding, etc.

Unrealistic time and
cost estimates

Various techniques include incremental
development, standardization of methods,
recording, and analysis of the past project, etc.

Development of
wrong software
functions

Various techniques include formal specification
methods, user surveys, etc.

Development of the
wrong user interface

Various techniques include user involvement,
prototyping, etc.

Brainstorming — This procedure provides and gives free and exposed
methodology that usually increases each and every one on project
team to add. It also results in better sense of ownership of project risk,
and team usually committed to dealing risk for given time period of
project. It is creative and exclusive technique to gather risks freely by
team members. The team members identify and govern risks in ‘no
wrong answer’ atmosphere. This technique also delivers chance for
team members to always improve on each other’s ideas. This
technique is also used to define best possible solution to difficulties
and issue that rises and develop.

Casual Mapping — It is method that shapes or develops on replication
and review of failure factors in reason and result of the diagrams. It is
very useful for assisting learning with an organization or system
simply as method of project-post assessment. It is also crucial tool for
risk assessment.

4. SWOT Analysis — Strengths-Weaknesses-Opportunities-Threat

(SWOT) is very important and helpful technique for identifying risks
inside greater organization context. It is generally used as scheduling
tool for analysing business, its resources, and also its atmosphere
simply by looking at inside strengths and weaknesses, opportunities
and threats in outer environment. It is technique often used in
preparation of strategy. The suitable time and effort should be spent
on thinking completely about faults and threats of organization for
SWOT analysis to more effective and effective in risk identification.

Flowchart Method — This method permits for go-ahead process to be
diagrammatically denoted in paper. This method is generally used to
represent actions of process graphically and serially to simply identify
the risk.

Risk Management

87

Software Engineering

88

7.4 RISK PROJECTION AND RISK REFINEMENT

There are two essential steps in the course of software risk management -
Risk Projection and Risk Refinement.

Risk Projection contains historical data and expert conclusion to estimate
the prospect and impact of potential risks that may impact the software
development project. This helps to arrange the risks and to assign resources
and effort to address the most acute risks.

Risk Refinement involves apprising and refining the risk projections based
on new information, changing situations, and the implementation of risk
mitigation strategies. This helps to ensure that the risk management plan
remains significant and effective during the software development lifecycle.

Risk Refinement may include reviewing the possibility and impact of risks,
updating risk mitigation approaches, and re-evaluating the urgency of the
risks. It may also involve observing the implementation of the risk
management plan and gathering feedback from stakeholders to detect areas
for improvement.

Risk Projection and Risk Refinement are serious to the success of software
risk management because they support to ensure that the risk management
plan remains related and effective throughout the software development
lifecycle. By frequently updating and refining the risk managing plan,
organizations can better formulate for potential risks and reduce the
negative impact of risks on the project.

7.5 RMMM PLAN

RMMM (Risk Management, Monitoring, and Mitigation) Plan is a all-
inclusive plan that summaries the method for assessing, identifying, and
mitigating risks in software development projects. The RMMM plan helps
as a roadmap for managing risks during the software development lifecycle
and delivers a structured approach for certifying that risks are succeeded
efficiently.

The RMMM plan usually includes the below components:

7.5.1 Risk lIdentification: This component outlines the procedure for
identifying possible risks that may affect the software development project.
This may include technical risks, schedule risks, resource risks, quality
risks, business risks, and legal and regulatory risks.

7.5.2 Risk Assessment: This component shapes the process for evaluating
and analysing the identified risks to control their impact and likelihood. This
information is used to arrange the risks and to distribute resources and effort
to report the most critical risks.

7.5.3 Risk Mitigation: This component summaries the strategies and
arrangements to be taken to moderate the risks, such as decreasing the
likelihood of the risk happening or reducing the influence if it does occur.

This may include developing possibility plans, allocating further resources,
or altering the project method or schedule.

7.5.4 Risk Monitoring: This element plans the process for constantly
monitoring and revising the risks to ensure that they are being managed
excellently and to identify new risks as they rise. This may include regular
risk assessments, stakeholder communication, and risk management
reports.

7.5.5 Risk Evaluation: It supports the process for evaluating the RMMM
plan after the project is completed to regulate its effectiveness and to find
opportunities for improvement in upcoming projects.

The RMMM plan should be reviewed and restructured regularly during the
software development lifecycle to certify that it remains appropriate and
effective.

