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Simulation and Modeling

1.0 OBJECTIVES

The objectives of this chapter are as follows:

. To understand what is simulation and how it works
o To acquaint with the significance and purpose of simulation

. To understand what is there inside the simulation software, how it
works and the process of simulation

1.1 INTRODUCTION

The facilities needed in a new terminal building are being planned by
airport management. Important choices must be made regarding, among
other things, the quantity of security check positions, the size of the baggage
handling system, the number of departure gates, and the number of check-
in desks allocated to each airline. Additionally, it is necessary to decide how
many employees to hire and what shifts they should work. These choices
must be wisely chosen because the whole investment is in the tens of
millions. How can the airport administration decide how many resources
are needed in each location?

Building the terminal and hoping it works is one idea. With so much at risk,
this seems exceedingly dangerous. Relying on intuitions, perhaps based on
prior experience with designing and managing airport terminals, would only
be marginally better. Even though a spreadsheet or a few calculations on
paper might be helpful, they probably won't be able to tackle the whole
intricacy of the scenario.

A simulation of the intended airport terminal is perhaps a far more
successful strategy. This might serve as a model for the movement of
travellers and their luggage through each of the crucial phases from arrival
to departure and serve as the foundation for designing airport amenities.
Indeed, many businesses employ simulation models to design new facilities
and enhance those already in use. Financial services corporations simulate
their call centres, transportation companies simulate their delivery
networks, and manufacturing companies simulate their production lines.
There are numerous instances of simulation in action.

Three simulation-related questions are addressed in this chapter:
1] What is a simulation and why it is essential?
2] Why would a company decide to create and apply a simulation model?

3] When is simulation useful?

1.2 WHAT IS SIMULATION?

A simulation is a replication of the evolving dynamics of a process or
system in the actual world. Even though simulation could theoretically still



be performed "by hand," it now indirectly almost always calls on the use of
a computer to fabricate a false history of a system in order to make
assumptions about its characteristics and functioning.

By creating a simulation model, which typically takes the form of a
collection of assumptions about how the system functions, the behaviour of
the system is analysed. Once created, a simulation model can be applied to
a number of projects, such as:

. Examine how the system behaves in a variety of situations.
Additionally known as "what-if" analysis, this is;

. Before making changes, the system can be simulated to determine
how they will affect the real world,

. Simulation can be used to direct system building when it is still in the
design stage, or as the system is being created.

Computer simulation has been employed in many different fields, including
management science, manufacturing, healthcare, transportation, and the
military.

1.2.1 A simple simulation model

Let's say we've decided to build a donut store, but we're not sure how many
staff members to hire to serve customers. The real-world system whose
behaviour we seek to understand is the operations of our tiny shop. Only a
simulation model can give us information because the shop is not yet open.

We might certainly create models of varying complexity, but let's assume
for the moment that we are content with a straightforward model that has
the following components:

. customers who enter our store at a specific rate;

. staff (of a number to be input) who service customers for a certain
amount of time.

Implicitly, we are presuming a limitless supply of doughnuts and
completely ignoring the quantity of donuts we have in stock. Of course, to
provide a more accurate description of the system, we might also want to
integrate this component in a more complex simulation model.

1.2.2 How simulation works?

Simulation creates a visual mock-up of a process using user-friendly
simulation software. To effectively represent the real-world process, this
visual simulation should incorporate information about timings, rules,
resources, and limitations.

This can be applied to a variety of situations; for instance, you could model
a supermarket and the typical consumer movements as business picks up.
This can help with judgments on the need for more staff, the design of the
shop floor, and the supply chain.

Introduction
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Another illustration would be a manufacturing setting where several line
segments may be simulated to evaluate how their processes interact with
one another. This can give a general idea of how the entire system will
operate, which can be used to develop creative ways to boost performance.

1.2.3 Advantages

A variety of benefits can be attained by using simulation, including:

1.

Lower Risk to Your Money

Simulated experiments are less expensive than actual ones. Testing
theories of actual systems may incur expenditures such as those
related to switching to an unproven procedure, hiring personnel, or
even purchasing new equipment. Through simulation, you may test
hypotheses and steer clear of costly errors in the real world.

Testing Repeatedly

A simulation enables you to repeatedly test various hypotheses and
inventions under the same conditions. This implies that you can
rigorously evaluate and contrast several views without deviating.

Investigate Long-Term Effects

By precisely simulating the effects of years of use in a matter of
seconds, a simulation that allows you to look into the future can be
produced. The ability to see both immediate and long-term effects
enable you to confidently make smart financial choices today that will
pay off for years to come.

Acquire Understanding for Process Improvement

The advantages of simulation are not just realised at the project's
conclusion. By putting various theories to the test, improvements can
be incorporated throughout the entire process.

Examine Unexpected Events

A simulation can be used to evaluate unpredictable occurrences such
an unanticipated staff absence or supply chain problems.

Examine Non-Normal Distributions

Instead of needing to repeat only the predetermined parameters, a
simulation can accommodate for varying and non-standard
distributions. For instance, when replicating a supermarket, you can
enter several consumer categories who will navigate the store at
various paces. An elderly couple or a mother making a weekly shop
with two kids in tow will go through the store differently than a young
businesswoman picking up a lunch. An accurate representation of the
real world can be achieved through simulation by accounting for such
changing factors.



7. Promotes In-Depth Thinking Problems can be solved even during the
simulation design and parameter selection phase. It is possible to
develop ideas or innovations by carefully considering a process or
procedure without even using the final simulation.

8.  Increase Stakeholder Support

Additionally, a visual simulation can aid in increasing stakeholders'
and partners' buy-in. Visualizing the outcomes of any process
modifications and how they were accomplished would increase
attention from potential customers and may even allow for a sales
pitch based on simulation.

1.2.4 Limitations

Even while simulation has a lot of benefits, it still has significant drawbacks
as compared to other related methods and tools, such digital twins.

A digital twin is an extension of simulation that adds real-time feedback and
a data stream between the virtual simulation and a real-world asset (or set
of real-world assets). A digital twin is an actual object, as opposed to a
simulation, which is a theoretical construct.

As a result, simulations cannot be used to evaluate actual real-world
problems as they arise.

1.2.5 Why is simulation used?

Simulation is used to assess the impact of new procedures, process
modifications, and equipment investment. Engineers can compare various
solutions and designs using simulation to evaluate the performance of an
existing system or forecast the performance of a planned system.

Instead of testing hypotheses and adjustments in the real world, which might
be expensive, simulation is employed. System cycle times, throughput
under various loads, resource utilisation, bottlenecks and choke points,
storage demands, personnel needs, and the efficiency of scheduling and
control systems are among variables that simulation may quantify.

1.2.6 What can be simulated?

Any process or system with an event flow can be emulated. In principle,
you can simulate a process if you can depict it in a flowchart. However,
simulation works best when it is used with systems or pieces of machinery
that undergo continuous change, have changing parameters, or receive
unpredictable inputs. For instance, the supermarket we mentioned before
has unpredictable and variable elements because of client usage patterns,
demands, and stock levels.

Simulating dynamic systems that are complicated and subject to change
might provide insights that are challenging to obtain through other
techniques.
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Simulation and Modeling While managing processes, procedures, and assets can benefit from
simulation, Swedish philosopher Nick Bostrom expanded on the idea in his
2003 paper, "Are You Living in a Computer Simulation?" He contends that
by incorporating artificial awareness into simulations, it is possible to
obfuscate the distinction between reality and simulation, making it
challenging to determine whether you are actually living in reality or a
simulation. This simulation theory contends that, should you realise that
your perceived reality wasn't actually "real,” the simulation might change
your memories to once again keep you blissfully unconscious that you aren't
a genuine person in the real world!

1.2.7 Types of simulation

Three broad categories of simulation can be distinguished, as follows:

1]  Discrete event simulation

Modelling a system's evolution over time, for instance;

industrial processes (stamping, turning, milling)
traffic study (roads, networks, queues)

2]  Dynamic simulation

A system's progression through space being modelled, for instance;

kinematics of machines
ergonomics for people
aerodynamic analysis
digital prototyping

3]  Process simulation

Modelling, for examples, the physical interactions between two or more
systems;

Listing of products used in use
Modelling of products during production
Weather prediction

1.2.8 Examples of simulation

There are numerous simulation examples in business, entertainment,
education, and other fields. Here are a few noteworthy instances:

1]

Automotive

Simulation makes it possible to imitate a real vehicle's features in a
digital setting so that the user can experience driving a real vehicle. It
is possible to simulate various situations so that the driver has an
entirely immersive experience. These kinds of driving simulators can
aid in the training of both inexperienced and seasoned drivers,
providing a way to impart driving techniques that can lower
maintenance and fuel expenses and guarantee the safety of the drivers
themselves.



2]

3]

4]

5]

6]

7]

Biomechanics

In order to understand the function of anatomical structures in humans
or other animals and develop medical treatments and equipment,
biomechanics simulation can be used to build models of those
structures. Additionally, biomechanics simulation can be used to
evaluate joint stresses, mimic surgical procedures, and research
athletic performance. Another illustration is neuromechanical
simulation, which combines biomechanics and neural network
simulation to test theories in a virtual setting.

Urban and city planning

In addition to testing how current urban areas might change as a result
of policy decisions, simulation can be used to develop new cities and
urban ecosystems. This incorporates, among other possible models,
the city's infrastructure and traffic flow.

Designing the Digital Lifecycle

In addition to examining the lifecycle of the finished product,
simulations can help with product design by enabling digital
prototyping and testing to develop better performing goods with a
shorter time-to-market.

Disaster Planning

In order to aid in disaster preparedness, simulations can simulate
emergency conditions. This includes planning for reactions to
situations like terrorism, pandemics, and natural catastrophes.
Responses can be monitored and evaluated through the simulation,
exposing potential issues and places where responders may need extra
training, as well as ensuring that any mistakes are made in a safe
environment before any real-life catastrophe.

Finance and Economics

Simulations are useful in macroeconomics, finance, and economics.
For instance, historical data can be used as a stand-in for the real
economy to evaluate a mathematical model of the economy. This can
be used to evaluate budgets, trade balances, unemployment rates, and
inflation. Simulators can also be used to evaluate financial models or
to imitate the stock market in other contexts. Simulated methods for
settlement of securities are also used by banks.

Technical Systems

Engineering systems frequently employ simulation to mimic the
actions and functions of tools, workflows, and procedures. For
process design or improvement, engineering simulations can mix
mathematical models with computer-assisted simulation.

Introduction
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8]

9

10]

11]

12]

13]

14]

Layout

This model, also known as a digital human model or anthropometric
virtual depiction of the human, can be used in simulation to analyse
virtual products and work settings (DHM). In simulated scenarios,
these DHMs are capable of simulating human performance and
capabilities. Applications for this kind of simulation include waste
collection, video games, assembly lines, and disaster management.

Aircraft Simulation

For years, new pilots have been trained in a secure setting using flight
simulators. This not only makes it possible to evaluate pilots safely,
but it also makes it possible to test instrument malfunctions and other
issues without endangering the pilot, the teacher, or the aircraft. In
addition to saving fuel and other expenses in comparison to actual
flight time, it is also simple to repeat the same events, such as
approaching a runway to land, under various conditions.

Simulation of Marine Craft

It is feasible to mimic operating on a ship or submarine in a manner
similar to flight simulation. Simulators may resemble the bridge, the
engine room, the cargo handling bay, the communications, or
remotely operated vehicles. These are employed by colleges, navies,
and training facilities.

Applications in the Military

Military simulations, also known as "war games," can be used to test
out military strategies in a virtual setting utilising computer models.
These are employed by governments and military organisations all
over the world and can also involve social and political concerns.

Network systems

These simulations have been used to test novel algorithms and
protocols before they are deployed in operational systems for
networks and distributed systems. Applications for these include the
Internet of Things, smart cities, and content delivery networks.

Project management

The usage of project management simulation is possible for training
and analysis reasons. Simulation is routinely carried out using
software tools, whether for manager training or analysing the results
of various decisions.

Robotics

Robotics simulations are used to replicate circumstances that could be
difficult or expensive to recreate and test in the real world. The
outcomes of these experiments can subsequently be evaluated and
applied to actual robots.



15]

16]

17]

18]

19]

Manufacturing Systems

It is possible to evaluate manufacturing procedures, assembly delays,
machine setup, and other factors by simulating production systems
using techniques like discrete event simulation.

Sales

To assess the flow of transactions and client orders as well as
expenses, labour times, and more, sales can be simulated.

Space and satellites

To prepare space shuttle engineers for launch operations, the Kennedy
Space Center employed simulation. People would interact with a
mock shuttle and ground support equipment in this scenario. Tests for
satellite navigation also involve simulation.

Sports

In order to simulate sporting events and anticipate their results as well
as the performance of specific athletes, sport statistics are frequently
used. In addition to being utilised for fantasy sports leagues, sports
simulation can also be used to forecast the results of matches and other
events. Additionally, biomechanics models can be used to improve
training, gauge levels of fatigue and how they affect performance, and
more.

Weather

In order to forecast extreme weather events like hurricanes or
cyclones, weather forecasting uses simulations based on historical
data.

1.2.9 Purpose of simulation

For the following reasons, several categories of systems are addressed to
simulation modelling and analysis

1]

2]

Getting a Better Understanding of How a System Works

Without a dynamic model, it might be challenging to comprehend
how some systems function and interact with one another. To put it
another way, it might not be possible to analyse the system by
stopping it or by looking at its parts separately. Try to comprehend
how manufacturing process bottlenecks emerge as a classic
illustration of this

Creating Resource and Operating Policies

You might already use a system that you comprehend and would like
to enhance. This can be accomplished primarily in two ways: by
altering operating or resource regulations. Different scheduling
priority for work orders could be a result of modifications to
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operational procedures. Staffing numbers or break scheduling could
change in resource policies.

3]  Trying out new ideas

A simulation model can help give you an idea of how well the
suggested system will work if it doesn't already exist or if you're
thinking about buying new systems. When compared to the capital
expense required to establish any large manufacturing process, the
cost of designing a new system might be quite low. It is possible to
assess the consequences of various equipment costs and levels.
Additionally, using a simulation model prior to installation can help
optimise the equipment's configuration.

Many businesses now demand that before making a purchase, sellers
of material-handling equipment create a simulation of their suggested
systems. The claims made by the different suppliers are assessed
using the simulation model. The simulation model is useful even after
installation. In the event that the deployed system does not perform as
promised, the corporation can use the simulation model to help
discover issues.

4]  Information gathering without impacting with the system itself

Perhaps the only technique for testing out non-distortable systems is
to use simulation models. Some systems are so vital or delicate that it
is impossible to change the resource or operational policies in order
to examine them. The security checkpoint at an airport would be a
prime illustration of this kind of technology. Operating policy or
resource level experiments would have a significant impact on the
system's operational capabilities or security efficacy.

1.3 NEED OF SIMULATION

To adapt to changes in industry requirements, to optimise operations, and
to estimate the possible effects of such improvements, simulation is
necessary in logistics.

When experimenting on the actual system is costly, risky, or likely to create
a substantial disturbance, it is helpful (e.g. transport systems, nuclear reactor
and airline systems).

When it is impossible to model a system mathematically, it could also be an
option. Although there are various mathematical analysis techniques, some
of them are so complicated that simulation might offer a more
straightforward answer. Computer networks, weather forecasting, and oil
drilling are a few fields where simulation may be preferred to mathematical
modelling.

More advanced technology, such simulation that can deal with the inherent
volatility of real-world logistics systems, are needed for logistics operations
management.



1.4 TIME TO SIMULATE

The concept of time in a simulation is a variable kept by the simulation
programme and is not directly tied to the real-time that it takes to perform a
simulation (as measured by a wall clock or the computer's own clock).

Consider the example of NetSim simulator. The virtual clock in NetSim
keeps track of virtual time. Virtual time is a positive real number that begins
at zero.

To clearly separate it from real (wall-clock) time, this virtual time is referred
to as simulation time. As a discrete event simulator (DES), NetSim breaks
down the model's evolution throughout the course of the simulation into
discrete events where change might occur. Time only moves between
occurrences; it is not a continuous process. This means that simulation time
can only advance between events, not during them. In actuality, the
simulation time is always the same as the moment the current event takes
place. As a result, it is possible to think of simulation time as a variable that
"jumps" to follow the time allotted for each new occurrence.

When the Simulation time is set to 10 seconds, users wonder if NetSim will
operate for that amount of time. and the response is that if the network
scenario is really large and has a high traffic load, the simulation may take
longer than 10 seconds (Wall clock). Small networks with light traffic
volumes could need substantially less time (wall clock). The capabilities of
the system also affect how long it takes to perform the simulation. The
simulations will execute more quickly on a PC with a more powerful
processor and more RAM.

Due to the fact that NetSim's "Emulation mode™ involves the transport of
real packets through the virtual network, simulation time and the wall clock
will be precisely synchronised when used.

INSIDE SIMULATION SOFTWARE

Most of the time, simulation models for operational systems are created
using specialised software rather than by hand-coding. Modern simulation
software is so powerful that using a programming language is rarely
necessary. However, one risk of adopting packaged software is that the user
has little knowledge of the fundamentals of the underlying method.
Simulation is not a regular activity, in contrast to the majority of the
software we use (such as spreadsheets), which merely automates routine
processes and facilitates their performance on a bigger scale. This makes
the risk considerably larger.

The basics of the simulation technique are described in this section to help
readers comprehend what is contained in simulation software. In short, the
software consists of two essential components: time progression modelling
and variability modelling. All dynamic simulations contain the first, while
most simulations contain the second. In fact, by modelling the variability in
the first element and the interconnection and complexity in the latter two, a
simulation is able to accurately represent the unpredictability,
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interconnectedness, and complexity in an operational system. First, a
description of modelling time progression is given, then a discussion of
modelling variability.

1.5 MODELING THE PROGRESS OF TIME

There are various ways to model the passage of time. Here, three distinct
strategies are described. To grasp the fundamentals of the simulation
methodology, the time-slicing method is given first. Then, discrete-event
simulation followed by continuous time simulation is explained.

1.5.1 Time slicing approach

The time-slicing strategy, which adopts a constant time-step (At), is the
most basic way to model the passage of time. The simplest way to convey
this is through an example. Calls to a call centre arrive every three minutes,
are routed to one of two operators, and are handled by that operator in five
minutes (Figure 1). The inter-arrival time and the service time are now
believed to be constant.

Operator 1

Customer

arrivals Time: 5 mins

Time: 3 ming

Operator 2

Time: 5 mins

Figure 1: Time-Slicing Approach: Simple Telephone Call Centre
Simulation Technique

Table 1 displays a simulation of a 24-minute call centre shift with the timer
At set to one minute. The time left till a call arrives is displayed in column
two. The amount of time left till a client service is finished is displayed in
columns three and four. Each operator's total number of calls completed is
determined.

A time-slicing simulation may be put up for this scenario quite easily. For
more complicated circumstances, the same method may be applied, but the
table would quickly grow enormous and possibly become impossible to
operate by hand. Larger-scale simulations might be achievable by creating
a flow chart defining the order of the steps and incorporating it into a
computer programme. A spreadsheet can also be used to quickly model the
time-slicing strategy.

The time-slicing strategy has two key drawbacks. It is firstly incredibly
ineffective. Since the system state does not change for a large portion of the
time steps, many computations are not required. Only the times that a call



arrives, when an operator answers it, and when the operator ends the call
are of importance in Table 1. There is a total of 22 such points as compared
to the 72 (24x3) estimates made in Table 1's calculations. The bigger the
simulation gets, the more likely it is that this issue will get worse.

A second issue is figuring out what At is worth. Even while a one-minute
time-step for the aforementioned example seems simple, in most
simulations, activity durations cannot be counted in full numbers.
Additionally, there is frequently a large range of activity times inside a
model, ranging from perhaps seconds (or less) to hours, days, weeks, or
more. These two problems are both addressed by the discrete-event
simulation method.

Table 1: Time-Slicing Approach: Simple Telephone Call Centre
Simulation Technique

Time Call arrival Operator 1 Operator 2

0 3

1 2

2z | —

3 3 s

4 2 4

5 3

6 3 2 s

7 2 1 4

8 1 3

9 3 7S 2
10 4 4 1
11 - 3
12 3 2 5
13 2 1 -
14 1 3
15 3 7S 2
16 2 4 |
17 - 3
18 3 2 5
19 2 l 4
20 1 3
21 3 s 2
22 z 4 1
23 1 __._,___5‘_‘_‘____‘
24 3 2 5

Completed
calls 3 3
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1.5.2 Discrete event simulation approach (three-phase method)

By modelling systems as undergoing separate state changes at different
periods in time, discrete event simulation (DES) analyses the dynamic
behaviour of systems. Variables like the number of consumers in the system
or the size of a waiting list can be used to represent the state of the system.
Every time an event happens, all or part of the variables receive new values.
Events mark the transition of an entity into a new state or the allocation of
resources. An example of an event is the beginning of an operation.

The N, Q, and S state variables in a DES of a single server queue system
are tracked in Fig. 2's bar chart at various periods in time. N stands for the
quantity of users entering the system, Q for the length of the single queue,
and S for the server state (0-busy, 1-idle).

Discrete state changes at any point of time

bW e 3
N R R R T |

No. of customers

Figure 2: State variables discretely changing at specific times

DES is typically viewed as being separate from continuous simulation,
which simulates how a system's status changes over a continuous period of
time. But keep in mind that since digital computers are discrete state
machines, continuous time is really just a collection of tiny, discrete
changes. The mathematical models utilised by these two groups to track the
system's states are different. Also keep in mind that this difference is fuzzier
in situations where state variables, for instance, change continuously but we
can only read their values at specific periods in time.

According to the random variability of the systems, DES and continuous
simulations are also divided into deterministic and stochastic simulations.
Given that the majority of simulation models have both deterministic and
stochastic elements, these two groupings are not mutually exclusive. For
instance, in the same scenario, arrivals can change at random while a
machine's processing speed might be fixed.

1.5.3 Continuous time simulation approach

A simulation type called continuous-time simulation continuously monitors
the target system's condition. In continuous-time simulation, differential
equations are frequently used to simulate systems. These differential
equations describe the temporal evolution of the system's state.



Computer-based continuous-time simulations are rarely actually
continuous-time simulations. Digital computers, on the other hand,
approximate continuous-time simulation. This is due to two factors:

1]  Since real numbers cannot be counted, they cannot be accurately
represented.

2] Differential equations can only be somewhat solved using a
discretization technique.
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Time
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Event Event Ti
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Figure 3: Continual and Discrete Simulation: Updated State Over
Simulated Time

Due to this, digital computers use a technique known as fixed-increment
time progression to execute continuous-time simulations by discretizing
(dividing) time into small time steps. Variable-increment time progression
can be used in some complex situations.

Systems that are anticipated to evolve constantly throughout time should be
modelled using continuous-time simulation rather than discrete simulations.
Continuous-time simulation can be used to simulate a variety of phenomena
and procedures, such as: Cities, the environment, ecosystems, electricity
and power grids, flight dynamics, hydraulics, intelligent complex adaptive
systems, and temperature and humidity are some of the topics covered.

Continuous-time simulation can also be used to calculate the likelihood of
various events, such as the likelihood that an industrial equipment would
break down or that a piece of programme code will fall short of quality
standards. Continuous-time simulation can also be utilised for tasks like
system control management or generative design.

1.6 MODELING VARIABILITY

After discussing time progression modelling, the focus now shifts to
modelling variability, the second essential component of simulation. In this
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regard, modelling unanticipated variability poses the primary issue, which
is why a large portion of the discussion that follows is centred on it.

1.6.1 Modelling unforeseen variation

The call centre simulation has not yet incorporated any unanticipated
variability or other factors of variability. It is unreasonable to anticipate that
the amount of time callers spend with the operators and router will be
reduced. Additionally, calls won't come in at predetermined intervals in a
ratio of exactly X:Y consumers. How can a simulation accurately depict
such unpredictability?

Take the ratio of clients from X and Y as an example to begin responding
to this question. It is standard practise to model a single arrival event and to
determine the call type as a customer comes rather than modelling the
arrival of various clients as distinct events. This eliminates the need for
numerous B-events, one for each type of consumer, if there are numerous
customer types. We'll assume for the time being that a consumer arrives
exactly every three minutes.

Tossing a coin each time a consumer enters the model is an easy approach
to determine the call type. A head might stand in for an X client, and a tail
for a Y client. This strategy has the drawback of assuming an equal
distribution of clients from X and Y. (unless the coin is biased). What if just
40% of your consumers are type Y and 60% are type X? You may illustrate
this by taking 10 pieces of paper and writing X and Y on six of them and
four of them, respectively. Every time a customer enters the model, a piece
of paper from a hat containing the pieces of paper could be drawn to reveal
the type of customer. To keep the customer ratio at 60:40, it's crucial that
the paper be changed each time.

Although the second method would allow for the modelling of various
customer ratios, it is only appropriate for hand simulations since computers
cannot pull paper out of a hat! A similar theory is applied in computer
simulation and is based on the usage of random numbers.

1.6.2 Arbitrary numbers

A series of integers that occur in a random order are known as random
numbers. They are presented as real (with decimal places) numbers on a
scale of 0 to 1, or as integer (whole) numbers on a scale of, instance, 0 to 9
or 0 to 99. You could create an integer random number series from 0 to 99
by putting 100 pieces of paper with numbers on them into a hat and drawing
numbers out of it. Each time, new pieces of paper are added. The top hat
approach is used in this situation.

This method produces random numbers that have two crucial
characteristics:

1]  Uniform: Any number can appear at any place in the sequence with
the same chance;



2]  Independent: Once a number is picked, the likelihood that it will be
chosen again or that another number will be chosen is unaffected.

Due to regular paper replacement, these characteristics are preserved.

There is a list of random numbers in Table 2. You may purchase books with
these tables (RAND Corporation 1955) and use spreadsheet functions (like
Excel's "RAND" function) to build tables of random integers. Such tables
could be saved for a simulation to use, but this would be a very inefficient
use of computer memory. Therefore, it is more common to produce the
random numbers as needed.

Table 2: Scale of Integer Random Numbers, 0-99

93 43 08 21 61 40 88 36 10 09
34 47 17 99 81 54 44 37 12 97
02 12 48 12 45 00 14 38 43 41
78 71 51 66 19 07 83 29 51 30
82 19 46 05 24 50 00 74 17 [
41 44 39 90 81 22 56 79 25 24
54 32 a0 60 32 30 42 50 93 86
23 13 64 16 56 61 21 09 72 36
09 06 52 14 81 05 40 37 55 33
66 86 57 85 63 69 47 36 86 08
27 24 31 05 15 43 45 23 62 03
19 36 86 85 43 17 99 74 72 63
22 Q0 83 14 84 56 59 95 05 94
87 43 20 07 35 41 51 10 11 i1
66 Q0 035 46 23 22 22 25 21 70
43 28 43 18 66 86 42 91 55 48
28 20 62 82 06 82 79 60 73 67
17 18 43 27 54 89 22 02 78 35
72 a7 13 42 46 33 27 66 34 24
06 70 58 78 07 89 71 75 03 60

1.6.3 Relating the variability in a simulation to random numbers

To sample the kind of incoming call, utilise the random integers in Table
2.14. They can be connected to the client type in the following ways so that
60% of the random numbers are related to type X calls and 40% are related
to type Y calls:

Random numbers Customer type
00-39 x
6000 Y

The first customer to arrive would be a type Y (93), the second a type X
(43) and so on, reading across the top row of random digits. The first 10
clients are listed in the following order: Y (93), X (43), X (08), X (21), Y
(61), X (40), Y (88), X (36), X (10), X (09). It should be noted that for this
sequence, the X:Y customer ratio is 7:3. There won't always be five heads
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and five tails when a coin is tossed ten times. In reality, it's feasible that
there will be 10 of either at the most. This is due to the random nature of the
process rather than a biased coin. It is assumed that the heads-to-tails ratio
will be exactly 1:1 after a large number of tosses. In the same way, it is not
anticipated that utilising random numbers to categorise clients into types X
or Y over a small number of arrivals will result in an exact ratio of 6 (X): 4.
(Y). But over a large number of arrivals, the ratio will essentially be
reached.

