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1.0 OBJECTIVES

After going to this chapter, you will be able to:

o Understand the extension of real number system

. Define i

. Identify real and imaginary parts of a complex number
. Evaluate square root of a complex number

° Define Field.

1.1 INTRODUCTION

The concept of extension of the set of real numbers to the complex numbers
was first necessitated by solution of such algebraic equations whose
solutions could not be found in the set of real numbers and also to evaluate
square root of a negative number.

Complex numbers were introduced by Italian mathematician Gerolamo
Cardano in 1545. Leonhard Euler was first to introduce the symbol ‘i (iota)
for the square root of ‘-1° with the property i?= -1.
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1.2 BASIC CONCEPTS OF COMPLEX NUMBER

121 Complex number: Definition and examples
Def: A number is in the form of ‘a+ib’ is called a complex number, where

a and b are real numbers and i =v—1.

ex. 2+3i, V2 + 7i,9 — V11 i
Usually a complex number is denoted by Z.

If Z = a+ib, then ‘a’ is called real part and ‘b’ is called imaginary part of the
complex number Z and are denoted by Re(Z) and Im(Z) respectively.

A complex number whose real part is equal to 0 is called an imaginary
number.

1.2.2 Algebra of complex numbers
i.)  Equality of two complex numbers:

Two complex numbers Z1 = a1+ ibiand Z2= a2 + ib2 are equal iff a1 =
az and b1 = ba.

i.e Re(Z1) = Re(Z2) and Im(Z1) = Im(Z2)
ii.)  Addition of two complex numbers:

Let Z1=a1 + ib1 and Z2= a2 + ib2 are two complex numbers. Addition
of Z1 and Z2 is denoted as Z1+Z> and defined as Z1+ Z2 = (a1t+a2) + i

(ba+b2).
Example: Z1=7+2i and Zz= 2+5i then Z1+Z2= (7+2i) + (2+5i)=(7+2)
+i(2+5) = 9+7i

iii.) Subtraction of two complex numbers:

Let Z1 = a1+ib1 and Z2 = a>+ib2 are two complex number. Subtraction
of Z1 and Z2 is denoted as Zi-Zzand is defined as Zi1 - Z2 = (a1-a2) + i
(b1-b2).

Example: Zi1= 7+2i and Z2= 2+5i then Z1 - Z>= (7+2i) - (2+5i) = (7-
2) +i(2-5) = 5+(-3)i

iv.) Multiplication of two complex numbers:

Let Z1 = ait+ibs and Zz = ax+ib2 are two complex number.
Multiplication of Z1 and Z2 is denoted as Z1.Z2 and is defined as Z1 .
Z> = .(artibi).(az+ibz)

= (a1azc+ iath2 + ibiaz + i%bib2) = (aaz + iawb2 + ibiaz + (-1)biby)
(since i=-1)

= (a182 - b1b2) + (a1b2 + bia)i



Multiplicative Inverse of a complex number Z = a +ib

Z~1 or 1/Z is called the multiplicative inverse of a non-zero complex
number Z if ZZ71=1.

1 _ 1 ,a-ib_ a-ib

=7 1= = =
a+ib a+ib a-ib a2-b?

v.)  Division of two complex numbers:

Let Z1 = ai+ib1 and Z2 = a»+ib2 are two complex number. Division of

. o Z 1 +byb
Z1 and Z2 is denoted as Z1/Z2and is defined as =% = Z;*— = 1227212
Z2 ZZ 322+b2
- azbl—albz
322+b22

1-2i
Example: Solve —.
3+41

1-20 _ 1+2i,3-4i _ 11-2i
" 3440 3+4i 3-4i 25

Sol

1.2.3 Conjugate, Modulus and Argument of a complex number
Let Z = a+ib is a complex number.

Conjugate: Its conjugate is denoted by Z and is defined Z = a-ib.

Example: if Z= -2 +3i then Z = -2 -3i.

Modulus: The modulus(or Absolute value) of Z is denoted by |Z| and
defined as |z|=Va? + b2

Example: Z = 5+12i,

|z|=VaZ + b2 = /52 + 122 = /25 + 144 = /169 = 13

Note: Modulus can’t be negative. We always take only positive value of
square root.

Argument: The argument(or Amplitude) of Z is denoted by arg(Z) or
amp(Z) or ‘6’ and is defined as tan'l(g). e 6= tan'l(g) , When

a>0and tan‘l(g) + 1, when a<0.

Example: Z = 1 ++/3i, Then amp(Z) = tan‘l(?) = g

Principal argument: The principal argument of a complex number Z is
Arg(Z) is equal to

Arg(Z) = arg(Z) - 2nn

Hence, the value of the principal argument of the complex numbers lies in
the interval (-mt, m).

1.2.4 Graphical representation of a complex number

A complex number Z = a+ib can be represented in a co-ordinate system
known as complex plane or argand plane. We consider real part of Z (i.e.

Complex Number and Field



Linear algebra using python  Re(Z)=a) on X-axis (real axis) and imaginary part of Z (i.e. Im(Z)=b) on Y-
axis (Imaginary axis).

Im
r cos(0) B
r .
b pr s11(0)
@) T a x A €

From the above diagram we have OAB is a triangle.
OA= a units, AB= b units then OZ=r=va? + b? and ‘ 6 ° is the angle
between X-axis and OZ.

sin@ _(b/7r)_ b
cos @ _(a/r)_ a

Cos 6 :% . Sing = g thentan 9 =

Then 6 =tan™| Z |

1.2.5 Representation of a Complex number
Cartesian form of a Complex number:

Let Z = a+ib is a complex number. Then Z = (a, b) is the ordered pair
representation or Cartesian form of complex number Z.

Polar form of a complex number:

Let Z = a+ib is a complex number. From the above diagram Cos 6 = % and
. b
Sinf = -.
T
a=rCosf and b=rSinéd
Substituting these values in Z, we get
Z = a+ib=rCos@ + irSin 6
Z =r(Cos 6+i Sin 0) is called POLAR FORM of a complex number Z.
Exponential Form of a complex number:

Let Z = a+ib is a complex number. Then Z = r «e? is called exponential
form of Z, where r is modulus of Z and 8 is amplitude of Z or amp(Z).

Example: Let Z = 1+i,
Cartesian Form of Z is (1, 1)
[

Polar form of Z is v/2(cos % +isin %), where r=+v2and 6 = .

Exponential form of Z is vZee's.



1.2.6 Square root of a complex number Complex Number and Field

To find the square root of a complex number Z = a+ib, the following steps
should be followed:

Step I: Let A+iB =/(a + ib)

Step I1: Squaring both sides, (A + iB)?= a+ib

= (4> —B?)+2ABi=a+ib

Step I11: Equating real and imaginary parts from both sides;
(A% — B?) = a-----(i) and 2AB = b------ (ii)

Step 1V: Solving equations (i) and (ii), get the value of A and B.
Example: Find the square root of Z =3-4i

Soln: Given Z =+/3 — 4i

LetvV3 —4i=(a+ib).

Squaring on both sides,

(V3=4i)"=(a+ib)? .

3-4i = (a%-b?) + 2ab i

Comparing real and imaginary parts on both the sides;
a%-b? = 3------(i) and 2ab = -4-------- (i)

=>b= _72

Put the value of b= _72 in a%-b? = 3 we get, a’- (_72)2 =3
=a’ - (%) =3

=a* -4 = 3a?

=a*-3a’ =4

=a*—4a’+a’-4=0

=a’(a-4)+1(a2-4)=0

= (a’+1)(a*-4)=0

= (a®+1)=0or  (a2-4)=0

=a’=-lor a’=4
=a = + i(Rejected, since a must be a real number) or
a=12
if a=2then b=—= Z=-1and if a=-2then b="—= 2=1,
a 2 a -2

Therefore v3 —4i = 2-1i or -2+1i
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1.3 NUMBERS IN PYTHON

In Python, there are three types of numeric.

1. Int: Int is a whole number, positive or negative, without decimals, of
unlimited length.

2.  Float: Float is a number, positive or negative, containing one or more

decimals.
3. Complex Number: Any complex number a + ib is written as a + bj in
python.
Variables of numeric types can be created by assigning a value to them.
Example:
x=1 #int
y = 2.8 #float

Z=2+1j #complex number
To verify the type of any object in Python, use the type() function.

1.4 ABSTRACTING OVER FIELD

Binary Operation: A binary operation ‘*’ is defined as a function of the
product set AXA to A where for all a, be A, (a*b) € A.

Field: Let F is nonempty set equipped with two binary operations called
addition ‘+’ and multiplication ¢ @ '. Then the algebraic structure (F,+, @)
is a field if it satisfies the following postulates:

1. Closure Law:a+beF , forallabeF
2.  Associative Law: (a+b)+c=a+(b+c),foralla,b,ceF

3. Existence of identity: There exists an element e in F such thata + e =
e+a=a.

4, Existence of Inverse: For each a € F, there exists -a € F
such thata +(-a) = (-a) +a=¢

5. Commutative Law: a +b = b + a for all a, be F

6.  Multiplication is distributive with respect to addition
i.e.foralla,b,ceF ae(btc)=aeb+aec (leftdistributive law)
and (btc) ® a=b e a+b e ¢ (right distributive law)

7. Multiplication composition is also commutative. i.c. aeb = bea for all
a, beF

8. There exists an element ‘1> in F such that le a = a =a e 1
forallaeF

9.  Each none-Zero element possesses multiplicative inverse.
Example: The set R of real numbers is a field.



1.5 PLAYING WITH GF(2): Complex Number and Field

Galois Field also known as GF(2) is the smallest field consisting only two
elements 0 and 1 being the additive and multiplicative identity respectively.

The field addition in GF(2) is the logical XOR operation defined as TTo0l1

0/0]|1

And, the field multiplication in GF(2) is the logical AND operation ¢ ToT1
defined as

Example: 1le1+0e1+100+000+160=1+0+0+0=1

And 160 +0e] + 101l + 101 =0 +0+1+1=0

1.6 SUMMARY::

From the definition of complex number, it is clear that any imaginary
number is a complex number. We can also conclude that any real number
is also a complex number. In Mathematics, Complex numbers are used to
find the solutions of those equations whose roots cannot be found in real
number set. Algebraic operations on complex numbers are given by
addition, subtraction, multiplication and division. To plot a complex
number, we use complex plane that consists a coordinate system in which
horizontal axis represents real component and the vertical axis represents
imaginary component. The square root of a complex number is also a
complex number.

1.7 REFERENCE FOR FURTHER READING:

Linear algebra and its applications, Gilbert Strang, Cengage Learning,
4t edition, 2007.

Exercise

1. If Z1=5- 12i and Z2 = 8 + 6i, Find the values of Z1 + Z2, Z1 - Z2, Z1
* 22, and Z1 / Z2.

2. Find the conjugate, modulus and argument of the following complex
numbers:

i)  8-6i
i) 5+ 12i
i) 2i
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3. Solve the following:
i) (1+7i)2-3)
i) (V3+2i)(-2i-1)

iiL) 4+3i

2-3i
4.  Find the square roots of the following Complex numbers:

i) 7-24i
ii.) 5+12i
ii.)  4-3i
5.  Solve in GF(2):
1) 1+1+0+1+1
i.) 1.1.1+0.1.1+1.1.1+0.0.0

6.  Check whether the set of rational numbers and set of integers are Field
or not.

ke e o ke e ek



VECTORS

Unit Structure:

2.0
2.1
2.2
2.3

2.4
2.5
2.6

2.7
2.8
2.9

Objectives

Introduction

Vectors are Functions

Vector Addition and Scalar Multiplication
2.3.1 Vector Addition

2.3.2 Scalar-vector multiplication

2.3.3 Combining vector addition and scalar multiplication
Dictionary based representation of vectors
Dot Product

Solving a triangular system of linear equations
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2.6.2 Upper Triangular System
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Geometry of set of vectors

2.10 Vector Spaces

2.11 Linear Systems-Homogeneous and otherwise

2.12 Summary

2.13 Reference for further reading

2.0 OBJECTIVES

After going to this chapter, you will be able to:

Define a scalar and a vector.
Distinguish between scalar and vector.

Perform addition, subtraction, and multiplication by scalar on
vectors.

Represent a vector.

Define homogeneous and non-homogeneous system of linear
equations and predict nature of solution.

Explain vector space
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2.1 INTRODUCTION

A scalar is a quantity that has only magnitude. A vector is a quantity that
has both magnitude and direction. We can represent a vector with a
directed line segment. The arrow indicates the direction and the length is
the magnitude of the vector.

2.2 VECTORS ARE FUNCTIONS

Vectors can be represented as a function. It is called a vector function. The
domain of the vector function consists of one or more variables and
returns a vector. A vector function of a single variable in R? and R® have
the form, r(t) = <f(t), g(t)> and r(t) = <f(t), g(t), h(t)> respectively, where
f(t), g(t) and h(t) are called the component functions. In general, a vector
function of single variable in R" has the form:

v(t) = <fi(t), f2(t), fa(t), ....., fn(t)> where f1(t), f2(t), f3(t), ....., fa(t) are n-
components.

The domain of a vector function is the subset of real numbers and set of all
t’s for which all the component functions are defined. The range is a
vector.

2.3 VECTOR ADDITION AND SCALAR
MULTIPLICATION

2.3.1 Vector Addition:

Vector addition is the operation of adding two or more vectors together. In
Linear Algebra, vectors are given in their components form. Vector
addition can be performed simply by adding the corresponding
components of the vectors, so in R", if U and V are two vectors with n-
components U = (uy,u,,........ ,Uup) and V= (vq,vy,........ ,vp) then,

U+V=(u+tvy,uy, +vg,........ Up +vp).

Vector addition is possible if both the vectors have same number of
components.

2.3.2 Scalar-vector Multiplication:

When a vector V is multiplied by a scalar quantity k, its magnitude
becomes k-times of the original vector but the direction depends on the
sign of k. If k is positive, then kV has the same direction of V, but if k is
negative, kV has the opposite direction of V. In linear Algebra, to
multiply a vector V having components (v,,v,,........ ,vp) by a scalar k
means to multiply each component of the given vector by the scalar k.

= kV =k(v{,v,,........ V) = (Kvy, Kvy,........ , kvy)



2.3.3 Combining vector addition and scalar multiplication: Vectors

Vector addition and scalar multiplication simultaneously can be performed
by following these steps:

1.  Complete the scalar multiplication first by multiplying each
component of the vector V by the scalar k.

2. Then, perform the vector addition by adding corresponding
components of vectors that have been found after completing step 1.

Example: Ifu= (2, 3,-1) and v = (6, -3, -2), then find
@) u+v)(b)2u+3v (c)(u-v)

Solution: (a.) (u+v)=(2,3, -1) +(6,-3,-2) = (2+6, 3+ (-3), (-1)
+ (_2)) = (8’ O’ _3)

(b.) 2u+3v=2(2,3,-1) +3(6, -3, -2) = (4, 6, -2) + (18, -9, -6)
= (4 + 18, 6 +(-9), (-2) + (-6)) = (22, -3, -8)

gc.i)(u -Vv)=(2,3, -1)-(6,-3,-2) =(2-6,3-(-3), (-1) - (-2)) = (-4,

24 DICTIONARY BASED REPRESENTATION OF
VECTORS

A vector is a function from some domain D to a field. In Python, it can be
represented by a dictionary. For this, define a Python class Vec with two
variables f (the function represented by Python dictionary) and D(the
domain of the function represented by a python set.

class Vec:

def _init__(self, labels, function):
self.D = labels
self.f = function
can create
>>> Vec({‘A’, ‘B’, ‘C’}, {*A’: 1})
Can assign an instance to a variable and subsequently access the two fields
of v,
>>>v = Vec({‘A’, ‘B’, ‘C’}, {*A’: 1})
>>>fordinv.D:
ifdinv.f
print(v.f[d])

11
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2.5 DOT PRODUCT

The dot product of two vectors with n-components U = (uy,us,,........ Up)
and V = (vq,Va,........ ,vp) Is denoted as U.V and defined as U.V = (u;.v;
+u,. vyt + Up.vp).

U.V is a scalar quantity and it follows commutative law of multiplication.
Thatis, UV =V.U

Example 1; Find dot product of (1, 2) and (3, 4).

Solution: Let U = (1, 2), V = (3, 4), then U.V = (1, 2)«(3, 4) = (1*3 + 2*4)
=11

Example 2: The dot product of two vectors from R3 where u = (1, -1, 2)
andv =(2, -3, 4).

Solution:u.v=(1,-1,2)¢(2,-3,4)=1*2+ (-1)*(-3) +2*4=2+3 +8 =
13

Example 3: Let u =11001 and v=10110 are two vectors over GF(2), find
their dot product.