SUMMARY

Software development is an advanced activity that works a wide range of
technological developments. Every software development project
comprises elements of ambiguity due to these and other factors. The amount
of risk connected with each project activity governs the success of a
software development project. It is not enough to just be aware of the
threats. To achieve success, project management must assess, prioritize,
identify, and manage all foremost risks.

o Pressman, R. S. (2010). Software engineering: a practitioner's
approach (7th ed.). McGraw-Hill.

o ISO/IEC 12207:2017 - Information technology — Software life
cycle processes.

o IEEE Standard for Software Project Management Plans (IEEE 1058-
1998).

J Boehm, B. W. (1981). Software Engineering Economics. Prentice-
Hall.

o McConnell, S. (1996). Rapid Development: Taming Wild Software
Schedules. Microsoft Press

o De Marco, T. (2002). Slack: Getting Past Burnout, Busywork, and
the Myth of Total Efficiency. Broadway Business.

o Standish Group. (1994). Chaos report.

o Fink, A. L. (2002). Conducting literature reviews: From the Internet
to paper. Sage.

o Clark, B., & Gorsky, P. (2010). A practitioner's guide to software
risk management. John Wiley & Sons.

o Hazards, Risks and Disasters in Society. (2015). Butterworth-
Heinemann.

o https://www.geeksforgeeks.org/methods-for-identifying-risks/

Risk Management

89

Software Engineering

90

MODEL QUESTIONS:

J What is Software Risk? Explain different categories of Risks.

o How to identify Risk? Explain different techniques of risk

Identification.

J Explain Risk Projection and Risk Refinement

. Describe RMMM Plan in detail.

ke o o ke o e ke

SOFTWARE QUALITY ASSURANCE

Unit Structure :

8.0 Objectives

8.1 Introduction

8.2 Elements of SQA

8.3 SQA Tasks

8.4 Goals and Matrics

8.5 Formal Approaches to SQA

8.6 Six Sigma

8.7 Software reliability

8.8 The ISO 9000 Quality Standards
8.9 Capability Maturity Model
Summary

List of References and Bibliography and further Reading
Model Questions

8.0 OBJECTIVES

After going through this unit, you will be able to:

o Understand what Software Quality Assurance is?

) Understand about task and Matrix of SQA.

o Know about ISO 9000 Quality standards and CMM.
o Apprehend Six Sigma.

8.1 INTRODUCTION

Quality states to any measureable characteristics such as accuracy,
reliability, efficiency, maintainability, portability, testability, usability,
integrity, reusability, and interoperability.

Software quality assurance is a strategic and systematic plan of all actions
required to provide suitable confidence that an item or product conforms to
create technical requirements. A set of activities considered to calculate the
method by which the products are developed.

8.2 ELEMENTS OF SQA

Software quality assurance focus on the management of software quality
using following elements.

91

Software Engineering

92

o Standards: The ISO, IEEE and other standards groups have produced
a broad range of software engineering standards and associated
documents. Standards may be approved freely by a software
engineering. The job of SQA is to certify that standards that have been
approved are followed and that all effort products follow to them.

o Reviews and audits: Technical evaluations are a quality control
activity executed by software engineers for their intent is to expose
errors. Audits are a type of evaluation performed by SQA staffs with
the intent of certifying that quality strategies are being followed for
software engineering work.

o Testing: Software testing is a quality regulator function that has one
primary goal “to find errors”. The work of SQA is to certify that
testing is conducted correctly and efficiently.

. Error/defect collection and analysis: SQA collects and analyses
error and defect data to well understand how errors are familiarised
and what software engineering activities are best suited to abolishing
them.

o Change management: Change is one of the most unruly features of
any software project. If it is not properly succeeded, change can lead
to misunderstanding, and confusion practically leads to poor quality.

o Education: Every software organization wants to increase its
software engineering practices. A vital contributor to upgrading is
education of software engineers, their managers, and stakeholders.

. Security management: With the increase in cyber-crime and new
government guidelines regarding privacy, every software group
should institute policies that shelter data at all levels, establish firewall
security for Web Apps, and ensure that software has not been
damaged with internally.

. Safety: Because software is almost always a crucial component of
human graded system. SQA may be responsible for calculating the
impact of software failure and for originating those steps required to
reduce risk.

. Risk management: SQA organization confirms that risk
management actions are properly directed and that risk—related
exigency plans have been established.

8.2.1 There are two kinds of Quality:

Kinds of Quality

Y Y

Quality of Design Quality of conformance

Quality of Design: It refers to the characteristics that inventers
specify for an item. The status of materials, acceptances, and
performance provisions that all contribute to the quality of design.

Quality of conformance: This is the degree to which the design
specifications are followed during work. Greater the degree of
conformance, the higher is the level of quality of conformance.

Software Quality: Software Quality is distinct as the conformance to
clearly state functional and performance supplies, clearly documented
development standards, and natural characteristics that are projected
of all professionally developed software.