1.6.4 Modelling time variability

For modelling proportions, the method previously provided is helpful. A
slight modification to the approach must be made in order to model activity
times (or other continuous real variables). The simplest way to convey this
is through an example.

Calls have always been thought to occur at regular intervals up until this
point. The period between call arrivals is probably going to vary somewhat,
and this is plainly unrealistic. Figure 4 depicts a frequency distribution for
the call center's inter-arrival time for calls. Although calls arriving
simultaneously have an average inter-arrival time of zero, actual inter-
arrival delays might range from zero to seven minutes.

30
30 —

25

207 44

15 0

10
5 1

0 ——
o1 12 23 34 45 56 67

Inter-arrival time (minutes)

24

18

Percentage

Figure 4: Distribution of Frequencies for Call Inter-Arrival Time.

In a manner similar to how it was done for the fraction of client kinds above,
random numbers can be related to the frequencies in Figure 4. (Table 3).
The appropriate ratio of inter-arrival times in each range can be found in
this way. However, this merely provides the range that the inter-arrival time
falls into. A second random number might be chosen, divided by 100, and
added to the lower end of the range to get the actual inter-arrival time.



Table 3: Inter-Arrival Times and Random Numbers Have a Relationship

Inter-arrival time
Fandom numbers (minutes)

00-13 0-1
14-37 1-2
3I8—67 2-3
68—85 i—4
5694 4-5
05-98 5-6

99 67

Table 4 provides the inter-arrival time for the first 10 calls as an example.
Rows six and eleven of Table 2 are used as the source of random numbers.
To achieve total independence, distinct rows are used for both these samples
and the sampling of customer type. The frequency of samples in each range
deviates significantly from the distribution shown in Figure 4, and the mean
time for the 10 samples is just 2.38 minutes. The mean and shape of the
sampled distribution wouldn't resemble the original data until many samples
had been obtained.

Table 4: Inter-Arrival Time of the First Ten Calls: Random Number

Sampling.
First random [nter-arrival Second random Inter-arrival
Customer nuimber (row 6) time range number (row 11) time (minutes)
1 41 2-3 27 2.27
2 44 2-3 24 2.24
3 39 2-3 il 131
4 20 4-5 05 4.05
5 81 34 15 3.15
6 22 1-2 43 1.43
7 56 2-3 45 245
8 9 3—4 23 3.23
9 25 1-2 62 1.62
10 24 1-2 03 1.03
Mean 138

The variability is produced using a predetermined set of random numbers.
As a result, the same set of random numbers can be used repeatedly to
generate the series of occurrences, in this case the inter-arrival times. In this
instance, sampling the arrival times would entail always starting in rows 6
and 11. This method offers the advantage of being able to regulate the
experimental circumstances by allowing experiments with a simulation
model to be performed as often as necessary under the same conditions.

1.6.5 Selecting samples from normal statistical distributions

Samples were taken in the preceding subsection by connecting random
integers to an empirical distribution. Samples from common statistical
distributions, such the normal distribution, are frequently used. The
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sampling idea is pretty similar to the one mentioned earlier. Consider a
normal distribution, as depicted in Figure 5, with a mean of 5 and a standard
deviation of 1. The random number chosen is assumed to be a proportion of
the area under the curve in order to sample a value from this distribution.
The sample value is the location on the x-axis where the area under the
curve equals that %, starting from the left end of the distribution. The
sample would be drawn from the location where 30% of the area under the
curve is found, for example, if the random number is 30. This results in a
sample value of 4.48 in the example, as illustrated in Figure 5.

Mormal (mean=15, S50=1)
x=4.48

30% of the
area under
the curve

PDF

Figure 5: Using a Normal Distribution for Sampling

Thinking in terms of locating the region under a curve is really challenging.
Therefore, samples are taken using the cumulative distribution function
rather than directly from a distribution's probability density function (PDF),
as in Figure 5. (CDF). This details the percentage of the curve's area under
the provided x value. The cumulative distribution function for the normal
distribution depicted in Figure 5 is shown in Figure 6. The sample value of

x can be found by locating the cumulative distribution function's

intersection with a random number (let's say 30, for example).

Mormal (mean=>5, SD=1)

100% —
890% —
80% —
70%
60% —
50% —
40% x=4.48
30%
20% -
10% —
Cet—T T 17 T 1T T T T T 1

CDF

Figure 6: Sampling from a Normal Distribution's Cumulative Distribution
Function



Despite the simplicity of the theory, direct or numerical integration of the
distribution’s probability density function is necessary in order to sample
from such distributions (to obtain its cumulative distribution function).
Thanks to functionalities offered by simulation software programmes, it is
now possible to obtain samples from a variety of practical statistical
distributions without having to consult the underlying theory.

1.6.6 Random numbers produced by a computer

During a run, large-scale simulation models could need dozens or even
millions of random numbers. It is plainly impracticable to manually
generate that many numbers, say, using the top hat method. To hold so many
numbers, a large amount of computer memory is also necessary. It is more
typical for the computer to provide the random numbers as needed to
overcome this issue.

Computers are not good at generating random numbers because their
behaviour is not by nature random. However, there exist algorithms that
appear to generate random numbers, even though the outcomes are 100%
foreseeable! The next number in the sequence can always be predicted
(using the technique), but when a stream of the numbers is examined, they
exhibit the uniformity and independence necessary for randomness.
Therefore, the random numbers produced in this are known as pseudo-
random numbers.

The following is a straightforward yet often employed procedure for
producing random numbers:

Xiv1=a Xi+ ¢ (mod m)
where:
Xi: A stream of arbitrary integer values on the range (0, m 1)
a: Multiplier constant
c: additive constant.

m: modulus; mod m refers to taking the remaining amount after dividing
by m.

A beginning value for X (X0), sometimes known as the "seed,"” is chosen
along with values for each of the constants. The Xi can be divided by m if
the random numbers must be on a scale from 0 to 1, which is more typical
for computer-generated numbers.

The procedure is shown in Table 5 with the parameters X0 =8,a=4,c =
0, and m = 25. The greatest number produced by this is always one less than
the value of m, and it ranges from 0 to 24. After I = 9, you'll notice that the
stream repeats itself. This is a common issue with this approach, so it is
important to carefully choose the constant values to make sure the cycle is
long enough to prevent repetition during simulation runs. Normally, far
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bigger numbers, at least of m, are required to ensure the cycle is very long;
nevertheless, this example is just illustrative.

Table 5: Algorithm-Based Random Number Generation

i X; 4X,
0 8 32
1 7 28
2 3 12
3 12 48
4 23 92
5 17 68
6 18 72
7 22 88
8 13 52
9 2 8
10 8 32
11 7 28
2 3 12
13 12 48
14 23 92
17

p—
n

68

The random numbers that are created can be completely controlled using
this type of strategy. The same stream of random integers can be produced
repeatedly by utilising the same seed and constants. This provides the same
level of control over the experimental settings as using a random number
table (Table 2). Modifying the model's parameters, a separate random
number seed (X0) must be chosen in order to increase diversity. Different
streams of pseudo-random numbers are generated by altering the seed.
Pseudorandom number streams are the name given to these streams.

1.6.7 Modelling expected variation

The discussion that has just been had is centred on modelling unexpected
fluctuation. Randomness is not necessary for predictable variability; all that
IS needed is a way to predict when a variation (or event) will happen. An
example of a piece of data is the time when an operator begins or ends their
shift. The simulation's B and C phases can then be used to carry out the
event as usual.

SUMMARY

Industry uses simulations for a variety of purposes to save time and money
while testing theories and concepts before putting them into practise.
Simulations still have a lot of uses, even though related techniques like
digital twin may offer extra advantages owing to the two-way information
flow this permits.

For many enterprises and organisations, simulation is a useful tool for
testing theories, evaluating procedural performance, or figuring out the
lifecycle of an asset.



Based on the characteristics of operational systems and the benefits of
simulation, the rationale for its use is examined. The latter explains why
simulation is frequently preferred to other possible improvement strategies.
Additionally, simulation's drawbacks are noted. Finally, a list of some
typical simulation modelling application fields is provided. It also explains
how a simulation model functions by demonstrating the modelling of time
progression and variability.

The fundamental problems with modelling variability are also covered in
this module. The use of random numbers and the ways of connecting these
numbers to empirical and statistical distributions to create samples are
fundamental to the modelling of unpredictable variability. There is also
some discussion of the modelling of predictable variability and the creation
of random numbers by computers.
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UNIT END EXERCISES

1]  Define simulation and illustrate it with an example.

2] Explain the process of simulation and state its advantages and
disadvantages.

3] What are the different types of simulations? State its need.

4]  Hlustrate different examples of simulation.

5] What is the purpose of simulation?

6]  Write a note on time to simulate.

7]  Explain the time slicing approach of simulation.

8]  Write a note on discrete event simulation approach.

9]  Write a detailed note on continuous time simulation approach.

10] Explain the concept of modelling variability.
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20 OBJ ECT'VES Conceptual Modelling

The objectives of this model are

. To acquaint with the concepts of conceptual modelling

o To get familiar with the requirements and communication of
conceptual model

. Different frameworks associated with conceptual modelling

. Adoption of methods for model simplification

2.1 INTRODUCTION TO CONCEPTUAL MODELLING

A simulation of a restaurant serving fast food take many different natures.
The easy version is having service desks and queues. However, the model
might be enlarged to incorporate the dining room, kitchen, raw material
supply, drive-through, parking lot, and other areas. For example, the service
desks can be developed as a set period of time. The process might be more
precisely described as a sequence of sub-steps and process interruptions and
failures could be developed. This conceptual modelling requires the
modeller to decide on the right scope and level of detail to model.

2.2 DEFINING CONCEPTUAL MODEL

By defining four terms, Zeigler (1976) clarifies what a conceptual model is.
The original model is which a simulation model is meant to mimic. The
framework is the constrained set of conditions where the original system is
observed; that is we can say that the genuine system is not fully understood.
The fundamental model has the capacity to capture the entire behaviour of
the real system. This model cannot be fully understood because of how
intricate it is. The system's components are grouped together and the
interconnections are made simpler in the lumped model. The modeller is
completely aware of this model's structure. The conceptual model and the
empirical model are equivalent in our understanding.

However, this description only really conveys the idea of concise summary
of the actual model. A conceptual model can be described in more detail as
follows:

“The conceptual model describes the goals, inputs, outputs, content,
assumptions, and simplifications of the simulation model that will be
created without referring specifically to any software”.

The key components of this definition are two. It is independence from the
program in where simulation produced is clearly mentioned in the first
sentence. In a perfect world, the software would be chosen based on how
well it comprehends. Since the globe is not perfect, it frequently happens
that the conceptual model is created using the modeler's programme. In fact,
there is interaction between the computer and conceptual model, with
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ongoing revisions, because the activities in simulation research are carried
out iteratively.

The definition also includes a list of following essential elements:
1]  Objectives: The model's intended use.

2]  Inputs: Also referred to as experimental factors, are components to
enhance or better understand the real world.

3] Outputs: Summarize the outcomes of simulated iterations.

4]  Content: the elements that the model represents and how they relate
to one another.

5]  Assumptions that are made either when there are uncertainties or
when there are convictions about the modelled real world.

6] The model has been simplified to speed up model creation and
application.

The features of assumptions and simplifications are distinguished.
Assumptions are techniques to include doubts and preconceptions about
reality in the model. Simplicities can be used to make the model less
complex. As a result, simplicity is a side effect of the aim to build simple
models, whereas assumptions are a side effect of having restricted
information or presumptions.

Two dimensions should be used to describe the model's content (Robinson,
1994):

o The model's domain, also known as the model constrain or the size of
the original model.

. The extent of detail is the amount of information that should be
provided for each part of the system.

The goal is to specify the foundation upon which the simulation (computer
model) is created. In essence, it is a program description. There is a desire
for many modellers to begin coding the computer model right away.
However, if the conceptual model is not developed with sufficient care, it
may not accomplish the desired results and, in the worst-case scenario, may
need to be totally overwrite and time consuming.

2.3 REQUIREMENTS OF THE CONCEPTUAL MODEL

A list of needs can be beneficial when creating a system. The model is
developed in such a way that it satisfies these specifications. What therefore
are the prerequisites for a successful model? This is first addressed by
outlining 4 key needs, and then the general necessity to keep the model as
straightforward as feasible is covered.



2.3.1 Four criteria for conceptual models

According to Willemain (1994), an effective model must have the following
characteristics: validity, usability, client value, practicality, and aptness for
the customer's problem. A good model must meet 11 performance
requirements, according to Brooks and Tobias (1996). Based on these lists,
it is suggested that a conceptual model must meet the following four criteria:
validity, credibility, utility, and feasibility.

A valid model is if it can accurately represent the situation at hand.
However, as a model with no numerical output has limited use for accuracy,
validity might be characterised more accurately as:

“The modeller's belief that it will result in a system that is efficient enough
for the task taken”.

The difficulty to predict efficiency lies at heart of this idea. In keeping with
the majority of definitions of validity, it also upholds the idea that a model
is created with a specific goal in mind.

Credibility is also measured through client’s viewpoint apart from modeller.
Thus, following criteria determine credibility:

“The clients' expectation that the system developed is precise enough for
task considered”.

Utility is described as follows:

“A belief shared by the modeller and the clients that the system developed
will be used as a decision-assistance tool”.

Utility is viewed as a shared understanding of the model's usefulness, in
contrast to the notions of validity and credibility that are particular to the
modeller and the customers. The definition of utility presented here shifts
the focus from merely determining accuracy. A variety of system might be
created in any situation, and each one might be realistic enough for the task
at hand. As a result, each of these models would be reliable and accurate. A
implemented model, even one that is vast and laborious but nonetheless
accurate enough, might only be of limited use.

Feasibility is the last condition and is defined as follows:

“The modeler's and the clients' belief that the system can be transformed
into a computer model”.

A model could be unworkable for a variety of reasons. For example, it’s
impossible to produce the suggested system within the necessary timeframe,
the information requirements capability be too oppressive, or the real
system may not be well enough understood for implemented system.
Whatever the case, it's critical of being capable to convert into a computer
model.

Finally, it should be noted that these four ideas are not incompatible with
one another. The correctness of a model as seen by the modeller and the
clients is likely to be strongly connected. A useless model is also not a
beneficial model.

Conceptual Modelling
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2.3.2 Maintain a basic model

The necessity to prevent the creation of an excessively complex model
unites all of the objectives outlined above. To accomplish the goals of the
simulation study, the system must be as easy. Simple models have several
benefits. As we know the systems structure, they can be constructed more
quickly, are much reliable, needs less information, execute more quickly,
and simple to induce findings. These benefits are lost as complexity rises.

Good modelling practise revolves around keeping models basic. This is not
to say that sophisticated models should never be created; in some cases, they
are essential to achieving the study's goals. However, there is a propensity
to attempt to represent every component that might accomplish the goals
with a great deal low work.

Robinson (1994) uses graph in Figure 1 to illustrate the necessity for
simplicity. This demonstrates the increase in model accuracy that comes
with difficulty. It demonstrates the common 80-20 rule, which states only
20% of the complexity results in 80% of the accuracy (point x). In addition,
the benefits of adding complexity decrease over time. Since it is impossible
to accurately represent every component of reality in a model, there can be
no model that is 100% correct. In fact, it is suggested that going overboard
with complexity may result in a model that is less accurate since the data
and knowledge needed to support the intricacy being modelled are not
readily available. For example, it is improbable that we could precisely
model every individual's behaviour in restaurant scenario and beyond
certain guidelines result in lower outcome. This representation is helpful for
demonstrating the necessity for simplicity even though it is not based on
real data.

1 DDD__{,.‘ L L L L L L L L L

Model accuracy

Scope and level of detail (complexity)

Figure 1: Complexity and Accuracy of Simulation Models

Ward (1989) draws a helpful difference between constructive simplicity
(CS) and transparency (T) in a study on simplicity. CS is feature of the
system, whereas T is a feature of the client (how proper they comprehend
the system). When creating a model, the modeller must take transparency
into account in addition to simplicity. Transparency is a client attribute,
hence it depends on the client's expertise and understanding. Thus, the
model must be created with the demands of the specific client in mind.



2.4 COMMUNICATING THE CONCEPTUAL MODEL

It is crucial that the modeller and clients have a mutual sharing of
information and its architecture to assess if it satisfies the 4 requirements
outlined above. As a result, a system for disseminating the conceptual model
is required. This is one of a project specification's functions.

2.4.1 Project specifications for simulation

A project specification should outline the results of conceptual modelling
as well as the administration of the simulation research. In fact, the key
method for validating the conceptual model is the project specification.
Additionally, it offers a point of reference for creating and validating the
computer model, carrying out pertinent tests, and evaluating the
effectiveness of the simulation research.

The bulk, if not all, of the following should be covered in the specification,
depending on the project's specifics and the rapport between the client and
modeller:

o Background information on the issue
. The simulation study's goals
. Expected advantages

. The conceptual model: assumptions and simplifications, inputs,
outputs, content (scope and amount of detail)

. Experimentation: Potential Scenarios

. Data requirements: data necessary, when necessary, collection
responsibilities

. Timeline and objectives
o Approximate price

A documentation that is distributed to each party engaged in the simulation
research often serves as the specification. To track that the paper is
overlooked and output is gathered, it is recommended to make it somewhat
brief—probably no more than 10 pages. Naturally, at times when a more
detailed specification is necessary, just as there are conditions when a quick
discussion is sufficient. Each of this is dependent on the model's size,
complexity, and level of formality.

The modeller must get feedback in order to assess the validity, credibility,
usefulness, and practicality of the suggested system. Discussions about
project's administration, such as data collecting, timelines, and expenses,
should also be included. It could be helpful to formally depict the system
requirements to the team members to get rapid input to help with this
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process. All comments should be handled properly. If the conceptual model
is questioned, the modeller should either explain rationale of the system or
update it in response to the input. This is especially important when
assumptions and oversimplifications are called into question. They should
choose whether to modify the system, defend the considered scenario, or
simplify data. What is better depends on how much flexibility vs a reason
induces the model's validity, credibility, utility, and practicability.

It should not be expected that the specification would remain unchanged
once model coding begins because the process is iterative. It must anticipate
the considerations that will alter for four key reasons:

o The original specification contained omissions
o Alterations in the outside environment
J An improved level of client knowledge of simulation

o The creation and application of a simulation model to identify new
iSsues.

The primary source of change ought to be constrained by effective
conceptual modelling, communication, and feedback. Inevitably, the real
world undergoes changes. For instance, a production system may alter in
design on a little or large scale (for example, by adding a machine). The
final 2 modification causes are advantageous features to be promoted.

There needs to be a system in place for dealing with changes because things
change. The specification quickly goes out of date and there is no validation
if the model is just changed as needed, without any effective reporting. It is
helpful to have a "characteristic modification application” that is utilised
each time a modification is proposed in order to keep track of changes. To
make sure everyone is aware of and in favour of the change, this can be
distributed.

Of course, it might be impossible to finish the model development and
experimentation if system is constantly varying. Therefore, it is beneficial
to arrive to a consensus that the standard has been unchanged. If any
modification are recorded, but model is not changed unless the change is
especially substantial. Following the conclusion of the simulation and
reporting of the findings, the simulation procedure may be repeated with the
logged changes factored into the model. Whether this is required depends
on whether the changes are deemed significant enough to justify additional
modelling.

2.4.2 Representing the conceptual model

Having a way to represent the system content is crucial for the project
specification. The four most popular representational techniques are as
follows:



1]

2]

3]

Component list

This gives a catalogue of elements with a brief explanation of each
detail contained. The single server queue is exemplified in Table 1.
Even though this method is fairly straightforward, it lacks a graphical
presentation of the system making it challenging to record
sophisticated rationale and the process description.

Table 1: Catalogue of Elements for a Single Server Queue

Component Detail

Customers Time between arrivals (distribution)
Queue Capacity

Service desk Service time (distribution)

Process flow diagram

According to this method, a system is shown as a process map,
illustrating every system part and offering brief summary of the
model's specifics. A queue may be depicted as a circle and a procedure
as a box. Its representation is shown in Figure 2. The part specifics
are indicated in brackets in diagram.

This method is quite straightforward, and the graphic representation
helps to illustrate how the process moves along. This strategy is
advantageous because numerous simulation software makes use of a
comparable format. More complicated logic, however, is still
challenging to understand.

Customers ——» EE—
(inter-arrival time)

Queue Service
(capacity) (service time distribution)

Figure 2: Flow representation of process
Logic flow diagram

They use symbols to convey system rationale. Figure 3 depicts an
illustration. The user is probably already familiar with the vocabulary,
and the illustrations are effective at illustrating logic. However, the
process flow is not always evident, and for models of any realistic
scale, these diagrams can often grow huge, complex, and burdensome.
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Space in queue?
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Queue for service ‘
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Server available? No

Customer served

Customer leaves |4

Figure 3: Logic flow representation
4]  Activity cycle diagram

Discrete-event simulation models are represented using activity cycle
diagrams (Hills 1971). An illustration of the single server queue is
shown in Figure 4. In dead states depicted by circles an object waits
for anything to happen. Rectangles indicate the active states, which
are where an item is being acted upon. This typically involves
processing the item for a period of time before moving on to the
subsequent step. Active and dead states typically alternate. In order to
build a full activity cycle, in which consumers originate from and
return to "outside,” Figure 4 includes a dead state of the model.

Activity cycle diagrams are a hybrid of logic flow diagrams and
process flow diagrams that partially define a model's logic while also
providing a visual depiction. For models with large scales, however,
they can easily become exceedingly complex. They have mostly been
used as a foundation for programming simulation models because
they offer a straightforward way to identify the events in a simulation.
As a result, if a simulation package is being used, they are probably
less useful.
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Figure 4: Activity cycle representation

DEVELOPING THE CONCEPTUAL MODEL

2.5 INTRODUCTION

The concept and prerequisites for a conceptual model were covered in detail
in the previous section, which served as an introduction to the fundamental
ideas. The query of system development was left unanswered. This chapter's
topic is that. There are two ways that the question is addressed. First, a
conceptual model development framework is provided. Second, various
model simplification techniques are described. This first viewpoint assumes
that the modeller is working with a blank piece of paper. According to the
second viewpoint, the modeller already has a system architecture and it
search for methods for enhancement.

2.6 AFRAMEWORK FOR CONCEPTUAL MODELLING

A representation for modelling can be found in Figure 5. A modeller can
learn how to create a conceptual model by using this framework, which
serves that goal. Four essential components make up the framework:

o Improve your knowledge of the situation at hand
. Establish the modelling goals
. Inputs and outputs for conceptual model design

. Create the conceptual model and its contents
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Conceptual model content

Inputs Qutputs

.. Experimental Accepts _ | Simulation M&Hesponaes
... factors model
% .
53;4_ Modelling
P objectives

Problem
situation

Figure 5: Conceptual modelling framework

A set of modelling goals are chosen after gaining a grasp of the problem
situation. Then, using these objectives as a guide, the conceptual model is
generated by first specifying input-output followed by the description of
model's actual information. Details of components are provided as follows:

2.6.1 Acquiring knowledge of the underlying situation

In order to develop a system that accurately represents the situation, the
modeller must obviously gain a thorough knowledge of system difficulty.
The method used in this procedure mostly depends on how well clients
comprehend and can articulate the difficult circumstance.

Mostly, the clients offer such description, for example, by outlining how the
model operational behaviour that is at the root of the issue. One concern is
that the clients could not fully comprehend the relationships between causes
and effects that exist in the problem situation. For instance, it was believed
that the support function was overloaded (cause) in a description of a
telephone helpline resulting in an inadequate level of customer service
(effect). However, the effect is accurately detected (the study was indeed
conducted for this purpose), it turned out that adding human resources had
little to no effect on improving the service. There is a necessity of business
process modification.

Clients almost definitely have diverse worldviews, which presents another
challenge for the modeller. It appears that varied accounts of how the
maintenance engineers approach their tasks as of interviewees exist. This is
expected, when working with systems because whims of human behaviour
and capability of making decision affect the system's performance.

It soon becomes clear that while the modeller's responsibility appears to be
to listen to clients in order to comprehend task, the modeller actually needs
to take a stand. To achieve this understanding, it's essential to use the



appropriate stimuli and communicate with the appropriate individuals. In
order to encourage fresh perspectives on the problematic issue, they should
also be open to suggesting alternate task formulations. Such conversations
may take place in person during meetings and workshops, over the phone
or over email, for example.

Discussion and meticulous note-taking should be sufficient when customers
have understanding of the scenario. Additionally, it's critical that the
modeller verify their comprehension by giving the clients details of the
problematic issue. More formal issue structuring techniques, such as soft
systems methodology, cognitive mapping, and causal loop diagrams, may
be helpful if the clients have less understanding of the scenario.

Areas where there is a lack of awareness of the operational behaviour exist
during task understanding phase. Assumptions must be made regarding
these areas. This ought to be noted in the project specification and
documented. As a simulation study develops, new areas of limited
information are continually discovered for the reasons listed below. This
indicates that fresh hypotheses must be developed before they can be
included in the project specification.

The issue at hand should not be viewed as static, nor should our
understanding of it. Both will evolve as the simulation research goes on,
with the simulation itself serving as one of the driving forces behind this
evolution. The knowledge needed to create a simulation model serves as a
focal point for elaborating on and deepening our knowledge of the model
developed.

Like previously said, a fast-food restaurant serves as an example to illustrate
the conceptual modelling framework. The issue at the restaurant is detailed
in Table 2.

Table 2: Problem situation of a fast-food restaurant scenario

A fast-food restaurant is experiencing problems with one of the branches in its network. Customers
regularly complain about the length of time they have to queue at the service counters. It is
apparent that this is not the result of shortages in food, bur a shortage of service personnel.

2.6.2 Establishing the modelling goals

The modelling method revolves around the objectives. They serve as a
method for determining the nature of the model, a point of comparison for
system deployment, a manual a performance indicator to assess the
effectiveness.

