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1 

COMPLEX NUMBER AND FIELD 

Unit Structure: 

1.0 Objectives 

1.1 Introduction 

1.2 Basic concepts of Complex Number 

 1.2.1 Complex number: Definition and examples 

 1.2.2 Algebra of complex numbers 

 1.2.3 Conjugate, Modulus and Argument of a complex number 

 1.2.4 Graphical representation of a complex number 

 1.2.5 Representation of a Complex number 

 1.2.6 Square root of a complex number 

1.3  Numbers in python 

1.4  Abstracting over Field 

1.5  Playing with GF(2) 

1.6  Summary 

1.7  Reference for further reading 

1.0 OBJECTIVES 

After going to this chapter, you will be able to: 

• Understand the extension of real number system 

• Define i  

• Identify real and imaginary parts of a complex number 

• Evaluate square root of a complex number 

• Define Field. 

1.1 INTRODUCTION 

The concept of extension of the set of real numbers to the complex numbers 

was first necessitated by solution of such algebraic equations whose 

solutions could not be found in the set of real numbers and also to evaluate 

square root of a negative number. 

Complex numbers were introduced by Italian mathematician Gerolamo 

Cardano in 1545. Leonhard Euler was first to introduce the symbol ‘i‘ (iota) 

for the square root of ‘-1’ with the property i2 = -1. 
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Linear algebra using python 1.2 BASIC CONCEPTS OF COMPLEX NUMBER 

1.2.1 Complex number: Definition and examples 

Def: A number is in the form of ‘a+ib’ is called a complex number, where 

a and b are real numbers and i =√−1. 

ex. 2+3i, √2 + 7𝑖, 9 − √11 i 

Usually a complex number is denoted by Z. 

If Z = a+ib, then ‘a’ is called real part and ‘b’ is called imaginary part of the 

complex number Z and are denoted by Re(Z) and Im(Z) respectively. 

A complex number whose real part is equal to 0 is called an imaginary 

number. 

1.2.2 Algebra of complex numbers 

i.)  Equality of two complex numbers: 

 Two complex numbers Z1 = a1+ ib1 and Z2 = a2 + ib2 are equal iff a1 = 

a2 and b1 = b2. 

 i.e Re(Z1) = Re(Z2) and Im(Z1) = Im(Z2) 

ii.)  Addition of two complex numbers: 

 Let Z1 = a1 + ib1 and Z2 = a2 + ib2 are two complex numbers. Addition 

of Z1 and Z2 is denoted as Z1+Z2  and defined as Z1 + Z2 = (a1+a2) + i 

(b1+b2). 

 Example: Z1= 7+2i  and Z2= 2+5i then Z1+Z2= (7+2i) + (2+5i)=(7+2) 

+i(2+5) = 9+7i 

iii.)  Subtraction of two complex numbers: 

 Let Z1 = a1+ib1 and Z2 = a2+ib2 are two complex number. Subtraction 

of Z1 and Z2 is denoted as Z1-Z2 and is defined as Z1 - Z2 = (a1-a2) + i 

(b1-b2). 

 Example: Z1= 7+2i  and Z2= 2+5i then Z1 - Z2= (7+2i) - (2+5i) = (7-

2) +i(2-5) = 5+(-3)i 

iv.)  Multiplication of two complex numbers: 

 Let Z1 = a1+ib1 and Z2 = a2+ib2 are two complex number. 

Multiplication of Z1 and Z2 is denoted as Z1.Z2 and is defined as Z1 . 

Z2 = .( a1+ib1).(a2+ib2) 

 = (a1a2c+ ia1b2 + ib1a2 + i2b1b2) = (a1a2 + ia1b2 + ib1a2 + (-1)b1b2)        

(since i2=-1) 

 = (a1a2 - b1b2) + (a1b2 + b1a2)i 
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Complex Number and Field  Multiplicative Inverse of a complex number Z = a +ib 

 Z−1 or 1/Z is called the multiplicative inverse of a non-zero complex 

number Z if ZZ−1= 1. 

 ⇒ Z−1 = 
1

a+𝑖b
 = 

1

a+𝑖b
 * 

a−𝑖b

a−𝑖b
 = 

a−𝑖b

a2−b2  

v.)  Division of two complex numbers: 

 Let Z1 = a1+ib1 and Z2 = a2+ib2 are two complex number. Division of 

Z1 and Z2 is denoted as Z1/Z2 and is defined as 
Z1

Z2
= Z1*

1

Z2
 = 

a1a2+b1b2

a2
2+b2

2  

+ i 
a2b1−a1b2

a2
2+b2

2  

 Example:  Solve 
1−2𝑖

3+4𝑖
. 

 Sol. 
1−2𝑖

3+4𝑖
 = 

1+2𝑖

3+4𝑖
*

3−4𝑖

3−4𝑖
 = 

11−2𝑖

25
  

1.2.3 Conjugate, Modulus and Argument of a complex number 

Let Z = a+ib is a complex number.  

Conjugate: Its conjugate is denoted by Z̅  and is defined 𝑧̅ = a-ib. 

Example: if Z= -2 +3i then  Z̅ = -2 -3i. 

Modulus: The modulus(or Absolute value) of  Z is denoted by |Z| and 

defined as |𝑧|=√𝑎2 + 𝑏2 

Example: Z = 5+12i,  

|𝑧|=√𝑎2 + 𝑏2 = √52 + 122 = √25 + 144 = √169 = 13 

 Note: Modulus can’t be negative. We always take only positive value of 

square root. 

Argument: The argument(or Amplitude) of Z is denoted by arg(Z) or 

amp(Z) or ‘𝜃’ and is defined as    tan-1(
𝑏

𝑎
).   i.e. 𝜃 = tan-1(

b

a
) , when 

a > 0 and tan-1(
b

a
) + 𝜋, when a < 0. 

Example: Z = 1 + √3i, Then amp(Z) = tan-1(
√3

1
) = 

𝜋

3
. 

Principal argument: The principal argument of a complex number Z is 

Arg(Z) is equal to 

Arg(Z) = arg(Z) - 2 𝜋n 

Hence, the value of the principal argument of the complex numbers lies in 

the interval (-𝜋, 𝜋). 

1.2.4 Graphical representation of a complex number 

A complex number Z = a+ib can be represented in a co-ordinate system 

known as complex plane or argand plane. We consider real part of Z (i.e. 
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Linear algebra using python Re(Z)=a) on X-axis (real axis) and imaginary part of Z (i.e. Im(Z)=b) on Y-

axis (Imaginary axis). 

 

From the above diagram we have OAB is a triangle. 

OA= a units,   AB= b units then OZ=r=√𝑎2 + 𝑏2  and ‘ 𝜃  ‘ is the angle 

between X-axis and OZ. 

Cos 𝜃  =  
𝑎

𝑟
    ,     Sin 𝜃  =  

𝑏

𝑟
  then tan 𝜃 =

sin 𝜃

cos 𝜃
 =

(𝑏/𝑟)

(𝑎/𝑟)
=  

𝑏

𝑎
 

Then  𝜃 =tan-1⎸
𝑏

𝑎
⎹ 

1.2.5 Representation of a Complex number 

Cartesian form of a Complex number: 

Let Z = a+ib is a complex number. Then Z = (a, b) is the ordered pair 

representation or Cartesian form of complex number Z. 

Polar form of a complex number: 

Let Z = a+ib is a complex number. From the above diagram Cos 𝜃  =  
𝑎

𝑟
  and 

Sin 𝜃  =  
𝑏

𝑟
. 

a = r Cos𝜃 and     b = rSin 𝜃 

Substituting these values in Z, we get 

Z = a+ib= rCos𝜃 + irSin 𝜃 

Z = r(Cos 𝜃+i Sin 𝜃) is called POLAR FORM of a complex number Z. 

Exponential Form of a complex number: 

Let Z = a+ib is a complex number. Then Z = r ⦁𝑒𝑖𝜃 is called exponential 

form of Z, where r is modulus of Z and 𝜃 is amplitude of Z or amp(Z). 

Example: Let Z = 1+i,  

Cartesian Form of Z is (1, 1) 

Polar form of Z is √2(cos 
𝜋

4
 + isin 

𝜋

4
), where r = √2 and 𝜃 = 

𝜋

4
. 

Exponential form of Z is  √2⦁𝑒𝑖
𝜋

4 . 

 

O A 

B 

a 

b 
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Complex Number and Field 1.2.6 Square root of a complex number 

To find the square root of a complex number Z = a+ib, the following steps 

should be followed: 

Step I: Let A+iB = √(a + 𝑖b) 

Step II: Squaring both sides, (A + 𝑖B)2= a+ib 

⇒ (𝐴2 − 𝐵2) + 2AB i = a + ib 

Step III: Equating real and imaginary parts from both sides; 

(𝐴2 − 𝐵2) = a-----(i) and 2AB = b------(ii) 

Step IV: Solving equations (i) and (ii), get the value of A and B. 

Example: Find the square root of Z =3-4i  

Soln: Given Z = √3 − 4𝑖  

Let √3 − 4𝑖 = (a + ib) . 

Squaring on both sides,  

(√3 − 4𝑖)
2
=( a + ib)2  .     

3-4i = (a2-b2) + 2ab i 

Comparing real and imaginary parts on both the sides;    

a2-b2 = 3------(i)  and  2ab = -4--------(ii) 

⇒ b = 
−2

𝑎
 

Put the value of  b =   
−2

𝑎
 in a2-b2 = 3 we get,    a2- ( 

−2

𝑎
)2 = 3 

⇒a2 – (
4

𝑎2 ) = 3 

⇒a4 – 4 = 3a2  

⇒a4-3a2 = 4 

⇒a4 – 4a2 + a2 -4 =0 

⇒a2(a2-4)+1(a2-4)=0 

⇒ (a2+1)(a2-4)=0 

⇒ (a2+1)=0 or (a2-4)=0 

⇒a2 = -1 or  a2 = 4 

⇒a = ± i(Rejected, since a must be a real number)  or 

 a=±2 

if   a = 2 then  b= 
−2

𝑎
  =  

−2

2
 = -1 and  if  a= -2 then   b= 

−2

𝑎
  =  

−2

−2
 = 1. 

Therefore   √3 − 4𝑖  =  2-1i   or  -2+1i 
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Linear algebra using python 1.3 NUMBERS IN PYTHON 

In Python, there are three types of numeric. 

1. Int: Int is a whole number, positive or negative, without decimals, of 

unlimited length. 

2. Float: Float is a number, positive or negative, containing one or more 

decimals. 

3. Complex Number: Any complex number a + ib is written as a + bj in 

python. 

Variables of numeric types can be created by assigning a value to them. 

Example:  

x = 1    #int 

y = 2.8  #float 

Z = 2 + 1j   # complex number 

To verify the type of any object in Python, use the type() function. 

1.4 ABSTRACTING OVER FIELD 

Binary Operation: A binary operation ‘*’  is defined as a function of the 

product set AxA to A where for all a, b∈ A,  (a*b)  ∈ A. 

Field: Let F is nonempty set equipped with two binary operations called 

addition ‘+’  and multiplication ‘ ● '. Then the algebraic structure (F,+, ●) 

is a field if it satisfies the following postulates: 

1. Closure Law: a + b ∈ F , for all a,b ∈ F  

2. Associative Law: (a + b) + c = a + (b + c) , for all a, b, c ∈ F 

3. Existence of identity: There exists an element е in F such that a + e = 

e + a = a. 

4.  Existence of Inverse: For each a ∈ F, there exists -a ∈ F  

such that a +(-a) = (-a) + a = е   

5. Commutative Law: a +b = b + a for all a, b∈ F   

6. Multiplication is distributive with respect to addition  

 i.e. for all a, b ,c ∈ F   a●(b+c) = a ● b + a ● c  ( left distributive law) 

 and  (b+c) ● a= b ● a + b ● c  ( right distributive law) 

7. Multiplication composition is also commutative. i.e. a●b = b●a for all 

a, b∈ F 

8. There exists an element ‘1’ in F  such that 1● a = a = a ● 1  

for all a ∈ F 

9. Each none-Zero element possesses multiplicative inverse. 

 Example: The set R of real numbers is a field. 
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Complex Number and Field 1.5 PLAYING WITH GF(2): 

Galois Field also known as GF(2) is the smallest field consisting only two 

elements 0 and 1  being the additive and multiplicative identity respectively. 

The field addition in GF(2) is the logical XOR operation defined as 

 

 

 

And, the field multiplication in GF(2) is the logical AND operation 

defined as  

 

Example: 1●1+0●1+1●0+0●0+1●0 = 1 + 0 + 0 + 0 = 1 

And 1●0 + 0●1 + 1●1 + 1●1 = 0  + 0 + 1 + 1 = 0 

1.6 SUMMARY: 

From the definition of complex number, it is clear that any imaginary 

number is a complex number. We can also conclude that any real number 

is also a complex number. In Mathematics, Complex numbers are used to 

find the solutions of those equations whose roots cannot be found in real 

number set. Algebraic operations on complex numbers are given by 

addition, subtraction, multiplication and division. To plot a complex 

number, we use complex plane that consists a coordinate system in which 

horizontal axis represents real component and the vertical axis represents 

imaginary component. The square root of a complex number is also a 

complex number. 

1.7 REFERENCE FOR FURTHER READING: 

Linear algebra and its applications, Gilbert Strang, Cengage Learning, 

4th edition, 2007. 

Exercise 

1.  If Z1 = 5 -  12i and Z2 = 8 + 6i, Find the values of Z1 + Z2, Z1 - Z2, Z1 

* Z2, and Z1 / Z2. 

2.  Find the conjugate, modulus and argument of the following complex 

numbers: 

i.) 8 - 6i 

ii.) 5 +  12i 

iii.) 2i 

+ 0 1 

0 0 1 

1 1 0 

● 0 1 

0 0 0 

1 0 1 
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Linear algebra using python  

 

3.  Solve the following: 

i.) (1 + 7i)(2 - 3i)       

ii.) (√3 + 2i)( -2i -1)       

iii.) 
4+3𝑖

2−3𝑖
 

4.  Find the square roots of the following Complex numbers: 

i.) 7-24i 

ii.) 5+12i 

iii.) 4-3i 

5.  Solve in GF(2): 

i.) 1+1+0+1+1 

ii.) 1.1.1+0.1.1+1.1.1+0.0.0 

6.  Check whether the set of rational numbers and set of integers are Field 

or not. 

 

 
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VECTORS 

Unit Structure: 

2.0  Objectives 

2.1  Introduction 

2.2  Vectors are Functions 

2.3  Vector Addition and Scalar Multiplication 

 2.3.1 Vector Addition 

 2.3.2 Scalar-vector multiplication 

 2.3.3 Combining vector addition and scalar multiplication 

2.4  Dictionary based representation of vectors 

2.5  Dot Product 

2.6  Solving a triangular system of linear equations  

 2.6.1 Lower Triangular System 

 2.6.2 Upper Triangular System 

2.7  Linear Combination 

2.8  Span 

2.9  Geometry of set of vectors 

2.10  Vector Spaces 

2.11  Linear Systems-Homogeneous and otherwise 

2.12  Summary 

2.13  Reference for further reading 

2.0 OBJECTIVES 

After going to this chapter, you will be able to: 

• Define a scalar and a vector. 

• Distinguish between scalar and vector. 

• Perform addition, subtraction, and multiplication by scalar on 

vectors. 

• Represent a vector. 

• Define homogeneous and non-homogeneous system of linear 

equations and predict nature of solution. 

• Explain vector space 
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Linear algebra using python 2.1 INTRODUCTION 

A scalar is a quantity that has only magnitude. A vector is a quantity that 

has both magnitude and direction. We can represent a vector with a 

directed line segment. The arrow indicates the direction and the length is 

the magnitude of the vector. 

2.2 VECTORS ARE FUNCTIONS 

Vectors can be represented as a function. It is called a vector function. The 

domain of the vector function consists of one or more variables and 

returns a vector. A vector function of a single variable in R2 and R3 have 

the form, r(t) = <f(t), g(t)> and r(t) = <f(t), g(t), h(t)> respectively, where 

f(t), g(t) and h(t) are called the component functions. In general, a vector 

function of single variable in Rn has the form: 

v(t) = <f1(t), f2(t), f3(t), ….., fn(t)> where f1(t), f2(t), f3(t), ….., fn(t) are n-

components. 

The domain of a vector function is the subset of real numbers and set of all 

t’s for which all the component functions are defined. The range is a 

vector. 

2.3 VECTOR ADDITION AND SCALAR 

MULTIPLICATION 

2.3.1 Vector Addition:  

Vector addition is the operation of adding two or more vectors together. In 

Linear Algebra, vectors are given in their components form. Vector 

addition can be performed simply by adding the corresponding 

components of the vectors, so in Rn, if U and V are two vectors with n-

components U = (u1,u2,……..,un) and  V = (v1,v2,……..,vn) then,  

U + V = (u1+ v1, u2 + v2,……..,un + vn). 

Vector addition is possible if both the vectors have same number of 

components. 

2.3.2 Scalar-vector Multiplication:  

When a vector V is multiplied by a scalar quantity k, its magnitude 

becomes k-times of the original vector but the direction depends on the 

sign of k. If k is positive, then kV has the same direction of V, but if k is 

negative, kV has the opposite direction of V.  In linear Algebra, to 

multiply a vector V having components (v1,v2,……..,vn) by a scalar k 

means to multiply each component of the given vector by the scalar k.  

⇒ kV = k(v1,v2,……..,vn) = (kv1, kv2,…….., kvn) 
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Vectors 2.3.3 Combining vector addition and scalar multiplication:  

Vector addition and scalar multiplication simultaneously can be performed 

by following these steps: 

1. Complete the scalar multiplication first by multiplying each 

component of the vector V by the scalar k. 

2. Then, perform the vector addition by adding corresponding 

components of vectors that have been found after completing step 1. 

 Example: If u = (2, 3, -1) and v = (6, -3, -2), then find  

          (a.) (u + v)(b.) 2u + 3v   (c.)(u – v) 

 Solution: (a.) (u + v) = (2, 3,  -1) + (6, -3, -2) = (2 + 6, 3 + (-3), (-1) 

+ (-2)) = (8, 0, -3) 

 (b.) 2u + 3v = 2 (2, 3, -1) + 3(6, -3, -2) = (4, 6, -2) + (18, -9, -6)  

 = (4 + 18, 6 +(-9), (-2) + (-6)) = (22, -3, -8) 

 (c.) (u – v) = (2, 3,  -1) - (6, -3, -2) = (2 - 6, 3 - (-3), (-1) - (-2)) = (-4, 

6, 1) 

2.4 DICTIONARY BASED REPRESENTATION OF 

VECTORS 

A vector is a function from some domain D to a field. In Python, it can be 

represented by a dictionary. For this, define a Python class Vec with two 

variables f (the function represented by Python dictionary) and D(the 

domain of the function represented by a python set. 

class Vec: 

 def__init__(self, labels, function): 

  self.D = labels 

  self.f = function 

can create  

>>> Vec({‘A’, ‘B’, ‘C’}, {‘A’: 1}) 

Can assign an instance to a variable and subsequently access the two fields 

of v, 

>>> v = Vec({‘A’, ‘B’, ‘C’}, {‘A’: 1}) 

>>> for d in v.D: 

… if d in v.f: 

…  print(v.f[d]) 

… 
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Linear algebra using python 2.5 DOT PRODUCT 

The dot product of two vectors with n-components U = (u1,u2,……..,un) 

and  V = (v1,v2,……..,vn) is denoted as U.V and defined as U.V = (u1.v1 

+ u2. v2 + ……..+ un.vn). 

U.V is a scalar quantity and it follows commutative law of multiplication. 

That is, U.V = V.U 

Example 1; Find dot product of (1, 2) and (3, 4). 

Solution: Let U = (1, 2), V = (3, 4), then U.V = (1, 2)⦁(3, 4) = (1*3 + 2*4) 

= 11 

Example 2: The dot product of two vectors from R3 where u = (1, -1, 2) 

and v = (2, -3, 4). 

Solution: u . v = (1, -1, 2)⦁(2, -3, 4) = 1* 2 + (-1)*(-3) + 2*4 = 2 + 3 + 8 = 

13 

Example 3: Let u =11001 and v=10110 are two vectors over GF(2), find 

their dot product.  