Solution: u.v = (11001)+(10110) = (1*1 + 1*0+0*1+ 0*1 + 1*0) = (1 + O
+0+0+0)=1.

2.6 SOLVING A TRIANGULAR SYSTEM OF LINEAR
EQUATIONS

Consider the system of n linear equations:

anxXi+amx2 + ... + a1nXn = Kg--=-=s=smemeoeoemeaenea- (1)
a2X1+ azXe+t.......... + aznXn = Ko----mmmmmmmmmmmmme e (i)
aniX1+ an2X2 +.......... + annXn = Kp-----------=mmmm oo (nth)

Containing the n unknowns X1, Xz..., xn. It is called a linear system of
equations. The leading unknown in all equations is x1 and the leading co-
efficient of equations are ai, az, ..., an respectively.

2.6.1 Lower Triangular System: The linear system of equations is called
lower triangular system of equations if leading unknown in all equations is
x1 and the leading co-efficient of equation (i) is ai1, leading co-efficient of
equation(ii) is a21 and so on i.e the general form of triangular system of n
linear equation having n unknown is

a;1 x; =K1

az1 X1+ azxe = Ko

ani X1+ an2X2 +.......... + annXn=Kn



The lower triangular system of equations can be solved by forward
substitution method i.e First we have to calculate value of x; by 1%
equation.

= dq1Xp = Kl

Ky
> X = —
! diq
Then the value of x, is obtained by putting the value of x, in 2" equation
and then solving it.

So, we proceed up to last equation where we can get value of x,, by
substituting the values of x4, %5,.......... Xp—1-

2.6.2 Upper Triangular System: The linear system of equations is called
upper triangular system of equations if leading unknown in the first
equation is xa , leading unknown in the second equation is x2, that of the
third equation isxs,........ and so on .And the leading co-efficient of
equation (i) is a1, leading co-efficient of equation(ii) is a2 and so on i.e
the general form of triangular system of n linear equation having n
unknown is

A11X1+ QX+ Ay3x3t....... + a1, %, =K1
azoXz+azsXst.......... +a2nXn=K2
asxXs+.......... +asnXn=K3

annX n=Kn

The upper triangular system of equations can be solved by backward
substitution method i.e First we have to calculate value of x, by nt
equation.

= ap, X = Ky

=X, = —&

ann

Then the value of x,,_, is obtained by putting the value of x,, in 2" last
equation and then solving it.

So, we proceed up to first equation where we can get value of x; by
substituting the values of x,,X3,.......... Xp-1, Xp-

Example 1: 5 x; = 15,4x, + 2x, = 10, 3x; + 5x, + 2x3 =18

Solution: The given system is lower triangular system of linear equations
having 3 unknowns. Hence by forward substitution method,;

5%, = 155x =223

Vectors

13
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By substituting value of x1 in equation (ii), 4*3 + 2x2 =10 = x2=-1

Now replacing values of x1 and x2 in equation (iii), 3*3 + 5*(-1) + 2x3 =
18=>x3=7

Example 2: x; + 2x, + X3 = 8
3x, + 4x; = 18
7x3=21

Solution: The given system is upper triangular system of linear equations
having 3 unknowns. Hence by backward substitution method;

7Tx3=21=>x3=3

Substitute the value of x5 in second equation we get,
3X, + 4x3 = 18> x, = 2

Substituting x, and x5 in first equation we get,

X1+ 2%y, + X3 =8> x,=1

2.7 LINEAR COMBINATION

Let vi,vo,een..n. ,Vp are n vectors, then the combination (; vy + o, v,
Foriiins + o, vy,) Is called a linear combination of the vectors v, ,
Voperannnnn , Vi, Where «¢;,&,........ ,o¢, € F.

It can be geometrically interpreted as the vectors v; , v,,........ , v, will
be added with each other after scaling by «;,,,........ ,o¢, times
respectively.

Example 1: Express W = (6, -2, 5) as a linear combination of v; =
(=2,1,3)and v, =(3, 1, -1) and v5 = (-1, -2, 1).

Solution: (6, -2,5) = a;(-2,1,3) +a, (3,1,-1) + az(-1, -2, 1)

(-2ay,a4,3a;) + (3ay,a,,—a,) + (—az,—2az,a3)

= '2 al + 332—33 y al + 32_233, 331—32 + a3

Comparing respective components of both sides, we get

-2a; +3a,-az= 6 --------- Q)
31 + 32_233— '2 """""" (”)
3a;-a, taz= 5 --------oe- (iii)

Solving these equations by using Cramer’s rule or matrix method, we get
a;= 9/5,a,=23/5and a; =21/5
= (6,-2,5)=9/5(-2,1,3) +23/5 (3, 1, -1) + 21/5 (-1, 2, 1).



Example 2: Express W=(4, 3) as a linear combination of v,=(2, 3) and Vectors
V, = (0, 1)

Solution: (4, 3) = ai1(2, 3) + a2 (0, 1)

= (4, 3) = (2az, 3a1) + (0, a2)

= (4, 3) = (2a1, 3a1+ az)

Comparing respective components of both sides, we get
a1 =4 =a1=2and 3ait a2=3 = -3

= (4,3) =2(2,3) +(-3)(0, 1)

2.8 SPAN

The set of all linear combinations of finite sets of elements of S is called
Linear Span of S and is denoted by L(S) or [S]

S 01,05 ,eeneiinnns a, € F}

Example 1: Find the Span of a subset S= {(1, 0, 0), (0, 1, 1)} of vector
space Vs.

Solution: L(S)={ oy (1,0,0) + a, (0,1,1)}
= { 0(1‘0, O) + (O, o, Ay )}

={ (1,0, 0;)}

= The linear span of the given subset of v is the element of xyz-
plane, whose y and z co-ordinates are same.

Example 2: Find the span of subset S={ (1, 3), (0, 2) } of vector space V,
show that (2,8) belongs to span S.

Solution: L(S) ={ o; (1,3) + a; (0,2)}

={(x;,3 ;) +(0,20)} ={(0y, 30y + 20,)}
If (2,8) € L(S)then a; =2and 3o; + 20, =8= a, =1
=(2, 8) = 2(, 3) + 1(0, 2)

Example 3: Show that the subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of V5
spans the entire vector space V.

Solution: Let (a, b, ¢) € V then (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + ¢(0, 0, 1)
Thus (a, b, ¢) € L(S).
Hence the subset S span the entire vector space.

15
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Example 4:v; = (1,0,1),v, =(2,1,4), v3 =(1, 1, 3) do not span
vector space.

Solution: Let (a, b,c) eVand (a, ,a,,a3) € F.

AndS={(1,0,1),(2,1,4),(1,1,3)}
(@bc)=a;(1,0,1) + a,(2,1,4) + a3(1,1,3)

(@ b,c)=(as, 0, ay) +( 20z, a; 403) + (a3, a3, 3 a3)
(@ b,c)=(a; + 20, + a3 , aytaz, a; +4a, + 3a3)
a= oy + 20, + az —(i)

b= a,+taz ---(ii)

C= oy + 4o, + 3az---(iii)

Cc—a C—a

Solving (i) and (iii), a,+a; = 25 = b = c-a=2b

= the set S does not span the entire v, but it spans a subset of VV whose
co-ordinates (a, b, c) satisfy the relationa + 2b —c = 0.

2.9 GEOMETRY OF SET OF VECTORS

In geometry, vectors are represented by an arrow. The head of the arrow
indicates its direction and length describes the magnitude of the vector.

Q Terminal Point

P Initial Point

If we multiply a vector u by a scalar «, then the length of the vector
stretches by the factor «. If « is negative, then the direction of the vector
will be reversed.

ou
A7

If the vector u is added to vector v, then their sum is the new vector (u + v)
that paints from the tail of u to the tip of v as shown:



u + v

The length or magnitude of an n-vector is defined as ||v|| = Vv.v

ieifv=_(vy,vyoo.... , Vi), then |IV]| = /v + v,2 + v2 = /30 vy2

The angle 6 between two n-vectors is determined by u . v = ||u]| ||v||. cos 8

2.10 VECTOR SPACE

Binary Composition: Binary composition is an operation of two elements
of the set whose domains and co-domain are in the same set.

The composition ‘*’ is called internal composition if a*b € A, Va, b € A
and a*Db is unique.

The composition ‘0’ is called external Ifao a € V, for all a € F and for
all ¢ € Vand a o a is unique.

Vector Space:  Let V is a non-empty set equipped with two binary
operations ¢ .’ (external composition) defined as scalar multiplication and
‘“+’ (internal composition) defined as addition of vectors. Then V is called
a Vector space over a field F if it satisfies the following postulates:

i.)  Closure Law: (< +B) € V: for all «,[eV
ii.)  Associative Law: (< +8) +y =x +(B +v)

iii.) Existence of Identity: There exists an element ee V such that « + e
—e+ =K.

iv.) Existence of Inverse: For each element e V, there exist an element
B such that

(x +8) = (B+e) =e
v.) Commutative Law: (x +f) = (f+)

vi.) (Closure law with respect to scalar multiplication): a «c€ V for all
a€eFandforall xeV

vii.) a(x+p)=ax +af,forallaeFandforall«,B eV
viii.) (a+b)x=a x +b «,foralla€ Fandforall xeV
ix.) (ab)x =a (b x),foralla, beFandforall x eV

X.) 1l.x=o, forall « eV And 1 is the unity element of the field F.

Vectors

17
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Examplel: The set of complex numbers ‘C’ is a vector space over the field
of real numbers R.

Solution: Let X =a+ib € C, Y = c+id € C, Z = p+iq, where a, b, ¢, d, p,
€R.

i)  Closure law: (X+Y) = (a+ib) + (c+id)=(a+c)+i(b+d) eC
i)  Associative law: X+(Y+2Z)=(X+Y)+Z
L.H.S. = (atib) + ((c+id)+(p+iq)) = (a+ib)+((c+p)+i(d+q))
= (atp+c) + i(b+d+q) = ((a+c)+p) + i ((b+d)+q)

= ((a+c)+i(b+d)) + (p+iq) = ((a+ib) + (c+id)) + (p+iq) = (X+Y)+Z =
R.H.S.

iii)  Existence of Identity: let X = a+ib € C,3 an element e = 0+0i € C
such that

X+e=e+t X=X
(@+ib)+(0+01))=(0+0i)+(a+ib)=(a+ib)
@+0)+i(b+0)=(0+a)+i(0+h)=(a+ib)

iv)  Existence of Inverse: Let X=(a+ib) € C, 3 anelement X' = - (a +
ib)e C

Such that X+X'=X"+X=e(where e =0+0i)
(@+ib)+[-(a+ib)]=(-a+a)+i(-b+b)=0+0i=¢

v)  Commutative law: Let X=(a+ib) € C,Y = (c+id) € C where a, b, c,
deRr.

Consider X+Y=(a+ib)+(c+id) = (a+c)+i(b+d)
= (c+a)+i(d+b) = (c+id)+(a+ib) = Y+X

vi)  Closure law w.r.t. scaler multiplication under vector addition: Let V
K e R,V X € C, such that KX € C, where K is any scaler value.

Consider K X = K(a+ib) = (ka + ikb)
=(a, +iby) €C

vii) Closure law w.r.to scalar multiplication under vector addition:

K (X+Y) = K ((a+ib)+(c+id)) = K (a+ib) + K(c+id) =K X + KY

viii.) Let Vkq,k, € R, X=(atib) € C, Such that
(ki +ky)X=(k; + k;)(a+ib) =k, (a+ib) +k,(a+ib) = k; X +k, X.



ix) Let VK k, €R,X=(atib) €C, Such that (k;.k,) X = Vectors
(kq. kp)(a+ib) = ky. (kp(a+ib) =k;. (kz(X))

x.)  Multiplication with unity: v X € C, 31 € R is the unity element
such that 1.X=1.(a+ib) = (a+ib) = X

Since, the set of complex numbers satisfies all postulates. Hence, the
set of complex number ‘C’ is a vector space over the field of real
number R.

Example 2: Check whether the set of all pairs of real numbers of the form
(1, x) with operation (1,y) + (1, y") = (1,y +y') and k(1, y)=(1, ky) is a
vector space.

Solution: Let (1,x), (1, x") € R?
i.)  Closure Property: Consider (1, x;) + (1,x5) = (1, x; + X3)
= (1, x; + x,) € R? as (x; + x,) € R?

ii.)  Associative Property: Set of real numbers satisfies Associative
Property.

iii.) Existence of Identity: 3(1, 0) € R? and V(1, X) € R? such that
1,0+, x)=1,x)+(1,0=(1,x)

iv.) Existence of Inverse: 3(1,-x) € R?, V(1,X) € R? such that
@,x)+(1,x)=(@1,-x)+(@,x)=(,0

v.) Commutative Property: (1, X) , (1, x') € R?
such that (1,x) + (1, x)=(1, x+ x')

=(1, x+x")=(1, x'+x) = (1, x')+ (1, X)
Hence commutative Property is satisfied

vi.) Closure law w.r.t. scalar multiplication: k(1, y)=(1, ky), by the
definition .

vii.) Closure law w.r.to scalar multiplication under vector addition:
a[(1, x) + (1, x)] =a[1, x+x'] = [1, a(x+x')] € R?, va € R
( by the definition of addition)

viii.) (at+b)e(1, x) =1, (atb)x] (by the definition)
and [1, (a+b) x] € R?,Va, b € R?
iX.) (aeb)[l,x]=[1, (aeb)x] (‘by the definition )

=a(l, bx) =a (b[1, x])
X.)  Multiplication with unity:

le[1,x] =1, 1ex] =[1, x] where 1€R

Since all the postulates for becoming the vector space satisfied and hence
it is a vector space.

19
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OTHERWISE

Linear algebra is a systematic study of the theory and applications of
linear system of equations. Consider the system of m linear equations

11Xy + A Xp ¥ ------ + Ay Xy = by
A1 Xy * Qpp Xyt ------ + Qyn Xn = by
A1 X1 t Qpua Xp + ------ T A Xn = bm
having n unknowns x; , x, ,...... , X, . To determine whether the
system has a solution or not, we check the ranks of the matrices,
all a12 ------- aln
a21 a22 ....... a2n
As | e
\ Am1 Az wevnnns Amn
And
a1 A1y veeenns A, by
az, (o PR Ay, by
B |
Am1 o Amn  bm

Where A is the coefficient matrix and B is the augmented matrix of the
system of equations.

Procedure to test the consistency of equations in n unknowns:
Let the rank of A be r and rank of B be r’.

1) Ifr # r', there is no solution of the system of equations. This
implies that equations are inconsistent.

2.)) Ifr=7r"=n (number of unknowns), there is a unique solution. This
implies that equations are consistent.

3.) Ifr= r’ <n,there is infinite number of solutions. This implies that
equations are consistent.

System of linear homogeneous equations:

20 Consider the homogeneous linear equations



A1 X + A X+ ------ + agpnx, =0 Vectors

To know the nature of the solutions of equation (ii), we check the rank of
coefficient matrix

aiq A1y cvvvnns A1n
az 1 az 2 lllllll a2n
A=
Am1 Amo wvvenes Amn

Let rank (A) =r.

1) Ifr=n, the equations (ii) have only trivial zero solution. This
implies that

x1:x2=----zxn :0
2.) Ifr<n, the equations (ii) have infinite number of solutions.

We can conclude that for a homogeneous system of equations, if det
(A) £ 0, there exists only a trivial zero solution otherwise infinitely
many solutions will exist.

Example 1: Consider the following system of equations and Find the
nature of solution without solving it.

i) x;+ X, =6and2x, +2x, =12
ii.) x,;+x, =5andx,-x, =1

Solution: i.) The system of equations can be written in matrix form as

G D) = ©

. 11 (1 1 4
Coefficient matrix A = (2 2) and Augmented matrix B = (2 5 8)
Here det A=0,rank A=1and rank B =1, So r = r'< n (number of
variables)

Hence there is infinite number of solutions for this system.

ii.) HereA:E _11] andB=G _11 51)

Since rank A = rank B = n(number of variables), r = r’ =n
Hence there exists a unique solution of the system.
21
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2.12 SUMMARY

In a very simple definition, vector can be assumed as an arrow that points
in space. A vector that contains n elements is called n-vector. Vector
addition satisfies algebraic properties like commutative and associativity.
Scalar-vector multiplication stretches the direction of a vector and this
process is called scaling. These properties of vectors give the data analyst
a nice way to conceptualize many list of numbers in a visual way to be
clear about patterns in data.

2.13 REFERENCE FOR FURTHER READING

Linear algebra and its applications, Gilbert Strang, Cengage
Learning, 4™ edition, 2007.

