S.Y.B.Sc. (C. S.)
SEMESTER - IV (CBCS)

NET TECHNOLOGIES

SUBJECT CODE: USCS406

© UNIVERSITY OF MUMBAI

Prof. (Dr.) D. T. Shirke
Offg. Vice Chancellor
University of Mumbai, Mumbai

Prin. Dr. Ajay Bhamare Prof. Prakash Mahanwar
Offg. Pro Vice-Chancellor, Director,
University of Mumbai IDOL, University of Mumbai
Programme Co-ordinator : Shri Mandar Bhanushe

Head, Faculty of Science and Technology IDOL,
Univeristy of Mumbai — 400098

Course Co-ordinator : Ms. Mitali Vijay Shewale
Doctoral Researcher,
Veermata Jijabai Technological Institute
HR Mahajani road, Matunga, Mumbai

Editor : Dr Rajeshri Shinkar
Assistant Professor,
IES College, Nerul, Navi Mumbai

Course Writers : Dr. Shraddha Bhushan Sable
Assistant Professor,
S. K. College of Sci & Commerce,
Nerul, Navi Mumbai,

: Ms. Jyoti Uday Darne
Assistant Professor,
Dr. Pillai Global Academy, New Panvel.

Mr. Milind Thorat

Lecturer,

K. J. Somaiya Institute of Engineering and
Information Technology, Sion East, Mumbai.

June 2023, Print - 1

Published by : Director,
Institute of Distance and Open Learning,
University of Mumbai,
Vidyanagari,Mumbai - 400 098.

DTP composed and Printed by: Mumbai University Press

CONTENTS

Unit No. Title Page No.
1 The .Net Framework 1
2 C# language basics 11
3 ASP.Net 48
4 HTML Server Controls 59
5 Web Controls 71
6 State Management 85
7 Validation 101
8 Rich Controls 113
9 Themes and Master Pages 125
10 Website Navigation 135
11 ADO.Net 149
12 Data Binding 167
13 Data Controls 180
14 Working with XML 191
15 Caching 206
16 LINQ 219
17 ASPNET AJAX 233

S.Y.B.Sc. (C. S.)
SEMESTER -1V (CBCS)

.NET TECHNOLOGIES

SYLLABUS

Course: TOPICS (Credits : 02 Lectures/Week: 03)
USCS406 .Net Technologies
Objectives:

To explore .NET technologies for designing and developing dynamic, interactive and responsive

web applications.

Expected Learning Outcomes:

1. Understand the NET framework

2. Develop a proficiency in the C# programming language

3. Proficiently develop ASP.NET web applications using C#

4. Use ADO.NET for data persistence in a web application

Unit I

The .NET Framework: NET Languages, Common Language Runtime, .NET
Class Library

C# Language Basics: Comments, Variables and Data Types, Variable
Operations, Object-Based Manipulation, Conditional Logic, Loops, Methods,
Classes, Value Types and Reference Types, Namespaces and Assemblies,
Inheritance, Static Members, Casting Objects, Partial Classes

ASP.NET: Creating Websites, Anatomy of a Web Form - Page Directive,
Doctype, Writing Code - Code-Behind Class, Adding Event Handlers, Anatomy
of an ASP.NET Application - ASP.NET File Types, ASP.NET Web Folders,
HTML Server Controls - View State, HTML Control Classes, HTML Control
Events, HtmlControl = Base Class, HtmlContainerControl Class,

HtmlInputControl Class, Page Class, global.asax File, web.config File

15L

Unit I1

Web Controls: Web Control Classes, WebControl Base Class, List Controls,
Table Controls, Web Control Events and AutoPostBack, Page Life Cycle

State Management: ViewState, Cross-Page Posting, Query String, Cookies,
Session State, Configuring Session State, Application State

Validation: Validation Controls, Server-Side Validation, Client-Side
Validation, HTMLS5 Validation, Manual Validation, Validation with Regular
Expressions

Rich Controls: Calendar Control, AdRotator Control, MultiView Control

Themes and Master Pages: How Themes Work, Applying a Simple Theme,

15L

Handling Theme Conflicts, Simple Master Page and Content Page, Connecting
Master pages and Content Pages, Master Page with Multiple Content Regions,
Master Pages and Relative Paths

Website Navigation: Site Maps, URL Mapping and Routing, SiteMapPath

Control, TreeView Control, Menu Control

ADO.NET: Data Provider Model, Direct Data Access - Creating a Connection,
Select Command, DataReader, Disconnected Data Access

Data Binding: Introduction, Single-Value Data Binding, Repeated-Value Data
Binding, Data Source Controls — SqlDataSource

Data Controls: GridView, DetailsView, FormView

Unit 111 15L
Working with XML: XML Classes — XMLTextWriter, XMLTextReader
Caching: When to Use Caching, Output Caching, Data Caching

LINQ: Understanding LINQ, LINQ Basics,

ASP.NET AJAX: ScriptManager, Partial Refreshes, Progress Notification,

Timed Refreshes

Textbook(s):
1) Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)

Additional Reference(s):
1) The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
2) Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

THE .NET FRAMEWORK

Unit Structure :

1.0
11
1.2
13
1.4
1.5
1.6
1.7
1.8
1.8

Introduction

Objectives of .net framework
Components of .NET framework
.Net Framework Design Principle
.NET Languages

Common Language Runtime (CLR)
.NET class library

Summary

References

Questions

1.0 INTRODUCTION

The .NET Framework

NET framework is an integral windows component that helps in building
and executing the next generation of applications and XML web services.
It is a set of Microsoft software technologies for connecting your world of
information, people, systems, and devices.

1.1 OBJECTIVES OF .NET FRAMEWORK

To provide a very high degree of language interoperability

To provide a runtime environment that completely manages code
execution

To provide high-level code security through code access security and
strong type checking

To facilitate application communication by using industry standards
such as SOAP and XML.

To simplify Web application development

To provide a consistent object-oriented programming environment
whether object code is stored and executed locally, executed locally
but Internet-distributed, or executed remotely.

To provide a code-execution environment that minimizes software
deployment and versioning conflicts.

.Net technology

To provide a code-execution environment that promotes safe
execution of code, including code created by an unknown or semi-
trusted third party.

To provide a code-execution environment that eliminates the
performance problems of scripted or interpreted environments.

To make the developer experience consistent across widely varying
types of applications, such as Windows-based applications and Web-
based applications.

To build all communication on industry standards to ensure that code
based on the .NET Framework can integrate with any other code.

1.2 COMPONENTS OF .NET FRAMEWORK

VB C++ | C# JScript J#

-

Common Language Specification

ASP.NET: Web Services Windows

and Web Forms . Forms
ADO.NET: Data and XML

Base Class Library,

Common Language Runtime

Fig. 1.1 Components of .NET framework

The .Net framework allows infrastructural services to all the
applications developed in .Net compliant language.

It is an engine that provides runtime services using its component like
Common Runtime Language.

The .Net framework provides tools and technologies to develop
windows and web applications.

The .Net framework mainly contains two components :
1. Common Language Runtime(CLR)
2. .Net Framework Class Library (FCL)

1. Common Language Runtime (CLR)

.Net Framework provides runtime environment called Common
Language Runtime (CLR).

. It runs all the .Net programs.

. CLR provides memory management and thread management.

o It allocates the memory for scope and deallocates the memory.

o The code which runs under the CLR is called as Managed Code.

. Programmers need not to worry on managing the memory if the
programs are running under the CLR. (memory management and
thread management)

J Language Compilers (e.g. C#, VB.Net, J#) will convert the
Code/Program to Microsoft Intermediate Language(MSIL) intern this
will be converted to Native Code by CLR.

o There are currently over 15 language compilers being built by
Microsoft and other companies also producing the code that will
execute under CLR.

2. .Net Framework Class Library (FCL)

It accesses the library classes and methods.
o It is also called as Base Class Library.

. It is common for all types of application.
Following are the applications in .Net Class Library:
1. XML web services
2. Windows services
3. Windows application
4. Web applications
5. Console application

1.3 .NET FRAMEWORK DESIGN PRINCIPLE

Interoperability — The .Net framework provides a lot of backward support.
Suppose you had an application built on an older version of the .Net
framework, say 2.0. And if you tried to run the same application on a
machine that had the higher version of the .Net framework, say 3.5. The
application would still work. This is because Microsoft ensures that older
framework versions gel well with the latest version.

Portability — Applications built on the .Net framework can be made to work
on any Windows platform. And now in recent times, Microsoft is also
envisioning making Microsoft products work on other platforms, such as
10S and Linux.

Security — The .NET Framework has a good security mechanism. The
inbuilt security mechanism helps in both the validation and verification of

The .Net Framework

.Net technology

applications. Every application can explicitly define its security
mechanisms. Each security mechanism is used to grant the user access to
the code or to the running program.

Memory management — The Common Language runtime does all the work
or memory management. The .Net framework has all the capability to see
those resources, which are not used by a running program. It would then
release those resources accordingly. This is done via a program called the
“Garbage Collector” which runs as part of the .Net framework. The garbage
collector runs at regular intervals and keeps on checking which system
resources are not utilized, and frees them accordingly.

Simplified deployment — The .Net framework also has tools, which can be
used to package applications built on the .Net framework. These packages
can then be distributed to client machines. The packages would then
automatically install the application.

1.4 NET LANGUAGES

.NET Languages are computer programming languages that are used to
produce programs that execute within the Microsoft .NET Framework.
Microsoft provides several such languages, including C#, Visual Basic
.NET, and C++/CLI. Regardless of which .NET language is used, the output
of the language compiler is a representation of the same logic in an
intermediate language named Common Intermediate Language. Before the
program is executed, CIL is compiled to object code appropriate for the
machine on which the program is executing. This last compilation step is
usually performed by the Common Language Runtime component of the
framework at the moment the program is invoked, though it can be manually
performed at an earlier stage.

While there are currently more than 40 languages with compilers for the
.NET Framework, only a small number of them are widely used and
supported by Microsoft. The rest is composed of languages developed by
third party vendors.

The types of applications that can be built in the .Net framework are
classified broadly into the following categories.

WinForms — This is used for developing Forms-based applications, which
would run on an end-user machine. Notepad is an example of a client-based
application.

ASP.Net — This is used for developing web-based applications, which are
made to run on any browser such as Internet Explorer, Chrome, or Firefox.
The Web application would be processed on a server, which would have
Internet Information Services Installed. Internet Information Services or I1S
is a Microsoft component that is used to execute an Asp.Net application.
The result of the execution is then sent to the client machines, and the output
is shown in the browser.

ADO.Net — This technology is used to develop applications to interact with
Databases such as Oracle or Microsoft SQL Server.

Microsoft always ensures that .Net frameworks are in compliance with all
the supported Windows operating systems.

Few examples of Microsoft .NET languages

C# - Microsoft's flagship .NET Framework language which bears
similarities to the C++ and Java languages.

Visual Basic .NET - A completely redesigned version of the Visual Basic
language for the .NET Framework. This also includes Visual Basic 2005
(v8.0).

VBX, a dynamic version of Visual Basic .NET that runs on top of the
Dynamic Language Runtime.

C++/CLI and the deprecated Managed C++ - A managed version of the
C++ language.

J# - A Java and J++ .NET transitional language.
JScript .NET - A compiled version of the JScript language.

Windows PowerShell - An interactive command line shell/scripting
language that provides full access to the .NET Framework.

IronPython - A .NET implementation of the Python programming
language developed by Jim Hugunin at Microsoft.

IronRuby - A dynamically compiled version of the Ruby programming
language targeting the .NET Framework.

F#, a member of the ML programming language family.

1.5 COMMON LANGUAGE RUNTIME (CLR)

" Whatis the CLR?

The .NET Platform

Applications

T2

Web Form Web Service

.NET Framework
CLR

\

Third-Party
Web Services

.NET Foundation
Web Services

Your Internal
Web Service

.NET Enterprise
Servers

fig 1.2 CLR

The .Net Framework

.Net technology

As part of Microsoft's .NET Framework, the Common Language Runtime
(CLR) is programming that manages the execution of programs written in
any of several supported languages, allowing them to share common object-
oriented classes written in any of the languages.

Benefits of CLR :

. Performance improvements.

. The ability to easily use components developed in other languages.
° Extensible types provided by a class library.

° Language features such as inheritance, interfaces, and overloading for
object-oriented programming.

. Support for explicit free threading that allows creation of
multithreaded, scalable applications.

° Support for structured exception handling.
° Support for custom attributes.
° Garbage collection.

° Use of delegates(a class that can hold a reference to a method) instead
of function pointers for increased type safety and security.

.NET CLR is a runtime environment that manages and executes the code
written in any .NET programming language. CLR is the virtual machine
component of the .NET framework. Language's compiler compiles the
source code of applications developed using .NET compliant languages into
CLR's intermediate language called MSIL, i.e., Microsoft intermediate
language code. This code is platform-independent. It is comparable to byte
code in java. Metadata is also generated during compilation and MSIL code
and stored in a file known as the Manifest file. This metadata is generally
about members and types required by CLR to execute MSIL code. A just-
in-time compiler component of CLR converts MSIL code into the native
code of the machine. This code is platform-dependent. CLR manages
memory, threads, exceptions, code execution, code safety, verification, and
compilation.

Converting Source Code into Native Code

Source Code NET MSL & Meta
{Net Language Data (Portable CLR (JIT) Native Code
Technologies) Compiler Executable File)

fig 1.3 conversion process of source code to native code

Main components of CLR
o Common type system

o Common language speciation

. Garbage Collector
. Just in Time Compiler

. Metadata and Assemblies

CLS-Compliant Language
Language Compiler

Common Language Runtime

JIT
Compiler

Native
Code

Exceution of a .NET Application

fig 1.4 .NET application processing
Common type system (CTS)

CTS provides guidelines for declaring, using and managing data types at
runtime. It offers cross-language communication. For example, VB.NET
has an integer data type, and C# has an int data type for managing integers.
After compilation, Int32 is used by both data types. So, CTS provides the
data types using managed code. A common type system helps in writing
language-independent code.

Common Language Specification (CLS)

Common Language Specification (CLS) contains a set of rules to be
followed by all NET-supported languages. The common rules make it easy
to implement language integration and help in cross-language inheritance
and debugging. Each language supported by NET Framework has its own
syntax rules. But CLS ensures interoperability among applications
developed using NET languages.

Garbage Collection

Garbage Collector is a component of CLR that works as an automatic
memory manager. It helps manage memory by automatically allocating
memory according to the requirement. It allocates heap memory to objects.
When objects are not in use, it reclaims the memory allocated to them for
future use. It also ensures the safety of objects by not allowing one object
to use the content of another object.

Just in Time (JIT) Compiler

JIT Compiler is an important component of CLR. It converts the MSIL code
into native code (i.e., machine-specific code). The .NET program is
compiled either explicitly or implicitly. The developer or programmer calls

The .Net Framework

.Net technology

a particular compiler to compile the program in the explicit compilation. In
implicit compilation, the program is compiled twice. The source code is
compiled into Microsoft Intermediate Language (MSIL) during the first
compilation process. The MSIL code is converted into native code in the
second compilation process. This process is called JIT compilation.

Metadata

Metadata is binary information about the program, either stored in a CLR
Portable Executable file (PE) along with MSIL code or in the memory.
During the execution of MSIL, metadata is also loaded into memory for
proper interpretation of classes and related. Information used in code. So,
metadata helps implement code in a language-neutral manner or achieve
language interoperability.

Assemblies

An assembly is a fundamental unit of physical code grouping. It consists of
the assembly manifest, metadata, MSIL code, and a set of resources like
image files. It is also considered a basic deployment unit, version control,
reuse, security permissions, etc.

Functions of CLR

Following are the functions of the CLR.
o It converts the program into native code.
o Handles Exceptions

. Provides type-safety

. Memory management

o Provides security

o Improved performance

o Language independent

. Platform independent

J Garbage collection

o Provides language features such as inheritance, interfaces, and
overloading for object-oriented programs.

1.6 .NET CLASS LIBRARY

.NET Framework Class Library is the collection of classes, hamespaces,
interfaces, and value types that are used for .NET applications.

It contains thousands of classes that support the following functions.
o Base and user-defined data types
o Support for exceptions handling

o input/output and stream operations

. Communications with the underlying system

. Access to data

. Ability to create Windows-based GUI applications
. Ability to create web client and server applications

. Support for creating web services

The .NET Framework provides a large and very rich library of classes to be
used and extended by application developers. Reuse and extension of these
classes will allow developers to be more productive and to develop more
robust and feature-rich applications in a shorter time frame because the class
library provides many features that previously had to be built from scratch.

NET class library is divided into namespaces so that it can be easy to work
with and understand. The System namespace is considered the root
namespace which acts as a container for all the base data type classes used
by application developers to build frameworks and applications. The .NET
class library is common to all languages of .NET. In other words, the way
one access files in C# will be exactly the same in VB.NET and for all other
languages of .NET.

The .NET Framework class library contains classes that allow the
development of the following type of applications:

J Console applications

. Window applications

. Windows services

. ASP .NET Web applications

. Web services

. Windows communication foundation applications
. Windows presentation foundation applications

. Window workflow foundation applications

The library’s classes are organized using a hierarchy of namespace. For
example, all the classes performing 1/O operations are located in the
System.1O namespaces, and classes that manipulate regular expressions are
located in the System.Text.RegularExpressions namespace.

Class libraries are the shared library concept for .NET. They enable you to
componentize useful functionality into modules that can be used by multiple
applications. They can also be used as a means of loading functionality that
is not needed or not known at application startup. Class libraries are
described using the .NET Assembly file format.

The .Net Framework

.Net technology

10

There are three types of class libraries:-

Platform-specific class libraries: They have access to all the APIs in a
given platform (for example, .NET Framework on Windows, Xamarin
10S), but can only be used by apps and libraries that target that platform.

Portable class libraries: They have access to a subset of APIs, and can be
used by apps and libraries that target multiple platforms.

NET Standard class libraries: They are a merger of the platform-specific
and portable library concepts into a single model that provides the best of
both.

1.7 SUMMARY

This chapter briefs about role of .NET framework while designing an
application. Also, it gives you idea about components and design principles
of .NET framework. It also states various languages used in .NET for
designing any windows or web application. The CLR which is main
component of .NET framework is discussed in this chapter and class library
which provides various in built functions and support to execute the
application smoothly is also discussed.

1.8 REFERENCES

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

1.9 QUESTIONS

1. Write a note on .NET framework.

2. What are the various components of .NET framework?
3. Write a note on CLR.

4. Explain the use of .NET class library.

5. Explain the terms CTS, CLS, and JIT.

ke o o ke o e e

C# LANGUAGE BASICS

Unit Structure :

2.0 Introduction

2.1 Comments

2.2 Variable

2.3 Data types

2.4 Variable operations

2.5 Object based manipulation
2.6 Call by Value and Call by Reference
2.7 C# Constructors

2.8 Casting Objects

2.9 Summary

2.10 References

2.11 Questions

2.0 INTRODUCTION

C# (C-Sharp) is a programming language developed by Microsoft that runs
on the .NET Framework. C# is used to develop web apps, desktop apps,
mobile apps, games, and much more. C# is an object-oriented programming
language. In Object-Oriented Programming methodology, a program
consists of various objects that interact with each other by means of actions.
The actions that an object may take are called methods. Objects of the same
kind are said to have the same type or, are said to be in the same class.

2.1 COMMENTS

Comments are used in a program to help us in understanding a piece of
code. Comments are completely ignored by the compiler.

In C#, there are 2 types of comments:
. Single Line Comments (/')
) Multi Line Comments (/* */)

Single Line Comments

Single line comments start with a double slash //. The compiler ignores
everything after // to the end of the line. For example,

inta=7+9;// Adding 7 and 9

11

.Net technology

12

Multi Line Comments

Multi line comments start with /* and ends with */. Multi line comments
can span over multiple lines.

[* Thisis afirst Program in C#.
This basic program prints Hello World.
*/
using System;
namespace HelloWorld

{
class Program
{
public static void Main(string[] args)
{
// Prints Hello World
Console.WriteLine("Hello World!");
}
}
}
2.2 VARIABLE

A variable is the name of a memory location. It is used to store data. Its
value can be changed and it can be reused many times. Each variable in C#
has a specific type, which determines the size and layout of the variable's
memory the range of values that can be stored within that memory, and the
set of operations that can be applied to the variable.

Rules for defining variables
. A variable can have alphabets, digits, and underscore.

o A variable name can start with the alphabet and underscore only. It
can't start with a digit.

. No white space is allowed within the variable name.

o A variable name must not be any reserved word or keyword e.g. char,
float etc.

Defining Variables

inti,j, k;

char c, ch;

float f, salary;

double d;

You can initialize a variable at the time of definition as —
inti=100;

Valid variable names: C# language basics
ints;
int_s;
int sO5;
Invalid variable names:
int 5;
intxy;
int double;
Example
using System;
namespace VariableDefinition {
class Program {
static void Main(string[] args) {
short a;
inth;
double c;
a=10;
b =20;
c=a+b;
Console.WriteLine("a= {0}, b={1}, c={2}", a, b, ¢);
Console.ReadLine();
}
}
}

2.3 DATATYPES

A data type specifies the type of data that a variable can store such as
integer, floating, character etc.

The variables in C#, are categorized into the following types —
° Value types
° Reference types

° Pointer types

13

.Net technology

14

Value Types I Reference Typ:]
v ! v
Built-in Value Types Self describing Pointer Type Intertace Type
User-defined Value Types Type
Enumerations ‘__—I__‘
Structure Class Type Armrays
User-defined Boxed value Delegates
Classes Types

Common type system

Fig. 2.1 classification of data types

Value Type - Value type variables can be assigned a value directly. The
value types directly contain data. Some examples are int, char, and float,
which stores numbers, alphabets, and floating point numbers, respectively.
When you declare an int type, the system allocates memory to store the
value.

Type Represents

bool Boolean value

byte unsigned integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 64-bit unsigned integer

char unicode character

decimal Decimal values

double Double precision floating point
float Single precision floating point
sbyte 8-bit Signed integer

short 16-bit signed integer

int 32-bit Signed integer

long 64-bit Signed integer

Reference Type

The reference types do not contain the actual data stored in a variable, but
they contain a reference to the variables. In other words, they refer to a
memory location. Using multiple variables, the reference types can refer to
a memory location. If the data in the memory location is changed by one of
the variables, the other variable automatically reflects this change in value.

Example of built-in reference types are: object, dynamic, and string.

Object Type

The Object Type is the ultimate base class for all data types in C# Common
Type System (CTS). Object is an alias for System.Object class. The object
types can be assigned values of any other types, value types, reference types,
predefined or user-defined types. However, before assigning values, it
needs type conversion.

When a value type is converted to an object type, it is called boxing and on
the other hand, when an object type is converted to a value type, it is called
unboxing.

Dynamic Type

We can store any type of value in the dynamic data type variable. Type
checking for these types of variables takes place at run-time. Dynamic types
are similar to object types except that type checking for object type variables
takes place at compile time, whereas that for the dynamic type variables
takes place at run time.

String Type

The String Type allows us to assign any string values to a variable. The
string type is an alias for the System.String class. It is derived from object
type. The value for a string type can be assigned using string literals in two
forms: quoted and @quoted.

Pointer Type

Pointer type variables store the memory address of another type.

2.4 VARIABLE OPERATIONS

Operators are symbols that are used to perform operations on operands.
Operands may be variables and/or constants.

For example, in 2+3, + is an operator that is used to carry out addition
operation, while 2 and 3 are operands.

Operators are used to manipulate variables and values in a program. C#
supports a number of operators that are classified based on the type of
operations they perform.

There are following types of operators to perform different types of
operations in C# language.

e Arithmetic Operators
e Relational Operators
e Logical Operators

e Bitwise Operators

e Assignment Operators
e Unary Operators

C# language basics

15

.Net technology ° Ternary OpGI’&tOI’S
e Misc Operators

Operator Type

+, -, %, % Arithmetic Operators

<, €<=, > »>= ==

Relational Operators

Binary Operator 8&, ” ! Logical Operators
& |, ==, 2> ~ A Bitwise Operators
= 4= -=*= [= U= Assignment Operators
Unary Operator —_— ++, - Unary Operator
lernary Operator —_— 7 Ternary or Conditional Operator

fig 2.2 types of operators
Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations such as
addition, subtraction, multiplication, division, etc.

C# Arithmetic Operators
Operator | Operator Name Example
+ Addition Operator 6 + 3 evaluates to 9
- Subtraction Operator 10 - 6 evaluates to 4
* Multiplication Operator 4 * 2 evaluates to 8
/ Division Operator 10 /5 evaluates to 2
% Modulo Operator (Remainder) 16 % 3 evaluates to 1

Relational Operators

Relational operators are used to check the relationship between two
operands. If the relationship is true the result will be true, otherwise, it will
result in false.

C# Relational Operators

Operator | Operator Name Example

== Equal to 6 == 4 evaluates to false

> Greater than 3 > -1 evaluates to true

< Less than 5 < 3 evaluates to false

>= Greater than or equal to 4 >= 4 evaluates to true

<= Less than or equal to 5 <= 3 evaluates to false
16 I= Not equal to 10 = 2 evaluates to true

Logical Operators C# language basics

Logical operators are used to perform logical operations such as and, or,
not. Logical operators operate on boolean expressions (true and false) and
return boolean values.

C# Logical operators
Operand 1 | Operand2 | OR(||) | AND (&&) | NOT(!) operand 1
true true true true false
true false true false false
false true true false true
false false false false true

Bitwise Operators

Bitwise and bit shift operators are used to perform bit level operations on
integer (int, long, etc) and boolean data. These operators are not commonly
used in real life situations.

p q p&q plg p™q
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
Operator | Description Example
& Binary AND A=14,B=11
Copies a bit if it exists in both operands | (A & B) =10
Binary OOOR A=14 B =11
Copies a bit if it exists in wither | (AIB)=15
operand
N Binary XOR A=14,B=11
Copies a bit if it is set in one operand | (A"B)=5
but not in both
~ Binary ones complement A =26
Flipping bits (~A) =229
<< Binary left shift A=42

17

.Net technology

18

Left operands value is moved left by | A<<1=84
number of bits specified by right | A «< 5 =168
operand

>> Binary right shift A=42
Left operands value is moved right by | A>>1=21
number of bits specified by right | A .5 =19
operand

Assignment Operators

Operator | Description Example

= Assignment C=A+B
Assigns value from right to left side

+= Add AND assignment C+=A
Adds right operand to left operandand | C=C + A
assign result to left operand

-= Subtract AND assignment C-=A
Subtracts right operand from left [C=C-A
operand and assign result to left
operand

= Multiply AND assignment C=A
Multiplies right operand with left | C=C*A
operand and assign result to left
operand

/= Divide AND assignment Cl=A
Divides left operand with right | C=C/A
operand and assign result to left
operand

Unary operator

The unary operators operates on a single operand.

C# unary operators

Operator | Operator Name Description

+ Unary Plus Leaves the sign of operand as it is
- Unary Minus Inverts the sign of operand

++ Increment Increment value by 1

- Decrement Decrement value by 1

Logical Negation (Not)

Inverts the value of a boolean

Ternary Operator

The ternary operator ? : operates on three operands. It is a shorthand for if-

then-else statement. Ternary operator can be used as follows:

variable = Condition? Expressionl : Expression2;

If the expression stated by Condition is true, the result of Expressionl is

assigned to variable.

If it is false, the result of Expression2 is assigned to variable.

int number = 10;

string result;

result = (number % 2 == 0)? "Even Number" : "Odd Number";

Console.WriteLine("{0} is {1}", number, result);

Miscellaneous Operators

is of a certain type

sizeof() | Returns size of a data type sizeof(int)

typeof() | Returns type of a class typeof(StreamReader)

& Returns address of an variable | &a

* Pointer to a variable *a

?. Conditional expression if condition is true ? Then
X:elsey

is Determines whether an object | if(Ford is Car)

checks if ford is an object
of the car class

as Cast without raising an
exception if the cast fails

object obj = new
StringReader(“Hello”)
StringReader r = obj as
StringReader

2.5 OBJECT BASED MANIPULATION

° A C# program consists of the following parts:

— Namespace declaration

— Aclass

— Class methods

— Class attributes

— A Main method

— Statements and Expressions
— Comments

C# language basics

19

.Net technology

20

using System;
namespace Hellollorldipplication

i
class Hellollorld
{
static void Main(string[] args)
{
/¥ my first program in CE %/
Console.WritelLine("Hello World™);
Console. Readkey() ;
T
1
1

The first line of the program using System; - the using keyword is
used to include the System namespace in the program. A program
generally has multiple using statements.

The next line has the namespace declaration. A namespace is a
collection of classes. The HelloworldApplication namespace
contains the class HelloWorld.

The next line has a class declaration, the class HelloWorld contains
the data and method definitions that your program uses. Classes
generally contain multiple methods. Methods define the behavior of
the class. However, the HelloWorld class has only one method Main.

The next line defines the Main method, which is the entry point for
all C# programs. The Main method states what the class does when
executed.

The next line /*...*/ is ignored by the compiler and it is put to add
comments in the program.

The Main method specifies its behavior with the statement
Console.WriteLine(**Hello World"');

WriteLine is a method of the Console class defined in the System
namespace. This statement causes the message "Hello, World!" to be
displayed on the screen.

The last line Console.ReadKey(); is for the VS.NET Users. This
makes the program wait for a key press and it prevents the screen from
running and closing quickly when the program is launched from
Visual Studio .NET.

Conditional logic C# language basics

Ans. Decision making structures requires the programmer to specify one or
more conditions to be evaluated or tested by the program, along with a
statement or statements to be executed if the condition is determined to be
true, and optionally, other statements to be executed if the condition is
determined to be false.

C# provides following types of decision making statements.

If statement An if statement consists of a boolean expression
followed by one or more statements.

if...else An if statement can be followed by an optional else
statement statement, which executes when the boolean
expression is false.

nested if You can use one if or else if statement inside
statements another if or else if statement(s).

switch statement | A switch statement allows a variable to be tested for
equality against a list of values.

° if Statement

An if statement consists of a boolean expression followed by one or
more statements.

Syntax
if(boolean_expression)

{

* statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code
inside the if statement is executed. If boolean expression evaluates
to false, then the first set of code after the end of the if statement(after
the closing curly brace) is executed.

21

https://www.tutorialspoint.com/csharp/if_statement_in_csharp.htm
https://www.tutorialspoint.com/csharp/if_else_statement_in_csharp.htm
https://www.tutorialspoint.com/csharp/if_else_statement_in_csharp.htm
https://www.tutorialspoint.com/csharp/nested_if_statements_in_csharp.htm
https://www.tutorialspoint.com/csharp/nested_if_statements_in_csharp.htm
https://www.tutorialspoint.com/csharp/switch_statement_in_csharp.htm

.Net technology Flow Diagram

If condition
is true

If condition

is false conditional code

fig. 2.3 if - flow chart

using System;
namespace DecisionMaking

1

class Program
1
static wvoid Main{string[] args)

{

/* local warlable definition */
int & = 18;
F* check the boolean condition wsing if statement */
it {8 < 2B)
x
L
F# if condition is true then print the following =/
Console.briteline("a is less than 28");
¥
Console.Writeline{"value of a iz : {2}", a);
Console.Readline();

o/p :- ais less than 20; value of ais : 10

° if...else Statement

An if statement can be followed by an optional else statement, which
executes when the boolean expression is false.

22 SyntaX

if(boolean_expression) C# language basics

{
I3
else

{
¥

f* statement{s) will execute if the boolean expression is true */

f* statement{s) will execute if the boolean expression is false */

If condition

is true
condition

If condition
is false

else code

O

fig 2.4 if...else — flow chart

using System;
namespace DecisionMaking
1
class Program
1
static wvoid Main{string[] args)
{

/* local warisble definition */
int & = 1@@;

'l

#* check the boolean condition */
it (a < 2@)

- -

Y

S/® if condition is true then print the following =/
Console.lriteline{"a is less than 28");

¥

else
I
L

/# if condition is false then print the following =,

Console.lriteline{"a is not less than 28");
Consocle.Writeline ("
Consocle.Reasdline();

value of a is : {€}", a);

23

.Net technology O/p
a is not less than 20;

value of a is : 100

° Nested if Statements

you can use one if or else if statement inside another if or else if
statement(s).

Syntax

if(boolean expression 1)

1
/¥ Executes when the boolsan expression 1 is true =/
if({boolean_expression 2}
1
/¥ Executes when the boolean expression 2 is trues */
¥
¥
Example
class Program
1
static void Main(string[] args)
{
{/* local variable definition */
int a = 1@8;
int b = 200;
/* check the boolean condition */
if (a == 180)
{
/* if condition is true then check the following */
if (b == 200)
{
/* if condition is true then print the following */
Console.Writeline("value of a is 100 and b is 200");
1
h
Console.WriteLine("Exact value of a is : {8}", a);
Console.WriteLine("Exact value of b is : {8}", b);
Console.Readline();
h
b
!

24

° Olp :- C# language basics
Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200

. Switch Statement

A switch statement allows a variable to be tested for equality against
a list of values. Each value is called a case, and the variable being
switched on is checked for each switch case.

Syntax

switch{expression) {
case constant-expression
statement{s);
break; /* opticnal */
case constant-expression
statement{s);
break; /%

i

optional *;

F* you can have any number of case statements */f
default @ /% Opticnal */

statement{s};

Flow Diagram

expression

case 1

code block 1

case 2

code block 2

case 3 code block 3
4
/y
/]
default code block N
fig. 2.5 switch

25

.Net technology

26

using System;
namespace DecisionMaking

i

class Program

i

static woid Main{string[] args)

{

f* local wariable definition */
char grade = "B';

switch (grade)
i

cas= 'A":
Consecle.WriteLine({"Excellent!™);
break;

cas= 'B":

case 'C":

Console.WriteLine("kell done™);
break;

case 'D":

Console.WriteLine{™You passed™);
break;

case "F°
Console.WriteLine{"Better try again™);
break;
default:

Console.Writeline{"Inwvalid grade™);
break;

¥
Console.WriteLine({"Your grade is {@}", grade);
Console.ReadLine(};

O/P :-
Well done

Your grade is B
Loops

A loop statement allows us to execute a statement or a group of statements
multiple times.

Types of loop statements

o while loop :- It repeats a statement or a group of statements while a
given condition is true. It tests the condition before executing the loop
body.

. for loop :- It executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

o do...while loop :- It is similar to a while statement, except that it tests
the condition at the end of the loop body

While Loop C# language basics

A while loop statement in C# repeatedly executes a target statement as long
as a given condition is true.

Syntax

while(condition)

1

statement(s);

Here, statement(s) may be a single statement or a block of statements.
The condition may be any expression, and true is any non-zero value. The
loop iterates while the condition is true.

When the condition becomes false, program control passes to the line
immediately following the loop.

while(condition)
{

conditional code ;
}

l If condition

Flow Diagram

is true

code block If conditionv
is false

fig 2.6 while condition

27

.Net technology

28

using System;
namespace Loops

{
class Program
1
static void Main{string[] args)
{
/* local variable definition */
int a = 18;
/* while loop execution */
while {a < 2@)
1
Console.WriteLine{"value of a: {@}", &);
a-i-{-j
¥
Console.Readline();
}
¥
}
o/P

value of a: 18
value of a: 11
valus of =@ 12
valus of &: 13
value of &: 14
valus of =: 15
valus of &: 16
walue of a: 17
walue of a: 13

valus of @ 19

For Loop

A for loop is a repetition control structure that allows you to efficiently
write a loop that needs to execute a specific number of times.

Syntax

for { init; condition; increment)

{
}

statement(s);

The init step is executed first, and only once. This step allows you to
declare and initialize any loop control variables.

Next, the condition is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop does not execute and flow
of control jumps to the next statement just after the for loop.

After the body of the for loop executes, the flow of control jJumps back
up to the increment statement.

The condition is now evaluated again. If it is true, the loop executes
and the process repeats itself (body of loop, then increment step, and
then again testing for a condition). After the condition becomes false,
the for loop terminates.

Flow diagram

for(init; condition; increment)

{

conditional code ;
}

condition

If condition
is true

\
code block If condition
is false

s INCrement

.

fig 2.7 for loop

using System;
namespace Loops

{

c

{

lass Program

static woid Main{string[] args)

{
/* for loop execution */
for (int a = 18; a < 28; a = a + 1)
1

Console.bWriteline("value of a: {8}", a);

¥

Console.ReadLine(};

C# language basics

29

.Net technology

30

[al]
(=
L]

valus of

i
[
it

value of

[}
(=
[}

value of

[al]
=
[N}

value of

[al]
[-
=

value of

[al]
(=
LN}

valus of

A1)
(=
(831

valus of

[al}
=
|

value of

[}
=
ca

value of

[al]
=
[ul

value of

Do...while loop

A do...while loop is similar to a while loop, except that a do...while loop is
guaranteed to execute at least one time.

Syntax

da
{

statement{s);
twhile{ condition);
The conditional expression appears at the end of the loop, so the

statement(s) in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the
statement(s) in the loop execute again. This process repeats until the given
condition becomes false.

Flow Diagram

do {
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

fig 2.8 do...while loop flow chart

using System;
namespace Loops

{

class Program

{

static woid Main{string[] args)

{

f* local variable definition */
int a = 18;

f* do loop execution */
do

i
Console .WriteLine{"value of a: {@}", a);
a = a + 1;

y
while {a < 2@};
Console.Readline(};

valus of s: 18
valus of s 11
valus of g1 12
valus of &: 13
valus of &: 14
valus of &: 15
valus of &: 18
values of &: 17
valus of s: 13

valus of &: 19

Loop Control Statements

Loop control statements change execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that
scope are destroyed.

C# provides the following control statements.

break Terminates the loop or switch statement and transfers
statement | execution to the statement immediately following the loop or
switch.

continue | Causes the loop to skip the remainder of its body and
statement | immediately retest its condition prior to reiterating.

Break Statement

. When the break statement is encountered inside a loop, the loop is
immediately terminated and program control resumes at the next
statement following the loop.

. If we are using nested loops (i.e., one loop inside another loop), the
break statement will stop the execution of the innermost loop and start
executing the next line of code after the block.

C# language basics

31

https://www.tutorialspoint.com/csharp/csharp_break_statement.htm
https://www.tutorialspoint.com/csharp/csharp_break_statement.htm
https://www.tutorialspoint.com/csharp/csharp_continue_statement.htm
https://www.tutorialspoint.com/csharp/csharp_continue_statement.htm

.Net technology Flow Diag ram

conditional

code

If condition
is true

condition

If condition
is false

fig 2.8 break statement flow chart

Example

using System;
namespace Loops

1
class Program
1
static wold Main{string[] args)
{
/* locel variable definition */
int a = 1&;
/¥ while loop execution */
while {a < 2@)
1
Console.WriteLline{"wvalus of a: {&8}", 8);
att;
if {a » 15)
{
fS* terminate the loop using break statement */
break;
¥
I
Console.ReadlLine(};
¥
T
¥

32

C# language basics
value of a: 18

walus of z: 11
wvalus of z: 12
valus of z: 13
value of a: 14

value of g: 15

Continue Statement

It forces the next iteration of the loop to take place, skipping any code in
between.