Quality Control: Quality Control comprises a series of inspections,
reviews, and tests used during the software process to certify each
work product meets the requirements place upon it. Quality control
consist of a feedback loop to the process that formed the work
product.

Quality Assurance: Quality Assurance is the anticipatory set of
activities that provide greater assurance that the project will be
completed successfully.

8.2.2 Importance of Quality

As we expect the quality to be a concern of all manufacturers of goods and
services. However, the distinct characteristics of software and in particular
its intangibility and complexity, make superior demands.

Growing criticality of software: The final customer or user is
naturally worried about the general quality of software, especially its
reliability. This is aggregate in the case as organizations become more
dependent on their computer systems and software is used more and
more in safety-critical areas.

The intangibility of software: This makes it stimulating to know that
a particular task in a project has been completed adequately. The
results of these tasks can be made concrete by demanding that the
developers produce 'deliverables’ that can be inspected for quality.

8.3 SQA TASKS

Software Quality Assurance (SQA) comprises a number of tasks that are
performed to confirm that software products meet the stated quality
standards and requirements. Some of the crucial SQA tasks include:

Quality Planning: This involves the development of a quality plan
that summaries the activities, processes, and procedures that will be
used to confirm software quality.

Software Quality Assurance

93

Software Engineering

94

Requirements Analysis: This includes the review and evaluation of
the software requirements to ensure that they are complete, accurate,
and steady.

Test Planning: This involves the improvement of a test plan that
outlines the testing activities, test cases, and test procedures that will
be used to verify that the software meets the identified requirements.

Test Case Design: This consist of the creation of test cases that are
used to validate that the software works as planned.

Test Execution: This involves the effecting of test cases to identify
flaws in the software.

Test Reporting: This implicates the documentation of test results and
the identification of defects that need to be determined.

Defect Resolution: This involves the purpose of defects identified
during testing and the execution of corrective actions.

Configuration Management: This involves the identification and
control of the software artifacts and structures to ensure that the
accurate versions are being used.

Process Evaluation: This involves the estimate of the software
development processes to ensure that they are actual and efficient.

Process Improvement: This involves the implementation of
continuous improvement events to enhance software excellence over
time.

Audits: This involves the free review of software processes to
confirm that they adapt to the specified quality standards.

Metrics Collection and Analysis: Involves the collection and
exploration of software quality data to recognize areas for
improvement.

8.4 - GOALS AND MATRICS

Following table shows Software quality goals, attributes, and metrics:

Goal Attribute Metric
Requirement | Ambigully Number of ambiguous modifiers
quality (e.., many, large, human-—
friendly)
Totality Number of TBA, TBD
Understandability | Number of sections/subsections
Volatility Number of changes per
requirement Time (by activity)
when change is requested
Traceability Number of requirements not
traceable to design/code

Model clarity

Number of UML models

Number of descriptive pages per
model

Number of UML errors

Design Architectural Existence of architectural model
quality integrity Number of components that trace
Component to architectural model
completeness Complexity of procedural design
Interface Average number of pick to get to
complexity a typical function or content
Patterns Layout appropriateness
Number of patterns used
Code quality | Complexity Cyclomatic complexity
Maintainability Design factors (Chapter 8)
Understandability | Percent internal comments
Reusability Variable naming conventions
Documentation Percent reused components
Readability index
QC Resource allocation | Staff hour percentage per activity

effectiveness

Completion rate Actual vs. budgeted completion

time

Review

effectiveness See review metrics

Testing Number of errors found and
effectiveness criticality

Effort required to correct an error
Origin of error

8.5 - FORMAL APPROACHES TO SQA:

There are several formal approaches to Software Quality Assurance (SQA)
that organizations can use to ensure the delivery of high-quality software
products. Some of the most commonly used formal approaches include:

ISO/IEC 15504 (SPICE)

CMMI (Capability Maturity Model Integration)

ITIL (Information Technology Infrastructure Library)
Six Sigma

Agile Methods

Each of these formal approaches to SQA has its own strong point and faults,
and organizations can choose the method that best fits their necessities
based on the size and complexity of their software projects and their overall

Software Quality Assurance

95

Software Engineering

96

organizational culture and goals. By using a formal method to SQA,
organizations can certify that their software development procedures are
well-defined, effective, and efficient, and that they distribute high-quality
software products to their customers.

8.6 - SIXSIGMA

Six Sigma is the procedure of improving the quality of the production by
identifying and eliminating the cause of faults and reduce variability. The
maturity of a manufacturing process can be defined by a sigma rating
indicating its percentage of defect-free products it creates.