Exercise

Q.1 For the given pairs of vectors ,find vectoru+v,u—-v,v—u,2u+
3v,-2u—7v

Mu=(2,8andv=(31) (iu=(-1,3)and v =(8, -2)
@Mu=(-3,49)andv=(1-2) (ivyu=(2,-9)andv=(-8,1)

Q.2 For each of the following pairs of vectors u and v, Evaluate their dot
product u. v.

(Mu=(2,5andv=(4,-1) (iu=(1,2,-1)andv=(1,-1,0)
Q.3 Solve the following triangular system of linear equation :

(1) x1-3x,-2x3 =15 (1) 2x1-3x,+5x5-2x, =9
2x,+4x; =8 5x,+x3-3x4 =9

10x3 =30 Tx3-x, =9
2x, =8

Q.4 Determine whether the following set of vectors span vector space R3
()v4(2,2,2),v,(0,0,3),v5(0,1,1)
(i)v,(1,0,0), v,(0,1,0) , v5(1,1,0)
Q.5 Check whether the following sets are vector space or not:
L) {(x,y,2)x,y,zER,x+y+z=0}
ii.) All mxn matrices whose entries are real.

ke e e sk e ek



MATRIX

Unit Structure:
3.0 Objectives
3.1 Introduction
3.2 Matrices
3.2.1 Definition
3.2.2 Column Space and Row Space
3.2.3 Transpose
3.2.4 Vectors
3.3 Multiplication in terms of vectors
3.3.1 Matrix-vector multiplication
3.3.2 Vector-matrix multiplication
3.4 Other concepts
3.4.1 Null Space
3.4.2 Computing sparse matrix-vector product
3.4.3 Linear Functions
3.4.4 Inner Product
3.4.5 Outer Product
3.4.6 From function inverse to matrix inverse
3.5 Summary
3.6 Exercise
3.7 References

3.0 OBJECTIVES

After going through this chapter, students will able to learn
. To understand what are matrices
. To deal with various types of matrices using vectors

o To learn various concepts and applications of matrices using python

23
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3.1 INTRODUCTION

This unit will take thorough out the concepts of matrices — some
traditional while some are new in terms of vectors , various operations and
other concepts.

3.2 MATRICES

In this section definition of matrix will be reviewed and a new notation in
terms of python list will be introduced.

3.2.1 Definition

Traditionally matrices means some set of rows and columns with various
entries like real numbers, complex number etc.

For example :

2 4 5 .
2 3 1 242 3-1

1 0 1 )
]or[l-l-l -3

The first matrix is called as a 3x3 matrix over field F

In first example above there are 3 rows and 3 columns. First row or Row 1

1
is[101] ,similarly column 1is [ 2 ] and so on.
-2

In general, a matrix with m rows and n columns is called mxn matrix. For
a i,jth element is defined to the element in ith row and jth column .
Traditionally if matrix is given by A, this element is written as Ajj.

Instead Python notation will be used throughout A[i,j].
So ,Row vector i will be : [ A[i, 0], A[i, 1], A[i, 2], - - -, A[i,m — 1] ]
and column vector j will be : [A[O, j], A[1,]], A[2,]], - - -, A[n—1,]]]

1 0 1
For example : if we consider same matrix | 2 4 5] then
-2 3 1

Row vector 1 will be : [[1,0,1] ] and column vector 1 will be [[1,2,-2]]
Entire matrix can be represented as list of lists as :

[[1,0,1], [2,4,5], [-2,3,1]]

In general a matrix can be represented as list L :

Ali, j]=LJ[i][j] forevery 0 <i<mand 0 <j<n



3.2.2 Column Space and Row Space

Matrices can be viewed from various angles like pack of rows or pack of
columns etc. There are two ways of interpreting a matrix in terms of
vector space. Similarly, there are two vector spaces associated with any
given matrix:

Definition : For any matrix A :

1. Column space of A, written Col A, is the vector space spanned by the
columns of M,

2. Row space of A, written Row A, is the vector space spanned by the

rows of M.
1 0 1
For example : if we consider same matrix | 2 4 5| then
-2 3 1

Col A will be span of [[1,2,-2], [0,4,3], [1,5,1]]

And Row A will be span of [[ 1,0,1],[2,4,5], [-2,3,1]]

3.2.3 Transpose

Transpose of a matrix means interchanging its rows and columns.
Definition : The transpose of a matrix A, denoted by AT is defined by
(A")i,j = Aj,i foreveryi j.

1 0 1 1 2 =2
For example : transpose of matrix | 2 4 5|is|0 4 3
-2 3 1

3.2.4 Vectors

Matrices can be represented as vectors . If AxB is a matrix over the field F
then it can be represented as vector over F. Later it can be used to perform
vector operations like addition of vectors, multiplication of scalar- vector.

1 2 1
2 1 5

i.e corresponding elements get

For example : if we consider matrices A = [ ] and B =

1 4 2

[O _21 ;]thenA+B=[7 0 7

5
added.

Note matrices should have same dimensions i.e number of rows and
columns.

Similarly, scalar matrix multiplication is :

1 2 1
2 1 5

3 6 3

A:[ 6 3 15

and scalar oo = 3 then oA = [

Matrix
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3.3 MULTIPLICATION IN TERMS OF VECTORS

In this section the concept of matrix multiplication by vectors will be
discussed. There are two ways in which this can be done :

o Matrix-Vector multiplication i.e multiply a matrix by vector.
J Vector- Matrix multiplication i.e multiply a vector by matrix.

In the following section both these concepts will be discussed with two
definitions for each : one in terms of dot products and another in terms
linear combinations; both of which are equivalent.

3.3.1 Matrix-Vector Multiplication
Definition : In terms of Linear Combination :

Let M be RxC matrix over field F. Let v be a vector of dimension C. Then
M = v is the linear combination Y. ¢ v [c](column c of M)

Note :

1) IfMisR x C matrix but v is not of dimension C i.e it is not a C-
vector then the product M = v is illegal.

2)  Inthe case of traditional-matrix, if M is m x n matrix over F then
M * v is legal only if v is n-vector over F i.e the number of columns
of the matrix and the number of entries of the vector must be same.

1 0 1

Example 1 : Suppose M = [2 1 3

]and v=[1, -1, 0]

Then M x v can be computed since M is 2x3 and v is 3x1 and result is :
Mxv =Y. ccv [c](column c of M)

=1[1,2] + (-1) [0,1] + O[1,3] = [1,2] - [0,1] + [0,0]

=[11]

1 0 1

Example 2 : Suppose M = [2 1 3

]and v=[1, 0]

Then M = v cannot be computed since M is 2x3 and v is 2x1 and result is
not valid (by note 1)

Definition : In terms of Dot Product:

Let M be RxC matrix over field F. Let u be a vector of dimension C.
Then M=u is the R-vector defined by
u[r]i.e dot product of uwithrowr of M



3.3.2 Vector -Matrix Multiplication Matrix

In earlier section matrix-vector multiplication was discussed in terms of
linear combinations of columns of a matrix. Next we see vector-matrix
multiplication in terms of linear combinations of rows of a matrix.

Definition : In terms of Linear Combination :

Let M be RxC matrix over field F. Let w be a vector of dimension R
. Then w *M is the linear combination Y., cg w [r](row r of M)

Note : If M is R x C matrix but w is not of dimension R i.e itis not a R-
vector then the product w = M s illegal.

1 0 1

Example 3 : Suppose M = [2 1 3

] and w =11, 2]

Thenw *M can be computed since M is 2x3 and v is 1x2 and result is :
wxM =Y, gw(r](rowr of M)

=1[1,0,1] +2[2, 1, 3] = [1,0,1] + [4,2,6]

=[5,2,7]

1 0 1

Example 4 : Suppose M = [2 1 3

]and w=[1, 0, 3]

Then w * M cannot be computed since M is 2x3 and v is 1x3 and result is
not valid (by note )

Next we will define vector- matrix multiplication in terms of dot product.
Definition : In terms of Dot Product:

Let M be RxC matrix over field F. Let u be a vector of dimension R.
Then u*M is the C-vector defined by
u[c]i.e dot product of u with column c of M.

1 0
Example 5 : Suppose M = |2 1] and w=[2,—1]
3 2

Then matrix- vector multiplication in terms of dot product is :

1%t entry is dot product of row 1 [1,0] with w =[1,0].[2,-1] =2-0=2
2" entry is dot product of row 2 [2,1] with w = [2,1].[2,-1] =4-1=3
3" entry is dot product of row 3 [3,2] with w = [3,2].[2,-1] =6-2 = 4
Hence finally M*w = [2, 3, 4]

Similarly, vector-matrix multiplication in terms of dot product can be
carried out.
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3.4 OTHER CONCEPTS

In the following sections we will see some concepts related to matrices.
3.4.1 Null Space

In earlier chapters we came across concept of homogeneous linear
systems. It is the system where all values on right hand side of the
equation are 0. We can define such a system as A*x = 0 i.e in the form of
matrix-vector equation. In above equation right hand side of the equation
is 0.

Definition : The null space of the matrix A is defined by the set
{v/ A*v = 0}. It is denoted by Null A

From the above definition it can be seen that null A is basically set of all
solutions of homogeneous linear system, hence it also forms a vector
space.

Example 6 : Suppose A = E g] then null(A) is all vectors such that
A*x =0

ie H (2) * [iﬂ = [8] which gives x1 =0 and x1 + 2 x2= 0

hence Null(A) = {(0,0)}
Null(A) can also be computed easily using Row reduction form.
3.4.2 Computing Sparse Vector-Product

Definition : Sparse matrix is defined as a matrix whose most of the
elements are 0.

In earlier sections we saw matrices in terms of vector and their products.
For calculating product of matrices with vectors we can use either dot
product or linear combinations definitions discussed earlier. But alone
they cannot be conveniently used. Hence we combine both which leads to
following definition :

Definition : Let M be RxC matrix over field F. Let u be a vector of
dimension C. Then M * u is the vector v of dimension R, such that for
eachr eR,V[r] = Y ecM [r, clulc]

3.4.3 Linear Functions

Definition : Let U and V be vector spaces over a field F. Then a function
f: U — V is called a linear function if following properties are satisfied :
P1 : For any vector u eDomain(f) and o € F is any scalar then

f(au) = af(u)

P2 : For any vectors u,v e Domain(f) then

f(u+v) = f(u) + f(v)



Linear function are called as linear transformation.
Let M be an R x C matrix over a field F, let f : F© — FR be defined by
by f(x) = M * x. Since the domain and co-domain are vector spaces,
function f satisfies Properties P1 and P2. Thus f is a linear function.
Example 7 : Let F be any field. Define function from F? to F by
(x,y) — x -y isa linear function.
P1: For any vector u = (x1,y1) € F?and a e F be any scalar then consider
flou) = f(a (x1,y1) ) = f( (aX1,0y1) ) = aX1- ay1= o (X1 - Y1) = af(u)
P2 : For any vectors U =(X1,y1), V= (X2,y2) € F? then
Consider f(u+v) =1 ((x1,y1) + (X2,¥2)) = f (X1 + X2, y1ty2))
= (Xat+x2) = (yaty2) = (X1-y1) + (x2—y2) = f((xe,y1)) + f((x2,y2))
= f(u) + f(v)
Hence from P1 and P2 f is a linear function.

Result : Let U and V be vector spaces over a field F and f: U — V bea
linear function, then f maps the zero vector of U to the zero vector of V

Such functions is called kernel.

Definition : Let U and V be vector spaces over a field F and f: U — V be
a linear function then the set {v/f(v) = 0 } is called as kernel of f denoted
by Ker f.

The result of linear function can be extended to n number of vectors.
3.4.4 Inner Product

Let u and v be two vectors of dimension D. Consider the “matrix-matrix

product” u'v. The first matrix has one row and second matrix one column.

By the dot-product definition of matrix-matrix multiplication, the product
contains one single entry whose value is given by u.v

1
Example 8 : Suppose A=[1 2 3] [2‘ = [14]
3

Since the final value of u'v is single entry it is called as inner product.
3.4.5 Outer Product
Next suppose u and v be two vectors not necessary of same domain.

Consider u'v : For each element of the domain u and each element of the
domain of v, the s,t element of u™v is u[s]v[t].

Uu ux uy
Example 9 : Suppose A:[ l[x y] = [vx VY‘
w wx wy

This type of product is called the outer product of vectors u and v.

Matrix
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This chapter gives different concepts of matrices and their examples. It
will create base for the next concept of basis.

3.6 EXERCISE

1.  Compute the following matrix-vector products

1 2 L
) _Z]and v=[2, -3, 0]

b. M:H _11]and v=1[2, 4]

2. For each of the following problems, answer whether the given
matrix-matrix product is valid or not. If it is valid, give the number
of rows and the number of columns of the resulting matrix (you need
not provide the matrix itself).

SO PR | R
2 4 117

b. 1 1 0|} |

c. [(1) 1 _02][1 0 —1]7

3. Compute Matrix Matrix Multiplication :

o Ll T

3 2
b. [2 2 -1] [—2 6]
1 -1

3.7 REFERENCES

o Coding the Matrix Linear Algebra through Applications to
Computer Science Edition 1,PHILIP N. KLEIN, Newtonian Press
(2013)

. Linear Algebra and Its Applications, Gilbert Strang, Cengage
Learning, 4th Edition (2007).
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4.0 OBJECTIVES

After going through this chapter, students will able to learn
o To understand spanning vectors
. To understand concept of Linear dependence and independence

. To learn concept of basis and dimension

4.1 INTRODUCTION

After learning the concepts of vector space, linear function in earlier
chapters in this chapter we will learn concept of basis.

Basis has several properties which can be further used to justify concepts
like linear dependence, independence, maximal linearly independent set etc.

The basis also tells us about the smallest set of vectors needed to span a
vector space. Thus it helps to give information about structure of a vector
space.
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4.2 COORDINATE SYSTEM

A coordinate system is defined as a method for recognizing the location of
a point. Most of the coordinate systems use two numbers i.e. a coordinate
to detect a point or a location. These numbers indicate the distance between
the point and some fixed point of reference called the origin.

For a vector space V in vector analysis, a coordinate system is indicated by
a set of vectors ai,az,...an Of V such that every vector of the vector space
can be written as linear combination of these vectors .

That is there exists scalars or real numbers o1, o.2,... o.n Such that
v=oua1+ o282 + ... + ondn Where v € V (any vector)
From discussion above the vector v can be represented by [a1,02,... ,0n ]

of coefficients. These coefficients are called coordinates and the vector
[a1,02,... ,on ] IS called the coordinate representation of v in terms of
a1,a2,...an.. Also, this representation of v is unique.

Example 1 : if we consider the vector [1, 3, 5, 2] it can be represented as :
[1,3,5,2]=1[1,0,0,0] + 3[0,1,1,0] +2[0,0, 1, 1]

Hence the coordinate representation of v in terms of [1, 0, 0, 0], [0, 1, 1, O]
and [0,0,1,1] is [1,3,5,2]

43 TWO GREEDY ALGORITHMS FOR SET OF
GENERATORS

Suppose we want to answer this question : For a given vector space V, what
is the minimum number of vectors whose linear span is V?

To answer this, in this section we consider two algorithms
1. Grow algorithm
def Grow(V)
B = ¢ repeat while possible :
Find a vector in V that is not in Span (B) and add it to B

The algorithm halts when there is no more vector to add in B. By this
time we can find the generating set.

Example 2: Consider V = R3. In first iteration we add vector [1, O,
0] to B . Next since [0, 0, 1] does not belong to Span(B) we add it to
B. thus B={[1, 0, 0], [0, 0, 1]}. Similarly in 3" iteration we add [0,
1, 0] to B as it does not belong to span of B. Next if we consider any
vector in R®



We can see it can be written as linear combination of either all or some Basis
of vectors of B. Hence there nr u 0 more vector to add to B, hence the
algorithm stops.

2. Shrink algorithm

Exactly opposite to grow as name says we remove an element in every
step.

def Shrink(V)
B = some finite set of vectors in V such that span(B) = V
repeat while possible :

Find a vector in V such that Span (B- {v} ) =V and remove it
from B

The algorithm halts when there is no more vector to remove from B
such that spanning property is still satisfied. By this time we can find
the generating set.

Example 2: Consider V= R3and B ={[1, 0, 0], [0, 0, 1],[0, 1, 0], [3,
2, 0], [0, 3, 1]}. In first iteration we remove vector [3, 2, 0] from B
since [3,2,0]=3[1,0,0] +2 [0, 1, 0]. Next we remove [0, 3, 1] as it
belong to Span(B). Thus B = {[1, 0, 0], [0, O, 1], [0, 1, O]} . Now the
algorithm stops since there is no more vector to remove.