For the for loop, continue statement causes the conditional test and
increment portions of the loop to execute.

The while and do...while loops, continue statement causes the program
control passes to the conditional tests.

Flow Diagram

conditional

code

If condition continue
is true

condition

If condition
is false

fig 2.9 continue statement flow chart

33

.Net technology Example

using System;
namespace Loops

{

class Program

1

static wolid Main{string[] args)

{
/* local wvarishle definition */
int a3 = 18;

/* do loop execution */
do

1
if (a == 15)

1
F* skip the iteration */
a = a4+ 1;
continue;

¥

Console.Writeline{"wvalus of a: {@}", &a);
at+;

h
while {a <« 2@);
Console.ReadlLine(};

valus of s 16
valus of @ 11
value of s 12
valus of & 13
valus of s 14
valus of & 16
valus of & 17
value of &: 138

valuse of z: 19

Methods

A method is a group of statements that together perform a task. Every C#
program has at least one class with a method named Main.

34

Defining Methods in C# C# language basics
Syntax

<Access Specifier><Return Type><Method Name>(Parameter List) {

Method Body

}

. Access Specifier — Determines the visibility of a variable or a method
from another class.

. Return type — A method may return a value. The return type is the
data type of the value the method returns. If the method is not
returning any values, then the return type is void.

. Method name — Method name is a unique identifier and it is case
sensitive. It cannot be same as any other identifier declared in the
class.

J Parameter list — Enclosed between parentheses, the parameters are
used to pass and receive data from a method. The parameter list refers
to the type, order, and number of the parameters of a method.
Parameters are optional; that is, a method may contain no parameters.

. Method body — It contains the set of instructions needed to complete
the required activity.

Calling Methods in C#
namespace CalculatorApplication {
class NumberManipulator {
public intFindMax(int num1, int num2) {
int result;
if (num1 >numz2)
result = num1;
else
result = numz2;

return result;

35

.Net technology

36

static void Main(string[] args) {

inta=100;
int b = 200;
int ret;

NumberManipulator n = new NumberManipulator();
ret = n.FindMax(a, b);
Console.WriteLine("Max value is : {0}", ret);

Console.ReadLine();

¥

When the above code is compiled and executed, it produces the following
result —

Max value is ; 200
Classes

Class is a blueprint for a data type. It does not actually define any data, but
it defines what the class name means. That is, what an object of the class
consists of and what operations can be performed on that object. Objects
are instances of a class. The methods and variables that constitute a class
are called members of the class.

Defining a Class

A class definition starts with the keyword class followed by the class
name; and the class body enclosed by a pair of curly braces.

<access specifier> class class_name {

/I member variables
<access specifier><data type> variablel;
<access specifier><data type> variable2;

/I member methods

<access specifier><return type> methodl(parameter_list) { C# language basics

/I method body

. Access specifiers specify the access rules for the members as well as
the class itself.

. Data type specifies the type of variable, and return type specifies the
data type of the data the method returns, if any.

namespace BoxApplication {
class Box {
public double length; // Length of a box
public double breadth; // Breadth of a box
public double height; // Height of a box
¥
class Boxtester {
static void Main(string[] args) {
Box Box1 = new Box(); // Declare Box1 of type Box
double volume = 0.0; // Store the volume of a box here
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;
volume = Box1.height * Box1.length * Box1.breadth;
Console.WriteLine("Volume of Box1 : {0}", volume);

Console.ReadKey();

ky

¥
¥

When the above code is compiled and executed, it produces the following
result —
Volume of Box1 : 210
37

.Net technology

38

2.6 CALL BY VALUE AND CALL BY REFERENCE

Two ways of passing parameters to methods are call by value and call by
reference

Call by Value

Call by value method copies the value of an argument into the formal
parameter of that function. Therefore, changes made to the parameter of the
main function do not affect the argument. In this parameter passing method,
values of actual parameters are copied to the function’s formal parameters,
and the parameters are stored in different memory locations. So any changes
made inside functions are not reflected in the actual parameters of the caller.
using System;

class Test

{

static void Change(int a)
{
a=>s;
Console.WriteLine(a);

ks

static void Main(string[] args)
{
int n =10;
Change(n);
Console.WriteLine(n);
}
}

Call by Reference

Call by reference method copies the address of an argument into the formal
parameter. In this method, the address is used to access the actual argument
used in the function call. It means that changes made in the parameter alter
the passing argument. In this method, the memory allocation is the same as
the actual parameters. All the operations in the function are performed on
the value stored at the address of the actual parameter, and the modified
value will be stored at the same address.

using System;
class Test

{

static void Change(ref int a)

{
a=5;
Console.WriteLine(a);

¥

static void Main(string[] args)
{
intn=10;
Change(ref n);
Console.WriteLine(n);
}
}

2.7 C# CONSTRUCTORS

A special member function of a class that is executed whenever we create
new objects of that class. A constructor has exactly the same name as that
of class and it does not have any return type.

namespace LineApplication {

class Line {
private double length; // Length of a line

public Line{) {
Console.Writeline("0Object is being created");

}

public void setlength(double len) {
length = len;
)

public double getlength() {
return length;

}

static void Main(string[] args) {
Line line = new Line();

// set line length

line.setlLength(6.8);

Console.Writeline("Length of line : {@}", line.getlLength()};
Console.ReadKey();

C# language basics

39

.Net technology

40

Polymorphism(Function Overloading)

Multiple definitions for the same function name in the same scope. The
definition of the function must differ from each other by the types and/or
the number of arguments in the argument list. We cannot overload function
declarations that differ only by return type.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Method overloading32

i
class shape
{
public veoid Area(int side)
1
int squarearea = side * side;
Console.WritelLine("The Area of Square is :™ + squarearea);
public veoid Area(int length, int breadth)
{
int rectarea = length * breadth;
Console.Writeline("The Area of Rectangle is :™ + rectarea);
h
public veoid Area(double radius}
i
double circlearea = 3.14 * radius * radius;
Console.WritelLine("The Area of Circle is :™ + circlearea);
h
}
class Program
static void Main(string[] args)
shape s = new shape();
s.Area(l10);
s.Area(l10, 20);
s.Area(10.8);
Console.ReadKey();
Namespace

A namespace is designed for providing a way to keep one set of names
separate from another. The class names declared in one namespace does
not conflict with the same class names declared in another.

Defining a Namespace
namespace namespace_name {
I/ code declarations
}
Example:-
namespace first_space {
class namespace_cl {
public void func() {

Console.WriteLine("Inside first_space");

k
¥
¥

namespace second_space {
class namespace_cl {
public void func() {

Console.WriteLine("Inside second_space");

¥
¥
k

class TestClass {
static void Main(string[] args) {

first_space.namespace_cl fc = new first_space.namespace_cl();

second_space.namespace_clsc = new second_space.namespace_cl();

fc.func();

sc.func();

Console.ReadKey();
}

}

When the above code is compiled and executed, it produces the following

result —

Inside first_space

Inside second_space

C# language basics

41

.Net technology

42

Assemblies

An Assembly is a basic building block of .Net Framework applications. It
is basically a compiled code that can be executed by the CLR. An assembly
is a collection of types and resources that are built to work together and form
a logical unit of functionality. An Assembly can be a DLL or exe depending
upon the project that we choose.

An assembly is a file that is automatically generated by the compiler upon
a successful compilation of every .NET application. It is generated only
once for an application and upon each subsequent compilation, the
assembly gets updated. An Assembly contains Intermediate Language (IL)
code, which is similar to Java byte code. In the .NET language, it consists
of metadata. Metadata enumerates the features of every “type” inside the
assembly or the binary. In addition to metadata, assemblies also have a
special file called Manifest. It contains information about the current
version of the assembly and other related information.

Assemblies are basically the following two types:
e Private Assembly

e Shared Assembly
Private Assembly

It is an assembly that is being used by a single application only. Suppose
we have a project in which we refer to a DLL so when we build that project
that DLL will be copied to the bin folder of our project. That DLL becomes
a private assembly within our project. Generally, the DLLs that are meant
for a specific project are private assemblies.

Shared Assembly

Assemblies that can be used in more than one project are known to be shared
assembly. Shared assemblies are generally installed in the GAC.
Assemblies that are installed in the GAC are made available to all the .Net
applications on that machine.

Inheritance

Inheritance allows us to define a class in terms of another class, which
makes it easier to create and maintain an application. This also provides an
opportunity to reuse the code functionality and speeds up implementation
time.

When creating a class, instead of writing completely new data members and
member functions, the programmer can designate that the new class should
inherit the members of an existing class. This existing class is called
the baseclass, and the new class is referred to as the derived class.

A class can be derived from more than one class or interface, which means
that it can inherit data and functions from multiple base classes or interfaces.

Consider a base class Shape and its derived class Rectangle —
namespace InheritanceApplication {
class Shape {
public void setWidth(int w) {
width = w;
}
public void setHeight(int h) {
height = h;
}
protected int width;
protected int height;
b
/I Derived class
class Rectangle: Shape {
public intgetArea() {
return (width * height);
}
¥

class RectangleTester {
static void Main(string[] args) {
Rectangle Rect = new Rectangle();
Rect.setWidth(5);
Rect.setHeight(7);
Console.WriteLine("Total area: {0}", Rect.getArea());
Console.ReadKey();

¥

¥

When the above code is compiled and executed, it produces the following

result —

Total area: 35

C# language basics

43

.Net technology

44

Static members

When we declare a member of a class as static, it means no matter how
many objects of the class are created, there is only one copy of the static
member.

The keyword static implies that only one instance of the member exists for
a class. Static variables are used for defining constants because their values
can be retrieved by invoking the class without creating an instance of it.
Static variables can be initialized outside the member function or class
definition. You can also initialize static variables inside the class definition.

namespace StaticVarApplication {
class StaticVar {
public static intnum;
public void count() {
num-++;
}
public intgetNum() {
return num;

k
¥

class StaticTester {
static void Main(string[] args) {

StaticVar s1 = new StaticVar();
StaticVar s2 = new StaticVar();

s1.count();

sl.count();

s1.count();

s2.count();

s2.count();

s2.count();
Console.WriteLine("Variable num for s1: {0}", s1.getNum());
Console.WriteLine("Variable num for s2: {0}", s2.getNum());
Console.ReadKey();

¥
¥
k

When the above code is compiled and executed, it produces the following
result —

Variable num for s1: 6
Variable num for s2: 6

2.8 CASTING OBJECTS

Type conversion is converting one type of data to another type. It is also
known as Type Casting.

In C#, type casting has two forms —

Implicit type conversion —It supports conversions from derived
classes to base classes. Implicit conversion : It is done automatically
by compiler; no data will be lost; includes conversion of a smaller
data type to a larger data types; safe type conversion. Ex:-

int smallnum = 654667;

long bigNum = smallnum;

Explicit type conversion — These conversions are done explicitly by
users using the pre-defined functions. Explicit conversions require a
cast operator. Conversion of larger data type to smaller data type;

information might be lost or conversion might not be succeed for
some reasons. This is an un-safe type conversion.

long bigNum = 654667;
int smallnum = (int)bigNum;

Partial Classes

A partial class splits the definition of a class over two or more source files.
We can create a class definition in multiple files but it will be compiled as

one

class.

Suppose we have a "Person” class. That definition is divided into the two
source files "Personl.cs™ and "Person2.cs". Then these two files have a class
that is a partial class. We compile the source code then create a single class.

Personl.cs

Compileto

one single
class

Person2.cs

fig. 2.10 partial class

Advantages of a partial class

C# language basics

45

NNet technology We can separate User Interface design code and business logic code so that
it is easy to read and understand.

1. When working with automatically generated source, the code can be
added to the class without having to recreate the source file.

2. More than one developer can simultaneously write the code for the
class.

3. We can maintain our application better by compacting large classes.
Suppose we have a class that has multiple interfaces so we can create
multiple source files depending on interface implements. It is easy to
understand and maintain an interface implemented on which the
source file has a partial class.

publicinterface IRegister

{

/IRegister realted function

¥

publicinterface ILogin

{

/[Login related function

¥

//UserRegister.cs file
publicpartial classUser : IRegister, ILogin

{

/limplements IRegister interface

¥

//UserLogin.cs file
publicpartial classUser

{

/limplements ILogin interface

¥

2.9 SUMMARY

This chapter briefs about basics of C# while developing a web application.
This chapter discusses variable declaration, various operators used in C#,
conditional logics and looping concepts in C#. It also focuses on
implementation of OOPs concept with respect to C#. This chapter tell you
about data types supported by asp.net web applications.

2.10 REFERENCES

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill

3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX
46

2.11 QUESTIONS C# language basics

1. What are the data types supported by C#?

2. Describe various decision making statements in C#.

3. Explain in brief Loop Control Statements

4. How to define and call a method in C#?

5. Write a note on C# classes.

6. What do you mean by namespace? Explain it with an example.

7. What are the advantages of inheritance? Explain it with suitable example.
8. What is the use of static members? Explain it with an example.

9. How can be object casting or data casting is possible in C#?

10. What is partial class? State its advantages.

ke o o ke e e s

47

.Net technology

48

ASP.NET

Unit Structure :

3.0 Introduction

3.1 Creating Websites

3.2 Anatomy of a web form

3.3 Understanding Page Elements

3.4 The Page directive

3.5 Adding event handlers

3.6 Anatomy of an ASP.NET application

3.7 Advantages of ASP.NET Application Folders

3.8 Summary
3.9 References

3.9 Questions

3.0 INTRODUCTION

ASP.NET is an open source web framework, created by Microsoft, for
building modern web apps and services with .NET. ASP.NET is cross
platform and runs on Windows, Linux, macOS, and Docker. ASP.NET is a
web framework designed and developed by Microsoft. It is used to develop
websites, web applications and web services. It provides fantastic
integration of HTML, CSS and JavaScript. It was first released in January
2002. It is built on the Common Language Runtime (CLR) and allows
programmers to write code using any supported .NET language.

3.1 CREATING WEBSITES

1- Start -> All Programs -> Visual Studio 2008
2- Now go to File Menu -> New -> Web Site

3- Under Visual Studio Installed Template-> Choose ASP.NET WEB
SITE -> Choose File System from the location combo box -> Set the path
by the browse button - > Choose the language from the Language
ComboBox (Visual C#, Visual Basic , J #)

Choose Visual C#
4 - Click on the OK Button

5- Tab named Design in the bottom of this page.

Click on this tab and you will see a blank web page where you can drag
any control from the toolbox (which is in the left side of this window).

6- If you are not able to see the Toolbox window just go to View ->
Choose Toolbox.

7 - Drag a button on the blank page and now click on the Source tab.

<%(@ Page Language="C#”
AutoEventWireup="true” CodeFile="Default.aspx.cs”
Inherits="_Default” %>

<IDOCTYPE html PUBLIC “-//W3C//[IDTD XHTML 1.0
Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd”>

<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head runat="server’”>

<title>Untitled Page</title>

</head>

<body>

<form id="form1” runat=""server’”>

<div>

<asp:Button ID="Button1” runat="server” Text="Button” />
</div>

</form>

</body>

</html>

8- Now you can drag any control from the toolbox to the blank web page
and you can set the properties of these controls from the property window

9- If You are not able to see the property window just go to View - > Select
Properties Window. A new window will open on the right side of this

page...

10-Select the control for which you want to set the properties
Go to properties window and set the properties like Button Name

11- If you want to change the Button name which you have added in your
web site then select the button and right click on the button select properties
and the select the — Text Property from the property window and give any
name which you want it will change the button name.

3.2 ANATOMY OF AWEB FORM

ASP.NET applications are generally divided into multiple Web pages.
Every Web page in an ASP.NET application shares a common set of
resources and configuration settings.

ASP.Net

49

.Net technology

50

Each ASP.NET application is executed inside a separate application
domain. These application domains ensure that even if a Web application
causes a fatal error, it does not affect other applications that are currently
running on the same computer.

Each Web application is a separate entity that has its own set of data. It can
be described as a combination of files, pages, handlers, modules, and
executable code that can be invoked from a virtual directory on a Web
server.

The following listing shows an example of a relatively simple Web Forms
page.

HelloSimple.aspx

<%-- Example of the @ Page directive --%>
<%@ Page Language="c#" ClassName="Hello" %>

<htmI>

<head>

<script runat="server">

public void SayHello(Labell.Text ="Hello, " + name + "I"
public void Page_Load(object sender, System.EventArgs e)
if (IsPostBack)

if (NameTextBox.Text !I="" Name = NameTextBox.Text
SayHello() </script> </head>

3.3 UNDERSTANDING PAGE ELEMENTS

HelloSimple.aspx shows examples of many of the elements that you can use
in an ASP.NET Web Form, including server-side comments,
the @ Page directive, static HTML, a server-side <script> code-declaration
block containing both event handlers and methods, and several ASP.NET
server controls.

Element Description

Static These standard HTML elements are treated by ASP.NET
HTML tags |as literal controls, and are rendered to the client browser as
represented in the source file.

HTML Syntax: <!-- -->, HTML comments allow descriptive text
comments to be added to a page. This text is sent to the client but is
not rendered by the browser.

Directives Directives, such as the @ Page directive, provide the
ASP.NET runtime with information about how to process
the page. Using directives, you can control such ASP.NET

Element

Description

features as session state, wiring up of events, and output
caching, as well as importing namespaces and registering
custom controls for use within a page.

Server-side
code

Code can be contained in either server-side <script> code
declaration blocks or <% %> render blocks. ASP.NET
supports server-side code in any language that targets the
runtime.

Event
handlers

Event handlers are procedures in <script> code declaration
blocks that handle page or server control events, such
as Page_Load or control Click events. Most ASP.NET
code should be written in or called from event handlers,
rather than being written in render blocks.

<script>
code
declaration
blocks

These blocks are used to contain page-level procedures
and to declare variables that are global to the page.
Executable code, other than global variable declarations in
code declaration blocks, must be contained within a
procedure declaration. Server-side code declaration blocks
must have the runat="server” attribute, as shown in
HelloSimple.aspx.

<% %>
render
blocks

These blocks are used to contain executable code not
contained within procedures. Overuse of render blocks can
result in code that is difficult to read and maintain.

Client-side
<script>
blocks

These blocks are used to contain script code to be executed
on the client, usually in response to a client-side event.
Choice of language (set by the language attribute) is
dictated by the languages supported by the target browser.
JavaScript is the most common choice for cross- browser
compatibility in client scripts.

Server-side
comments

Syntax: <%-- --%>. Server-side comments allow
descriptive text to be added to a page. Unlike HTML
comments, this text is not sent to the client.

User
controls

These are custom controls that are defined declaratively in
files with the .ascx extension. They provide a simple and
straightforward mechanism for reuse of Ul and Ul-related
code, and can contain most of the same elements as
Web Forms pages.

ASP.NET
server
controls

This set of built-in controls provides ASP.NET developers
with a programming model that mimics that of Microsoft
Visual Basic. Controls are added to a page, and
programmers write code to handle events raised by users’
interaction with the controls at runtime. ASP.NET
provides two sets of built-in controls: the HTML controls,

ASP.Net

51

.Net technology

52

Element Description

which provide a 1-to-1 mapping of server-side controls for
most HTML elements; and the Web controls, which
provide a set of controls that are very similar to the Visual
Basic Ul controls.

Note that some server controls, such as
the TextBox and Button controls, must be placed within a
server-side <form>, or an exception will be raised.

Custom Custom server controls are another mechanism for reuse in
server ASP.NET. They’re defined in class files (.cs or .vb files)
controls and are precompiled into managed assemblies before use.

3.4 THE PAGE DIRECTIVE

ASP.NET directives are instructions to specify optional settings, such as
registering a custom control and page language. These settings describe
how the web forms (.aspx) or user controls (.ascx) pages are processed by
the .Net framework.

The syntax for declaring a directive is:
<<%@ directive_name attribute=value [attribute=value] %>

The Page directive defines the attributes specific to the page file for the page
parser and the compiler. Page Directives are commands. These commands
are used by the compiler when the page is compiled. The page directive
gives ASP.NET basic information about how to compile the page. It
indicates the language you’re using for your code and the way you connect
your event handlers. If you’re using the code-behind approach, the page
directive also indicates where the code file is located and the name of your
custom page class.

The basic syntax of Page directive is:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs” Inherits="_Default" Trace="true" %>

The attributes of the Page directive are:

Attributes Description

AutoEventWireup | The Boolean value that enables or disables page
events that are being automatically bound to
methods; for example, Page_Load.

Buffer The Boolean value that enables or disables HTTP
response buffering.

ClassName The class name for the page.

ClientTarget The browser for which the server controls should

render content.

CodeFile The name of the code behind file.

Debug The Boolean value that enables or disables
compilation with debug symbols.

Description The text description of the page, ignored by the
parser.

EnableSessionState | It enables, disables, or makes session state read-
only.

EnableViewState The Boolean value that enables or disables view
state across page requests.

ErrorPage URL for redirection if an unhandled page
exception occurs.

Inherits The name of the code behind or other class.

Language The programming language for code.

Src The file name of the code behind class.

Trace It enables or disables tracing.

TraceMode It indicates how trace messages are displayed, and

sorted by time or category.

Transaction It indicates if transactions are supported.

ValidateRequest The Boolean value that indicates whether all input
data is validated against a hardcoded list of values.

The Doctype :

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "https://www.w3.0rg/TR/xhtm|1/DTD/xhtml1-
transitional.dtd">

In an ordinary, non-ASP.NET web page, the doctype occupies the very first
line. In an ASP.NET web form, the doctype gets second place, and appears
just underneath the page directive. The doctype indicates the type of markup
(for example, HTML or XHTML) that you’re using to create your web
page. Technically, the doctype is optional, but Visual Studio adds it
automatically. This is important, because depending on the type of markup
you’re using there may be certain tricks that aren’t allowed. For example,
strict XHTML doesn’t let you use HTML formatting features that are
considered obsolete and have been replaced by CSS.

code-behind class

Code Behind refers to code for ASP.NET page which is contained within a
separate class file. It is composed in a different class record that can have
the extension of .aspx.cs or .aspx.vb relying upon the language used. It
allows a clean separation of HTML from the presentation logic. In the code-
behind file, you create a class (which can be any class derived from the Page
class) that serves as the base class for the web page you create in the .aspx

ASP.Net

53

.Net technology

54

file. This relationship between your class and the web page is established
by a Page directive at the top of the .aspx file:

< %@ Page inherits="NewPage" % >

The inherits attribute identifies the class created in the code-behind file
from which this .aspx file will derive. One major point of Code Behind is
that the code for all the Web pages is compiled into a DLL file that allows
the web pages to be hosted free from any Inline Server Code.

If you use code-behind class files with .aspx pages, you can separate the
presentation code from the core application logic (or code-behind). The
code-behind class file is compiled so that it can be created and used as an
object. This allows access to its properties, its methods, and its event
handlers.

Right-click on the .aspx page, and then click View Code. The code-behind
file opens in the editor. In the code-behind file, add the following code to
the Page_Load event handler:

private void Page _Load(object sender, System.EventArgs e)

{
Labell.Text = "(Precompiled): Page_Load fired!";

}

3.5 ADDING EVENT HANDLERS

An event is an action or occurrence such as a mouse click, a key press,
mouse movements, or any system-generated notification. A process
communicates through events. For example, interrupts are system-
generated events. When events occur, the application should be able to
respond to it and manage it. All GUI applications are incomplete without
enabling actions. Events can also be generated without user interactions.
Event handlers are methods in an object that are executed in response to
some events occurring in the application. Events in ASP.NET raised at the
client machine, and handled at the server machine. For example, a user
clicks a button displayed in the browser. A Click event is raised. The
browser handles this client-side event by posting it to the server.

The server has a subroutine describing what to do when the event is raised;
it is called the event-handler. Therefore, when the event message is
transmitted to the server, it checks whether the Click event has an associated
event handler. If it has, the event handler is executed.

Event Arguments

ASP.NET event handlers generally take two parameters and return void.
The first parameter represents the object raising the event and the second
parameter is event argument.

Syntax :-
private void EventName (object sender, EventArgs e);

To create an event handler for the default event

In Design view, double-click the page or double-click the control for which
you want to create a default event handler.

To create an event handler in the Properties window

In Design view, select the control for which you want to create an event
handler. In Properties, click the events symbol. The Properties window
displays a list of events for the selected control.

In the box next to an event name, do one of the following:

Double-click to create a new event handler for that event. The designer will

name the handler using the convention controllD_event.

Type the name of the handler to create.

In the drop-down list, select the name of an existing handler.

The drop-down list displays a list of methods that have the correct signature

for the event.

3.6 ANATOMY OF AN ASP.NET APPLICATION

ASP.NET File Types

.asax

.asCX

.ashx

.asmx

.aspx

.cd

.config

.cs, .vb

.Csproj, .vbproj
dll

.master

Typically a Global.asax file that represents the application
class and contains event handlers that run at various points
in the application life cycle.

A Web user control file that defines a custom
functionality that you can add to any ASP.NET Web
Forms page.

A handler file that is invoked in response to a Web request
in order to generate dynamic content.

An XML Web services file that contains classes and
methods that can be invoked by other Web applications.

An ASP.NET Web Forms page that can contain Web
controls and presentation and business logic.

A class diagram file.

A configuration file contains XML elements that
represent settings for ASP.NET features.

Source code files (.cs or .vb files) that define code that can
be shared between pages

A project file for a Visual Studio Web-application project.
A compiled class library file (assembly).

A master page that defines the layout for other Web pages
in the application.

ASP.Net

55

.Net technology

56

.mdb An Access database file.

.resources, .resx A resource file that contains resource strings that refer to
images, localizable text, or other data.

.Sitemap A sitemap file that defines the logical structure of the Web
application. ASP.NET includes a default sitemap provider
that uses sitemap files to display a navigational control in
a Web page.

sin A solution file for a Visual Studio project.
ASP.NET Web Folders

The asp.net application folder contains list of specified folder that you can
use of specific type of files or content in an each folder. The root folder
structure is as following

. BIN

. App_Code

. App_GlobalResources
. App_LocalResources
. App_WebReferences
. App_Data

. App_Browsers

. App_Themes

Bin Directory

Itis contains all the precompiled .Net assemblies like DLLs that the purpose
of application uses. The Bin folder is used for keeping assemblies inside it.
We can access those as a reference from anywhere of our web application.
Use of Bin folder comes into the picture if we use any class library within
our web application.

App_Code Directory

It contains source code files like .cs or .vb that are dynamically compiled
for use in your application. These source code files are usually separate
components or a data access library. As its name suggests,
the App_Code Folder stores classes, typed data sets, etc. All the items that
are stored in App_Code are automatically accessible throughout the
application. If we store any class files (like .cs or .vb) it compiles them
automatically. It automatically creates type data sets from .xsd (XML
schema) files, and creates XML web service proxy classes from WSDL.

App_GlobalResources Directory

It contains to stores global resources that are accessible to every page.
The App_GlobalResource folder can be read from any page or code that is
anywhere in the web site. Global resources must be stored in

the App_GlobalResource folder at the root of the application. We should
use the App_GlobalResource folder when we need a single resource for
multiple web pages. We can define ASP.NET control properties by
manually associating them with resources in global resource files. You can
add a global resource file by right clicking on
the App_GlobalResource folder and clicking on Add Items. Add .resx files
as resources.

App_LocalResources Directory

It serves the same purpose as app_globalresources, except these resources
are accessible for their dedicated page only. Local resources are specific to
a single web page, and should be used for providing multilingual
functionality on a web page. Local resources must be stored in
the App_LocalResource subfolder of the folder containing the web page.
Because you might have local resources for every page in your web
application, you might have App_LocalResource subfolders in every folder.

App_WebReferences Directory

It stores reference to web services that the web application uses. As the
name suggests, the App_WebReference folder contain references to any
web services. If we have added any web services with our web application,
they go automatically into the App_WebReference folder, in the same way
as in windows applications, if we added any DLLs, they would go under
the Reference folder.

App_Data Directory

It is reserved for data storage and also mdf files, xml file and so on.
The App_Data folder is used as a data storage for the web application. It
can store files such as .mdf, .mdb, and XML. It manages whole application's
data centrally. It is accessible from anywhere in your web application.

App_Browsers Directory

It contains browser definitions stored in xml files. These xml files define
the capabilities of client side browsers for different rendering actions.
The App_Browser folder ~ contains browser information files
(.browser files). These files are XML based files which are used to identify
the browser and browser capabilities.

App_Themes Directory

It contains collection of files like .skin and .css files that are used to improve
application’s look and feel appearance. If you want to give your web sites a
consistent look, then you need to design themes for your web application.
The App_Themes folder contains all such themes. An App_Theme folder
can contain two subfolders; one for CSS files and the other for skin files.
When we add an App_Theme folder, a subfolder with name Themel will be
automatically created. We can change the name of the theme folder as per
our requirements.

ASP.Net

57

.Net technology

58

3.7ADVANTAGES OF ASP.NET APPLICATION
FOLDERS

o We can maintain resources (classes, images, code, databases, themes)
in an organized manner, which allows us to develop and maintain sites
easily

o All files and folders are accessible through the application
o We can add as many files as required

o Files are compiled dynamically when required

3.8 SUMMARY

This chapter briefs about anatomy of a web form. This chapter discusses
about how code behind technique helps web developers developing the web
pages and creating and using events of asp.net. It also focuses on various
ASP.NET folders and file types.

3.9 REFERENCES

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

3.10 QUESTIONS

1. Explain the anatomy of a web form.
2. Explain various types of asp.net file types.
3. Explain various types of asp.et web folders.

ke o o ke o e s

HTML SERVER CONTROLS

Unit Structure :

4.0 Introduction

4.1 View state

4.2 The HtmlControl Class
4.3 Page class

4.4 Global.asax

4.5 web.config

4.6 Summary
4.7 References

4.8 Questions

4.0 INTRODUCTION

The HTML server controls are basically the standard HTML controls
enhanced to enable server side processing. The HTML controls such as
the header tags, anchor tags, and input elements are not processed by the
server but are sent to the browser for display. By default, HTML elements
on an ASP.NET Web page are not available to the server. These
components are treated as simple text and pass through to the browser. They
are specifically converted to a server control by adding the attribute
runat="server" and adding an id attribute to make them available for server-
side processing.

For example, consider the HTML input control:

<input type="text" size="40">

It could be converted to a server control, by adding the runat and id attribute:
<input type="text" id="testtext" size="40" runat=""server">

All the HTML Server controls can be accessed through the Request object.
The HTML server controls have the same HTML output and the same
properties as their corresponding HTML tags. In addition, HTML server
controls provide automatic state management and server-side events.
HTML server controls offer the following advantages:

. The HTML server controls map one to one with their corresponding
HTML tags.

. When the ASP.NET application is compiled, the HTML server
controls with the runat=server attribute are compiled into the
assembly.

59

.Net technology

60

Most controls include an OnServerEvent for the most commonly used
event for the control. For example, the <input type=button> control
has an OnServerClick event.

The HTML tags that are not implemented as specific HTML server
controls can still be used on the server side; however, they are added
to the assembly as HtmlGenericControl.

When the ASP.NET page is reposted, the HTML server controls keep
their values.

The following are HTML server controls that are available in ASP.NET:-

HtmlAnchor Control
HtmIButton Control
HtmlForm Control
HtmlImage Control
HtmlInputButton Control
HtmlInputCheckBox Control
HtmlInputFile Control
HtmlInputHidden Control
HtmlInputimage Control
HtmlInputRadioButton Control
HtmlInputText Control
HtmiSelect Control
HtmITable Control
HtmITableCell Control
HtmITableCell Control
HtmITextArea Control

Example

Here, we are implementing an HTML server control in the form.

/I htmlcontrolsexample.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="html
controlsexample.aspx.cs” Inherits="asp.netexample.htmlcontrolsexample

II%>

<IDOCTYPE htmi>
<html xmIns="http://www.w3.0rg/1999/xhtml">

<head runat="server">

<title></title>

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/8ff86hxd(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/a8fd2268(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/dd120y50(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/8551b36z(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/s4dyt5wk(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/31d4thc6(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/1s43z4wk(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/k65s5xs3(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/44z2k814(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/17tk0thz(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/f8kdafb5(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/807bc327(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/2962t2k8(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/5wsbhse3(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/405596yw(v=vs.71)
https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-1.1/h8ff3dty(v=vs.71)

</head> HTML Server Controls
<body>

<form id="form1" runat="server">

<div>

<input id="Text1" type="text" runat="server"/>

<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Butto
nl_Click"/>

</div>

</form>
</body>
</html>

This application contains a code behind file.
/I htmlcontrolsexample.aspx.cs

using System;

namespace asp.netexample

{

public partial class htmlcontrolsexample : System.Web.Ul.Page

{
protected void Buttonl_Click(object sender, EventArgs €)

{

string a = Request.Form["Text1"];
Response.Write(a);

¥

4.1 VIEW STATE

View state is used automatically by the ASP.NET page framework to persist
information that must be preserved between postbacks. This information
includes any non-default values of controls. You can also use view state to
store application data that is specific to a page. View State is the method to
preserve the Value of the Page and Controls between round trips. It is a
Page-Level State Management technique. View State is turned on by default
and normally serializes the data in every control on the page regardless of
whether it is actually used during a post-back. It is maintained internally as
a hidden field in the form of an encrypted value and a key. Default enables
the View State for a page. When the browser renders the HTML markup,
the current state and the page values are retained and serialized into base64-
encoded strings. The View State methods differ from the cache and cookies 61

https://www.simplilearn.com/tutorials/html-tutorial/what-is-html

.Net technology

62

because the cookies are accessible from all the pages on your website, while
the View State values are non-transferable, and thus you cannot access from
different pages.

Features of View State

o Retain the control value on a page without storing them in a user
profile or session state.

o Store page values and control properties that you set or define on a
page.

o Create a custom View State Provider to store the view page
information in a SQL Server Database or another database.

View State can handle several data objects. A few of them are:
J String

. Boolean Value

. Array Object

o Array List Object

o Hash Table

. Custom type Converters

It's possible to store other data types too. The only condition is that you must
compile the class with the Serializable attribute to serialize the values for
View State.

Advantages of View State

Simplicity and Ease of Use - There is no need for complex codes and
logical thinking to implement ViewState. It is simple and makes storing
form data between page submissions easy.

Flexibility - It is easy to enable, configure, and disable View State
properties on a control-by-control basis. Hence the developer may also
choose to implement it at a page level or a control level.

Server-Independent - There are absolutely no server resources required to
use View State. It is contained in a structure within the page load.

Enhanced Security - The View State values go through hashing, encoding,
and compression for Unicode implementation.

How to Enable and Disable View State?

View State can be enabled and disabled for a single control as well as at the
page level. Set the EnableViewsState attribute of a single control to false to
disable View State for that control.

TextBox1.EnableViewState=false;

To disable the View State for an entire page, set the page directive's
EnableViewState to false as seen below:

<%Page Language="C#" EnableViewState="false";

You must use the same property and set it to "True" to enable the same.
Example

Store the value in viewstate : ViewState[“name”]= “SK College”;

Retrieve information from viewstate : string
value=ViewState[“name”]. ToString();

Open visual studio and design web form with two button control, a textbox
and a label control.

Here, we have two button control one for a clear textbox value and second
one for a retrieve the same textbox value after clearing it. Before clearing
textbox value store it in ViewState[“name”] and after clearing it get value
from ViewState[“name”] and display in label while clicking display value
button.

protected void btnclear_Click(object sender, EventArgs e)
{

ViewState["'name"] = txtname. Text;

txtname.Text ="";

}
protected void btndisplay_Click(object sender, EventArgs e)

{
Ibl. Text = ViewState["'name"]. ToString();

¥

4.2 THE HTMLCONTROL CLASS

The HtmIControl class is the basis for all HTML server controls in Visual
Basic. You don't use it directly—instead, you use classes derived from it.
The classes derived from the HtmlIControl class are:

) HtmlContainerControl
J Htmllmage
. HtmlInputControl

The real purpose of the HtmIControl class is to provide a set of properties
shared by all HTML server controls:

. Attributes— Holds all attribute name and value pairs for the server
control's HTML element.

° Disabled— Gets/sets whether the disabled attribute is included when
an HTML control is displayed in the browser.

. Style— Gets all cascading style sheet (CSS) properties for the
specified HTML server control.

HTML Server Controls

63

.Net technology

64

o TagName— Gets the element name that contains
the runat=server attribute.

HtmlControl

The HtmlControl object is very important to HTML server controls.
Because every property and method it has inherited is by every HTML
server control. If you learn the properties and methods of
the HtmlIControl class, you have learned about 80% of the properties and
methods of all the objects in the System.Web.UIl.HtmIControls nhamespace.
The HTML server controls have their own properties and methods, as well,
but they all have the properties and methods contained in
the HtmlIControl object.

Property Description
Attribute Returns the object's attributes collection.
Disabled A Boolean (true or false) value that you can get or set

that indicates whether a control is disabled.

EnableViewState | A Boolean (true or false) value that you can get or set
that indicates whether a control should maintain its

viewstate.
ID A string that you can get or set that defines the
Identifier for the control.
Style Returns the CSSStyleCollection for a control.
TagName Returns the tag name of an element such

as input or div.

Visible A Boolean (true or false) value that you can get or set
that indicates whether a control is rendered to HTML
for delivery to the client's browser.

The Html Control Base Classes

The base class for all HTML controls IS
System.Web.Ul.HtmIControls.HtmIControl. This exposes methods,
properties, and events that are common to all HTML controls.

Member Description
Attributes Returns a collection of all the attribute name/value
property pairs within the .aspx file for this control. Can be used

to read and set nonstandard attributes (custom
attributes that are not actually part of HTML) or to
access attributes where the control does not provide a
specific property for that purpose.

ClientID Returns the control identifier that is generated by
property ASP.NET.

Member Description

Controls Returns a ControlCollection object containing

property references to all the child controls for this control
within the page hierarchy.

Disabled Sets or returns a Boolean value indicating if the control

property is disabled.

EnableViewState
property

Sets or returns a Boolean value indicating if the control
should maintain its viewstate and the viewstate of any
child controls when the current page request ends. The
default is True.

ID property Sets or returns the identifier defined for the control.

Page property Returns a reference to the Page object containing the
control.

Parent property | Returns a reference to the parent of this control within
the page hierarchy.

Style property References a collection of all the CSS style properties
(selectors) that apply to the control.

TagName Returns the name of the element, for example a or div.

property

Visible property

Sets or returns a Boolean value indicating if the control
should be rendered in the page output. Default is True.

DataBind Causes data binding to occur for the control and all of
method its child controls.

FindControl Searches within the current container for a specified
method server control.

HasControls

Returns a Boolean value indicating if the control

method contains any child controls.
DataBinding Occurs when the control is being bound to a data
event source.

The HtmIContainerControl Class

Any HTML control that requires a closing tag inherits from the
HtmlContainer class. For example, elements such as <a>, <form>, and
<div> always use a closing tag. Elements such as and <input> are
used only as stand-alone tags. HtmlAnchor, HtmIForm, and
HtmIGenericControl classes inherit from HtmIContainerControl.

The HtmlContainer control adds two properties to those defined in
HtmlIControl.

InnerHtml The HTML content between the opening and closing tags of the
control.