Solution: u.v = (11001)⦁(10110) = (1*1 + 1*0 + 0*1 + 0*1 + 1*0) = (1 + 0 

+ 0 + 0 + 0) = 1. 

2.6 SOLVING A TRIANGULAR SYSTEM OF LINEAR 

EQUATIONS  

Consider the system of n linear equations: 

a11x1 + a12x2  + ……….+ a1nxn = K1------------------------(i) 

a21x1 + a22x2 +……….+ a2nxn = K2------------------------(ii) 

an1x1 + an2x2  +……….+ annxn = Kn------------------------(nth) 

Containing the n unknowns x1, x2…, xn. It is called a linear system of 

equations. The leading unknown in all equations is x1 and the leading co-

efficient of equations are a1, a2, …,  an respectively. 

2.6.1 Lower Triangular System: The linear system of equations is called 

lower triangular system of equations if leading unknown in all equations is 

x1 and the leading co-efficient of equation (i) is a11, leading co-efficient of 

equation(ii) is a21 and so on i.e the general form of triangular system of n 

linear equation having n unknown is 

a11 x1 = K1 

a21 x1 + a22x2  = K2 

. 

. 

. 

an1 x1 + an2 x2  +……….+ ann xn = Kn 
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Vectors The lower triangular system of equations can be solved by forward 

substitution method i.e First we have to calculate value of  𝑥1 by 1st  

equation. 

⇒ a11 xn = K1 

⇒ x1  =  
k1
a11

 

Then the value of x2 is obtained by putting the value of  x1 in 2nd  equation 

and then solving it. 

So, we proceed up to last equation where we can get value of xn by 

substituting the values of x1, x2, . . . . . . . . . . xn−1. 

2.6.2 Upper Triangular System: The linear system of equations is called 

upper triangular system of equations if leading unknown in the first 

equation is x1 , leading unknown in the second equation is x2, that of the 

third equation isx3,……..and so on .And the leading co-efficient of 

equation (i) is a11, leading co-efficient of equation(ii) is a22 and so on i.e 

the general form of triangular system of n linear equation having n 

unknown is 

𝑎11𝑥1+ 𝑎12𝑥2+ 𝑎13𝑥3+……..+ 𝑎1𝑛𝑥𝑛=K1 

a22x2+a23x3 +……….+a2nxn=K2 

a33x3 +……….+a3nxn=K3 

an n x n= K n 

The upper triangular system of equations can be solved by backward 

substitution method i.e First we have to calculate value of  xn by nth 

equation. 

 ⇒ ann xn = kn 

 ⇒ xn  =  
kn

ann
 

Then the value of xn−1 is obtained by putting the value of  xn in 2nd last 

equation and then solving it. 

So, we proceed up to first equation where we can get value of x1 by 

substituting the values of x2, x3, . . . . . . . . . . xn−1, xn. 

Example 1: 5 x1 =  15, 4x1  +  2x2  =  10, 3x1 + 5x2  +  2x3  = 18 

Solution: The given system is lower triangular system of linear equations 

having 3 unknowns. Hence by forward substitution method; 

5 x1 =  15⇒x1 = 
15

5
 = 3 
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Linear algebra using python By substituting value of x1 in equation (ii), 4*3 + 2x2 = 10 ⇒ x2 = -1 

Now replacing values of x1 and x2 in equation (iii), 3*3 + 5*(-1) + 2x3 = 

18⇒x3 = 7 

Example 2: x1 + 2x2  +  x3  =  8 

           3x2  +  4x3  =  18 

   7 x3 =  21 

Solution: The given system is upper triangular system of linear equations 

having 3 unknowns. Hence by backward substitution method; 

7 x3 =  21 ⇒ x3= 3 

Substitute the value of x3 in second equation we get, 

3x2  +  4x3  =  18 ⇒  x2  =  2 

Substituting   x2 and  x3 in first equation we get, 

x1 + 2x2  +  x3  =  8 ⇒  x1 =  1 

2.7 LINEAR COMBINATION 

Let v1,v2,……..,vn are n vectors, then the combination (∝1 v1 + ∝2 v2 
+……….+ ∝n vn) is called a linear combination of the vectors  v1 , 

v2,…….., vn where ∝1,∝2,……..,∝n ∈ F. 

It can be geometrically interpreted as  the vectors   v1 , v2,…….., vn will 

be added with each other after scaling by ∝1,∝2,……..,∝n times 

respectively. 

Example 1: Express W = (6, -2, 5) as a linear combination of  v1 =
(−2, 1, 3) and v2 = (3, 1, -1) and v3 = (-1, -2, 1). 

Solution: (6, -2, 5)  =  a1(-2, 1, 3) + a2 (3, 1, -1) +  a3(-1, -2, 1) 

  =  (-2 a1, a1, 3a1) +  (3a2 , a2 , −a2) +  (−a3 , −2a3 , a3) 

  =  -2 a1 + 3a2– a3 ,  a1 + a2−2a3,  3a1– a2  + a3 

Comparing respective components of both sides, we get 

  -2 a1 + 3a2– a3=  6   ---------(i) 

  a1 + a2−2a3=  -2  -----------(ii) 

  3a1– a2  + a3=  5  ------------(iii) 

Solving these equations by using Cramer’s rule or matrix method, we get  

a1=  9/5, a2= 23/5 and  a3 = 21/5 

⇒ (6, -2, 5) = 9/5(-2, 1, 3) + 23/5 (3, 1, -1) + 21/5 (-1, 2, 1).   
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Vectors Example 2: Express W=(4, 3) as a linear combination of v1=(2, 3) and  

v2 = (0, 1). 

Solution: (4, 3) = a1(2, 3) + a2 (0, 1) 

⇒ (4, 3) = (2a1, 3a1) + (0, a2) 

⇒ (4, 3) = (2a1, 3a1+ a2) 

Comparing respective components of both sides, we get 

2a1 = 4 ⇒a1 = 2 and 3a1+ a2 = 3 ⇒ -3 

⇒ (4, 3) = 2(2, 3) + (-3)(0, 1) 

2.8 SPAN 

The set of all linear combinations of finite sets of elements of S is called 

Linear Span of S and is denoted by L(S) or [S] 

 L(S) = { α1v1 + α2v2+. . . . . . . . . . . . . . +αnvn ∶ v1 , v2 , . . . . . . vn  ∈
S  α1 , α2 , . . . . . . . . . . αn ∈  F} 

Example 1: Find the Span of a subset S= {(1, 0, 0), (0, 1, 1)} of vector 

space V3. 

Solution: L(S)= { α1 (1,0,0)  + α2 (0,1,1)} 

       = { α1 ,0, 0)  + (0, α2, α2 )} 

       ={ ( α1 , α2, α2)} 

       ⇒ The linear span of the given subset of  v3 is the element of xyz-

plane, whose y and z co-ordinates are same. 

Example 2: Find the span of subset S={ (1, 3), (0, 2) } of vector space  V2 

show that (2,8) belongs to span S. 

Solution: L(S) = { α1 (1, 3)  + α2 (0, 2)} 

              = { (α1 , 3 α1) + (0, 2α2)}  = { ( α1 ,  3 α1 +  2α2)} 

If (2, 8) ∈ L(S) then   α1 =2 and   3 α1 +   2α2 = 8 ⇒ α2 = 1 

⇒(2, 8) = 2(1, 3) + 1(0, 2) 

Example 3: Show that the subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of V3 

spans the entire vector space V3. 

Solution: Let (a, b, c) ∈ V then (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) 

Thus (a, b, c) ∈ L(S). 

Hence the subset S span the entire vector space. 
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Linear algebra using python Example 4: v1 = (1, 0, 1) , v2  = (2, 1, 4), v3 = (1, 1, 3) do not span 

vector space. 

Solution: Let (a, b, c)  ∈ V and ( α1 , α2 , α3) ∈ F. 

And S = {(1, 0, 1), (2, 1, 4), (1, 1, 3)} 

(a, b, c) = α1 (1, 0, 1)  + α2 (2, 1, 4) + α3(1, 1, 3) 

(a, b, c) = (α1, 0 , α1) + ( 2α2,, α2 4α2) + ( α3, α3 , 3 α3) 

(a, b, c)= (α1 +  2α2 + α3  ,  α2+α3 , α1 + 4α2 +  3α3) 

a =  α1 +  2α2 + α3 –(i) 

b =    α2+α3 ---(ii) 

c =  α1 + 4α2 +  3α3---(iii) 

Solving (i) and (iii),  α2+α3 = 
c−a

2
  ⇒ 

c−a

2
 =  b   ⇒ c-a=2b 

⇒ the set S does not span the entire  v3, but it spans a subset of V whose 

co-ordinates (a, b, c) satisfy the relation a + 2b – c = 0. 

2.9 GEOMETRY OF SET OF VECTORS 

In geometry, vectors are represented by an arrow. The head of the arrow 

indicates its direction and length describes the magnitude of the vector. 

 

 

 

 

 

If we multiply a vector u by a scalar ∝, then the length of the vector 

stretches by the factor ∝. If ∝  is negative, then the direction of the vector 

will be reversed.  

 

If the vector u is added to vector v, then their sum is the new vector (u + v) 

that paints from the tail of u to the tip of v as shown: 

P Initial Point 

Q Terminal Point 
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Vectors 

 

The length or magnitude of an n-vector is defined as ||v|| = √v. v 

i.e if v = ( v1 , v2,…….., vn), then  ||v|| = √v1
2 + v2

2 + vn
2 = √∑ vi

2n
i=1  

The angle 𝜃 between two n-vectors is determined by u . v = ||u|| ||v||. cos 𝜃 

2.10 VECTOR SPACE 

Binary Composition: Binary composition is an operation of two elements 

of the set whose domains and co-domain are in the same set. 

The composition ‘*’ is called internal composition if a*b ∈ A, ∀a, b ∈ A 

and a*b is unique. 

The composition ‘o’ is called external If a o α ∈ V, for all a ∈ F and for 

all 𝛼 ∈ V and a o 𝛼 is unique. 

Vector Space:  Let V is a non-empty set equipped with two binary 

operations ‘ .’ (external composition) defined as scalar multiplication and  

‘+’ (internal composition)  defined as addition of vectors. Then V is called 

a Vector space over a field F if it satisfies the following postulates: 

i.) Closure Law: (∝ +𝛽) ∈ 𝑉: 𝑓𝑜𝑟 𝑎𝑙𝑙 ∝, 𝛽𝜖𝑉  

ii.) Associative Law: (∝ +𝛽) + 𝛾 =∝ +(𝛽 + 𝛾)  

iii.) Existence of Identity: There exists an element  е𝜖 V such that ∝ + е 
= е + ∝ = ∝. 

iv.) Existence of Inverse: For each element ∝∈ 𝑉, there exist an element  

𝛽 such that 

  (∝ +𝛽) = (𝛽+∝) = e 

v.) Commutative Law:  (∝ +𝛽) = (𝛽+∝) 

vi.) (Closure law with respect to scalar multiplication): a ∝∈ V for all 

a ∈ F and for all ∝ ∈ V 

vii.) a (∝ +β) = a ∝  +a β, for all a ∈ F and for all ∝ , 𝛽 ∈ 𝑉 

viii.)  (a + b) ∝ = a ∝  +b ∝ , for all a ∈ F and for all ∝ ∈ 𝑉 

ix.) (ab)∝ = 𝑎 (𝑏 ∝), for all a , b∈ F and for all ∝ ∈ 𝑉 

x.) 1. ∝ = ∝ , for all ∝  ϵ V And 1 is the unity element of the field F. 

https://www.toppr.com/guides/maths/trigonometric-functions/domain-and-range-of-trigonometric-functions/
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Linear algebra using python Example1: The set of complex numbers ‘C’ is a vector space over the field 

of real numbers R. 

Solution: Let X = a+ib ∈ C, Y = c+id ∈ C, Z = p+iq, where a, b, c, d, p, q 

∈ R. 

i) Closure law:  (X+Y) = (a+ib) + (c+id)=(a+c)+i(b+d) ∈C 

ii) Associative law: X+(Y+Z)=(X+Y)+Z 

 L.H.S. = (a+ib) + ((c+id)+(p+iq)) = (a+ib)+((c+p)+i(d+q)) 

         = (a+p+c) + i(b+d+q) = ((a+c)+p) + i ((b+d)+q) 

 = ((a+c)+i(b+d)) + (p+iq) = ((a+ib) + (c+id)) + (p+iq) = (X+Y)+Z = 

R.H.S. 

iii) Existence of Identity:  let X = a+ib ∈ C, ∃ an element e = 0+0i ∈ C 

such that 

 X + e = e+ X =X 

 (a + ib) + (0 + 0i) = (0 + 0i) + (a + ib) = (a + ib)  

 (a + 0) + i(b + 0) = (0 + a) + i(0+b) = (a + ib) 

iv) Existence of Inverse: Let X=(a+ib) ∈ C, ∃ an element X′ = - (a + 

ib) ∈ C 

 Such that X+𝑋′=𝑋′+X=e(where e =0+0i) 

 (a + ib) + [-(a + ib)] = (-a + a) + i(-b + b) = 0+0i = e 

v) Commutative law: Let X=(a+ib) ∈ C , Y = (c+id) ∈ C where a, b, c, 

d ∈ R. 

 Consider X+Y=(a+ib)+(c+id) = (a+c)+i(b+d) 

 = (c+a)+i(d+b) = (c+id)+(a+ib) = Y+X 

vi) Closure law w.r.t. scaler multiplication under vector addition: Let ∀ 

K ∈ R, ∀ X ∈ C, such that KX ∈ C, where K is any scaler value. 

 Consider K X = K(a+ib) = (ka + ikb) 

 = (𝑎1 +i𝑏1) ∈ C 

vii) Closure law w.r.to scalar multiplication under vector addition:  

  

 K (X+Y) = K ((a+ib)+(c+id)) = K (a+ib) + K(c+id) =K X + KY 

viii.) Let   ∀ k1, k2 ∈ R, X = (a+ib) ∈ C, Such that  

 (k1+k2)X=(k1 + k2)(a+ib) = k1(a+ib) +k2(a+ib) = k1X +k2X. 
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Vectors ix.) Let    ∀ k1, k2 ∈ R, X = (a+ib) ∈ C, Such that (k1. k2) X = 

(k1. k2)(a+ib) = k1. (k2(a+ib) =k1. (k2(X)) 

x.) Multiplication with unity: ∀ X ∈ C,  ∃1 ∈ R is the unity element 

such that  1.X=1.(a+ib) = (a+ib) = X 

 Since, the set of complex numbers satisfies all postulates. Hence, the 

set of complex number ‘C’ is a vector space over the field of real 

number R. 

Example 2: Check whether the set of all pairs of real numbers of the form 

(1, x) with operation (1, y) + (1, y′) = (1, y + y′) and k(1, y)=(1, ky) is a 

vector space.                

Solution: Let (1,x) , ( 1, x′) ∈ R2 

i.) Closure Property: Consider (1, x1) + (1,x2) = (1, x1 + x2) 

                                    = (1, x1 + x2) ∈ R2 as (x1 + x2) ∈ R2 

ii.) Associative Property: Set of real numbers satisfies Associative 

Property. 

iii.) Existence of Identity: ∃(1, 0) ∈ R2 and ∀(1, x) ∈ R2 such that 

 (1, 0) + (1, x) = (1, x) + (1, 0) = (1, x) 

iv.) Existence of Inverse: ∃(1,-x) ∈ R2, ∀(1,x) ∈ R2  such that 

 (1, x) + (1, -x) = (1, -x) + (1, x) = (1, 0) 

v.) Commutative Property: (1, x) , ( 1, x′) ∈ R2  

such that (1,x) + (1, x′)=(1, x+ x′) 

      = (1, x+ x′) = (1, x′+x) = (1,  x′) + (1, x) 

  Hence commutative Property is satisfied 

vi.) Closure law w.r.t. scalar multiplication: k(1, y)=(1, ky), by the 

definition . 

vii.) Closure law w.r.to scalar multiplication under vector addition: 

 a[(1, x) + (1, x′)] = a[1, x+x′] = [1, a(x+x′)] ∈ R2, ∀a ∈ R         

 ( by the definition of addition) 

viii.) (a + b)●(1, x) = [1, (a+b)x]  (by the definition) 

and [1, (a + b) x] ∈ R2, ∀ a, b ∈ R2 

ix.) (a●b) [1, x] = [1, (a●b)x]   ( by the definition ) 

 = a(1, bx) = a (b[1, x]) 

x.) Multiplication with unity: 

 1●[1, x] = [1, 1●x] = [1, x] where 1∈R 

Since all the postulates for becoming the vector space satisfied and hence 

it is a vector space. 
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Linear algebra using python 2.11 LINEAR SYSTEMS-HOMOGENEOUS AND 

OTHERWISE 

Linear algebra is a systematic study of the theory and applications of 

linear system of equations. Consider the system of m linear equations 

  𝑎11 𝑥1  +  𝑎12 𝑥2 +  - - - - - -  +  𝑎1𝑛 𝑥𝑛  =  𝑏1 

  𝑎21 𝑥1  +  𝑎22 𝑥2 +  - - - - - -  +  𝑎2𝑛 𝑥𝑛  =  𝑏2 

  -------------------------------------------------------    

  ------------------------------------------------------- 

  𝑎𝑚1 𝑥1  +  𝑎𝑚2 𝑥2 +  - - - - - -  +  𝑎𝑚𝑛 𝑥𝑛  =  𝑏𝑚 

having n unknowns  𝑥1   ,  𝑥2  , …… , 𝑥𝑛  . To determine whether the 

system has a solution or not, we check the ranks of the matrices, 

  A =   

(

  
 
 

𝑎11         𝑎12   . . . . . . .  𝑎1𝑛
𝑎21         𝑎22   . . . . . . .  𝑎2𝑛
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

𝑎𝑚1         𝑎𝑚2   . . . . . . .  𝑎𝑚𝑛)

  
 

 

And 

  B =    

(

 
 
 
 

𝑎11         𝑎12   . . . . . . .  𝑎1𝑛    𝑏1
𝑎21         𝑎22   . . . . . . .  𝑎2𝑛    𝑏2
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

𝑎𝑚1         𝑎𝑚2   . . . . . . .  𝑎𝑚𝑛    𝑏𝑚)

 
 
 

 

Where A is the coefficient matrix and B is the augmented matrix of the 

system of equations. 

Procedure to test the consistency of equations in n unknowns: 

Let the rank of A be r and rank of B be 𝑟′. 

1.) If r  ≠  𝑟′ , there is no solution of the system of equations.  This 

implies that equations are inconsistent. 

2.) If r = 𝑟′ = n (number of unknowns), there is a unique solution. This 

implies that equations are consistent. 

3.) If r =  𝑟′ ˂ n, there is infinite number of solutions. This implies that 

equations are consistent. 

System of linear homogeneous equations: 

Consider the homogeneous linear equations 
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Vectors   𝑎11 𝑥1  +  𝑎12 𝑥2 +  - - - - - -  +  𝑎1𝑛 𝑥𝑛  =  0 

  𝑎21 𝑥1  +  𝑎22 𝑥2 +  - - - - - -  +  𝑎2𝑛 𝑥𝑛  = 0   

         -------------------------------------------------------     

 ------------------------------------------------------- 

  𝑎𝑚1 𝑥1  +  𝑎𝑚2 𝑥2 +  - - - - - -  +  𝑎𝑚𝑛 𝑥𝑛  = 0 

To know the nature of the solutions of equation (ii), we check the rank of 

coefficient matrix 

  A =    

(

  
 
 

𝑎11         𝑎12   . . . . . . .  𝑎1𝑛
𝑎21         𝑎22   . . . . . . .  𝑎2𝑛
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

𝑎𝑚1         𝑎𝑚2   . . . . . . .  𝑎𝑚𝑛)

  
 

 

Let rank (A) = r. 

1.) If r = n, the equations (ii) have only trivial zero solution. This 

implies that 

  𝑥1 =  𝑥2 = ---- = 𝑥𝑛   = 0 

2.) If r ˂ n, the equations (ii) have infinite number of solutions. 

We can conclude that for a homogeneous system of equations, if det 

(A) ≠ 0, there exists only a trivial zero solution otherwise infinitely 

many solutions will exist. 