4.4 MINIMUM SPANNING FOREST AND GF(2)

In this section we will see grow and shrink algorithm using graph theory
that is minimum spanning problem.

Suppose we are given a graph with weights as below:

Suppose vertices represent cities and edges represent distances to travel
from one city to another. Our goal is to travel from one city to another in
covering all cities with minimum distance 33



Linear algebra using python  T0 find minimum distance there are several algorithms but we will use grow
and shrink algorithm

Grow algorithm
def Grow(G)
B=¢

Consider the edges in order from low to high
For each edge e:

If endpoint of e is not yet connected via edges add it to B
For above graph weights in increasing orderare : 87433 21
The solution obtained is 8 74 2
Shrink algorithm
def shrink(G)
B = { all edges }

Consider the edges in order from high to low
For each edge e:

If pair of nodes are connected via B — {e}:

Remove e from B

For above graph weights in increasing order are: 1233478
The solution obtainedis 12334

The Grow and Shrink algorithms for minimum spanning forest look like
those algorithms used for finding a set of generators for a vector space.

In this section, we describe how to model a graph by means of vectors over
GF(2).

Let C = {set of vertices of graph} = {0,1,2,3,4} be the set of nodes

A subset of C is characterized by the vector with ones in the corresponding
entries and zeroes elsewhere.

A subset of C is represented by the vector with ones in the corresponding
entries and zeroes elsewhere.
34



Hence the vectors corresponding to all the edges in our graph are :

Edge Vector

0 1 2 3 4
{0,4} 1 1
{0,3} 1 1
{1,3} 1 1
{34} 1 1
{1.2} 1 1
{2,3} 1 1

In general, a vector with 1’s in entries x and y is the sum of vectors
corresponding to edges that form an x-to-y path in the graph. Thus, for these
vectors, it is easy to tell whether one vector is in the span of some others.

4.5 LINEAR INDEPENDENCE

Lemma (Superfluous-Vector Lemma): For any set S and any vector v € S,
if v can be written as a linear combination of the other vectors in S then
Span (S—{v}) = Span S

Definition: Let V be a vector space .Then vectors va, . .., vain V are called
as linearly dependent if the zero vector can be written as a nontrivial linear
combination of these vectors. That is

0=o0avi+ - -+ anVn

Here we denote the linear combination as a linear dependency in vu, . . .,
Vn.

Example .3: The vectors [1, 0, 0], [0, 3, 0], and [3, 9, O] are linearly
dependent, as shown by the following equation:

3[1,0,0]1+310,3,0] - 13,9, 0]=[0,0,0]

Thus31[1,0,0]+310,3,0]—1[3,9,0]is a linear dependency in [1, 0, 0],
[0, 3,0],and [3, 9, O].

Example 4: The vectors [1, 0, 0], [0, 3, 0], and [0, O, 5 ] are linearly
independent.

Since if we consider a1 [1, 0, 0] + a2 [0, 3, 0] + a3 [0, 0, 5] =[O0, 0, 0]

Then all scalars a1, o2, azall are 0.

Basis
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Properties of linear (in)dependence
1. Asubset of a linearly independent set is linearly independent.

2.  Letvi, ..., vnbevectors. A vector vi belongs to the span of the other
vectors if and only if the zero vector can be written as a linear
combination of vy, . . ., vn in which the coefficient of vi is nonzero.

3. The vectors obtained by the Grow algorithm are linearly independent.

4. The vectors obtained by the Shrink algorithm are linearly
independent.

4.6 BASIS

In earlier sections we saw the Grow algorithm and the Shrink algorithm
where each of them finds a set of vectors spanning the vector space V. In
addition in each case, the set of vectors found is linearly independent.

Next we define basis of vector space one of the most important concept in
linear algebra.

Definition: Let V be a vector space. A basis for V is a linearly independent
set of generators for V.

In other words, a set B of vectors of V is a basis for V if B satisfies two
properties:

PB1 Span B =V, (Spanning) and

PB2 B is linearly independent. (Independent)

Example 5: Let V the vector space spanned by [1, 0, 0], [0, 1, 1], and
[1,1,1].

Then the set {[1, 0, 0], [0, 1, 1], [1, 1, 1]} is not a basis for V because it is
not linearly independent as [1, 1, 1] =[1, 0, 0] + [0, 1, 1]

However, the set {[1, 0, 0], [0, 1, 1]} is a basis as it satisfies the above two
properties.

Lemma : The standard generators for F° form a basis.

Lemma (Unique-Representation Lemma): Let V be a vector space and B be
a basis of V, then every vector in V can be uniquely represented as linear
combination of vectors of B.

i.e Let B={as, ..., an} be abasis for a vector space V. For any vector v €
V, there is exactly one representation of v in terms of the basis vectors.



4.7 DIMENSION

After defining basis in earlier section lets now see the number of elements
in any given basis. Before that let us see some results with respect to basis.

Lemma (Morphing Lemma): Let V be a vector space. Suppose S is a set of
generators for V, and B is a linearly independent set of vectors belonging to
V. Then |S| > |B|.

Theorem (Basis Theorem): Let V be a vector space. All bases for V have
the same size.

Theorem : Let V be a vector space. Then a set of generators for V is a
smallest set of generators for V if and only if the set is a basis for V.

Definition : Let V be a vector space. Then the dimension of V is defined to
be the size of a basis for V.

The dimension of a vector space V is written dim V.

If we consider example 5 then dim V = 2 since it has basis B containing 2
vectorsi.e.[1,0,0]and [0, 1, 1]

Example 6: One basis for R? is the standard basis:
{[1, 0, 0], [0, 1, 0], [0, O, 1]}. Hence the dimension of R3 is 3.
. 4.7.1 DIMENSION AND RANK

Definition : Rank of a set S of vectors is defined as the dimension of Span
S.

We denote rank S for the rank of S.
Proposition : For any set S of vectors, rank S <|S|.

Definition : For a matrix M, the row rank of M is defined as the rank of its
rows, and the column rank of M is defined as the rank of its columns.

Definition : For a matrix M, the row rank of M is the dimension of Row M,
and the column rank of M is the dimension of Col M.

Example 7 : Consider the matrix

1 0
0 1

1 1

M=

Here row vectors are {[1, O], [0, 1], [1, 1]} which are linearly dependent
.Jbut if we remove [1, 1] then vectors become independent. Hence Row rank
=2

Similarly column vectors are {[1, 0, 1] ,[0,1,1]} which are linearly
independent as discussed earlier. Hence column rank = 2

Basis
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In any case we have Row Rank = Column Rank

Definition : The rank of a matrix is defined to be its common value of
column rank which is equal to its row rank.

Lemma (Superset-Basis Lemma): For any vector space V and any linearly
independent set B of vectors, V has a basis that contains all of B.

The Dimension Principle

Using the Superset-Basis Lemma we can prove the following principle.
Lemma (Dimension Principle): If V is a subspace of vector space W then
PD1: dim V <dim W, and

PD2: if dimV =dim W then V = W.

Example 8: Suppose W = Span {[1, 0], [1, 1]}. Clearly V is a subspace of
R2. However, the set {[1, 0], [1, 1]} is linearly independent, so dim V = 2.
Since dim R? = 2, hence by PD2 V = R?,

. 4.7.2 DIRECT SUM

We are acquainted with the idea of adding vectors—now we study about
adding of vector spaces. These ideas will be advantageous in proving a
fundamental theorem in the next section—the Kernel-Image Theorem.

Let U and V be two vector spaces consisting of D-vectors over a field F.

Definition : If U and V have only the zero vector in common then we define
the direct sum of U and Vto betheset{u+v:u €U, v e V}

We write direct sumof Uand V as U @V

That is, U @V is the set of all sums of a vector in U and a vector in V.
Example 9 : Let U = span{[1,0]} i.e X-axis and V = span{[0,1]} i.e Y-axis
Then U @V = R?

Result : The direct sum U @V is a vector space.

Lemma : The set of generators for V @W is the union of a set of generators
of V and a set of generators of W

Lemma (Direct Sum Basis Lemma): The union of a basis of U and a basis
of V is a basis of U V.

Corollry :Any vector in U@V has a unique representation as u + v where u
eEU,veV.

Definition : U and V are said to be complementary subspaces of W, if

Uuopv=w



. 4.7.3 DIMENSION AND LINEAR FUNCTION

In this section we will see how dimension can be related to linear functions
studied in earlier sections. We will devise a criterion for invertibility of a
linear function. That in turn will provide a criterion for matrix invertibility.
These criteria will construct an important theorem, the Kernel-Image
Theorem.

We have studied earlier that linear function f: V —W is invertible if
(i) f is one-to-one and (ii) f is onto.

By the One-to-One Lemma, we know that f is one-to-one iff its kernel is
trivial.

Similarly there is a criterion for checking if a linear function is onto.
Recall : image of fis Im f={f(v) : v € V}. Thus fis onto iff Imf=W.
Also Im f is a subspace of W.

By the Dimension Principle, f is onto iff dim Im f = dim W.

Hence We can conclude:

A linear function f : U — W is invertible if dim Ker f=0 and dim Im f =
dimw.

The Kernel-lmage Theorem

For any linear function f: V —-W, dim Ker f + dim Im f = dim V

Theorem (Linear-Function Invertibility Theorem): Let f: V —W be a linear
function. Then f is invertible if and only if dim Ker f = 0 and dim V = dim
W.

Theorem (Rank-Nullity Theorem): For any n-column matrix A,
rank A + nullity A=n
Example 10

Let T: P1—R be the linear transformation defined by T(p(x))=p(1) for
all p(x)e P1. Find the kernel and image of T, Verify the kernel-Image
theorem.

We will first find the kernel of T : It consists of all polynomials in P1 that
have 1 for a root.

ker(T)={p(x)€P1 | p(1)=0}={ax+b | a,peR and a+b=0}={ax—a | a€R}
Therefore a basis for ker(T) is {x—1} and dimension = 1

Notice that this is a subspace of Pi.

Basis
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Now consider the image. It consists of all numbers which can be obtained
by evaluating all polynomials in P1at 1.

im(T)={p(2) | p(x)eP1}={a+b | ax+beP1}={a+b | a,beR} =R
Therefore a basis for im(T) is {1} and dimension is 1
Dim(P1) =2 = 1+1 = dim(ker T) + Dim (im T)

Hence Kernel-Image theorem verified.

4.8 THE ANNIHILATOR

Definition : For a subspace V of F", the annihilator of V, denoted as V°, is
defined as V° ={u € F": u - v =0 for every vector v € V}

Results :
1. Leta, ..., ambe generators for V, and let A = [a1, az,....,am]" Then
VO = Null A.

2. (Annihilator Dimension Theorem): Let V and V° be subspaces of F",
where F is a field , then dim V + dim V° =n

3. (Annihilator Theorem): (V°)° = V (The annihilator of the annihilator
is the original space.)

4.9 SUMMARY

In this chapter we studied about basis of a vector space, its dimension and
their properties .

4,10 EXERCISE

1.  LetV=Span{[0,0,1],[1,0,1],[2 1, 1]}. For each of the following
vectors, show it belongs to V by writing it as a linear combination of
the generators of V.
(@ [2 1,4]
(b)[1,1,1]
(©)[5 4, 3]

d)[0 1,1]



2 Let V = Span {[0, 1, 0, 1], [0, 0, 1, 0], [1, O, O, 1], [1, 1, 1, 1]} where Basis
the vectors are over GF(2). For each of the following vectors over
GF(2), show it belongs to V by writing it as a linear combination of
the generators of V.

(@1[1,1,0,0]
(b) [1,0,1,0]
(c)[1,0,0,0]

3 For each of the set given below, show the given vectors over R are
linearly dependent.

@1, 2,01, [2 4,1],[0,0,—1]
(b) [2, 4, 0], [8, 16, 4], [0, O, 7]
(c) [0, 0, 5], [1, 34, 2], [123, 456, 789], [-3, —6, 0], [1, 2, 0.5]

4 For each of the following matrices, (a) give a basis for the row space
(b) give a basis for the column space, and (c) verify that the row rank
equals the column rank. Justify your answers.

1 0 1 0 2
(a) [0 1] O 5% © [o 1 1‘
1 1 1 1 0
5 Verify Rank — Nullity theorem
(@) T:R2— R2defined by T(X, y) = x+y

(b) T:R?2— R3defined by T(X, y) = (X, X+Y, y)

4.11 REFERENCES

o Coding the Matrix Linear Algebra through Applications to Computer
Science Edition 1,PHILIP N. KLEIN, Newtonian Press (2013)

. Linear Algebra and Its Applications, Gilbert Strang, Cengage
Learning, 4th Edition (2007).
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5.0 OBJECTIVES

After going to this chapter, you will be able to:
I.)  Solve a set of simultaneous linear equations using Gauss elimination,

ii.) Perform elementary row operationsto produce zeros below the
diagonal of the coefficient matrix to reduce it to echelon form.

iii.) Find basis for the null space.

5.1 INTRODUCTION

Given a linear system expressed in matrix form AX = B, where A is
coefficient matrix and X is variable matrix. Gaussian elimination method is
used to solve a system of linear equations by performing elementary row
operations. Elementary row operations are categorized as: a.) Interchange
any two rows; b.) Multiply a row by a nonzero constant; c.) Add a multiple
of one row to another row. This row reduction algorithm continues till we
get Os (i.e., zeros) on the lower left-hand corner of the matrix as much as
possible. That means the obtained matrix should be an upper triangular
matrix.

5.2 ECHELON FORM

Pivot: A pivot is the first non-zero element in a row and leading coefficient
in a column with all the rows below containing 0's.

Echelon Form of a matrix: There are two types of Echelon form of a matrix:
i.)  Row Echelon form: A matrix is said to be in row echelon form (ref)
when it satisfies the following conditions:

. The first non-zero element is 1.



. Each leading entry is in a column to the right of the leading entry
in the previous row.

. Rows with all zero elements, if any, are below rows having a
non-zero element.

Reduced row Echelon form: A matrix is said to be in reduced row
echelon form (ref) when it satisfies the following conditions:

. The matrix is in its row echelon form.

J The leading entry in each row is the only non-zero entry in its
column.

Uses of Echelon form:

If a matrix is in echelon form, the non-zero rows form a basis for the
row space

Example: A = thentherows[2 3 1 0],[0 4 0 1]

SO W
S O O

2
0
0
0

o oNnmR O

asl

=
o

and[0 O 9 6] are the of the row space.

If an echelon form of a matrix has neither pivots in all rows nor all
columns, the given set of vectors are linearly dependent.

letV={(1,1,1),(1,23),(14,7)}

1 1 1 1 1 1
123]~[013‘

1 4 7 0 0 O

we compute A =

since A has neither pivots in all rows nor in all columns, the set is
linearly dependent.

The number of non-zero rows in row echelon form of a matrix is equal
to rank of the matrix.

1 2 3 1 2 3
Example A=12 3 4] ~ [0 -1 —2‘ [by performing
3 5 7 0 O 0

elementary row operations]

The number of non-zero rows = 2, hence the rank of the matrix
A=2.

5.3 GAUSSIAN ELIMINATION OVER GF(2)

Gaussian elimination is very simple process for matrices over GF(2). The
required row operations consist only XOR of two rows and swapping of two
rows. Solving linear systems over GF(2) is of particular interest in
cryptography and crypto-analysis.

Gaussian Elimination
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The Gaussian elimination over GF(2) on a matrix A requires elementary
column operations rather than elementary row operations.

Let us take an example:

Let Q = {6, 42, 105, 20,63} and P = {2, 3,5, 7}
We have,

6=21315070

42=21315071

105=20315171

20=2230%5170

63=20325071

1 1 0 O
1 1 0 1
We define AasA=(0 1 1 1]|(mod?2)
2 0 1 0
l0201
1 1 0 O
1 1 0 1
= A=l0 1 1 1
0 01 0
0 0 0 1

Performing elementary column operations and mark each row which has a
point

Since Ay, = 1,and ¢, — ¢, + ¢4, We get

1 0 0 O
[1 0 0 1]
= 0 1 1 1
0 01 0
0 0 0 1
Again performing c; — c3 + ¢, and ¢, — ¢, + c,, we get
[1 0 0 0]
|1 0 0 1|
= 0 1 1 1

lo 0 1 oJ
0 0 0 1
Now performing c; — c; + ¢4, we get

1 0 0 O

N =
cor o
or oo
[ Y R



Note that row 5 has not been used, since As; = As, =1, row 5 and all
rows for which A;; = 1 and A;, = 1 are dependent. From the above matrix
we see that rows 1, 2, and 5 are dependent. If we sum row1, row2, and row5
in GF(2), we obtain a zero row.

ie. 1000 Row 1(Q; = 6)
0001 Row 2(Q, = 42)
1001 Row 5(Qs = 63)

0000

This implies that R={Q;,Q,, Qs} and product Q,;Q,Qs forms perfect
square.