InnerText The text content between the opening and closing tags of the
control

HTML Server Controls

65

.Net technology

66

The HtmlContainerControl class serves as the abstract base class that
defines the methods, properties, and events available to all HTML server
controls that can act as a container (in HTML terms, these elements all
require a closing tag). This class is the base class for
the HtmiITableCell, HtmITable, HtmITableRow, HtmIButton, HtmIForm,
HtmlAnchor, HtmlGenericControl, HtmlSelect,

and HtmlITextArea classes, all of which share these properties:

Constructors
Name Description
HtmlContainerControl() Create a new HtmlContainerControl
HtmlContainerControl(Element) | Create a new control.

The HtmlInputControl Class

The HtmlInputControl class serves as the abstract base class that defines the
methods, properties, and events common to all HTML input controls, such
as the <input type="text">, <input type="submit">, and other elements that
the user can enter data into. The classes derived from
the HtmlInputControl class are
the HtmlInputText, HtmlInputButton, HtmlInputCheckBox, HtmlInputima
ge, HtmlInputHidden, HtmlInputFile, and HtmlInputRadioButton classes,
all of which share the following properties:

Name— Gets/sets a unique name for the input control.
Value— Gets/sets the contents of an input control.
Type— Gets the type of an input control.

The following controls, which are based on the HTML INPUT element,
are available on the HTML tab of the Toolbox:

. Input (Button) control: INPUT type="button" element

. Input (Checkbox) control: INPUT type="checkbox" element
. Input (File) control: INPUT type="file" element

. Input (Hidden) control: INPUT type="hidden" element

. Input (Password) control: INPUT type="password" element
. Input (Radio) control: INPUT type="radio" element

. Input (Reset) control: INPUT type="reset" element

. Input (Submit) control: INPUT type="submit" element

. Input (Text) control: INPUT type="text" element

https://docs.telerik.com/teststudioapi/html/M_ArtOfTest_WebAii_Controls_HtmlControls_HtmlContainerControl__ctor.htm
https://docs.telerik.com/teststudioapi/html/M_ArtOfTest_WebAii_Controls_HtmlControls_HtmlContainerControl__ctor_1.htm
https://go.microsoft.com/fwlink/?linkid=44657

Unlike other HTML elements, if you convert an HTML INPUT element to
an ASP.NET server control, it is not created as an instance of
the HtmlinputControl class. You cannot create an instance of
the HtmlInputControl class directly. Instead, this class is inherited by the
classes listed in the table below.

The following table lists the type that is used to instantiate INPUT elements
as ASP.NET server controls if the markup contains the attribute
runat="server" and an id attribute.

Server control Type

Button control HtmlInputButton
CheckBox control HtmlInputCheckBox
File Field control HtmlInputFile

Hidden control HtmllInputHidden
Password control HtmlInputPassword
Radio Button control HtmlInputRadioButton
Reset Button control HtmlInputReset
Submit Button control HtmlInputSubmit
Text Field control HtmlInputText

4.3 PAGE CLASS

. Page class represents an .aspx file, also known as a Web Forms page,
requested from a server that hosts an ASP.NET Web
application.Every web page is a custom class that inherits from the
system.web.Ul.Page control. By inheriting form this class, page class
acquires a number of properties that our code can use.

. IsPostBack :- This Boolean property indicates whether this is the first
time the page is being run (False) or whether the page is being
resubmitted in response to a control event, typically with stored view
state information (True).

o EnableViewState :- When set to False, this overrides the
EnableViewState property of the contained controls, thereby ensuring
that no controls will maintain state information.

. Application :- This collection holds information that’s shared
between all users in the website. For example, we can use the
Application collection to count the number of times a page has been
visited.

. Session :- holds information for a single user, so it can be used in
different pages. For example, we can use the Session collection to
store the items in the current user’s shopping basket on an e-
commerce website.

HTML Server Controls

67

https://msdn.microsoft.com/en-us/library/4zdce72t(v=vs.100)
https://msdn.microsoft.com/en-us/library/4zdce72t(v=vs.100)
https://msdn.microsoft.com/en-us/library/a7a4s5ze(v=vs.100)
https://msdn.microsoft.com/en-us/library/a2x9285k(v=vs.100)
https://msdn.microsoft.com/en-us/library/czkya88e(v=vs.100)
https://msdn.microsoft.com/en-us/library/x2sy02b0(v=vs.100)
https://msdn.microsoft.com/en-us/library/4c132kk7(v=vs.100)
https://msdn.microsoft.com/en-us/library/w2yk46b2(v=vs.100)
https://msdn.microsoft.com/en-us/library/a6xsh9as(v=vs.100)
https://msdn.microsoft.com/en-us/library/zbsds8cb(v=vs.100)
https://msdn.microsoft.com/en-us/library/hx8x1zw4(v=vs.100)

.Net technology

68

. Cache :- allows us to store objects that are time-consuming to create
so they can be reused in other pages or for other clients. Improves
performance of the web pages.

. Request :-HttpRequest object that contains information about the
current web request.

. Response :-HttpResponse object that represents the response
ASP.NET will send to the user’s browser.

. Server :-HttpServerUtility object that allows us to perform a few
miscellaneous tasks. For example, it allows us to encode text so that
it’s safe to place it in a URL or in the HTML markup of the page.

. User :- If the user has been authenticated, this property will be
initialized with user information.

4.4 GLOBAL.ASAX

The Global.asax file, sometimes called as ASP.NET application file. It
allows us to write code that responds to global application events. These
events fire at various points during the lifetime of a web application,
including when the application domain is first created. We can use this file
to implement application security, as well as other tasks. The Global.asax
file is placed in the root application directory. The.NET IDE automatically
inserts it in all new ASP.NET projects. This file is an optional file. We can
delete it, when we are not using it.

To add a Global.asax file to an application in Visual Studio, choose Website
-> add new item and select the global application class file type. Then, click
OK.

Ex:- The following Global.asax file reacts to the Application.EndRequest
event, which happens just before the page is sent to the user :-

<% @ Application Language="“VB” %>
<script runat="server’”>

Sub Application_EndRequest(ByVal sender As Object, ByVal e As
EventArgs)

Response.write(““<hr>This page was served at
&DateTime.Now.ToString())

End Sub

</script>

4.5 WEB.CONFIG

Behavior of an ASP.NET application is affected by different settings in the
configuration files:

. machine.config

o web.config

machine.config file contains default and machine-specific value for all
supported settings.

Machine settings are controlled by the system administrator and
applications are generally not given access to this file.

Every web application includes a web.config file that configures
fundamental settings—everything from the way error messages are shown
to the security settings that lock out unwanted visitors. ASP.NET stores
settings in a human-readable XML format using configuration files such as
machines.config and web.config. An application however, can override the
default values by creating web.config files in its roots folder. The
web.config file is a subset of the machine.config file. If the application
contains child directories, it can define a web.config file for each folder.
Scope of each configuration file is determined in a hierarchical top-down
manner. Any web.config file can locally extend, restrict or override any
settings defined on the upper level. Visual Studio generates a default
web.config file for each project. An application can run without a
web.config file, however, we cannot debug an application without a
web.config file. The XML based web.config file is used to specify the
application wide settings for the entire application. The web.config file is
present in the root of the application's directory, although we can also have
multiple web.config files, one for each subdirectory. In a Web.config file,
sections can appear in the settings area that have not been declared in the
declaration area if they are declared in a .config file at a higher level in the
configuration hierarchy.

4.6 SUMMARY

This chapter briefs about use of html server controls while developing a web
application. This chapter discusses various aspects of html server controls
such as html control classes, events, html container control class, html input
control class. It also focuses on role of page class, global.asax file and
web.config file helps while developing web applications.

4.7 REFERENCES

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

HTML Server Controls

69

.Net technology

70

4.8 QUESTIONS

1. Write a note on view state.

2. Write a note on HtmIControl class.

3. What is a page class? Explain the use of its properties.
4. What is the use of global.asax file?

5. Write a note on web.config file?

ke e ek e ek

WEB CONTROLS

Unit Structure :

5.0 Obijectives

5.1 Introduction

5.2 Web Control Classes
5.3 WebControl Base Class
5.4 List Controls

5.5 Table Controls

5.6 Web Control Events and AutoPostBack
5.7 Page Life Cycle

5.8 Summary

5.9 Reference

5.10 Questions

In this chapter, you’ll explore the basic web controls and their class
hierarchy. You’ll also delve deeper into ASP.NET’s event handling and
learn the details of the web page life cycle.

5.0 OBJECTIVES

In this chapter,
. you’ll explore the basic web controls and their class hierarchy.

o you’ll also delve deeper into ASP.NET’s event handling and learn
the details of the web page life cycle.

5.1 INTRODUCTION

Web Controls are small building blocks of the GUI(Graphical User
Interface), which include labels, text box, buttons, etc which provide rich
functionality in your pages.

You need web controls because HTML control corresponds directly to a
single HTML element. Web controls, on the other hand, have no such
restriction—they can switch from one element to another depending on how
you’re using them, or they can render themselves by using a complex
combination of multiple elements.

Advantages of using Web Controls:

. They provide a rich user interface

. They provide a consistent object model
. They tailor their output automatically

. They provide high-level features

71

Net technology 5.2 WEB CONTROL CLASSES

¢ Web control classes are defined in the
System.Web.Ul.WebControls namespace. They follow a slightly
more tangled object hierarchy than HTML server controls.

¢ Figure shows most, but not all, of the web controls that ASP.NET
provides.

[System.Object |
|

[System.Web.ULControl |

System.Web.Ul.WebControls

{ WebConfrol | }——1 BaseDataBoundControl =1
|Literal [-|DalaB<|JundConlruI |
CompositeDataBoundControl |
[Hyperlink |
Image [FormView [HierarchicalDataBoundControl |
ImageButton [GridView Menu |

] Label ——{Baselalidetor_|
HLinkButton | H BaseCompareValidator |
LmboutsL__H
HTableCel | HCustomValidator |

|-|TableHemierCell | HRegularExpressionValidator |
H TableRow | L RequiredFieldValidator |

Figure 5.1: The web control hierarchy
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

5.3 WEBCONTROL BASE CLASS

¢ Web controls provides the properties, methods, and events that are
common to all Web server controls.

¢ Most web controls begin by inheriting from the WebControl base
class. This class defines the essential functionality for tasks such as
data binding and includes some basic properties that you can use with
almost any web control, as described in Table

72

Properties of webcontrol classes

Property Description
AccessKey This property is used to set focus on web control.
BackColor Sets the colors used for the background
ForeColor Sets the colors used for the foreground. In most

controls, the foreground color sets the text color.

BorderColor

Sets the colors used for the Border

BorderWidth Specifies the size of the control border.
One of the values from the BorderStyle
BorderStyle enumeration, including Dashed, Dotted, Double,
Groove, Ridge, Inset, Outset, Solid, and None.
When set to false, the control will be visible, but it
Enabled will not be able to receive user

input or focus.

EnableViewState

This property state whether the view state of the
control is maintained or not. Set this to false to
disable the automatic state management for this
control.

Font

Specifies the font used to render any text in the
control

Height and Width

Specifies the width and height of the control.

Specifies the name that you use to interact with the

ID control in your code
Page Provides a reference to the web page that contains
g this control as a System.Web.Ul.Page object.

Parent This property is used to set Parent for web control.
A number that allows you to control the tab order.

Tablndex The control with a TabIndex of 0 has the focus
when the page first loads.

ToolTi Gets or sets the text displayed when the mouse

P pointer hovers over the Web server control.

When set to false, the control will be hidden and

Visible will not be rendered to the final HTML page that is

sent to the client.

Table 5.1: Properties of webcontrol classes
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Web Controls

73

.Net technology

74

Methods of web control classes:

Method

Description

AddAttributesToRender(HtmITextWriter)

To add HTML attributes
and styles in our web page
that need to be rendered to
the specified
HtmITextWriterTag

ClearChildState()

This method is used to
deletes the view-state and
control-state details of
child controls of web
control.

ClearChildViewState()

This method is used to
delete the view-state
information for all the child
controls of web controls

CreateChildControls()

This method is used in
creating child controls.

DataBind()

This method is used to
binds a data source to the
web control and all its
child controls.

Dispose()

Enables a server control to
perform final clean up
before it is released from
memory.

Focus()

Sets input focus to a
control.

GetType()

Gets the Type of the
current instance.

OnLoad(EventArgs)

Raises the Load event.

OnPreRender(EventArgs)

Raises the PreRender
event.

OnUnload(EventArgs)

Raises the Unload event.

ToString()

Returns a string that
represents the current
object.

Table 5.2: Methods of web control classes
(Ref: https://learn.microsoft.com/en-

us/dotnet/api/system.web.ui.webcontrols.webcontrol?view=netframework-4.8.1)

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.webcontrol.addattributestorender?view=netframework-4.8.1#system-web-ui-webcontrols-webcontrol-addattributestorender(system-web-ui-htmltextwriter)

Events of Web Controls:

Name Description

DataBinding Occurs when the server control binds to a data
source.

Disposed This event occurs when a web control is
released from memory

Init Occurs when the server control is initialized

Load Occurs when the server control is loaded into
the Page object

PreRender Occurs after the control object is loaded but
prior to rendering.

Unload Event Occurs when the server control is
unloaded from memory.

Table 5.3: Events of Web Controls

(Ref: https://learn.microsoft.com/en-

us/dotnet/api/system.web.ui.webcontrols.webcontrol?view=netframework-4.8.1)

5.4 LIST CONTROLS

. The list controls include the

ListBox,

DropDownlList,
CheckBoxList,

RadioButtonList, and

YV V V V V

BulletedList.

They all work in essentially the same way but are rendered differently
in the browser.

The ListBox is a rectangular list that displays several entries, while
the DropDownL.ist shows only the selected item.

The CheckBoxList and RadioButtonL.ist are similar to the ListBox,
but every item is rendered as a check box or option button,
respectively.

BulletedList is the only list control that isn’t selectable. Instead, it
renders itself as a sequence of numbered or bulleted items.

All the selectable list controls provide a SelectedIndex property that
indicates the selected row as a zero-based index.

For example, if the first item in the list is selected, the SelectedIndex
will be 0.

Web Controls

75

.Net technology

76

¢ Selectable list controls also provide an additional Selectedltem
property, which allows your code to retrieve the Listltem object that
represents the selected item.

¢ The Listltem object provides three important properties:

» Text (the displayed content),

> Value (the hidden value from the HTML markup), and

» Selected (true or false depending on whether the item is
selected).

5.4.1 ListBox

» This represents a list box control that allows single or multiple item
selection.

» ListBox control has SelectionMode property that enables you to select
multiple items from ListBox control. By default SelectionMode
property is set as single.

» If you want to select multiple items from the ListBox, then set
SelectionMode property value as Multiple and press Ctrl or Shift key
when clicking more than one list item.

Example :

<asp:ListBox id="ListBox1" SelectionMode="Single" runat="server">

<asp:Listltem>Item 1</asp:Listltem>
<asp:Listltem>Item 2</asp:Listltem>
<asp:Listltem>Item 3</asp:Listltem>

</asp:ListBox>

Common Properties of ListBox

Property Description

Items Gets the collection of items in the list control.

SelectionMode | This property will set the selection mode as single

selection or multiple selection

Rows This will determine the number of items shows in the

list box.

SelectedIndex | Gets or sets the lowest ordinal index of the selected

items in the list.

SelectedValue | Gets the value of the selected item in the list control,

or selects the item in the list control that contains the
specified value.

Table 5.4: Properties of ListBox
(Ref: https://learn.microsoft.com/en-
us/dotnet/api/system.web.ui.webcontrols.listbox?view=netframework-4.8.1)

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.listcontrol.items?view=netframework-4.8.1#system-web-ui-webcontrols-listcontrol-items
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.listbox.selectionmode?view=netframework-4.8.1#system-web-ui-webcontrols-listbox-selectionmode
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.listcontrol.selectedindex?view=netframework-4.8.1#system-web-ui-webcontrols-listcontrol-selectedindex
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.listcontrol.selectedvalue?view=netframework-4.8.1#system-web-ui-webcontrols-listcontrol-selectedvalue

5.4.2 DropDownL.ist Web Controls
» This control permit user to select item from predefined list.
> It does not support for selecting multiple items at same time.

Example :

<asp:DropDownList ID="DropDownList1" runat="server" >
<asp:Listltem Value="">Please Select</asp:Listltem>
<asp:Listltem>item1 </asp:Listltem>
<asp:Listltem> item2</asp:Listltem>
<asp:Listltem> item3</asp:Listltem>
<asp:Listltem> item4</asp:Listltem>
</asp:DropDownList>

DropDownList carry same property like ListBox.
5.4.3 CheckBoxL.ist

» CheckBoxList is generally used, when you want to select one or more
options from given several choices.

We can select more than one item from CheckBoxL.ist control.

The CheckBoxList control is easier for use, when you have set of
options of checkboxes.

Example :

<asp:CheckBoxList id="checkboxlist1" runat="server">
<asp:Listltem>Item 1</asp:Listltem>
<asp:Listltem>Item 2</asp:Listltem>
<asp:Listltem>Item 3</asp:Listltem>
</asp:CheckBoxL.ist>

Common properties:

Property Description

Repeat Layout Gets or sets a value that specifies whether the list
will be rendered by using a table element, or list
element.

RepeatColumns Gets or sets the number of columns to display in
the CheckBoxL.ist control.

RepeatDirection Gets or sets a value that indicates whether the
control displays vertically or horizontally.

Table 5.5: Common properties of CheckBoxList
(Ref: https://learn.microsoft.com/en-
us/dotnet/api/system.web.ui.webcontrols.checkboxlist?view=netframework-4.8.1)

77

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.checkboxlist.repeatcolumns?view=netframework-4.8.1#system-web-ui-webcontrols-checkboxlist-repeatcolumns
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.checkboxlist?view=netframework-4.8.1
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.checkboxlist.repeatdirection?view=netframework-4.8.1#system-web-ui-webcontrols-checkboxlist-repeatdirection

.Net technology

78

5.4.4 RadioButtonList

» RadioButtonList Control is same as DropDownL.ist but it displays a
list of radio buttons that can be arranged either horizontally or

vertically.

» You can select only one item from the given RadioButtonList of
options.

Example :

<asp:RadioButtonList id="RadioButtonList1" runat="server">
<asp:Listltem>Item 1</asp:Listltem>
<asp:Listltem>Item 2</asp:Listltem>
<asp:Listltem>Item 3</asp:Listltem>
</asp:RadioButtonList>

Common properties:

Property Description

Determines whether the radio buttons display in
an HTML table.

It displays the number of columns of radio
buttons.

Repeat Layout

RepeatColumns

The direction that the radio buttons repeat. By
RepeatDirection default RepeatDirection value is vertical.
Possible values are Horizontal and Vertical.

Table 5.6: Common properties of RadioButtonList

(Ref: https://learn.microsoft.com/en-
us/dotnet/api/system.web.ui.webcontrols.radiobuttonlist?view=netframework-
4.8.1)

5.4.5 BulletedList

» BulletedList control is very rich in displaying the items in different
styles. It dispalys the list either in unordered or ordered list.

» The default value of BulletStyle property is NotSet and rendered as in
list of bulleted items.

> Possible values are as follows:

Circle, Customlmage, Disc, LowerAlpha, LowerRoman, NotSet,
Numbered, Square, UpperAlpha, UpperRoman

> BulletedList control also supports the DisplayMode property that is
used to modify the appearance of list items.

» Possible values are as follows: HyperLink, LinkButton, Text

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.checkboxlist.repeatcolumns?view=netframework-4.8.1#system-web-ui-webcontrols-checkboxlist-repeatcolumns
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.checkboxlist.repeatdirection?view=netframework-4.8.1#system-web-ui-webcontrols-checkboxlist-repeatdirection

Example:

<asp:BulletedList ID="BulletedList1” runat="server”>

</asp:BulletedList>

Common property:

Property

Description

BulletStyle

To set the style and looks of the bullet list this
property is used.

FirstBulletNumber

In an ordered list, this sets the first value. EXx.
If you set FirstBulletNumber to 3, the list
might read 3,4,5 for Numbered.

DisplayMode

Determines whether the text of each item is
rendered as text or a hyperlink.

Table 5.7: Common Property of BulletedList
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

5.5 TABLE CONTROLS

. Table class is used to build an HTML table.

¢ Tableclass is included in System.Web.Ul.Controls namespace.

¢ Essentially, the Table control is built out of a hierarchy of objects.
Each Table object contains one or more

¢ TableRow objects. In turn, each TableRow object contains one or
more TableCell objects.

A Sample Teblke object
{2 Rows, 3 Columns}
TableRow
TableCell TableCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls
TableRow
TahleCell TahleCell TableCell
HTML or Server HTML or Server HTML or Server
Controls Controls Controls

Figure 5.2: Table object

(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Web Controls

79

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.bulletedlist.bulletstyle?view=netframework-4.8.1#system-web-ui-webcontrols-bulletedlist-bulletstyle

.Net technology

80

¢ Each TableCell object contains other ASP.NET controls or HTML
content that displays information.

¢ We can create Table control in run-time as well as at design-time
using the Visual studio.

Table control containment

Properties of Table class

Property Description

Runat This property state that the web control is a
server control. For this purpose, we have to
set value of runat to “server”

Rows This property state group of rows in the
table

Caption This property is used to set title to table

CaptionAlign This property is used to set alignment of the
caption text.

CellPadding This property is used to state the space
between the cell walls and controls in table.

CellSpacing This property is used to determines distance
between cell of tables.

GridLines This property is used to set gridline format
in the table.

Horizontal Align Gets or sets the horizontal alignment of

the Table control on the page.

Table 5.8: Table class Properties
(Ref: https://learn.microsoft.com/en-
us/dotnet/api/system.web.ui.webcontrols.table?view=netframework-4.8.1)

Example : Creating table at Design time

<asp:Table id="Tablel" runat="server" CellPadding="10"
GridLines="Both"

Horizontal Align="Center">
<asp:TableRow>
<asp:TableCell>
Row 0, Col 0
</asp:TableCell>
<asp:TableCell>
Row 0, Col 1
</asp:TableCell>
</asp:TableRow>

https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.table.horizontalalign?view=netframework-4.8.1#system-web-ui-webcontrols-table-horizontalalign
https://learn.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.table?view=netframework-4.8.1

<asp:TableRow>
<asp:TableCell>
Row 1, Col 0
</asp:TableCell>
<asp:TableCell>
Row 1, Col 1
</asp:TableCell>
</asp:TableRow>
</asp:Table>

5.6 WEB CONTROL EVENTS AND AUTOPOSTBACK

¢ The previous chapter explained that one of the main limitations of
HTML server controls is their limited set of useful events—they have
exactly two.

¢ HTML controls that trigger a postback, such as buttons, raise a
ServerClick event. Input controls provide a ServerChange event that
doesn’t actually fire until the page is posted back.

¢ Following Figure illustrates the order of events in page processing.

ASP.NET creates page
3> object from.aspx code

v

ASP.NET runs the
Page.Load event handler

v

__ HTML Output Returned Final page is rendered

-

Web Page Request

Web Client
ASP.NET creates page

> object from .aspx code

¥

ASP.NET runs the
Page.Load event handler

¥

ASP.NET runs any other
triggered event handlers

¥

HTML Output Returned Final page is rendered

Page Posthack

<€

Figure 5.3: The page-processing sequence
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Web Controls

81

.Net technology

82

The page-processing sequence

>

>
>

>

When event occurs on client side some events such as Click event of
a button take place immediately, because when clicked, the button
post back the page.

However, other actions do cause events but don’t trigger a postback.

For example, when user chooses a new item in a list or changes the
text in text box.

In these cases, without postback your code has no way to run.

ASP.NET handles this by giving you two options:

1. Wait until the next postback to react to the event.

Like to react to SelectedindexChanged event in a list, when user
selects an item in a list, nothing happens immediately. But if user
clicks a button to post back the page, two events fire: ButtonClick
followed by ListBox.SelectedindexChanged..

2. To use the automatic postback feature to force a control to post back
the page immediately when it detects a specific user action. In this,
when the user clicks a new item in the list, the page is posted back,
your code executes, and a new version of the page is returned.

Event Web Controls That Provide It Always

Posts Back

Click Button, ImageButton True
TextBox (fires only after the user

TextChanged changes the focus to another False
control)

CheckedChanged CheckBox, RadioButton False
DropDownL.ist, ListBox,

SelectedIndexChanged CheckBoxList, RadioButtonL.ist False

Table 5.9: Web Control Events
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

>

If you want to capture a change event (such as TextChanged,
CheckedChanged, or SelectedindexChanged) immediately, you need
to set the control’s AutoPostBack property to true.

This way, the page will be submitted automatically when the user
interacts with the control for example, picks a selection in the list,
clicks a radio button or a check box, or changes the text in a text box
and then moves to a new control).

When the page is posted back, ASP.NET will examine the page, load
all the current information, and then allow your code to perform some

extra processing before returning the page back to the user shown in Web Controls
following figure.

» Depending on the result you want, you could have a page that has
some controls that post back automatically and others that don’t.

Page object is created from
.aspx file

v

Page.Init event occurs

<

Controls are repopulated with
information from view state

<

Page.Load event occurs

\m

All other events occur
{like Click and Change events)

L

Page.PreRender event occurs

<

Control information is stored in
view state

v

HTML for page Iis rendered
(and can no longer be changed)

v

Page.Unload event occurs

v

Page object is released
from memory

Figure 5.4: The postback processing sequence
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

5.7 PAGE LIFE CYCLE

To understand how web control events work, you need to have a solid
understanding of the page life cycle.

Consider what happens when a user changes a control that has the
AutoPostBack property set to true:

1. On the client side, the JavaScript __doPostBack function is invoked,

and the page is resubmitted to the server. 83

.Net technology

84

ASP.NET re-creates the Page object by using the .aspx file.

3. ASP.NET retrieves state information from the hidden view state field
and updates the controls accordingly.

4. The Page.Load event is fired.

5. The appropriate change event is fired for the control. (If more than
one control has been changed, the order of change events is
undetermined.)

6. The Page.PreRender event fires, and the page is rendered
(transformed from a set of objects to an HTML page).

7. Finally, the Page.Unload event is fired.

8. The new page is sent to the client.

5.8 SUMMARY

This chapter introduced you to one of ASP.NET’s richest features: web
controls, and their object interface.

5.9 REFERENCE

Beginning ASP.NET in C# by Matthew MacDonald
https://learn.microsoft.com/en-
us/dotnet/api/system.web.ui.webcontrols?view=netframework-4.8.1

5.10 QUESTIONS

o~ W Mo

Write a shot note on WebControls.

State the page life cycle with diagram.

Write and explain basic properties for table class.
Write and explain list control.

Write basic properties for webcontrol classes.

ok ofe ke e ke e ke

STATE MANAGEMENT

Unit Structure :

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

Obijectives

Introduction

ViewState

Cross-Page Posting
Query String

Cookies

Session State
Configuring Session State
Application State

Summary

6.10 Reference

6.11 Questions

In this chapter, you’ll understand the use of State management in Web
programming. Also, you will get to know about ViewState and Application

State.

6.0 OBJECTIVES

>

>

State management is a preserve state control and object in an
application because web applications are stateless, which means a
new web page object is re-created each time to serve request of client.

This issue can be resoled by using State Management.

6.1 INTRODUCTION

>

The most significant difference between programming for the Web
and programming for the desktop is state management—how you
store information over the lifetime of your application.

This information can be as simple as a user’s name or as complex as
a stuffed-full shopping cart for an e-commerce store.

Understanding these state limitations is the key to creating efficient
web applications. In this chapter, you’ll see how you can use
ASP.NET’s state management features to store information carefully
and consistently.

85

.Net technology

86

6.2 VIEWSTATE

» ViewState is a important client side state management technique.
ViewState is used to store user data on page at the time of post back
of web page.

» ViewState does not hold the controls, it holds the values of controls.
» It does not restore the value to control after page post back.

» ViewState can hold the value on single web page, if we go to other
page using response.redirect then ViewState will be null.

» When we require value of page variable to be maintained during page
postback, we can use View state to store those value.

» “EnableViewState” property is used for both Page Level and Server
contact level to manage the view state.

> Code for View state is like this,

<input type="hidden” name="viewstate” id="viewstatel”
value="123"/>

» This single hidden field contains all the view state values for all the
page controls.
Example :

<% @ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.0rg/TR/xhtml1/DTD/xhtml|1-
transitional.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">
<title>ViewState</title>
</head>
<body>
<form id="form1" runat="server">
<asp:TextBox runat="server" id="NameField" />

<asp:Button runat="server" id="SubmitForm"
onclick="SubmitForm_Click"

text="Submit & set name" />
<asp:Button runat="server" id="RefreshPage" text="Just submit" />

Name retrieved from ViewState: <asp:Label runat="server" State Management
id="NameLabel" />

</form>
</body>
</html>

And the CodeBehind:

using System;

using System.Data;

using System.Web;

public partial class _Default : System.Web.Ul.Page
{

protected void Page L oad(object sender, EventArgs e)

{
if(ViewState["NameOfUser"] = null)

NameLabel.Text = ViewState["NameOfUser"].ToString();
else
NameLabel.Text = "Not set yet...";

¥

protected void SubmitForm_Click(object sender, EventArgs e)

{
ViewState["NameOfUser"] = NameField.Text;

NameLabel. Text = NameField. Text;

ks
k

» Try running the project, enter your name in the textbox and press the
first button.

The name will be saved in the ViewState and set to the Label as well.
No magic here at all. Now press the second button.

This one does nothing at all actually, it just posts back to the server.

YV V V V

As you will notice, the NameLabel still contains the name, but so does
the textbox.

» The first thing is because of us, while the textbox is maintained by
ASP.NET it self. Try deleting the value and pressing the second
button again.

» You will see that the textbox is now cleared, but our name label keeps
the name, because the value we saved to the ViewState is still there!

87

.Net technology

88

Limitation of view state

1. Viewstate can be used only with single page.

2. ltisstoring the information of an hidden field, so it can be seen in
source code in browser, hence it is not secure way.

6.3 CROSS-PAGE POSTING

» It’s a technique that extends the postback mechanism, that one page
can send the user to another page, complete with all the information
for that page.

» “PostBackUrl” is the property name that provides the cross-page
postback, which is defined by the IButtonControl interface and turns
up in button controls such as ImageButton, LinkButton, and Button.

» To use cross-posting, we have to set PostBackUrl to the name of
another web form.

» When the user clicks the button, the page will be posted to that new
URL with the values from all the input controls on the current page.

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CrossPagel.aspx.cs" Inherits="CrossPagel" %>

<html = “http://www.w3.0rg/1999/xhtml”>
<head runat="server”>
<title>CrossPagel</title>
</head>
<body>
<form id="form1” runat="server’”>
<div>
First Name:

<asp:TextBox ID="txtFirstName”
runat="server’></asp:TextBox>

Last Name:

<asp:TextBox ID="txtLastName”
runat=""server’></asp:TextBox>

<asp:Button runat="server”’ Id="cmdPost”
PostBackUrl="CrossPagel.aspx” Text="Cross-Page Postback” />

</div>

</form>
</body>
</html>

p
& CrossPagel - Windows Internet Explorer E=cy X

@\‘_} < |£. http://localhost:37154/CrossPagel.aspx v‘ ;'f",l*?- A |

& Favorites :’éCrosspagd t\l‘ v D - 1 o, v

First Name: Joey

Last Name: Smythe

Cross-Page Postback]

@ Internet | Protected Mode: On g ¥ H100% -

Figure 6.1: The starting point of a cross-page postback
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

6.4 QUERY STRING

. Another common approach is to pass information by using a query

string in the URL.
J This approach is commonly found in search engines.

. For example, if you perform a search on the Google website, you’ll
be redirected to a new URL that incorporates your search parameters.

o Here’s an example: http://www.google.ca/search?g=organic+gardening

. The query string is the portion of the URL after the question mark.

o In this case, it defines a single variable named ¢, which contains the

string organic+gardening.

. There is a limitation of length of query string. So query string cannot

be used to send very large data.

o Query string are visible to the user, so it should not be used to send
sensitive information such as username, password without

encryption.

. Request object of QueryString property is used to retrieve the query

string.
Example:

. When the user chooses an item by clicking the appropriate item in the

list, the user is forwarded to a new page.
. This page displays the received ID number.
o This provides a quick and simple query string test with two pages.

State Management

89

http://www.google.ca/search?q=organic+gardening

E=RECE X

.Net technology
Untitled Page

C | ® localhost:65170/QueryStringSender.aspx A

Econo Sofa
Supreme Leather Drapen
Threadbare Carpet

Antique Lamp

Retro-Finish Jacuzzi

v Show full details

[View Information]

Figure 6.2: A query string sender
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Here’s the code for the first page:
public partial class QueryStringSender : System.Web.Ul.Page

{
protected void Page_Load(Object sender, EventArgs e)

{
if ("this.IsPostBack)

{
// Add sample values.
Istitems.Items.Add("Econo Sofa");
Istitems.ltems.Add(""Supreme Leather Drapery");
Istitems.Items.Add("Threadbare Carpet");
Istitems.ltems.Add("Antique Lamp™);
Istitems.Items.Add("Retro-Finish Jacuzzi®);

}
¥
protected void cmdGo_Click(Object sender, EventArgs e)

{
if (Istitems.SelectedIndex == -1)

{

IbIError. Text = "You must select an item.";

}

else
90

{ State Management
/I Forward the user to the information page,
// with the query string data.
string url = "QueryStringRecipient.aspx?";
url +="Item=" + Istitems.Selectedltem.Text + "&";
url += "Mode="+ chkDetails.Checked.ToString();
Response.Redirect(url);

Here’s the code for the recipient page
(= [©]
Untitled Page
<« ([« B@) ocalhost:65170/QueryStringRecipient.aspx?ltem=Antique+Lamp&Mode=TruelliliE N

Item: Antique Lamp
Show Full Record: True

Figure 6.3: A query string recipient
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

public partial class QueryStringRecipient : System.Web.Ul.Page

{
protected void Page_Load(Object sender, EventArgs e)
{
Iblinfo.Text = "Item: " + Request.QueryString["ltem"];
Iblinfo. Text+="Show Full Record: ";
Iblinfo.Text += Request.QueryString[*"Mode"];
}
}
6.5 COOKIES

. Cookies provide another way to store information for later use.

o Cookies are small files that are created in the web browser’s memory
or on the client’s hard drive.

. Cookies works transparently.

91

.Net technology

92

o To import cookies we should import the System.Net namespace so we
can easily work with the appropriate types: using System.Net;

o Both the Request and Response objects provide a Cookies collection.

/I Create the cookie object.

HttpCookie cookie = new HttpCookie("Preferences");
/I Set a value in it.

cookie["LanguagePref"] = "English";

// Add another value.

cookie["Country"] = "US";

// Add it to the current web response.

Response.Cookies.Add(cookie);

o A cookie added in this way will persist until the user closes the
browser and will be sent with every request. To create a longer-lived
cookie, you can set an expiration date:

/I This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

o You retrieve cookies by cookie name, using the Request.Cookies
collection. Here’s how you retrieve the preceding cookie, which is
named Preferences:

HttpCookie cookie = Request.Cookies["Preferences™];

Example:

The next example shows a typical use of cookies to store a customer name.
To try this example, begin by running the page, entering a name, and
clicking the Create Cookie button. Then close the browser, and request the
page again. The second time, the page will find the cookie, read the name,
and display a welcome message.

& Untitled Page - Windows Internet Explorer | = | = &I

7™ | WP, 2715 " rekie arrnle acm - | E |

Q\\/’ & http://localhost:37154/CookieExample.aspx |,-_|*:r|A
¢ Favorites &8 Untitled Page fh ~ B ~ [dh v Page~ ’

Cookie Found.

Welcome, Matthew

Name: Create Cookie |

&P Internet | Protected Mode: On a * ®|100% -

Y =

Figure 6.4: Displaying information from a custom cookie
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Here’s the code for this page: State Management
public partial class CookieExample : System.Web.Ul.Page

{
protected void Page Load(Object sender, EventArgs €)
{
HttpCookie cookie = Request.Cookies["Preferences"];
if (cookie == null)
{
IbIWelcome.Text = "Unknown Customer";
¥
else
{
IbIWelcome.Text = "Cookie Found.";
IbIWelcome.Text += "Welcome, " + cookie["'Name"];
}
¥
protected void cmdStore_Click(Object sender, EventArgs e)
{

/I Check for a cookie, and create a new one only if
// one doesn’t already exist.
HttpCookie cookie = Request.Cookies["Preferences"];
if (cookie == null)
{
cookie = new HttpCookie("Preferences");
}
cookie["Name"] = txtName.Text;
cookie.Expires = DateTime.Now.AddYears(1);
Response.Cookies.Add(cookie);
IbIWelcome.Text = "Cookie Created.
";
IbIWelcome.Text += "New Customer: " + cookie["Name"];

k
k

6.6 SESSION STATE

o Session-state management is one of ASP.NET’s premiere features. It
allows you to store any type of data in memory on the server.

o The information is protected, because it is never transmitted to the
client, and it’s uniquely bound to a specific session.

. Every client that accesses the application has a different session and
a distinct collection of information.
93

.Net technology

94

Session state is ideal for storing information such as the items in the
current user’s shopping basket when the user browses from one page
to another.

6.6.1 Session Tracking

ASP.NET tracks each session by using a unique 120-bit identifier.

ASP.NET uses a proprietary algorithm to generate this value, thereby
guaranteeing that the number is unique.

This ID is the only piece of session-related information that is
transmitted between the web server and the client.

When the client presents the session ID, ASP.NET looks up the
corresponding session, retrieves the objects you stored previously,
and places them into a special collection so they can be accessed in
your code. This process takes place automatically.

We can do this in two ways:
1. Using cookies
2. Using modified URLS

6.6.2 Using Session State

You can interact with session state by using the
System.Web.SessionState.HttpSessionState class, which is provided
in an ASP.NET web page as the built-in Session object.

For example, you might store a DataSet in session memory like this:
Session["InfoDataSet"] = dsinfo;

You can then retrieve it with an appropriate conversion operation:
dsinfo = (DataSet)Session["InfoDataSet"];

6.6.3 HttpSessionState Members

Member Description

Count Provides the number of items in the current

session collection

IsCookieless Identifies whether the session is tracked with a

cookie or modified URLSs.

IsNewSession Identifies whether the session was created only

for the current request. If no information is in
session state, ASP.NET won’t bother to track
the session or create a session cookie. Instead,
the session will be re-created with every
request.

Keys Gets a collection of all the session keys that are
currently being used to store items in the
session-state collection.

Mode Provides an enumerated value that explains
how ASP.NET stores session-state
information. This storage mode is determined
based on the web.config settings discussed in
the “Configuring Session State” section later in
this chapter

SessionID Provides a string with the unique session
identifier for the current client

Timeout Determines the number of minutes that will
elapse before the current session is abandoned,
provided that no more requests are received
from the client. This value can be changed
programmatically, letting you make the session
collection longer when needed.

Abandon() Cancels the current session immediately and
releases all the memory it occupied. This is a
useful technique in a logoff page to ensure that
server memory is reclaimed as quickly as
possible.