8.6.1 Characteristics of Six Sigma

The Characteristics of Six Sigma are as follows:

© 0k~ DR

Statistical Quality Control
Methodical Approach

Fact and Data-Based Approach

Project and Objective-Based Focus

Customer Focus

Teamwork Method to Quality Management

8.6.2 Six Sigma Methodologies

Six Sigma projects carries two project methodologies:

1.
2.
1.

DMAIC
DMADV
DMAIC

It states a data-driven quality strategy for enlightening processes. This
methodology is used to enhance an existing business process.

The DMAIC project methodology has five phases:

1.

Define: It covers the process plotting and flow-charting, project
approval development, problem-solving tools.

Measure: It includes the principles of measurement,
continuous and discrete data, and scales of measurement, an
outline of the principle of variations and repeatability and
reproducibility (RR) studies for continuous and discrete data.

Analyze: It covers creating a process baseline, how to
determine process improvement goals, knowledge discovery,
including descriptive and exploratory data analysis and data
mining tools, the basic principle of Statistical Process Control
(SPC), specialized control charts, process capability analysis,

correlation and regression analysis, analysis of categorical data, software Quality Assurance
and non-parametric statistical methods.

4. Improve: It covers project management, risk assessment,
process simulation, and design of experiments (DOE), robust
design concepts, and process optimization.

5. Control: It covers process control planning, using SPC for
operational control and PRE-Control.

2. DMADV

I t specifies a data-driven quality approach for designing products and
processes. This method is used to generate new product designs or
process designs in such a way that it results in a more expectable,
mature, and discover free performance.

The DMADYV project methodology has five phases:
1. Define: The problem or project goal that needs to be addressed.

2. Measure: It measures and defines the customer's needs and
provisions.

3. Analyze: It analyses the method to meet customer needs.
4. Design: It can design a procedure that will meet customer needs.

5. Verify: It can verify the design presentation and ability to meet
customer needs.

8.7 SOFTWARE RELIABILITY

Software Reliability means Operational reliability. It described as the
capability of a system or component to accomplish its required functions
under static conditions for a specific period.

Software reliability is also defined as the prospect that a software system
fulfils its assigned task in a given atmosphere for a predefined number of
input cases, assuming that the hardware and the input are free of error.

Software Reliability is a necessary connect of software quality, composed
with functionality, usability, performance, serviceability, capability, install
ability, maintainability, and documentation. It is hard to achieve because the
complexity of software turn to be high. While any system with a high degree
of complexity, containing software, will be hard to reach a certain level of
consistency, system developers tend to push complexity into the software
layer, with the speedy growth of system size and ease of doing so by
advancement the software.

97

Software Engineering

98

8.8 THE ISO 9000 QUALITY STANDARDS

ISO (International Standards Organization) is a group or consortium of 63
countries established to plan and fosters standardization. ISO declared its
9000 series of standards in 1987. It serves as a reference for the contract
between independent parties. The ISO 9000 standard determines the
guidelines for maintaining a quality system. The 1SO standard mainly
addresses operational methods and organizational methods such as
responsibilities, reporting, etc. 1ISO 9000 defines a set of guidelines for the
production process and is not directly concerned about the product itself.

8.8.1-Types of 1ISO 9000 Quality Standards

The 1SO 9000 series of standards is based on the hypothesis that if a proper
stage is followed for production, then good quality products are bound to
follow spontaneously. The types of industries to which the various 1SO
standards apply are as follows.

1. I1SO 9001: This standard relates to the organizations involved in
design, development, production, and servicing of goods. This is the
standard that applies to most software development organizations.

2. 1SO 9002: This standard applies to those organizations which do not
design products but are only involved in the production. Therefore,
ISO 9002 does not apply to software development organizations.

3. 1SO 9003: This standard applies to organizations that are involved
only in the installation and testing of the products. For example, Gas
companies.

8.8.2 Steps to get 1SO 9000 Certification:

An organization decides to obtain 1ISO 9000 certification applies to 1SO
registrar office for registration. The process involves of the following
stages:

Application -> Pre-Assessment -> Document review and Adequacy of
Audit -> Compliance Audit -> Registration-> Continued Inspection.

8.9 CAPABILITY MATURITY MODEL

The Software Engineering Institute (SEI) Capability Maturity Model
(CMM) states an increasing strings of levels of a software development
business. The higher the level, the improved the software development
process, therefore reaching each level is a costly and time-consuming
method.