Example 1 : Consider the following system of equations and Find the 

nature of solution without solving it. 

i.) x 1 +  x2  = 6 and 2 x 1 + 2x2  = 12     

ii.) x 1 +  x2  = 5 and x 1 - x2  = 1  

Solution: i.)  The system of equations can be written in matrix form  as 

   (
1 1
2 2

) (x1
x2
)    =   ( 6

12
) 

Coefficient matrix A =  (
1 1
2 2

) and Augmented matrix B = (
1 1      4
2 2      8

) 

Here det A = 0, rank A = 1 and rank B = 1, So r = r′< n (number of 

variables) 

Hence there is infinite number of solutions for this system. 

ii.) Here A = [
1 1
1 −1

]  and B =  (
1 1      5
1 −1      1

) 

Since rank A = rank B = n(number of variables), r =  r′ = n 

Hence there exists a unique solution of the system. 
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Linear algebra using python 2.12 SUMMARY 

In a very simple definition, vector can be assumed as an arrow that points 

in space. A vector that contains n elements is called n-vector. Vector 

addition satisfies algebraic properties like commutative and associativity. 

Scalar-vector multiplication stretches the direction of a vector and this 

process is called scaling. These properties of vectors give the data analyst 

a nice way to conceptualize many list of numbers in a visual way to be 

clear about patterns in data. 

2.13 REFERENCE FOR FURTHER READING 

Linear algebra and its applications, Gilbert Strang, Cengage 

Learning, 4th edition, 2007. 

Exercise 

Q.1  For the given pairs of vectors ,find vector u + v, u – v , v – u ,2u + 

3v , -2u – 7v 

 (i) u = (2, 8) and v = (3, 1)         (ii) u = (-1, 3) and v = (8, -2) 

 (iii) u = (-3, 4) and v = (1, -2)    (iv) u = (2, -9) and v = (-8, 1) 

Q.2 For each of the following pairs of vectors u and v, Evaluate their dot 

product u. v. 

 (i)u = (2, 5) and v = (4, -1)        (ii) u = (1, 2, -1) and v = (1,-1, 0)                                     

Q.3 Solve the following triangular system of linear equation : 

 (i) 𝑥1-3𝑥2-2𝑥3 = 15                   (ii) 2𝑥1-3𝑥2+5𝑥3-2𝑥4 =9         

         2𝑥2+4𝑥3 = 8                                5𝑥2+𝑥3-3𝑥4 =9     

              10𝑥3  = 30                              7𝑥3-𝑥4 =9 

                                                                                                                   

2𝑥4 =8  

Q.4  Determine whether the following set of vectors span vector space 𝑅3 

 (i)v1(2, 2, 2) , v2(0, 0, 3) , v3(0, 1, 1)                                  

 (ii)v1(1,0,0) , v2(0,1,0) , v3(1,1,0) 

Q.5  Check whether the following sets are vector space or not: 

 i.) {(x, y, z):x, y, z ∈ R, x + y + z = 0} 

 ii.) All mxn matrices whose entries are real. 

 
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MATRIX  

Unit Structure: 

3.0    Objectives 

3.1  Introduction  

3.2  Matrices 

 3.2.1 Definition 

 3.2.2 Column Space and Row Space 

 3.2.3 Transpose 

 3.2.4 Vectors 

3.3  Multiplication in terms of vectors  

 3.3.1 Matrix-vector multiplication   

3.3.2 Vector-matrix multiplication 

3.4  Other concepts  

3.4.1 Null Space 

           3.4.2 Computing sparse matrix-vector product 

3.4.3 Linear Functions 

3.4.4 Inner Product 

3.4.5 Outer Product 

         3.4.6 From function inverse to matrix inverse 

3.5  Summary 

3.6  Exercise  

3.7  References 

3.0 OBJECTIVES  

After going through this chapter, students will able to learn 

• To understand what are matrices 

• To deal with various types of matrices using vectors 

• To learn various concepts and applications of matrices using python 
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Linear algebra using python 3.1 INTRODUCTION  

This unit will take thorough out the concepts of matrices – some 

traditional while some are new in terms of vectors , various operations and 

other concepts. 

3.2 MATRICES 

In this section definition of matrix will be reviewed and a new notation in 

terms of python list will be introduced. 

3.2.1 Definition 

Traditionally matrices means some set of rows and columns with various 

entries like real numbers, complex number etc. 

For example : 

[
1 0 1
2 4 5

−2 3 1
]   or [

1 + 𝑖 −3
2 + 2𝑖 3 − 1

]  

 The first matrix is called as  a 3x3 matrix over field F 

In first example above there are 3 rows and 3 columns. First row or Row 1 

is [ 1 0 1]  , similarly column 1 is [
1
2

−2
]  and so on. 

In general, a matrix with m rows and n columns is called mxn matrix. For 

a i,jth element is defined to the element in ith row and jth column . 

Traditionally if matrix is given by A, this element is written  as Aij.  

Instead Python notation will be used throughout A[i,j]. 

So ,Row vector i will be : [ A[i, 0], A[i, 1], A[i, 2], · · ·, A[i,m − 1] ] 

and column vector j will be :  [A[0, j], A[1, j], A[2, j], · · ·, A[n − 1, j] ] 

For example : if we consider same matrix [
1 0 1
2 4 5

−2 3 1
] then 

Row vector 1 will be : [[1,0,1] ] and column vector 1 will be [[1,2,-2]] 

Entire matrix can be represented as list of lists as : 

[[1,0,1], [2,4,5], [-2,3,1]] 

In general a matrix can be represented as list L : 

A[i, j] = L[i][j] for every 0 ≤ i < m and 0 ≤ j < n 
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Matrix 3.2.2 Column Space and Row Space 

Matrices can be viewed from various angles like pack of rows or pack of 

columns etc. There are two ways of interpreting a matrix in terms of 

vector space. Similarly, there are two vector spaces associated with any 

given matrix: 

 

Definition : For any  matrix A : 

1. Column space of A, written Col A, is the vector space spanned by the 

columns of M, 

2. Row space of A, written Row A, is the vector space spanned by the 

rows of M. 

For example : if we consider same matrix [
1 0 1
2 4 5

−2 3 1
] then 

Col A will be span of [[1,2,-2], [0,4,3], [1,5,1]] 

And Row A will be span of [[ 1,0,1],[2,4,5], [-2,3,1]]  

3.2.3 Transpose 

Transpose of a matrix means interchanging its rows and columns. 

Definition : The transpose of a matrix A, denoted by AT is defined by  

 (AT)i,j = Aj,i for every i ,j . 

For example : transpose of matrix [
1 0 1
2 4 5

−2 3 1
] is [

1 2 −2
0 4 3
1 5 1

] 

3.2.4 Vectors 

Matrices can be represented as vectors . If AxB is a matrix over the field F 

then it can be represented as vector over F. Later it can be used to perform 

vector operations like addition of vectors, multiplication of  scalar- vector. 

For example : if we consider  matrices A = [
1 2 1
2 1 5

] and B = 

[
0 2 1
5 −1 2

] then A + B  = [
1 4 2
7 0 7

] i.e corresponding elements get 

added. 

Note matrices should have same dimensions i.e number of rows and 

columns. 

Similarly, scalar matrix multiplication is : 

A = [
1 2 1
2 1 5

]  and scalar α = 3 then αA =  [
3 6 3
6 3 15

]  
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Linear algebra using python 3.3 MULTIPLICATION IN TERMS OF VECTORS  

In this section the concept of matrix multiplication by vectors will be 

discussed. There are two ways in which this can be done : 

• Matrix-Vector multiplication i.e multiply a matrix by vector. 

• Vector- Matrix multiplication i.e multiply a vector by matrix. 

In the following section both these concepts will be discussed with two 

definitions for each : one in terms of dot products and another in terms 

linear combinations; both of which are equivalent. 

3.3.1 Matrix-Vector Multiplication 

Definition : In terms of Linear Combination : 

Let M be RxC matrix over field F. Let  be a vector of dimension C. Then 

M   is the linear combination ∑ 𝑣 [𝑐](𝑐𝑜𝑙𝑢𝑚𝑛 𝑐 𝑜𝑓 𝑀)𝑐 ∈𝐶  

Note :  

1)  If M is R × C matrix but  is not of dimension C i.e it is not a C-

vector then the product M ∗  is illegal. 

2)  In the case of traditional-matrix, if M is m × n matrix over F then     

M ∗  is legal only if  is n-vector over F i.e the number of columns 

of the matrix and the number of  entries of the vector must be same. 

Example 1 : Suppose  M = [
1 0 1
2 1 3

] and   = [1, −1, 0] 

Then M ∗   can be computed since M is 2x3 and  is 3x1 and result is : 

M ∗   = ∑ 𝑣 [𝑐](𝑐𝑜𝑙𝑢𝑚𝑛 𝑐 𝑜𝑓 𝑀)𝑐 ∈𝐶  

           = 1[1,2] + (-1) [0,1] + 0[1,3] = [1,2] – [0,1] + [0,0] 

           = [1,1] 

Example 2 : Suppose  M = [
1 0 1
2 1 3

] and   = [1,    0] 

Then M ∗   cannot be computed since M is 2x3 and  is 2x1 and result is 

not valid (by note 1) 

Definition : In terms of Dot Product: 

 Let M be RxC matrix over field F. Let u be a vector of dimension C. 

Then Mu is the R-vector defined by 

u [𝑟] 𝑖. 𝑒 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑢 𝑤𝑖𝑡ℎ 𝑟𝑜𝑤 𝑟 𝑜𝑓 𝑀 
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Matrix 3.3.2 Vector -Matrix Multiplication 

In earlier section matrix-vector multiplication was discussed in terms of 

linear combinations of columns of a matrix. Next we see vector-matrix 

multiplication in terms of linear combinations of rows of a matrix. 

Definition : In terms of Linear Combination : 

 Let M be RxC matrix over field F. Let w be a vector of dimension R 

. Then w M is the linear combination ∑ 𝑤 [𝑟](𝑟𝑜𝑤 𝑟  𝑜𝑓 𝑀)𝑟 ∈𝑅  

Note : If M is R × C matrix but w is not of dimension  R i.e it is not a R-

vector then the product w  M  is illegal. 

Example 3 : Suppose  M = [
1 0 1
2 1 3

] and  w = [1, 2] 

Then w M   can be computed since M is 2x3 and  is 1x2 and result is : 

w  M   =  ∑ 𝑤 [𝑟](𝑟𝑜𝑤 𝑟  𝑜𝑓 𝑀)𝑟 ∈𝑅     

             = 1[1, 0, 1] + 2[2 , 1, 3] = [1,0,1] + [4,2,6] 

             = [5,2,7] 

Example 4 : Suppose  M = [
1 0 1
2 1 3

] and  w = [1,    0, 3] 

Then w  M cannot be computed since M is 2x3 and  is 1x3 and result is 

not valid (by note ) 

Next we will define vector- matrix multiplication in terms of dot product. 

Definition : In terms of Dot Product: 

 Let M be RxC matrix over field F. Let u be a vector of dimension R. 

Then u*M is the C-vector defined by 

u [𝑐] 𝑖. 𝑒 𝑑𝑜𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑢 𝑤𝑖𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐 𝑜𝑓 𝑀. 

Example 5 : Suppose  M = [
1 0
2 1
3 2

] and  w = [2, −1] 

Then  matrix- vector multiplication in terms of dot product is : 

1st entry is dot product of row 1 [1,0] with w = [1,0].[2,-1] = 2-0 = 2 

2nd entry is dot product of row 2 [2,1] with w = [2,1].[2,-1] = 4-1 = 3 

3rd entry is dot product of row 3 [3,2] with w = [3,2].[2,-1] = 6-2 = 4 

Hence finally M*w = [2, 3, 4] 

Similarly, vector-matrix multiplication in terms of dot product can be 

carried out. 
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Linear algebra using python 3.4 OTHER CONCEPTS 

In the following sections we will see some concepts related to matrices. 

3.4.1 Null Space 

In earlier chapters we came across concept of homogeneous linear 

systems. It is the system where all values on right hand side of the 

equation are 0. We can define such a system as A*x = 0 i.e in the form of 

matrix-vector equation. In above equation right hand side of the equation 

is 0. 

Definition : The null space of the matrix A is defined by the set  

{v/ A*v = 0}. It is denoted by Null A 

From the above definition it can be seen that null A is basically set of all 

solutions of homogeneous linear system, hence it also forms a vector 

space. 

Example 6 : Suppose  A = [
1 0
1 2

]  then null(A) is all vectors such that  

A*x = 0 

i.e [
1 0
1 2

]  ∗ [
𝑥1

𝑥2
] = [

0
0

]   which gives x1 = 0 and x1 + 2 x2 = 0  

hence Null(A) = {(0,0)} 

Null(A) can also be computed easily using Row reduction form. 

3.4.2 Computing Sparse Vector-Product 

Definition : Sparse matrix  is defined as a matrix whose most of the 

elements are 0. 

In earlier sections we saw matrices in terms of vector and their products. 

For calculating product of matrices with vectors we can use either dot 

product or linear combinations definitions discussed earlier. But alone 

they cannot be conveniently used. Hence we combine both which leads to 

following definition : 

Definition : Let M be RxC matrix over field F. Let u  be a vector of 

dimension C. Then M * u  is the vector  v of dimension R, such that for 

each r R, v[r] =   ∑ 𝑀 [𝑟, 𝑐]𝑢[𝑐]𝑐 ∈𝐶  

3.4.3 Linear Functions 

Definition : Let U and V be vector spaces over a field F. Then a function  

f: U → V is called a linear function if following properties are satisfied :  

P1 : For any vector u Domain(f) and α  F is any scalar then  

 f(αu) = αf(u) 

P2 : For any vectors u,v Domain(f) then  

 f(u+v) = f(u) + f(v) 
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Matrix Linear function are called as linear transformation. 

Let M be an R × C matrix over a field F, let f : FC → FR be defined by 

by f(x) = M ∗ x. Since the domain and co-domain are vector spaces, 

function f satisfies Properties P1 and P2. Thus f is a linear function. 

Example 7 : Let F be any field. Define function from F2 to F by  

(x, y) → x - y is a linear function. 

P1 : For any vector u = (x1,y1)   F2 and α  F be any scalar then consider  

 f(αu) = f(α (x1,y1) )  = f( (αx1,αy1) ) = αx1 - αy1 = α (x1 - y1) = αf(u) 

P2 : For any vectors u =(x1,y1), v= (x2,y2)  F2 then  

Consider  f(u+v)  = f ((x1,y1) +  (x2,y2)) = f ((x1 + x2, y1+y2)) 

      = (x1 + x2) – (y1+y2)  = (x1 - y1) +  (x2 – y2) = f ((x1,y1)) + f((x2,y2)) 

      = f(u) + f(v) 

Hence from P1 and P2 f is a linear function. 

Result : Let U and V be vector spaces over a field F and  f: U → V be a 

linear function, then f maps the zero vector of U to the zero vector of V 

Such functions is called kernel. 

Definition : Let U and V be vector spaces over a field F and  f: U → V be 

a linear function then the set {v/f(v) = 0 } is called as kernel of f denoted 

by Ker f.  

The result of linear function can be extended to n number of vectors. 

3.4.4 Inner Product 

Let u and v be two vectors of dimension D. Consider the “matrix-matrix 

product” uTv. The first matrix has one row and second matrix one column. 

By the dot-product definition of matrix-matrix multiplication, the product 

contains one single entry whose value is given by u.v 

Example 8 : Suppose  A = [1 2 3] [
1
2
3

] =   [14] 

Since the final value of uTv is single entry it is called as inner product. 

3.4.5 Outer Product 

Next suppose  u and v be two vectors not necessary of same domain. 

Consider  uTv : For each element of the domain u and each element of the 

domain of v, the s,t element of uTv is u[s]v[t]. 

Example 9 : Suppose  A = [
𝑢
𝑣
𝑤

] [𝑥 𝑦]  =   [

𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦
𝑤𝑥 𝑤𝑦

] 

This type of product is called the outer product of vectors u and v. 
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Linear algebra using python 3.5 SUMMARY 

This chapter gives different concepts of matrices and their examples. It 

will create base for the next concept of basis. 

3.6 EXERCISE  

1. Compute the following matrix-vector products 

a. M = [
1 −1 2
0 1 −2

] and   = [2, −3, 0] 

b. M = [
1 −1
1 1

] and   = [2, 4] 

2. For each of the following problems, answer whether the given 

matrix-matrix product is valid or not. If it is valid, give the number 

of rows and the number of columns of the resulting matrix (you need 

not provide the matrix itself). 

a. [
1 1 0
0 1 −2

] [
2 −1 2
1 0 −1

]  

b. [1 1 0] [
2 4 1
1 1 −1

] T 

c. [
1 1 0
0 1 −2

] [1 0 −1] T 

3. Compute Matrix Matrix Multiplication : 

a. [
2 2
4 3

]  [
1 −1
1 1

] 

b. [2 2 −1] [
3 2

−2 6
1 −1

] 
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4.0 OBJECTIVES  

After going through this chapter, students will able to learn 

• To understand spanning vectors 

• To understand concept of Linear dependence and independence 

• To learn concept of basis and dimension 

4.1 INTRODUCTION  

After learning the concepts of vector space, linear function in earlier 

chapters in this chapter we will learn concept of basis. 

Basis has several properties which can be further used to justify concepts 

like linear dependence, independence, maximal linearly independent set etc. 

The basis also tells us about the smallest set of vectors needed to span a 

vector space. Thus it helps to give information about structure of a vector 

space. 
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Linear algebra using python 4.2 COORDINATE SYSTEM 

A coordinate system is defined as a method for recognizing the location of 

a point. Most of the coordinate systems use two numbers i.e. a coordinate 

to detect a point or a location. These numbers indicate the distance between 

the point and some fixed point of reference called the origin.  

For a vector space V in vector analysis, a coordinate system  is indicated by 

a set of vectors a1,a2,…an of V such that every vector of the vector space 

can be written as linear combination of these vectors . 

That is there exists scalars or real numbers α1, α 2,… α n such that  

 = α1a1 + α2a2 + … + αnan  where   V (any vector) 

From discussion above the vector  can be represented by [α1,α2,… ,αn ] 

of coefficients. These coefficients are called coordinates and the vector 

[α1,α2,… ,αn ] is called the coordinate representation of  in terms of  

a1,a2,…an.. Also, this representation of  is unique. 

Example 1 :  if we consider the vector [1, 3, 5, 2] it can be represented as : 

[1, 3, 5, 2] = 1 [1, 0, 0, 0]  +  3 [0, 1, 1, 0]  + 2 [0, 0, 1, 1] 

Hence the coordinate representation of  in terms of [1, 0, 0, 0] , [0, 1, 1, 0]   

and  [0, 0, 1, 1]   is   [1, 3, 5, 2] 

4.3 TWO GREEDY ALGORITHMS FOR SET OF 

GENERATORS 

Suppose we want to answer this question : For a given vector space V, what 

is the minimum number of vectors whose linear span is V? 

To answer this, in this section we consider two algorithms  

1. Grow algorithm  

def Grow(V) 

B =  repeat while possible : 

          Find a vector in V that is not in Span (B) and add it to B 

The algorithm halts when there is no more vector to add in B. By this 

time we can find the generating set. 

Example 2:  Consider V =  ℝ3. In first iteration we add vector [1, 0, 

0] to B . Next since [0, 0, 1] does not belong to Span(B) we add it to 

B. thus B = { [1, 0, 0], [0, 0, 1]}. Similarly in 3rd iteration we add [0, 

1, 0] to B as it does not belong to span of B. Next if we consider any 

vector in ℝ3 
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Basis We can see it can be written as linear combination of either all or some 

of vectors of B. Hence there nr u o more vector to add to B, hence the 

algorithm stops. 

2. Shrink algorithm  

Exactly opposite to grow as name says we remove an element in every 

step. 

def Shrink(V) 

B = some finite set of vectors in V such that span(B) = V 

repeat while possible : 

          Find a vector in V such that Span (B- {v} ) = V and remove it 

from  B 

The algorithm halts when there is no more vector to remove from B 

such that spanning property is still satisfied. By this time we can find 

the generating set. 