Q,Q,Q; = 6*42*63 = 1262

5.4 SOLVING A MATRIX-VECTOR EQUATION USING
GAUSSIAN ELIMINATION

Consider a system of linear equation of n unknowns and n equations as

a;1X7 t apXyta, + a;pX, = by
A1Xq + AxpXp + i, + a,nX, = by
an1X1 + an2X2 S P + anan == bn

Step 1: To eliminate x; from second, third,...... n'? equations:

Assuming a;1 # 0, we eliminate x, from the second equation by subtracting
a,4/a44 times the first equation from the second equation.

Similarly we eliminate x; from the third equation by subtracting a3;/a;
times the first equation from the third equation.

By proceeding in the similar way, we get the following new system of
equations as,

a11X1 + appXg F e, +a;X, = by
!
a22 XZ + ------------ + a2n Xn - bz
12 — !
Apy Xpt .o + an, Xn = bp

Gaussian Elimination
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From the above it is clear that, the first equation is called pivotal equation
and a, is called first pivot.

Step 2: To eliminate x, from the third equation:

!

Assuming a;,’ # 0, we eliminate x, from third equation by subtracting
(az,'/a,,") times the second equation from the third equation. Thus we get
the following new system as,

A11X7 t ApXy F i +a;pX, = by
!
Ay Xyt eiiiiiiin + a,,'x, = b,
t o +ay, Xp =bp

Step 3: To evaluate the unknowns:

The values of UNKNOWNS X; , Xy ,eevvveeieenennn.. X, are found from the
above reduced system by back substitution.

Gauss Elimination Method

Example 1: Solve the following system of equations by Gaussian
elimination method:

2X+y+2z=10;3x+2y +3z2=18; x+4y + 9z = 16

Solution:

2X+Yy +2=10 -----mmmmmmmeee- ()
3x + 2y + 3z =18---------------- (i)
X+ 4y + 97 = 16--------------m--- (iii)

Multiplying equation (iii) by 2
2X + 8y + 18z = 32------- (v)

Subtracting equation (i) from (iv)

Ty + 172 =22

Performing 7 * (ii) + (v) we get,
2x+y+2z=10---------- (1)

y + 3z = 6----------- (@iv)

4z = 20 ------------ (vi)

from equation(vi), we get z = ? =5

using back substitution method, we get,y =-9 and x = 7.

~ Xx=7,y=-9andz=5



Example 2: Solve the following system of equations by Gaussian
elimination method:

y-z=3:-2x+4y—z=1:and -2x + by —4z = -2

Solution: Consider

22X + Ay — 7 =1 (i)
-2X + 5y — 47 = -2-----mmmme (i)
a7 A (iii)
Subtracting equation (ii) from equation (i), we get
22X + 4y — 7 =1 (i)
-y + 32 = 3----emememeeeeee- (iv)
Y —Z = 3--mmmmmmmmemeeeee (iii)

Adding equation (iii) and equation (iv), y-z+-y + 3z =3+3
2226:>z:§ =3=> z=3
Substituting z =3 in equation (iv),
-y+33)=3
=2-y=3-9=2-y=-6=>y=6
Substituting y = 6 and z = 3 in equation (i),
= -2Xx+4(6)-3=1
20

=>-2x:1—24+3:>-2x:-20=>x:_—2= 10

The solution of the given set of equations are x =10,y =6 and z = 3.

Example 3: Solve the following system of equations by Gaussian
Elimination method:

S5X+4y-z=0; 10y-3z=11; z=3;

Solution: Given the system of equations are,

SX + 4y — 7 = 0---m-mmmmmmee- (i)
10y - 3z = 11-------------- (i)
A S— (iii)

Performing back substitution, z = 3.

Putting value of z in equation (ii), We get,

10y-3(3)=11=10y=11+9=10y =20y == = 2

Substituting values of y and z in equation (i),

5x+4(2)—3:0=>5x:3—8=>5x:-5=>x:?5:-1

~X=-1l,y=2andz=3.

Gaussian Elimination
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5.5 FINDING A BASIS FOR THE NULL SPACE

This topic explains you how to find the basis for the null space of a mxn
matrix A using Gaussian Elimination method.

We have A«X = 0, either the solution is unique and X = 0 is the only solution
or there are infinitely many solutions, which can be parametrized by non-
pivotal elements.

The basis of a null space of a matrix A is defined as Null (A) ={V: AsV =
O}. The dimension of the null space of A is called nullity of A.

To find basis for the null space, we convert the coefficient matrix into row
echelon form.

-1 -3 -2

Example 1: Let A= [_04 4 0 -1

of A.

]. Find basis for the null space

Solution: Let X= {(x1,Xz,X3,X4): AeX = 0} is a basis for the null space
of A.

X1
— — — — X
Then | 04 41 03 —ﬂ ' lX§ =0
X4
Matrix A is in row echelon form:
Hence -4x; —x, - 3x3—2x4 =0 - ————————— — — (i)
and4x, — x4, =0—-————————— — — — — — — (i)
= X, = 4X,
Substituting x, equation (i), we get
-4x; — 9%, — 3x3 = 0 = 3x3 = —4x; — 9%,

Writing vector components x4, X5, X3 and x, in the following manner,

X1 = 1xq + 0%, 1 0
X, = 0x; + 1x, [0]+ |[1]|

-4 -9 = X |-4|+x,]-9
X3=?X1 +?X2 1[?} 2|?|
X4=OX1+4X2 0 l4J

Since x; and x,, are arbitrary, the basis of null space of A is span of {(1, 0,
=0, (0,1, 2 4}

5.6 FACTORING INTEGERS

The unique factorization theorem: Every positive integer a>1 can be
expressed uniquely as a product of positive primes.



To find a nontrivial factor of a composite number n is the main concern.
The simplest factoring algorithm is the trial division method which tries all
the possible divisors of n to complete prime factorization:

Algorithm for factoring integer n by trial divisions:
[1] Inputnandsetr < 0,k €« 2.
[2] 1fn=1, gotostep [5].
[8] g< n/kandt < n(mOd k).
Ift #0. Go to [4].
r<r+l, p. <k, n&q, go to [2].
[4] Ifg>Kk, then k&k+1, and go to [3].
r&r+l, p.€n.
[5] Exit; terminate the algorithm.

An improvement of algorithm is to make use of an auxiliary sequence of
trial divisors:

2=dy,< d; <d, <d; <d, < ... which includes all primes vn and at
least one value dy > v/n.
The number of divisors of a positive integer: Let n is a positive integer such

that n>1. Then by unique factorization theorem, n can be expressed as
product of positive primes.

Let n = p;%p,%2.......... pr*rwhere 1<p; < p, <...... < p, and p's are
positive primes and o; a5 ......... a,. are positive integers. Then the number
of distinct positive integral divisors of n=(1+o;)(1 + 0otz)..vvvvvvnnnn.. (1+
a,) and it is denoted by T(n).

Also the sum of all the terms in the product:
P=

(p10L1+1_1 . p20(2+1_1

p1—-1 p2-1
Greatest Common Divisor: For a,b €Z, the largest d €Z, which divides
both a and b, is called greatest common divisor of aand b .

Let d = gcd(a, b)
Each common divisor d of a and b divides gcd(a, b) .

) LI . (%) and it is denoted by o(n).

If gcd(a, b) =1, we call a and b coprime.
The gcd of a and b has a representation.
gcd(a, b) = xea+yeb, with integers x, y € Z.

If gcd(a, b) = 1. Then a is called primitive residue class modulo n.

Gaussian Elimination
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Euclidian Algorithm: Euclidian algorithm enables us to find the actual value
of the greatest common divisor d of two given integers a and b and also to
find integers x and y such that

d = xeatyeb

Example: Find (26,118) and express it in the form 26x+118y, where x and
y €Z.

Solution: We have,

118 = 26*4+14

=26 = 14*1+12

=14 = 12*1+2

=12 = 2*6+0

Hence the last non-zero remainder is 2 = (26, 118).
From the last we get,

2=14-12*1 = 14-12

=2=14-(26- 14) = 2*14 - 26

= 14 = 118 - (26)*4

=2 = 2[118 - (26)*4] - 26

=2 *118 — 9*26------------------- 0]

Hence (26, 118) = 2

Equation(i) is in the form of 26x+118y, by comparison, we get,
x=9andy=2

Example 2: Find the number of distinct positive integral divisors and their
sum for the integers 56700.

Solution: Expressing 56700 as a product of prime integers as,
56700=22% * 3* x 52 x 7

Herep; =2,p, =3, p3=5ps=7, 00 =2,0, = 4,03 =2,a, =1
Then, number of distinct positive integral divisors of 56700 is
T(56700) = (2+1) (4+1) (2+1) (1+1) =90

And the sum of all distinct positive integral divisors

0(56700) = =1, 3701 51 7ol g1 91%31%8 = 210056.

*
2—-1 3—-1 5—-1 7—-1




5.7 SUMMARY

Any matrix can be transformed to reduced row echelon form by using
Gaussian elimination method. This is particularly useful for solving systems
of linear equations. The echelon form of a matrix isn’t unique, which means
there are infinite answers possible after performing row reduction. But the
reduced row echelon form is unique, which means row-reduction on a
matrix will produce the same answer no matter how you perform the same
row operations. The method can be applied even if the coefficient matrix is
singular matrix or rectangular matrix. Gaussian elimination is also needed
to determine the rank of a matrix.

5.8 REFERENCES

Linear Algebra and its Applications, David C Lay, Pearson Education India;
3" Edition, 2002.

Exercise

Q.1: Solve the following system of linear equations by Gaussian-
Elimination method:

i.)x+y=3and3x-2y=4
)x+y+z=3;2x+3y+4z=9;x -2y +32=2
) x+y—-z=9;,-x-2z=2,y+3z2=3

Q. 2: Find the basis for null spaces of the following matrices:

1 0 3 2 1
i)lo 2 2 4 4

0 0 6 6

0
0 0 0 -1
ijsa -1 1 -1
8 —2 3 -1

ke o e sk e ek

Gaussian Elimination
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INNER PRODUCT AND ORTHOGONALITY

Unit Structure:
6.0 Objectives
6.1 Inner Product
6.1.1 Norm of a Vector
6.1.2 Norm of distance of two vectors
6.2 Orthogonality
6.3 Projection
6.4 Orthogonal set of generators
6.5 Orthogonal Complement
6.6 Summary
6.7 Reference

6.0 OBJECTIVES:

After going to this chapter, you will be able to:

e Find inner product of two vectors.

e Determine whether the given vectors are orthogonal to each other or
not.

e Construct orthogonal set of generators.

¢ Find orthogonal complement of any vector v.

6.1 INNER PRODUCT:

Letu=(ug,Uy, ceses s cen e, Up ) ANA V=(Vy,Vy, e e e e e, V) @FE
two n-vectors of a real vector space. The inner product of u and v is given
by the sum of the products of the coordinates with same index. It is also
defined as the dot product of corresponding components of uand v. It is
denoted as <u, v>.

<U,V>=u vyt uyvot........ +u,vy.
The inner product of two vectors satisfies the following properties:

i. <u,uU>=>0 =><uu>=0iffu=0

ii. <uv>=<v,u> (symmetry)

. <u+w,v>=<u,v>+<w,Vv> (linearity)
iv. <uw+v>=<u,w>+<u,v> (linearity)
V. <au,v>=a<u,v> (homogeneity)
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Any linear space that satisfies the above postulates is called inner product Inner Product and
Space Orthogonality

6.1.1 Norm of a Vector:

The norm of a vector v € V is defined as the positive square root of the
inner product of the vector with itself. The norm of a vector v is written as

[IvIl-
||V||:m=\/v12+ V22+----|- Vnz

6.1.2 Norm of distance of two vectors:

Norm of distance between two vectors u and v is defined as d(u, v) =|| u-
V| =<u-v,u-v>

=Ju—-veu—-v) = — v)?+ Uy — vp)2+ -+ (uy — vp)?

Example 1: Ifu= (1, -3,5) and v = (3, 1, -4), find the inner product of u
and v. Also find norm of u, norm of v, and norm of distance between u
and v.

Solution: Inner product of u and v = <u, v>
=1*3 + (-3)*1 + 5*%(-4) =3-3-20=-20
Norm of u= /12 + (—3)2 + 52 =35

Normof v= /32 + 12 + (—4)2 =26

Norm of distance between u and v =
JA =324+ (-3-1)2+(5-(—4)2=V4+ 16 + 81 =101

Theorem 1: Cauchy-Schwartz inequality:

For any vectors u,v in an inner product space v, < u,v >?2 <<u,v><u,v>
or [<u,v=>[ < [u| [[v]].

Proof: Lety = y(t) = <u+tv,u+tv> teR
= <u, u+tv> + <tv, u + tv> (by linearity)
=<U, U>+ 2<u, V>t + <v, v> t2

It is a quadratic equation.

= <U, U>+2<u,v>t+<v,v>t2 =0

It has at most one solution as y(t) = 0. This implies that its discriminant
must be less or equal to zero.

ie.[2<uv>]P—4<uyu><v,v><0
= 4(< u,v >)? <4<u, u> <V, v>

= (< u,v >)% <<u, u><v, v>
or|<uv>|< ||u|| [|v]]

Hence proved. 53
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Note: For non-zero vector u,v € V , the Cauchy-Schwartz inequality
implies that

-1 < o<

[Hul[[Iv]
The angle 0 between u and v is defined by cos 6 = m the angle is
unique.

6.2 ORTHOGONALITY:

The two vectors u and v are orthogonal, if they are perpendicular to each
other. In other words, the two vectors are said to be orthogonal to each
other if angle between them is 90°.

In terms of inner product, we can define that two vectors are orthogonal if
their inner product is equal to zero.

Orthogonal sets: Aset S = {u,, u,, ..., u,} of non-zero vectors of V is
called an orthogonal set if every pair of vectors are orthogonal to each
other.

i.e.<ui,uj>=0, 1<i<j <n.

This orthogonal set of vectors becomes orthonormal if in addition <
u;,u; >=1foralli <n.

Theorem 2 : Pythagorean Theorem: Let v, v,, ..., v, be mutually
orthogonal vectors. Then,

Ve + Vo, o4 vall? = [vall? + [[V][? + -+ + [[val]?

Proof: Let n=2,

If u and v are orthogonal, then <u, v>=10

S [lu+v||?2= <u+v,u+v>=<u u>+<u, V> + <V, U> +<v, V>
=<Uu, u>+2<u,Vv>+<v, v> (by symmetry)
=<u, U> + <v, v> (u and v are orthogonal)
=[lul|? + [Iv][?

Similarly we can prove that

vy + Vo, ot vall? = [[Vall? + V2l [? + - + [[val?.

Example 1: Determine if u=(3, 2,0, -5) and v = (-4, 1, 6, -2) are
orthogonal.

Solution: If <u, v> = 0, the two vectors u and v are orthogonal.

<(3,2,0,-5), (-4, 1, 6, -2)> = 3%(-4) + 2*1 + 0*6 + (-5)*(-2) = 0.



Hence, vectors u and v are orthogonal. Inner Product and
Orthogonality

Example 2:

Verify Pythagorean theorem foru=(1, 0, 2, -4) and v = (0, 3, 4, 2)
Solution: Pythagorean theorem for uand v is ||u + v||?= ||u]|? + ||v]|?
Consider, LH.S:|[[lu+Vv||?=<u+v,u+v>
we have u+v =(1,0, 2,-4) + (0, 3,4, 2) = (1, 3, 6, -2)
[lu+v]|? =<(1,3,6,-2),(1,3,6,-2)> =1+9+36+4=50
consider R.H.S: [|u]|? + ||v]|? = <u, u> +<v, v>
=<(1,0,2,-4),(1,0,2,-4)> + <(0,3,4,2),(0,3,4,2)>
=21+29
=50
~L.HS=RH.S
Hence Proved.
Example 3: Find inner product, angle, orthogonality for
p = -5+2x-x% and ¢ = 2+3x2.
Solution: Letu=(-5,2,-1)and v= (2,0, 3)
Inner product of p and q is <u, v>=-5*2 + 2*0 + (-1)*3=-10+ 0- 3=-13
Jull = /(=5)7 + 22 + (=D)? = V30
IVl =v2Z +0+32=+13

. _ <uwv> _ -13
Angle between pand g iscos 6 = iV~ 73093
u and v are orthogonal to each other, if <u, v> =0 but here we got <u, v>

=-13
It shows that u and v are not orthogonal to each other.