Since a system consist of little inherent information unless utilised to
support to take decision, a modelling study's goal is not to create a model
from scratch. If it were, after the model was created, the goal would have
been achieved, and the study would be finished. This process leads logically
to system development that are not used or are actively seeking a task to
resolve. Of course, there is a special case too. A generic model of a hospital
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emergency room, for instance, might be created with the intention of selling
the model to various hospitals. The creation of a model is the overarching
goal of the initial modelling effort. However, the model's creators must have
had a goal in mind, such as figuring out resource needs, when creating the
model. In fact, it appears that this method is used to construct several
military models. A model is created, after which a use is found out. Here,
anytime a new purpose is discovered, the model needs to be evaluated.

What standard of performance is required, secondly? It is insufficient to just
mention that the goal is to increase throughput. How big of an increase in
throughput is necessary? Every time it is feasible, operational goals for each
should be found. This could be articulated as simple goals or as the desire
to maximise or decrease some measure.

What limitations must the clients (or modeller) operate under, in the end?
Often, there is a finite amount of money or strategies at hand to accomplish
the goals. For instance, the clients might be unwilling to explore equipment
purchases and open to considering adjustments in development formulation
in order to increase efficacy.

For the same reasons that their comprehension of the problem scenario may
be imperfect and must acknowledged to provide defined goals.
Additionally, if a client has never participated in a simulation study before,
they should be a constrained and probably incorrect notion of what system
can achieve. It is crucial that the modeller be open to recommend new
outcomes, as well as to rephrase and scrap the ones suggested. Additionally,
the modeller should inform the users by outlining the potential benefits of
simulation. One way to do this is for the modeller to show one or more
models of problems that are comparable to yours and to describe the
modelling effort that went into them. The clients will learn more about how
simulation can and cannot help in this way. The modeller should understand
as much about the problem situation as the clients should about simulation
and its capabilities in the objective context.

The goals may alter and are not at all constant. Additionally, when
customers' perceptions of simulation's potential develop, which is
inevitable, so will their needs and expectations. Due to the increased
iteration between modelling stages, changes in project objectives have an
impact on the model's design, experimentation, and final results. This
explains why Figure 5's "problem circumstance” and "modelling
objectives" are connected by a two-way arrow. Table 3 provides the
modelling goal for the fast-food restaurant scenario.

Table 3: Modelling objectives of fast-food restaurant scenarios

The number of service staff required during each period of the day to ensure that 95% of customers
queue for less than 3 minutes for service. Due to space constraints, a maximum of six service staff
can be employed at any one time.




2.6.3 The inputs and outcomes of conceptual model design

The inputs and outputs of the model, which are shown in Figure 5 as the
experimental elements and reactions, are what are focused on in the initial
stage of conceptual model design rather than the model's specifics. Starting
by thinking about these is significantly simpler than thinking about the
model's content. In fact, the transition from the modelling goals to the
experimental elements should be pretty simple. In essence, these are the
methods that are suggested for achieving the goals.

These methods may be stated in the objectives itself, such as "to boost
throughput by altering the production schedule,” or "to get a 10%
enhancement in service by designing personnel agenda.” The modeller must
contribute as well using his or her understanding. When taken as a whole,
this could result in a long list of factors.

In the actual world, clients would frequently have influence over the
experimental elements, but there are occasions when it can be beneficial to
experiment with variables. A deeper comprehension of the actual system
can be attained by conducting experiments with such variables. After all,
this is a major advantage of simulation.

The range that the experimental factors are to be adjusted over should be
determined whenever possible. Discussions between the modeller and the
clients can help achieve this. What is the largest size that could or would be
taken into consideration if a storage area’s size, what is the bare minimum
and maximum that can be employed if employees shift count is under
investigation? After that, the model is developed to support varied incoming
information.

The procedure for entering data for the experimental factors should also be
covered. This could be done directly in the model code, using a menu
system, a information file, or a firmware. This is mostly dependent on the
model's intended users and their experience with firmware. This choice
correlates to the overarching the goals that were previously established.

Similar to this, finding the replies that the model must produce shouldn't be
too difficult. There are two goals for the responses. The first step is to
determine whether the goals have been accomplished. For instance, a
system must address if efficacy increases by a specific amount. The replies’
second objective is to identify the causes of the failure to meet the goals.
This can necessitate statistics on machine and resource utilisation. One must
be capable to detect the flaws along with the solutions to overcome it.

Another thing to think about is how the data is presented, such as graphical
data or numerical data (mean, maximum, minimum, standard deviation).
Close collaboration between system and customers, each with skills, should
be used to identify appropriate responses and reporting techniques. The kind
of reports produced depends on the model's requirements for visual and
interactive features, which were discussed above in the section on the
project's overall objectives. The essential experimental variables and
outcomes for the restaurant case are shown in Table 4.
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Table 4: Experimental factors and responses of fast-food restaurant
scenarios

Experimental Factors

e Staff rosters (total number of staff at each hour of the day)

Responses (to determine achievement of objectives)

e Percentage of customers queuing for less than 3 minutes

Responses (to identify reasons for failure to meet objectives)

» Histogram of waiting timc for cach customer in the queues, mean, standard deviation, minimum
and maximum

s Time-series of mean queue size by hour

o Staff utilization (cumulative percentage)

This changes as the project advances, just like with all other components of
the modelling process. For instance, it can be found that altering the
business procedure is more successful at improving customer service than
altering the staffing rosters. As the experiment develops, it may become
necessary to review on the amount of study to comprehend the limitations.
The problem scenario or the objectives varies with result of experimental
conditions and responses.

2.6.4 Conceptual model designing: model content

Assuming simulation is chosen as the best strategy, the first step in creating
system information to acknowledge that the system needs to be capable of
accepting the real time cases and supplying the necessary solutions. Here
the model's necessary components are based on the experimental conditions
and responses. It is instantly clear that the model must include staff rosters
in its example. Then, the model must deliver the pertinent reports, such as
waiting time. As a result, the queues must be included in the model.

The modeller must next determine the crucial linkages between these and
the other elements of the real world after determining incoming and the
target scenarios. The only connections that should be considered for
inclusion in the model are those that are deemed crucial for accurately
generating the information. It is probably helpful to consider the scope first.

2.6.5 Data's significance in conceptual modelling

In an ideal scenario, when precise data for every step to access is system
creation. Of course, the world is not ideal. The proposed conceptual model
is problematic since not all data are readily accessible or even collectable,
and sometimes it is difficult to get sufficient data. The modeller is then left
with two choices. Firstly, changing system so that the requirement for
problematic content is eliminated. Another option is to steadfastly handling
facts in other ways while resisting changing the conceptual model. In
reality, the modeller most likely combines the two strategies. As a result, it
establishes necessary information, whereas the design is influenced by the
accessible or collected data. As a result, the modeller must alternate between
taking the model's design into consideration and the availability of data,
which increases the level of modification necessary in the process.



2.7 METHODS OF MODEL SIMPLIFICATION

Reducing the scope and level of detail in a model simplification entails one
of two methods:

. eliminating parts and connections that don't significantly affect the
model's accuracy, or by:

o preserving a satisfactory level of model accuracy while showing parts
and relationships more simply.

This can be done either by looking for areas that can be simplified while
conceptual modelling, or after the conceptual model is finished and beyond,
as during model coding. The basic goal of simplification is to boost a
model's utility without seriously compromising its validity or credibility. In
general, simplicity allows for quicker model creation and application. If the
initial model design is judged unworkable, for instance because the relevant
data are not available, simplification could be required.

2.7.1 Combination of model elements

A method for lowering the level of detail is to aggregate model elements.
Here, two particular strategies are described: black-box modelling and
entity grouping.

o Black-box modelling

A portion of a process is modelled as a time delay in black-box modelling.
Model entities that stand in for components, people, information, and other
things enter the black box and exit later. With this method, you may
simulate anything, from a collection of machines or service counters to a
whole manufacturing or service operation. | have built a model of a whole
manufacturing supply chain as a collection of interconnected plants, each
portrayed as a black-box.

The strategy is demonstrated in Figure 6. The time at which an entity Xi is
expected to exit the black box, ti, is determined as it enters. The entity exits
the box at time ti in the simulation. Of course, a sample from a distribution
can be used to determine how long an entity spends in the box. By adjusting
the values of ti for each entity in the box, the method can also be expanded
to take stoppages, shifts, and entity re-sequencing (for example, re-work).

Black-box

Xn+l 3 XZ X1 Xl.'.l

X, . X
R 4 g
!r1+1 ’ Iﬁ'
/

Time to leave

Current simulation time = f;

Figure 6: Black-box modelling
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o Entity grouping

A simulation entity can represent a set of items instead of modelling each
item as it moves through a system. This is especially helpful when a system
is processing a large number of things quickly, such during the
confectionery wrapping process, where hundreds of chocolate bars are
wrapped per minute. The number of events per minute that would result
from modelling each chocolate bar separately would be hundreds, which
would slow down the simulation run-speed. In this situation, having an
entity represent, let's say, 100 chocolate bars, is advantageous.

The method is easily adaptable to modelling scenarios where an entity's
number of things it represents changes as it passes through the model. For
instance, at a checkpoint, a specific amount of chocolate bars is rejected (or
consumed!). This can be modelled by having the quantity of chocolate bars
the entity represents as a property. As the entity navigates the model, the
attribute value can then be modified.

2.7.2 Holding out parts and details

Some components may not always need to be included in simulations
because leaving them out has little impact on the model's correctness. The
scope has been reduced in this way.

If it can be assumed that a resource is always, or almost always, available
to carry out that task, then the resource is not necessary to be represented in
order for the process to occur. In this instance, modelling the process is all
that is required. For instance, it is not necessary to explicitly represent an
operator on a production line who is committed to a task.

A highly particular example of model simplification that is motivated by the
availability of pertinent data is the modelling of machine repairs. It is vital
to obtain information on real repair times if the resources needed for repair
(often maintenance personnel and maybe some equipment) are to be clearly
modelled. Many businesses, however, only track the whole amount of time
a machine is down, including the time it takes for resources to be made
available. Resources shouldn't be explicitly included in the simulation if
downtime data are being modelled, as this would amount to double
counting.

A model may not include certain elements that are thought to have minimal
bearing on the model's correctness. The modelling of shift patterns is one
instance. These must only be modelled if

o Different departments adhere to various shifts.

. Between shifts, there are differences in labor availability, process
speed, or process guidelines.

o Outside of shifts, activities like machine repair continue.
o In order to give the simulation legitimacy, shifts must be simulated.
Otherwise, there is no need to simulate the downtime between shifts.



2.7.3 Using random variables to replace components

It might be conceivable to describe a component or group of components as
a collection of random variables drawn from several distributions rather
than modelling them in detail. Forklift trucks, autonomous guided vehicles,
big freight vehicles, and trains, for example, might be complicated to
represent. Allowance must be made for breakdowns, punctures, traffic jams,
weather conditions, turnaround times, and driver shifts, depending on the
situation.

I was tasked with simulating the distribution of items between two locations
as part of a model that represented two sites. After spending some time
comprehending the delivery process's intricacy and all of its potential
pitfalls, it became clear that a complicated model would be necessary for an
accurate portrayal. The answer was to find out how many deliveries are
made daily and what the average moving time is. The total number of
deliveries every day, as well as the timings of the departure and arrival,
might potentially be represented as three random variables. The creation of
this model and its manipulation during experimentation were significantly
easier.

2.7.4 Excluding irregular occurrences

Some incidents only occasionally have an impact on an operations system.
Only every two years, a warehouse crane could experience a failure. Major
disasters do not frequently affect hospitals. In order to evaluate the
operations system under real-world operating circumstances, it is usually
advisable to rule out the chance of such events happening during a
simulation run.

By executing specific runs in which the event is forced on the model (for
example, a crane breakdown or a flow of patients into an emergency
department), the influence of such events may always be explored.

2.7.5 Reduce the number of rules

In simulation models, rules are used to establish routes, processing times,
schedules, resource allocation, and other factors. By minimizing the number
of rules, a model can be made simpler while yet being sufficiently accurate.
When it comes to route choices for automatically guided vehicles, for
instance, 80% of situations are frequently covered by 20% of the rule set.
Decision-making is necessary to determine whether modelling the
remaining 80% of the rule set is worthwhile for a marginal increase in model
accuracy.

The representation of human interaction with an operational system is a
unique challenge in simulation modelling. For instance, it can be quite
challenging to predict how people would act when waiting in line for a
service. How does one choose which line to get in at the grocery store?
When does a person choose to skip one line in favor of another? When
might a person opt to get out of a line? What situations would lead someone
to choose not to join a line? It is nearly impossible to create a set of rules
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that work for everyone in all circumstances because such decisions depend
on the individual. As a result, standard procedure calls for the employment
of a set of criteria that are simplified. For example, clients may opt to join
the shortest queue or refrain from doing so if there are more than five
persons in it.

To completely ignore the rule set is an extreme but nonetheless effective
strategy. The simulation in the service system scenario above could only
possibly assume that people join the shortest queue in terms of queuing
behavior. This would imply that long lines would form if there is an
imbalance between the service rate and arrival rate. Although implausible,
this gives the model's user useful information, such as the fact that the
system is unbalanced and that customers are likely to leave unless the
service rate can be raised.

2.7.6 Dividing up models

It can be advantageous to divide the model into two or more portions rather
than creating a single, huge model. To do this, it is easy to divide the models
so that model A's output serves as model B's input, as shown in Figure 7.
Data about the model's output, including output time and any entity
properties, can be sent to a data file as model A executes. In order to recreate
the entities in model B at the proper time, model B is then run and the data
is read.

Splitting models has the benefit of making each model run more quickly.
Assuming the three-phase method is being used, it is also extremely likely
that a single run of all the sub-models is quicker than a single run of a
combined model due to less processing at the C-phase. This is because each
sub-model contains fewer conditional events. Every time an event happens
anywhere in a combined model, every C-event would have to be checked,
creating a lot of redundant work. Having separate modelers work on each
model in parallel can speed up development time, which is another benefit

of dividing models.
Model B

Figure 7: Concept of splitting (dividing up) the models

Data file of
model A
output

Maodel A

When there is feedback between the models, separating the models is less
effective. For instance, it is not possible to prevent model A from producing
an entity if model B is unable to accept it because the first buffer is full,
even though in fact this is what would happen. Therefore, it is better to split
models at a point with little to no feedback, like where there is a big buffer.

To improve run-speed, there is a lot of interest in running simulations
concurrently on different computers. Running split models simultaneously



should make it easy to model feedback effects and circumvent the problem
mentioned above. However, there are already a number of challenges to
using parallel computing for simulation, not the least of which is creating
effective systems for synchronizing the models as they run.

2.7.7 What defines a good simplification?

Even while model simplifications are advantageous, the accuracy of the
simulation can be significantly impacted by a bad choice of simplification
or oversimplifying a model. A successful simplification is one that benefits
from quicker model building and run-speed (utility), while still keeping a
high enough level of accuracy (validity). How does a modeler assess the
merits of a simplification? There are two major strategies.

The first is to decide if a simplification is likely to have a major impact on
model correctness using your best judgement. Discussions between the
modeler, client, and other members of the simulation project team should
be used to decide this. The project specification serves as a helpful forum
for describing and debating the merits of suggested simplifications. Of
course, using this method does not guarantee whether or not a simplification
is necessary. Before using a certain simplification, it may be helpful to
consult with an expert modeler who has a lot of experience with model
simplifications.

The second strategy involves prototyping the simplification in the computer
model and testing it. Two computer models—one with and one without the
simplification—are created by the modeler. The impact on accuracy can
then be determined by contrasting the two models' outputs. Naturally, this
gives much more assurance regarding the necessity of a simplification, but
the benefit of a quicker model creation is lost.

Along with preserving an adequate level of truth (accuracy), a successful
simplification should also maintain credibility. A model's trustworthiness
can be damaged by oversimplification, which can make it less transparent.
Consider the application of black-box modelling. The intricacies of the
representation are not transparent, even though a black-box may offer a
sufficiently accurate representation of a portion of an operating system. This
might be adequate for certain clients, but for others, it might be required to
offer a more thorough portrayal in order to give the model legitimacy. In
order to ensure the model's credibility, it is occasionally necessary to
incorporate a wider scope and more specific degree of detail than is
necessary to ensure the model's correctness. An inadequate simplification
is one that makes a client doubt the validity of a model. In fact, there are
times when it's required to invert the idea of simplification and actually
make the model more complex (in terms of its breadth and amount of
information) in order to meet the demand for believability.

2.8 SUMMARY

Virtually without a doubt, conceptual modelling is the most crucial
component of a simulation study. The success of the simulation study as a
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whole depends on the construction of an acceptable model. Unfortunately,
conceptual modelling is also the component of simulation modelling that is
least well-known. In order to address the problem, this chapter defines a
conceptual model and explains its needs, including validity, credibility,
utility, and feasibility. It is crucial to create a model that is as
straightforward as feasible while still being able to achieve the study's goals.
Additionally discussed are ways to represent the conceptual model and how
to use a project specification to communicate it.

The topic of creating conceptual models is also covered from two angles:
first, by offering a framework for conceptual modelling that enables a
modeler to create a conceptual model from scratch; and second, by outlining
various techniques for streamlining an existing conceptual model. The
framework is demonstrated using a fast-food restaurant as an example.
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2.10 UNIT END EXERCISES

1]  Define and explain the conceptual model.

2]  What are the requirements of conceptual model?

3] Write a detailed note on communicating the conceptual model.

4]  Mlustrate project specifications for simulation.

5]  State and explain various ways to represent the conceptual model.
6]  Explain the framework for conceptual models.

7] Write a note on different process involved in the formation of
conceptual model framework.

8]  State and explain methods for model simplification
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DATA COLLECTION AND ANALYSIS

Unit Structure :
3.0 Obijectives
3.1 Introduction
3.2 Data requirement and obtianing of data
3.3 Representing data
3.4 Selecting statistical distributions.
3.5 Obtaining Accurate Results
3.5.1 Introduction
3.5.2 The nature of simulation models and simulation output
3.5.3 Issues in obtaining accurate simulation results
3.5.4 Example model
3.5.5 Dealing with initialization bias
3.5.6 Selecting the number of replications and run-length
3.6  Summary
3.7 Exercise
3.8 References

3.0 OBJECTIVES

After going through this chapter, students will able to learn
o To understand what are data requirements

. To deal with and collect various types of data

. To represent data using various statistical distributions
. To obtain accurate simulation results

. To identify number of runs and replicaitons

3.1 INTRODUCTION

The initial step in simulation is gathering data and for the same determine
what data is essential for building the model. The initial focus should be on
defining the overall process flow for more detailed information. The
information can then be added gradually as it is available . This detailed
approach of data collection enables to build efficient model in the entire
process.
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One needs to be careful in this data collection because if the data that are
used to design and design the model are erroneous then the results from the
model will also be erroneous. In this chapter a number of problems with
respect to the collection and analysis of data are discussed. Initially the
focus is on identifying the data requirements. Later it turns to obtaining the
data and in precise how inaccurate data and data that are not available
should be dealt with.

3.2 DATA REQUIREMENT AND OBTAINING OF DATA

Data plays an important role in simulation . Data can be qualitatiative (in
orm of numbers like age, salary etc. ) or quantitative ( in terms of some
quality like colour of hair, quality of rice etc.). while studying simulation
quantitative data is of more use as compared to qualitative data. In this
chapter, the word data refers to both quantitative and qualitative data, even
though that much of the discussion focuses on the collection and particularly
analysis of quantitative data.

It is also important to note that data and information are two different
concepts. Information is usually perceived as data with interpretation, in
other words data that has been investigated for some purpose. A simulation
modeller may be provided with raw data or data that have been interpreted
in some manner .

In simulation, as in any modelling exercise, data requirements can be split
into three types as follows :

1. Preliminary or contextual data : To develop a thorough understanding
of the problem some data needs to be accessible for some processing
capability. Here in this phase massive data collection should be
avoided, since the data are only required for developing an
understanding and are usually not needed for detailed analysis. These
data are essential for conceptual modelling process as they help in
advancement of conceptual modelling.

2. Data required for developing model: while we move from the
conceptual model to a computer model different kind of data are
required, for example, customer arrival patterns and descriptions of
customer types. It may be essential to carry out a detailed collection
process to acquire these data. These data are directly identified from
the conceptual model.

3. Data required for validation : It is important to guarantee that each
part of the model, as well as the model as a whole, represents the real
world system with adequate accuracy. Assuming the existence of real
world system , the apparent way to do this is to compare the model
results with data from the real system.

Once data has identified according to requirements the next step is to
“obtain data”. Some data are easily available while some needs to be
collected . As discussed earlier there are three types of data of which:



o Type 1 data is available easily either because they are known or
have been collected previously. For example, data may have been
collected on service times and arrival rates in a bank for a survey
of staffing levels.

o Type 3 data need to be collected. Data that fall into this category
include service times, arrival patterns, machine failure rates and
repair times etc. While collecting this type of data it is imperative
to ensure that the data obtained are both accurate and in the correct
format.

o Type 3 data are not available and cannot be collected. These often
happens because the real world system does not yet exist, making
it impossible to observe it in operation. Another factor is Time
availability both in terms of person-time and elapsed time
available to collect meaningful data. For example, data are not
available on the repair time for a machine.

o There are two main ways of handling type 3 data.
1.  To estimate the data from various sources and

2. To treat the data as an experimental factor rather than a fixed
parameter. Instead of asking what the data are, the issue is twisted and
the question asked is : what do the data need to be? But these can only
be applied when there is some control over the data in question.

Data accuracy, is the essential standard of data quality, refers to the
consistency of data with reality.Even if the data is vaialable or collected
one must ensure that it is accurate. The source of the data should be
investigated. If the data are too inaccurate for the simulation model, then an
alternative source could be required. If alternative is not available, then
expert judgement and analysis might be used to determine the more likely
values of the data.

In addition to accuracy, data needs to be in the right format for the
simulation. The modeller must know the format of the data that are being
supplied or collected and also ensure that these are appropriate for the
simulation model. In case they are not, then the data should be considered
as inaccurate and improvement of the data should be carried out or find an
alternative source. The last resort is to treat the data as type 3.

3.3 REPRESENTING DATA

At the heart of simulation modelling lies modelling variability, especially
unpredictable (or random) variability. While designing the simulation, the
modeller must determine how variability that is present in each part of the
model can be represented appropriately.
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Three options are available for the same as follows :

1.

Traces : A trace is a stream of data that describes a sequence of events.
It holds data about the time at which the events occur. It may also hold
additional data about the events such as the type of part to be
processed (part arrival event) or the nature of the fault(event of
machine brekadown). As simulation runs ,it reads the trace and the
events are recreated in the model as described by the trace. The data
are typically held in a data file or a spreadsheet.

Empirical distributions : An empirical distribution is one for which
each possible event is assigned a probability derived from
experimental observation. It is assumed that the events are
independent and the sum of the probabilities is 1. An empirical
distribution may represent either a continuous or a discrete.
distribution. An empirical distribution shows the frequency with
which data values, or ranges of data values, occur and are represented
by histograms or frequency charts and are usually based on historic
data.

Statistical distributions : They are defined by some mathematical
function or probability density function (PDF). There are many
standard statistical distributions(continuous and discrete) available to
the simulation modeller. The best known is the normal distribution
that is specified by two parameters: mean (its location) and standard
deviation (its spread).

Some of the most useful distributions are divided into three types:

a.

Continuous distributions: for sampling data that can take any value
across a range for example height of students in a class.

Some of commonly used continuous distributions are : normal (Figure
), negative exponential (Figure ) and Erlang (Figure ) distributions.

Discrete distributions: for sampling data that can take only specific
values across a range, for example number of students in a class. Some
of commonly used discrete distributions are : Binomila(that describes
the number of successes, or failures, in a specified number of trials)
and Poisson (used to represent the number of events that occur in an
interval of time, for example , total customer arrivals in an hour in a
bank)

Approximate distributions: used in the absence of data. The simplest
form of approximate distribution is the uniform distribution, which
can either be discrete or continuous. Another example is triangular
distribution.

Having discussed three types of variability next question is “Which
of the three approaches for modelling unpredictable variability should
be preferred?”



Each type has its own advantages and disadvantages.

Type Advantage Disadvantage
Traces o Represent historic | e need for the real
events in the real system | system to exist and for
exactly as they occurred. the necessary data to
have been collected
e Help to improve the | from that system.
reliability of a mode.

Empirical o does not use up large | o difficult to
Distribution | quantities ~ of ~ computer | perform sensitivity
memory. analysis
Statistical o limited use of computer | o least transparent
Distribution | memory approach for the clients,

potentially reducing the
e  sensitivity analysis can | credibility of the model
be performed easily

A fourth option for modelling unpredictable variability, known as
bootstrapping, also is of some interest. Instead of fitting a distribution to the
data or summarize the data in an empirical distribution, data are simply re-
sampled at random with replacement from the original trace.lt is useful
when there is only a small sample of data available.

Dependency, or correlation in input data can also be an issue in representing
unpredictable variability. To handle such dependencies conditional
probability can be used. Another problem that occurs when distributions
change over time, stated to as non-stationary input data.One of the simplest
examples is modelling arrival times.

3.4 SELECTING STATISTICAL DISTRIBUTIONS

After data has been collected , in order to proceed further a modeler must
decide which statistical distributions are most suitable for the model that is
being created.

The Distributions needed to model can be chosen by studying the existing
properties of the process or can be fitted using empirical data.

1.  Selection of distribution from existing properties of the process:

When a process id being modelled it is often possible to choose a
model using the properties of process. For example if we have to
model arrival time of customers in a café then this arrival is random
in nature for a given time interval so a negative exponential
distribution can be used. To signify service times for example the
mount of time a customer needs to get the service in café can be
modelled suitably using Erlang, gamma and lognormal distributions.
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If time between arrival is being modelled, then it is sensible to
assume a Weibull distribution.

The benefit of using properties to select a distribution is that only the
parameters of the distribution need to be defined and that there is no
reuirement of collecting complete data. For example, for the negative
exponential distribution, just the mean inter-arrival time is needed
instead of inter-arrival time between every customer.this method is
also useful when data cannot be obtained directly.

2. Selection of distribution from empirical data :

In case data is available from experimentation it is feasible to fit a
statistical distribution to those data. This process consists of three
stages:

0 Select a statistical distribution.
0 Determine the parameters.

0 Test the goodness-of-fit i.e determine how good the distribution
fits the data.

Also care has to be taken that a sequence of distributions should tried
with different parameters instead of relying on a single distribution .
In other words, there should be a number of iterations through these
phases.

3.5 OBTAINING ACCURATE RESULTS

In earlier sections we saw requirements of data, planning and building of
model , selection of appropriate distributions for the given data. In this
section now we proceed with acquiring accurate results and process needed
for the same.

3.5.1 Introduction
There are two significant issues in experimentation of simulation.

| To guarantee that the on the basis of model performance accurate results
are obtained from the simulation model. We will do in this section

Il To confirm that the search for a better understanding and improvements
is achieved as efficiently and effectively as possible.This is referred to as
searching the solution space and will be done in next section .

In this section , before we discuss precise methods for finding accurate
results on performance of model, the nature of simulation models and
simulation output are described.

This is significant because it affects the approaches that need to be taken to
obtaining accurate results. The primary issues in obtaining accurate results
are then explained i.e



. Dealing with initialization bias and obtaining sufficient output data.