Clear() Removes all the session items but doesn’t
change the current session identifier.

Table 6.1: HttpSessionState Members
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

6.6.4 A Session-State Example
public class Furniture

{
public string Name;
public string Description;
public decimal Cost;
public Furniture(string name, string description, decimal cost)
{
Name = name;
Description = description;
Cost = cost;

}

State Management

95

.Net technology

96

o Three Furniture objects are created the first time the page is loaded,
and they’re stored in session state.

o The user can then choose from a list of furniture-piece names.

o When a selection is made, the corresponding object will be retrieved,
and its information will be displayed.

I ™
& Untitled Page - Windows Internet Explorer o | B
@U - |é http://localhost:37154 /SessionStateExample.aspx '| b |"'1 A |
[Favorites | @ Untitled Page % v B v 0 @ v Pagev Safety~

Session ID: 504vzkwot5qel3j422z5yqxs
Number of Objects: 3

Mode: InProc

Is Cookieless: False

Is New: False

Timeout (minutes): 20

Econo Sofa

: n More Information
Retro Cabinet

Name: Pioneer Table
Manufacturer: Heritage Unit
Cost: $866.75

Done & Internet | Protected Mode: On 4 v H10% ~

" oy

Figure 6.5: A session-state example with data objects
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

public partial class SessionStateExample : System.Web.UI.Page

{
protected void Page L oad(Object sender, EventArgs e)

{
if (Ithis.IsPostBack)

{
/I Create Furniture objects.

Furniture piecel = new Furniture("Econo Sofa", "Acme
Inc.", 74.99M);

Furniture piece2
"Heritage Unit", 866.75M);

Furniture piece3
"Sixties Ltd.", 300.11M);

/I Add objects to session state.

new Furniture("Pioneer Table",

new Furniture("Retro Cabinet",

Session["Furniturel"] = piecel,;

Session["Furniture2"] = piece2;

Session["Furniture3"] = piece3;
// Add rows to list control.
Istitems.ltems.Add(piecel.Name);
Istitems.ltems.Add(piece2.Name);
Istitems.Items.Add(piece3.Name);

}

/I Display some basic information about the session.
/I This is useful for testing configuration settings.
IblSession. Text = "Session ID: " + Session.SessionlD;

IblSession. Text+="
Number of Objects: ";
IblSession. Text += Session.Count.ToString();

IblSession. Text+="
Mode: "
Session.Mode.ToString();

IbISession. Text+="
Is Cookieless: ";

IblSession. Text += Session.IsCookieless. ToString();
IblSession. Text+="
Is New: ";

IblSession.Text += Session.IsNewSession. ToString();
IblSession. Text+="
Timeout (minutes): *;
IbISession. Text += Session.Timeout. ToString();

}

protected void cmdMorelnfo_Click(Object sender, EventArgs €)

{
if (Istitems.SelectedIndex == -1)

{

IbIRecord.Text = "No item selected.";

ky

else

{

/I Construct the right key name based on the index.

string key = "Furniture” + (Istitems.Selectedindex +

1).ToString();
// Retrieve the Furniture object from session state.
Furniture piece = (Furniture)Session[key];

/I Display the information for this object.

State Management

97

Net technology IbIRecord. Text = "Name: " + piece.Name;
IbIRecord. Text+="
Manufacturer: *;
IbIRecord.Text += piece.Description;
IbIRecord. Text+="Cost: " + piece.Cost. ToString(*'c");

¥
¥

6.7 CONFIGURING SESSION STATE

o You configure session state through the web.config file for your
current application.

o The configuration file allows you to set advanced options such as the
timeout and the session-state mode.

o The following listing shows the most important options that you can
set for the element.

<configuration>

<system.web>

<sessionState
cookieless="UseCookies"
cookieName="ASP.NET_Sessionld"
regenerateExpiredSessionld="false"
timeout="20"
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"

sqlConnectionString="data source=127.0.0.1;Integrated
Security=SSPI"

sgqlCommandTimeout="30"
allowCustomSqlDatabase="false"
customProvider=""
compressionEnabled="false"
/>
</system.web>

</configuration>

98

6.8 APPLICATION STATE

>

Application state allows you to store global objects that can be
accessed by any client.

Application state is based on the System.Web.HttpApplicationState
class, which is provided in all web pages through the built-in
Application object.

Application state is similar to session state.

It supports the same type of objects, retains information on the server,
and uses the same dictionary-based syntax.
Example :
protected void Page_Load(Object sender, EventArgs e)
{
I/ Retrieve the current counter value.
int count = 0;
if (Application["HitCounterForOrderPage"] !'= null)

{
count = (int)Application["HitCounterForOrderPage"];

}

/I Increment the counter.

count++;

/I Store the current counter value.
Application[""HitCounterForOrderPage''] = count;
IblCounter.Text = count.ToString();

¥

Once again, application-state items are stored as objects, so you need
to cast them when you retrieve them from the collection.

Items in application state never time out.

They last until the application or server is restarted or the application
domain refreshes itself

6.9 SUMMARY

>

State management is the art of retaining information between
requests.

Usually, this information is user-specific (such as a list of items in a
shopping cart, a username, or an access level), but sometimes it’s
global to the whole application (such as usage statistics that track site
activity).

State Management

99

Net technology » Because ASP.NET uses a disconnected architecture, you need to
explicitly store and retrieve state information with each request.

» The approach you choose to store this data affects the performance,
scalability, and security of your application

6.10 REFERANCE

e Beginning ASP.NET in C# by Matthew MacDonald

6.11 QUESTIONS

Write and explain ViewState.
What is Cross-page posting.
What is Query string.

What is Cookies explain with example.

o &~ W M oF

Explain Application state.

ke o o ke e e s

100

7.0
7.1

VALIDATION
Unit Structure :
Obijectives
Introduction
Validation Controls

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Server-Side Validation

Client-Side Validation

HTMLS5 Validation

Manual Validation

Validation with Regular Expressions
Summary

Reference

7.10 Questions

7.0 OBJECTIVES

>

This chapter presents some of the most useful controls that are
included in ASP.NET: the validation controls.

These controls take a potentially time-consuming and complicated
task—verifying user input and reporting errors—and automate it.

Each validation control, or validator, has its own built-in logic.

Some check for missing data, others verify that numbers fall in a
predefined range, and so on. In many cases, the validation controls
allow you to verify user input without writing a line of code.

7.1 INTRODUCTION

>

As any seasoned developer knows, the people using your website will
occasionally make mistakes. What’s particularly daunting is the range
of possible mistakes that users can make.

Here are some common examples:

e (@M A user might ignore an important field and leave it blank. ¢ If
you disallow blank values, a user might type in semi-random
nonsense to circumvent your checks.

e @M A user might make an honest mistake, such as entering a typing
error, entering a nonnumeric character in a number field, or
submitting the wrong type of information

101

.Net technology

102

e @M A malicious user might try to exploit a weakness in your code
by entering carefully structured wrong values. For example, an
attacker might attempt to cause a specific error that will reveal
sensitive information.

ASP.NET aims to save you this trouble and provide you with a
reusable framework of validation controls that manages validation
details by checking fields and reporting on errors automatically.

These controls can even use client-side JavaScript to provide a more
dynamic and responsive interface while still providing ordinary
validation for older browsers

7.2 VALIDATION CONTROLS

» ASP.NET provides five validator controls, which are described in
Table.
» Four are targeted at specific types of validation, while the fifth allows
you to apply custom validation routines
Control Class Description
RequiredFieldValidator Validation succeeds as long as the input
control doesn’t contain an empty string.
RangeValidator Validation succeeds if the input control
contains a value within a specific
numeric, alphabetic, or date range.
CompareValidator Validation succeeds if the input control

contains a value that matches the value in
another input control, or a fixed value
that you specify.

RegularExpressionValidator | Validation succeeds if the value in an

input control matches a specified regular
expression

CustomValidator Validation is performed by a user-

defined function.

Table 7.1: Validator Controls
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

7.3 SERVER-SIDE VALIDATION

>

If we have a client-side validation, after execution of client-side
validation this validation is get executed.

>

Server-side validation compulsory because a user or hacker can send
the data through different channels.

Server-side validation is done after the user submits the data to server
or data post back to server.

Server-side validation uses several languages like ASP.Net, PHP etc.

After finishing validation process on the Server Side, the feedback is
sent to the client by server using a new dynamically created web page.

Its better to validate user input on Server Side because we need to
protect the data from unauthorised users or hackers.

It is more secure than client-side validation.

7.4 CLIENT-SIDE VALIDATION

>

In modern browsers, ASP.NET automatically adds JavaScript code
for client-side validation.

In this case, when the user clicks a CausesValidation button, the same
error messages will appear without the page needing to be submitted
and returned from the server.

This increases the responsiveness of your web page.

However, even if the page validates successfully on the client side,
ASP.NET still revalidates it when it’s received at the server.

This is because it’s easy for an experienced user to manipulate client-
side validation.

For example, a malicious user might delete the block of JavaScript
validation code and continue working with the page.

By performing the validation at both ends, ASP.NET makes sure your
application can be as responsive as possible while also remaining
secure.

7.5 HTMLS5 VALIDATION

>

HTML language, adds new client-side validation features that can
help catch errors.

The problem is that HTMLS5 validation is inconsistent—it works
differently in different browsers, and many browsers offer only partial
support.

7.5.1 The Validation Controls

>

The validation controls are found in the System.Web.UIl.WebControls
namespace and inherit from the BaseValidator class.

Validation

103

NNet technology » This class defines the basic functionality for a validation control.

Properties of the BaseValidator Class

Property Description

ControlToValidate Identifies the control that this validator will
check. Each validator can verify the value in
one input control.

ErrorMessage and If validation fails, the validator control can
ForeColor display a text message
Display Allows you to configure whether this error

message will be inserted into the page
dynamically when it’s needed or whether an
appropriate space will be reserved for the
message.

IsValid After validation is performed, this returns
true or false depending on whether it
succeeded or failed

Enabled When set to false, automatic validation will
not be performed for this control when the
page is submitted.

EnableClientScript If set to true, ASP.NET will add JavaScript
and DHTML code to allow client-side
validation on browsers that support it.

Table 7.2: Properties of the BaseValidator Class
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Validator-Specific Properties

Validator Added Members
RequiredFieldValidator None required
RangeValidator MaximumValue, MinimumValue, Type
CompareValidator ControlToCompare, Operator, Type,

ValueToCompare

RegularExpressionValidator | ValidationExpression

CustomValidator ClientValidationFunction,
ValidateEmptyText, ServerValidate
event

Table 7.3: Validator-Specific Properties

104 (Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Validation Example Validation

» This test uses a single Button web control, two TextBox controls, and
a RangeValidator control that validates the first text box.

» If validation fails, the RangeValidator control displays an error
message, so you should place this control immediately next to the
TextBox it’s validating.

» The second text box does not use any validation.
<asp:TextBox id="txtValidated" runat="server" />
<asp:RangeValidator id="RangeValidator" runat="server"

ErrorMessage="This Number Is Not In The Range"
ControlToValidate="txtValidated"

MaximumValue="10" MinimumValue="1"

ForeColor="Red" Font-Bold="true"

Type="Integer" />

Not validated:

<asp:TextBox id="txtNotValidated" runat="server" />

<asp:Button id="cmdOK" runat="server" Text="OK"
OnClick="cmdOK_Click" />

<asp:Label id="IbIMessage" runat="server"
EnableViewState="False" />

Finally, here is the code that responds to the button click:
protected void cmdOK_Click(Object sender, EventArgs e)

IbIMessage.Text = "cmdOK_Click event handler executed.";
& Validation Test - Windows Internet Explorer | = | &8 Iﬁ
Q () ¥ |&] http://localhost 36405/ ValidationTest.aspx ~[@]4]x]
¢ Favorites @ Validation Test i - B) ~ [d= ~ Page~
A nmumber (1 to 10): 42 This Number Is Not In The Range

Not validated: 42

oK

Do & Internet | Protected Mode: On g v H100% ~

Figure 7.1: Failed validation
(Ref: Beginning ASP.NET in C# by Matthew MacDonald) 105

Net technology 7.6 MANUAL VALIDATION

>

106

You can create manual validation in one of three ways:

1. Use your own code to verify values. In this case, you won’t use
any of the ASP.NET validation controls.

2. Disable the EnableClientScript property for each validation
control. This allows an invalid page to be submitted, after which
you can decide what to do with it depending on the problems
that may exist.

3. Add a button with CausesValidation set to false. When this
button is clicked, manually validate the page by calling the
Page.Validate() method. Then examine the IsValid property and
decide what to do.

The next example uses the second approach. After the page is
submitted, it examines all the validation controls on the page by
looping through the Page.Validators collection.

This technique adds a feature that wouldn’t be available with
automatic validation, which uses the ErrorMessage property.

protected void cmdOK_Click(Object sender, EventArgs e)
{

string errorMessage = "Mistakes found:";

// Search through the validation controls.

foreach (BaseValidator ctrl in this.\Validators)

{
if (‘ctrl.IsValid)

{
errorMessage += ctrl.ErrorMessage +"
";
/I Find the corresponding input control, and change the
I/l generic Control variable into a TextBox variable.
/[This allows access to the Text property.

TextBox ctrlinput =
(TextBox)this.FindControl(ctrl.ControlToValidate);

errorMessage +=" * Problem is with this input: ";
errorMessage += ctrlinput. Text + "
";
}
}

IbIMessage. Text = errorMessage;

¥

7.7 VALIDATION WITH REGULAR EXPRESSIONS

» One of ASP.NET’s most powerful validation controls is the
RegularExpressionValidator, which validates text by determining
whether it matches a specific pattern.

» For example, e-mail addresses, phone numbers, and file names are all
examples of text that has specific constraints.

» A phone number must be a set number of digits, an e-mail address
must include exactly one @ character (with text on either side), and a
file name can’t include certain special characters such as \ and ?.

» One way to define patterns like these is with regular expressions.

Character Description

* Zero or more occurrences of the previous character or
subexpression. For example, 7*8 matches 7778 or just 8.

+ One or more occurrences of the previous character or
subexpression. For example, 7+8 matches 7778 but not 8.

@) Groups a subexpression that will be treated as a single
element. For example, (78)+ matches 78 and 787878.

{m,n} The previous character (or subexpression) can occur from
m to n times. For example, A{1,3} matches A, AA, or
AAA.

| Either of two matches. For example, 8|6 matches 8 or 6

[] Matches one character in a range of valid characters. For
example, [A-C] matches A, B, or C.

™ Matches one character in a range of valid characters. For
example, [A-C] matches A, B, or C.

Any character except a newline. For example, .here
matches where and there.

\s Any whitespace character (such as a tab or space).

\S Any nonwhitespace character

\d Any digit character

\D Any character that isn’t a digit.

\w Any “word” character (letter, number, or underscore).
\W Any character that isn’t a “word” character (letter,

number, or underscore).

Table 7.4: Common (and useful) regular expressions.
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Validation

107

NNet technology Commonly Used Regular Expressions

Content Regular Expression Description

E-mail address* | \S+@\S+\.\S+ Check for an at (@) sign and dot
(.) and allow nonwhitespace
characters only.

Password \w+ Any sequence of one or more
word characters (letter, space, or
underscore).

Specific-length \w{4,10} A password that must be at least

password four characters long but no

longer than ten characters.

Advanced [a-zA-Z]\w{3,9} As with the specific-length
password password, this regular
expression will allow four to ten
total characters. The twist is that
the first character must fall in
the range of a—z or A-Z

Another [a-zA-Z]\w*\d+H\w* This password starts with a letter
advanced character, followed by zero or
password more word characters, one or

more digits, and then zero or
more word characters

Limited-length \S{4,10} Like the password example, this
field allows four to ten characters, but
it allows special characters

US Social \d{3}-\d{2}-\d{4} A sequence of three, two, and
Security number then four digits, with each group
separated by a dash. You could
use a similar pattern when
requiring a phone number.

Table 7.5: Commonly Used Regular Expressions
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

108

Example :

"
@ Customer Form - Windows Internet Explorer | = |8 &J
@\/' !g_ ttp://localhost:36405/CustomerForm.aspx VI L;l"” X l
¢ Favorites € Customer Form :’:;“ v B v [mm v Pagev Safetyv Toolsv @~
User Name: You must enter a user name.
Password: .
Passwor(_i ssssscee Your password does not match.
(retype):
E-mail: m.macdonald.com This email is missing the @ symbol. 3
Age: 400 This age is not between 0 and 120.
Referrer Code: 37 Try a string that starts with 014.
o Submt][Cancel |
Done & Internet | Protected Mode: On fa v ®100% ~

-

Figure 7.2: A sample customer form
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Several types of validation are taking place on the customer form:

» Three RequiredFieldValidator controls make sure the user enters a
username, a password, and a password confirmation.

» A CompareValidator ensures that the two versions of the masked
password match.

» A RegularExpressionValidator checks that the e-mail address
contains an at (@) symbol.

» A RangeValidator ensures the age is a number from 0 to 120.

» A CustomValidator performs a special validation on the server of a
“referrer code.” This code verifies that the first three characters make
up a number that is divisible by 7.

The tags for the validator controls are as follows:
<asp:RequiredFieldValidator id="vldUserName" runat="server"
ErrorMessage="You must enter a user name."
ControlToValidate="txtUserName" />
<asp:RequiredFieldValidator id="vldPassword" runat="server"
ErrorMessage="You must enter a password."
ControlToValidate="txtPassword" />

<asp:CompareValidator id="vIdRetype" runat="server"

Validation

109

.Net technology

110

ErrorMessage="Your password does not match."
ControlToCompare="txtPassword" ControlToValidate="txtRetype" />
<asp:RequiredFieldValidator id="vIldRetypeRequired" runat="server"
ErrorMessage="You must confirm your password."
ControlToValidate="txtRetype" />
<asp:RegularExpressionValidator id="vIdEmail" runat="server"
ErrorMessage="This email is missing the @ symbol."”
ValidationExpression=".+@.+" ControlToValidate="txtEmail" />
<asp:RangeValidator id="vIdAge" runat="server"
ErrorMessage="This age is not between 0 and 120." Type="Integer"
MinimumValue="0" MaximumValue="120"
ControlToValidate="txtAge" />

<asp:CustomValidator id="vIdCode" runat="server"
ErrorMessage="Try a string that starts with 014."
ValidateEmptyText="False"
OnServerValidate="vldCode_ServerValidate"

ControlToValidate="txtCode" />

The form provides two validation buttons—one that requires validation and

one that allows the user to cancel the task gracefully:

<asp:Button id="cmdSubmit" runat="server"
OnClick="cmdSubmit_Click" Text="Submit"></asp:Button>

<asp:Button id="cmdCancel" runat="server"

CausesValidation="False" OnClick="cmdCancel_Click™" Text="Cancel">

</asp:Button>
Here’s the event-handling code for the buttons:

protected void cmdSubmit_Click(Object sender, EventArgs €)
{

if (Page.lsValid)

{

IbIMessage.Text = "This is a valid form.";

}

} Validation

protected void cmdCancel_Click(Object sender, EventArgs e)
{

IbIMessage.Text = "No attempt was made to validate this form.";

¥

The only form-level code that is required for validation is the custom
validation code. The validation takes place in the event handler for the
CustomValidator.ServerValidate event.

protected void vldCode_ServerValidate(Object source,
ServerValidateEventArgs e)

{

try

{

/I Check whether the first three digits are divisible by seven.
int val = Int32.Parse(e.Value.Substring(0, 3));

if (val % 7 ==0)

{

e.IsValid = true;

}

else

{

e.IsValid = false;

}

}

catch

{

/I An error occurred in the conversion.
/I The value is not valid.

e.IsValid = false;

¥
¥

111

Net technology 7.8 SUMMARY

» In this chapter, you learned how to use one of ASP.NET’s most
practical features: validation.

» You saw how ASP. NET combines server-side and client-side
validation to ensure bulletproof security without sacrificing the
usability of your web pages.

> You also looked at the types of validation provided by the various
validation controls, and even brushed up on the powerful pattern-
matching syntax used for regular expressions

7.9 REFERANCE

e Beginning ASP.NET in C# by Matthew MacDonald

7.10 QUESTIONS

Write and explain Validation control.

Explain Server-side validation

1

2

3. Explain Client-side validation
4 Explain Manual validation

5

Explain validation with Regular expression.

ke o o ke o e s

112

RICH CONTROLS

Unit Structure :

8.0
8.1
8.2

8.3

Obijectives

Introduction

Calendar Control

8.2.1 Formatting the Calendar
8.2.2 CalendarDay Properties
AdRotator Control
8.3.1 The Advertisement File
8.3.2 The AdRotator Class

8.4 MultiView Control
8.4.1 Creating Views
8.5 Summary
8.6 Reference
8.7 Questions
8.0 OBJECTIVES
» Rich controls are web controls that model complex user interface

elements.

Although no strict definition exists for what is and what isn’t a rich
control, the term commonly describes a web control that has an object
model that’s distinctly separate from the HTML it generates.

8.1 INTRODUCTION

>

Rich control provides object model that has complex HTML
representation and also client-side JavaScript

Rich controls are web controls that model complex user interface
elements.

A typical rich control can be programmed as a single object but
renders itself using a complex sequence of HTML elements.

Rich controls can also react to user actions (such as a mouse click on
a specific region of the control) and raise more-meaningful events that
your code can respond to on the web server.

In other words, rich controls give you a way to create advanced user
interfaces in your web pages without writing lines of convoluted
HTML.

113

Net technology 8.2 CALENDAR CONTROL

» The Calendar control presents a miniature calendar that you can place
in any web page.

<asp:Calendar id="MyCalendar" runat="server" />
» The Calendar control presents a single-month view

» The user can navigate from month to month by using the navigational
arrows, at which point the page is posted back and ASP.NET
automatically provides a new page with the correct month values

(| == g"
Untitled Page
€« C © localhost10166/CalendarTest.asp w oA
= March 2013 >
Sun Mon Tue Wed Thu Fn Sat
> 2 25 26 27 28 1 2
> 3 4 5 6 I 8 9
> 10 11 12 13 14 15 16
= 17 18 19 20 21 22 23
=2 24 23 26 21 28 29 30
= 31 1 2 3 4 5 6

A "

Figure 8.1: The default Calendar

(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

» Depending on the value you choose, you can allow users to select days
(Day), entire weeks (DayWeek), whole months (DayWeekMonth), or
render the control as a static calendar that doesn’t allow selection
(None).

» You may also want to set the Calendar.FirstDayOfWeek property to
configure how a week is shown.

» For example, set FirstDayOfWeek to the enumerated value Sunday,
and weeks will be selected from Sunday to Saturday.

» The following code demonstrates this technique:

IblDates. Text = "You selected these dates:
";
foreach (DateTime dt in MyCalendar.SelectedDates)
{

IbIDates. Text += dt. ToLongDateString() + "
";

114 }

|‘ — = ﬁ
Untitled Page
“= C @ localhost:10166/Cale es v A
< March 2013 >
Sun Mon Tue Wed Thu Fri Sat

> 24 25 26 27 28 1 2

= 3 4] 6 i 8 9

=

> 17 18 19 20 21 22 23

= 31 1 2 3 4 5 6

You selected these dates:
Sundayv, March 10, 2013
Monday. March 11, 2013
Tuesday, March 12, 2013
Wednesday, March 13, 2013
Thursday, March 14, 2013
Fridav, March 15, 2013
Saturday, March 16, 2013

A

Figure 8.2: Selecting multiple dates
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

8.2.1 Formatting the Calendar

» The Calendar control provides a whole host of formatting-related

properties.
Member Description

DayHeaderStyle The style for the section of the Calendar that
displays the days of the week (as column
headers).

DayStyle The default style for the dates in the current
month

NextPrevStyle The style for the navigation controls in the title
section that move from month to month.

OtherMonthDayStyle The style for the dates that aren’t in the
currently displayed month. These dates are
used to “fill in” the calendar grid. For
example, the first few cells in the topmost row
may display the last few days from the
previous month.

Rich Controls

115

NNet technology Member Description

SelectedDayStyle The style for the selected dates on the calendar
SelectorStyle The style for the week and month date
selection controls.
TitleStyle The style for the title section.
TodayDayStyle The style for the date designated as today

(represented by the TodaysDate property of
the Calendar control).

WeekendDayStyle The style for dates that fall on the weekend.

Table 8.1: Properties for Calendar Styles
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

You can adjust each style by using the Properties window.

For a quick shortcut, you can set an entire related color scheme by
using the Calendar’s Auto Format feature.

» To do so, start by selecting the Calendar on the design surface of a
web form. Then click the arrow icon that appears next to its top-right
corner to show the Calendar’s smart tag, and click the Auto Format

link.
» You’ll be presented with a list of predefined formats that set the style
properties
AutoFormat L‘é
Select a scheme: Preview:
Remove Formattng
e < June 2012 pe
Professonal 1
Professonal 2 Su Mo Tu We Th Fr Sa
Classic
Colorful 2
OK Cancel Apply

-

Figure 8.3: Calendar Styles
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

116

8.2.2 CalendarDay Properties

Property Description

Date The DateTime object that represents this date.

IsWeekend True if this date falls on a Saturday or Sunday.

IsToday True if this value matches the
Calendar.TodaysDate property, which is set to the
current day by default.

IsOtherMonth True if this date doesn’t belong to the current
month but is displayed to fill in the first or last row.

IsSelectable Allows you to configure whether the user can

select this day.

Table 8.2: CalendarDay Properties
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Members of the Calendar control class.

Member Description

Caption and | Gives you an easy way to add a title to the

CaptionAlign calendar. By default, the caption appears at the
top of the title area, just above the month
heading.

CellPadding ASP.NET creates a date in a separate cell of an
invisible table. CellPadding is the space, in
pixels, between the border of each cell and its
contents.

CellSpacing The space, in pixels, between cells in the same
table.

DayNameFormat Determines how days are displayed in the

calendar header. Valid values are Full (as in
Sunday), FirstLetter (S), FirstTwoLetters (Su),
and Short (Sun), which is the default.

FirstDayOfWeek

Determines which day is displayed in the first
column of the calendar. The values are any day
name from the FirstDayOfWeek enumeration
(such as Sunday). By default, this is Sunday.

TitleFormat Configures how the month is displayed in the
title area. Valid values include Month and
MonthYear

TodaysDate Sets which day should be recognized as the

current date and formatted with the
TodayDayStyle. This defaults to the current day
on the web server.

Rich Controls

117

.Net technology

118

Member

Description

VisibleDate

Gets or sets the date that specifies what month
will be displayed in the calendar. This allows
you to change the calendar display without
modifying the current date selection.

ShowDayHeader,
ShowGridLines,
ShowNextPrevMonth,
and ShowTitle

These Boolean properties allow you to configure
whether various parts of the calendar are shown,
including the day titles, gridlines between every
day, the previous/next month navigation links,
and the title section. Note that hiding the title
section also hides the next and previous month
navigation controls.

Table 8.3: Calendar Members
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

8.3 ADROTATOR CONTROL

» The basic purpose of the AdRotator is to provide a graphic on a page
that is chosen randomly from a group of possible images.

» In other words, every time the page is requested, an image is selected
at random and displayed, which is the rotation indicated by the name

AdRotator.

» One use of the AdRotator is to show banner-style advertisements on
a page, but you can use it anytime you want to vary an image

randomly.

8.3.1 The Advertisement File

» The AdRotator stores its list of image files in an XML file. This file
uses the format shown here:

<Advertisements>
<Ad>

<ImageUrl>prosetech.jpg</ImageUrl>

<NavigateUrl>http://www.prosetech.com</NavigateUr|>

<AlternateText>ProseTech Site</Alternate Text>

<Impressions>1</Impressions>

<Keyword>Computer</Keyword>

</Ad>
</Advertisements>

» This example shows a single possible advertisement, which the
AdRotator control picks at random from the list of advertisements.

To add more advertisements, you would create multiple elements and
place them all inside the root element:

<Advertisements>
<Ad>
<I-- First ad here. -->
</Ad>
<Ad>
<I-- Second ad here. -->
</Ad>
</Advertisements>

Each element has a number of other important properties that
configure the link, the image, and the frequency.

Element Description

ImageUrl The image that will be displayed. This can be a relative

link (a file in the current directory) or a fully qualified
Internet URL.

NavigateUrl | The link that will be followed if the user clicks the

banner. This can be a relative or fully qualified URL.

AlternateText | The text that will be displayed instead of the picture if it

cannot be displayed. This text will also be used as a
tooltip in some newer browsers.

Impressions | A number that sets how often an advertisement will

appear. This number is relative to the numbers specified
for other ads. For example, a banner with the value 10
will be shown twice as often (on average) as the banner
with the value 5.

Keyword A keyword that identifies a group of advertisements.

You can use this for filtering. For example, you could
create ten advertisements and give half of them the
keyword Retail and the other half the keyword
Compulter.

Table 8.4: Advertisement File Elements
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

8.3.2 The AdRotator Class

>
>

The actual AdRotator class provides a limited set of properties.

You specify both the appropriate advertisement file in the
AdvertisementFile property and the type of window that the link
should follow (the Target window). The target can name a specific
frame

Rich Controls

119

.Net technology

120

Target Description
_blank The link opens a new unframed window.
_parent The link opens in the parent of the current frame.
_self The link opens in the current frame.
_top The link opens in the topmost frame of the current
window

Table 8.5: Advertisement File Elements
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

>

Optionally, you can set the KeywordFilter property so that the banner
will be chosen from a specific keyword group. This is a fully
configured AdRotator tag:

<asp:AdRotator ID="Ads" runat="server"
AdvertisementFile="MainAds.xml"

Target="_blank” KeywordFilter="Computer” />

The event-handling code for this example simply configures a
HyperLink control named InkBanner based on the randomly selected
advertisement:

protected void Ads_AdCreated(Object sender, AdCreatedEventArgs e)
{

/I Synchronize the Hyperlink control.

InkBanner.NavigateUrl = e.NavigateUrl;

Il Syncrhonize the text of the link.

InkBanner.Text = “Click here for information about our sponsor: *;
InkBanner.Text += e.AlternateText;

}

8.4 MULTIVIEW CONTROL

The MultiView is the simpler of the two multiple-view controls.

The MultiView gives you a way to declare multiple views and show
only one at a time.

Creating a MultiView is suitably straightforward. You add the tag to
your .aspx page file and then add one tag inside it for each separate
view:

<asp:MultiView ID="MultiViewl" runat="server">
<asp:View ID="View1” runat="server’>...</asp:View>
<asp:View ID="View2” runat="server”>...</asp:View>
<asp:View ID="View3” runat="server’”>...</asp:View>
</asp:MultiView>

8.4.1 Creating Views

Rich Controls

» Full markup for a MultiView that splits the greeting card controls into

three views named Viewl, View?2, and View3:

<asp:MultiView ID="MultiViewl" runat="server" >

<asp:View ID="View1” runat="server”>
Choose a foreground (text) color:

<asp:DropDownList ID="IstForeColor”
AutoPostBack="True”

OnSelectedIndexChanged="ControlChanged” />

Choose a background color:

<asp:DropDownList ID="1stBackColor”
AutoPostBack="True”

OnSelectedIndexChanged="ControlChanged” />
</asp:View>
<asp:View ID="View2” runat="server’>

Choose a border style:

<asp:RadioButtonList ID="1stBorder”
AutoPostBack="True”

OnSelectedIndexChanged="ControlChanged”
RepeatColumns="2" />

<asp:CheckBox ID="chkPicture”
AutoPostBack="True”

runat="server”

runat=""server”’

runat=""server”’

runat=""server”

OnCheckedChanged="ControlChanged” Text="Add the Default

Picture” />
</asp:View>

<asp:View ID="View3” runat="server’”>
Choose a font name:

<asp:DropDownList ID="IstFontName”
AutoPostBack="True”

OnSelectedIndexChanged="ControlChanged” />

Specify a font size:

<asp:TextBox ID="txtFontSize”
AutoPostBack="True”

OnTextChanged="ControlChanged” />

Enter the greeting text below:

<asp:TextBox ID="txtGreeting”
AutoPostBack="True”

runat=""server”’

runat=""server”’

runat=""server”’

OnTextChanged="ControlChanged” TextMode="MultiLine” />

</asp:View>
</asp:MultiView>

121

.Net technology

122

MultiViewGreetingCardMaker.aspx - X

MultiView 1

Viewl [IblGreeting]
Choose a foreground {text) color:
{Unbound ﬂ
Choose a background color:
1Ur‘|bound ﬂ
i Next > |

View2
Choose a border style: : 2]

i ¢ unbound

i add the Default Picture ; =
¢ < Prev | Mext = |

i View3

Choose a font name:

JUnbnund j

Specify a font size:

‘Enter the greeting text below:

i <F'rev[

4 Design O Split | [Source T|-th‘.m|=||-cbcd)'=| <form#forml > || <div> || <table> || <tr> || <td> F

Figure 8.4: Designing multiple views
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

8.4.2 Showing a View
» If you run this example, you won’t see what you expect.

» The MultiView will appear empty on the page, and all the controls in
all your views will be hidden.

» The reason this happens is that the MultiView.ActiveViewIndex
property is, by default, set to —1. The ActiveViewlIndex property
determines which view will be shown.

> If you set the ActiveViewIndex to 0, however, you’ll see the first
view. Similarly, you can set it to 1 to show the second view, and so
on.

» You can set this property by using the Properties window or using
code:

/! Show the first view.
MultiViewl.ActiveViewlndex = 0;

» This example shows the first view (View1l) and hides whatever view
is currently being displayed, if any.

» You can also use the SetActiveView() method, which accepts any one
of the view objects you’ve created, rather than the view name.

MultiViewl.SetActiveView(Viewl);

» Following table shows lists all the recognized command names. Each
command name also has a corresponding static field in the MultiView

class.
Command Name MultiView Field Description
PrevView PreviousViewCommandName Mov_es to the
previous view.
NextView NextViewCommandName Moves to the next

view.

SwitchViewByID |SwitchViewBylDCommandNam | Moves to the view
e with a specific ID
(string name). The
ID is taken from
the
CommandArgum
ent property of the
button control.

SwitchViewByInd | SwitchViewBylndexCommandN | Moves to the view
ex ame with a specific
numeric index.
The index is taken
from the
CommandArgum
ent property of the
button control.

Table 8.6: Recognized Command Names for the MultiView
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

8.5 SUMMARY

» This chapter showed you how the rich Calendar, AdRotator,
MultiView, and Wizard controls can go far beyond the limitations of
ordinary HTML elements.

» When you’re working with these controls, you don’t need to think
about HTML at all. Instead, you can focus on the object model that’s
defined by the control.

Rich Controls

123

.Net technology 86 REFERENCE

e Beginning ASP.NET in C# by Matthew MacDonald

8.7 QUESTIONS

Explain Calendar control.
Write and explain formatting properties for calendar.
Write and explain members of the calender control.

Explain AdRotator control.

o ~ w npoE

Explain multiview control.

ke o o ke o e sk

124

9

THEMES AND MASTER PAGES

Unit Structure:

9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Obijectives

Introduction

How Themes Work

Applying a Simple Theme

Handling Theme Conflicts

Simple Master Page and Content Page
Connecting Master pages and Content Pages
Master Page with Multiple Content Regions
Master Pages and Relative Paths

Summary

9.10 Reference
9.11 Questions

9.0 OBJECTIVES

>

>

>

Using the techniques, you’ve learned so far, you can create polished
web pages and let users surf from one page to another.

However, to integrate your web pages into a unified, consistent
website, you need a few more tools.

In this chapter, you’ll consider three of the most important tools that
you can use: styles, themes, and master pages.

9.1 INTRODUCTION

>

>

ASP. NET includes themes feature, which plays a similar role as
styles but works exclusively with server controls.

Best feature for standardizing websites is master pages. Essentially, a
master page is a blueprint for part of your website.

Using a master page, you can define web page layout, complete with
the usual details such as headers, menu bars, and ad banners.

Once you’ve perfected a master page, you can use it to create content
pages. Each content page automatically acquires the layout and the
content of the linked master page.

By using themes, and master pages, you can ensure that all the pages
on your website share a standardized look and layout.

Themes and Master Pages

125

Net technology 9.2 HOW THEMES WORK

» All themes are application specific.

» Touse a theme in a web application, you need to create a folder that
defines it.

» This folder needs to be placed in the App_Themes folder, which must
be placed inside the top-level directory for your web application.

» To use theme, you need to create at least one skin file in the theme
folder. A skin file is a text file with the .skin extension
Each theme is in a

separate directory. Use
as many as you want.

App_Themes I

—1

Sophisticated

Professional

mySkin1.skin
mySkin2.skin
mySkin3.skin

BasicControls.skin
DataViewGrid.skin

T
One technigue is to

separate skins to isolate
complex controls.

Each theme can contain
one or more skin files.

Figure 9.1: Themes and skins
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

9.3 APPLYING A SIMPLE THEME:

» Toadd a theme to your project, select Website» Add New Item, and
choose Skin File.

» Visual Studio will warn you that skin files need to be placed in a
subfolder of the App _Themes folder and ask you whether that’s what
you intended.

» If you choose Yes, Visual Studio will create a folder with the same
name as your theme file. You can then rename the folder and the file
to whatever you’d like to use.

Solution Explorer QX
® o-2&p R
Search Solution Explorer (Ctri+ e

&3] Solution ‘Themes' (1 project)
4 © D:\Desktop\Themes\
> B App_Code
4 @ App_Themes
4 {ml FunkyTheme
b @ CSSStyles.aspx
P @ ImageinTheme.aspx
[@ StyleSheet.css
P © Themes.aspx
¥ Web.config

Figure 9.2: A theme in the Solution Explorer (Ref: Beginning ASP.NET in C# by
126 Matthew MacDonald)

» Here’s a sample skin file that sets background and foreground colors Themes and Master Pages
for several common controls:

<asp:ListBox runat="server" ForeColor ="White"
BackColor="0Orange"/>

<asp:TextBox runat="server" ForeColor ="White"
BackColor="0Orange"/>

<asp:Button runat="server" ForeColor ="White" BackColor
="Orange"/>

» To apply the theme in a web page, you need to set the Theme
attribute of the Page directive to the folder name for your theme.

<%@ Page Language="C#" AutoEventWireup ="true"
Theme="FunkyTheme" %>

BEE—

Untitled Page

C' Q Themes.aspx X,

Figure 9.3: A simple page after theming
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

9.4 HANDLING THEME CONFLICTS:

» When properties conflict between your controls and your theme, the
theme wins.

» However, in some cases you might want to change this behavior so
that your controls can fine-tune a theme by specifically overriding
certain details.

» ASP.NET gives you this option, but it’s an all-or-nothing setting that
applies to all the controls on the entire page.

» To make this change, just use the StyleSheetTheme attribute instead
of the Theme attribute in the Page directive.

<%@ Page Language="C#" AutoEventWireup ="true"
StyleSheetTheme="FunkyTheme" %>
127

.Net technology

128

Now the custom yellow background of the ListBox control takes
precedence over the background color specified by the theme.

Figure shows the result—and a potential problem.

Because the foreground color has been changed to white, the lettering
in the large text box is now impossible to see. Overlapping formatting
specifications can cause glitches like this, which is why it’s often
better to let your themes take complete control by using the Theme
attribute.