8.9.1 Levels of CMM Software Quality Assurance

(5) Optimization

Defect Prevention
Test Process Optimization
Quality Control

(4) Measured

Test Measurement
So ftware Quality Evaluation
Advanced Peer Reviews

(3) Defined

Test Organization
Test Lifecycle and Integration
Non-functional Testing

(PARVEGET-CL|

TestPlanning
Test Monitoring and Control

/> Test Environment
(1) Initial

. Level 1: Initial - The software process is considered as unpredictable,
and irregularly even disordered. Defined processes and standard
practices that exist are unrestricted during a crunch. Success of the
organization majorly be determined by on an individual effort. The
heroes finally move on to other organizations taking their prosperity
of knowledge or lessons learnt with them.

. Level 2: Repeatable - This level of Software Development
Organization has a basic and steady project management procedures
to track cost, schedule, and functionality. The process is in place to
repeat the earlier achievements on projects with similar applications.

. Level 3: Defined - The software process for both management and
engineering actions are documented, standardized, and integrated into
a usual software process for the entire organization and all projects
crosswise the organization use an approved, custom-made version of
the organization's typical software process for developing, testing and
maintaining the application.

. Level 4: Managed - Management can efficiently control the software
development effort using specific measurements. At this level,
organization set a quantifiable quality objective for both software
process and software maintenance.

. Level Five: Optimizing - The Main characteristic of this level is
fixing on continually improving process performance through both
incremental and inventive technological improvements.

SUMMARY

Software Quality Assurance (SQA) is a set of activities for certifying
quality in software engineering procedures. It ensures that developed 99

Software Engineering

100

software happens and fulfils with the defined or standardized quality
provisions. SQA is an ongoing process within the Software Development
Life Cycle (SDLC) that regularly checks the developed software to confirm
it meets the anticipated quality measures.

LIST OF REFERENCES AND BIBLIOGRAPHY AND
FURTHER READING:

o https://www.javatpoint.com/six-sigma

o https://www.computersprofessor.com/2017/09/sqa-tasks-goals-
attributes-and-metrics.html

MODEL QUESTIONS

. What is the purpose of Software Quality Assurance?

o What are the elements of a SQA process?

o What are some common SQA activities and tasks?

) What is the role of metrics in SQA?

. What is the purpose of software quality standards (e.g., ISO 9001)?

. What is the Capability Maturity Model (CMM), and how is it used
in SQA?

. What is the difference between verification and validation in the
context of SQA?

o What is the purpose of software reliability engineering, and how
does it relate to SQA?

ke o ok ke o e ke

SOFTWARE TESTING

Unit Structure :

9.0 Objectives

9.1 Introduction

9.2 Verification and Validation

9.3 Introduction to Testing

9.4 Testing Principles,

9.5 Testing Objectives

9.6 Test Oracles

9.7 Levels of Testing

9.8 White-Box Testing/Structural Testing
9.9 Functional/Black-Box Testing

9.10 TestPlan

9.11 Test-Case Design

Summary

List of References and Bibliography and further Reading
Model Questions

9.0 OBJECTIVES

After going through this unit, students will be able to:

o Study fundamental concepts in software testing.
o Understand different levels and types of software testing.

. Understand the distinctions between software verification and
software validation.

9.1 INTRODUCTION

Software testing is not anything but an art of examining software to ensure
that its quality under test is in line with the requirement of the client.
Software testing is carried out in an organized manner with the resolved of
finding defects in a system. It is required for evaluating the system.

Software testing is now a very major and essential part of software
development. Ideally, it is best to introduce software testing in every
segment of software development life cycle. Actually, a common of
software development time is now spent on testing.

101

Software Engineering

102

Attitude

Technical
understanding

and analytical Productivity
skills U
N 4

Passionfor ——\ Software L—— Communication

testing o tester N— skills

9.2 VERIFICATION AND VALIDATION

Verification and validation are important concepts in software testing.

Verification refers to the process of calculating the software design and
implementation to regulate whether it meets the listed requirements.
Verification is a anticipatory process that aims to identify any defects and
errors early in the software development lifecycle, before they become more
tough and costly to fix. Verification activities include activities such as code
assessments, design reviews, walkthroughs, and static analysis.

On the other hand, Validation, is the process of estimating the software
during or at the end of the development process to regulate whether it
satisfies the specified requirements. Validation is a remedial process that
aims to identify defects and errors that may have been hosted during the
implementation phase. Different types of Validation activities include unit
testing, integration testing, system testing, and acceptance testing.

It's important to note that verification and validation are balancing processes
and both are essential to ensure software quality. Verification helps to
identify possible defects and errors early in the development process,
whereas validation helps to identify faults and errors that may have been
introduced later in the method. Effective verification and validation help to
confirm that software meets the specified requirements, is free of faults and
errors, and is suitable for its intended purpose.

9.3 INTRODUCTION TO TESTING

Testing is an important part of the software development process. It is the
process of calculating a software system or its components with the
determined to identify any defects or errors and to consider its functionality.
The primary goal of testing is to ensure that the software meets the specified
requirements and works as anticipated.