. Various methods for dealing with these two issues which are
described (warm-up period, setting initial conditions, multiple
replications and long runs).

These methods are demonstrated by applying them to the output data from
a model of a computer user help desk. The main emphasis is on practical
issues, which in some cases are supported by the use of statistical methods.

3.5.2 The nature of simulation models and simulation output

THE NATURE OF SIMULTION MODELS AND SIMULATION
OUTPUT

Depending upon the accurate results that are obtained from a model depends
the nature of a simulation model and its output .We assume that that the

simulation output is stochastic, for the purposes of this discussion ,that is,
the model comprises random events. Eventhough possible to have a
simulation model that does not contain any random events, it is not common
exercise. It is to be noted that for such deterministic models, some of the
concerns described below still needs consideration.

1 Terminating and non-terminating simulations :

A simulation model can be categorized as one of two types:
terminating and non-terminating.

For a terminating simulation there is a regular end point that defines
the length of a run. The end point can be defined in a number of ways,
for instance:

o The model reaches an empty condition, e.g. a bank that closes at the
end of a day.

. The completion of the time period under search, e.g. the end of the
busy lunch period in a supermarket.

. The completion of a trace of input data, e.g. the completion of a
production schedule.

Whereas , a non-terminating simulation does not have a natural end
point.

. An example is a model of a production facility that aims to determine
its throughput capability.

There is no precise reason as to why a simulation experiment should
terminate other than the model user interrupting the run. For non-
terminating models the length of a simulation run needs to be
determined by the model user.

2 Transient output:

In maximum cases the output from a terminating simulation is
transient. Transient output means that the distribution of the output is

Data Collection And Analysis

51



Simulation and Modeling

52

constantly changing. For aexample ,in a simulation of a bank. One of
the responses of interest is the number of customers served in each
hour of the day. In addition ,for any time period the number of
customers served is unlikely to be same on any given day. This is
purely as a result of the random variation in the system.

The distribution of customers served in the hour 11:00-12:00 on any
day could be between about 60 and about 100. Over many days, the
mean number of customers served between 11:00 and 12:00 will be
about 80. Similarly, for each hour of the day there is a distribution of
the number of customers served. Because the output data are transient,
the distribution varies for each hour of the day.

Steady-state output

For non-terminating simulations the output often reaches a steady
state. Steady state means that the output is varying according to some
fixed distribution (the steady-state distribution). Consider the
example of a simulation of a production facility. The throughput
varies from day-to-day owing to breakdowns, conversions and other
interruptions. In the long run, however, the throughput capability (the
mean throughput level) remains constant. In steady state the level of
inconsistency about that mean also remains constant since the steady-
state distribution is constant.

Even though steady-state output is defined with respect to non-
terminating simulations, it is possible that a terminating simulation
may also reach a steady state, mostly if the termination point infers a
long run-length. In the Similar manner, the output from a non-
terminating simulation may not reach a steady state.

Other types of output

Transient and steady-state are not the only types of output that occur
from simulation models. A third type, steady-state cycle is also
identified by Law and Kelton (2000) . Consider simulation of a
production facility working two shifts. The night shift has lesser
operators and hence works at a slower rate, in this situation the
throughput recorded by the simulation cycles

between two steady states. A similar effect might occur in a 24-hour
service operation such as a call handling centre for the emergency
services. The rate at which calls are received varies according to the
time of the day. Hence , a simulation response there is change in calls
handled as the day progresses. Assuming that the call pattern is
similar on each day, the simulation output will cycle through the same
series of steady states. The pattern may be more complex, with a day-
of-week effect as well. In this case there are two cycles overlapped on
one another, a daily and a weekly cycle.

Steady-state-cycle output can be distributed simply by lengthening
the observation interval in the time-series to the length of the longest



cycle. Instead of recording hourly throughput or throughput by shift
in the production example above, the data could be recorded daily.
Due to this ,the cycles are subsumed into the longer observation
interval and the output analysis can be performed as for steady-state
output.

Robinson et al. (2002)also define a fourth type of output i.e shifting
steady-state. In certain models the output shifts from one steady state
to another as time advances.For example, this may be due to changes
in product type, number of staff or operating practice, assuming that
each of these affects the output response. Unlike the steady-state cycle
described above, these shifts do not necessarily occur in a regular or
even predictable pattern. A heuristic method was also described by
the authors for detecting such output behaviour their analysis.

5 Determining the nature of the simulation output

Genarally, the output from terminating simulations is transient and
that from nonterminating simulations is steady-state (possibly with a
cycle or shifts). However, this is not always the case. Some additional
investigation is desirable before determining on the nature of the
output.

1 The input data should be examined. Do they change during a
simulation run? For example, the customer arrival rate might
change as the simulation run progresses. If they do not change,
then it is probable that the model output is steady-state. On the
other hand if the data change, and the model is terminating, then
this is revealing of transient output. If the model is non-
terminating, and the data change according to a regular cycle,
then this suggests the output is steady-state-cycle.

2 The output data should be explored, mainly by inspecting time-
series.If the output is steady-state, then the time-series should
disclose a typical initial transientand then steady-state pattern.
However, if the output is transient,then the time-series should
not resolve, Steady-state cycle output should be reasonably easy
to detect, assuming that multiple cycles are not overlaid. Shifts
in steady state are not so willingly identified by straightforward
inspection and need more detailed analysis (Robinson et al.
2002).

3.5.3 Issues In Obtaining Accurate Simulation Results

Let us understand the main difference between model performance and real
system performance before discussing the issues in obtaining accurate
simulation results.In this sectionwe will discuss about obtaining accurate
data on the performance of the model.

The main aim of simulation output analysis is to obtain an accurate estimate
of average (mean) performance, although measures of variability are also
important . There are two primary issues in guaranteeing the accuracy of the
estimates obtained from a simulation model.
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o The second is confirming that enough output data have been obtained
from the simulation to acquire an accurate estimate of performance.

Both issues, can lead to results if not properly addressed, that are biased and
ambiguous.

1 Initialization bias: warm-up and initial conditions

The first issue, the removal of initialization bias, is applicable to non-
terminating simulations and sometimes needs to be addressed for
terminating simulations. Many terminating simulations start from,
and return to, an empty condition.

For example , most service operations open and close each day with
no customers present. However, there are, situations where the empty
condition is not a realistic starting point.

If a week’s production schedule is run through a simulation model, it
would be wrong to assume that there is no work-in-progress on
Monday morning. We may want to model the lunch period in a bank
and it would be inappropriate to ignore the customers who are present
at the beginning of this period.

There are two ways of handling initialization bias.

o The first is to run the model for a warm-up period. Basically this
involves running the model until it reaches a realistic condition
(steady-state for a non-terminating simulation) and only
collecting results from the model after this point.

. The second approach is to set initial conditions in the model.
Instead of running the model until it is in a realistic condition,
the model is placed in a realistic condition at the start of the run.
This often means placing work-in-progress into the model at the
beginning of a run, for example, customers or parts.

o A third option is to use a blend of initial conditions and warm-

up.

2 Obtaining sufficient output data: long runs and multiple
replications

The second issue, ensuring that enough output data have been
obtained from the simulation,can be solved in two ways.

J The first is to perform a single long run with the model.This is
only an option for a non-terminating simulation, unless
perchance the termination point for a terminating simulation is
sufficiently far off to collect enough output data.

. In general, for terminating simulations the only option is to use
the second approach,performing multiple replications.
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A replication is a run of a simulation model that uses specified streams
of random numbers, which in turn cause a specific sequence of
random events. By changing the random number streams another
replication is performed in which the sequence of random events that
occur during the model run changes, as do the results obtained. By
performing multiple replications and taking the mean of the results, a
better estimate of model performance is gained. Performing multiple
replications is equivalent to taking multiple samples in statistics.
Meanwhile, performing one long run is equivalent to taking one large
sample.Multiple replications as discussed above, is generally the only
approach available for obtaining sufficient output data from
terminating simulations. Meanwhile, for non-terminating simulations
the model user can use either long runs or multiple replications.

3.5.4 An Example Model: Computer User Help Desk

In order to describe the methods for dealing with initialization bias and
ensuring that sufficient output data are obtained, it is useful to refer to an
example. Figure 1 shows a time-series of output from a simulation of a
computer user help desk. This model has been used for a simulation study
of a real life help desk.
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Figure 1 : Time-Series of Mean Time in the System for User Help
Desk Example.

The desk receives email enquiries and telephone call from computer users.
The enquiries are received, logged and whenever possible dealt with by the
staff on the help desk. A high proportion of the calls require technical
expertise or a site visit and so they are passed on to the technical team.
Because of a backlog of work it may take hours or even days to bring an

enquiry to completion. The time-series in Figure 1 shows the mean time that
enquiries being completed on each day have spent in the system (in
minutes); this is just one of a number of output statistics that may be of
interest. It is evident that there is a lot of variability in the time it takes to
complete enquiries.The model is non-terminating and review of the time-
series intensely suggests that the output is steady-state. The input data do
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not change during the simulation run, lending further weight to this
conclusion. There appears to be some initialization bias since at least

the first two observations are low. This is expected as the initial condition
of the model is unrealistic; there are no enquiries in the system.

3.5.5 Dealing with Initialization Bias

This section defines two methods for dealing with initialization bias: a
warm-up period and setting initial conditions. The third option of using
mixed initial conditions and warm-up discussed, as well .The advantages
and disadvantages of the different methods are also discussed

1 Determining the warm-up period :

If a warm-up period is to be employed, the main question is what should be
the length of the warm-up period? The simple answer is that the warm-up
period should be long enough to ensure the model is in a realistic condition.
For a non-terminating simulation this normally means that the initial
transient has passed and the model output is in steady state. The trouble in
this answer lies in finding whether the model is in a realistic condition.

A variety of methods have been projected for identifying and determining
the warm-up period and initialization bias. These can be classified into
five types.

o Graphical methods: which involve the visual inspection of time-series
of the output data.

o Heuristics approaches: which apply simple rules with few underlying
assumptions.

o Statistical methods: which depend upon the principles of statistics for
determining the warmup period.

o Initialization bias tests: that identify whether there is any initialization
bias in the data. Rigorously these are not methods for identifying the
warm-up period, but they can be used in combination with warm-up
methods to determine whether they are working effectively.

. Hybrid methods: these involve a combination of graphical or heuristic
methods with an initialization bias test.

For those that wish to investigate these approaches further, a list of methods
and references is provided in Table 1. All of these methods unfortunately,
have limitations and there is no one method that can be recommended for
all circumstances. Main problems that occur with these methods are
overestimating or underestimating the length of the initial transient, relying
on very restrictive assumptions and using highly complex statistical
procedures.



Category Method Reference
Graphical methods Time-series inspection See below
Ensemble average plots Banks et al. (2001)
Cumulative mean rule Gordon (1969)
Deleting the cumulative mean rule Banks et al. (2001)
CUSUM plots Nelson (1992)
Welch's method Welch (1983)
Variance plots Gordon (1969)
Statistical process control Robinson (2002)
Heuristics approaches Schriber’s rule Pawlikowski (1990)
Conway rule Gafarian et al. (1978)
Modified Conway rule Gafarian et al. (1978)
Crossing of the mean rule Fishman (1973)
Autocorrelation estimator rule Fishman (1971)
Marginal confidence rule White (1997)
Goodness of fit Pawlikowski (1990)
Relaxation heuristics Pawlikowski (1990)
MSER and MSER-5 White and Spratt (2000)
Statistical methods Kelton and Law regression method Kelton and Law (1983)
Randomization tests Yucesan (1993)
Initialization bias tests Schruben’s maximum test Schruben (1982)
Schruben’s modified test Nelson (1992)
Optimal test Schruben et al. (1983)
Rank test Vassilacopoulos (1989)
The new maximum test Goldsman et al. (1994)
Batch means test Goldsman et al. (1994)
Area test Goldsman et al. (1994)
Hybrid methods Pawlikowski's sequential method Pawlikowski (1990)

Table 1 : Methods for Determining the Warm-up Period
(Robinson 2002).

Two fairly straightforward graphical methods which are commonly used
are described here : Time-series inspection and Welch’s method.

1

Time-series inspection :

The simplest method for identifying the warm-up period is to inspect
a time-series of the simulation output, that is, the key response(s) of
the simulation model .The problem with reviewing a time-series of a
single run, is that the data can be very noisy and hence difficult to spot
any initialization bias. Consequently, if a series of replications are run
and the mean averages of those replications for each period are plotted
on a time-series it would be better. At least five replications should be
performed, while more may be required for very noisy data. The more
replications the more the time-series will be smoothed as outliers are
subsumed into the calculation of the mean for each period.

To determine the warm-up period, the point at which the output
appears to settle into a steady state should be identified. That is, the
point at which the data are neither consistently higher or lower than
their ‘‘normal’’ level and where there is no apparent upward or
downward trend in the data. particularly noisy, subtle patterns in the
data may go unnoticed. Time-series
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reveals a trend in the data and that the warm-up period needs to be
somewhat longer than originally thought.

2 Welch’s method

Welch (1983) suggests a method that is based on the calculation and
plotting of moving averages.This involves the following steps:

o T o obtain time-series of the output data,perform a series of
replications (at least five) .

o Calculate the mean of the output data across the replications
for each period (Y1i).

o Calculate a moving average based on a window size w (start
with w = 5).

o Plot the moving average on a time-series.

o Are the data smooth? If not, increase the size of the window
(w) and return to the previous two steps.

o Identify the warm-up period as the point where the time-series
becomes flat.

The moving averages are calculated using the following formula:
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where
Yi(w) = moving average of window size w
Y; = time-series of output data (mean of the replications)
i =

= period number
m = number of periods in the simulation run

While using the Welch’s method the intention should be to select the
smallest window size that gives a sensibly smooth line. Eventhough
selecting a larger window size will give a smoother line, it also tends to give
a more conservative (longer) estimate of the warm-up period.It is also
recommended that the value of w should be no more than a quarter of the
total observations in the original time-series. If more observations are
required, the simulation model should be run for longer.

Even if Welch’s method requires the calculation of moving averages, it is
relatively simple to use and also has the advantage that the calculation of
the moving average smooths out the noise in the data and helps to give a
clearer picture of the initial transient.
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However, it is still a subjective method and the conclusion made depends
on the experience of the user. A specific difficulty is in determining whether
the line is *smooth’ and what is the appropriate window size. Lastly, since
the method is based on cumulative statistics (moving averages), according
to some it is conservative and tends to overestimate the warm-up period.

Some additional issues related to both method discussed above needs to be
stated.

. First,while generating the time-series data the length of the simulation
run should be muchgreater than the anticipated warm-up period. Also
oone should be sure that the output data have established into a steady
state beyond the warm-up period that is identified.

o Secondly, when a model has more than one key response (as defined
by the conceptual model, the initial transient should be investigated
for each one. The responses may settle to a steady state at different
times in the simulation run.

The warm-up period should be selected based on the response that takes
longest to settle. Each of these should be investigated for initialization bias.

An alternative to using a warm-up period is to set the initial conditions of
the model. There are two ways in which appropriate initial conditions can
be identified.

o The first is to observe the real system. In some cases, data on the
current state of the real system can be downloaded directly from
automatic monitoring systems . Clearly this approach can only be
used if the real system exists.

o The second approach is to run the simulation model for a warm-up
period and record the status of the model, using this to define the
initial condition of the model for future runs.

Besides defining the work-in-progress in a model, initial conditions can be
set for the activities that take place in the model. It is often not worth the
additional effort in data collection and model coding to include initial
conditions for activities. Athird area for which initial conditions can be set
is for equipment stoppages (breakdowns and changeovers). If specific initial
conditions are not set then the default would effectively be to assume that
all activities have just completed a stoppage at the start of the simulation
run.

In certain cases it is useful to use a combination of a warm-up period and
initial conditions. The aim here is to reduce the length of the warm-up
period required.

3.5.6 Selecting The Number Of Replications And Run-Length

In the following section we will describe the methods for finding the
number of replications that should be executed with a model and for
selecting an appropriate run-length for a long run.
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In both the cases the aim is to guarantee that sufficient output data have
been obtained from the simulation in order to estimate the model
performance with sufficient accuracy.

Along with discussion of multiple replications there is also a brief
explanation of variance reduction. At the ens we also discuss the relative
merits of using multiple replications and long runs.

1 Performing multiple replications :

A replication is a run of a simulation that uses specific streams of random
numbers. Multiple replications are performed by changing the streams of
random numbers that are referenced and re-running the simulation. The aim
is to produce multiple samples in order to obtain a better estimate of mean
performance. How many replications need to be performed? Three
approaches to answering this question are: a rule of thumb, a graphical
method and a confidence interval method.

A rule of thumb

Law and McComas (1990) recommend that at least three to five replications
are performed.

This simple rule of thumb is useful because it makes clear that model users
should not rely on the results from a single replication. It however ,does not,
take into account the characteristics of a model’s output. Models with output
data that vary normally require more replications than models with a more
stable output. The two methods below address this issue by inspecting the
output data from a model.

Graphical method

A simple graphical approach is to plot the cumulative mean of the output
data from a series of replications. It is recommended that at least 10
replications are performed initially. As more replications are performed the
graph should become a flat line (minimal variability and no upward or
downward trend).

The number of replications required is defined by the point at which the line
becomes flat. Performing more replications away from this point will only
give a marginal improvement in the estimate of the mean value.

If the line does not become flat, then more replications are needed.
Confidence interval method

A confidence interval is a statistical method which shows accurately the
mean average of a value is being estimated. The narrower the interval the
more accurate the estimate is considered to be. In general, the more sample
data that are included in the interval, the narrower it becomes. When
applying confidence intervals to simulation output, more replications
(samples) are performed until the interval becomes sufficiently narrow to
satisfy the model user (and the clients).



When analysing simulation output data a confidence interval is calculated
as follows:

S

AT
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whe re:

X = mean of the output data from the replications

5]

standard deviation of the output data from the replications (see equation belc

=

number of replications

=]

th_l.q/2 = value from Student’s t-distribution with n—1 degree of freedom
and a significance level of «/2

The formula for the standard deviation is:

Where Xi = result from replication i.

Often a significance level («) of 5% is selected. This gives a 95% probability
that the value of the true mean (obtained if the model is run for an infinite
period) lies within the confidence interval (this is known as a 95%
confidence interval). On the contrary, it implies that there is a 5% likelihood
that the mean does not lie in the interval.

Because the confidence interval provides an upper and a lower limit the
significance level is divided by two (a/2). So for a 5% significance level,
values at 2.5% significance are selected from the Student’s t-distribution.

An alternative method for determining the number of replications required
is to rearrange the confidence interval formula above so that n (the number
of replications) is on the left-hand side, as follows:

( 1005%—].0&-"3 )3
1= —_——
dX

d = the percentage deviation of the confidence interval about the mean

where:

By performing some initial replications (say five to ten) to estimate S and
X, the number of replications required to achieve a specified percentage
deviation (d) can be determined.The accuracy of this method depends, of
course, on the accuracy with which S and X are estimated from the initial
replications.

For both the graphical and confidence interval method it is important to
obtain output data from more replications than are required in order to be
sure that the cumulative mean line has flattened and that the confidence
interval remains narrow. If there is more than one key response ,then the
number of replications should be selected on the basis of the response that
requires the most replications. Since the graphical and confidence interval
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methods use the output data from the model to draw a conclusion about the
number of replications required, they are preferred to the rule of thumb.

The confidence interval approach effectively builds on the graphical
method by not only enabling an inspection of the cumulative mean line, but
also providing a measure of accuracy. As a result, eventhough it requires
some more complex calculations, the recommended approach is to use
confidence intervals.

2 Variance reduction (antithetic variates)

One of the aim of variance reduction is to obtain an accurate estimate of
model performance while reducing the number of replications required.
Many methods have been proposed for variance reduction . In practice,
however, it would appear that only two methods are used frequently:

° Antithetic variates.
. Common random numbers

Antithetic variates, proposed by Tocher (1963), are the inverse of the
random numbers normally generated by a pseudo random number stream.
A pseudo random number stream {ul, u2, u3, .. .} is inverted to become
the stream {1 —ul, 1 —u2,1—u3,...}. If samples are taken from a normal
distribution, the use of antithetic variates would have the effect of changing
the sample given by the original variate to be on the equal and opposite side

of the mean of the normal distribution. In effect, the samples from the
original replication are reversed in the second (antithetic) replication. The
mean result from the two replications (original and antithetic) gives a better
estimate of model performance than from two completely independent
replications.

Although the use of antithetic variates is appealing, some words of caution
are :

. First, the reversal effect occurs because the normal distribution is
symmetrical. If the distribution is not symmetrical, the effect is less
marked.

. Second, simulation models normally consist of many random vents
that interact in a complex fashion. Therefore, it is difficult to predict
the effect of inverting the random streams and certainly it cannot be
guaranteed that an equal and opposite result will be obtained. Law and
Kelton (2000) suggest that the use of antithetic variates may actually
increase the variance in some circumstances, meaning that more
replications are required to obtain a good estimate of model
performance.

o A third issue is that, although the use of antithetic variates may enable
the mean performance of the model to be estimated from fewer
replications, the approach by nature restricts the variance in the
results. The results cannot, therefore, be used fully to understand the
likely spread of model performance (e.g. the standard deviation).



In practice, it is probably sensible to test the effect of using a mix of original
and antithetic variates. If it reduces the number of replications required for
a particular model then we can continue using the approach. If it does not,
then all that is lost is the time taken to test the idea.

3 Performing a single long run

Instead of using multiple replications, if a single long run is to be performed
an appropriate length of run needs to be determined. Robinson (1995)
describes a graphical method for determining the run-length of a single long
run with the aim of ensuring that the results are sufficiently accurate.

Initially, three replications are performed with the model. These should be
run for longer than the anticipated run-length. An initial estimate could be
made using Banks et al.’s (2001) rule of thumb that the run-length should
be at least 10 times the length of the warm-up period .Time-series data are
generated for the key output data and then cumulative means are calculated
for each of the replications. The cumulative meansare plotted on a graph.
As the run-length increases, it is expected that the cumulative means of the
three replications will converge. If the replications were run for an infinite

period, they would produce exactly the same result! The level of
convergence is calculated as follows:

C— Max(?.'l s 1_1 . ?{3) — M‘-”(?fl > }_3 ’ ?"-1’;]
T Min(Y;, Y. Y3)

where:

= convergence at period i

C;

= cumulative mean of output data at period i for replication j

The run-length is selected as the point where the convergence is seen as
acceptable. This might be at a level of less than 5%. Because of variations
in the output data the convergence may temporarily increase with a longer
run, particularly when there are only a few observations. It is important,
therefore, that the convergence value is not only within an acceptable level,
but that it is also fairly steady at the selected run-length. If an acceptable
and steady value is not obtained with the output data generated, the run-
length should be increased.

It is also recommended that histograms are drawn and compared for the
output data from each of the replications. If the model run is sufficiently
long the distribution of the output data, as well as the mean, should be
reasonably similar.

4 Multiple replications versus long runs
For terminating simulations we need to perform multiple replications. For

non-terminating simulations, such as the user help desk model, there is an
option. The question is whether it is better to perform multiple replications
or long runs.The advantage of performing multiple replications is that
confidence intervals can easily be calculated, and they are an important
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measure of accuracy for simulation results. The disadvantage of multiple
replications is that if there is a warm-up period, it needs to be run for every
replication that is performed. This wastes valuable experimentation time.

On the other hand, with long runs, the warm-up period is only run once for
each experimental scenario. This saves time. Another advantage of long
runs is that the results probably appear more intuitive to the model user and
the clients, since most operations run week-on-week and they are not
constantly returned to the same starting state as with multiple replications.
It is not easy, however, to calculate confidence intervals from a single time-
series, since the data are likely to be correlated. The choice of which
approach to use depends upon their relative merits within the context of the
simulation study.

3.6 SUMMARY

In this chapter , we discussed a series of decisions that need to be taken
when performing simulation experiments. These are as follows:

o Determine the nature of the simulation model: terminating or non-
terminating.

o Determine the nature of the simulation model output: transient or
steady-state (steadystate cycle, shifting steady-state).

J Determine how to deal with initialization bias: warm-up period, initial
conditions or mixed warm-up and initial conditions. This is an issue
for both terminating and non-terminatingsimulations.

o Determine the amount of output data required: multiple replications
or long runs.For terminating simulations the only option is to perform
multiple replications. Either approach can be used for non-terminating
models.

3.7 EXERCISE

For the following simulation models identify the expected type of model
(terminating or non-terminating) and the nature of the simulation output
(transient, steady-state, steady-state cycle).

a) A model of a refrigerator manufacturing plant that aims to determine
plant throughput.

b) A model of a chemical plant that tests the production schedule for the
next week.

c) A model of a supermarket checkout that aims to determine customer
service levels over a typical day.

d) A model of a supermarket checkout that aims to determine customer
service levels during a busy period.

e) A model of a hospital emergency unit that aims to determine service
levels for patients.
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SEARCHING THE SOLUTION SPACE

Unit Structure :
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4.7.4 Independent Verification and Validation
Summary

Exercise

4.10 References

4.0 OBJECTIVES

The main objective of this chapter is to discourse procedures for searching
the solution space .There is a discussion on how the results from a
simulation experiment should be analysed. This provides an important
foundation for being able to compare alternative scenarios when searching
the solution space. The discussion then moves on to cover three key areas

in relation to searching the solution space:

The comparison of results from two or more different scenarios.

Methods for searching the solution space, covering informal methods,

experimental design, metamodelling and optimization.

Sensitivity analysis.



We will also concepts of verification and validation methods for model
testing. The discussion is split into four parts.

° First, the terms verification and validation are defined, and various
forms of verification and validation are described and set in the
context of the process of performing a simulation study.

. There is then a discussion on the difficulties that are encountered
when trying to perform verification and validation.

. Thirdly, some useful verification and validation methods are
described.

. Finally,there is a brief discussion on independent verification and
validation.

4.1 INTRODUCTION

In this chapter we move on to discuss the selection and comparison of
alternative scenarios in experimentation. This comprises of a search for a
solution to the real world problem being addressed by the simulation study.
It means finding the best scenario or the one which will satisfy the
requirements of clients’. This entire procedure is designated as searching
the solution space. The solution space is defined as the total range of
conditions under which the model might be run. Two precise terms are used
during the chapter.

. level for an experimental factor. For experimental factors quantitative
in nature (e.g. cycle times, arrival rates) the level is the value of the
factor and for qualitative factors (e.g. rules) the level is inferred as an
option.

. scenario, is a run of the simulation under a specific set of conditions,
that is, levels set for experimental factors. A scenario can be thought
of as a specific factor/level combination. By changing the level of one
or more experimental factors, the scenario is changed.

In the process of determining how well the model performance it reflects
the real world issue for verification and validation.Indeed verification and
validation intends to determine the accuracy with which the model predicts
the performance of the real system.