Theorem 3: If u and v are orthogonal vectors then for «, 3 any scalar we
have

llcu+ Bvl|? = o?|[ul|? + B?]|v]|?

Proof: lau + Bv||?=<<au+ Bv,au+ Bv>
=<au,au+ Bv>+<BPv,au+ Bv> (linearity)
=<au,au>+<au,Bv>+<Pv, au>+< Bv,fv>
=’ <uu>+af<u,v>+pa<vu>+pZ<vu>
= a?||u||? + 2aB < u,v > +B2||v]|? (symmetricity)
= o?||ul|? + B?]||v||? (orthogonality)

“lecu+ Bv[I? = o[lul]® + B?||v]I?

Hence proved. 55
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I. Let u, v are orthogonal vectors, then < au, av > = 0, for any scalar
a € R.

ii. If u and v are orthogonal to w then u+v is orthogonal to w.
Proof:
I. Since u and v are orthogonal to each other. = <u, v>=0.
Multiplying a? both sides, < au, av > = 0, for any scalar a € R.

ii.  Given that u and v are orthogonal to w, then <u, w> =0
and <v, w>=0.

We have to show that <u+v, w>=10

Consider L.H.S: <u+v, w>=<u,w>+<v,w>=0+0=0
(by linearity)

Parallel and Perpendicular VVectors:

Two vectors u and v are parallel to each other if <u, v>=1 and
If two vectors are perpendicular to each other if <u,v>=0

Example 1: Find the vector orthogonal to both u = (-6, 4, 2) and
v=(3,1,5).

Solution: Let x = (x4, X5, X3) Is orthogonal to both u and v.
XeU = (Xl’XZ' X3).(_6, 4‘, 2) = 0
= -6xy + 4x, + 2Xx3 = 0-------m-mmme- (i)

similarly Xev = (x4,X5,%3)¢(3,1,5) =0

6X2 + 12X3 = 0 = X2 = _2X3 """" (l”)
Substituting value of x, in equation (ii), we get,

Xl - _X3

-]

Hence, the vector orthogonal to both u and v is {x: x(-1, -2, 1), xeR}
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6.3 PROJECTION

Let v be a non-zero vector of a vector space V. Let W be a subspace of V.
If w € W is a vector such that it is closest to v, then w is called projection
of v. Now decomposing an arbitrary vector x into the form x = av + z
where z € V* since z L v then <v, X> = <av,v > = a <V, V>.

<V, x>

<v,v>

It implies that o =

The vector proj,™® = % v is called the orthogonal projection of x

along v.
Let u be the subspace spanned by u,, u,, ... ... u, . Then any vector v can
be written as the sum of vectors in w and a vector orthogonal to W as
i veuy veu, veuy,
v
ro = u _ U, + -+ u
p ]ul,uz ....... Up U *uy 1+ Uyeu, 2 Uy ouy, n

Projy, u,,...u, IS called closest point to v in the subspace spanned by

. . <V, >
The distance between the vectors v and u is ¢ = ~1=

<ug,ug>
The point in span {u} closest to v is v!I* =cu.
Example 1: Find the projection of v(4, 2, 1) on the vector u(5, -3, 3).

<u,v>
<uu>

Since <u, v>=17and /< u,u > =43

. . _ i
Projection = NTEL
Example 2: Leta = (3, 0), b = (2, 1) find vector in span {a} that is closest
to be is b!l2 and distance ||b*?|.
<ba> _ <(2,1),(3,0)> _ 6 2

Solution: Distance [[b*?|| = ——= == Gos= 3= 3

Solution: Projection of v along u =

<b,a>
<aa>

blla = a= ?(3,0) = (2,0).

6.4 ORTHOGONAL SET OF GENERATORS

Let B = {vy, vy, ....., v, } be a basis of a subspace W of an inner product
space V. An orthogonal Basis B’ = {w;, w,, ....., w, } may be constructed
as follows:

W1 = Vg, Wy = span{wl}

— PR _
Wy = V = PIOjy, 2, Wy = span{w;, wy}

Wi = Vi — projy, V¥

Inner Product and
Orthogonality
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This can be written as

W1 = Vl
< Wy, vy >
Wy =Vo— ——_— W
<W1,W1 >
< Wq,V3 > < Wy, Vg >
W3 = Vg— ——————W; — ————————W,
< wy,wy > < Wy, Wy >
< Wy, Vg > < Wy, Vg >
Wk: Vk_ —Wl_ —W2 — e
< Wy, Wy > < Wy, Wy >

< Wk—-1, Vk >
- Wk-1
< Wk—1, Wk—1 >

The method of constructing the orthogonal vector wy, w,, ....., wy IS
known as the Gram-Schmidt Orthogonalization process.

Clearly, the vector w,, w,, ....., wy are linear combinations of
Vi, Vs, ..., Vi. Conversely, the vectors vy, v, ....., vy are also linear
combination of wy,w,, ....., wy.

Hence the basis { wy, w,, ....., wy } constructed by Gram Schmidt process
is an orthogonal basis of W.

Example 1: Find the orthonormal basis for subspace R* whose generators
arev, =(1,1,1,1) v, = (1,2,4,5), and v5 = (1,-3,-4,-2) using Gram-
Schmidt orthogonalization method.

Solution: wy; = v; =(1,1,1,1)

<W1,V2>
Wa = Vp — Wq
<W1,W1>

<(1,1,1,1),(1,24,5)>,
<(1,1,1,1),(1,1,1,1)>"

= (1, 2, 4, 5) = 111$111)
=(1,2,4,5) -2 (1,1,11)

=(1,2 4,5)-(3,3,3,3)

=(-2,-1,1,2)
< Wq,V3 > < Wy, vz >
W3 =Vz3— ——————W; — ———— W,
< Wy, Wy > < Wy, Wy >

—(1.2.4 o <111,1),(1,-3-4-2)>
=(1,-3,-4,2) <(1,1,1,1,),(1,1,1,1)>

<(-2,-1,1,2),(1,-3,—4,—2)>

<(-2,-1,1,2),(-2,-1,1,2)> ( 2, 1’1’2)

(1,1,1,1) -

= (1,-34,2)- (-22,2-2) + = (=2,-1,1,2)

_(—1 -17 -13 7
57’ 10

10’5
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Example 2: Construct an orthonormal basis of R? by Gram-Schmidt Inner Product and
process S ={(3,1),(4,2)} Orthogonality

Solution: Let the orthonormal basis set is {w,, w,}

w; = v;=(3,1)
< Wy, Vs >
W, =V, — ———— W
2T <wwy >t
:(4’2) _ <(3,1)¢(4,2)> . (3’1)

<(3,1)+(3,1)>
14
=42)-5 B

— (-1 3
_(5’5

6.5 ORTHOGONAL COMPLEMENT

Let WS R™ be a subspace. If a vector v is orthogonal to every vector w €
W, we say that v is orthogonal to W. The orthogonal Complement of W is
the collection of all vectors orthogonal to W. It is denoted by W+.

i.e. Wt ={v € R:vew =0 forallw € W}.

Theorem 4: Let W be a subset of vector space V. Prove that W+ is a
subspace of R".

Proof: W+ is non-empty, since 0 € W+ forallw € W+, < 0,w > = 0.
Let w,, w, € W,
Wy — Wy ,W>=< W, W>+< —wy,w > (linearity)
=< WL,WwW> =< w,,,W>
=0-0=0

Hence we can say that w;, w, € W+. And by the axiom of subspace we
can say that W+ is a subspace.

Theorem 5: _If { wy, wy, ...., wy} forms a basis of W. then
x € WY ifand only if xew; = 0 for all integers 1 <i < k.
Proof: Let xew; = 0.

Let w € W, then W can be written as a linear combination of
W1, Wy, ... Wy aS

W = O(1W1 + (X2W2 + b + aka

then xeW=W = a;xw; + 0,XwW, + -+ 4+ o Xwy (by
linearity)

=0+0+...+0=0
> XeE W
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Linear algebrausing python  Let X € W+, Then by definition of orthogonality xew; =0 , ¥ w; € W.
Hence proved.

Theorem 6: W+ is the Orthogonal Complement of W where W is a
subspace of V. Then V = W@ W+ and W n W+ = {0}.

Proof: We have WV and also W+ € V then W@ W+ cV----(i).
Now for any b € V,b = b"s + b*S, where b € W and bt € W+,

~beWd Wt

From equation (i) and equation (ii), we get V=W W+,
Now, W+t ={ve V:<v,w>=0,V w € W}.

Since WeV = <w, w>=0=>w=0.

~Wn Wt ={0}.

Hence Proved.

Example 1: Find the orthogonal Complement of W = span{w, w,}, where
w; =(3,0,1,1)and w, =(0, 2,5, 1).

Let X = (X4, X3, X3,X,) € R* such that xew; = xew,=0

= (Xq,X5,X3,X4) *(3,0,1,1)=0and (xq,X2,X3,%4)(0,2,5,1)=0
= 3x; + 0x, + x3 + X, = 0 and 0x; + 2x, + 5x53 + x, = 0.

We can write (x4, X, X3,X,4) in the following manner:

X; = —X3 — X4

X, = —5X3 — X4

X3 = 1x3 + 0x4

Xy = 0X3 + 1X4_

Xq -1 -1
X2| -5 -1
= Xs| = X3 1 + X4 0
X4 0 1

= The orthogonal complement of W is {x5(-1, -5, 1, 0) + x,(-1, -1, 0, 1):
X3, X4 € R}
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66 SUMMARY Inner Product and

Orthogonality

The standard inner product of a vector v with itself gives the Euclidian
length and the standard inner product of two vectors gives the angle
between them. The orthogonal projection of vector w onto vector v can be
assumed as shadow of w on the line spanned by v if the direction of the
sun’s rays were exactly perpendicular to the line.

6.7 REFERENCE

1. Linear Algebra and Probability for Computer Science Applications,
Ernest Davis, A K Peters/CRC Press (2012).

2. Linear Algebra and Its Applications, Gilbert Strang, Cengage Learning,
4th Edition (2007).

EXERCISE

Q1. Find the inner product of u and v, also show that <3u-2v, w> = 3<u,
wW> -2 <V, W>,

i.ou=(1,-1,2,3),v=(1,0,3,7)andw=(2,5,1,9)

. u=(7,3,-9,1),v=(2,5,3,00andw=(-1, 3,5, 7)

. u=(1,2,3,4),v=(2,3,4,5 andw=(4,5,6,7)

iv. u=(1,9,11,0),v=(3,-1,5 7)andw=(11, 11,5,0)

Q2. Find the projection of vector u along vector v where u and v are,
i. u=(,1)andv=(10)

i. u=(0 andv=(2 %

iii. u=(-1,3)andv=(3,4)

iv. u=(-11,10)andv=(6,8)

Q3. Find the orthonormal basis for subspace of R* generated by the
following:

i. (1,2,1,0) and (1,2,3,1)
(1,1,0,0), (1,-1,1, 1) and (-1, 0, 2, 1)
ke ke ke ke ke ok sk
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EIGEN VECTORS

Unit Structure:
7.0 Objectives
7.1 Modelling Discrete Dynamic Processes
7.2 Eigen Values and Eigen Vectors
7.3 Diagonalization
7.3.1 Similar Matrix
7.3.2 Calculation of powers of a matrix
7.3.3 Diagonalization of the Fibonacci Matrix
7.4 Coordinate representation in terms of Eigen vectors
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7.8.4 Google matrix
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7.0 OBJECTIVES

After going to this chapter, you will be able to:

. Define discrete dynamic process

o Find eigenvalues and eigenvectors of a square matrix

o Understand Diagonalization of a matrix and its importance
o Explain Markov process, Markov Chain and Steady state

o Define Internet worm and Page rank
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7.1 MODELLING DISCRETE DYNAMIC PROCESSES Eigen Vectors

A matrix equation is called a discrete dynamical system if it is in the form
Xni1 = Aex, orequivalently, itis x,,; = A" e X,

where A is an mxm matrix and for each integer n, x,, is an m-demensional
vector.

In order to better understand the behaviour of discrete dynamical systems,
we need a method of easily computing the product of matrices and
vectors.

nzlt P[]
(@  we are finding A(v,) and A(v,).

A =[1 5 T hl=[l=w

aw)=[1 5 [l =30] =3
(b) we are finding A%v, and A?v,,.

9 12

S P

[} oL % 1G]

=[; % [3[3]

=3[ 5 I[3]

=36[>])

= 3%y,

Similarly we can find A"v, and A"v,.

Based on the above procedure we can conclude that
A"v; = vyand A", = 3"v,.

(c) Use the fact that [Z] = —2v; + 3v, to find a formula for A" [Z]
We have [Z] — —2v, + 3v,

Multiplying both sides with A", we get,

A“([ﬂ) = A"(=2v, + 3v,)
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= A“(:Z:) = AM(=2v,) + A" (3vy)
= A“(:Z:) = —2A"(v,) + 3A" (v,)
= A“(:Z:) = 2 v, +3(3%,)

= A“(Z:) =2 [ﬂ +3x 30 [ﬂ

= w(ih=[] %]

= wih= [ ]
wh =230

It is a formula that allows us to directly compute a value by simply putting
a value of n and directly getting an output.

If we want value of Aloo(m), we can simply take n=100 in the above egn(l)

instead of multiplying A by 100 times. It allows us to compute a very large
matrix multiplication very quickly and efficiently.

7.2 EIGEN VALUES AND EIGEN VECTORS

Characteristic Equation: Let A be a Square matrix, | be the unit matrix of
same order that of A, and A is a number. Then the polynomial equation
det(A-Al) = 0 in the variable A for the given square matrix A is called the
characteristic equation of the matrix A.

Eigen Values: The roots of the characteristic equation det(A-Al) =0 is called
characteristics roots or eigenvalues or latent roots of the matrix A.

Eigen Vectors: An eigen vector of A is a non-zero vector v such that Av=Av
, for some scalar A. Where A is an eigen value of A.

To find the eigenvectors of A corresponding to each eigenvalue A, we must
solve the matrix equation (A-Al)v = 0, for each eigen value A.

Example 1: Find the characteristic equation and hence eigenvalues for A=
1 -3
[—4 5 ]

Solution: Given A= [ 1 _3].

-4 5

Consider the characteristic equation as | A-Al|=0



= [_14 _53] — }\[1 0 — Eigen Vectors

0 1
1-12 -3
:>[—4 52

= A2-61-7=0

=0

=> (A-7)(A+1) =0

Hence A = —1, 7 are the eigen values for the given matrix.

Example 2: Find the characteristic equation and hence eigenvalues for A=
4 3

Solution: Given A= [1 2

4 3F

Consider the characteristic equation as | A-Al| =0,

=y 5=l al=

:’[1;)& 337\]:0

= A2-4A-5 =0
= (A-5)(A+1)=0

Hence A = —1, 5 are the eigen values for the given matrix A.

1 1 3
Example 3: Find eigenvalues of matrix A=|1 5 1].
311
1 1 3
Solution: Given A= |1 5 1.
31 1

Consider the characteristic equation of A is | A-Al| = 0.

1-2 1 3
=11 5—2A 1 [=0
3 1 1-

= A3-7A2+36 = 0
= (A-6)(A-3) (A+2) =0

= A =-2, 3, and 6 are the eigen values for the given matrix A.

8 -8 -2
Example 4. Find eigenvalues and given vectors of A=|4 -3 —2].
3 -4 1
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4 -3 -2
3 -4 1

Solution: Here, A=

8 -8 —2]

The characteristic equations is |A-Al| = 0.

EELEES

= 4 —3—7\ —2]20
3 -4 1-A

=>A3-602+111-6=0

£

= (A-1)(A-2) (A-3)=0
= 2=1,2,3.