The choice of testing methods and techniques will depend on the specific
needs and purposes of the software project, as well as the development
methodology being used.

Effective testing involves a thorough understanding of the software
requirements, as well as the development and testing methods. It's also
important to develop a well-designed test plan, comprising a clear definition
of the testing objectives, testing methods, and estimated outcomes.
Effective testing is essential to ensure software quality and to minimize the
risk of defects and errors in the final product.

Testing can be performed with the use of automated testing tools or
manually. Automated testing can increase the proficiency and accuracy of
the testing process, but it also requires a important investment of time and
resources to develop and maintain.

9.4 TESTING PRINCIPLES

There are some principles that form the base of effective software testing:

. Early Testing: Testing should start early in the software development
lifecycle and continue all over the process. This helps to identify defects and
errors timely, when they are easier and less costly to fix.

o Defect Prevention: The focus should be on defect prevention rather than
defect detection. This can be achieved by using proven software
development methodologies, following best practices for software design
and coding, and performing regular code reviews and walkthroughs.

° Testing Throughout the Development Life Cycle: Testing should be
performed at all stages of the development life cycle, from requirements
gathering and design through to implementation, testing, and deployment.

° Test Planning and Design: A well-designed test plan is essential for
effective testing. The test plan should include a clear definition of the testing
objectives, testing methods, and expected outcomes.

o Independent Testing: Testing should be performed by an independent team
or individuals to ensure objectivity and to minimize the risk of bias.

. Test-Driven Development: Tests should be developed and executed before
the implementation of the software components. This helps to ensure that
the software meets the specified requirements and reduces the risk of
defects.

. Automation: Automated testing can be an effective way to increase the
efficiency and accuracy of the testing process. However, it's important to
use automation appropriately and not rely solely on automated testing
methods.

. Continuous Testing: Testing should be an ongoing process, not a one-time
event. Continuous testing helps to ensure that changes to the software are
tested and validated throughout the development life cycle.

In summary, these principles provide a framework for effective software
testing and help to ensure that the software meets the specified
requirements, is free of defects and errors, and is fit for its intended
purpose.

Software Testing

103

Software Engineering

104

9.5 TESTING OBJECTIVES

The objectives of software testing can vary depending on the specific
needs of a software project. However, some common testing objectives
include:

Verifying requirements: Ensure that the software meets the detailed
requirements and works as intended.

Finding defects: Identify and separate defects and errors in the software.

Improving quality: Improve the overall quality of the software by
recognizing and fixing defects and successful the design and
implementation.

Increasing confidence: Increase confidence in the software by providing
evidence that it meets the specified requirements and works as intended.

Evaluating risk: Evaluate the potential risk associated with the software,
including the risk of defects and the risk of security vulnerabilities.

Demonstrating compliance: Demonstrate compliance with regulatory and
industry standards, such as 1SO 9001 or PCI DSS.

Improving reliability: Improve the reliability of the software by reducing
the frequency and severity of defects and errors.

Improving performance: Improve the performance of the software by
identifying and fixing performance bottlenecks and optimizing resource
utilization.

Supporting maintenance: Support ongoing software maintenance by
providing information about the software's behavior and performance.

In summary, the objectives of software testing are to ensure that the
software meets the specified requirements, works as intended, and is of high
quality. Testing also helps to minimize the risk of defects and errors,
improve performance, and support ongoing software maintenance.

9.6 TEST ORACLES

It is a mechanism, different from the program itself, that can be used to test the
accuracy of a program’s output for test cases. Conceptually, we can consider
testing a process in which test cases are given for testing and the program under
test. The output of the two then compares to determine whether the program
behaves correctly for test cases. This is shown in figure.

Software

Under
Tesiing

Resulis of Testing
Test Cazes —

Test
Oracle

Figure - Testing and Test Oracles

Testing oracles are required for testing. Ideally, we want an automated oracle,
which always gives the correct answer. However, often oracles are human beings,
who mostly calculate by hand what the output of the program should be. As it is
often very difficult to determine whether the behavior corresponds to the expected
behavior, our “human deities” may make mistakes. Consequently, when there is a
discrepancy, between the program and the result, we must verify the result
produced by the oracle before declaring that there is a defect in the result.

The human oracles typically use the program’s specifications to decide what the
correct behavior of the program should be. To help oracle determine the correct
behavior, it is important that the behavior of the system or component is explicitly
specified and the specification itself be error-free. In other words, actually specify
the true and correct behavior.