4.2 NATURE OF SIMULATION EXPERIMENT

There are various forms of Simulation experiments .In this section we
discuss two forms :

. Interactive and batch experimentation : this describes the means by
which the simulation runs are performed

. Comparing alternatives and search experimentation:this describes the
means by which the scenarios for experimentation are determined.
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1 Interactive and batch experimentation :

Interactive experimentation comprises inspecting the simulation run
and making changes to the model to see the effect. For example, while
watching the simulation, the model user might notice a bottleneck in
one area of the model. The capacity of that area could be increased
(e.g. faster cycle, more machines) and the model run continued to see
the effect of such a change. The aim here is to cultivate an
understanding of the model (and so the real system), its key problem
areas and recognize possible solutions. Such an approach is very
useful for facilitating group decision-making.

2 Batch experiments are achieved by setting the experimental factors
and leaving the model to run for a predefined run-length (or to a
specific event) and for a set number of replications. This needs no
communication from the model user and so the display is usually
switched off. This also improves the run-speed of the model. The aim
here is to run the simulation for sufficient time in order to acquire
statistically significant results. The run-length (including a warm-up
period) and the number of replications are determined using methods
such as those described in Chapter 3.

There are a restricted number of scenarios to be compared when comparing
alternatives. These scenarios are frequently known at the start of the
simulation study, for example, there may be three alternative factory
layouts. On other occasions the scenarios arise as the simulation study
progresses. The number of scenarios (the solution space) is often small,
although there are occasions when a large number exist.

In search experimentation there are no predefined scenarios. As an
alternative, one or more experimental factors are varied till a target or
optimal level is reached. For instance,the aim might be to reach a target
throughput or to achieve an optimum level of customer service by balancing
the cost of resources with the cost of lost custom. For this type of

experimentation there either needs to be a clearly defined target, normally
expressed in the objectives of the project, or a well defined function (e.g.
cost or profit) to be optimized.

4.3 ANALYSIS OF RESULTS FROM A SINGLE
SCENARIO

In order to decide the performance of the model, Simulation experiments
are achieved. This is measured in terms of values of the responses. For
each response two measures are generally of interest:

»  The average (or point estimate) : Mean is commonly used to measure
the average level of a response.It would be possible to obtain an exact
value of the mean for each response if a simulation could be run for
an infinite amount of time. Since this is not practically possible, we
must depend on upon simulation runs which provide a sample of



results. Since simulation experiments provide only a sample of output
data it is important that a confidence interval for each mean is stated.
A confidence interval delivers information on the range within which
the population mean (obtained from an infinite run-length) is expected
to lie. It is, therefore, the primary method for reporting the mean in
simulation studies. It would be beneficial to be able to construct a
confidence interval for the output data since single long runs have a
number of advantages over performing multiple replications. Various

methods have been proposed for accomplishing this:
Batch means method

Overlapping batch means method
Regenerative method
Standardized time-series method
Spectral estimation method
Autoregressive method

We will discuss only batch method here.

In the batch mean method, only one simulation run is executed. After
deleting the warm up period, the remainder of the run is divided
into k batches, with each batch average representing a single
observation In the batch means method the time-series of output data

(Y1, Y2, ..., Yn) is divided into k batches of length b, such that the mean of

each batch is calculated as follows:

The batches can be assumed to be independent of each other if the batch
size is sufficiently large. In this case the confidence interval can be

h
— 1
Yi(b) = b ZYH—IJP:-H
=1

where:

Y,(b) = batch means of length b

constructed in usual manner as :

R S
Cl= X:l:tj\._l afl— =

where:

S = standard deviation of the batch means
X = mean of the individual data

ti_1.«/2 = value from Student’s t-distribution with k — 1 degree of freedom and a
' significance level of a/2
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Simulation and Modeling The primary issue with this method is determining the batch size. Numerous
methods have been proposed, but not any seems to be satisfactory.

o Schmeiser (1982) proposes that the time-series should not be split into
more than 30 batches. He found that the accuracy of the confidence
interval does not improve greatly by having more batches.He also
recommends that there should be no fewer than 10 batches, since this
also affects the accuracy of the interval.

. Fishman (1978) recommends a process based on the von Neumann
(1941) test for correlation. The batch size is doubled until the null
hypothesis that there is no correlation in the batch means is accepted.
An advantage of the von Neumann test is that it can be functional to
small sample sizes (as few as k = 8 batches).

o Beyond Schmeiser and Fishman, many other measures have been
proposed for determining the batch size. For instance, Banks et al.
(2001) propose a four-step method and Hoover and Perry (1990)
outline an approach that uses the runs test to check for independence.

Alternative measure of average performance is the median and
quantiles estimation. In other words the level of performance can be
achieved with a given probability. The median is simply the 0.5
quantile, and the upper and lower quartiles the 0.25 and 0.75 quantiles
respectively

»  The variability : An average does not provide a complete depiction of
model performance. We may have instances where two different data
have the same mean (and indeed mode), but the variability is much
greater in the one data set. Majorly we prefer a lower levelof
variability since it is easier to match resources to the levels of demand.
Apart from creating histograms of the output data, useful measures of
variability are the minimum, maximum and standard deviation. One
needs to take care of outliers when stating the minimum and
maximum, else these measures may be ambiguous. For a median,
quartiles and more generally quantiles provide a measure of
variability. Time-series plots are also significant, since they display
the form of variability over time.

4.4 COMPARING ALTERNATIVES

When matching alternative situations the model user must be capable to
determine whether one alternative is improved than another. Following
factors need to be considered:

»  What is the standard deviation of the mean daily throughput for the
two situations?

»  How many replications (or batches) were used to generate the results?

If the data have been generated from only a few replications and there
is a lot of variation in the results, this gives little confidence that the
difference is significant. However, if many replications have been
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executed and the standard deviation is low, there can be more
confidence that the difference is real.

A realistic method would be to deliberate all three factors

the size of the difference,
the standard deviation and
the number of replications

Then make a decision whether the difference in the results is significant. A
more difficult approach depend on on developing confidence intervals for
the difference between the results.

We will now discuss how to compare scenarious .Following are some cases:

1

Comparison of two scenarios

Supposing that common random numbers are being used in the
model a confidence interval for the difference between the results
from two scenarios can be calculated as follows :

_ — S
Cl=D+ [rl—l.uf_fl%
Z(Xl} 7XJ)
D==
B n
> Xy — Xy - D)
=1
Sp= |-
D n—1

where:

D = mean difference between scenario 1 (X;) and scenario 2 (X3)
Xj = result from scenario 1 and replication j
X3j = result from scenario 2 and replication j
Sp = standard deviation of the differences
n = number of replications performed (same for both scenarios)
ta1.a/2 = value from Student’s t-distribution with n—1 degree of freedom and a
significance level of /2

This formula is essentially the same as the confidence interval formula
given earlier in Section except that it uses a single set of values the rather
than the difference between two sets of values .The subsequent confidence
interval can lead to one of three outcomes as follows :

a)

b)

The confidence interval is completely to the left of zero. It can be
concluded, with the specified level of confidence (normally 95%),
that the result for scenario 1 is less than the result for scenario 2.

The confidence interval includes zero. It can be concluded, with the
specified level of confidence (normally 95%), that the result for
scenario 1 is not significantly different from the result for scenario 2.
The confidence interval is completely to the right of zero. It can be
concluded, with the specified level of confidence (normally 95%),
that the result for scenario 1 is greater than the result for scenario 2.
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In order to identify the statistical significance of a difference in the
results from two scenarios a paired-t confidence interval can be used.

Comparison of many scenarios :

To enable more than two scenarios to be compared at once,the paired-
t confidence interval can be extended by use of the Bonferroni
inequality. This states that if we wish to make ¢ confidence interval
statements with an overall significance level of a, the individual
confidence intervals should be formed with a significance level of a/c.

For example, if 10 confidence intervals are to be formed for
comparison and an overall significance level of 10% (90%
confidence) is required, each confidence interval should be calculated
with a significance level of 1% (99% confidence).

Choosing the best scenario(s) :

Apart from comparing scenarios, a group of scenarios are of much
interest. At the simplest level this can be achieved by inspecting the
mean results for each scenario. Also , merely comparing point
estimates does not take explain the standard deviation of the results or
the number of replications accomplished. Hence it is better to refer
to confidence intervals.

Beyond comparing means and using confidence intervals for
differences, there are statistical methods for choosing the best
scenario known as ranking and selection methods.

In this section our discussion is centred on identifying the statistically
best scenario. The model user and clients need to discuss the practical
issues surrounding the decision to determine whether the statistically
best scenario is indeed the best decision.

4.5 SEARCH EXPERIMENTATION

Since there is the prospective to have many scenarios (factor/level
combinations) in search experimentation, very often it is not possible to
simulate every single scenario in the time available in order to determine
which meet the target required or provide the optimum result. Subsequently,
procedures need to be established for improving the efficiency of the
experimentation process. There are three methods for accomplishing this:

1

Experimental Design: identify the experimental factors that are most
likely to lead to significant improvements, thereby reducing the total
factor/level combinations to be analysed.

Metamodels: fitting a model to the simulation output (a model of a
model). Because the fitted model runs much faster than the
simulation, many more factor/level combinations can be investigated

Optimization: performing an efficient search of the factor/level
combinations, trying to identify the optimum combination There is
much written on these approaches and each provides a fertile area for
continued research.



Though these methods are described as separate topics, it must be recalled
that they overlap with one another and that the approaches can be used in
combination during experimentation. Before discussing the formal
methods to carry out search investigation let s discuss some informal
approaches.

4.5.1 Informal Approaches to Search Experimentation

Many simulation model users do not have the essential skills and simulation
software usually does not provide ample support for search
experimentation, with the exception of optimization .In such cases ,
informal approaches can be quite operative and they also have the advantage
that the model user is closely involved with the selection of scenarios.

Following are some informal approaches to search experimentation.These
are classified under three headings that relate closely to those listed above:

1 Identifying important experimental factors (similar to experimental
design):
There are three ways in which the importance of an experimental
factor can be identified:

a)  Data Analysis: by analysing the data in a model it is sometimes
possible to draw conclusions about the likely impact of a change
to an experimental factor.

b)  Expert Knowledge: subject matter experts, for example,
operations staff, often have a good understanding of the system
and the factors that are likely to have greatest impact.

c) Preliminary Experimentation: varying the levels of

experimental factors and execuing the model to see the effect.
If used with caution, Interactive experimentation may be helpful
in this respect, although it is important to perform batch
experiments to test fully the effect of a change to an
experimental factor.
An advantage of Data analysis and expert knowledge as
compared preliminary experimentation is that they require less
time. However, Preliminary experimentation, delivers a more
detailed means for inspecting the effect of a change to an
experimental factor.

2 Developing an understanding of the solution space (similar to

metamodelling)

It is often possible to form an opinion by simulating a limited number
of scenarios (factor/level combinations) as to the likely outcome of
other scenarios without having to run the simulation .1t may be likely
to identify those scenarios that are possible to yield the anticipated
result and those that are unlikely to do so. Through this process the
model user forms an understanding of the solution space.

3 Searching factor/level combinations efficiently (similar to
optimization)

Searching the Solution Space
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The model user should recognize factor changes that have the utmost
influence in improving the simulation result or moving the simulation
result towards the wanted objective. The user can then ponder on
continuing to change those experimental factors in the direction of the
improvement. For instance, if the addition of service personnel leads
to the greatest improvement, then further service personnel could be
added.

An additional apprehension is recognizing a scenario that appears optimal
when an extensive search would disclose a better result. This can only be
handled by jumping to quite different factor/level combinations to
understand if there is a substantial enhancement.

4.5.2 Experimental Design

Experimental design acts as a method of recognizing important
experimental factors, that .These are those factors to which changes are
most likely to produce the desired result. It is a formal method for carrying
out the preliminary experimentation As such,experimental design can be
valuable, mainly in the early stages of experimentation, for recognizing
scenarios that should be simulated.

2k factorial designs

One approach to experimental design is to adopt a 2k factorial design, where
k is the number of experimental factors as described by Law and Kelton
(2000)

If k number of variables/factors are considered to determine/screen the
important ones, the total number of treatment combinations for a k number
of factors can be calculated as in Equation given below :

Therefore, this method is known as the 2X design of experiments.

The main advantage of this methd is it helps you to screen out factors
strongly influencing your response variable from those which are not.

However there are some restrictions in using 2* factorial designs as follows:

1. If interaction effects exist then the interpretation of the main effects
becomes more difficult.

2. It is precarious to extrapolate the findings of a 2% factorial design
outside the range of the levels used in the simulation runs.

3. Because the approach interpolates between results, a linear model is
assumed effectively.

Some other methods of experimental design are :

o Fractional factorial designs which are applied when there are too
many factors to enable full experimentation with every factor/level
combination.



. Analysis of variance (ANOVA) provides a more rigorous means for
identifying the effect of changes to factors. It involves a series of
hypothesis tests in which it is determined whether changes to the
experimental factors have an effect on the response.

4.5.3 Metamodelling

As the name indicates a metamodel is a model of a model, or a model of
the simulation output. Because the metamodel is usually an analytical
model it runs much faster than the simulation. It is, therefore, probable to
investigate many more scenarios with a metamodel than with the simulation
itself. The disadvantage is that the metamodel is an approximation of the
simulation output and so the results it provides are not precise. There is also
the overhead of creating the metamodel.

Once the metamodel is fitted it is used for continued experimentation in
place of the simulation. In doing so it must be recollected that the
metamodel is only an approximation.It should only be used to identify
candidate scenarios, which will be then executed in the full simulation
model. It is also unsafe to extrapolate results from the metamodel outside
the range of the factor/level combinations used to create the model.

4.5.4 Optimization

The main aim in simulation optimization is to find the combination of
factor/level that gives the finest value for a response, that is the maximum
or minimum value. The problem is similar to standard mathematical
optimization methods. There is some objective function to be optimized,
typically, cost, profit or customer service. Then there is a set of decision
variables that can be changed; in simulation these are the experimental
factors. Finally, there are a series of constraints within which the decision
variables can be changed; this is expressed in terms of the range within
which the experimental factors can be altered.

The difference between two optimizations is that there is no algorithm for
guaranteeing an optimum solution. One standard approach to use heuristic

search methods . The difficulty,though, is that a heuristic search requires the
simulation to be run, which makes it a time consuming approach.

Many simulation software dealers deliver optimization packages for their
software.The majority of these use heuristic search approaches and in
particular a set of methods known as meta-heuristics, like simulated
annealing, genetic algorithms and tabu search (Reeves 1995; Debuse et al.
1999).

But none of the optimization packages can assure that an optimum solution
will be found.

4.6 SENSITIVITY ANALYSIS

Sensitivity analysis determines how different values of an independent
variable affect a particular dependent variable under a given set of
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assumptions. This model is also referred to as a what-if or simulation
analysis.

In other words, sensitivity analyses study how various sources of
uncertainty in a mathematical model contribute to the model's overall
uncertainty. In sensitivity analysis the consequences of changes in model
inputs are assessed. In this framework model inputs are inferred more
generally than just experimental factors and include all model data. The
sensitivity analysis is as shown in figure :

Response sensitive to input

T

Response

’\

Response insensitive to input

I I I
1-10% ! 1+10%

Input data

Figure 1 : Sensitivity Analysis
The input (1) is varied, the simulation run and the effect on the response is
measured. If there is a significant shift in the response (the gradient is steep),
then the response is sensitive to the change in the input. If there is little
change (the gradient is shallow), then the response is insensitive to the
change.

Sensitivity analysis is beneficial in three main areas:

o Assessing the effect of uncertainties in the data.

. Understanding how variations to the experimental factors affect the
responses.

o Assessing the robustness of the solution.

The key method to performing sensitivity analysis is to vary the model
inputs, run the simulation and record the change in the responses. This can
be a very time consuming process, particularly if there are many model
inputs. Hence , sensitivity analysis should be limited to a few key inputs,
which might be identified as those about which there is greatest uncertainty
and which it is believed have the greatest impact on the response. In addition
to this, experimental design and metamodelling methods can be beneficial
in helping to achieve and speed up sensitivity analysis (Kleijnen 1998;
Noordegraaf et al. 2003). Perturbation analysis tries to predict the
sensitivity of the results from a single run of a simulation model
(Glasserman 1991). Because the simulation does not have to be run
repeatedly this should save time.



4.7 VERIFICATION, VALIDATION AND CONFIDENCE

Verification and validation of computer simulation models is carried out
during the development of asimulation model with the final goal of
producing an accurate and credible model.Verification and validation
intends to determine the accuracy with which the model predicts the
performance of the real system.

4.7.1 Definition

Verification is the process of guaranteeing that the model design
(conceptual model) has been converted into a computer model with
sufficient accuracy (Davis 1992). On the other hand ,Validation is the
procedure of ensuring that the model is sufficiently accurate for the purpose
at hand (Carson 1986).

There are two main concepts in validation:

. sufficient accuracy and
. models that are constructed for a specific purpose.

The main aim in verification and validation is to guarantee that the model
is adequately accurate. Additionally, this accuracy is with mention to the

purpose for which the model is to be used. As a result, the purpose, or
objectives, of a model should be known before it can be validated. This
purpose may have been determined at the commencement of the simulation
study, being expressed through the objectives or it may be an alternative use
for an existing model.

Concepts of validity and accuracy are related but are separate.While
accuracy is measured on a scale of zero to 100%,validity is a binary
decision.

Various types of validation can be defined as follows:

. Conceptual Model Validation: Finding that the content, assumptions
and simplifications of the proposed model are sufficiently accurate for
the purpose at hand.

. Data Validation: determining that the contextual data and the data
required for model realization and validation are sufficiently accurate
for the purpose at hand.

. White-Box Validation: determining that the essential parts of the
computer model signify the corresponding real world elements with
sufficient accuracy for the purpose at hand.

o Black-Box Validation: determining that the overall model represents
the real world with sufficient accuracy for the purpose at hand. This
is an overall, or macro, check of the model’s operation.
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Experimentation Validation: determining that the experimental
procedures accepted are providing results that are satisfactorily
accurate for the purpose at hand.

Solution Validation: determining that the results obtained from the
model of the proposed solution are sufficiently accurate for the
purpose at hand. Similar to black-box validation in that it involves a
comparison with the real world. The difference is that only compares
the final model of the proposed solution to the implemented solution.

verification and validation is a continuous process that is executed
throughout the life-cycle of a simulation study. Just as modelling is
an iterative process, so too is verification and validation.

At an primary stage in project of simulation a conceptual model is
established. Here the model should be validated.

As the project evolves the conceptual model is possibly revised as the
understanding of the problem and the modelling requirements change.

As a result, the conceptual model also needs to be revalidated.

-While the conceptual model is being transformed into a computer
model, the constituent parts of the model should be continuously
verified. Similarly, the details of the model should be checked against
the real world throughout model coding (white-box validation).
Black-box validation requires a completed model, since it makes little
sense to compare the overall model against the real world until it is
complete.

The identification of model errors and constant changes to the
conceptual model demands model revisions and therefore further
black-box validation.

4.7.2 The Dfficulties Of Verification And Validation

Before we discusse precise methods of verification and validation it is
important to know that there are a number of problems that result when we

try to validate a model.

There is no such thing as general validity

o A model is only validated with respect to its purpose. It cannot
be expected that a model that is valid for one purpose is also
valid for another.

There may be no real world to compare against

° Considerable validation needs a comparison of the model to the real
system. There is no real world to use for comparison. Even if the
model is of an existing system, its purpose is to investigate
alternative operating practices, for which again no real world exists.
The model may be shown to be valid when it is representing the
existing operation, but this does not guarantee that it is valid once it
represents some change to the system.



Which real world?

o  Different people have different interpretations of the real world,
as described by Weltanschauung or world views by Checkland
(1981). An employee in a bank may see the bank as a means for
earning money, while a customer may see it as a means for
safely storingmoney, or as a means for borrowing money. This
presents a problem when validating models. If people have
different world views,which interpretation(s) should be used for
developing and validating a model? A model that is valid to one
person may not be valid to another.

Often the real world data are inaccurate

o  Validation often involves a comparison of some facet of the
model, for instance throughput,against real world data. The
model is run under the same conditions as the real world to see
if it performs in a similar manner. There are two difficulties that
arise with this procedure.

First, the real world data may not be accurate. Indeed, the purpose of
data validation is to determine the accuracy of the data that are being
used. If the data are not accurate,however, this creates problems in
determining whether a model’s results are correct.

Secondly, even if ‘‘accurate’” real world data do exist, it must be
remembered that these are only a sample, which in itself creates
inaccuracy. For instance, data may have been collected on the
throughput of a production facility over a 10-week period.

There is not enough time to verify and validate everything

o  There is purely not enough time to verify and validate every
aspect of a model (Balci 1997). This is a problem that affects
both verification and validation.The modeller’s job is to ensure
that as much of the model is verified and validated as possible,
both in terms of the model details (conceptual model validity,
verification, whitebox validation and data validation), the
overall validity (black-box valid-ation) and the experimental
procedures (experimentation validation).

Confidence not validity

. Though, in theory, a model is either valid or it is not, proving this in
practice is a very different matter. It is not possible to prove that a
model is valid. Instead, it is only imaginable to think in terms of the
confidence that can be placed in a model. The process of verification
and validation is not one of trying to demonstrate that the model is
correct, but is in fact a process of trying to prove that the model is
incorrect.
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4.7.3 The Methods uf Verification and Validation

Following are some useful methods of verification and validation existing
to simulation modellers.

1 Conceptual model validation

For validating a conceptual model there are no official methods. The project
specification is the major means available for determining what confidence
should be placed in the model. The specification should be distributed
among those who have a detailed knowledge of the system and feedback
must be obtained on whether the model is appropriate.lt is also useful that
the modeller and the clients together assess the assumptions and
simplifications for the level of confidence that can be placed in them and
their probable impact on the accuracy of the model. Those assumptions and
simplifications about which there is little confidence, and which it is
believed have a high impact, need to be addressed. One approach is to
eliminate them by altering the model or investigating the real system
further. lit is not possible to remove them, sensitivity analysis can be
performed later in the project to determine their impact.

2 Data validation

obviously data are possible source of inaccuracy in a simulation model and
can move a model from being sufficiently accurate to being invalid. Effort

should be made to ensure that the data are as accurate as possible. The data
should be analysed for inconsistencies and any cause for concern
investigated.

3 Verification and white-box validation

Although verification and white-box validation are conceptually different,
they are treated together here because they are both performed continuously
throughout model coding.

o Verification ensures that the model is true to the conceptual model,
while white-box validation ensures that the content of the model is
true to the real world (in this way it is an indirect form of conceptual
model validation).

o Verification can be performed by the modeller alone,comparing the
computer model with the conceptual model description. In the
meantime, whitebox validation requires the involvement of those
knowledgeable about the real world system.

. Whereas verification can be performed almost continuously during
model coding,white-box validation is performed less frequently since
it requires the involvement of more than just the modeller.

Various aspects of the model should be checked during model coding:
o Timings, e.g. cycle times, repair times and travel times.

o Control of elements, e.g. breakdown frequency and shift patterns.



. Control of flows, e.g. routing.
. Control logic, e.g. scheduling and stock replenishment.

o Distribution sampling, e.g. the samples obtained from an empirical
distribution.

Three methods of verification and white-box validation are :
. Checking the code

The modeller needs to read through the code to ensure that the right
data and logic have been entered. We can get someone else to read the
code, or to explain the code to someone else as a second check. If no
modelling experts are available, then most simulation software
vendors offer a help-desk service with which specific areas of code
could be discussed.

. Visual checks

The visual display of the model proves to be a powerful support for
verification and validation.By running the model and watching how
each element behaves both the logic of the model and the behaviour
against the real world can be checked. Various ideas in this approach
are :

" Stepping through the model event by event.

" Stopping the model, predicting what will happen next, running the
model on and checking what happens.

. Interactively setting up conditions to force certain events to take
place.

. Creating extreme conditions, such as a very high arrival rate, to
determine whether the model behaves as expected

. Isolating areas of the model so it runs faster, reducing the time to
perform thorough verification and validation.

. Explaining the model as it runs to those knowledgeable about the real
system in order to gain their opinion.

. Tracing the progress of an item through the model.
. Inspecting output reports

By reviewing the reports from a simulation run,comparison can be done of
the actual and expected results. In verification and white-box validation of
interest is the performance of the individual elements. Graphical reports of
samples from input distributions, for instance, machine repair times, are an
aid in checking that they are being modelled correctly. A report which may
be of some use is a ’trace’ of a simulation run.

4 Black-box validation

In black-box validation the complete behaviour of the model is considered.
There are two broad approaches to performing this form of validation.
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. The first is to compare the simulation model to the real world.
" The other is to make a comparison with another model.

The second approach is particularly useful when there are no real world data
to compare against.

5 Experimentation validation

Guaranteeing the accuracy of simulation experiments requires
consideration to the issues like initial transient effects, run-length, the
number of replications and sensitivity analysis. Also, the search of the
solution space should be sufficient to obtain an adequate understanding and
identify appropriate solutions.

6 Solution validation

The goal of all modelling and verification and validation is to try and assure
the validity of the final solution. Once implemented, it should be possible
to validate the implemented solution against the model’s results. This is
similar in concept to the comparisons with the real world performed in
black-box validation, except that the comparison is between the final model
of the proposed solution and the implemented solution.

4.7.4 Independent Verification, Validation

Independent verification and validation (IV&V) or verification, validation
and accreditation (VV&A) includes an independent third party whose aim
IS to determine whether a model is suitable for a particular use.

Gass (1983) defines model assessment (or evaluation) as ‘‘a process by
which interested parties (who were not involved in a model’s origins,
development and implementation) can determine, with some level of
confidence, whether or not the model’s results can be used in decision-
making’’. He considers that model valuation is essential in three
circumstances:

" When the decision-makers are far removed from the process of
developing the model.

" When the model is to be applied to a new set of situations other than
that originally planned.

" Even if the decision-makers work closely with the analysts during
model development, it is unlikely that they have the necessary
knowledge and skills to evaluate the model.

Typically, independent verification and validation is only carried out for
large-scale military and public policy models, probably because the costs of
the process are prohibitive for most manufacturing and service sector
projects which tend to be smaller in scale (Cochran et al.1995). In 1977,
Gass suggests that in selecting a model for major evaluation it should have
involved an expenditure of over $250,000 and more than five person-years

of effort (Gass 1977). Even for large-scale models, independent verification
and validation is not always common practice (Arthur and Nance 1996).



A complete range of procedures for independently assessing simulation
models have been planned over the years by several authors .Most of this
criterias involve model verification and validation, although other factors
such as documentation and training are also considered to be important. For
example Gass and Joel (1981) use seven criteria:

. Model definition

. Model structure

. Model data

" Computer model verification
. Model validation

" Model usability

" Model pedigree

For each of the criteria either a subjective score is given (e.g. on a scale of
1-5) or a set of qualitative statements is made. Where subjective scores are
given, then some overall score can be calculated, possibly taking into
account the importance of each criteria (Gass and Joel 1981). The overall
score indicates the level of confidence that can be placed in the model for
its intended purpose. Balci et al. (2002) describe software that aids the
evaluation process.