Case 1: Eigen vector corresponding to eigenvalue A = 1;

L

Consider (A-11) v = 0O;

7 -8 =211
>[4 -4 —2[|v2
3 —4 01]lvs

= 7v, -8v,-2v; =0

= 4vy -4v,-2v; =0

= 3v,; -4v, =0

= 3v; =4v,

= v, =4/3v,

Substituting this value of v, in  7v; -8v,-2v; =0

28
= ? V2 '8V2'2V3 = 0

2
= V3— -

4/3 v,
Vz

2/3 v,

This implies that X, =

Thus

3\-

Case 2: Eigen vector corresponding to eigenvalue A = 2;

66 Consider (A-21)v=0 ;



6 -— =211V 0 Eigen Vectors
=>4 - =211v2]1 =10
3 —4 4113 0

Performing row operations R; =2R3-R; and R, = R,-Ry;

6 -8 -=-2]1W1 0
= [|-2 3 01|V2[=]0
0 0 0 11Vs 0

= 6v; -8v,-2v3; =0

= '2V1 +3V2:0
3
= V1: E VZ

Substituting the value of v4in 6v; -8v,-2v; =0,

This implies that X, =

3
21.
1

Case 3: Eigen vector corresponding to A = 3:

Consider (A-3l) = O, By simplification, we get

5 -8 =211 0
4 —6 =2(|V2|=10
3 —4 -=211Vs3 0

=Performing R, — 5R, — 4R,;,and R; — 5R; — 3R,

5 — —211V1 0
ﬁ[o ) _2Hv2]= 0]
0 4 —411V3 0

Performing R; — R; — 2R, we get

5 -8 =211 0
-z |||l
0 O 0 1Lvs 0

$5V1 - 8V2 - 2V3 - vV--"--"-"-"-"—-- - - (1)

= 2V2 - 2V3 - 0
= v, = v substituting in (i), we get

= Vl == 2V3 67
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Vi 2V3 2
= |:V2] = 2[ V3 |=Vv3 [1]
V3 V3 1

2
Hence, X; = |1|.
1

Thus the eigenvalues are 1, 2, and 3. Their corresponding eigen vectors

41 13 2
3| ,|2|and |1] respectively.
21 11

1

are

Example 5: Find eigen values and Eigen vectors of matrix A=

2 =2 3
[1 1 1].
1 3 -1
2 -2 3
Solution: Given A= |1 1 1]
1 3 -1

Consider the characteristic equation of A is | A-Al| =0.
2—-A 2 3
> 1 1-2A 1 =0
1 3 -1-2
= (A-1)(A-3) (A+2) =0
= A=1,3,-2.
Case 1: Eigen vector corresponding to eigenvalue A = 1;
Consider (A-11)v =0,
[2—-—1 =2 3 1M 0
> 1 1-1 1 [Vz] = [0‘

—1—-111Vs 0

|1 3

(1 -2 3™
=11 0 1||V2]| =

1 3 —=211V3

Performing RZ 4 Rz - Rl’ and R3 — R3 - Rl’

TN

0 5 —511vs
Performing R, — R,/2 and R; — R;3/5;

01
0
0




1 2 177
>0 1 -1
0 1 -—-111
Performing R;
1 2 177
=0 1 -1
0 0 01l

:V2:V3

Substituting the value of v, in (i), we get

= Vl = _3V3

\41 —3v
= VZ = V3
V3 V3

-3
Hence X; = [1 ]

Case 2: Eigen vector corresponding to eigen value A = 3

J-|

1

Consider (A-3l)v =0;

-3
1
1

[2—-3 =2 3 41 0
=] 1 1-3 1 V21 =10
1 3 —1—-311Lvs 0
—1 -2 3 7[v1] [O
=>[1 -2 1][|V2[=]0
[ 1 3 —411v3l 10
Performing R, — R, — Ry, and R; — R + Ry,
—1 -2 3 7[V1] [O
>0 0 =2[|v2[=]0
[0 1 —111vsl 10
Performing R, <= R,,
-1 -2 31" 0
=0 1 -=1[|V2|=]0
0 0 —=211vs 0
= —Vy — 2V2 + 3V3 = O —————————— (1)
= V2 - V3 = 0
V2 = V3
Substituting value of in v, equation (i), —v; = —v;

Eigen Vectors
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:>V1 = V3
Vi V3 1
= V2 = V3 :V3 1
V3 V3 1
Hence X, = [1]

Case 2: Eigen vector corresponding to eigenvalue A = -2;

Consider (A+2l)v = O;

2+2 =2 3 V1 0
> 1 1+2 1 Vz] = [0‘
1 3 —1+211Lvs 0
4 -2 311 0
=1 3 1||V2|=]0
1 3 111V 0
Performing R, — 4R, — Ry,and R; — 4R3; — Ry;
4 -2 311 0
=0 14 1||V2|=|(0
0 0 O0llLvs 0
= 4V1 - 2V2 + 3V3 = 0 __________ (1)
= 14‘V2 + V3 = o- - —-——-——-——--— (11)

= —14v, = v3 substituting in equation (i), we get
= 4v, — 2v, + 3(—14v,) = 0

= 4v, —44v, =0

= 4v, = 44v,

L

Hence X; = [ 1
—14.

Thus the eigenvalues are 1,3, and -2 and their corresponding eigenvectors

=371 [1 [ 11
re] 1],[1|and | 1 | respectively.

—14




3 -1 1 Eigen Vectors
Example 6: Find Eigen values and Eigen vectorsof |-1 3 —1{.

1 -1 3
3 -1 1
-1 3 -1

1 -1 3

Solution: Given A =

The characteristic equation of the square matrix A is | A-Al| = 0.

3 -1 1 1 0 0
i.e.[—l 3 —1]-7\[0 1 O]ZO

1 -1 3 00 1
3% -1 1
| -1 3-2 -1]=0
1 -1 3-1a
3-2 -1 1 -1 1 3-A _
:>(3'A)|—1 3—7\| (1)|1 3—A|+1|1 4| =0

= 3-2)((3-1)(3-2) -1) + (-(3-1) + 1) + 1(1- (3-1))=0
= (A-2) (A-5) (A-2)=0
= A =2, 2,5 are eigenvalues of A.
Case 1: Eigen vector corresponding to eigenvalue A = 5;
Consider (A-51)v=0

3 -1 1 1 0 0] V1
:{[_1 ; _1]- ; [0 : OHVZ

1 -1 3 0 0 14 1Lvs

—2 -1 17[V1] [0
=|-1 -2 —1||v2|=|0
1 -1 —2llvsl o

=Performing row operations R; < R3, we get

1 —1 =2][v1] [0
=|-1 -2 —1f|v2|=
-2 -1 1llvs

0
=Performing R, — R, + R; and R; — R; + 2R,

0
1 - -211V1
=10 -3 =3||V2
0 -3 —=311Vs

=Performing R; — R; — R,

1 —1 =2]["1] [0
=0 -3 -=3||v2|=]0
o o ollvl 1o

=0

0
0
0
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=Performing R, — _?1 R,

1 -1 -2 0
o 1 1w
0 O 0 11lVs 0

=V, -V,-2V,=0

=

And V,+V; =0 = V,= -V,
Substituting thisvalue inV; -V, -2V; =0
V,-V;=0=V, =V,

\41 V3 1
= |V =]|—V3]| = V3 -1
V3 V3 1

1
Hence, the eigenvector Xﬁ\—l] Is corresponding eigenvector to

1
eigenvalue A=5.

Case 2: Eigen vector corresponding to eigen value A = 2

Consider (A-21)v=0

'3 -1 11 [1 0 0][%
=>{|-1 3 -—-1|-2(0 1 O0|}V2|=0
1 -1 31 0 0 1! 1Lvs

1 —1 1 7[V1] 0
= |-1 1 =1[|V2|=|0
1 -1 1 11lVvs] 0
= V, -V,+V; =0
= -V, +V,-V; =0
= V, -V,+V; =0
We get, V, =V, + V,
Vq 1v; + Ov, [1] 07
NOW, Vol = 1V1 + 1V3 =Vi 1]+ V3 [1
V3 OV1 + 1V3 [0 1.
1] 0
Thus , the eigenvectors are X, =|1| and X5 |1] .
0. 11




Hence eigenvalues are 5, 2, 2 and corresponding eigenvectors are Eigen Vectors

1 1 0
X; =|—-1|, X, =[1], X5 =[1] respectively.
1 0 1

Properties of Eigen values:

I. The sum of the eigenvalues of a matrix is sum of the elements of
principal diagonal. It is called trace of the matrix A.

Let A =|az1 4z azs

dz; dszz dsz

a1 ap a13]

If 21,2, and A5 are eigen values of A, then trace(A) = A; + A, +
A3 = a;; +ay; +as;

ii. The product of the eigenvalues of a matrix A is equal to its
determinant.

iii. If A is an eigen value of A then % is eigen value of A™1,

2 If Ay,A,...A, are the eigen values of matrix A then
AT A, are eigen values of A™,
V. If A is upper-triangular matrix of order nxn, then its eigenvalues are

its diagonal elements.

Vi. Eigen values of real symmetric matrix are real.

7.3 DIAGONALIZATION

If a square matrix A of order n has n linearly independent eigenvectors or n
distinct eigenvalues, then there exists a matrix P of same order such that
P~1AP is a diagonal matrix.

I.e. a square matrix A of order n is diagonalizable, iff it has n linearly
independent eigen vectors.

Let A4, A,....., A, are the distinct eigenvalues of a matrix A of order n and
the corresponding eigen vectors are X, X,,...., X,,. Then a square matrix P
can be formed with these eigen vectors as

P=[X, X,.... X, ]
Now AP = A[X; X5.... X,] = [MX; AXpe.o AXp]
Forn=3,AP=A[X; X, Xs] =[AX; AX, AXs]=[MX; A,X, AsXs]

My:r  Ay2 Azys
Mzy  Azy; A3z

MX1 AxXp 7\3X3]
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X1 X2 X3 }\1 0 0
=[Y1 Y2 Y3]*[0 A, 0]|=PD,

Z1 Zz 23] L0 0 A3

where D is the diagonal matrix.
SoP~!AP=P~'PD =D.

The matrix P which diagonalizes A is called the transforming matrix or
modal matrix of A. The resulting diagonal matrix D is known as spectral
matrix of A. D has the eigenvalues of A as its elements.

7.3.1 Similar Matrix:

A square matrix B of order n is called similar to a square matrix A of same
order if

B = P~ AP for some non-singular matrix P of order n.

Since matrix B is similar to matrix A, B has same eigenvalues as A. If X is
an eigenvector of A, then y = P~1X is an eigen vector of B corresponding
to same eigen values.

7.3.2 Calculation of powers of a matrix:
Let matrix P diagonalizes matrix A, i.e. D =P~ 1AP
Then D2 = (P'AP)(P~!AP) = P IAPPIAP =
P~1A%P
[since PP~ =1]
Again D3 = (P 1A2P) (P~1AP) = P~1A2P P~1AP = P~1A3P

Similarly, D" = P~*A"P ; pre-multiplying by P and post-multiplying by P71,
we get

PD"P~1 = pp~1ANPpP~1 = AN,
7.3.3_Diagonalization of the Fibonacci Matrix
Fibonacci considered the following problem (breeding rabbits):

We breed rabbits, starting with one pair of rabbits. Each pair of rabbits
produces one pair of offspring in every month. After one month, the
offspring is adult and ready for reproduction. After neglecting all kinds of
effects (as death) and always considering pairs of rabbits, we get the number
of rabbits increase quite rapidly.

Let rabbit vector ¥ = (;) € R? , where j and a denote the number of juvenile

pairs and number of adult pairs respectively.
Since, jne1 = an

dpy1 = Jn + ap



. jn+1 - 0 1 (]n)
In vector notation, (an+1> (1 1) dp

Or, Fn+1= (2 1) Fn

The transition matrix of this dynamical system is A = ((1) 1)

The initial condition is ¥, = ((1)) that means there is one pair of juvenile
rabbits, no adult rabbits.

That means the dynamical system in the equations can be summarized as

fa= (3 1) s o= (o)
The solution of the above equation will be in the form of ¥, = A"F,
: n
o (@)@ )0
Analysis of the problem:
Now we calculate first few rabbit vectors :
N |0[1|2|3|4|5/6|7 |8

i, |1lo[1]1]2[3][5]8 |13
a, |0|1|1]2|3]5[8]13]21

The table shows that after 5 months, there are 3 juvenile pairs and 5 adult
pairs of rabbits.

The sequence a, =(0,1,1, 2, 3,5, 8, ...) is the famous Fibonacci sequence.

For finding the eigenvalue, rewrite the vector equation as follows:

G DE-+C)
G DO-+G D0
G D=6 NC)
G Z2D0=0)

The rabbit vector (;) has to be non-zero, so for the solution of the above

A
A

matrix equation the coefficient matrix must be zero. The matrix is singular

itdet( % 1) =0
A -1

det(_1 A1

)=Ar-1)-1=0

Eigen Vectors
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A(A — 1)-1 =0 is called characteristic equation of the matrix A = ((1) })

and its root is known as eigen values of A.
Solving the characteristic equation, we get the two eigen values are

1+\/_ and 7\2—%

A =

1+/5 |

Eigen vector corresponding to eigenvalue A, = >

1+5

e [ORH

-1

After row reducing the coefficient matrix, we get

1-/5
L)
0 0
(ﬁ—l)a)

For the non-trivial solution of the above equation is (;) = < 2
d

Thus the eigen vector is v, = (‘/gz_ 1) corresponding to eigen value eigen

value A; = 1+f
Now we calculate eigen vector corresponding to eigen vector A, = 15 :
1-/5 1
: A -1 2 I =
Putting the value of A, in (_1 - 1) , We get R (a) =
2
0
(o)
-5
After row reducing the coefficient matrix, we get | 2 -
_1 1__\/5 — 1
2
(1 1+x/§>
2
0 o0
L . . . ] —(1+\/§)a
For the non-trivial solution of the above equation is (a) =7 2 |
a

Thus the eigenvector is v, = (1 +2\/§) corresponding to eigen value eigen

1-vV5
value A, = T‘F



Example 1: Find a matrix P which transforms the matrix A =

1 1 3] Eigen Vectors

to diagonal form.
Hence calculate A* .

Solution: The characteristic equationis| A—AI | =0

1-1 1 3
= 1 5-41 1 [=0
3 1 1-4

2 A3-722+36=0
> (M2) (A-3) (-6) =0
=  Eigen values of A are A =-2, 3 and 6.

Now eigen vector corresponding to A = -2 can be found by solving

1+2 1 3 X
1 542 1 Iyl:Oi.e.
3 1 1+21tz

3X+y+3z2=0,x+7y+z=0,3x+y+3z=0.

X -1
Weget[yl:k[ 0 ]

z 1
Similarly, eigenvectors corresponding to A = 3 and A = 6 are arbitrary non-
zero multiples of the vectors [1, -1, 1] and [1, 2, 1].

-1 1 1
Hence the transforming matrix P = [ 0 -1 2].
1 1 1

Now find P~ using adjoint method :
A11= 3,412 =2, A13=1,431=0,A45,=-2,A33 =2, A3 =3, A5, =
2,A;3 =1land |P| = 6.

-3 0 3
HenceP~1=1/6|2 -2 2|.
1 2 1
-2 0 0
Thus,D=PIAP=|0 3 0
0O 0 6
[—1 1 11116 O 0 -3 0 3
NowdAd*=|10 -1 2(]l0 81 0 |1/6] 2 -2 2
| 1 1 1110 0 1296 1 2 1

=1485 1051 485
(235 485 251

[251 485 235]
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7.4 COORDINATE REPRESENTATION IN TERMS OF
EIGEN VECTORS

Let 1, 4,,...., 4,, are the eigen values of a matrix A of order n and the
corresponding eigen vectors are X,, X,,...., X;, which are columns of P. Let
u® be the coordinate representation of x(® in terms of eigenvectors. The
equation x® = At, x(© gives rise to

At
pO= A | [u]
As'

As the power increases and if [4;] > |4;| for all j, then A;" will dominate.

7.5 THE INTERNET WORM

An Internet worm is a program that exploits flaws in utility programs in
systems. The flaws allow the program to break into those machines and
copy itself, thus infecting those systems.

It spread itself without human intervention by using a scanning strategy to
find vulnerable hosts to infect. Some of the famous examples of code red,
SQL Stammer, and Blalter. It performs self-replication by sending copies
of their codes in network packets and ensuring the codes are executed by
the computers that receive them. Meanwhile, when computers on network
become a victim of its infection, it spreads further copies of the worm by
exploiting low level software defects.

The following are the activities of worms:

I. Infection: By injecting new code and new control flow edges into the
program. Worms gain control of the execution of a remote program.

ii.  Spreading: Worms typically replicate itself to infect other computers.

iii.  Hiding: Worms use the following techniques to avoid being detected
on internet.

Traffic shopping, Polymorphism, and finger printing.

In order to defend against future worms, it is important to understand how
worms propagate and how different scanning strategies affect worm
propagation dynamies.

An efficient and reliable vigilante system for worm containment was
developed using Markov chain. Markov chain is a mathematical system that
describes transitions from one state to another, between a finite or countable
number of possible states. The Markov chain model is developed for
uniform scanning worms, specifically for scanning worms, we are able to
provide condition that determines whether the worm spread would
eventually stop and obtain the distribution of the total number of infected
hosts.



Modelling the Worm: Worm population represented by a vector X =
[X1, V1, X2, V2, X3,¥3,] for i=1,2,3 is the expected number of mortal worms
at computer x;andy; is the expected number of immortal worms at
computer i.