[o | B e

Untitled Page

¢« > C localhost: 547 T Q

L A

Figure 9.4: Giving the control tag precedence over the theme
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

9.5 SIMPLE MASTER PAGE AND CONTENT PAGE:

>

Master pages are similar to ordinary ASP.NET pages. Like ordinary
pages, master pages are text files that can contain HTML, web
controls, and code.

However, master pages have a different file extension (.master instead
of .aspx), and they can’t be viewed directly by a browser.

Instead, master pages must be used by other pages, which are known
as content pages. Essentially, the master page defines the page
structure and the common ingredients.

A single master page might define the layout for the entire site.

Every page would use that master page, and as a result, every page
would have the same basic organization and the same title, footer, and
SO on.

» However, each page would also insert its specific information, such
as product descriptions, book reviews, or search results, into this
template

» To create a master page in Visual Studio, select Website» Add New
Item from the menu. Select Master Page, give it a file name (such as
SiteTemplate.master, used in the next example), and click Add.

» The ContentPlaceHolder is the portion of the master page that a
content page can change. Or, to look at it another way, everything else
that’s set in the master page is unchangeable in a content page.

If you add a header, that header appears in every content page.

If you want to give the content page the opportunity to supply content
in a specific section of the page, you need to add a
ContentPlaceHolder.

SiteTemplate.master - X

Client Objects & Events v (No Events) v

ContentPlaceHolderfl™ runat="server"> |~

< 1 »

ContentPlaceHolderl

@ Design | O Split | @ Source 4J <body> || <form#form1 > || <div> || <asp:ContentPlaceHolder=C...> »

Figure 9.5: A new master page
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

» When you first create a master page, you’ll start with two
ContentPlaceHolder controls.

» One is defined in thesection, which gives content pages the add page
metadata, such as search keywords and style sheet links.

» The second, more important ContentPlaceHolder is defined in the
section, and represents the displayed content of the page.

> It appears on the page as a faintly outlined box. If you click inside it
or hover over it, the name of ContentPlaceHolder appears in a tooltip.

Themes and Master Pages

129

.Net technology

130

Now you’re ready to create a content page based on this master page.
To take this step, select Website» Add New Item from the menu.

Select Web Form, and choose to select a master page.

Click Add. When you’re prompted to choose a master page, use the
one you created with the header and footer.

Add New Item - D:\Desktop\Themes\ Qli_hj
‘ 4 Instalied Sort by: | Default) = (5 Search Installed Templates o~
Visual Basic @ 2 Type \ =
ype: Visual C=
Web Form Visual G
& Aform for Web Applcations
b Online Content Page (Razor v2) Visual G#
Empty Page (Razorv2) Visual G2

Helper (Razor v2)
Layout Page (Razorv2)
cn
Web API Controller Class Visual C#
&,

Web Page (Razor v2) Visual G2

Name: SimpleContentPage.aspx 7] Place code in separate file
{&Selegt master page
Add Cancel

Figure 9.6: Creating a content page
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

>

Your content page will have all the elements of the master page

9.6 CONNECTING MASTER PAGES AND CONTENT

PAGES:

» When you create a master page, you’re building something that looks
much like an ordinary ASP.NET web form.

» The key difference is that, although web forms start with the Page
directive, a master page starts with a Master directive that specifies
the same information.

» Here’s the Master directive for the simple master page shown in the
previous example:
<%@ Master Language="C#" AutoEventWireup ="true"
CodeFile="SiteTemplate.master.cs"

Inherits="SiteTemplate™ %>
» The ContentPlaceHolder is less interesting. You declare it like any

ordinary control. Here’s the complete code for the simple master
page:

<%@ Master Language="C#" AutoEventWireup ="true"
CodeFile="SiteTemplate.master.cs"

Inherits="SiteTemplate" %>
<html xmlIns="http://www.w3.0rg/1999/xhtm|"">

<head runat="server"> Themes and Master Pages
<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<asp:ContentPlaceHolder id="ContentPlaceHolder1"
runat="server'>

</asp:ContentPlaceHolder>
<i>This is a simple footer.</i>
</form>

</body>

</htm|>

When you create a content page, ASP.NET links your page to the
master page by adding an attribute to the Page directive.

This attribute, named MasterPageFile, indicates the associated
master page. Here’s what it looks like:

<%@ Page Language="C#" MasterPageFile
="~/SiteTemplate.master" AutoEventWireup="true"
CodeFile="SimpleContentPage.aspx.cs"

Inherits="SimpleContentPage" Title="Untitled Page" %>

Notice that the MasterPageFile attribute begins with the path ~/ to
specify the root website folder.

9.7 MASTER PAGE WITH MULTIPLE CONTENT
REGIONS

>

Master pages aren’t limited to one ContentPlaceHolder. Instead, you
can insert as many as you need to give the client the ability to
intersperse content in various places. All you need to do is add
multiple ContentPlaceHolder controls and arrange them
appropriately.

Example:

<%@ Master Language="C#" AutoEventWireup ="true"

CodeFile="MultipleContent.master.cs™ Inherits="MultipleContent"
%>

<html xmlIns="http://www.w3.0rg/1999/xhtmI">
<head runat="server">

<title>Untitled Page</title>
131

.Net technology </head>
<body>
<form id="form1" runat="server">

<asp:ContentPlaceHolder id="MainContent"
runat="server">

</asp:ContentPlaceHolder>
<i>
<div style="...">
<p>OTHER LINKS

<asp:ContentPlaceHolder id="OtherLinksContent"
runat="server'>

</asp:ContentPlaceHolder>
</div>
This is a simple footer.
</i>
</form>
</body>
</html>

» When you create a new content page based on this master page, Visual
Studio will start you with one Content control for each
ContentPlaceHolder in the master page, making your life easy.

» All you need to do is insert the appropriate information.

» Here’s a slightly shortened example, with some of the text replaced
with an ellipsis (. . .) to save space:

<%@ Page Language="C#" MasterPageFile ="~/MultipleContent.master"
AutoEventWireup="true" CodeFile="MultipleContentPage.aspx.cs"
Inherits="MultipleContentPage" Title="Content Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
runat="Server">

This is the generic content for this page. Here you might provide
some site

specific text ... </asp:Content>

<asp:Content ID="Content2"
ContentPlaceHolderID="0therLinksContent"

runat="Server">
Here’s alink.

132 </asp:Content>

9.8 MASTER PAGES AND RELATIVE PATHS:

» One quirk that can catch unsuspecting developers is the way that
master pages handle relative paths.

» Ifall you’re using is static text, this issue won’t affect you.

» However, if you addError! Filename not specified.tags or any other
HTML tag that points to another resource, problems can occur.

» The problem shows up if you place the master page in a different
directory from the content page that uses it.

This is a recommended best practice for large websites.
In fact, Microsoft encourages you to use a dedicated folder for storing
all your master pages.

» However, if you’re not suitably careful, this can cause problems when
you use relative paths.

» For example, imagine you put a master page in a subfolder named
MasterPages and add the followingError! Filename not specified.tag
to the master page:

» Assuming the file \MasterPages\banner.jpg exists, this appears to
work fine. The image will even appear in the Visual Studio design
environment.

» However, if you create a content page in another subfolder, the image
path is interpreted relative to that folder.

» If the file doesn’t exist there, you’ll get a broken link instead of your
graphic.

» Even worse, you could conceivably get the wrong graphic if another
image has the same file name.

» To solve your problem, you could try to think ahead and write your
URL relative to the content page where you want to use it.

» But this creates confusion and limits where your master page can be
used.

» A better fix is to turn yourError! Filename not specified.tag into a
server-side control, in which case ASP.NET will fix the mistake:

9.9 SUMMARY

» Building a professional web application involves much more than

designing individual web pages. You also need the tools to integrate

Themes and Master Pages

133

.Net technology

134

your web pages in a complete, unified website. In this chapter, you
considered best ways to do exactly that.

ASP.NET themes feature, which lets you effortlessly apply a group
of property settings to a control.

Finally, you learned to use master pages, which allow you to
standardize the layout of your website.

All these features make it easy to bring your pages together into a
well-integrated, consistent web application.

9.10 REFERANCE

Beginning ASP.NET in C# by Matthew MacDonald

9.11 QUESTIONS

1.
2.

Explain themes and master pages in detail.

What is concept of master pages and content pages and how connect
them?

Explain how themes works.

Explain how to handle theme conflicts.

ke o o ke o e s

10

WEBSITE NAVIGATION

Unit Structure :

10.0 Objectives

10.1 Introduction

10.2 Site Maps

10.3 URL Mapping and Routing
10.4 SiteMapPath Control
10.5 TreeView Control
10.6 Menu Control

10.7 Summary

10.8 Reference

10.9 Questions

10.0 OBJECTIVES

>

Website navigation is an essential part of web design because it
contributes to the user experience.

Understanding website navigation can help you allow users to access
the information they want as quickly as possible by presenting an
enjoyable, intuitive layout while increasing ease of use.

10.1 INTRODUCTION

>

ASP.NET provides various site-navigation features which gives a
consistent way for visitors to navigate the site.

These features are Site Maps. URL Mapping and Routing,
SiteMapPath.

10.2 SITE MAPS

>

If your website has more than a handful of pages, you’ll probably
want some sort of navigation system to let users move from one page
to the next.

As with all the best ASP.NET features, ASP.NET navigation is
flexible, configurable, and pluggable. It consists of three components:

1. A way to define the navigation structure of your website. This
part is the XML site map, which is (by default) stored in a file.

Website Navigation

135

.Net technology

136

2. A convenient way to read the information in the site map file
and convert it to an object model. The SiteMapDataSource
control and the XmlISiteMapProvider perform this part.

3. A way to use the site map information to display the user’s
current position and give the user the ability to easily move from
one place to another. This part takes place through the
navigation controls you bind to the SiteMapDataSource control,
which can include breadcrumb links, lists, menus, and trees.

]
|
XmlSiteMapProvider | SiteMapDataSource

Web.sitemap File
SiteMap API |

1
1
1
1
I
1
Custom SiteMapProvider : TreeView
|
I
1

oo coood

Custom Database L | L _ Navigation Controls
Navigation Site Map
Data Sources Providers Web Pages

Figure 10.1: ASP.NET navigation with site maps
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

» You can create a site map by using a text editor such as Notepad, or

you can create it in Visual Studio by choosing Website » Add New
Item and then choosing the Site Map option.

» Either way, it’s up to you to enter all the site map information by hand.

» The only difference is that if you create it in Visual Studio, the site
map will start with a basic structure that consists of three siteMap
nodes.

Rule 1: Site Maps Begin with the <siteMap> Element

o Every Web.sitemap file begins by declaring the element and ends by
closing that element. You place the actual site map information
between the start and end tags (where the three dots are shown here):

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-
File-1.0">

</siteMap>

o The xmins attribute is required, and must be entered exactly as shown
here. This tells ASP.NET that the XML file uses the ASP.NET site
map standard.

Rule 2: Each Page Is Represented by a <siteMapNode> Element
. Essentially, every site map defines an organization of web pages.

. To insert a page into the site map, you add the element with some
basic information.

o Namely, you need to supply the title of the page, a description and the
URL.

. You add these three pieces of information by using three attributes—
named title, description, and url, as shown here:

<siteMapNode title="Home" description="Home"
url="~/default.aspx™ />

. Notice that this element ends with the characters />.

o This indicates it’s an empty element that represents a start tag and an
end tag in one.

o Empty elements never contain other nodes.

o Here’s a complete, valid site map file that uses this page to define a
website with exactly one page:
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-
File-1.0">
<siteMapNode title="Home" description="Home"
url="~/default.aspx™ />

</siteMap>

Rule 3: A <siteMapNode> Element Can Contain Other
<siteMapNode> Elements

o Site maps don’t consist of simple lists of pages. Instead, they divide
pages into groups.

. To represent this in a site map file, you place one inside another.

o Instead of using the empty element syntax shown previously, you’ll
need to split your element into a start tag and an end tag:

<siteMapNode title="Home" description="Home"
url="~/default.aspx">

</siteMapNode>
o Now you can slip more nodes inside. Here’s an example of a Home
group that contains two more pages:

<siteMapNode title="Home" description="Home"
url="~/default.aspx">

<siteMapNode title="Products™ description="Our products”

Website Navigation

137

.Net technology

138

url="~/products.aspx™ />

<siteMapNode title="Hardware" description="Hardware
choices"

url="~/hardware.aspx" />
</siteMapNode>

Home
~/Default.aspx

~ Products
~/Products.aspx

Hardware
~/Hardware.aspx

Y

Figure 10.2: Three nodes in a site map
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

. In this case, all three nodes are links. This means the user could surf
to one of three pages.

. However, when you start to create more-complex groups and
subgroups, you might want to create nodes that serve only to organize
other nodes but aren’t links themselves.

. In this case, just omit the url attribute, as shown here with the Products
node:

<siteMapNode title="Products" description="Products">

<siteMapNode title="In Stock™ description="Products that are
available™

url="~/inStock.aspx" />

<siteMapNode title="Not In Stock" description="Products that
are on order"

url="~/outOfStock.aspx" />
</siteMapNode>

Rule 4: Every Site Map Begins with a Single <siteMapNode>
o Another rule applies to all site maps.

o A site map must always have a single root node.

All the other nodes must be contained inside this root-level node. Website Navigation

That means the following is not a valid site map, because it contains
two top-level nodes:

<siteMapNode title="Products™ description="0ur products"
url="~/products.aspx" />

<siteMapNode title="Hardware" description="Hardware choices"
url="~/hardware.aspx" />

The following site map is valid, because it has a single top-level node
(Home), which contains two more nodes:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-
File-1.0">

<siteMapNode title="Home" description="Home"
url="~/default.aspx">

<siteMapNode title="Products" description="0ur products"
url="~/products.aspx" />

<siteMapNode title="Hardware" description="Hardware
choices"

url="~/hardware.aspx" />
</sitemapNode>
</siteMap>
Rule 5: Duplicate URLs Are Not Allowed

You cannot create two site map nodes with the same URL.

This might seem to present a bit of a problem when you want to have
the same link in more than one place—and it does.

However, it’s a requirement because the default SiteMapProvider
included with ASP.NET stores nodes in a collection, with each item
indexed by its unique URL.

This limitation doesn’t prevent you from creating more than one URL
with minor differences pointing to the same page. For example,
consider the following portion of a site map.

These two nodes are acceptable, even though they lead to the same
page (products.aspx), because the two URLs have different query
string arguments at the end.

<siteMapNode title="In Stock" description="Products that are
available™

url="~/products.aspx?stock=1" />

<siteMapNode title="Not In Stock" description="Products that are on
order"

url="~/products.aspx?stock=0" /> 139

.Net technology

140

10.3 URL MAPPING AND ROUTING

URL Mapping

» In some situations, you might want to have several URLS lead to the
same page.

» This might be the case for a number of reasons—maybe you want to
implement your logic in one page and use query string arguments but
still provide shorter and easier-to-remember URLs to your website
users.

» The basic idea behind ASP.NET URL mapping is that you map a
request URL to a different URL.

» The mapping rules are stored in the web.config file, and they’re
applied before any other processing takes place.

» Of course, for ASP.NET to apply the remapping, it must be
processing the request, which means the request URL must use a file
type extension that’s mapped to ASP.NET.

» We can define URL mapping in the <urlMappings> section of the
web.config file. You supply two pieces of information—the request
URL (as the url attribute) and the new destination URL (mappedUrl).
Here’s an example:
<configuration>
<system.web>
<urlMappings enabled="true">
<add url="~/category.aspx"
mappedUrl="~/default.aspx?category=default” />
<add url="~/software.aspx"
mappedUrl="~/default.aspx?category=software" />
</urlMappings>
</system.web>
</configuration>

» In order for ASP.NET to make a match, the URL that the browser
submits must match the URL specified in the web.config file almost
exactly.

» When you use URL mapping, the redirection takes place in the same

way as the Server.Transfer() method, which means no round-trip
happens and the URL in the browser will still show the original
request URL, not the new page.

URL ROUTING Website Navigation

» URL routing was originally designed as a core part of ASP.NET
MVC, an alternative framework for building web pages.

» Unlike URL mapping, URL routing doesn’t take place in the
web.config file. Instead, it’s implemented using code.

» Typically, you’ll use the Application Start() method in the
global.asax file to register all the routes for your application.

» To register a route, you use the RouteTable class from the
System.Web.Routing namespace. To make life easier, you can start
by importing that namespace:
using System.Web.Routing;

» The RouteTable class provides a static property named Routes, which
holds a collection of Route objects that are defined for your
application.

> Initially, this collection is empty, but you can create custom routes by
calling the MapPageRoute() method, which takes three arguments:

o routeName: This is a name that uniquely identifies the route. It
can be whatever you want.

o routeUrl: This specifies the URL format that browsers will use.
Typically, a route URL consists of one or more pieces of
variable information, separated by slashes, which are extracted
and provided to your code. For example, you might request a
product page by using a URL such as /products/4312.

o physicalFile: This is the target web form—the place where users
will be redirected when they use the route. The information
from the original routeUrl will be parsed and made available to
this page as a collection through the Page.RouteData property.

» Here’s an example that adds two routes to a web application when it
first starts:

protected void Application_Start(object sender, EventArgs e)
{

RouteTable.Routes.MapPageRoute("product-details”,
"product/{productID}", "~/productinfo.aspx");
RouteTable.Routes.MapPageRoute("products-in-category™,
"products/category/{categorylD}", "~/products.aspx");

} 141

.Net technology

142

10.4 SITEMAPPATH CONTROL

» The TreeView shows the available pages, but it doesn’t indicate
where you’re currently positioned. To solve this problem, it’s
common to use the TreeView in conjunction with the SiteMapPath

control.

<asp:SiteMapPath ID="SiteMapPath1" runat="server" />

» The SiteMapPath provides breadcrumb navigation, which means it
shows the user’s current location and allows the user to navigate up
the hierarchy to a higher level by using links.

» Using the SiteMapPath control, the user can return to the default.aspx

page.

Untitled Page

= Home
= Information
About Us
Investing
=l Products
RevoStock

RevoAnalyze

L C @ localhost:5¢

[E=y e

w oA

Home > Products > RevoStock

You are currently on the productl.aspx
page (RevoStock).

Next

Figure 10.3: Breadcrumb navigation with SiteMapPath
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Lists some of its most commonly configured properties.

Property

Description

ShowToolTips

Set this to false if you don’t want the
description text to appear when the user
hovers over a part of the site map path.

ParentLevelsDisplayed

This sets the maximum number of levels
above the current page that will be shown
at once. By default, this setting is—1, which
means all levels will be shown.

RenderCurrentNodeAsLink

If true, the portion of the page that
indicates the current page is turned into a
clickable link. By default, this is false
because the user is already at the current

page.

PathDirection

default) and

You have two choices: RootToCurrent (the

CurrentToRoot (which

reverses the order of levels in the path).

PathSeparator

colon (:).

This indicates the characters that will be
placed between each level in the path. The
default is the greater-than symbol (>).
Another common path separator is the

Table 10.1: SiteMapPath Appearance-Related Properties
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

Using SiteMapPath Styles and Templates

Style

Template

Applies To

NodeStyle

NodeTemplate

All parts of the path
except the root and
current node.

CurrentNodeStyle

CurrentNodeTemplate

The node representing
the current page.

RootNodeStyle

RootNodeTemplate

The node representing
the root. If the root node
is the same as the current
node, the current node
template or styles are
used.

PathSeparatorStyle

PathSeparatorTemplate

The separator between
each node

Table 10.2: SiteMapPath Styles and Templates

(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

10.5 TREEVIEW CONTROL

» The TreeView has a slew of properties that let you change how it’s
displayed on the page. One of the most important properties is

ImageSet, which lets you choose a predefined set of node icons.

» The TreeView offers 16 possible ImageSet values, which are

represented by the TreeViewlmageSet enumeration.

» Forexample, following Figure shows the same RevoStock navigation
page you considered earlier, but this time with an ImageSet value of

TreeViewlmageSet.Fag.

Website Navigation

143

.Net technology [(=[5 [

Untitled Page

C © localhost ‘ . ¢

= L&) Home
S @ Information You are currently on the default.aspx
@ AboutUs page (home).
9 Investing
= (&) Products
@ RevoStock

% RevoAnalyze

Figure 10.4: A TreeView with fancy node icons
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

» Here’s the complete TreeView markup:
<asp:TreeView ID="TreeViewl" runat="server"

DataSourcelD="SiteMapDataSourcel" ImageSet="Faq"
Nodelndent="0" >

<[/asp:TreeView>

10.5.1 Useful TreeView Properties

Property Description

MaxDataBindDepth | Determines how many levels the TreeView will
show. By default, MaxDataBindDepth is —1, and
you’ll see the entire tree.

ExpandDepth Lets you specify how many levels of nodes will be
visible at first. If you use 0, the TreeView begins
completely closed.

Nodelndent Sets the number of pixels between each level of
nodes in the TreeView. Set this to 0 to create a
nonindented TreeView, which saves space.

ImageSet Lets you use a predefined collection of node
images for collapsed, expanded, and
nonexpandable nodes.

ShowLines Adds lines that connect every node when set to
true.
NodeWrap Lets a node text-wrap over more than one line

when set to true.

ShowCheckBoxes | Shows a check box next to every node when set to
true. This isn’t terribly useful for site maps, but it
is useful with other types of trees.

Table 10.3: Useful TreeView Properties
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

144

10.5.2 TreeView Styles Website Navigation

» Styles are represented by the TreeNodeStyle class, which derives
from the more conventional Style class.

» As with other rich controls, the styles give you options to set
background and foreground colors, fonts, and borders.

TreeNodeStyle-Added Properties

Property Description
ImageUrl The URL for the image shown next to the node.
NodeSpacing The space (in pixels) between the current node and

the node above and below.

VerticalPadding The space (in pixels) between the top and bottom
of the node text and border around the text.

HorizontalPadding | The space (in pixels) between the left and right of
the node text and border around the text.

ChildNodesPadding | The space (in pixels) between the last child node of
an expanded parent node and the following node.

Table 10.4: TreeNodeStyle-Added Properties
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

10.6 MENU CONTROL

» The Menu control is another rich control that supports hierarchical
data. Like the TreeView, you can bind the Menu control to a data
source, or you can use Menultem objects to fill it by hand.
<asp:Menu ID="Menul" runat="server"
DataSourcelD="SiteMapDataSourcel" />

145

.Net technology

146

= El Q
Untitled Page

C @ localhost:581 & A

Home k

You are currently on the default.aspx page

(home).
b B
Untitled Page
C @ localhost:581 Tr W
Home b Information k
Products # RevoStock
F{%o.:nal-;ze
Y Investment software for yield analysis J-EISP).' page
{I\“JTT“:_II.

Figure 10.5: Navigating through the menu
(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

>

Overall, the Menu and TreeView controls expose strikingly similar
programming models, even though they render themselves quite
differently.

They also have a similar style-based formatting model. But a few
noteworthy differences exist:

o The Menu displays a single submenu. The TreeView can
expand an arbitrary number of node branches at a time.

. The Menu displays a root level of links in the page. All other
items are displayed using fly-out menus that appear over any
other content on the page. The TreeView shows all its items
inline in the page.

o The Menu supports templates. The TreeView does not. (Menu
templates are discussed later in this section.)

o The TreeView supports check boxes for any node. The Menu
does not.

o The Menu supports horizontal and vertical layouts, depending
on the Orientation property. The TreeView supports only
vertical layout.

Menu Styles
Static Style Dynamic Style Description
StaticMenuStyle DynamicMenuStyle Sets the appearance of

the overall “box” in
which all the menu
items appear. In the
case of
StaticMenuStyle, this
box appears on the
page, and with
DynamicMenusStyle,
it appears as a pop-up.

StaticMenultemStyle

DynamicMenultemStyle

Sets the appearance of
individual menu
items.

StaticSelectedStyle

DynamicSelectedStyle

Sets the appearance of
the selected item.
Note that the selected
item isn’t the item
that’s currently being
hovered over; it’s the
item that was
previously clicked

StaticHoverStyle

DynamicHoverStyle

Sets the appearance of
the item that the user
is hovering over with
the mouse.

Table 10.5: Menu Styles

(Ref: Beginning ASP.NET in C# by Matthew MacDonald)

10.7 SUMMARY

» In this chapter, you explored the new navigation model and learned
how to define site maps and bind the navigation data.

» You then considered three controls that are specifically designed for
navigation data: the SiteMapPath, TreeView, and Menu.

» Using these controls, you can add remarkably rich site maps to your
websites with very little coding.

Website Navigation

147

Net technology » Butbefore you begin, make sure you’ve finalized the structure of your
website.

» Only then will you be able to create the perfect site map and choose
the best ways to present the site map information in the navigation
controls.

10.8 REFERANCE

e Beginning ASP.NET in C# by Matthew MacDonald

10.9 QUESTIONS

Explain SiteMapPath control in detail.
Write note on menu control.
Write note on TreeView control.

Write and explain Menu style.

o ~ w npoE

Write and explain TreeView properties.

ke o o ke o e sk

148

11
ADO.NET

Unit Structure :

11.0
111
11.2
11.3
114
115
11.6
11.7
11.8

Obijective

Introduction

Data Provider Model
Direct Data Access
Creating a Connection
Select Command
DataReader

Disconnected Data Access
Summary

11.9 Reference for further reading
11.10 Unit End Exercises

11.0 OBJECTIVE

To understand the basic and advanced concepts of ADO.NET.

To learn how to establish connection between application and data
sources.

To study the different components of ADO.NET that are used for
accessing and manipulating data are the .NET Framework data
provider and the DataSet.

To learn how to prevent SQL injection attacks and how to use
transactions.

11.1 INTRODUCTION

ADO.NET consists of managed classes that allow .NET applications
to connect to data sources (relational databases), execute commands,
and manage disconnected data.

The small miracle of ADO.NET is that it enables you to write more
or less the same data access code in web applications that you write
for client-server desktop applications, or even single-user
applications that connect to a local database.

This shows the implementation of the architecture of ADO.NET and
the ADO.NET data providers.

ADO.NET describes such as opening a connection, executing a SQL
statement or stored procedure, and retrieving the results of a query.

149

.Net technology

150

11.2 DATA PROVIDER MODEL

ADO.NET uses a multilayered architecture that revolves around a
few key concepts, such as Connection, Command, and DataSet
objects.

One of the key differences between ADO.NET and some other
database technologies is how it deals with the challenge of different
data sources.

In many past database technologies, such as classic ADO,
programmers use a generic set of objects no matter what the
underlying data source is. For example, if you want to retrieve a
record from an Oracle database using ADO code, we use the same
Connection class you would use to tackle the task with SQL Server.

ADO.NET Data Providers A data provider is a set of ADO.NET
classes that allows you to access a specific database, execute SQL
commands, and retrieve data.

A data provider is a bridge between your application and a data
source. The classes that make up a data provider include the
following:

o Connection: You use this object to establish a connection to a
data source.

o Command: You use this object to execute SQL commands and
stored procedures.

o DataReader: This object provides fast read-only, forward-only
access to the data retrieved from a query.

o DataAdapter: This object performs two tasks. First, you can
use it to fill a DataSet with information extracted from a data
source. Second, you can use it to apply changes to a data
source, according to the modifications made in a DataSet.

ADO.NET doesn’t include generic data provider objects. Instead, it
includes different data providers specifically designed for different
types of data sources. Each data provider has a specific
implementation of the Connection, Command, DataReader, and
DataAdapter classes that’s optimized for a specific RDBMS. For
example, if you need to create a connection to a SQL Server
database, use a connection class named SglConnection.

Developers can create their own providers for proprietary data
sources. In fact, numerous proof-of-concept examples are available
that show how you can easily create custom ADO.NET providers to
wrap non relational data stores, such as the file system or a directory
service. Some third-party vendors also sell custom providers for
NET

The .NET Framework is bundled with a small set of four providers:

o SQL Server provider: Provides optimized access to a SQL
Server database

o OLE DB provider: Provides access to any data source that has
an OLE DB driver.

o Oracle provider: Provides optimized access to an Oracle

database
o ODBC provider: Provides access to any data source that has an

ODBC driver.
Figure 1 shows the layers of the ADO.NET provider model.

.NET
Application
SOL Server .NET OLE DB .NET Oracle .NET
Provider Provider Provider

v

OLE DB Provider

SOL Server Oracle
Database Database

Figure 1 The ADO.NET architecture

11.3 DIRECT DATA ACCESS

ADO.NET does not provide a single set of objects that communicate
with multiple database management systems (DBMSSs).

ADO.NET supports multiple data providers, each of which is
optimized to interact with a specific DBMS.

The first benefit of this approach is that you can program a specific
data provider to access any unique features of a particular DBMS.

The second benefit is that a specific data provider can connect
directly to the underlying engine of the DBMS in question without
an intermediate mapping layer standing between the tiers to
communicate with a specific type of data source.

Following Table 1 shows documents of some of the core common
types, their base class and the key interfaces they implement.

ADO.Net

151

.Net technology

152

Type of
Object

Base Class

Relevant
Interfaces

Meaning in Life

Connection

DbConnection

IDbConnection

Provides the ability
to connect to and
disconnect from the
data store.
Connection objects
also provide access
to a related
transaction object.

Command

DbCommand

IDbCommand

Represents a SQL
query or a stored
procedure.
Command objects
also provide access
to the provider’s
data reader object.

DataReader

DbDataReader

IDataReader,
IDataRecord

Provides forward-
only, read-only
access to data using
a server-side cursor.

DataAdapter

DbDataAdapter

IDataAdapter,
IDbDataAdapter

Transfers DataSets
between the caller
and the data store.
Data adapters
contain a connection
and a set of four
internal command
objects used to
select, insert,
update, and delete
information from
the data store.

Parameter

DbParameter

IDataParameter,
IDbDataParameter

Represents a named
parameter within a
parameterized

query.

Transaction

DbTransaction

IDbTransaction

Encapsulates a
database transaction

Table 1 Core Common Types

° Figure 2 shows the ADO.NET data providers.

e A data provider will supply with other types beyond the objects
shown in Figure 2 however, these core objects define a common
baseline across all data providers.

NET Platform Data Provider
Connection Object DataAdapter Object
Transaction Select Command
client |
Pssembly |~ 7
Insert Co
Connection Object o Command
Parameter Collection
Update Command
DataReader Object] Delete Command

Database

Figure 2. ADO.NET data providers provide access to a given DBMS

ADO.NET Data Providers

e A .NET Framework data provider is used for connecting to a
database, executing commands, and retrieving results.

e Those results are either processed directly, placed in a DataSet in
order to be exposed to the user as needed, combined with data from
multiple sources, or remoted between tiers. .NET Framework data
providers are lightweight, creating a minimal layer between the data
source and code, increasing performance without sacrificing

functionality.

The following table 2 lists the data providers that are included in the .NET

Framework.

.NET Framework
data provider

Description

.NET Framework
Data Provider for
SQL Server

Provides data access for Microsoft SQL Server.
Uses the System.Data.SqlClient namespace.

.NET Framework
Data Provider for
OLE DB

For data sources exposed by using OLE DB. Uses
the System.Data.OleDb namespace.

ADO.Net

153

.Net technology

154

.NET Framework Description
data provider

.NET Framework | For data sources exposed by using ODBC. Uses
Data Provider for | the System.Data.Odbc namespace.
oDBC

.NET Framework | For Oracle data sources. The .NET Framework
Data Provider for | Data Provider for Oracle supports Oracle client
Oracle software version 8.1.7 and later, and uses the
System.Data.OracleClient namespace.

EntityClient Provider | Provides data access for Entity Data Model (EDM)
applications. Uses the System.Data.EntityClient
namespace.

.NET Framework | Provides data access for Microsoft SQL Server
Data Provider for | Compact 4.0. Uses the System.Data.SqlServerCe
SQL Server Compact | namespace.

4.0.

Table 2 lists of data providers

Core Objects of .NET Framework Data Providers

The following table 3 outlines the four core objects that make up a .NET
Framework data provider.

Object Description

Connection | Establishes a connection to a specific data source. The base
class for all Connection objects is the DbConnection class.

Command Executes a command against a data source. Exposes
Parameters and can execute in the scope of a Transaction
from a Connection. The base class for all Command objects
is the DbCommand class.

DataReader | Reads a forward-only, read-only stream of data from a data
source. The base class for all DataReader objects is the
DbDataReader class.

DataAdapter | Populates a DataSet and resolves updates with the data
source. The base class for all DataAdapter objects is the
DbDataAdapter class.

Table 3 Core objects

A .NET Framework data provider also contains the classes listed in the

following table 4.

Object

Description

Transaction

Enlists commands in transactions at the data
source. The base class for all Transaction
objects is the DbTransaction class. ADO.NET
also provides support for transactions using
classes in the System.Transactions namespace.

CommandBuilder

A helper object that automatically generates
command properties of a DataAdapter or
derives parameter information from a stored
procedure and populates the Parameters
collection of a Command object. The base class
for all CommandBuilder objects is the
DbCommandBuilder class.

ConnectionStringBuilder

A helper object that provides a simple way to
create and manage the contents of connection
strings used by the Connection objects. The
base class for all ConnectionStringBuilder
objects is the DbConnectionStringBuilder
class.

Parameter

Defines input, output, and return value
parameters for commands and stored
procedures. The base class for all Parameter
objects is the DbParameter class.

Exception

Returned when an error is encountered at the
data source. For an error encountered at the
client, .NET Framework data providers throw a
NET Framework exception. The base class for
all Exception objects is the DbException class.

Error

Exposes the information from a warning or
error returned by a data source.

ClientPermission

Provided for .NET Framework data provider
code access security attributes. The base class
for all ClientPermission objects is the
DBDataPermission class.

Table 4 Data Providers Classes

NET Framework Data Provider for SQL Server (SqlClient)

° The .NET Framework Data Provider for SQL Server (SqlClient)
uses its own protocol to communicate with SQL Server.

ADO.Net

155

.Net technology

156

) It is lightweight and performs well because it is optimized to access
a SQL Server directly without adding an OLE DB or Open Database
Connectivity (ODBC) layer.

e The following figure 3 shows the .NET Framework Data Provider
for SQL Server with the .NET Framework Data Provider for OLE
DB.

e The .NET Framework Data Provider for OLE DB communicates to
an OLE DB data source through both the OLE DB Service
component, which provides connection pooling and transaction
services, and the OLE DB provider for the data source.

-NET Framework Data Provider for S0L Server '/'= JNET Frasmesork Data Provider for OLE DB"':

CQLE DB Service Component

OLE DB Provider

Micrasaft SQL Server
7.0 or later

CLE DB data source

Figure 3 Comparison of the .NET Framework Data Provider for SQL
Server and the .NET Framework Data Provider for OLE DB

) The .NET Framework Data Provider for SQL Server classes are
located in the System.Data.SqglClient namespace.

° The .NET Framework Data Provider for SQL Server supports both
local and distributed transactions. For distributed transactions, the
.NET Framework Data Provider for SQL Server, by default,
automatically enlists in a transaction and obtains transaction details
from Windows Component Services or System.Transactions. For
more information, see Transactions and Concurrency.

The following code example 1 shows how to include the
System.Data.SqlClient namespace in your applications.

using System.Data.SqlClient;

Example 1 System.Data.SqlClient

.NET Framework Data Provider for OLE DB

e The .NET Framework Data Provider for OLE DB (OleDb) uses
native OLE DB through COM interop to enable data access.

e The .NET Framework Data Provider for OLE DB supports both
local and distributed transactions.

° For distributed transactions, the .NET Framework Data Provider for
OLE DB, by default, automatically enlists in a transaction and
obtains transaction details from Windows Component Services. For
more information, see Transactions and Concurrency.

The following Table 5 shows the providers that have been tested with
ADO.NET.

Driver Provider
SQLOLEDB Microsoft OLE DB provider for SQL Server
MSDAORA Microsoft OLE DB provider for Oracle
Microsoft.Jet. OLEDB.4.0 | OLE DB provider for Microsoft Jet

Table 5 Data Provider for OLE DB

.NET Framework Data Provider for ODBC

e The .NET Framework Data Provider for ODBC (Odbc) uses the
native ODBC Driver Manager (DM) to enable data access.

e The ODBC data provider supports both local and distributed
transactions. For distributed transactions, the ODBC data provider,
by default, automatically enlists in a transaction and obtains
transaction details from Windows Component Services.

The following Table 6 shows the ODBC drivers tested with ADO.NET.

Driver

SQL Server

Microsoft ODBC for Oracle

Microsoft Access Driver (*.mdb)

Table 6 ODBC Drivbers

.NET Framework Data Provider for Oracle

° The .NET Framework Data Provider for Oracle enables data access
to Oracle data sources through Oracle client connectivity software.

e The data provider supports Oracle client software version 8.1.7 or a
later version. The data provider supports both local and distributed
transactions.

e The .NET Framework Data Provider for Oracle requires Oracle
client software (version 8.1.7 or a later version) on the system before
you can connect to an Oracle data source.

° .NET Framework Data Providers for Oracle classes are located in
the System.Data.OracleClient namespace and are contained in the
System.Data.OracleClient.dll assembly. You must reference both the
System.Data.dll and the System.Data.OracleClient.dll when you
compile an application that uses the data provider.

The following code example 2 shows how to include the
System.Data.OracleClient namespace in your applications.

ADO.Net

157

.Net technology

158

Example 2 System.Data.OracleClient

using System.Data;
using System.Data.OracleClient;

11.4 CREATING A CONNECTION

To connect to Microsoft SQL Server, use the SqlConnection object
of the .NET Framework Data Provider for SQL Server.

To connect to an OLE DB data source, use the OleDbConnection
object of the .NET Framework Data Provider for OLE DB.

To connect to an ODBC data source, use the OdbcConnection object
of the .NET Framework Data Provider for ODBC.

To connect to an Oracle data source, use the OracleConnection
object of the .NET Framework Data Provider for Oracle.

Choosing a .NET Framework Data Provider

Depending on the design and data source for your application, .NET
Framework data provider can improve the performance, capability,
and integrity of your application.

The following Table 7 discusses the advantages and limitations of
each .NET Framework data provider.

Table 7 .NET Framework data provider

Provider Notes

.NET Framework | Recommended for middle-tier applications that use
Data Provider for | Microsoft SQL Server.

SQL Server

Recommended for single-tier applications that use
Microsoft Database Engine (MSDE) or SQL Server.

Recommended over use of the OLE DB provider for
SQL Server (SQLOLEDB) with the .NET Framework
Data Provider for OLE DB.

.NET Framework | For SQL Server, the .NET Framework Data Provider
Data Provider for | for SQL Server is recommended instead of this
OLE DB provider.

Recommended for single-tier applications that use
Microsoft Access databases. Use of an Access
database for a middle-tier application is not
recommended.

NET Framework | Recommended for middle and single-tier applications

Data Provider for | that use ODBC data sources.
ODBC

.NET Framework | Recommended for middle and single-tier applications
Data Provider for | that use Oracle data sources.
Oracle

11.5 SELECT COMMAND

The command object is one of the basic components of ADO .NET.