4.8 SUMMARY

In this chapter we discussed how simulation experiments are performed
and how the results should be reported. Methods for comparing alternative
scenarios are described and approaches for searching the solution space are
discussed. Some of the key areas and methods that are identified are The
nature of simulation experimentation, The analysis of results,Comparison of
alternatives,Informal search experimentation,Formal search
experimentation and Sensitivity analysis .The experimental methods
described focus on finding a solution and on the statistical significance of
the results. The proper use of experimental methods, if used together with
these wider considerations, must only enhance this process.

Model verification and validation is concerned with creating enough
confidence in a model for the results to be accepted. This is done by trying
to prove that the model is incorrect. The more tests that are performed in
which it cannot be proved that the model is incorrect, the more confidence
in the model is increased. For verification and validation the general rule is:
the more testing the better.

Lastly, the modeller should recollect that the approval of a simulation study
and its results does not depend exclusively on the validity of the model.
Verification and validation assures (content) quality in the sense that the
model conforms to the clients’ technical requirements for a model and a set
of results that are sufficiently accurate
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4.9 EXERCISE

2
3
4.
5

Compare and contrast the difficulties that might be encountered in
validating a simulation model of:

a) An existing manufacturing plant

b) A unique construction project

Carry out some verification and validation tests with the bank model.
Explain nature of simulation

Explain verificationand validation methods

Write a note on sensitivity analysis.
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MODELING AND SIMULATION
MODELLING: PART 1

Unit Structure :

5.1 Introduction:

5.2 Objectives:

5.3 Types of models

5.4  Application of simulation modeling
5.5 Level of abstraction

5.6 Simulation Modeling Methods
5.7 System Dynamics

5.8 Discrete Event Modeling

5.9 Conclusion

5.10 Practice Question

5.11 References

5.1 INTRODUCTION:

Simulation in general is to pretend that one deals with a real thing while
really working with an imitation. In operations research the imitation is a
computer model of the simulated reality. A flight simulator on a PC is also
a computer model of some aspects of the flight: it shows on the screen the
controls and what the "pilot" (the youngster who operates it) is supposed to
see from the "cockpit” (his armchair).

1 Gain greater understanding of a process
() Identify problem areas or bottlenecks in processes

(1 Evaluate effect of systems or process changes such as demand,
resources, supply, and constraints

(1 ldentify actions needed upstream or downstream relative to a given
operation, organization, or activity to either improve or mitigate
processes or events

[0 Evaluate impact of changes in policy prior to implementation

Why to use models? To fly a simulator is safer and cheaper than the real
airplane. For precisely this reason, models are used in industry commerce
and military: it is very costly, dangerous and often impossible to make
experiments with real systems. Provided that models are adequate
descriptions of reality (they are valid), experimenting with them can save
money, suffering and even time.
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By method in simulation modeling, we mean a general framework for
mapping a real-world system to its model. A method suggests a type of
language, or "terms and conditions™ for model building. The choice of
method should be based on the system being modeled and the purpose of
the modeling — though often it is most heavily influenced by the background
or available tool set of the modeler. At a higher level, it is desirable that the
engine supports:

. A large number of concurrent activities, including their dynamic
creation and destruction.

. Correct handling of multiple instantaneous events, in particular
deterministic and random execution. This is important for
synchronous models.

. Networks and communication.

. 2D, 3D, and geographical space, and space-related functionality.

5.2 OBJECTIVES:

(1 Tounderstand different modelling techniques used in simulation
(1 Comparative study of different models

[0 To learn important aspects of model building

53 TYPES OF MODELS: ANALYTICAL VS
SIMULATION MODELING

There are many different types of models and associated modeling
languages to address different aspects of a system and different types of
systems. Since different models serve different purposes, a classification
of models can be useful for selecting the right type of model for the intended
purpose and scope.

An analytical model describes mathematical relationships, such as
differential equations that support quantifiable analysis about the system
parameters. Analytical models can be further classified into dynamic and
static models. Dynamic models describe the time-varying state of a system,
whereas static models perform computations that do not represent the time-
varying state of a system. A dynamic model may represent the performance
of a system, such as the aircraft position, velocity, acceleration, and fuel
consumption over time. A static model may represent the mass properties
estimate or reliability prediction of a system or component.

The term simulation, or more specifically computer simulation, refers to
a method for implementing a model over time. The computer simulation
includes the analytical model which is represented in executable code,
the input conditions and other input data, and the computing infrastructure.
The computing infrastructure includes the computational engine needed to
execute the model, as well as input and output devices. The great variety



of approaches to computer simulation is apparent from the choices that the Modeling and Simulation
designer of a computer simulation must make, which include: Modelling: Part 1

. stochastic or deterministic;
. steady-state or dynamic;

. continuous or discrete; and
. local or distributed.

Other classifications of a simulation may depend on the type of model that
is being simulated. One example is an agent-based simulation that simulates
the interaction among autonomous agents to
predict complex emergent behavior (Barry 2009). There are many other
types of models that could be used to further classify simulations. In
general, simulations provide a means for analyzing complex dynamic
behavior of systems, software, hardware, people, and physical phenomena.

Simulations are often integrated with the actual hardware, software, and
operators of the system to evaluate how actual components and users of the
system perform in a simulated environment. Within the United States
defense community, it is common to refer to simulations as live, virtual, or
constructive, where live simulation refers to live operators operating real
systems, virtual simulation refers to live operators operating simulated
systems, and constructive simulations refers to simulated operators
operating with simulated systems. The virtual and constructive simulations
may also include actual system hardware and software in the loop as well
as stimulus from a real systems environment.

5.4 APPLICATION OF SIMULATION MODELING

Modelling & Simulation can be applied to the following areas — Military
applications, training &  support, designing  semiconductors,
telecommunications, civil engineering designs & presentations, and E-
business models.

Additionally, it is used to study the internal structure of a complex system
such as the biological system. It is used while optimizing the system design
such as routing algorithm, assembly line, etc. It is used to test new designs
and policies. It is used to verify analytic solutions. Some of the area of
application is as shown below:

Modelling in Engineering and Sciences

Applications of Simulation

Modelling and Simulation tools

Big Data Simulation and lIoT

High Performance Computing and Network Simulation

o 0~ w e

Artificial Intelligence and Machine Learning
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7. Choosing drilling projects for oil and natural gas

8.  Evaluating environmental impacts of a new highway or industrial
plant

9.  Setting stock levels to meet fluctuating demand at retail stores

10. Forecasting sales and production requirements for a new drug

11. Planning aircraft sorties and ship movements in the military

12. Planning for retirement, given expenses and investment performance
13. Deciding on reservations and overbooking policies for an airline

14. Selecting projects with uncertain payoffs in capital budgetin

5.5 LEVEL OF ABSTRACTION

Abstraction level of complex simulation models such as large
manufacturing systems is always a critical factor in simulation projects. It
not only helps define boundaries of a simulation model but also defines the
complexity and resource requirements for the model. Many a times a simple
looking model grows into a complex model because of incorrect choices in
abstraction level. Developing the model in stages or steps of abstraction is
sometimes a favored approach. In this paper we study and analyze ‘why' and
'how' these choices in abstraction level of a simulation model at various
stages in a project's life cycle results in answering the objective function
more precisely. Selection of abstraction levels should be based on project
objectives and should not purely depend on the system itself.

Stocks, flows Entities (agents), Agents, behavior
feedbacks . resources, operations e rules, interaction «
Advertising Choosing
Amvals >—» products
Loyalty (on umers
s-lcs

Price m Staff
ABSTRACT or MODEL
// "\\
( The Modeler
\ "\ Observation Bk

y

) 3 of System

The level of abstraction of a model determines the amount of information
that is contained in the model. The quantity of information in a model
decreases with the lowering levels of abstraction. Thus a ,low level
abstraction” model contains more information than a ,high level
abstraction” model. The significance of abstraction is further amplified by
pressures on both time and costs of projects and does not allow the use of a
,safe” abstraction level that would have more than required details in the



model. It hence becomes vital to model at the highest possible abstraction
level that does not compromise in any way on the accuracy of outputs or
ensuing decisions. That said, there is a need for models and modelers to be
flexible with abstraction levels during projects.

Selection of abstraction levels should be based on project objectives
and should not purely depend on the system itself

Modelers should note adopt a safe-bet approach of putting more detail
into the model than what is required. Models should be built at the
highest level of abstraction possible without compromising accuracy.

Analysis of high-level model results and TOC based tools can help in
identify areas for adding model fidelity

Changes to model efficiencies should be considered right from the
conceptual phases when moving to low abstraction level models

5.6 SIMULATION MODELING METHODS

A system can be classified into the following categories.

Discrete-Event Simulation Model — In this model, the state variable
values change only at some discrete points in time where the events
occur. Events will only occur at the defined activity time and delays.

Stochastic vs. Deterministic Systems — Stochastic systems are not
affected by randomness and their output is not a random variable,
whereas deterministic systems are affected by randomness and their
output is a random variable.

Static vs. Dynamic Simulation — Static simulation include models
which are not affected with time. For example: Monte Carlo Model.
Dynamic Simulation include models which are affected with time.

Discrete vs. Continuous Systems — Discrete system is affected by
the state variable changes at a discrete point of time. Its behavior is
depicted in the following graphical representation.

Notice problem in " .
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Verification Implementation
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Revision
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Step 1— Examine the problem. In this stage, we must understand the
problem and choose its classification accordingly, such as
deterministic or stochastic.

Step 2 — Design a model. In this stage, we have to perform the following
simple tasks which help us design a model —

. Collect data as per the system behavior and future requirements.

. Analyze the system features, its assumptions and necessary actions to
be taken to make the model successful.

. Determine the variable names, functions, its units, relationships, and
their applications used in the model.

. Solve the model using a suitable technique and verify the result using
verification methods. Next, validate the result.

. Prepare a report which includes results, interpretations, conclusion,
and suggestions.

Step 3 — Provide recommendations after completing the entire process
related to the model. It includes investment, resources, algorithms,
techniques, etc.

5.7 SYSTEM DYNAMICS

System dynamics is a method created in the mid-1950s by MIT Professor
Jay Forrester, whose original background was in science and engineering.
Forrester's idea was to use the laws of physics, in particular the laws of
electrical circuits, to describe and investigate the dynamics of economic
and, later on, social systems. The principles and the modeling language of
system dynamics were formed in the 1950s and early 1960s, and remain
unchanged today.

System dynamics is a method of studying dynamic systems. It suggests that
you should:

. Take an endogenous point of view. Model the system as a causally
closed structure that itself defines its behavior.

. Discover the feedback loops (circular causality) in the system.
Feedback loops are the heart of system dynamics.

. Identify stocks (accumulations) and the flows that affect them. Stocks
are the memory of the system, and sources of disequilibrium.

. See things from a certain perspective. Consider individual events and
decisions as "surface phenomena that ride on an underlying tide of
system structure and behavior.” Take a continuous view where events
and decisions are blurred.

To understand the essence of system dynamics, consider a shop with a
counterman serving the shop’s clients. The more people come to the shop
per hour, the longer the queue grows. You can build a discrete event model



that will give you the length of the queue as a function of the clients’ arrival
rate and the service time. However, in a real shop, as the queue grows
longer, some clients may decide not to join the queue, and instead leave the
shop. Others may decide to leave the queue after having waited longer than
they expected to. In other words, the length of the queue feeds back to
inhibit the rate of queue growth. The results of the "straightforward™” model
(sometimes called open-loop models in the system dynamics community),
will not be valid unless it addresses these circular causal dependencies. One
of the key advantages of the system dynamics approach is to readily and
elegantly identify such feedback loops and include them into the model.

Consider a company that starts selling a new consumer product. The
addressable market has a known size, which does not change over time.
Consumers are sensitive to both advertising and word of mouth. The
product has an unlimited lifetime and does not need replacement or repeated
purchases. A consumer needs only one product. We are to forecast the sales
dynamics.

We will start with identifying the key variables in our model, and will
iteratively draw causal loop diagrams. In a causal loop diagram, variables
are connected by arrows showing the causal influences among them, with
important feedback loops explicitly identified. In our system, one of the
variables is obviously Sales — the number of people who bought our product
per time unit, e.g. per week. The number of Potential Clients will be the
other variable. The bigger the market, the greater the sales; therefore, we
can draw a causal dependency from PotentialClients to Sales with positive
polarity. On the other hand, as potential clients buy the product, they stop
being potential clients, so there is another influence from Sales back to
PotentialClients, this time with negative polarity. The feedback loop we
have just created is a negative, or balancing feedback loop: it works for
reaching a certain goal. In our case, we ultimately will sell the product to all
potential clients, and both variables will become zero.

Potential C
Clients B Sales 0
+
Potential
Chents Sales
. Sales from Saies from Word
A, B, C: Causal loop diagrams of Mouth
\
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What determines the sales rate? According to our assumptions, consumers
are sensitive to ads and to what other consumers say. So, we will distinguish
between sales from advertising, and sales from word of mouth. We
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see Figure B.

Potential
glleerr‘\tl:. Sales Clients

Sales ‘Frnm Sales from Word

of Mouth
(B,

The SalesFromWordofMouth depend on the number of (hopefully happy)
owners of our product — our Clients. The number of clients grows with
Sales. We draw another feedback loop, this time positive, or reinforcing,

.+.

see Figure C.
@ Stock and flow diagram
Sales
Potential W Clients
Clients
Sales from Sales from Word
- Ad of Mouth +
P + A + "\ sales
Ad ~ | Fraction
Effectiveness Contact
Rate

While the causal loop diagram we have drawn shows variable
interdependencies and feedbacks, it misses the clear mathematical
interpretation, and therefore cannot be simulated directly. One of the things
that we need to do on our way to the mathematical model is to identify
stocks and flows among the variables in our system. Stocks are
accumulations, and characterize the state of the system. Flows are the rates
at which these system states change. Units of measure can help identify
92 stocks and flows. Stocks are usually quantities such as people, inventory,



money, and knowledge. Flows are measured in the same units per time
period; for example, clients per month, or dollars per year.

In our model, the stocks are PotentialClients and Clients, and the flow
between them is Sales. We can now draw a stock and flow diagram and
write equations for our model. The diagram is shown in Figure 2.2, D. The
equations behind that diagram are:

d(PotentialClients)
dt

d(Clients)
dt

Sales = SalesFromAd +SalesFromWordofMouth

The first two equations are differential equations. They define how the stock
values change over time. For example, the number of Clients grows at the
Sales rate. The third equation tells that the sales rate consists of two sources,
and those sources are independent. The equations for those sources,
however, are not clear from the causal loop diagram, and we need to make
more assumptions in order to define them.

= —Sales

= Sales

Underlying mathematics and simulation engine

Mathematically, a system dynamics model is a system of coupled,
nonlinear, first-order differential equations

d(X)
dt

where is a vector of stocks, is a set of parameters, and is a nonlinear vector-
valued function. Simulation of system dynamics models is done with
numerical methods that partition simulated time into discrete intervals of
length dt and step the system through time one dt at atime. X P F

=F(X,P)

While numerical methods may be very sophisticated in the modeling tools
used by natural scientists and engineers (especially the ones with the
adaptive variable time step), the numerical methods used in system
dynamics are simple, fixed-step methods: Euler and Runge-Kutta. In
addition to differential equations, the simulation engine must be able to
solve algebraic equations that appear in the models with algebraic loops.

Unlike discrete event and agent-based models, system dynamics models are
deterministic, unless stochastic elements are explicitly inserted into them.
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5.8 DISCRETE EVENT MODELING

Discrete event modeling is almost as old as system dynamics. In October
1961, IBM engineer Geoffrey Gordon introduced the first version of GPSS
(General Purpose Simulation System, originally Gordon's Programmable
Simulation System), which is considered to be the first method of software
implementation of discrete event modeling. These days, discrete event
modeling is supported by a large number of software tools, including
modern versions of GPSS itself.

The idea of discrete event modeling method is this: the modeler
considers the system being modeled as a process, i.e. a sequence of
operations being performed across entities.

The operations include delays, service by various resources, choosing the
process branch, splitting, combining, and some others. Since entities
compete for resources and can be delayed, queues are present in virtually
any discrete event model. The model is specified graphically as a process
flowchart, where blocks represent operations (there are textual languages as
well, but they are in the minority). The flowchart usually begins with
"source™ blocks that generate entities and inject them into the process, and
ends with "sink" blocks that remove entities from the model. This type of
diagram is familiar to the business world as a process diagram and is
ubiquitous in describing their process steps. This familiarity is one of the
reasons why discrete event modeling has been the most successful method
in penetrating the business community.

The entities (originally in GPSS they were called transactions) that are
flowing through the process flowchart, are actually agents. Agents may
represent clients, patients, phone calls, documents (physical and electronic),
parts, products, pallets, computer transactions, vehicles, tasks, projects, and
ideas.

Resources represent various staff, doctors, operators, workers, servers,
CPUs, computer memory, equipment, and transport.

Service times, as well as agent arrival times, are usually stochastic, drawn
from a probability distribution. Therefore, discrete event models are
stochastic themselves. This means that a model must be run for a certain
time, and/or needs a certain number of replications, before it produces a
meaningful output.

The typical output expected from a discrete event model is:
. Utilization of resources,

. Time spent in the system or its part by an agent,

. Waiting times,

. Queue lengths,

. System throughput,

. Bottlenecks,

. Cost of the agent processing and its structure.



Consider a bank with an ATM inside. The process in the bank is described
as follows:

([0 On average, 45 clients per hour enter the bank.

. Having entered the bank, half of the clients go to the ATM, and the
other half go straight to the cashiers.

. Usage of the ATM has a minimum duration of 1 minute, a maximum
of 4 minutes, and a most likely duration of 2 minutes.

00  Service with a cashier takes a minimum of 3 minutes and a maximum
of 20 minutes, with a most likely duration of 5 minutes.

. After using the ATM, 30% of the clients go to the cashiers. The others
exit the bank.

. There are 5 cashiers in the bank, and there is a single shared queue for
all the cashiers.

. After being served by a cashier, clients exit the bank.

We need to find out the:

. Utilization of cashiers,

. Average queue lengths, both to the ATM and to the cashiers, and the
. Distribution of time spent by a customer in the bank.

With this problem definition, building a discrete event model is more or less
a straightforward task. Clients obviously are agents, and the cashiers are
resources. The flowchart of the bank is shown in Figure 2.4. The block
ClientsArrive generates clients at the rate of 0.75 per minute (45 per hour).
Having appeared in the model, 50% of the clients go to the cashiers, and
50% to the ATM. The usage of the ATM is modeled by the Delay block
ServiceAtATM, preceded by the Queue block. Service at cashiers is
modeled by a pair of blocks: Service with triangularly distributed service
time and ResourcePool Cashiers with capacity 5. The flowchart ends with
the Sink block ClientsLeave.

The output data is generated as the model is running. Statistics are collected
at the blocks, as well as by the agents while they move through the process
flowchart. The data (for example, the cashiers’ utilization) can be observed
on-the-fly via inspect windows and is stored in the model execution logs,
which can be accessed after the model run is finished. Each agent (client)
measures time spent in the bank by making a timestamp at the entry and
then comparing it with the current time at the exit.

The mathematics behind discrete event simulation are based on discrete
time. The model clock is advanced only when something significant
happens in the model —namely, when an agent starts or finishes an
operation. Any change in the model is associated with those events;
continuous changes are approximated by instantaneous ones.

Example:

Most business processes can be described as a sequence of separate discrete
events. For example, a truck arrives at a warehouse, goes to an unloading
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gate, unloads, and then departs. To simulate this, discrete-event simulation
is often chosen.

Using discrete-event simulation modeling, the movement of a train from
point A to point B is modeled with two events, namely a departure and an
arrival. The actual movement of the train would be modeled as a time delay
between the departure and arrival events. These events and movement
between them can be smoothly animated.

Discrete-event simulation focuses on the processes in a system at a medium
level of abstraction. Typically, specific physical details, such as car
geometry or train acceleration, are not represented. Discrete-event
simulation modeling is widely used in the manufacturing, logistics, and
healthcare fields.

Example:
Three callers problem
Problem Definition:

Two lines services three callers. Each caller makes calls that are
exponentially distributed in length, with mean 1/. If both lines are in service
by two callers and the third one requests service, the third caller will be
blocked. A caller whose previous attempt to make a call was successful has
an exponentially distributed time before attempting the next call, with rate
,- A caller whose previous call attempt was blocked is impatient and tries to
call again at twice that rate (2,), also according to exponential distribution.
The callers make their calls independent of one another.

Define the following six states:

0 no calls in progress, 3 callers idle

1 call in progress, 2 callers idle

2 calls in progress, 1 caller idle

2 calls in progress, 1 caller impatient
1 call in progress, 1 caller impatient
O calls in progress, 1 caller impatient

MW=

The state transition diagram is
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5.9 CONCLUSION

Simulation and modelling is used to representing the system and its
environment, the simulation must provide efficient computational methods
for solving the equations. Simulations may be required to operate in real
time, particularly if there is an operator in the loop. Other simulations may
be required to operate much faster than real time and perform thousands of
simulation runs to provide statistically valid simulation results. Several
computational and other simulation methods are described in Simulation
Modeling and Analysis.

5.10 PRACTICE QUESTION

SR

8.

Why to use models in system study?

List the different types of Models.

Explain the area of application of Simulation.

What do you mean by level of abstraction in simulation? Explain.
Explain the Simulation Modelling Methods.

Write a short note on following classification of:

. Discrete-Event Simulation Model.

. Stochastic vs. Deterministic Systems.

. Static vs. Dynamic Simulation.

. Discrete vs. Continuous Systems

Write a short note on system dynamic method of modeling using
suitable example.

Demonstrate the use of discrete event simulation method.
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6.1 INTRODUCTION

Agent-based models (ABM) are used to analyze the influence of the
behavior of individual agents (farmers, households, consumers) on the
emergent properties of the system (e.g., landscape) in a dynamic way.
Agent-based modeling is a powerful simulation modeling technique that has
seen a number of applications in the last few years, including applications
to real-world business problems. After the basic principles of agent-based
simulation are briefly introduced, its four areas of application are discussed
by using real-world applications: flow simulation, organizational
simulation, market simulation, and diffusion simulation.

6.2 OBJECTIVES:

e To understand the working of Agent Based Models( ABM)
e To study the factors influencing the Model creation in ABM
e To study Dynamic System

6.3 AGENT BASED MODELING

6.3.1 Introduction to Agent

Agent-based modeling is a powerful simulation modeling technique that has
seen a number of applications in the last few years, including applications
to real-world business problems. After the basic principles of agent-based
simulation are briefly introduced, its four areas of application are discussed
by using real-world applications: flow simulation, organizational
simulation, market simulation, and diffusion simulation.

The purpose of agent-based models is to explain system-level properties
by the behaviour of interrelated individuals. An animal for instance is not
aware of any birth-rates at population-level. Actually, it will successfully
give birth to offspring, if it finds a mating partner at due time, if there is
enough food around the nest for feeding, etc. The behaviour of a
population thus ‘emerges’ in a self-organised manner from the behaviour
of individual animals during their life cycles and the interplay of these
individuals with other individuals. System-level properties like
population size, birth- and death rates are the result rather than the input.
Especially in the Life Sciences, agent-based modelling has gained
momentum for its close resemblance of living systems, where the core
units of an ecosystem are individual animals and plants.

For each category, one or several business applications are described and
analyzed.

Agent-based modeling is a more recent modeling method than system
dynamics or discrete event modeling. Until the early 2000s, agent-based
modeling was pretty much an academic topic. The adoption of agent-based
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modeling by simulation practitioners started in 2002-2003. It was triggered
by:

. Desire to get a deeper insight into systems that are not well-captured
by traditional modeling approaches;

. Advances in modeling technology coming from computer science,
namely object-oriented modeling, UML, and statecharts ;

. Rapid growth of the availability of CPU power and memory (agent-
based models are more demanding of both, compared to system
dynamics and discrete event models).

6.3.2 Agent-based modeling

Agent-based modeling suggests to the modeler yet another way of looking
at the system.

" You may not know how the system as a whole behaves, what are the
key variables and dependencies between them, or simply don’t see
that there is a process flow, but you may have some insight into how
the objects in the system behave individually. Therefore, you can start
building the model from the bottom up by identifying those objects
(agents) and defining their behaviors.

" Sometimes, you can connect the agents to each other and let them
interact; other times, you can put them in an environment, which may
have its own dynamics. The global behavior of the system then
emerges out of many (tens, hundreds, thousands, even millions)
concurrent individual behaviors.

There are no standard languages for agent-based modeling. The structure of
an agent-based model is created using graphical editors or scripts,
depending on the software. The behavior of agents is specified in many
different ways. Frequently, the agent has a notion of state, and its actions
and reactions depend on its state. In such cases, behavior is best defined
with statecharts. Sometimes, behavior is defined in the form of rules
executed upon special events. In many cases, the internal dynamics of the
agent can be best captured using system dynamics or discrete event
approach. In these cases, we can put a stock and flow diagram or a process
flowchart inside an agent. Similarly, processes outside of agents and the
dynamics of the environment where they live are often naturally modeled
using traditional methods. We find that a large percentage of agent-based
models, therefore, are multi-method models.

6.3.3 Time in agent based models

Time is sometimes handled as ‘just another dimension’. For many cases
this pragmatic view is a useful way to think about time. Analogous to the
spatial dimensions, the choice of scale and data model types are of
decisive importance. However, time has some peculiarities that we need
to think about and explicitly address during model design. Unlike space,
time has a direction and it is only one-dimensional. This makes the



adequate order of update routines and scheduling of processes an
important factor in the model design process. Finally, time often exhibits
a cyclic nature that is given by the day / night rhythm and seasonal
changes. Therefore, the state of the system a year ago may be more
relevant in predicting the upcoming change, than the state two months
ago.

There are four aspects in the representation of time that are important
from a modelling perspective:

. Temporal data models

. Temporal scale

. Update routines (synchronous / asynchronous)

. Scheduling (Process timing)

time

e = e B
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Equal interval ‘ticks’

Power demand

-.._ Add events

T T n R R R RN A jy/ s
Time of the day (hours) ‘& ¢¢ ; $ ¢# xu ‘ *

Continuous phenomenon discretised Event-triggered model

into hourly time steps

Time is a continuous phenomenon. Nevertheless, to represent time in a
digital model, time needs to be discretised. Strictly speaking, even
equation-based simulation models need to be discretised for computation.
However, the actual parameter value can be computed for any point in
time and we can think of these models as continuous models in the context
of simulation modelling. In rule-based models (cellular automata and
agent-based models) time is conceptualised in discrete time steps.

6.3.4 Space in agent based models

To design a simulation model, we need to think about how we want to
model spatial features. On the one side this depends on the phenomenon,
we are interested in. On the other side, aspects of performance need to be
considered. As GlScientists, we are familiar with the concepts of how to
represent geographic space in computer models. From the specific
perspective of simulation modelling, four aspects are of particular
importance:

. Spatial data models (vector, raster, graphs)
. Scale(s)

. Neighbourhood: Moore and more

. Boundaries: finite, infinite, toroidal
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6.3.5 Discrete space

A discrete space is one in which the state variable(s) change only at a
discrete set of points in time. The bank is an example of a discrete system:
The state variable, the number of customers in the bank, changes only when
a customer arrives or when the service provided a customer is completed
Eg. how the number of customers changes only at discrete points in time.