Fort=0,1,2,....Letx® = {x,® x,®,y, ® vy, ®O % y.®O} any mortal
worm on computer 1 is a child of computer 2 or 3.

Therefore, the expected number of mortal worms at computer 1 after t+1
iterations is

1 1
Exz(t) + Eyz(t) + Exg(t) +_y3(t)

Xl(t+1) —

With probability % a mortal worm at computer 1 becomes immortal. The

previously immortal worms stay immortal. Therefore, y, 1) = %xl(t) +
®

Y1

Then we get a matrix A such that

- 1 1 1 1
0 0 % % T 1
§10000
11 4 o L 2
A:1010 10 10
00%100
1111 4
10 10 10 10

00 0 0 > 1

The matrix has linearly independent vectors and its largest eigenvalues is
about 1034.

7.6 EXISTENCE OF EIGEN VALUES

If A is an n*n matrix with entries in C, Then det(A - A I) is a polynomial of
degree n in A with coefficients in C. By the corollary of fundamental
theorem of algebra, it has n roots. This gives the existence of eigenvalues.
Let V # {0} be a finite dimensional vector space over C, and let T € L(V,
V). Then, T has at least one eigenvalue.

7.7 MARKOV CHAINS

Stochastic Process: Stochastic process is a process that involves a variable
changing at a random rate through time. There are various types of
stochastic process such as random walks, Markov chains and Bernoulli
processes.

Eigen Vectors
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Probability vectors: A row vector v = (v, Vv,,....,vy,) iscalled a

probability vector if v4,v,,...., vyare non-negative and their sum is equal
to 1.

y=(t 111
Example:v=(;,,7,7,0)

Markov Property: A Markov property or memoryless property, when the
future and past states are given, the future states of the process depend
only on present state and not at all the past states.

Markov Process: A random process with the Markov property is called
Markov process.

Markov Chain: A Markov chain is a Markov process with discrete time
and discrete state space. Markov chain is a mathematical model that
describes transitions from one state to another according to certain
probabilistic rules. It is a stochastic process in which possible future states
are fixed. In other words, the probability of transitioning to any particular
state is dependent only on the current state and time elapsed.

Markov chain is denoted by X = (X, )pen = KXo, X1, X5, 0nnnn .. )
7.7.1 Transition Matrix:

A Markov chain {X} at time t can be represented as a matrix. This matrix
contains information on the probability of transitioning between states, so
the matrix is known as transition matrix. It is denoted by p,. The (i, j)™
element of the matrix p; is given by

(pt)i,j = p(Xes1 = J/xe = 1)

This means each row of the matrix is a probability vector and the sum of
its entries is 1.

Transition matrices have the property that the product of subsequent ones
describes a transition along the time interval spanned by the transition
matrices.

Let us assume that we have a finite number N of possible states in E such
that E = {ey,e5,....,ex}-

The initial probability distribution can be described as a row vector q, of
size N such that (qo); = qo(e))=P(X, = €))

= Pl] = P(ei, e]) = P(Xn+1 = e]./Xn — ei)
= (Qn)i = dn(e) = Py =€)
= qn+1 = qnp; qn+2 = qn+1P =(an)P = anZ

= dn+m = an2

That means the probability vector after n repetitions of the experiment is
qoP™.



=  The row vector describing probability describing at time step n+1

=  Row vector describing probability distribution at times of X
transitions.

Properties of transition Matrix:

1. It is square, since all possible states must be used behaviors and as
columns.

2. All entries are between 0 and 1, because all entries represent
probability.

3. The sum of the entries in any row must be 1, since the numbers in the
row give the probability of changing from the state at the left to one
of states indicated across the top.

7.7.2 Graphical Representation:

The finite state space Markov chain can be represented as a directed graph
such that each node in the graph is a state. For all pairs of state (e;, e;) there

exists an edge if P(e;, ;) > 0 and the value of the edge is same probability
P(ei, e])

Example 1: Consider the daily behavior of student of SYCS towards visit
of college library for each day, there are 3 possible states: The student does
not visit the library this day (N), the student visits library but does not issue
any book (V) and the student visits library and takes at least one book (R)
so, we have the following state space E = {N, V, R}.

Assume that at the first day this student has 70% chance to only visit library
and 30% chance to visit library and to take at least one book for some the
vector describing the initial probability distribution (n=0) is that q, =
(0.0,0.7,0.3).

Now assume that the following probabilities have been observed:

I. When the student does not visit library a day, he has 25% chance of
visiting the next day, 50% chance to only visit and 25% chance to visit
and to issue at least one book.

ii.  When the student visits library without issuing any book a day. He
has 60% chance to visit again without issuing the next day and 40%
to visit and issue.

iii.  When the student visits and issues a book on a day, he has 35% chance
of not visiting the next day, 40% chance to only visit and 25% to visit
and issue a book again.

N V R
N10.25 0.5 0.25
Thus we have the transition matrix P=V [0.00 0.60 0.40
R {035 0.40 0.15
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The probability of each state for the second day (n=1)

0.25 0.5 0.25
g1 = qoP = (0.0,0.7,0.3) 10.00 0.60 0.40
0.35 0.40 0.15

Finally, the probabilistic dynamic of this Markov chain can be graphically
represented as follows:

7.7.3 Regular transition Matrices:

Markov chain is used to find long range predictions. It is not possible to
make long range predictions with all transition matrices, but for a large set
of transition matrices, predictions are possible with regular transition
matrices.

A transition matrix is regular if some power of the matrix contains all
positive entries. A Markov chain is a regular Markov chain if its transition
matrix is regular.

This matrix L gives the long range trend of the Markov chain. It can be
found by solving a system of linear equations.

7.7.4 Steady state:(solution set):

(Equilibrium Matrix): A probability matrix which is the solution to LP=L
is called equilibrium Matrix.

Absorbing Markov Chain: A state S; of a Markov chain is called
absorbing if it is not possible to leave it. A Markov chain is absorbing if it
has at least one absorbing state.

Example 2: After close analysing the weather for several years, a
meteorologist concludes: The chance of a day after a sunny day is sunny
80% and cloudy 20% of the time. The chance of a day after a cloudy day is
sunny 60% and cloudy 40% of time. Find the long range trend.

Solution: The diagram of the Markov chain for this process having two
states sunny(S) and cloudy(C) is



U.g@ (?6 @0-4—

S C

5108 0.2

The transition matrix P:C 0.6 04

To find long term probabilities, we have to solve LP=L where L =
[Vi V2]

o vl O=p v
=  0.8vy +0.6v, =v; and 0.2v; + 0.4v, = v,

= -0.2v; +0.6v, = 0and 0.2v; — 0.6v, =0

=  Both the equations are same

= 0.2vy = 0.6v,

=  v; = 3v,

Butwe have v, +v, =1 (probability vector)

. . 3 1
Solving these equations, we have v; = " and v, = "

Hence L= [Zﬂ =

N N )

This vector L= |7 is a long term, the probability that the process will be

Bl lw

in state 1 isz and the probability that the process will be in state 2 is %.

Example 3: Assume that a man’s profession can be classified as
professional, skilled labourer or unskilled labourer. Assume that, of the sons
of professional men, 80% are professional, 10% are skilled labourers and
10% are unskilled labourers. In the case of sons of skilled labourers 60%
are skilled labourers, 20% are professionals and 20% are unskilled. Finally,
in the case of unskilled labourers, 50% of the sons are unskilled labourers,
and 25% each are in the other two categories. Assume that every man has
at least one son, and form a Markov chain by following the profession of a
randomly chosen son of a given family trough several generations. Form
the transition matrix and find probability of their long run behaviour.
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Solution: Let P, S and U denote the three states as professional, skilled
labourer and unskilled labourer. According to the given information,
Transition matrix P is

P S U
P08 01 01

P=5102 06 0.2
Ul0.25 0.25 0.5

Let L = (x4, X,,X3) be probability vector. Then long term behaviour can be
found by solving L*P = L.
P S U
P 0.8 01 0.1
2 (X1,X2,%X3)S[02 0.6 0.2|=(xq,X3 X3)
Ul0.25 0.25 0.5

=  Then 0.8x; + 0.2x, + 0.25x5 = x4

=  -0.2x; + 0.2x, + 0.25x3 = 0---------------- Q)

=  0.1x; + 0.2x, + 0.25%x3 = x,

=  0.1x; — 0.4x, + 0.25x3 = 0----------------m----- (i)

And 0.1x; + 0.2x, + 0.5x3 = x5

=  0.1x; + 0.2x, — 0.5%3 = 0-----------m--mmmmmmeme- (iii)
Equation (iii) is the sum of equation (i) and equation (ii).
From equation (i), we get

5X3 = 4X; — 4Xy---m-mmmmmmmmmm oo (iv)

And from (iii), we get

Solving(iv)and(v), weget,

X1 = 2X, and x3 = %XZ
Since L is the probability vector, hence, x; + x, + X3 =1
= 2%, + X, +§x2 =1

5
= X, = —

19
[
19
5
=  Now we have L= =l
4
19



7.8 MODELLING A WEB SURFER: PAGERANK

A search query with Google’s search engine usually returns a very large
number of pages. Google assigns a number to each individual webpage
based on the link structure of the web, expressing its importance. This
number is known as the page rank and is computed via the page rank
algorithm. It has applications in search, browsing and traffic estimation.

7.8.1 Page Rank algorithm as a Markov Process:

We describe page rank algorithm as a Markov process, web page as state of
Markov chain, Link structure of web as transitions probability matrix of
Markov chains. It mainly focus on how to relate the eigenvalues and eigen
vector of Google matrix to page rank values to guarantee that there is a
single stationary distribution vector to which the page rank algorithm
converges and efficiently compute the page rank for large sets of web pages.

7.8.2 Basic Page Rank Algorithm Model:

A webpage U’s page rank is calculated base on how many other webpages
backlink into U. The page rank of U is the sum of the page ranks of each
webpage v; that back links to U divided by the number of webpages to
which v; links. That means if webpage U is linked to only low page ranks
web pages, it may not get more importance. Moreover If U is linked by a
webpage v; with a high page rank, but v; links to many other pages, U
should not receive the full weight of v;’s page rank.

Let U=web page
E,=Forward links from U
B,, =Back links into U

C=normalization factor so that the total rank of all web pages is constant.

R)

—— where C<1
Ny

Then page rank (by simple rankin)=R(U)=C,¢p,

7.8.3 Random web surfer Model:

Page rank can also be defined as the model of a random web surfer
navigating the internet. That means the model states that the page rank
models the behavior of someone who keeps clicking on successive links at
random.

Consider a simple link structure of web pages:

We can represent this structure using NXN adjacency matrix A, where
A;; = 1if there is a link from webpage i to webpage j, and 0 otherwise.

Let N=total number of webpages in the web.

T = 1XN page rank row vector (stationary vector)
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H=NXN row normalized adjacency matrix(or) Transition probability
matrix

Thus we can describe the page rank vector at the k" iteration as,
kT = p(k-DT Yy

To build a transition probability matrix H; = NL
Zk:lAik
So that each row A; of A is divided by its row sum.

Consider the following diagram that shows the link of web pages A,B,C,D
,Eand F

Webpage A [§ Webpage D
7,3 /
Webpage B
Webpage C
A4
Webpage E Webpage F

The 6X6 adjacency matrix for the above link structure is A =

0 1 0 0 O

0 01 1 0

0 0 0 1 1

1 0 0 0 O

1 0 0 0 O

0 0 0 O o
0 2 0 0 = 0

2 2
00 = =200
2 2

Transition probability matrix HisH= [0 0 o0 g %%
1 0 0 0 0 O
1 0 0 0 0 O
0 0 0 0 0 O

But the matrix H is not stochastic due to dangling node F which has no
outgoing links. It affects the model because it is not clear where its weight
should be distributed. To overcome this type of problem, we assign artificial
link to dangling node.



Therefore, we define the stochastic S as, Eigen Vectors

a *eT

N

S= H+

Where a = NX1 column vector such that a; = 1if,YN_1 Hyx =

= 0, otherwise.

E=NXI1 column vector of one’s
0 = 0 0 0

2
00 = Lo
2 2

1 1
For the above example:S= |0 0 0 = =
1 0 0 0 O
1 0 0 0 O
111 1 1
-6 6 6 6 6-

It makes sure that the surfer’s random walk process does not get stuck and
the web pages are the states of the Markov chain.

7.8.4 Google matrix: The above matrix S has a unique stationary
distribution vector =T , if S is irreducible as well as stochastic. A matrix is
irreducible if and only if its graph is strongly connected. So, we define the
irreducible row stochastic matrix G as

exeT

G=aS+(1—a)E; 0<a<landE =

G is the Google matrix defined as
kT = g(k=DT (G as the new iterative method for page rank.

For this above example:

r 1 1 1 9 1

40 20 40 40 20 40

1 1 9 9 1 1

40 40 20 20 40 40

1 1 1 77 77 77
G= 40 40 40 250 250 250

7 1 1 1 1 1

8 40 40 40 40 40

7 1 1 1 1 1

8 40 40 40 40 40

83 83 83 83 83 83
-500 500 500 500 500 500-

The power method:

The Google matrix G is currently of size max than eight billion webpages.
So the Eigen value competition not so easy.

We iterate using the Google matrix G by writing 77 = g(k=DTg
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Linear algebra using python  \WWhen dealing with large data sets, it is difficult to form a matrix G. It is
more efficient to compute page rank vector using the power method, where
we iterate using the sparse matrix H by rewriting the above equation as,

kT — (=17
=g®*DT (S + (1 — a)E

exeT

=T (as + (1 - a) ()

= an®-VTS + (1 - @) k-7 (0

T
=an® TS+ (1 - )=

axeT

e I DS
an (H + " )+ (1 a)N

T
=an® VTH+(an®*DTa+ (1 — a) %

Since 1T js a probability vector and thus = *~DTe = 1.

The size of the Markov matrix makes storage issues non-trivial. For modern
web structure for which the transition probability matrix H can be stored in
main memory, compression of the data is not essential. In order to compute
the page rank vector, the page rank power method requires vector matrix

multiplication of 7*~DTH at each iteration k.

Hence we can say page rank is a global ranking of all web pages, regardless
of their content based solely on their location in the web’s link structure.
Using page rank, we are able to order search results so that more important
and control webpages are given preference.

7.9 SUMMARY

Any scalar A and vector v that satisfies the relationship Av = Av are called
an eigenvalue and an eigenvector respectively of the square matrix A.
Eigenvalues and eigenvectors for a linear transformation T: V — V are
determined by locating the eigenvalues and eigenvectors of any matrix
representation for T; the eigenvectors of the matrix are coordinate
representations of the eigenvector of T. An n*n matrix is diagonalizable if
and only if it has n linearly independent eigenvectors.
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Exercise Eigen Vectors

Q1. Find Eigen values and Eigen vectors for the following

1 2 -1
1 -1 2

2 —1 1]

2
iii.[0
1

Q2: Check whether the following matrices are diagonalizable or not, if
yes, diagonalize them:

-1 2 2
il 1 2 1
-1 -1 0
1 0 -1
i1t 2 1
2 2 3
3 -1 1
iii.|[—-1 5 -1
1 -1 3
1 1 1
v 0o 2 1
|—4 4 3
(1 2 3
v.f[0 2 0
0 0 2
'3 10 5
Vi.|-2 -3 —4
| 3 5 7

Q3: Find the long term probability vector for the following Markov Process:

In the dark ages, Harward, Dard mouth and Yale admitted only male
students. Assume that , at that time 80% of the sons of Harward men
went to Harward and rest went to Yale, 40% of the sons of Yale men
went Yale, and the rest split evenly between Harward and Dard 89
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mouth; and of the sons of Dard mouth men, 70% went to Dard mouth,
20% went to Harward, and 10% to Yale. Formulate Markov chain and
find probability of their long term behavior.

A salesman’s territory consists of 3 cities A,B and C . He never sells
in the same city on successive days. If he sells in city A, then the next
day he sell in B. However if he sells in either B or C, then the next
day he is twice likely to sell in city A as in the other city. In long run,
how often does he sell in each of the cities?

Two boys u, and u, and two girls g, and g, are throwing a ball
each other.Each boy throws the ball to the other boy with probability

% and each to the girl with probability i. On the other hand , each

throws the ball to each boy with probability % and never to the other
girls. In the long run, how often does each receive the ball.

A man walks along a four-block stretch of part-Avenue. If he is at
corner 1,2,0r3 then he walks to the left or right with equal probability.
He continues until he reaches corner 4, which is a restaurant or corner
0, which is his home. If he reaches either home or restaurant, he stays
there. Formulate the transition matrix for states 0,1,2,3 and 4 as a
Markov chain.

ke o o ke o e e
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