1. The Command Object uses the connection object to execute SQL
queries.

2. The queries can be in the Form of Inline text, Stored Procedures or
direct Table access.

3. An important feature of Command object is that it can be used to
execute queries and Stored Procedures with Parameters.

4. If aselect query is issued, the result set it returns is usually stored in
either a DataSet or a DataReader object.

The properties associated with the SglCommand class are shown in the
Table 8 below.

Property Type of Description
Access
Connection Read/Write | The SglConnection object that is used

by the command object to execute SQL
queries or Stored Procedure.

CommandText Read/Write | Represents the T-SQL Statement or the
name of the Stored Procedure.

CommandType Read/Write [This property indicates how the

CommandText property should be

interpreted. The possible values are:

1. Text (T-SQL Statement)

2. StoredProcedure (Stored Procedure
Name)

3. TableDirect

CommandTimeout | Read/Write | This property indicates the time to wait
when executing a particular command.

Default Time for Execution of
Command is 30 Seconds.

The Command is aborted after it times
out and an exception is thrown.

ADO.Net

159

.Net technology

160

Table 8 Properties of SglCommand class

° Various Execute Methods that can be called from a Command
Object. Shown in the following Table 9.

Property Description

ExecuteNonQuery | This method executes the command specified and
returns the number of rows affected.

ExecuteReader The ExecuteReader method executes the command
specified and returns an instance of SqlDataReader
class.

ExecuteScalar This method executes the command specified and

returns the first column of the first row of the result
set. The remaining rows and columns are ignored.

ExecuteXMLReader | This method executes the command specified and
returns an instance of XmlReader class. This
method can be used to return the result set in the
form of an XML document

Table 9 Properties of execute methods

ExecuteNonQuery

1. The ExecuteNonQuery method is used to execute the command and
return the number of rows affected.

2. The ExecuteNonQuery method cannot be used to return the result
set. (Shown in example 3)

Example 3

public void CallExecuteNonQuery()
{
SglConnection conn = new SqlConnection();

conn.ConnectionString =
ConfigurationManager.ConnectionStrings[*connString"].ConnectionStrin

g;
try
{

SglCommand cmd = new SqglCommand();
cmd.Connection = conn;
cmd.CommandText = "DELETE FROM EMP WHERE DEPTNO =

40";

¥

cmd.CommandType = CommandType.Text;

conn.Open();

Int32 RowsAffected = cmd.ExecuteNonQuery();
MessageBox.Show(RowsAffected + " rows affected"”, "Message™);
cmd.Dispose();

conn.Dispose();

catch (Exception ex)

{

MessageBox.Show(ex.Message);

11.6 DATAREADER

A data reader provides an easy way for the programmer to read data
from a database as if it were coming from a stream.

The DataReader is the solution for forward streaming data through
ADO.NET.

The data reader is also called a firehose cursor or forward read-only
cursor because it moves forward through the data.

The data reader not only allows you to move forward through each
record of the database, but it also enables you to parse the data from
each column.

The DataReader class represents a data reader in ADO.NET.

Similar to other ADO.NET objects, each data provider has a data
reader class for example; OleDbDataReader is the data reader class
for OleDb data providers. Similarly, SglDataReader and ODBC
DataReader are data reader classes for SQL and ODBC data
providers, respectively.

The IDataReader interface defines the function of a data reader and
works as the base class for all data provider-specific data reader
classes such as OleDataReader. SglDataReader, and
OdbcDataReader. Figure 4 shows some of the classes that
implement IDbDataReader.

ADO.Net

161

.Net technology

162

IDbDataReader

OleDbDataReader

SqglDataReader

OdbcDataReader

Figure 4. Data Provider-specific classes implementing ldbDataReader
Initializing DataReader

e call the ExecuteReader method of the Command object, which
returns an instance of the DataReader.

° For example 4, use the following line of code:

Example 4:

SglCommand cmd = new SglCommand(SQL, conn);
/I Call ExecuteReader to return a DataReader
SglDataReader reader = cmd.ExecuteReader();

Once you're done with the data reader, call the Close method to close a
data reader:

reader.Close();

DataReader Properties(Shown in Table 10)

Property Description
Depth Indicates the depth of nesting for row
FieldCount Returns number of columns in a row
IsClosed Indicates whether a data reader is closed
Item Gets the value of a column in native format
RecordsAffected Number of row affected after a transaction

Table 10 DataReader Properties

The DataReader methods (Shown in Table 11)

Method Description

Close Closes a DataRaeder object.

Read Reads next record in the data reader.

NextResult Advances the data reader to the next result during batch

transactions.

Getxxx There are dozens of Getxxx methods. These methods
read a specific data type value from a column. For
example. GetChar will return a column value as a
character and GetString as a string.

Table 11 DataReader methods

Reading with the DataReader

° The OleDbDataReader is initialized, utilizing its various methods to
read data records.

° Read method, which, when called repeatedly, continues to read each
row of data into the DataReader object.

e The DataReader also provides a simple indexer that enables to pull
each column of data from the row.

Example 5: create a connection object, create a command object, called
the ExecuteReader method, called the DataReader's Read method until the
end of the data, and then display the data. At the last, released the data
reader and connection objects.

using System;

using System.Collections.Generic;
using System.Text;

using System.Data.SqlClient;

namespace CommandTypeEnumeration

{

class Program

{

static void Main(string[] args)

{
Il Create a connection string
string ConnectionString = "Integrated Security = SSPI; " +
"Initial Catalog= Northwind; " + " Data source = localhost; *;
string SQL = "SELECT * FROM Customers";

ADO.Net

163

.Net technology

164

/I create a connection object
SglConnection conn = new SqlConnection(ConnectionString);

/I Create a command object
SglCommand cmd = new SqlCommand(SQL, conn);
conn.Open();

/I Call ExecuteReader to return a DataReader
SglDataReader reader = cmd.ExecuteReader();

Console.WriteLine("customer 1D, Contact Name, " + "Contact
Title, Address ");

Console.WriteLine("============================2"),
while (reader.Read())
{
Console.Write(reader["CustomerID"].ToString() + ,);
Console.Write(reader["ContactName"]. ToString() + ",);
Console.Write(reader["ContactTitle"]. ToString() + ", ");
Console.WriteLine(reader["Address"].ToString() + ", ™);

¥

//Release resources
reader.Close();
conn.Close();

» »D-45,8ec-12
, Mr Manish, Ouner,Sec-24
+ » »oec—16
, »Okhla Phase-1
+ » sLajpat Nagar
EMGHD, Me.Disuza, Sales Representative,S$-24.Jaipur

ress any key to continue

11.7 DISCONNECTED DATA ACCESS ADO Net

e The ADO.NET Framework supports two models of Data Access
Architecture, Connection Oriented Data Access Architecture and
Disconnected Data Access Architecture.

° The ADO.NET Disconnected Data Access Architecture is far more
flexible and powerful than ADOs Connection Oriented Data Access.

° In Connection Oriented Data Access Architecture the application
makes a connection to the Data Source and then interacts with it
through SQL requests using the same connection.

e The application stays connected to the database system even when it
is not using any Database Operations.

e The DataSet is the central component in the ADO.NET
Disconnected Data Access Architecture.

° A DataSet is an in-memory data store that can hold multiple tables at
the same time.

DataSet ds = new DataSet();

11.8 SUMMARY

1. ADO.NET consists of managed classes that allow .NET applications
to connect to data sources (relational databases), execute commands,
and manage disconnected data.

2. ADO.NET uses a multilayered architecture that revolves around a
few key concepts, such as Connection, Command, and DataSet
objects.

3. The .NET Framework Data Provider for SQL Server (SqlClient)
uses its own protocol to communicate with SQL Server.

4. A data reader provides an easy way for the programmer to read data
from a database as if it were coming from a stream.

5. The ADO.NET Framework supports two models of Data Access
Architecture, Connection Oriented Data Access Architecture and
Disconnected Data Access Architecture.

165

.Net technology

166

11.9 REFERENCE FOR FURTHER READING

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

11.10 UNIT END EXERCISES

1. Whatis ADO.NET? Explain the Data Provider Model?

2. Explain the ADO.NET Direct Data Access, with an example?
3. Write a short note on:

a. Creating a Connection

b. Select Command

c. DataReader

d. Disconnected Data Access

ok o ke e ke e ke

12
DATA BINDING

Unit Structure :

12.0
121
12.2
12.3
12.4
12,5
12.6
12.7

Obijective

Introduction

Single-Value Data Binding,
Repeated-Value Data Binding,

Data Source Controls — SqlDataSource
Summary

Reference for further reading

Unit End Exercises

12.0 OBJECTIVE

1.
2.
3.

To learn how data binding and the data source controls work.
To understand the single and repeated value data binding.
To study the SqglDataSource controls.

12.1 INTRODUCTION

Data binding is an aspect that allows us to associate a data source
with a control and have that control automatically display data.

The main characteristic of data binding is that it’s declarative, not
programmatic. That means data binding is defined outside program,
alongside the controls in the .aspx page.

The benefit is that it helps us achieve a cleaner separation between
controls and program in a web page.

In ASP.NET, most web controls (including TextBox, LinkButton,
Image, and many more) support single-value data binding. With
single-value binding, we can bind a control property to a data
source, but the control can display only a single value.

The property we bind doesn’t need to represent something directly
visible on the page.

For example, not only can we bind the text of a hyperlink by setting
the Hyperlink.Text property, but we can also bind the NavigateUrl
property to specify the target destination of the link. To use single-
value binding, we create data binding expressions.

167

.Net technology

168

) Numerous web controls support repeated value binding, which
means they can provide a set of items.

° Repeated value controls often create lists and grids (e.g. the ListBox
and GridView are two examples).

° If a control supports repeated-value binding, it always uncovers a
DataSource property, which accepts a data object.

e After setting the DataSource property, create the logical link from
the server control to the data object that contains the data to render.

° The control’s DataBind() method, which loops through the data
source, extracts its data, and provides it to the page. Repeated-value
binding is by far the more poful type of data binding.

12.2 SINGLE-VALUE DATA BINDING

° The controls that support single-value data binding allow us to bind
some of their properties to a data binding expression.

e This expression is entered in the .aspx markup portion of the page
(not the program- behind file) and enclosed between the <%# and
%> delimiters. Here’s an syntax:
<%f# expression_goes_here %>

° This looks like a script block, but it isn’t. While coding inside this
tag, error will get The only thing we can add is valid data binding
expressions. For example, if we have a public, protected, or internal
variable in page class named EmployeeName, we could write the
following:
<%# EmployeeName %>

° To evaluate a data binding expression, you must call the
Page.DataBind() method in program.

e While calling DataBind(), ASP.NET will examine all the
expressions on page and replace them with the corresponding value.

) If we forget to call the DataBind() method, the data binding
expression won’t be filled in instead, it just gets thrown away when
page is rendered to HTML.

e The source for single-value data binding can include the value of a
o property,
o member variable,
o return value of a function

(as long as the property, member variable, or function has an
accessibility of protected, public, or internal).

) It can also be any other expression that can be evaluated at runtime,
such as a reference to another control’s property, a calculation using
operators and literal values, and so on.

e The valid data binding expressions:
<%# GetUserName() %>
<%# 3 + (3 * 40) %>
<%# "amit " + "raju” %>
<%# Request.Browser.Browser %>

e Add data binding expressions just about anywhere on the page, then
assign a data binding expression to a property in the control tag.

e Example 1 page that uses several data binding expressions:

<html xmIns="http://www.w3.0rg/1999/xhtml">

<body>

<form method="post" runat="server">

<asp:Image ID="imagel" runat="server" ImageUrl='<%# FilePath %>' />

<asp:Label ID="labell" runat="server" Text='<%# FilePath %>' />

<asp:TextBox ID="textBox1" runat="server" Text='<%# GetFilePath()
%>" />

<asp:HyperLink ID="hyperLink1" runat="server"

NavigateUrl='<%# LogoPath.Value %>' Font-Bold="True" Text="Show
logo" />

<input type="hidden" ID="LogoPath" runat="server" value="apress.gif">

<%# FilePath %>

<img src="<%# GetFilePath() %>">

</form>

</body>

</html>

Example 1 Data binding expressions

e We bind the Text property of a Label and a TextBox & use other
properties such as the ImageUrl of an Image, the NavigateUrl
property of a HyperLink, and the src attribute of a static HTML
 tag.

e After we put the binding expression elsewhere in the page without
binding to any property or attribute. For example, the previous web
page has a binding expression between the and tags.

Data Binding

169

.Net technology

170

e Wihile it’s executing, the resulting text will be rendered on the page
and rendered in bold type. Then place the expression outside the
<form> section, as long as you don't try to insert a server-side
control on a page.

e The expressions in this sample page refer to a FilePath property, a
GetFilePath() function, and the Value property of a server-side
hidden field that’s declared on the same page. To complete this
page, need to define these ingredients in script blocks or in the
program-behind class: (Shown in Example 2)

protected string GetFilePath()
{

return "rose.gif";

}
protected string FilePath

{

get { return "rose.gif"; }

¥

Example 2 FilePath property

In this program, the property and function return only a hard-program
string. However, we can also add just about any C# program to generate
the value for the data binding expression dynamically.

12.3 REPEATED-VALUE DATA BINDING,

) Repeated-value binding allows to bind an entire list of information
to a control. This list of information is represented by a data object
that wraps a collection of items. This could be a collection of
convention objects (e.g., an ordinary ArrayList or Hashtable) or a
collection of rows (for e.g., with a DataReader or DataSet).
ASP.NET includes several basic list controls that support repeated-
value binding:

o All controls that render themselves using the <select> tag,
including the HtmlSelect, ListBox, and DropDownList
controls

o The CheckBoxList and RadioButtonList controls, which
render each child item with a separate checkbox or radio
button.

o The BulletedList control, which creates a list of bulleted or
numbered points

e All controls display a single-value field of a property from each data
item. When performing data binding with one of these controls, use
the following listed properties.

Data Properties for List Controls Data Binding
1. DataSource

This is a data object that contains a collection of data items to
display. This data object must implement one of the interfaces that
ASP.NET data binding supports, typically ICollection.

2. DataSourcelD

Instead of supplying the data object programmatically, link list
control to a data source control by setting this property. The data
source control will generate the required data object automatically.
Use DataSource property or the DataSourcelD property, but not
both.

3. DataTextField

Every data source represents a collection of data items. A list control
displays only a single Value from each list item. The DataTextField
denotes the field (row) or property (object) of the data item that
contains the value to display in the page.

4. DataTextFormatString

This property states an optional format string that the control will
use to format each DataTextValue before displaying it. For example,
state that a number should be formatted as a currency value.

5. DataValueField

This property is related to the DataTextField property, but the value
from the data item isn’t displayed in the page; rather, it’s stored in
the value attribute of the underlying HTML tag. This enables
retrieving the value afterwards in program. The primary use of this
field is to store a unique ID or primary key field can use it later to
retrieve more data when the user selects a specific item.

Program for creating and binding the hashtable(shown in example 3):

Example 3

protected void Page_Load(object sender, System.EventArgs e)

{
if ('Page.IsPostBack)

{
/I Create the data source.
Hashtable ht = new Hashtable();
ht. Add("Keyl", "red");

ht. Add("Key2", "blue");

ht. Add("Key3", "Pink");

171

.Net technology

172

/I Set the DataSource property for the controls.
Selectl.DataSource = ht;

Select2.DataSource = ht;

Listbox1.DataSource = ht;
DropdownL.istl.DataSource = ht;
CheckListl.DataSource = ht;
OptionListl.DataSource = ht;

// Bind the controls.

this.DataBind();

ks

Binding to a DataReader

The above program used a hashtable as the data source. Are the
Basic collections certainly not the only kind of data source, we can
use with list data binding. alternatively, bind any data structure that
implements the ICollection interface or one of its derivatives. The
following list sum up many of these data classes:

o

All in-memory collection classes,

[such as Collection,

m ArrayList,

[Hashtable, and

] Dictionary

An ADO.NET DataReader object, which provides
m connection-based,

m forward-only, and

[read-only access to the database.

The ADO.NET DataView, which provides a view onto a
single disconnected DataTable object.

Any other custom object that implements the ICollection
interface

For example, | want to fill a list box with the full names of all the
employees contained in the Employees table of the Northwind
database.

The Rich Data Controls

In addition to the simple list controls, ASP.NET includes some rich
data controls that support repeated value binding. The rich data
controls are entirely a bit different from the simple list controls.

They are designed only for data binding. They also have the
capability to display various properties or fields from each data item,
often in a table-based according to a template

They support higher-level features such as editing and they provide
several events that allow us to plug into the control’s inner workings
at various points.

The List of rich data controls:

1.

GridView: The GridView is an all-purpose grid control for showing
large tables of information. It supports selecting, editing, sorting,
and paging. The GridView is the heavyweight of ASP.NET data
controls.

DetailsView: The DetailsView is ideal for displaying a single record
at a time, in a table that has one row per field. The DetailsView
supports editing and optional paging controls that permit us to
browse through an order of records.

FormView: Like the DetailsView, the FormView displays a single
record at a time, supports editing, and provides paging controls for
moving through a series of records. The difference is that the
FormView is based on templates, which enable to combine fields in
a much more flexible way that doesn’t need to be based on a table.

Binding to a DataView

There are few limitations when we bind directly to a DataReader.
Because the DataReader is a forward-only cursor, we can’t bind
data to multiple controls. we also won’t have the ability to apply
custom sorting and filtering criteria on the fly.

Finally, unless we take care to program page using generic
interfaces such as IDataReader, we lock programs into the data
provider we’re currently using, making it more difficult to modify or
adapt programs in the future. To solve these problems, we can use
the disconnected ADO.NET data objects.

If we fill a disconnected DataSet, we can bind it to one or more
controls, and we can tailor the sorting and filtering criteria.

The DataSet is also completely generic no matter which data
provider we use to fill DataSet, the DataSet itself looks the same.

Never bind directly to a DataSet or DataTable object. Instead, we
bind to a DataView object.

A DataView represents a view of the data in a specific DataTable.
That means the following example 4:

Data Binding

173

.Net technology

174

Example 4:

grid.DataSource = dataTable;
grid.DataBind();

is equivalent to this:

grid.DataSource = dataTable.DefaultView;
grid.DataBind();

° Each DataTable includes a default DataView object that’s provided
through the DataTable.DefaultView property. This skill allows it to
bind directly to the DataTable.

) ASP.NET uses the default DataView automatically. The default
DataView doesn’t apply any sort order and doesn’t filter out any

rows.

) If we squeeze these settings, we can either configure the default
DataView or create our own and explicitly bind it. then use all the
sorting and filtering techniques.

12.4 DATA SOURCE CONTROLS - SQLDATASOURCE

e Data source controls, enables avoid writing any data access program.

1.

SqglDataSource: This data source enables us to connect to any
data source that has an ADO.NET data provider. This consists
of SQL Server, Oracle, and the OLE DB or ODBC data
sources. When using this data source, No need to write the
data access program.

ObjectDataSource: This data source enables us to connect to
a custom data access class. This is the preferred approach for
large-scale professional web applications.

AccessDataSource: This data source enables us to read and
write the data in an Access database file (.mdb). Access
databases do not have a dedicated server engine like SQL
Server that coordinates the actions of multiple people and
ensures that data is unlikely lost or corrupted. For that reason,
Access databases are best suited for very small websites,
where few users need to manipulate data at the same time. A
much better small-scale data solution is using the free SQL
Server Express with the SqlDataSource control.

XmlDataSource: This data source allows us to connect to an
XML file.

SiteMapDataSource: This data source allows us to connect to
the Web.sitemap file that describes the navigational structure
of the website.

The Page Life Cycle with Data Binding

Data source controls can perform two tasks:

o They can retrieve data from a data source and supply it to
linked controls.

o They can update the data source when edits take place in
linked controls.

In order to know how data controls work, we need to know how they
fit into the page life cycle.

This awareness is important when we run into situations where we
need to work with or extend the data binding model. For e.g., to add
data or set a selected item in a control after it has been bound to the
data source.

Data binding tasks take place in this order:
1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page_init and Page.Load
events fire.

3. All other control events fire.

4. The data source controls perform any updates. If a row is
being updated, the Updating and Updated events fire. If a row
is being inserted, the Inserting and Inserted events fire. If a
row is being deleted, the Deleting and Deleted events fire.

5. The Page.PreRender event fires.

6. The data source controls perform any queries and insert the
retrieved data in the linked controls. The Selecting and
Selected events fire at this point.

7. The page is rendered and disposed of.

The SqglDataSource

Data source controls turn up in the .aspx markup portion of the web
page like ordinary controls.

Example:
<asp:SglDataSource ID="SqlDataSourcel" runat="server" ... />

The SqglDataSource acts as a database connection that uses an
ADO.NET provider.

The SqglDataSource needs a generic way to create the Connection,
Command, and DataReader objects it requires.

The only way this is possible is if the data provider comprises a data
provider factory.

Data Binding

175

.Net technology

176

The factory has the responsibility of creating the provider specific
objects that the SglDataSource requires in order to access the data
source.

.NET craft with these four provider factories:

o System.Data.SqIClient

o System.Data.OracleClient

o System.Data.OleDb

o System.Data.Odbc

These are registered in the machine.config file, and as a result we
can use any of them with the SqlDataSource. we select a data source
by setting the provider name. Here is a SglDataSource that connects

to a SQL Server database:
<asp:SqlDataSource ProviderName="System.Data.SqglClient" ... />

The next step, to supply the required connection string without it, we
cannot make any connections.

All times place it in the <connectionStrings> section of the
web.config file to guarantee greater flexibility and ensure not
inadvertently changing the connection string, which minimizes the
effectiveness of connection pooling.

Example 5, if we create this connection string:

Example 5

<configuration>
<connectionStrings>
<add name="Northwind"

connectionString="DataSource=localhost;Initial
Catalog=Northwind;

Integrated Security=SSPI"/>
</connectionStrings>

</configuration>

SqlDataSource using a $ expression like this:
<asp:SqlDataSource ConnectionString="<%$
ConnectionStrings:Northwind %>" ... />

After specifying the provider name and connection string, the next
step is to add the query logic that the SqlDataSource will use when it
connects to the database.

Use each SqglDataSource control, created to retrieve a single query.

° Optionally, we can add corresponding commands for deleting,
inserting, and updating rows.

° Example, one SqglDataSource is enough to query and update the
Customers table in the Northwind database. Need two
SqlDataSource controls, if we need to independently retrieve or
update Customers and Orders information.

e The SqglDataSource command logic is supplied through four
properties:

o SelectCommand
o InsertCommand
o UpdateCommand
o DeleteCommand,

o Each command takes a string. The string we supply can be
inline SQL

[SelectCommandType,
[InsertCommandType,
[UpdateCommandType,
[DeleteCommandType

° SqglDataSource that defines a SELECT command for retrieving
records. (shown in example 6)

Example 6:

Employees table:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
ProviderName="System.Data.SqlClient" ConnectionString="<%$
ConnectionStrings:Northwind %>" SelectCommand="SELECT
EmployeelD, FirstName, LastName, Title, City FROM Employees"/>

° Working of Data Source Controls

1. Select the data source control, and click Refresh Schema in the
smart tag. This step triggers the data source control to connect
to the database and retrieve the column information for query.

2. Add a ListBox to form. Set the ListBox.DataSourcelD
property to the data source control. we can choose it from a
drop-down list that shows all the data sources on the form.

3. Set the ListBox.DataTextField to the column we want to
display (in this case, choose EmployeelD). The list of fields
should also be provided in a drop-down list.

Data Binding

177

.Net technology

178

4. Use the same steps to bind a rich data control. Add a
GridView to the web page, and set the
GridView.DataSourcelD property to the same data source.

5. Run a web page. Don’t fret about executing the command or
calling DataBind() on the page ASP.NET performs both of
those tasks automatically.

Disadvantages of the SqglDataSource

1.

Data access logic embedded in the page:

To create a SqglDataSource control, we need to hard-program the
SQL statements in the web page.

Maintenance in large applications:

Every page that accesses the database needs its own set of
SqlDataSource controls. This can turn into a maintenance nightmare,
particularly if we have several pages using the same query.

Lack of flexibility:

Every data access task requires a separate SqglDataSource. If we
want to provide a user with multiple ways to view or query data, this
can swamp web pages with data source objects, one for each
command variant. This can get complicated fast.

Inapplicability to other data tasks: The SqglDataSource does not
properly represent some types of tasks. The SqglDataSource is
planned for data display and data editing scenarios. However, this
model divides up if we need to connect to the database and perform
another task, such as placing a shipment request into an order
pipeline or logging an event.

12.5 SUMMARY

We have studied data binding expressions and the ASP.NET data
source controls in detail.

The use of GridView, ASP.NET’s premier rich data control.

The main characteristic of data binding is that it’s declarative, not
programmatic. That means data binding is defined outside the
program, alongside the controls in the .aspx page.

The controls that support single-value data binding allow us to bind
some of their properties to a data binding expression.

Repeated-value binding allows to bind an entire list of information
to a control.

Data source controls, enables avoid writing any data access program.

Data source controls turn up in the .aspx markup portion of the web
page like ordinary controls.

12.6 REFERENCE FOR FURTHER READING Data Binding

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

12.7 UNIT END EXERCISES

1. What is data binding? Explain Single-Value Data Binding &
Repeated-Value Data Binding?

List the Disadvantages of the SglDataSource
Explain the Page Life Cycle with Data Binding.
ke sk sk ke ke ke ok

179

.Net technology

180

13

DATA CONTROLS
Unit Structure :
13.0 Objective
13.1 Introduction
13.2 GridView
13.3 DetailsView
13.4 FormView
13.5 Summary
13.6 Reference for further reading
13.7 Unit End Exercises
13.0 OBJECTIVE
e To understand ASP.NET's rich data controls, such as the GridView.
e We will take a closer look at the three most powerful data controls.
e To learn how to fine-tune formatting and use features such as
selection, sorting, filtering, and templates.
e To learn about advanced scenarios such as showing images,

calculating summaries, and creating a master-details list in a single
control.

13.1 INTRODUCTION

In .NET technologie the MultiView is that unlike the rich data
controls (the GridView, FormsView, and so on),

The MultiView is not a naming container. This means that if We add
a control named textBox1 to a view, we can’t add another control
named textBox1 to another view.

There’s no real difference between the controls. We add a view and
controls in the rest of the page.

The controls created will be accessible through member variables in
page class. This means it’s easy to configure a control in the second
view when an event is raised by a control in the first view.

As a result, the pages created using the MultiView tend to be heavier
than normal pages. because the entire control model including the
controls from every view is created on every postback and persisted
to view state. F

) Example, if We have three views and each view has a different data
source control, each time the page is posted back all three data
source controls will perform their queries, and every view will be
bound, including those that aren’t currently visible. To avoid this
overhead, We can leave controls unbound and binding them
programmatically, else canceling the binding process for views that
aren’t currently visible.

13.2 GRIDVIEW

e The GridView is an extremely flexible grid control for showing data
in a basic grid consisting of rows and columns.

° It includes a wide range of hard-wired features, including selection,
paging, sorting, and editing, and it is extensible through templates.

° The great benefit of the GridView over the DataGrid is its support
for code-free scenarios.

° Using the GridView, We can achieve many common tasks, such as
paging and selection, without writing any code.

e With the DataGrid, We were forced to handle events to implement
the same quality.

Defining Columns

e When the property is set, the GridView uses reflection to examine
the data object and finds all the fields (of a record) or properties (of
a custom object). It then creates a column for each one, in the order
that it finds it.

e This automatic column generation is fine for creating quick test
pages, but it does not give the flexibility. For example, to hide
columns, change their order, or configure some aspect of their
display, such as the formatting or heading text. Set
AutoGenerateColumns to false and define the columns in the
<Columns> section of the GridView control tag.

Different types of column, as shown below The order of column tags find
the right-to-left order of columns in the GridView. Shown in Table 1

Column Description

BoundField This column displays text from a field in the data
source.

ButtonField This column displays a button for each item in the list.

CheckBoxField | This column displays a check box for each item in the
list. It’s used

automatically for true/false fields (in SQL Server, these
are fields that use the bit data type).

Data Controls

181

.Net technology

182

Column Description

CommandField | This column provides selection or editing buttons.

HyperLinkField | This column displays its contents (a field from the data
source or static text) as a hyperlink.

ImageField This column displays image data from a binary field
(providing it

can be successfully interpreted as a supported image
format).

TemplateField | This column allows We to specify multiple fields,
custom controls,

And arbitrary HTML using a custom template. It gives
us the highest degree of control but requires the most
work.

Table 1 GridView Column

° BoundField is the most basic column type, which binds to one field
in the data object. For example, here’s the definition for a single
data-bound column that displays the EmployeelD field:
<asp:BoundField DataField="EmployeelD" HeaderText="ID" />

e When first creating a GridView, the AutoGenerateColumns property
is not set (and so the default value of true is used). When We bind it
to a data source control, nothing changes.

° If We click the Refresh Schema link of the data source control, the
AutoGenerateColumns property is flipped to false, and Visual
Studio adds a <asp:BoundField> tag for each field it finds in the data
source. This approach has several advantages:

o Easy to use fine-tune column order, column headings, and
other details by tweaking the properties of column objects.

o Can hide columns We don’t want to show by removing the
column tag.

o Explicitly defined columns are faster than autogenerated
columns. That’s because auto generated columns force the
GridView to reflect on the data source at runtime.

o Can add extra columns to the mix for selecting, editing, and
more.

Example 1 shows the complete GridView declaration with explicit
columns:

Example 1:

<asp:GridView ID="gridEmployees" runat="server"
DataSourcelD="sourceEmployees"

AutoGenerateColumns="False">

<Columns>

<asp:BoundField DataField="EmployeelD" HeaderText="ID" />
<asp:BoundField DataField="FirstName" HeaderText="First Name" />
<asp:BoundField DataField="LastName" HeaderText="Last Name" />
<asp:BoundField DataField="Title" HeaderText="Title" />
<asp:BoundField DataField="City" HeaderText="City" />
</Columns>

</asp:GridView>

<asp:SqlDataSource ID="sourceEmployees" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
ProviderName="System.Data.SqlClient" SelectCommand=

"SELECT EmployeelD, FirstName, LastName, BirthDate, Title, City
FROM Employees™>

</asp:SqlDataSource>

° Properties:
DataField

This property indicates the name of the field (for a row) or property
(for an object) of the data item that We want to display in this
column.

DataFormatString

This property formats the field. This is useful for getting the right
representation of numbers and dates.

ApplyFormatinEditMode

If true, the format string will be used to format the value even when
it appears in a text box in edit mode. The default is false, which
means only the underlying normal will be used.

HeaderText, FooterText,and HeaderlmageUrl

The first two properties set the text in the header and footer region of
the grid, if this grid has a header (GridView.ShowHeader is true)
and footer (GridView.ShowFooter is true). The header is most
commonly used for a descriptive label such as the field name, while
the footer can contain a dynamically calculated value such as a
summary. To show an image in the header instead of text, set the
HeaderlmageUrl property.

Data Controls

183

.Net technology

184

ReadOnly

If true, the value for this column can’t be changed in edit mode. No
edit control will be provided. Primary key fields are often read-only.

InsertVisible

If false, the value for this column can’t be set in insert mode. If We
want a column value to be set programmatically or based on a
default value defined in the database, We can use this feature.

Visible

If false, the column won’t be visible in the page (and no HTML will
be rendered for it). This property gives We a convenient way to
programmatically hide or show specific columns, changing the
overall view of the data.

SortExpression

This property specifies an expression that can be appended to a
query to perform a sort based on this column. It’s used in
conjunction with sorting, as described in the “Sorting the GridView”
section.

HtmIEncode

If true (the default), all text will be HTML encoded to prevent
special characters from mangling the page. You could disable
HTML encoding if We want to embed a working HTML tag (such
as a hyperlink), but this approach isn’t safe. It’s always a better idea
to use HTML encoding on all values and provide other functionality
by reacting to GridView selection events.

NullDisplayText

This property defines the text that will be displayed for a null value.
The default is an empty string, although We could change this to a
hard- coded value, such as “(not specified).”

ConvertEmptyStringToNull

If this is true, before an edit is committed, all empty strings will be
converted to null values.

ControlStyle, HeaderStyle, FooterStyle, and ItemStyle

These properties configure the appearance for just this column,
overriding the styles for the row.

If We don’t want to configure columns by hand, select the
GridView, and click the ellipsis (...) next to the Columns property in
the Properties window. You’ll see a Fields dialog box that lets We
add, remove, and refine With columns, shown in figure 1

I
L

BoundField properties:

5. 24

B Accessibility
AccessibleMeaderText

H Appearance
FooterText
Headerdmager!

HeaderText First Name

HeaderText
The text within the header of this field

Auto-generate fields Convert this field into s Templatefield

Refresh Schema o "
Cancel

Figure 1. Configuring columns in Visual Studio
In the following sections, implement these topics:
1. Formatting: How to format rows and data values

2. Selecting: How to let users select a row in the GridView and
respond accordingly

3. Sorting: How to dynamically reorder the GridView in response to
clicks on a column header

4. Paging: How to divide a large result set into multiple pages of data,
using both automatic and custom paging code

5. Templates: How to take complete control of laWet, formatting, and
editing by defining templates

13.3 DETAILSVIEW

e The GridView and ListView excel at showing dense tables with
multiple rows of information. However, sometimes We want to
provide a detailed look at a single record.

e ASP.NET includes two controls that are tailored for this purpose: the
DetailsView and FormView.

e Both show a single record at a time but can include optional pager
buttons that let We step through a series of records. Both support
templates, but the FormView requires them. This is the key
distinction between the two controls.

e The FormView gives the most flexibility. But if We want to avoid
the complexity of templates, the DetailsView gives a simpler model
that lets We build a multi row data display out of field objects, in
much the same way that the GridView is built out of column objects.

Data Controls

185

.Net technology

186

) We can get up to speed with the DetailsView and FormView quite
quickly. That’s because both the DetailsView and the FormView
borrow a portion of the GridView model.

The DetailsView

e The DetailsView is designed to display a single record at a time. It
places each piece of information in a separate row of a table.

e The DetailsView can also bind to a collection of items. In this point,
it shows the first item in the group.

° It also allows to move from one record to the next using paging
controls,

e We can configure the paging controls using the PagingStyle and
PagingSettings properties

° The only difference is that there’s no support for custom paging,
which means the full data source object is always retrieved.

° It’s tempting to use the DetailsView pager controls to make a handy
record browser. Unfortunately, this approach can be quite
inefficient.

° First, a separate postback is required each time the user moves from
one record to another. But the real drawback is that each time the
page is posted back, the full set of records is retrieved, even though
only a single record is shown.

° If We opted to implement a record browser page with the
DetailsView, at a bare minimum it must enable caching to reduce
the database work .

Example 2: Create a drop-down list and bind this to a data source that
queries just the employee names. Then, when a name is selected from the
list, retrieve the full details for just that record using another data source.
(shown in figure 2)

2R Untitled Page - Microsoft Internet Explorer =33
- —
S @ e 7

Fils EAt Wew Favorites Jooks Helo

£ http: jflocalhost: 3796/ Chapter 10/Det alsViewSinole . aspx -

EmployeelD 1

FirstName

LastName

Title ales Representative
TitleOfCourtesy Ms

BirthDate 12/8/1948 12

HireDate 5/1/1992 12:00:0(
Address 507 Oth Ave. E. Apt. 2A
City

Region

PostalCode 1912

&) Done ~.J Local ntranet

Figure 2. The DetailsView with paging

Defining Fields Data Controls

e The DetailsView uses reflection to generate the fields it shows.

° It observes the data object and creates a separate field for each field
(in a row) or property (in a custom object), just like the GridView.

e To disable this automatic field generation by setting
AutoGenerateRows to false. It’s then up to us to declare the field
objects.

Example 3:

Fields from the data item are represented with the BoundField tag, buttons
can be created with the ButtonField, and so on.

Example 3 Field declarations for a DetailsView:

<asp:DetailsView ID="DetailsViewl" runat="server"
DataSourcelD="sourceEmployees"

AutoGenerateRows="False">
<Fields>

<asp:BoundField DataField="EmployeelD" HeaderText="EmployeelD"
/>

<asp:BoundField DataField="FirstName" HeaderText="FirstName" />
<asp:BoundField DataField="LastName" HeaderText="LastName" />
<asp:BoundField DataField="Title" HeaderText="Title" />

<asp:BoundField DataField="TitleOfCourtesy"
HeaderText="TitleOfCourtesy" />

<asp:BoundField DataField="BirthDate" HeaderText="BirthDate" />
</Fields>

</asp:DetailsView>

Record Operations
° The DetailsView holds delete, insert, and edit operations.

° GridView, We don't need to add a CommandField with edit controls.
In lieu, We simply set the

o Boolean AutoGenerateDeleteButton,
o AutoGenerateEditButton, and

o AutoGeneratelnsertButton properties on the DetailsView
control.

° This adds a CommandField at the bottom of the DetailsView with
links for these tasks.

187

.Net technology []

After clicking on the Delete button, the delete operation is
performed immediately. However, when We click an Edit or Insert
button, the DetailsView changes into edit or insert mode.

The DetailsView has three modes (as
DetailsViewMode enumeration).

represented by the

These modes are ReadOnly, Edit, and Insert.

Find the current mode at any time by checking the CurrentMode
property, and can call ChangeMode() to change it.

Use the DefaultMode property to create a DetailsView that always
begins in edit or insert mode.

In edit mode, the DetailsView uses standard text box controls just

like the GridView. (shown in figure 3)

B ER Vaw

B Untitled Pape - Microsaft Internst Fxplorer

Favorbes Took b Qe v

@] rito Jflocaihost 3756/ Chapher |0 etals ewS pie a6p

EmployeelD
FirstNomea
LastName

Titka
TitleOfCourtasy
Address

Clty

Raglon
PastalCoda
Country

Edit Delste New

Rancy

Davalia

alas Rearassntative
=

<) [l 3 Untitied Page - Microsoft Intermet Explorer LE®R
» o » m
4 = gt . %

He L Yew Fyomes ook ek O Sack.

£ tepiilocahos: 379K Hacter LDt s b eviSimple, ssp=

EmplayenlD

FirstName Nancy

LastName Dawnlio

Title Sales Representative
TitleofCourtes ¥ Ms

Address
City Sesltlz

Raglon Wi

&) 0zem S Local tranat £] oore

N3 Local ntraret

Figure 3. Editing in the DetailsView

13.4 FORMVIEW

188

The FormView provides a template-only control for displaying and
editing a single record.

The vision of the FormView template model is that it matches the
model of the TemplateField in the GridView quite closely.

Following are the templates to work with:
o ItemTemplate

o EditltemTemplate

o InsertlitemTemplate

o FooterTemplate

o HeaderTemplate

o EmptyDataTemplate

o PagerTemplate

This way can take the exact template content which is put in a
TemplateField in a GridView (shown in example 4) and place it
inside the FormView.