Example 2:  Consider V =  ℝ3 and B ={ [1, 0, 0], [0, 0, 1],[0, 1, 0], [3, 

2, 0], [0, 3, 1]}. In first iteration we remove vector [3, 2, 0] from B 

since  [3, 2, 0 ] = 3[1, 0, 0] +2 [0, 1, 0]. Next we remove [0, 3, 1] as it 

belong to Span(B). Thus B = {[1, 0, 0], [0, 0, 1], [0, 1, 0]} . Now the 

algorithm stops since there is no more vector to remove. 

4.4 MINIMUM SPANNING FOREST AND GF(2) 

In this section we will see grow and shrink algorithm using graph theory 

that is minimum spanning problem. 

Suppose we are given a graph with weights as below:  

 

Suppose vertices represent cities and edges represent distances to travel 

from one city to another. Our goal is to travel from one city to another in 

covering all cities with minimum distance 
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Linear algebra using python To find minimum distance there are several algorithms but we will use grow 

and shrink algorithm 

Grow algorithm  

def Grow(G) 

B =   

          Consider the edges in order from low to high  

For each edge e: 

          If endpoint of e is not yet connected via edges add it to B 

For above graph weights in increasing order are : 8 7 4 3 3  2 1  

The solution obtained is  8 7 4 2  

Shrink algorithm  

def shrink(G) 

B = { all edges }  

          Consider the edges in order from high to low  

For each edge e: 

          If pair of nodes are connected via  B – {e}: 

            Remove e from B 

For above graph weights in increasing order are : 1 2 3 3 4 7 8   

The solution obtained is  1 2 3 3 4  

The Grow and Shrink algorithms for minimum spanning forest look like 

those algorithms used for finding a set of generators for a vector space.  

In this section, we describe how to model a graph by means of vectors over 

GF(2). 

Let C = {set of vertices of graph} = {0,1,2,3,4} be the set of nodes 

A subset of C is characterized by the vector with ones in the corresponding 

entries and zeroes elsewhere. 

A subset of C is represented by the vector with ones in the corresponding 

entries and zeroes elsewhere. 
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Basis Hence the vectors corresponding to all the edges in our graph are : 

Edge  Vector 

 0 1 2 3 4  

{0,4} 1    1  

{0,3} 1   1   

{1,3}  1  1   

{3,4}    1 1  

{1,2}  1 1    

{2,3}   1 1   

 

In general, a vector with 1’s in entries x and y is the sum of vectors 

corresponding to edges that form an x-to-y path in the graph. Thus, for these 

vectors, it is easy to tell whether one vector is in the span of some others. 

4.5 LINEAR INDEPENDENCE 

Lemma (Superfluous-Vector Lemma): For any set S and any vector v ∈ S, 

if v can be written as a linear combination of the other vectors in S then 

Span (S−{v}) = Span S 

Definition: Let V be a vector space .Then vectors v1, . . . , vn in V are called 

as  linearly dependent if the zero vector can be written as a nontrivial linear 

combination of these  vectors. That is  

0 = α1v1 + · · · + αnvn 

Here we denote the linear combination as a linear dependency in v1, . . . , 

vn. 

Example .3: The vectors [1, 0, 0], [0, 3, 0], and [3, 9, 0] are linearly 

dependent, as shown by the following equation: 

3 [1, 0, 0] + 3 [0, 3, 0] − 1 [3, 9, 0] = [0, 0, 0] 

Thus 3 [1, 0, 0] + 3 [0, 3, 0] − 1 [3, 9, 0] is a linear dependency in [1, 0, 0], 

[0, 3, 0], and [3, 9, 0]. 

Example 4: The vectors [1, 0, 0], [0, 3, 0], and [0, 0, 5 ] are linearly 

independent. 

Since if we consider α1 [1, 0, 0] + α2 [0, 3, 0] + α3 [0, 0, 5] = [0, 0, 0] 

Then all scalars α1, α2, α3 all are 0. 
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Linear algebra using python Properties of linear (in)dependence 

1. A subset of a linearly independent set is linearly independent. 

2. Let v1, . . . , vn be vectors. A vector vi belongs to the span of the other 

vectors if and only if the zero vector can be written as a linear 

combination of v1, . . . , vn in which the coefficient of vi is nonzero. 

3. The vectors obtained by the Grow algorithm are linearly independent. 

4. The vectors obtained by the Shrink algorithm are linearly 

independent. 

 4.6  BASIS 

In earlier sections we saw the Grow algorithm and the Shrink algorithm 

where each of them finds a set of vectors spanning the vector space V. In 

addition in each case, the set of vectors found is linearly independent. 

Next we define basis of vector space one of the most important concept in 

linear algebra. 

Definition: Let V be a vector space. A basis for V is a linearly independent 

set of generators for V. 

In other words, a set B of vectors of V is a basis for V if B satisfies two 

properties: 

PB1 Span B = V, (Spanning) and 

PB2  B is linearly independent. (Independent) 

Example 5: Let V the vector space spanned by [1, 0, 0], [0, 1, 1], and 

[1, 1, 1].  

Then the set {[1, 0, 0], [0, 1, 1], [1, 1, 1]} is not a basis for V because it is 

not linearly independent as [1, 1, 1] = [1, 0, 0] + [0, 1, 1]  

However, the set {[1, 0, 0], [0, 1, 1]} is a basis as it satisfies the above two 

properties. 

Lemma : The standard generators for FD form a basis. 

Lemma (Unique-Representation Lemma): Let V be a vector space and B be 

a basis of V, then every vector in V can be uniquely represented as linear 

combination of vectors of B. 

i.e Let B = {a1, . . . , an} be a basis for a vector space V. For any vector v ∈ 

V, there is exactly one representation of v in terms of the basis vectors. 

 

 



 

 
37 

 

Basis 4.7 DIMENSION 

After defining basis in earlier section lets now see the number of elements 

in any given basis. Before that let us see some results with respect to basis. 

Lemma (Morphing Lemma): Let V be a vector space. Suppose S is a set of 

generators for V, and B is a linearly independent set of vectors belonging to 

V. Then |S| ≥ |B|. 

Theorem (Basis Theorem): Let V be a vector space. All bases for V have 

the same size. 

Theorem : Let V be a vector space. Then a set of generators for V is a 

smallest set of generators for V if and only if the set is a basis for V. 

Definition : Let V be a vector space. Then the dimension of V is defined  to 

be the size of a basis for V.  

The dimension of a vector space V is written dim V. 

If we consider example 5 then dim V = 2 since it has basis B containing 2 

vectors i.e.[1, 0, 0] and [0, 1, 1 ] 

Example 6: One basis for ℝ3 is the standard basis:  

{[1, 0, 0], [0, 1, 0], [0, 0, 1]}. Hence the dimension of R3 is 3. 

• 4.7.1 DIMENSION AND RANK 

Definition : Rank of a set S of vectors is defined as the dimension of Span 

S.  

We denote rank S for the rank of S. 

Proposition : For any set S of vectors, rank S ≤ |S|. 

Definition : For a matrix M, the row rank of M is defined as the rank of its 

rows, and the column rank of M is defined as the rank of its columns. 

Definition : For a matrix M, the row rank of M is the dimension of Row M, 

and the column rank of M is the dimension of Col M. 

Example 7 : Consider the matrix 

M = [
1 0
0 1
1 1

] 

Here row vectors are {[1, 0], [0, 1], [1, 1]} which are linearly dependent 

.but if we remove [1, 1] then vectors become independent. Hence Row rank 

= 2 

Similarly column vectors are {[1, 0, 1] ,[0,1,1]} which are linearly 

independent  as discussed earlier. Hence column rank = 2 
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Linear algebra using python In any case we have Row Rank = Column Rank 

Definition : The rank of a matrix is defined  to be its common value  of 

column rank which is equal to its row rank. 

Lemma (Superset-Basis Lemma): For any vector space V and any linearly 

independent set B of vectors, V has a basis that contains all of B. 

The Dimension Principle 

Using the Superset-Basis Lemma we can prove the following principle. 

Lemma  (Dimension Principle): If V is a subspace of  vector space W then 

PD1: dim V ≤ dim W, and 

PD2: if dim V = dim W then V = W. 

Example 8: Suppose W = Span {[1, 0], [1, 1]}. Clearly V is a subspace of 

ℝ2. However, the set {[1, 0], [1, 1]} is linearly independent, so dim V = 2. 

Since dim ℝ2 = 2, hence by PD2 V = ℝ2. 

• 4.7.2 DIRECT SUM 

We are acquainted with the idea of adding vectors—now we study about 

adding of vector spaces. These ideas will be advantageous in proving a 

fundamental theorem in the next section—the Kernel-Image Theorem. 

Let U and V be two vector spaces consisting of D-vectors over a field F. 

Definition : If U and V have only the zero vector in common  then we define 

the direct sum of U and V to be the set {u + v : u ∈ U, v ∈ V} 

We write direct sum of U and V as  U ⊕V 

That is, U ⊕V is the set of all sums of a vector in U and a vector in V. 

Example 9 : Let U = span{[1,0]} i.e X-axis and V = span{[0,1]} i.e Y-axis 

Then U ⊕V = ℝ2 

Result : The direct sum U ⊕V is a vector space. 

Lemma : The set of generators for V ⊕W is the union of   a set of generators  

of V and a set of generators of W 

Lemma (Direct Sum Basis Lemma): The union of a basis of U and a basis 

of V is a basis of U ⊕V. 

Corollry :Any vector in U⊕V has a unique representation as u + v where u 

∈ U, v ∈ V. 

Definition : U and V are said to be complementary subspaces of W, if  

U ⊕V = W 
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Basis • 4.7.3 DIMENSION AND LINEAR FUNCTION 

In this section we will see how dimension can be related to linear functions 

studied in earlier sections. We will devise a criterion for invertibility of a 

linear function. That in turn will provide a criterion for matrix invertibility. 

These criteria will construct an important theorem, the Kernel-Image 

Theorem. 

We have studied earlier that linear function f : V →W is invertible if  

(i) f is one-to-one and (ii) f is onto. 

By the One-to-One Lemma, we know that f is one-to-one iff its kernel is 

trivial.  

Similarly there is a criterion for checking if a linear function is onto. 

Recall : image of f is Im f = {f(v) : v ∈ V}. Thus f is onto iff Im f = W. 

Also Im f is a subspace of W.  

By the Dimension Principle, f is onto iff dim Im f = dim W. 

Hence We can conclude:  

A linear function f : U → W is invertible if dim Ker f = 0 and dim Im f = 

dimW. 

The Kernel-Image Theorem 

For any linear function f : V →W, dim Ker f + dim Im f = dim V 

Theorem (Linear-Function Invertibility Theorem): Let f : V →W be a linear 

function. Then f is invertible if and only if dim Ker f = 0 and dim V = dim 

W. 

Theorem (Rank-Nullity Theorem): For any n-column matrix A, 

rank A + nullity A = n 

Example 10 

Let T: ℙ1→ℝ be the linear transformation defined by T(p(x))=p(1) for 

all p(x)∈ ℙ1 . Find the kernel and image of T, Verify the kernel–Image 

theorem. 

We will first find the kernel of T : It consists of all polynomials in ℙ1 that 

have 1 for a root. 

ker(T)={p(x)∈ℙ1 | p(1)=0}={ax+b | a,b∈R and a+b=0}={ax−a | a∈R}  

Therefore a basis for ker(T)  is {x−1} and dimension = 1 

Notice that this is a subspace of ℙ1. 
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Linear algebra using python Now consider the image. It consists of all numbers which can be obtained 

by evaluating all polynomials in ℙ1 at 1. 

im(T)={p(1) | p(x)∈P1}={a+b | ax+b∈P1}={a+b | a,b∈R} = ℝ 

Therefore a basis for im(T)  is {1} and dimension is 1 

Dim(ℙ1) = 2 = 1+1 = dim(ker T) + Dim (im T) 

Hence Kernel-Image theorem verified. 

4.8 THE ANNIHILATOR 

Definition : For a subspace V of Fn, the annihilator of V, denoted as  Vo, is 

defined as Vo = {u ∈ Fn : u · v = 0 for every vector v ∈ V} 

Results : 

1. Let a1, . . . , am be generators for V, and let A =  [a1, a2,….,am]T Then 

Vo = Null A. 

2. (Annihilator Dimension Theorem): Let  V and Vo be subspaces of Fn, 

where F is a field , then dim V + dim Vo = n 

3. (Annihilator Theorem): (Vo)o = V (The annihilator of the annihilator 

is the original space.) 

4.9 SUMMARY 

In this chapter we studied about basis of a vector space, its dimension and 

their properties . 

4.10 EXERCISE  

1.   Let V = Span {[0, 0, 1], [1, 0, 1], [2, 1, 1]}. For each of the following 

vectors, show it belongs to V by writing it as a linear combination of 

the generators of V. 

(a) [2, 1, 4] 

(b) [1, 1, 1] 

(c) [5, 4, 3] 

(d) [0, 1, 1] 
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Basis 2  Let V = Span {[0, 1, 0, 1], [0, 0, 1, 0], [1, 0, 0, 1], [1, 1, 1, 1]} where 

the vectors are over GF(2). For each of the following vectors over 

GF(2), show it belongs to V by writing it as a linear combination of 

the generators of V. 

(a) [1, 1, 0, 0] 

(b) [1, 0, 1, 0] 

(c) [1, 0, 0, 0] 

3  For each of the set given below, show the given vectors over R are 

linearly dependent. 

(a) [1, 2, 0], [2, 4, 1], [0, 0, −1] 

(b) [2, 4, 0], [8, 16, 4], [0, 0, 7] 

(c) [0, 0, 5], [1, 34, 2], [123, 456, 789], [−3, −6, 0], [1, 2, 0.5] 

4  For each of the following matrices, (a) give a basis for the row space 

(b) give a basis for the column space, and (c) verify that the row rank 

equals the column rank. Justify your answers. 

(a) [
1 0
0 1
1 1

]   (b) [
1 2 0
0 2 1

]     (c)  [
1 0 2
0 1 1
1 1 0

] 

5  Verify Rank – Nullity theorem 

(a) T : ℝ2 → ℝ2 defined  by T(x, y) = x+y 

(b) T : ℝ2 → ℝ3 defined  by T(x, y) = (x, x+y, y) 

4.11 REFERENCES   

• Coding the Matrix Linear Algebra through Applications to Computer 
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Learning, 4th Edition (2007). 

 

 



   

 
42 

Linear algebra using python 

5 

GAUSSIAN ELIMINATION  

Unit Structure: 

5.0 Objectives 

5.1  Introduction 

5.2  Echelon Form 

5.3  Gaussian Elimination over GF(2) 

5.4  Solving a matrix-vector equation using Gaussian elimination 

5.5  Finding a basis for the null space 

5.6  Factoring Integers 

5.7  Summary 

5.8  References 

5.0 OBJECTIVES 

After going to this chapter, you will be able to: 

i.)  Solve a set of simultaneous linear equations using Gauss elimination, 

ii.)  Perform elementary row operations to produce zeros below the 

diagonal of the coefficient matrix to reduce it to echelon form.  

iii.)  Find basis for the null space. 

5.1 INTRODUCTION 

Given a linear system expressed in matrix form AX = B, where A is 

coefficient matrix and X is variable matrix. Gaussian elimination method is 

used to solve a system of linear equations by performing elementary row 

operations. Elementary row operations are categorized as: a.) Interchange 

any two rows; b.) Multiply a row by a nonzero constant; c.) Add a multiple 

of one row to another row. This row reduction algorithm continues till we 

get 0s (i.e., zeros) on the lower left-hand corner of the matrix as much as 

possible. That means the obtained matrix should be an upper triangular 

matrix.  

5.2 ECHELON FORM 

Pivot: A pivot is the first non-zero element in a row and leading coefficient 

in a column with all the rows below containing 0's.  

Echelon Form of a matrix: There are two types of Echelon form of a matrix: 

i.) Row Echelon form: A matrix is said to be in row echelon form (ref) 

when it satisfies the following conditions: 

▪ The first non-zero element is 1. 
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Gaussian Elimination ▪ Each leading entry is in a column to the right of the leading entry 

in the previous row. 

▪ Rows with all zero elements, if any, are below rows having a 

non-zero element. 

ii.) Reduced row Echelon form: A matrix is said to be in reduced row 

echelon form (ref) when it satisfies the following conditions: 

• The matrix is in its row echelon form. 

• The leading entry in each row is the only non-zero entry in its 

column. 

Uses of Echelon form: 

• If a matrix is in echelon form, the non-zero rows form a basis for the 

row space 

 Example: A = [

2 3 1 0
0 4 0 1
0 0 9 6
0 0 0 0

]  then the rows [ 2  3  1  0], [0  4  0  1] 

and [ 0  0  9  6] are the basis of the row space. 

• If an echelon form of a matrix has neither pivots in all rows nor all 

columns, the given set of vectors are linearly dependent. 

 let V = {(1, 1, 1), (1, 2, 3), (1, 4, 7)} 

 we compute A = [
1 1 1
1 2 3
1 4 7

] ~  [
1 1 1
0 1 3
0 0 0

] 

 since A has neither pivots in all rows nor in all columns, the set is 

linearly dependent. 

• The number of non-zero rows in row echelon form of a matrix is equal 

to rank of the matrix.  

 Example A = [
1 2 3
2 3 4
3 5 7

] ~ [
1 2 3
0 −1 −2
0 0 0

] [by performing 

elementary row operations] 

 The number of non-zero rows = 2, hence the rank of the matrix  

A = 2. 

5.3 GAUSSIAN ELIMINATION OVER GF(2) 

Gaussian elimination is very simple process for matrices over GF(2). The 

required row operations consist only XOR of two rows and swapping of two 

rows. Solving linear systems over GF(2) is of particular interest in 

cryptography and crypto-analysis. 
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column operations rather than elementary row operations.  

Let us take an example: 

Let Q = {6, 42, 105, 20, 63} and P = {2, 3, 5, 7} 

We have,  

6=21315070 

42=21315071 

105=20315171 

20=22305170 

63=20325071 

We define A as A= 

[
 
 
 
 
1 1 0 0
1 1 0 1
0 1 1 1
2 0 1 0
0 2 0 1]

 
 
 
 

 (mod 2) 

 A= 

[
 
 
 
 
1 1 0 0
1 1 0 1
0 1 1 1
0 0 1 0
0 0 0 1]

 
 
 
 

 

Performing elementary column operations and mark each row which has a 

point  

Since A12 = 1, and c2 ⟶ c2 + c1, we get 

 

  

[
 
 
 
 
1 0 0 0
1 0 0 1
0 1 1 1
0 0 1 0
0 0 0 1]

 
 
 
 

 

Again performing  c3 ⟶ c3 + c2, and  c4 ⟶ c4 + c2, we get 

 

[
 
 
 
 
1 0 0 0
1 0 0 1
0 1 1 1
0 0 1 0
0 0 0 1]

 
 
 
 

 

Now performing c1 ⟶ c1 + c4, we get 

 

[
 
 
 
 
1 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1]
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Gaussian Elimination Note that row 5 has not been used, since  A51 = A54 = 1, row 5 and all 

rows for which Ai1 = 1 and  Ai4 = 1 are dependent. From the above matrix 

we see that rows 1, 2, and 5 are dependent. If we sum row1, row2, and row5 

in GF(2), we obtain a zero row. 

i.e. 1 0 0 0  Row 1(Q1 = 6) 

 0 0 0 1 Row 2(Q2 = 42) 

 1 0 0 1 Row 5(Q5 = 63) 

 ______ 

 0 0 0 0 

This implies that R={Q1, Q2, Q5} and product Q1Q2Q5 forms perfect 

square. 

Q1Q2Q5 = 6*42*63 = 1262 

5.4 SOLVING A MATRIX-VECTOR EQUATION USING 

GAUSSIAN ELIMINATION 

Consider a system of linear equation of n unknowns and n equations as 

   a11x1  +  a12x2 + . . . . . . . . . . . . + a1nxn = b1 

 

   a21x1  +  a22x2 + . . . . . . . . . . . . + a2nxn = b2 

   . 

   .  