There are some systems where oracles are automatically generated from the
specifications of programs or modules. With such oracles, we are assured that the
output of the oracle conforms to the specifications. However, even this approach
does not solve all our problems, as there is a possibility of errors in specifications.

As aresult, a divine generated from the specifications will correct the result if the
specifications are correct, and this specification will not be reliable in case of
errors. In addition, systems that generate oracles from specifications require formal
specifications, which are often not generated during design.

9.7 LEVELS OF TESTING

Testing can be divided into several levels, each of which serves a specific
purpose and focuses on different aspects of the software. It is an important
process in software development that helps ensure the quality and
trustworthiness of a software product. Some most common levels of testing
are as follows:

o Unit Testing: This is the first level of testing and involves testing individual
components or units of code to ensure that each one functions as proposed.
Unit tests are typically automated and are performed by developers.

° Integration Testing: This level of testing focuses on testing the interactions
between different components or units of code. Integration testing helps to
identify any issues that may arise from the integration of individual
components.

. System Testing: System testing focuses on testing the entire software
system as a whole, to ensure that it meets the specified requirements and
behaves as expected. This level of testing may include functional testing,
performance testing, and security testing.

. User Acceptance Testing (UAT): User Acceptance Testing is the final
stage of testing, in which the software is tested by end-users or customers.
The purpose of UAT is to ensure that the software meets the business
requirements and satisfies the needs of the customers.

. Performance Testing: Performance testing is a type of testing that focuses
on measuring the performance and scalability of a software system under
different conditions, such as heavy load or high traffic. The goal of
performance testing is to identify and resolve performance bottlenecks and
ensure that the system can meet the expected performance requirements.

Software Testing

105

Software Engineering

106

. Security Testing: Security testing is a type of testing that focuses on
identifying and mitigating security vulnerabilities and threats in a software
system. This level of testing includes vulnerability scans, penetration
testing, and security assessments.

These levels of testing can be performed at different times during the
software development lifecycle, and the exact testing process will depend
on the specific requirements and constraints of the software project.
However, it is generally recommended to perform testing at each level to
ensure the quality and reliability of the final product.

9.8 WHITE-BOX TESTING/STRUCTURAL TESTING

Structural testing also known as White box testing, or code-based testing, is
a type of software testing that emphases on the internal structure and design
of a software program. It involves testing the individual components,
functions, and modules of the code, as well as their collaborations with each
other.

The goal of white box testing is to identify and correct any errors, bugs, or
other issues in the code, and to ensure that it meets the specified
requirements and design specifications. White box testing is often
performed by developers and requires a detailed understanding of the code
and how it works.

During white box testing, the tester has access to the source code and can
test it at a low level, such as checking for proper syntax, data flow, and
control flow. This type of testing is also used to validate the implementation
of algorithms and data structures, as well as to test error handling and
exception management.

White box testing complements other types of testing, such as black box
testing and gray box testing, and is typically performed early in the software
development lifecycle, before the software is released to the end-users. It is
an important part of the software development process, as it helps to identify
and resolve problems in the code, and ensures that the software is of high
quality and reliable.

9.9 FUNCTIONAL/BLACK-BOX TESTING

Functional testing, also known as black box testing, is a type of software
testing that focuses on verifying that the software meets the functional
requirements and behaves as expected. Unlike white box testing, which
focuses on the internal structure of the code, functional testing is performed
from the perspective of an end-user, and does not require access to the
source code.

The goal of functional testing is to validate the functionality of the software,
including its inputs, outputs, and behavior. This type of testing focuses on
testing the software's features and functions, and verifying that they work
as intended.

Functional testing typically involves creating test cases and test scenarios
that simulate real-world scenarios and interactions with the software. This
can include manual testing, automated testing, or a combination of both.

Black box testing is performed at different stages of the software
development lifecycle, and can be used to test the software as a whole, or
individual components and functions. This type of testing is essential for
ensuring that the software meets the user requirements and behaves as
expected, and can help identify and resolve issues early in the development
process, before the software is released to end-users.

In summary, functional testing is a crucial part of the software development
process, and helps to ensure the quality and reliability of the software
product. By performing functional testing, developers can validate that the
software meets the specified requirements and behaves as expected, and can
identify and resolve issues before the software is released to the end-users.

9.10 TEST PLAN

A test plan is a document that outlines the testing strategy, approach, and
resources for a software project. It provides a roadmap for testing activities
and helps ensure that the testing process is consistent, comprehensive, and
aligned with the project requirements.