Example 4:

<asp:FormView ID="FormView1" runat="server"
DataSourcelD="sourceEmployees">

<ItemTemplate>

<p>

<%# Eval("EmployeelD") %> -

<%# Eval("TitleOfCourtesy") %> <%# Eval("FirstName™) %>
<%# Eval("LastName") %>

<hr />

<small><i>

<%# Eval("Address") %>

<%# Eval("City") %>, <%# Eval("Country") %>,
<%# Eval("PostalCode") %>

<%# Eval("HomePhone™) %></i>

<%# Eval("Notes") %>

</small>

</ltemTemplate>

</asp:FormView>

° The DetailsView, the FormView works in three distinct modes:

read-only, insert, and edit.

° The FormView control doesn’t support the CommandField class that

automatically creates editing buttons.
Table 2 shows the lists of recognized command names:

Command Description Where It Belongs

Name

Edit Puts the FormView into edit | The ItemTemplate

mode. The FormView renders
the current record using the
EditltemTemplate with the edit
controls We’ve defined.

Cancel Cancels the edit or insert| The EdititemTemplate

operation and returns to the |and

DefaultMode property. Usually,
this will be normal mode
(FormViewMode.ReadOnly),
and the FormView will display
the current record using the
ItemTemplate.

mode specified by the | InsertitemTemplate

Update Applies the edit and raises the | The EditltemTemplate

ItemUpdating and ItemUpdated
events on the way.

Data Controls

189

.Net technology

190

Command
Name

Description

Where It Belongs

New

Puts the FormView in insertion
mode. The FormView displays
a new, blank record using the
InsertitemTemplate with the
edit controls We’ve defined.

The ItemTemplate

Insert

Inserts the newly supplied data
and raises the Iteminserting and
ItemInserted events on the way.

The
InsertlitemTemplate

Delete

Removes the current record
from the data source, raising the
ItemDeleting and ItemDeleted
events. Does not change the
FormView mode.

The ItemTemplate

Table 2 List of Command

13.5 SUMMARY

1. We have learned how to build rich data-bound pages.

2. The GridView and considered its support for formatting, selection,
sorting, paging, templates, and editing.

3. We considered the template-based ListView and the data controls
that are designed to work with a single record at a time: the

DetailsView and FormView.

4. We are looking at several common advanced scenarios with data-

bound pages.

13.6 REFERENCE FOR FURTHER READING

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)

2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill

3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

13.7 UNIT END EXERCISES

1. What is GridView? Explain the List of Column use.

2. What are the different properties used in GridView?

3. What is FormView? Explain the list of recognized commands

names?

ke o e ke o sk

14
WORKING WITH XML

Unit Structure :

14.0
141
14.2
14.3
14.4
145
14.6
14.7
14.8

Obijective

Introduction

Working with XML

XML Classes
XMLTextWriter,
XMLTextReader

Summary

Reference for further reading
Unit End Exercises

14.0 OBJECTIVE

To understand the use of XML over the internet
To study the XML classes.
To study XMLTextWriter & XMLTextReader classes.

14.1 INTRODUCTION

XML stands for EXtensible Markup Language XML is a markup
language much like HTML. XML was designed to describe data

XML tags are not predefined. You must define your own tags
XML shall support a wide variety of applications

XML is already being used for exchanging information among
financial programs, for distributing and updating programs, for
writing invoices for delivery over the phones

XML shall be compatible with SGML

It shall be easy to write programs which process XML documents.
XML documents should be human readable and reasonably clear
The XML should be prepared quickly.

XML should be easy to create.

XML uses a Document Type Definition (DTD) or an XML
Schema to describe the data

191

Net technology e XML with a DTD or XML Schema is designed to be self-

descriptive

° But unlike HTML, XML tags identify the data rather than specify

how to display it. Whereas an HTML tag says something like,
"Display this data in bold font" (...), an XML tag acts like a
field name in your program. It puts a label on a piece of data that
identifies it (for example, <message>...</message>) shown in
example 1.

Example 1 of messaging application:

<

<message>

<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool</subject>
<text>

How many ways is XML cool? Let me count the ways...
<[text>
/message>

Advantages of XML

192

When XML was first introduced, its success was partly due to its
simplicity.

The rules of XML are much shorter and simpler than the rules of its
predecessor, SGML (full form Standard Generalized Markup
Language), and simple XML documents are human-readable.

However, using XML in a professional application isn’t simple at
all. But if anything, XML is much more useful today than it ever
was before.

The benefits of using XML in a modern application include the
following:

o Adoption: XML is ubiquitous. Many companies are using
XML to store data or are actively considering it. Whenever
data needs to be shared, XML is automatically the first choice
that’s Inspect.

o Extensibility and flexibility: XML imposes no rules
about data semantics and does not tie companies into
proprietary networks, unlike EDI (Electronic Data
Interchange). XML can fit any type of data and is cheaper to
implement.

o Related standards and tools: Another reason for XML’s
success is the tools (such as parsers) and the surrounding

standards (such as XML Schema, XPath, and XSLT) that help
in creating and processing XML documents. As a result,
programmers in nearly any language have ready-made
components for reading XML, verifying that XML is valid,
verifying XML against a set of rules (known as a schema),
searching XML, and transforming one format of XML into
another.

e XML acts like the glue that allows different systems to work
together.

° It helps standardize business processes and transactions between
organizations.

14.2 WORKING WITH XML

e XML was designed to store, carry and exchange data. It was not
designed to display data.

e An XML application is normally defined by creating a document
type definition DTD which is an optional component of an XML
document.

° A DTD is like a database schema. It defines and names the elements
that can be used in the document, the order in which the elements
will appear, the element attributes that can be used etc.

e To use an XML application you usually include its DTD in your
XML document. Having the DTD in the document restricts the
elements and structure that you can use so that your document is
forced to conform to the application standard.

° Uses of XML in real world
< Storing Databases.
< Structuring documents.
< Storing Vector Graphics (VML).
% Describing Multimedia Applications
% Defining channels.
% Describing software packages and the interdependencies.
% Communicating among applications.
% Sending electronic business cards vie e-mai.
« XML can Separate Data from HTML.
< With XML, your data is stored outside your HTML.

e When HTML is used to display data, the data is stored inside your
HTML. With XML, data can be stored in separate XML files. This

Working with XML

193

.Net technology

194

way you can concentrate on using HTML for data layout and
display, and be sure that changes in the underlying data will not
require any changes to your HTML.

e XML data can also be stored inside HTML pages.

e XML is used to Exchange Data

e XML, data can be exchanged between incompatible systems.

XML and B2B

° With the XML, financial information can be exchanged over the
Internet.

e XML is going to be the main language for exchanging financial
information between businesses over the Internet.

e XML can be used to Share Data

e With XML, plain text files can be used to share data.

e Since XML data is stored in plain text format, XML provides a
software- and hardware-independent way of sharing data. This
makes it much easier to create data that different applications can
work with.

) It also makes it easier to expand or upgrade a system to new
operating systems, servers, applications, and new browsers.

° XML can be used to Store Data

e With XML, plain text files can be used to store data.

e XML can also be used to store data in files or in databases.
Applications can be written to store and retrieve information from
the store, and generic applications can be used to display the data.

e XML can make your Data more Useful

e With XML, your data is available to more users.

e XML can be used to Create new Languages

° XML is the mother of WAP and WML. The Wireless Markup
Language (WML), used to markup Internet application for handheld
devices like mobile phones, is written in XML

) Displaying XML Documents

e Style Sheet Linking

o You can use a Cascading Style Sheet which is used for HTML
or an XSL-eXtensible Style Language which is specifically
used for the XML. XSL is more powerful than CSS.

° Data binding
o This requires you to create an HTML page and link the XML
document to it and bind standard HTML elements such as
tables to the XML elements.
e Scripting
o You create an HTML page, link the XML document to it and
access and display individual XML by writing script code
(Javascript or Vbscript. The browser then exposes the XML
document as a Document Object Model- DOM.
14.3 XML CLASSES
° The .NET framework contains a rich set of classes for working with
XML data.
° Classes are divided into multiple namespaces.
e The main classes for working with XML data are as follows :

o XmlTextReader

m This class provides fast, forward-only access to the raw
data contained in an XML file. It parses XML data into
tokens, but it does not represent the XML data in an
object model such as the W3C XML Document Object
Model (DOM).

o XmlTextWriter

m This class provides a fast, forward-only method to write
data to an XML file. It ensures that the data written to
the file conforms to the W3C XML 1.0 standard.

o XmlIDocument

m This class represents XML using the W3C XML DOM
levels 1 and 2. You can use this class to both navigate
and edit the nodes in an XML document tree.

o XmlDataDocument

m This class enables you to represent both XML and
relational data in W3C XML DOM levels 1 and 2. You
can use this class with a DataSet to provide both
relational and non-relational views of the same
underlying data.

o XmINodeReader

m This class provides fast, forward-only access to data
represented by the XmIDocument or XmlIDataDocument
class.

o DocumentNavigator

Working with XML

195

NNet technology m This class enables you to efficiently navigate an XML
document represented by the XmlIDocument class. It
supports the XPath data model for navigation.

o DataDocumentNavigator

m This class enables you to efficiently navigate an XML
document represented by the XmlIDataDocument class. It
supports the XPath data model for navigation.

o XslTransform

[This class enables you to transform an XML document
with XSL stylesheets. It supports XSLT 1.0 stylesheet
syntax.

14.4 XMLTEXTWRITER

° This class represents a writer that provides a fast, non-cached,
forward-only way of generating streams or files containing XML
data that conforms to the W3C Extensible Markup Language (XML)
1.0 and the Namespaces in XML recommendations.
public class XmITextWriter : System. Xml.XmIWriter

e XmiTextWriter maintains a namespace stack corresponding to all
the namespaces defined in the current element stack. Using
XmlTextWriter you can declare namespaces manually which is
shown below example 2.

Example 2

w.WriteStartElement("root");
w.WriteAttributeString("xmlins", "x", null, "urn:1");
w.WriteStartElement("item"”,"urn:1");
w.WriteEndElement();
w.WriteStartElement("item"”,"urn:1");
w.WriteEndElement();

w.WriteEndElement();

e XmiTextWriter promotes the namespace declaration to the root
element to avoid having it duplicated on the two child elements. The
child elements pick up the prefix from the namespace declaration.
Shown in example 3.

Example 3: root elements

<root xmIns:x="urn:1">
<x:.item/>

<x:.item/>

</x:root>

196

XmlTextWriter also allows you to override the current namespace
declaration. In the following example, the namespace URI "123" is
overridden by "abc" to produce the XML element <x:node
xmlns:x="abc"/> Shown in example 4.

Example 4:

w.WriteStartElement("x","node","123");

w.WriteAttributeString("xmins","x",null,"abc");

By using the write methods that take a prefix as an argument you
can also specify which prefix to use. In the following example, two
different prefixes are mapped to the same namespace URI to
produce the XML text <xirroot xmlns:x="urn:1"><y:item
xmlns:y="urn:1"/></x:root>. Shown in example 5

Example 5:

XmlITextWriter w = new XmlTextWriter(Console.Out);
w.WriteStartElement("x","root","urn:1");
w.WriteStartElement("'y","item","urn:1");
w.WriteEndElement();

w.WriteEndElement();

w.Close();

If namespace conflicts occur, XmlTextWriter resolves them by
generating alternate prefixes.(Shown in Table 1) For example, if an
attribute and element have the same prefix but different namespaces,
XmlIWriter generates an alternate prefix for the attribute. The
generated prefixes are named n{i} where i is a number beginning at
1. The number is reset to 1 for each element.

Constructors

XmlTextWriter(TextWriter)

Creates an instance of the XmlTextWriter
class using the specified TextWriter.

XmiITextWriter(Stream,
Encoding)

Creates an instance of the XmlITextWriter
class using the specified stream and
encoding.

XmiITextWriter(String,
Encoding)

Creates an instance of the XmlTextWriter
class using the specified file.

Table 1 XmITextWriter Constructor

Working with XML

197

.Net technology

198

° Properties of XmITextWriter shown in table 2

Properties

BaseStream | Gets the underlying stream object.

Formatting Indicates how the output is formatted.

Indentation Gets or sets how many IndentChars to write for each level
in the hierarchy when Formatting is set to
Formatting.Indented.

IndentChar Gets or sets which character to use for indenting when
Formatting is set to Formatting.Indented.

Namespaces | Gets or sets a value indicating whether to do namespace
support.

QuoteChar Gets or sets which character to use to quote attribute
values.

Settings Gets the XmlWriterSettings object used to create this
XmlWriter instance.

WriteState Gets the state of the writer.

XmilLang Gets the current xml:lang scope.

XmlSpace Gets an XmlSpace representing the current xml:space

scope.

Table 2 XmlTextWriter Properties

° Methods of XmITextWriter shown in table 3

Methods
Close() Closes this stream and the underlying stream.
Dispose() Releases all resources used by the current

instance of the XmlIWriter class.

Dispose(Boolean)

Releases the unmanaged resources used by the
XmlWriter and optionally releases the managed
resources.

DisposeAsync()

Performs application-defined tasks associated
with freeing, releasing, or resetting unmanaged
resources asynchronously.

DisposeAsyncCore()

Performs application-defined tasks associated
with freeing, releasing, or resetting managed
resources asynchronously.

Equals(Object) Determines whether the specified object is equal
to the current object.
Flush() Flushes whatever is in the buffer to the

underlying streams and also flushes the
underlying stream.

FlushAsync()

Asynchronously flushes whatever is in the buffer
to the underlying streams and also flushes the
underlying stream.

GetHashCode()

Serves as the default hash function.

GetType()

Gets the Type of the current instance.

LookupPrefix(String)

Returns the closest prefix defined in the current
namespace scope for the namespace URI.

MemberwiseClone()

Creates a shallow copy of the current Object.

ToString()

Returns a string that represents the current
object.

WriteAttributes(XmIR
eader, Boolean)

When overridden in a derived class, it writes out
all the attributes found at the current position in
the XmlIReader.

WriteAttributesAsync(
XmlReader, Boolean)

Asynchronously writes out all the attributes
found at the current position in the XmIReader.

WriteAttributeString(S
tring, String)

When overridden in a derived class, it writes out
the attribute with the specified local name and
value.

Table 3 Methods of XmIWriter class

145 XMLTEXTREADER

e This class represents a reader that provides fast, non-cached,
forward-only access to XML data.

public class

XmlITextReader

System.Xml.XmIReader,

System.Xml.IXmlLinelnfo,
System.Xml.IXmINamespaceResolver

° XmiTextReader provides forward-only, read-only access to a stream
of XML data. The current node refers to the node on which the
reader is positioned. The reader is advanced using any of the read
methods and properties reflect the value of the current node.

e This class implements XmlReader and conforms to the W3C
Extensible Markup Language (XML) 1.0 and the Namespaces in
XML recommendations.

e XmliTextReader provides the following functionality:

o Enforces the rules of well-formed XML.

o XmlTextReader does not provide data validation.

o Check that

DocumentType nodes are well-formed.

XmlTextReader checks the DTD for well-formedness, but
does not validate using the DTD.

Working with XML

199

.Net technology

200

o For nodes

where NodeType IS

XmINodeType.EntityReference, a single empty
EntityReference node is returned (that is, the Value property is

String.Empty).

° Does not expand default attributes.

e XmliTextReader does not perform the extra checks required for data

validation,

e XmlTextReader provides a fast well-formed parser.

e XmiTextReader throws an XmlException on XML parse errors.
After an exception is thrown the state of the reader is not
predictable. For example, the reported node type may be different
from the actual node type of the current node. Use the ReadState
property to check whether a reader is in error state. XmITextReader

Constrctor show in table 4

Constructors

XmiTextReader()

Initializes a new instance of the
XmlTextReader.

XmlTextReader(Stream)

Initializes a new instance of the
XmlTextReader class with the
specified stream.

XmiTextReader(Stream,
XmINameTable)

Initializes a new instance of the
XmlTextReader class with the
specified stream and XmINameTable.

XmlTextReader(Stream,
XmiINodeType,
XmlParserContext)

Initializes a new instance of the
XmlTextReader class with the
specified stream, XmINodeType, and
XmlParserContext.

XmlTextReader(String)

Initializes a new instance of the
XmlTextReader class with the
specified file.

XmlTextReader(String, Stream)

Initializes a new instance of the
XmlTextReader class with the
specified URL and stream.

XmiTextReader(String, Stream,
XmINameTable)

Initializes a new instance of the
XmlTextReader class with the
specified URL, stream and
XmINameTable.

XmlTextReader(String,
TextReader)

Initializes a new instance of the
XmlTextReader class with the

specified URL and TextReader.

XmlTextReader(String,

Initializes a new instance of the

TextReader, XmINameTable) XmiTextReader class with the

specified URL, TextReader and
XmINameTable.

XmlTextReader(String,
XmINameTable)

Initializes a new instance of the
XmlTextReader class with the
specified file and XmINameTable.

XmlTextReader(String,
XmINodeType,
XmlParserContext)

Initializes a new instance of the
XmlTextReader class with the
specified string, XmINodeType, and
XmlParserContext.

XmlTextReader(TextReader) Initializes a new instance of the

XmlTextReader class with the
specified TextReader.

XmiTextReader(TextReader, Initializes a new instance of the

XmINameTable)

XmlTextReader class with the
specified TextReader and
XmINameTable.

XmlTextReader(XmINameTable) | Initializes a new instance of the

XmlTextReader class with the
specified XmINameTable.

Table 4 Constructor for XmlITextReader

Properties (shown in below table 5)

AttributeCount

Gets the number of attributes on the current
node.

BaseURI

Gets the base URI of the current node.

CanReadBinaryContent

Gets a value indicating whether the
XmlTextReader implements the binary content
read methods.

CanReadValueChunk

Gets a value indicating whether the
XmlTextReader implements the
ReadValueChunk(Char[], Int32, Int32)
method.

CanResolveEntity Gets a value indicating whether this reader can
parse and resolve entities.
Depth Gets the depth of the current node in the XML

document.

DtdProcessing

Gets or sets the DtdProcessing enumeration.

Working with XML

201

.Net technology

202

Encoding

Gets the encoding of the document.

EntityHandling

Gets or sets a value that specifies how the
reader handles entities.

EOF

Gets a value indicating whether the reader is
positioned at the end of the stream.

HasAttributes

Gets a value indicating whether the current
node has any attributes.
(Inherited from XmlIReader)

HasValue Gets a value indicating whether the current
node can have a Value other than
String.Empty.

IsDefault Gets a value indicating whether the current

node is an attribute that was generated from the
default value defined in the DTD or schema.

ISEmptyElement

Gets a value indicating whether the current
node is an empty element (for example,
<MyElement/>).

Item[Int32]

When overridden in a derived class, gets the
value of the attribute with the specified index.
(Inherited from XmlIReader)

Item[String, String]

When overridden in a derived class, gets the
value of the attribute with the specified
LocalName and NamespaceURI.

(Inherited from XmlReader)

Item[String]

When overridden in a derived class, gets the
value of the attribute with the specified Name.
(Inherited from XmlIReader)

LineNumber Gets the current line number.

LinePosition Gets the current line position.

LocalName Gets the local name of the current node.

Name Gets the qualified name of the current node.
Namespaces Gets or sets a value indicating whether to do
namespace support.

NamespaceURI Gets the namespace URI (as defined in the
W3C Namespace specification) of the node on
which the reader is positioned.

NameTable Gets the XmINameTable associated with this
implementation.

NodeType Gets the type of the current node.

Normalization

Gets or sets a value indicating whether to
normalize white space and attribute values.

Prefix

Gets the namespace prefix associated with the
current node.

ProhibitDtd

Obsolete.

Gets or sets a value indicating whether to allow
DTD processing. This property is obsolete.
Use DtdProcessing instead.

QuoteChar

Gets the quotation mark character used to
enclose the value of an attribute node.

ReadState

Gets the state of the reader.

Schemalnfo

Gets the schema information that has been
assigned to the current node as a result of
schema validation.

(Inherited from XmlIReader)

Settings

Gets the XmlReaderSettings object used to
create this XmIReader instance.
(Inherited from XmlIReader)

Value

Gets the text value of the current node.

ValueType

Gets The Common Language Runtime (CLR)
type for the current node.
(Inherited from XmlReader)

WhitespaceHandling

Gets or sets a value that specifies how white
space is handled.

XmlLang Gets the current xml:lang scope.

XmlResolver Sets the XmlIResolver used for resolving DTD
references.

XmlSpace Gets the current xml:space scope.

Table 5 Properties for XmITextReader

Methods (Shown in table 6)

Close()

Changes the ReadState to Closed.

Dispose()

Releases all resources used by the
current instance of the XmIReader class.
(Inherited from XmlIReader)

Dispose(Boolean)

Releases the unmanaged resources used
by the XmlReader and optionally
releases the managed resources.
(Inherited from XmIReader)

Working with XML

203

.Net technology

204

Equals(Object)

Determines whether the specified object
is equal to the current object.
(Inherited from Object)

GetAttribute(Int32)

Gets the value of the attribute with the
specified index.

GetAttribute(String)

Gets the value of the attribute with the
specified name.

GetAttribute(String, String)

Gets the value of the attribute with the
specified local name and namespace
URI.

GetHashCode()

Serves as the default hash function.
(Inherited from Object)

GetNamespacesIinScope
(XmINamespaceScope)

Gets a collection that contains all
namespaces currently in-scope.

GetRemainder()

Gets the remainder of the buffered XML.

GetType() Gets the Type of the current instance.
(Inherited from Object)
GetValueAsync() Asynchronously gets the value of the

current node.
(Inherited from XmlIReader)

HasLinelnfo()

Gets a value indicating whether the class
can return line information.

IsStartElement()

Calls MoveToContent() and tests if the
current content node is a start tag or
empty element tag.

(Inherited from XmIReader)

IsStartElement(String)

Calls MoveToContent() and tests if the
current content node is a start tag or
empty element tag and if the Name
property of the element found matches
the given argument.

(Inherited from XmlIReader)

IsStartElement(String, String)

Calls MoveToContent() and tests if the
current content node is a start tag or
empty element tag and if the LocalName
and NamespaceURI properties of the
element found match the given strings.
(Inherited from XmIReader)

Table 6 XmIReader Methods

146 SUMMARY Working with XML

) Extensible Markup Language (XML) is a markup language used to
describe the content and structure of data in a document.

° It is a simplified version of Standard Generalized Markup Language
(SGML).

e XML is an industry standard for delivering content on the Internet.
Because it provides a facility to define new tags, XML is also
extensible.

) Like HTML, XML uses tags to describe content. However, rather
than focusing on the presentation of content, the tags in XML
describe the meaning and hierarchical structure of data. This
functionality allows for the sophisticated data types that are required
for efficient data interchange between different programs and
systems. Further, because XML enables separation of content and
presentation, the content, or data, is portable across heterogeneous
systems.

14.7 REFERENCE FOR FURTHER READING

1. Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
2. The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
3. Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

14.8 UNIT END EXERCISES

What is XML? Explain with examples.
What are the advantages of XML?

Explain the different types of XML Classes?

A w o

Write a short note on:
a. XMLTextWriter
b. XMLTextReader

ke o o ke o e s

205

.Net technology

206

15

CACHING

Unit Structure :

15.0
15.1
15.2
15.3
15.4
155
15.6
15.7

Obijective

Introduction

When to Use Caching
Output Caching

Data Caching

Summary

Reference for further reading
Unit End Exercises

15.0 OBJECTIVE

To understand the use of caching in .NET technologies.
To study when to use caching.
To learn the output and data catching techniques.

15.1 INTRODUCTION

Caching is the technique of storing a memory copy of some
information that’s costly to create.

Example, cache the results of a complex query so that subsequent
requests don’t need to access the database at all. Rather, they can
snatch the appropriate object directly from server memory, a much
faster proposition.

The real picture of caching is that unlike many other performance
enhancing techniques, caching bolsters both performance and
scalability.

Performance is better because the time taken to retrieve the
information is cut down dramatically.

Scalability is improved because you work around bottlenecks such
as database connections.

Server memory is a limited resource; if you try to store too much,
some of that information will be paged to disk, potentially slowing
down the entire system. That’s why the best coaching strategies are
self-limiting.

When we store information in a cache, we expect to find it there on a
future request most of the time. However, the lifetime of that
information is at the discretion of the server.

If the cache becomes full or other applications consume a large
amount of memory, information will be selectively evicted from the
cache, ensuring that performance is maintained. It’s this self-
sufficiency that makes caching so powerful.

Cache can be completely rendered HTML for a page, a portion of
that HTML, or arbitrary objects. We can customize expiration
policies and set up dependencies so that items are automatically
removed when other resources such as files or database tables are
modified.

15.2 WHEN TO USE CACHING

Caches are usually used to keep track of persistent responses to user
requests.

It can also be used in the case of storing results of long
computational operations.

Caching is storing data in a location different from the main data
source such that it’s faster to access the data. Like load balancers,
caching can be used in various places of the system.

Caching is done to avoid redoing the same complex computation
repeatedly.

Caching is used to improve the time complexity of algorithms for
example, say dynamic programming, the memorization technique to
reduce time complexity.

In the case of system design concepts, caching as a concept is also
the same.

Caching is used to improve the speed of a system.
To improve the latency of a system, we need to use caching.
To reduce network requests can also be a cause for using caching.

Caching provides a twofold, threefold, or even tenfold performance
improvement by retaining important data for just a short period of
time.

ASP.NET really has two types of caching:
o Output caching:
[This is the simplest type of caching.

[It stores a copy of the final rendered HTML page that is
sent to the client. The next client that submits a request

Caching

207

.Net technology

208

for this page doesn’t actually run the page. Instead, the
final HTML output is sent automatically.

m The time that would have been required to run the page
and its code is completely reclaimed.

© Data caching:
[This type of caching is carried out manually in code.

m To use data caching, we store important pieces of
information that are time consuming to reconstruct in the
cache. Other pages can check for the existence of this
information and use it, thereby bypassing the steps
ordinarily required to retrieve it.

[Data caching is conceptually the same as using
application state, but it’s much more server-friendly
because items will be removed from the cache
automatically when it grows too large and performance
could be affected. Items can also be set to expire
automatically.

o Fragment caching:

m This is a specialized type of output caching instead of
caching the HTML for the whole page, it allows you to
cache the HTML for a portion of it.

[Fragment caching works by storing the rendered HTML
output of a user control on a page.

m The next time the page is executed, the same page events
fire, but the code for the appropriate user control is not
executed.

o Data source caching:

m This is the caching that’s built into the data source
controls, including the SqlDataSource,
ObjectDataSource, and XmlIDataSource. The data source
caching uses data caching.

] The difference is that you don’t need to handle the
process explicitly. Instead, you simply configure the
appropriate properties, and the data source control
manages the caching storage and retrieval.

15.3 OUTPUT CACHING

° With this type of caching, the final rendered HTML of the page is
cached.

e When the same page is requested again, the control objects are not
created, the page life cycle doesn’t start, and none of your code
executes. Instead, the cached HTML is served. Clearly, output

caching gets the theoretical maximum performance increase,

because all

the overhead of your code is sidestepped.

1. Declarative Output Caching

Example 1 : create a simple page that displays the

current time of day. The code for this page is straightforward.
It simply sets the date to appear in a label when the Page.Load

event

Example 1:

occurs:

{

¥

protected void Page_Load(Object sender, EventArgs e)

IbIDate.Text = "The time is now:
";
IbIDate.Text += DateTime.Now.ToString();

Two ways to add this page to the output cache. The most

common approach is to insert the OutputCache directive at the
top of your .aspx file, just below the Page directive shown in
example 2:

Example 2:

<%@ OutputCache Duration="20" VaryByParam="None" %>

2. Caching and the Query String

Caching is deciding when a page can be reused and
when information must be accurate up to the latest
second. Use caching to efficiently reuse slightly stale
data without a problem, and with a considerable
performance improvement.

Occasionally information needs to be dynamic. One
example is if the page uses information from the current
user’s session to tailor the user interface. In this type,
full page caching just isn’t suitable. Second example is if
the page is receiving information from another page
through the query string.

ASP.NET provides options. We can set the
VaryByParam attribute to * to indicate that the page uses
the query string and to instruct ASP.NET to cache
separate copies of the page for different query string
arguments, as shown below:

<%@ OutputCache Duration="20" VaryByParam="*" %>

Caching

209

.Net technology

210

° When requesting the page with additional query string
information, ASP.NET will inspect the query string. If
the string matches a previous request, and a cached copy
of that page exists, it will be reused.

° To get a better idea how this process works, consider the
following series of requests:

1. You request a page without any query string
parameter and receive page copy A.

2. You request the page with the parameter
ProductID=1. You receive page copy B.

3. Another user requests the page with the parameter
ProductID=2. That user receives copy C.

4. Another user requests the page with ProductiD=1.
If the cached output B has not expired, it’s sent to
the user.

5. The user then requests the page with no query
string parameters. If copy A has not expired, it’s
sent from the cache.

Caching with Specific Query String Parameters

e Setting VaryByParam="*" allows you to use caching with dynamic
pages that vary their output based on the query string.

e This approach could be extremely useful for a product detail page,
which receives a product ID in its query string. With vary-by-
parameter caching, you could store a separate page for each product,
thereby saving a trip to the database. However, to gain performance
benefits you might have to increase the cached output lifetime to
several minutes or longer.

° Pages that accept a wide range of different query string parameters
just are not suited to output caching.

e Setting VaryByParam to the wildcard asterisk (*) is unnecessarily
vague. It’s usually better to specifically identify an important query
string variable by name.

example:
<%@ OutputCache Duration="20" VaryByParam="ProductID" %>

e ASP.NET will examine the query string looking for the ProductID
parameter. Requests with different ProductlD parameters will be
coached separately, but all other parameters will be ignored. This is
particularly useful if the page may be passed additional query string
information that it doesn’t use. ASP.NET has no way to distinguish
the “important” query string parameters without your help. Specify
several parameters, as long as you separate them with semicolons, as
follows:

<%@ OutputCache Duration="20"
VaryByParam="ProductID;CurrencyType" %>

In this case, the query string will cache separate versions, provided the
query string differs by ProductID or CurrencyType.

Custom Caching Control

° ASP.NET allows you to create your own procedure that decides
whether to cache a new page version or reuse an existing one.

° This code examines whatever information is appropriate and then
returns a string.

° ASP.NET wuses this string to implement caching. If your code
generates the same string for different requests, ASP.NET will reuse
the cached page.

) If your code generates a new string value, ASP.NET will generate a
new cached version and store it separately.

) One way you could use custom caching is to cache different versions
of a page based on the browser type.

e The following example uses the name browser because pages will be
cached based on the client browser:
<%@ OutputCache Duration="10" VaryByParam="None"
VaryByCustom="browser" %>

e To create the procedure that will generate the custom caching string.
This procedure must be coded in the global.asax application file, as
shown below example 3:

Example 3

public override string GetVaryByCustomString(
HttpContext context, string arg)

{
/I Check for the requested type of caching.
if (arg == "browser")

{
/I Determine the current browser.

string browserName;

browserName = Context.Request.Browser.Browser;

browserName +=
Context.Request.Browser.MajorVersion.ToString();

/I Indicate that this string should be used to vary caching.
return browserName;

¥

else

{
return base.GetVaryByCustomString(context, arg);

¥
¥

Caching

211

.Net technology

212

The GetVaryByCustomString() function passes the VaryByCustom
name in the arg parameter. This allows you to create an application
that implements several types of custom caching in the same
function. Each different type would use a different VaryByCustom
name (such as Browser, BrowserVersion, or DayOfWeek). Your
GetVaryByCustomString() function would examine the
VaryByCustom name and then return the appropriate caching string.
If the caching strings for different requests match, ASP.NET will
reuse the cached copy of the page.

The OutputCache directive also has a third attribute that you can use
to define caching. This attribute, VaryByHeader, allows you to store
separate versions of a page based on the value of an HTTP header
received with the request. You can specify a single header or a list of
headers separated by semicolons.

We can use this technique with multilingual sites to cache different
versions of a page based on the client browser language, as follows:

<%@ OutputCache Duration="20" VaryByParam="None"
VaryByHeader="Accept-Language" %>

Caching with the HttpCachePolicy Class

Cache property, which provides an instance of the
System.Web.HttpCachePolicy class.

This object provides properties that allow you to turn on caching for
the current page.

This allows you to decide programmatically whether you want to
enable output caching.

Example 4 shows, the date page has been rewritten so that it
automatically enables caching when the page is first loaded. This
code enables caching with the SetCacheability() method, which
specifies that the page will be cached on the server and that any
other client can use the cached copy of the page. The SetExpires()
method defines the expiration date for the page, which is set to be
the current time plus 60 seconds.

Example 4

protected void Page_Load(Object sender, EventArgs e)
{
/I Cache this page on the server.
Response.Cache.SetCacheability(HttpCacheability.Public);

/I Use the cached copy of this page for the next 60 seconds.
Response.Cache.SetExpires(DateTime.Now.AddSeconds(60));
// This additional line ensures that the browser can't

/l invalidate the page when the user clicks the Refresh button
/I (which some rogue browsers attempt to do).
Response.Cache.SetValidUntilExpires(true);

IbIDate. Text = "The time is now:
" +
DateTime.Now.ToString();
}

Post-Cache Substitution and Fragment Caching

Fragment caching:

o In this case, you identify just the content you want to cache,
wrap that in a dedicated user control, and cache just the output
from that control.

Post-cache substitution:

o In this case, you identify just the dynamic content you don’t
want to cache. You then replace this content with something
else using the Substitution control.

Fragment caching is the easiest to implement.

If you have a small, distinct portion of content to cache, fragment
caching makes the most sense.

Conversely, if you have only a small bit of dynamic content, post-
cache substitution may be the more straightforward approach. Both
approaches offer similar performance shown in below example 5.

Example 5

private static string GetDate(HttpContext context)
{

return "" + DateTime.Now.ToString() + "";

}

To get this in the page, you need to use the
Response.WriteSubstitution() method at some point:

protected void Page_Load(object sender, EventArgs e)
{
Response.Write("This date is cached with the page: ");
Response.Write(DateTime.Now.ToString() + "
");
Response.Write("This date is not: ");

Response.WriteSubstitution(new
HttpResponseSubstitutionCallback(GetDate));

}

Caching

213

.Net technology

214

15.4 DATA CACHING

° Data caching is the most flexible type of caching, but it also forces
you to take specific additional steps in your code to implement it.

e The basic principle of data caching is that you add items that are
expensive to create a special built-in collection object (called
Cache).

e This object works much like the Application object. It’s globally
available to all requests from all clients in the application. However,
a few key differences exist:

O

The Cache object is thread-safe: This means you don’t need
to explicitly lock or unlock the Cache collection before adding
or removing an item.

Items in the cache are removed automatically: ASP.NET
will remove an item if it expires, if one of the objects or files it
depends on is changed, or if the server becomes low on
memory. This means you can freely use the cache without
worrying about wasting valuable server memory, because
ASP.NET will remove items as needed. But because items in
the cache can be removed, you always need to check if a
cached object exists before you attempt to use it. Otherwise,
you’ll run into a NullReferenceException.

Items in the cache support dependencies: We can link a
cached object to a file, a database table, or another type of
resource. If this resource changes, your cached object is
automatically deemed invalid and released.

Adding Items to the Cache As with the Application and
Session collections, you can add an item to the Cache
collection just by assigning a new key name:

Cache["key"] = item;

A better approach is to use the Cache.Insert() method. Table 1
below lists the four versions of the Insert() method.

Overload

Description

Cache.Insert(key, Inserts an item into the cache under the

value)

specified key name, using the default priority
and expiration. This is the same as using the
indexer- based collection syntax and assigning
to a new key name.

Cache.Insert(key, value, | Inserts an item into the cache under the
dependencies) specified key name, using the default priority

and expiration. The last parameter contains a
CacheDependency object that links to other
files or cached items and allows the cached

Overload

Description

item to be invalidated when these change.

Cache.Insert(key, value,
dependencies,
absoluteExpiration,
slidingExpiration)

Inserts an item into the cache under the
specified key name, using the default priority
and the indicated sliding or absolute expiration
policy. This is the most commonly used
version of the Insert() method.

Cache.Insert(key, value,
dependencies,
absoluteExpiration,
slidingExpiration,
priority,
onRemoveCallback)

Allows you to configure every aspect of the
cache policy for the item, including expiration,
priority, and dependencies. In addition, you
can submit a delegate that points to a method
you want invoked when the

item is removed.

Table 1 Insert Methods

Example that stores an item with a sliding expiration policy of 10 minutes,

with no dependencies:

Cache.Insert("Myltem", obj, null,

DateTime.MaxValue, TimeSpan.FromMinutes(10));

A Simple Cache Test

The following Example 6 presents a simple caching test. An item is

cached for 30 seconds and reused for requests in that time.

Example 6:

protected void Page_Load(Object sender, EventArgs e)

{
if (this.IsPostBack)

{

Iblinfo.Text += "Page posted back.
";

¥

else

{

Iblinfo.Text += "Page created.
";

¥

DateTime? testitem = (DateTime?)Cache['"Testltem"];

if (testitem == null)

{

Iblinfo.Text += "Creating Testltem...
";

testltem = DateTime.Now;

Iblinfo.Text += "Storing Testltem in cache *;
Iblinfo.Text += "for 30 seconds.
";

Caching

215

.Net technology

216

Cache.Insert("Testltem", testltem, null,
DateTime.Now.AddSeconds(30), TimeSpan.Zero);

¥

else

{

Iblinfo.Text += "Retrieving Testltem...
";
Iblinfo.Text += "Testltem is "' + testitem.ToString();
IblInfo.Text += "'
";

ks

IblInfo. Text += "
";

ks

Post Back

Page created.
Creating Testitem...
Stonng Testltem in cache for 30 seconds.

Page posted back.
Retriewving Testitem...
Testltem is '1/1/2008 10:09:17 AM'

Page posted back.
Retrieving Testltem...
Testitem is "1/1/2008 10:09:17 AM'

Page posted back.
Creating Testltem...
Storing Testitem in cache for 30 seconds.

Cache Priorities

° Setting a priority while adding an item to the cache. The priority
only has an effect if ASP.NET needs to perform cache searches,
which is the process of removing cached items early because
memory is becoming scarce.

e To assign

a cache priority, choose a value from the

CacheltemPriority enumeration shown in table 2.

Lists of all the value:

Value Description

High These items are the least likely to be deleted from
the cache as the server frees system memory.

AboveNormal These items are less likely to be deleted than
Normal priority items.

Normal These items have the default priority level. They
are deleted only after Low or BelowNormal
priority items have been removed.

BelowNormal These items are more likely to be deleted than
Normal priority items.

Low These items are the most likely to be deleted from

the cache as the server frees system memory.

NotRemovable These items will ordinarily not be deleted from the

cache as the server frees system memory.

Table 2 Cache properties value

Caching with the Data Source Controls

e The SqglDataSource, ObjectDataSource, and XmlDataSource all
support built-in data caching.

° Using caching with these controls is highly recommended, because
the data source controls often generate extra query requests.

) For example, they requery after every postback when parameters
change, and they perform a separate query for every bound control,
even if those controls use exactly the same command, Even a little
caching can reduce this overhead.

To support caching, the data source controls all use the same properties,

which are listed below

Cache-Related Properties of the Data Source Controls shown in table 3

Property

Description

EnableCaching

If true, caching is switched on. It’s false by
default.