   . 

   an1x1  +  an2x2 + . . . . . . . . . . . . + annxn = bn 

Step 1: To eliminate 𝐱𝟏 from second, third,……𝐧𝐭𝐡 equations: 

Assuming 𝐚𝟏𝟏 ≠ 0, we eliminate x1 from the second equation by subtracting 

𝐚𝟐𝟏/𝐚𝟏𝟏 times the first equation from the second equation. 

Similarly we eliminate 𝐱𝟏 from the third equation by subtracting 𝐚𝟑𝟏/𝐚𝟏𝟏 

times the first equation from the third equation. 

By proceeding in the similar way, we get the following new system of 

equations as, 

   a11x1  +  a12x2 + . . . . . . . . . . . . + a1nxn  =  b1 

                               a22
′ x2 + . . . . . . . . . . . . + a2n

′xn = b2
′
 

   . 

   .  

   . 

    an2
′  x2 + . . . . . . . . . . . . + ann

′xn = bn
′
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Linear algebra using python From the above it is clear that, the first equation is called pivotal equation 

and a1 is called first pivot. 

Step 2: To eliminate 𝐱𝟐 from the third equation: 

Assuming a12
′  ≠ 0, we eliminate x2 from third equation by subtracting 

(a32
′/a22

′) times the second equation from the third equation. Thus we get 

the following new system as, 

  a11x1  +  a12x2 + . . . . . . . . . . . . + a1nxn  =  b1 

     a22
′ x2 + . . . . . . . . . . . . + a2n

′xn = b2
′
 

      . 

      .      . 

                                        + …………………..+ ann
" xn = bn

"
 

Step 3: To evaluate the unknowns: 

The values of unknowns x1 , x2 , . . . . . . . . . . . . . . . . . xn are found from the 

above reduced system by back substitution. 

Gauss Elimination Method 

Example 1: Solve the following system of equations by Gaussian 

elimination method: 

2x + y + z =10; 3x + 2y + 3z =18; x + 4y + 9z = 16 

Solution: 

2x + y + z =10 ------------------(i) 

3x + 2y + 3z =18----------------(ii) 

x + 4y + 9z = 16------------------(iii) 

Multiplying equation (iii)  by 2  

2x + 8y + 18z = 32-------(v) 

Subtracting equation (i) from (iv)  

7y + 17z = 22 

Performing 7 * (ii) + (v) we get, 

2x + y + z = 10----------(i) 

y + 3z = 6-----------(iv) 

4z = 20 ------------(vi) 

from equation(vi), we get   z = 
20

4
 = 5 

using back substitution method, we get, y = -9 and x = 7. 

∴  x = 7, y = -9 and z = 5 
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Gaussian Elimination Example 2: Solve the following system of equations by Gaussian 

elimination method: 

y-z = 3: -2x + 4y – z =1: and -2x + 5y – 4z = -2   

Solution: Consider  

 -2x + 4y – z =1----------------(i) 

 -2x + 5y – 4z = -2--------------(ii) 

 y-z = 3----------------------------(iii) 

Subtracting equation (ii) from equation (i), we get 

 -2x + 4y – z =1-----------------(i) 

        -y + 3z = 3-----------------(iv) 

          y – z = 3-----------------(iii) 

Adding equation (iii) and equation (iv),   y-z+-y + 3z = 3+3 

2z = 6 ⇒z = 
6

2
 =  3 ⇒     z = 3 

Substituting z =3 in equation (iv),  

-y + 3(3) = 3  

⇒ -y = 3 – 9 ⇒ -y = - 6 ⇒ y =6 

Substituting y = 6 and z = 3 in equation (i),  

⇒ -2x + 4(6) – 3 = 1 

⇒ -2x = 1 – 24 + 3 ⇒ -2x = -20 ⇒ x = 
−20

−2
=  10 

The solution of the given set of equations are x = 10, y = 6 and z = 3. 

Example 3: Solve the following system of equations by Gaussian 

Elimination method: 

5x + 4y - z = 0;  10y – 3z = 11;   z = 3; 

Solution: Given the system of equations are, 

 5x + 4y – z = 0------------------(i) 

       10y - 3z = 11--------------(ii) 

     z =3----------------(iii) 

Performing back substitution, z = 3. 

Putting value of z in equation (ii), We get, 

10y - 3(3) = 11 ⇒ 10y = 11 + 9 ⇒ 10y = 20 ⇒ y = 
20

10
 =  2 

Substituting values of y and z in equation (i), 

5x + 4(2) – 3 = 0 ⇒ 5x = 3 – 8 ⇒ 5x = -5 ⇒ x = 
−5

5
 = -1 

∴ x = -1, y = 2 and z = 3. 
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Linear algebra using python 5.5 FINDING A BASIS FOR THE NULL SPACE 

This topic explains you how to find the basis for the null space of a mxn 

matrix A using Gaussian Elimination method. 

We have A⦁X = 0, either the solution is unique and X = 0 is the only solution 

or there are infinitely many solutions, which can be parametrized by non-

pivotal elements. 

The basis of a null space of a matrix A is defined as Null (A) ={V: A⦁V = 

O}. The dimension of the null space of A is called nullity of A. 

To find basis for the null space, we convert the coefficient matrix into row 

echelon form. 

Example 1: Let A= [
−4 −1 −3 −2
0 4 0 −1

]. Find basis for the null space  

of A. 

Solution: Let X= {(x1, x2, x3, x4): A⦁X = O} is a basis for the null space  

of A. 

Then   [
−4 −1 −3 −2
0 4 0 −1

] . [

x1

x2

x3

x4

]  = O 

Matrix A is in row echelon form:  

Hence -4x1 − x2 − 3x3 − 2x4 = 0 − − − − − − − − − − − −(i) 

           and 4x2 − x4 = 0 − − − − − − − − − − − − − − − −(ii) 

⇒ x4 = 4x2 

Substituting x4 equation (i), we get 

-4x1 − 9x2 − 3x3 = 0 ⇒ 3x3 = −4x1 − 9x2 

Writing vector components x1, x2, x3 and x4 in the following manner, 

x1 = 1x1 + 0x2

x2 = 0x1 + 1x2

x3 =
−4

3
x1 +

−9

3
x2

x4 = 0x1 + 4x2

 =  x1

[
 
 
 
1
0
−4

3

0 ]
 
 
 
 + x2

[
 
 
 
0
1
−9

3

4 ]
 
 
 
 

Since x1 and x2 are arbitrary, the basis of null space of A is span of {(1, 0, 

 
−4

3
, 0), (0, 1,  

−9

3
, 4)}. 

5.6 FACTORING INTEGERS 

The unique factorization theorem: Every positive integer a>1 can be 

expressed uniquely as a product of positive primes. 
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Gaussian Elimination To find a nontrivial factor of a composite number n is the main concern. 

The simplest factoring algorithm is the trial division method which tries all 

the possible divisors of n to complete prime factorization: 

n = p1p2. . . . . pr  

Algorithm for factoring integer n by trial divisions: 

[1]  Input n and set r  0, k  2. 

[2]  If n = 1, go to step [5]. 

[3]  q n/k and t  n (m0d k). 

 If t ≠ 0. Go to [4]. 

 rr+1, prk, nq, go to [2]. 

[4]  If q > k, then kk+1, and go to [3]. 

 rr+1, prn. 

[5]  Exit; terminate the algorithm. 

An improvement of algorithm is to make use of an auxiliary sequence of 

trial divisors: 

2 = d0 <  d1 < d2 < d3 < d4 < … which includes all primes √n and at 

least one value dk ≥ √n. 

The number of divisors of a positive integer: Let n is a positive integer such 

that n>1. Then by unique factorization theorem, n can be expressed as 

product of positive primes. 

Let n = p1
α1p2

α2 . . . . . . . . . . pr
αrwhere 1<p1 < p2 <. . . . . . < pr and p's are 

positive primes and α1α2.. . . . . . . . . αr are positive integers. Then the number 

of distinct positive integral divisors of n=(1+α1)(1 + α2). . . . . . . . . . . . . . (1 +
αr) and it is denoted by T(n). 

Also the sum of all the terms in the product: 

P = 

 (
p1

α1+1−1

p1−1
)⦁ (

p2
α2+1−1

p2−1
)⦁. . . . . . . . . . . ⦁ (

pr
αr+1−1

pr−1
) and it is denoted by σ(n). 

Greatest Common Divisor:  For a,b ∈Z, the largest d ∈Z, which divides 

both a and b, is called greatest common divisor of a and b . 

Let d = gcd(a, b) 

Each common divisor d of a and b divides gcd(a, b) .  

If gcd(a, b) =1, we call a and b coprime. 

The gcd of a and b has a representation. 

gcd(a, b) = x⦁a+y⦁b, with integers x, y ∈ Z. 

If gcd(a, b) = 1. Then 𝑎̅ is called primitive residue class modulo n. 
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Linear algebra using python Euclidian Algorithm: Euclidian algorithm enables us to find the actual value 

of the greatest common divisor d of two given integers a and b and also to 

find integers x and y such that  

d = x⦁a+y⦁b 

Example: Find (26,118) and express it in the form 26x+118y, where x and 

y ∈Z. 

Solution: We have, 

118 = 26*4+14 

⇒26 = 14*1+12 

⇒14 = 12*1+2 

⇒12 = 2*6+0 

Hence the last non-zero remainder is 2 = (26, 118). 

From the last we get, 

2 = 14-12*1  = 14-12 

⇒ 2 = 14 - (26 - 14) = 2*14 – 26 

⇒ 14 = 118 - (26)*4 

⇒2 = 2[118 - (26)*4] – 26 

⇒2 *118 – 9*26-------------------(i) 

Hence (26, 118) = 2  

Equation(i) is in the form of 26x+118y, by comparison, we get, 

x = 9 and y = 2 

Example 2: Find the number of distinct positive integral divisors and their 

sum for the integers 56700. 

Solution: Expressing 56700 as a product of prime integers as, 

56700=22 ∗ 34 ∗ 52 ∗ 7 

Here p1 = 2, p2 = 3, p3 = 5, p4 = 7, α1 = 2, α2 = 4, α3 = 2, α4 = 1 

Then, number of distinct positive integral divisors of 56700 is  

T(56700) = (2+1) (4+1) (2+1) (1+1) = 90 

And the sum of all distinct positive integral divisors 

 σ(56700) =
22+1−1

2−1
∗

34−1−1

3−1
∗

52+1−1

5−1
∗

71+1−1

7−1
  =7*121*31*8 = 210056. 
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Gaussian Elimination 5.7 SUMMARY 

Any matrix can be transformed to reduced row echelon form by using 

Gaussian elimination method. This is particularly useful for solving systems 

of linear equations. The echelon form of a matrix isn’t unique, which means 

there are infinite answers possible after performing row reduction. But the 

reduced row echelon form is unique, which means row-reduction on a 

matrix will produce the same answer no matter how you perform the same 

row operations. The method can be applied even if the coefficient matrix is 

singular matrix or rectangular matrix. Gaussian elimination is also needed 

to determine the rank of a matrix. 

5.8 REFERENCES 

Linear Algebra and its Applications, David C Lay, Pearson Education India; 

3rd Edition, 2002. 

Exercise 

Q.1: Solve the following system of linear equations by Gaussian-

Elimination method: 

 i.) x + y = 3 and 3x – 2y = 4 

 ii.) x + y + z = 3; 2x + 3y + 4z = 9; x – 2y + 3z = 2 

 iii.) x + y – z = 9; -x – 2z = 2; y + 3z = 3 

Q. 2:  Find the basis for null spaces of the following matrices: 

 i.) [
1 0 3
0 2 2
0 0 0

     
2
4
6
     

1
4
6
 ] 

 ii.)[
0 0 0
4 −1 1
8 −2 3

   
−1
−1
−1

] 

 

 
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6 

INNER PRODUCT AND ORTHOGONALITY   

Unit Structure: 

6.0 Objectives 

6.1  Inner Product 

 6.1.1 Norm of a Vector 

 6.1.2 Norm of distance of two vectors 

6.2  Orthogonality 

6.3  Projection 

6.4  Orthogonal set of generators 

6.5  Orthogonal Complement 

6.6  Summary 

6.7  Reference 

6.0 OBJECTIVES:  

After going to this chapter, you will be able to: 

• Find inner product of two vectors. 

• Determine whether the given vectors are orthogonal to each other or 

not. 

• Construct orthogonal set of generators. 

• Find orthogonal complement of any vector v. 

6.1 INNER PRODUCT:  

Let u = ( u1 , u2, … … … … … . , un ) and  v = ( v1 , v2, … … … … … . , vn ) are 

two n-vectors of a real vector space. The inner product of u and v is given 

by the sum of the products of the coordinates with same index. It is also 

defined as the dot product of corresponding components of u and v. It is 

denoted as <u, v>. 

<u, v> = u1v1+ u2v2+………+ unvn. 

The inner product of two vectors satisfies the following properties: 

i. < u, u > ≥ 0  ⇒ < u,u > = 0 iff u = 0 

ii. < u, v > = < v, u >  (symmetry) 

iii. < u + w, v > = < u, v > + <w, v>  (linearity) 

iv. < u, w + v > = <u, w > + <u, v>  (linearity) 

v. < 𝛼u, v > = 𝛼 < u, v>   (homogeneity) 
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Any linear space that satisfies the above postulates is called inner product 

space. 

6.1.1 Norm of a Vector:  

The norm of a vector v ∈ V is defined as the positive square root of the 

inner product of the vector with itself. The norm of a vector v is written as 

||v||.  

 || v || = √< v, v > = √v1
2 + v2

2 + ⋯ + vn
2      

6.1.2 Norm of distance of two vectors: 

Norm of distance between two vectors u and v is defined as d(u, v)  = || u-

v || = < u-v, u-v > 

= √(u − v)⦁(u − v)  = √(u1 −  v1)2 + (u2 −  v2)2 + ⋯ +  (un − vn)2 

Example 1: If u = (1, -3, 5) and v = (3, 1, -4), find the inner product of u 

and v. Also find norm of u, norm of v, and norm of distance between u 

and v. 

Solution: Inner product of u and v = <u, v>  

= 1*3 + (-3)*1 + 5*(-4) = 3 – 3 – 20 = -20 

Norm of u = √12 + (−3)2 + 52 = √35 

Norm of v =  √32 + 12 + (−4)2 = √26  

Norm of distance between u and v = 

√(1 − 3)2 + (−3 − 1)2 + (5 − (−4))2 = √4 + 16 + 81 = √101  

Theorem 1: Cauchy-Schwartz inequality: 

For any vectors u,v in an inner product space v, < u, v >2 ≤<u,v><u,v> 

or |<u,v>| ≤ ||u|| ||v||. 

Proof: Let y = y(t)   =  <u + tv, u + tv>, t∈R 

   = <u, u+tv> + <tv, u + tv> (by linearity) 

  = <u, u> + 2<u, v> t + <v, v> t2  

It is a quadratic equation. 

⇒ <u, u> + 2<u, v> t + <v, v> t2 = 0  

It has at most one solution as y(t) ≥ 0. This implies that its discriminant 

must be less or equal to zero. 

i.e. [2 < u, v >]2 − 4 < u, u >< v, v > ≤ 0 

⇒ 4(< u, v >)2 ≤4<u, u> <v, v> 

⇒ (< u, v >)2 ≤<u, u> <v, v> 

or |< u, v >| ≤ ||u|| ||v|| 

Hence proved. 
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implies that 

 −𝟏 ≤  
<𝐮,𝐯>

||𝐮||||𝐯||
< 𝟏 

The angle 𝛉 between u and v is defined by 𝐜𝐨𝐬 𝛉  = 
<𝐮,𝐯>

||𝐮||||𝐯||
 the angle is 

unique. 

6.2 ORTHOGONALITY:  

The two vectors u and v are orthogonal, if they are perpendicular to each 

other. In other words, the two vectors are said to be orthogonal to each 

other if angle between them is 90°.  

In terms of inner product, we can define that two vectors are orthogonal if 

their inner product is equal to zero. 

Orthogonal sets: A set S  = {u1, u2, … , un} of non-zero vectors of V is 

called an orthogonal set if every pair of vectors are orthogonal to each 

other. 

i.e. < ui, uj > = 0 ,   1 ≤ i < j ≤ n. 

This orthogonal set of vectors becomes orthonormal if in addition < 

ui, ui > = 1 for all i ≤ n. 

Theorem 2 :  Pythagorean Theorem: Let v1, v2, … , vn be mutually 

orthogonal vectors. Then,   

 ||v1 + v2+, … + vn||2 =  ||v1||2 + ||v2||2 + ⋯ + ||vn||2 

Proof:  Let n=2, 

If u and v are orthogonal, then <u, v> = 0 

⇒ ||u + v||2 =  <u + v, u + v> = <u, u> + <u, v> + <v, u> +<v, v> 

  = <u, u> + 2 <u, v> + <v, v>  (by symmetry) 

  =<u, u> + <v, v>    (u and v are orthogonal) 

  =||u||2 + ||v||2 

Similarly we can prove that  

  ||v1 + v2+, … + vn||2 =  ||v1||2 + ||v2||2 + ⋯ + ||vn||2. 

Example 1: Determine if u = (3, 2, 0, -5) and v = (-4, 1, 6, -2) are 

orthogonal. 

Solution: If <u, v> = 0, the two vectors u and v are orthogonal. 

<(3, 2, 0, -5), (-4, 1, 6, -2)> = 3*(-4) + 2*1 + 0*6 + (-5)*(-2) = 0. 
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Hence, vectors u and v are orthogonal. 

Example 2:  

Verify Pythagorean theorem for u = (1, 0, 2, -4) and v = (0, 3, 4, 2) 

Solution: Pythagorean theorem for u and v is  ||u + v||2= ||u||2 + ||v||2 

Consider,  L.H.S:||u + v||2 = < u + v, u + v> 

we have u+v  = (1, 0, 2, -4) + (0, 3, 4, 2) = (1, 3, 6, -2) 

||u + v||2  = <(1, 3, 6, -2), (1, 3, 6, -2)>  = 1 + 9 + 36 + 4 = 50 

consider R.H.S: ||u||2 + ||v||2 = <u, u> +<v, v> 

  = <(1,0,2,-4),(1,0,2,-4)> + <(0,3,4,2),(0,3,4,2)> 

  =21+29 

  =50 

∴L.H.S = R.H.S 

Hence Proved. 

Example 3: Find inner product, angle, orthogonality for  

p = -5+2x-x2 and q = 2+3x2. 

Solution: Let u = (-5, 2, -1) and v = (2, 0, 3) 

Inner product of p and q is <u, v> = -5*2 + 2*0 + (-1)*3 = -10 + 0 - 3= -13 

||u|| = √(−5)2 + 22 + (−1)2 = √30 

||v|| = √22 + 0 + 32 = √13 

Angle between p and q is cos θ  = 
<𝐮,𝐯>

||𝐮||||𝐯||
  = 

−𝟏𝟑

√𝟑𝟎 √𝟏𝟑
 

u and v are orthogonal to each other, if <u, v> = 0 but here we got <u, v> 

= -13 

It shows that u and v are not orthogonal to each other. 

Theorem 3: If u and v are orthogonal vectors then for α, β any scalar we 

have  

||α u +  β v||2 =  α2||u||2 + β2||v||2      

Proof: ||α u +  β v||2 = << α u +  β v , α u +  β v > 

      = < αu , α u +  β v >+ <βv , α u +  β v >  (linearity) 

     = < αu, αu > +< αu, β v > +< β v, αu > +< β v, β v > 

     = α2 < u, u > +αβ < u, v > +βα < v, u > +β2 < v, u > 

     = α2||u||2 + 2αβ < u, v > +β2||v||2  (symmetricity) 

    =  α2||u||2 + β2||v||2     (orthogonality) 

∴ ||α u +  β v||2 =  α2||u||2 + β2||v||2  

 Hence proved. 
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i. Let u, v are orthogonal vectors, then < αu, αv > = 0, for any scalar 

α ∈ R. 

ii. If u and v are orthogonal to w then u+v is orthogonal to w. 

Proof:  

i.  Since u and v are orthogonal to each other. ⇒ <u, v> = 0. 

 Multiplying α2 both sides, < αu, αv > = 0, for any scalar α ∈ R. 

ii.  Given that u and v are orthogonal to w, then <u, w> = 0  

and <v, w> = 0. 