Discrete temporal phenomena are termed ‘events’. Events can happen
regularly, e.g. each morning the sun rises and thus triggers multiple
processes: flowers open, birds become active, etc. Such events are well
represented in classical cellular automata and agent-based models, where
time steps usually are assumed to be regular. However, events are often
irregularly paced, e.g. natural catastrophes. Such irregularity of events
can be addressed by a fine resolution of discrete steps, where there is only
a certain probability that an event happens. For systems that are strongly
governed by irregular events, it is probably more adequate to apply an
event-based approach, where events trigger the placement of later events
in a queue.

6.3.6 Continuous space movement in continuous space

A continuous system is one in which the state variable(s) change
continuously over time. An example is the head of water behind a dam.
During and for some time after a rain storm, water flows into the lake behind
the dam. Water is drawn from the dam for flood control and to make
electricity. Evaporation also decreases the water level. Eg. how the state
variable head of water behind the dam changes for this continuous system.

Continuous temporal phenomena describe an ongoing process, like
temperature change or tree growth. System dynamics are the classical
approach to model such phenomena. If we have a strong interest in how
the process operates in space, a cellular automaton approach is more
adequate. In this case, the continuous process needs to be broken down
into time steps that are small enough to adequately represent the dynamic
behaviour of the modelled process.

6.3.7 Communication between agents

Interaction is a key aspect in ABM. There is a plethora of definitions for the
concept of agent and most of them emphasize the fact that this kind of entity
should be able to interact with their environment and with other entities in
order to solve problems or simply reach their goals according to
coordination, cooperation or competition schemes. The essence of an ABM
is the fact that the global system dynamics emerges from the local behaviors
and interactions among its composing parts. Strictly speaking, for some
kind of ABM the global dynamics is just the sum of local behaviors and
interactions, so we cannot always speak of emergent behavior when we talk
about ABM. However the assumptions that underlie the design of an
interaction model (or the choice of an existing one for the design and
implementation of a specific application) are so important that they have a
deep impact on the definition of agents themselves (e.g. an interpreter of a



specific language, a perceiver of signals). Therefore it is almost an obvious
consequence that interaction mechanisms have a huge impact on the
modeling, design and development of applications based on a specific kind
of ABM, which in turn is based on a particular interaction model. It is thus
not a surprise that a significant part of the research that was carried out in
the agent area was focused on this aspect.

Agent interaction
Direct Indirect
Acquaintance . — \
a priori ACL hased Guided/mediated by -
artifacts Mediated by agents’

/ \ environment

Agent discovery Agent discovery
through middle agents through middle agents
and acquaintance models

6.3.10 Condition triggered events and transition in agents

Events (low-level constructs that allow to schedule one-time or recurrent
action) and statechart transitions are frequent elements of agent behavior.
Among other trigger types, both can be triggered by a condition —a Boolean
expression. If the model contains dynamic variables, all conditions of events
and statechart transitions are evaluated on each integration step, which
ensures the event or transition will occur exactly when the (continuously
changing) condition turns true. Here event waits on the Money stock to fall
below zero. Event and statechart can be located on the same level with the
SD, or in a different active object.

A transition is enabled if its source state is active and if any additional
enabling condition is true. Only an enabled transition can be executed.
Executing a transition changes the active state from the source state of the
transition to its destination state. In addition, some actions may be
performed.

[ input arrives ]

running Linput requested]l blocked I
i/

[ halt]

I terminated I C

A
ready [ dispatch ]
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6.4 BUILDING AGENTS BASED MODELS:

Macal and North suggest considering the following aspects when you
design an agent-based model:

1.

2
3
4.
5
6
7

Specific problem to be solved by the ABM

Design of agents and their static/dynamic attributes

Design of an environment and the way agents interact with it
Design of agents’ behaviors

Design of agents’ mutual interactions

Availability of data

Method of model validation

It is important to keep in mind that just building an arbitrary ABM and
obtaining results by simulation wouldn’t produce any scientifically
meaningful conclusion. In order for an ABM to be scientifically
meaningful, it has to be built and used in either of the following two
complementary approaches:

A

Build an ABM using model assumptions that are derived from
empirically observed phenomena, and then produce previously
unknown collective behaviors by simulation.

Build an ABM using hypothetical model assumptions, and then
reproduce empirically observed collective phenomena by simulation.

Described in one page, the process of building an agent-based model
includes answering the following questions:

1.

Which objects in the real system are important? These will be the
agents.

Are there any persistent (or partially persistent) relationships between
the real objects? Establish the corresponding links between the agents.

Is space important? If yes, choose the space model (GIS, continuous,
discrete) and place the agents in the space. If the agents are mobile,
set speeds, paths, etc.

Identify the important events in the agents’ life. These events may be
triggered from outside, or they may be internal events caused by the
agent's own dynamics.

Define the agents' behavior:

5.1. Does the agent just react to the external events? Use message
handling and function calls.

5.2. Does the agent have a notion of state? Use a statechart.

5.3. Does the agent have internal timing? Use events or timeout
transitions.



5.4. Isthere any process inside the agent? Draw a process flowchart.

5.5. Are there any continuous-time dynamics? Create a stock and
flow diagram inside the agent.

Do agents communicate? Use message sequence diagrams to design
communication/timing patterns.

What information does the agent keep? This will be the memory, or
state information, of the agent. Use variables and statechart states.

Is there any information, and/or dynamics, external to all agents and
shared by all agents? If yes, there will be a global part of the model
(the term "environment” is sometimes used instead).

What output are you looking for? Define the statistics collection at
both the individual and aggregate levels.

6.4.1 The problem statement,

The assumptions we make about the market are similar to ones of the
classical models of product/innovation diffusion, e.g. of Bass model with
discards and replacements. We will however consider two competing
products instead of one.

There are two alternative products A and B manufactured by different
(and competing) companies. The products are equivalent, i.e. can
replace each other. The product prices are equal and therefore do not
matter.

Consumers (there are Total Population = 1000 of them) initially are
not using any products but all are potentially interested (are potential
users). « Consumers are sensitive to advertizing and to word of mouth.

Advertizing generates the demand for a product among the potential
users. Advertizing Effectiveness = 0.011 is the percent of potential
users that become ready to buy a particular product (A or B) during a
day. Both companies do advertizing.

Consumers contact each other. A consumer contacts on average
a Contact Rate = 5 other people per day.

During those contacts the users of products may influence potential
users. If a user of e.g. A contacts a potential user, the latter will want
to buy A with probability Adoption Fraction = 0.015, same for B.

Any product discards in Discard Time = uniform(17,23) days and
generates the immediate need to buy a replacement of the same brand.

If a person wants to buy e.g. A, but A is not available for Maximum
Waiting Time = 2 days, he becomes ready to buy anything that is
available (A or B), same for B.

Each company (A and B) has its own supply chain that delivers
products to the end consumers. The supply chains are very simple and
work as follows:
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. The product can be purchased by a consumer only from the retailer
stock, initially holding a certain amount (Initial Retailer Stock = 100)
of product.

. The product is manufactured by a producer. A producer makes
Production Rate products per day, and this rate may vary, e.g. it can
be adjusted according to the demand (which is known to the producer)

T he finished products are delivered to the retailer within Delivery Time
= 2 days.

The output of the model should include the market shares for A and B, the
demand (i.e. the number of people who want to buy while the product(s) are
not available) and the inventory levels in the supply chains.

6.4.2 Phases of modeling,

One of the main objectives of ABM is to test, by experimental means, the
hypothesised mechanisms that bring about the macroscopic phenomenon
the researcher is interested in explaining.

In ABM these mechanisms are translated as the model microspecifications,
that is to say, the set of behavioural and simple rules that specify how the
agents behave and react to their local environment (which includes, of
course, other agents). Once the population of agents and the environment
are defined, the researcher can implement the microspecifications and run
the computer simulation in order to evaluate whether these rules bring about
or ‘generate’ the macro phenomenon of interest, over the simulated time.

In order to simplify the presentation, we have identified three major stages:
1) Specification and formalisation;

2) Modelling, verification and experimentation; and

3) Calibration and validation.

The first stage involves translating the theoretical hypothesis that explains
the social process of interest, usually expressed in natural languages, into
formal languages, using logics or mathematics. The second stage includes
the modelling itself, in which the researcher builds and verifies the model
by experimental means. The third step includes the calibration of the model
with empirical data and the consequent validation of it using appropriate
statistical tests.
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6.4.3 Assumptions,

Assumptions can be informed by data or theory, and outcomes at both the
individual and population levels can be compared with data statistically.
ABM allows enormous flexibility in assumptions, and agents can be
modeled at any level (or multiple levels) of scale. One of the main
advantages of agent-based simulation is the flexility in model design that it
allows. Basically, that means that the agent model can be formulated with
every level of detail the modeler want it to contain. Pedestrian simulation
may be based on reactive agents as well as agents with full spatial cognition
and more. An simulation of an ant colony may integrate detailed predator
models or just contain a probability for an ant to be killed outside the ant-
hill. one aspect that makes a good model is that it just contains necessary
assumptions. Every detail incorporated into a model means increasing the
number of assumptions that have to be justified and explained. The problem
is that everything is in principle possible and the decision about necessary
level of detail is not easy to answer. Modelers may fall in love with their
model enriching it step by step without stopping at the appropriate level.
Nevertheless, every assumption — every decision about a model detail — has
to be documented and justified, why this part is elaborated in this particular
way.

6.4.4 3-D animation.

3D Modeling is a three-dimensional representation of objects, animals,
machines, and humans. In animation production, all the settings and
characters are composed of a 3D model. Modeling is an initial step in
producing an animation that is done in an animation studio. This is because
characters and settings need to be completed before they can be rigged and
animated. Also, settings need to be located in their places to specify the very
last layout and composition of shots. 3D modeling is used in different kinds
of fields from engineering, game industry, film and animation, business
advertising to architecture, and special effects. 3D modeling software lets
the designer design 3D models of what he has in mind. Some of them
provide you with tools to elaborate additional details to your model. The
highest used ones are listed here: 3Ds Max, Zbrush, Cinema 4D, Blender
and others
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6.5 DYNAMICS SYSTEMS:

System Dynamics is a computer-aided approach for strategy and policy
design.

The main goal is to help people make better decisions when confronted
with complex, dynamic systems. The approach provides methods and
tools to model and analyzes dynamic systems. Model results can be used
to communicate essential findings to help everyone understand the
system’s behavior.

It uses simulation modeling based on feedback systems theory that
complements systems thinking approaches. It applies to dynamic problems
arising in complex social, managerial, economic, or ecological systems. It
can be applied to social, managerial, economic, ecological,
and physiological systems. As the complexity of our world increases, we
need holistic approaches to tackle the problems we encounter in this
complex and developing world. Missing the holistic view could lead us to
struggle with the symptoms of a larger problem arising from the structure
of the system. Hence, System Dynamics approach provide us tools and
methods to understand the complex systems.

6.5.1 Stock and flow diagrams,

A system is a set of interrelating, interconnected parts or elements that,
together, generate some distinct outcome or behavior over time. In
dynamical systems modeling, the behavior that the system exhibits over
time is called it’s dynamic. Stocks and flows are the basic building blocks
of system dynamics models. Jay Forrester originally referred to them as
“levels” (for stocks) and “rates” (for flows). A stock variable is measured
at one specific time and represents a quantity existing at that point in time
(say, December 31, 2004), which may have accumulated in the past. A flow
variable is measured over an interval of time. Therefore a flow would be
measured per unit of time (say a year).

young adult
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first 16 years

Non
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Adults
aging dying
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6.5.2 Examples of stock and flow diagrams.

Economics, business, accounting, and related fields often distinguish
between quantities that are stocks and those that are flows. These differ in
their units of measurement. A stock is measured at one specific time, and
represents a quantity existing at that point in time (say, December 31, 2004),
which may have accumulated in the past. A flow variable is measured over
an interval of time. Therefore, a flow would be measured per unit of
time (say a year). Flow is roughly analogous to rate or speed in this sense.

For example, U.S. nominal gross domestic product refers to a total number
of dollars spent over a time period, such as a year. Therefore, it is a flow
variable, and has units of dollars/year. In contrast, the U.S. nominal capital
stock is the total value, in dollars, of equipment, buildings, and other real
productive assets in the U.S. economy, and has units of dollars. The diagram
provides an intuitive illustration of how the stock of capital currently
available is increased by the flow of new investment and depleted by
the flow of depreciation.

Elements of Stock Flow Diagram

Name Symbol Description

Stock - Astock is accumulated over time by
inflows and/or depleted by outflows.
Stocks can only be changed via flows.

Mathematically a stock can be seen as an
accumulation or integration of flows over
time — with outflows subtracting from the
stock.

Stocks typically have a certain value at
each moment of time.

Example: the number of population at a
certain moment.

Flow |——> | A flow changes a stock over time. Usually,
we can clearly distinguish inflows (adding
to the stock) and outflows (subtracting
from the stock).

Flows typically are measured over a
certain interval of time

Example: the number of births over a day
or month.
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Flow X - It is always expressed per some unit time:
Rate If these flow into/out of a stock that keeps
track of things of type X

e.g. Incidence Rates is calculated by
accumulating people over a year, revenue
is $/Time, water flow is liters/minute

Cloud Cloud represents either:
- Source of the flow — when the flow is
originated from outside the model

Sink of the flow — when the flow sinks

Both sources and sinks are assumed to
have infinite capacity and do not impose
any limitations on the flows. Clouds are
drawn as part of the flow element, in case
the flow does not flows in/out of some
stock.

Link , | Link is used to define a dependency
between elements of a stock and flow
diagram

If some element A is mentioned in the
equation or initial value of element B, you
should first connect these elements with a
link going from A to B and only then type
the expression in the properties of B.

Stocks. A stock represents a part of a system whose value at any given
instant in time depends on the system's past behavior. The value of the
stocks at a particular instant in time cannot simply be determined by
measuring the value of the other parts of the system at that instant in time —
the only way you can calculate it is by measuring how it changes at every
instant and adding up all these changes.

This sounds more complicated than it is, so let us look at a simple example:
driving a car along the motorway. Say you start driving at 8:00 AM and you
want to know how far you have driven at 10:00 AM. We know that the only
factor that determines this is the speed you were driving at. But it is not
enough to just know your current speed at 10:00 AM, you actually need to
know exactly how fast you were driving at every instant in time between
8:00 AM and 10:00 AM to calculate this. In this example, the distance you
have driven is a stock — if you look at the dashboard in your car, you will
most likely find a representation of this stock on your car’s dashboard: the
mileage counter (odometer). On diagrams, stocks are represented by
rectangles.



Flows. Flows represent the rate at which the stock is changing at any given
instant, they either flow into a stock (causing it to increase) or flow out of a
stock (causing it to decrease).

To continue our example above, the car’s velocity at any particular instant
is a flow that flows into the mileage counter stock. It is important to note
here that the distinction between stock and flow is not absolute — from the
point of view of the mileage counter the velocity is a flow. But the velocity
itself most likely also changes and depends on the acceleration and
deceleration. So, even though we can determine the current velocity almost
instantaneously (this is done by the speedometer), we again cannot explain
why the velocity is at its current level without knowing the system's past
behavior. On diagrams, flows are represented by small valves attached to
flow pipes that lead into or out of stocks.

Converters. Converters either represent parts at the boundary of the system
(i.e. parts whose value is not determined by the behavior of the system itself)
or they represent parts of a system whose value can be derived from other
parts of the system at any time through some computational procedure.

To continue our motorway example, we could assume that acceleration and
deceleration are determined by outside circumstances (e.g. such as the
positions of the accelerator and brake). In this case, we would model both
the accelerator and brake positions as converters. On diagrams, converters
are represented by small circles.

Connectors. Much like in causal loop diagrams the connectors of a system
show how the parts of a system influence each other. Stocks can only be
influenced by flows (i.e. there can be no connector that connects into a
stock), flows can be influenced by stocks, other flows, and by converters.
Converters either are not influenced at all (i.e. they are at the systems'
boundary) or are influenced by stocks, flows and other converters.

Source/Sink. Sources and sinks are stocks that lie outside of the model's
boundary — they are used to show that a stock is flowing from a source or
into a sink that lies outside of the model's boundary. On diagrams, sources
and sinks are represented by small clouds.

The notation used in stock and flow diagrams was originated by Jay
Forrester in his book “Industrial Dynamics”. It was based on a hydraulic
metaphor: the flow of water into and out of reservoirs. Hence the names of
these elements and their visualization.

The key feature of a stock and flow diagram is that each construct can be
precisely specified using a mathematical formalism — viewed from a
mathematical perspective, such fully specified stock and flow models are
just a way of visualizing a corresponding set of integral equations.
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6.6 MULTI-METHOD MODELING:

The idea of multimethod modeling is simple: to seamlessly integrate
different methods of modeling and simulation to overcome the drawbacks
of individual approaches and get the most from each one. Combining
different methods leads to efficient and manageable models without using
workarounds.

There are three major methodologies used to build dynamic business
simulation models: system dynamics, discrete event modeling, and agent
based modeling.

The system dynamics method assumes a high abstraction level and is
primarily used for strategic level problems, such as market adoption rates
and social process dependency.

Discrete event modeling is mainly used at operational and tactical levels,
like manufacturing processes and equipment investment evaluation.

Agent-based models are used at all levels, with the agents possibly being
any active entity. Example applications include supply chain optimization
and epidemiology.

Depending on the simulation project goals, the available data, and the nature
of the system being modeled, different problems may call for different
methods. Also, sometimes it is not clear at the beginning of the project
which abstraction level and which method should be used. The modeler may
start with, say, a highly abstract system dynamics model and switch later on
to a more detailed discrete event model. Or, if the system is heterogeneous,
the different components may be best described by using different methods.
For example in the model of a supply chain that delivers goods to a
consumer market the market may be described in system dynamics terms,



the retailers, distributors, and producers may be modeled as agents, and the
operations inside those supply chain components — as process flowcharts.

6.6.1 Architecture,

The number of possible multi-method model architectures is infinite, and
many are used in practice. Popular examples are shown in the Figure 1. In
this section we briefly discuss the problems where these architectures may

be useful.
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Agents in an SD environment. Think of a demographic model of a city.
People work, go to school, own or rent homes, have families, and so on.
Different neighborhoods have different levels of comfort, including
infrastructure and ecology, cost of housing, and jobs. People may choose
whether to stay or move to a different part of the city, or move out of the
city altogether. People are modeled as agents. The dynamics of the city
neighborhoods may be modeled in system dynamics way, for example, the
home prices and the overall attractiveness of the neighborhood may depend
on crowding, and so on. In such a model agents' decisions depend on the
values of the system dynamics variables, and agents, in turn, affect other
variables. The same architecture is used to model the interaction of public
policies (SD) with people (agents). Examples: a government effort to reduce
the number of insurgents in the society; policies related to drug users or
alcoholics.

Agents interacting with a process model. Think of a business where the
service system is one of the essential components. It may be a call center, a
set of offices, a Web server, or an IT infrastructure. As the client base grows,
the system load increases. Clients who have different profiles and histories
use the system in different ways, and their future behavior depends on the
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response. For example, low-quality service may lead to repeated requests,
and, as a result, frustrated clients may stop being clients. The service system
is naturally modeled in a discrete event style as a process flowchart where
requests are the entities and operators, tellers, specialists, and servers are
the resources. The clients who interact with the system are the agents who
have individual usage patterns. Note that in such a model the agents can be
created directly from the company CRM database and acquire the properties
of the real clients. This also applies to the modeling of the company's HR
dynamics. You can create an agent for every real employee of the company
and place them in the SD environment that describes the company's integral
characteristics (the first architecture type). A process model linked to a
system dynamics model. The SD aspect can be used to model the change in
the external conditions for an established and ongoing process: demand
variation, raw material pricing, skill level, productivity, and other properties
of the people who are part of the process. The same architecture may be
used to model manufacturing processes where part of the process is best
described by continuous time equations — for example, tanks and pipes, or
a large number of small pieces that are better modeled as quantities rather
than as individual entities. Typically, however, the rates (time derivatives
of stocks) in such systems are piecewise constants, so simulation can be
done analytically, without invoking numerical methods. System dynamics
inside agents. Think of a consumer market model where consumers are
modeled individually as agents, and the dynamics of consumer decision
making is modeled using the system dynamics approach. Stocks may
represent the consumer perception of products, individual awareness,
knowledge, experience, and so on. Communication between the consumers
is modeled as discrete events of information exchange. A larger-scale
example is interaction of organizations (agents) whose internal dynamics
are modeled as stock and flow diagrams. Processes inside agents. This is
widely used in supply chain modeling. Manufacturing and business
processes, as well as the internal logistics of suppliers, producers,
distributors and retailers are modeled using process flowcharts. Each
element of the supply chain is at the same time an agent. Experience,
memory, supplier choice, emerging network structures, orders and
shipments are modeled at the agent level. Agents temporarily act as entities
in a process. Consider patients with chronic diseases who periodically need
to receive treatment in a hospital (sometimes planned, sometimes because
of acute phases). During treatment, the patients are modeled as entities in
the process. After discharge from the hospital, they do not disappear from
the model, but continue to exist as agents with their diseases continuing to
progress until they are admitted to the hospital again. The event of
admission and the type of treatment needed depend on the agent's condition.
The treatment type and timeliness affect the future disease dynamics. There
are models where each entity is at the same time an agent exhibiting
individual dynamics that continue while the entity is in the process, but are
outside the process logic — for example, the sudden deterioration of a patient
in a hospital.



6.6.2 Technical aspects of combining modeling methods,

Important feature of the modeling language we are using is that all model
elements of all methods, be they SD variables, statechart states, entities,
process blocks, exist in the "same namespace": any element is accessible
from any other element by name (and, sometimes, "path" — the prefix
describing the location of the element in the model hierarchy). The
following examples are all taken from the real projects and purged of all
unnecessary details. This set, of course, does not cover everything, but it
does give a good overview of how you can build interfaces between
different methods.

o SD triggers a statechart transition of Condition type

"9 statechart P~
i Triggered by: Condition
Growth ( Notsure ‘ g

I~ Condition:  Interest > 1000
2 X | Interest o’
v - PurchaseDecision

!
“ WantToBuy ‘

0 SD controls the enity generation in a process flowchart

AdmissionsPerDay NewPatientAdmission sink

Arrivals defined by  Interarrival time

i Interarrival time exponential( AdmissionsPerDay )

The system dynamics model is a set of continuously changing variables. All
other elements in the model work in discrete time (where any changes are
associated with events). SD itself does not generate any events, so it cannot
actively make an impact on agents, process flowcharts, or other discrete
time constructs. The only way for the SD part of the model to impact a
discrete element is to let that element watch on a condition over SD
variables, or to use SD variables when making a decision. The Figure 2
shows some possible constructs. In the Figure 2 case A an SD variable
triggers a statechart transition. Events (low-level constructs that allow
scheduling a one-time or recurrent action) and statechart transitions are
frequent elements of agent behavior. Among other types of triggers, both
can be triggered by a condition — a Boolean expression the model contains
dynamic variables, all conditions of events and statechart transitions are
evaluated at each integration step, which ensures that the event or transition
will occur exactly when the (continuously changing) condition becomes
true. In the figure the statechart is waiting for the Interest stock to rise higher
than a given threshold value. In the Figure 2 case B the flowchart source
block NewPatientAdmissions generates new entities at the rate defined by
the dynamic variable AdmissionsPerDay, which may be a part of a stock
and flow diagram.

6.6.3 Examples.

Consumer market and supply chain: We will model the supply chain and
sales of a new product in a consumer market in the absence of competition.
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The supply chain will include the delivery of the raw product to the
production facility, production, and the stock of the finished products. The
QR inventory policy will be used. Consumers are initially unaware of the
product; advertizing and word of mouth will drive the purchase decisions.
The product has a limited lifetime, and 100% of users will be willing to buy
a new product to replace the old one. The full version of the model is
available at RunTheModel.com. We will use discrete event methodology to
model the supply chain, and system dynamics methodology, namely, a
slightly modified Bass diffusion model (Bass 1969), to model the market.
We will link the two models through the purchase events.

Discrete event model of a supply chain

Qﬁ OrderQuantity =400
Qﬁ ReorderPoint =100

Supply SupplierStock Delivery RawMaterialStock  Production ProductStock

®-e s Il e @—@—@ s IlFe B—@—@—@—IIIED
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Arrlval deflned by i famty 200 raclty 200
Manually, call |nject() i Delay time: elay time:
i triangular (0.5,1,1.5) trlangular (0.5,1,15) :

System dynamics model of the new product diffusion in the market

Initially =
TotalMarket  purchaseDecisions  Initially =0 Initially =0
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¥ SalesFromAd

Discards ™

, -
@ AdEffect ¢; *Qp——— L
=0.005 TotalMarket 4% “SalesFromWOM O Productlifetime = 600

= 10,000
i (\D. Contactffect = 0.003

(@ ContactRate = 10

PurchaseDecisions = SalesFromAd + SalesFromWOM

SalesFromAd = PotentialUsers * AdEffect

PotentialUsers
SalesFromWOM= Users * ContactRate *—————— * ContactEffect
TotalMarket

Discards = Users / ProductLifetime

The supply chain flowchart (top of the Figure 5) includes three stocks: the
supplier stock of raw material, the stock of raw material at the production
site, and the stock of finished products at the same location. Delivery and
production are modeled by the two Delay objects with limited capacity. The
Supply block of the flowchart is not generating any entities unless explicitly
asked to do so (the inventory policy is not yet present at this stage). To load
the supply chain with some initial product quantity we will add this Startup
code: Supply.inject( OrderQuantity );. If we run this model, at the beginning



of the simulation, four hundred items of the product are produced and
accumulate in the ProductStock.

How do we link the supply chain and the market? We want to achieve the
following: « If there is at least one product item in stock and there is at least
one client who wants to buy it, the product item should be removed from
the ProductStock queue, the value of Demand should be decremented, and
the value of Users should be incremented.

6.7 CONCLUSION

When developing a discrete event model of a supply chain, IT
infrastructure, or a contact center, the modeler would typically ask the client
to provide the arrival rates of the orders, transactions, or phone calls. He
would then be happy to get some constant values, periodical patterns, or
trends, and treat arrival rates as variables exogenous to the model. In reality,
however, those variables are outputs of another dynamic system, such as a
market, a user base. Moreover, that other system can, in turn, be affected by
the system being modelled. For example, the supply chain cycle time, which
depends on the order rate, can affect the satisfaction level of the clients,
which impacts repeated orders and, through the word of mouth, new orders
from other customers. The choice of the model boundary therefore is very
important.

6.8 PRACTICE QUESTION

Write a short note on Agent Based modeling

Explain the Time dimension in agent based models

Explain the Space dimension in agent based models

What do you mean by discrete space in ABM? Explain.
Explain the Communication process between agents in ABM.
How agents are created and destroyed dynamically?