CacheExpirationPolicy

Uses a value from the
DataSourceCacheExpiry enumeration—

Absolute for absolute expiration (which
times out after a fixed interval

of time) or Sliding for sliding expiration
(which resets the time

window every time the data object is
retrieved from the cache).

CacheDuration

The number of seconds to cache the data
object. If you are using

sliding expiration, the time limit is reset
every time the object is

retrieved from the cache. The default value,
0 (or Infinite), keeps

cached items perpetually.

CacheKeyDependency and
SqglCacheDependency

Allows you to make a cached item
dependent on another item in the

data cache (CacheKeyDependency) or on a

Caching

217

.Net technology

218

table in your database

(SglCacheDependency). Dependencies are
discussed in the “Cache

Dependencies” section.

Table 3 Cache-Related Properties

15.5 SUMMARY

Caching is the technique of storing a memory copy of some
information that’s costly to create.

Caches are usually used to keep track of persistent responses to user
requests.

Caching provides a twofold, threefold, or even tenfold performance
improvement by retaining important data for just a short period of
time.

Data caching is the most flexible type of caching, but it also forces
you to take specific additional steps in your code to implement it.

Setting a priority while adding an item to the cache.

15.6 REFERENCE FOR FURTHER READING

1.
2.
3.

Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

15.7 UNIT END EXERCISES

w0 bdpoPe

What is caching? When to Use Caching?
Explain Output Caching with an example?
What is Data Caching? Explain a few key differences?

Write a short note on custom caching control?

ke o e ke e ek

16

LINQ

Unit Structure :

16.0
16.1
16.2
16.3
16.4
16.5
16.6

Obijective

Introduction

Understanding LINQ

LINQ Basics

Summary

Reference for further reading
Unit End Exercises

16.0 OBJECTIVE

This chapter would make you understand the following concepts:
o LINQ

o LINQ operators

o) Data model to an object model

o LINQ queries

The learner can use LINQ to query multiple data sources.

The learners can learn different LINQ operator concept to write
different queries against different databases.

Learners can use the same basic query expression patterns to query
and transform data into SQL databases, ADO.NET datasets, XML
documents, and .NET collections and flows.

16.1 INTRODUCTION

The data required for an application can be stored in a relational
database, business objects, XML file, or on web services.

Retrieving in memory objects is simple and less expensive than
retrieving data from a database or XML file. The data accessed are
not used directly. It required ordering, grouping and altering.

LINQ allows joining data from different data sources and executing
set data processing operations in a few lines of code. It defines a
common syntax and a programming model to query different types
of data sources using a common language.

LINQ is a deeply integrated part of .NET and the C# language. it can
be used equally well in any type of .NET application, most likely to
use LINQ as part of a database component. we can use LINQ in
addition to ADO.NET data access code.

219

.Net technology

220

Advantages of LINQ

Familiar language: Developers don't have to learn a new query
language for each type of data source or data format.

Less coding: It reduces the amount of code to be written as
compared with a more traditional approach.

Readable code: LINQ makes the code more readable so other
developers can easily understand and maintain it.

Standardized way of querying multiple data sources: The same
LINQ syntax can be used to query multiple data sources.

Compile time safety of queries: It provides type checking of objects
at compile time.

IntelliSense Support: LINQ provides IntelliSense for generic
collections.

Shaping data: You can retrieve data in different shapes.

Disadvantages of LINQ are:

With the use of LINQ, it's very difficult to write a complex query
like SQL.

It was written in the code, and we cannot make use of the Cache
Execution plan, which is the SQL feature as we do in the stored
procedure.

If the query is not written correctly, then the performance will be
degraded.

If we make some changes to our queries, then we need to recompile
the application and need to redeploy the dll to the server.

16.2 UNDERSTANDING LINQ

Operators:

A set of extension methods forming a query pattern is known as
LINQ Standard Query Operators. As building blocks of LINQ query
expressions, these operators offer a range of query capabilities like
filtering, sorting, projection, aggregation, etc. LINQ standard query
operators can be categorized into the following ones on the basis of
their Functionality. Shown in Table 1.

Operators Description
Select it is to fields of the return statement
From It is to specify the data source for the query
Where It is to specify the condition while retrieving the
data
OrderBy It is to specify the field by which the data is sorted
GroupBy It is to specify the field by which the data is grouped

Sum,
Average. Count allows to perform mathematical calculations on the

Min. Max.|These are the aggregation operators in LINQ. They

objects in the result set.

Take

It specifies how many rows we require in output
from the start position of the data source but when
we define a criteria in it then criteria is evaluated
first before the start position 1s determined.

Skip

It bypasses a specified number of contiguous rows
from a data source and returns the remaining rows
from the data source. It can skip rows from the top
or it can also skip rows depending on a certain
criteria.

TakeWhile It returns the sequence of elements starting from the

beginning of data source until the mentioned
condition is false.

SkipWhile It gives the result reverse of TakeWhile operator. It

skips the number of elements in collection until the
condition is true.

Join

It is similar to a SQL INNER JOIN. Tt only gives the
result when 1t finds a match between two data
sources.

Table 1 List of Operators

Implementations:

LINQ includes three basic types of implementation

a.

LINQ to objects: It used to query almost any kind of collections that
exists in the .NET Framework.

LINQ to XML: It used to query XML data directly in your web
application

LINQ to ADO.NET: It used to access data from SQL Server and
many other different kinds of data sources. Using LINQ to
ADO.NET you can perform LINQ to DataSet, LINQ to SQL, and
LINQ to Entities. LINQ to SQL allows writing object-oriented
queries against SQL Server databases. LINQ to DataSet allows
writing queries against the DataSet. LINQ to Entities allows writing
queries against the ADO.net Entity framework.

16.3 LINQ BASICS

LINQ includes three basic types of implementation

a.

LINQ to objects: It used to query almost any kind of collections that
exist in the .NET Framework.

LINQ to XML: It used to query XML data directly in your web
application

LINQ to ADO.NET: It used to access data from SQL Server and
many other different kinds of data sources. Using LINQ to
ADO.NET you can perform LINQ to DataSet, LINQ to SQL, and
LINQ to Entities. LINQ to SQL allows writing object-oriented

LINQ

221

.Net technology

222

queries against SQL Server databases. LINQ to DataSet allows
writing queries against the DataSet. LINQ to Entities allows writing
queries against the ADO.net Entity framework.

Mapping Your Data Model To An Object Model
Using LINQ to Objects

e The term LINQ to Objects refers to the use of LINQ queries to
access in memory data structures. Query any type that supports
IEnumerable<T>.

e This means that you can use LINQ queries not only with user-
defined lists, arrays, dictionaries, and so on, but also in conjunction
with .NET Framework APIs that return collections.

° For example, The System.Reflection classes return information
about types stored in a specified assembly, and then filter those
results using LINQ.

° LINQ queries offer three main advantages over traditional foreach
loops:

o They are more concise and readable, especially when filtering
multiple conditions.

o They provide powerful filtering, ordering, and grouping
capabilities with a minimum of application code.

o They can be ported to other data sources with little or no
modification.

LINQ to XML:

Provides creation and manipulation of XML documents using the same
syntax and general query mechanism as the other LINQ variety shown in
example 1.

Example 1: LINQ to create XML files to store student details.

Code:

using System;

using System.Collections.Generic;
using System.L.inq;

using System.Text;

using System.Threading.Tasks;
using System.Xml.Ling;
namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{

XDocument xdoc = new XDocument(

new XElement(*'students”,

new XElement("'student”,

new XAttribute("1D", "1"),

new XAttribute("City", "Mumbai"),

new XAttribute("Region™, "North Mumbai"),
new XElement("course",

new XAttribute("ltem", "Web progamming"),
new XAttribute("Price", 1000)

),

new XElement("course",

new XAttribute("ltem”, "Java"),

new XAttribute("Price", 2000)

)
),

new XElement("student”,

new XAttribute("1D", "2"),

new XAttribute("City", "Mumbai"),

new XAttribute("Region™, "South Mumbai"),
new XElement(*course”,

new XAttribute("Item”, "ADO.NET"),

new XAttribute("Price", 5000)

)
)
)
);

Console.WriteLine(xdoc);

Console.Write("Program finished, press Enter/Return to
continue:");

Console.ReadLine();

k
k

}
Output:

LINQ

223

.Net technology

224

B file:/// c:/users/admin/documents/visual studio 2015/Projects/Consolefpplication/Consclefpplication1/

"North Mumbai®»

LINQ to ADO.net

) LINQ to ADO.Net means using the LINQ queries on the objects in
the ADO.Net.

° The LINQ to ADO.Net gives us a chance to write the LINQ Queries
on Enumerable objects in ADO.Net and the LINQ to ADO.Net is
having the three types of LINQ technologies available.

) These are LINQ to Dataset, LINQ to SQL and LINQ to Entities.

LINQ Works

° To use LINQ, you create a LINQ expression.

e The return value of a LINQ expression is an iterator object that
implements IEnumerable<T>.

e When you enumerate over the iterator object, LINQ performs its
work.

) There are three separate ADO.NET Language-Integrated Query
(LINQ) technologies:

o LINQ to DataSet

o LINQ to SQL, and

o LINQ to Entities.

o LINQ to DataSet provides richer, optimized querying over the
DataSet and LINQ to SQL enables you to directly query SQL
Server database schemas, and LINQ to Entities allows you to
query an Entity Data Model.

e The following figure 1 provides an overview of how the ADO.NET

LINQ technologies relate to high-level programming languages and
LINQ-enabled data sources.

.NET Lanquage-Integrated Query

c# VB Other

JMET Lanquage-Integrated Query [LINGD)

LING enabled data sources

ADOQ.MET LINQ Technalogies

LING LING LING LING LING
o Objects to DataSet to SQL to Entities to XML
Objects Relational XML

Figure 1. ADO.NET LINQ technologies

LINQ to DataSet

e The DataSet is a key element of the disconnected programming
model that ADO.NET is built on, and is widely used.

) LINQ to DataSet enables developers to build richer query
capabilities into DataSet by using the same query formulation
mechanism that is available for many other data sources.

LINQ to SQL

° LINQ to SQL is a useful tool for developers who do not require
mapping to a conceptual model.

° By using LINQ to SQL, use the LINQ programming model directly
over existing database schema.

° LINQ to SQL enables developers to generate .NET Framework

classes that represent data. Rather than mapping to a conceptual data
model, these generated classes map directly to database tables,
views, stored procedures, and user-defined functions.

LINQ to Entities

Most applications are currently written on top of relational
databases. At some point, these applications will need to interact
with the data represented in a relational form.

Database schemas are not always ideal for building applications, and
the conceptual models of application are not the same as the logical
models of databases.

The Entity Data Model is a conceptual data model that can be used
to model the data of a particular domain so that applications can
interact with data as objects. For more information, see ADO.NET
Entity Framework.

LINQ

225

.Net technology

226

Aggregate functions (shown in example 2)

Aggregate functions are extension methods in LINQ. The following are
the Aggregate functions.

e Average(): It is used to average the number of elements in the list or
collection.

° Count(): COUNT () function in LINQ is used to count the number of
elements in the list or collection.

) Max(): Max () function in LINQ is used to return the maximum
value from the collection.

° Min(): MIN () function of LINQ is useful to get the minimum value
from a collection or list.

e Sum(): In LINQ sum() function is used to calculate the sum of the
items in collections or lists.

e Aggregate: Aggregate() function is used to perform the operation on
each item of the list. The Aggregate() function performs the action
on the first and second elements and then carries forward the result.

Example 2: LINQ with Aggregate functions.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Xml.Ling;
namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)
{
int[fn=4{1,2,3,4,5,6,7,8,9,10 };

Console.WriteLine("Total count =" + n.Count());
Console.WriteLine("Average =" + n.Average());
Console.WriteLine("Summation =" + n.Sum());
Console.WriteLine("Max value =" + n.Max());
Console.WriteLine("Min Value =" + n.Min());
Console.WriteLine("Aggregate Value =" + n.Aggregate((a, b) =>
a+h));

Console.ReadLine();

LINQ Sorting Operators (Shown in Example 3)

e Sorting Operators in LINQ are used to change the order or sequence
of the data (either ascending or descending), which is based on one
or more attributes.

o OrderBy: This operator will sort the values in ascending
order.

o OrderByDescending: This operator will sort the values in
descending order.

o ThenBy: This operator is used to perform the secondary
sorting in ascending order.

o ThenByDescending: This operator is used to perform the
sorting in descending order.

o Reverse: This operator is used to reverse the order of elements
in the collection.

Example 3: LINQ to sort employee list by employee name in
descending order.

Code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Xml.Ling;
namespace ConsoleApplicationl

{

class Employee

{

LINQ

227

.Net technology

228

public int EmployeelD { get; set; }
public string EmpName { get; set; }
public int Age { get; set; }

}

class Program

{

static void Main(string[] args)
{
List<Employee> empList = new List<Employee>()
{
new Employee() { EmployeelD = 1, EmpName = "Pallavi", Age =28 } ,
new Employee() { EmployeelD = 2, EmpName = "Kimaya", Age = 26 } ,
new Employee() { EmployeelD = 3, EmpName = "Dev", Age =35 },
new Employee() { EmployeelD = 4, EmpName = "Ram" , Age =25},
new Employee() { EmployeelD =5, EmpName = "Sonal" , Age = 28 }

b

var empResult = empList.OrderByDescending(x => x.EmpName);
foreach (var emp in empResult)

{

Console.WriteLine(emp.EmpName);

ks

Console.ReadLine();

B filey/ /o /usersfadmin/documents/visual studic 2015/Projects/Consclefpplicationl/

Sonal
Ram
Pallavi

Kimaya
Dew

LINQ SET OPERATORS

LINQ provides standard set operators such as Except, Intersect, Union,
and Distinct. These operators behave in the same way as in DBMS.

° Union operator : This operator requires two collections of items.
After applying union operator, you will get a new collection. It
removes the duplicate entries.

° Intersect operator : This operator provides the common elements
in both lists.

° Except operator : Except the operator provides the element only
from the first list. The new list does not contain common elements.
Shown in example 4.

Union Inrsection Except

Example 4: LINQ with set operators.

Code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Xml.Ling;
namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)
{
int[] Listl ={1,2,3,4,5,6 };

int[] List2 = {2,3,5};

Console.WriteLine("Unique elements in both list\n");
var result = List1.Union(List2);

foreach (int i in result)

{
Console.WriteLine(i);

}
Console.WriteLine("\n Common elements in both list\n\n");
var IntResult = Listl.Intersect(List2);

foreach (int i in IntResult)

{
Console.WriteLine(i);

¥

Console.WriteLine("\n Element in listl after minus from list2 \n");
var ExceptResult = List1l.Except(List2);

LINQ

229

.Net technology

230

foreach (int i in ExceptResult)

{
Console.WriteLine(i);

¥

Console.WriteLine("\n Element in list1 after disctinct \n");
var r = List1.Distinct();

foreach (intiinr)

{
Console.WriteLine(i);

ks

Console.ReadLine();

¥

¥
Output:

B file///e/users/admin/documents/visual studio 2015/Projects/ConseleApplication1/Consclefpplication/

Unique elements in both list

=

s RS TR R N N

Common elements in both list

er minus from list2

r disctinct

=

[]

[+3)

LINQ Partition Operator

In LINQ, Partition Operators are used to partition the list/collections items
into two parts and return one part of the list items. Here are the different
types of partitioning operators available in LINQ

e TAKE: This operator is used to return the specified number of
elements in the sequence.

TAKEWHILE: This operator is used to return the elements in the
sequence which satisfy the specific condition.

SKIP: This operator is used to skip the specified number of
elements in a sequence and return the remaining elements.

SKIPWHILE: This operator is used to skip the elements in a
sequence based on the condition, which is defined as true.

Quantifier Operators

“All” operator checks whether all elements in the list satisfies the
specified condition or not. It returns true if all the elements satisfy a
condition otherwise it returns false.

“Any” operator checks whether any element in the list satisfies the
given condition or not. It returns true if any element satisfies the
given condition. As it name indicates

“Contains” operator checks whether a particular element exists in
the collection or not. It also returns true or false. It returns true if any
element is available in the given list.

LINQ Element Operators

In LINQ, element operators are used to return the first and last element of
the list or single element from the collection or a specific element based
on the index value from the collection. By using these element operators,
we can get the list/collection of items at the specific position.

First: It returns the first element in sequence or from the collection
based on the condition.

FirstOrDefault: It is the same as First, but it returns the default
value in case when no element is found in the collection.

Last: It returns the last element in sequence or the last element
based on the matching criteria.

ElementAt: It returns an element from the list based on the specific
index position.

ElementAtOrDefault: It is the same as ElementAt, but it returns the
default value in case no element is present at the specified index of
the collection.

Single: It returns the single specific element from the collection.

SingleOrDefault: It is the same as Single, but it returns the default
value in case if no element is found in the collection.

DefaultifEmpty: It returns the default value in case if the list or
collection contains empty or null values.

LINQ

231

.Net technology

232

16.4 SUMMARY

LINQ functionality can be achieved by importing the System.Ling
namespace in our application.

Generally, the LINQ contains a set of extension methods which
allows us to query the source of data objects directly in our code
based on the requirement.

In LINQ we have learnt LINQ introduction, syntax, min function,
max function, sum function, count function, sorting operators and
how it helps in timesaving.

Ultimately, you have known about how language integrated queries
can be used for several types of data sources.

16.5 REFERENCE FOR FURTHER READING

1.

Beginning Visual C# 2012 Programming, Karli Watson, Jacob Vibe
Hammer, Jon D. Reid, Morgan Skinner, Daniel Kemper, Christian
Nagel,ISBN: 978-1-118-31441-8, Wrox Publication

Professional C# 2008,Christian Nagel, Bill Evjen, Jay Glynn, Karli
Watson, Morgan Skinner,ISBN: 978-1-118-64321-1 ,Wrox
Publication

Murach’s C# 2015,Anne Boehm and Joel Murach, ISBN 978-1-
890774-94-3,Murrach Books

16.6 UNIT END EXERCISES

1
2
3
4.
5
6

Explain LINQ with examples.

Explain different types of LINQ operators.

What are the different ways to implement LINQ?
What are the steps for creating LINQ to objects?

What are the steps for creating LINQ to XML?

What are the Advantages and Disadvantages of LINQ?

ke o o ke o e sk

17
ASP.NET AJAX

Unit Structure :

17.0
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Obijective

Introduction

ScriptManager

Partial Refreshes

Progress Notification

Timed Refreshes

Summary

Reference for further reading
Unit End Exercises

17.0 OBJECTIVE

To understand the use ASP.NET AJAX toolkit.
To use several features of AJAX in ASP.NET.

To learn how to use it to create the next generation of highly
interactive, dynamic web pages.

17.1 INTRODUCTION

ASP.NET AJAX consists of two key parts: a client-side portion and
a server-side portion.

o The client-side portion is a set of JavaScript libraries.

o non-ASP.NET developers can use them in their own web
pages.

o The client libraries don’t expose much in the way of features.
Rather, they establish a basic foundation you can use to
develop ASP.NET AJAX pages.

o This foundation extends the JavaScript language to fill in a
few of its gaps, and provides some basic infrastructure.

o The server-side portion of ASP.NET AJAX works at a higher
level.

o It includes controls and components that use the client-side
JavaScript libraries. For example, a web form that contains the
DragPanel component gives users the ability to drag a panel
around in the browser window.

233

.Net technology

234

o JavaScript uses the client-side ASP.NET AJAX libraries.
However, the DragPanel renders all the JavaScript code it
needs.

ASP.NET AJAX is the start of a new direction in ASP.NET
development. Before going any further, it’s worth getting an
overview of all the features that ASP.NET AJAX provides.

List of analysis:

o JavaScript language extensions: These extensions make
JavaScript work a little more like a modern object-oriented
language, with support for namespaces, inheritance, interfaces,
enumerations, and reflection.

o Remote method calls: ASP.NET AJAX pages can call web
services that you design. This feature allows users to get
information from the server without performing a full-page
postback.

o ASP.NET services: This feature allows you to call the server
to use one of two ASP.NET services one that uses forms
authentication information and one that gets data from the
current user profile.

o Partial page refreshes: The new UpdatePanel control gives
you a way to define a portion of a page that will be updated
without requiring a full-page postback.

o Prebuilt controls: The popular ASP.NET AJAX Control
Toolkit is stocked with more than 30 controls and control
extenders that use ASP.NET AJAX to great effect. They allow
you to make controls collapse and expand, add dynamic
animations, and support autocompletion and drag-and-drop.
And once again, these classes handle the low-level
JavaScripts.

ASP.NET AJAX on the Client: The Script Libraries

The client-side portion of ASP.NET AJAX relies on a small
collection of JavaScript files. There are two ways to deploy the
ASP.NET AJAX script files. If you build an ASP.NET application,
they’re available through the System.Web.Extensions.dll assembly
and served out on demand.

In ASP.NET, you won’t find individual JavaScript files for the client
libraries. Instead, the client libraries are embedded in the
System.Web.Extensions.dll assembly and served up as a script
resource. Script resources allow you to map a URL to a resource
that’s embedded in an assembly.

For example, example 2 shows a sample script block that extracts
the ASP.NET AJAX script library:

Example 2:

<script
src="/YourWebSite/ScriptResource.axd?d=RUSU1mIv69CJ9
H5JUAOSwW8L 4674

LfIxGOQg6Nw7HtNHheB3bMiw70v16bX1KPG6N10oTYEIi6
5ggRolIP1-hWapSttV3udoNXGrk095YGEzuX0M1&am

p;t=633127440334523405" type="text/javascript">
</script>

ASP.NET includes a script resource handler that responds to these
requests. It examines the passed- in query string argument and
returns the requested script file.

ASP.NET AJAX on the Server: The ScriptManager

To type long URLs there is no need to script resources on every
page that requires ASP.NET AJAX. The solution is to use an
ASP.NET control called the ScriptManager.

The ScriptManager is the brains of the server-side ASP.NET AJAX
model. It’s a web control that doesn’t have any visual appearance on
the page.

It performs a key task: it renders the links to the ASP.NET AJAX
JavaScript libraries.

To add the ScriptManager to a page, you can drag it from the AJAX
Extensions tab of the Toolbox.

ScriptManager is declared in the .aspx file:

<asp:ScriptManager ID="ScriptManagerl1"
runat="server"></asp:ScriptManager>

Each page that uses ASP.NET AJAX features requires an instance of
the ScriptManager.

Allows only one ScriptManager on a page. Along with rendering the
links for the ASP.NET AJAX client libraries, the ScriptManager
also performs several other important tasks.

It can render references to other script files, create proxies that
enable it to call web services asynchronously from the browser, and
manage the way UpdatePanel controls refresh their content.

ASP.NET AJAX

235

.Net technology

236

17.2 SCRIPTMANAGER

) Manages ASP.NET Ajax script libraries and script files, partial-page
rendering, and client proxy class generation for Web and application
services.

Namespace:

System.Web.UI

Assembly:

System.Web.Extensions.dll

[System.Drawing.ToolboxBitmap(typeof(EmbeddedResourceFinder),
"System.Web.Resources.ScriptManager.omp™)]

public class ScriptManager : System.Web.UI.Control,
System.Web.Ul.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

The following examples show different scenarios for using the
ScriptManager control.

Enabling Partial-Page Updates

° Example 3: a Calendar and a DropDownList control are inside an
UpdatePanel control. By default, the value of the UpdateMode
property is Always, and the value of the ChildrenAsTriggers
property is true. Therefore, child controls of the panel cause an
asynchronous postback.

Example 3:

<%@ Page Language="C#" %>
<IDOCTYPE html PUBLIC "-//W3C/DTD XHTML 1.0
Transitional//EN"

"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-transitional.dtd">
<script runat="server">
void DropDownSelection_Change(Object sender, EventArgs e)
{
Calendarl.DayStyle.BackColor =
System.Drawing.Color.FromName(ColorList.Selectedltem.Value);

¥

protected void Calendarl_SelectionChanged(object sender, EventArgs
€)
{
SelectedDate. Text =
Calendarl.SelectedDate. ToString();

</script>
<html xmlIns="http://www.w3.0rg/1999/xhtm[">
<head id="Head1" runat="server">
<title>UpdatePanel Example</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:ScriptManager ID="ScriptManagerl1"
runat="server" />
<asp:UpdatePanel ID="UpdatePanel1"
runat="server">
<ContentTemplate>
<asp:Calendar ID="Calendarl1"
ShowTitle="True"

OnSelectionChanged="Calendarl_SelectionChanged"
runat="server" />
<div>
Background:

<asp:DropDownList ID="ColorList"
AutoPostBack="True"

OnSelectedIndexChanged="DropDownSelection_Change"
runat="server">
<asp:Listltem Selected="True" Value="White">
White </asp:Listltem>
<asp:Listltem Value="Silver">
Silver </asp:Listltem>
<asp:Listltem Value="DarkGray">
Dark Gray </asp:Listltem>
<asp:Listltem Value="Khaki">
Khaki </asp:Listltem>
<asp:Listltem Value="DarkKhaki"> D
ark Khaki </asp:Listltem>
</asp:DropDownL.ist>

</div>

Selected date:

<asp:Label ID="SelectedDate"

ASP.NET AJAX

237

.Net technology

238

runat="server">None.</asp:Label>
</ContentTemplate>
</asp:UpdatePanel>

</div>
</form>

</body>
</html>

Handling Partial-Page Update Errors and Registering Script
e This provides custom error handling during partial-page updates.

° By default, when an error occurs during partial-page updates, a
JavaScript message box is displayed.

e This example shows how to use custom error handling by providing
a handler for the AsyncPostBackError event, and by setting the
AsyncPostBackErrorMessage property in the event handler.

e We can set the AllowCustomErrorsRedirect property to specify how
the custom errors section of the Web.config file is used when an
error occurs during partial-page updates.

° In this example 4, the default wvalue of the
AllowCustomErrorsRedirect property is used. This means that if the
Web.config file contains a customErrors element, that element
determines how errors are displayed.

Example 4:

<% @ Page Language="C#" %>

<IDOCTYPE html PUBLIC "-//W3C//[DTD XHTML 1.0
Transitional//EN" "http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-
transitional.dtd">

<script runat="server">

protected void Buttonl Click(object sender, EventArgs e)

{
try

{
int a = Int32.Parse(TextBox1.Text);

int b = Int32.Parse(TextBox2.Text);

intres=a/b;

Labell.Text = res.ToString();
}

catch (Exception ex)

{
if (TextBox1.Text.Length > 0 && TextBox2.Text.Length > 0)

{
ex.Data["Extralnfo"] =" You can't divide " +
TextBox1.Text + " by " + TextBox2.Text + ".";
k

throw ex;

ky

protected void ScriptManagerl_AsyncPostBackError(object sender,
AsyncPostBackErrorEventArgs e)

{
if (e.Exception.Data["Extralnfo"] != null)

{

ScriptManagerl.AsyncPostBackErrorMessage =
e.Exception.Message +
e.Exception.Data["Extralnfo"].ToString();

}

else
{
ScriptManagerl.AsyncPostBackErrorMessage =

"An unspecified error occurred.";

ky

</script>

<html xmlIns="http://www.w3.0rg/1999/xhtml">

<head id="Head1" runat="server">
<title>UpdatePanel Error Handling Example</title>
<style type="text/css">
#UpdatePanell {

ASP.NET AJAX

239

.Net technology

240

width: 200px; height: 50px;
border: solid 1px gray;
}
#AlertDiv{
left: 40%; top: 40%;
position: absolute; width: 200px;
padding: 12px;
border: #000000 1px solid;
background-color: white;
text-align: left;
visibility: hidden;
z-index: 99;
}
#AlertButtons{
position: absolute; right: 5%; bottom: 5%;
}
<[style>
</head>
<body id="bodytag">
<form id="form1" runat="server">
<div>
<asp:ScriptManager ID="ScriptManager1"

OnAsyncPostBackError="ScriptManagerl AsyncPostBackError"
runat="server" >

<Scripts>

<asp:ScriptReference Path="ErrorHandling.js" />

</Scripts>

</asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>

<asp:TextBox ID="TextBox1" runat="server"
Width="39px"></asp: TextBox>

/

<asp:TextBox ID="TextBox2" runat="server"
Width="39px"></asp: TextBox>

<asp:Label ID="Labell" runat="server"></asp:Label>

<asp:Button ID="Button1" runat="server"
OnClick="Buttonl_Click" Text="calculate" />

</ContentTemplate>
</asp:UpdatePanel>
<div id="AlertDiv">
<div id="AlertMessage">
</div>

<div id="AlertButtons">

<input id="OKButton" type="button" value="OK"
runat="server" onclick="ClearErrorState()" />

</div>
</div>
</div>
</form>
</body>

</htmi>

Globalizing the Date and Time That Are Displayed in the Browser

° The following example 5 shows how to set the
EnableScriptGlobalization property so that the client script can
display a culture-specific date and time in the browser.

° In the code, the Culture attribute of the @ Page directive is set to
auto. As a result, the first language that is specified in the current
browser settings determines the culture and Ul culture for the page.

Example 5:

<%@ Page Language="C#" Culture="auto" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http:/www.w3.0rg/TR/xhtmI11/DTD/xhtml11.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml|">
<head id="Head1" runat="server">
<title>Globalization Example</title>

ASP.NET AJAX

241

.Net technology

242

</head>
<body>
<form id="form1" runat="server">
<asp:ScriptManager ID="ScriptManager1"
EnableScriptGlobalization="true" runat="server">
</asp:ScriptManager>
<script type="text/javascript">
function pagelLoad() {
Sys.Ul.DomEvent.addHandler($get("Button1"), "click",
formatDate);
}
function formatDate() {
var d = new Date();
try {
$get('Labell’).innerHTML = d.localeFormat("dddd, dd MMMM
yyyy HH:mm:ss");
}
catch(e) {
alert("Error:" + e.message);

ks
¥

</script>
<asp:UpdatePanel ID="UpdatePanel1" runat="server"
ChildrenAsTriggers="False" UpdateMode="Conditional">
<ContentTemplate>
<asp:Panel ID="Panell" runat="server" GroupingText="Update
Panel">
<asp:Button ID="Button1" runat="server" Text="Display Date" />

<asp:Label ID="Labell" runat="server"></asp:Label>
</asp:Panel>
</ContentTemplate>
</asp:UpdatePanel>
</form>
</body>
</html>

17.3 PARTIAL REFRESHES

Perhaps the most visible feature of the ASP.NET AJAX Extensions
is the ability to do a partial or incremental page update without
doing a full postback to the server, with no code changes and
minimal markup changes.

The advantages are extensive: the state of your multimedia (such as
Adobe Flash or Windows Media) is unchanged, bandwidth costs are

reduced, and the client does not experience the flicker usually
associated with a postback.

e The ability to integrate partial page rendering is integrated into
ASP.NET with minimum changes into your project.

° One of the most fascinating controls in the ASP.NET AJAX
framework is the UpdatePanel. This new control replaces the need
for a page to refresh during a postback. Only portions of a page,
designated by the UpdatePanel, are updated.

e This technique is known as partial-page rendering and can be highly
effective in improving the user experience.

17.4 PROGRESS NOTIFICATION

1. Showing a Simulated Progress Bar

. When adding the UpdateProgress control to a page, we get the
ability to specify some content that will appear as soon as an
asynchronous request is started and disappear as soon as the request
is finished.

° This content can include a fixed message, but many people prefer to
use an animated GIF, because it more clearly suggests that the page
is still at work.

e The top figure shows the page as it first appears, with a
straightforward UpdatePanel control containing a button. When the
button is clicked, the asynchronous callback process begins. At this
point, the contents of the UpdateProgress control appear underneath.

e The markup for this page defines an UpdatePanel followed by an
UpdateProgress example 6 shown below:

Example 6:

<asp:UpdatePanel ID="UpdatePanell" runat="server">
<ContentTemplate>
<div style="background-color:#FFFFEQ;padding: 20px">

<asp:Label ID="IbITime" runat="server" Font-
Bold="True"></asp:Label>

<asp:Button ID="cmdRefreshTime" runat="server"
Text="Start the Refresh Process" />
</div>
</ContentTemplate>
</asp:UpdatePanel>

ASP.NET AJAX

243

.Net technology

244

<asp:UpdateProgress ID="updateProgress1" runat="server">
<ProgressTemplate>
<div style="font-size: xx-small">
Contacting Server ...
</div>
</ProgressTemplate>
</asp:UpdateProgress>

Depending on the layout we want, we can place our UpdateProgress
control somewhere inside our UpdatePanel control.

The UpdateProgress control only shows its content while the
asynchronous callback is under way, it only makes sense to use it
with an operation that takes time. Otherwise, the UpdateProgress
will only show its ProgressTemplate for a few fractions of a second.

To simulate a slow process, add a line to delay your code 10
seconds, as example 7 shown below:

Example 7:

Protected Sub cmdRefreshTime_Click(ByVal sender As Object, _
ByVal e As EventArgs) Handles cmdRefreshTime.Click

System.Threading.Thread.Sleep(TimeSpan.FromSeconds(10))
IbITime.Text = DateTime.Now.ToLongTimeString()
End Sub

2. Cancellation

The UpdateProgress control supports one other detail: a cancel
button. When the user clicks a cancel button, the asynchronous
callback will be cancelled immediately, the UpdateProgress content
will disappear, and the page will revert to its original state.

Adding a cancel button is a two-step process. First you need to add a
fairly intimidating block of JavaScript code, which you can copy
verbatim. You should place this code at the end of your page, after
all your content but just before the </body> end tag. Here’s the
example 8 shows the need, in its rightful place:

Example 8:

<%@ Page Language="VB" AutoEventWireup="false"
CodeFile="Waitlndicator.aspx.vb"

Inherits="Waitindicator" %>
<html xmlIns="http://www.w3.0rg/1999/xhtmI">

<head runat="server'">

</head>
<body>
<form ID="form1" runat="server">
</form>
<script type="text/javascript">
var prm = Sys.WebForms.PageRequestManager.getinstance();
prm.add_initializeRequest(InitializeRequest);
function InitializeRequest(sender, args)

{
if (prm.get_isInAsyncPostBack())

{
args.set_cancel(true);
}
}
function AbortPostBack()
{
if (prm.get_isInAsyncPostBack()) {
prm.abortPostBack();

¥
¥

</script>
</body>
</html>

Once you’ve added this code, you can use JavaScript code to call its
AbortPostBack() function at any time and cancel the callback.

The easiest way to do this is to connect a JavaScript event to the
AbortPostBack() function using a JavaScript event attribute. Add a
JavaScript event attribute to virtually any HTML element. For
example, you can deal with client-side clicks using the onclick
attribute. Here’s a basic HTML button that uses this technique to
connect itself to the AbortPostBack() function:

<input ID="cmdCancel" onclick="AbortPostBack()" type="button"
value="Cancel" />

If you click this Cancel button, the client-side AbortPostBack()
function will be triggered and the callback will be cancelled
immediately. Typically, this button in the ProgressTemplate of the
UpdateProgress control, as shown in Figure 1.

ASP.NET AJAX

245

.Net technology

246

| (& Test Page - Windows Internet Explorer I =JHC X

e) ‘i;r http://localhost:50901/Ajax/WaitIndicator.aspx v 1 *s ! X ’

| @ Test Page f) v o= v :Pagev

| Start the Refresh Process

[] | ~ -
Contacting Server .. (D S (0 (N S G S - - - - | Cancsl

&9 Internet | Protected Mode: On ®100% ~

Figure 1 ProgressTemplate

17.5 TIMED REFRESHES

e ASP.NET AJAX includes a Timer control that can help you
implement a page that includes a stock ticker, and want to refresh
this ticker periodically (say, every 5 minutes) to ensure it doesn’t
become drastically outdated.

° The Timer control is refreshingly straightforward. You simply add it
to a page and set its Interval property to the maximum number of
milliseconds that should elapse before an update.

° For example 9 & 10, if you set Interval to 60000, the timer will force
a postback after one minute elapses.

<asp:Timer ID="Timerl" runat="server" Interval="60000" />

° If the Timer is in an UpdatePanel, it will trigger an asynchronous
postback. If it’s not, and it’s not linked to an UpdatePanel with a
trigger, the Timer will trigger an ordinary full-page postback.

° The timer raises a server-side Tick event, which you can handle to
update your page.

e The timer is particularly well suited to pages that use partial
rendering. That's because a refresh in a partially rendered page
might just need to change a single portion of the page.

e To use the timer with partial rendering, wrap the updateable portions
of the page in UpdatePanel controls with the UpdateMode set to
Conditional, and add a trigger that forces an update whenever the
timer fires:

Example 9:

<asp:UpdatePanel ID="UpdatePanell" runat="server"
UpdateMode="Conditional">

<ContentTemplate>

</ContentTemplate>

<Triggers>

<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />
</Triggers>

</asp:UpdatePanel>

<asp:Timer ID="Timer1" runat="server" Interval="60000"
OnTick="Timerl_Tick" />

e To stop the timer, simply need to set the Enabled property to false in
server-side code. For example, following code show how to disable
the timer after ten updates:

Example 10:

protected void Timerl_Tick(object sender, EventArgs €)
{
I/l Update the tick count and store it in view state.
int tickCount = 0;

if (ViewState["TickCount"] = null)

{
tickCount = (int)ViewState["TickCount"];

}
tickCount++;
ViewState["TickCount"] = tickCount;
/I Decide whether to disable the timer.
if (tickCount > 10)

{

Timerl.Enabled = false;

}
}

ASP.NET AJAX

247

.Net technology

248

17.6 SUMMARY

The most exciting feature of ASP.NET AJAX is that it isn’t just
another JavaScript library or a simple .NET component that
simplifies callbacks.

You can write your own JavaScript code that calls server-side
functionality.

We can keep using ordinary ASP.NET server controls but extend
them with ASP.NET AJAX-fortified ingredients such as the
UpdatePanel, or use the snazzy controls and control extenders that
are included with the ASP.NET AJAX Control Toolkit.

We can create your own client-side components, controls, and
behaviors, and use them independently or in conjunction with a
custom ASP.NET server control.

17.7 REFERENCE FOR FURTHER READING

1.
2.
3.

Beginning ASP.NET 4.5 in C#, Matthew MacDonald, Apress(2012)
The Complete Reference ASP .NET, MacDonald, Tata McGraw Hill
Beginning ASP.NET 4 in C# and VB Imar Spanajaars, WROX

17.8 UNIT END EXERCISES

A w0 P

What is the use of ScriptManager in ASP.NET AJAX?
Explain the Partial Refreshes with an example.
Explain Progress Notification with the help of an example?

Write a short note on Timed Refreshes?

ke ofe ke e ke e ke

	192-1 SY BSC CS SEM IV .Net technology Starting pages
	BSc CS (1)_7skills
	BSc CS (2)_7skills
	BSc CS (3)_7skills
	BSc CS (4)_7skills
	BSc CS (5)_7skills
	BSc CS (6)_7skills
	BSc CS (7)_7skills
	BSc CS (8)_7skills
	BSc CS (9)_7skills
	BSc CS (10)_7skills
	BSc CS (11)_7skills
	BSc CS (12)_7skills
	BSc CS (13)_7skills
	BSc CS (14)_7skills
	BSc CS (15)_7skills
	BSc CS (16)_7skills
	BSc CS (17)_7skills