 We have to show that <u+v, w> = 0 

 Consider L.H.S:  <u+v, w> = <u, w> + <v, w> = 0+0 = 0   

 (by linearity) 

Parallel and Perpendicular Vectors: 

 Two vectors u and v are parallel to each other if <u, v> = 1 and  

If two vectors are perpendicular to each other if <u,v> = 0 

Example 1: Find the vector orthogonal to both u = (-6, 4, 2) and  

v = (3, 1, 5).   

Solution: Let x = (x1, x2, x3) is orthogonal to both u and v. 

x⦁u = (x1, x2, x3)⦁(−6, 4, 2)  = 0 

⇒ -6x1 + 4x2 + 2x3 = 0----------------(i) 

similarly x⦁v = (x1, x2, x3)⦁(3, 1, 5) = 0 

⇒  3x1 + x2 + 5x3 = 0-----------------(ii) 

Multiplying equation(ii) with 2 and then add it in equation (i), we get 

6x2 + 12x3 = 0 ⇒ x2 =  −2x3-------(iii) 

Substituting value of x2 in equation (ii), we get, 

x1 =  −x3 

⇒x = [

x1

x2

x3

] =  [

−x3

−2x3

x3

] = x3 [
−1
−2
1

] 

Hence, the vector orthogonal to both u and v is {x: x(-1, -2, 1), x∈R} 
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6.3 PROJECTION 

Let v be a non-zero vector of a vector space V. Let W be a subspace of V. 

If w ∈ W is a vector such that it is closest to v, then w is called projection 

of v. Now decomposing an arbitrary vector x into the form x = αv + z 

where z ∈ V⊥ since z ⊥ v then <v, x> = <αv, v > = α <v, v>. 

It implies that α =  
<v,x>

<v,v>
. 

The vector projv
(x) = 

<v,x>

<v,v>
  v  is called the orthogonal projection of x 

along v.  

Let u be the subspace spanned by u1, u2, … … un . Then any vector v can 

be written as the sum of vectors in w and a vector orthogonal to W as 

proju1,u2,……un

v =  
v⦁u1

u1⦁u1
 u1+  

v⦁u2

u2⦁u2
 u2 + ⋯ +  

v⦁un

un⦁un
 un 

proju1,u2,……un

v is called closest point to v in the subspace spanned by 

u1, u2, … … un. 

The distance between the vectors v and u is  c = 
<v ,   u1>

<u1 ,u1>
 . 

The point in span {u} closest to v is v||u =cu. 

Example 1: Find the projection of v(4, 2, 1) on the vector u(5, -3, 3). 

Solution: Projection of v along u = 
<u,v>

<u,u>
  

Since <u, v> = 17 and √< u, u > = √43 

Projection = 
17

√43
. 

Example 2: Let a = (3, 0), b = (2, 1) find vector in span {a} that is closest 

to be is b||a and distance ||b⊥a||. 

Solution:  Distance ||b⊥a|| = 
<b,a>

<a,a>
  = 

<(2,1),(3,0)>

<3,0>,(3,0)>
=  

6

9
=  

2

3
 

b||a =  
<b,a>

<a,a>
 a= 

2

3
*(3,0) = (2,0). 

6.4 ORTHOGONAL SET OF GENERATORS 

Let B = {v1, v2, … . . , vn } be a basis of a subspace W of an inner product 

space V. An orthogonal Basis B’ = {w1, w2, … . . , wn} may be constructed 

as follows: 

w1 =  v1,            w1 = span{w1} 

w2 =  v2 −  projw1

v2   ,   w2 = span{w1, w2} 

⋮ 

wk =  vk − projwk−1

(vk) 
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w1 =  v1 

w2 =  v2 −  
< w1, v2 >

< w1, w1 >
 w1 

w3 =  v3 −  
< w1, v3 >

< w1, w1 >
w1 −   

< w2, v3 >

< w2, w2 >
w2 

⋮ 

wk =  vk −  
< w1, vk >

< w1, w1 >
w1 −  

< w2, vk >

< w2, w2 >
w2 − ⋯

−  
< wk−1, vk >

< wk−1, wk−1 >
wk−1 

The method of constructing the orthogonal vector w1, w2, … . . , wk is 

known as the Gram-Schmidt Orthogonalization process. 

Clearly, the vector w1, w2, … . . , wk are linear combinations of 

v1, v2, … . . , vk. Conversely, the vectors v1, v2, … . . , vk are also linear 

combination of  w1, w2, … . . , wk. 

Hence the basis { w1, w2, … . . , wk} constructed by Gram Schmidt process 

is an orthogonal basis of W. 

Example 1: Find the orthonormal basis for subspace R4 whose generators 

are v1 = (1, 1, 1, 1)  v2 = (1,2,4,5), and v3 = (1,-3,-4,-2) using Gram-

Schmidt orthogonalization method. 

Solution: w1 =  v1 =(1,1,1,1) 

w2 =  v2 −  
<w1,v2>

<w1,w1>
 w1  

 = (1, 2, 4, 5) - 
<(1,1,1,1),(1,2,4,5)>

<(1,1,1,1),(1,1,,1,1)>
(1,1,1,1) 

 = (1, 2, 4, 5) - 
12

4
 (1,1,1,1) 

 = (1, 2, 4, 5) - (3, 3, 3, 3) 

 = (-2, -1, 1, 2) 

w3 =  v3 −  
< w1, v3 >

< w1, w1 >
w1 −   

< w2, v3 >

< w2, w2 >
w2 

 = (1,-3,-4,-2)- 
<(1,1,1,1),(1,−3,−4,−2)>

<(1,1,1,1,),(1,1,1,1)>
 (1,1,1,1) - 

<(−2,−1,1,2),(1,−3,−4,−2)>

<(−2,−1,1,2),(−2,−1,1,2)>
 (−2, −1,1,2) 

 = (1,-3,-4,-2)- (-2,-2,-2,-2) + 
7

10
 (−2, −1,1,2) 

 = (
−1

5
,

−17

10
,

−13

10
,

7

5
) 
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Example 2: Construct an orthonormal basis of R2 by Gram-Schmidt 

process S = {(3,1),(4,2)} 

Solution: Let the orthonormal basis set is {w1, w2}  

w1 =  v1= (3,1) 

w2 =  v2 −  
< w1, v2 >

< w1, w1 >
 w1 

 =(4,2) - 
<(3,1)⦁(4,2)>

<(3,1)⦁(3,1)>
 ⦁ (3,1) 

 = (4, 2) – 
14

10
 (3,1) 

 =( 
−1

5
 ,

−3

5
) 

6.5 ORTHOGONAL COMPLEMENT 

Let W⊆  Rn be a subspace. If a vector v is orthogonal to every vector w ∈
W, we say that v is orthogonal to W. The orthogonal Complement of W is 

the collection of all vectors orthogonal to W. It is denoted by W⊥. 

i.e. W⊥ = { v ∈  Rn: v⦁w = 0 for all w ∈ W}. 

Theorem 4: Let W be a subset of vector space V. Prove that W⊥ is a 

subspace of Rn. 

Proof: W⊥ is non-empty, since 0 ∈ W⊥ for all w ∈ W⊥, < 0, w > = 0. 

Let w1, w2 ∈ W⊥. 

<w1 − w2  , w > =<  w1, w > +< −w2, 𝑤 >   (linearity) 

      = <  w1, w > −< w2, w > 

      = 0 – 0 = 0 

Hence we can say that  w1, w2 ∈ W⊥. And by the axiom of subspace we 

can say that W⊥ is a subspace. 

Theorem 5:  If { w1, w2, … . , wk} forms a basis of W. then 

 x ∈  W⊥ if and only if x⦁wi = 0 for all integers 1 ≤ i ≤ k. 

Proof: Let x⦁wi = 0. 

Let w ∈ W, then W can be written as a linear combination of 

w1, w2, … . wk as 

W = α1w1 + α2w2 + ⋯ + αkwk. 

then x⦁W= W = α1xw1 + α2xw2 + ⋯ + αkxwk   (by 

linearity) 

   = 0 + 0 +….+ 0 = 0 

 x ∈ W⊥. 
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Hence proved. 

Theorem 6:  W⊥ is the Orthogonal Complement of W where W is a 

subspace of V . Then V = W⨁ W⊥ and W ∩ W⊥ = {0}. 

Proof: We have W⊆V and also W⊥ ⊆ V then W⨁ W⊥ ⊆V----(i). 

Now for any b ∈ V, b = b"s + b⊥S, where b” ∈ W and b⊥ ∈ W⊥. 

∴ b ∈ W⨁ W⊥ 

⇒ V⊆ W⨁ W⊥-------(ii) 

From equation (i) and equation (ii),  we get V = W⨁ W⊥. 

Now, W⊥ = { v∈ V: <v, w> = 0,∀ w ∈ W}. 

Since W⊆V ⇒ <w, w> = 0 ⇒w = 0. 

∴ W ∩ W⊥ = {0}. 

Hence Proved.  

Example 1: Find the orthogonal Complement of W = span{w1, w2}, where 

w1 = (3, 0, 1, 1) and w2  = (0, 2, 5, 1). 

 Let x = (x1, x2, x3, x4) ∈ R4 such that x⦁w1 = x⦁w2= 0 

⇒ (x1, x2, x3, x4) ⦁ (3, 0, 1, 1) = 0 and  (x1, x2, x3, x4)⦁(0, 2, 5, 1) = 0 

⇒ 3x1 + 0x2 + x3 + x4 = 0 and 0x1 + 2x2 + 5x3 + x4 = 0. 

We can write (x1, x2, x3, x4) in the following manner: 

x1 =  −x3 − x4 

x2 =  −5x3 − x4 

x3 =  1x3 + 0x4 

x4 =  0x3 + 1x4 

⇒ [

x1

x2

x3

x4

] = x3 [

−1
−5
1
0

] + x4 [

−1
−1
0
1

] 

⇒ The orthogonal complement of W is {x3(-1, -5, 1, 0) + x4(-1, -1, 0, 1): 

x3, x4 ∈ R}. 
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6.6 SUMMARY 

The standard inner product of a vector v with itself gives the Euclidian 

length and the standard inner product of two vectors gives the angle 

between them. The orthogonal projection of vector w onto vector v can be 

assumed as shadow of w on the line spanned by v if the direction of the 

sun’s rays were exactly perpendicular to the line.  

6.7 REFERENCE 

1. Linear Algebra and Probability for Computer Science Applications, 

Ernest Davis, A K Peters/CRC Press (2012).  

2. Linear Algebra and Its Applications, Gilbert Strang, Cengage Learning, 

4th Edition (2007). 

EXERCISE 

Q1.  Find the inner product of u and v, also show that <3u-2v, w> = 3<u, 

w> -2 <v, w>. 

i. u=(1, -1, 2, 3) , v = (1, 0, 3, 7) and w = (2, 5, 1, 9) 

ii. u = (7, 3, -9, 1), v = (2, 5, 3, 0) and w = (-1, 3, 5, 7) 

iii. u = (1, 2, 3, 4), v = (2, 3, 4, 5) and w = (4, 5, 6, 7)   

iv. u = (1, 9, 11, 0), v = (3, -1, 5, 7) and w = (11, 11, 5, 0) 

Q2. Find the projection of vector u along vector v where u and v are, 

i. u = (1, 1) and v = (1, 0) 

ii. u = (0, 1) and v = (
√2

2
 ,

√2

2
) 

iii. u = (-1, 3) and v = (3, 4) 

iv. u = (-11, 10) and v = ( 6, 8) 

Q3. Find the orthonormal basis for subspace of 𝑅4 generated by the 

following: 

i. (1, 2, 1, 0) and  (1, 2, 3, 1) 

(1, 1, 0, 0), (1, -1, 1, 1) and (-1, 0, 2, 1) 

 
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7 

EIGEN VECTORS    

Unit Structure: 

7.0  Objectives 

7.1  Modelling Discrete Dynamic Processes 

7.2  Eigen Values and Eigen Vectors 

7.3  Diagonalization 

 7.3.1 Similar Matrix 

 7.3.2 Calculation of powers of a matrix  

 7.3.3 Diagonalization of the Fibonacci Matrix 

7.4  Coordinate representation in terms of Eigen vectors 

7.5  The Internet Worm 

7.6  Existence of Eigen Values  

7.7  Markov Chains 

 7.7.1 Transition Matrix 

 7.7.2 Graphical Representation 

 7.7.3 Regular Transition Matrices 

 7.7.4 Steady State 

7.8  Modelling a web surfer: PageRank 

 7.8.1 Page Rank algorithm as a Markov Process: 

 7.8.2 Basic Page Rank Algorithm Model: 

 7.8.3 Random web surfer Model: 

 7.8.4 Google matrix  

7.9  Summary 

7.10  References 

7.0 OBJECTIVES 

After going to this chapter, you will be able to: 

• Define discrete dynamic process 

• Find eigenvalues and eigenvectors of a square matrix 

• Understand Diagonalization of a matrix and its importance 

• Explain Markov process, Markov Chain and Steady state 

• Define Internet worm and Page rank 
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Eigen Vectors 7.1 MODELLING DISCRETE DYNAMIC PROCESSES 

A matrix equation is called a discrete dynamical system if it is in the form 

𝑥𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴 ⦁ 𝑥𝑛⃗⃗⃗⃗    or equivalently, it is  𝑥𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴𝑛+1 ⦁ 𝑥𝑛⃗⃗⃗⃗  

where A is an mxm matrix and for each integer n, 𝑥𝑛⃗⃗⃗⃗  is an m-demensional 

vector. 

In order to better understand the behaviour of discrete dynamical systems, 

we need a method of easily computing the product of matrices and 

vectors. 

Let A = [
4 −3
1 0

  ] , v1 = [
1
1
] , v2 = [

3
1
]  

(a)  we are finding A(v1) and A(v2). 

 A(v1) =  [
4 −3
1 0

  ]  [
1
1
] =  [

1
1
] = v1 

  A(v2) =  [
4 −3
1 0

  ] [
3
1
]= [

9
3
] = 3 [

3
1
] = 3v2 

(b) we are finding A2v1 and A
2v2. 

 A2v1 = [
4 −3
1 0

  ]
2

[
3
1
] 

 = [
4 −3
1 0

  ] [
4 −3
1 0

  ] [
3
1
] 

 = [
4 −3
1 0

  ] 3 [
3
1
] 

 = 3 [
4 −3
1 0

  ] [
3
1
] 

 = 3 (3 [
3
1
])) 

 = 32v2 

 Similarly we can find Anv1 and A
nv2. 

Based on the above procedure we can conclude that 

 Anv1 = v1and A
nv2 = 3

nv2. 

(c) Use the fact that  [
7
1
]  =  −2v1 +  3v2  to find a formula for A

n [
7
1
]. 

 We have [
7
1
] = −2v1 +  3v2  

 Multiplying both sides with An, we get, 

An([
7
1
]) = An(−2v1 +  3v2) 
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 An([

7
1
]) = An(−2v1)  +  A

n (3v2) 

 An([
7
1
]) = −2An(v1)  +  3A

n (v2) 

 An([
7
1
]) = -2 v1 + 3(3nv2) 

 An([
7
1
]) = -2 [

1
1
] + 3x 3n [

3
1
] 

 An([
7
1
]) = [

−2
−2
] + [3x3

n+1

3x3n
] 

 An([
7
1
]) =  [−2 + 3x3

n+1

−2 + 3x3n
] 

An([
7
1
]) =  [−2 + 3

n+2

−2 + 3n+1
] ----------(I) 

It is a formula that allows us to directly compute a value by simply putting 

a value of n and directly getting an output. 

If we want value of A100([
7
1
]), we can simply take n=100 in the above eqn(I) 

instead of multiplying A by 100 times. It allows us to compute a very large 

matrix multiplication very quickly and efficiently. 

7.2 EIGEN VALUES AND EIGEN VECTORS 

Characteristic Equation: Let A be a Square matrix, I be the unit matrix of 

same order that of A, and 𝜆 is a number. Then the polynomial equation 

det(A-𝜆I) = 0 in the variable 𝜆 for the given square matrix A is called the 

characteristic equation of the matrix A.  

Eigen Values: The roots of the characteristic equation det(A-𝜆I) = 0 is called 

characteristics roots or eigenvalues or latent roots of the matrix A. 

Eigen Vectors: An eigen vector of A is a non-zero vector v such that Av=𝜆v 

, for some scalar 𝜆. Where 𝜆 is an eigen value of A. 

To find the eigenvectors of A corresponding to each eigenvalue 𝜆, we must 

solve the matrix equation (A-𝜆I)v = 0, for each eigen value 𝜆. 

Example 1: Find the characteristic equation and hence eigenvalues for A= 

[
1 −3
−4 5

]. 

Solution: Given A= [
1 −3
−4 5

]. 

 

Consider the characteristic equation as | A-λI|=0 
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1 −3
−4 5

] − λ [
1 0
0 1

] = 0 

⇒ [
1 − λ −3
−4 5 − λ

] = 0 

⇒ λ2- 6 λ -7 = 0 

⇒ (λ-7)( λ+1) = 0 

Hence λ = −1, 7 are the eigen values for the given matrix. 

Example 2: Find the characteristic equation and hence eigenvalues for A= 

[
1 2
4 3

]. 

Solution: Given A= [
1 2
4 3

]. 

Consider the characteristic equation as | A-λI| = 0, 

⇒ [
1 2
4 3

] − λ [
1 0
0 1

] = 0 

⇒ [
1 − λ 2
4 3 − λ

] = 0 

⇒ λ2-4λ-5 = 0 

⇒ (λ-5)( λ+1)=0 

Hence λ = −1, 5 are the eigen values for the given matrix A. 

Example 3: Find eigenvalues  of matrix A= [
1 1 3
1 5 1
3 1 1

].  

Solution: Given A=  [
1 1 3
1 5 1
3 1 1

]. 

Consider the characteristic equation of A is | A-λI| = 0. 

⇒ [
1 − λ 1 3
1 5 − λ 1
3 1 1 − λ

]=0 

⇒ λ3-7λ2+36 = 0 

⇒ (λ-6)( λ-3) ( λ+2) = 0 

⇒ λ = -2, 3, and 6 are the eigen values for the given matrix A. 

 

Example 4. Find eigenvalues and given vectors of   A=[
8 −8 −2
4 −3 −2
3 −4 1

]. 
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Solution:   Here,      A = [
8 −8 −2
4 −3 −2
3 −4 1

] 

The characteristic equations is |A-λI| = 0. 

⇒ |[
8 −8 −2
4 −3 −2
3 −4 1

] - λ|[
8 −8 −2
4 −3 −2
3 −4 1

]|=0 

⇒ [
8 − λ −8 −2
4 −3 − λ −2
3 −4 1 − λ

] = 0    

⇒ λ3 - 6λ2 + 11 λ - 6 = 0  

⇒ (λ-1)( λ-2) ( λ-3) = 0 

⇒ λ=1,2,3. 

Case 1: Eigen vector corresponding to eigenvalue λ = 1; 

Consider (A-1I) v = O; 

⇒ [
7 −8 −2
4 −4 −2
3 −4 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒  7v1 -8v2-2v3 =0 

⇒  4v1 -4v2-2v3 =0 

⇒  3v1 -4v2 =0 

⇒  3v1 = 4v2 

⇒    v1 = 4/3v2 

Substituting this value of v1 in   7v1 -8v2-2v3 = 0 

⇒
28

3
 v2 -8v2-2v3 = 0 

⇒ v3= 
2

3
 v2 

Thus [

v1
v2
v3
] =[

4
3⁄ v2
v2

2
3⁄ v2

] = 
1v2

3
 [
4
3
2
] 

This implies that X1=[
4
3
2
]. 

Case 2: Eigen vector corresponding to eigenvalue λ = 2; 

Consider (A-2I)v = O ; 
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⇒ [
6 −8 −2
4 −5 −2
3 −4 4

] [

v1
v2
v3
] = [

0
0
0
] 

Performing row operations R3 →2R3-R1 and R2 → R2-R1;  

⇒  [
6 −8 −2
−2 3 0
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ 6v1 -8v2-2v3 =0 

⇒ -2v1 +3v2=0 

⇒ v1= 
3

2
 v2         

Substituting the value of v1in 6v1 -8v2-2v3 = 0, 

⇒-v3= 
v2

2
 

Thus  [

v1
v2
v3
] =  [

3

2
v2
v2
1

2
v2

]=  
1

2
v2 [

3
2
1
] 

This implies that X2=  [
3
2
1
]. 