A typical test plan includes the following information:

o Introduction: A brief overview of the purpose and scope of the test
plan.

o Obijectives: The objectives of the testing process, such as verifying
that the software meets the functional requirements, verifying the
quality and reliability of the software, and identifying any issues or
defects in the software.

o Scope: The scope of the testing process, including the components
and functions that will be tested, and any areas or functionality that
will not be tested.

o Test approach: The approach and methodology for testing, including
the types of testing that will be performed (e.g., functional testing,
performance testing, security testing, etc.), the testing tools and
techniques that will be used, and the testing schedule.

o Test environment: The specifications and details of the testing
environment, including the hardware, software, and network
configurations, and the test data that will be used.

o Test cases: The test cases that will be used to verify the functionality
and behavior of the software, including the steps, inputs, expected
results, and pass/fail criteria.

Software Testing

107

Software Engineering

108

o Test schedule: The testing schedule, including the start and end dates,
the testing milestones, and the responsibilities of the testing team.

o Test resources: The resources required for testing, including the
testing tools, personnel, and budget.

o Risks and assumptions: A description of the risks associated with the
testing process and any assumptions that have been made.

o Approval: The approval process and sign-off criteria for the test plan.

The test plan is an important document that helps to ensure that the testing
process is well-planned, well-organized, and consistent with the project
requirements. It serves as a reference for the testing team and stakeholders,
and helps to ensure that the testing process is completed on time, within
budget, and with high quality.

9.11 TEST-CASE DESIGN

Test case design is the process of creating a set of tests to validate that the
software functions as intended. Test cases are used to verify the
functionality and behavior of the software, and to identify any issues or
defects in the software.

Test case design involves several steps:

o Identify requirements: Start by identifying the functional
requirements for the software and understanding what the software is
expected to do.

. Determine test conditions: Based on the requirements, determine the
conditions under which the software will be tested, such as different
inputs, scenarios, and edge cases.

. Design test cases: Based on the test conditions, design test cases that
will verify the functionality and behavior of the software. A test case
should include a clear and concise description of the test steps, inputs,
expected results, and pass/fail criteria.

o Prioritize test cases: Prioritize the test cases based on the risk and
impact of each test. High-priority test cases should be designed and
executed first, as they are more likely to uncover critical issues and
defects.

o Execute test cases: Execute the test cases to verify the functionality
and behavior of the software. Document the results and any issues or
defects that are identified.

o Update test cases: Update the test cases based on the results of the
testing, and make any necessary changes to the software. Repeat the
testing process until all the test cases have been executed and the
software meets the specified requirements.

Test case design is an iterative process that requires careful planning and Software Testing
organization. It is important to design test cases that are comprehensive,

effective, and efficient, and to prioritize the test cases based on the risk and

impact of each test. A well-designed set of test cases helps to ensure that

the software functions as intended and is of high quality and reliability.

SUMMARY

. Software testing is required to check the reliability of the software

. Software testing ensures that the system is free from any bug that
can cause any kind of failure

. Software testing ensures that the product is in line with the
requirement of the client

. It is required to make sure that the final product is user friendly

. At the end software is developed by a team of human developers all
having different viewpoints and approach. Even the smartest person
has the tendency to make an error. It is not possible to create
software with zero defects without incorporating software testing in
the development cycle.

. No matter how well the software design looks on paper, once the
development starts and you start testing the product you will find
lots of defects in the design.

You cannot achieve software quality without software testing. Even if
testers are not involved in actual coding, they should work closely with
developers to improve the quality of the code. For best results it is
important that software testing and coding should go hand in hand.

LIST OF REFERENCES AND BIBLIOGRAPHY AND
FURTHER READING

o "Software Testing: A Craftsman's Approach” by Paul Jorgensen

o "Effective Software Testing: 50 Specific Ways to Improve Your
Testing Process” by Elfriede Dustin, Thom Garrett, and Bernie Gauf

o "Introduction to Software Testing" by Paul Ammann and Jeff Offutt

o "Exploratory Software Testing: Tips, Tricks, Tours, and Techniques
to Guide Test Design™ by James A. Whittaker

o "Software Testing: An ISTQB-BCS Certified Tester Foundation
Guide" by Rex Black, et al.

109

Software Engineering

110

MODEL QUESTIONS

What is software testing and why is it important?

What are the different types of software testing?

What is the difference between white box testing and black box testing?
What is the purpose of test case design?

What is the difference between functional testing and non-functional
testing?

What is the importance of test planning in software testing?

What is the difference between verification and validation in software
testing?

What is the purpose of test automation and why is it important?
What is the difference between bug and defect in software testing?
What is the difference between static testing and dynamic testing?

What is the difference between acceptance testing and user acceptance
testing?

What is the importance of test documentation in software testing?

ke o ok ke o ol ke

	01 SE
	02 SE
	03 SE
	04 SE
	05 SE
	06 SE
	07 SE
	08 SE
	09 SE