Explain the process Building agents based models:

© N o g bk~ w bR

Explain using suitable example the following stages in building ABM
a.  The problem statement,

b.  Phases of modeling,

9.  Explain the role of Assumptions in ABM.

10. How 3-D animation helps in modeling and simulation.

11. Write a short note on Dynamics Systems:

12. Explain different symbols used Stock and flow diagrams,

13. Give a suitable Examples of stock and flow diagrams.

14. Write a short note on Multi-method modeling.

15. Explain the Architecture of Multi-method modeling.

16. Explain the Technical aspects of combining modeling methods.
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DESIGN AND BEHAVIOR OF MODELS

Unit Structure :

7.1 Introduction:

7.2 Objectives:

7.3 Designing state-based behavior:

7.4 Discrete events and Event model object

7.5 Designing interactive models: using controls, Dynamic properties of
controls, 3D Animation.

7.6 Randomness in Models:

7.7 Model time, date and calendar Virtual and real time:
7.8 Conclusion

7.9 Practice Question

7.10 References

7.1 INTRODUCTION:

Simulation involves the development of descriptive computer models of a
system and exercising those models to predict the operational performance
of the underlying system being modeled. Systems that change with time,
such as a gas station where cars come and go (called dynamic systems) and
involve randomness. Nobody can guess at exactly which time the next car
should arrive at the station, are good candidates for simulation. Modeling
complex dynamic systems theoretically need too many simplifications and
the emerging models may not be therefore valid.

7.2 OBJECTIVES:

o To understand Modeling tools that permit specialized device
characterization or custom model development

. To understand and Design knowledge and thorough understanding of
simulation objectives and expectations of system behaviour.

. To learn and design a simulator that is robust and reliable that can
always be accepted with confidence that they reflect the state of the
system.

7.3 DESIGNING STATE-BASED BEHAVIOR:

Deterministic refers to the uniqueness of the computation. A deterministic
model will always produce the same output from a given starting condition
or initial state.
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A dog is always asleep or awake. The dog can’t be asleep and awake at the
same time, and it’s impossible for the dog to be neither asleep nor awake.
There’s only these two states, a precisely limited, finite number of states.
How the dog goes between asleep and awake is through transitions, which
are symbolised by an arrow pointing from one state to the next state in the
process’s sequence. A transition is caused by an event that results in the
change of state. Transitions are labelled with their events.

7.3.1 Statecharts

A statechart is a visual construct that enables you to define event- and time-
driven behavior of various objects (agents). Statecharts are very helpful in
simulation modeling. They are used a lot in agentbased models, and also
work well with process and system dynamics models.

Statecharts consist of “states” and “transitions”. A state can be considered
as a “concentrated history” of the agent and also as a set of reactions to
external events that determine the agent’s future. The reactions in a
particular state are defined by transitions exiting that state. Each transition
has a “Trigger”, such as a message arrival, a condition, a timeout, or the
agent arrival to the destination. When a transition is taken (“fired”) the state
may change, and a new set of reactions may become active. State transition
is atomic and instantaneous. Arbitrary actions can be associated with
transitions and with entering and exiting states.

Statecharts define internal states, reactions to external events, and the
corresponding state transitions of a particular agent: a person, a physical
device, an organization, a project, etc. The (simple) states of the statechart
are alternative: at any given moment in time the statechart is in exactly one
simple state.

rdisploys

stopwatch




Statecharts constitute a visual formalism for describing states and
transitions in a modular fashion, enabling clustering, orthogonality (i.e.,
concurrency) and refinement, and encouraging ‘zoom' capabilities for
moving easily back and forth between levels of abstraction.

A basic fragment of such a description is a state transition, which takes the
general form “when event E occurs in state A, if condition C is true at the
time, the system transfers to state B”

7.3.2 State transitions,

Transitions and events are deterministic. Deterministic means that each
transition and event always points to the same next state, and always
produces the same result from their given starting condition, every time the
process is run. Dogs never wake up to become asleep or fall asleep to
become awake.

wakes up

falls asleep

This tiny dog process, with its two finite states and two transitions is a Finite
State Machine. A state machine is used to describe the behavior of
something. The machine describes the thing’s states and the transitions
between those states. It’s a Finite State Machine because it has a finite
number of states.

7.3.3 Viewing and debugging Statecharts at runtime,

At model runtime values of parameters and variables are displayed under
their names.

While debugging a statechart, you can perform the following actions:

J Set breakpoints.

. Highlight statechart execution.

. Single-step through a statechart.

. Watch statechart data.

7.3.4 Statecharts for dynamic objects.

The dynamic model describes the internal behavior of a system. Statechart

diagrams describe the states of an individual object and the possible
transitions between states
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As in general, the individuals can appear in the model at different ages (e.g.
as a result of immigration), the statechart may initialize in either of the
states, depending on the age. (Note that the statechart entry point points not
to a state directly but to a decision point with four branches.) The transitions
between the life phases are triggered by stochastic timeouts. For example,
the transition from Adult to MidAge happens when the person is around 49,
which is modeled by the timeout normal(49,5) — age(), where normal(49,5)
is a normally distributed age with mean 49 and standard deviation 5, and
age() is the age the person became Adult (remember that the timeout
expressions are evaluated at the moment the statechart gets into the
transition source state, in this case Adult). The Adult life phase is further
decomposed to describe family-related behavior. The decisions in this
section of the statechart (to have family or not, how long to wait before the
first kid, how many kids to have, etc.) are also stochastic and may depend
on the gender, the level of education, the cultural norms, etc. If this
statechart is inside an agent in an agent-based model, the act of childbearing
may result in a new agent added to the model, who may inherit the
characteristics of the parents. The event of death then may delete the agent
from the model.

statechart T

age() <= 14 default
14 < age() &M 49 < age() && :
age() <= 49 age() <=65 |
(" Alive . )

1

( Child ("Adult - ) MidAge Senior Dead

JL@- Random decision : | j| atanO)

getAdult getMidAge getSenior death

.........

: /
normal(14,2) —|age() : rmal(49,5) — age()

normal(65,7) — age()
......... normal(65,10)|- age()

\ Random decision,
\ ~depends on no of kids
WaitBetweenKids I norma”g, 0‘3)

J

normal(21,2) —fage() —‘-,—-—x-

normal(1,0.2)"

\ J

Statechart for life phases

7.4 DISCRETE EVENTS AND EVENT MODEL OBJECT:

Discrete event simulation (DES) is a method used to model real world
systems that can be decomposed into a set of logically separate processes
that autonomously progress through time. Each event occurs on a specific
process, and is assigned a logical time (a timestamp). The result of this event
can be an outcome passed to one or more other processes. The content of
the outcome may result in the generation of new events to be processed at
some specified future logical time. The underlying statistical paradigm that
supports DES is based in queuing theory.



Discrete event modeling is almost as old as system dynamics. In October
1961, IBM engineer Geoffrey Gordon introduced the first version of GPSS
(General Purpose Simulation System, originally Gordon's Programmable
Simulation System), which is considered to be the first method of software
implementation of discrete event modeling. These days, discrete event
modeling is supported by a large number of software tools, including
modern versions of GPSS itself.

The typical output expected from a discrete event model is:

« Utilization of resources,
« Time spent in the system or its part by an agent,

Waiting times,

Queue lengths,

System throughput,

Bottlenecks,
« Cost of the agent processing and its structure.

The simple example consists of a cashier serving arriving customers, one at
a time. Customers queue if the cashier is not available (serving another
customer). Here, the state of the system consists of the state of the queue
and that of the cashier. The queueing discipline is First In First Out (FIFO)
and individual customers are assumed not to have any distinguishing
features (such as age, or number of items bought). Thus, it is meaningful to
model the state of the queue by means of the queue length, a natural number.
The cashier can be in either the Idle or the Busy state. The dynamics of the
system is determined by:

. The arrival pattern of customers characterized by their Inter Arrival
Time (IAT) distribution,

. The time required by the cashier to serve a customer characterized by
the Service Time (ST) distribution,

. The logical sequence of customers progressing through the system
under different conditions (queue empty/not empty, cashier

Busy/Idle).
o ROASAETT —
Departure
Arrival Queue Cashier

Physical View

_—
6 } <::i:::> Departure

Arrival o —— Cashier
[IAT distribution] [ST distribution]
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7.4.1 Discrete event,

Discrete-event is the intended change to simulate systems where events
occur at specific, separable instances in time. The defining characteristics
of discrete-event simulation are as follows:

. Events occurring at specific points in time. As mentioned earlier, DES
is used to model processes or systems that change at identifiable time
instances. DES does not track system state continuously.

. Emphasis on events. Changes in state and events are the focus of DES,
hence why DES is often referred to as “event-driven.”

. Time skipping (next-event time advance). Typically, DES does not
consider the system’s state between events, instead “jumping” to
subsequent events as the simulation progresses. Time skipping
reduces the complexity and resource intensity of discrete-event
simulations.

. Heavy use of queueing theory. Queueing theory is the cornerstone of
many discrete-event simulations, defining how resource-constrained
processing is executed. Although queueing theory is not always used
in DES, it can be used whenever the arrival and the service of requests
are the features of interest.

7.4.2 Event-the simplest low level model object,

An event is the specification of a significant occurrence that has a location
in time and space. Anything that happens is modeled as an event in UML.
In the context of state machines, an event is an occurrence of a stimulus that
can trigger a state transition four kinds of events — signals, calls, the passing
of time, and a change in state.

Most business processes can be described as a sequence of separate discrete
events. For example, a truck arrives at a warehouse, goes to an unloading
gate, unloads, and then departs. To simulate this, discrete-event simulation
is often chosen.

7.4.3 Dynamic events, and Exchanging data with external world.

Using discrete-event simulation modeling, the movement of a train from
point A to point B is modeled with two events, namely a departure and an
arrival. The actual movement of the train would be modeled as a time delay
between the departure and arrival events. These events and movement
between them can be smoothly animated.

Discrete-event simulation focuses on the processes in a system at a medium
level of abstraction. Typically, specific physical details, such as car
geometry or train acceleration, are not represented. Discrete-event
simulation modeling is widely used in the manufacturing, logistics, and
healthcare fields.

An event in the context of state machines is an occurrence of a stimulus that
can trigger a state transition.



7.5 DESIGNING INTERACTIVE MODELS: USING
CONTROLS, DYNAMIC PROPERTIES OF CONTROLS,
3D ANIMATION.

Willemain (1994) lists five qualities of an effective model: validity,
usability, value to client, feasibility and aptness for clients’ problem.
Meanwhile, Brooks and Tobias (1996) identify 11 performance criteria for
a good model. Based on these lists, here it is proposed that there are four
main requirements of a conceptual model: validity, credibility, utility and
feasibility.

Here are three examples:

1. Anatural scientist may be interested in a system of wolves and sheep,
where the number of wolves changes with a constant birth rate and a
death rate that is inversely proportional to the number of sheep, and
the number of sheep changes with a constant birth rate and a death
rate that is directly proportional to the number of wolves. The scientist
would like to know the following: Do the number of wolves and the
number of sheep stabilize in the long run, and if so to what values? Or
do they vary cyclically, and if so with what period and phase?

2. A computer scientist may be interested in a system of jobs that
circulate in a network of servers (e.g., CPU’s and I/O devices). The
computer scientist would like to know whether a particular server is a
“‘bottleneck”’, i.e., in the long run, is that server always busy while
the other servers are mostly idle.

3. Aclassical system example is a queuing system with a single server.
Here, customers arrive with certain service requirements, get served
in some order, say first-comefirst-served, and depart when their
service is completed. Note that a customer who arrives when the
server is busy has to wait (in a queue). For this system, we would like
to determine the average waiting time for customers, the average
number of customers in the system, the fraction of time the server is
busy, etc.

A Simple Example: Building a simulation of gas station with a single pump
served by a single service man. Assume that arrival of cars as well their
service times are random. At first identify the:

1.  states: number of cars waiting for service and number of cars served
at any moment

events: arrival of cars, start of service, end of service

entities: these are the cars

queue: the queue of cars in front of the pump, waiting for service
random realizations: inter-arrival times, service times

distributions: we shall assume exponential distributions for both the
inter-arrival time and service time.

o ok~ W
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7.6 RANDOMNESS IN MODELS:

Uncertainty is an essential part of our everyday lives. Here’s a simple
example: imagine you own a café that serves hot beverages and delicious
pastry to around 100 customers per day. The café is open from 9 am to 7
pm. However, the first guests could arrive at 10 one day and 9:50 the next
day, it could be two customers or a dozen entering at the same time. When
we build simulation models, we want them to reflect the real world as
closely as possible. For that, you would need to include randomness in your
simulation.

In most real-life situations, the arrival process and the service process
occur in a random fashion. Even though the processes may be random, it
does not mean that you cannot describe or model the randomness. To have
any hope of simulating the situation, you must be able to model the
randomness. One of the ways to model this randomness is to describe the
phenomenon as a random variable governed by a particular probability
distribution. For example, if the arrivals to the bank occur according to a
Poisson process, then from probability theory it is known that the
distribution of inter-arrival times is an exponential distribution. In
general, information about how the customers arrive must be secured
either through direct observation of the system or by using historical data.
If neither source of information is available, then some plausible
assumptions must be made to describe the random process by a
probability model.

Probability distributions:

The first choice is to develop a probability model given the data. The
second choice is to try to drive the simulation directly from the historical
data. The latter approach is not recommended. First of all, it is extremely
unlikely that the captured data will be in a directly usable form. Secondly,
it is even more unlikely that the data will be able to adequately represent
all the modeling scenarios that you will need through the course of
experimenting with the model. For example, suppose that you only have
1 day’s worth of arrival data, but you need to simulate a month’s worth
of system operation. If you simply re-drive your simulation using the 1
day’s worth of data, you are not simulating different days! It is much more
advisable to develop probability models either from historical data or
from data that you capture in developing your model.

Once a probability model has been developed, statistical theory provides
the means for obtaining random samples based on the use of uniformly
distributed random numbers on the interval (0,1). These random samples
are then used to map the future occurrence of an event on the time scale.
For example, if the inter-arrival time is exponential then a random sample
drawn from that distribution would represent the time interval until the
occurrence of the next arrival.



Sources of randomness in the model:
There are two types of models: stochastic and deterministic.

A deterministic model doesn’t have internal randomness. It runs with the
same set of input parameters and gives the same output results. For example,
if 10,000 individuals each have a 95% chance of surviving one year, we can
be reasonably sure that 9,500 of them will survive.

A stochastic model, on the other hand, does have internal sources of
randomness. So, each run (even with the same parameters) may give a
different output.

Run with same
--------------------------------------------- 000 parameters -— get

Deterministic @
same results

model

Internal sources
of randomness Run multiple

l \’7'@ — times with same
- e parameters — get
Internally sse®® SHESSY stochastic results
et model  )reessssan(@Fraasssssaas peRY Fresnsansans wune | (it et
.., simulation)
@ ............ > o000
Random input
parameters
Deterministic
model runs c --------------------------------------------- > 000 Monte Carlo
multiple simulation
times with O o L T T T T T T > 000
stochastic
parameters c ............................................. >see
Random Internal randomness
parameters
stochastic \, —e@--rrre@ e o@D Monte carlo
: a2t imulation
with O I .(:) ..... senmaen —(:} ............ >eee Simny
stochastic @ e rvay,
parameters O e .>® ............ >® e TS AR “

Randomness in system dynamics model:

System Dynamics models often incorporate random components, in two
ways:

. Internal: the system itself is stochastic (e.g. parts failures, random
variations in sales, Poisson arrivals, etc.

. External: All the usual Monte-Carlo explorations of uncertainty from
either internal randomness or via replacing constant-but-unknown
parameters with probability distributions as a form of sensitivity
analysis.

There is also a kind of probabilistic flavor to the deterministic simulations
in System Dynamics. If one has a stochastic linear differential equation
with deterministic coefficients and Gaussian exogenous inputs, it is easy to
prove that all the state variables have time-varying Gaussian
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densities. Further, the time-trajectories of the means of those Gaussian
process can be computed immediately by the deterministic linear
differential equation which is just the original stochastic equations, with all
random inputs replaced by their mean trajectories. In System Dynamics,
this concept, rigorous in the linear case, is extended informally to the
nonlinear case as an approximation. That is, the deterministic solution of a
System Dynamics model is often taken as an approximation of what would
be concluded about the mean of a Monte-Carlo exploration. Of course it is
only an approximate notion, and it gives no information at all about the
variances of the stochastic variables.

A third kind of randomness in System Dynamics models is also a bit
informal: delays, which might be naturally modeled as stochastic, are
modeled as deterministic but distributed. For example, if procurement
orders are received on average 6 months later, with randomness of an
unspecified nature, a typical System Dynamics model would represent the
procurement delay as a deterministic subsystem, usually a first- or third-
order exponential delay. That is the output of the delay, in response to a
pulse input, is a first- or third-order Erlang shape. These exponential delays
often do a good job of matching data taken from high-volume stochastic
processes.

Random number generators:

A random number generator is a critical component in modern
cryptographic systems, communication systems, statistical simulation
systems and any scientific area incorporating Monte Carlo methods and
may other systems. Random number generators can be classified in three
classes; true random number generators, pseudo random number generators
(PRNG) and hybrid random number generators. seudo random number
generators are deterministic processes which generate a series of outputs
from an initial seed state.

| |

Pseudo Random True Random ]
~]

Number Generators| [Number Generator

Software Hardware
Implemented Implemented
Digital RNGs

[Jittered Oscillator[ Discrete Continuous ][ Amplmcatlon J{ Mix of MethodsJ

Analog RNGs

|| |

Time Chaos Time Chaos of Noise




The Linear Congruential Generator

This generator produces a series of pseudorandom numbers. Given an initial
seed X0 and integer parameters a as the multiplier, b as the increment, and
m as the modulus, the generator is defined by the linear relation:

Xn = (aXn-1 + b)mod m. Or using more programming friendly syntax:
Xn=(a*Xn-1+b)%m.

Each of these members have to satisfy the following conditions:

m > 0 (the modulus is positive),

0 <a < m (the multiplier is positive but less than the modulus),

0 < b <m (the increment is non negative but less than the modulus), and

0 < X0 <m (the seed is non negative but less than the modulus).

H(x * y):
f = 2*¥ mod p

b=20
for i = 0 to |x]:
b = b XOR (x[1] AND y[i])

return £ - y + b

7.7 MODEL TIME, DATE AND CALENDAR VIRTUAL
AND REAL TIME:

Time is the central axis in the dynamic simulation models we are building.
The models are full of various references to time: delays, arrival times,
service times, rates, timeouts, schedules, dates, velocities, etc. This section
explains what model time is and how the user can work with it.

The model time, date and calendar:

Model time is the virtual (simulated) time maintained by the simulation
engine. The model time has nothing to do with the real time or the computer
clock.

The model time takes Java double type values (real numbers with double
precision). The model clock is advanced in steps: while the engine is
executing a discrete event model, the model time jumps from one event to
another; if a continuous-time model is being executed, the time steps are
typically smaller and have equal size.

To establish the correspondence between the model time and real world
time where the system being modeled lives, we need to define the time units.
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The type of time unit depends on the time scale of the activities you are
modeling. For example, if you are

modeling a call center where the call durations are measured in seconds or
minutes, you may set the time units to seconds or minutes. If you are
modeling a supply chain, where manufacturing and shipping times are
measured in days, days would be the right choice. The expression
triangular( 10, 12, 15) used, e.g., in the Delay object, means a minimum of
10 days, a maximum of 15 days and most likely value of 12 days if day is
the time unit.

1. Select the experiment and open its Model time property page.

0 5 10 20 30 :
Lo bl b b b v b Timeunits:  minutes -

; seconds
. “

JJ s » .

’ . hours

days

weeks ¥

12 hrs

0 1day 2 days 3 days

Setting the time units

. long getTimeUnit() — returns the current time unit, namely the number
of milliseconds in one time unit. If you are using one of the standard
units, a constant from the Table above is returned.

. setTimeUnit( long tu ) — sets the time unit to a given number of
milliseconds (tu). If you are setting a standard time unit, you can use
a constant from the table.

milliseconds TIME_UNIT_MILLISECOND 1
seconds TlME_UNlT_SECOND 1000
minutes TIME_UNIT_MINUTE 60*1000
hours TIME_UNIT_HOUR 60*60*1000
days TIME_UNIT_DAY 24*60*60*1000
weeks TIME_UNIT_WEEK 7*24*60*60*1000
. double millisecond() — returns the value of a one-millisecond time
interval.
. double second() — returns the value of a one-second time interval.

For example, if the time unit is hours, minute() will return 0.0166, and
week() will return 168.0. Thus, instead of remembering what the current
time unit is and writing 48 or 5./60, you can simply write 2*day() and
5*minute(). You can also combine different units in one expression: 3 *
hour() + 20 * minute()

Date and calendar

To use calendar in the model you need to tie the start point of the simulation
to a particular date. This is also done on the experiment’s Model time

property page.
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Setting the start and stop dates

To set the simulation start date

1.  Select the experiment and open its Model time property page.
2. Check the CheckBox “Use calendar”

3. Use the Start date control to set the start date.

Bydefault, the date is set to the date when the model was created.

If STOP is set to STOP at time, the end date of the simulation will be:

Start date + Time unit * (Stop time - Start time)

The date in AnyLogic is stored in the form of the Java class Date.

Date is composed of the year, month, day of month, hour of the day, minute,
second and millisecond.

To find out the current date, you should call:

. Date date() — returns the current model date. A number of functions
return particular components of the current date (and all those
functions also have the form with parameter <function name>( Date
date ), in which case they return the component of a given, not current,
date):

. int getYear() — r eturns the year of the current date.

. int getMonth() — retJANUARY, FEBRUARurns the month of the
current date: one of the constants

. int getDayoffMonth(Y, MARCH, ... int getDayO) — returns the day of
the month of the current date: 1, 2, ...

Design and Behavior
of Models

131



Simulation and Modeling

132

. int getDayOfWeek() — returns the day of the week of the current date:
one of the constants SUNDAY, MONDAY, ...

. int getHourOhour fDay() — returns the hour of the day of the current
date in 24-format: for 10:20 PM, will return 22.

. int getHour() — dafor returns the hour of the y of the current date in
12-hour format: 10:20 PM, will return 10.

. int getAmPm() —PM otherwise returns the constant AM if the current
date is before noon.

. int getMinute() — re turns the second within the minute of the current
date.

. int getSecond() — returns the minute within the hour of the current
date.

. int getMillisecond() — returns the millisecond within the second of the

current date.

Consider a model of a processing center that operates from 9 AM to 6 PM
on weekdays.

The following function returns true if the center is currently open and
falseotherwise: boolean isOpen()

{

int dayofweek = getDayOfWeek();

if( dayofweek == SUNDAY || dayofweek == SATURDAY )

return false;

int hourofday = getHourOfDay();

[Iwill be in 24-hour format return hourofday >= 9 && hourofday < 18;

¥

Event that occurs every day at 8 AM Statechart spends in the
state exactly two months

4: event

(Er ]

Trigger type: Timeout ~ Mode:  Cyclic -

First occurrence time (absolute) 0 /

& |April11, 2010 ~| 00800 2
Timeout:

Recurrence time: toTimecut ( DAY, 1 ) toTimeout( MONTH, 2)
Source generates an entity at exactly the Entities are delayed here
same time of the day every two weeks for 2.5 years

source delay

< Arrivals defined by Rate 9 Interarrival time / .
3 Delay time:
Interarrival time”’ toTimeout ( WEEK, 2 ) toTimeout( YEAR, 2.5)

Using toTimeout() function in events, statecharts and Enterprise Library objects



Virtual and real-time execution modes.

AnyLogic can execute the simulation model in two modes, virtualtime and
real time on a given scale. Virtual time is the “natural” execution mode
when the simulation engine executes the model as fast as possible. The
model time progresses unevenly and not continuously relative to real time;
see the Figure. In discrete event models, the model clock may instantly jump
to the next event or may stall at one point while several simultaneous events
are being executed. The model execution rate may appear more continuous
if the model contains continuous-time dynamics (as in system dynamics
models): in that case, the model is driven by the numeric solver, which
makes small time steps that are more or less even. The computational
complexity of events and equations obviously affects the speed of the
execution of the model. The virtual time mode is used when simulation
performance is important and animation of the model dynamics is not
needed, in particular in optimization, sensitivity analysis, parameter
variation, Monte Carlo and other experiments where the model is run
multiple times. System dynamics modelers also use the virtual time mode
as they are typically interested more in the output graphs of the simulation
than in the simulation process itself. Event that occurs everyday at 8AM
State chart spends in the state exactly two months Timeout: to Timeout
(MONTH,2) Source generates an entity at exactly the same time of the day
every two weeks Entities are delayed here for 2.5 years Delay time: to
Timeout (YEAR,2.5)

Model time #

Slow
(complex
equations) Frequent and
comprtationally
complex events
Pure Pure P
discrete discrete
events events
e E— \ -
Fast (easy
equations)
Rare and = -
computationally Continuous time dynamics
easy events interru pziirlw?s discrete
Real time

Virtual time (“natural”) execution mode

Virtualtime(“natural”)execution mode : In the scale to real-time mode,
the engine tries to keep to a given scale, say 10 model time units (e.g., 10
simulated weeks) per 1 real second. If the model’s computational
complexity is not too high, the engine will periodically put itself in the
“sleep” state and wait for the correct real time to execute the next event or
make the next step in the numeric calculations. Sometimes, though, the
engine is unable to keep a given time scale because of too-frequent or too-
complex events or because of a large system of equations and/or a too-small
time step. Then the engine will work as fast as possible until it finds the next
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opportunity to maintain the real-time scale. Thus, the only thing the model
can guarantee with respect to the real time is that the model execution will
never go faster than requested;

Model time 4
odel time The requested

scale to real .
time T

i:\

= Too slow numeric
‘\\ calculations
Numeric calculations +

Discrete events . .
events in real-time scale

executed|in
real-time scale 1
\\‘ ¥—_ Too fequent or
. too complex
events

-
L

Real time

7.8 CONCLUSION

A discrete-event simulation (DES) models the operation of a system as a
(discrete) sequence of events in time. Each event occurs at a particular
instant in time and marks a change of state in the system.[1] Between
consecutive events, no change in the system is assumed to occur; thus the
simulation time can directly jump to the occurrence time of the next event,
which is called next-event time progression.

In addition to next-event time progression, there is also an alternative
approach, called incremental time progression, where time is broken up into
small time slices and the system state is updated according to the set of
events/activities happening in the time slice. Because not every time slice
has to be simulated, a next-event time simulation can typically run faster
than a corresponding incremental time simulation.

Both forms of DES contrast with continuous simulation in which the system
state is changed continuously over time on the basis of a set of differential
equations defining the rates of change of state variables.

7.9 PRACTICE QUESTION

1) Define the following with respect to System Simulation and
Modeling:

a.  State

b Statecharts

c.  State Transitions
d Events



2)
3)
4)
5)
6)

7)
8)
9)
10)
11)

12)

Write a short note on State charts.

Design a state chart to represent Car Ignition System
Describe the events in tea vending machine System
How to view and debug Statecharts at runtime? Explain.

How to design Statecharts for dynamic objects? Explain using
suitable example.

Write a short note one discrete events and Event model object.
Explain the discreet events associated with queuing system.
Write a note on Randomness in system dynamics model.
Explain the different procedures of generating random numbers.

Explain the Linear Congruential Generator method. Support your
answer with suitable example.

How to Model time, date and calendar Virtual and real time? Explain.
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