Case 3: Eigen vector corresponding to λ = 3: 

Consider (A-3I) = O, By simplification, we get 

[
5 −8 −2
4 −6 −2
3 −4 −2

] [

v1
v2
v3
] = [

0
0
0
] 

⇒Performing R2 ⟶ 5R2 − 4R1, and R3 ⟶ 5R3 − 3R1 

⇒ [
5 −8 −2
0 2 −2
0 4 −4

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R3 ⟶ R3 − 2R2, we get 

⇒ [
5 −8 −2
0 2 −2
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒5v1 − 8v2 − 2v3  =  0 − − − − − −−−−−(i) 

⇒   2v2 − 2v3 = 0 

⇒ v2 = v3 substituting in (i), we get 

⇒ v1 = 2v3 
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⇒ [

v1
v2
v3
] = 2[

2v3
v3
v3

]=v3 [
2
1
1
] 

Hence, X3  =  [
2
1
1
]. 

Thus the eigenvalues are 1, 2, and 3. Their corresponding eigen vectors 

are  [
4
3
2
] , [

3
2
1
] and [

2
1
1
]  respectively. 

Example 5: Find eigen values and Eigen vectors of matrix A= 

[
2 −2 3
1 1 1
1 3 −1

]. 

Solution: Given A= [
2 −2 3
1 1 1
1 3 −1

] 

Consider the characteristic equation of A is | A-λI| = 0. 

⇒ [
2 − λ −2 3
1 1 − λ 1
1 3 −1 − λ

] = 0 

⇒ (λ-1)( λ-3) ( λ+2) = 0 

⇒ λ=1,3,-2. 

Case 1: Eigen vector corresponding to eigenvalue λ = 1; 

Consider (A-1I)v = O, 

⇒ [
2 − 1 −2 3
1 1 − 1 1
1 3 −1 − 1

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ [
1 −2 3
1 0 1
1 3 −2

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R2 ⟶ R2 − R1, and R3 ⟶ R3 − R1; 

⇒ [
1 2 1
0 2 −2
0 5 −5

] [

v1
v2
v3
] = [

0
0
0
] 

 

 

Performing R2 ⟶ R2/2 and R3⟶ R3/5; 
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⇒ [
1 2 1
0 1 −1
0 1 −1

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R3 ⟶ R3 − R2; 

⇒ [
1 2 1
0 1 −1
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ v1 + 2v2 + v3  =  0 − − − − − − −−−−(i) 

⇒  v2 − v3 = 0 

⇒ v2 = v3  

Substituting the value of v2 in (i), we get 

⇒ v1 = −3v3 

⇒ [

v1
v2
v3
] = [

−3v3
v3
v3

] = v3 [
−3
1
1
] 

Hence X1  =  [
−3
1
1
]. 

Case 2: Eigen vector corresponding to eigen value λ = 3 

Consider (A-3I)v = O; 

⇒ [
2 − 3 −2 3
1 1 − 3 1
1 3 −1 − 3

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ [
−1 −2 3
1 −2 1
1 3 −4

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R2 ⟶ R2 − R1, and R3 ⟶ R3 + R1, 

⇒ [
−1 −2 3
0 0 −2
0 1 −1

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R2 ⟷ R2, 

⇒ [
−1 −2 3
0 1 −1
0 0 −2

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ −v1 − 2v2 + 3v3  =  0 − − − − − −−−−−(i) 

⇒  v2 − v3 = 0 

 v2 = v3  

Substituting value of in v2 equation (i), −v1 = −v3 
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⇒ [

v1
v2
v3
] = [

v3
v3
v3
]=v3 [

1
1
1
] 

Hence X2  =  [
1
1
1
]. 

Case 2: Eigen vector corresponding to eigenvalue λ = -2; 

Consider (A+2I)v = O; 

⇒ [
2 + 2 −2 3
1 1 + 2 1
1 3 −1 + 2

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ [
4 −2 3
1 3 1
1 3 1

] [

v1
v2
v3
] = [

0
0
0
] 

Performing R2 ⟶ 4R2 − R1, and R3 ⟶ 4R3 − R1; 

⇒ [
4 −2 3
0 14 1
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ 4v1 − 2v2 + 3v3  =  0 − − − −− −−−−−(i) 

⇒ 14v2 + v3  =  0 − − − − − −−−−−(ii) 

⇒ −14v2 = v3  substituting in equation (i), we get 

⇒ 4v1 − 2v2 + 3(−14v2)  =  0 

⇒ 4v1 − 44v2 = 0 

⇒ 4v1 = 44v2 

⇒ v1 = 11v2 

⇒ [

v1
v2
v3
] = [

11v2
v2

−14v2

]=v2 [
11
1
−14

] 

Hence X3  =  [
11
1
−14

]. 

Thus the eigenvalues are 1,3, and -2 and their corresponding eigenvectors 

are [
−3
1
1
] , [

1
1
1
] and [

11
1
−14

]  respectively. 
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Example 6: Find Eigen values and Eigen vectors of [
3 −1 1
−1 3 −1
1 −1 3

].  

Solution: Given A = [
3 −1 1
−1 3 −1
1 −1 3

] 

The characteristic equation of the square matrix A is | A-λI| = 0. 

i.e. [
3 −1 1
−1 3 −1
1 −1 3

]- λ [
1 0 0
0 1 0
0 0 1

] = 0 

⇒ |
3 − λ −1 1
−1 3 − λ −1
1 −1 3 − λ

| = 0 

⇒ (3 - λ)|
3 − λ −1
−1 3 − λ

|  − (−1) |
−1 −1
1 3 − λ

| + 1 |
−1 3 − λ
1 −1

|  =  0 

⇒ (3- λ)((3- λ)(3- λ) -1) + (-(3- λ) + 1) + 1(1- (3- λ))=0 

⇒ (λ-2) ( λ-5) ( λ-2)=0 

⇒ λ = 2, 2, 5 are eigenvalues of A. 

Case 1: Eigen vector corresponding to eigenvalue λ = 5; 

Consider (A-5I)v = O 

⇒{[
3 −1 1
−1 3 −1
1 −1 3

]- 5 [
1 0 0
0 1 0
0 0 1

]}[

v1
v2
v3
]= O 

⇒ [
−2 −1 1
−1 −2 −1
1 −1 −2

] [

v1
v2
v3
] = [

0
0
0
] 

⇒Performing row operations R1 ↔ R3, we get 

⇒ [
1 −1 −2
−1 −2 −1
−2 −1 1

] [

v1
v2
v3
] = [

0
0
0
] 

⇒Performing R2 ⟶ R2 + R1 and R3 ⟶ R3 + 2R1 

⇒ [
1 −1 −2
0 −3 −3
0 −3 −3

] [

v1
v2
v3
] = [

0
0
0
] 

⇒Performing R3 ⟶ R3 − R2 

⇒ [
1 −1 −2
0 −3 −3
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 
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−1

3
R2 

⇒ [
1 −1 −2
0 1 1
0 0 0

] [

v1
v2
v3
] = [

0
0
0
] 

⇒ V1  - V2 - 2V3 = 0 

And V2+V3 =0 ⇒ V2=  -V3  

Substituting  this value in V1 - V2 - 2V3 = 0 

V1 -V3= 0 ⇒ V1 =V3 

⇒ [

v1
v2
v3
] = [

v3
−v3
v3
] = v3 [

1
−1
1
] 

Hence, the eigenvector X1=[
1
−1
1
] is corresponding eigenvector to 

eigenvalue λ=5. 

Case 2: Eigen vector corresponding to eigen value λ = 2 

Consider (A-2I)v = O 

⇒{[
3 −1 1
−1 3 −1
1 −1 3

]- 2 [
1 0 0
0 1 0
0 0 1

]}[

v1
v2
v3
]= O 

⇒  [
1 −1 1
−1 1 −1
1 −1 1

] [

v1
v2
v3
] = [

0
0
0
] 

⇒  V1 -V2+V3 =0 

⇒ -V1 +V2-V3 =0 

⇒  V1 -V2+V3 =0 

We get, V2 = V1 + V3 

Now, [

v1
v2
v3
] = [

1v1 + 0v3 
1v1 + 1v3
0v1 + 1v3

] = v1 [
1
1
0
] + v3 [

0
1
1
] 

Thus , the eigenvectors are X2 =[
1
1
0
] and X3 [

0
1
1
] . 
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Eigen Vectors Hence eigenvalues are 5, 2, 2 and corresponding eigenvectors are 

                                               X1 =[
1
−1
1
] , X2 =[

1
1
0
] , X3 =[

0
1
1
] respectively. 

Properties of Eigen values: 

i. The sum of the eigenvalues of a matrix is sum of the elements of 

principal diagonal. It is called trace of the matrix A. 

 Let A  = [

a11 a12 a13
a21 a22 a23
a31 a32 a33

] 

 If λ1, λ2 and λ3 are eigen values of A, then trace(A) =  λ1 + λ2  +
 λ3 = a11 + a22 + a33 

ii. The product of the eigenvalues of a matrix A is equal to its 

determinant. 

iii. If λ is an eigen value of A then 
1

λ
 is eigen value of A−1. 

iv. If λ1, λ2 . . . λn are the eigen values of matrix A then 

λ1
m, λ2

m
,…….λn

m  are eigen values of Am. 

v. If A is upper-triangular matrix of order nxn, then its eigenvalues are 

its diagonal elements. 

vi. Eigen values of real symmetric matrix are real. 

7.3 DIAGONALIZATION 

If a square matrix A of order n has n linearly independent eigenvectors or n 

distinct eigenvalues, then there exists a matrix P of same order such that 

𝑃−1AP is a diagonal matrix. 

i.e. a square matrix A of order n is diagonalizable, iff it has n linearly 

independent eigen vectors. 

Let λ1, λ2,…., λn are the distinct eigenvalues of a matrix A of order n and 

the corresponding eigen vectors are  X1, X2,…., Xn. Then a square matrix P 

can be formed with these eigen vectors as 

                           P = [X1 X2…. Xn]. 

Now AP = A[X1 X2…. Xn] = [λ1X1   λ2X2….  λnXn] 

For n = 3, AP = A[X1  X2  X3]  = [AX1   AX2  AX3] = [λ1X1   λ2X2   λ3X3]  

                       =  [

λ1x1  λ2x2  λ3x3
λ1y1  λ2y2  λ3y3
λ1z1  λ2z2  λ3z3

] 
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                       = [

x1  x2  x3
y1  y2  y3
z1  z2  z3

]*[

λ1 0 0
0 λ2 0
0 0 λ3

] = PD,  

where D is the diagonal matrix. 

So P−1AP = P−1PD = D. 

The matrix P which diagonalizes A is called the transforming matrix or 

modal matrix of A. The resulting diagonal matrix D is known as spectral 

matrix of A. D has the eigenvalues of A as its elements. 

7.3.1 Similar Matrix: 

A square matrix B of order n is called similar to a square matrix A of same 

order if  

  B = P−1AP for some non-singular matrix P of order n. 

Since matrix B is similar to matrix A, B has same eigenvalues as A. If X is 

an eigenvector of A, then y = 𝑃−1X is an eigen vector of B corresponding 

to same eigen values. 

7.3.2 Calculation of powers of a matrix: 

Let matrix P diagonalizes matrix A, i.e. D  = P−1AP  

   Then      D2 = (P−1AP)( P−1AP) = P−1APP−1AP = 

P−1A2P  

         [since PP−1 = I] 

Again  D3 = ( P−1A2P) ( P−1AP) = P−1A2P P−1AP = P−1A3P  

Similarly, Dn = P−1AnP ; pre-multiplying by P and post-multiplying by P−1, 

we get 

   PDnP−1 = PP−1AnPP−1 = An . 

7.3.3 Diagonalization of the Fibonacci Matrix 

Fibonacci considered the following problem (breeding rabbits): 

We breed rabbits, starting with one pair of rabbits. Each pair of rabbits 

produces one pair of offspring in every month. After one month, the 

offspring is adult and ready for reproduction. After neglecting all kinds of 

effects (as death) and always considering pairs of rabbits, we get the number 

of rabbits increase quite rapidly. 

Let rabbit vector r  = (
j
a
) ∈ R2 , where j and a denote the number of juvenile 

pairs and number of adult pairs respectively. 

Since,   jn+1  =  an 

   an+1 =     jn  + an 



 

 
75 

 

Eigen Vectors 
In vector notation, (

jn+1
an+1

) = (
0 1
1 1

) (
jn
an
) 

Or,              r n+1=  (
0 1
1 1

) r n 

The transition matrix of this dynamical system is A = (
0 1
1 1

) 

The initial condition is r 0 = (
1
0
), that means there is one pair of juvenile 

rabbits, no adult rabbits. 

That means the dynamical system in the equations can be summarized as 

   r n+1=  (
0 1
1 1

) r n , r 0 = (
1
0
) 

The solution of the above equation will be in the form of  r n = Anr 0 

Or,   (
jn
an
) = (

0 1
1 1

)
n

 (
1
0
) 

Analysis of the problem: 

Now we calculate first few rabbit vectors : 

N 0 1 2 3 4 5 6 7 8 

jn 1 0 1 1 2 3 5 8 13 

an 0 1 1 2 3 5 8 13 21 

The table shows that after 5 months, there are 3 juvenile pairs and 5 adult 

pairs of rabbits. 

The sequence an = (0, 1, 1, 2, 3, 5, 8, …) is the famous Fibonacci sequence. 

For finding the eigenvalue, rewrite the vector equation as follows: 

   (
0 1
1 1

) (
j
a
) = λ (

j
a
) 

   (
0 1
1 1

) (
j
a
) = λ (

0 1
1 1

) (
j
a
) 

   (
0 1
1 1

) (
j
a
) = (

λ 0
0 λ

) (
j
a
) 

   (
λ −1
−1 λ − 1

) (
j
a
) = (

0
0
) 

The rabbit vector (
j
a
) has to be non-zero, so for the solution of the above 

matrix equation the coefficient matrix must be zero. The matrix is singular 

if det(
λ −1
−1 λ − 1

) = 0. 

det(
λ −1
−1 λ − 1

) = λ(λ − 1)-1 = 0 
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0 1
1 1

) 

and its root is known as eigen values of A. 

Solving the characteristic equation, we get the two eigen values are 

 λ1 = 
1+√5

2
 and  λ2 = 

1−√5

2
. 

Eigen vector corresponding to eigenvalue  λ1 = 
1+√5

2
 : 

   (

1+√5

2
−1

−1
1+√5

2
− 1

) (
j
a
) = (

0
0
) 

After row reducing the coefficient matrix, we get (

1+√5

2
−1

−1
1+√5

2
− 1

) → 

(1
1−√5

2

0 0
) 

For the non-trivial solution of the above equation is (
j
a
) = (

(√5−1)a

2
a

) 

Thus the eigen vector is v⃗ 1 = (√5 − 1
2

) corresponding to eigen value eigen 

value  λ1 = 
1+√5

2
. 

Now we calculate eigen vector corresponding to eigen vector λ2 = 
1−√5

2
 : 

Putting the value of λ2 in (
λ −1
−1 λ − 1

) , we get (

1−√5

2
−1

−1
1−√5

2
− 1

) (
j
a
) = 

(
0
0
) 

After row reducing the coefficient matrix, we get (

1−√5

2
−1

−1
1−√5

2
− 1

) → 

(1
1+√5

2

0 0
) 

For the non-trivial solution of the above equation is (
j
a
) =(

−(1+√5)a 

2
a

). 

Thus the eigenvector is v⃗ 2 = (1 + √5
−2

) corresponding to eigen value eigen 

value  λ2 = 
1−√5

2
. 
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Example 1: Find a matrix P which transforms the matrix A = [
1 1 3
1 5 1
3 1 1

]  

to diagonal form.  

Hence calculate 𝐴4 . 

Solution: The characteristic equation is | A – λI | = 0 

 |
1 − 𝜆 1 3
1 5 − 𝜆 1
3 1 1 − 𝜆

| = 0 

 𝜆3 - 7𝜆2 + 36 = 0 

 (λ+2) (λ-3) (λ-6) = 0 

 Eigen values of A are λ = -2, 3 and 6. 

Now eigen vector corresponding to λ = -2 can be found by solving 

[
1 + 2 1 3
1 5 + 2 1
3 1 1 + 2

] [
𝑥
𝑦
𝑧
] = 0 i.e. 

3 x + y + 3z = 0, x + 7y + z = 0 , 3x + y + 3z = 0. 

We get [
𝑥
𝑦
𝑧
] = k [

−1
0
1
]. 

Similarly, eigenvectors corresponding to λ = 3 and λ = 6 are arbitrary non-

zero multiples of the vectors [1, -1, 1] and [1, 2, 1]. 

Hence the transforming matrix P = [
−1 1 1
0 −1 2
1 1 1

]. 

Now find 𝑃−1 using adjoint method :                                                                                                       

𝐴11 =  -3 , 𝐴12  = 2 , 𝐴13 = 1, 𝐴21 = 0 , 𝐴22 = -2 , 𝐴23  = 2, 𝐴31  = 3, 𝐴32  = 

2, 𝐴33  =1 and |P| = 6. 

Hence 𝑃−1 = 1/6 [
−3 0 3
2 −2 2
1 2 1

]. 

Thus, D = 𝑃−1AP = [
−2 0 0
0 3 0
0 0 6

] 

Now 𝐴4 = [
−1 1 1
0 −1 2
1 1 1

] [
16 0 0
0 81 0
0 0 1296

]1/6 [
−3 0 3
2 −2 2
1 2 1

] 

              = [
251 485 235
485 1051 485
235 485 251

] 
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EIGEN VECTORS 

Let 𝜆1, 𝜆2,…., 𝜆𝑛 are the eigen values of a matrix A of order n and the 

corresponding eigen vectors are  𝑋1, 𝑋2,…., 𝑋𝑛 which are columns of P. Let 

u(t) be the coordinate representation of x(t) in terms of eigenvectors. The 

equation x(t) = At. x(0) gives rise to  

[u(t)] = [

λ1
t

λ2
t

λ3
t

] [u(0)] 

As the power increases and if |𝜆𝑖 | > |𝜆𝑗 | for all j, then λi
t
 will dominate. 

7.5 THE INTERNET WORM 

An Internet worm is a program that exploits flaws in utility programs in 

systems. The flaws allow the program to break into those machines and 

copy itself, thus infecting those systems. 

It spread itself without human intervention by using a scanning strategy to 

find vulnerable hosts to infect. Some of the famous examples of code red, 

SQL Stammer, and Blalter. It performs self-replication by sending copies 

of their codes in network packets and ensuring the codes are executed by 

the computers that receive them. Meanwhile, when computers on network 

become a victim of its infection, it spreads further copies of the worm by 

exploiting low level software defects. 

The following are the activities of worms: 

i. Infection: By injecting new code and new control flow edges into the 

program. Worms gain control of the execution of a remote program. 

ii. Spreading: Worms typically replicate itself to infect other computers. 

iii. Hiding: Worms use the following techniques to avoid being detected 

on internet. 

Traffic shopping, Polymorphism, and finger printing. 

In order to defend against future worms, it is important to understand how 

worms propagate and how different scanning strategies affect worm 

propagation dynamies. 

An efficient and reliable vigilante system for worm containment was 

developed using Markov chain. Markov chain is a mathematical system that 

describes transitions from one state to another, between a finite or countable 

number of possible states. The Markov chain model is developed for 

uniform scanning worms, specifically for scanning worms, we are able to 

provide condition that determines whether the worm spread would 

eventually stop and obtain the distribution of the total number of infected 

hosts. 
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Eigen Vectors Modelling the Worm: Worm population represented by a vector X = 

[x1, y1, x2, y2, x3, y3, ] for i=1,2,3 is the expected number of mortal worms 

at computer xiand yi is the expected number of immortal worms at 

computer i.  

For t = 0, 1, 2, …. Let x(t) = {x1
(t), x2

(t), y1
(t), y2

(t), x3
(t), y3

(t)}, any mortal 

worm on computer 1 is a child of computer 2 or 3. 

Therefore, the expected number of mortal worms at computer 1 after t+1 

iterations is 

x1
(t+1) =

1

10
x2
(t) +

1

10
y2
(t) +

1

10
x3
(t) +

1

10
y3
(t) 

With probability 
1

7
 , a mortal worm at computer 1 becomes immortal. The 

previously immortal worms stay immortal. Therefore, y1
(t+1) =

1

7
x1
(t) +

y1
(t) 

Then we get a matrix A such that 

A= 

[
 
 
 
 
 
 
 
 
 0 0

1

10

1

10

1

10

1

10
1

7
1 0 0 0 0

1

10

1

10
0 0

1

10

1

10

0 0
1

7
1 0 0

1

10

1

10

1

10

1

10
0 0

0 0 0 0
1

7
1]
 
 
 
 
 
 
 
 
 

 

The matrix has linearly independent vectors and its largest eigenvalues is 

about 1034. 

7.6 EXISTENCE OF EIGEN VALUES  

If A is an n*n matrix with entries in C, Then det(A - λ I) is a polynomial of 

degree n in λ with coefficients in C. By the corollary of fundamental 

theorem of algebra, it has n roots. This gives the existence of eigenvalues. 

Let V ≠ {0} be a finite dimensional vector space over C, and let T ∈ L(V, 

V). Then, T has at least one eigenvalue. 

7.7 MARKOV CHAINS 

Stochastic Process: Stochastic process is a process that involves a variable 

changing at a random rate through time. There are various types of 

stochastic process such as random walks, Markov chains and Bernoulli 

processes. 
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Linear algebra using python Probability  vectors: A row vector v = (v1, v2, . . . . , vn) is called a 

probability vector if v1, v2, . . . . , vnare non-negative and their sum is equal 

to 1. 

Example: v = (
1

4
 ,
1

4
,
1

4
,
1

4
, 0) 

Markov Property: A Markov property or memoryless property, when the 

future and past states are given, the future states of the process depend 

only on present state and not at all the past states. 

Markov Process: A random process with the Markov property is called 

Markov process. 

Markov Chain: A Markov chain is a Markov process with discrete time 

and discrete state space. Markov chain is a mathematical model that 

describes transitions from one state to another according to certain 

probabilistic rules. It is a stochastic process in which possible future states 

are fixed. In other words, the probability of transitioning to any particular 

state is dependent only on the current state and time elapsed. 

Markov chain is denoted by X = (Xn)n∈N = (X0, X1, X2, . . . . . . . ) 

7.7.1 Transition Matrix:  

A Markov chain {X} at time t can be represented as a matrix. This matrix 

contains information on the probability of transitioning between states, so 

the matrix is known as transition matrix. It is denoted by pt. The (i, j)th 

element of the matrix pt is given by  

(pt)i,j = p(xt+1 = j/xt = i) 

This means each row of the matrix is a probability vector and the sum of 

its entries is 1. 

Transition matrices have the property that the product of subsequent ones 

describes a transition along the time interval spanned by the transition 

matrices. 

Let us assume that we have a finite number N of possible states in E such 

that E = {e1, e2, . . . . , eN}. 

The initial probability distribution can be described as a row vector q0 of 

size N such that (q0)i = q0(ei)=P(X0 = ei) 

 Pij = P(ei, ej) = P(xn+1 = ej/xn = ei) 

 (qn)i = qn(ei) = P(xn = ei) 

 qn+1 = qnP, qn+2 = qn+1P =(qnP)P = qnP
2 

 qn+m = qnP
2 

That means the probability vector after n repetitions of the experiment is 

q0P
n. 
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Eigen Vectors  The row vector describing probability describing at time step n+1 

 Row vector describing probability distribution at times of X 

transitions. 

Properties of transition Matrix: 

1. It is square, since all possible states must be used behaviors and as 

columns. 

2. All entries are between 0 and 1, because all entries represent 

probability. 

3. The sum of the entries in any row must be 1, since the numbers in the 

row give the probability of changing from the state at the left to one 

of states indicated across the top. 

7.7.2 Graphical Representation: 

The finite state space Markov chain can be represented as a directed graph 

such that each node in the graph is a state. For all pairs of state (ei, ej) there 

exists an edge if P(ei, ej) > 0 and the value of the edge is same probability 

P(ei, ej). 

Example 1: Consider the daily behavior of student of SYCS towards visit 

of college library for each day, there are 3 possible states: The student does 

not visit the library this day (N), the student visits library but does not issue 

any book (V) and the student visits library and takes at least one book (R) 

so, we have the following state space E = {N, V, R}. 

Assume that at the first day this student has 70% chance to only visit library 

and 30% chance to visit library and to take at least one book for some the 

vector describing the initial probability distribution (n=0) is that q0 =
(0.0, 0.7, 0.3). 

Now assume that the following probabilities have been observed: 

i. When the student does not visit library a day, he has 25% chance of 

visiting the next day, 50% chance to only visit and 25% chance to visit 

and to issue at least one book. 

ii. When the student visits library without issuing any book a day. He 

has 60% chance to visit again without issuing the next day and 40% 

to visit and issue. 

iii. When the student visits and issues a book on a day, he has 35% chance 

of not visiting the next day, 40% chance to only visit and 25% to visit 

and issue a book again. 

Thus we have the transition matrix P = 
𝑁
𝑉
𝑅

̇

 

[
 
 
 
 0.25 0.5 0.25
0.00 0.60 0.40
0.35 0.40 0.15

⏞            

 

𝑁 𝑉 𝑅

]
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𝑞1 = 𝑞0𝑃 = (0.0,0.7,0.3) [
0.25 0.5 0.25
0.00 0.60 0.40
0.35 0.40 0.15

] 

Finally, the probabilistic dynamic of this Markov chain can be graphically 

represented as follows: 

 

7.7.3 Regular transition Matrices:  

Markov chain is used to find long range predictions. It is not possible to 

make long range predictions with all transition matrices, but for a large set 

of transition matrices, predictions are possible with regular transition 

matrices. 

A transition matrix is regular if some power of the matrix contains all 

positive entries. A Markov chain is a regular Markov chain if its transition 

matrix is regular. 

This matrix L gives the long range trend of the Markov chain. It can be 

found by solving a system of linear equations. 

7.7.4 Steady state:(solution set): 

(Equilibrium Matrix): A probability matrix which is the solution to LP=L 

is called equilibrium Matrix. 

Absorbing Markov Chain: A state 𝑆𝑖 of a Markov chain is called 

absorbing if it is not possible to leave it. A Markov chain is absorbing if it 

has at least one absorbing state. 

Example 2: After close analysing the weather for several years, a 

meteorologist concludes: The chance of a day after a sunny day is sunny 

80% and cloudy 20% of the time. The chance of a day after a cloudy day is 

sunny 60% and cloudy 40% of time. Find the long range trend. 

Solution: The diagram of the Markov chain for this process having two 

states sunny(S) and cloudy(C) is  
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The transition matrix  P= 
𝑆
𝐶
[
0.8 0.2
0.6 0.4

⏞    
𝑆 𝐶

] 

To find long term probabilities, we have to solve LP=L where L = 
[v1 v2]. 

 [v1 v2] [
0.8 0.2
0.6 0.4

] = [v1 v2] 

 0.8v1 + 0.6v2 = v1 and 0.2v1 + 0.4v2 = v2 

 -0.2v1 + 0.6v2 = 0 and 0.2v1 − 0.6v2 = 0 

 Both the equations are same 

 0.2v1 =  0.6v2 

 v1  =  3v2 

But we have v1 + v2 = 1    (probability vector) 

Solving these equations, we have v1 =
3

4
  and v2 =

1

4
 

Hence L= [
v1
v2
]  =  [

3

4
1

4

] 

This vector L= [

3

4
1

4

] is a long term, the probability that the process will be 

in state 1 is 
3

4
  and the probability that the process will be in state 2 is 

1

4
. 

Example 3: Assume that a man’s profession can be classified as 

professional, skilled labourer or unskilled labourer. Assume that, of the sons 

of professional men, 80% are professional, 10% are skilled labourers and 

10% are unskilled labourers. In the case of sons of skilled labourers 60% 

are skilled labourers, 20% are professionals and 20% are unskilled. Finally, 

in the case of unskilled labourers, 50% of the sons are unskilled labourers, 

and 25% each are in the other two categories. Assume that every man has 

at least one son, and form a Markov chain by following the profession of a 

randomly chosen son of a given family trough several generations. Form 

the transition matrix and find probability of their long run behaviour. 
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labourer and unskilled labourer. According to the given information, 

Transition matrix P is  

P= 
𝑃
𝑆
𝑈
[
 
 
 
 0.8 0.1 0.1
0.2 0.6 0.2
0.25 0.25 0.5

⏞          
𝑃 𝑆 𝑈

]
 
 
 
 

 

Let L = (x1, x2, x3) be probability vector. Then long term behaviour can be 

found by solving L*P = L. 

 (x1, x2, x3) 
P
S
U
[
 
 
 
 0.8 0.1 0.1
0.2 0.6 0.2
0.25 0.25 0.5

⏞          
P S U

]
 
 
 
 

 = (x1, x2, x3) 

 Then 0.8x1 + 0.2x2 + 0.25x3 = x1 

 -0.2x1 + 0.2x2 + 0.25x3 = 0----------------(i) 

 0.1x1 + 0.2x2 + 0.25x3 = x2 

 0.1x1 − 0.4x2 + 0.25x3 = 0----------------------(ii) 

And 0.1x1 + 0.2x2 + 0.5x3 = x3 

 0.1x1 + 0.2x2 − 0.5x3 = 0--------------------------(iii) 

Equation (iii) is the sum of equation (i) and equation (ii).  

From equation (i), we get 

5x3 = 4x1 − 4x2---------------------------------(iv) 

And from (iii), we get 

5x3 = x1 + 2x2---------------------------(v) 

Solving(iv)and(v),weget, 

 x1 = 2x2 and x3 =
4

5
x2 

Since L is the probability vector, hence, x1 + x2 + x3 = 1 

 2x2 + x2 +
4

5
x2 = 1 

 x2 = 
5

19
 

 Now we have L= 

[
 
 
 
 
10

19
5

19
4

19]
 
 
 
 

.  
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Eigen Vectors 7.8 MODELLING A WEB SURFER: PAGERANK 

A search query with Google’s search engine usually returns a very large 

number of pages. Google assigns a number to each individual webpage 

based on the link structure of the web, expressing its importance. This 

number is known as the page rank and is computed via the page rank 

algorithm. It has applications in search, browsing and traffic estimation. 

7.8.1 Page Rank algorithm as a Markov Process: 

We describe page rank algorithm as a Markov process, web page as state of 

Markov chain, Link structure of web as transitions probability matrix of 

Markov chains. It mainly focus on how to relate the eigenvalues and eigen 

vector of Google matrix to page rank values to guarantee that there is a 

single stationary distribution vector to which the page rank algorithm 

converges and efficiently compute the page rank for large sets of web pages. 

7.8.2 Basic Page Rank Algorithm Model: 

A webpage U’s page rank is calculated base on how many other webpages 

backlink into U. The page rank of U is the sum of the page ranks of each 

webpage 𝑣𝑖 that back links to U divided by the number of webpages to 

which 𝑣𝑖 links. That means if webpage U is linked to only low page ranks 

web pages, it may not get more importance. Moreover If U is linked by a 

webpage 𝑣𝑗 with a high page rank, but 𝑣𝑗 links to many other pages, U 

should not receive the full weight of 𝑣𝑗’s page rank. 

Let U=web page 

𝐹𝑢=Forward links from U 

𝐵𝑢 =Back links into U 

C=normalization factor so that the total rank of all web pages is constant. 

Then page rank (by simple rankin)=R(U)=C∑
𝑅(𝑉)

𝑁𝑉
𝑣∈𝐵𝑢  where C<1 

7.8.3 Random web surfer Model: 

Page rank can also be defined as the model of a random web surfer 

navigating the internet. That means the model states that the page rank 

models the behavior of someone who keeps clicking on successive links at 

random. 

Consider a simple link structure of web pages:  

We can represent this structure using NXN adjacency matrix A, where 

𝐴𝑖𝑗 = 1 if there is a link from webpage i to webpage j, and 0 otherwise. 

Let N=total number of webpages in the web. 

𝜋𝑇 =  1𝑋𝑁 𝑝𝑎𝑔𝑒 𝑟𝑎𝑛𝑘 𝑟𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑣𝑒𝑐𝑡𝑜𝑟) 
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matrix 

Thus we can describe the page rank vector at the 𝑘𝑡ℎ iteration as, 

𝜋𝑘𝑇 = 𝜋(𝑘−1)𝑇𝐻 

To build a transition probability matrix 𝐻𝑖 =
𝐴𝑖

∑ 𝐴𝑖𝑘
𝑁
𝑘=1

 

So that each row 𝐴𝑖 of A is divided by its row sum. 

Consider the following diagram that shows the link of web pages A,B,C,D 

,E and F 

 

The 6X6 adjacency matrix for the above link structure is A = 

[
 
 
 
 
 
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0]

 
 
 
 
 

 

Transition probability matrix H is H=  

[
 
 
 
 
 
 
 0

1

2
0 0

1

2
0

0 0
1

2

1

2
0 0

0 0 0
1

3

1

3

1

3

1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 

 

But the matrix H is not stochastic due to dangling node F which has no 

outgoing links. It affects the model because it is not clear where its weight 

should be distributed. To overcome this type of problem, we assign artificial 

link to dangling node. 
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Eigen Vectors Therefore, we define the stochastic S as, 

S= H+
𝑎 ∗𝑒𝑇

𝑁
 

Where a = NX1 column vector such that 𝑎𝑖   = 1 𝑖𝑓, ∑ 𝐻𝑖𝑘 = 0
𝑁
𝑘=1  

     =  0, otherwise. 

E=NX1 column vector of one’s 

For the above example:S=  

[
 
 
 
 
 
 
 0

1

2
0 0 0

0 0
1

2

1

2
0

0 0 0
1

3

1

3

1 0 0 0 0
1 0 0 0 0
1

6

1

6

1

6

1

6

1

6]
 
 
 
 
 
 
 

 

It makes sure that the surfer’s random walk process does not get stuck and 

the web pages are the states of the Markov chain. 

7.8.4 Google matrix:  The above matrix S has a unique stationary 

distribution vector 𝜋𝑇 , if S is irreducible as well as stochastic. A matrix is 

irreducible if and only if its graph is strongly connected. So, we define the 

irreducible row stochastic matrix G as  

G= 𝛼𝑆 + (1 − 𝛼)𝐸;  0 ≤ 𝛼 ≤ 1 𝑎𝑛𝑑 𝐸 =  
𝑒𝑋𝑒𝑇

𝑁
 

G is the Google matrix defined as  
𝜋𝑘𝑇 = 𝜋(𝑘−1)𝑇𝐺 as the new iterative method for page rank. 

For this above example: 

G=  

[
 
 
 
 
 
 
 
 
 
1

40

9

20

1

40

1

40

9

20

1

40
1

40

1

40

9

20

9

20

1

40

1

40
1

40

1

40

1

40

77

250

77

250

77

250
7

8

1

40

1

40

1

40

1

40

1

40
7

8

1

40

1

40

1

40

1

40

1

40
83

500

83

500

83

500

83

500

83

500

83

500]
 
 
 
 
 
 
 
 
 

 

The power method: 

The Google matrix G is currently of size max than eight billion webpages. 

So the Eigen value competition not so easy. 

We iterate using the Google matrix G by writing 𝜋𝑘𝑇 = 𝜋(𝑘−1)𝑇𝐺 
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more efficient to compute page rank vector using the power method, where 

we iterate using the sparse matrix H by rewriting the above equation as, 

𝜋𝑘𝑇 = 𝜋(𝑘−1)𝑇𝐺 

     = 𝜋(𝑘−1)𝑇(𝛼𝑆 + (1 − 𝛼)𝐸 

     = 𝜋(𝑘−1)𝑇(𝛼𝑆 + (1 − 𝛼)(
𝑒𝑋𝑒𝑇

𝑁
) 

     = 𝛼𝜋(𝑘−1)𝑇S + (1 − 𝛼) 𝜋(𝑘−1)𝑇(
𝑒𝑋𝑒𝑇

𝑁
) 

     = 𝛼𝜋(𝑘−1)𝑇S+ (1 − 𝛼)
𝑒𝑇

𝑁
 

     = 𝛼𝜋(𝑘−1)𝑇(𝐻 +
𝑎𝑋𝑒𝑇

𝑁
)+ (1 − 𝛼)

𝑒𝑇

𝑁
 

     = 𝛼𝜋(𝑘−1)𝑇𝐻+( 𝛼𝜋(𝑘−1)𝑇a+ (1 − 𝛼)
𝑒𝑇

𝑁
 

  Since 𝜋(𝑘−1)𝑇 is a probability vector and thus 𝜋(𝑘−1)𝑇e = 1. 

The size of the Markov matrix makes storage issues non-trivial. For modern 

web structure for which the transition probability matrix H can be stored in 

main memory, compression of the data is not essential. In order to compute 

the page rank vector, the page rank power method requires vector matrix 

multiplication of 𝜋(𝑘−1)𝑇𝐻 at each iteration k. 

Hence we can say page rank is a global ranking of all web pages, regardless 

of their content based solely on their location in the web’s link structure. 

Using page rank, we are able to order search results so that more important 

and control webpages are given preference. 

7.9 SUMMARY 

Any scalar λ and vector v that satisfies the relationship Av =  λv are called 

an eigenvalue and an eigenvector respectively of the square matrix A. 

Eigenvalues and eigenvectors for a linear transformation T: V → V are 

determined by locating the eigenvalues and eigenvectors of any matrix 

representation for T; the eigenvectors of the matrix are coordinate 

representations of the eigenvector of T.  An n*n matrix is diagonalizable if 

and only if it has n linearly independent eigenvectors. 
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Q1.  Find Eigen values and Eigen vectors for the following 

i.[
2 −1 1
1 2 −1
1 −1 2

] 

ii. [
3 −1 1
−1 5 −1
1 −1 3

] 

iii.[
2 0 1
0 2 0
1 0 2

] 

iv.[
−2 2 −3
2 1 −6
−1 −2 0

] 

v.[
2 1 1
2 3 2
3 3 4

] 

Q2:  Check whether the following matrices are diagonalizable or not, if 

yes, diagonalize them: 

i.[
−1 2 2
1 2 1
−1 −1 0

] 

ii. [
1 0 −1
1 2 1
2 2 3

] 

iii.[
3 −1 1
−1 5 −1
1 −1 3

] 

iv.[
1 1 1
0 2 1
−4 4 3

] 

v.[
1 2 3
0 2 0
0 0 2

] 

vi.[
3 10 5
−2 −3 −4
3 5 7

] 

Q3: Find the long term probability vector for the following Markov Process: 

i. In the dark ages, Harward, Dard mouth and Yale admitted only male 

students. Assume that , at that time 80% of the sons of Harward men 

went to Harward and rest went to Yale, 40% of the sons of Yale men 

went Yale, and the rest split evenly between Harward and Dard 
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20% went to Harward, and 10% to Yale. Formulate Markov chain and 

find probability of their long term behavior. 

ii. A salesman’s territory consists of 3 cities A,B and C . He never sells 

in the same city on successive days. If  he sells in city A, then the next 

day he sell in B. However if he sells in either B or C, then the next 

day he is twice likely to sell in city A as in the other city. In long run, 

how often does he sell in each of the cities? 

iii. Two boys 𝑢1 𝑎𝑛𝑑 𝑢2 and two girls  𝑔1 𝑎𝑛𝑑 𝑔2 are throwing a ball 

each other.Each boy throws the ball to the other boy with probability 
1

2
  and each to the girl with probability 

1

4
. On the other hand , each 

throws the ball to each boy with probability 
1

2
 and never to the other 

girls. In the long run, how often does each receive the ball. 

 A man walks along a four-block stretch of part-Avenue. If he is at 

corner 1,2,or3 then he walks to the left or right with equal probability. 

He continues until he reaches corner 4, which is a restaurant or corner 

0, which is his home. If he reaches either home or restaurant, he stays 

there. Formulate the transition matrix for states 0,1,2,3 and 4 as a 

Markov chain. 

 
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